DATA HANDBOOK

Signetics Programmable
 Logic
 Devices

Signetics

Philips Components

Signetics

Programmable Logic Devices

PLD
 Data Handbook 1990

Programmable Logic Devices

Philips Components

Signetics reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Signetics assumes no responsibility or liability for the use of any of these products, conveys no license or titte under any patent, copyright, or mask work rightto these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Signetics makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
LIFE SUPPORT APPLICATIONS
Signetics Products are not designed for use in life support appliances, devices, or systems where malfunction of a Signetics Product can reasonably be expected to result in a personal injury. Signetics customers using or selling Signetics Products for use in such applications do so at their own risk and agree to fully indemnify Signetics for any damages resulting from such improper use or sale.

Signetics registers eligible circuits under the Semiconductor Chip Protection Act.
(C) Copyright 1990 NAPC.

Signetics

Programmable Logic Devices

Preface

The 1990 Philips Components-Signetics PLD Data Handbook is loaded with information on new parts. Using the fastest technologies in the most innovative architectures, today's system designer can pick from the largest selection of PLDs in the industry. Some highlights of this handbook include the fastest silicon PLDs available (PHD16N8 and PHD48N22)-at 5 nanoseconds! These devices make ideal decoders to squeeze maximum performance from powerful microprocessors.

Designers using DRAM, VRAM and graphics will appreciate the speed and power of the new line of sequencers which include the PLC415, PLC42VA12, PLUS405 and PLUS105. These sequencers also make innovative bus and LAN controllers for emerging standard protocols. At last, the logical power of dual programmable arrays comes forth in the PLUS153 and PLUS173 devices-at 10 nanosecond propagation delays. The PLC18V8Z is the only zero power 20-pin device which can replace 16V8's! And finally, our -7 and D speed PAL-type devices are the industry's fastest. For maximum density in a truly compact system, the Programmable Macro Logic family now boasts four members-the PML2552 and PLHS601 are added to the original PLHS501 and PLHS502. The PML2552 is the PLD industry's first dense device to implement SCAN test.

To complement the devices, AMAZE design software is offered through our Sales Offices (see Section 11) and SNAP software is available for high level support. Read about them under Product Support.
Expanding customer service has been an ongoing effort. Our Applications staff is available to answer your technical questions on PLD designs and our free computer Bulletin Board, with 24-hour service, is at (800)451-6644.
New PLD users are encouraged to read the Introduction and AN8 for an overview of PLD ideas. More seasoned PLD users are encouraged to go through the PLD applications and PML applications at the end of the handbook to gain understanding and ideas for new designs.

Signetics

Product Status

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Spocification	Formative or in Dosign	This data sheet contains the design target or goal speecifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data and ics reserves the righ Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Signetics reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Signetics

Contents

Programmable Logic Devices

Preface iii
Product Status iv
Section 1 - General Information
Alphanumeric Index 3
Selection Guide 4
Ordering Information 6
Section 2 - Introduction
What is Signetics Programmable Logic 9
Quality and Reliability 27
Section 3 - PAL ${ }^{\circledR}$-Type Devices Data Sheets
Series 20
PLHS16L8A/B PAL ${ }^{\circledR}$-Type Devices $(16 \times 64 \times 8)$ 39
PLUS16R8D/-7 PAL ${ }^{\circledR}$-Type Devices
(Includes: PLUS16L8D/-7, PLUS16R4D/-7, PLUS16R6D/-7, PLUS16R8D/-7) 46
PHD16N8-5 Programmable High Speed Decoder ($16 \times 16 \times 8$); 5ns 60
PLHS18P8A/B PAL ${ }^{\circledR}$-Type Devices 68
PLC18V8Z/I PAL ${ }^{\circledR}$-Type Devices 75
Series 24
10H20EV8/10020EV8 ECL PAL ${ }^{\circledR}$-Type Devices 87
PLUS20R8D/-7 PAL ${ }^{\circledR}$-Type Devices
(Includes: PLUS20L8D/-7, PLUS20R4D/-7, PLUS20R6D/-7, PLUS20R8D/-7) 101
Series 68
PHD48N22-7 Programmable High Speed Decoder ($48 \times 73 \times 22$); 7.5ns 115
Section 4 - Programmable Logic Array Devices Data Sheets
Series 20
PLS153/A Programmable Logic Arrays ($18 \times 42 \times 10$); 40/30ns 127
PLUS153B/D Programmable Logic Arrays ($18 \times 42 \times 10$); $15 / 12 \mathrm{~ns}$ 134
PLUS153-10 Programmable Logic Array ($18 \times 42 \times 10$); 10 ns 141
Series 24
PLS173 Programmable Logic Array ($22 \times 42 \times 10$); 30ns 148
PLUS173B/D Programmable Logic Arrays ($22 \times 42 \times 10$); $15 / 12 \mathrm{~ns}$ 154
PLUS173-10 Programmable Logic Array ($22 \times 42 \times 10$); 10 ns 161
PLHS473 Programmable Logic Array ($20 \times 24 \times 11$); 22 ns 168
PLHS473S Programmable Logic Array ($20 \times 24 \times 11$); 25 ns 174
Series 28
PLS100/101 Programmable Logic Arrays ($16 \times 48 \times 8$); 50ns 181

Contents

Section 5 - Programmable logic Sequencer Devices Data Sheets
Series 20
PLS155 Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 191
PLS157 Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 202
PLS159A Programmable Logic Sequencer ($16 \times 45 \times 12$); 18 MHz 213
Series 24
Programmable Logic Sequencers ($14 \times 48 \times 6$); $14,20 \mathrm{MHz}$ 223
PLS167/A
Programmable Logic Sequencers ($12 \times 48 \times 8$); $14,20 \mathrm{MHz}$
Programmable Logic Sequencers ($12 \times 48 \times 8$); $14,20 \mathrm{MHz}$ 234 234
PLS179 Programmable Logic Sequencer ($20 \times 45 \times 12$); 18 MHz 245
PLC42VA12 CMOS Programmable Logic Sequencer ($42 \times 105 \times 12$); 25 MHz 256
Series 28
Programmable Logic Sequencer ($17 \times 68 \times 8$); 16 MHz 275
PLC415-16
Programmable Logic Sequencers ($16 \times 48 \times 8$); $14,20 \mathrm{MHz}$ 294
PLS105/A
Programmable Logic Sequencer ($16 \times 48 \times 8$); 40 MHz 305
PLUS105-55 Programmable Logic Sequencer ($16 \times 48 \times 8$); 55 MHz 317
PLUS405-37/-45 Programmable Logic Sequencers $(16 \times 64 \times 8) ; 37,45 \mathrm{MHz}$ 329
PLUS405-55 Programmable Logic Sequencer ($16 \times 64 \times 8$); 55 MHz 344
Section 6 - Programmable Macro Logic Devices Data Sheets
PLHS501 Programmable Macro Logic 361
PLHS502 Programmable Macro Logic 372
PLHS601 Programmable Macro Logic 384
PML2552 Programmable Macro Logic 395
Section 7 - Military Products
Military Selection Guide 417
Section 8 - Development Software
AMAZE - Automatic Map and Zap Equations Design Software 421
SNAP - Synthesis Netlist Analysis and Program Software 425
SNAP Data Sheet 427
Device Programmer Reference Guide 429
Section 9 - Application Notes
PLD Application Notes
AN7 Single Chip Multiprocessor Arbiter 435
AN8 Introduction to Signetics Programmable Logic 447
AN11 PLD Programmable Retriggerable One-Shot 459
AN14 . Latches and Flip-Flops with PLS153 463
AN15 PLS159 Primer 476
AN18 Schmitt Trigger Using PLS153 and PLS159 487
AN21 9-Bit Parity Generator/Checker with PLS153/153A 495
AN23 PLS168/168A Primer 501
AN24 PLS173 as a 10-Bit Comparator, 74LS460 514
AN26 PLHS18P8A Primer 520
AN27 PLHS473 Primer 529
AN28 High-Speed 12-Bit Tracking A/D Converter Using PLS179 537
PML Application Notes
AN29 PLHS501 Programmable Macro Logic Primer 547
PLHS501 Application Notes, Vol. 1: Designing with Programmable Macro Logic Chapter 1 Introduction to PML Design Concepts 562
Performance 562
NAND Gate Flip-Flops 569
Chapter 2 Functional Fit 572
Chapter 3 Design Examples 575
Chapter 4 Successor Architectures 580

Contents

Chapter 5 Support issues 581
Chapter 6 PLHS501 Examples Using AMAZE Revision 1.6 582
Simple Gate Implementations 582
8-Bit Barrel Shifter 585
12-Bit Comparator with Dual 1-of-8 Decoders 591
8-Bit Carry Look-Ahead Adder 594
32-to-5-Bit Priority Encoder 597
8-Bit Shift Register with Sequence Detector 602
4-Bit Synchronous Counter 608
PLHS501 Application Notes, Vol. 2: Designing with Programmable Macro Logic
Chapter 1 Introduction 612
Chapter 2 PLHS501 Review 613
Chapter 3 Flip-Flop Basics 615
Notation 615
Flip-Flop Merging 615
Chapter 4 VME Bus Examples 621
Omnibyte VSBC20 Mailbox Interrupt Structure 621
VME Bus EPROM Interface 626
Chapter 5 Micro Channel Interface 633
Chapter 6 NuBus Interface 638
Chapter 7 Nuggets 644
Data Bus Parity 644
Data Bus Operations 651
PLHS502 Application Notes, Vol. 1: Designing with Programmable Macro Logic
Chapter 1 Introduction 652
Chapter 2 Development Support 654
Chapter 3 Capacity and Partitioning Considerations 656
Chapter 4 State Machine Design 657
Chapter $5 \quad$ Additional Design Guidelines 668
Chapter 6 Additional PLHS501 Applications 670
Chapter 7 Advanced Flip-Flop Merging 689
Programmable Logic Design and Application Notes
Introduction 691
Acknowledgements 691
AMAZE Software 691
Product Section Introduction 691
Chapter 1 PLA Devices 692
Signetics PLUS153D 692
Signetics PLUS173D 692
The PLHS473 692
Chapter 2 PAL-Type Devices 696
Signetics PLHS18P8B 696
The PLUS16L8D and -7 698
The PLUS16R8D and -7 699
The PLUS20L8D and -7 700
The PLUS20R8D and -7 701
The PLC18V8Z 701
Chapter 3 Sequencer Devices 703
Introduction 703
State Equation Tutorial 704
The PLUS105 704
The PLS155 707
The PLS157 708
The PLS159A 709
The PLS167A 710
The PLS168A 711

Contents

The PLS179 712
The PLUS405 713
Application Section Introduction 715
Chapter 4 Microprocessor Interfacing with Signetics PLDs 715
Introduction 715
System Partitioning 715
Bus Size Decoding for the 68020 - PLUS18P8B 716
Interfacing to SPARC - PLUS20L8-7 717
The 80386 Pipeline Decoder - PLUS153D 721
68030 Address Decoding - PLUS173D 725
The 29000, SRAM and the PLUS20L8D 727
Interrupt Handler - PLS179 730
SCSI Target Interface - PLS105A and PLUS153B 735
Introduction 735
Functional Description 735
Programmer's Interface 735
Port Operation 736
Arbitration Software Sequence 737
RESELECT Software Sequence 737
TRANSFER Software Sequence 737
DISCONNECT Software Sequence 737
Hardware Description 738
Chapter 5 Communications using PLDs 750
The CCITT V2.7 Scrambler - PLC18V8Z 750
A Novel Speech Synthesizer - PLS159A 752
CCITT Forward CRC Polynomial - PLUS405 755
Chapter 6 Instrumentation 757
Heart Beat Monitor - PLS159A, PLS168A and PLS153 757
The Pulse Width Monitor - PLS168 764
Scope Trace Sweep Circuit - PLS153 and PLS155 769
Chapter 7 General Applications 772
Motor Stepper Controller with the PLS155 772
Chapter 8 Security Systems 776
A Programmable Alarm System - PLS168 776
Section 10 - Package Outlines
A Plastic Leaded Chip Carrier 785
F Ceramic Dual-In-Line 788
FA Ceramic Dual-In-Line with Quartz Window 790
LA Ceramic Leaded Chip Carrier with Quartz Window 792
N Plastic Dual-In-Line 793
Section 11 - Sales Offices
Office Listing 799

Signetics

Programmable Logic Devices
Alphanumeric Index 3
Selection Guide 4
Ordering Information 6

Signetics

Alphanumeric Index

Programmable Logic Devices

AN7	
AN8	
AN11	
AN14	
AN15	
AN18	
AN21	
AN23	
AN24	
AN26	
AN27	
AN28	
AN29	
PHD16N8-5	Series 20
PHD48N22-7	Series 68
PLC18V8Z/I	Series 20
PLC42VA12	Series 24
PLC415-16	Series 28
PLHS16L8A/B	Series 20
PLHS18P8A/B	Series 20
PLHS473	Series 24
PLHS473S	Series 24
PLHS501	
PLHS502	
PLHS601	
PLS100/101	Series 28
PLS105/A	Series 28
PLS153/A	Series 20
PLS155	Series 20
PLS157	Series 20
PLS159A	Series 20
PLS167/A	Series 24
PLS168/A	Series 24
PLS173	Series 24
PLS179	Series 24
PLUS16R8D/-7	Series 20
PLUS20R8D/-7	Series 24
PLUS105-40	Series 28
PLUS105-55	Series 28
PLUS153B/D	Series 20
PLUS153-10	Series 20
PLUS173B/D	Series 24
PLUS173-10	Series 24
PLUS405-37/-45	Series 28
PLUS405-55	Series 28
PML2552	
10H20EV8/10020E	Series 24

Single Chip Multiprocessor Arbiter 435
Introduction to Signetics Programmable Logic 447
PLD Programmable Retriggerable One-Shot 459
Latches and Flip-Flops with PLS153 463
PLS159 Primer 476
Schmitt Trigger Using PLS153 and PLS159 487
9-Bit Parity Generator/Checker with PLS153/153A 495
PLS168/168A Primer 501
PLS173 as a 10-Bit Comparator, 74LS460 514
PLHS18P8A Primer 520
PLHS473 Primer 529
High-Speed 12-Bit Tracking A/D Converter Using PLS179 537
PLHS501 Programmable Macro Logic Primer 547
Programmable High-Speed Decoder ($16 \times 16 \times 8$); 5ns 60
Programmable High-Speed Decoder ($48 \times 73 \times 22$); 7.5ns 115
PAL ${ }^{\circledR}$-Type Devices 75
CMOS Programmable Logic Sequencer ($42 \times 105 \times 12$); 25 MH tz 256
Programmable Logic Sequencer ($17 \times 68 \times 8$); $16 \mathrm{MH} \mathrm{Hz}_{z}$ 2 14
PAL ${ }^{\circledR}$-Type Devices $(16 \times 64 \times 8)$ 39
PAL ${ }^{\circledR}$-Type Devices 68
Programmable Logic Array ($20 \times 24 \times 11$); 22 ns 168
Programmable Logic Array ($20 \times 24 \times 11$); 25 ns 174
Programmable Macro Logic 361
Programmable Macro Logic 372
Programmable Macro Logic 384
Programmable Logic Arrays ($16 \times 48 \times 8$); 50ns 181
Programmable Logic Sequencers ($16 \times 48 \times 8$); 14, 20 MHz 294
Programmable Logic Arrays ($18 \times 42 \times 10$); $40 / 30 \mathrm{~ns}$ 127
Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 191
Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 202
Programmable Logic Sequencer ($16 \times 45 \times 12$); 18 MHz 213
Programmable Logic Sequencers ($14 \times 48 \times 6$); $14,20 \mathrm{MHz}$ 223
Programmable Logic Sequencers ($12 \times 48 \times 8$); $14,20 \mathrm{MHz}$ 234
Programmable Logic Array ($22 \times 42 \times 10$); 30ns 148
Programmable Logic Sequencer ($20 \times 45 \times 12$); 18 MHz 245
PAL ${ }^{\circledR}$-Type Devices 46
PAL ${ }^{\circledR}$-Type Devices 101
Programmable Logic Sequencer ($16 \times 48 \times 8$); 40 MHz 305
Programmable Logic Sequencer ($16 \times 48 \times 8$); 55 MHz 317
Programmable Logic Arrays ($18 \times 42 \times 10$); $15 / 12 \mathrm{~ns}$ 134
Programmable Logic Array ($18 \times 42 \times 10$); 10 ns 141
Programmable Logic Arrays ($22 \times 42 \times 10$); $15 / 12 \mathrm{~ns}$ 154
Programmable Logic Array ($22 \times 42 \times 10$); 10 ns 161
Programmable Logic Sequencers ($16 \times 64 \times 8$); $37,45 \mathrm{MHz}$ 329
Programmable Logic Sequencer ($16 \times 64 \times 8$); 55 MHz 344
Programmable Macro Logic 395
ECL PAL ${ }^{\circledR}$-Type Devices 87

Signetics

SIGNETICS PART NUMBER	ARCHITECTURE (INPUTS \times TERMS \times OUTPUTS)	PACKAGE	$\begin{gathered} \text { TOTAL } \\ \text { INPUTS } \\ \text { (* Dedicated) } \end{gathered}$	LOGIC TERMS	INTERNAL STATE REGISTERS (* Dedicated)	OUTPUTS $\mathrm{C}, 1 / 0, \mathrm{R}, \mathrm{R} / / 0$	${ }_{\text {t }}^{\text {PD }}$ (Max)	$f_{\text {max }}$	ICC (Max)
PAL ${ }^{(8)}$-TYPE DEVICES									
PLUS16L8-7	$16 \times 64 \times 8$	$20-\mathrm{Pin}$	16 (10)	64	0	$2 \mathrm{C}, 61 / 0$	7.5ns		180 mA
PLUS16R4-7	$16 \times 64 \times 8$	$20-\mathrm{Pin}$	16 (8)	64	4 (0)	$4 \mathrm{VO}, 4 \mathrm{R}$	7.5 ns	74 MHz	180 mA
PLUS16R6-7	$16 \times 64 \times 8$	20-Pin	16 (8)	64	6 (0)	$2 \mathrm{l} / 0,6 \mathrm{R}$	7.5 ns	74 MHz	180 mA
PLUS16R8-7	$16 \times 64 \times 8$	$20-\mathrm{Pin}$	16 (8)	64	8 (0)	8 R		74 MHz	180 mA
PLUS16L8D	$16 \times 64 \times 8$	20-Pin	16 (10)	64	0	$2 \mathrm{C}, 61 / 0$	10 ns		180 mA
PLUS16R4D	$16 \times 64 \times 8$	$20-\mathrm{Pin}$	16 (8)	64	4 (0)	$4 \mathrm{I} / \mathrm{O}, 4 \mathrm{R}$	10 ns	60 MHz	180 mA
PLUS16R6D	$16 \times 64 \times 8$	20-Pin	16 (8)	64	6 (0)	$2 \mathrm{VO}, 6 \mathrm{R}$	10 ns	60 MHz	180 mA
PLUS16R8D	$16 \times 64 \times 8$	20-Pin	16 (8)	64	8 (0)	8 R		60 MHz	180 mA
PLUS20L8-7	$20 \times 64 \times 8$	24-Pin	20 (14)	64	0	$2 \mathrm{C}, 6 \mathrm{l} / \mathrm{O}$	7.5ns		210 mA
PLUS20R4-7	$20 \times 64 \times 8$	24-Pin	20 (12)	64	4 (0)	$4 \mathrm{IV}, 4 \mathrm{R}$	7.5 ns	74 MHz	210 mA
PLUS20R6 7	$20 \times 64 \times 8$	24-Pin	20 (12)	64	6 (0)	2/V, 6 R	7.5ns	74 MHz	210 mA
PLUS20R8 7	$20 \times 64 \times 8$	24-Pin	20 (12)	64	8 (0)	8 R		74 MHz	210 mA
PLUS20L8D	$20 \times 64 \times 8$	24-Pin	20 (14)	64	0	$2 \mathrm{C}, 6 \mathrm{l} / \mathrm{O}$	10 ns		210 mA
PLUS20R4D	$20 \times 64 \times 8$	24-Pin	20 (12)	64	4 (0)	$4 \mathrm{VO}, 4 \mathrm{R}$	10 ns	60 MHz	210 mA
PLUS20R6D	$20 \times 64 \times 8$	24-Pin	20 (12)	64	6 (0)	$2 \mathrm{VO}, 6 \mathrm{R}$	10 ns	60 MHz	210 mA
PLUS20R8D	$20 \times 64 \times 8$	24-Pin	20 (12)	64	8 (0)	8 R		60 MHz	210 mA
PLHS16L8A	$16 \times 64 \times 8$	$20-\mathrm{Pin}$	16 (10)	64	0	$2 \mathrm{C}, 6 \mathrm{l} / \mathrm{O}$	20 ns		155 mA
PLHS16L8B	$16 \times 64 \times 8$	20-Pin	16 (10)	64	0	$2 \mathrm{C}, 6 \mathrm{l} / 0$	15 ns		155 mA
PLHS18P8A	$18 \times 72 \times 8$	$20-\mathrm{Pin}$	18 (10)	72	0	$81 / 0$	20 ns		155 mA
PLHS18P8B	$18 \times 72 \times 8$	$20-\mathrm{Pin}$	18 (10)	72	0	81/0	15 ns		155 mA
PHD16N8-5	$16 \times 16 \times 8$	20-Pin	16 (10)	16	0	$2 \mathrm{C}, 61 / 0$	5 ns		180 mA
PHD48N22-7**	$48 \times 73 \times 22$	68-Pin	48 (36)	73	0	$10 \mathrm{C}, 121 / 0$	7.5 ns		420 mA
PLC18V8Z/18V8ZI	$18 \times 74 \times 8$	20-Pin	18 (8)	74	8 (0)	8 varied	$35,40 \mathrm{~ns}$	21 MHz	$100 \mu \mathrm{~A}$, 1 mAMHz
10H20EV8/10020EV8**	$20 \times 90 \times 8$	24-Pin	20 (12)	90	0	8 varied	4.5ns	222 MHz	230 mA
PLA									
PLS100/101	$16 \times 48 \times 8$	28-Pin	16 (16)	48	0	8 C	50 ns		170 mA
PLS153	$18 \times 42 \times 10$	$20-\mathrm{Pin}$	18 (8)	42	0	10 VO	40 ns		155 mA
PLS153A	$18 \times 42 \times 10$	20-Pin	18 (8)	42	0	10 VO	30ns		155 mA
PLUS153B	$18 \times 42 \times 10$	$20-\mathrm{Pin}$	18 (8)	42	0	10 VO	15 ns		200 mA
PLUS153D	$18 \times 42 \times 10$	$20-\mathrm{Pin}$	18 (8)	42	0	10 VO	12ns		200 mA
PLUS153-10**	$18 \times 42 \times 10$	20-Pin	18 (8)	42	0	10 VO	10ns		200 mA
PLS173	$22 \times 42 \times 10$	24-Pin	22 (12)	42	0	$10 \mathrm{l} / \mathrm{O}$	30 ns		170 mA
PLUS173B	$22 \times 42 \times 10$	24-Pin	22 (12)	42	0	10 VO	15ns		200 mA
PLUS173D	$22 \times 42 \times 10$	24-Pin	22 (12)	42	0	10 VO	12ns		200 mA
PLUS173-10**	$22 \times 42 \times 10$	24-Pin	22 (12)	42	0	10 VO	10ns		200 mA
PLHS473	$20 \times 42 \times 11$	24-Pin	20 (11)	24	0	$2 \mathrm{C}, 910$	22 ns		155 mA
PLHS473S**	$20 \times 42 \times 11$	24-Pin	20 (11)	24	0	$2 \mathrm{C}, 91 / 0$	25 ns		155 mA

SIGNETICS PART NUMBER	ARCHITECTURE (INPUTS \times TERMS \times OUTPUTS)	PACKAGE	TOTAL INPUTS (* Dedicated)	LOGIC TERMS	INTERNAL STATE REGISTERS (\# Dedicated)	OUTPUTS C, VO, R, R I/O	$t_{\text {PD }}$ (Max)	$f_{\text {max }}$	lcc (Max)
PLS									
PLS105	$22 \times 48 \times 8$	28-Pin	22 (16)	48	6 (6)	8 R		14 MHz	180 mA
PLS105A	$22 \times 48 \times 8$	28-Pin	22 (16)	48	6 (6)	8 R		20 MHz	180 mA
PLS105-40	$22 \times 48 \times 8$	28-Pin	22 (16)	48	6 (6)	8R		40 MHz	200 mA
PLS105-55**	$22 \times 48 \times 8$	28-Pin	22 (16)	48	6 (6)	8 R		55 MHz	200 mA
PLUS405-37	$24 \times 64 \times 8$	28-Pin	24 (16)	64	8 (8)	8R		37 MHz	225 mA
PLUS405-45	$24 \times 64 \times 8$	28-Pin	24 (16)	64	$8(8)$	8R		45 MHz	225 mA
PLUS405-55**	$24 \times 64 \times 8$	28-Pin	24 (16)	64	$8(8)$	8R		55 MHz	225 mA
PLS155	$16 \times 45 \times 12$	20-Pin	16 (4)	45	4 (0)	$8 \mathrm{~V} / \mathrm{O}, 4 \mathrm{RI} / \mathrm{O}$	50ns	14 MHz	190 mA
PLS157	$16 \times 45 \times 12$	$20-\mathrm{Pin}$	16 (4)	45	6 (0)	$6 \mathrm{VO}, 6 \mathrm{RIO}$	50 ns	14 MHz	190 mA
PLS159A	$16 \times 45 \times 12$	20-Pin	16 (4)	45	8 (0)	$4 \mathrm{~V} / \mathrm{O}, 8 \mathrm{RI} / \mathrm{O}$	35 ns	18 MHz	190 mA
PLS167	$22 \times 48 \times 6$	24-Pin	22 (14)	48	8 (6)	6 R		14 MHz	180 mA
PLS167A	$22 \times 48 \times 6$	24-Pin	22 (14)	48	8 (6)	6R		20 MHz	180 mA
PLS168	$22 \times 48 \times 6$	24-Pin	22 (12)	48	10 (6)	8 R		14 MHz	180 mA
PLS168A	$22 \times 48 \times 6$	24-Pin	22 (12)	48	10 (6)	8R		20 MHz	180 mA
PLS179	$20 \times 45 \times 12$	24-Pin	20 (8)	45	8 (0)	$4 \mathrm{VO}, 8 \mathrm{RI} / \mathrm{O}$	35 ns	18 MHz	210 mA
PLC42VA12**	$42 \times 105 \times 12$	24-Pin	42 (10)	105	10 (0)	10 C or R V/O, $2 \mathrm{~V} / 0$	35 ns	25 MHz	$90 \mathrm{mA*}$
PLC415-16	$25 \times 68 \times 8$	28-Pin	25 (17)	68	8 (8)	8 R			$\begin{gathered} 100 \mu \mathrm{~A} \\ 80 \mathrm{~mA} \end{gathered}$
PML ${ }^{\text {M }}$									
PLHS501	$104 \times 116 \times 24$	52-Pin	24	116	0	16 C, 8 VO	22 ns		295 mA
PLHS502	$128 \times 144 \times 24$	68-Pin	24	144	16 (16)	$\begin{gathered} 16 \mathrm{C} \text { or R, } \\ 8 / / \mathrm{O} \text { or R V/O } \end{gathered}$	20 ns	50 MHz	370 mA
PLHS601**	$68 \times 134 \times 24$	68-Pin	28	134	0	12C,121/O	20 ns		340 mA
PML2552**	$185 \times 226 \times 24$	68-Pin	29	226	36 (20)	$24 \mathrm{C}, 16 \mathrm{R}, 16 \mathrm{l} / \mathrm{O}$	40,50ns	$50,33 \mathrm{MHz}$	100 mA

PAL-Type $=$ Programmable Array Logic (Fixed OR Array)-Type
PHD = Programmable High-Speed Decoder
PLA = Programmable Logic Array
PLS = Programmable Logic Sequencer
PML = Programmable Macro Logic

OUTPUTS:

C = Combinatorial output
R = Registered output
I/O = Combinatorial I/O
R I/O = Registered I/O
NOTES:
$f_{\text {MAX }}=1 /\left(t_{\text {IS }}+t_{\text {CKO }}\right)$ worst case
*Measured at 15 MHz (TTL input level)
** Under development
PAL is a trademark of AMD/MMI.
PML is a trademark of Philips Components-Signetics.

Signetics

Programmable Logic Devices

Signetics Programmable Logic Devices may be ordered by contacting either the local Signetics sales office, Signetics representatives or authorized distributors. A complete listing is located in the back of this handbook.

Ordering Information

Table 1 provides part number definition for Signetics PLDs. The Signetics part number system allows complete ordering information to specified in the part number. The part number and product description is located on each data sheet.

Military versions of these commercial products may be ordered. Please refer to the military products data handbook for complete ordering information.

New Signetics PLD Part Numbering System

Signetics

Programmable Logic Devices

INDEX
What is Signetics Programmable Logic . 9
Quality and Reliability

Signetics

Introduction Signetics Programmable Logic

Programmable Logic Devices

WHAT IS PROGRAMMABLE LOGIC

In 1975, Signetics Corporation developed
a new product family by combining its expertise in semi-custom gate array expenise in semi-custom gate arraby
products and fuse-link Programmable Read Only Memories (PROMs). Out of
this marriage came Signetics Programmable Logic Family. The PLS100 FieldProgrammable Logic Array (FPLA) was the first member of this family. The FPLA was an important industry first in two ways. First, the AND/OR/INVERT archi-
tecture allowed the custom implementations of Sum of Product logic equations. Second, the three-level fusing allows complete flexibility in the use of this device family. All logic interconnections from input to output are programmable.

Table 1. PLD Product Family

PART NUMBER	TYPE	CONFIGURATION
20-PIN		
PHD16N8	PHD	12-Input/8-Output
PLS153/153A	PLA	18-Input/10-Output -42-Term
PLUS153B/153D/153-10	PLA	18-Input/10-Output - 42-Term
PLS155-159A	PLS	16-Input/12-Output -45-Term
PLS155	PLS	4 Registered Outputs
PLS157	PLS	6 Registered Outputs
PLS159A	PLS	8 Registered Outputs
PLHS18P8AB	PAL-Type	18-Input/10-Output - 72-Term
PLHS16L8A/B	PAL-Type	16-Input/8-Output-64-Term
PLC18V8ZII	PAL-Type	18-Input/8-Output - 72-Term
PLUS16L8D/-7	PAL-Type	16-Input/8-Output - 72-Term
PLUS16R4D/-7	PAL-Type	16-Input/4-Output, 4 Registers
PLUS16R6D/-7	PAL-Type	16-Input/6-Output, 6 Registers
PLUS16R8D/-7	PAL-Type	16-Input/8-Output, 8 Registers
24-PIN		
PLS167/A	PLS	14-Input/6-Output - 48-Term 8-Bit State Registers 6-Output Registers
PLS168/A	PLS	12-Input/8-Output - 48 -Term 10-Bit State Registers 8-Output Registers
PLS173/PLUS173B/D/-10	PLA	22-Input/10-Output - 42-Term
PLS179	PLS	22-Input/10-Output - 42-Term
PLHS473	PLA	20-Input/11-Output - 24-Term
PLC42VA12	PLS	42-Input/12-Output, 10 Registers
PLUS20L8D/-7	PAL-Type	20-Input/8-Output
PLUS20R4D/-7	PAL-Type	20-Input/4-Output
PLUS20R6D/-7	PAL-Type	20-Input/6-Output
PLUS20R8D/-7	PAL-Type	20-Input/8-Output
28-PIN		
PLS100/101	PLA	16-Input/--Output-48-Term
PLS105/105A/PLUS105	PLS	16-Input/8-Output - 48-Term 6-Bit State Register 8-Output Registers
PLUS405	PLS	16-Input8-Output - 64 -Term 8-Bit State and Output Registers
52-, 68-PIN		
PLHS501	PML	32-Input/24-Output - 116-Term
PLHS502	PML	32-Input/24-Output - 144-Term
PLHS601	PML	40-Input/24-Output - 150-Term
PML2552	PML	55-Input/24-Output-226-Term
PHD48N22	PHD	48-Input/22-Output

Figure 2. PLUS153 20-Pin Functional Diagram

PLD LOGIC SYNTHESIS

No intermediate step is required to implement Boolean Logic Equations with PLDs. Each term
in each equation simply becomes a direct entry into the Logic Program Table. The following example illustrates this straightforward concept:

$$
\begin{aligned}
& X_{0}=A B+\overline{C D}+B D \\
& X_{1}=\overline{A B}+\overline{C D}+E F G
\end{aligned}
$$

Figure 3. Field Programmable Logic Array

Figure 4. Equivalent Fixed Logic Diagram

In the previous example, the two Boolean Logic equations were broken into Product terms. Each P-term was then programmed into the P-term section of the PLA Program Table. This was accomplished in the following manner:

Step 1

Select which input pins $I_{0}-I_{15}$ will correspond to the input variables. In this case $A-G$ are the input variable names. I_{6} through l_{0} were selected to accept inputs $A-G$ respectively.

Step 2

Transfer the Boolean Terms to the PLA Program Table. This is done simply by defining each term and enteringit on the Program Table.

$$
\text { e.g., } P_{0}=A B
$$

This P-term translates to the Program Table by selecting $A=I_{6}=H$ and $B=I_{5}=H$ and entering the information in the appropriate column.

This term is defined by selecting $\mathrm{C}=\mathrm{I}_{4}=\mathrm{L}$ and $D=I_{3}=H$, and entering the data into the Program Table. Continue this operation until all P-terms are entered into the Program Table.

$$
P_{1}=\overline{C D}
$$

TBO1890s
Figure 6

Step 3

Select which output pins correspond to each output function. In this case $F_{0}=\operatorname{Pin} 18$
$=X_{0}$, and $F_{1}=\operatorname{Pin} 17=X_{1}$.

Step 4

Select the Output Active Level desired for each Output Function. For X_{0} the active level
is high for a positive logic expression of this equation. Therefore, it is only necessary to place an (H) in the Active Level box above Out-
put Function $0,\left(F_{0}\right)$. Conversely, X_{1} can be expressed as X_{1} by placing an (L) in the Active Level box above Output Function 1, (F_{1}).

Figure 8

Signetics Programmable Logic

Step 5

Seiect the $\overline{\mathrm{F}}$-Terms you wish to make active for each Outpui Function. In this case $X_{0}=P_{0}$ $+P_{1}+P_{2}$, so an A has been placed in the intersection box for P_{0} and X_{0}, P_{1} and X_{0} and P_{2} and X_{0}.

Terms which are not active for a given output are made inactive by placing a (θ) in the box uñder that P-term. Leave all unused P-terms unprogrammed.
Continue this operation until all outputs have been defined in the Program Table.

Step 6

Entor the data inte a Signetice approved programmer. The input format is identical to the Signetics Program Table. You specify the P terms, Output Active Level, and which P-terms are active for each output exactly the way it appears on the Program Table.

Figure 9

Signetics Programmable Logic

PLD LOGIC SYNTHESIS

(Continued)
When fewer inputs and outputs are required in a logic design and low cost is most important, the Signetics 20 -pin PLD should be considered
first choice. The PLUS153 is a PLA with 8 inputs, $10 \mathrm{l} / \mathrm{O}$ pins, and 42 product terms. The user can configure the device by defining the direction of the I/O pins. This is easily accomplished by using the direction control terms
$D_{0}-D_{9}$ to establish the direction of pins $\mathrm{B}_{0}-\mathrm{B}_{9}$. The D-terms control the 3-State buffers found on the outputs of the Ex-OR gates. Figures 10 and 11 show how the D-term configures each Bx pin.

Figure 10. PLUS153 Functional Diagram

Figure 11

To control each D-term, it is necessary to understand that each control gate is a 36 -input AND gate. To make the 3-State buffer active (B_{x} pin an output), the output of the control gate must be at logic HIGH (1). This can be accomplished in one of two ways. A HIGH can
be forced on all control gate input nodes, or fuses can be programmed. When a fuse is programmed, that control gate input node is internally pulled up to HIGH (1). See Figure 12 and Figure 13.

Programming the fuse permanently places a HIGH (1) on the input to the control gate. The input pin no longer has any effect on that state.

Figure 12. Input Effect on Control Gates (Fuse Intact)

Figure 13. Effect on Control Gate If Fuse is Programmed

DEDICATING B_{X} PIN DIRECTION

Since each input to the D-terms is true and complement buffered (see Figure 11), when the device is shipped with all fuses intact, all control gates have half of the 36 input lines at logic low (0). The result of this is all Control Gate outputs are low (0) and the 3-State buffers are inactive. This results in all B_{X} pins being in the input condition. the resultant device is, therefore, an 18 -input, 0 -output FPLA. While useful as a bit
bucket or Write-Only-Memory (WOM), most applications require at least one output. Clearly, the first task is to determine which of the B_{X} pins are to be outputs. The next step is to condition the control gate to make the 3-State buffer for those gates active. To dedicate B_{0} and B_{1} as outputs, it is necessary to program all fuses to the inputs to Control Gates D_{0} and D_{1}. This internally pulls all inputs to those gates to HIGH (1) permanently. since all inputs to the Control

Gates are HIGH (1), the output is HIGH (1) and the 3-State buffers for B_{0} and B_{1} are active. This permanently enables B_{0} and B_{1} as outputs. Note that even though B_{0} and B_{1} are outputs, the output data is available to the AND array via the internal feedback (see Figure 11a).

To program this data, the PLUS153 Program Table is used as shown in Figure 14.

TB01930S
Figure 14. Dedicating B_{0} and B_{1} as Outputs and B_{2} Through B_{9} as Inputs

By placing a (-) Don't Care in each input box you are specitying that the True and Complement fuses are programmed on each Control Gate, thus permanently dedicating the B_{0} and B_{1} pins as outputs. By placing a (0) in all input boxes for $\mathrm{B}_{2}-\mathrm{B}_{9}$, you are specifying that both True and Complement fuses are intact. This causes a low (0) to be forced on half of the Control Gate inputs, guaranteeing the output of the Control Gate will be low (0). When the Control Gate outputs are low (0), the 3-State buffer is inactive and the $B_{2}-B_{9}$ pins are
enabled as inputs. All B_{x} pin directions can be controlled in this manner.

ACTIVE DIRECTION CONTROL

Sometimes it is necessary to be able to actively change the direction of the Bx pins without permanently dedicating them. Some applications which require this include 3-State bus enable, multi-function decoding, etc. This can easily be
done by programming the Control Gate to respond to one or more input pins. It is only necessary to select which I_{x} and B_{x} pins will control the pin directions and the active level $\mathrm{HIGH}(\mathrm{H})$ or LOW (L) that will be used. The PLUS153 Program Table in Figure 15 shows the method of controlling $\mathrm{B}_{0}-\mathrm{B}_{9}$ with I_{7}. When I_{7} is LOW (L), pins $B_{0}-B_{9}$ are outputs; when I_{7} is HIGH (H), pins $B_{0}-B_{9}$ are inputs. Note that by programming all other I_{X} and B_{x} pins as DON'T CARE (-), they are permanently disconnected from control of BX_{X} pin direction.

TB01840S
Figure 15. Active Control of $B_{0}-B_{1}$ Using I_{7} Active Low (L)

The previous 28-pin logic synthesis example could be done on the PLUS153 as follows:

$$
\begin{aligned}
& X_{0}=A B+C D+B D \\
& X_{1}=\overline{A B}+\overline{C D}+E F G
\end{aligned}
$$

Note that B_{0} was used as a CHANGE input. When B_{0} is HIGH (H) the outputs appear on B_{8} and B_{9}. When B_{0} is LOW (L), the outputs ap-
pear on B_{6} and B_{7}. B_{1} through B_{5} are not used and therefore left unprogrammed.

Signetics offers two packages for user friendly design assistance. The first package, AMAZE, has evolved over 10 years to support Signetics programmable products with logic equation, state equation, and schematic entry. AMAZE can compile designs quite well for Signetics
lower density parts. However, to satisfy the needs of Programmable Macro Logic users, Signetics developed an additional software package called SNAP. SNAP expands upon the capabilities of AMAZE in its approach to design implementation, more closely resembling a gate array methodology. Both of these products are described in more depth at a later point in this handbook.

SEQUENTIAL LOGIC CONSIDERATIONS

The PLUS405, PLUS105 and PLC42VA12 represent significant increases in complexity when compared to the combinatorial logic devices previously discussed. By combining the AND/OR combinatorial logic with clock output flip-flops and appropriate feedback, Signetics has created the first family of totally flexible sequential logic machines.
The PLUS405(Programmable Logic Sequencer) is an example of a high-order machine whose applications are many. Application areas for this device include VRAM, DRAM, Bus and LAN control. The PLUS405 is fully capable of performing fast sequential operations in relatively high-speed processor systems. By placing repetitive sequential operations on the PLUS405, processor overhead is reduced.
The following pages summarize the PLUS405 architecture and features.

Sequencer Architecture

The PLUS405 Logic Sequencer is a programmable state machine, in which the output is a function of the present state and the present input.
With the PLUS405, a user can program any logic sequence expressed as a series of jumps between stable states, triggered by a valid input condition (I) at clock time (t). All stable states are stored in the State Register. The logic output of the machine is also programmable, and is stored in the Output Register. The PLUS105 is a subset of the PLUS405.

Clocked Sequence

A synchronous logic sequence can be represented as a group of circles interconnected with arrows. The circles represent stable states, labeled with an arbitrary numerical code (binary, hex, etc.) corresponding to discrete states of a suitable register. The arrows represent state transitions, labeled with symbols denoting the jump condition and the required change in output. The number of states in the sequence depends on the length and complexity of the desired algorithm.

8D01890S
Figure 17. Basic Architecture of PLS105 FPLS. I, P, N, and F are Multi-line Paths Denoting Groups of Binary Variables Programmed by The User.

Figure 18. Typical State Diagram. I_{1-3} Are Jump Conditions Which Must be Satisfied Before Any Transitions Take Place. F_{r} Are Changes in Output Triggered by I_{m}, and Stored in The Output Register. State Transitions $a \rightarrow b$ and $c \rightarrow d$ Involve No Output Change.

AF02190S
Figure 19. Typical State Transition Between Any Two States of Figure 18. The Arrow Connecting the Two States Gives Rise to a Transition Term T_{n}. I is the Jump Condition.

State Jumps

The state from which a jump originates is referred to as the Present state (P), and the state to which a jump terminates is defined as the Next state (N). A state jump always causes a change in state, but may or may not cause a change in machine output (F).
State jumps can occur only via "transition terms" T_{n}. These are logical AND functions of the clock (t), the Present state (P), and a valid input (1). Since the clock is actually applied to the State Register, $T_{n}=1 \bullet P$. When T_{n} is "true", a control signal is generated and used at clock time (t) to force the contents of the State Register from (P) to (N), and to change the contents of the Output Register (if necessary). The simple state jump in Figure 20, involving 2 inputs, 1 state bit, and 1 output bit, illustrates the equivalence of discrete and programmable logic implementations

Sequencer Logic Structure

The Sequencer consists of programmable AND and OR gate arrays which control the Set and Reset inputs of a State Register, as well as monitor its output via an internal feedback path. The arrays also control an independent Output Register, added to store output commands generated during state transitions, and to hold the output constant during state sequences involving no output changes. If desired, any number of bits of the Output Register can be used to extend the width of the State Register, via external feedback.

Figure 20. Typical State Jump From State (0) to State (1), if Inputs $A=B=$ ' 1 ''. The Jump Also Forces $F=$ ' 1 ', as Required.

Figure 22. Typical AND Gate Coupled to (I) and (P) Inputs. If at Least One Link Pair Remains Intact, $\mathbf{T}_{\mathbf{n}}$ is Unconditionally Forced Low.

Figure 23. Choice of Input Polarity Coupling to a Typical AND Gate. With Both Links Open, (1) is Logically Don't Care.

Figure 24. Typical Transition Terms Involving Arbitrary Inputs and State Variables. All Remaining Gate Inputs Are Programmed Don't Care. Note That $\mathbf{T}_{\mathbf{2}}$ Output is State Independent.

Input Buffers
16 external inputs $\left(I_{m}\right)$ and 6 internal inputs (P_{s}), fed back from the State Register, are combined in the AND array through two sets of True/ Complement (T/C) buffers. There are a total of 22 T/C buffers, all connected to multi-input AND gates via fusible links which are initially intact.

Selective fusing of these links allows coupling either True, Complement, or Don't Care values of $\left(1_{m}\right)$ and $\left(P_{s}\right)$.
"AND" Array
State jumps and output changes are triggered at clock time by valid transition terms T_{n}. These are logical AND functions of the present state (P) and the present input (1).

The PLUS105 AND Array contains a total of 48 AND gates. Each gate has 45 inputs - 44 connected to 22 T/C input buffers, and 1 dedicated to the Complement Array. The outputs of all AND gates are propagated through the OR Array, and used at clock time (t) to force the contents of the State Register from (P) to (N). they are also used to control the Output Register, so that the FPLS 8-bit output F_{r} is a function of the inputs and the present state. The PLUS405 contains 64 AND gates in its' AND array.

"OR" Array

In general, a clocked sequence will consist of several stable states and transitions, as determined by the complexity of the desired algorithm. All state and output changes in the state diagram imply changes in the contents of State and Output Registers.
Thus, each flip-flop in both registers may need to be conditionally set or reset several times with T_{n} commands. This is accomplished by selectively ORing through a programmable OR Array all AND gate outputs T_{n} necessary to activate the proper flip-flop control inputs.
The PLUS 105 OR Array consists of 14 pairs of OR gates, controlling the S / R inputs of 14 State and Output Register stages, and a single NOR gate for the Complement Array. All gates have 48 inputs for connecting to all 48 AND gates. The PLUS405 uses 64 input gates.
The PLUS405 contains 16 pairs of OR gates controlling state transitions and output stages and two additional NOR gates for dual complement arrays.

Complement Array

The COMPLEMENT Array provides an asynchronous feedback path from the OR Array back to the AND Array.
This structure enables the sequencer to perform both direct and complement sequential state jumps with a minimum of transition (AND) terms.
Typically direct jumps, such as T_{1} and T_{2} in Figure 27 require only a single AND gate each.
But a complement jump such as T_{3} generally requires many AND gates if implemented as a direct jump. However, by using the Complement Array, the logic requirements for this type of jump can be handled with just one more gate from the AND Array. Because it can be splitinto separate machines (2 clocks), the PLUS405 incorporates two COMPLEMENT Arrays.

Figure 25. Typical OR Array Gating of Transition Terms $\mathrm{T}_{1,2,3}$ Controlling Arbitrary State and Output Register Stages.

Figure 26. The COMPLEMENT Array is Logically Constructed from a multiple input Programmable NOR Gate. All AND Terms Coupled to the OR Gate are Complemented at the Inverter Output, and Can be Fed Back as Inputs to the AND Array.

TRANSITION TERMS
AF02160S
COMPLEMENT $\quad\left\{\quad T_{3}=P_{0}(\bar{X} \cdot \bar{Y})=P_{0}\left(\overline{T_{1}+T_{2}}\right)\right.$
a. Typical State Sequence

$T_{3}=P_{0}\left(\overline{P_{0} X+P_{0} Y}\right)$
$T_{3}=P_{0}\left[P_{0}(X+Y)\right]$
$T_{3}=P_{0}\left[\bar{P}_{0}+\overline{(X+Y)}\right]$
$T_{3}=0+P_{0}(\overline{X+Y})$
$T_{3}=P_{0}(\bar{X} \cdot \bar{Y})$
b. Complement Jump

Figure 27. a. X And Y Specify the Conditional Logic for Direct Jump Transition Terms T_{1} and T_{2}. The Complement Jump Term T_{3} is True Only When Both T_{1} and T_{2} are False. b. Note that the Complementary Logic Expression for $T_{3}, \overline{T_{1}+T_{2}}$, Corresponds Exactly to the Logic Structure of the Complement Array.

As indicated in Figure 28, the single Complement Array gate may be used for many states of the state diagram. This happens because all transition terms linked to the OR gate include the present state as a part of their conditional logic. In any particular state, only those transition terms which are a function of that state are enabled; all other terms coupled to different states are disabled and do not influence the output of the Complement Array. As a general rule of thumb, the Complement Array can be used as many times as there are states.

Figure 28. Logic Reduction with the Complement Array. The Logic State Diagram in (a) Includes Complement Jumps Tc3 and $T_{C 5}$ Defined in (b). When Using the Complement Array, a Savings of 2 Transition Terms Results, as Shown in (c) and (d).

Additional features are available depending on a specific part. In particular, the PLC42VA12 has everything mentioned here, and more.

More details on PLAs, PAL-Type devices and Sequencers can be found in the application section later in the manual.

Programmable Macro Logic, Signetics very high density logic is fully described in detail in its own section.

Signetics

Programmable Logic Devices

SIGNETICS PROGRAMMABLE LOGIC QUALITY

Signetics has put together winning processes for manufacturing Programmable Logic. Our standard is zero defects, and current customer quality statistics demonstrate our commitment to this goal.

The PLDs produced in the Standard Products Group must meet rigid criteria as defined by our design rules and as evaluated with a thorough product characterization and quality process. The capabilities of our manufacturing process are measured and the results evaluated and reported through our corporate-wide QA05 data base system. The SURE (Systematic Uniform Reliability Evaluation) program monitors the performance of our product in a variety of accelerated environmental stress conditions. All of these programs and systems are intended to prevent product-related problems and to inform our customers and employees of our progress in achieving zero defects.

RELIABILITY BEGINS WITH THE DESIGN

Quality and reliability must begin with design. No amount of extra testing or inspection will produce reliable ICs from a design that is inherently unreliable. Signetics follows very strict design and layout practices with its circuits. To eliminate the possibility of metal migration, current density in any path cannot exceed $2 \times 10^{5} \mathrm{amps} / \mathrm{cm}^{2}$. Layout rules are followed to minimize the possibility of shorts, circuit anomalies, and SCR type latch-up effects. Numerous ground-to-substrate connections are required to ensure that the entire chip is at the same ground potential, thereby precluding internal noise problems.

PRODUCT CHARACTERIZATION

Before a new design is released, the characterization phase is completed to insure that the distribution of parameters resulting from lot-tolot variations is well within specified limits. Such extensive characterization data also provides a

Quality and Reliability

basis for identifying unique application-related problems which are not part of normal data sheet guarantees. Characterization takes place from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and at $\pm 10 \%$ supply voltage.

QUALIFICATION

Formal qualification procedures are required for all new or changed products, processes and facilities. These procedures ensure the high level of productreliability our customers expect. New facilities are qualified by corporate groups as well as by the quality organizations of specific units that will operate in the facility. After qualification, products manufactured by the new facility are subjected to highly accelerated environmental stresses to ensure that they can meet rigorous failure rate requirements. New or changed processes are similarly qualified.

QA05 - QUALITY DATA BASE REPORTING SYSTEM

The QA05 data reporting system collects the results of product assurance testing on all finished lots and feeds this data back to concerned organizations where appropriate action can be taken. The QA05 reports EPQ (Estimated Process Quality) and AOQ (Average Outgoing Quality) results for electrical, visual/mechanical, hermeticity, and documentation audits. Data from this system is available upon request.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. This program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: Long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Bipolar Memory and Programmable Logic products, samples are selected
that represent all generic product groups in all wafer fabrication and assembly locations.

THE LONG-TERM AUDIT

One-hundred devices from each generic family are subjected to each of the following stresses every eight weeks:

- High Temperature Operating Life $T_{j}=150^{\circ} \mathrm{C}, 1000$ hours, static biased or dynamic operation, as appropriate (worst case bias configuration is chosen)
- High Temperature Storage: $T_{J}=150^{\circ} \mathrm{C}$, 1000 hours
- Temperature Humidity Biased Life: $85^{\circ} \mathrm{C}$, 85% relative humidity, 1000 hours, static biased
- Temperature Cycling (Air-to-Air): $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 1000$ cycles

THE SHORT-TERM MONITOR

Every other week a 50 -piece sample from each generic family is run to 168 hours of pressure pot (15 psig, $121^{\circ} \mathrm{C}, 100 \%$ saturated steam) and 300 cycles of thermal shock $\left(-65^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C}$).

In addition, each Signetics assembly plant performs SURE product monitor stresses weekly on each generic family and molded package by pin count and frame type. Fifty-piece samples are run on each stress, pressure pot to 96 hours, thermal shock to 300 cycles.

SURE REPORTS

The data from these test matrices provides a basicunderstanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Many customers use this information in lieu of running their own qualification tests, thereby eliminating time-consuming and costly additional testing.

Quality and Reliability

RELIABILITY ENGINEERING

In addition to the product performance monitors encompassed in the Programmable Logic SURE program, Signetics' Corporate and Division Reliability Engineering departments sustain a broad range of evaluation and qualification activities.
Included in the engineering process are:

- Evaluation and qualification of new or changed materials, assembly/wafer-fab processes and equipment, product designs, facilities and subcontractors
- Device or generic group failure rate studies
- Advanced environmental stress development
- Failure mechanism characterization and corrective action/prevention reporting
The environmental stresses utilized in the engineering programs are similar to those utilized for the SURE monitor; however, more highlyacceleratedconditions andextended durations typify the engineering projects. Additional stress systems such as biased pressure pot, power-temperature cycling, and cycle-biased temperature-humidity, are also included in the evaluation programs.

FAILURE ANALYSIS

The SURE Program and the Reliability Engineering Program both include failure analysis activities and are complemented by corporate, divisional and plant failure analysis departments. These engineering units provide a service to our customers who desire detailed failure analysis support, who in turn provide Signetics with the technical understanding of the failure modes and mechanisms actually experienced in service. This information is essential in our ongoing effort to accelerate and improve our understanding of product failure mechanisms and their prevention.

ZERO DEFECTS PROGRAM

In recent years, United States industry has increasingly demanded improved product quality. We at Signetics believe that the customer has every right to expect quality products from a supplier. The benefits which are derived from quality products can be summed up in the words, lower cost of ownership.

Those of you who invest in costly test equipment and engineering to assure that incoming products meet your specifications have a special understanding of the cost of ownership. And your cost does not end there; you are also burdened with inflated inventories, lengthened lead times and more rework.

SIGNETICS UNDERSTANDS CUSTOMERS' NEEDS

Signetics has long had an organization of quality professionals, inside all operating units, coordinated by a corporate quality department. This broaddecentralized organization provides leadership, feedback, and direction fo achieving a high level of quality.

In 1980 we recognized that in order to achieve outgoing levels on the order of 100ppm (parts per million), down from an industry practice of 10,000ppm, we needed to supplement our traditional quality programs with one that encompassed all activities and all levels of the company. such unprecedented low defect levels could only be achieved by contributions from all employees, from the R and D laboratory to the shipping dock. In short, from a program that would effect a total cultural change within Signetics in our attitude toward quality.

QUALITY PAYS OFF FOR OUR CUSTOMERS

Signetics' dedicated programs in product quality improvement, supplemented by close working relationships with many of our customers, have improved outgoing product quality more than twenty-fold since 1980 . Today, many major customers no longer test Signetics circuits. Incoming product moves directly from the receiving dock to the production line, greatly accelerating throughput and reducing inventories. Other customers have pared significantly the amount of sampling done on our products. Others are beginning to adopt these costsaving practices.
We closely monitor the electrical, visual, and mechanical quality of all our products and review each retum to find and correct the cause. Since 1981, over 90% of our customers report a significant improvement in overall quality (see Figure 1).
At Signetics, quality means more than working circuits. It means on-time delivery of the right product at the agreed-upon price. Signetics considers Performance to Customer Request and Performance to Original Schedule Date to be key Quality issues. Employees treat delinquencies as quality defects. They analyze the cause for the delinquency and seek corrective action to prevent future occurrence. Continuous effort is given to try to achieve the ultimate goal of zero delinquencies.

DEFECTIVE PARTS PER MILLION
(IN THOUSANDS)

Figure 1. Signetics Quality Progress

ONGOING QUALITY PROGRAM

The quality improvement program at Signetics is based on "Do it Right the First Time". The intent of this innovative program is to change the perception of Signetics' employees that somehow quality is solely a manufacturing issue where some level of defects is inevitable. this attitude has been replaced by one of acceptance of the fact that all errors and defects are preventable, a point of view shared by all technical and administrative functions equally.

This program extends into every area of the company, and more than 40 quality improvement teams throughout the organization drive its ongoing refinement and progress.

Key components of the program are the Quality College, the "Make Certain" Program, Corrective Action Teams, and the Error Cause Removal System.

The core concepts of doing it right the first time are embodied in the four absolutes of quality:

1. The definition of quality is conformance to requirements.
2. The system to achieve quality improvement is prevention.
3. The performance standard is zero defects.
4. The measurement system is continuous improvement.

"MAKING CERTAIN" ADMINISTRAT!YE OUAL!TY IMPROVEMENT

Signetics' experience has shown that the largest source of errors affecting product and service quality is found in paperwork and in other administrative functions. The "Make Certain" program focuses the attention of management and administrative personnel on error prevention, beginning with each employee's own actions.
This program promotes defect prevention in three ways: by educating employees as to the impact and cost of administrative errors, by changing attitudes from accepting occasional errors to one of accepting a personal work standard of zero defects, and by providing a formal mechanism for the prevention of errors.

CORRECTIVE ACTION TEAMS

Employees with the perspective, knowledge, and necessary skills to solve a problem are formed into ad hoc groups called Corrective Action Teams. These teams, a major force within the company for quality improvement, resolve administrative, technical and manufacturing issues.

ECR SYSTEM (ERROR CAUSE REMOVAL)

The ECR System permits employees to report to management any impediments to doing the job right the first time. Once such an impediment is reported, management is obliged to respond promptly with a corrective program. Doing it right the first time in all company activities produces lower cost of ownership through defect prevention.

PRODUCT QUALITY PROGRAM

To reduce defects in outgoing products, we created the Product Quality Program. This is managed by the Product Engineering Council, composed of the top product engineering and test professionals in the company. this group:

1. Sets aggressive product quality improvement goals;
2. provides corporate-level visibility and focus on problem areas;
3. serves as a corporate resource for any group requiring assistance in quality improvement; and
4. drives quality improvement projects.

As a result of this aggressive program, every major customer who reports back to us on product performance is reporting significant progress.

VENDOR CERTIFICATION PROGRAM

Our vendors are taking ownership of their own product quality by establishing improved process control and inspection systems. They subscribe to the zero defects philosophy. Progress has been excellent.

Through intensive work with vendors, we have improved our lot acceptance rate on incoming materials as shown in Figure 2. Simultaneously, waivers of incoming material have been eliminated.

Quality and Reliability

Figure 2. Lot Acceptance Rate From Signetics Vendors

```
MATERIAL WAIVERS
1988-0
1987 - 0
1986-0
1985-0
1984-0
1983-0
1982-2
1981-134
```

Higher incoming quality material ensures higher outgoing quality products.

QUALITY AND RELIABILITY ORGANIZATION

Quality and reliability professionals at the divisional level are involved with all aspects of the product, from design through every step in the manufacturing process, and provide product assurance testing of outgoing product. A separate corporate-level group provides direction and common facilities.

Quality and Reliability Functions

- Manufacturing quality control
- Product assurance testing
- Laboratory facilities - failure analysis, chemical, metallurgy, thin film, oxides
- Environmental stress testing
- Quality and reliability engineering
- Customer liaison

January 1990

COMMUNICATING WITH EACH OTHER

For information on Signetics' quality programs or for any question concerning product quality, the field salesperson in your area will provide you with the quickest access to answers. Or, write on your letterhead directly to the corporate VP of quality at the corporate address shown at the back of this manual.

We are dedicated to preventing defects. When product problems do occur, we want to know about them so we can eliminate their causes. Here are some ways we can help each other:

- Provide us with one informed contact within your organization. This will establish continuity and build confidence levels.
- Periodic face-to-face exchanges of data and quality improvement ideas between your engineers and ours can help prevent problems before they occur.
- Test correlation data is very useful. Linepull information and field failure reports also help us improve product performance.
- Provide us with as much specific data on the problem as soon as possible to speed analysis and enable us to take corrective action.
- An advance sampie of the devices in question can start us on the problem resolution before physical return of shipment.

This teamwork with you will allow us to achieve our mutual goal of improved product quality.

MANUFACTURING: DOING IT RIGHT THE FIRST TIME

In dealing with the standard manufacturing flows, it was recognized that significant improvement would be achieved by "doing every job right the first time", a key concept of the quality improvement program. During development of the program many profound changes were made. Figure 3, Programmable Logic Process Flow, shows the result. Key changes included such things as implementing 100% temperature testing on all products as well as upgrading test handlers to insure 100% positive binning. Some of the other changes and additions were to tighten the outgoing QA lot acceptance criteria to the tightest in the industry, with zero defect lot acceptance sampling across all three temperatures.

The achievements resulting from the improved process flow have helped Signetics to be recognized as the leading Quality supplier of Programmable Logic. These achievements have also led to our participation in several Ship-toStock programs, which our customers use to eliminate incoming inspection. such programs reduce the user cost of ownership by saving both time and money.

OUR GOAL: 100\% PROGRAMMING YIELD

Our original goal back in the early 1970s was to develop a broad line of programmable products which would be recognized as having the best programming yield in the industry. Within the framework of a formal quality program, our efforts to improve circuit designs and refine manufacturing controls have resulted in major advances toward that goal.

Also within the framework of our formal quality program we have now established a stated goal of 100% programming yield. through the increasing effectiveness of a quality attitude of "Do It Right the First Time" we're moving ever closer to that target.

Signetics PLD programming yields have been shown in collected data from intemal audits and customer reporting to be consistently higher than comparable devices produced by our competition. We use systematic methods involving publication of exacting specifications of our programming algorithms, and through evaluation of those algorithms as implemented in industry standard programming equipment. Bocause of this we can assure our customers who program Signetics PLDs on such qualified equipment they will see consistendy high yields. Our data base shows that average lot programming yield exceeds 97%.

Quality and Reliability

Figure 3. Customer Specific Products Programmable Logic Process Flow

Quality and Reliability

As time goes on the drive for a product line that has Zero Defects will grow in intensity. These efforts will provide both Signetics and our customers with the ability to achieve the mutual goal of improved product quality.
The Customer Specific Quality Assurance department has monitored PPM progress, which can be seen in Figure 4. We are pleased with the progress that has been made, and expect to achieve even more impressive results as the procedures for accomplishing these tasks are fine tuned.

Quality and Reliability

The Customer Specific Reliability Department has established an ongoing Infant Mortaliny Monitor. This monitor is used to determine and drive ongoing Corrective Action for the purposes of continuously improving product reliability.
The real measure of any quality improvement program is the result that our customers see. The meaning of Quality is more than just working circuits. It means commitment to On Time Deliveryat the Right Place of the RightQuantity of the Right Product at the Agreed Upon Price.

Quality and Reliability

CMOS RELIABILITY INFORMATION

All Signetics' EPROM die are designed as low power UV light erasable and electrically programmable read only memories. They have been designed to perform over military and commercial temperature ranges. These die are assembled in EPROM packages that comply with industry standard packages: CERDIP (Quartz window), Plastic DIP (One Time Programmable) and Plastic Leaded Chip Carrier (One Time Programmable).
The following descriptions are of the tests and calculations performed on each device organization and package type to validate the quality and reliability of the CMOS design and technology. All described tests are performed on each package type, with the exception of the 'Pro-gram-erase cycling' test for the One Time Programmable devices.

ELECTROSTATIC DISCHARGE PROTECTION (ESD)

This test is performed to validate the product's tolerance to electrostatic discharge damage.
Both MIL-STD 883 criteria (human body model) and mechanical model charged device test are performed.

HIGH TEMPERATURE STORAGE LIFE TEST (HTSL)

Another popular name for this test is dataretention bake. This process is used to thermally accelerate charge loss from the floating gate. The test is performed by subjecting devices that contain a 100% programmed data pattern to a $250^{\circ} \mathrm{C}$ bake with no applied electrical bias or clocks.
In addition to charge loss, this test is used to detect mechanical reliability (i.e., bond integrity) and process instability.

DYNAMIC LOW TEMPERATURE LIFE TEST (DLTL)

This test is performed at $-10^{\circ} \mathrm{C}$ to detect the effects of hot electron injection into the gate oxide as well as package-related failures (i.e., metal corrosion). The biasing and clocking conditions for this test are identical to the DHTL \#1 test.

TEMPERATURE CYCLE (TMCL)

This test consists of performing 200 cycles of ambient air temperature of the chamber and housing the unbiased subject devices from $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and back. The 200 cycles are performed at 20 minutes per cycle.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#1)

This test is used to accelerate failure mechanisms by operating the devices at $125^{\circ} \mathrm{C}$ ambient temperature with worst-case specified power supply voltages of V_{Cc} and V_{PP} at 5.5 V . The memory is sequentially addressed to exercise the fully-loaded outputs. A checkerboard complement data pattern is used to simulate random patterns expected during actual use.

DYNAMIC HIGH TEMPERATURE LIFE TEST (DHTL \#2)

This test is used to accelerate oxide breakdown failures and to further accelerate the failure mechanisms of DHTL \#1. The test setup is identical to the one used for the DHTL \#1 test except the temperature is $150^{\circ} \mathrm{C}$ and the V_{C} and $V_{P P}$ power supply voltages are 6.5 V , resulting in a 20% increase over the specified operational electrical field across the gate oxides of the device $(1.25 \mathrm{mV} / \mathrm{cm}$ for $325 A$ oxide thick-
ness). This represents a $55 \times$ electrical field induced acceleration in addition to the thermal acceleration at $150^{\circ} \mathrm{C}$.

PROGRAM-ERASE CYCLING AND PROGRAMMABILITY

All four power supply voltage combinations for V_{CC} and V_{PP} are tested for programmability ($\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}_{ \pm} 0.25 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PP}}=12.5 \mathrm{~V}_{ \pm} 0.5 \mathrm{~V}$ in program mode). The number of possible program/erase cycles is then tested to establish program-erase cycling expectations.

FAILURE RATE PREDICTIONS

In preparation for the various life tests, a 168 hour, $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ production burn-in is performed on the devices. The infant mortality rejects are removed from the population in order to develop long-term failure rate information during the random failure rate portion of the device life cycle.

The failure rate calculation combines all failure mechanisms by activation energies and associated device hours for the $125^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ Dynamic Life Test (DHTL \#1), the $150^{\circ} \mathrm{C}, 6.5 \mathrm{~V}$ Dynamic Life Test (DHTL \#2), the $150^{\circ} \mathrm{C}, 7.5 \mathrm{~V}$ Static Life Test and the $250^{\circ} \mathrm{C}$ Bake.

The activation energies for the various EPROM failure mechanisms are:

Defective bit charge gain/loss (electron hopping conduction)	0.6 eV
Oxide breakdown	0.3 eV
Silicon defects	0.3 eV
Contamination	$1.0-1.2 \mathrm{eV}$
Intrinsic charge loss	1.4 eV

NOTE:

The combined failure rate for the stresses is the sum of failure rates by activation energies.

Quality and Reliability

METHODS OF FAILURE RATE CALCULATIONS

Actual Device Hours $=$ Number of Devices \times Number of Hours. In order to determine the Equivalent Hours derated to a given operation temperature, the junction temperatures of the devices should be calculated using the known thermal resistance of the package $\left(\theta_{J A}\right)$ and the power dissipation of the devices:

$$
\begin{equation*}
\mathrm{T}_{1,2}=\theta_{\mathrm{JA}}(\mathrm{IV})_{1,2}+\mathrm{T}_{\mathrm{A} 1,2} \tag{1}
\end{equation*}
$$

Using the Arrhenius relation, the test temperature and the derated operation temperature will yield the thermal acceleration factor from T_{1} to T_{2}
$\frac{R_{1}}{R_{2}}=\frac{A \cdot \exp \left[\frac{E_{A}}{k T_{1}}\right]}{A \cdot \exp \left[\frac{E_{A}}{k T_{2}}\right]}=\exp \left[\frac{E_{A}}{k}\right]\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
$\mathrm{k}=8.617 \times 10^{-5} \mathrm{eV} /$ Kelvin (Boltzmann's constant)
A = Proportionality constant for a given failure mechanism
$\mathrm{R}_{1}=$ mean time to failure @ T_{1}
$R_{2}=$ mean time to failure @ T_{2}
$E_{A}=$ activation energy for the failure mechanism
$T_{1}=$ operating temperature
$T_{2}=$ life test temperature

An additional $55 \times$ acceleration factor should be added for the $150^{\circ} \mathrm{C} / 6.5 \mathrm{~V}$ dynamic life test due to the time-dependent oxide failure acceleration (20% higher than specified power supply voltage).

Multiplying the actual device hours by the acceleration factor for each failure mechanism will result in the equivalent hours
Poisson statistics are applied to estimate the performance of the population from the life test results of a sample test. This is useful when the probability of failures is small and the failures occur randomly in time. A commonly used formula for estimating the failure rate is the "chisquared" equation:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C}}=\frac{\chi^{2}}{2 \mathrm{nt}} \times 100 \% \tag{3}
\end{equation*}
$$

$F_{C}=$ calculated failure rate estimate (in \%/1000 hrs) at upper confidence limit
$\chi^{2}=$ "chi-squared" value for $2 F_{A}+2$ degrees of freedom for \propto where F_{A} is the number of actual failures (χ^{2} comes from available tables for a known \propto)
$\propto=1-B$, where B is the confidence limit (B is stated in \%).
n = number of units in test
t = test time in thousands of hours (equivalent)

Equation 3 will calculate the estimated failure rates $/ 1000 \mathrm{hrs}$ for 60% confidence level (industry standard) for each failure mechanism.

THE SURE PROGRAM

The SURE (Systematic Uniform Reliability Evaluation) program audits/monitors products from all Signetics' divisions under a variety of accelerated environmental stress conditions. this program, first introduced in 1964, has evolved to suit changing product complexities and performance requirements.

The SURE program has two major functions: long-term accelerated stress performance audit and a short-term accelerated stress monitor. In the case of Memory products, samples are selected that represent product groups from all wafer fabrication and assembly locations.

SURE REPORTS

The data from these test matrices provides a basic understanding of product capability, an indication of major failure mechanisms and an estimated failure rate resulting from each stress. This data is compiled periodically and is available to customers upon request.

Signetics

Programmable Logic Devices

Section 3 PAL ${ }^{\circledR}$-Type Device Data Sheets

INDEX

Series 20
PLHS16L8A/B PAL ${ }^{\circledR}$-Type Devices $(16 \times 64 \times 8)$ 39
PLUS16R8D/-7 PAL ${ }^{\circledR}$-Type Devices(Includes PLUS16L8D/-7, PLUS16R4D/-7,PLUS16R6D/-7, PLUS16R8D/-7)46
PHD16N8-5 Programmable High Speed Decoder ($16 \times 16 \times 8$) 60
PLHS18P8A/B PAL ${ }^{\circledR}$-Type Devices 68
PLC18V8ZI PAL ${ }^{\circledR}$ - Type Devices 75
Series 24
10H20EV8/
10020EV8 ECL PAL ${ }^{\circledR}$-Type Devices 87
PLUS20R8D/-7 PAL ${ }^{\circledR}$-Type Devices
(Includes PLUS20L8D/-7, PLUS20R4D/-7, PLUS20R6D/-7, PLUS20R8D/-7) 101
Series 68
PHD48N22-8 Programmable High Speed Decoder ($48 \times 73 \times 22$) 115

Signetics

Document No.	$853-0960$
ECN No.	97887
Date of Issue	October 16, 1989
Status	Product Specification
Programmabie Logic Devices	

DESCRIPTION

The PLHS16L8A is a high-speed " A " version, and the PLHS16L8B is a very highspeed " B " version $P A L{ }^{\circledR}$-type device. The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 OR gates. The Signetics PLHS16L8A/B devices offer 100% functional compatibility with other PAL 16L8 devices. Specified at a t_{PD} of 20 ns (maximum), the PLHS16L8A is 20% faster than other " A " version PAL 16L8 devices, and consumes 20% less power than most other " A " speed 16L8 devices. The PLHS16L8B, specified at $155 \mathrm{~mA} \mathrm{l}_{\mathrm{Cc}}$ (maximum), consumes 20% less power than other " B " version PAL 16L8 devices.

All AND gates are linked to 10 dedicated inputs, 6 bidirectional I/O and 2 dedicated outputs. On-chip buffers couple either true (I, B) or complement (T, B) input polarities to all AND gates. The 64 AND gates are separated into eight groups of eight product terms each. Within each group, seven of the AND terms are OR'ed together, while the eighth is used to control the 3-State function of the bidirectional I/O. All outputs (bidirectional and dedicated) are inverting.
In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.
The PLHS16L8A/B is field-programmable, allowing the user to quickly generate custom patterns using standard programming equipment.

PLHS16L8A/B
 Programmable AND Array Logic $(16 \times 64 \times 8)$

Order codes are listed in the Ordering Information Table.

FEATURES

- "A" version 100% functionally and pin-for-pin compatible with
AmPAL16L8A, MMI PAL16L8A, TIBPAL16L8-25, and NSC PAL16L8A devices
- 20\% faster than other " A " version PAL devices
- $\mathrm{t}_{\mathrm{PD}}=20 \mathrm{~ns}$ (max)
- "B" version 100% functionally and pin-for-pin compatible with AmPAL16L8B, MMI PAL16L8B, TIBPAL16L8-15 and NSC PA!.16L8B devices
- Consumes 20\% less power than other "B" version PAL devices
- 155mA lcc (worst case)
- I/O propagation delay: 15ns (max) ("B" version)
- Field-programmable
- 10 dedicated inputs
- 8 outputs
- 6 bidirectional I/O
- 2 dedicated outputs
- Individual 3-State control of all outputs
- 64 AND gates/product terms
- Security fuse

PIN CONFIGURATIONS

APPLICATIONS

- 100\% functional replacement for 20-pin 16L8 combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping/decoding
- Multiplexing

[^0]Programmable AND Array Logic $(16 \times 64 \times 8)$

FPLA LOGIC DIAGRAM

Programmable AND Array Logic $(16 \times 64 \times 8)$

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic Dual In-Line (300mil-wide)	PLHS16L8AN, PLHS16L8BN
20-Pin Plastic Leaded Chip Carrier	PLHS16L8AA, PLHS16L8BA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{I}_{\text {OUTPRG }}$	Output current (programming)	+170	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Programmable AND Array Logic $(16 \times 64 \times 8)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq V_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			+0.8	V
V_{H}	High	$V_{C C}=$ MAX	+2.0			V
V_{16}	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$		-0.9	-1.2	V
Output voltage						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA}$			+0.50	v
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	+2.4	+3.5		V
Input current						
		$V_{C C}=$ MAX				
$\mathrm{I}_{1 / 2}$	Low	$\mathrm{V}_{\mathrm{IN}}=+0.40 \mathrm{~V}$		-20	-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$			+25	$\mu \mathrm{A}$
1	High	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$			+1.0	mA
Output current						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V}$				
$\mathrm{l}^{\text {OzH }}$	Output leakage	$V_{\text {OUT }}=+2.7 \mathrm{~V}$			+100	$\mu \mathrm{A}$
lozl	Output leakage	$V_{\text {OUT }}=+0.40 \mathrm{~V}$			-50	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$	-30	-60	-90	mA
Icc	$V_{\text {cc }}$ current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$, All inputs $=$ GND		100	155	mA
Capacitance ${ }^{4}$						
		$\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		6		pF
Cout	I/O	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		9		pF

NOTES:

1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

Programmable AND Array Logic $(16 \times 64 \times 8)$

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega, \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITIONS	LMITS						UNIT
					PLHS16L8A			PLHS16L8B			
					Min	Typ	Max	Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	20		12	15	ns
$t_{\text {EA }}$	Output enable	Output -	Input \pm	$C_{L}=50 \mathrm{pF}$		14	20		12	15	ns
$t_{\text {ER }}$	Output disable	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		14	20		12	15	ns

NOTES:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. tpp is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE
A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are enabled.
2. All p-terms are enabled in the AND array.

TIMING DEFINITIONS

SYMBOL	PARAMETER
tpo	Input to output propagation delay.
ter	Input to output disable (3-State) delay (Output Disable).
teA	Input to Output Enable delay (Output Enable).

TIMING DIAGRAM

AC TEST LOAD CIRCUIT

NOTE:
C_{1} and C_{2} are to bypass V_{CC} to GND .

LOGIC PROGRAMMING

PLHS16L8A/B logic designs can be generated using any commercially available, JEDEC standard design software that supports the 16L8 architecture. No JEDEC fuse map conversion or translation is necessary when using the PLHS16L8A/B.

PLHS16L8A/B designs can also be generated using the program table format, detailed on the following page. This program table entry (PTE) format is supported on the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5V level of
inputs and outputs, unless otherwise specified.
OV Input Pulses

To implement the desired logic functions, each logic variable (I, B, P and D) from the logic equations is assigned a symbol. TRUE (High), COMPLEMENT (Low), DON'T CARE and INACTIVE symbols are defined below.
"AND" ARRAY - (I, B)

NOTE:

1. This is the initial state of all diodes pairs.
2. All unused product terms must be programmed with all pairs of diodes in the INACTIVE state (all fuses on an unused p-term must be programmed).

NOTES
PURCHASE ORDER \#
SIGNETICS DEVICE \#
CF (XXXX) \qquad
CUSTOMER SYMBOLIZED PART \#
TOTAL NUMBER OF PARTS \qquad
PROGRAM TABLE \# REV \qquad DATE \qquad $\underset{\omega}{\omega} \underset{\sim}{\infty}$

Document No.	$853-1358$
ECN No.	98103
Date of Issue	November 14, 1989
Status	Product Specification
Programmable Logic Devices	

PLUS16R8D/-7 SERIES
 PAL ${ }^{\oplus}$-Type Devices 16L8, 16R8, 16R6, 16R4

FEATURES

- Ultra high-speed
$-t_{\text {PD }}=7.5 \mathrm{~ns}$ and $\mathrm{f}_{\text {MAX }}=74 \mathrm{MHz}$ for the PLUS16R8-7 Series
$-t_{\text {PD }}=10 \mathrm{~ns}$ and $f_{\text {max }}=60 \mathrm{MHz}$ for the PLUS16R8D Series
- 100\% functionally and pin-for-pin compatible with industry standard 20-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 20 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

DESCRIPTION

The Signetics PLUS16XX family consists of ultra high-speed 7.5 ns and 10 ns versions of Series 20 PAL devices.

The PLUS16XX family is 100% functional and pin-compatible with the 16L8, 16R8, 16R6, and 16R4 Series devices.

The sum of products (AND-OR) architecture is comprised of 64 programmable AND gates and 8 fixed OR gates. Multiple bidirectional pins provide variable input/ output pin ratios. Individual 3 -State control of all outputs and registers with feedback (R8, R6, R4) is also provided. Proprietary designs can be protected by programming the security fuse.

The PLUS16R8, R6, and R4 have D-type flip-flops which are loaded on the Low-to-High transition of the clock input.

In order to facilitate state machine design and testing, a power-up reset function has been incorporated into these devices to
reset all internal registers to active-Low after a specific period of time.
The Signetics State-of-the-Art oxide isolation Bipolar fabrication process is employed to achieve high-performance operation.
The PLUS16XX family of devices are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment. See the programmer chart for qualified programmers.
The AMAZE software package from Signetics supports easy design entry for the PLUS16XX series as well as other PLD devices from Signetics. The PLUS16XX series are also supported by other standard CAD tools for PAL-type devices.
Order codes are listed in the Ordering Information table.

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS
PLUS16L8	10	$8(6 I / O)$	0
PLUS16R8	8	0	8
PLUS16R6	8	$2 / / O$	6
PLUS16R4	8	$4 / / O$	4

[^1]PIN CONFIGURATIONS

PLUS16R8

SYMBOL	DESCRIPTION
I	Dedicated Input
O	Dedicated combinatorial Output
Q	Registered output
B	Bidirectional (inpuVoutput)
CLK	Clock input
OE	Output Enable
VCC	Supply Voltage
GND	Ground

PIN CONFIGURATIONS

PAL-Type Devices
16L8, 16R8, 16R6, 16R4

PLUS16R8D/-7 SERIES

LOGIC DIAGRAM
PLUS16R8

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 0 ".
2. Programmable connections.

PAL-Type Devices

16L8, 16R8, 16R6, 16R4

PLUS16R8D/-7 SERIES

LOGIC DIAGRAM PLUS16R6

PAL-Type Devices
16L8, 16R8, 16R6, 16R4

PLUS16R8D/-7 SERIES

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic "0".
2. Programmable connections.

FUNCTIONAL DESCRIPTIONS

The PLUS16XX series utilizes the familiar sum-of-products implementation consisting of a programmable AND array and a fixed OR array. These devices are capable of replacing an equivalent of four or more SSI/MSI integrated circuits to reduce package count and board area occupancy, consequently improving reliability and design cycle over Standard Cell or gate array options. By programming the security fuse, proprietary designs can be protected from duplication.
The PLUS16XX series consists of four PALtype devices. Depending on the particular device type, there are a variable number of combinatorial and registered outputs available to the designer. The PLUS16L8 is a combinatorial part with 8 user configurable outputs (6 bi directional), while the other three devices, PLUS16R8, PLUS16R6, PLUS16R4, have respectively 8,6 , and 4 output registers.

3-State Outputs

The PLUS16XX series devices also feature 3-Stateoutputbuffers on each output pin which can be programmed for individual control of all outputs. The registered outputs (Qn) are controlled by an external input (/OE), and the combinatorial outputs (On, Bn) use a product term to control the enable function.

Programmable Bidirectional Pins

The PLUS16XX products feature variable Input/Output ratios. In addition to 8 dedicated inputs, each combinatorial output pin of the registered devices can be individually programmed as an input or output. The PLUS16L8 provides 10 dedicated inputs and 6 Bidirectional I/O lines that can be individually configured as inputs or outputs.

Output Registers

The PLUS16R8 has 8 output registers, the 16R6 has 6, and the 16R4 has 4. Each output register is a D-type flip-flop which is loaded on the Low-to-High transition of the clock input. These output registers are capable of feeding the outputs of the registers back into the array to facilitate design of synchronous state machines.

Power-up Reset

By resetting all flip-flops to a logic Low, as the power is turned on, the PLUS16R8, R6, R4 enhance state machine design and initialization capability.

Software Support

Like other Programmable Logic Devices from Signetics, the PLUS16XX series are supported
by AMAZE, the PC-based software development tool from Signetics. The PLUS16XX famiiy of devices are aiso supported by standard CAD tools for PAL devices, including ABEL and CUPL.

AMAZE is available free of charge to qualified users.

Logic Programming

Logic designs for PLUS16XX series can be generated using any commercially available JEDEC standard design software that supports the 20-pin PAL devices. No JEDEC fuse map conversion or translation is necessary when transferring designs from slower 20-pin PAL devices.

To implement the desired logic functions, each logic variable from the logic equations is assigned a symbol. True (High), Complement (Low), Don't Care and Inactive symbols are defined below.

AND ARRAY - (I, B)

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

PAL-Type Devices

16L8, 16R8, 16R6, 16R4

PLUS16R8D/-7 SERIES

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	PLUS16R8DN
	PLUS16R6DN
20-Pin Plastic Dual-In-Line	PLUS16R4DN
300mit-wide	PLUS16L8DN
	PLUS16R8-7N
	PLUS16R6-7N
	PLUS16R4-7N
	PLUS16L8-7N
	PLUS16R8DA
20-Pin Plastic Leaded Chip Carrier	PLUS16R6DA
(PLCC)	PLUS16R4DA
	PLUS16L8DA
	PLUS16R8-7A
	PLUS16R6-7A
	PLUS16R4-7A

NOTE:

The PLUS16XX series of devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information, consult the Signetics Military Data Book.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
			Min	Max
UNIT				
V_{CC}	Supply voltage	-0.5	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. .Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

OPERATING RANGES

SYMBOL	PARAMETER		RATINGS	
		UNT		
		Min	Max	$V_{D C}$
$V_{C C}$	Supply voltage	+4.75	+5.25	
T_{A}	Operating free-air temperature	0	+75	

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

PAL-Type Devices

16L8, 16R8, 16R6, 16R4

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{IH}	High	$V_{\text {CC }}=\operatorname{Max}$	2.0			V
$V_{\text {IC }}$	Clamp	$V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$		-0.8	-1.5	V
Output voltage						
		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.5	v
V_{OH}	High	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{c c}=\operatorname{Max}$				
$1 / 1$	Low ${ }^{3}$	$\mathrm{V}_{\mathbb{N}}=0.40 \mathrm{~V}$	-250			$\mu \mathrm{A}$
I_{IH}	High ${ }^{3}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
1	Maximum input current	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCMAX }}$			100	$\mu \mathrm{A}$
Output current						
		$V_{\text {cc }}=$ Max				
Iozh	Output leakage	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$			100	$\mu \mathrm{A}$
lozu	Output leakage	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	-100			$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$, 5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-30		-90	mA
Icc	$\mathrm{V}_{\text {cc }}$ supply current	$\mathrm{V}_{\text {cc }}=$ Max			180	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\text {cC }}=5 \mathrm{~V}$				
		$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		8		pF
C_{B}	I/O (B)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		8		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Leakage current for bidirectional pins is the worst case of I_{LL} and $\mathrm{l}_{\mathrm{OZL}}$ or I_{IH} and $\mathrm{l}_{\mathrm{OZH}}$ -
4. Test one at a time.
5. Duration of short circuit should not exceed 1 second.
6. These parameters are not 100% tested but periodically sampled.

PAL-Type Devices
16L8, 16R8, 16R6, 16R4
PLUS16R8D/-7 SERIES

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{Cc}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	LIMITS				UNIT
				-7		D		
				Min ${ }^{1}$	Max	Min ${ }^{1}$	Max	
Pulse Width								
$\mathrm{t}_{\mathrm{CKH}}$	Clock High	CK+	CK-	5		7		ns
${ }_{\text {tekL }}$	Clock Low	CK-	CK+	5		7		ns
$\mathrm{t}_{\text {CKP }}$	Period	CK+	CK+	10		14		ns
Setup \& Hold time								
$\mathrm{t}_{\text {IS }}$	Input	Input or feedback	CK+	7		9		ns
t_{H}	Input	CK+	Input or feedback	0		0		ns
Propagation delay								
tско	Clock	CK \pm	$\mathrm{Q} \pm$	3	6.5	3	7.5	ns
$\mathrm{t}_{\text {CKF }}$	Clock ${ }^{3}$	CK \pm	Q		3		7	ns
tPD	Output (20L8, R6, R4) ${ }^{2}$	I, B	Output		7.5		10	ns
CoE1	Output enable ${ }^{4}$	OE	Output enable	3	8	3	10	ns
LoE2	Output enable ${ }^{4,5}$	1	Output enable	3	10	3	10	ns
tod	Output disable ${ }^{4}$	OE	Output disable	3	8	3	10	ns
tod2	Output disable ${ }^{4,5}$	1	Output disable	3	10	3	10	ns
$\mathrm{t}_{\text {SKW }}$	Output	Q	Q		1		1	ns
tppr	Power-Up Reset	$\mathrm{V}_{\mathrm{CC}}+$	Q+		10		10	ns
Frequency (20R8, R6, R4)								
$f_{\text {max }}$	No feedback $1 /\left(\mathrm{t}_{\text {CKL }}+\mathrm{t}_{\text {CKH }}\right)^{6}$			100		71.4		MHz
	Internal feedback $1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKF}}\right)^{6}$			100		62.5		MHz
	External feedback $1 /\left(\mathrm{t}_{\text {S }}+\mathrm{t}_{\mathrm{CKO}}\right)^{6}$			74		60.6		MHz

* For definitions of the terms, please refer to the Timing/Frequency Definitions tables.

NOTES:

1. $\mathrm{CL}=0 \mathrm{pF}$ while measuring minimum output delays.
2. $t_{\text {PD }}$ test conditions: $C L=50 \mathrm{pF}$ (with jig and scope capacitance), $\mathrm{V}_{\mathrm{IH}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{OV}, \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$.
3. tCKF was calculated from measured Internal $f_{\text {MAX }}$.
4. In reference to 3 -State outputs, output enable times are tested with $\mathrm{CL}=50 \mathrm{pF}$ to the 2.0 V or 0.8 V level. Output disable times are tested with $C L=5 \mathrm{pF}$. High to High-impedence tests are made to an output voltage of $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{O} .5 \mathrm{~V}$; Low to High-impedence tests are made to the $V_{T}=V_{O L}+0.5 \mathrm{~V}$ level.
5. Same function as toE1 and toD1, with the difference of using product term control.
6. Not 100% tested, but calculated at initial characterization and at any time a modification in design takes place which may affect the frequency.

PAL-Type Devices

TEST LOAD CIRCUIT

OUTPUT REGISTER SKEW

CLOCK TO FEEDBACK PATH

PAL-Type Devices
16L8, 16R8, 16R6, 16R4

PLUS16R8D/-7 SERIES

TIMING DIAGRAMS1, 2

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
$\mathrm{t}_{\text {CKL }}$	Interval between clock pulses.
${ }^{\text {t }}$ CKP	Clock period.
t_{15}	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {H }}$	Required delay between positive transition of clock and end of valid input data.
${ }^{\text {chem }}$	Delay between positive transition of clock and when internal output of flip-flop becomes valid.
${ }^{\text {CKKO }}$	Delay between positive transition of clock and when outputs become valid (with OE Low).
${ }^{\text {toE1 }}$	Delay between beginning of Output Enable Low and when outputs become valid.
$\mathrm{t}_{\text {OD1 }}$	Delay between beginning of Output Enable High and when outputs are in the Off-State.
toe2	Delay between predefined Output Enable High, and when combinational outputs become valid.
$t_{O D 2}$	Delay between predefined Output Enable Low and when combinational outputs are in the Off-State.
tPPR	Delay between $V_{C C}$ (after pow-er-on) and when flip-flop outputs become preset at "1" (internal Q outputs at " 0 ").
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.

FREQUENCY DEFINITIONS

$f_{\text {MAX }}$	No feedback: Determined by the minimum clock period, $1 /\left(\mathrm{t}_{\mathrm{CKL}}+\mathrm{t}_{\mathrm{CKH}}\right)$. Internal feedback: Determined by the internal delay from flip-flop outputs through the internal feedback and array to the flip-flop inputs, $1 /\left(\mathrm{t}_{\mathrm{IS}}+\right.$ $t_{\text {CKF }}$). External feedback: Determined by clock-to-output delay and input setup time, $1 /\left(t_{i S}+t_{C K O}\right)$.

NOTES:

1. Input pulse amplitude is OV to 3 V .
2. Input rise and fall times are 2.5 ns .

PAL-Type Devices 16L8, 16R8, 16R6, 16R4

PROGRAMMING

The PLUS16XX Series are programmable on conventional programmers for 20 -pin PAL $®$ devices. Refer to the following charts for qualified manufacturers of programmers and software tools:

PROGRAMMER MANUFACTURER	PROGRAMMER MODEL	FAMILY/PINOUT CODES
DATA I/O CORPORATION 10525 WILLOWS ROAD, N.E. P.O. BOX 97046 REDMOND, WASHINGTON 98073-9746 (800)247-5700	SYSTEM 29B, LogicPak ${ }^{\text {TM }}$ 303A-V04 $\begin{array}{ll}\text { ADAPTER } & 303 A-011 A-V 08 \\ 303 A-011 B-V 04\end{array}$ $303 A-011 B-V 04$ UNISITE 40/48, V2.3 (DIP) V2.5 (PLCC) MODEL 60, 60A/H, V. 13	16L8-7/16L8D : $1 \mathrm{~B} / 17$ 16R8-7/16R8D $1 \mathrm{~B} / 24$ 16R6-7/16R6D : $1 \mathrm{~B} / 24$ 16R4-7/16R4D : $1 \mathrm{~B} / 24$
STAG MICROSYSTEMS, INC. 1600 WYATT DRIVE SUITE 3 SANTA CLARA, CALIFORNIA 95054 (408)988-1118	ZL30/30A PROGRAMMER REV. 30 A31 PPZ PROGRAMMER TBA	$\begin{aligned} & \text { 16L8-7/16L8D : } 11 / 29 \\ & \text { 16R8-7/16R8D : } 11 / 30 \\ & \text { 16R6-7/16R6D : } 11 / 30 \\ & \text { 16R4-7/16R4D : } 11 / 30 \end{aligned}$

SOFTWARE MANUFACTURER	DEVELOPMENT SYSTEM
SIGNETICS COMPANY	
811 EAST ARQUES AVENUE	
P.O. BOX 3409	
SUNNYVALE, CALIFORNIA 94088-3409	AMAZE SOFTWARE
(408)991-2000	
DATA I/O 1.7	
10525 WILLOWS ROAD, N.E.	
P.O. BOX 97046	
REDMOND, WASHINGTON 98073-9746	ABELTM SOFTWARE
(800)247-5700	REV. 1.0 AND LATER
LOGICAL DEVICES, INC.	
1201 NORTHWEST 65TH PLACE	CUPLTM SOFTWARE
FORT LAUDERDALE, FLORIDA 33309	REV. 1.01 AND LATER
(800)331-7766	

Signetics

Document No.	
ECN No.	
Date of Issue	October 1989
Status	Preliminary Specification
Programmable Logic Devices	

DESCRIPTION

The PHD16N8-5 is an ultra fast Programmable High-speed Decoder featuring a 5 ns maximum propagation delay. The architecture has been optimized using Philips Components-Signetics state-of-the-art bipolar oxide isolation process coupled with titanium-tungsten fuses to achieve superior speed in any design.

The PHD16N8-5 is a single level logic element comprised of 10 fixed inputs, 8 AND gates, and 8 outputs of which 6 are bidirectional. This gives the device the ability to have as many as 16 inputs. Individual 3-State control of all outputs is also provided.

The device is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment. Proprietary designs can be protected by programming the security fuse.

The AMAZE software package from Philips Components-Signetics supports easy design entry for the PHD16N8-5 as well as other PLD devices.

Order codes are listed in the pages following.

PHD16N8-5
 Programmable High-Speed Decoder Logic $(16 \times 16 \times 8)$

FEATURES

- Ideal for high speed system decoding
- Super high speed at $\mathbf{5 n s} \mathbf{t}_{\text {PD }}$
- 10 dedicated inputs
- 8 outputs
- 6 bidirectional I/O
- 2 dedicated outputs
- Security fuse to prevent duplication of proprietary designs.
- Individual 3-State control of all outputs
- Field-programmable on industry standard programmers
- Available in 20-pin Plastic DIP and 20-Pin PLCC

APPLICATIONS

- High speed memory decoders
- High speed code detectors
- Random logic
- Peripheral selectors
- Machine state decoders
- Footprint compatible to 16L8
- Fuse/Footprint compatible to TIBPAD

PIN CONFIGURATIONS

PHILIPS

Programmable High-Speed	
Decoder Logic $(16 \times 16 \times 8)$	PHD16N8-5

LOGIC DIAGRAM

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 0 "
2. Programmable connections

Programmable High-Speed Decoder Logic ($16 \times 16 \times 8$)

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic Dual In Line Package; (300mil-wide)	PHD16N8-5N
20-Pin Plastic Leaded Chip Carrier; (350mil square)	PHD16N8-5A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
V_{cc}	Supply voltage	-0.5	+7	$V_{D C}$
V_{I}	Input voltage	-0.5	+5.5	$V_{D C}$
Vout	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
Iout	Output currents		+100	mA
TA	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

OPERATING RANGES

SYMBOL	PARAMETER	RATINGS		
		Max	UNIT	
V_{CC}	Supply voltage	+4.75	+5.25	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating free-air temperature	0	+75	${ }^{\circ} \mathrm{C}$

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Programmable High-Speed Decoder Logic ($16 \times 16 \times 8$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	V
$\mathrm{V}_{\mathbb{H}}$	High	$V_{C C}=M A X$	2.0			V
V_{16}	Clamp	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.8	-1.5	V
Output voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \end{gathered}$	2.4		0.5	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Input current						
$\begin{aligned} & I_{\mathbb{1 L}} \\ & I_{\mathbb{H}} \\ & I_{1} \\ & \hline \end{aligned}$	Low High High	$\begin{gathered} V_{C C}=M A X \\ V_{I N}=+0.40 \mathrm{~V} \\ V_{\mathbb{I N}}=+2.7 \mathrm{~V} \\ V_{\mathbb{I N}}=V_{C C}=V_{C C} \text { MAX } \end{gathered}$		-20	$\begin{gathered} -250 \\ 25 \\ 100 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$\mathrm{I}_{\mathrm{OZH}}$ lozl los	$\begin{aligned} & \text { Output leakage }{ }^{3} \\ & \text { Output leakage }{ }^{3} \\ & \text { Short circuit }{ }^{4} \end{aligned}$	$\begin{aligned} V_{\text {CC }} & =\mathrm{MAX} \\ V_{\text {OUT }} & =+2.7 \mathrm{~V} \\ V_{\text {OUT }} & =+0.40 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-30		$\begin{gathered} 100 \\ -100 \\ -90 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {cc }}$ supply current	$V_{C C}=\mathrm{MAX}$		115	180	mA
Capacitance ${ }^{5}$						
$\mathrm{C}_{\text {IN }}$ Cout	Input $1 / O \text { (B) }$	$\begin{gathered} V_{C C}=+5 \mathrm{~V} \\ V_{I N}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \\ V_{\text {OUT }}=2.0 \mathrm{~V} @ f=1 \mathrm{MHz} \end{gathered}$		8		pF

NOTES:

1. Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Leakage current for bidirectional pins is the worst case of I_{L} and $\mathrm{l}_{\mathrm{OZZ}}$ or l_{IH} and $\mathrm{l}_{\mathrm{OZH}}$.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega, \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITIONS	LIMITS		UNIT
					Min	Max	
$t_{\text {PD }}{ }^{1}$	Propagation delay	$(1, B) \pm$	Output \pm	$C_{L}=50 \mathrm{pF}$		5	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{2}$	Output Enable	$(1, B) \pm$	Output enable	$C_{L}=50 \mathrm{pF}$		10	ns
tOD^{2}	Output Disable	$(1, B) \pm$	Input disable	$C_{L}=5 \mathrm{pF}$		10	ns

NOTES:

1. $t_{P D}$ is tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
2. For 3-State output; output enable times are tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are disabled.
2. All p-terms are disabled in the AND array.

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Input to output propagation delay.
toD	Input to Output Disable (3-State) delay (Output Disable).
toE	Input to Output Enable delay (Output Enable).

TEST CONDITIONS: $T_{A}=75^{\circ} \mathrm{C}$;
$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$;
$R_{1}=200 \Omega ; R_{2}=390 \Omega$
Worst-Case Propagation Delay vs. Number of Outputs Switching

TIMING DIAGRAM

Programmable High-Speed Decoder Logic ($16 \times 16 \times 8$)

AC TEST LOAD CIRCUIT

LOGIC PROGRAMMING

PHD16N8-5 logic designs can be generated using any commercially available, JEDEC standard design software.

PHD16N8-5 designs can also be generated using the program table format, detailed on the following page. This program table entry (PTE) format is supported on the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circult delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

To implement the desired logic functions, each logic variable (I, B, P and D) from the logic equations is assigned a symbol. TRUE (High), COMPLEMENT (Low), DON'T CARE and INACTIVE symbols are defined below.
"AND" ARRAY - (I, B)

STATE	CODE	StATE	CODE	STATE	CODE	STATE	CODE
INACTIVE ${ }^{1}$	0	TRUE	H	COMPLEMENT	L	DON'T CARE	-

NOTE:

1. This is the initial state.

PROGRAM TABLE

Programmable High-Speed Decoder Logic ($16 \times 16 \times 8$)

DECODING $1 / 2$ MEG STATIC MEMORY

Signetics

Document No.	$853-0863$
ECN No.	97886
Date of Issue	October 16, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLHS18P8A and the PLHS18P8B are two-level logic elements consisting of 72 AND gates and 8 OR gates with fusible connections for programming I/O polarity and direction.

All AND gates are linked to 10 inputs (I) and 8 bidirectional I/O lines (B). These yield variable I/O gate configurations via 8 direction control gates, ranging from 18 inputs to 8 outputs.

On-chip T/C buffers couple either True (I, B) or Complement (I, B) input polarities to all AND gates. The 72 AND gates are separated into 8 groups of 9 each. Each group of 9 is associated with one bidirectional pin. In each group, eight of the AND terms are ORed together, while the ninth is used to establish I/O direction. All outputs are individually programmable via an Ex-OR gate to allow implementation of AND/OR or NAND/NOR logic functions.

In the virgin state, the AND array fuses are back-to-back CB-EB diode pairs which will act as open connections. Current is avalanched across individual diode pairs during fusing, which essentially short circuits the EB diode and provides the connection for the associated product term.

The PLHS18P8A/B is field-programmable, allowing the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

PLHS18P8A/B
 PAL ${ }^{\circledR}$-Type Devices

FEATURES

- "A" version 100% functionally compatible with AmPAL18P8A and all $16 \mathrm{~L} 8,16 \mathrm{P} 8,16 \mathrm{H} 8,16 \mathrm{~L} 2,16 \mathrm{H} 2$, 14L4, 14H4, 12L6, 12H6, 10L8, 10H8, 16LD8 and 16HD8 "A" speed PAL-type products
- "B" version 100% functionally compatible with AmPAL18P8B and all $16 \mathrm{~L} 8,16 \mathrm{P} 8,16 \mathrm{H} 8,16 \mathrm{~L} 2,16 \mathrm{H} 2$, 14L4, 14H4, 12L6, 12H6, 10L8, 10H8, 16LD8 and 16HD8 "B" speed
PAL-type products
- Field-programmable
- 10 inputs
- 8 bidirectional I/O lines
- 72 AND gates/product terms
- configured into eight groups of nine
- Programmable output polarity (3-State output)
- I/O propagation delay:
- PLHS18P8A: 20ns (max)
- PLHS18P8B: 15ns (max)
- Power dissipation: 500mW (typ)
- TTL compatible
- Security fuse

PIN CONFIGURATIONS

APPLICATIONS

- 100\% functional replacement for all 20-pin combinatorial PAL devices
- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

Philips Components

FPLA LOGIC DIAGRAM

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic "1".
2. Programmable connections.

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic Dual In-Line (300mil-wide)	PLHS18P8AN, PLHS18P8BN
20-Pin Plastic Leaded Chip Carrier	PLHS18P8AA, PLHS18P8BA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5 to +5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to V_{CC} Max	V_{DC}
$\mathrm{V}_{\text {OUTPRG }}$	Output voltage (programming)	+21	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input current	-30 to +5	mA
$\mathrm{I}_{\text {OUT }}$	Output current	+100	mA
$\mathrm{I}_{\text {OUTPRG }}$	Output current (programming)	+170	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Lumits						UNIT
			PLHS18P8A			PLHS18P8B			
			Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$									
V_{l}	Low	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$			$+0.8$			$+0.8$	V
V_{H}	High	$V_{C C}=$ MAX	+2.0			+2.0			V
$V_{1 C}$	Clamp	$V_{C C}=M I N, I_{\text {IN }}=-18 \mathrm{~mA}$		-0.9	-1.2		-0.9	-1.2	V
Output voltage									
V OL	Low	$\begin{gathered} V_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OL}}=+24 \mathrm{~mA} \end{gathered}$			+0.50			+0.50	V
V_{OH}	High	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	+2.4	+3.5		+2.4	+3.5		V
Input current									
		$V_{C C}=$ MAX							
$\mathrm{If}_{\text {l }}$	Low	$\mathrm{V}_{\text {IN }}=+0.40 \mathrm{~V}$		-20	-100		-20	-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=+2.7 \mathrm{~V}$			+25			+25	$\mu \mathrm{A}$
1	High	$\mathrm{V}_{\mathrm{IN}}=+5.5 \mathrm{~V}$			+1.0			+1.0	mA
Output current									
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{HH}}=2.0 \mathrm{~V}$							
$\mathrm{l}_{\mathrm{OZH}}$	Output leakage	$\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$			+100			+100	$\mu \mathrm{A}$
lozi	Output leakage	$V_{\text {OUT }}=+0.40 \mathrm{~V}$			-250			-250	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$	$\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$	-25	-60	-90	-30	-60	-90	mA
Icc	$\mathrm{V}_{\text {cc }}$ current	$\mathrm{V}_{\text {cC }}=$ MAX, All inputs $=$ GND		100	155		100	155	mA
Capacitance ${ }^{4}$									
		$V_{C C}=+5 \mathrm{~V}$							
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		6			6		pF
$\mathrm{C}_{\text {OUt }}$	$1 / 0$	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		9			9		pF

NOTES:

1. Typical limits are at $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. These parameters are not 100% tested, but are periodically sampled.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega, \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	то	TEST CONDITIONS	LIMITS						UNIT
					PLHS18P8A			PLHS18P8B			
					Min	Typ	Max	Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	20		12	15	ns
$t_{\text {EA }}$	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		14	20		12	15	ns
$t_{\text {ER }}$	Output disable	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		14	20		12	15	ns

NOTES:

1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.
2. tpD is tested with switch S_{1} closed and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
3. For 3-State output; output enable times are tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{OH}}=-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{OL}}=+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are at " H " polarity.
2. All outputs are enabied.
3. All p-terms are enabled.

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Input to output propagation delay.
ter	Input to output disable (3-State) delay (Output Disable).
teA	Input to Output Enable delay (Output Enable).

TIMING DIAGRAM

AC TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLHS18P8A/Blogic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLHS18P8A/B logic designs can also be generated using the program table format detailed on the following pages. This program table entry (PTE) format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

"AND" ARRAY - (I, B)

NOTE:

1. This is the initial state of all link pairs.
2. All unused product terms must be programmed with all pairs of fuses in the INACTIVE state (all fuses on an unused p-term must be programmed).

Signetics

Document No.	$853-1396$
ECN No.	97550
Date of Issue	September 1, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLC18V8Z35 and PLC18V8ZI are universal PAL-type devices featuring high performance and virtually zero-standby power for power sensitive applications. They are reliable, user-configurable substitutes for discrete TTL CMOS logic. While compatible with TTL and HCTlogic, the PLC 18V8ZI can also replace HC logic over the $V_{C C}$ range of 4.5 to 5.5 V .

The PLC18V8Z is a two-level logic element comprised of 10 inputs, 74 AND gates (product terms) and 8 output Macro cells.

Each output features an "Output Macro Cell" which can be individually configured as a dedicated input, a combinatorial output, or a registered output with internal feedback. As a result, the PLC18V8Z is capable of emulating all common 20-pin PAL devices to reduce documentation, inventory, and manufacturing costs.

A power-up reset function and a Register Preload function have been incorporated in the PLC18V8Z architecture to facilitate state machine design and testing.

With a standby current of less than $100 \mu \mathrm{~A}$ and active power consumption of $1.5 \mathrm{~mA} / \mathrm{MHz}$, the PLC18V8Z is ideally suited for power sensitive applications in battery operated/backed portable instruments and computers.

The PLC18V8Z is also processed to industrial requirements for operation over an extended temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and supply voltage of 4.5 V to 5.5 V .

Ordering information can be found in the Ordering Information table.

PLC18V8Z35/PLC18V8ZI Zero Standby Power Universal PAL ${ }^{\oplus}$-type Devices

FEATURES

- 20-pin Universal Programmable Array Logic
- Virtually Zero-Standby-power
- Functional replacement for Series 20 PAL devices
$-\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$
- High-performance CMOS EPROM cell technology
- Erasable
- Reconfigurable
- 100\% testable
- 35ns Max propagation delay (comm)
- 40ns Max propagation delay (Industrial)
- Up to 18 inputs and 8 inputoutput macro cells
- Programmable output polarity
- Power-up reset on all registers
- Register Preload capability
- Synchronous Preset/Asynchronous Reset
- Security fuse to prevent duplication of proprietary designs
- Design support provided using AMAZE software development package and other CAD tools for PLDs
- Available in 300 mil -wide DIP with quartz window, plastic DIP (OTP) or PLCC (OTP)

APPLICATIONS

- Battery powered instruments
- Laptop and pocket computers
- Industrial control
- Medical Instruments
- Portable communications equipment

PIN CONFIGURATIONS

(B)PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

Philips Components

PHILIPS

LOGIC DIAGRAM

Zero Standby Power Universal PAL-Type Devices

PAL DEVICE TO PLC18V8Z OUTPUT PIN CONFIGURATION

 CROSS REFERENCE| $\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { PLC } \\ \text { 18V8Z } \end{gathered}$ | $\begin{aligned} & 16 \mathrm{L8} \\ & 16 \mathrm{H} 8 \\ & 16 \mathrm{P} 8 \\ & 16 \mathrm{P} 8 \end{aligned}$ | $\begin{gathered} \text { 16R4 } \\ \text { 16RP4 } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { 16R6 } \\ \text { 16RP6 } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline \text { 16R8 } \\ \text { 16RP8 } \end{array}$ | $\begin{aligned} & 16 \mathrm{~L} 2 \\ & 16 \mathrm{H} 2 \\ & 16 \mathrm{P} 2 \end{aligned}$ | $\begin{aligned} & 14 \mathrm{L4} \\ & 14 \mathrm{H} \\ & 14 \mathrm{P4} \end{aligned}$ | $\begin{aligned} & \text { 12L6 } \\ & \text { 12H6 } \\ & \text { 12P6 } \end{aligned}$ | $\begin{aligned} & \text { 10L8 } \\ & \text { 10H8 } \\ & \text { 10P8 } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Io/CLK | 1 | CLK | CLK | CLK | 1 | 1 | 1 | 1 |
| 19 | F7 | B | B | B | D | 1 | 1 | 1 | 0 |
| 18 | F6 | B | B | D | D | 1 | 1 | 0 | 0 |
| 17 | F5 | B | D | D | D | 1 | 0 | \bigcirc | \bigcirc |
| 16 | F4 | B | D | D | D | 0 | 0 | 0 | 0 |
| 15 | F3 | B | D | D | D | 0 | 0 | 0 | 0 |
| 14 | F2 | B | D | D | D | 1 | 0 | 0 | 0 |
| 13 | F1 | B | B | D | D | 1 | 1 | 0 | 0 |
| 12 | F0 | B | B | B | D | 1 | 1 | 1 | 0 |
| 11 | 19/OE | 1 | OE | OE | OE | 1 | 1 | 1 | 1 |

The Signetics state-of-the-art Floating-Gate CMOS EPROM process yields bipolar equivalent performance at less than one-quarter the power consumption. The erasable nature of the EPROM process enables Signetics to functionally test the devices prior to shipment
to the customer. Additionally, this allows Signetics to extensively stress test, as well as ensure the threshold voltage of each individual EPROM cell. 100% programming yield is subsequently guaranteed.

OUTPUT MACRO CELL (OMC)

FUNCTIONAL DIAGRAM

THE OUTPUT MACRO CELL (OMC)

The PLC18V8Z series devices have 8 individually programmable Output Macro Cells. The 72 AND inputs (or product terms) from the programmable AND array are connected to the 8 OMCs in groups of 9 . Eight of the AND terms are dedicated to logic functions; the ninth is for asynchronous direction control, which enables/disables the respective bidirectional I/O pin. Two product terms are dedicated for the Synchronous Preset and Asynchronous Reset functions.

Each OMC can be independently programmed via 16 architecture control bits, $A C 1_{n}$ and $A C 2_{n}$ (one pair per macro cell). Similarly, each OMC has a programmable output polarity control bit (Xn). By configuring the pair of architecture control bits according to the configuration cell table, 4 different configurations may be implemented. Note that the configuration cell is automatically programmed based on the OMC configuration.

DESIGN SECURITY

The PLC18V8Z series devices have a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

CONFIGURATION CELL

A single configuration cell controls the functions of Pins 1 and 11. Refer to Functional Diagram. When the configuration cell is programmed, Pin 1 is a dedicated clock and Pin 11 is dedicated for output enable. When the configuration cell is unprogrammed, Pins 1 and 11 are both dedicated inputs. Note that the output
enable for all registered OMCs is commonfrom Pin 11 only. Output enable control of the bidirectional I/O OMCs is provided from the AND array via the direction product term.
If any one OMC is configured as registered, the configuration cell will be automatically configured (via the design software) to ensure that the clock and output enable functions are en-
abled on Pins 1 and 11, respectively. If none of the OMCs are registered, the configuration cell will be programmed such that Pins 1 and 11 are dedicated inputs. The programming codes are as follows:

Pin $1=$ CLK, Pin $11=\mathrm{OE}$	L
Pin 1 and Pin $11=$ Input	H

| FUNCTION | CONTROL CELL CONFIGURATIONS | | COMMENTS |
| :--- | :---: | :---: | :---: | :---: |

NOTE:

3. This is the virgin state as shipped from the factory.

ARCHITECTURE CONTROL-AC1 and AC2

NOTE:

\dot{A} factory shipped unprogrammed device is configured such that:

1. This is the initial unprogrammed state. All cells are in a conductive state.
2. All AND gates are pulled to a logic " 0 " (Low).
3. Output polarity is inverting.
4. Pins 1 and 11 are configured as inputs 0 and 9 . The clock and $D E$ functions are disabled.
5. All Output Macro Cells (OMCs) are configured as bidirectional I/O, with the outputs disabled via the direction term.
6. This configuration cannot be used if any OMCs are configured as registered (Code $=\mathrm{D}$). The configuration cell will be automatically configured to ensure that the clock and output enable functions are enabled on Pins 1 and 11, respectively, if any one OMC is programmed as registered.

Zero Standby Power Universal PAL-Type Devices

ORDERING INFORMATION

DESCRIPTION	OPERATING CONDITIONS	ORDER CODE
20-Pin Plastic Dual In-Line Package $300 \mathrm{mil}-$ wide ($\mathrm{t}_{\mathrm{PD}}=35 \mathrm{~ns}$)	Commercial Temperature Range $\pm 5 \%$ Power Supplies	PLC18V8Z35N
20-Pin Ceramic Dual In-Line Package 300 mil - wide with quartz window (tPD $=35 \mathrm{~ns}$)		PLC18V8Z35FA
20-Pin Plastic Leaded Chip Carrier 350 mil square ($\mathrm{tPD}^{2}=35 \mathrm{~ns}$)		PLC18V8Z35A
20-Pin Plastic Dual In-Line Package $300 \mathrm{mil}-$ wide ($\mathrm{t} D=40 \mathrm{~ns}$)	Industrial Temperature Range $\pm 10 \%$ Power Supplies	PLC18V8ZIN
20-Pin Ceramic Dual In-Line Package 300 mil- wide with quartz window ($\mathrm{tpD}=40 \mathrm{~ns}$)		PLC18V8ZIFA
20-Pin Plastic Leaded Chip Carrier 350 mil square ($\mathrm{tpD}^{2}=40 \mathrm{~ns}$)		PLC18V8ZIA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
$V_{\text {cc }}$	Supply voltage	-0.5 to +7	V_{DC}
$V_{\text {cc }}$	Operating supply voltage	4.5 to 5.5 (Industrial) 4.75 to 5.25 (Commercial)	$V_{D C}$
$V_{\mathbb{N}}$	Input voltage	-0.5 to $V_{c c}+0.5$	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to $V_{c c}+0.5$	$V_{D C}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-10 to +10	mA
lout	Output currents	+24	mA
$\mathrm{T}_{\mathbf{A}}$	Operating temperature range	-40 to +85 (Industrial) 0 to +75 (Commercial)	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfuncion or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

AC TEST CONDITIONS

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.
Input Pulses

Zero Standby Power Universal PAL-Type Devices

DC ELECTRICAL CHARACTERISTICS Commercial $=0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$; Industrial $=-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage						
$\mathrm{V}_{\text {ll }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$	-0.3		0.8	V
V_{H}	High	$\mathrm{V}_{\text {cc }}=$ Max	2.0		$\mathrm{V}_{\text {cc }}+0.3$	V
Output voltage ${ }^{2}$						
V_{OL}	Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$			$\begin{aligned} & 0.100 \\ & 0.500 \end{aligned}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
V_{OH}	High	$\begin{aligned} & V_{C C}=M i n, I_{O H}=-3.2 \mathrm{~mA} \\ & V_{C C}=M i n, I_{O H}=-20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 2.4 \\ \mathrm{v}_{\mathrm{cc}}-0.1 \mathrm{~V} \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Input current						
$I_{1 L}$	Low ${ }^{7}$	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$			-10	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			10	$\mu \mathrm{A}$
Output current						
Io(off)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & V_{\text {OUT }}=V_{\mathrm{CC}} \\ & V_{\text {OUT }}=G N D \end{aligned}$			$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
los	Short-circuit ${ }^{3}$	$\mathrm{V}_{\text {OUT }}=$ GND			-130	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current (Standby)	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{C C}{ }^{8}$			100	$\mu \mathrm{A}$
$\mathrm{IcC}^{\prime} /$	$\mathrm{V}_{\text {CC }}$ supply current (Active) ${ }^{4}$	$\mathrm{V}_{\text {CC }}=$ Max (CMOS inputs) ${ }^{5,6}$			1.5	mA/MHz
Capacitance						
C_{1}	Input	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$		12		pF
C_{B}	1/O	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with TTL input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$. Measured with all outputs switching.
5. $\Delta l_{\mathrm{cc}} / T \mathrm{TL}$ input $=2 \mathrm{~mA}$.
6. $\Delta \mathrm{I}_{\mathrm{cc}}$ vs frequency (registered configuration) $=2 \mathrm{~mA} / \mathrm{MHz}$.
7. IIL for Pin 1 (IdCLK) is $\pm 10 \mu \mathrm{~A}$ with $\mathrm{V}_{\mathbb{I N}}=0.4 \mathrm{~V}$.
8. $\mathrm{V}_{\mathbb{N}}$ includes $C L K$ and $O E$ if applicable.

Figure 1. Icc vs Frequency (Worst Case)

Figure 2. $\Delta \mathrm{t}_{\text {pD }}$ vs Output Capacitance Loading (Typical)

Zero Standby Power Universal PAL-Type Devices

AC ELECTRICAL CHARACTERISTICS Commercial $=0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$; Industria! $=-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V} ; \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	то	TEST CONDITION ${ }^{1}$		PLC18V8Z35 (Commercial)		PLC18V8ZI (Industrial)		UNIT
				R1 (Ω)	$\begin{gathered} C_{L} \\ (\mathrm{pF}) \end{gathered}$	Min	Max	Min	Max	
Pulse width										
${ }_{\text {tckP }}$	Clock period (Minimum $\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CkO}}$)	CLK +	CLK +	200	50	47		57		ns
$\mathrm{t}_{\mathrm{CKH}}$	Clock width High	CLK +	CLK -	200	50	20		25		ns
${ }^{\text {t }} \mathrm{CKL}$	Clock width Low	CLK -	CLK +	200	50	20		25		ns
$\mathrm{t}_{\text {ARW }}$	Async reset pulse width	$1 \pm, \mathrm{F} \pm$				35		40	ns	
Hold time										
${ }^{\text {t }}$ H	Input or feedback data hold time	CLK +	Input \pm	200	50	0		0		ns
Setup time										
${ }^{1} /{ }_{\text {s }}$	Input or feedback data setup time	$1 \pm, \mathrm{F} \pm$	CLK +	200	50	25		30		ns
Propagation delay										
$t_{\text {PD }}$	Delay from input to active output	$\mathrm{I} \pm, \mathrm{F} \pm$	$\mathrm{F} \pm$	200	50		35		40	ns
$\mathrm{t}_{\text {cko }}$	Clock High to output valid access Time	CLK +	$\mathrm{F} \pm$	200	50		22		27	ns
toEs^{3}	Product term enable to outputs off	$1 \pm, \mathrm{F} \pm$	$\mathrm{F} \pm$	Active-High $R=1.5 \mathrm{k}$ Active-Low $\mathrm{R}=550$	50		35		40	ns
tODS^{2}	Product term disable to outputs off	$1 \pm, \mathrm{F} \pm$	$\mathrm{F} \pm$	$\begin{aligned} & \text { From } V_{O H} R=\infty \\ & \text { From } V_{\text {OL }} R=200 \end{aligned}$	5		35		40	ns
$\mathrm{toO2}^{2}$	Pin 11 output disable High to outputs off	OE-	$\mathrm{F} \pm$	$\begin{aligned} & \text { From } V_{O H} R=\infty \\ & \text { From } V_{O L} R=200 \end{aligned}$	5		25		30	ns
toEs ${ }^{3}$	Pin 11 output enable to active output	OE +	$\mathrm{F} \pm$	$\begin{aligned} & \text { Active-High } R=1.5 \mathrm{k} \\ & \text { Active-Low } R=550 \end{aligned}$	50		25		30	ns
$\mathrm{t}_{\text {ARD }}$	Async reset delay	$1 \pm$ F \pm	F +				35		40	ns
$t_{\text {ARR }}$	Async reset recovery time	$1 \pm, \mathrm{F} \pm$	CLK +			25		30		ns
${ }_{\text {t }}^{\text {SPR }}$	Sync preset recovery time	$\mathrm{I} \pm, \mathrm{F} \pm$	CLK +			25		30		ns
tPPR	Power-up reset	$\mathrm{V}_{\mathrm{cc}}+$	F +				35		40	ns
Frequency of operation										
$\mathrm{f}_{\text {MaX }}$	Maximum frequency			200	50		21		18	MHz

NOTES:

1. Refer also to AC Test Conditions. (Test Load Circuit)
2. 3-State levels are measured $\pm 0.5 \mathrm{~V}$ from the active steady-state level.
3. Resistor values of 1.5 k and 550Ω provide 3-State levels of 1.0 V and 2.0 V , respectively. Output timing measurements are to 1.5 V level.

OMC that has been configured as a registered output will always produce an active-High on the associated output pin because of the inverted output buffer. The internal feedback (Q)
of a registered OMC will also be set Low. The programmed polarity of OMC will not affect the active-High output condition during a system power-up condition.

POWER-UP RESET

In order to facilitate state machine design and testing, a power-up reset function has been incorporated in the PLC18V8Z. All internal registers will reset to active-Low (logical "0") after a specified period of time (tppR). Therefore, any

TIMING DIAGRAMS

NOTE:
Diagram presupposes that the outputs (F) are enabled. The reset occurs regardiess of the output condition (enabled or disabled).
Power-Up Reset

Zero Standby Power Universal PAL-Type Devices

TIMING DIAGRAMS (Continued)

Zero Standby Power Universal PAL-Type Devices

REGISTER PRELOAD FUNCTION (DIAGNOSTIC MODE ONLY)

In order to facilitate the testing of state machine/controller designs, a diagnostic mode register preload feature has been incorporated into the PLC18V8Z series device. This feature enables the user to load the registers with pre-
determined states while a super voltage is applied to Pins 11 and 6 ($\mathrm{I}_{9} / \mathrm{OE}$ and I_{5}). (See diagram for timing and sequence.)
To read the data out, Pins 11 and 6 must be returned to normal TTL levels. The outputs, F_{0-7}, must be enabled in order to read data out. The

Q outputs of the registers will reflect data in as input via F_{0-7} during preload. Subsequently, the register Q output via the feedback path will reflect the data in as input via F_{0-7}.
Refer to the voltage waveform for timing and voltage references. $\mathrm{t}_{\mathrm{L}}=10 \mu \mathrm{sec}$.

REGISTER PRELOAD (DIAGNOSTIC MODE)

LOGIC PROGRAMMING

The PLC18V8Z can be programmed by means of Logic Programming equipment.
With Logic programming, the AND/OR/Ex-OR gate input connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table. Similarly, various OMC configurations are implemented by programming the Architecture Control bits AC1 and AC2. Note that the configuration cell is automatically programmed based on the OMC configuration.
In this table, the logic state of variables I, P and B associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

OUTPUT POLARITY - (O, B)

"AND" ARRAY - (I, B)

NOTE:

1. A factory shipped unprogrammed device is configured such that all cells are in a conductive state.

Zero Standby Power Universal PAL-Type Devices

ERASURE CHARACTERISTICS (For Quariz Window Packages Only)

The erasure characteristics of the PLC18V8Z Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lighting could erase a typical PLC18V8Z in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight.

If the PLC18V8Z is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for the PLC18V8Z is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to 35
minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOSEPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.

The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

PROGRAMMING

The PLC18V8Z35// is programmable on conventional programmers for 20-pin PAL devices. Refer to the following charts for qualified manufacturers of programmers and software tools:

PROGRAMMER MANUFACTURER	PROGRAMMER MODEL	FAMILY/PINOUT CODES
DATA I/O CORPORATION 10525 WILLOWS ROAD, N.E. P.O. BOX 97046 REDMOND, WASHINGTON 98073-9746 (800)247-5700	```System 29B, LogicPak}\mp@subsup{}{}{\mathrm{ TM } 303A-011A; V09 (DIL) 303A-011B; V04 (PLCC) UNISITE 40/48 V2.5 (DIL) Chipsite (PLCC) - TBA MODEL 60 TBA```	86/4F
STAG MICROSYSTEMS, INC. 1600 WYATT DRIVE SUITE 3 SANTA CLARA, CALIFORNIA 95054 (408)988-1118	ZL30/30A PROGRAMMER REV. 30 A34 (DIL) 30A001 Adaptor (PLCC) PPZ PROGRAMMER TBA	12/205

SOFTWARE MANUFACTURER	DEVELOPMENT SYSTEM
SIGNETICS COMPANY	
811 EAST ARQUES AVENUE	AMAZE SOFTWARE
P.O. BOX 3409	
SUNNYVALE, CALIFORNIA 94088-3409	REV. 1.8 AND LATER
(408)991-2000	
DATA I/O	
10525 WILLOWS ROAD, N.E.	
P.O. BOX 97046	
REDMOND, WASHINGTON 98073-9746	
(800)247-5700	ABELTM SOFTWARE
LOGICAL DEVICES, INC.	
1201 NORTHWEST65TH PLACE	
FORT LAUDERDALE, FLORIDA 33309	CUPLTM SOFTWARE
(800)331-7766	

Zero Standby Power Universal PAL-Type Devices

PLC18V8Z Series

PROGRAM TABLE

* THE CONFIGURATION CELL IS AUTOMATICALIY PROGRAMMED BASED ON THE OMC ARCHTECTURE. *FOR SP, AR: "-" IS NOT ALLOWED.

Signetics

Document No.	
ECN No.	
Date of Issue	October 1989
Status	Preliminary Specification
Programmabla Logic Davices	

10H20EV8/10020EV8 ECL Programmable Array Logic

DESCRIPTION

The 10H20EV8/10020EV8 is an ultra high-speed universal ECL PAL®®-type device. Combining versatile output macrocells with a standard AND/OR single programmable array, this device is ideal in implementing a user's custom logic. The use of Signetics state-of-the-art bipolar oxide isolation process enables the 10H20EV8/10020EV8 to achieve optimum speed in any design. The AMAZE design software package from Signetics simplifies design entry based upon Boolean or state equations.

The $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ is a two-level logic element comprised of 11 fixed inputs, an input pin that can either be used as a clock or 12 th input, 90 AND gates, and 8 Output Logic Macrocells. Each Output Macrocell can be individually configured as a dedicated input, dedicated output with polarity control, a bidirectional I/O, or as a registered output that has both output polarity control and feedback to the AND array. This gives the part the capability of having up to 20 inputs and eight outputs.

The 10H20EV8/10020EV8 has a variable number of product terms that can be OR'd per output. Four of the outputs have 12 AND terms available and the other four have 8 terms per output. This allows the designer the extra flexibility to implement those functions that he couldn't in a standard PAL device. Asynchronous Preset and Reset product terms are also included for system design ease. Each output has a separate output enable product term. Another feature added for the system designer is a power-up Reset on all registered outputs.

The 10H20EV8/10020EV8 also features the ability to Preload the registers to any desired state during testing. The Preload is not affected by the pattern within the device, so can be performed at any step in the testing sequence. This permits full logical verification even atter the device has been patterned.

FEATURES

- Ulitra high speed ECL device
$-\mathrm{t}_{\mathrm{PD}}=4.5 \mathrm{~ns}$ (max)
$-\mathrm{t}_{\mathrm{is}}=2.5 \mathrm{~ns}$ (max)
$-\mathrm{t}_{\text {cko }}=2 \mathrm{~ns}$ (max)
$-\mathrm{f}_{\text {max }}=\mathbf{2 2 2 M H z}$
- Universal ECL Programmable Array Logic
- 8 user programmable output macrocells
- Up to 20 inputs and 8 outputs
- Individual user programmable output polarity
- Variable product term distribution allows increased design capability
- Asynchronous Preset and Reset capability
- 10 KH and 100 K options
- Power-up Reset and Preload function to enhance state machine design and testing
- Design support provided via AMAZE and other CAD tools
- Security fuse for preventing design duplication
- Available in 24-Pin 300mil-wide DIP and 28-Pin PLCC.

PIN CONFIGUURATION

ECL Programmable Array Logic
10H20EV8/10020EV8

LOGIC DIAGRAM

FUNCTIONAL DIAGRAM

FUNCTIONAL DESCRIPTION

The $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ is an ultra highspeed universal ECL PAL-type device. Combining versatile Output Macrocells with a standard AND/OR single programmable array, this device is ideal in implementing a user's custom logic.

As can be seen in the Logic Diagram, the device is a two-level logic elementwith a programmable AND array. The 20EV8 can have up to 20 inputs and 8 outputs. Each output has a versatile Macrocell whereby the output can either be configured as a dedicated input, a dedicated combinatorial output with polarity control, a bidirectional I/O, or as a registered output that has both output polarity control and feedback into the AND array.

The device also features 90 product terms. Two of the product terms can be used for a global asynchronous preset and/or reset. Eight of the product terms can be used for individual output enable control of each Macrocell. The other 80 product terms are distributed among the outputs. Four of the outputs have eight product terms, while the other four have 12. This arrangement allows the utmost in flexibility when implementing user patterns.

Output Logic Macrocell

The 10H20EV8/10020EV8 incorporates an extremely versatile Output Logic Macrocell that allows the user complete flexibility when configuring outputs.

As seen in Figure 1, the $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ Output Logic Macrocell consists of an edgetriggered D-type flip-flop, an output select MUX, and a feedback select MUX. Fuses S_{0} and S_{1} allow the user to select between the various cells. S_{1} controls whether the output will be either registered with internal feedback or combinatorial $/ / \mathrm{O} . \mathrm{S}_{0}$ controls the polarity of the output (Active-HIGH or Active-LOW). This allows the user to achieve the following configurations: Registered Active-HIGH output, Registered Active-LOW output, Combinatorial Active-HIGH output, and Combinatorial Active-LOW output. With the output enable product term, this list can be extended by adding the configurations of a Combinatorial I/O with Polarity or another input.

ECL Programmable Array Logic

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	10H20EV8-6F
24-Pin Ceramic Dual In-Line	$10 \mathrm{H} 20 \mathrm{EV8}-4 \mathrm{~F}$
(300mil-wide)	$10020 \mathrm{EV8}-6 \mathrm{~F}$
	$10020 \mathrm{EV} 8-4 \mathrm{~F}$
	10H20EV8-6A
28-Pin Plastic Leaded Chip Carrier	$10 \mathrm{H} 20 \mathrm{EV}-4 \mathrm{~A}$
	$10020 \mathrm{EV8}-6 \mathrm{~A}$
	$10020 \mathrm{EV} 8-4 \mathrm{~A}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{E E}$	Supply voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	-8	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$	0 to V_{EE}	V_{DC}
IO_{O}	Output source current	40	$\mathrm{~mA}_{\mathrm{DC}}$
T_{A}	Operating Temperature range	0 to $+75(10 \mathrm{KH})$ 0 to $+85(100 \mathrm{~K})$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{STG}}$	Storage Temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

OPERATING RANGES

DEVICE			RATINGS			
			PARAMETER			Min
10 H 20 EV 8	$\mathrm{~V}_{\mathrm{EE}}$	Supply voltage	-5.46	-4.94	$\mathrm{~V}_{\mathrm{DC}}$	
	T_{A}	Operating free-air temperature	0	+75	${ }^{\circ} \mathrm{C}$	
10020 EV 8	$\mathrm{~V}_{\mathrm{EE}}$	Supply voltage	-4.8	-4.2	$\mathrm{~V}_{\mathrm{DC}}$	
	T_{A}	Operating free-air temperature	0	+85	${ }^{\circ} \mathrm{C}$	

Figure 2. Output Macro Cell Configurations

OUTPUT MACRO CELL CONFIGURATION

Shown in Figure 2 are the four possible configurations of the output macrocell using fuses S_{0} and S_{1}. As seen, the output can either be registered Active-HIGH/LOW with feedback or combinatorial Active-HIGH/LOW with feedback. If the registered mode is chosen, the feedback is from the \mathbf{Q} output to the AND array enables one to make state machines or shift registers without having to tie the output to one of the inputs. If a combinatorial output is chosen, the feedback gate is enabled from the pin and allows one to create permanent outputs, permanent inputs, or l/O pins through the use of the output enable (D) product term.

OUTPUT ENABLE

Each output on the $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ has its own individual product term for output enable. The use of the D product term (direction control) allows the user three possible configurations of the outputs. They are always enabled, always disabled, and controlled by a programmed pattern. A HIGH on the D term enables the output, while a LOW performs the disable function. Output enable control can be achieved by programming a pattern on the D term.

The output enable control can also be used to expand a designer's possibilities once a combinatorial output has been chosen. If the D term is always HIGH, the pin becomes a permanent October 1989

Active-HIGH/LOW output. If the D term is always LOW (all fuses left intact), the pin now becomes an extra input.

PRESET AND RESET

The 10H20EV8/10020EV8 also includes a separate product term for asynchronous Preset and asynchronous Reset. These lines are common for all registers and are asserted when the specific product term goes HIGH. Being asynchronous, they are independent of the clock. It should be noted that the actual state of the output is dependent on how the polarity of the particular output has been chosen. If the outputs are a mix of Active-HIGH and ActiveLOW, a Preset signal will force the ActiveHIGH outputs HIGH while the Active-LOW outputs would go LOW, even though the Qoutput of all flip-flops would go HIGH. A Reset signal would force the opposite conditions.

PRELOAD

To simplify testing, the $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ has also included PRELOAD circuitry. This allows a user to load any particular data desired into the registers regardless of the programmed pattern. This means that the PRELOAD can be done on a blank part and after that same part has been programmed to facilitate any post-fuse testing desired.

It can also be used by a designer to help debug his/her circuit. This could be important if a state machine was implemented in the 10H20EV8/

10020EV8. The PRELOAD would allow a designer to enter any state in the sequence desired and start clocking from that particular point. Any or all transitions could be verified.

AMAZE

The AMAZE PLD Design Software development system also supports the 10H20EV8/ $10020 E V 8$. AMAZE provides the following capabilities for the 10H20EV8/10020EV8:

- State equation entry
- Boolean equation entry
- Logic and timing simulation
- Automatic test vector generation

AMAZE operates on an IBM PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.0 or higher. The minimum system configuration for AMAZE is 640 K bytes of RAM and a hard disk.

AMAZE compiles the design after completion for syntax and completeness. Programming data is generated in JEDEC format.

DESIGN SECURITY

The $10 \mathrm{H} 20 \mathrm{EV} 8 / 10020 \mathrm{EV} 8$ has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

DC ELECTRICAL CHARACTERISTICS $10 \mathrm{H} 20 \mathrm{EV} 8: 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}_{ \pm} 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CO} 1}=\mathrm{V}_{\mathrm{CO2}}=\mathrm{GND}$ 10020EV8: $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C},-4.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CO} 1}=\mathrm{V}_{\mathrm{CO} 2}=\mathrm{GND}$

SYMBOL	PARAMETER ${ }^{1}$	TEST CONDITIONS ${ }^{2}$		$\mathrm{T}_{\text {A }}$	LIMITS		UNITS	
				Min	Max			
V_{OH}	High level output voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	10KH		$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1020 \\ & -980 \\ & -920 \end{aligned}$	$\begin{aligned} & -840 \\ & -810 \\ & -735 \end{aligned}$	mV
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV	
$\mathrm{V}_{\text {OHT }}$	High level output threshold voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1035		mV	
V_{OL}	Low level output voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	10KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1950 \\ & -1950 \\ & -1950 \end{aligned}$	$\begin{aligned} & -1630 \\ & -1630 \\ & -1600 \end{aligned}$	mV	
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV	
$\mathrm{V}_{\text {OLT }}$	High level output threshold voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max. or $\mathrm{V}_{\text {IL }}$ Min.	100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		-1610	mV	
V_{H}	High level input voltage	Guaranteed input voltage high for all inputs	10KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1170 \\ & -1130 \\ & -1070 \end{aligned}$	$\begin{array}{r} -840 \\ -810 \\ -735 \\ \hline \end{array}$	mV	
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV	
$\mathrm{V}_{\text {IL }}$	Low level input voltage	Guaranteed input voltage low for all inputs	10KH	$\begin{gathered} 00 \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -1950 \\ & -1950 \\ & -1980 \end{aligned}$	$\begin{aligned} & -1480 \\ & -1480 \\ & -1450 \end{aligned}$	mV	
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV	
I_{H}	High level input current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.	10KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$		220	$\mu \mathrm{A}$	
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$				
ILI	Low level input current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ Min. Except I/O Pins	10KH	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$	0.3		$\mu \mathrm{A}$	
			100K	$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	0.5			
I_{EE}	Supply current	$\mathrm{V}_{\mathrm{EE}}=\mathrm{Max} .$ All inputs and outputs open	10KH	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-230		mA	

NOTES:

1. All voltage measurements are referenced to the ground terminal.
2. Each ECL $10 \mathrm{KH} / 100 \mathrm{~K}$ series device has been designed to meet the DC specification after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 (150 meters) linear fpm is maintained.
Voltage levels will shift approximately 4 mV with an air flow of 200 linear fpm. Outputs are terminated through a 50Ω resistor to -2 V .
3. Terminals not specifically referenced can be left electrically open. Open inputs assume a logic LOW state. Any unused pins can be terminated to -2 V . If tied to V_{EE}, it must be through a resistor $>10 \mathrm{~K}$.

ECL Programmable Array Logic

AC TEST CIRCUIT

NOTES:

1. Use decoupling capacitors of $0.1 \mu \mathrm{~F}$ and $25 \mu \mathrm{~F}$ from GND to V_{CC}, and $0.01 \mu \mathrm{~F}$ and $25 \mu \mathrm{~F}$ from GND to $V_{\mathrm{EE}}(0.01$ and $0.1 \mu \mathrm{~F}$ capacitors should be NPO Ceramic or MLC type). Decoupling capacitors should be placed as close as physically possible to the DUT and lead length should be kept to less than $1 / 4$ inch (6 mm).
2. All unused inputs should be connected to either HIGH or LOW state consistent with the LOGIC function required.
3. All unused outputs are loaded with 50Ω to GND.
4. L_{1} and L_{2} are equal length 50Ω impedance lines. L_{3}, the distance from the DUT pin to the junction of the cable from the Pulse Generator and the cable to the Scope, should not exceed $1 / 4$ inch (6 mm).
5. $R_{T}=50 \Omega$ terminator internal to Scope.
6. The unmatched wire stub between coaxial cable and pins under test must be less than $1 / 4 \mathrm{inch}(6 \mathrm{~mm})$ long for proper test.
7. $C_{L}=$ Fixture and stray capacitance $\leq 3 p F$.
8. Any unterminated stubs connected anywhere along the transmission line between the Pulse Generator and the DUT or between the DUT and the Scope should not exceed $1 / 4$ inch (6 mm) in length (refer to section on AC setup procedure).
9. All 50Ω resistors should have tolerance of $\pm 1 \%$ or better.
10. Test procedures are shown for only one input or set of input conditions. Other inputs are tested in the same manner.
11. Two $10 \mu \mathrm{~F}$ capacitors between $V_{C C}$ and $V_{C O 1}$ and $V_{C O 2}$ respectively located as close to the device as possible is recommended to reduce ringing.
12. Normal practice in test fixtures layout should be followed. Lead lengths, particular to the power supply, should be as short as possible.

VOLTAGE WAVEFORMS

AC ELECTRICAL CHARACTERISTICS $10 \mathrm{H} 20 \mathrm{EVB}: 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}_{ \pm} 5 \%, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CO} 1}=\mathrm{V}_{\mathrm{CO} 2}=\mathrm{GND}$ $10020 \mathrm{EV}: 0^{\circ} \mathrm{C} \leq T_{A} \leq 185^{\circ} \mathrm{C},-4.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=V_{\mathrm{CO}}=V_{\mathrm{CO}}=\mathrm{GND}$

SYMBOL	PARAMETER	FROM	то	TEST CONDITIONS ${ }^{1}$	LIMITS				UNIT
					-4		-6		
					Min	Max	Min	Max	
Pulse Width									
${ }^{\text {t }}$ CKH	Clock High	CLK +	CLK -		2		3		ns
${ }^{\text {t }}$ CKL	Clock Low	CLK -	CLK +		2		3		ns
$\mathrm{t}_{\mathrm{CKP}}$	Clock Period	CLK +	CLK +		4		6		ns
$t_{\text {PRH }}$	Preset/Reset Pulse	$(1,1 / O) \pm$	$(\mathrm{l}, \mathrm{l} / \mathrm{O}) \pm$		4.5		6		ns
Setup and Hold Time									
t_{5}	Input	(I, //O) \pm	CLK +		2.5		4		ns
t_{H}	Input	CLK +	$(1,1 / O) \pm$		0		0		ns
tprs	Clock Resume after Preset/Reset	$(1,1 / O) \pm$	CLK +				6		ns
Propagation Delay									
$t_{\text {PD }}$	Input	($1,1 / O) \pm$	$1 / \mathrm{O}_{ \pm}$			4.5		6	ns
${ }_{\text {tcko }}$	Clock	CLK +	$1 / \mathrm{O}_{ \pm}$			2		3	ns
toe	Output Enable	$(1,1 / O) \pm$	$1 / 0$			4.5		6	ns
tod	Output Disable	$(1,1 / O) \pm$	$1 / 0$			4.5		6	ns
tpro	Preset/Reset	$(1,1 / O) \pm$	$1 / O_{ \pm}$			4.5		6	ns
tppr	Power-on Reset	V_{EE}	1/0			10			ns

NOTES:

1. Refer to AC Test Circuit and Voltage Wafeforms diagrams.

ECL Programmable Array Logic

TIMING DIAGRAMS

Flip-Flop and Gate Outputs

Power-On Reset

TIMING DIAGRAMS (Continued)

REGISTER PRELOAD

The 10H20EV8/10020EV8 has included circuitry that allows a user to load data into the output registers. Register PRELOAD can be done atany time and is not dependenton any particular pattern programmed into the device. This simplifies the ability to fully verify logic states and sequences even after the device has been patterned.

The pin levels and sequence necessary to perform the register PRELOAD are shown below.

SYMBOL	PARAMETER		LMITS		
	UNIT				
V_{H}	Input HIGH level during PRELOAD and Verify	-1.1	-0.9	-0.7	V
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW level during PRELOAD and Verify	-1.85	-1.65	-1.45	V
$\mathrm{~V}_{\mathrm{PP}}$	PRELOAD enable voltage applied to I_{11}	1.45	1.6	1.75	V

NOTE:

1. Unused inputs should be handled as follows:

- Set at $\mathrm{V}_{1 \mathrm{H}}$ or $\mathrm{V}_{1 L}$
- Terminated to -2V
- Tied to V_{EE} through a resistor $>10 \mathrm{~K}$
- Open

LOGIC PROGRAMMING

10H20EVa/i0020EV6 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

10H20EV8/10020EV8 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, F, Q, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (F), (\mathbf{Q}_{p})

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($P, D, A P, A R$) will be unconditionally inhibited if any one of the I, F or Q link pairs is left intact.

OUTPUT MACROCELL CONFIGURATIONS

OUTPUT MACROCELL CONFIGURATION	CONTROL WORD FUSE	POLARITY FUSE
Registered Output, Active-HIGH	D	H
Registered Output, Active-LOW	D^{1}	$\mathrm{~L}^{1}$
Combinatorial I/O, Active-HIGH	B	H
Combinatorial I/O, Acitve-LOW	B	L

NOTES:

1. This is the initial (unprogrammed) state of the device.

PROGRAM TABLE

Signetics

Document No.	$853-1359$
ECN No.	98104
Date of Issue	November 14, 1989
Status	Product Specification
Programmable Logic Devices	

PLUS20R8D/-7 SERIES
 PAL ${ }^{\circledR}$-Type Devices 20L8, 20R8, 20R6, 20R4

FEATURES

- Ultra high-speed
$-t_{\text {PD }}=7.5 n s$ and $f_{\text {max }}=74 \mathrm{MHz}$ for the PLUS20R8-7 Series
$-t_{\text {PD }}=10 \mathrm{~ns}$ and $\mathrm{f}_{\text {MAX }}=60 \mathrm{MHz}$ for the PLUS20R8D Series
- 100\% functionally and pin-for-pin compatible with industry standard 24-pin PAL ICs
- Power-up reset function to enhance state machine design and testability
- Design support provided via AMAZE and other CAD tools for Series 24 PAL devices
- Field-programmable on industry standard programmers
- Security fuse
- Individual 3-State control of all outputs

DESCRIPTION

The Signetics PLUS20XX family consists of ultra high-speed 7.5 ns and 10 ns versions of Series 24 PAL devices.
The PLUS20XX family is 100% functional and pin-compatible with the 20L8, 20R8, 20R6, and 20R4 Series devices.
The sum of products (AND-OR) architecture is comprised of 64 AND gates and 8 fixed OR gates. Multiple bidirectional pins provide variable input/output pin ratios. Individual 3-State control of all outputs and registers with feedback (R8, R6, R4) is also provided. Proprietary designs can be protected by programming the security fuse.
The PLUS20R8, R6, and R4 have D-type flip-flops which are loaded on the Low-to-High transition of the clock input.
In order to facilitate state machine design and testing, a power-up reset function has been incorporated into these devices to reset all internal registers to active-Low after a specific period of time.

The Signetics State-of-the-Art oxide isolation Bipolar fabrication process is employed to achieve high-performance operation.
The PLUS20XX family of devices are field programmable, enabling the user to quickly generate custom patterns using standard programming equipment. See the programmer chart for qualified programmers.
The AMAZE software package from Signetics supports easy design entry for the PLUS20XX series as well as other PLD devices from Signetics. The PLUS20XX series are also supported by other standard CAD tools for PAL-type devices.
Order codes are listed in the Ordering Information table.

DEVICE NUMBER	DEDICATED INPUTS	COMBINATORIAL OUTPUTS	REGISTERED OUTPUTS
PLUS20L8	14	$8(6 \mathrm{I} / \mathrm{O})$	0
PLUS20R8	12	0	8
PLUS20R6	12	$2 I / O$	6
PLUS20R4	12	$4 \mathrm{I} / \mathrm{O}$	4

[^2]
Philips Components

PIN CONFIGURATIONS

PIN CONFIGURATIONS

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 0 "
2. Programmable connections

NOTES:

1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 0 '
2. Programmable connections

OTES:

1. All unprogrammed or virgin "AND' gate locations are pulled to logic " 0 "
2. Programmable connections

FUNCTIONAL DESCRIPTIONS

The PLUS20XX series utilizes the familiar sum-of-products implementation consisting of a programmable AND array and a fixed OR array. These devices are capable of replacing an equivalent of four or more SSI/MSI integrated circuits to reduce package count and board area occupancy, consequently improving reliability and design cycle over Standard Cell or gate array options. By programming the security fuse, proprietary designs can be protected from duplication.
The PLUS20XX series consists of four PALtype devices. Depending on the particular device type, there are a variable number of combinatorial and registered outputs available to the designer. The PLUS20L8 is a combinatorial part with 8 user configurable outputs (6 bi directional), while the other three devices, PLUS20R8, PLUS20R6, PLUS20R4, have respectively 8,6 , and 4 output registers.

3-State Outputs

The PLUS20XX series devices also feature 3-State output buffers on each output pin which can be programmed for individual control of all outputs. The registered outputs (Qn) are controlled by an external input (/OE), and the combinatorial outputs (On, Bn) use a product term to control the enable function.

Programmable Bidirectional Pins

The PLUS20XX products feature variable Input/Output ratios. In addition to 12 dedicated inputs, each combinatorial output pin of the registered devices can be individually programmed as an input or output. The PLUS20L8 provides 14 dedicated inputs and 6 Bidirectional I/O lines that can be individually configured as inputs or outputs.

Output Registers

The PLUS20R8 has 8 output registers, the $20 R 6$ has 6, and the 20R4 has 4. Each output register is a D-type flip-flop which is loaded on the Low-to-High transition of the clock input. These output registers are capable of feeding the outputs of the registers back into the array to facilitate design of synchronous state machines.

Power-up Reset

By resetting all flip-flops to a logic Low, as the power is turned on, the PLUS20R8, R6, R4 enhance state machine design and initialization capability.

Software Support

Like other Programmable Logic Devices from Signetics, the PLUS20XX series are supported
by AMAZE, the PC-based software development tool from Signetics. The PLUS20XX family of devices are also supported by standard CAD tools for PAL devices, including ABEL and CUPL.

AMAZE is available free of charge to qualified users.

Logic Programming

Logic designs for PLUS20XX series can be generated using any commercially available JEDEC standard design software that supports the 24-pin PAL devices. No JEDEC fuse map conversion or translation is necessary when transferring designs from slower 24-pin PAL devices.
To implement the desired logic functions, each logic variable from the logic equations is assigned a symbol. True (High), Complement (Low), Don't Care and Inactive symbols are defined below.

AND ARRAY - (I, B)

VIRGIN STATE

A factory shipped virgin device contains all fus-
ible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
	PLUS20R8DN
	PLUS20R6DN
24-Pin Plastic Dual-in-Line	PLUS20R4DN
300mil-wide	PLUS20L8DN
	PLUS20R8-7N
	PLUS20R6-7N
	PLUS20R4-7N
	PLUS20L8-7N
	PLUS20R8DA
28-Pin Plastic Leaded Chip Carrier	PLUS20R6DA
(PLCC)	PLUS20R4DA
	PLUS20L8DA
	PLUS20R8-7A
	PLUS20R6-7A
	PLUS20R4-7A
	PLUS20L8-7A

NOTE:

The PLUS20XX series of devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information, consult the Signetics Military Data Book.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$V_{\text {cc }}$	Supply voltage	-0.5	+7	$V_{D C}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5	+5.5	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
In	Input currents	-30	+30	mA
lout	Output currents		+100	mA
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. .Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

OPERATING RANGES

SYMBOL	PARAMETER		RATINGS	
	UNIT			
		Min	Max	(
$V_{\text {CC }}$	Supply voltage	+4.75	+5.25	$V_{D C}$
T_{A}	Operating free-air temperature	0	+75	${ }^{\circ} \mathrm{C}$

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{\mathbf{2}}$						
V_{IL}	Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$			0.8	V
V_{IH}	High	$V_{C C}=$ Max	2.0			V
V_{16}	Clamp	$V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$		-0.8	-1.5	V
Output voltage						
		$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
V_{OL}	Low	$\mathrm{loL}=24 \mathrm{~mA}$			0.5	v
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{\text {cc }}=$ Max				
ILL	Low ${ }^{3}$	$\mathrm{V}_{\mathbb{N}}=0.40 \mathrm{~V}$	-250			$\mu \mathrm{A}$
I_{IH}	High ${ }^{3}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$			25	$\mu \mathrm{A}$
1	Maximum input current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}=\mathrm{V}_{\text {CCMAX }}$			100	$\mu \mathrm{A}$
Output current						
		$V_{\text {cc }}=$ Max				
lozh	Output leakage	$V_{\text {OUT }}=2.7 \mathrm{~V}$			100	$\mu \mathrm{A}$
loz	Output leakage	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	-100			$\mu \mathrm{A}$
los	Short circuit ${ }^{4}$, 5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-30		-90	mA
lcc	$\mathrm{V}_{\text {cc }}$ supply current	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$		150	210	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$				
		$V_{\text {OUT }}=2.0 \mathrm{~V}$		8		pF
C_{B}	1/O (B)	$V_{\text {OUT }}=2 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		8		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Leakage current for bidirectional pins is the worst case of $I_{L L}$ and $I_{\text {OZL }}$ or $I_{I H}$ and $I_{O Z H}$.
4. Test one at a time.
5. Duration of short circuit should not exceed 1 second.
6. These parameters are not 100% tested but periodically sampled.

AC ELECTRICAL CHARACTERISTICS $R_{1}=200 \Omega, R_{2}=390 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{cc}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	$\underline{L M I T S}$				UNIT
				-7		D		
				Min'	Max	Min ${ }^{1}$	Max	
Pulse Width								
tekh $^{\text {ctin }}$	Clock High	CK+	CK-	5		7		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock Low	CK-	CK+	5		7		ns
tCKP	Period	CK+	CK+	10		14		ns
Setup \& Hold time								
t_{15}	Input	Input or feedback	CK+	7		9		ns
$t_{1 H}$	Input	CK+	Input or feedback	0		0		ns
Propagation delay								
tcko	Clock	CK \pm	Q \pm	3	6.5	3	7.5	ns
${ }_{\text {t }}^{\text {CKF }}$	Clock ${ }^{3}$	CK \pm	Q		3		7	ns
$\mathrm{tPD}^{\text {d }}$	Output (20L8, R6, R4) ${ }^{2}$	I, B	Output		7.5		10	ns
LoE1	Output enable ${ }^{4}$	OE	Output enable	3	8	3	10	ns
toe2	Output enable ${ }^{4,5}$	1	Output enable	3	10	3	10	ns
todi	Output disable ${ }^{4}$	OE	Output disable	3	8	3	10	ns
toD2	Output disable ${ }^{4,5}$	1	Output disable	3	10	3	10	ns
${ }_{\text {t }}^{\text {KKW }}$	Output	Q	Q		1		1	ns
tppr	Power-Up Reset	$\mathrm{V}_{\mathrm{cc}}+$	Q+		10		10	ns
Frequency (20R8, R6, R4)								
$f_{\text {max }}$	No feedback $1 /\left(\mathrm{t}_{\mathrm{CKL}}+\mathrm{t}_{\mathrm{CKH}}\right)^{6}$			100		71.4		MHz
	Internal feedback $1 /\left(t_{\text {IS }}+t_{\text {cKF }}\right)^{6}$			100		62.5		MHz
	External feedback $1 /\left(\mathrm{t}_{\text {SS }}+\mathrm{t}_{\text {CKO }}\right)^{6}$			74		60.6		MHz

*. For definitions of the terms, please refer to the Timing/Frequency Definitions tables.
NOTES:

1. $\mathrm{CL}=\mathrm{OpF}$ while measuring minimum output delays.
2. $t_{\text {PD }}$ test conditions: $\mathrm{CL}=50 \mathrm{pF}$ (with jig and scope capacitance), $\mathrm{V}_{\mathrm{IH}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{OV}, \mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$.
3. $\mathrm{I}_{\mathrm{CKF}}$ was calculated from measured internal $f_{\text {MAX }}$
4. In reference to 3-State outputs, output enable times are tested with $\mathrm{CL}=50 \mathrm{pF}$ to the 2.0 V or 0.8 V level. Output disable times are tested with $\mathrm{CL}=5 \mathrm{pF}$. High to High-impedence tests are made to an output voltage of $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{O} .5 \mathrm{~V}$; Low to High-impedence tests are made to the $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{O}}+0.5 \mathrm{~V}$ level.
5. Same function as toE and $t_{O D 1}$, with the difference of using product term control.
6. Not 100% tested, but calculated at initial characterization and at any time a modification in design takes place which may affect the frequency.

TEST LOAD CIRCUIT

OUTPUT REGISTER SKEW

CLOCK TO FEEDBACK PATH

TIMING DIAGRAMS1,2

TIMING DEFINITIONS

SYMROL	PARAMETER
$t_{\text {CKH }}$	Width of input clock pulse.
${ }_{\text {t CKL }}$	Interval between clock pulses.
tCKP	Clock period.
${ }_{\text {I }} \mathrm{S}$	Required delay between beginning of valid input and positive transition of clock.
$t_{1 H}$	Required delay between positive transition of clock and end of valid input data.
${ }^{\text {t CKF }}$	Delay between positive transition of clock and when internal Q output of flip-flop becomes valid.
toko	Delay between positive transition of clock and when outputs become valid (with OE LOW).
toE1	Delay between beginning of Output Enable Low and when outputs become valid.
${ }^{\text {tod }}$	Delay between beginning of Output Enable High and when outputs are in the Off-State.
toen	Delay between predefined Output Enable High, and when combinational outputs become valid.
$\mathrm{L}_{\mathrm{OD} 2}$	Delay between predefined Output Enable Low and when combinational outputs are in the Off-State.
$t_{\text {PPR }}$	Delay between $V_{C C}$ (after pow-er-on) and when flip-flop outputs become preset at "1" (internal Q outputs at "0").
${ }^{\text {t PD }}$	Propagation delay between combinational inputs and outputs.

FREQUENCY DEFINITIONS

$f_{\text {max }}$ No feedback: Determined by the minimum clock period, $1 /$ t $\left._{\text {CKL }}+t_{\text {CKH }}\right)$.
Internal feedback: Determined by the internal delay from flip-flop outputs through the internal feedback and array to the flip-flop inputs, $1 /\left(t_{\text {I }}+\right.$ $t_{\text {CKF }}$).
External feedback: Determined by clock-to-output delay and input setup time,

NOTES:

1. Input pulse amplitude is OV to 3 V .
2. Input rise and fall times are 2.5 ns .

PROGRAMMING

The PLUS20XX Series are programmable on conventional programmers for 24 -pin PAL® devices. Refer to the following charts for qualified manufacturers of programmers and software tools:

PROGRAMMER MANUFACTURER	PROGRAMMER MODEL	FAMILY/PINOUT CODES
DATA I/O CORPORATION 10525 WILLOWS ROAD, N.E. P.O. BOX 97046 REDMOND, WASHINGTON 98073-9746 (800)247-5700	SYSTEM 29B, LogicPak ${ }^{\text {TM }}$ 303A-V04 ADAPTER 303A-011A-V08 (DIP) 303A-011B-V04 (PLCC) UNISITE 40/48, V2.3 (DIP) V2.5 (PLCC) MODEL 60, 60A/H, V. 13	20L8-7/20L8D : 1B/26 20R8-7/20R8D : 1B/27 20R6-7/20R6D : 1B/27 20R4-7/20R4D : 1B/27
STAG MICROSYSTEMS, INC. 1600 WYATT DRIVE SUITE 3 SANTA CLARA, CALIFORNIA 95054 (408)988-1118	ZL30/30A PROGRAMMER REV. 30 A31 PPZ PROGRAMMER TBA	20L8-7/20L8D : 11/56 20R8-7/20R8D : 11/57 20R6-7/20R6D : $11 / 57$ 20R4-7/20R4D : $11 / 57$

SOFTWARE MANUFACTURER	DEVELOPMENT SYSTEM
SIGNETICS COMPANY	
811 EAST ARQUES AVENUE	
P.O. BOX 3409	
SUNNYVALE, CALIFORNIA 94088-3409	AMAZE SOFTWARE
(408)991-2000	
DATA I/O 1.7	
10525 WILLOWS ROAD, N.E.	
R.O. BOX 97046	
REDMOND, WASHINGTON 98073-9746	ABELTM SOFTWARE
(800)247-5700	REV. 1.0 AND LATER
LOGICAL DEVICES, INC.	
1201 NORTHWEST 65TH PLACE	
FORT LAUDERDALE, FLORIDA 33309	CUPLTM SOFTWARE
(800)331-7766	REV. 1.01 AND LATER

Signetics

Document No.	
ECN No.	
Date of Issue	November 1989
Status	Preliminary Specification
Programmable Logic Devices	

DESCRIPTION

The PHD48N22-7 is an ultra fast Programmable High-speed Decoder featuring a 7.5 ns maximum propagation delay. The architecture has been optimized using Philips ComponentsSignetics state-of-the-art bipolar oxide isolation process coupled with titaniumtungsten fuses to achieve superior speed in any design.
The PHD48N22-7 is a two level logic element comprised of 36 fixed inputs, 73 AND gates, 10 outputs, and 12 bidirectional $1 / \mathrm{Os}$. This gives the device the ability to have as many as 48 inputs. Individual 3-State control of all outputs is also provided.
The device is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment. Proprietary designs can be protected by programming the security fuse.

The AMAZE software package from Philips Components-Signetics supports easy design entry for the PHD48N22-7 as well as other PLD devices.
Order codes are listed in the pages following.

PHD48N22-7

Programmable High-Speed Decoder Logic ($48 \times 73 \times 22$)

FEATURES

- Ideal for high speed system decoding
- Super high speed at 7.5ns $\mathbf{t}_{\text {pD }}$
- 36 dedicated Inputs
- 22 outputs
- 12 bidirectional I/O
- 10 dedicated outputs
- Security fuse to prevent duplication of proprietary designs.
- Individual 3-State control of all outputs
- Field-programmable on Industry standard programmers
- Available in 68-Pin Plastic Leaded Chip Carrier (PLCC)

APPLICATIONS

- High speed memory decoders
- High speed code detectors
- Random logic
- Peripheral selectors
- Machine state decoders

PIN CONFIGURATION

Philips Components

PHILIPS

Programmable High-Speed Decoder Logic ($48 \times 73 \times 22$)

LOGIC DIAGRAM

Programmable High-Speed

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
68-Pin Plastic Leaded Chip Carrier	PHD48N22-7A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
	Min	Max	UNIT	
V_{CC}	Supply voltage	-0.5		$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	-0.5	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

OPERATING RANGES

		RATINGS		
SYMBOL	PARAMETER	Min	Max	
V_{CC}	Supply voltage	+4.75	+5.25	$\mathrm{~V}_{\mathrm{DC}}$
T_{A}	Operating free-air temperature	0	+75	${ }^{\circ} \mathrm{C}$

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Programmable High-Speed
Decoder Logic ($48 \times 73 \times 22$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

NOTES:

1. Typical limits are at $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ and $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$.
2. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
3. Leakage current for bidirectional pins is the worst case of $l_{L L}$ and $l_{O Z Z}$ or $I_{H H}$ and $l_{O Z L}$.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.
5. These parameters are not 100% tested, but are periodically sampled.

Programmable High-Speed
Decoder Logic ($48 \times 73 \times 22$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega, \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITIONS	LIMITS		UNIT
					Min	Max	
$t_{\text {PD }}{ }^{1}$	Propagation delay through B/O outputs	$(1, B, O R) \pm$	Output \pm	$C_{L}=50 \mathrm{pF}$		7.5	ns
$t_{\text {PD2 }}{ }^{1}$	Propagation delay through OR outputs	$(1, B, O R) \pm$	Output \pm	$C_{L}=50 p F$		10	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{2}$	Output Enable	$(1, B, O R) \pm$	Output enable	$C_{L}=50 \mathrm{pF}$		10	ns
tod ${ }^{2}$	Output Disable	$(\mathrm{I}, \mathrm{B}, \mathrm{OR}) \pm$	Output disable	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		10	ns

NOTES:

1. $t_{P D 1,2}$ are tested with switch S_{1} closed and $C_{L}=50 \mathrm{pF}$.
2. For 3-State output; output enable times are tested with $C_{L}=50 \mathrm{pF}$ to the 1.5 V level, and S_{1} is open for high-impedance to High tests and closed for high-impedance to Low tests. Output disable times are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. High-to-High impedance tests are made to an output voltage of $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with S_{1} open, and Low-to-High impedance tests are made to the $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ level with S_{1} closed.

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All outputs are disabled.
2. All p-terms are disabled in the AND array.

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD1	Input to output propagation delay (through B/O outputs)
tPD2	Input to output propagation delay (through OR outputs)
t_{OD}	Input to Output Disable (3-State) delay (Output Disable).
LOE	Input to Output Enable delay (Output Enable).

TIMING DIAGRAM

Programmable High-Speed

AC TEST LOAD CIRCUIT

LOGIC PROGRAMMING

PHD48N22-7 logic designs can be generated using any commercially available, JEDEC standard design software.

PHD48N22-7 designs can also be generated using the program table format, detailed on the following page. This program table entry (PTE) format is supported on the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

To implement the desired logic functions, each logic variable ($1, B, P$ and D) from the logic equations is assigned a symbol. TRUE (High), COMPLEMENT (Low), DON'T CARE and INACTIVE symbols are defined below.
"AND" ARRAY - (I, B)

NOTE:

1. This is the initial state.

Programmable High-Speed Decoder Logic ($48 \times 73 \times 22$)

PHD48N22-7

PROGRAM TABLE

Programmable High-Speed
Decoder Logic ($48 \times 73 \times 22$)

PROGRAM TABLE (Continued)

Programmable High-Speed

 Decoder Logic ($48 \times 73 \times 22$)TYPICAL SYSTEM APPLICATION

i

Signetics

Programmable Logic Devices

Section 4 Programmable Logic Array Device Data Sheets

INDEX
Series 20
PLS153/A Programmable Logic Arrays ($18 \times 42 \times 10$); 40/30ns 127
PLUS153B/D Programmable Logic Arrays ($18 \times 42 \times 10$); 15/12ns 134
PLUS153-10 Programmable Logic Array ($18 \times 42 \times 10$); 10 ns 141
Series 24
PLS173 Programmable Logic Array ($22 \times 42 \times 10$); 30ns 148
PLUS173B/D Programmable Logic Arrays ($22 \times 42 \times 10$); $15 / 12 \mathrm{~ns}$ 154
PLUS173-10 Programmable Logic Array ($22 \times 42 \times 10$); 10ns 161
PLHS473 Programmable Logic Array ($20 \times 24 \times 11$); 22 ns 168
PLHS473S Programmable Logic Array ($20 \times 24 \times 11$); 25 ns 174
Series 28
PLS100/101 Programmable Logic Arrays ($16 \times 48 \times 8$); 50ns 181

Signetics

Document No.	$853-0311$
ECN No.	97883
Date of Issue	October 16, 1989
Status	Product Specification
Programmable Logic Devices	

PLS153/A

Field-Programmable Logic Arrays

$$
(18 \times 42 \times 10)
$$

DESCRIPTION

The PLS153 and PLS153A are two-level logic elements, consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.

All AND gates are linked to 8 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 18 inputs to 10 outputs.
On-chip T/C buffers couple either True (I, B) or Complement (I, B) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of Ex-OR gates for implementing AND/OR or AND/NOR logic functions.
The PLS153 and PLS153A are fieldprogrammable, enabling the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ni-Cr links)
- 8 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay:
- PLS153: 40ns (max)
- PLS153A: 30ns (max)
- Input loading: - $100 \mu \mathrm{~A}$ (max)
- Power dissipation: 650mA (typ)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATIONS

N Package	
10.1	
1.2	$19 \mathrm{B9}$
123	18] B_{8}
134	$17{ }^{17}$
145	16 B_{6}
156	$15 \mathrm{~B}_{5}$
167	(14) B_{4}
178	(13) B_{3}
$\mathrm{B}_{0} 9$	(12) B_{2}
GND 10	111 B_{1}
$\mathrm{N}=$ Plastic	
A Package	
$1_{3} 4$	
45	
156	
$i_{6} 7$	15] B_{5}
$178$$\qquad$ $14 \mathrm{~B}_{4}$	
$\mathrm{B}_{0} \mathrm{GND} \mathrm{B} \mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3}$	
A = Plastic Leaded Chip Carrier	

LOGIC FUNCTION

TYPICAL PRODUCT TERM:

$$
\mathrm{P}_{\mathrm{n}}=\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathrm{D} \cdot \ldots
$$

TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY = H $\mathbf{Z}=\mathrm{PO}_{\mathrm{o}} \mathbf{P} \mathbf{P}+\mathrm{P}_{2} \ldots$
AT OUTPUT POLARITY $=L$
$\mathrm{Z}=\mathrm{P}+\mathrm{Pr}+\mathrm{P}^{2}+\ldots$

NOTES:

1. For each of the 10 outputs, either function Z (ActiveHigh) or Z (Active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. Z, A, B, C, etc. are user defined connections to fixed inputs (I) and bidirectional pins (B).

PHILIPS

Field-Programmable Logic Arrays $(18 \times 42 \times 10)$

LOGIC DIAGRAM

NOTES:

1. All programmed 'AND' gate locations are pulled to logic "1".
2. All programmed 'OR' gate locations are pulled to logic "0".
3. Programmable connection.

Field-Programmable Logic Arrays ($18 \times 42 \times 10$)

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic Dual In-Line, 300mil-wide	PLS153N, PLS153AN
20-Pin Plastic Leaded Chip Carrier	PLS153A, PLS153AA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$V_{D C}$
Vout	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
Iout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLS153/A devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Handbook.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{L}	Low	$\mathrm{V}_{\text {cc }}=\mathrm{Min}$			0.8	V
$\mathrm{V}_{\mathbf{H}}$	High	$V_{\text {cc }}=\mathrm{Max}$	2.0			V
V_{1}	Clamp ${ }^{2,3}$	$V_{C C}=M i n, I_{1 N}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{\text {cc }}=\mathrm{Min}$				
V_{ol}	Low ${ }^{2,4}$	$l a=15 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{2,5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{\text {a }}$						
		$\mathrm{V}_{\text {cc }}=$ Max				
If.	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cc }}=$ Max				
logoff	$\mathrm{Hi-Z}$ state ${ }^{\text {8 }}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit ${ }^{3}$ 5, 6	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
lac	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\text {cc }}=$ Max		130	155	mA
Capacitance						
		$\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$		8		pF
C_{B}	1/0			15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with +10 V applied to I_{7}.
5. Measured with +10 V applied to I_{0-7}. Output sink current is supplied through a resistor to V_{cc}.
6. Duration of short circuit should not exceed 1 second.
7. $I_{c c}$ is measured with I_{0}, I_{1} at $0 \mathrm{~V}, \mathrm{I}_{2}-\mathrm{I}_{7}$ and B_{0-9} at 4.5 V .
8. Leakage values are a combination of input and output leakage.
9. I_{L} and $I_{I H}$ limits are for dedicated inputs only ($I_{0}-I_{7}$).

Field-Programmable Logic Arrays $(18 \times 42 \times 10)$

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	Limits						UNIT
					PLS153			PLS153A			
					Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
tod	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		30	40		20	30	ns
toe	Output enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	35		20	30	ns
too	Output disable ${ }^{2}$	Input \pm	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		25	35		20	30	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Measured at $V_{T}=V_{\alpha}+0.5 V$.

VOLTAGE WAVEFORMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
t PD $^{\text {LOD }}$	Propagation delay between input and output.
LOE	Delay between input change and when output is off (Hi-Z or High).
	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

TIMING DIAGRAM

LOGIC PROGRAMMING

PLS153/A logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS153/A logic designs can also be generated using the program table entry format detailed on the following page. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditioanlly inhibited if both the True and Complement of an input (either I or B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

CAUTION: PLS153A TEST

 COLUMNSThe PLS153A incorporates two columns not shown in the logic block diagram. These columns are used for in-house testing of the device in the unprogrammed state. These columns must be disabled prior to using the PLS153A in your application. If you are using a Signetics-approved programmer, the disabling is accomplished during the device programming sequence. If these columns are not disabled, abnormal operation is possible.

Furthermore, because of these test columns, the PLS153A cannot be programmed using the programmer algorithm for the PLS153.

Field-Programmable Logic Arrays ($18 \times 42 \times 10$)

FPLA PROGRAM TABLE

Signetics

Document No.	$853-1285$
ECN No.	97081
Date of Issue	July 12, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLUS153 PLDs are high speed, combinatorial Programmable Logic Arrays. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce propagation delays as short as 12 ns .

The 20-pin PLUS153 devices have a programmable AND array and a programmable OR array. Unlike PAL® devices, 100% product term sharing is supported. Any of the 32 logic product terms can be connected to any or all of the 10 output OR gates. Most PAL ICs are limited to 7 AND terms per OR function; the PLUS153 devices can support up to 32 input wide OR functions.

The polarity of each output is user-programmable as either active-High or active-Low, thus allowing AND-OR or AND-NOR logic implementation. This feature adds an element of design flexibility, particularly when implementing complex decoding functions.
The PLUS153 devices are user-programmable using one of several commercially available, industry standard PLD programmers.

PLUS153B/D Programmable Logic Arrays $(18 \times 42 \times 10)$

FEATURES

- I/O propagation delays (worst case)
- PLUS153B - 15ns max.
- PLUS153D-12ns max.
- Functional superset of 16L8 and most other 20 -pin combinatorial PAL devices
- Two programmable arrays
- Supports 32 input wide OR functions
- 8 inputs
- 10 bi-directional I/O
- 42 AND gates
- 32 logic product terms
- 10 direction control terms
- Programmable output polarity
- Active-High or Active-Low
- Security fuse
- 3-State outputs
- Power dissipation: 750mW (typ.)
- TTL Compatible

PIN CONFIGURATIONS

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing
(B)PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Corporation.

Philips Components

LOGIC DIAGRAM

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	tpD $^{\|c\|}$ (MAX)	ORDER CODE
20-Pin Plastic DIP 300mil-wide	15ns	PLUS153BN
20-Pin Plastic DIP 300mil-wide	12ns	PLUS153DN
20-Pin Plastic Leaded Chip Carrier	15ns	PLUS153BA
20-Pin Plastic Leaded Chip Carrier	12ns	PLUS153DA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATING	
		Min	Max	UNIT
V_{CC}	Supply voltage		+7	
$\mathrm{V}_{\text {In }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLUS153 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	L!uts			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{1}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{H}	High	$\mathrm{V}_{\mathrm{cc}}=$ Max	2.0			v
$V_{1 c}$	Clamp	$V_{C C}=M i n, l_{\text {IN }}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$				
V_{OL}	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			v
Input current ${ }^{\text {P }}$						
		$\mathrm{V}_{\text {cc }}=$ Max				
$1 /{ }_{\text {L }}$	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cc }}=\mathrm{Max}$				
Iogoff	$\mathrm{Hi}-\mathrm{Z}$ state $^{\text {8 }}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit ${ }^{3,5,6}$	$V_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
I_{cc}	$\mathrm{V}_{\text {cC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$		150	200	mA
Capacitance						
		$\mathrm{V}_{\text {cc }}=5 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
C_{B}	1/O	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{2}=0 \mathrm{~V}$, inputs $\mathrm{I}_{3}-\mathrm{I}_{5}=4.5 \mathrm{~V}$, inputs $\mathrm{I}_{7}=4.5 \mathrm{~V}$ and $\mathrm{I}_{6}=10 \mathrm{~V}$. For outputs $\mathrm{B}_{0}-B_{4}$ and for outputs $\mathrm{B}_{5}-\mathrm{B}_{9}$ apply the same conditions except $\mathrm{I}_{7}=\mathrm{OV}$.
5. Same conditions as Note 4 except $\mathrm{l}_{7}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $I_{c c}$ is measured with inputs $I_{0}-I_{7}$ and $B_{0}-B_{9}=0 V$.
8. Leakage values are a combination of input and output leakage.
9. $I_{\mathbb{L}}$ and $l_{I H}$ limits are for dedicated inputs only ($l_{0}-I_{7}$).

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIMITS						UNIT
					PLUS153B			PLUS153D			
					Min	Typ	Max	Min	Typ	Max	
tpo	Propagation Delay ${ }^{2}$	Input +/-	Output +/-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15		10	12	ns
toe	Output Enable	Input +/-	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15		10	12	ns
tod	Output Disable ${ }^{1}$	Input +/-	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		11	15		10	12	ns

NOTES:

1. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
2. Measured with all inputs and outputs switching simultaneously.

Programmable Logic Arrays

$(18 \times 42 \times 10)$

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circult delays are measured at the +1.5 V level of inputs and outputs, uniess otherwise specified.

Input Pulses
TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Propagation delay between input and output.
toD	Delay between input change and when output is off (Hi-Z or High).
toE	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

TIMING DIAGRAM

Programmable Logic Arrays

LOGIC PROGRAMMING

PLUS153 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean equation entry is accepted.

PLUS 153 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the true and complement of an input (either I or B) are left intact.

VIRGIN STATE
A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H^{n} polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Programmable Logic Arrays
 $(18 \times 42 \times 10)$

POLARITY

Signetics

Document No.	
ECN No.	
Date of Issue	November 1989
Status	Preliminary Specification
Programmable Logic Devices	

PLUS153-10
Programmable Logic Array
$(18 \times 42 \times 10)$

DESCRIPTION

The PLUS153-10 PLD is a high speed, combinatorial Programmable Logic Array. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce propagation delays as short as 10 ns .

The 20-pin PLUS153 device has a programmable AND array and a programmable OR array. Unlike PAL® devices, 100% product term sharing is supported. Any of the 32 logic product terms can be connected to any or all of the 10 output OR gates. Most PAL ICs are limited to 7 AND terms per OR function; the PLUS153-10 can support up to 32 input wide $O R$ functions.
The polarity of each output is userprogrammable as either active-High or active-Low, thus allowing AND-OR or AND-NOR logic implementation. This feature adds an element of design flexibility, particularly when implementing complex decoding functions.
The PLUS153-10 device is user-programmable using one of several commercially available, industry standard PLD programmers.

FEATURES

- I/O propagation delays (worst case)
- PLUS153-10 - 10ns max.
- Functional superset of $16 \mathrm{L8}$ and most other 20 -pin combinatorial PAL devices
- Two programmable arrays
- Supports 32 input wide OR functions
- 8 inputs
- 10 bi-directional I/O
- 42 AND gates
- 32 logic product terms
- 10 direction control terms
- Programmable output polarity
- Active-High or Active-Low
- Security fuse
- 3-State outputs
- Power dissipation: 750mW (typ.)
- TTL Compatible

PIN CONFIGURATIONS

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

[^3]Programmable Logic Array

NOTES:

1. All programmed 'AND' gate locations are pulled to logic "1"
2. All programmed 'OR' gate locations are pulled to logic " 0 ".
3. Programmable connection.

Programmable Logic Array

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	t PD $^{\prime}$ (MAX)	ORDER CODE
20-Pin Plastic DIP 300mil-wide	10 ns	PLUS153-10N
20-Pin Plastic Leaded Chip Carrier	10 ns	PLUS153-10A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {ln }}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
$1 \mathbb{N}$	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLUS153 devices are also processed to military requirements for operation over the military temperature range. For specifications and ordering information consult the Signetics Military Data Book.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$V_{C C}=M i n$			0.8	V
V_{H}	High	$V_{\text {cc }}=\mathrm{Max}$	2.0			V
V_{16}	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
		$\mathrm{V}_{\text {CC }}=\mathrm{Min}$				
V_{OL}	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{5}$	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{9}$						
		$V_{\text {cC }}=$ Max				
ILL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				
logoff	Hi-Z state 8	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit ${ }^{3}$, 5, 6	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$		150	200	mA
Capacitance						
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$				
$\mathrm{CiN}_{\text {in }}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
C_{B}	I/O	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{2}=0 \mathrm{~V}$, inputs $I_{3}-I_{5}=4.5 \mathrm{~V}$, inputs $I_{7}=4.5 \mathrm{~V}$ and $I_{6}=10 \mathrm{~V}$. For outputs $B_{0}-B_{4}$ and for outputs $B_{5}-B_{9}$ apply the same conditions except $\mathrm{l}_{7}=0 \mathrm{~V}$.
5. Same conditions as Note 4 except $I_{7}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $I_{C C}$ is measured with inputs $I_{0}-I_{7}$ and $B_{0}-B_{9}=0 V$.
8. Leakage values are a combination of input and output leakage.
9. $I_{I L}$ and $I_{I H}$ limits are for dedicated inputs only $\left(I_{0}-I_{7}\right)$.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
tPD	Propagation Delay ${ }^{2}$	Input +/-	Output +/-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		8	10	ns
toe	Output Enable	Input +/-	Output -	$C_{L}=30 \mathrm{pF}$		8	10	ns
too	Output Disable ${ }^{1}$	Input +/-	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		8	10	ns

NOTES:

1. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
2. Measured with all inputs and outputs switching simultaneously.

Programmable Logic Array

$(18 \times 42 \times 10)$

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

TIMING DIAGRAM

LOGIC PROGRAMMING

PLUS153-10 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean equation entry is accepted.
PLUS153-10 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if both the true and complement of an input (either I or B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

PLA PROGRAM TABLE

Signetics

Application Specific Products - Series 24

DESCRIPTION

The PLS173 is a two-level logic element consisting of 42 AND gates and 10 OR gates with fusible link connections for programming I/O polarity and direction.
All AND gates are linked to 12 inputs (I) and 10 bidirectional I/O lines (B). These yield variable I/O gate configurations via 10 direction control gates (D), ranging from 22 inputs to 10 outputs.
On chip T/C buffers couple either True (I, B) or Complement (I, B) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Their output polarity, in turn, is individually programmable through a set of EX-OR gates for implementing AND/OR or AND/NOR logic functions.

The PLS173 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes for this device are contained in the pages following.

PLS173

Field-Programmable Logic Array ($22 \times 42 \times 10$)

Signetics Programmable Logic Product Specification

FEATURES

- Field-Programmable (Ni-Cr links)
- 12 inputs
- 42 AND gates
- 10 OR gates
- 10 bidirectional I/O lines
- Active-High or -Low outputs
- 42 product terms:
- 32 logic terms
- 10 control terms
- I/O propagation delay: 30ns (max.)
- Input loading: - $100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- 3-State outputs
- TTL compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

LOGIC FUNCTION

TYPICAL PRODUCT TERM:
$\mathrm{P}=\mathbf{A} \cdot \overline{\mathrm{B}} \cdot \mathbf{C} \cdot \mathrm{D}$.
TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY $=\mathrm{H}$ $\mathbf{Z}=\mathbf{P} 0+\mathbf{P} 1+\mathbf{P} \mathbf{2} \ldots$

AT OUTPUT POLARITY $=\mathbf{L}$ $\mathrm{Z}=\overline{\mathrm{P} 0+\mathrm{P} 1+\mathbf{P}^{2}+\ldots}$ $\mathrm{Z}=\overline{\mathrm{P} 0} \cdot \overline{\mathrm{P} 1} \cdot \overline{\mathrm{P} 2} \cdot \ldots$

NOTES:

1. For each of the 10 outputs, either function Z (Active-High) or \bar{Z} (Active-Low) is available, but not both. The desired output polarity is programmed via the EX-OR gates.
2. Z, A, B, C, etc. are user defined connections to fixed inputs (I), and bidirectional pins (B).

FPLA LOGIC DIAGRAM

TB00941S
NOTES:

1. All programmed "AND" gate locations are pulled to logic " 1 "
2. All programmed "OR" gate locations are pulled to logic " 0 "'.

Programmable connection.

Field-Programmable Logic Array ($22 \times 42 \times 10$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Plastic DIP 300mil-wide	PLS173N
28-Pin Plastic Leaded Chip Carrier	PLS173A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
V_{cc}	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {In }}$	Input voltage		+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
In	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{H}	High	$V_{C C}=$ Max	2.0			V
V_{1}	Clamp ${ }^{2,3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Low ${ }^{2,4}$ $\mathrm{High}^{2,5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	V
Input current ${ }^{10}$						
$\begin{aligned} & I_{\mathbb{L}} \\ & I_{\mathbb{H}} \end{aligned}$	Low High	$\begin{gathered} V_{C C}=\operatorname{Max} \\ V_{I N}=0.45 \mathrm{~V} \\ V_{I N}=V_{C C} \end{gathered}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
lo(OFF) los	$\mathrm{Hi}-\mathrm{Z}$ state 9 Short circuit ${ }^{3.5,6}$	$\begin{gathered} V_{\text {CC }}=M a x \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		$\begin{gathered} 80 \\ -140 \\ -70 \\ \hline \end{gathered}$	μA mA
Icc	$V_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	170	mA
Capacitance						
$\begin{aligned} & { }^{\mathrm{I}_{\mathbb{N}}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \\ & V_{B}=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		pF

Notes on following page.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

	PARAMETER	FROM	TO	$\begin{gathered} \text { TEST } \\ \text { CONDITION } \end{gathered}$	LIMITS			UNIT
SYMBOL					Min	Typ	Max	
tPD	Propagation delay	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
toe	Output enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tod	Output disable ${ }^{8}$	Input \pm	Output +	$C_{1}=5 \mathrm{pF}$		20	30	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal
3. Test one at a time.
4. Measured with inputs V_{LL} applied to $\mathrm{I}_{\mathrm{I} 1}$. Pins $1-5=0 \mathrm{~V}$, Pins $6-10=4.5 \mathrm{~V}$, Pin $11=0 \mathrm{~V}$ and Pin $13=10 \mathrm{~V}$.
5. Same conditions as Note 4 except Pin $11=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $I_{c c}$ is measured with I_{0} and $I_{1}=0 V$, and $I_{2}-I_{11}$ and $B_{0}-B_{9}=4.5 \mathrm{~V}$. Part in Virgin State.
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.
10. $I_{\text {L }}$ and $I_{I_{H}}$ limits are for dedicated inputs only $\left(I_{0}-I_{11}\right)$.

VOLTAGE WAVEFORM

MEASUREMENTS:

All circuit delays are measured at the +1.5 V level
of inputs and outputs, unless otherwise specified.
Input Puises

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
t_{OD}	Delay between input change and when output is off (Hi-Z or High).
t_{OE}	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

TIMING DIAGRAM

Field-Programmable Logic Array ($22 \times 42 \times 10$)

LOGIC PROGRAMMING

PLS173 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS173 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the True and Complement of any input (I, B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.
```
Field-Programmable Logic Array (22 < 42 < 10) PLS173
```

FPLA PROGRAM TABLE

Signetics

Document No.	$853-1298$
ECN No.	97080
Date of Issue	July 12, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLUS173 PLDs are high speed, combinatorial Programmable Logic Arrays. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce propagation delays as short as 12 ns .

The 24-pin PLUS 173 devices have a programmable AND array and a programmable OR array. Unlike PAL® devices, 100% product term sharing is supported. Any of the 32 logic product terms can be connected to any or all of the 10 output OR gates. Most PAL ICs are limited to 7 AND terms per OR function; the PLUS173 devices can support up to 32 input wide OR functions.

The polarity of each output is userprogrammable as either active-High or active-Low, thus allowing AND-OR or AND-NOR logic implementation. This feature adds an element of design flexibility, particularly when implementing complex decoding functions.

The PLUS173 devices are user-programmable using one of several commercially available, industry standard PLD programmers.

PLUS173B/D
Programmable Logic Arrays
$(22 \times 42 \times 10)$

FEATURES

- I/O propagation delays (worst case)
- PLUS173B - 15ns max.
- PLUS173D - 12ns max.
- Functional superset of $20 \mathrm{L10}$ and most other 24-pin combinatorial PAL devices
- Two programmable arrays
- Supports 32 input wide OR functions
- 12 inputs
- 10 bi-directional I/O
- 42 AND gates
- 32 logic product terms
- 10 direction control terms
- Programmable output polarity
- Active-High or Active-Low
- Security fuse
- 3-State outputs
- Power dissipation: 750mW (typ.)
- TTL Compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATIONS

[^4]
Philips Components

PHILIPS

Programmable Logic Arrays $(22 \times 42 \times 10)$

LOGIC DIAGRAM

[^5]
FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	tpD (MAX)	ORDER CODE
24-Pin Plastic DIP 300mil-wide	15 ns	PLUS173BN
24-Pin Plastic DIP 300mil-wide	12 ns	PLUS173DN
28-Pin Plastic Leaded Chip Carrier	15 ns	PLUS173BA
28-Pin Plastic Leaded Chip Carrier	12 ns	PLUS173DA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
$V_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$V_{\text {In }}$	Input voltage		+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
IOUT	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	$+150$	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Programmable Logic Arrays

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{IL}	Low	$V_{C C}=\operatorname{Min}$			0.8	V
V_{1+}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
V_{16}	Clamp	$V_{C C}=\operatorname{Min}, l_{\text {IN }}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$V_{C C}=\operatorname{Min}$				
$V_{\text {OL }}$	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{9}$						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				
I/L	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$				
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ state 8	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit ${ }^{3,5,6}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$V_{\text {cc }}=$ Max		150	200	mA
Capacitance						
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}$				
${ }_{1}{ }_{N}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
C_{B}	1/0	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{4}=0 \mathrm{~V}$, inputs $I_{5}-I_{9}=4.5 \mathrm{~V}, I_{11}=4.5 \mathrm{~V}$ and $I_{10}=10 \mathrm{~V}$. For outputs $B_{0}-B_{4}$ and for outputs $B_{5}-B_{9}$ apply the same conditions except $\mathrm{I}_{11}=0 \mathrm{~V}$.
5. Same conditions as Note 4 except input $\mathrm{I}_{11}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. $I_{c c}$ is measured with inputs $I_{0}-I_{11}$ and $B_{0}-B_{9}=0 V$. Part in Virgin State.
8. Leakage values are a combination of input and output leakage.
9. I_{L} and I_{H} limits are for dedicated inputs only $\left(l_{0}-l_{11}\right)$.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	то	TEST CONDITION	LIMITS						UNIT
					PLUS173B			PLUS173D			
					Min	Typ	Max	Min	Typ	Max	
to	Propagation Delay ${ }^{2}$	Input +/-	Output +/-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15		10	12	ns
toe	Output Enable	Input +/-	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		11	15		10	12	ns
tod	Output Disable ${ }^{1}$	Input +/-	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		11	15		10	12	ns

NOTES:

1. Measured at $\mathrm{V}_{T}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
2. Measured with all inputs and outputs switching simultaneously.

Programmable Logic Arrays

VOLTAGE WAVEFORM

MEASUREMENTS:
All circuit delays are measured at the +1.5 V leve of inputs and outputs, unless otherwise specified

Input Pulses

TIMING DEFINITIONS

SYMBOL	PARAMETER
t $_{\text {PD }}$	Propagation delay between input and output.
toD $^{\text {ind }}$	Delay between input change and when output is off (Hi-Z or High).
the	Delay between input change and when output reflects specified output level.

TEST LOAD CIRCUIT

TIMING DIAGRAM

LOGIC PROGRAMMING

PLUS173 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean equation entry is accepted.
PLUS173 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the true and complement of any input (I, B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.

Programmable Logic Arrays
$(22 \times 42 \times 10)$

PLA PROGRAM TABLE

Signetics

Document No.	
ECN No.	
Date of Issue	October 1989
Status	Preliminary Specification
Programmable Logic Devices	

PLUS173-10

Programmable Logic Array
$(22 \times 42 \times 10)$

DESCRIPTION

The PLUS173-10 PLD is a high speed, combinatorial Programmable Logic Array. The Signetics state-of-the-art Oxide Isolated Bipolar fabrication process is employed to produce propagation delays as short as 10 ns .

The 24-pin PLUS173-10 device has a programmable AND array and a programmable OR array. Unlike PAL® devices, 100% product term sharing is supported. Any of the 32 logic product terms can be connected to any or all of the 10 output OR gates. Most PAL ICs are limited to 7 AND terms per OR function; the PLUS173-10 device can support up to 32 input wide OR functions.
The polarity of each output is userprogrammable as either active-High or active-Low, thus allowing AND-OR or AND-NOR logic implementation. This feature adds an element of design flexibility, particularly when implementing complex decoding functions.
The PLUS173-10 device is userprogrammable using one of several commercially available, industry standard PLD programmers.

FEATURES

- I/O propagation delays (worst case) - PLUS173-10 - 10ns max.
- Functional superset of 20 L 10 and most other 24-pin combinatorial PAL devices
- Two programmable arrays
- Supports 32 input wide OR functions
- 12 inputs
- 10 bi-directional I/O
- 42 AND gates
- 32 logic product terms
- 10 direction control terms
- Programmable output polarity
- Active-High or Active-Low
- Security fuse
- 3-State outputs
- Power dissipation: 750mW (typ.)
- TTL Compatible

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATIONS

[^6]
Philips Components

PHILIPS

Programmable Logic Array

$(22 \times 42 \times 10)$

LOGIC DIAGRAM

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	IPD (MAX)	ORDER CODE
24-Pin Plastic DIP 300mil-wide	10ns	PLUS173-10N
28-Pin Plastic Leaded Chip Carrier	10ns	PLUS173-10A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATING		UNIT
		Min	Max	
V_{Cc}	Supply voltage		+7	V_{DC}
$\mathrm{V}_{\text {In }}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {OUt }}$	Output voltage		+5.5	$V_{D C}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating free-air temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Programmable Logic Array

$(22 \times 42 \times 10)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{LL}	Low	$V_{c c}=M$ in			0.8	V
$\mathrm{V}_{1 \mathrm{H}}$	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
$\mathrm{V}_{1 \mathrm{C}}$	Clamp	$V_{C C}=\operatorname{Min}, I_{\text {I }}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$				
V_{OL}	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=15 \mathrm{~mA}$			0.5	v
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current ${ }^{9}$						
		$\mathrm{V}_{\text {cC }}=\mathrm{Max}$				
ILL	Low	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
${ }_{1 H}$	High	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\text {cc }}=\mathrm{Max}$				
lo(off)	Hi-Z state ${ }^{8}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit ${ }^{3}$, 5, 6	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	V_{CC} supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	200	mA
Capacitance						
		$\mathrm{V}_{\text {cC }}=5 \mathrm{~V}$				
I_{1}	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
C_{B}	1/0	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $I_{0}-I_{4}=0 \mathrm{~V}$, inputs $\mathrm{I}_{5}-\mathrm{I}_{9}=4.5 \mathrm{~V}, \mathrm{I}_{11}=4.5 \mathrm{~V}$ and $\mathrm{I}_{10}=10 \mathrm{~V}$. For outputs $\mathrm{B}_{0}-\mathrm{B}_{4}$ and for outputs $\mathrm{B}_{5}-\mathrm{B}_{9}$ apply the same conditions except $\mathrm{I}_{11}=0 \mathrm{~V}$.
5. Same conditions as Note 4 except input $I_{11}=+10 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. I_{cc} is measured with inputs $\mathrm{I}_{0}-\mathrm{I}_{11}$ and $\mathrm{B}_{0}-\mathrm{B}_{9}=0 \mathrm{~V}$. Part in Virgin State.
8. Leakage values are a combination of input and output leakage.
9. $I_{\mathbb{L}}$ and $I_{\mathbb{H}}$ limits are for dedicated inputs only $\left(I_{0}-I_{11}\right)$.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
tpo	Propagation Delay ${ }^{2}$	Input +/-	Output +/-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		8	10	ns
toe	Output Enable	Input +/-	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		8	10	ns
tod	Output Disable ${ }^{1}$	Input +/-	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		8	10	ns

NOTES:

1. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
2. Measured with all inputs and outputs switching simultaneously.

Programmable Logic Array

$(22 \times 42 \times 10)$

VOLTAGE WAVEFORM

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified

Input Pulses

TIMING DEFINITIONS

SYMBOL	PARAMETER
tPD	Propagation delay between input and output.
toD	Delay between input change and when output is off (Hi-Z or High).
tOE	Delay between input change and when output reflects specified output level.

test load circuit

TIMING DIAGRAM

LOGIC PROGRAMMING

PLUS173-10 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean equation entry is accepted.
PLUS173-10 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (B)

AND ARRAY - (I, B)

OR ARRAY - (B)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}, D_{n}.
2. Any gate P_{n}, D_{n} will be unconditionally inhibited if both the true and complement of any input (I, B) are left intact.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at " H " polarity.
2. All P_{n} terms are disabled.
3. All P_{n} terms are active on all outputs.
```
Programmable Logic Array
(22\times42\times10)
```


PLUS173-10

PLA PROGRAM TABLE

Signetics

Application Specific Products - Series 24

DESCRIPTION

The PLHS473 is a two level logic device consisting of 24 AND gates and 22 OR gates with fusible link connections for programming I/O polarity and direction. The Signetics state of the art OxideIsolated Bipolar process is used to produce performance not yet achieved in devices of this complexity.
All AND gates are linked to 11 input pins, 9 bidirectional I/O pins, and 2 dedicated output pins. The bidirectional pins are controlled via the OR array. Using these features, the PLHS473 can be configured with up to 20 inputs and as many as 11 outputs.
The AND array input buffers provide both the True and Complement of the inputs (I_{X}) and the bidirectional signals $\left(B_{X}\right)$ as programmable connections to the AND gates. All 24 AND gates can then be optionally linked to all 22 OR gates (a feature known as Product Term sharing not found in PAL ${ }^{\circledR}$ device architectures or most macrocell architectures). The OR array drives 11 output buffers which can be programmed as active-High for AND-OR functions or active-Low for AND-NOR functions. In addition, the I/O configuration of each bidirectional pin is individually controlled by a sum-of-products (AND-OR) function which may also contain any of the 24 AND gate outputs. This allows dynamic

PLHS473
 Field-Programmable Logic Array $(20 \times 24 \times 11)$

Signetics Programmable Logic Product Specification

I/O configuration of all 9 bidirectional pins.

The PLHS473 contains two new features of significance. A code verification lock has been incorporated to improve user security. The addition of three test columns and one test row enables the user to test the device in an unprogrammed state.
The PLHS473 is field programmable using Vertical Avalanche Migration Programmed (VAMP ${ }^{\text {TM }}$) fuses to program the cells. This enables the generation of custom logic patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable
- 11 dedicated inputs
- 2 dedicated outputs
- 9 bidirectional I/O lines
- 24 product terms
- 22 OR gates
- I/O direction decoded in OR array
- Output Enable decoded in OR array
- Security fuse
- I/O propagation delay: 22ns (max.)

FUNCTIONAL DIAGRAM

PIN CONFIGURATIONS

A Package

- Input loading: $\mathbf{- 1 0 0} \mu \mathrm{A}$ (max.)
- Power dissipation: 700mW (typ.)
- Security fuse
- Testable in unprogrammed state
- Programmable as 3-State or Open-Collector outputs
- TTL compatible
- Programmable output polarity

APPLICATIONS

- Random logic
- Code converters
- Fault detectors
- Function generators
- Address mapping
- Multiplexing

PAL is a trademark of Monolithic Memories, Inc., a wholly owned subsidary of Advanced Micro Devices, Inc.

Field-Programmable Logic Array ($20 \times 24 \times 11$)

FPLA LOGIC DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP 300mil-wide	PLHS473N
28-pin Plastic Leaded Chip Carrier	PLHS473A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
I_{IN}	Input currents	-30 to +30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

LOGIC FUNCTION

TYPICAL PRODUCT TERM:
$\mathrm{Pn}=\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C} \cdot \mathrm{D} \cdot$.
TYPICAL LOGIC FUNCTION:
AT OUTPUT POLARITY $=\mathrm{H}$ $\mathbf{Z}=\mathbf{P} 0+\mathrm{P} 1+\mathrm{P} 2 \ldots$

AT OUTPUT POLARITY $=$ L $z=\overline{P_{0}+P_{1}+P_{2}+}$. $\mathrm{z}=\overline{\mathrm{P} 0} \cdot \overline{\mathrm{P}_{1}} \cdot \overline{\mathrm{P}_{2}} \cdot \ldots$.

NOTES:

1. For each of the 11 outputs, either function Z (Active-High) or Z (Active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. $\mathrm{Z}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, etc. are user defined connections to fixed inputs (1), fixed output pins (0) and bidirectional pins (B).

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=\text { Min } \\ V_{C C}=M a x \\ V_{C C}=M i n, ~_{\text {IN }}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Low }^{4} \\ & \text { High }^{5} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.5	v
Input current						
$\begin{aligned} & I_{I L} \\ & I_{H H} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}} & =5.5 \mathrm{~V} \end{aligned}$			-100 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lo(off) los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{9}$ Short circuit ${ }^{3,5,6}$	$\begin{aligned} V_{\text {CC }} & =M a x \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0.5 \mathrm{~V} \end{aligned}$	-15		$\begin{gathered} 40 \\ -100 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		140	155	mA
Capacitance						
$\begin{aligned} & { }^{\mathrm{IN}_{\mathrm{N}}} \\ & \mathrm{C}_{\mathrm{l}} \end{aligned}$	Input I/O	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{B}}=2.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 15 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

[^7]AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant T_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	TO	FROM	TEST CONDITION	LiMitis			UNIT
					Min	Typ	Max	
$t_{\text {PD }}$	Propagation delay	Output \pm	Input \pm	$C_{L}=30 \mathrm{pF}$		15	22	ns
$\mathrm{t}_{\text {OE }}$	Output enable	Output -	Input \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	22	ns
t_{OD}	Output disable ${ }^{8}$	Output +	Input \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		15	22	ns

NOTES:

1. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $0-4=0 \mathrm{~V}$, inputs $5,7=4.5 \mathrm{~V}$, and inputs $6,8-10=10 \mathrm{~V}$.
5. Same conditions as Note 5 except input $8=4.5 \mathrm{~V}$
6. Duration of short circuit should not exceed 1 second.
7. I I_{C} is measured with all inputs and bidirectional pins at 4.5 V . Part in Virgin State.
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUITS

TIMING DIAGRAM

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {PD }}$	Propagation delay between input and output.
$t_{\text {OD }}$	Delay between input change and when output is off (Hi-Z or High).
$t_{\text {OE }}$	Delay between input change and when output reflects specified output level.

LOGIC PROGRAMMING

PLHS473 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted

PLHS473 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

OUTPUT POLARITY - (O, B)

'AND' ARRAY - (I, B)

OR ARRAY - (O, B)

| | |
| :---: | :---: | :---: | :---: |
| P STATUS | CODE |
| INACTIVE | \bullet |

NOTES:

1. This is the initial unprogrammed state of all links. All unused P_{n} and D_{n} terms must be programmed as INACTIVE.
2. Any gate P_{n} will be unconditionally inhibited if the True and Complement of either input (I or B) are both programmed for a connection.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at 'L'" polarity.
2. All P_{n} terms are enabled in the AND array. (Don't Cares)
3. All P_{n} terms are inactive in the OR array.

Signetics

Document No.	
ECN No.	
Date of Issue	October 1989
Status	Preliminary Specification
Programmable Logic Devices	

PLHS473S
Programmable Logic Array
$(20 \times 24 \times 11)$

DESCRIPTION

The PLHS473S is a two level logic device consisting of 24 AND gates and 22 OR gates with fusible link connections for programming I/O polarity and direction. The Signetics state-of-the-art OxideIsolated Bipolar process is used to produce performance not yet achieved in devices of this complexity.
The PLHS473 has an enhanced drive capability of 24 mA . This, coupled with the fact that it can drive both 30 pF and 200 pF loads, allows it to be directly connected to an external bus.

All AND gates are linked to 11 input pins, 9 bidirectional I/O pins, and 2 dedicated output pins. The bidirectional pins are controlled via the OR array. Using these features, the PLHS473S can be configured with up to 20 inputs and as many as 11 outputs.
The AND array input buffers provide both the True and Complement of the inputs (I_{x}) and the bidirectional signals $\left(\mathrm{B}_{\mathrm{x}}\right)$ as programmable connections to the AND gates. All 24 AND gates can then be optionally linked to all 22 OR gates (a feature known as Product Term sharing, not found in PALs ${ }^{\circledR}$ or most macrocell architectures). The OR array drives 11 output buffers which can be programmed as Active-High for AND-OR functions or Active-Low for AND-NOR functions. In addition, the I/O configuration of each bidirectional pin is individually controlled by sum-of-products (AND-OR) function which may also contain any of the 24 AND gate outputs. This allows dynamic I/O configuration of all 9 bidirectional pins.
The PLHS473S is field-programmable using Vertical Avalanche Migration Programmed (VAMP ${ }^{\text {TM }}$) fuses to program the cells. This enables the generation of custom logic patterns using standard programming equipment.

Order codes for this device are contained in the pages following.

FEATURES

- I/O propagation delay: 25ns (max) @ 30pF 35ns (max) @ 200pF
- Field-programmable
- 11 dedicated inputs
- 2 dedicated outputs
- 9 bidirectional I/O lines
- 24 product terms
- 22 OR gates
- I/O direction decoded in OR array
- Output Enable decoded in OR array
- Power dissipation: 700mW (typ)
- Enhanced drive capability of 24 mA
- Security fuse
- Programmable as 3-State or OpenCollector outputs
- TTL compatible

APPLICATIONS

- Random logic

- Bus interface
- Code Converters
- Function generators
- Address mapping
- Multiplexing

PIN CONFIGURATIONS

PHILIPS

PLA LOGIC DIAGRAM

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-pin Plastic DIP; (300mil-wide)	PLHS473SN
28-Pin Plastic Leaded Chip Carrier (450mil-wide)	PLHS473SA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30 to +30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

LOGIC FUNCTION

TYPICAL PRODUCT TERM: $\mathbf{P}_{\mathrm{n}}=\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} \cdot \mathrm{C}$

TYPICAL LOGIC FUNCTION: AT OUTPUT POLARITY $=\mathrm{H}$ $\mathbf{Z}=\mathbf{P} \mathbf{+}+\mathbf{P} \mathbf{1}+\mathbf{P} \mathbf{2} \ldots$

AT OUTPUT POLARITY = L $Z=P 0+P 1+P 2+\ldots$ $\mathrm{Z}=\mathrm{PO} \cdot \mathrm{PI} \cdot \mathrm{PD}_{\mathbf{2}} \cdot \ldots$

NOTES:

1. For each of the 11 outputs, either function Z (ActiveHigh) or Z (Active-Low) is available, but not both. The desired output polarity is programmed via the Ex-OR gates.
2. Z,A,B, C, etc. are user defined connections to fixed inputs (I), fixed output pins (0) and bidirectional pins (B).

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {ll }}$	Low	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$			0.8	V
V_{H}	High	$V_{C C}=$ MAX	2.0			V
V_{16}	Clamp ${ }^{3}$	$V_{C C}=M I N,{ }_{1}{ }_{1}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				
$\mathrm{V}_{\text {OL }}$	Low ${ }^{4}$	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.5	V
V_{OH}	High ${ }^{5}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{C C}=\mathrm{MAX}$				
I/L	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbb{H}}$	High	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				
	$\mathrm{Hi}-\mathrm{Z}$ state 9	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
los	Short circuit ${ }^{3,5,6}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{7}$	$V_{C C}=\mathrm{MAX}$		140	155	mA
Capacitance						
		$\mathrm{V}_{\text {cC }}=5 \mathrm{~V}$				
IN	Input	$\mathrm{V}_{1 \mathrm{~N}}=2.0 \mathrm{~V}$		8	15	pF
C_{8}	I/O	$V_{B}=2.0 \mathrm{~V}$		10	15	pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with inputs $0-4=0 \mathrm{~V}$, inputs $5,7=4.5 \mathrm{~V}$, and inputs $6,8-10+10 \mathrm{~V}$.
5. Same conditions a Note 4 except input $8=4.5 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with all inputs and bidirectional pins at 4.5V. Part in Virgin State
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=200 \Omega, \mathrm{R}_{2}=390 \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$t_{\text {PD }}$	Propagation delay	Input \pm	Output \pm	$C_{L}=200 \mathrm{pF}$ 2 outputs switching		20	35	ns
toe	Output Enable	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$		15	25	ns
tod	Output Disable ${ }^{2}$	Input \pm	Output \pm	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		15	22	ns

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITIONS	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
$t_{\text {PD }}$	Propagation delay	Input \pm	Output	$C_{L}=30 \mathrm{pF}$		15	25	ns
toe	Output Enable	Input \pm	Output -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	22	ns
${ }_{\text {tob }}$	Output Disable ${ }^{2}$	Input \pm	Output +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		15	22	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. High-to-High impedance tests are made at an output voltage of $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ with R_{1} disconnected from +5 V , and Low-to-High impedance tests are made at an output voltage of $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

TEST LOAD CIRCUIT

TIMING DIAGRAM

Programmable Logic Array ($20 \times 24 \times 11$)

LOGIC PROGRAMMING

The PLÁ can be programmed by means of Logic programming equipment.

With Logic programming the AND/OR/Ex-OR gateinput connections necessary to implement the desired logic function are coded directly from logic equations using the Program Table on the following page.
In this table, the logic state of variables I, P and B, associated with each Sum Term S is assigned a symbol which results in the proper fusing pattern of corresponding links, defined as follows.

OUTPUT POLARITY - (O, B)

"AND" ARRAY - (I, B)

"OR" ARRAY - (O, B)

$\left.\right\|^{\mathbf{P}}$	$-s$		$-s$
P ${ }_{\text {Status }}$ InACTIVE	CODE	P ${ }_{\text {n Status }}$	$\begin{gathered} \hline \text { CODE } \\ \hline \mathbf{A} \end{gathered}$

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate P_{n} will be unconditionally inhibited if the true and complement of either input (I or B) are both programmed for a connection.

VIRGIN STATE

A factory shipped virgin device contains all fusible links intact, such that:

1. All outputs are at "L" polarity.
2. All P_{n} terms are enabled. (Don't Cares.)
3. All P_{n} terms are inactive on all outputs.

Signetics

Application Specific Products

- Series 28

DESCRIPTION

The PLS100 (3-state) and PLS101 (Open Collector) are bipolar, fuse Programmable Logic Arrays (FPLAs). Each device utilizes the standard AND/OR/ Invert architecture to directly implement custom sum of product logic equations.
Each device consists of 16 dedicated inputs and 8 dedicated outputs. Each output is capable of being actively controlled by any or all of the 48 product terms. The True, Complement, or Don't Care condition of each of the 16 inputs can be ANDed together to comprise one P-term. All 48 P-terms can be selectively ORed to each output.

The PLS100 and PLS101 are fully TTL compatible, and chip enable control for expansion of input variables and output inhibit. They feature either Open Collector or 3-state outputs for ease of expansion of product terms and application in bus-organized systems.
Order codes are listed in the Ordering Information Table.

FEATURES

- Field-Programmable (Ni-Cr link)
- Input variables: 16
- Output functions: 8
- Product terms: 48
- I/O propagation delay: 50ns (max.)
- Power dissipation: 600mW (typ.)
- Input loading: - $\mathbf{1 0 0} \mu \mathrm{A}$ (max.)
- Chip Enable input
- Output option:
- PLS100: 3-State
- PLS101: Open-Collector
- Output disable function:
- 3-State: Hi-Z
- Open-Collector: High

APPLICATIONS

- CRT display systems
- Code conversion
- Peripheral controllers
- Function generators
- Look-up and decision tables
- Microprogramming
- Address mapping
- Character generators
- Data security encoders
- Fault detectors
- Frequency synthesizers
- 16-bit to 8 -bit bus interface
- Random logic replacement

FUNCTIONAL DIAGRAM

Field-Programmable Logic
Array $(16 \times 48 \times 8)$

FPLA LOGIC DIAGRAM

Field-Programmable Logic
 Array $(16 \times 48 \times 8)$

ORDERING INFORMATION

DESCRIPTION	TRI-STATE	OPEN-COLLECTOR
28-pin Plastic DIP 600mil-wide	PLS100N	PLS101N
28-pin Plastic Leaded Chip Carrier	PLS100A	PLS101A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
V_{IN}	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
V_{O}	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input current	± 30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output current	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other conditions above those indicated in the operational and programming specification of the device is not implied.

The PLS100 device is also processed to military requirements for operation over the military temperature range. For specitications and ordering information consult the Signetics Military Data Book.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voitage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	High Low Clamp ${ }^{2,3}$		2	-0.8	0.8 -1.2	V V
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & \text { High (PLS100) } \\ & \text { Low }^{4} \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{l}_{\mathrm{OH}} & =-2 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OL}} & =9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	V
Input current						
$\begin{aligned} & I_{I H} \\ & I_{\mathrm{IL}} \\ & \hline \end{aligned}$	High Low	$\begin{gathered} V_{I N}=5.5 \mathrm{~V} \\ V_{I N}=0.45 \mathrm{~V} \end{gathered}$		$\begin{array}{r} <1 \\ -10 \end{array}$	$\begin{gathered} 25 \\ -100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Output current						
lo(off) los	Hi-Z state (PLS100) Short circuit (PLS100) ${ }^{3,6}$	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ \overline{\mathrm{CE}}=\text { LOW, }, V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15	1 -1	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ mA
lcc	V_{CC} supply current ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		120	170	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{OUT}} \end{aligned}$	Input Output	$\begin{gathered} \overline{\mathrm{CE}}=\text { High, } \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 8 \\ 17 \end{gathered}$		pF pF

[^8]Field-Programmable Logic
Array $(16 \times 48 \times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{CC}} \leqslant 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TO	FROM	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Propagation delay							
$t_{\text {PD }}$	Input	Output	Input		35	50	ns
$\mathrm{t}_{\text {CE }}$	Chip enable	Output	Chip enable		15	30	ns
Disable time							
t_{CD}	Chip disable	Output	Chip enable		15	30	ns

NOTES:

1. All values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one pin at a time.
4. Measured with $\mathrm{V}_{\text {IL }}$ applied to $\overline{\mathrm{CE}}$ and a logic high stored.
5. Measured with a programmed logic condition for which the output test is at a low logic level. Output sink current is applied through a resistor to $V_{C C}$.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with the chip enable input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Array ($16 \times 48 \times 8$)

LOGIC PROGRAMMING

PLS100/PLS101 logic designs can be generated using Signetics' AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS100/PLS101 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics' AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.
To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
'AND' ARRAY - (I)

'OR' ARRAY - (F)

| | | |
| :---: | :---: | :---: | :---: |
| P_{n} STATUS | CODE | |
| ACTIVE | A | ASO2010S |

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates P_{n}.
2. Any gate P_{n} will be unconditionally inhibited if any one of its (I) link pairs is left intact.

Field-Programmable Logic
Array ($16 \times 48 \times 8$)

TEST LOAD CIRCUITS

TIMING DIAGRAM

Read Cycle

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses
TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {CE }}$	Delay between beginning of Chip Enable low (with Input valid) and when Data Output becomes valid.
t_{CD}	Delay between when Chip Enable becomes High and Data Output is in off state (Hi-Z or High).
$t_{\text {PD }}$	Delay between beginning of valid Input (with Chip Enable Low) and when Data Output becomes valid.

VIRGIN STATE

The PLS100/101 virgin devices are factory shipped in an unprogrammed state, with all fuses intact, such that:

1. All P_{n} terms are disabled (inactive), in the AND array.
2. All P_{n} terms are active in the OR array.
3. All outputs are active-High.

INPUT VARIABLE		
Im	Im	Don't Care
H	L	- (dash)
NOTE Enter (-) Pterms.		

PROGAM TABLE ENTRIES

VARIABLE NAME	\% ${ }^{\circ} \mathrm{I}$	$\stackrel{\rightharpoonup}{*}$	के	A ${ }^{\text {a }}$	ట	A	\pm	O ${ }_{0}$	ω	$\stackrel{\omega}{\sim}$	\% \sim_{0}	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\omega}{\omega} \stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	${ }_{0}$	ON	\sim	\sim	O	N	N	N	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{\infty}$	の	碞	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{ }$	-		v		-	ω	$\bigcirc-$	380 ml	
	0 N																																			$\mathrm{OH}-1$	
	-N																																			$\rightarrow-1$	
	N N																																			$\omega-1$	
	$\omega \mathrm{N}$																																			$N-1$	
	- N																																			$\rightarrow-1$	
	0 N																																			$\bigcirc-1$	
	0 N																																			$\bigcirc{ }_{0}^{1}$	
	$\checkmark \mathrm{N}$																																			∞ -	2
	N																																			$\cdots 1$ -	
	ω																																			0	
	Δ																																			Q1	
	Or																																			-	
	9																																			$\omega 1$	
	v																																			N	
	∞																																			-1	
	\bullet																																			01	

UNCTION		OUTPUT ACTIVE LEVEL	
Prod. Term Present in F_{P}	Prod. Term Not Present in F_{P}	Active High	Active Low
A	- (period)	H	L
Otes		NOTES	
Entries independent of output polarity. Enter (A) for unused outputs of used P-terms.		1. Polarity programmed once only. 2. Enter (H) for all unused outputs.	

Signetics

Programmable Logic Devices

Section 5 Programmable Logic Sequencer Device Data Sheets

INDEX

Series 20
PLS155 Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 191
PLS157 Programmable Logic Sequencer ($16 \times 45 \times 12$); 14 MHz 202
PLS159A Programmable Logic Sequencer ($16 \times 45 \times 12$); 18 MHz 213
Series 24
PLS167/A Programmable Logic Sequencers ($14 \times 48 \times 6$); 14, 20MHz 223
PLS168/A Programmable Logic Sequencers $(12 \times 48 \times 8) ; 14,20 \mathrm{MHz}$. 234
PLS179 Programmable Logic Sequencer ($20 \times 45 \times 12$); 18 MHz 245
PLC42VA12 CMOS Programmable Logic Sequencer
$(42 \times 105 \times 12) ; 25 \mathrm{MHz}$ 256
Series 28
PLC415-16 Programmable Logic Sequencer ($17 \times 68 \times 8$); 16 MHz 275
PLS105/A Programmable Logic Sequencers ($16 \times 48 \times 8$); $14,20 \mathrm{MHz}$ 294
PLUS105-40 Programmable Logic Sequencer $(16 \times 48 \times 8) ; 40 \mathrm{MHz}$ 305
PLUS105-55 Programmable Logic Sequencer $(16 \times 48 \times 8) ; 55 \mathrm{MHz}$ 317
PLUS405-37/-45Programmable Logic Sequencers ($16 \times 64 \times 8$); $37,45 \mathrm{MHz}$.329
PLUS405-55 Programmable Logic Sequencer ($16 \times 64 \times 8$); 55 MHz 344

Signetics

Document No.	$853-0317$
ECN No.	93255
Date of Issue	May 11, 1988
Status	Product Specification
Programmabie Logic Devices	

DESCRIPTION

The PLS155 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "fold-back" inverting buffer and control gate F_{C}. It features 4 registered I/O outputs (F) in conjunction with 8 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.

The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/Opolarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

PLS155
 Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$

FEATURES

- $f_{\text {MAX }}=14 \mathrm{MHz}$
-18.2 MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 8 bidirectional I/O lines
- 4 bidirectional registers
- J-K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
- Input loading: -100 A (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State outputs

PIN CONFIGURATIONS

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

FUNCTIONAL DIAGRAM

On-chip T/C buffers couple either True (I, B, Q) or Complement ($\bar{T}, \mathrm{~B}, \overline{\mathrm{Q}}, \mathrm{C}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Any of the 32 AND gates can drive bidirectional I/O lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Similarly, any of the AND gates can drive the J-K
inputs of all flip-flops. The Asynchronous Preset and Reset lines (P, R), are driven from the OR matrix.

All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I),
(B), (Q) and programmable output select lines (E).

The PLS155 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $O E$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to $\mathrm{J}-\mathrm{K}$ only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

LOGIC FUNCTION

NOTE:
Similar logic functions are applicable for D and T mode flip-flops.

FLIP-FLOP TRUTH TABLE

$\boldsymbol{O E}$	L	CK	P	R	J	K	Q	F
H								Hi-Z
L	X	X	H	L	X	X	H	L
L	X	X	L	H	X	X	L	H
L	L	\uparrow	L	L	L	L	Q	Q
L	L	\uparrow	L	L	L	H	L	H
L	L	\uparrow	L	L	H	L	H	L
L	L	\uparrow	L	L	H	H	Q	Q
H	H	\uparrow	L	L	L	H	L	H *
H	H	\uparrow	L	L	H	L	H	L *
$+10 V$	X	\uparrow	X	X	L	H	L	H $^{* *}$
	X	\uparrow	X	X	H	L	H	$L^{* *}$

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots T_{31}$
$T_{n}=C \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right) \cdot\left(B_{0}\right.$ - $\mathrm{B}_{1} \cdot \ldots$)
2. \uparrow denotes transition from Low to High level.
3. $X=$ Don't care
4. * $=$ Forced at F_{n} pin for loading the J-K flipflop in the input mode. The load control term, L_{n} must be enabled (HIGH) and the pterms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ${ }^{* *}=$ Forced at F_{n} pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic DIP (300mil-wide)	PLS155N
20-Pin Plastic Leaded Chip Carrier	PLS155A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	UMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{H}	High	$\mathrm{V}_{\mathrm{cc}}=$ Max	2.0			
V_{L}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
$V_{1 c}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{W}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$				
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			v
V_{OL}	Low	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.5	V
Input current ${ }^{5}$						
		$\mathrm{V}_{\text {CC }}=\mathrm{Max}$				
I_{H}	High	$\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$		<1	80	$\mu \mathrm{A}$
ILI	Low	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
Output current						
		$V_{\text {cC }}=$ Max				
lo(off)	Hi-Z state ${ }^{5.6}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-140	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}{ }^{\text {, }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{4}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Max}$		150	190	mA
Capacitance						
		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {OUT }}$	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Icc is measured with the $\overline{ } E$ input grounded, all other inputs at 4.5 V and the outputs open.
5. Leakage values are a combination of input and output leakage.
6. Measured with V_{IH} applied to OE .
7. Duration of short circuit should not exceed 1 second.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
Pulse width								
${ }^{\text {teKH }}$	Clock ${ }^{2} \mathrm{High}$	CK +	CK -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	25	20		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock Low	CK -	CK +	$C_{L}=30 \mathrm{pF}$	30	20		ns
$\mathrm{t}_{\mathrm{CKP}}$	Period	CK +	CK +	$C_{L}=30 \mathrm{pF}$	70	50		ns
$t_{\text {PRH }}$	Preset/Reset pulse	(I,B) -	$(1, B)+$	$C_{L}=30 \mathrm{FF}$	40	30		ns
Setup time ${ }^{5}$								
t_{151}	Input	$(1, B) \pm$	CK +	$C_{L}=30 \mathrm{FF}$	40	30		ns
${ }_{\text {t }}$ 2 2	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$C_{L}=30 \mathrm{pF}$	20	10		ns
$\mathrm{t}_{\text {IS3 }}$	Input (through Complement Array) ${ }^{4}$	$(1, B) \pm$	CK +	$C_{L}=30 \mathrm{pF}$	65	40		ns
Hold time								
t_{1+1}	Input	$(1, B) \pm$	$\mathrm{CK}+$	$C_{L}=30 \mathrm{pF}$	0	-10		ns
$\mathrm{t}_{\mathrm{H} 2}$	Input	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
Propagation delays								
${ }^{\text {cho }}$	Clock	CK +	$F \pm$	$C_{L}=30 \mathrm{pF}$		25	30	ns
toe 1	Output enable	$\overline{O E}$ -	F-	$C_{L}=30 \mathrm{pF}$		20	30	ns
$\mathrm{t}_{\mathrm{OD} 1}$	Output disable ${ }^{3}$	$\overline{O E}+$	F +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
$t_{\text {PD }}$	Output	$(1, B) \pm$	$\mathrm{B} \pm$	$C_{L}=30 \mathrm{pF}$		40	50	ns
$\mathrm{t}_{\text {OE2 }}$	Output enable	$(1, B)+$	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	55	ns
$\mathrm{t}_{\mathrm{OD} 2}$	Output disable ${ }^{3}$	(I,B) -	B +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		30	35	ns
tpro	Preset/Reset	$(1, B)+$	$\mathrm{F} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		50	55	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 \mathrm{~ns}$.
3. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
4. When using the Complement Array $\mathrm{t}_{\mathrm{CKP}}=95 \mathrm{~ns}(\mathrm{~min})$.
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.
6. For test circuits, waveforms and timing diagrams see the following pages.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAAAETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }^{\text {chek }}$	Interval between clock pulses.
$\mathrm{t}_{\text {CKP }}$	Clock period.
tPRH	Width of preset input pulse.
$\mathrm{t}_{\mathrm{S} 1}$	Required delay between beginning of valid input and positive transition of clock.
t_{152}	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
$\mathrm{t}_{1 \mathrm{H} 1}$	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{1 \mathrm{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
${ }^{\text {t }}$ CKO	Delay between positive transition of clock and when outputs become valid (with OE Low).
toE	Delay between beginning of Output Enable Low and when outputs become valid.
${ }^{\text {toD1 }}$	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational outputs become valid.
toD2	Delay between predefined Output Enable Low and when combinational outputs are in the OFF-State.
tpro	Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS (Continued)

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

LOGIC PROGRAMMING
PLSi55 iogic designs can be generaied using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS155 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

"OR" ARRAY - (F-F CONTROL MODE)

Notes on following page.
"OR" ARRAY - ($Q_{n}=$ D-Type)

"OR" ARRAY - $\left(Q_{n}=J-K\right.$ Type $)$

"OR" ARRAY - (S or B), (P), (R)

"EX-OR" ARRAY - (B)

"OE" ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if both of the I, B, or Q links are left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates ($L, P, R, D)_{n}$ due to their lack of " $O R$ " array links.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

FPLS PROGRAM TABLE

Signetics

Document No.	$853-0318$
ECN No.	93255
Date of Issue	May 11, 1988
Status	Product Specification
Programmable Logic Devices	

PLS157

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

DESCRIPTION

The PLS157 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "fold-back" inverting buffer and control gate F_{C}. It features 6 registered I/O outputs (F) in conjunction with 6 bidirectional I / O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

FEATURES

- $\mathrm{f}_{\text {max }}=14 \mathrm{MHz}$
- 18.2MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 6 bidirectional I/O lines
- 6 bidirectional registers
- J-K, T, or D-type flip-flops
- 3-State outputs
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible

PIN CONFIGURATIONS

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

Philips Components

PHILIPS

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

FUNCTIONAL DIAGRAM

On-chip T/C buffers couple either True (I, B, Q) or Complement (I, B, \bar{Q}, \bar{C}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Any of the 32 AND gates drives bidirectional $/ / O$ lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Similarly, any of the 32 AND gates can drive the J-K inputs of all flip-flops. The Asynchronous Preset and Reset lines (P, R), are driven from the ANSD array for 4 of the 8 registers. The Preset and Reset lines (P, R) controlling the lower four registers are driven from the OR matrix.

All flip-flops are positive edge-triggered and can be used as input, output or I / O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).

The PLS157 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.
Order codes are listed in the Ordering Information Table.

Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$

FPLS LOGIC DIAGRAM

VIRGIN STATE

The factory shipped virgin device contains al! fusible links intact, such that:

1. $\overline{O E}$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

LOGIC FUNCTION

NOTE:

Similar logic functions are applicable for D and T mode flip-flops.

FLIP-FLOP TRUTH TABLE

$\overline{O E}$	L	CK	$\overline{\mathbf{P}}$	$\overline{\mathbf{H}}$	j	K	Q	F
H								$\mathrm{Hi}-\mathrm{Z}$
L	X	$\begin{aligned} & X \\ & X \end{aligned}$	H L	L	X X	X	H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
L L L L	L	\uparrow \uparrow \uparrow \uparrow	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{H} \end{gathered}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{Q} \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{Q} \end{aligned}$
H H		\uparrow \uparrow	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & L \\ & L \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$	H L	L H	H^{*} L^{*}
$+10 \mathrm{~V}$	X X	\uparrow \uparrow	X X	X X	L H	H L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H}^{*} \\ & \mathrm{~L}^{*} \end{aligned}$

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots . T_{31}$ $T_{n}=C \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right) \cdot\left(B_{0}\right.$ - $\mathrm{B}_{1} \cdot \ldots$)
2. \uparrow denotes transition from Low to High level.
3. $X=$ Don't care
4. * Forced at F_{n} pin for loading the J-K flipflop in the Input mode. The load control term, L_{n} must be enabled (HIGH) and the pterms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ${ }^{*}{ }^{*}=$ Forced at F_{n} pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic DIP (300mil-wide)	PLS157N
20-Pin Plastic Leaded Chip Carrier	PLS157A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	UNIT
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents		+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{1 H}$	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
$V_{1 C}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{~V}_{\mathrm{OH}} & =-2 \mathrm{~mA} \end{aligned}$	2.4			V
V_{OL}	Low	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.5	v
Input current						
I_{H}	High	$\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$		<1	80	$\mu \mathrm{A}$
$1 / 2$	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
Output current						
		$\mathrm{V}_{\mathrm{cc}}=$ Max				
$\mathrm{I}_{\text {O(OFF) }}$	Hi-Z state ${ }^{5,6}$	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-140	$\mu \mathrm{A}$
los	Short circuit ${ }^{3} 7$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$V_{\text {CC }}$ supply current ${ }^{4}$	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$		150	190	mA
Capacitance						
		$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathbb{N} \mathrm{N}}=2.0 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {OUt }}$	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. $I_{C C}$ is measured with the $O E$ input grounded, all other inputs at 4.5 V and the outputs open.
5. Leakage values are a combination of input and output leakage.
6. Measured with $V_{I H}$ applied to $\overline{O E}$.
7. Duration of short circuit should not exceed 1 second.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIMITS			UNIT
					Min	Typ ${ }^{1}$	Max	
Pulse width								
tekn	Clock ${ }^{2}$ High	CK +	CK-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	25	20		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock Low	CK-	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	30	20		ns
tckp	Period	CK +	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	70	50		ns
tPRH	Preset/Reset pulse	$(1, B)-$	$(1, B)+$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	40	30		ns
Setup time ${ }^{5}$								
t_{151}	Input	$(1, B) \pm$	CK +	$C_{L}=30 \mathrm{pF}$	40	30		ns
t_{152}	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	10		ns
t_{153}	Input (through Complement Array) ${ }^{4}$	$(1, B) \pm$	CK +	$C_{L}=30 \mathrm{pF}$	65	40		ns
Hold time								
$\mathrm{t}_{\mathrm{HH} 1}$	Input	$(1, B) \pm$	CK +	$C_{L}=30 \mathrm{pF}$	0	-10		ns
$\mathrm{t}_{1 \mathrm{H} 2}$	Input	$\mathrm{F} \pm$	CK +	$C_{L}=30 \mathrm{pF}$	15	10		ns
Propagation delays								
${ }^{\text {t CKO }}$	Clock	CK +	$F \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	30	ns
toel	Output enable	OE-	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
toD1	Output disable ${ }^{3}$	$\overline{O E}+$	$\mathrm{F}+$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
$t_{\text {PD }}$	Output	$(1, B) \pm$	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		40	50	ns
toen	Output enable	$(1, B)+$	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	55	ns
$\mathrm{t}_{\mathrm{OD} 2}$	Output disable ${ }^{3}$	$(1, B)-$	B+	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		30	35	ns
tPRO	Preset/Reset	$(1, B)+$	$\mathrm{F} \pm$	$C_{L}=30 \mathrm{pF}$		50	55	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 \mathrm{~ns}$.
3. Measured at $V_{T}=V_{O L}+0.5 V$.
4. When using the Complement Array $\mathrm{t}_{\mathrm{CKP}}=95 \mathrm{~ns}(\mathrm{~min})$.
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.
6. For test circuits, waveforms and timing diagrams see the following pages.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }_{\text {t }}^{\text {CKL }}$	Interval between clock pulses.
${ }^{\text {t }}$ CKP	Clock period.
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
${ }_{t}{ }_{\text {S } 1}$	Required delay between beginning of valid input and positive transition of clock.
t_{152}	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
t_{1+1}	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{1 \mathrm{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
${ }_{\text {teKO }}$	Delay between positive transition of clock and when outputs become valid (with OE LOW).
$\mathrm{t}_{\text {OE }}$	Delay between beginning of Output Enable Low and when outputs become valid.
${ }^{\text {toD1 }}$	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
${ }_{\text {tPD }}$	Propagation delay between combinational inputs and outputs.
${ }^{\text {toE2 }}$	Delay between predefined Output Enable High, and when combinational outputs become valid.
$\mathrm{t}_{\mathrm{OD} 2}$	Delay between predefined Output Enable Low and when combinational outputs are in the OFF-State.
$t_{\text {PRO }}$	Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS (Continued)

Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$

LOGIC PROGRAMMING

PLS157 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS157 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

ACTION	CODE
INACTIVE ${ }^{1,3,5}$	0

(T_{n}, F_{C})

ACTION	CODE
TRANSPARENT	-

"OR" ARRAY - (F-F CONTROL MODE)

Notes on following page.
"OR" ARRAY - $\left(\mathrm{Q}_{\mathrm{n}}=\mathrm{D}\right.$-Type $)$

"OR" ARRAY - $\left(Q_{n}=J-K\right.$ Type $)$

"OR" ARRAY - (S or B), (P), (R)

T_{n} STATUS	CODE	Tn STATUS	CODE
ACTIVE ${ }^{1}$	A	INACTIVE	$\bullet \quad$

"EX-OR" ARRAY - (B)

| | |
| :---: | :---: | :---: |
| POLARITY | CODE |
| LOW | L |
| POLARITY | CODE |
| HIGH | H |

"OE" ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if both of the I, B, or Q links are left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates (L, P, R, D) n due to their lack of "OR" array links.

Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$

FPLS PROGRAM TABLE

Signetics

Document No.	$853-1159$
ECN No.	93255
Date of Issue	May 11, 1988
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLS159A is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "told-back" inverting buffer and control gate F_{C}. It features 8 registered $/ / O$ outputs (F) in conjunction with 4 bidirectional I/O lines (B). These yield variable I/O gate and register configurations via control gates (D, L) ranging from 16 inputs to 12 outputs.
The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/O polarity and direction. All AND gates are linked to 4 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

PLS159A
 Field-Programmable Logic
 Sequencer ($16 \times 45 \times 12$)

FEATURES

- High-speed version of PLS159
- $\mathrm{f}_{\text {max }}=18 \mathrm{MHz}$
-25 MHz clock rate
- Field-Programmable (Ni-Cr link)
- 4 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J-K, T, or D-type flip-flops
- Power-on reset feature on all flip-flops ($F_{n}=1$)
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
\bullet Input loading: $-100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750mW (typ.)
- TTL compatible
- 3-State outputs

PIN CONFIGURATIONS

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

FUNCTIONAL DIAGRAM

On-chip T/C buffers couple either True (I, B, Q) or Complement ($\mathrm{I}, \mathrm{B}, \overline{\mathrm{Q}}, \mathrm{C}$) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Any of the 32 AND gates can drive bidirectional I/O lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Similarly, any of the 32 AND gates can drive the J-K inputs of all flip-flops. There are 4 AND gates for the Asynchronous Preset/Reset functions.
All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I), (B), (Q) and programmable output select lines (E).

The PLS159A is field-programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $\overline{O E}$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

FLIP-FLOP TRUTH TABLE

OE	L	CK	P	R	J	K	Q	F
H								Hi-Z
L	X	X	L	X	X	X	L	H
L	X	X	H	L	X	X	H	L
L	X	X	L	H	X	X	L	H
L	L	\uparrow	L	L	L	L	Q	Q
L	L	\uparrow	L	L	L	H	L	H
L	L	\uparrow	L	L	H	L	H	L
L	L	\uparrow	L	L	H	H	Q	Q
H	H	\uparrow	L	L	L	H	L	H *
H	H	\uparrow	L	L	H	L	H	L* *
$+10 V$	X	\uparrow	X	X	L	H	L	$H^{* *}$
	X	\uparrow	X	X	H	L	H	L** *

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots . T_{31}$ $T_{n}=C \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right) \cdot\left(B_{0}\right.$ - $\mathrm{B}_{1} \cdot \ldots$)
2. \uparrow denotes transition from Low to High level.
3. $X=$ Don't care
4. * $=$ Forced at F_{n} pin for loading the $J-K$ flipflop in the Input mode. The load control term, L_{n} must beenabled (HIGH) and the p terms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ** Forced at F_{n} pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

LOGIC FUNCTION

NOTE:
Similar logic functions are applicable for D and T mode flip-flops.

CAUTION: PLS159A

PROGRAMMING ALGORITHM

The programming voltage required to program the PLS159A is higher (17.5 V) than that required to program the PLS159 (14.5V). Consequently, the PLS159 programming algorithm will not program the PLS159A. Please exercise caution when accessing programmer device codes to insure that the correct algorithm is used.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)
PLS159A

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic DIP (300mil-wide)	PLS159AN
20-Pin Plastic Leaded Chip Carrier	PLS159AA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$V_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\mathbb{I}}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
1 IN	Input currents	-30	+30	mA
lout	Output currents		$+100$	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{H}	High	$\mathrm{V}_{\text {cc }}=$ Max	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{16}	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Low	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.5	V
Input current						
${ }_{1 / H}$	High	$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$.		<1	80	$\mu \mathrm{A}$
ILIL	Low	$\mathrm{V}_{\mathbb{N}}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
Output current						
logoff)	Hi-Z state ${ }^{4.7}$	$\mathrm{V}_{\text {cC }}=$ Max, $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-140	$\mu \mathrm{A}$
los	Short circuit ${ }^{3,5}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	V_{CC} supply current ${ }^{6}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		150	190	mA
Capacitance						
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
Cout		$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with $V_{I H}$ applied to $O E$.
5. Duration of short circuit should not exceed 1 second.
6. $I_{C C}$ is measured with the $\overline{O E}$ input grounded, all other inputs at 4.5 V and the outputs open.
7. Leakage values are a combination of input and output leakage.

Field-Programmable Logic Sequencer $(16 \times 45 \times 12)$

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{R}_{1}=470 \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	Limits			UNIT
					Min	Typ ${ }^{1}$	Max	
Pulse width								
$\mathrm{t}_{\mathrm{CKH}}$	Clock ${ }^{2}$ High	CK +	CK -	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
$\mathrm{t}_{\text {CKL }}$	Clock Low	CK-	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
${ }_{\text {tekp }}$	Period	CK +	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
tPRH	Preset/Reset pulse	(1,B) -	(I,B) +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
Setup time ${ }^{5}$								
$\mathrm{t}_{1 / 51}$	Input	$(1, B) \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
$\mathrm{t}_{\text {s } 2}$	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
$\mathrm{t}_{\text {IS3 }}$	Input (through Complement Array $)^{4}$	$(1, B) \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
Hold time								
$\mathrm{t}_{\mathrm{H} 1}$	Input	$(1, B) \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	0	-5		ns
t_{1+2}	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
Propagation delay								
$\mathrm{t}_{\mathrm{cko}}$	Clock	CK +	$\mathrm{F} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	20	ns
$t_{\text {OEI }}$	Output enable	OE-	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tobl	Output disable ${ }^{3}$	$\overline{\mathrm{E}}+$	F +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
tpo	Output	$(1, B) \pm$	B \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		25	35	ns
toen	Output enable	$(1, B)+$	$\mathrm{B} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
tod 2	Output disable ${ }^{3}$	(1,B)-	B+	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
tpro	Preset/Reset	(1,B) +	$\mathrm{F} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		35	45	ns
tppr	Power-on/preset	$\mathrm{V}_{\mathrm{Cc}}+$	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		0	10	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 \mathrm{~ns}$.
3. Measured at $\mathrm{V}_{T}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
4. When using the Complement Array $\mathrm{t}_{\mathrm{CKP}}=75 \mathrm{~ns}(\mathrm{~min})$.
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.

VOLTAGE WAVEFORMS

TEST LOAD CIRCUIT

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }^{\text {chekL }}$	Interval between clock pulses.
${ }^{\text {t CKP }}$	Clock period.
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
$\mathrm{t}_{\text {S } 1}$	Required delay between beginning of valid input and positive transition of clock.
${ }_{\text {t }}^{\text {S } 2}$	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
$\mathrm{t}_{1 \mathrm{H} 1}$	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{1 \mathrm{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
${ }^{\text {teko }}$	Delay between positive transition of clock and when outputs become valid (with OE Low).
${ }^{\text {toE }}$	Delay between beginning of Output Enable Low and when outputs become valid.
tOD_{1}	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
tppr	Delay between $V_{\text {Cc }}$ (after power-on) and when flip-flop outputs become preset at "1" (internal Q outputs at "0").
${ }^{\text {tPD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational outputs become valid.
$\mathrm{t}_{\mathrm{OD} 2}$	Delay between predefined Output Enable Low and when combinational outputs are in the OFF-State.
tpro	Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

TIMING DIAGRAMS (Continued)

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

LOGIC PROGRAMMING

PLS159A logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software pack ages. Boolean and/or state equation entry is accepted.

PLS159A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

"OR" ARRAY - (F-F CONTROL MODE)

Notes on following page.
"OR" ARRAY - ($\mathrm{Q}_{\mathrm{n}}=\mathrm{D}$-Type)

CAUTION:
THE PLS159A Programming Algorithm is different from the PLS159.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)
"OR" ARRAY - ($Q_{n}=\mathrm{J}-\mathrm{K}$ Type $)$

"OR" ARRAY - (S or B)

"EX-OR" ARRAY - (B)

"OE" ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if both of the I, B, or Q links are left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates (L, P, R, D) n due to their lack of "OR" array links.

Field-Programmable Logic Sequencer ($16 \times 45 \times 12$)

FPLS PROGRAM TABLE

Signetics

Document No.	$853-0314$
ECN No.	97885
Date of Issue	October 16, 1989
Status	Product Specification
Programmabie Logic Devices	

Field-Programmable Logic
 Sequencers $(14 \times 48 \times 6)$

DESCRIPTION

The PLS167 and PLS167A are bipolar, Programmable Logic State machines of the Mealy type. The Field-Programmable Logic Sequencers (FPLS) contain logic AND/OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of 8 Q_{P}, and $4 Q_{F}$ edge-triggered, clocked S / R flip-flops, with an asynchronous Preset Option.

All flip-flops are unconditionally preset to "1" during power turn-on.

The AND array combines 14 external inputs, I_{0-13}, with 8 internal inputs, P_{0-7}, fed back from the State Register to form up to 48 transition terms (AND terms). In addition, P_{0} and P_{1} of the internal State Register are brought off-chip to allow extending the Output Register to 6 bits, if so desired.

All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low-to-High transition of the Clock pulse.

Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to output-enable function, as an additional user programmable option.

Order codes are listed in the Ordering Information Table.

FEATURES

- $\mathrm{f}_{\text {MAX }}=13.9 \mathrm{MHz}-$ PLS167

20MHz - PLS167A

- 20MHz clock rate - PLS167

25MHz clock rate - PLS167A

- Field-Programmable ($\mathrm{Ni}-\mathrm{Cr}$ link)
- 14 True/Complement buffered inputs
- 48 programmable AND gates
- 25 programmable OR gates
-8-bit State Register
- 2-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic " 1 " of all registers
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip Test Array
- Power: 600 mW (typ.)
- TTL compatible
- 3-State outputs
- Single +5V supply
- 24-pin DIP 300mil-wide

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Security locking systems

PIN CONFIGURATIONS

PHILIPS

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-7 \\ 17-23 \end{gathered}$	$I_{1}-I_{13}$	Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
8	10	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercised with standard TTL levels. When I_{0} is held at +10 V , device outputs F_{0-3} and P_{0-1} reflect the contents of State Register bits P_{2-7} (see Diagnostic Output Mode diagram). The contents of flip-flops P_{0-1} and $\mathrm{F}_{\mathrm{O}_{-3}}$ remain unaltered.	Active-High/Low
$\begin{gathered} 9-11 \\ 13 \end{gathered}$	F_{0-3}	Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of Output Register bits Q_{0-3}, when enabled. When I_{0} is held at $+10 \mathrm{~V}, \mathrm{~F}_{0-3}=\left(\mathrm{P}_{2-5}\right)$.	Active-High
14-15	P_{0-1}	Logic/Diagnostic Outputs: Two register bits with shared function as least Significant State Register bits, or most significant Output Register bits. When I_{0} is held at $+10 \mathrm{~V}, \mathrm{P}_{0-1}$ $=\left(\mathrm{P}_{6-7}\right)$.	Active-High
16	PR/OE	Preset or Output Enable Input: A user programmable function: - Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and P_{0-7} and F_{0-3} are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High (H)
		- Output Enable: Provides an Output Enable function to all output buffers.	Active-Low (L)

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

TRUTH TABLE 1, 2, 3, 4, 5, 6

V_{cc}	OPTION		10	CK	S	R	$\mathbf{Q}_{\mathbf{P} / \mathbf{F}}$	F
	PR	OE						
$+5 \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$		$\begin{gathered} +10 \mathrm{~V} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \hline X \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X X	X X X	$\begin{gathered} \hline H \\ Q_{n} \\ Q_{n} \end{gathered}$	$\begin{gathered} H \\ \left(Q_{P}\right)_{n} \\ \left(Q_{F}\right)_{n} \end{gathered}$
		$\begin{aligned} & H \\ & L \\ & \text { L } \end{aligned}$	$\begin{gathered} +10 \mathrm{~V} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & \hline \end{aligned}$	X X X	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & Q_{n} \\ & Q_{n} \\ & Q_{n} \end{aligned}$	$\begin{aligned} & \mathrm{Hi}-\mathrm{Z} \\ & \left(\mathrm{Q}_{\mathrm{P}}\right)_{n} \\ & \left(\mathrm{Q}_{\mathrm{F}}\right)_{n} \end{aligned}$
		$\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	\uparrow \uparrow \uparrow \uparrow \uparrow	L L H H	L H L H	$\begin{gathered} Q_{n} \\ L \\ H \\ \text { IND. } \end{gathered}$	$\begin{gathered} \left(\mathrm{Q}_{\mathrm{F}}\right)_{n} \\ \mathrm{~L} \\ \mathrm{H} \\ \mathrm{IND} . \end{gathered}$
\uparrow	X	X	X	X	X	X	H	

NOTES:

1. Positive Logic:

$$
S / R=T_{0}+T_{1}+T_{2}+\ldots T_{47}
$$

$T_{n}=C\left(I_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{7}\right)$
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. $R=S=$ High is an illegal input condition.
5. $*=H$ or L or +10 V .
6. $\mathrm{X}=$ Don't Care ($\leq 5.5 \mathrm{~V}$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Plastic DIP (300mil-wide)	PLS167N, PLS167AN
28-Pin Plastic Leaded Chip Carrier	PLS167A, PLS167AA

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$V_{\text {D }}$
Vout	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
Iout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

LOGIC FUNCTION

Typical State Transition:

> SET $Q_{0}: S_{0}=\left(\boldsymbol{Q}_{2} \cdot Q_{1} \cdot \boldsymbol{C}_{0}\right) \cdot \bar{A} \cdot \mathbf{B} \cdot \mathbf{C} \ldots$
> $\mathrm{R}_{\mathbf{0}}=0$
> RESET Q_{1} : $S_{1}=0$
> $R_{1}=\left(\sigma_{2} \cdot a_{1} \cdot \sigma_{0}\right) \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \ldots$
> HOLD $\mathrm{C}_{\mathbf{2}}: \mathrm{S}_{\mathbf{2}}=0$
> $\mathrm{R}_{2}=0$

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S / R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencers $(14 \times 48 \times 6)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	Lumis			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{HH}	High	$\mathrm{V}_{\mathrm{CC}}=$ Max	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{1}	Clamp ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$				
V_{OH}	High ${ }^{4}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			v
V_{OL}	Low ${ }^{5}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.45	V
Input current						
I_{H}	High	$\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$		<1	80	$\mu \mathrm{A}$
ILL	Low	$\mathrm{V}_{1 \mathrm{~N}}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
$1 / 2$	Low (CK input)	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-50	-250	$\mu \mathrm{A}$
Output current						
lo(off)	Hi-Z state ${ }^{5,6}$	$\mathrm{V}_{\text {cC }}=\mathrm{Max}$	-15	1	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$				
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}{ }^{\text {, }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-70	mA
Icc	$V_{\text {cc }}$ supply current ${ }^{8}$	$V_{C C}=$ Max		120	180	mA
Capacitance ${ }^{6}$						
		$\mathrm{V}_{\text {cC }}=5.0 \mathrm{~V}$				
$\mathrm{C}_{1 \times}$	Input	$\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$		8		pF
Cout	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		10		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with V_{IL} applied to $\overline{O E}$ and a logic high stored, or with V_{IH} applied to PR.
5. Measured with a programmed logic condition for which the output is at a low logic level, and $V_{\mathbb{I L}}$ applied to PR/OE Output sink current is supplied through a resistor to $V_{C C}$.
6. Measured with $V_{\mathbb{I H}}$ applied to PR/OE.
7. Duration of short circuit should not exceed 1 second
8. $I_{C C}$ is measured with the $P R / O E$ input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Sequencers $(14 \times 48 \times 6)$

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75^{\circ} \mathrm{CV} \leq V_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	LIMITS						UNIT
				PLS167			PLS167A			
				Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Pulse width ${ }^{3}$										
${ }_{\text {tekh }}$	Clock ${ }^{2}$ High	CK +	CK -	25	15		20	15		ns
$\mathrm{t}_{\text {ckL }}$	Clock Low	CK-	CK +	25	15		20	15		ns
${ }^{\mathrm{t}_{\mathrm{CKP}}{ }^{\text {P }} \mathrm{B}}$	Period (without Complement Array)	Output +/-	Input +/-	80	40		50	40		ns
${ }^{\mathrm{t}_{\mathrm{CKP} 2} \mathrm{~B}}$	Period (with Complement Array)	Output + /-	Input +/-	120	60		80	50		ns
tPRH	Preset pulse	PR +	PR -	25	15		25	15		ns
Setup time ${ }^{3}$										
$\mathrm{t}_{1 / 1} \mathrm{~A}$	Input	Input \pm	CK +	60			40			ns
$\mathrm{t}_{1 / 1} \mathrm{~B}$	Input	Input \pm	CK +	50			30			ns
$\mathrm{t}_{151} \mathrm{C}$	Input	Input \pm	CK +	42			N/A			ns
$\mathrm{t}_{152} \mathrm{~A}$	Input (through Complement Array)	Input \pm	CK +	90			70			ns
$\mathrm{t}_{152} \mathrm{~B}$	Input (through Complement Array)	Input	CK +	80			60			ns
$\mathrm{t}_{\mathbf{1 S 2}} \mathrm{C}$	Input (through Complement Array)	Input	CK +	72			N/A			ns
tvs	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	CK-	0	-10		0	-10		ns
$t_{\text {PRS }}$	Preset	PR-	CK-	0	-10		0	-10		ns
Hold time										
$\mathbf{t}_{\mathbf{H}}$	Input	CK +	Input \pm	5	-10		0	-5		ns
Propagation delay										
${ }^{\text {t }}$ CKO	Clock	CK +	Output \pm		15	30		15	20	ns
toe	Output enable	OE-	Output -		20	30		20	30	ns
$\mathrm{t}_{\text {OD }}$	Output disable	OE +	Output +		20	30		20	30	ns
$t_{\text {PR }}$	Preset	PR +	Output +		18	30		18	30	ns
tPPR	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	Output +		0	10		0	10	ns
Frequency of operation ${ }^{3}$										
$f_{\operatorname{MAX}} C$ $f_{\operatorname{MAX}} C$	Without Complement Array With Complement Array					13.9 9.8			20.0 12.5	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 30 \mathrm{~ns}$.
3. See "Speed vs. OR Loading" diagrams.

TEST LOAD CIRCUIT

(includes
SCOPE AND JIG
CAPACITANCE)

VOLTAGE WAVEFORMS

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\mathrm{CKH}}$	Width of input clock pulse.
${ }^{\text {t }}$ CKL	Interval between clock pulses.
tckP1	Clock period - when not using Complement array.
${ }_{\text {t }}^{\text {S }}$ 1	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {CKP2 }}$	Clock period - when using Complement array.
$\mathrm{t}_{\text {IS } 2}$	Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array).
$t_{\text {vs }}$	Required delay between V_{CC} (after power-on) and negative transition of clock preceding first reliable clock pulse.
$t_{\text {PRS }}$	Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse.
$t_{\text {IH }}$	Required delay between positive transition of clock and end of valid input data.
${ }^{\text {teko }}$	Delay between positive transition of clock and when outputs become valid (with PR/OE Low).
toe	Delay between beginning of Output Enable Low and when outputs become valid.
too	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
${ }^{\text {t SRE }}$	Delay between input I_{0} transition to Diagnostic mode and when the outputs reflect the contents of the State Register.
${ }^{\text {t }}$ SRD	Delay between input I_{0} transition to Logic mode and when the outputs reflect the contents of the Output Register.
$t_{\text {PR }}$	Delay between positive transition of Preset and when outputs become valid at "1".
$\mathrm{t}_{\text {PPR }}$	Delay between $V_{C C}$ (after power-on) and when outputs become preset at " 1 ".
tPRH	Width of preset input pulse.
$f_{\text {max }}$	Maximum clock frequency.

TIMING DIAGRAMS (Continued)

SPEED VS. "OR" LOADING

The maximum frequency at which the PLS can be clocked while operating in sequential mode is given by:

$$
\left(1 / f_{\mathrm{MAX}}\right)=\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}
$$

This frequency depends on the number of transition terms T_{n} used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects $\mathrm{t}_{\text {IS }}$, due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of $\mathrm{t}_{\mathrm{S} 1}$ with the number of terms connected per OR.

The PLS167 AC electrical characteristics contain three limits for the parameters $\mathrm{t}_{\mathrm{iS} 1}$ and $\mathrm{t}_{\mathrm{IS} 2}$ (refer to Figure 1). The first, $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}$ is guaranteed for a device with 48 terms connected to any OR line. $t_{I_{18}}$ is guaranteed for a device with 32 terms connected to any OR line. And $\mathrm{t}_{\mathrm{IS} 1 \mathrm{C}}$ is guranteed for a device with 24 terms conntected to any OR line.
The three otherentries in the $A C$ table, $t_{\mid S 2} A$, B, and C are corresponding 48,32 , and 24 term limits when using the on-chip Complement Array.
The PLS167A AC electrical characteristics contain two limits for the parameters $\mathrm{t}_{\mathrm{S} 1}$ and $\mathrm{t}_{\text {IS2 }}$ (refer to Figure 2). The first, $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}$ is guaranteed for a device with 24 terms connected to any OR line. $\mathrm{t}_{\mathrm{S} 1 \mathrm{~B}}$ is guaranteed for a device with 16 terms connected to any OR line.

Figure 1. PLS167 $\mathrm{t}_{\mathrm{IS} 1}$ vs. Terms/OR Connected

Figure 2. PLS167A $\mathrm{t}_{\mathrm{IS} 1} \mathrm{vs}$. Terms/OR Connected

The two other entries in the $A C$ table, $t_{I S 2} A$ and B are corresponding 24 and 16 term limits when using the on-chip Complement Array.
The worst case of $t_{I S}$ for a given application can be determined by identifying the OR line with the maximum number of T_{n} connections. This can be done by referring to the interconnect pattern in the PLS logic diagram, typically illustrated in Figure 3, or by counting the maximum number of " H^{\prime} or "L" entries in one of the columns of the device Program Table.
This number plotted on the curve in Figure 1 or 2 will yield the worst case $t_{i S}$ and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

LOGIC PROGRAMMING

PLSi67iA logic designs can de generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS167/A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/OE OPTION - (P/E)

PROGRAMMING:
The PS167/A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

ACTION	CODE
PROPAGATE	\bullet

ACTION	CODE
TRANSPARENT	-

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if both the true and complement of any input (I, P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Field-Programmable Logic Sequencers $(14 \times 48 \times 6)$

FPLS PROGRAM TABLE

NOTES:

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an " H " for the P/E option, exits in the table, shown BLANK instead for clarity.
2. Unused $\mathrm{C}_{\mathrm{n}}, \mathrm{I}_{\mathrm{m}}$, and P_{s} bits are normally programmed Don't Care (-).
3. Unused Transition Terms can be left for future code modification or programmed as (-) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmers

Field-Programmable Logic Sequencers ($14 \times 48 \times 6$)

TEST ARRAY

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.
The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to I_{0-13} as shown in the test circuit timing diagram.

State Diagram
AF01821s

TC01592S

FPLS Under Test

OPTION (P/E)											
OR											
next State (Ns)								OUTPUT (Fr)			
7	6	5	4	3	2	1	0	3	2	1	0
L	L	L	L	L	L	L	L	L	L	L	L
H	H	H	H	H	H	H	H	H	H	H	H

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.

Test Array Deleted

Signetics

Document No.	$853-0322$
ECN No.	97853
Date of Issue	October 11, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLS168 and tje PLS168A are bipolar, Programmable Logic State machines of the Mealy type. They contain logic AND/ OR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of $10 \mathrm{Q}_{\mathrm{p}}$, and $4 Q_{F}$ edge-triggered, clocked S/R flipflops, with an Asynchronous Preset Option.
All flip-flops are unconditionally preset to " 1 " during power turn-on.

The AND array combines 12 external inputs, I_{0-11}, with 10 internal inputs, P_{0-9}, fed back from the State Register to form up to 48 transition terms (AND terms). In addition, $P_{0}-P_{3}$ of the internal State Register are brought off-chip to allow extending the Output Register to 8 bits, if so desired.

All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-output commands to their respective registers on the Low-to-High transition of the Clock pulse.

Both True and Complement transition terms can be generated by optional use of the internal variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to output-enable function, as an additional user programmable option.

Order codes are listed in the Ordering Information Table.

PLS168/A
 Field-Programmable Logic
 Sequencers $(12 \times 48 \times 8)$

FEATURES

- $\mathrm{f}_{\text {MAX }}=13.9 \mathrm{MHz}-$ PLS168

20MHz - PLS168A

- 20MHz clock rate - PLS168

25MHz clock rate - PLS168A

- Field-Programmable (Ni-Cr link)
- 12 True/Complement buffered inputs
- 48 programmable AND gates
- 29 programmable OR gates
- 10-bit State Register
- 4-bit shared State/Output Register
- 4-bit Output Register
- Transition Complement Array
- Programmable Asynchronous Preset/Output Enable
- Positive edge-triggered clock
- Power-on preset to logic " 1 " of all registers
- Automatic logic "HOLD" state via S/R flip-flops
- On-chip Test Array
- Power: 600mW (typ.)
- TTL compatible
- 3-State outputs
- Single +5V supply
- 24-pin DIP 300mil-wide

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Security locking systems
- Counters
- Shift registers

PIN CONFIGURATIONS

Philips Components

PHILIPS

Field-Programmable Logic Sequencers ($12 \times 48 \times 8$)

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-6 \\ 18-23 \end{gathered}$	$I_{1}-I_{11}$	Logic Inputs: The 11 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
7	10	Logic/Diagnostic Input: A 12th external logic input to the AND array, as above, when exercised with standard TTL levels. When I_{0} is held at +10 V , device outputs $F_{2}-F_{3}$ and $\mathrm{P}_{0-} \mathrm{P}_{3}$ reflect the contents of State Register bits P_{4-9} (see Diagnostic Output Mode diagram). The contents of flip-flops P_{0-1} and F_{0-3} remain unaltered.	Active-High/Low
13-16	P_{0-3}	Logic/Diagnostic Outputs: Four device outputs which normally reflect the contents of State Register bits P_{0-3}. When I_{0} is held at +10 V these pins reflect $\left(\mathrm{P}_{6}-\mathrm{P}_{9}\right)$.	Active-High
10-11	$\mathrm{F}_{2}-\mathrm{F}_{3}$	Logic/Diagnostic Outputs: Two register bits ($F_{2}-F_{3}$) which reflect Output register bits $\left(Q_{2}-Q_{3}\right)$. When I_{0} is held at +10 V , these pins reflect $\left(P_{4}-P_{5}\right)$.	Active-High
17	PR/OE	Preset or Output Enable Input: A user programmable function:	
		- Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and P_{0-9} and F_{0-3} are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High (H)
		- Output Enable: Provides an Output Enable function to all output buffers.	Active-Low (L)
8, 9	$F_{0}-F_{1}$	Logic Output: Two device outputs which reflect Output Registers $Q_{0}-Q_{1}$. When I_{0} is haeld at $+10 \mathrm{~V}, \mathrm{~F}_{0}-\mathrm{F}_{1}=$ Logic "1".	

Field-Programmable Logic Sequencers ($12 \times 48 \times 8$)
PLS168/A

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencers $(12 \times 48 \times 8)$

TRUTH TABLE 1, 2, 3, 4, 5, 6

V_{cc}	OPTION		10	CK	\mathbf{S}	R	$Q_{\text {P/F }}$	F
	PR	OE						
$+5 \mathrm{~V}$	H		*	X	X	X	H	H
	L		+10V	X	X	X	Q_{n}	$\left(Q_{P}\right)_{n}$
	L		X	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}$
		H		X	X	X	Q_{n}	$\mathrm{Hi}-\mathrm{Z}$
		L	$+10 \mathrm{~V}$	X	X	X	Q_{n}	$\left(Q_{p}\right)_{n}$
		L	X	X	X	X	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{n}$
		L	X	\uparrow	L	L	Q_{n}	$\left(\mathrm{Q}_{\mathrm{F}}\right)_{\mathrm{n}}$
		L	X	\uparrow	L	H	L	L
		L	X	\uparrow	H	L	H	H
		L	X	\uparrow	H	H	IND.	IND.
\uparrow	X	X	X	X	X	X	H	

NOTES:

1. Positive Logic:
$\mathrm{S} / \mathrm{R}=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots+\mathrm{T}_{47}$
$T_{n}=C\left(I_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{g}\right)$
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. $R=S=$ High is an illegal input condition.
5. ${ }^{*}=\mathrm{H}$ or L or +10 V .
6. $\mathrm{X}=$ Don't Care $(\leq 5.5 \mathrm{~V})$

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Plastic DIP (300mil-wide)	PLS168N, PLS168AN
28-Pin Plastic Leaded Chip Carrier	PLS168A, PLS168AA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {Out }}$	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

LOGIC FUNCTION

Typical State Transition:

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S/R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencers $(12 \times 48 \times 8)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{iH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Min}$			0.8	V
V_{1}	Clamp ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High ${ }^{4}$	$V_{C C}=M i n$ $I_{O H}=-2 m A$	2.4			V
V_{OL}	Low ${ }^{5}$	$\mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.45	V
Input current						
I_{H}	High	$\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$		<1	25	$\mu \mathrm{A}$
ILL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
ILL	Low (CK input)	$\mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V}$		-50	-250	$\mu \mathrm{A}$
Output current						
lo(off)	$\mathrm{Hi-Z}$ state ${ }^{6}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	-15	1	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$				
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}{ }^{\text {, }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		120	180	mA
Capacitance ${ }^{6}$						
		$\mathrm{V}_{\text {cC }}=5.0 \mathrm{~V}$				
$\mathrm{Cin}_{\text {IN }}$	Input	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
Cout	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		10		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with V_{IL} applied to $\overline{O E}$ and a logic high stored, or with $\mathrm{V}_{\mathbb{H}}$ applied to $P R$.
5. Measured with a programmed logic condition for which the output is at a low logic level, and V_{IL} applied to $\mathrm{PR} / \mathrm{OE}$ Output sink current is supplied through a resistor to V_{Cc}.
6. Measured with $\mathrm{V}_{\mathbb{H}}$ applied to PR/OE.
7. Duration of short circuit should not exceed 1 second.
8. I_{CC} is measured with the PR/OE input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 p F, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75^{\circ} \mathrm{CV} \leq V_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	LIMITS						UNIT
				PLS168			PLS168A			
				Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Pulse width ${ }^{3}$										
${ }^{\text {t }}$ CKH	Clock ${ }^{2}$ High	CK +	CK -	25	15		20	15		ns
${ }_{\text {tckl }}$	Clock Low	CK-	CK +	25	15		20	15		ns
${ }^{\mathrm{t}_{\mathrm{CKP} 1} \mathrm{~B}}$	Period (without Complement Array)	Input +/-	Output +/-	80	40		50	40		ns
${ }^{\mathrm{t}_{\mathrm{CKP2}} \mathrm{~B}^{\text {B }}}$	Period (with Complement Array)	Input +/-	Output +/-	120	60		80	50		ns
tpRH	Preset pulse	PR +	PR -	25	15		25	15		ns
Setup time ${ }^{3}$										
$\mathrm{t}_{1 S} 1$	Input	Input \pm	CK +	60			40			ns
$\mathrm{t}_{\text {IS } 1} \mathrm{~B}$	Input	Input \pm	CK +	50			30			ns
$\mathrm{t}_{151} \mathrm{C}$	Input	Input \pm	CK +	42			N/A			ns
$\mathrm{t}_{122} \mathrm{~A}$	Input (through Complement Array)	Input \pm	CK +	90			70			ns
$\mathrm{t}_{152} B$	Input (through Complement Array)	Input	CK +	80			60			ns
$\mathrm{t}_{152} \mathrm{C}$	Input (through Complement Array)	Input	CK +	72			N/A			ns
tvs	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	CK-	0	-10		0	-10		ns
tpRS	Preset	PR -	CK-	0	-10		0	-10		ns
Hold time										
t_{H}	Input	CK +	Input \pm	5	-10		5	-10		ns
Propagation delay										
${ }^{\text {t }}$ ¢о	Clock	CK +	Output \pm		15	30		15	20	ns
${ }^{\text {toe }}$	Output enable	OE-	Output -		20	30		20	30	ns
t_{O}	Output disable	$\mathrm{OE}+$	Output +		20	30		20	30	ns
$t_{\text {PR }}$	Preset	PR +	Output +		18	30		18	30	ns
tppr	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	Output +		0	10		0	10	ns
Frequency of operation ${ }^{3}$										
$f_{\text {MAX }} \mathrm{C}$ $f_{\text {max }} \mathrm{C}$	Without Complement Array With Complement Array					13.9 9.8			20.0 12.5	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 30 \mathrm{~ns}$.
3. See "Speed vs. OR Loading" diagrams.

TEST LOAD CIRCUIT

INCLUDES
SCOPE AND JIG
CAPACITANCE)

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

WF05404S
Power-On Preset

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\mathrm{CKH}}$	Width of input clock pulse.
$\mathrm{t}_{\text {CKL }}$	Interval between clock pulses.
${ }^{\text {tCKP1 }}$	Clock period - when not using Complement array.
$\mathrm{t}_{\text {S } 1}$	Required delay between beginning of valid input and positive transition of clock.
${ }^{\text {tCKP2 }}$	Clock period - when using Complement array.
$\mathrm{t}_{\text {S } 2}$	Required delay between beginning of valid input and positive transition of clock, when using optional Complement Array (two passes necessary through the AND array).
tvs	Required delay between V_{cc} (after power-on) and negative transition of clock preceding first reliable clock pulse.
tPRS	Required delay between negative transition of asynchronous Preset and negative transition of clock preceding first reliable clock pulse.
$\mathrm{t}_{1 \mathrm{H}}$	Required delay between positive transition of clock and end of valid input data.
${ }_{\text {t }}^{\text {cko }}$	Delay between positive transition of clock and when outputs become valid (with PR/OE Low).
${ }^{\text {toe }}$	Delay between beginning of Output Enable Low and when outputs become valid.
tod	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
${ }^{\text {t }}$ SRE	Delay between input l_{0} transition to Diagnostic mode and when the outputs reflect the contents of the State Register.
${ }_{\text {t }}^{\text {SRD }}$	Delay between input I_{0} transition to Logic mode and when the outputs reflect the contents of the Output Register.
${ }_{\text {tPR }}$	Delay between positive transition of Preset and when outputs become valid at "1".
$t_{\text {PPR }}$	Delay between $\mathrm{V}_{\text {cc }}$ (after power-on) and when outputs become preset at " 1 ".
tPRH	Width of preset input pulse.
$f_{\text {MAX }}$	Maximum clock frequency.

Field-Programmable Logic Sequencers ($12 \times 48 \times 8$)

TIMING DIAGRAMS (Continued)

SPEED VS. "OR" LOADING

The maximum frequency at which the PLS can be clocked while operating in sequential mode is given by:

$$
\left(1 / f_{\mathrm{MAX}}\right)=\mathrm{t}_{\mathrm{CY}}=\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{CKO}}
$$

This frequency depends on the number of transition terms T_{n} used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects $t_{\text {IS }}$, due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of $\mathrm{t}_{\mathrm{IS}_{1}}$ with the number of terms connected per OR.

The PLS168 AC electrical characteristics contain three limits for the parameters $\mathrm{t}_{\mathrm{IS} 1}$ and $\mathrm{t}_{1 \mathrm{~S} 2}$ (refer to Figure 1). The first, $\mathrm{t}_{\mathrm{S} 1 \mathrm{~A}}$ is guaranteed for a device with 48 terms connected to any OR line. $\mathrm{t}_{\mathrm{IS} 18}$ is guaranteed for a device with 32 terms connected to any OR line. And $\mathrm{t}_{\mathrm{S} 1 \mathrm{C}}$ is guranteed for a device with 24 terms conntected to any OR line.
The three otherentries in the $A C$ table, $t_{I S 2} A$, B, and C are corresponding 48,32 , and 24 term limits when using the on-chip Complement Array.

The PLS168A AC electrical characteristics contain two limits for the parameters $\mathrm{t}_{\mathrm{IS} 1}$ and t_{152} (refer to Figure 2). The first, $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}$ is guaranteed for a device with 24 terms connected to any OR line. $\mathrm{t}_{\mathrm{IS} 18}$ is guaranteed for a device with 16 terms connected to any OR line.

.
Figure 1. PLS168 $\mathrm{t}_{\mathrm{IS} 1}$ vs. Terms/OR Connected

Figure 2. PLS168A $\mathrm{t}_{\mathrm{IS} 1} \mathrm{vs}$. Terms/OR Connected

The two other entries in the AC table, $\mathrm{t}_{\mathrm{IS} 2} \mathrm{~A}$ and B are corresponding 24 and 16 term limits when using the on-chip Complement Array.
The worst case of $t_{I S}$ for a given application can be determined by identifying the OR line with the maximum number of T_{n} connections. This can be done by referring to the interconnect pattern in the PLS logic diagram, typically illustrated in Figure 3, or by counting the maximum number of " H " or " L " entries in one of the columns of the device Program Table.

This number plotted on the curve in Figure 1 or 2 will yield the worst case $t_{I S}$ and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.

Figure 3. Typical OR Array Interconnect Pattern

LOGIC PROGRAMMING

PLS168/A logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS168/A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/OE OPTION - (P/E)

PROGRAMMING:

The PS168/A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

STATE	CODE	STATE	CODE	STATE	CODE	STATE	CODE
INACTIVE ${ }^{\text {1, } 2}$	0	I, P	H	I, $\overline{\mathrm{P}}$	L	DON'T CARE	-

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if both the true and complement of any input (l or P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Field-Programmable Logic Sequencers $(12 \times 48 \times 8)$

FPLS PROGRAM TABLE

Field-Programmable Logic Sequencers $(12 \times 48 \times 8)$

TEST ARRAY

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.
The array consists of test transition terms 48 and 49, factory programmed as shown below.
Testing is accomplished by clocking the FPLS and applying the proper input sequence to I_{0-11} as shown in the test circuit timing diagram.

State Diagram

TC01593S
FPLS Under Test

AND																							remarks	OPTION (PE)												
																							OR													
T E R	c_{n}	input(im)											present state (ps) (P_{x})											$\begin{gathered} \text { NEXT STATE (Ns) } \\ \left(P_{x}\right) \end{gathered}$					OUTPUT (Fr)							
$\stackrel{R}{\mathrm{M}}$		1		9	8	$7{ }^{7} 6$	5	4	3	2	1	0	9	8	7	5	5	4	3	2	1	0				7	5	5				c	3			0
48	A	H	H	H	,	HH	H	H	4	H	H	H	H	H	H	H	H	H	H	H	H	H		L	L	L	L	L L	L	L	L	L	L	L	L	
49	\cdot	L	L	L	L	L L	L	L		L	L	L	L	L	L	L	L	L	L	L	L	L		H]	H	H	H	H : H	H	H	H	H	H	H	H	

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.

Test Array Deleted

Signetics

Document No.	$853-0862$
ECN No.	93255
Date of Issue	May 11, 1988
Status	Product Specification
Programmabie Logic Devices	

DESCRIPTION

The PLS179 is a 3-State output, registered logic element combining AND/OR gate arrays with clocked J-K flip-flops. These J-K flip-flops are dynamically convertible to D-type via a "foldback" inverting buffer and control gate F_{C}. It features 8 registered I/O outputs (F) in conjunction with 4 bidirectional I / O lines (B). There are 8 dedicated inputs. These yield variable I/O gate and register configurations via control gates (D, L) ranging from 20 inputs to 12 outputs.

The AND/OR arrays consist of 32 logic AND gates, 13 control AND gates, and 21 OR gates with fusible link connections for programming I/Opolarity and direction. All AND gates are linked to 8 inputs (I), bidirectional I/O lines (B), internal flip-flop outputs (Q), and Complement Array output (C). The Complement Array consists of a NOR gate optionally linked to all AND gates for generating and propagating complementary AND terms.

PLS179
 Field-Programmable Logic Sequencer $(20 \times 45 \times 12)$

FEATURES

- $\mathrm{f}_{\text {MAX }}=18.2 \mathrm{MHz}$
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 8 dedicated inputs
- 13 control gates
- 32 AND gates
- 21 OR gates
- 45 product terms:
- 32 logic terms
- 13 control terms
- 4 bidirectional I/O lines
- 8 bidirectional registers
- J/K, T, or D-type flip-flops
- Asynchronous Preset/Reset
- Complement Array
- Active-High or -Low outputs
- Programmable OE control
- Positive edge-triggered clock
- Power-on reset on flip-flop ($F_{n}=$ "1")
- Input loading: $-100 \mu \mathrm{~A}$ (max.)
- Power dissipation: 750 mW (typ.)
- TTL compatible
- 3-State outputs

PIN CONFIGURATIONS

APPLICATIONS

- Random sequential logic
- Synchronous up/down counters
- Shift registers
- Bidirectional data buffers
- Timing function generators
- System controllers/synchronizers
- Priority encoder/registers

Philips Components

PHILIPS

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

FUNCTIONAL DIAGRAM

On-chip T/C buffers couple either True (I, B, Q) or Complement (I, B, \bar{Q}, \bar{C}) input polarities to all AND gates, whose outputs can be optionally linked to all OR gates. Any of the 32 AND gates can drive bidirectional I/O lines (B), whose output polarity is individually programmable through a set of Ex-OR gates for implementing AND-OR or AND-NOR logic functions. Similarly, any of the 32 AND gates can drive the

J-K inputs of all flip-flops. Four AND gates have been dedicated for the Asynchronous Preset/Reset functions.

All flip-flops are positive edge-triggered and can be used as input, output or I/O (for interfacing with a bidirectional data bus) in conjunction with load control gates (L), steering inputs (I),
(B), (Q) and programmable output select lines (E).

The PLS179 is field programmable, enabling the user to quickly generate custom patterns using standard programming equipment.

Order codes are listed in the Ordering Information Table.

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. $\overline{O E}$ is always enabled.
2. Preset and Reset are always disabled.
3. All transition terms are disabled.
4. All flip-flops are in D-mode unless otherwise programmed to J-K only or J-K or D (controlled).
5. All B pins are inputs and all F pins are outputs unless otherwise programmed.

LOGIC FUNCTION

NOTE:

Similar logic functions are applicable for D and T mode flip-flops.

FLIP-FLOP TRUTH TABLE

OE	L	CK	P	R	J	K	Q	F
H								H/Hi-Z
L	X	X	X	X	X	X	L	H
L	X	X	H	L	X	X	H	L
L	X	X	L	H	X	X	L	H
L	L	\uparrow	L	L	L	L	Q	Q
L	L	\uparrow	L	L	L	H	L	H
L	L	\uparrow	L	L	H	L	H	L
L	L	\uparrow	L	L	H	H	Q	Q
H	H	\uparrow	L	L	L	H	L	H^{*}
H	H	\uparrow	L	L	H	L	H	L* *
+10V	X	\uparrow	X	X	L	H	L	H $^{* *}$
	X	\uparrow	X	X	H	L	H	L*** 7

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2} \ldots \ldots \ldots \ldots \ldots . T_{31}$ $T_{n}=\mathbf{C} \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right)$. $\left(\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \cdot \ldots\right.$)
2. \uparrow denotes transition from Low to High level.
3. $X=$ Don't care
4. ${ }^{*}=$ Forced at F_{n} pin for loading the $J-K$ flipflop in the input mode. The load control term, L_{n} must be enabled (HIGH) and the p -terms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. **=Forced at F n pin to load J-K flip-flop independent of program code (Diagnostic mode), 3-State B outputs.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Plastic DIP (300mil-wide)	PLS179N
28-Pin Plastic Leaded Chip Carrier	PLS179A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$V_{D C}$
Vout	Output voltage		+5.5	$V_{D C}$
IN	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	Lamts			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{H}	High	$\mathrm{V}_{\text {cC }}=\mathrm{Max}$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
$\mathrm{V}_{1 \mathrm{c}}$	Clamp	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low ${ }^{5}$	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$		0.35	0.5	V
Input current						
${ }_{1 H}$	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		<1	40	$\mu \mathrm{A}$
ILI	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$		-10	-100	$\mu \mathrm{A}$
Output current						
Io(off)	Hi-Z state ${ }^{4,7}$	$V_{C C}=$ Max, $V_{\text {OUT }}=5.5 \mathrm{~V}$		1	80	$\mu \mathrm{A}$
		$V_{\text {OUT }}=0.45 \mathrm{~V}$			-140	$\mu \mathrm{A}$
los	Short circuit ${ }^{3}$, 5	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$V_{\text {CC }}$ supply current ${ }^{6}$	$\mathrm{V}_{\text {cc }}=$ Max		150	210	mA
Capacitance						
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {OUt }}$	Output	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with V_{iH} applied to $\overline{\mathrm{OE}}$.
5. Duration of short circuit should not exceed 1 second.
6. Icc is measured with the $\overline{O E}$ input grounded, all other inputs at 4.5 V and the outputs open.
7. Leakage values are a combination of input and output leakage.

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless atherwise specified.

Input Pulses

TEST LOAD CIRCUIT

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75^{\circ} \mathrm{CV} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	TEST CONDITION	LIMITS			UNIT
					Min ${ }^{5}$	Typ ${ }^{1}$	Max	
Pulse width ${ }^{3}$								
${ }^{\text {t }}$ CKH	Clock ${ }^{2}$ High	CK +	CK-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
${ }^{\text {t }}$ KL	Clock Low	CK -	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	20	15		ns
${ }_{\text {t }}^{\text {CKP }}$	Period	CK +	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
$t_{\text {PRH }}$	Preset/Reset pulse	(1, B) -	(I, B) +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
Setup time								
$\mathrm{t}_{\text {IS } 1}$	Input	(I, B) \pm	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	35	30		ns
$\mathrm{t}_{\text {S32 }}$	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
$\mathrm{t}_{\text {IS3 }}$	Input (through Complement Array) ${ }^{4}$	(I, B) \pm	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	55	45		ns
Hold time								
$\mathrm{t}_{\mathbf{H 1}}$	Input	(I, B) \pm	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	0	-5		ns
$\mathrm{t}_{\mathrm{H} 2}$	Input (through F_{n})	$\mathrm{F} \pm$	CK +	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	15	10		ns
Propagation delay								
$\mathrm{t}_{\text {ско }}$	Clock	CK \pm	$\mathrm{F} \pm$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		15	20	ns
$t_{\text {tel }}$	Output enable	OE-	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
$\mathrm{t}_{0 \mathrm{D} 1}$	Output disable ${ }^{3}$	$\overline{O E}+$	F+	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
$t_{\text {PD }}$	Output	($1, B) \pm$	$\mathrm{B} \pm$	$C_{L}=30 \mathrm{pF}$		25	35	ns
toe2	Output enable	($1, B)+$	B \pm	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		20	30	ns
$\mathrm{t}_{\mathrm{OD} 2}$	Output disable ${ }^{3}$	(I, B) -	B +	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		20	30	ns
$t_{\text {PRO }}$	Preset/Reset	(I, B) +	$\mathrm{F} \pm$	$C_{L}=30 \mathrm{pF}$		35	45	ns
$\mathrm{t}_{\text {PPR }}$	Power-on preset	$\mathrm{V}_{\mathrm{CC}+}+$	F-	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		0	10	ns

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 10 \mathrm{~ns}$.
3. Measured at $\mathrm{V}_{T}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
4. When using the Complement Array $\mathrm{t}_{\mathrm{CKP}}=75 \mathrm{~ns}$ (min).
5. Limits are guaranteed with 12 product terms maximum connected to each sum term line.

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {t }}$ CKH	Width of input clock pulse.
${ }^{\text {cheL }}$	Interval between clock pulses.
${ }^{\text {t }}$ CKP	Clock period.
tpri	Width of preset input pulse.
${ }^{\text {t }}$ S 1	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {IS } 2}$	Required delay between beginning of valid input forced at flip-flop output pins, and positive transition of clock.
$\mathrm{t}_{1 \mathrm{H} 1}$	Required delay between positive transition of clock and end of valid input data.
$\mathrm{t}_{1 \mathrm{H} 2}$	Required delay between positive transition of clock and end of valid input data forced at flip-flop output pins.
${ }^{\text {teko }}$	Delay between positive transition of clock and when outputs become valid (with OE Low).
toE1	Delay between beginning of Output Enable Low and when outputs become valid.
${ }^{\text {toD1 }}$	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
tppr	Delay between $V_{C C}$ (after power-on) and when flip-flop outputs become preset at "1" (internal Q outputs at " 0 ").
$t_{\text {PD }}$	Propagation delay between combinational inputs and outputs.
toe2	Delay between predefined Output Enable High, and when combinational Outputs become valid.
${ }^{\text {toD2 }}$	Delay between predefined Output Enable Low and when combinational Outputs are in the OFF-State.
$t_{\text {PRo }}$	Delay between positive transition of predefined Preset/Reset input, and when flip-flop outputs become valid.

TIMING DIAGRAMS (Continued)

Asynchronous Preset/Reset

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

LOGIC PROGRAMMING

PLS179 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.

PLS179 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (!, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.
"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

"OR" ARRAY - (F-F CONTROL MODE)

Notes on following page.

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)
"AND" ARRAY - $\left(Q_{N}=J-K\right.$ Type $)$

"OR" ARRAY - (S or B)

"EX-OR" ARRAY - (B)

"OE" ARRAY - (E)

${ }^{\circ} \mathrm{E}$

ACTION	CODE
DISABLE	-

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if any one of the I, B, or Q link pairs are left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=\bullet$ are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates ($L, P, R, D)_{n}$ due to their lack of "OR" array links.

Field-Programmable Logic Sequencer ($20 \times 45 \times 12$)

FPLS PROGRAM TABLE

Signetics

Document No.	
ECN No.	
Date of Issue	January 1989
Status	Preliminary Specification
Programmable Logic Devices	

PLC42VA12 CMOS Programmable Logic
 Sequencer ($42 \times 105 \times 12$)

FEATURES

- High-speed EPROM-based CMOS Multi-Function PLD
- Super set of 22V10, 32VX10 and 20RA10 PAL® ICs
- Two fully programmable arrays eliminate "P-term Depletion"
- Up to 64 P-terms per OR function
- Improved Output Macro Cell Structure
- Individually programmable as:
* Registered Output
* Registered Input
* Combinatorial I/O with Buried Register
- Bypassed Registers are 100\% functional with separate input and feedback paths
- Individual Output Enable control functions
* From pin or AND array
- Eleven clock sources
- Register Preload and Diagnostic Test Mode Features
- Security fuse

APPLICATIONS

- Mealy or Moore State Machines
- Synchronous
- Asynchronous
- Multiple, independent State Machines
- 10-bit ripple cascade
- Sequence recognition
- Bus Protocol generation
- Industrial control
- A/D Scanning

PIN CONFIGURATIONS

Philips Components

PHILIPS

FUNCTIONAL DIAGRAM

CMOS Programmable Logic Sequencer $(42 \times 105 \times 12)$	PLC42VA12

LOGIC DIAGRAM

NOTE:
*) Programmable Connection

CMOS Programmable Logic

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
24-Pin Ceramic Dual In-Line with window, Reprogrammable (300mil-wide)	PLC42VA12FA
24-Pin Plastic Dual In-Line, One Time Programmable (300mil-wide)	PLC42VA12N
28-Pin Plastic Leaded Chip Carrier, One Time Programmable (450mil-wide)	PLC42VA12A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	-0.5 to +7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{I}}$	Input voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-10 to +10	mA
$\mathrm{l}_{\mathrm{OUT}}$	Output currents	+24	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

AC TEST CONDITIONS

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified. Input Pulses

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LMMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$V_{C C}=M i n$	-0.3		0.8	V
V_{H}	High	$\mathrm{V}_{\text {cc }}=\mathrm{Max}$	2.0		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage ${ }^{2}$						
$\mathrm{V}_{\text {OL }}$	Low	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & \mathrm{loL}=16 \mathrm{~mA} \end{aligned}$			0.5	V
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4			v
Input current						
I_{1}	Low	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$			-10	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$			10	$\mu \mathrm{A}$
Output current						
lo(off)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & V_{\text {OUT }}=V_{\mathrm{CC}} \\ & V_{\text {OUT }}=G N D \end{aligned}$			$\begin{gathered} 10 \\ -10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
los	Short-circuit ${ }^{3} 6$	$\mathrm{V}_{\text {OUT }}=$ GND			-130	mA
Icc	$\mathrm{V}_{\text {cC }}$ supply current (Active) ${ }^{4}$	lout $=0 \mathrm{~mA}, \mathrm{f}=15 \mathrm{MHz}^{5}, \mathrm{~V}_{\text {cc }}=$ Max			90	mA
Capacitance						
C_{1}	Input	$\begin{aligned} & V_{c C}=5 \mathrm{~V} \\ & V_{I N}=2.0 \mathrm{~V} \end{aligned}$		12		pF
C_{B}	1/0	$\mathrm{V}_{\mathrm{B}}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with $T T L$ input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$. Measured with all inputs and outputs switching.
5. Refer to Figure $1, \Delta \mathrm{l}_{\mathrm{cc}}$ vs Frequency (worst case). (Referenced from 15 MHz)
6. Refer to Figure 2 for $\Delta t_{\text {pD }}$ vs output capacitance loading.

Figure 1. $\Delta \mathrm{I}_{\mathrm{cc}}$ vs Frequency (Worst Case) (Referenced from 15 MHz)

Figure 2. $\Delta t_{\text {PD }}$ vs Output Capacitance Loading (Typical)

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V} ; \mathrm{R}_{1}=238 \Omega, \mathrm{R}_{2}=170 \Omega$

SYMBOL	PARAMETER	FROM	то	TEST ${ }^{2}$ CONDITION (C_{L} (pF))	PLC42VA12			UNIT
					Min	Typ ${ }^{1}$	Max	
Set-up Time								
$\mathrm{t}_{\text {S }}$ 1	Input; dedicated clock	(I, B, M) +/-	CK+	50	25			ns
$\mathrm{t}_{\text {lS } 2}$	Input; P-term clock	(I, B, M) +/-	(I, B, M) +/-	50	15			ns
$\mathrm{t}_{\text {IS } 3}$	Preload; dedicated clock	(M) +/-	CK+	50	10			ns
$\mathrm{t}_{\text {IS } 4}$	Preload; P-term clock	(M) +/-	($1, B, M$) +/-	50	0			ns
$\mathrm{t}_{\text {S } 5}$	Input through complement array; dedicated clock	(I, B, M) + $/-$	CK+	50	50			ns
$\mathrm{t}_{\text {S } 6}$	Input through complement array; P-term clock	(I, B, M) + +	(I, B, M) +/-	50	40			ns

Hold Time

Pulse Width

$\mathrm{t}_{\mathrm{CKH} 1}$	Clock High; Dedicated clock	CK +	CK-	50	15			ns
$\mathrm{t}_{\mathrm{CKL} 1}$	Clock Low; Dedicated clock	$\mathrm{CK}-$	$\mathrm{CK}+$	50	15			ns
$\mathrm{t}_{\mathrm{CKH} 2}$	Clock High; P- term clock	$\mathrm{CK}+$	$\mathrm{CK}-$	50	20			ns
$\mathrm{t}_{\mathrm{CKL2}}$	Clock Low; P- term clock	$\mathrm{CK}-$	$\mathrm{CK}+$	50	20			ns
$\mathrm{t}_{\text {PRH }}$	Width of presetreset input pulse	$(\mathrm{I}, \mathrm{B}, \mathrm{M})+-$	$(\mathrm{I}, \mathrm{B}, \mathrm{M})+1-$	50	30			ns

AC ELECTRICAL CHARACTERISTICS (Continued) $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V} ; ; \mathrm{R}_{1}=238 \Omega, \mathrm{R}_{2}=170 \Omega$

SYMBOL	PARAMETER	FROM	TO	$\begin{aligned} & \text { TEST }{ }^{2} \\ & \text { CONDITION } \\ & \left(\mathrm{C}_{\mathrm{L}}(\mathrm{pF})\right) \\ & \hline \end{aligned}$	PLC42VA12			UNIT
					Min	Typ ${ }^{1}$	Max	
Frequency of Operation								
${ }_{\text {CK1 }}$	Dedicated clock frequency	C+	C+	50			33	MHz
$\mathrm{f}_{\text {CK2 }}$	P -term clock frequency	C+	C+	50			25	MHz
$\mathrm{f}_{\text {MAX1 }}$	Registered operating frequency; Dedicated clock $\left(\mathrm{t}_{\mathrm{IS}_{1}}+\mathrm{t}_{\mathrm{CKO}}\right)$	(I, B, M) +/-	(M) +/-	50			25	MHz
$f_{\text {MAX2 }}$	Registered operating frequency; P -term clock $\left(t_{\mathrm{IS} 2}+t_{\mathrm{CKO}}^{2}\right)$	$(1, B, M)+/-$	(M) +/-	50			22.2	MHz
$f_{\text {MAX }}$	Register preload operating frequency; Dedicated clock ($\mathrm{t}_{\text {IS3 }}+$ tcko1)	(M) +/-	(M) +/-	50			40	MHz
$\mathrm{f}_{\mathrm{MAX4}}$	Register preload operating frequency; P-term clock ($\mathrm{t}_{\text {S } 4}+$ tcKO2)	(M) +/-	(M) +/-	50			33	MHz
$\mathrm{f}_{\text {MAX5 }}$	Registered operating frequency with complement array; Dedicated clock $\left(t_{\text {SS }}+t_{\mathrm{CKO}_{1}}\right)$	$(1, B, M)+/-$	(M) +/-	50			15.4	MHz
$\mathrm{f}_{\text {MAX6 }}$	Registered operating frequency with complement array; $\text { P-term clock }\left(\mathrm{t}_{\mathrm{IS}} 6+\mathrm{t}_{\mathrm{CKO}}\right)$	$(\mathrm{I}, \mathrm{B}, \mathrm{M})+$ +	(M) +/-	50			14.3	MHz

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. Refer also to $A C$ Test Conditions (Test Load Circuit).

BLOCK DIAGRAM

OUTPUT MACRO CELL (OMC)

Output Macro Cell Configuration

Signetics unique Output Macro Cell design represents a significant advancement in the configurability of multi-function Programmable Logic Devices.

The PLC42VA12 has 10 programmable Output Macro Cells. Each can be individually programmed in any of 5 basic configurations:

- Dedicated I/O (combinatorial) with feedback to AND array
- Dedicated Input
- Combinatorial I/O with feedback and Buried Register with feedback (register bypass)
- Registered Input
- Registered Output with feedback

Each of the registered options can be further customized as J-K type or D-type, with either an internally derived clock (from the AND array)
or clocked from an external source. With these additional programmable options, it is possible to program each Output Macro Cell in any one of 20 different configurations.

These 20 configurations, combined with the fully programmable OR array, make the PLC42VA12 the most versatile and silicon efficient of all the Output Macrocell-type PLDs.

The most significant Output Macro Cell (OMC) feature is the implementation of the register bypass function. Any of the $10 \mathrm{~J}-\mathrm{K} / \mathrm{D}$ registers can be individually bypassed, thus creating a combinatorial I/O path from the AND array to the output pin. Unlike other Output Macrocelltype devices, the register in the OMC is fully functional as a buried register. Furthermore, both the combinatorial I/O and the buried register have separate input paths (from the AND array) and separate feedback paths (to the AND array). This feature provides the capability to operate the buried register independently from the combinatorial I/O.

The PLC42VA12 is ideally suited for both synchronous and asynchronous logic functions. Eleven clock sources - 10 driven from the AND array and one from an external source - make it possible to design synchronous state machine functions, event-driven state machine functions and combinatorial (asynchronous) functions all on the same chip.

Sophisticated control functions support individual OE control and Reset functions from the AND array. OE control is also available from the ${ }_{19} \overline{O E}$ pin. Register Preset and Load functions are controlled in 2 banks of 4 for $\mathrm{OMCs}_{1}-\mathrm{M}_{8}$. Output Macro Cells M_{0} and M_{9} have individual Preset and Load Control terms.

Output Polarity for the combinatorial I/O paths is configurable via 12 programmable EX-OR gates. The output of each register can be configuredas inverting (active Low) or non-inverting (active High) via manipulation of the logic equations.

OUTPUT MACRO CELL PROGRAMMABLE OPTIONS

ARCHITECTURAL OPTIONS

REGISTER SELECT OPTIONS

Notes on page 270.

OMC Programmable Options

For purposes of programming, the Output Macro Celi shouid be considered to te partitioned in to five separate blocks. As shown in the drawing titled "Output Macro Cell Programmable Options", the programmable blocks are: Register Select Options, Polarity Options Clock Options, OMC Configuration Options and Output Enable Control Options.

There is one programmable location associated with each block except the Output Enable Control block which has two programmable fuse locations per OMC.
The following drawings detail the options associated with each programmable block. The associated programming codes are also included. The table titled "Output Macro Cell Configurations" lists all the possible combinations of the five programmable options.

Register Select Options

Each OMC Register can be configured either as a D-type or a J-K flip-flop. The Flip-Flop Control term, Fc, provides the option to control each Register dynamically-switching from D-type to J-K type based on the Fc control signal.

Register Preset and Reset are controlled from the AND array. Each OMC has an individual Reset Control term (RMn). The Register Preset function is controlled in two banks of 4 for OMCs $M_{1}-M_{3}$ and $M_{4}-M_{8}$ (via the control terms PA and PB). OMCs M_{0} and M_{9} have individual control terms (PM_{0} and PM_{9} respectively).

ARCHITECTURAL OPTIONS (Continued)
REGISTER SELECT OPTIONS (Continued)

POLARITY OPTIONS (for Combinatorial //O Configurations Only ${ }^{1}$)

CLOCK OPTIONS

Polarity Options

When an OMC is configured as a Combinatorial I/O with Buried Register, the polarity of the combinatorial path can be programmed as Active-High or Active-Low. A configurable EX-OR gate provides polarity control.
If an OMC is configured as a Registered Output, $/ Q$ is propagated to the output pin. Note that either Q or / Q can be fedback to the AND array by manipulating the feedbacklogic equations. (TRUE or COMPLEMENT).

Clock Options

In the unprogrammed state, all Output Macro Cell clock sources are connected to the External Clock pin (loCLK pin 1). Each OMC can be individually programmed such that its P -term Clock $\left(\mathrm{CK}_{n}\right)$ is enabled, thus disabling it from the External Clock and providing event-driven clocking capability.
This feature supports multiple state machines, clocked at several different rates, all on one chip, or the ability to collect large amounts of random logic, including 10 separately clocked flip-flops.

OUTPUT MACRO CELL CONFIGURATION OPTIONS

OMC Configuration Options

Each OMC can be configured as a Registered Output with feedback, a Registered Input or a Combinatorial I/O with Buried Register. Dedicated Input and dedicated I/O configurations are also possible.

When the Combinatorial I/O option is selected, (the Register Bypass option), the Buried Register remains 100% functional, with its own inputs from the AND array and a separate feedback path. This unique feature is ideal for designing any type of state machine; synchronous Mealytypes that require both Buried and Output Registers, or asynchronous Mealy-types that require buried registers and combinatorial output functions. Both synchronous and asynchronous Moore-type state machines can also be easily accomodated with the flexible OMC structure

Note that an OMC can be configured as either a Combinatorial I/O (with Buried Register) or a Registered Output with feedback and it can still be used as a Registered Input. By disabling the outputs via any OE control function, the M pin can be used as an input. When the Load Control P-term is asserted HIGH, the register is preloaded from the M pin(s). When the L_{C} P-term is Active-Low and the output is enabled, the OMC will again function as configured (either a combinatorial I/O or a registered output with feedback). This feature is suited for synchronizing input signals prior to commencing a state sequence.

[^9]
OUTPUT CONTROL OPTIONS

Output Enable Control Options

Similar to the Clock Options, the Output Enable Control for each OMC can be connected either to an external source ($19 / O E$, pin 13) or controlled from the AND array (P -terms DM_{n}). Each Output can also be permanently enabled.
Output Enable control for the two bi-directional I/O (B pins 10 and 11) is from the AND array only (P-terms DB0 and DB1 respectively).

COMPLEMENT ARRAY DETAIL

Complement Array Detail

The complement array is a special sequencer feature that is often used for detecting illegal states. It is also ideal for generating IF-THENELSE logic statements with a minimum number of product terms.
The concept is deceptively simple. If you subscribe to the theory that the expressions ($/ A^{*} / B^{*} / C$) and ($\left.\overline{A+B+C}\right)$ are equivalent, you will begin to see the value of this single term NOR array.

The complement array is a single OR gate with inputs from the AND array. The output of the complement array is inverted and fedback to the AND array (NOR function). The output of the array will be LOW if any one or more of the AND terms connected to it are active (HIGH). If, however, all the connected terms are inactive (LOW), which is a classic unknown state, the output of the complement array will be HIGH.

Consider the product terms A, B and D that representdefined states. They are also connected to the input of the complement array. When the condition ($n o t A$ and not B and not D) exists, the Complement Array will detect this and propagate an Active-High signal to the AND array. This signal can be connected to product term E, which could be used in turn to reset the state machine to known state. Without the complement array, one would have to generate product terms for all unknown or illegal states. With very complex state machines, this approach can be prohibitive, both in terms of time and wasted resources.

LOGIC PROGRAMMING

PICA2VA12 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted. Schematic capture entry is also supported via FutureNet and OrCAD Schematic Entry Packages.

PLC42VA12 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTE module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable trom iogic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below. Symbols for OMC configuration have been previously defined in the Architectural Options section.

LOGIC IMPLEMENTATION

"AND" ARRAY - (I), (B), (Qp)

"COMPLEMENT" ARRAY - (C)

"OR" ARRAY - (J - K Type)

"OR" ARRAY

"OR" ARRAY - (D - Type)

CMOS Programmable Logic Sequencer ($42 \times 105 \times 12$)

LOGIC IMPLEMENTATION (Continued)

OUTPUT MACRO CELL CONFIGURATIONS

	PROGRAMMING CODES			
OUTPUT MACRO CELL CONFIGURATION	$\begin{aligned} & \text { REGISTER SELECT } \\ & \text { FUSE } \end{aligned}$	OMC CONFIGURATION FUSE	POLARITY FUSE	CLOCK FUSE
Combinatorial I/O with Buried D-type register				
External clock source	A	-	H or L	A
P-term clock source	A	-	Hor L	-
Combinatorial I/O with Buried J-K type register				
External clock source	-	-	H or L	A
P-term clock source	-	-	H or L	-
Registered Output (D-type) with feedback				
External clock source	A	A	N/A	A
P-term clock source	A	A	N/A	-
Registered Output (J-K type) with feedback				
External clock source	\bullet	A	N/A	A
P-term clock source	-	A	N/A	-
Registered Input (Clocked Preload) with feedback				
External clock source	A	A or ${ }^{5}$	Optional ${ }^{5}$	A
P-term clock source	A	A or ${ }^{5}$	Optional ${ }^{5}$	-
OUTPUT ENABLE CONTROL CONFIGURATION	OUTPUT CONTROL FUSES		CONTROL SIGNAL	
	OE CONTROL FUSE	En FUSES		
I/O controlled by /OE pin Output Enabled Output Disabled	A^{7}	\bullet	Low High	
I/O controlled by P-term Output Enabled Output Disabled	$\bullet 7$	A or -	High Low	
Output always Enabled	A^{7}	A	Not Applicable	

NOTES:

1. This is the initial (unprogrammed) state of the device.
2. Any gate will be unconditionally inhibited if both the TRUE and COMPLEMENT fuses are left intact.
3. To prevent oscillations, this state is not allowed for Complement Array fuse pairs that are coupled to active product terms.
4. The OMC Configuration fuse must be programmed as Combinatorial I/O in order to make use of the Polarity Option.
5. Regardless of the programmed state of the OMC Configuration fuse, an OMC can be used as a Registered Input. Note that the Load Control P-term must be asserted active-High.
6. Output must be disabled.
7. For OMCs M0 and M9, the programming codes must be reversed to obtain this function (i.e., $\mathbf{A}=\bullet$ and $\bullet=A$).
8. Program code definitions:
$A=$ Active (unprogrammed fuse)

- = Inactive (programmed fuse)
$\bar{H}=$ Don't Care (both TRUE and COMPLEMENT fuses unprogrammed)
$H=$ Active-High connection
L = Active-Low connection

TIMING DIAGRAMS

Flip-Flop Outputs with External Clock

Gated Outputs

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{f}_{\mathrm{CK} 1}$	Clock Frequency; External Clock
$\mathrm{f}_{\mathrm{CK} 2}$	Clock Frequency; P-term Clock
${ }^{\text {t }}$ CKH1	Width of Input Clock Pulse; External Clock
$\mathrm{t}_{\text {CKH2 }}$	Width of Input Clock Pulse; P-term Clock
${ }^{\text {t CKL } 1}$	Interval between Clock pulses; External Clock
$\mathrm{t}_{\text {CKL2 }}$	Interval between Clock Pulses; P-term Clock
${ }^{\text {t }}$ CKO1	Delay between the Positive Transition of External Clock and when M Outputs become valid.
${ }^{\text {t }} \mathrm{CKO} 2$	Delay between the Positive Transition of P-term Clock and when M Outputs beocme valid.
${ }^{\text {t }}$ CKP1	Delay between beginning of Valid Input and when the Moutputs become Valid when using External Clock.
${ }^{\text {t }}$ CKP2	Delay between beginning of Valid Input and when the M outputs become Valid when using P -term Clock.
$\mathrm{t}_{\text {CKP3 }}$	Delay between beginning of Valid Input and when the M outputs become Valid when using Preload Inputs (from M pins) and External Clock.
${ }^{\text {t CKP4 }}$	Delay between beginning of Valid Input and when the M outputs become valid when using Preload inputs (from M pins) and P-term Clock.
${ }^{\text {t CKP5 }}$	Delay between beginning of Valid Input and when the M outputs become Valid when using Complement Array and External clock.
${ }_{\text {tekP6 }}$	Delay between beginning of Valid Input and when the Moutputs become Valid when using Complement Array and P-term Clock.
$\mathrm{f}_{\text {MAX1 }}$	Minimum guaranteed Operating Frequency; Dedicated Clock
$\mathrm{f}_{\text {MAX2 }}$	Minimum guaranteed Operating Frequency; P-term Clock
$\mathrm{f}_{\text {MAX }}$	Minimum guaranteed Operating Frequency using Preload; Dedicated Clock
$\mathrm{f}_{\text {MAX } 4}$	Minimum guaranteed Operating Frequency using Preload; P-term Clock
$\mathrm{f}_{\text {MAX5 }}$	Minimum guaranteed Operating Frequency using Complement Array; Dedicated Clock
$f_{\text {MaX6 }}$	Minimum Operating Frequency using Complement Array; P-term Clock
${ }_{t_{1 H 1}}$	Required delay between positive transition of External Clock and end of valid input data.

TIMING DIAGRAMS (Continued)

TIMING DEFINITIONS (Continued)

SYMBOL	PARAMETER
$\mathrm{t}_{\mathrm{tH} 2}$	Required delay between positive transition of P-term Clock and end of valid input data.
$\mathrm{t}_{1 \mathrm{H} 3}$	Required delay between positive transition of External Clock and end of valid input data when using Preload Inputs (from M pins).
$\mathrm{t}_{1 \mathrm{H} 4}$	Required delay between positive transition of P-term Clock and end of valid input data when using Preload Inputs (from M pins).
${ }_{\text {t }}^{\text {S }}$ 1	Required delay between beginning of valid input and positive transition of External Clock.
${ }_{\text {t }}^{\text {S } 2}$	Required delay between beginning of valid input and positive transition of P -term Clock input.
${ }_{\text {t/33 }}$	Required delay between beginning of valid Preload input (from M pins) and positive transition of External Clock.
$t_{\text {tS }}$	Required delay between beginning of valid Preload input (from M pins) and positive transition of P-term Clock input.
${ }_{\text {t }}^{\text {S } 5}$	Required delay between beginning of valid input through Complement Array and positive transition of External Clock.
${ }_{\text {t }}^{\text {S } 6}$	Required delay between beginning of valid input through Complement Array and positive transition of P-term Clock input.
toe 1	Delay between beginning of Output Enable signal (Low) from/OE pin and when Outputs become valid.
toe2	Delay between beginning of Output Enable signal (High or Low) from OE P-term and when Outputs become valid.
toD1	Delay between beginning of Output Enable signal (HIGH) from /OE pin and when Outputs become disabled.
toD2	Delay between beginning of Output Enable signal (High or Low) from OE P-term and when Outputs become disabled.
$t_{\text {PD }}$	Delay between beginning of valid input and when the Outputs become valid (Combinatorial Path).
tPRH	Width of Preset/Reset Pulse.
tpro	Delay between beginning of valid Preset/Reset Input and when the registered Outputs become Preset ("1") or Reset ("0").
tPPR	Delay between VCC (after pow-er-up) and when flip-flops become Reset to "0". Note: Signal at Output (M pin) will be inverted.

CMOS Programmable Logic Sequencer ($42 \times 105 \times 12$)

LOGIC FUNCTION

NOTE:
Similar logic functions are applicable for D mode flip-flops.

FLIP-FLOP TRUTH TABLE

OE	L_{n}	CK_{n}	P_{n}	R_{n}	J	K	Q	M
H								Hi-Z
L	X	X	X	X	X	X	L	H
L	X	X	H	L	X	X	H	L
L	X	X	L	H	X	X	L	H
L	L	\uparrow	L	L	L	L	Q	$\bar{\square}$
L	L	\uparrow	L	L	L	H	L	H
L	L	\uparrow	L	L	H	L	H	L
L	L	\uparrow	L	L	H	H	$\bar{\square}$	0
H	H	\uparrow	L	L		H	L	H^{+}
H	H	\uparrow	L	L	H	L	H	L*
+10V	X		X	X		H	L	H^{*}
				X	H		H	L*

NOTES:

1. Positive Logic:
$J-K=T_{0}+T_{1}+T_{2}+\ldots+T_{31}$
$T_{n}=\bar{C} \cdot\left(I_{0} \cdot I_{1} \cdot I_{2} \ldots\right) \cdot\left(Q_{0} \cdot Q_{1} \ldots\right)$.
($\mathrm{B}_{0} \cdot \mathrm{~B}_{1} \ldots$)
2. \uparrow denotes transition for Low to High level.
3. $X=$ Don't care
4. * $=$ Forced at M_{n} pin for loading the $\mathrm{J}-\mathrm{K}$ flip-flop in the Input mode. The load control term, L_{n} must be enabled (HIGH) and the p-terms that are connected to the associated flip-flop must be forced LOW (disabled) during Preload.
5. At $P=R=H, Q=H$. The final state of Q depends on which is released first.
6. ${ }^{* *}=$ Forced at F_{n} pin to load J/K flip-flop (Diagnostic mode).

PLC42VA12 UNPROGRAMMED STATE

A factory shipped unprogrammed device is configured such that allcells are in a conductive state.
The following are:
ACTIVE:

- OR array logic terms
- Output Macro Cells M1 - M8;
- D-type registered outputs
- External clock path
- Inputs: $\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{M}_{0}, \mathrm{M}_{9}$

inactive:

- AND array logic and control terms (except flip-flop mode control term, F_{C})
- Bidirectional I/O ($\mathrm{B}_{0}, \mathrm{~B}_{1}$);
- Inputs are active. Outputs are 3-Stated via the OE P-terms, D_{0} and D_{1}.
- Output Macro Cells M_{0} and M_{9};
- Bidirectional I/O, 3-Stated via the OE P-terms, DM_{0} and DM_{9}. The inputs are active.
- P-term clocks
- Complement Array
- J-K Flip-Flop mode

ERASURE CHARACTERISTICS (For Quartz Window Packages Only)

The erasure characteristics of the PLC42VA12 devices are such that erasure begins to occur upon exposure to light with wavelength shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000-4000 \AA$ range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC42VA12 in approximately three years, while it would take approximately one week to cause erasure when exposed to direct sunlight. If the PLC42VA12 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.
The recommended erasure procedure for the PLC42VA12 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to 35 minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximumintegrated dose a CMOS EPLD can be expose to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week @ $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.
The maximum number of guaranteed erase/ write cycles is 50 . Data retentions exceeds 20 years.

FPLS PROGRAM TABLE

Signetics

Document No.	$853-1382$
ECN No.	97884
Date of Issue	October 16, 1989
Status	Product Specification
Programmabie Logic Devices	

PLC415-16
 CMOS Programmable Logic
 Sequencer $(17 \times 68 \times 8)$

DESCRIPTION

The PLC415-16 PLD is a CMOS Programmable Logic Sequencer of the Mealy type. The PLC415-16 is a pin-for-pin compatible, functional superset of the PLS 105 and PLUS405 Bipolar Programmable LogicSequencer devices.

The PLC415 is ideally suited for high density, power sensitive controller functions. The Power Down feature provides true CMOS standby power levels of less than $100 \mu \mathrm{~A}$. The EPROMbased process technology supports operating frequencies of 16 to 20 MHz . The PLC415-16 has been designed to accept both CMOS and TTL input levels to facilitate logic integration in almost any system environment.

The PLC415 architecture has been tailored for state machine functions. Both arrays are programmable, thus providing full interconnectability. Any one or all of the 64 AND transition terms can be connected to any (or all) of the 8 buried state and 8 output registers.

Two clock sources enable the design of 2 state machines on one chip. The J-K flip-flops provide the added flexibility of the toggle function which is indeterminate on S-R flip-flops. The programmable Initialization feature supports asynchronous initialization of the state machine to any user defined pattern. Separate INIT functions and Output Enable functions are controllable either from the array or from an external pin.

The unique Complement Array feature supports complex ELSE transition statements with a single product term. The PLC415-16 has 2 Complement Arrays which allows the user to designtwoindependent complement functions. This is particularly useful if two state machines have been implemented on one chip.

FEATURES

- Pin-for-Pin compatible, functional superset of PLS105/A and PLUS405 Logic Sequencers
- Zero standby power of less than $100 \mu \mathrm{~A}$ (worst case)
- Power dissipation at $\mathrm{f}_{\mathrm{MAX}}=80 \mathrm{~mA}$ (worst case)
- CMOS and TTL compatible
- Programmable asynchronous Initialization and OE functions
- Controllable from AND Array or external source
- 17 input variables
- 8 output functions
- 68 Product Terms
- 64 transition terms
- 4 control terms
- 8-bit State Register
- 8-bit Output Register
- 2 Transition Complement Arrays
- Multiple clocks
- Diagnostic test modes features for access to state and output registers
- Power-on preset of all registers to " 1 "
- J-K flip-flops
- Automatic Hold states
- Security Fuse
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift Registers

PIN CONFIGURATIONS

Philips Components

PHILIPS

CMOS Programmable Logic Sequencer

 $(17 \times 68 \times 8)$PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CLK1	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks P_{0-3} and F_{0-3} if Pin 4 is also being used as a clock.	Active-High (H)
$\begin{gathered} 2,3,5-9 \\ 26-27 \\ 20-22 \end{gathered}$	$\begin{gathered} I_{0}-I_{4}, I_{7}, I_{6} \\ I_{8}-I_{9} \\ I_{13}-I_{15} \end{gathered}$	Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/Low (H/L)
4	$\mathrm{I}_{5} /$ CLK2	Logic Input/Clock: A user programmable function:	
		- Logic Input: A 13th external logic input to the AND array, as above.	Active-High/Low (H/L)
		- Clock: A 2nd clock for the State Registers P_{4-7} and Output Registers F_{4-7}, as above. Note that input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock.	Active-High (H)
23	I_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{12} is held at +11 V , device outputs $F_{0}-F_{7}$ reflect the contents of State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
24	I_{11}	Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{11} is held at +11 V , device outputs $F_{0}-F_{7}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
25	I_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{10} is held at +11 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $\mathrm{Q}_{0}-\mathrm{Q}_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-$ Q_{7}. The contents of each State Register remains unaltered.	Active-High/Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0}-F_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+11 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)$. When I_{11} is held at $+11 \mathrm{~V}, F_{0}-F_{7}$ become inputs to State Register bits $P_{0}-P_{7}$. When I_{10} is held at $+11 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $Q_{0}-Q_{7}$	Active-High (H)
19	$\begin{gathered} \text { INIT/OE } \\ \mathrm{I}_{16} / \mathrm{PD} \end{gathered}$	External Initialization, External /OE, PD or I_{16} : A user programmable function: Only one of the four options below may be selected. Note that both Initialization and /OE options are alternately available via the AND array. (P-terms INA, INB, OEA, and OEB.)	
		- External Initialization: Provides an asynchronous Preset to logic " 1 " or Reset to logic " 0 " of any or all State and Output Registers, determined individually on a register-byregister basis. INIT overrides the clock, and when held High, clocking is inhibited. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after the INIT pulse goes Low. See timing diagrams for tNVCK and $t_{\text {VCK. }}$. Note that if the External Initialization option is selected, l_{16} is disabled automatically via the design software and the Power Down and External OE options are not available. Internal OE is available via P -Terms OEA and/or OEB. This option can be selected for one or both banks of registers.	Active-High (H)
		- External Output Enable: Provides an Output Enable/Disable function for Output Registers. Note that if the External OE option is selected, I_{16} is disabled automatically via the design software and the Power Down and External INIT options are not available. Internal INIT is available via P-terms INA and/or INB. This option can be selected for one or both banks of registers.	Active-Low (L)
		- Power Down: When invoked, provides a Power Down (zero power) mode. The contents of all Registers is retained, despite the toggling of the Inputs or the clocks. To obtain the lowest possible power level, all Inputs should be static and at CMOS input levels. Note that if the PD options is selected, I_{16} is disabled automatically via the design software and the External INIT and External OE options are not available. Internal INIT is available via P-terms INA and/or INB and Internal OE is available via P-terms OEA and/or OEB.	Active--High (H)
		- Logic Input: The 17th external logic input to the AND array as above. Note that when the I_{16} option is selected, the Power Down, External /OE and External INIT are not available. Internal OE and Internal INIT are available from P-Terms OEANOEB and INAINB, respectively.	Active-High/Low (H/L)

CMOS Programmable Logic Sequencer

TRUTH TABLE 1, 2, 3, 4, 5, 6

V_{cc}	OPTION		$1{ }_{10}$	I_{11}	112	CK	J	K	$\mathrm{Q}_{\mathbf{p}}$	$\mathbf{Q}_{\mathbf{F}}$	F
	INIT	OE									
$+5 \mathrm{~V}$	H		X	X	X	X	X	X	H/L	H/L	Q_{F}
	X		+11V	X	X	\uparrow	X	x	Q_{p}	L	L
	x		+11V	x	x	\uparrow	x	x	Q_{p}	H	H
	x		X	+11V	x	\uparrow	x	x	L	Q_{F}	L
	x		X	+11V	X	\uparrow	x	x	H	Q_{F}	H
	X		X	X	+11V	X	X	X	Q_{P}	Q_{F}	Q_{P}
	L		X	X	X	X	X	X	Q_{p}	Q_{F}	$\mathrm{Q}_{\text {F }}$
		H	X	X	X	X	X	X	Q_{P}	Q_{F}	$\mathrm{Hi}-\mathrm{Z}$
		X	+11V	x	x	\uparrow	x	x	Q_{P}	L	L
		x	+11V	X	x	\uparrow	x	x	Q_{p}	H	H
		X	X	+11V	x	\uparrow	x	x	L	Q_{F}	L
		X	X	+11V	X	\uparrow	X	X	H	Q_{F}	H
		L	X	X	+11V	x	X	X	Q_{p}	Q_{F}	Qp
		L	X	X	X	X	X	X	Q_{p}	Q_{F}	Q_{F}
		L	X	X	X	\uparrow	L	L	Q_{p}	O_{F}	Q ${ }_{\text {F }}$
		L	X	X	x	\uparrow	L	H	L	L	L
		L	x	X	x	\uparrow	H	L	H	H	H
		L	X	X	X	\uparrow	H	H	\bar{Q}_{p}	σ_{F}	\bar{Q}_{F}
\uparrow	L	L	X	X	X	X	X	X	H	H	H

NOTES:

1. Positive Logic:
$S / R(o r J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}$
$T_{n}=\left(C_{0}, C_{1}\right)\left(l_{0}, l_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1} \ldots P_{7}\right)$
2. Either Initialization or Output Enable are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. $X=$ Don't Care $(\leq 5.5 \mathrm{~V})$
5. H/L implies that either a High or a Low can occur, depending upon user-programmed Initialization selection (each State and Output Register individually programmable).
6. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3-Stated and the indicated levels on the output pins are forced by the user.

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. INIT/OE/PD/I ${ }_{16}$ is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the user-programmed initialization, or even if the INIT function is not used, all registers are preset to " 1 " by the powerup procedure.
2. All transition terms are inactive (0).
3. All J / K flip-flop inputs are disabled (0).
4. The Complement Arrays are inactive.
5. Clock 1 is connected to all State and Output Registers.

LOGIC FUNCTION

Typical State Transition:

FUNCTIONAL DIAGRAM

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

LOGIC DIAGRAM

NOTE:
(a) Programmable connection.

CMOS Programmable Logic Sequencer
$(17 \times 68 \times 8)$

DETAILS FOR PLC415-16 LOGIC DIAGRAM

Detail C
Pin 19 Options: OE, Initialization, Power Down and Input 16

Detail D
Internal and External Initialization

DETAILS FOR PLC415-16 LOGIC DIAGRAM (Continued)

Complement Array Detail

The Complement Array is a special sequencer feature that is often used for detecting illegal states. It is also ideal for generating IF-THENELSE logic statements with a minimum number of product terms.
The concept is deceptively simple. If you subscribe to the theory that the expressions ($/ A * / B * / C$) and $(\overline{A+B+C})$ are equivalent, you will begin to see the value of this single term NOR array.
The Complement Array is a single OR gate with inputs from the AND array. The output of the

Complement Array is inverted and fed back to the AND array (NOR). The output of the array will be Low if any one or more of the AND terms connected to it are active (High). If, however, all the connected terms are inactive (Low), which is a classic unknown state, the output of the Complement Array will be High.

Consider the Product Terms A, B and D that represent defined states. They are also connected to the input of the Complement Array. When the condition (not A and not B and not D) exists, the Complement Array will detect this and propagate an Active-High signal to the

AND array. This signal can be connected to Product Term E, which could be used in turn to reset the state machine to a known state. Without the Complement Array, one would have to generate product terms for all unknown or illegal states. With very complex state machines, this approach can be prohibitive, both in terms of time and wasted resources.
Note that the PLC415-16 has 2 Complement Arrays which allow the user to design 2 independentComplement functions. This is particularly useful if 2 independent state machines have been implemented on one device.

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

ORDERING INFORMATION

DESCRIPTION	OPERATING FREQUENCY	ORDER CODE
28-Pin Ceramic DIP with window; Reprogrammable (600mil-wide)	$f_{\text {MAX }}=16 \mathrm{MHz}$	PLC415-16FA
28-Pin Plastic DIP; One-Time Programmable (600mil-wide)	$f_{\text {MAX }}=16 \mathrm{MHz}$	PLC415-16N
28-Pin Plastic Leaded Chip Carrier; One-Time Programmable (450mil-wide)	$f_{\text {MAX }}=16 \mathrm{MHz}$	PLC415-16A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30 to +30	mA
$\mathrm{I}_{\mathrm{OUT}}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION		LIM!Ts			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$							
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$		-0.3		0.8	V
V_{IH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		2.0		$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Output voltage ${ }^{2}$							
$\mathrm{V}_{\text {OL }}$	Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} \\ & \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$				0.5	V
V_{OH}	High	$\mathrm{l}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$		2.4			V
Input current							
ILIL	Low	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$				-10	$\mu \mathrm{A}$
I_{H}	High	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{CC}}$				10	$\mu \mathrm{A}$
Output current							
lo(OFF)	Hi -Z state	$\begin{aligned} & V_{\text {OUT }}=V_{\text {CC }} \\ & V_{\text {OUT }}=G N D \end{aligned}$				$\begin{array}{r} 10 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
los	Short-circuit ${ }^{\text {3, } 6}$	$\mathrm{V}_{\text {OUT }}=$ GND				-130	mA
ICcsb	V_{CC} supply current with PD asserted ${ }^{7}$	$\begin{gathered} V_{\mathrm{CC}}=M A X \\ \mathrm{~V}_{\mathbb{N}}=0 \text { or } V_{\mathrm{CC}} \end{gathered}$			50	100	$\mu \mathrm{A}$
Icc	$\mathrm{V}_{\text {CC }}$ supply current Active ${ }^{4,5}$ (TTL or CMOS Inputs)	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=\mathrm{OmA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX} \end{aligned}$	at $\mathrm{f}=1 \mathrm{MHz}$			55	mA
			at $\mathrm{f}=\mathrm{MAX}$			80	mA
Capacitance							
C_{1}	Input				12		pF
C_{8}	1/0				15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Duration of short-circuit should not exceed one second. Test one at a time.
4. Tested with TTL input levels: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$. Measured with all inputs and outputs switching.
5. Refer to Figure 1, Icc vs Frequency (worst case).
6. Refer to Figure 2 for $\Delta t_{P D}$ vs output capacitance loading.
7. The outputs are automatically 3-Stated when the device is in the Power Down mode. To achieve the lowest possible current, the inputs and clocks should be at CMOS static levels.

Figure 1. Icc vs Frequency (Worst Case)

Figure 2. $\Delta \mathrm{t}_{\text {PD }}$ vs Output Capacitance Loading (Typical)

AC ELECTRICAL CHARACTERISTICS $R_{1}=252 \Omega, R_{2}=178 \Omega, 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	TEST CONDITION	LIMITS			UNIT
					Min	Typ	Max	
Pulse width								
${ }_{\text {t }}^{\text {CKH }}$	Clock High	CK+	CK-	30 pF	25	10		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock Low	CK-	CK+	30 pF	25	10		ns
$\mathrm{t}_{\text {INITH }}$	Initialization Input pulse	INIT+	INIT-	30 pF	20			ns
Set-up time								
$\mathrm{t}_{\text {S } 1}$	Input	(I) $+1-$	CK+	30pF	38	25		ns
$\mathrm{t}_{\text {IS } 2}{ }^{1}$	Input through Complement array	(I) +/-	CK+	30 pF	60	40		ns
$\mathrm{t}_{\text {ISPD }}$	Power Down Setup (from PD pin)	PD+	CK+	30 pF	38	15		ns
$\mathrm{t}_{\text {ISPU }}$	Power Up Setup (from PD pin)	PD-	First Valid CK+	30 pF	38	30		ns
tvs^{1}	Power on Preset Setup	$\mathrm{V}_{\mathrm{CC}}+$	CK-	30 pF	0			ns
$\mathrm{t}_{\mathrm{VCK}} 1$	Clock resume (after INIT) when using INIT pin (pin 19)	INIT-	CK-	30 pF	10	-5		ns
${ }^{\text {tvCK2 }}{ }^{1}$	Clock resume (after INIT) when using P-term INIT (from AND array)	(I) +/-	CK-	30 pF	20	8		ns
$\mathrm{t}_{\text {NVCK1 }}$	Clock lockout (before INIT) when using INIT pin (pin 19)	CK-	INIT-	30 pF	10	\bigcirc		ns
$\mathrm{t}_{\text {NVCK2 }}{ }^{1}$	Clock lockout (before INIT) when using P-term INIT (from AND array)	CK-	INIT-	30 pF	0	-5		ns
Propagation delays								
tcko	Clock to Output	CK+	(F) +/-	30pF		15	22	ns
$\mathrm{t}_{\text {PDZ }}$	Power Down to outputs off	PD+	Outputs Off	5 pF		25	30	ns
$t_{\text {PUA }}$	Power Up to outputs Active with dedicated Output Enable	PD-	Outputs Active	30 pF		20	35	ns
$t_{\text {PUA2 }}{ }^{1}$	Power Up to outputs Active with P-term Output Enable ${ }^{1}$	PD-	Outputs Active	30 pF		37	55	ns
$\mathrm{t}_{\mathrm{HPU}}$	Last valid clock to Power Down delay (Hold)	Last Valid Clock	PD+	30 pF	25	15		ns
$\mathrm{t}_{\text {HPD }}$	First valid clock cycle before Power Up	Beginning of First Valid Clock Cycle	PD-	30pF	0	-25		ns
$\mathrm{t}_{\text {OE1 }}$	Output Enable: from /OE pin	OE-	Output Enabled	30 pF		15	30	ns
$\mathrm{tOE2}^{1}$	Output Enable; from P-term	(1) +/-	Output Enabled	30 pF		25	40	ns
t_{01}	Output Disable; from /OE pin	$\mathrm{OE}+$	Output Disabled	5 pF		20	30	ns
$\mathrm{t}_{0} \mathrm{O} 2$	Output Disable; from P-term	(I) +/-	Output Disabled	5 pF		30	40	ns
$\mathrm{t}_{\text {INIT } 1}$	INIT to output when using INIT pin	INIT+	(F) +/-	30 pF		22	35	ns
$\mathrm{t}_{\text {INIT2 }}$	INIT to output when using P-term INIT	(l) +/-	(F) +/-	30 pF		35	45	ns
tPPR^{1}	Power-on Preset ($\mathrm{F}_{\mathrm{n}}=1$)	$\mathrm{V}_{\mathrm{cc}}+$	(F) +	30 pF			15	ns
${ }^{\text {t }}$ CKP1	Registered operating period; $\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{CKO}}\right)$	(I) +/-	(F) +/-	30 pF		40	60	ns
$\mathrm{t}_{\mathrm{CKP2}}{ }^{1}$	Registered operating period with Complement Array ($\mathrm{t}_{\mathrm{S} 2}+\mathrm{t}_{\mathrm{CKO}}$)	(I) +/-	(F) +/-	30 pF		55	75	ns

NOTE:

1. Not 100% tested, but guaranteed by design/characterization.

CMOS Programmable Logic Sequencer

AC ELECTRICAL CHARACTERISTICS (Continued) $R_{1}=252 \Omega, R_{2}=178 \Omega, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \leq V_{C C} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	TEST CONDITION	LIAMTS			UNIT
					Min	Typ	Max	
Hold time								
t_{iH}	Input Hold	CK+	(F) +/-	30 pF		-10	0	ns
Frequency of operation								
$\mathrm{f}_{\text {CLK }}{ }^{1}$	Clock (toggle) frequency	C+	C+	30 pF	20	50		MHz
$\mathrm{f}_{\text {MAX } 1}$	Registered operating frequency ($\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO}}$)	(I) +/-	(F) $+1-$	30 pF	16.7	25		MHz
$\mathrm{f}_{\text {MAX2 }}$	Registered operating frequency with Complement Array ($\mathrm{t}_{\mathrm{IS} 2}+\mathrm{t}_{\mathrm{CKO}}$)	(I) +/-	(F) $+1-$	30 pF	13.3	18.2		MHz

NOTE:

1. Not 100% tested, but guaranteed by design/characterization.

TIMING DIAGRAMS

CMOS Programmable Logic Sequencer

The PLC415-16 has a unique power down feature that is ideal for power sensitive controller and state machine applications. During idle periods, the PLC415 can be powered down to a near zero power consumption level of less than 100 micro Amps. Externally controlled from Pin 19, the power down sequence first saves
the data in all the State and Output registers. In order to insure that the last valid states are saved, there are certain hold times associated with the first and last valid clock edges and the Power Down input pulse. The Outputs are then automatically 3-Stated and power consumption is reduced to a minimum.

Once in the power down mode, any or all of the inputs, including the clocks, may be toggled without the loss of data. To obtain the lowest possible power level, the inputs should be at static CMOS input levels during the power down period.

TIMING DIAGRAMS (Continued)

Power Down Enable and Disable

Power-On Preset

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

TIMING DIAGRAMS (Continued)

Diagnostic Mode-State Register Input Jam

Diagnostic Mode-Output Register Input Jam

CMOS Programmable Logic Sequencer

TIMING DEFINITIONS

SYMBOL	PARAMETER
${ }^{\text {f CLK }}$	Minimum guaranteed toggle frequency of the clock (from Clock HIGH to Clock HIGH).
$\mathrm{f}_{\text {MAX1, } 2}$	Minimum guaranteed operating frequency.
${ }^{\text {t }}$ CH	Width of input clock pulse.
${ }^{\text {t }}$ CKL	Interval between clock pulses.
${ }^{\text {t }}$ CKP1	Minimum guaranteed operating period - when not using Complement Array.
$\mathrm{t}_{\text {CKP2 }}$	Minimum guaranteed operating period - when using Complement Array.
${ }^{\text {t }}$ CKO	Delay between positive transition of Clock and when Outputs become valid (with outputs enabled).
$\mathrm{t}_{\mathbf{H}}$	Required delay between positive transition of Clock and end of valid Input data.
$\mathrm{t}_{\text {IHPD }}$	Required delay between the positive transition of the beginning of the first valid clock cycle to the beginning of Power Down LOW to insure that the last valid states are intact and that the next positive transition of the clock is valid.
$\mathrm{t}_{\text {IHPU }}$	Required delay between the positive transition of the last valid clock and the beginning of Power Down HIGH to insure that last valid states are saved.
tinith	Width of initialization input pulse.
$\mathrm{t}_{\text {INIT }}$	Delay between positive transition of Initialization and when Outputs become valid when using external INIT control (from pin 19).
$\mathrm{t}_{\mathbf{I N T} \text { I2 }}$	Delay between positive transition of Initialization and when outputs become valid when using internal INIT control (from P-terms INA and INB).
$\mathrm{t}_{\text {ISPD }}$	Required delay between the beginning of Power Down HIGH (from pin 19) and the positive transition of the next clock to insure that the clock edge is not detected as a valid Clock and that the last valid states are saved.

SYMBOL	PARAMETER
$\mathrm{t}_{\text {ISPU }}$	Required delay between the beginning of Power Down LOW and the positive transition of the first valid clock.
${ }_{\text {t }}^{1} 1$	Required delay between beginning of valid input and positive transition of Clock.
${ }_{4} \mathrm{~S}^{2}$	Required delay between beginning of valid input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
tNVCK1	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization when using external INIT control (from pin 19) to guarantee that the clock edge is not detected as a valid negative transition.
$\mathrm{t}_{\text {NVCK2 }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization, when using the internal INIT control (from P-terms INA and INB), to guarantee that the clock edge is not detected as a valid negative transition.
toD1	Delay between beginning of Output Enable High and when Outputs are in the OFF-state, when using external OE control (from pin 19).
toD2	Delay between beginning of Output Enable High and when outputs are in the OFF-State when using internal OE control (from P-terms OEA and OEB).
toel	Delay between beginning of Output Enable Low and when Outputs become valid when using external OE control from pin 19.
toe2	Delay between beginning of Output Enable Low and when outputs become valid when using internal OE control (from P-terms OEA and OEB).
$t_{\text {PDZ }}$	Delay between beginning of Power Down HIGH and when outputs are in OFF-State and the circuit is "powered down".

SYMBOL	PARAMETER
tPPR	Delay between V_{Cc} (after power-on) and when Outputs become preset at "1".
$t_{\text {PUA1,2 }}$	Delay between beginning of Power Down LOW and when outputs become Active (valid) and the circuit is "powered up". See AC Specifications.
t_{RH}	Required delay between positive transition of Clock and end of valid Input data when jamming data into State or Output Registers in diagnostic mode.
$\mathrm{t}_{\text {RJH }}$	Required delay between positive transition of Clock and end of inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively.
$\mathrm{t}_{\text {RJS }}$	Required delay between when inputs I_{11} or l_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively, and when the output pins become available as inputs.
${ }^{\text {tSRD }}$	Delay between input I_{12} transition to Logic mode and when the Outputs reflect the contents of the Output Register.
${ }^{\text {t SRE }}$	Delay between input l_{12} transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register.
$t_{\text {VCK } 1}$	Required delay between negative transition of Asynchronous Initialization and negative transition of Clock preceding the first valid clock pulse when using external INIT control (pin 19).
tvck2	Required delay between the negative transition of the Asynchronous Initialization and the negative transition of the clock preceding the first valid clock pulse when using internal INIT control (from P-terms INA and INB).
tvs	Required delay between V_{CC} (after power-on) and negative transition of Clock preceding first reliable clock pulse.

CMOS Programmable Logic Sequencer $(17 \times 68 \times 8)$

TEST LOAD CIRCUIT

LOGIC PROGRAMMING

PLC415-16 logic designs can be generated using Signetics AMAZE design software or several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry format is accepted. Schematic capture entry formats are also supported.

PLC415-16 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry format (PTE) is supported by the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

VOLTAGE WAVEFORMS

INITIALIZATION (PRESET/RESET) ${ }^{11}$ OPTION - (P/R)

"AND" ARRAY - (I), (P)

Notes are on page 291.

LOGIC PROGRAMMING (Continued)

PIN 19 FUNCTION: POWER DOWN, INIITALIZATION, OE, OR INPUT

[^10]
LOGIC PROGRAMMING (Continued)

"OR" ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)

CLOCK OPTION - (CLK1/CLK2)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
4. These states are not allowed when using PRESET/RESET option.
5. Input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using second clock option.
6. When using Power Down feature, INPUT 16 is automatically disabled via the design software.
7. If the internal (P-term) control fuse for INIT and/or OE is programmed as Active High, the associated External Control function will be permanently disabled, regardless of the state of the External INIT/OE fuse.
8. One internal control fuse exists for each group of 8 registers. P_{0-3} and F_{0-3} are banked together in one group, as are P_{4-7} and F_{4-7}. Control can be split between the INIT/OE pin (Pin 19) and P-terms INA, INB, OEA and OEB.
9. The PLC415-16 also has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
10. $\mathrm{L}=$ cell unprogrammed. $H=$ cell programmed.
11. Inputs 10,11 and 12 (pins $25,24, \& 23$) can be used for supervoltage diagnostic mode tests. It is recommended that these inputs not be connected to product terms INA, INB, OEA or OEB if you intend to make use of the diagnostic modes due to the fact that the patterns associated with the internal INIT and OE control product terms may interfere with the diagnostic mode data loading and reading.

PROGRAM TABLE

NOTES:

1. In the unprogrammed state all cells are conducting. Thus, the program table for an unprogrammed device would contain "0"s for all product terms (inactive) and initialization states (indeterminate). The default or unprogrammed state of all other options is "L".
2. Unused Cn , Im and Ps cells are normally programmed as Don't Care (-).
3. Unused product terms can be left blank (inactive) for future code modification.

CMOS Programmable Logic Sequencer

ERASURE CHARACTERISTICS

(For Quartz Window Packages Only)
The erasure characteristics of the PLC415 Series devices are such that erasure begins to occur upon exposure to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps has wavelengths in the $3000-4000 \AA$ range. Data shows that constant exposure to room level fluorescent lighting could erase a typical PLC415 in approximately three years, while it would take
approximately one week to cause erasure when exposed to direct sunlight. If the PLC415 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the window to prevent unintentional erasure.

The recommended erasure procedure for the PLC415 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be a minimum of $15 \mathrm{Wsec} / \mathrm{cm}^{2}$. The erasure time with this dosage is approximately 30 to 35
minutes using an ultraviolet lamp with a $12,000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ power rating. The device should be placed within one inch of the lamp tubes during erasure. The maximum integrated dose a CMOS EPLD can be exposed to without damage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ (1 week @ $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$). Exposure of these CMOS EPLDs to high intensity UV light for longer periods may cause permanent damage.
The maximum number of guaranteed erase/ write cycles is 50 . Data retention exceeds 20 years.

Signetics

Document No.	$853-0310$
ECN No.	97888
Date of Issue	October 16, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLS105and the PLS105A are bipolar Programmable Logic State machines of the Mealy type. They contain logic ANDOR gate arrays with user programmable connections which control the inputs of on-chip State and Output Registers. These consist respectively of $6 Q_{p}$, and 8 Q_{F} edge-triggered, clocked S/R flip-flops, with an Asynchronous Preset option. all flip-flops are unconditionally preset to " 1 " during power turn on.

The AND array combines 16 external inputs $I_{0}-I_{15}$ with six internal inputs P_{0-5}, which are fed back from the State Registers to form up to 48 transition terms (AND terms). All transition terms can include True, False, or Don't Care states of the controlling variables, and are merged in the OR array to issue next-state and next-outputcommands to their respective registers on the Low-to-High transition of the Clock pulse. Both True and Complement transition terms can be generated by optional use of the internal input variable (C) from the Complement Array. Also, if desired, the Preset input can be converted to Output Enablefunction, as an additional user-programmable option.
Order codes are listed in the Ordering Information Table.

PLS105/A

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

FEATURES

- PLS105 $\mathrm{f}_{\text {max }}=13.9 \mathrm{MHz}$
- 20MHz clock rate
- PLS105A $\mathrm{f}_{\text {MAX }}=20 \mathrm{MHz}$
- 25MHz clock rate
- Field-Programmable (Ni-Cr link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition complement array
- Positive edge-triggered clocked flip-flops
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all " 1 " of internal registers
- Power dissipation: 600mW (typ.)
- TTL compatible
- Single +5 V supply
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security locking systems
- Counters
- Shift registers

PIN CONFIGURATIONS

Philips Components

PHILIPS

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active-High
$\begin{gathered} 2-8 \\ 20-27 \end{gathered}$	$\mathrm{I}_{1}-\mathrm{I}_{15}$	Logic Inputs: The 15 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence.	Active-High/Low
9	I_{0}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercised with standard TTL levels. When l_{0} is held at +10 V , device outputs F_{0-5} reflect the contents of State Register bits P_{0-5}. The contents each Output Register remains unaltered.	Active-High/Low
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	F_{0-7}	Logic/Diagnostic Outputs: Eight device outputs which normally reflect the contents of Output Register bits Q_{0-7}, when enabled. When I_{0} is held at $+10 \mathrm{~V}, \mathrm{~F}_{0-5}=\left(\mathrm{P}_{0-5}\right)$, and $\mathrm{F}_{6,7}=$ Logic " 1 ".	Active-High
19	PR/OE	Preset or Output Enable Input: A user programmable function: - Preset: Provides an Asynchronous Preset to logic "1" of all State and Output Register bits. Preset overrides Clock, and when held High, clocking is inhibited and F0-7 are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after Preset goes Low.	Active-High (H)
		- Output Enable: Provides an Output Enable function to all output buffers F_{0-7} from the Output Register.	Active-Low (L)

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

TRUTH TABLE 1, 2, 3, 4, 5, 6

V_{cc}	OPTION		t_{0}	CK	S		$\mathrm{Q}_{\text {P/F }}$	F
	PR	OE						
	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \\ \mathrm{~L} \end{gathered}$		$\begin{gathered} +10 \mathrm{~V} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline H \\ & Q_{n} \\ & Q_{n} \end{aligned}$	$\begin{gathered} H \\ \left(Q_{p}\right)_{n} \\ \left(Q_{F}\right)_{n} \end{gathered}$
+5V		$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} +10 \mathrm{~V} \\ \mathrm{X} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{n}} \\ & \mathrm{Q}_{\mathrm{n}} \\ & \mathrm{Q}_{\mathrm{n}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Hi}-\mathrm{Z} \\ & \left(\mathrm{Q}_{\mathrm{P})_{\mathrm{n}}}\right. \\ & \left(\mathrm{Q}_{\mathrm{F}}\right)_{n} \end{aligned}$
		$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \uparrow \\ & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} \mathrm{Q}_{\mathrm{n}} \\ \mathrm{~L} \\ \mathrm{H} \\ \text { IND. } \end{gathered}$	$\begin{gathered} \left(Q_{F}\right)_{n} \\ L \\ H \\ \text { IND. } \end{gathered}$
\uparrow	X	X	X	X	X	X	H	

NOTES:

1. Positive Logic:

$$
S / R=T_{0}+T_{1}+T_{2}+\ldots+T_{47}
$$

$T_{n}=C\left(I_{0} I_{1} I_{2} \ldots\right)\left(P_{0} P_{1} \ldots P_{5}\right)$
2. Either Preset (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. $R=S=$ High is an illegal input condition.
5. * $=\mathrm{H}$ or L or +10 V .
6. $\mathrm{X}=$ Don't Care $(\leq 5.5 \mathrm{~V})$.

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28-Pin Plastic DIP (600mil-wide)	PLS105N, PLS105AN
28-Pin Plastic Leaded Chip Carrier	PLS105A, PLS105AA

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {CC }}$	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$V_{D C}$
Vout	Output voltage		+5.5	$V_{D C}$
I_{N}	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

LOGIC FUNCTION

VIRGIN STATE

The factory shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Thus, all outputs will be at " 1 ", as preset by initial power-up procedure.
2. All transition terms are disabled (0).
3. All S/R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array pre-programmed with a standard test pattern.
NOTE: The Test Array pattern MUST be deleted before incorporating a user program. This is accomplished automatically by any Signetics qualified programming equipment.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{LI}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	High Low Clamp ${ }^{3}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}^{1}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	0.8 -1.2	V v V
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	High ${ }^{4}$ Low ${ }^{5}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{I}_{\mathrm{OH}} & =-2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	v
Input current						
$\begin{aligned} & I_{H} \\ & I_{H} \\ & I_{H L} \end{aligned}$	High Low Low (CK input)	$\begin{aligned} & V_{\mathbb{N}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{N}}=0.45 \mathrm{~V} \end{aligned}$		<1 -10 -50	25 -100 -250	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
$l_{\text {O(OFF) }}$ los	$\mathrm{Hi}-\mathrm{Z}$ state ${ }^{6}$ Short circuit ${ }^{3,7}$	$\begin{aligned} V_{C C} & =M a x \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15	1 -1	$\begin{gathered} 40 \\ -40 \\ -70 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {cC }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{cC}}=$ Max		120	180	mA
Capacitance ${ }^{6}$						
$\mathrm{C}_{\text {IN }}$ Cout	Input Output	$\begin{aligned} V_{C C} & =5.0 \mathrm{~V} \\ V_{\text {IN }} & =2.0 \mathrm{~V} \\ V_{\text {OUT }} & =2.0 \mathrm{~V} \end{aligned}$		8 10		pF pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Measured with $\mathrm{V}_{\text {IL }}$ applied to $\overline{ } \mathrm{E}$ and a logic high stored, or with $\mathrm{V}_{\mathbb{H}}$ applied to $P R$.
5. Measured with a programmed logic condition for which the output is at a low logic level, and V_{IL} applied to PR/OE Output sink current is supplied through a resistor to $V_{c c}$.
6. Measured with $\mathrm{V}_{\mathbb{H}}$ applied to PR/OE.
7. Duration of short circuit should not exceed 1 second.
8. $I_{C C}$ is measured with the PR/OE input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Sequencers ($16 \times 48 \times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	Limits						UNIT
				PLS105			PLS105A			
				Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Pulse width										
${ }^{\text {t }}$ CKH	Clock ${ }^{2}$ High	CK +	CK -	25	15		20	15		ns
${ }^{\text {t }}$ CKL	Clock Low	CK-	CK +	25	15		20	15		ns
${ }^{\mathrm{t}_{\mathrm{CKP}}{ }^{\text {P }} \mathrm{B}}$	Period (without Complement Array)	Output +/-	Input +/-	80	40		50	40		ns
	Period (with Complement Array)	Output +/-	Input +/-	120	60		80	50		ns
$\mathrm{t}_{\text {PRH }}$	Preset pulse	PR +	PR -	25	15		25	15		ns
Setup time ${ }^{3}$										
$\mathrm{t}_{1 S} 1 \mathrm{~A}$	Input	Input \pm	CK +	60			40			ns
$\mathrm{t}_{1 S}, B$	Input	Input \pm	CK +	50			30			ns
$\mathrm{t}_{1 S 1} \mathrm{C}$	Input	Input \pm	CK +	42			N/A			ns
$\mathrm{t}_{152} \mathrm{~A}$	Input (through Complement Array)	Input \pm	CK +	90			70			ns
$\mathrm{t}_{152} \mathrm{~B}$	Input (through Complement Array)	Input	CK +	80			60			ns
$\mathrm{t}_{152} \mathrm{C}$	Input (through Complement Array)	Input	CK +	72			N/A			ns
tvs	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	CK-	0	-10		0	-10		ns
tPRS	Preset	PR -	CK-	0	-10		0	-10		ns
Hold time										
t_{H}	Input	CK +	Input \pm	5	-10		5	-10		ns
Propagation delay										
$\mathrm{t}_{\text {cko }}$	Clock	CK +	Output \pm		15	30		15	20	ns
${ }^{\text {toe }}$	Output enable	OE-	Output -		20	30		20	30	ns
t_{OL}	Output disable	OE +	Output +		20	30		20	30	ns
t_{PR}	Preset	PR +	Output +		18	30		18	30	ns
tppr	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	Output +		0	10		0	10	ns
Frequency of operation ${ }^{3}$										
$\mathrm{f}_{\text {MAX }} \mathrm{C}$	Without Complement Array					13.9			20.0	MHz
$\mathrm{f}_{\text {MaX }} \mathrm{C}$	With Complement Array					9.8			12.5	MHz

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. To prevent spurious clocking, clock rise time $(10 \%-90 \%) \leq 30 \mathrm{~ns}$.
3. See "Speed vs. OR Loading" diagrams.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

TIMING DIAGRAMS

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }}$	Width of input clock pulse.
${ }^{\text {ckL }}$	Interval between clock pulses.
${ }^{\text {t }}$ KKP1	Clock period - when not using Complement array.
$\mathrm{t}_{\text {IS } 1}$	Required delay between beginning of valid input and positive transition of clock.
$\mathrm{t}_{\text {CKP2 }}$	Clock period - when using Complement array.
${ }_{\text {t }}^{\text {S } 2}$	Required delay between beginning of valid input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND array).
$t_{\text {vs }}$	Required delay between V_{CC} (after power-on) and negative transition of Clock preceding first reliable clock pulse.
tPRS	Required delay between negative transition of Asynchronous Preset and negative transition of Clock preceding first reliable clock pulse.
$\mathrm{t}_{\text {IH }}$	Required delay between positive transition of Clock and end of valid input data.
$\mathrm{t}_{\text {CKO }}$	Delay between positive transition of clock and when outputs become valid (with PR/OE Low).
$t_{\text {OE }}$	Delay between beginning of Output Enable Low and when outputs become valid.
tob	Delay between beginning of Output Enable High and when outputs are in the OFF-State.
${ }^{\text {t SRE }}$	Delay between input I_{0} transition to Diagnostic mode and when the outputs reflect the contents of the State Register.
${ }^{\text {t }}$ SRD	Delay between input I_{0} transition to Logic mode and when the outputs reflect the contents of the Output Register.
$t_{\text {PR }}$	Delay between positive transition of Preset and when outputs become valid at "1".
tPPR	Delay between $V_{\text {cc }}$ (after power-on) and when outputs become preset at " 1 ".
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
$f_{\text {MAX }}$	Maximum clock frequency.

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

TIMING DIAGRAMS (Continued)

SPEED VS. "OR" LOADING

The maximum frequency at which the PLS can be clocked while operating in sequential mode is given by:

$$
\left(1 / f_{M A X}\right)=t_{C Y}=t_{I S}+t_{C K O}
$$

This frequency depends on the number of transition terms T_{n} used. Having all 48 terms connected in the AND array does not appreciably impact performance; but the number of terms connected to each OR line affects ${ }^{t_{I S}}$, due to capacitive loading. The effect of this loading can be seen in Figure 1, showing the variation of $\mathrm{t}_{\mathrm{IS} 1}$ with the number of terms connected per OR.
The PLS105 AC electrical characteristics contain three limits for the parameters $\mathrm{t}_{\mathrm{IS} 1}$ and $\mathrm{t}_{\mathrm{IS} 2}$ (refer to Figure 1). The first, $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}$ is guaranteed for a device with 48 terms connected to any OR line. $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~B}}$ is guaranteed for a device with 32 terms connected to any OR line. And $\mathrm{t}_{\mathrm{IS} 1 \mathrm{C}}$ is guranteed for a device with 24 terms conntected to any OR line.

The three other entries in the $A C$ table, $t_{1 S 2} A$, B, and C are corresponding 48,32 , and 24 term limits when using the on-chip Complement Array.

The PLS105A AC electrical characteristics contain two limits for the parameters $\mathrm{t}_{\mathrm{I} 1}$ and $\mathrm{t}_{\mathrm{IS} 2}$ (refer to Figure 2). The first, $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~A}}$ is guaranteed for a device with 24 terms connected to any OR line. $\mathrm{t}_{\mathrm{IS} 1 \mathrm{~B}}$ is guaranteed for a device with 16 terms connected to any OR line.

Figure 1. PLS105 $\mathrm{t}_{\mathrm{IS} 1}$ vs. Terms/OR Connected

Figure 2. PLS105A $\mathrm{t}_{\mathrm{S} 1}$ vs. Terms/OR Connected

The two other entries in the $A C$ table, $t_{S 2} A$ and B are corresponding 24 and 16 term limits when using the on-chip Complement Array.

The worst case of $t_{I S}$ for a given application can be determined by identifying the OR line with the maximum number of T_{n} connections. This can be done by referring to the interconnect pattern in the PLSlogic diagram, typically illustrated in Figure 3, or by counting the maximum number of " H " or " L " entries in one of the columns of the device Program Table.
This number plotted on the curve in Figure 1 or 2 will yield the worst case $t_{i S}$ and, by implication, the maximum clocking frequency for reliable operation.
Note that for maximum speed all UNUSED transition terms should be disconnected from the OR array.

Figure 3. Typical OR Array Interconnect Pattern

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

LOGIC PROGRAMMING

PLS105/A logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLS105/A logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTP module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PRESET/OE OPTION - (P/E)

PROGRAMMING:

The PLS105/A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.
"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

ACTION	CODE
INACTIVE 1,4	0

ACTION	CODE
GENERATE	A

ACTION	CODE
PROPAGATE	\bullet

ACTION	CODE
TRANSPARENT	-

NOTES

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if both the true and complement of any input (l or P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Field-Programmable Logic Sequencers $(16 \times 48 \times 8)$

FPLS PROGRAM TABLE
PROGRAM TABLE ENTRIES

LD02251S
NOTES:

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an "H" for the P/E option, exits in the table, shown BLANK instead for clarity. 2. Unsed C_{n}, I_{m}, and P_{s} bits are normally programmed Don't Care (-).
2. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.
3. Letters in variable fields are used as identifiers by logic type programmers

TEST ARRAY

The FPLS may be subjected to AC and DC parametric tests prior to programming via an on-chip test array.

The array consists of test transition terms 48 and 49 , factory programmed as shown below.

Testing is accomplished by clocking the FPLS and applying the proper input sequence to l_{0-15} as shown in the test circuit timing diagram.

State Diagram

TC01597s

FPLS Under Test

TEST ARRAY PROGRAM

TB01760S

Test Array Program

Both terms 48 and 49 must be deleted during user programming to avoid interfering with the desired logic function. This is accomplished automatically by any of Signetics' qualified programming equipment.

Test Circuit Timing Diagram

TEST ARRAY DELETED

T$\mathbf{E}$$\mathbf{R}$$\mathbf{M}$	AND																						
	C	INPUT (Im)																					
		1	1	1	$\left[\begin{array}{l} 1 \\ 2 \end{array}\right]$	1		9	8	7	6	5	4	3	2	1	0	5	ESE		UT STATE (Ps)		
																				3	2	1	0
48	-	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
49	-	L	L	L	L	1	1	L	L	1	L	L	L	1	L	1	1	1	1	L	L	L	L

OPTION (P/E) H														
OR														
next state (ns)						OUTPUT (FI)								
5	4	3	2	1	0	7	6	5	4	3	2	1		0
-	-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-	-	-	-	-	-	-	-	-		-

Signetics

Document No.	$853-1351$
ECN No.	97355
Date of Issue	August 11, 1989
Status	Product Specification
Programmable Logic Devices	

PLUS105-40
 Field-Programmable Logic
 Sequencer $(16 \times 48 \times 8)$

DESCRIPTION

The PLUS105-40 is a bipolar programmable state machine of the Mealy type. Both the AND and the OR array are userprogrammable. All 48 AND gates are connected to the 16 external dedicated inputs ($\mathrm{I}_{0}-\mathrm{I}_{15}$) and to the feedback paths of the 6 buried State Registers ($\mathrm{Q}_{\mathrm{PO}}-\mathrm{Q}_{\mathrm{P}}$). Because the OR array is programmable, any one or all of the 48 transition terms can be connected to any or all of the State and Output Registers.

All state transition terms can include True, False and Don't Care states of the controlling state variables. A Complement Transition Array supports complex IF THEN ELSE state transitions with a single product term.
All buried State and Output registers are edge-triggered S-R flip-flops. Asynchronous Preset/Output Enable functions are available.

To facilitate testing of state machine designs, diagnostic mode features for register preset and buried state register observability have been incorporated into the PLUS 105-40 device architecture.

Ordering codes are listed in the Ordering Information Table.

FEATURES

- Functionally equivalent to, but faster than T1105BC and AmPLS105-37
- 300 and 600 mil-wide Plastic DIP packages
- 50 MHz clock rate
- 40MHz operating frequency
- Field-Programmable (TiW link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition complement array
- Positive edge-triggered clocked flip-flops
- Security fuse
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all "1" of internal registers
- Power dissipation: 800 mW (typ.)
- TTL compatible
- Single +5 V supply
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security Locking systems
- Counters
- Shift registers

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	Active- High (H)
$\begin{gathered} 2-9,26,27 \\ 20-22 \end{gathered}$	$\begin{aligned} & l_{0}-l_{9}, \\ & l_{13}-l_{15} \end{aligned}$	Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/ Low (H/L)
23	l_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{12} is held at +10 V , device outputs $F_{0}-F_{5}$ reflect the contents of State Register bits $\mathrm{P}_{0}-\mathrm{P}_{5}$. The contents of each Output Register remains unaltered.	Active-High/ Low (H/L)
24	I_{11}	Logic/Diagnostic Inputs: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{11} is held at +10 V , device outputs $F_{0}-F_{5}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{5}$; Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{5}$ into the State Register bits $P_{0}-P_{5}$. The contents of each Output Register remains unaltered.	Active-High/ Low (H/L)
25	I_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{10} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $\mathrm{Q}_{0}-\mathrm{Q}_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	Active-High/ Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$\mathrm{F}_{0}-\mathrm{F}_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic inputs: Eight device outputs which normally reflect the contents of Output Register bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+10 \mathrm{~V}, F_{0}$ $-F_{5}=\left(P_{0}-P_{5}\right)$. When I_{11} is held at $+10 \mathrm{~V}, F_{0}-F_{5}$ become inputs to State Register bits $P_{0}-P_{5}$. When I_{10} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $Q_{0}-Q_{7}$.	ActiveHigh (H)
19	PR/OE	Preset or Output Enable Input: A user programmable function:	
		- Preset: Provides an asynchronous preset to logic " 1 " of all State and Output Register bits. PR overrides Clock, and when held High, clocking is inhibited and $F_{0}-F_{7}$ are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after the Preset signal goes low. See timing definitions.	ActiveHigh (H)
		- Output Enable: Provides an output enable function to buffers $F_{0}-F_{7}$ from the Output Registers.	Active- Low (L)

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TRUTH TABLE 1, 2, 3, 4, 5, 6, 7

$V_{c c}$	OPTION		I_{10}	l_{11}	l_{12}	CK	\mathbf{S}	R	$\mathrm{Q}_{\mathbf{p}}$	$\mathbf{Q}_{\mathbf{F}}$	F
	PR	OE									
+5V	H		*	*	*	X	X	X	H	H	Q_{F}
	L		$+10 \mathrm{~V}$	x	X	\uparrow	X	x	Qp	L	L
	L		+10V	X	X	\uparrow	X	X	Qp	H	H
	L		X	+10V	x	\uparrow	x	x	L	Q_{F}	L
	L		X	+10V	X	\uparrow	X	X	H	$Q_{\text {F }}$	H
	L		X	X	+10V	X	X	X	Q_{p}	Q_{F}	Q_{p}
	L		X	X	X	X	X	X	Q_{p}	Q_{F}	Q_{F}
		H	x	X	*	X	X	X	Q_{p}	Q_{F}	Hi-Z
		x	+10V	x	x	\uparrow	X	X	Qp	L	L
		X	$+10 \mathrm{~V}$	x	x	\uparrow	x	X	Q_{p}	H	H
		X	X	+10V	X	\uparrow	X	X	L	Q_{F}	L
		X	X	+10V	X	\uparrow	x	x	H	Q_{F}	H
		L	X	X	+10V	X	X	X	Q_{P}	Q_{F}	Q_{p}
		L	X	X	X	X	X	X	Qp	Q_{F}	Q_{F}
		L	x	x	x	\uparrow	L	L	Qp	Q_{F}	Q_{F}
		L	X	X	X	\uparrow	L	H	L	L	L
		L	x	X	x	\uparrow	H	L	H	H	H
		L	X	x	X	\uparrow	H	H	IND.	IND.	IND.
\uparrow	X	X	X	X	X	X	X	X	H	H	

NOTES:

1. Positive Logic:

$$
\mathrm{S} / \mathrm{R}(\text { or } \mathrm{J} / \mathrm{K})=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots \mathrm{T}_{48}
$$

$$
T_{n}=\left(C_{0}, C_{1}\right)\left(l_{0}, l_{1}, l_{2}, \ldots\right)\left(P_{0}, P_{1}, \ldots P_{5}\right)
$$

2. Either Preset (Active - High) or Output Enable (Active - Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. ${ }^{*}=H$ or L or +10 V
5. $X=$ Don't Care ($\leq 5.5 \mathrm{~V}$)
6. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3 -stated and the indicated levels on the output pins are forced by the user.
7. IND. = Indeterminent

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Note that even if the PR function is not used, all registers are preset to " 1 " by the power-up procedure.
2. All transition terms are disabled (0).
3. All S/R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array preprogrammed with a standard test pattern. NOTE: The Test Array pattern must be deleted before incorporating a user program.

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin Plastic Dual-In-Line, 600mil-wide	PLUS105-40N
28 -pin Plastic Dual-In-Line, 300mil-wide	PLUS105-40N3
28 -pin Plastic Leaded Chip Carrier, 450mil-square	PLUS105-40A

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS¹

	PARAMETER		RATINGS	
SYMBOL		Min	Max	UNIT
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{A}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

LOGIC FUNCTION

Typical State Transition:

$$
\begin{aligned}
\text { SET } Q_{0}: S_{0} & =\left(\sigma_{2} \cdot Q_{1} \cdot \sigma_{0}\right) \cdot \bar{A} \cdot \mathbf{B} \cdot C \ldots \\
R_{0} & =0 \\
\text { RESET } Q_{1}: S_{1} & =0 \\
R_{1} & =\left(\sigma_{2} \cdot Q_{1} \cdot \sigma_{0}\right) \cdot \bar{A} \cdot B \cdot C \ldots \\
\text { HOLD } Q_{2}: S_{2} & =0 \\
R_{2} & =0
\end{aligned}
$$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{\mathbf{2}}$						
$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IH}} \\ \mathrm{~V}_{\mathrm{IL}} \\ \mathrm{~V}_{\mathrm{IC}} \end{array}$	High Low Clamp ${ }^{3}$	$\begin{gathered} V_{C C}=M a x \\ V_{C C}=M i n \\ V_{C C}=M_{i n}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	0.8 -1.2	V v V
Output voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Min} \\ \mathrm{I}_{\mathrm{OH}} & =-2 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =9.6 \mathrm{~mA} \end{aligned}$	2.4	0.35	0.45	V
Input current						
$\begin{aligned} & \mathrm{I}_{\mathrm{H}} \\ & \mathrm{I}_{\mathrm{LL}} \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { Low } \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathrm{IN}} & =\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{IN}} & =0.45 \mathrm{~V} \end{aligned}$		$\begin{aligned} & <1 \\ & -20 \end{aligned}$	$\begin{gathered} 25 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
Io(off) los	$\mathrm{Hi}-\mathrm{Z}$ state Short circuit ${ }^{3}, 4$	$\begin{aligned} V_{C C} & =M a x \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-15	1 -1	40 -40 -70	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		160	200	mA
Capacitance						
$\begin{aligned} & C_{\text {IN }} \\ & C_{\text {OUT }} \\ & \hline \end{aligned}$	Input Output	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		8 10		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short circuit should not exceed 1 second.

5 . $I_{C c}$ is measured with the PR/OE input grounded, all other inputs at 4.5 V and the outputs open.

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	то	Limits			UNIT
				Min	Typ ${ }^{1}$	Max	
Pulse Width							
${ }_{\text {t }}^{\text {CKH }}$	Clock High	CK +	CK-	10	8		ns
${ }^{\text {tekL }}$	Clock Low	CK-	CK +	10	8		ns
${ }_{\text {tCKP1 }}$	Period (without Complement Array)	Input \pm	Output \pm	25	20		ns
$\mathrm{t}_{\text {CKP2 }}$	Period (with Complement Array)	Input \pm	Output \pm	35	28		ns
tpre	Preset pulse	PR +	PR -	15	8		ns
Setup Time							
${ }_{\text {t }}$ S 1	Input	Input \pm	CK+	15	12		ns
$\mathrm{t}_{\text {IS2 }}$	Input (through Complement Array)	Input \pm	CK +	25	20		ns
tvs	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	CK-	0	-10		ns
tPRS	Clock resume (after preset)	PR -	CK-	0	-5		ns
tivck	Clock lockout (before preset)	CK-	PR-	15	5		ns
Hold Time							
t_{H}	Input	CK +	Input \pm	5	-10		ns
Propagation Delay ${ }^{3}$							
$\mathrm{t}_{\text {cko }}$	Clock	CK +	Output \pm		8	10	ns
toe	Output enable	OE-	Output -		8	10	ns
tod	Output disable ${ }^{2}$	OE +	Output +		8	10	ns
$t_{\text {PR }}$	Preset	PR +	Output +		15	20	ns
tPPR	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	Output +		0	10	ns
Frequency of Operation							
$f_{\text {max }}$	Without Complement Array	Input \pm	Output \pm	40.0	50.0		MHz
$\mathrm{f}_{\text {max }}$	With Complement Array Clock period	Input \pm CK +	Output \pm CK +	$\begin{aligned} & 28.5 \\ & 50.0 \end{aligned}$	35.7 62.5		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $C_{L}=5 p F ; V_{T}=V_{O L}+0.5 \mathrm{~V}$.
3. Propagation delays measured with all outputs switching.

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

TIMING DIAGRAMS

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TIMING DIAGRAMS (Continued)

TIMING DEFINITIONS

SYMBOL	PARAMETER
$t_{\text {CKH }}$	Width of input clock pulse
$\mathrm{t}_{\text {CKL }}$	Interval between clock pulses.
$\mathrm{t}_{\mathrm{CKP2}}$	Operating period - when us- ing Complement Array.
$\mathrm{t}_{\mathrm{IS} 1}$	Required delay between begin- ning of valid input and positive transition of Clock.
$\mathrm{t}_{\text {IS2 }}$	Required delay between begin- ning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
t_{Vs}	Required delay between VCC (after power-on) and negative transition of Clock preceding first reliable clock pulse.
$\mathrm{t}_{\text {PRS }}$	Required delay between nega- tive transition of Asynchronous Preset and the first positive transition of Clock.

SYMBOL	PARAMETER
t_{H}	Required delay between positive transition of Clock and end of valid Input data.
$\mathrm{t}_{\text {CKO }}$	Delay between positive transition of Clock and when Outputs become valid (with PR/OE Low).
toe	Delay between beginning of Output Enable Low and when Outputs become valid.
tod	Delay between beginning of Output Enable High and when Outputs are in the OFF-state.
${ }^{\text {t }}$ SRE	Delay between input I_{12} transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register.
tSRD	Delay between input I_{12} transition to Logic mode and when the Outputs reflect the contents of the Output Register.

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKP1 }}$	Operating period - without the Complement Array.
$t_{\text {PR }}$	Delay between positive transition of Preset and when Outputs become valid at "1".
tPPR	Delay between V_{CC} (after) power-on) and when Outputs become preset at "1".
tpRH	Width of preset input pulse.
$\mathrm{f}_{\text {MAX }}$	Min. guaranteed operating frequency.
$\mathrm{t}_{\text {NVCK }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous PRESET to guarantee that the clock edge is not detected as a valid negative transition.

TIMING DIAGRAMS (Continued)

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLUS $105-40$ logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLUS105-40 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTE module). AMAZE is available free of charge to qualified users.

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PROGRAMMING THE

PLUS 105-40

The PLUS105-40 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

PRESET/OE OPTION - (P/E)

"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate T_{n} will be unconditionally inhibited if both the true and complement fuses of any input ($1, P$) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

FPLS PROGRAM TABLE
PROGRAM TABLE ENTRIES

NOTES:

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an " H " for the P/E option, exists in the table, shown BLANK instead for clarity.
2. Unused C_{n}, I_{m}, and P_{s} bits are normally programmed Don't Care (-).
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmers.

Signetics

Document No.	
ECN No.	
Date of Issue	November 1989
Status	Preliminary Specification
Programmable Logic Devices	

DESCRIPTION

The PLUS105-55 is a bipolar programmable state machine of the Mealy type. Both the AND and the OR array are userprogrammable. All 48 AND gates are connected to the 16 external dedicated inputs ($I_{0}-I_{15}$) and to the feedback paths of the 6 buried State Registers ($\mathrm{Q}_{\mathrm{Po}}-\mathrm{Q}_{\mathrm{P} 5}$). Because the OR array is programmable, any one or all of the 48 transition terms can be connected to any or all of the State and Output Registers.
All state transition terms can include True, False and Don't Care states of the controlling state variables. A Complement Transition Array supports complex IF THEN ELSE state transitions with a single product term.

All buried State and Output registers are edge-triggered S-R flip-flops. Asynchronous Preset/Output Enable functions are available.

To facilitate testing of state machine designs, diagnostic mode features for register preset and buried state register observability have been incorporated into the PLUS105-55 device architecture.

Ordering codes are listed in the Ordering Information Table.

PLUS105-55
 Field-Programmable Logic
 Sequencer $(16 \times 48 \times 8)$

FEATURES

- Functionally equivalent to, but faster than T1105BC and AmPLS105-37
- 62.5 MHz clock rate -55 MHz operating frequency
- Available in 300 and 600 mil -wide Plastic DIP packages
- Field-Programmable (TiW link)
- 16 input variables
- 8 output functions
- 48 transition terms
- 6-bit State Register
- 8-bit Output Register
- Transition complement array
- Positive edge-triggered clocked flip-flops
- Security fuse
- Programmable Asynchronous Preset or Output Enable
- Power-on preset to all "1" of internal registers
- Power dissipation: 800mW (typ.)
- TTL compatible
- Single +5V supply
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator controllers
- Security Locking systems
- Counters
- Shift registers

PIN CONFIGURATIONS

N Packages	
cle 1	${ }^{28} \mathrm{vcc}$
172	${ }^{27} \mathrm{l}_{8}$
163	2619
154	25 I_{10}
145	24111
136	23112
$\mathrm{I}_{2} 7$	22 113
1.8	21) 114
109	$20{ }^{15}$
$\mathrm{F}_{7} 10$	$19 \mathrm{PR} / \mathrm{CE}$
$\mathrm{F}_{6} 11$	$18 \mathrm{~F}_{0}$
$\mathrm{F}_{5} 12$	17) F_{1}
$\mathrm{F}_{4} 1$	$16 \mathrm{~F}_{2}$
GND 14	$15{ }^{5}$

$N=600$ mil - wide
$\mathrm{N} 3=300 \mathrm{mil}-$ wide

Philips Components

PHILIPS

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

FUNCTIONAL DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CK	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers.	ActiveHigh (H)
$\begin{gathered} 2-9,26,27 \\ 20-22 \end{gathered}$	$\begin{aligned} & I_{0}-I_{9}, \\ & I_{13} I_{10} \end{aligned}$	Logic Inputs: The 13 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/ Low (H/L)
23	I_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{12} is held at +10 V , device outputs $F_{0}-F_{5}$ reflect the contents of State Register bits $\mathrm{P}_{0}-\mathrm{P}_{5}$. The contents of each Output Register remains unaltered.	Active-High/ Low (H/L)
24	l_{11}	Logic/Diagnostic Inputs: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{11} is held at +10 V , device outputs $F_{0}-F_{5}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{5}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{5}$ into the State Register bits $P_{0}-P_{5}$. The contents of each Output Register remains unaltered.	Active-High/ Low (H/L)
25	I_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{10} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $Q_{0}-Q_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	Active-High/ Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$\mathrm{F}_{0}-\mathrm{F}_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+10 \mathrm{~V}, F_{0}-F_{5}=\left(P_{0}-P_{5}\right)$. When I_{11} is held at $+10 \mathrm{~V}, F_{0}-F_{5}$ become inputs to State Register bits $P_{0}-P_{5}$. When I_{10} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $Q_{0}-Q_{7}$.	Active- High (H)
19	PR/OE	Preset or Output Enable Input: A user programmable function:	
		- Preset: Provides an asynchronous preset to logic "1" of all State and Output Register bits. PR overrides Clock, and when held High, clocking is inhibited and $F_{0}-F_{7}$ are High. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after the Preset signal goes Low. See timing definitions. - Output Enable: Provides an output enable function to buffers $F_{0}-F_{7}$ from the Output Registers.	ActiveHigh (H)
			Active- Low (L)

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

TRUTH TABLE 1, 2, 3, 4, 5, 6, 7

Vcc	OPTION		1_{10}	111	$1{ }_{12}$		S	R	Q ${ }_{\text {p }}$	$\mathbf{Q}_{\mathbf{F}}$	F
	PR	OE									
+5V	H		*	*	*	X	X	X	H	H	Q_{F}
	L		+10V	X	X	\uparrow	X	X	Qp	L	L
	L		+10V	X	x	\uparrow	X	x	Q_{P}	H	H
	L		X	+10V	X	\uparrow	X	X	L	Q_{F}	L
	L		X	+10V	X	\uparrow	X	X	H	Q_{F}	H
	L		x	x	$+10 \mathrm{~V}$	x	x	x	Q_{p}	Q_{F}	Qp
	L		X	X	X	X	x	X	Q_{P}	Q_{F}	Q_{F}
		H	x	x	*	X	x	X	Q_{p}	Q_{F}	Hi-Z
		X	+10V	X	X	\uparrow	X	X	Qp	L	L
		X	+10V	X	X	\uparrow	X	X	Q_{p}	H	H
		X	X	+10V	X	\uparrow	x	X	L	Q_{F}	L
		X	X	+10V	X	\uparrow	X	X	H	Q_{F}	H
		L	X	x	$+10 \mathrm{~V}$	x	X	x	Q_{P}	Q_{F}	Q_{P}
		L	X	x	X	X	X	X	Q_{p}	Q_{F}	Q_{F}
		L	x	x	X	\uparrow	L	L	Qp	$Q_{\text {F }}$	Q_{F}
		L	X	X	X	\uparrow	L	H	L	L	L
		L	X	X	X	\uparrow	H	L	H	H	H
		L	X	X	X	\uparrow	H	H	IND.	IND.	IND.
\uparrow	X	X	X	X	X	X	X	X	H	H	

NOTES:

1. Positive Logic:

$$
\mathrm{S} / \mathrm{R}(\text { or } \mathrm{J} / \mathrm{K})=\mathrm{T}_{0}+\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots \mathrm{T}_{48}
$$

$$
T_{n}=\left(C_{0}, C_{1}\right)\left(l_{0}, l_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1}, \ldots P_{5}\right)
$$

2. Either Preset (Active - High) or Output Enable (Active - Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. ${ }^{*}=\mathrm{H}$ or L or +10 V
5. $\mathrm{X}=$ Don't Care ($\leq 5.5 \mathrm{~V}$)
6. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3 -stated and the indicated levels on the output pins are forced by the user.
7. IND. $=$ Indeterminent

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. PR/OE option is set to PR. Note that even if the PR function is not used, all registers are preset to " 1 " by the power-up proce-
dure.
2. All transition terms are disabled (0).
3. All S / R flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array preprogrammed with a standard test pattern. NOTE: The Test Array pattern must be deleted before incorporating a user program.

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

FPLS LOGIC DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
28 -pin Plastic Dual-In-Line, 600mil-wide	PLUS105-55N
28 -pin Plastic Dual-In-Line, 300mil-wide	PLUS105-55N3
28 -pin Plastic Leaded Chip Carrier, 450mil-square	PLUS105-55A

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\text {IN }}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
I $_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

LOGIC FUNCTION

Typical State Transition:

$$
\operatorname{SET} \alpha_{0}: S_{0}=\left(\alpha_{2} \cdot Q_{1} \cdot \alpha_{0}\right) \cdot \bar{A} \cdot B \cdot C \ldots
$$

$$
R_{0}=0
$$

RESET $Q_{1}: S_{1}=0$ $R_{1}=\left(\sigma_{2} \cdot \sigma_{1} \cdot \sigma_{0}\right) \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \ldots$

HOLD $Q_{2}: S_{2}=0$ $\mathrm{R}_{\mathbf{2}}=0$

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{HH}} \\ \mathrm{~V}_{\mathrm{LL}} \\ \mathrm{~V}_{\mathrm{C}} \end{array}$	High Low Clamp ${ }^{3}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ \mathrm{~V}_{\mathrm{CC}}={\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}} \end{gathered}$	2.0	-0.8	$\begin{gathered} 0.8 \\ -1.2 \end{gathered}$	V V V
Output voltage ${ }^{2}$						
V_{OH} VoL	High Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=9.6 \mathrm{~mA} \\ & \hline \end{aligned}$	2.4	0.35	0.45	V
Input current						
$\begin{aligned} & I_{\mathrm{H}} \\ & I_{\mathrm{L}} \end{aligned}$	$\begin{array}{\|l} \text { High } \\ \text { Low } \end{array}$	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =\mathrm{Max} \\ \mathrm{~V}_{\mathbb{N}} & =\mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathbb{N}} & =0.45 \mathrm{~V} \end{aligned}$			$\begin{gathered} 25 \\ -250 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$l_{\text {O(OFF })}$ los	Hi-Z state Short circuit ${ }^{3,4}$	$\begin{aligned} V_{\text {CC }} & =M a x \\ V_{\text {OUT }} & =5.5 \mathrm{~V} \\ V_{\text {OUT }} & =0.45 \mathrm{~V} \\ V_{\text {OUT }} & =0 \mathrm{~V} \end{aligned}$	-5	1 -1	$\begin{array}{r} 40 \\ -40 \\ -70 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
lcc	$V_{\text {CC }}$ supply current ${ }^{5}$	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$		160	200	mA
Capacitance						
C_{IN} Cout	Input Output	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V} \\ \hline \end{gathered}$		8 10		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short circuit should not exceed 1 second.
5. I_{CC} is measured with the PR/OE input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Pulse Width							
$\mathbf{t}_{\mathbf{C K H}}$ ${ }^{t_{C K L}}$ $\mathrm{t}_{\mathrm{CKP}} 1$ $\mathrm{t}_{\mathrm{CKP}}$ tpRH	Clock High Clock Low Period (without Complement Array) Period (with Complement Array) Preset pulse	CK + CK Input \pm input \pm PR +	CK CK + Output \pm Output \pm PR -	$\begin{gathered} \hline 8 \\ 8 \\ 18 \\ 28 \\ 10 \end{gathered}$			ns ns ns ns ns
Setup Time							
$t_{\text {IS }}$ $t_{\text {IS2 }}$ tvs tPRS $t_{\text {NVCK }}$	Input Input (through Complement Array) Power-on preset Clock resume (after preset) Clock lockout (before preset)	Input \pm Input \pm $\mathrm{V}_{\mathrm{cc}}+$ PR- CK -	$\begin{aligned} & \mathrm{CK}+ \\ & \mathrm{CK}+ \\ & \mathrm{CK}- \\ & \mathrm{CK}- \\ & \mathrm{PR}- \end{aligned}$	$\begin{gathered} 10 \\ 20 \\ 0 \\ 0 \\ 12 \end{gathered}$			
Hold Time							
$\mathrm{t}_{\mathbf{H}}$	Input	CK +	Input \pm	5			ns
Propagation Delay							
${ }^{\text {tcko }}$ toe tod $t_{P R}$ tppR	Clock Output enable Output disable ${ }^{2}$ Preset Power-on preset	CK + OE - OE + PR + $\mathrm{V}_{\mathrm{Cc}}+$	Output \pm Output - Output + Output + Output +			$\begin{gathered} 8 \\ 8 \\ 8 \\ 15 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Frequency of Operation							
$f_{\text {max }}$ $f_{\text {max }}$ ${ }_{\text {flek }}$	Without Complement Array With Complement Array Clock period	Input \pm Input \pm CK +	Output \pm Output \pm CK +	$\begin{aligned} & 55.0 \\ & 35.7 \\ & 62.5 \\ & \hline \end{aligned}$			MHz MHz MHz

NOTES:

1. All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $C_{L}=5 p F ; V_{T}=V_{O L}+0.5 \mathrm{~V}$.
3. Propagation delays measured with all outputs switching.

Field-Programmable Logic Sequencer $(16 \times 48 \times 8)$

TIMING DIAGRAMS

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TIMING DIAGRAMS (Continued)

TIMING DEFINITIONS

SYMBOL	PARAMETER
t $_{\text {CKH }}$	Width of input clock pulse.
t $_{\text {CKL }}$	Interval between clock pulses.
t $_{\text {CKP2 }}$	Operating period - when using Complement Array.
IIS1	Required delay between beginning of valid input and positive transition of Clock.
IIS2	Required delay between beginning of valid Input and positive transition of Clock, when using optional Comple- ment Array (two passes nec- essary through the AND Array).
tvsRequired delay between Vacc (after power-on) and negative transition of Clock preceding first reliable clock pulse.	
tpRS	Required delay between negative transition of Asynch- ronous Preset and the first positive transition of Clock.

SYMBOL	PARAMETER
$\mathrm{I}_{\text {IH }}$	Required delay between posi- tive transition of Clock and end of valid Input data.
$\mathrm{t}_{\text {CKO }}$	Delay between positive transi- tion of Clock and when Out- puts become valid (with PR/ OE Low).
toEDelay between beginning of Output Enable Low and when Outputs become valid.	
$\mathrm{t}_{\text {OD }}$	Delay between beginning of Output Enable High and when Outputs are in the OFF-state.
$\mathrm{I}_{\text {SRE }}$	Delay between input I_{12} tran- sition to Diagnostic Mode and when the Outputs reflect the contents of the State Regis- ter.
Delay between input I_{12} tran- sition to Logic mode and when the Outputs reflect the contents of the Output Regis- ter.	

SYMBOL	PARAMETER
t $_{\text {CKP1 }}$	Operating period - without the Complement Array.
$\mathrm{t}_{\text {PR }}$	Delay between positive transi- tion of Preset and when Out- puts become valid at "1".
$\mathrm{t}_{\text {PPR }}$	Delay between $\mathrm{V}_{\text {cC }}$ (after) power-on) and when Outputs become preset at "1".
$\mathrm{t}_{\text {PRH }}$	Width of preset input pulse.
${ }^{\text {MAX }}$	Min. guaranteed operating frequency.
$\mathrm{I}_{\text {NVCK }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous PRESET to guarantee that the clock edge
is not detected as a valid nega-	
tive transition.	

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

TIMING DIAGRAMS (Continued)

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

To implement the desired logic functions, the state of each logic variable from logic equations (I, B, O, P, etc.) is assigned a symbol. The symbols for TRUE, COMPLEMENT, INACTIVE, PRESET, etc., are defined below.

PROGRAMMING THE

PLUS 105-55

The PLUS105-55 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.

LOGIC PROGRAMMING

PLUS105-55 logic designs can be generated using Signetics AMAZE PLD design software or one of several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry is accepted.
PLUS105-55 logic designs can also be generated using the program table entry format detailed on the following pages. This program table entry format is supported by the Signetics AMAZE PLD design software (PTE module). AMAZE is available free of charge to qualified users.

Field-Programmable Logic Sequencer ($16 \times 48 \times 8$)

PRESET/OE OPTION - (P/E)

"AND" ARRAY - (I), (P)

"OR" ARRAY - (N), (F)

"COMPLEMENT" ARRAY - (C)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate T_{n} will be unconditionally inhibited if both the true and complement fuses of any input (I, P) are left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

FPLS PROGRAM TABLE

PROGRAM TABLE ENTRIES

NOTES:

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an " H " for the P / E option, exists in the table, shown BLANK instead for clarity
2. Unused C_{n}, I_{m}, and P_{s} bits are normally programmed Don't Care (-)
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.
4. Letters in variable fields are used as identifiers by logic type programmers.

Signetics

Document No.	$853-1280$
ECN No.	97039
Date of Issue	July 7, 1989
Status	Product Specification
Programmable Logic Devices	

DESCRIPTION

The PLUS405 devices are bipolar, programmable state machines of the Mealy type. Both the AND and the OR array are user-programmable. All 64 AND gates are connected to the 16 external dedicated inputs $\left(l_{0}-I_{15}\right)$ and to the feedback paths of the 8 on-chip State Registers ($Q_{p_{0}}-Q_{P_{7}}$). Two complement arrays support complex IF-THEN-ELSE state transitions with a single product term (input variables C_{0}, $C_{1)}$.
All state transition terms can include True, False and Don't Care states of the controlling state variables. All AND gates are merged into the programmable OR array to issue the nextstate and next-output commands to their respective registers. Because the OR array is programmable, any one or all of the 64 transition terms can be connected to any or all of the State and Output Registers.
All state ($Q_{\text {PO }}-Q_{\text {P7 }}$) and output ($Q_{\text {F0 }}-Q_{F 7}$) registers are edge-triggered, clocked J-K flipflops, with Asynchronous Preset and Reset options. The PLUS405 architecture provides the added flexibility of the J-K toggle function which is indeterminate on S-R flip-flops. Each register may be individually programmed such that a specific Preset-Reset pattern is initialized when the initialization pin is raised to a logic level " 1 ". This feature allows the state machine to be asynchronously initialized to known internal state and output conditions prior to proceeding through a sequence of state transitions. Upon power-up, all registers are unconditionally preset to " 1 ". If desired, the initialization input pin (INIT) can be converted to an Output Enable (OE) function as an additional user-programmable feature.
Availability of two user-programmable clocks allows the user to design two independently clocked state machine functions consisting of four state and four output bits each.
Order codes are listed in the Ordering Information Table.

PLUS405-37/-45
 Field-Programmable Logic
 Sequencers ($16 \times 64 \times 8$)

FEATURES

- 50 and 58.8 MHz minimum guaranteed clock rates
- 37 and 45 MHz minimum guaranteed operating frequencies $\left(1 /\left(t_{1 S 1}+t_{C K O 1}\right)\right.$
- Functional superset of PLS105/105A
- Field-programmable (Ti-W fusible link)
- 16 input variables
- 8 output functions
- 64 transition terms
- 8-bit State Register
- 8-bit Output Register
- 2 transition Complement Arrays
- Multiple clocks*
- Programmable Asynchronous Initialization or Output Enable
- Power-on preset of all registers to "1"
- "On-chip" diagnostic test mode features for access to state and output registers
- 950mW power dissipation (typ.)
- TTL compatible
- J-K or S-R flip-flop functions
- Automatic "Hold" states
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator contollers
- Security locking systems
- Counters
- Shift registers

PIN CONFIGURATIONS

Philips Components

PHILIPS

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	POLARITY
1	CLK1	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks P_{0-3} and F_{0-3} if P in 4 is also being used as a clock.	Active-High (H)
$\begin{gathered} 2,3,5-9 \\ 26-27 \\ 20-22 \end{gathered}$	$\begin{gathered} I_{0}-I_{4}, I_{7}, I_{6} \\ I_{8}-I_{9} \\ I_{13}-I_{15} \end{gathered}$	Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/Low (H/L)
4	CLK2	Logic Input/Clock: A user programmable function:	
		- Logic Input: A 13th external logic input to the AND array, as above.	Active-High/Low (H/L)
		- Clock: A 2nd clock for the State Registers P_{4-7} and Output Registers F_{4-7}, as above. Note that input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock.	Active-High (H)
23	I_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When I_{12} is held at +10 V , device outputs $F_{0}-F_{7}$ reflect the contents of State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
24	I_{11}	Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{11} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the S tate Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
25	l_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{10} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $Q_{0}-Q_{;}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	Active-High/Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0}-F_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits $Q_{0}-Q_{7}$, when enabled. When I_{12} is held at $+10 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)$. When I_{11} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to State Register bits $P_{0}-P_{7}$. When I_{10} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $Q_{0}-Q_{7}$.	Active-High (H)
19	INIT/OE	Initialization or Output Enable Input: A user programmable function:	
		- Initialization: Provides an asynchronous preset to logic "1" or reset to logic "0" of all State and Output Register bits, determined individually for each register bit through user programming. INIT overrides Clock, and when held High, clocking is inhibited and $F_{0}-F_{7}$ and $P_{0}-P_{7}$ are in their initialization state. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after INIT goes Low. See timing definition for twVek and tvek.	Active--High (H)
		- Output Enable: Provides an output enable function to buffers $F_{0}-F_{7}$ from the Output Registers.	Active-Low (L)

Field-Programmable Logic
Sequencers ($16 \times 64 \times 8$)

TRUTH TABLE 1, 2, 3, 4, 5, 6, $\mathbf{7}$

V_{cc}	OPTION		1_{10}	l_{11}	l_{12}	CK	J	K	Q_{p}	Q_{F}	F
	INIT	OE									
$+5 \mathrm{~V}$	H			*	*	X	X	X	H/L	H/L	Q_{F}
	L		+10V	X	x	\uparrow	X	X	Qp	L	L
	L		+10V	X	x	\uparrow	x	X	Q_{p}	H	H
	L		x	+10V	x	\uparrow	X	X	L	Q_{F}	L
	L		x	+10V	X	\uparrow	X	X	H	Q_{F}	H
	L		X	X	+10V	X	X	X	Qp_{p}	Q_{F}	Q_{p}
	L		X	X	X	X	X	X	Qp_{p}	Q_{F}	Q_{F}
		H	X	X	*	X	X	X	Q_{P}	Q_{F}	$\mathrm{Hi}-\mathrm{Z}$
		X	+10V	X	x	\uparrow	X	X	Q_{p}	L	L
		x	+10V	X	x	\uparrow	x	X	Q_{P}	H	H
		X	x	$+10 \mathrm{~V}$	x	\uparrow	X	X	L	Q_{F}	L
		X	X	+10V	X	\uparrow	x	X	H	$\mathrm{Q}_{\text {F }}$	H
		L	X	X	+10V	X	X	X	Q_{p}	$\mathrm{Q}_{\text {F }}$	Qp
		L	x	x	X	x	X	X	Qp	Q_{F}	Q_{F}
		L	X	X	X	\uparrow	L	L	Qp	$\mathrm{Q}_{\text {F }}$	$Q_{\text {F }}$
		L	X	X	X	\uparrow	L	H	L	L	L
		L	X	X	X	\uparrow	H	L	H	H	H
		L	X	X	X	\uparrow	H	H		$\bar{\alpha}_{F}$	$\overline{Q_{F}}$
\uparrow	X	X	X	X	X	X	X	X	H	H	

NOTES:

1. Positive Logic:
$S / R($ or $J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}$
$T_{n}=\left(C_{0}, C_{1}\right)\left(l_{0}, I_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1}, \ldots P_{7}\right)$
2. Either Initialization (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. ${ }^{*}=\mathrm{H}$ or L or +10 V
5. $X=$ Don't Care ($\leq 5.5 \mathrm{~V}$)
6. H/L implies that either a High or a Low can occur, depending upon user-programmed selection (each State and Output Register individually programmable).
7. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3-Stated and the indicated levels on the output pins are forced by the user.

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. INIT/OE is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the userprogrammed initialization, or even if the INIT function is not used, all registers are preset to "1" by the power-up procedure.
2. All transition terms are inactive (0).
3. All S / R (or J / K) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array preprogrammed with a standard test pattern.
5. Clock 2 is inactive.

LOGIC FUNCTION

Field-Programmable Logic

Field-Programmable Logic Sequencers ($16 \times 64 \times 8$)

LOGIC DIAGRAM

Field-Programmable Logic

DETAILS FOR REGISTERS FOR PLUS405

Field-Programmable Logic
Sequencers ($16 \times 64 \times 8$)

ORDERING INFORMATION

DESCRIPTION	OPERATING FREQUENCY	ORDER CODE
28 -Pin Plastic DIP (600mil-wide)	$45 \mathrm{MHz}\left(\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO}}\right)$	PLUS405-45N
28 -Pin Plastic DIP (600mil-wide)	$37 \mathrm{MHz}\left(\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO} 1}\right)$	PLUS405-37N
28 -Pin Plastic Leaded Chip Carrier	$45 \mathrm{MHz}\left(\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO} 1}\right)$	PLUS405-45A
28 -Pin Plastic Leaded Chip Carrier	$37 \mathrm{MHz}\left(\mathrm{t}_{\mathrm{IS} 1}+\mathrm{t}_{\mathrm{CKO}}\right)$	PLUS405-37A

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30 to +30	mA
$\mathrm{I}_{\text {OuT }}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLUS405 devices are also processed for operation over the military temperature range. For Specifications and ordering information, consult the Signetics Military Data Manual.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{HH}	High	$V_{C C}=M A X$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	V
$\mathrm{V}_{1 \mathrm{c}}$	Clamp ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOL}=9.6 \mathrm{~mA}$		0.35	0.45	V
Input current						
I_{H}	High	$V_{C C}=M A X, V_{\text {IN }}=V_{C C}$		<1	25	$\mu \mathrm{A}$
$\mathrm{I}_{\text {L }}$	Low	$V_{C C}=M A X, V_{\mathbb{I}}=0.45 \mathrm{~V}$		-20	-250	$\mu \mathrm{A}$
Output current						
$\mathrm{l}_{\text {O(OFF) }}$	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	40	$\mu \mathrm{A}$
		$V_{C C}=$ MAX, $V_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3,4}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
I_{cc}	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{5}$	$V_{C C}=\mathrm{MAX}$		190	225	mA
Capacitance						
$\mathrm{CiN}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
$\mathrm{C}_{\text {OUT }}$	Output	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		10		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short-circuit should not exceed one second.
5. I_{CC} is measured with the INIT/OE input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable Logic
Sequencers ($16 \times 64 \times 8$)

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	TO	LIMITS						UNIT
				PLUS405-37			PLUS405-45			
				Min	Typ ${ }^{1}$	Max	Min	Typ ${ }^{1}$	Max	
Pulse width										
$\mathrm{t}_{\mathrm{CKH} 1}$	Clock High; CLK1 (Pin 1)	CK+	CK-	10	8		8.5	7		ns
${ }^{\text {t CKL } 1}$	Clock Low; CLK1 (Pin 1)	CK-	CK+	10	8		8.5	7		ns
${ }^{\text {t }}$ CKP1	CLK1 Period (without Complement Array)	Input +/-	Output +/-	27	22		22	18		ns
$\mathrm{t}_{\mathrm{CKH} 2}$	Clock High; CLK2 (Pin 4)	CK+	CK-	10	8		10	8		ns
$\mathrm{t}_{\text {CKL2 }}$	Clock Low; CLK2 (Pin 4)	CK-	CK+	10	8		10	8		ns
$\mathrm{t}_{\mathrm{CKP} 2}$	CLK2 Period (without Complement Array)	Input +/-	Output +/-	30	24		24	20		ns
${ }_{\text {t }}^{\text {CKP3 }}$	CLK1 Period (with Complement Array)	Input +/-	Output +/-	37	30		32	26		ns
${ }^{\text {t CKP4 }}$	CLK2 Period (with Complement Array)	Input +/-	Output +/-	40	32		34	28		ns
${ }_{\text {I }}^{\text {INITH }}$	Initialization pulse	INIT-	INIT+	15	10		15	8		ns

Setup time ${ }^{2}$

$\mathrm{t}_{\text {IS } 1}$	Input	Input \pm	CK+	15	12	12	10	ns
$\mathrm{t}_{\text {S } 2}$	Input (through Complement Array)	Input \pm	CK+	25	20	22	18	ns
tvs	Power-on preset	$\mathrm{V}_{\mathrm{CC}}+$	CK-	0	-10	0	-10	ns
${ }^{\text {trek }}$	Clock resume (after Initialization)	INIT-	CK-	0	-5	0	-5	ns
$\mathrm{t}_{\text {NVCK }}$	Clock lockout (before Initialization)	CK-	INIT-	15	5	15	5	ns

Hoid time

t_{H}	Input	CK+	Input \pm	0	-5		0	-5		ns
Propagation delay										
$\mathrm{t}_{\mathrm{CKO}}$	Clock1 (Pin 1)	CK1+	Output \pm		10	12		8	10	ns
$\mathrm{t}_{\mathrm{CKO} 2}$	Clock2 (Pin 4)	CK2+	Output \pm		12	15		10	12	ns
toe	Output Enable	OE-	Output -		12	15		12	15	ns
t_{OL}	Output Disable ${ }^{2}$	$\mathrm{OE}+$	Output +		12	15		12	15	ns
$\mathrm{I}_{\text {INIT }}$	Initialization	INIT+	Output +		15	20		15	20	ns
tPPR	Power-on Preset	$\mathrm{V}_{\mathrm{CC}}+$	Output +		0	10		0	10	ns

Frequency of operation

$f_{\text {MAX }}$	CLK1; (without Complement Array)			37.0	45.5		45.5	55.6		MHz
$\mathrm{f}_{\text {MAX }}$	CLK2; (without Complement Array)			33.0	41.7		41.7	50.0		MHz
$\mathrm{f}_{\text {MAX }}$	CLK1; (with Complement Array)			27.0	33.3		31.3	38.5		MHz
$\mathrm{f}_{\text {MAX4 }}$	CLK2; (with Complement Array)			25.0	31.3		29.4	35.7		MHz

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.

TIMING DIAGRAMS

Field-Programmable Logic
Sequencers ($16 \times 64 \times 8$)

TIMING DIAGRAMS (Continued)

Diagnostic Mode - State Register Input Jam

Diagnostic Mode - Output Register Input Jam

Field-Programmable Logic Sequencers $(16 \times 64 \times 8)$

TIMING DEFINITIONS

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKH }} 1,2$	Width of input clock pulse.
${ }^{\text {tCKP 1, } 2}$	Oerating period - when not using Complement Array.
$\mathrm{t}_{1 S 1}$	Required delay between beginning of valid input and positive transition of Clock.
tckor, 2	Delay between positive transition of Clock and when Outputs become valid (with INIT/OE Low).
$t_{\text {PPR }}$	Delay between V_{CC} (after power-on) and when Outputs become preset at " 1 ".
$\mathrm{t}_{\text {IS2 }}$	Required delay between beginning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
$\mathrm{t}_{\text {RJH }}$	Required delay between positive transition of Clock and end of inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively.
$\mathrm{f}_{\mathrm{MAX} 1,2}$, 3, 4	Minimum guaranteed operating frequency.

SYMBOL	PARAMETER
t $_{\text {CKL1, } 2}$	Interval between clock pulses.
t$_{\text {CKP3, } 4}$	Operating period - when using Complement Array.
$\mathrm{t}_{\text {IH }}$	Required delay between positive transition of Clock and end of valid Input data.
$\mathrm{t}_{\text {ORE }}$	Delay between beginning of Output Enable Low and when Outputs become valid.
$\mathrm{t}_{\text {RJS }}$	Delay between input I transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register.
	Required delay between inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively, and when the output pins become available as inputs.
$\mathrm{t}_{\text {NVCK }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization to guarantee that the clock edge is not detected as a valid negative transition.

SYMBOL	PARAMETER
$\mathrm{t}_{\text {INITH }}$	Width of initialization input pulse.
t_{Vs}	Required delay between $V_{\text {CC }}$ (after power-on) and negative transition of Clock preceding first reliable clock pulse.
t_{OD}	Delay between beginning of Output Enable High and when Outputs are in the OFF-state.
$\mathrm{t}_{\text {INIT }}$	Delay between positive transition of Initialization and when Outputs become valid.
$\mathrm{t}_{\text {SRD }}$	Delay between input I 12 transition to Logic mode and when the Outputs reflect the contents of the Output Register.
$\mathrm{t}_{\text {RH }}$	Required delay between positive transition of Clock and end of valid Input data when jamming data into State or Output Registers in diagnostic mode.
$\mathrm{t}_{\mathrm{VCK}}$	Required delay between negative transition of Asynchronous Initialization and negative transition of Clock preceding first reliable clock pulse.

Field-Programmable Logic Sequencers $(16 \times 64 \times 8)$

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

LOGIC PROGRAMMING

PLUS405 Logic designs can be generated using Signetics AMAZE design software or several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry format is accepted.

PLUS405 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry format (PTE) is supported by the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

To implement the desired logic functions, each logic variable (I, B, P, S, T, etc.) from the logic equations is assigned a symbol. TRUE, COMPLEMENT, PRESET, RESET, OUTPUT ENABLE, INACTIVE, etc., symbols are defined below.

INITIALIZATION/OE OPTION - (INIT/OE)

OPTION	CODE
INITIALZAMION ${ }^{1}$	H

OPTION	CODE
OE	L

PROGRAMMING THE PLUS405:

The PLUS405 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.

PRESET/RESET OPTION - (P/R)

Field-Programmable Logic
Sequencers ($16 \times 64 \times 8$)
"AND" ARRAY - (I), (P)

STATE	CODE	State	CODE	STATE	CODE	STATE	CODE
INACTIVE ${ }^{1,2}$	0	I, P	H	$\overline{1}, \overline{\mathbf{P}}$	L	DON'T CARE	-

"OR" ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)

CLOCK OPTION - (CLK1/CLK2)

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
4. These states are not allowed when using PRESET/RESET option.
5. Input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using second clock option.
6. A single product term cannot drive more than 8 registers by itself when used in TOGGLE mode.

Field-Programmable Logic Sequencers ($16 \times 64 \times 8$)

PLUS405 PROGRAM TABLE

NOTES:

1. The FPLS
2. Unused Cn Im , and Ps bits are normally programmed Don't Care (-).
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.

Signetics

Document No.	
ECN No.	
Date of Issue	October 1989
Status	Preliminary Specification
Programmable Logic Devices	

DESCRIPTION

The PLUS405-55 device is a bipolar, programmable state machine of the Mealy type. Both the AND and the OR array are user-programmable. All 64 AND gates are connected to the 16 external dedicated inputs $\left(l_{0}-l_{15}\right)$ and to the feedback paths of the 8 on-chip State Registers ($Q_{p 0}-Q_{p 7}$). Two complement arrays support complex IF-THEN-ELSE state transitions with a single product term (input variables $C_{0}, C_{1)}$.

All state transition terms can include True, False and Don't Care states of the controlling state variables. All AND gates are merged into the programmable OR array to issue the nextstate and next-output commands to their respective registers. Because the OR array is programmable, any one or all of the 64 transition terms can be connected to any or all of the State and Output Registers.

All state $\left(Q_{P 0}-Q_{P 7}\right)$ and output ($Q_{F 0}-Q_{F 7}$) registers are edge-triggered, clocked J-K flipflops, with Asynchronous Preset and Reset options. The PLUS405 architecture provides the added flexibility of the J-K toggle function which is indeterminate on S-R flip-flops. Each register may be individually programmed such that a specific Preset-Reset pattern is initialized when the initialization pin is raised to a logic level "1". This feature allows the state machine to be asynchronously initialized to known internal state and output conditions prior to proceeding through a sequence of state transitions. Upon power-up, all registers are unconditionally preset to " 1 ". If desired, the initialization input pin (INIT) can be converted to an OutputEnable (OE) function as an additional user-programmable feature.

Availability of two user-programmable clocks allows the user to design two independently clocked state machine functions consisting of four state and four output bits each.

Order codes are listed in the Ordering Information Table.

PLUS405-55
 Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$

FEATURES

- 62.5 MHz minimum guaranteed clock rate
- 55 MHz minimum guaranteed operating frequency ($1 /\left(t_{\mathrm{ISI}_{1}}+\mathrm{t}_{\mathrm{CKO1}}\right)$
- Functional superset of PLS105/105A
- Field-programmable (Ti-W fusible link)
- 16 input variables
- 8 output functions
- 64 transition terms
- 8-bit State Register
- 8-bit Output Register
- 2 transition Complement Arrays
- Multiple clocks
- Programmable Asynchronous Initialization or Output Enable
- Power-on preset of all registers to " 1 "
- "On-chip" diagnostic test mode features for access to state and output registers
- 950 mW power dissipation (typ.)
- TTL compatible
- J-K or S-R flip-flop functions
- Automatic "Hold" states
- 3-State outputs

APPLICATIONS

- Interface protocols
- Sequence detectors
- Peripheral controllers
- Timing generators
- Sequential circuits
- Elevator contollers
- Security locking systems
- Counters
- Shift registers

PIN CONFIGURATIONS

Philips Components

PHILIPS

Field-Programmable

PIN DESCRIPTION

PIN Nō.	SYMEOL	NAME AND FUNCTION	POLAR!TY
1	CLK1	Clock: The Clock input to the State and Output Registers. A Low-to-High transition on this line is necessary to update the contents of both registers. Pin 1 only clocks P_{0-3} and F_{0-3} if $\operatorname{Pin} 4$ is also being used as a clock.	Active--High (H)
$\begin{gathered} 2,3,5-9 \\ 26-27 \\ 20-22 \end{gathered}$	$\begin{gathered} I_{0}-I_{4}, I_{7}, I_{6} \\ I_{8}-I_{9} \\ I_{13}-I_{15} \end{gathered}$	Logic Inputs: The 12 external inputs to the AND array used to program jump conditions between machine states, as determined by a given logic sequence. True and complement signals are generated via use of " H " and " L ".	Active-High/Low (H / L)
4	CLK2	Logic Input/Clock: A user programmable function:	
		- Logic Input: A 13th external logic input to the AND array, as above.	Active-High/Low (H/L)
		- Clock: A 2nd clock for the State Registers P_{4-7} and Output Registers F_{4-7}, as above. Note that input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using Pin 4 as a Clock.	Active-High (H)
23	I_{12}	Logic/Diagnostic Input: A 14th external logic input to the AND array, as above, when exercising standard TTL or CMOS levels. When l_{12} is held at +10 V , device outputs $F_{0}-F_{7}$ reflect the contents of State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
24	1_{11}	Logic/Diagnostic Input: A 15th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{11} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for State Register bits $\mathrm{P}_{0}-\mathrm{P}_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the State Register bits $P_{0}-P_{7}$. The contents of each Output Register remains unaltered.	Active-High/Low (H/L)
25	l_{10}	Logic/Diagnostic Input: A 16th external logic input to the AND array, as above, when exercising standard TTL levels. When I_{10} is held at +10 V , device outputs $F_{0}-F_{7}$ become direct inputs for Output Register bits $Q_{0}-Q_{7}$; a Low-to-High transition on the appropriate clock line loads the values on pins $F_{0}-F_{7}$ into the Output Register bits $Q_{0}-Q_{7}$. The contents of each State Register remains unaltered.	Active-High/Low (H/L)
$\begin{aligned} & 10-13 \\ & 15-18 \end{aligned}$	$F_{0}-F_{7}$	Logic Outputs/Diagnostic Outputs/Diagnostic Inputs: Eight device outputs which normally reflect the contents of Output Register Bits $Q_{0}-Q_{7}$, when enabled. When l_{12} is held at $+10 \mathrm{~V}, F_{0}-F_{7}=\left(P_{0}-P_{7}\right)$. When I_{11} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to State Register bits $P_{0}-P_{7}$. When I_{10} is held at $+10 \mathrm{~V}, F_{0}-F_{7}$ become inputs to Output Register bits $Q_{0}-Q_{7}$.	Active-High (H)
19	INIT/OE	Initialization or Output Enable Input: A user programmable function:	
		- Initialization: Provides an asynchronous preset to logic " 1 " or reset to logic " 0 " of all State and Output Register bits, determined individually for each register bit through user programming. INIT overrides Clock, and when held High, clocking is inhibited and $\mathrm{F}_{0}-\mathrm{F}_{7}$ and $P_{0}-P_{7}$ are in their initialization state. Normal clocking resumes with the first full clock pulse following a High-to-Low clock transition, after INIT goes Low. See timing definition for $t_{\text {NVCK }}$ and ivck.	Active-High (H)
		- Output Enable: Provides an output enable function to buffers $F_{0}-F_{7}$ from the Output Registers.	Active-Low (L)

Field-Programmable

 Logic Sequencer $(16 \times 64 \times 8)$TRUTH TABLE 1, 2, 3, 4, 5, 6, 7

$\mathrm{V}_{\text {cc }}$	OPTION		10	I_{11}	$1{ }_{12}$	CK	J	K	Q_{p}	Q_{F}	F
	INIT	OE									
+5V	H		*	*	*	X	X	X	H/L	H/L	Q_{F}
	L		+10V	x	X	\uparrow	x	X	Q_{p}	L	L
	L		$+10 \mathrm{~V}$	X	X	\uparrow	X	X	Q_{p}	H	H
	L		X	+10 V	X	\uparrow	X	X	L	Q_{F}	L
	L		X	+10V	X	\uparrow	X	X	H	Q_{F}	H
	L		X	X	$+10 \mathrm{~V}$	X	X	X	Qp	Q_{F}	Q_{P}
	L		X	X	X	X	X	X	Qp	Q_{F}	Q_{F}
		H	X	X	*	X	X	X	Q_{p}	Q_{F}	$\mathrm{Hi}-\mathrm{Z}$
		X	+10V	x	x	\uparrow	X	X	Q_{p}	L	L.
		x	+10V	X	x	\uparrow	X	X	Q_{p}	H	H
		x	X	+10V	x	\uparrow	x	x	L	Q_{F}	L
		X	X	$+10 \mathrm{~V}$	X	\uparrow	X	X	H	Q_{F}	H
		L	X	X	$+10 \mathrm{~V}$	X	X	X	Q_{p}	Q_{F}	Qp
		L	X	X	X	X	X	X	QP_{p}	Q_{F}	Q_{F}
		L	X	X	X	\uparrow	L	L	Qp	Q_{F}	Q
		L	x	X	x	\uparrow	L	H	L	L	L
		L	X	x	x	\uparrow	H	L	H	H	H
		L.	X	X	x	\uparrow	H	H	\bar{Q}_{p}	\bar{Q}_{F}	$\overline{Q_{F}}$
\uparrow	X	X	X	X	X	X	X	X	H	H	

NOTES:

1. Positive Logic:
$S / R($ or $J / K)=T_{0}+T_{1}+T_{2}+\ldots T_{63}$
$T_{n}=\left(C_{0}, C_{1}\right)\left(l_{0}, I_{1}, I_{2}, \ldots\right)\left(P_{0}, P_{1}, \ldots P_{7}\right)$
2. Either Initialization (Active-High) or Output Enable (Active-Low) are available, but not both. The desired function is a user-programmable option.
3. \uparrow denotes transition from Low-to-High level.
4. ${ }^{*}=\mathrm{H}$ or L or +10 V
5. $X=$ Don't Care ($\leq 5.5 \mathrm{~V}$)
6. H/L implies that either a High or a Low can occur, depending upon user-programmed selection (each State and Output Register individually programmable).
7. When using the F_{n} pins as inputs to the State and Output Registers in diagnostic mode, the F buffers are 3-Stated and the indicated levels on the output pins are forced by the user.

VIRGIN STATE

A factory-shipped virgin device contains all fusible links intact, such that:

1. INIT/OE is set to INIT. In order to use the INIT function, the user must select either the PRESET or the RESET option for each flip-flop. Note that regardless of the userprogrammed initialization, or even if the INIT function is not used, all registers are preset to " 1 " by the power-up procedure.
2. All transition terms are inactive (0).
3. All S / R (or J / K) flip-flop inputs are disabled (0).
4. The device can be clocked via a Test Array preprogrammed with a standard test pattern.
5. Clock 2 is inactive.

LOGIC FUNCTION

Typical State Transition:

FUNCTIONAL DIAGRAM

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

LOGIC DIAGRAM

Field-Programmable

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

ORDERING INFORMATION

DESCRIPTION	OPERATING FREQUENCY	ORDER CODE
28-Pin Plastic DIP (600mil-wide)	$55 \mathrm{MHz}\left(\mathrm{t}_{\text {IS } 1}+\mathrm{t}_{\mathrm{CKO} 1}\right)$	PLUS405-55N
28-Pin Plastic Leaded Chip Carrier	$55 \mathrm{MHz}\left(\mathrm{t}_{\text {IS } 1}+\mathrm{t}_{\mathrm{CKO}}\right)$	PLUS405-55A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS	UNIT
V_{CC}	Supply voltage	+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage	+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30 to +30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents	+100	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range	0 to +75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

The PLUS405 devices are also processed for operation over the military temperature range. For Specifications and ordering information, consult the Signetics Military Data Manual.

Field-Programmable
Logic Sequencer $(16 \times 64 \times 8)$

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS	Limits			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{H}	High	$V_{C C}=$ MAX	2.0			V
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			0.8	V
$\mathrm{V}_{\text {I }}$	Clamp ${ }^{3}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage ${ }^{2}$						
V_{OH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
V_{OL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.35	0.45	V
Input current						
I_{H}	High	$V_{C C}=M A X, V_{\mathbb{I N}}=V_{C C}$		<1	25	$\mu \mathrm{A}$
IIL	Low	$V_{C C}=M A X, V_{\text {IN }}=0.45 \mathrm{~V}$		-20	-250	$\mu \mathrm{A}$
Output current						
logoff)	$\mathrm{Hi}-\mathrm{Z}$ state	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		1	40	$\mu \mathrm{A}$
		$V_{C C}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$		-1	-40	$\mu \mathrm{A}$
los	Short circuit ${ }^{3,4}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		190	225	mA
Capacitance						
$\mathrm{C}_{\text {IN }}$	Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$		8		pF
Cout	Output	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.0 \mathrm{~V}$		10		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short-circuit should not exceed one second.
5. ICC is measured with the $\operatorname{INIT} / \mathrm{OE}$ input grounded, all other inputs at 4.5 V and the outputs open.

Field-Programmable
Logic Sequencer $(16 \times 64 \times 8)$

AC ELECTRICAL CHARACTERISTICS $R_{1}=470 \Omega, R_{2}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}, 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	FROM	T0	LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Pulse width							
${ }^{\text {t }}$ KH1	Clock High; CLK1 (Pin 1)	CK+	CK-	7.5	6		ns
$\mathrm{t}_{\text {CKL1 }}$	Clock Low; CLK1 (Pin 1)	CK-	CK+	7.5	6		ns
$\mathrm{t}_{\text {CKP1 }}$	CLK1 Period (without Complement Array)	Input +/-	Output + -	18	15.5		ns
${ }_{\text {tekH2 }}$	Clock High; CLK2 (Pin 4)	CK+	CK-	7.5	6		ns
$\mathrm{t}_{\text {CKL2 }}$	Clock Low; CLK2 (Pin 4)	CK-	CK+	7.5	6		ns
${ }^{\text {t }}$ CKP2	CLK2 Period (without Complement Array)	Input +/-	Output +/-	18	15.5		ns
${ }_{\text {t }}^{\text {CRP }}$ 3	CLK1 Period (with Complement Array)	Input +/-	Output +/-	26	21.5		ns
$\mathrm{t}_{\text {CKP4 }}$	CLK2 Period (with Complement Array)	Input +/-	Output +/-	26	21.5		ns
$\mathrm{t}_{\text {INITH }}$	Initialization pulse	INIT-	INIT+	12	8		ns
Setup time ${ }^{2}$							
$\mathrm{t}_{\text {S } 1}$	Input	Input \pm	CK+	10	9		ns
$\mathrm{t}_{\text {S } 2}$	Input (through Complement Array)	Input \pm	CK+	18	15		ns
tvs	Power-on preset	$\mathrm{V}_{\text {cc }+}$	CK-	0	-10		ns
${ }^{\text {fvek }}$	Clock resume (after Initialization)	INIT-	CK-	0	-5		ns
$t_{\text {NVCK }}$	Clock lockout (before Initialization)	CK-	INIT-	12	5		ns
Hold time							
t_{H}	Input	CK+	Input \pm	0	-5		ns
Propagation delay							
$\mathrm{t}_{\mathrm{CKO}}$	Clock1 (Pin 1)	CK1+	Output \pm		6.5	8	ns
$\mathrm{t}_{\text {CKO2 }}$	Clock2 (Pin 4)	CK2+	Output \pm		6.5	8	ns
toe	Output Enable	OE-	Output -		6.5	8	ns
tod	Output Disable ${ }^{2}$	OE+	Output +		6.5	8	ns
$\mathrm{t}_{\text {INIT }}$	Initialization	INIT+	Output +		12	18	ns
$\mathrm{t}_{\text {PPR }}$	Power-on Preset	$\mathrm{V}_{\mathrm{cc}}+$	Output +		0	10	ns
Frequency of operation							
$f_{\text {max }} 1$	CLK1; (without Complement Array)			55.6	64.5		MHz
$f_{\text {M }}{ }^{\text {P }}$ 2	CLK2; (without Complement Array)			55.6	64.5		MHz
$f_{\text {MAX3 }}$	CLK1; (with Complement Array)			38.5	46.5		MHz
$\mathrm{f}_{\text {MaX }}$	$\begin{aligned} & \text { CLK2; } \\ & \text { (with Complement Array) } \end{aligned}$			38.5	46.5		MHz

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. $\mathrm{C}_{\mathrm{L}}=5 \rho F ; \mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.

Field-Programmable
Logic Sequencer $(16 \times 64 \times 8)$

TIMING DIAGRAMS

Asynchronous Initialization

Field-Programmable

TIMING DIAGRAMS (Continued)

Diagnostic Mode - State Register Input Jam

Diagnostic Mode - Output Register Input Jam

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

TIMING DEFINITIONS

SYMBOL	PARAAAETER
$\mathrm{t}_{\text {CKH1, } 2}$	Width of input clock pulse.
${ }^{\text {t CKP 1, } 2}$	Oerating period - when not using Complement Array.
$\mathrm{t}_{\text {S } 1}$	Required delay between beginning of valid input and positive transition of Clock.
$\mathrm{t}_{\text {cKol, } 2}$	Delay between positive transition of Clock and when Outputs become valid (with INIT/OE Low).
$\mathrm{t}_{\text {PPR }}$	Delay between V_{CC} (after power-on) and when Outputs become preset at " 1 ".
${ }_{\text {t }}^{\text {S } 2}$	Required delay between beginning of valid Input and positive transition of Clock, when using optional Complement Array (two passes necessary through the AND Array).
$\mathrm{t}_{\text {RJH }}$	Required delay between positive transition of Clock and end of inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively.
$\begin{gathered} \mathrm{f}_{\text {MAX } 1,2,}, \\ 3,4 \end{gathered}$	Minimum guaranteed operating frequency.

SYMBOL	PARAMETER
$\mathrm{t}_{\text {CKL1, }} 2$	Interval between clock pulses.
${ }^{\text {tekP3, }} 4$	Operating period - when using Complement Array.
t_{H}	Required delay between positive transition of Clock and end of valid Input data.
toe	Delay between beginning of Output Enable Low and when Outputs become valid.
$\mathrm{t}_{\text {SRE }}$	Delay between input l_{12} transition to Diagnostic Mode and when the Outputs reflect the contents of the State Register.
$\mathrm{t}_{\text {RJS }}$	Required delay between inputs I_{11} or I_{10} transition to State and Output Register Input Jam Diagnostic Modes, respectively, and when the output pins become available as inputs.
$\mathrm{t}_{\text {NVCK }}$	Required delay between the negative transition of the clock and the negative transition of the Asynchronous Initialization to guarantee that the clock edge is not detected as a valid negative transition.

SYMBOL	PARAMETER
$\mathrm{t}_{\text {INITH }}$	Width of initialization input pulse.
tvs	Required delay between V_{CC} (after power-on) and negative transition of Clock preceding first reliable clock pulse.
t_{OD}	Delay between beginning of Output Enable High and when Outputs are in the OFF-state.
${ }_{\text {I }}$ INT	Delay between positive transition of Initialization and when Outputs become valid.
${ }^{\text {tSRD }}$	Delay between input I_{12} transition to Logic mode and when the Outputs reflect the contents of the Output Register.
t_{RH}	Required delay between positive transition of Clock and end of valid Input data when jamming data into State or Output Registers in diagnostic mode.
$\mathrm{t}_{\text {VCK }}$	Required delay between negative transition of Asynchronous Initialization and negative transition of Clock preceding first reliable clock pulse.

Field-Programmable

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified. Input Pulses

LOGIC PROGRAMMING

PLUS405 Logic designs can be generated using Signetics AMAZE design software or several other commercially available, JEDEC standard PLD design software packages. Boolean and/or state equation entry format is accepted.
PLUS405 logic designs can also be generated using the program table format detailed on the following page(s). This Program Table Entry format (PTE) is supported by the Signetics AMAZE PLD design software. AMAZE is available free of charge to qualified users.

To implement the desired logic functions, each logic variable (I, B, P, S, T, etc.) from the logic equations is assigned a symbol. TRUE, COMPLEMENT, PRESET, RESET, OUTPUT ENABLE, INACTIVE, etc., symbols are defined below.

INITIALIZATION/OE OPTION - (INIT/OE)

PROGRAMMING THE PLUS405:
The PLUS405 has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (State and Output Register) at logic High (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all Highs (H) as the present state.

PRESET/RESET OPTION - (P/R)

Field-Programmable Logic Sequencer $(16 \times 64 \times 8)$
"AND" ARRAY - (I), (P)

"OR" ARRAY - J-K FUNCTION - (N), (F)

"COMPLEMENT" ARRAY - (C)

CLOCK OPTION - (CLK1/CLK2)

| OPTION | CODE | |
| :---: | :---: | :---: | :---: |
| CLK1 ONLY ${ }^{2}$ | L | |
| OLK1 and CLK2 ${ }^{5}$ | H | |

NOTES:

1. This is the initial unprogrammed state of all links.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.
4. These states are not allowed when using PRESET/RESET option.
5. Input buffer I_{5} must be deleted from the AND array (i.e., all fuse locations "Don't Care") when using second clock option.
6. A single product term cannot drive more than 8 registers by itself when used in TOGGLE mode.

Field-Programmable Logic Sequencer ($16 \times 64 \times 8$)

PLUS405 PROGRAM TABLE

NOTES

1. The FPLS is shipped with all links initially intact. Thus, a background of " 0 " for all Terms, and an " H " for the IN/E and H for the clock option, exists in the table, shown BLANK instead for clarity.
2. Unused Cn Im , and Ps bits are normally programmed Don't Care (-)
3. Unused Transition Terms can be left blank for future code modification, or programmed as (-) for maximum speed.

Signetics

Programmable Logic Devices

Section 6
 Programmable Macro Logic Data Sheets

INDEX
PLHS501 Programmable Macro Logic 361
PLHS502 Programmable Macro Logic 372
PLHS601 Programmable Macro Logic 384
PML2552 Programmable Macro Logic 395

Signetics

Document No.	$853-1207$
ECN No.	98069
Date of Issue	November 10, 1989
Status	Product Specification
Programmable Ingic Devices	

PLHS501 Programmable Macro Logic PML ${ }^{\text {M }}$

FEATURES

- Programmable Macro Logic device
- Full connectivity
- TTL compatible
- SNAP development system
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- AMAZE development system:
- Supports third-party schematic entry formats
- Boolean equation entry
- Logic, timing, and fault simulation
- Delay per internal NAND function $=6.5 \mathrm{~ns}$ (typ)
- Testable in unprogrammed state
- Security fuse allows protection of proprietary designs

STRUCTURE

- NAND gate based architecture - 72 foldback NAND terms
- 104 input-wide logic terms
- 44 additional logic terms
- 24 dedicated inputs ($\mathrm{l}_{0}-\mathrm{I}_{23}$)
- 8 bidirectional I/Os with individual 3-State enable:
- 4 active-High ($\mathrm{B}_{4}-\mathrm{B}_{7}$)
-4 active-Low ($\bar{B}_{0}-B_{3}$)
- 16 dedicated outputs:
- 4 active-High outputs
$\mathrm{O}_{0}, \mathrm{O}_{1}$ with common 3-State enable
$\mathrm{O}_{2}, \mathrm{O}_{3}$ with common 3-State enable
- 4 active-Low outputs: $\bar{\sigma}_{4}, \bar{\sigma}_{5}$ with common 3-State enable
$\mathrm{O}_{6}, \mathrm{\sigma}_{7}$ with common 3-State enable
- 8 Exclusive-OR outputs:
$X_{0}-X_{3}$ with common 3-State enable $\mathrm{X}_{4}-\mathrm{X}_{7}$ with common 3-State enable

DESCRIPTION

The PLHS501 is a high-density Bipolar Programmable Macro Logic device. PML incorporates a programmable NAND structure. The NAND architecture is an efficient method for implementing any logic function. The SNAP software development system provides a user friendly environment for design entry. SNAP eliminates the need for a detailed understanding of the PLHS501 architecture and makes it transparent to the user. PLHS501 is also supported on the Signetics AMAZE software development system.

The PLHS501 is ideal for a wide range of microprocessor support functions, including bus interface and control applications.

[^11]
Philips Components

PHILIPS

PIN CONFIGURATION

ARCHITECTURE

The core of the PLHS501 is a programmable fuse array of 72 NAND gates. The output of each gate folds back upon itself and all other NAND gates. In this manner, full connectivity of all logic functions is achieved in the PLHS501. Any logic function can be created within the core of the device without wasting valuable I/O pins. Furthermore, a speed advantage is acquired by implementing multi-level logic within a fast internal core without incurring any delays from the I/O buffers.

DESIGN DEVELOPMENT TOOLS

The SNAP Software Development System provides the necessary tools for designing with PML. SNAP provides the following:

- Schematicentry netlist generation from thirdparty schematic design packages such as OrCAD/SDT III ${ }^{T M}$ and FutureNet ${ }^{T M}$.
- Macro library for standard PLHS501 functions and user defined functions
- Boolean equation entry
- State equation entry
- Syntax and design entry checking
- Simulator includes logic simulation, fault simulation and timing simulation.

SNAP operates on an IBM® PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. The minimum system configuration for SNAP is 640 K bytes of RAM and a hard disk.

SNAP provides primitive PML function libraries for third-party schematic design packages. Custom macro function libraries can be defined in schematic or equation form.

After the completion of a design, the software compiles the design for syntax and completeness. Complete simulation can be carried out using the different simulation tools available.

The programming data is generated in JEDEC format. Using the Device Programmer Interface (DPI) module of SNAP, the JEDEC fusemap is sent from the host computer to the device programmer.

AMAZE

The AMAZE PLD Design Software development system also supports the PLHS501. AMAZE provides the following capabilities for the PLHS501:

- Schematic entry netlist conversion from third-party schematic software
- Boolean equation entry
- Logic and timing simulation
- Automatic test vector generation

AMAZE operates on an IBM PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.0 or higher. The minimum system configuration for AMAZE is 640 K bytes of RAM and a hard disk.
AMAZE compiles the design after completion for syntax and completeness. Programming data is generated in JEDEC format.

DESIGN SECURITY

The PLHS501 has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

Programmable Macro Logic

PLHS501 FUNCTIONAL BLOCK DIAGRAM

Programmable Macro Logic

FUNCTIONAL DIAGRAM

ORDERING INFORMATION

UESCRIFTION	ORDER CODE
52-Pin Plastic Leaded Chip Carrier	PLHS501A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
V_{CC}	Supply voltage		+7	$V_{D C}$
$\mathrm{V}_{\text {IN }}$	Input voltage		+5.5	$V_{D C}$
$V_{\text {OUT }}$	Output voltage		+5.5	$V_{D C}$
In	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$T_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

VIRGIN STATE
A factory shipped virgin device contains all fusible links open, such that:

1. All product terms are enabled.
2. All bidirectional (B) pins are outputs.
3. All outputs are enabled.
4. All outputs are active-High except $\bar{B}_{0}-\bar{B}_{3}$ (fusible I/O) and $\bar{O}_{4}-\bar{O}_{7}$ which are active-Low.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
V_{IL}	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
$\mathrm{V}_{\mathbb{H}}$	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
V_{16}	Clamp ${ }^{2,3}$	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	Low ${ }^{2,4}$ High ${ }^{2,5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	V
Input current						
$\begin{aligned} & I_{\mathrm{L}} \\ & i_{\mathrm{H}} \end{aligned}$	Low High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathbb{I}}=5.5 \mathrm{~V} \end{aligned}$			$\begin{gathered} -100 \\ 40 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current						
$l_{\text {O(OFF })}$ los	$\mathrm{Hi}-\mathrm{Z}$ state 9 Short circuit ${ }^{3,5,5}$	$\begin{gathered} V_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0.45 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		80 -140 -70	$\mu \mathrm{A}$ mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{8}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		225	295	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{\mathrm{IN}} \\ & \mathrm{C}_{\mathrm{B}} \end{aligned}$	Input I/O	$\begin{gathered} V_{\mathrm{CC}}=5 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		8 15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal
3. Test one at a time.
4. For Pins $15-19,21-27$ and $37-40, V_{O L}$ is measured with Pins 5 and $41=8,75 \mathrm{~V}$, Pin $43=0 \mathrm{~V}$ and Pins 42 and $44=4.5 \mathrm{~V}$. For Pins $28-33$ and $35-36, V_{O L}$ is measured under same conditions EXCEPT Pin $44=0 \mathrm{~V}$.
5. V_{OH} is measured with Pins 5 and $41=8.75 \mathrm{~V}$, Pins 42 and $43=4.5 \mathrm{~V}$ and Pin $44=0 \mathrm{~V}$.
6. Duration of short circuit should not exceed 1 second.
7. Icc is measured with all dedicated inputs at $O \mathrm{~V}$ and bidirectional and output pins open.
8. Measured at $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$.
9. Leakage values are a combination of input and output leakage.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

Programmable Macro Logic

PLHS501

SNAP RESOURCE SUMMARY DESIGNATIONS

Programmable Macro Logic

MACRO CELL SPECIFICATIONS ${ }^{1} \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{2}=1000 \Omega, \mathrm{R}_{1}=470 \Omega$
(SNAP Resource Summary Designations in Parantheses)

[^12]
Programmable Macro Logic

MACRO CELL SPECIFICATIONS (Continued) $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{2}=1000 \Omega, \mathrm{R}_{1}=470 \Omega$ (SNAP Resource Summary Designations in Parantheses)

PLHS501 GATE AND SPEED ESTIMATE TABLE

FUNCTION	INTERNAL NAND EQUVALENT	TYPICAL $\mathrm{t}_{\text {PD }}$	$f_{\text {max }}$	COMMENTS
Gates				
NANDs	1	6.5 ns		For 1 to 32 input variables
ANDs	1	6.5 ns		For 1 to 32 input variables
NORs	1	6.5 ns		For 1 to 32 input variables
ORs	1	6.5 ns		For 1 to 32 input variables
Decoders				
3-to-8	8	11ns		Inverted inputs available
4-to-16	16	11 ns		Inverted inputs available
5-to-32	32	11 ns		Inverted inputs available (24 chip outputs only)
Encoders				
8-to-3	15	11ns		Inverted inputs, 2 logic levels
16-to-4	32	11 ns		Inverted inputs, 2 logic levels
32-to-5	41	11 ns		Inverted inputs, 2 logic levels, factored solution.
Multiplexers				
4-to-1	5	11 ns		Inverted inputs available
8-to-1	9	11 ns		
16-to-1	17	11ns		
27-to-1	28	11 ns		Can address only 27 external inputs - more if internal
Flip-Flops				
D-type Flip-Flop	6		30 MHz	With asynchronous S-R
T-type Flip-Flop	6		30 MHz	With asynchronous S-R
J-K-type Flip-Flop	10		30 MHz	With asynchronous S-R
Adders				
8-bit	45	15.5ns		Full carry-lookahead (four levels of logic)
Barrel Shifters				
8-bit	72	11ns		2 levels of logic
Latches				
D-latch	3			2 levels of logic with one shared gate

APPLICATIONS

[^13]Signetics

Document No.	$853-1405$
ECN No.	98070
Date of Issue	November 10, 1989
Status	Product Specification
Programmable Logic Devices	

PLHS502
 Programmable Macro Logic
 PML ${ }^{\text {™ }}$

FEATURES

- Programmable Macro Logic
- Full connectivity
- Delay per internal NAND function $=6.5 \mathrm{~ns}$
- Clock frequency $=\mathbf{4 0 M H z}$ Operating frequency $=33 \mathrm{MHz}$
- SNAP development system eases design
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- TTL compatible
- Security fuse allows protection of proprietary designs
- Testable in unprogrammed state

STRUCTURE

- NAND gate based architecture - 64 foldback NAND terms
- 80 additional logic terms
- 128 inputs per logic term
- 20 dedicated inputs
- 4 programmable input/clock inputs
- 8 independent clocks
- 4 from input/clock pins
- 4 from NAND array
- 8 bidirectional I/Os
- 16 dedicated outputs
- 8 active-High outputs
- 4 outputs with programmable polarity
- 4 3-State outputs with programmable polarity and independent 3-State control
- 16 buried flip-flops
- 8 D type
- 8 S-R type

DESCRIPTION

The Signetics PML family of PLDs provides the capability to create fast and cost effective solutions for a number of microprocessor interface and control applications. PML incorporates the unique feature of a programmable NAND structure as the basis of its architecture.

The PLHS502 is a high-density Bipolar Programmable Macro Logic Device. The folded NAND array combined with embedded I/O flip-flops allows for both timing control, wide decoders, multiplexers, and system input and output bus latches to be combined onto one device.

APPLICATIONS

- VRAM controllers
- DRAM/SRAM controllers
- Multiple state machines
- Timing control
- Error detection/correction

Philips Components

PIN CONFIGURATION

ARCHITECTURE

The core of the PLHS502 is a programmable fuse array of 64 NAND gates and 16 buried flipflops. The output of each gate and flip-flop folds back upon itself and all other NAND gates and flip-flops. In this manner, full connectivity of all logic functions is achieved in the PLHS502. Any logic function can be created within the core of the device without wasting valuable I/O pins. Furthermore, a speed advantage is acquired by implementing multi-level logic within a fast internal core without incurring any delays from the I/O buffers.

Buried Flip-Flops

The 16 buried flip-flops can be connected to the input or output structures through the NAND array. Intricate state machine designs can be implemented within the core without any unnecessary delays from the input or output buffers. Each flip-flop can be realized as an input or output register with no constraints.

The Clock Array

There are a combination of 26 possible inputs to the 'Clock Array':

- 2 are directly from the input pins fed through an inverting buffer.
- 4 inputs with programmable polarity directly from the input pins.
- 4 inputs from 4 individual NAND terms.
- 16 inputs from the ' Q ' outputs of the flipflops.

The wide selection of clocking options offers the user the capacity to create custom and independent clock functions for the flip-flops. This together with the full connectivity of the device, offers the capability to implementa variety of synchronous and asynchronous state machines. Another possible application is implementing multi-phase designs such as pipe-lined processing.

DESIGN DEVELOPMENT TOOLS

The SNAP Software Development System provides the necessary tools for designing with PML. SNAP provides the following:

- Schematic entry netlist generation from thirdparty schematic design packages such as OrCAD/SDT ${ }^{T M}$ and FutureNet ${ }^{\text {TM }}$.
- Macro library for standard PLHS502 functions and user defined functions
- Boolean equation entry
- State equation entry
- Syntax and design entry checking
- Simulator includes logic simulation, faultsimulation, and timing simulation.

SNAP operates on an IBM ${ }^{\circledR}$ PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. A minimum of 640 K bytes of RAM is required together with a hard disk.

SNAP provides primitive PML function libraries for third party schematic design packages. Custom macro function libraries can be defined in schematic or equation form.

After the completion of a design, the software compiles the design for syntax and completeness. Complete simulation can be carried out using the different simulation tools available.

The programming data is generated in JEDEC format. Using the Device Programmer Interface (DPI) module of SNAP, the JEDEC fusemap is sent from the host computer to the device programmer.

Programmable Macro Logic

DESIGN SECURITY

The PLHS502 has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary designs implemented in the device cannot be copied or retrieved.

PLHS502 FUNCTIONAL BLOCK DIAGRAM

Programmable Macro Logic

FUNCTIONAL DIAGRAM

$T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, 4.75 \leq V_{C C} \leq 5.25 \mathrm{~V}, R_{1}=470 \Omega, R_{2}=1000 \Omega, C_{L}=30 \mathrm{pF}$

VOLTAGE WAVEFORMS

MEASUREMENTS:
All circuit delays are measured at the +1.5 V level of inputs and outputs, unless otherwise specified.

Input Pulses

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
68-Pin Plastic Leaded Chip Carrier	PLHS502A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER		RATINGS	
		Min	Max	UNIT
V_{CC}	Supply voltage		+7	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{V}_{\text {OUT }}$	Output voltage		+5.5	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}$	Input currents	-30	+30	mA
$\mathrm{I}_{\text {OUT }}$	Output currents		+100	mA
$\mathrm{~T}_{A}$	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All bidirectional (B) pins are outputs.
2. All outputs are enabled.
3. All outputs are active-Low except $\mathrm{O}_{0}-\mathrm{O}_{7}$, which are active-High.

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\mathrm{V}_{\text {IL }}$	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
V_{HH}	High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2.0			V
V_{16}	Clamp ${ }^{2}$	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathbb{N}}=-12 \mathrm{~mA}$		-0.8	-1.2	V
Output voltage						
	Low ${ }^{2}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$ $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}$			0.45	V
V_{OH}	High ${ }^{2}$	$\mathrm{l}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4			V
Input current						
		$V_{C C}=$ Max				
ILL	Low	$\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}$			-100	$\mu \mathrm{A}$
${ }_{1 H}$	High	$\mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}$			40	$\mu \mathrm{A}$
Output current						
		$V_{\text {cc }}=$ Max				
logof)	$\mathrm{Hi}-\mathrm{Z}$ state	$V_{\text {OUT }}=5.5 \mathrm{~V}$			80	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {OUT }}=0.45 \mathrm{~V}$			-140	
los	Short circuit	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-15		-70	mA
Icc	$\mathrm{V}_{\text {CC }}$ supply current	$V_{\text {cc }}=$ Max			400	mA
Capacitance						
		$\mathrm{V}_{\text {cc }}=5 \mathrm{~V}$				
C_{I}	Input	$\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V}$		8		pF
C_{B}	I/O	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$		15		pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.

Programmable Macro Logic

MACRO CELL A.C. SPECIFICATIONS (SNAP Resource Summary Designations in Parentheses)

Programmable Macro Logic

MACRO CELL A.C. SPECIFICATIONS (Continued) (SNAP Resource Summary Designations in Parentheses)

D FLIP-FLOP (SNAP Resource Summary Designation = DFF502)

INPUTS			OUTPUTS	
CLR	CK	D	Q	Q
H	X	X	L	H
L	L	X	Q_{0}	\mathbf{Q}_{0}
L	\uparrow	H	L	H
L	\uparrow	L	H	L

NOTE:
Q_{0}, Q_{0} represent previous stable condition of Q, \bar{Q}.

SYMBOL	LIMITS			UNIT
	Min	Typ	Max	
$f_{\text {f }} 1$	33	37	40	MHz
${ }_{\text {f CK2 }}$	37	40	43.5	MHz
$\mathrm{f}_{\text {CK3 }}$	33	37	40	MHz
$\mathrm{f}_{\text {СкЗу }}$	37	40	43.5	MHz
${ }^{\text {tw CK1 }}$	15	10	8	ns
tp CK1	30	27	25	ns
tw CK2, ${ }^{\text {tw }}$ CK3Y	10	9	8	ns
¢р СК2, ¢ с скз	27	25	23	ns
${ }_{\text {tw }}$ CK3x	10	9	8	ns
tp ск3х	30	27	25	ns
$\mathrm{t}_{\text {SETUP }} \mathrm{D}$	7	5.5	3	ns
${ }_{\text {Hold }} \mathrm{D}$	8.5	4.5	1	ns
$\mathrm{t}_{\text {W CLR }}$ High	10	9	8	ns

SYMBOL	LIMITS			NOTES
	Min	Typ	Max	
	-0.02	-0.05	-0.1	$\mathrm{~ns} /$ FO of $\mathrm{CK} 1,2,3$

SYMBOL	FROM (INPUT)	$\begin{array}{\|c} \text { TO } \\ \text { (OUTPUT) } \end{array}$	LIMITS			UNIT
			Min	Typ	Max	
tPLH	CK1	Q, $\bar{\square}$	16.5	20	25	ns
tpHL	CK1	Q, Q	17.5	20.5	24.5	ns
tpli	CK2	Q, \bar{Q}	12	14	16.5	ns
tpHL	CK2	Q, Q	13	15	16	ns
tplh	CK3X	Q, \mathbf{Q}	14	16	19.5	ns
tpHL	CK3X	Q, Q	15	16	19	ns
tPLH	CK3Y	Q, Q	12	14	16.5	ns
tPHL	CK3Y	Q, \bar{Q}	13	15	16	ns
$\mathrm{trLH}^{\text {L }}$	CLR	Q, Q	11	15	20	ns
tpHL	CLR	Q, \bar{Q}	12	15	19.5	ns

NOTES:

1. Setup and Hold times are with reference to rising edge of CK1, CK2, and CK3.
2. Limit of 16 Logic terms load on Q and \bar{Q}.

SYMBOL	LIMITS			NOTES
	Min	Typ	Max	
Δ tphlik	0.05	0.1	0.15	$\mathrm{ns} / \mathrm{FO}$ of CK1,2,3
$\Delta \mathrm{tPLHK}$	0.05	0.1	0.15	$\mathrm{ns} /$ FO of CK1,2,3
Δ tplha	-0.02	-0.5	-0.08	$\begin{gathered} \text { ns/p-term load on } \\ Q, Q \end{gathered}$
$\Delta \mathrm{tphla}^{\text {a }}$	0.05	0.1	0.15	$\begin{gathered} \text { ns/p-term load on } \\ Q, \bar{Q} \end{gathered}$

S-R FLIP-FLOP (SNAP Resource Summary Designation = RSF502)

INPUTS				OUTPUTS	
CLR	CK	5	R	a	人
H	X	X	X	L	H
L	L	X	X	Q_{0}	O_{0}
L	\uparrow	H	L	L	H
L	\uparrow	L	H	H	L
L	\uparrow	H	H	Q_{0}	χ_{0}
L	\uparrow	L	L		wed

NOTE:
Q_{0}, \bar{Q}_{0} represent previous stable condition of Q, \bar{Q}.

SYMBOL	LIMITS			UNIT
	Min	Typ	Max	
$\mathrm{f}_{\text {CK1 }}$	33	37	40	MHz
$\mathrm{f}_{\mathrm{CK} 2}$	37	40	43.5	MHz
$\mathrm{f}_{\mathrm{CK} 3 \mathrm{X}}$	33	37	40	MHz
$\mathrm{f}_{\text {CK3 }} \mathrm{Y}$	37	40	43.5	MHz
$t_{\text {W CK1 }}$	15	10	8	ns
te CK1	30	27	25	ns
${ }^{\text {W }}$ CK2	10	9	8	ns
$t_{\text {P CK2 }}$	27	25	23	ns
${ }^{\text {tw }}$ cK3x	10	9	8	ns
tp CK3X	30	27	25	ns
${ }^{\text {tw }}$ скзу	10	9	8	ns
tp ск3\%	27	25	23	ns
tsetup S, R	7	5.5	3	ns
Hold S, R	8.5	4.5	1	ns
tw CLR High	10	9	8	ns

SYMBOL	FROM (INPUT)	TO (OUTPUT)	LIMITS			UNIT
			Min	Typ	Max	
tplH $^{\text {L }}$	CK1	Q, \bar{Q}	16.5	20	25	ns
$\mathrm{tpHL}^{\text {P }}$	CK1	Q, \bar{Q}	17.5	20.5	24.5	ns
tric	CK2	Q, \bar{Q}	12	14	16.5	ns
tPHL	CK2	Q, $\overline{\mathrm{Q}}$	13	15	16	ns
tpLH	CK3X	Q, \bar{Q}	14	16	19.5	ns
tpHL	CK3X	Q, Q	15	17	19	ns
tpLH	СК3Y	Q, \bar{Q}	12	14	16.5	ns
tpHL	СКЗ	Q, \bar{Q}	13	15	16	ns
tPLH	CLR	Q	11	15	20	ns
tpHL	CLR	Q	12	15	19.5	ns

SYMBOL	LIMITS			NOTES
	Min	Typ	Max	
Δ tSETUP	-0.02	-0.05	-0.1	ns/FO of CK1 $1,2,3$

NOTES:

1. Setup and Hold times are with reference to rising edge of CK1, CK2, and CK3.
2. Limit of 16 Logic terms load on Q and \bar{Q}.

	LIMITS			NOTES
SYMBOL	Min	Typ	Max	
$\Delta t_{\text {PHLK }}$	0.05	0.1	0.15	$\mathrm{~ns} /$ FO of CK1,2,3
$\Delta t_{\text {PLHK }}$	0.05	0.1	0.15	$\mathrm{~ns} /$ FO of CK $1,2,3$
Δ tPLHQ	-0.02	-0.5	-0.08	$\mathrm{ns} / \mathrm{p}-$ term load on Q, Q
$\Delta \mathrm{tPHLQ}$	0.05	0.1	0.15	$\mathrm{ns} / \mathrm{p}-$ term load on Q, Q

SNAP RESOURCE SUMMARY DESIGNATIONS

PLHS502 GATE AND SPEED ESTIMATE TABLE

FUNCTION	INTERNAL NAND EQUVALENT	TYPICAL ${ }_{\text {PD }}$	$f_{\text {MAX }}$	COMMENTS
Gates				
NANDs ANDs NORs ORs	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	6.5 ns 6.5 ns 6.5 ns 6.5 ns		For 1 to 32 -pin input variables Additional internal inputs can be used as needed Additional internal inputs can be used as needed Additional internal inputs can be used as needed
Macro Flip-Flops				
D-Type Flip-Flop SR-Type Flip-Flop	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$		$\begin{aligned} & 40 \mathrm{MHz} \\ & 40 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Total budget }=8 \\ & \text { Total budget }=8 \end{aligned}$
Gate Implemented Flip-Flops				
D-Type Flip-Flop T-Type Flip-Flop J-K-Type Flip-Flop Transparent-D Latch S-R Latch	$\begin{gathered} 6 \\ 6 \\ 10 \\ 4 \\ 2 \end{gathered}$		$\begin{gathered} 35 \mathrm{MHz} \\ 35 \mathrm{MHz} \\ 35 \mathrm{MHz} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$	With asynchronous S-R With asynchronous S-R With asynchronous S-R With asynchronous S-R With asynchronous S-R
Decoders				
$\begin{aligned} & \text { 3-to-8 } \\ & \text { 4-to-16 } \\ & \text { 5-to-32 } \end{aligned}$	$\begin{gathered} 8 \\ 16 \\ 32 \end{gathered}$	11.5 ns 11.5 ns 11.5 ns		Inverted inputs available Inverted inputs available Inverted inputs available (24 chip outputs only)
Encoders				
$\begin{aligned} & \text { 8-to-3 } \\ & 16 \text { to-4 } \\ & \text { 32-to-5 } \end{aligned}$	$\begin{aligned} & 15 \\ & 32 \\ & 41 \end{aligned}$	11.5 ns 11.5 ns 11.5 ns		Inverted inputs, 2 logic levels Inverted inputs, 2 logic levels Inverted inputs, 2 logic levels
Multiplexers				
$\begin{aligned} & \text { 4-to-1 } \\ & 8-\text { to-1 } \\ & 16 \text {-to-1 } \\ & 27-\text { to- } \end{aligned}$	$\begin{gathered} 5 \\ 9 \\ 17 \\ 28 \end{gathered}$	11.5 ns 11.5 ns 11.5 ns 11.5 ns		Inverted inputs available Inverted inputs available Inverted inputs available Can address only 27 external inputs - more if internal only. This disallows clock inputs to flip-flop.

PLHS502 Rough Resource Budget $=64$ NANDs, 8 D, 8 SR, 24 inputs, 16 outputs, 8 bidirectionals.

APPLICATIONS

Programmable Macro Logic

APPLICATIONS (Continued)

Signetics

Document No.	
ECN No.	
Date of Issue	November 1989
Status	Preliminary Specification
Programmable Logic Devices	

FEATURES

- Programmable Macro Logic

- TTL compatible
- SNAP development system
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- Delay per internal NAND function = 4.5ns (typ)
- Security fuse for copy protection

STRUCTURE

- 86 foldback terms
- 78 foldback NAND terms
- 8 foldback Exclusive-OR terms
- 64 additional logic terms
- 28 dedicated inputs
- 12 bidirectional pins with ActiveHigh output and independent 3-State control
- 12 dedicated Active-High outputs with independent 3-state control

PLHS601

Programmable Macro Logic PML ${ }^{\text {TM }}$

DESCRIPTION

The Signetics Programmable Macro Logic (PML) family of PLDs provides the capability to create fast and cost effective solutions for general purpose logic integration, microprocessor bus interface and control applications. PML incorporates folded NAND gates as the core of its architecture. With this architecture, multiple levels of logic can be realized within the device without wasting valuable I/O pins. Furthermore, full connectivity is established among the different macros within the device, which in turn eliminates the route and place restrictions associated with high density programmable gate arrays.
The PLHS601 is a high-density bipolar PML device. The high number of I/O pins and the folded NAND architecture makes this device ideal in a wide range of bus interface and control logic applications. The PLHS601 is a powerful solution to eliminate wait states and create cost-effective microprocessor support circuitry.

APPLICATIONS

- General purpose logic integration and microprocessor support logic
- PAL ${ }^{\circledR}$ and glue logic replacement
- High speed and wide address decoders
- Wide multiplexers and decoders
- Bus arbitration functions

ARCHITECTURE

The core of the PLHS601 is a programmable fuse array of 78 folded NAND gates and 8 folded Exclusive-OR gates. The output of each gate folds back upon itself and all other gates. In this manner, full connectivity of all logic functions is achieved. Any logic functions can be implemented within the core of the device without wasting valuable l/Opins. Furthermore, a speed advantage is achieved by creating multiple levels of logic within the folded core without incurring any delays from the I/O buffers.

PML is a trademark of Philips Components-Signetics.
(BPAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

Philips Components

PHILIPS

PIN CONFIGURATION

DESIGN DEVELOPMENT TOOLS

The SNAP Software Development System provides the necessary tools for designing with PML. SNAP provides the following:

- Schematicentry netlist generation from thirdparty schematic design packages such as OrCAD/SDT $1 I^{T M}$ and FutureNet ${ }^{T M}$.
- Macro library for standard PLHS601 functions and user defined functions
- Boolean equation entry
- State equation entry
- Syntax and design entry checking
- Simulator includes logic simulation, fault simulation, automatic test vector generation, and timing simulation.

SNAP operates on an IBM® PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. The minimum system configuration for SNAP is 640 K bytes of RAM and a hard disk.

SNAP provides primitive PML function libraries for third-party schematic design packages.

Custom macro function libraries can be defined in schematic or equation form.

After the completion of a design, the software compiles the design for syntax and completeness. Complete simulation can be carried out using the different simulation tools available.

The programming data is generated in JEDEC format. Using the Device Programmer Interface (DPI) module of SNAP, the JEDEC fusemap is sent from the host computer to the device programmer.

FUNCTIONAL DIAGRAM

Programmable Macro Logic

PLHS601 FUNCTIONAL BLOCK DIAGRAM

Programmable Macro Logic

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
68-Pin Plastic Leaded Chip Carrier	PLHS601A

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	RATINGS		UNIT
		Min	Max	
$\mathrm{V}_{\text {cc }}$	Supply voltage		+7	$V_{\text {DC }}$
$\mathrm{V}_{\mathbb{N}}$	Input voltage		+5.5	$V_{D C}$
$\mathrm{V}_{\text {Out }}$	Output voltage		+5.5	$V_{D C}$
IN	Input currents	-30	+30	mA
lout	Output currents		+100	mA
T_{A}	Operating temperature range	0	+75	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses above those listed may cause malfunction or permanent damage to the device. This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification of the device is not implied.

THERMAL RATINGS

TEMPERATURE	
Maximum junction	$150^{\circ} \mathrm{C}$
Maximum ambient	$75^{\circ} \mathrm{C}$
Allowable thermal rise ambient to junction	$75^{\circ} \mathrm{C}$

VIRGIN STATE

A factory shipped virgin device contains all fusible links open, such that:

1. All product terms are enabled.
2. All bidirectional (B) pins are outputs.
3. All outputs are enabled.
4. All outputs are Active-HIGH.

Programmable Macro Logic

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITION	LIMITS			UNIT
			Min	Typ ${ }^{1}$	Max	
Input voltage ${ }^{2}$						
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IC}} \end{aligned}$	Low High Clamp ${ }^{2,3}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \\ \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{N}}=-12 \mathrm{~mA} \end{gathered}$	2.0	-0.8	$\begin{gathered} \hline 0.8 \\ -1.2 \end{gathered}$	v v
Output voltage						
$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$\begin{aligned} & \text { Low }^{2} \\ & \text { High }^{2} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$	2.4		0.45	V
Input current						
$\begin{aligned} & I_{\mathbb{L}} \\ & I_{\mathbb{H}} \end{aligned}$	Low High	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ \mathrm{V}_{\mathrm{IN}}=0.45 \mathrm{~V} \\ \mathrm{~V}_{\mathbb{N}}=5.5 \mathrm{~V} \end{gathered}$			-100 40	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Output current						
lo(off) los	Hi-Z state ${ }^{6}$ Short circuit ${ }^{3}{ }^{3}$	$\begin{gathered} V_{\mathrm{CC}}=\mathrm{Max} \\ V_{\text {OUT }}=5.5 \mathrm{~V} \\ V_{\text {OUT }}=0.45 \mathrm{~V} \\ V_{\text {OUT }}=0 \mathrm{~V} \end{gathered}$	-15		80 -140 -70	$\mu \mathrm{A}$ mA
lcc	$\mathrm{V}_{\text {CC }}$ supply current ${ }^{5}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			340	mA
Capacitance						
$\begin{aligned} & \mathrm{C}_{1 \mathrm{~N}} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { I/O } \end{aligned}$	$\begin{gathered} V_{C C}=5 \mathrm{~V} \\ V_{\text {IN }}=2.0 \mathrm{~V} \\ V_{\text {OUT }}=2.0 \mathrm{~V} \end{gathered}$		8 15		pF pF

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. All voltage values are with respect to network ground terminal.
3. Test one at a time.
4. Duration of short circuit should not exceed 1 second.
5. Icc is measured with all dedicated inputs at OV and bidirectional and output pins open.
6. Leakage values are a combination of input and output leakages.

TEST LOAD CIRCUITS

VOLTAGE WAVEFORMS

SNAP RESOURCE SUMMARY DESIGNATIONS

Programmable Macro Logic

MACRO CELL SPECIFICATIONS $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{2}=1000 \Omega, \mathrm{R}_{1}=470 \Omega$ (SNAP Pesource Summary Designations in Parentheses)

Input Buffer (DIN601, NIN601)							
$\square>$							
		SYMBOL	LIMITS			UNIT	
			Min	Typ	Max		
		Δt_{H}	0.05	0.1	0.15	ns / p-term	
		$\Delta t_{\text {LH }}$	-0.02	-0.05	-0.08	ns/p-term	
SYMBOL	PARAMETER		LIMITS			UNIT	NOTES
	$\begin{gathered} \text { To } \\ \text { (Output) } \end{gathered}$	From (Input)	Min	Typ	Max		
$\mathrm{tpH}_{\mathrm{t}}$	X X	i	$\begin{gathered} 4 \\ 4.5 \end{gathered}$	$\begin{gathered} 5 \\ 5.5 \end{gathered}$	$\begin{gathered} 6 \\ 6.5 \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	With 0 p-terms load
$\begin{aligned} & \text { tpHL } \\ & \mathbf{t P L H}^{2} \end{aligned}$	Y	i	$\begin{gathered} 2 \\ 3.5 \end{gathered}$	$\begin{gathered} 3 \\ 3.5 \end{gathered}$	$\begin{gathered} 3.5 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	With 0 p-terms load

Input Pins: 1-2, 4-8, 10-11, 13-15, 17-19, 52-53, 55-59, 61-62, 64-66, 68.
Bidirectional Pins: $21-25,27-28,30-32,34-35$. Maximum internal fan-out: 16 p -terms on X or Y .

Internal Foldback NAND
(FBNAND)

	LIMITS			
SYMBOL	Min	Typ	Max	UNIT
$\Delta t_{\text {PHL }}$	0.05	0.07	0.1	$n s / p-t e r m$
$\Delta t_{\text {PLH }}$	-0.02	-0.05	-0.08	$n s / p-$ term

SYMBOL	PARAMETER		LIMITS			UNIT	NOTES
	To (Output)	From (Input)	Min	Typ	Max		
tphL tple	Out	Any	$\begin{aligned} & 2.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	With 0 p-terms load

Programmable Macro Logic

MACRO CELL SPECIFICATIONS (Continued) $T_{A}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{2}=1000 \Omega, \mathrm{R}_{1}=470 \Omega$ (SNAP Resource Summary Designations in Parentheses)

SYMBOL	PARAMETER		LIMITS			
	To (Output)	From (Input)	Min	Typ	Max	
	Output	In	8	9	11.5	ns
TPLH $^{\text {Output }}$	In	9	10	13.5	ns	
toE	Out	Tri-Ctr	10	11.5	13.5	ns
toD	Out	Tri-Ctrl	8	9.5	11.5	ns

Bidirectional and Output Pins: 19, 21, 22, 23, 15-18.
Internal Ex-OR Feedback Terms (EXO601)

	LIMITS			UNIT
SYMBOL	Min	Typ	Max	
$\Delta t_{\text {PHL }}$	0.05	0.07	0.1	$\mathrm{~ns} / \mathrm{p}$-term
$\Delta \mathrm{tPLH}$	-0.02	-0.05	-0.08	$\mathrm{~ns} / \mathrm{p}-$-term

SYMBOL	PARAMETER		LIMITS			UNIT
	To (Output)	From (Input)	Min	Typ	Max	
	Out	A or B A or B	5.5	5	5.6	ns tpLH

Programmable Macro Logic

PLHS601 GATE AND SPEED ESTIMATE TABLE

FUNCTION	INTERNAL NAND EQUVALENT	TYPICAL tpD	$f_{\text {max }}$	COMMENTS
Gates				
NANDs	1	4.5 ns		For 1 to 32 input variables
ANDs	1	4.5 ns		For 1 to 32 input variables
NORs	1	4.5 ns		For 1 to 32 input variables
ORs	1	4.5 ns		For 1 to 32 input variables
Decoders				
3-to-8	8	7.2ns		Inverted inputs available
4-to-16	16	7.2 ns		Inverted inputs available
5-to-32	32	7.2 ns		Inverted inputs available (24 chip outputs only)
Encoders				
8-to-3	15	7.2 ns		Inverted inputs, 2 logic levels
16-to-4	32	7.2 ns		Inverted inputs, 2 logic levels
32-to-5	41	7.2 ns		Inverted inputs, 2 logic levels, factored solution.
Multiplexers				
4-to-1	5	7.2 ns		Inverted inputs available
8-to-1	9	7.2 ns		
16-to-1	17	7.2 ns		
27-to-1	28	7.2ns		Can address only 27 external inputs - more if internal
Flip-Flops				
D-type Flip-Flop	6		45MHz	With asynchronous S-R
T-type Flip-Flop	${ }^{6}$		45 MHz	With asynchronous S-R
J-K-type Flip-Flop	10		45 MHz	With asynchronous S-R
Adders				
8-bit	45	11.7 ns		Full carry-lookahead (four levels of logic)
Barrel Shifters				
8-bit	72	7.2ns		2 levels of logic
Latches				
D-latch	3			2 levels of logic with one shared gate

APPLICATIONS

Signetics

Document No.	
ECN No.	
Date of Issue	November 1989
Status	Preliminary Specification
Programmable Logic Devices	

PML2552
 Programmable Macro Logic
 PML ${ }^{\text {тм }}$

FEATURES

- Full connectivity
- Scan test
- Power down mode
- Power on reset
- 100\% testable
- High-Speed and Standard versions
- SNAP development system
- Supports third-party schematic entry formats
- Macro library
- Versatile netlist format for design portability
- Logic, timing, and fault simulation
- TTL compatible
- Power dissipation (TTL) $=630 \mathrm{~mW}$
- Power dissipation $(C M O S)=525 \mathrm{~mW}$
- Security fuse

PROPAGATION DELAYS

- Delay per internal NAND gate
$=12 \mathrm{~ns}$ (typ) (High-Speed)
$=15 \mathrm{~ns}$ (typ) (Standard)

STRUCTURE

- 112 possible foldback NAND gates:
- 96 internal NAND
- 16 from the I/O macros
- 114 additional logic terms
- 53 possible inputs (with programmable polarity)
- 29 dedicated inputs
- 24 bidirectional I/Os
- 24 bidirectional pins
- 52 flip-flops
- 24 possible outputs with individual Output Enable control (8 with programmable polarity)
- Multiple independent clocks
- 20 Buried JK-type flip-flops with foldback (JKFFs):
- 10 JKFFs with one shared preset signal and one shared clocked signal originating from the clock array.
- 10 JKFFs with 10 independent clock signals originating from the clock array and 10 independent clear signals
- 258 inputs per NAND gate
- Bypassable Input D-type flip-flop (DFFs)/Combinatorial Inputs:
- 16 DFFs/combinatorial inputs
- DFFs clocked in two groups of eight
- DFFs not bypassed in unprogrammed state
- Independent bypass fuse on each DFF
- Inputs/bypassable D-type flip-flop outputs/foldback NAND gates:
- 16 output DFFs/combinatorial inputs/ outputs with individual Output Enable control
- DFFs clocked in two groups of eight
- DFFs not bypassed in unprogrammed state
- Independent bypass fuse on each DFF
- The DFF can be used as an internal DFF or an internal foldback NAND gate.
- Combinatorial inputs:
- 9 dedicated inputs to the NAND array
- 3 inputs optional to NAND array and/ or clock array
- 1 input optional to NAND array and/or clock array, and/or clock of Input D Flip-Flops (Group B)
- Separate clock array:
- Separate clock array for JKFFs clock inputs
- 4 inputs to clock array originate from NAND array
- 4 inputs (with programmable polarity) directly from input pins
- 10 inputs from Q outputs of JKFFs with clear
- Dedicated clocks:
- One dedicated clock for input DFFs (Group A)
- Two dedicated clocks for output DFFs
- Scan test feature:
- Scan chain is implemented through the 20 buried JKFFs and 16 output DFFs
- Pins SCI, SCM, and CKE1 are used to operate the scan test
- Power down mode
- Dedicated pin (PD) freezes the circuit when brought to logic " 1 ". The circuit remains in the same state prior to the logic " 0 " to logic " 1 " transition of the "PD" pin.
- When in the power down mode, the SCl pin acts as the 3-State pin for the 24 outputs.

- Power on reset:

- All flip-flops (16 input DFFs, 20 buried JKFFs, and 16 output DFFs) are reset to logic " 0 " after $V_{\text {cc }}$ power on.

PML is a trademark of Philips Components-Signetics.

Philips Components

Programmable Macro Logic

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
68-pin Plastic Leaded Chip Carrier High-Speed	PML2552AA
68-pin Ceramic Leaded Chip Carrier with quartz window High-Speed	PML2552ALA
68-pin Plastic Leaded Chip Carrier Standard	PML2552A
68-pin Ceramic Leaded Chip Carrier with quartz window Standard	PML2552LA

FUNCTIONAL BLOCK DIAGRAM

Figure 1

Programmable Macro Logic

LOGIC DIAGRAM

DESCRIPTION

The Signetics PML family of PLDs provides "instant gate array" capabilities for general purpose logic integration applications. The PML2552 is the first high density CMOS-PML product. Fabricated with the Signetics highperformance EPROM process, it is an ideal way to reduce NRE costs, inventory problems and quality concerns. The PML2552 incorporates the PML folded NAND array architecture which provides 100% connectivity to eliminate routing restrictions. What distinguishes the PML2552 from the "classic" PLD architectures is its flexibility and the potent flip-flop building blocks. The device utilizes a folded NAND architecture, which enables the designer to implement multiple levels of logic on a single chip. The PML2552 eliminates the NRE costs, risks, and hard to use design tools associated with semicustom and full custom approaches. It allows the system designer to manage reliable functionality, in less time and space plus a faster time to market. The PML2552 is ideal in todays instrumentation, industrial control, EISA, NuBus ${ }^{\mathrm{TM}}$, bus interface and dense state machine applications in conjunction with the state-of-the-art CMOS processors. It is capable of replacing large amounts of TTL, SSI and MSI logic and literally allows the designer to build a system on the chip.
The SNAP development software gives easy access to the density and flexibility of the PML2552 through a variety of design entry formats, including schematic, logic equations, and state equations in any combination.

ARCHITECTURE

The core of the PML2552 is a programmable NAND array of 96 NAND gates and 20 buried JKFFs. The output of each NAND gate folds back upon itself and all other NAND gates and flip-flops. The ' Q ' and ' $\overline{\text { ' }}$ output of each flipflop also folds back in the same manner. Thus, total connectivity of all logic functions is achieved in the PML2552. Any logic function can be created within the core without wasting valuable I/Opins. Furthermore, a speed advantage is acquired by implementing multi-level logic within a fast internal core without incurring any delays from the l/O buffers. Figure 1 shows the functional block diagram of the PML2552.

Macro Cells

There are 16 bypassable DFFs on the input to the NAND array. These flip-flops are split in two banks of 8 (Bank A and Bank B). Each bank of flip-flops has a common clock. In the unprogrammed state of the device the flip-flops are active. In order to bypass any DFF, its respective bypass fuse (BFAx) must be programmed.

The $16 \mathrm{I} / \mathrm{O}$ pins $\left(\mathrm{IO}_{0}-1 \mathrm{O}_{15}\right)$ and their respective D flip-flop macros can be used in any one of the following configurations:

1. As combinatorial input(s).

Each of the 16 3-State outputs can be individually disabled by the associated NAND term and the pin is used as an inverting or non-inverting input.
2. As registered DFF outputs.

These DFFs are split into two banks of 8 , and each bank is clocked separately. The bypass fuse BFBX (see PML2552 Logic Diagram) is used to bypass any one of these DFFs. The flip-flops are all active in an unprogrammed device.
3. As combinatorial outputs.

By programming the bypass (BFBx) fuse of any one of the DFFs, the filip-fiop(s) is bypassed. The l/O pin can then be used as a combinatorial output.
4. As Internal foldback DFFs or foldback NAND gates.
When the I/O pin is used as an input, the output macro can be used as an internal DFF or a foldback NAND term. If the bypass fuse is programmed, the macro will act as a foldback NAND term. Otherwise it will act as an internal DFF.

The 8 bidirectional pins ($B 0-B 7$) can be used as either combinatorial inputs or outputs with programmable polarity. The outputs are inverting in the unprogrammed state. In order to make the outputs non-inverting, fuse $\mathrm{BFC}_{\mathrm{X}}$ (See Logic Diagram) must be programmed.

The NAND signal labeled 'OD' (Output Disable) shown on the PML2552 logic diagram is used for the Power Down mode operation. This signal disables the outputs when the device enters the Power Down mode and SCl is high.

Clock Array

The 20 buried JKFFs can be clocked through the 'Clock Array'. The Clock Array consists of 11 NAND terms. Ten of these terms are connected to the clock inputs of the Bank A flipflops that can be clocked individually. One NAND gate is connected to Bank B flip-flops that have a common clock. There are 18 inputs to the clock array. Four come directly from the input pins (with programmable polarity), 4 inputs are from 4 NAND gates connected directly to the folded NAND array. 10 inputs are from the Q outputs of the JKFFs with clear.

SCAN TEST FEATURE

With the rise in the ratio of devices on a chip to the number of I/O pins, Design For Testability is becoming an essential factor in logic design methodology. The PML2552 incorporates a variable length scan test feature which permits access to the internal flip-flop nodes withoutrequiring a separate external I/O pin for each node accessed. Figure 2 (Scan Mode Operation) shows how a scan chain is implemented through the 20 buried JKFFs and 16 output DFFs. Two dedicated pins, SCI (Scan In) and SCM (Scan Mode), are used to operate the scan test. The SCM pin is used to put the circuit in scan mode. When this pin is brought to a logic " 1 ", the circuit enters the scan mode. In this
mode it is possible to shift an arbitrary test pattern into the flip-flops. The SCl pin is used to input the pattern. The inverted outputs of flip-flops D0 - D15 are observable on pins I/O0 - I/O15.

The following are features and characteristics of the device when in Scan Mode:

1. CKE1 is the common scan-clock for all the flip-flops when in scan mode. CKE1 overrides all clock resources of normal operational mode.
2. The Preset(PR) and Clear (CL) functions of the flip-flops are disabled.
3. Scan overrides the bypass fuse of the flipflops. This means that all the bypassable

DFFs remain intact during scan operation even though they may have been bypassed during normal operation.
4. To observe the SCAN data, the output buffers must be enabled by the Output Enable (tri-ctrl) terms.
5. The outputs of the flip-flops are complemented on pins I/O0 - I/O15.
6. All external inputs to flip-flops in the scan chain are disabled when the device enters the scan mode.
7. Blowing the security fuse does not disable the Scan Test feature.

SCAN MODE OPERATION

[^14]Figure 2

Scan Test Strategy

The scan test pattern is design dependent and the user must make considerations for Design For Testability (DFT) during the initial stages of the design. A typical test sequence is to preload (i.e., enter a state); revert to normal operation (i.e., activate the next state transition); go back to scan mode to check the result. Note that the scan test feature available in the PML2552 is a variable length scan chain. The DATA entered at SCl (JKCL9) can be accessed anywhere between 21 clock cycles (at I/OO) to 36 clock cycles (at I/O15). For the strategy discussed here, DATA is read out after 36 clocks at I/O15 (i.e., D15). The following operation sequence suggests a possible scan test method.

A conservative test policy demands proof that the test facility is working. Thus, to prove Scan Chain holds and maintains correct data:
a. Fill chain with several patterns (for example, all ones and all zeros).
b. Retrieve same patterns.

The user is responsible for managing an external test memory buffer for applied vectors and results, as part of the test equipment.

1. Parallel readout of $\mathrm{I} / \mathrm{OO}-\mathrm{I} / \mathrm{O} 15$ is possible, but assume only I/O15 is used for this strategy.
2. The first DATA entered at SCI (or JKCL9) will be the content of D15 after 36 clocks. This DATA will be inverted at the output pin I/O15 (i.e., SCOUT). The last DATA entering the scan chain will be the content of JKCL.9. Thus, the scan chain resembles a first-in-first-out shift register with inverted outputs (1/O0 - I/O15).
3. 'Test Data' is read in at the SCl input and read out of the SCOUT output pin (I/O15). To enter 'Test Data':
a. Put device in Scan Mode by applying the scan control signals (SCM=1).
b. Clock device with scan clock (CKE1).
c. Apply consecutive serial test vectors.
d. Read back results as new 'Test Data' (States) are applied. The first 36 outputs read at SCOUT (I/O15) are random ('old') data (e.g., remnant of Step 1).
e. Apply 36 ' Test Data' until the chain is full.
4. To apply 'Test Data' (States), exit Scan Mode and apply on system clock together with any other possible test vectors.
5. To read result of the state transition, re-enter scan and apply the scan clock (CKE1). The result of the state transition in JK'CL9 will be available at SCOUT (I/O15) after 36 clocks. The results can be stored in a user defined test memory buffer in inverted logic representation.
6. As the results are being read and stored, new 'Test Data' can be entered via SCl.
7. Repeat for all test patterns of interest.
8. Figure 3 (FLOW_CHART) depicts a flow chart version of the test sequence.

NOTE:

1. The first 36 outputs are random ('OLD') data.

Figure 3. FLOW_CHART

A Simple Example

Assume the last three cells of the scan chain (JKCL9, JKCL8, JKCL7 in Figure 4 contain a 3 -bit up counter. Our test vector will be a single clock applied to the counter. Suppose we wish to first check the State 5 (i.e., 101) to State 6 (i.e., 110) transition, then the State 3 (i.e., 011) to State 4 (i.e., 100) transition. Assume the scan chain has been pre-verified and we may begin.

Enter scan mode (set SCM=1) apply 36 bits in sequence so that the value 101 (i.e., State 5) resides in the last three cells. Exit scan mode (set SCM=0) and apply a single clock to the counter. Now the value 110 (i.e., State 6) resides in the last three cells. Re-enter scan mode (set SCM=1) and read back 36 bits from position I/O15. Note that the outputs are complemented and are also read back in the reverse order. Therefore the value for STATE 6 read at l/O15 will be 100 which is the complement of STATE 6 (110) read in the reverse order.

As this is being read back, apply a new state, serially equal to the value 011 (i.e., State 3). This state should be loaded on the last three clock cycles during which STATE 6 is being read back at I/O15. After STATE 3 has been loaded (and STATE 6 read back), exit scan mode and apply a single clock which will invoke the STATE 3 (i.e., 011) to STATE 4 (i.e., 100) transition. Re-enter scan mode and read back 36 bits at I/O15. The last three bits should contain 110 which is the complement of State 4 read in the reverse order. Figure 4 (SCAN EXAMPLE) shows a flow diagram of this example. Note that the States will always be complemented and read back in the reverse at I/O15. Other sequences may be applied in the same manner.
A possible alternative to this example is to read back the output states at l/OO (DO) instead of I/O15 (JKCL9). This will allow the outputs to be read back after 21 clock cycles rather than the 36 used in the above example.

Figure 4. SCAN_EXAMPLE

POWER DOWN

The PML2552 offers the user controlled capability of putting the device to "sleep" where power dissipation is reduced to very low levels. When brought to a logic " 1 ", the PD pin freezes the circuit while reducing the power. All data is retained. This not only includes that of the registers, but also the state of each foldback gate. For those cases where it is desirable to 3-State the outputs, that can be accomplished by raising the SCl pin to a logic " 1 ".
There is one point that should be noted while the circuit is in its power-down mode. The switching of any external clock pin will cause a disruption of the data. All clocks must be frozen before the circuit goes into power-down and stay that way until it powered back up. Clocks that are internally generated and feed the clock array are automatically stopped by the powerdown circuitry. Any other input can toggle without any loss of data.

NOTE:

1. During power down, external clocks
(CKA, CKB/CKC, CKE1, CKE2) should not change.
2. SCM must be " 0 " as in normal operation mode.
3. External clock recovery time (low-tohigh) is 60 ns (high-speed) and 70ns (standard) after the device is powered up.
4. Power Down Timing Diagrams on pages 17 and 18 are for combinatorial operation only.

DEVELOPMENT TOOLS

The PM2552 is supported by the Signetics SNAP software development package and a multitude of hardware and software development tools. These include industry standard PLD programmers and CAD software.

SNAP

Features

- Schematic entry using DASH ${ }^{\text {TM }} 4.0$ or above or OrCAD ${ }^{\text {TM }}$ SDT III
- State Equation Entry
- Boolean Equation Entry
- Allows design entry in any combination of above formats
- Simulator
- Logic and fault simulation
- Timing model generation for device timing simulation
- Synthetic logic analyzer format
- Macro library for standard PML2552 and user defined functions
- Device independent netlist generation
- JEDEC fuse map generated from netlist SNAP (Synthesis, Netlist, Analysis and Program) is a versatile development tool that speeds the design and testing of PML. SNAP combines a user-friendly environment and
powerful modules that make designing with PML simple. The SNAP environment gives the user the freedom to design independent of the device architecture.
The flexibility in the variations of design entry methodologies allows design entry in the most appropriate terms. SNAP merges the inputs, regardless of the type, into a high-level netlist for simulation or compilation into a JEDEC fuse map. The JEDEC fuse map can then be transferred from the host computer to the device programer.

SNAP's simulator uses a synthetic logic analyzer format to display and set the nodes of the design. The SNAP simulator provides complete timing information, setup and holdtime checking, plus toggle and fault grading analysis.

SNAP operates on an IBM ${ }^{8}$ PC/XT, PC/AT, PS/2, or any compatible system with DOS 2.1 or higher. A minimum of 640 K bytes of RAM is required together with a hard disk.

DESIGN SECURITY

The PML2552 has a programmable security fuse that controls the access to the data programmed in the device. By using this programmable feature, proprietary design implemented in the device cannot be copied or retrieved.

Programmable Macro Logic

DC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		LIMITS			UNIT
				Min	Typ ${ }^{1}$	Max	
Input voltage							
$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { High } \end{aligned}$	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \end{aligned}$		$\begin{gathered} -0.3 \\ 2.0 \end{gathered}$		$\begin{gathered} 0.8 \\ v_{c c}+0.3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Output voltage							
Vol	Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=5 \mathrm{~mA}$				0.45	V
V_{OH}	High	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A} \end{aligned}$		$\mathrm{V}_{\mathrm{cc}}^{2.4}-0.1 \mathrm{~V}$			v
Input current							
I_{LL}	Low High	$\begin{aligned} & V_{\mathbb{I N}}=G N D \\ & V_{\mathbb{I N}}=V_{C C} \end{aligned}$				$\begin{gathered} -10 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Output current							
logof)	$\mathrm{Hi}-\mathrm{Z}$ state	$\begin{aligned} & V_{\text {OUT }}= \\ & V_{\text {OUT }}= \end{aligned}$				$\begin{gathered} 10 \\ -10 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Icc $I_{S B}$	V_{CC} supply current Standby V_{CC} supply current	$\begin{gathered} V_{C C}=\text { Max, No load } \\ f=1 M H z \\ V_{C C}=M a x, N o \text { load } \\ P D=V_{I H} \end{gathered}$	CMOS input ${ }^{2}$ TTL input ${ }^{3}$ CMOS input TTL input			$\begin{gathered} 100 \\ 120 \\ 10 \\ 20 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Capacitance							
$\begin{aligned} & \mathrm{C}_{1 \mathrm{~N}} \\ & \mathrm{C}_{\mathrm{B}} \\ & \hline \end{aligned}$	Input I/O	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, T_{A}=+25 \\ & V_{C C}=5 \mathrm{~V}, T_{A}=+25 \end{aligned}$	$\begin{aligned} & \mathrm{IN}=2.0 \mathrm{~V} \\ & 10=2.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 16 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2. CMOS inputs: $\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$.
3. TTL inputs: $\mathrm{V}_{\mathrm{IL}}=0.45 \mathrm{~V}, \mathrm{~V}_{\mathbb{H}}=2.4 \mathrm{~V}$.

TEST LOAD CIRCUITS

NOTE:
Test Load $R_{1}=750 \Omega, R_{2}=442 \Omega, C_{L}=30 \mathrm{pF}$ ($\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for Output Disable) $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$

VOLTAGE WAVEFORMS

Programmable Macro Logic

MACRO CELL AC SPECIFICATIONS Min: $0^{\circ} \mathrm{C}, 5.25 \mathrm{~V}$; Typ: $27^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$; Max: $75^{\circ} \mathrm{C}, 4.75 \mathrm{~V}$
(SNAP Resource Summary Designations in Parentheses)
Input Buffer
(DIN552, NIN552, BDIN55, BNIN552
CDIN552, CNIN552, CKDIN552, CKNIN552)

SYMBOL	PARAMETER		LIMITS						UNIT
	To (Output)	From (Input)	HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
$t_{\text {PHL }}$ tplH	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	1	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns ns
$t_{\text {PHL }}$ tple	Y	1	3 3	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	ns ns

Input Pins: 8-14, 16, 17, 20, 22-24.
Bidirectional Pins: 1-3,5-7, 46-48, 50-54, 57-64, 67, 68.

Internal NAND of Main Array (FBNAND, NAND)

SYMBOL	PARAMETER		LIMITS						UNIT
	To (Output)		HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
${ }_{\text {te }}^{\text {tel }}$	Y Y	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Internal NAND of Clock Array
(NAND)

SYMBOL	PARAMETER		LIMITS						UNIT
	To (Output)		HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{t}_{\mathrm{PHL}}$ tpin	Y Y	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	3 3	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns

Programmable Macro Logic

MACRO CELL AC SPECIFICATIONS (Continued) Min: $0^{\circ} \mathrm{C}, 5.25 \mathrm{~V}$; $\mathrm{Typ}: 27^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$; Max: $75^{\circ} \mathrm{C}, 4.75 \mathrm{~V}$
(SNAP Resource Summary Designations in Parentheses)

3-State Output with Programmable Polarity (TOUT552 + EXOR552)

SYMBOL	PARAMETER		LIMITS						UNIT
	To (Output)	From (Input)	HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLLH}} \end{aligned}$	Out Out	$\begin{aligned} & \text { In } \\ & \text { In } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \text { toe } \\ & \text { tod } \end{aligned}$	$\begin{aligned} & \text { Out } \\ & \text { Out } \end{aligned}$	$\begin{aligned} & \text { Tri-Ctrl } \\ & \text { Tri-Ctrl } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

Bidirectional Pins: 46-48, 50-54.

I/O Output Buffer with 3-State Control, DFF Bypassed (TOUT552 + NAND)

SYMBOL	PARAMETER		LIMITS						UNIT
	To (Output)	From (Input)	HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
$t_{\text {PHL }}$ tple	Out Out	$\begin{aligned} & \text { In } \\ & \text { In } \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\begin{aligned} & t_{\mathrm{OE}} \\ & \mathrm{t}_{\mathrm{OD}} \end{aligned}$	Out Out	Tri-Ctrl Tri-Ctrl	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	9 9	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

I/O Pins: 1-3, 5-7, 57-64, 67, 68

Programmable Macro Logic

MACRO CELL AC SPECIFICATIONS (Continued) (SNAP Resource Summary Designations in Parentheses) D FLIP-FLOP

Output DFF Used Internally (ODFF552)									
SYMBOL	PARAMETER		LIMITS						UNIT
			HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {CKE }}$	Flip-flop toggle rate				50			33	MHz
tw Cke High	Clock HIGH		10			15			ns
tw CKE Low	Clock LOW		10			15			ns
t $_{\text {SETUP / }}$	/D setup time to CKE		30			40			ns
HOLD /D	ID holt time to CKE		4			7.5			ns
SYMBOL	PARAMETER		LIMITS						UNIT
	From (Input)	To (Output)	HIGH-SPEED			StANDARD			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{t}_{\text {PLH }}$	CKE \uparrow	Q	6	12	20	7.5	15	25	ns
$t_{\text {PHL }}$	CKE \uparrow	Q	6	12	20	7.5	15	25	ns

MACRO CELL AC SPECIFICATIONS (Continued) (SNAP Resource Summary Designations in Parentheses) D FLIP-FLOP (Continued)

SYMBOL	PARAMETER		LIMITS						UNIT
	From (Input)	To (Output)	HIGH-SPEED			STANDARD			
			Min	Typ	Max	Min	Typ	Max	
tpLH	CKA, CKB/CKC \uparrow	Q, Q	4.5	9	15	4.5	9	15	ns
tr HL	CKA, CKB/CKC \uparrow	Q, Q	4.5	9	15	4.5	9	15	ns
tpLH	CKE \uparrow	Out	9	18	30	12	24	40	ns
t_{HL}	CKE \uparrow	Out	9	18	30	12	24	40	ns

Programmable Macro Logic

MACRO CELL AC SPECIFICATIONS (Continued) (SNAP Resource Summary Designations in Parentheses) JK FLIP-FLOPS

Programmable Macro Logic

AC ELECTRICAL CHARACTERISTICS $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{CC}}$,
$R_{1}=750 \Omega, R_{2}=442 \Omega, C_{L}=5 p F$ for Output Disable) (See Test Load Circuit Diagram)

SYMBOL	PARAMETER	LIMITS				UNIT
		High-Speed		Standard		
		Min	Max	Min	Max	
Scan mode operation'						
$\mathrm{t}_{\text {SCMS }}$	Scan Mode (SCM) Setup time	15		15		ns
$\mathrm{t}_{\text {SCMH }}$	Scan Mode (SCM) Hold time	25		30		ns
$\mathrm{t}_{\text {IS }}$	Data Input (SCl) Setup time	5		5		ns
t_{H}	Data Input (SCl) Hold time	5		5		ns
${ }_{\text {t }}{ }_{\text {cko }}$	Clock to Output (1/O) delay		30		40	ns
${ }_{\text {t }}{ }_{\text {KKH }}$	Clock High	10		15		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock Low	10		15		ns
Power down, power up ${ }^{2}$						
t_{1}	Input (1, bypassed I/DA, 1/DB, I/O, B) setup time before power down	40		50		ns
t_{2}	Input hold time	30		35		ns
t_{3}	Power Up recovery time		60		70	ns
t_{4}	Output hoid time	0		0		ns
t_{5}	Input setup time before Power Up	20		25		ns
t_{OE}	SCI to Output Enable time ${ }^{3}$		40		50	ns
t_{OL}	SCI to Output Disable time ${ }^{3}$		40		50	ns
t_{6}	Power Down setup time	10		15		ns
t_{7}	Power Up to Output valid		70		80	ns
Power-on reset						
tPPR1	Power-on reset output register ($\mathrm{Q}=0$) to output ($/ \mathrm{I}$) delay		10		15	ns
tPPR2	Power-on reset input register ($\mathrm{Q}=0$), buried JK Flip-Flop ($\mathrm{Q}=0$) to output (B, bypassed I/O) delay		40		50	ns

NOTE:

1. SCM recovery time is 50 ns after SCM operation. 50 ns after SCM operation, normal operations can be resumed.
2. Timings are measured without foldbacks.
3. Transistion is measured at steady state High level $(-500 \mathrm{mV})$ or steady state Low level $(+500 \mathrm{mV})$ on the output from 1.5 V level on the input with specified test load $\left(R_{1}=750 \Omega, R_{2}=442 \Omega, C_{L}=5 p F\right)$. This parameter is sampled and not 100% tested.

Programmable Macro Logic

TIMING DIAGRAMS

TIMING DIAGRAMS (Continued)

Programmable Macro Logic

PML2552

SNAP RESOURCE SUMMARY DESIGNATIONS

Signetics

Programmable Logic Devices

Section 7 Military Selection Guide
INDEX
Military Selection Guide417

Signetics

Programmable Logic Devices

Part Number	Device Description	Package Description	M38510/	JB**	JS**	Standard MIL-Drawing	MIL-Drawing Status**
PLHS18P8/BRA	PAL	20DIP3				5962-872801RA	A
PLHS18P8/BSA	PAL	20FLAT		NA	NA	5962-872801SA	A
PLHS501/BXA	GATE ARRAY	64DIP9		NA	NA	PLANNED	
PLS159A	PLS	20DIP3		NA	NA	PLANNED	NA
PLUS16L8/BRA	PAL	20DIP3		NA	NA	5962-8515509RA	A
PLUS16L8/BSA	PAL	20FLAT		NA	NA	5962-8515509SA	A
PLUS16L8/B2A	PAL	20LLCC		NA	NA	5962-85155092A	A
PLUS16R8/BRA	PAL	20DIP3		NA	NA	5962-8515510RA	A
PLUS16R8/BSA	PAL	20FLAT		NA	NA	5962-8515510SA	A
PLUS16R8/B2A	PAL	20LLCC		NA	NA	5962-85155102A	A
PLUS20L8/BLA	PAL	24DIP3		NA	NA	5962-8767105LA	A
PLUS20L8//BKA	PAL	24FLAT		NA	NA	5962-8767105KA	A
PLUS20L8/B3A	PAL	28LLCC		NA	NA	5962-87671053A	A
PLUS20R8/BLA	PAL	24DIP3		NA	NA	5962-8767106LA	A
PLUS20R8/BKA	PAL	24FLAT		NA	NA	5962-8767106KA	A
PLUS20R8/B3A	PAL	28LLCC		NA	NA	5962-87671063A	A
PLUS405/BXA	PLS	28DIP6		NA	NA	PLANNED	NA
PLUS405/BYA	PLS	28FLAT		NA	NA	PLANNED	NA
PLUS405/B3A	PLS	28LLCC		NA		PLANNED	NA
PLS167/BLA	PLS	24DIP3		NA		PLANNED	NA
PLS168/BLA	PLS	24DIP3		NA		PLANNED	NA
PLS173/BLA	PLA	24DIP3		NA		5962-8850402LA	A
PLS179/BLA	PLS	24DIP3		NA	NA	5962-8850701LA	A
PLHS473	PLA	24DIP3		NA	NA	PLANNED	NA
82S100/BXA	PLA	28DIP6	50202	A	NA		
82S100/BYA	PLA	28FLAT	50202	NA	NA		
82S100/B3A	PLA	28LLCC	50202	NA	NA		
82S101/BXA	PLA	28DIP6	50201	A	NA		
82S101/BYA	PLA	28FLAT	50201	NA	NA		
82S101/B3A	PLA	28LLCC	50201	NA	NA		
82S105/BXA	PLS	28DIP6		NA	NA	5962-8670901XA	A
82S105/BYA	PLS	28FLAT		NA	NA	5962-8670901 YA	A
82S105/B3A	PLS	28LLCC		NA	NA	5962-86709013A	A
82S153A/BRA	PLA	20DIP3		NA	NA	5962-8768201RA	A
82S153A/BSA	PLA	20FLAT		NA	NA	5962-8768201SA	A
82S153A/B2A	PLA	20LLCC		NA	NA	5962-87682012A	A

[^15]
Signetics

Section 8 Development Software

Programmable Logic Devices

INDEX
AMAZE - Automatic Map and Zap Equations Design Software 421
SNAP - Synthesis Netlist Analysis and Program Software 425
SNAP Data Sheet . 427
Device Programmer Reference Guide . 429

Signetics

Programmable Logic Devices

SOFTWARE SUPPORT FOR USER PROGRAMMABLE LOGIC

Computer Aided Design (CAD) support is becoming necessary to address the timeconsuming details required by the more complex programmable logic devices available today. The design effort can include the manipulation of Boolean equation, truth tables, state diagrams, flowcharts etc., to create the binary fuse map required to program such devices.

For many years, design engineers have used programmable read-only memories (PROMs) to replace conventional logic. The architecture of the PROM can be described as a programmable logic device containing a fixed AND array followed by a programmable OR array. The fixed structure of the PROM requires a full assignment of output words to be programmed for every input combination. Therefore, little use can be made of programmable logic software programs for logic minimization or other compiling efforts when using PROMs.

Signetics Programmable Logic Devices are the most advanced approach to solving the inherent limitations of PROMs. Their architecture consists of a programmable AND array, followed by a programmable OR array - with the addition of a programmable invert function for flexible output control.

A Signetics PLD device can implement any set of Boolean expressions, provided that they are first put into the standard sum of the products form. The logical ANDs are implemented at the first gate level of the programmable logic device and the logical ORs are implemented by the second gate level within the PLD. The only limitations on the expressions are those imposed by the number of inputs, outputs, and internal product terms provided by the particular PLD circuit selected. The efficiency of implementing the set of equations can be increased significantly by applying DeMorgan's theorem, and utilizing the programmable invert function on each output.

If there seems to be too few product terms to handle a relatively large equation set, one of several minimization methods can be pursued.

The probability of reducing such equations to manageable size is enhanced through the flexibility of shared AND terms for each output function, the accessibility of all AND terms to each output, and having a programmable invert function on each output. All of these features can be utilized by applying the manual manipulation of Venn Diagrams or Karnaugh Maps. However, the time and effort to accomplish these tasks as well as document the effort for procurement specification purposes increase the need and desire to
have software programs to automatically perform such manipulations.
Many types of software programs are being developed to provide this assistance for operation on a wide range of computer hardware. This list of software is expanding rapidly, consisting of both Signetics generated software and some independent software houses' contributions.

This discussion is intended to outline the Signetics developed software program called AMAZE (Automatic Map And Zap Equation Entry). The AMAZE software program currently consists of five modules, BLAST ('Boolean Logic And State Transfer' entry program), PTP ('PAL To PLD' conversion program), DPI ('Device Programmer Interface' program), PLD SIM ('PLD Simulator' program) and the PTE ('Program Table Editor' program). Other modules will be added when product developments require additional software tools.

It must be noted that the AMAZE program is not by any means the total extent of software available for use in designing with PLD (Programmable Logic Devices). Severalother commercially available PLD Design Software packages support Signetics' PLD product line. Please contact your local Signetics representative for the latest word on the most currently available software.

Programmable Logic Development Software

AMAZE Version 1.8

Description
The AMAZE software program Automatic Map And Zap Equation Entry software, consists of the following five modules:

- BLAST ('Boolean Logic And State Transfer' entry program)
- PTE ('Program Table Editor')
- PTP ('PAL To PLD' conversion program)
- DPI ('Device Programmer Interface' program)
- PLD SIM ('PLD Simulator' program)

Each module performs specific tasks as outlined in the following section.

Features

- Multiple modules allowing expansion for future requirements
- Each module designed to be user friendly
- Both HELP and ERROR messages
- Document printout: Header, Pin diagram, Boolean equation and Fuse map
- Interface with most commercial programmers
- SIMULATOR programs provide applications assistance and Automatic Test Vector Generation

Equipment Requirements (for Version 1.8)

- Platform 1: IBM-PC, XT, AT, PS-2 and compatibles
- Memory: Minimum of 640K bytes
- Operating system: PC-DOS version 2.1 or higher
- Disk Drive: One hard disk drive and one double sided floppy disk drive

Products Supported
AMAZE Version 1.8 supports the following products:

20-Pin PLDs
PHD16N8
PLC18V8ZII
PLHS168A/B
PLHS18P8A/B
PLS153
PLS153A
PLUS153B
PLUS153D
PLUS16L8
PLUS16R4
PLUS16R6
PLUS16R8
PLS155
PLS157
PLS159A
24-Pin PLDs
PLC42VA12
PLHS473
PLS167
PLS167A
PLS168
PLS168A
PLS173
PLS179
PLUS20L8
PLUS20R4
PLUS20R6
PLUS20R8
PLUS173B
PLUS173D
10H20EV8/10020EV8
$\mathbf{2 8 - P i n ~ P L D s ~}$
PLC415
PLS100
PLS101
PLS105/A
PLUS105-40
PLUS405
52-Pin PLDs
PLHS501

BLAST

Boolean Logic And State Transíer program is a menu driven software package that supports the engineer in implementing logic designs into Signetics Programmable Logic Devices. It checks design data and automatically compiles a program table from Boolean and State Machine equations. Data from the program table is then used to produce a Standard File which contains the fusing codes in a form acceptable to all the AMAZE modules (i.e., PLD-SIM and DPI).

BLAST reports the logic and syntax errors, and lists the equations in a Sum of Products form, which can help the user to minimize the entered logic equations. It will automatically partition State machine designs into specified devices, and then delete redundant terms during compilation.

BLAST also provides the capability of modifying a current logic set programmed into a device by overlaying new data onto unused fuses.

BOOLEAN LOGIC AND STATE TRANSFER FEATURES

- User friendly interactive pinlist editor
- Boolean equation or state vector entry
- Schematic entry (with external schematic capture package)***
- On-line error checking, minimization, and design overlay
- Capable of partitioning single designs into multiple PLDs
- Supports all Signetics PLDs and PLEs
- User definable device files for support of PALs and other PLD devices

PTE

Program Table Entry is an interactive editor which allows the logic designer to enter data into AMAZE in the form of SIGNETICS APPROVED PROGRAM TABLES. Each Signetics PLD data sheet has the program table format which applies to that device. In addition, PTE can be used to document completed designs and to make changes in logic functions which have been previously defined in the BLAST module.

PROGRAM TABLE EDITOR FEATURES

- Allows easy creation and editing of new and existing PLD designs
- Truth-table representation of PLD fusemap in High./Low format
- On-line editor provides automatic cursor control and prevents syntax errors
- On-line help screen and print facility
- Operates on standard PLD fusemap files

PTP

PAL To PLD is a conversion program to allow easy transfer of the various PAL 20- and 24-pin circuits to the Signetics PLD 20-and 24-pin series devices.

PTP can automatically upload the PAL pattern from a Commerical programmer, convert the pattern into a PLD pattern, and then download the PLD pattern into the programmer. The PAL pattern and it's corresponding PLD pattern are documented, and the PLD pattern can be directed to other AMAZE modules.

PTP can also convert the PAL fuse file in a HEXPLOT format.

PAL-TO-PLD CONVERSION FEATURES

- Menu-driven fusemap conversion of 20and 24 -pin PAL devices to pin and functional equivalent Signetics PLDs and PAL-type devices
- Automatic assembler removes duplicated p-terms providing efficient PLD mapping (PLD conversions only)
- Accepts JEDEC, fuseplot files or direct PAL master input via commercial PLD programmer
- User selectable RS-232 programmable interface parameters
- Provides fusemap conversion documentation
- Generates standard PLD fusemap files compatible with other AMAZE modules

The PTP module supports the conversion of the following device types:
$\left.\begin{array}{|l|l|}\hline \text { PLS153 } \\ \text { PLHS18P8 }\end{array} \left\lvert\, \begin{array}{l}10 \mathrm{H} 8,10 \mathrm{L8}, 12 \mathrm{H} 6,12 \mathrm{~L} 6,14 \mathrm{L4}, 16 \mathrm{H} 2,16 \mathrm{~L} 2, \\ 16 \mathrm{C} 1,16 \mathrm{H} 8,16 \mathrm{~L}, 16 \mathrm{P} 8\end{array}\right.\right]$

Signetics also provides a stand-alone version of the PTP module, SimPal, which supports the conversion of PAL device fuse maps into equivalent Signetics PAL-type PLDs.

Programmable Logic Development Software

DPI

Device Programmer Interface is the software module that provides the interface between the Standard File created by the AMAZE modules and a commercial programmer. This module allows both download (sending from host to programmer) and upload (sending from programmer into the host) operations.
DPI supports both JEDEC and Signetics High/ Low formats to convey fusing information to and from several commercial programmers.

DEVICE PROGRAMMER INTERFACE FEATURES

- Supports standard JEDEC and Signetics High/Low fusemap file formats
- RS-232 interface to commercial PLD programmers
- Screen menus for easy upload and
download of fusemaps
- User selectable RS-232 parameters for programmer flexibility
- Test vectors automatically transferred to programmer along with fusemap file
- Operates with standard PLD fusemap files

PLD SIMULATOR

The PLD Simulator program is a software package that simulates the operation of the logic that has been defined for Signetics PLD products. The input to the program is the Standard File generated by other AMAZE modules. The simulator has the capability of running manually or automatically. In the automatic mode the simulator creates a file of test vectors
that can be used to test the programmed devices. In the manual mode the program will allow the operator to assign an input vector and observe the resultant output.

PLD FUNCTIONAL SIMULATOR FEATURES
 - Functional simulation of designs created form equations, program tables or existing programmed devices
 - Automatic test vector generation from standard or JEDEC PLD fusemap files
 - Interactive keyboard entry or batch file input of test vectors
 - Detects illegal State Machine transitions and flags affected p-terms
 - On-line help screen

Signetics

Programmable Logic Devices

INTRODUCTION

Philips Components-Signetics SNAP software is designed to provide the precise tools needed to complete a PLD de-
sign. The initial offering is depicted in Figure 1.1. This chart depicts the recommended sequence of operations for completing a Programmable Macro Logic

SNAP
 Programmable Logic Development Software

(PML) design. While other sequences may be used, the first-time user will most likely obtain the best results by following steps 1-9.

Figure 1.1 SNAP Software Flow (SHELL)

Step 1

Step [1], ScCAPTURE, is the design entry. This may be accomplished in a number of ways, but the most popular today is schematic capture. SNAP supports OrCAD/SDT $I I^{\text {TM }}$ and SNAPDASH ${ }^{\text {TM }}$ from FutureNet. Current methods of entry include Boolean equations, state equations, timing waveforms and manual netist editing. The goal of Step 1 is to create a netlist description of a logic design which can be understood by the rest of SNAP.

Step 2

Step [2], NETGEN, is essentially automatic in that all netist generation or conversion must be in a consistent format. The converted netlist is EDIF1.0 compatible.

Step 3

Step [3], MERGER, allows design pieces from different inputs to merge into a single netlist description. In theory, one section could be input by schematic capture, another by Boolean equation and another by state equation, etc. A composite netlist for all of these would be the output of MERGER.

Step 4

Step [4], SIMNET, is the preferred next step-
to verity the design by simulation. The bold designer could proceed to Step 8 and a final device, but if any problem occurs, Step 4 must be used to debug. In SIMNET, a binary format of the design will be generated for the logic and fault simulators. During this step the original netlist is translated into simulator primitives.

Step 5

Step [5], SIMSCL, reads the input vector (stimuli description), loads the network into memory and executes the logic/timing simulation. SIMFLT is an alternate simulation that gives a fault coverage assessment of the simulation. This tells the designer (in numbers) just how rigorous the simulation testing of the circuit is. A complete fault reprot is generated.

Step 6

Step[6], PLOT, allows a waveform display of selected nodes within the design so that its creator may observe the circuits modeled behavior.

Step 7

Step[7], SIMPRT, produces hardcopy of the various simulation reports for documentation.

The designer should iterate through Steps 4 7 until satisfied that correct operation is occur-
ring. Only if it is should the designer proceed to Step 8.

Up to this point, the design is not bound to a specific Signetics part. In fact, the design could span multiple parts, or be migrated from one PLD to another, with only small effort.

Step 8

Step [8], COMPILER, is where the target part is chosen and a fuse table produced. The fuse table can then be manually edited or programmed into a part, as the designer chooses. However, one last action can help guarantee a successful final design: Post-compiled model generation.

Step 9

Step [9], MODGEN, takes the fusemap from the selected part and outputs a simulation model that reflects the precise models of the internal logic for the target PLD. Once this is done, Steps 5-7 may be repeated to verify conclusively that the design will work. If a problem is found, the designer may edit to debug the design. The final compilation will yield a programmed part that meets the designer's simulated specifications.

Signetics

Programmable Logic Devices

FEATURES

- Schematic entry available using Data I/O SNAP-DASH ${ }^{\text {TM* }}$ or OrCAD SDT IIITM
- State equation entry
- Boolean equation entry
- Netlist entry
- Capability to design in one or any combination of formats
- Device independent, netlist based design platform
- Full support for the PML product line
- Philips LESIM 5-State gate array simulator:
- Logic and fault simulation
- Model extraction and timing simulation
- Synthetic logic analyzer format
- Stimuli entry in waveform format
- Freezing of selected Critical paths
- Cell library for PML functions
- Capability to create user defined macros
- Full documentation of design and simulation results in waveform format
- JEDEC fusemap compiler and device programmer interface

GENERAL DESCRIPTION

Signetics SNAP (Synthesis Netlist Analysis \& Program) software has been developed to support the Signetics PLD product line. This release of SNAP (Version 1.2) supports the PML family of programmable logic devices. Future versions of SNAP will support additional PLD devices until the full product line is covered.

SNAP
Version 1.2

Specifications

The software gives freedom to design independently of the device architecture. This allows for shifting the design among a family of PLD devices. SNAP can handle a variety of design entry formats: schematics, Boolean equations, state equations, waveforms*, and netlists in any combination. The SNAP environment is familiar to logic designers who have worked with any type of PLD or gate array development software. Since the software is netlist based, it overcomes the limitations facing conventional PLD development software.

Figure 1 shows the SNAP Shell. The top part of the shell indicates the paths available for entering the design. The user can enter a design using any single method or any combination of methods. Thus, functions can be described in the most appropriate terms. For instance, schematics may be the best way of describing a shift register, and logic equations may be the optimum way for describing a decoder. Additionally, these designs can be united with a multiplexer, which is described by a netlist. Then SNAP merges the inputs into a high-level netlist for simulation and compilation into a JEDEC standard fuse map. For future universal workstation compatibility, the software supports the standard EDIF interface.

Simulator

SNAP incorporates Philips' 5-State gate array simulator, and provides the capabilities of full timing simulation, setup and hold-time checking, as well as toggle and fault grade analysis. The simulator is capable of displaying any set of nodes within a design in a wide range of formats. Using a synthetic logic analyzer the user can
zero in on a specific area. Simulations can occur with unit delays, estimations, or exact delays. The test vectors can be entered in waveform or ' H ' and 'L' format.

In order to provide accurate timing analysis, SNAP calculates the final timing values as determined from the additive delay of each gate and I/O macro in a path. To assure the reliability of a design, the fault simulator determines the fault grade level and undetectable faults. This results in simulation data that conforms exactly to the characteristics of the actual device.

Compiler/Optimizer

SNAP also contains a fusemap compiler and model generator. The model generator extracts and creates the timing models of the specified device. These models are generated for timing and fault simulation. The compiler is also capable of optimizing the device to the architecture of the PLD selected for the design. For example, if a flip-flop macro is selected, the optimizer will design the macro from NAND gates for the PLHS501 (which lacks die-based flipflops). Alternatively, an internal die-based flip-flop is used for a device with flip-flops such as the PLHS502. The software contains extensive syntax and logic error checking, and allows for documentation of the design and simulation results.

HARDWARE SPECIFICATIONS

- IBM® Personal System/2 ${ }^{\text {TM }}$, IBM PC/ XT/AT, or compatibles
- DOS 2.1 or higher
- Minimum of 640 K bytes of RAM
- $5.25^{\prime \prime}$ or $3.5^{\prime \prime}$ double-sided, doubledensity disk drive, and a hard drive.

[^16]

ORDERING INFORMATION ${ }^{1}$

DESCRIPTION	ORDER CODE	
SNAP	SNAP12	MSC
SNAP + OrCAD SDT III	SNAPOR12	MSC
SNAP + SNAP-DASH	SNAPDSH12	MSC

PLD Programmer Reference Guide

Programmable Logic Devices

Data I/O Corporation
10524 Willows Road, N.E.
Redmond, Washington 98073-9746
Telephone Number: (800) 247-5700

TYPE	SIGNETICS PART NUMBER	DEVICE CODE	MODEL 29B ADAPTER REVISION		UNISTE		MODEL 60		
					SYSTEM	ADAPTER	SYSTEM REVISION	ADAPTER REVISION	
			DIP	PLCC	DIP	PLCC		DIP	PLCC
PHD	PHD16N8	TBD	303A-011A;V11	TBD	V2.8	TBD	V15	TBD	TBD
ECL	10H/10020EV8	14013B			V2. 7	CPSITE;V2.7	--		
PAL	PLC16V8	863B	303A-011A;V05	303A-011B;V03	V2.1	CPSITE;V2.4	TBD	TBD	TBD
PAL	PLC18V8z	864F	303A-011 A :V09	303A-011B;V04	V2.5	TBD	V15	TBD	TBD
PAL	PLC20V8	864E	303A-011A;V06	303A-011B;V03	V2. 1	CPSITE;V2.4	TBD	TBD	TBD
PAL	PLHS16L8	1 A17	303A-012;V02	--------	V2. 1	CPSITE;V2. 1	--	-----	-----
PAL	PLHS16L8	3D17	303A-011A;V09	303A-011B;V04	--	-------	V14	360A001	360A006
PAL	PLHS18P8	1 A33	303A-012;V01	--------	V2.1	CPSITE;V2. 1	--	------	-----
PAL	PLHS18P8	3D33	303A-011 A;V09	303A-011B;V04	--	--------	V14	360A001	360A006
PAL	PLUS16L8	$1 \mathrm{B17}$	303A-011A;V08	303A-011B;V04	V2. 3	CPSITE;V2. 5	V14	360A001	360A006
PAL	PLUS16R8/R6/R4	1824	303A-011A;V08	303A-011B;V04	V2.3	CPSITE;V2.5	V14	360A001	360A006
PAL	PLUS20L8	1 B 26	303A-011A;V08	303A-011B;V04	V2.3	CPSITE;V2. 5	V14	360A001	360A006
PAL	PLUS20R8/R6/R4	1827	303A-011A;V08	303A-011B;V04	V2.3	CPSITE;V2. 5	V14	360A001	360A006
PLA	PLC153	8665	303A-011A;V05	303A-011B;V03	V2. 1	CPSITE;V2.4	TBD	TBD	TBD
PLA	PLC473	8678	303A-011A;V02	303A-011B;V03	V2.1	CPSITE;V2.4	TBD	TBD	TBD
PLA	PLHS153	1 A65	303A-012;V02	---------	V2. 1	CPSITE;V2.5	--	-----	-----
PLA	PLHS473	1A78	303A-012;V02	--------	V2. 2	CPSITE;V2.4	--	-----	
PLA	PLS100/1	9601	303A-001;V01	--------	--	-------	--	-----	-----
PLA	PLS100/1	9661	303A-001;V05		V2. 2	CPSITE;V2. 2	V01	360A003	-----
PLA	PLS153/A	9665	303A-011 A;V02	303A-011B;V02	V1.5		V01	360A002	A ONLY
PLA	PLS153/A	9665	303A-001;V05	303A-011B;V02	V1.5	CPSITE;V1.5	V12	360A009	A ONLY
PLA	PLS173	9676	303A-011A;V02	303A-011B;V02	V1.7	-------	V08	3604002	------
PLA	PLS173	9676	303A-001;V06	303A-011B;V02	V1.7	CPSITE;V1. 7	V12	-----	360A009
PLA	PLUS153B	1865	303A-011A;V07	303A-011B;V03	V2.3	CPSITE;V2.3	V14	3604002	360A009
PLA	PLUS173B	1 1876	303A-011A;V07	303A-011B;V03	V2.3	CPSITE;V2.3	V14	3604002	360A009
PLS	PLC415	86AA	303A-011A;V10	303A-011B;V04	V2.6	TBD	TBD	TBD	TBD
PLS	PLS105/A	9603	303A-011A;V02	303A-011B;V02	V1.5	-------	V01	3604003	A ONLY
PLS	PLS105/A	9603	303A-001;V01	303A-011B;V02	--		--	-----	-----
PLS	PLS105/A	9663	303A-001;V05	303A-0118;V02	V1.5		V01	360A003	-----
PLS	PLS105/A	9663	303A-011A;V02	303A-011B;V02	V1.5	CPSITE;V1.5	V12	-----	360A008
PLS	PLUS105-40	1863	303A-011A;V09	303A-011B;V04	V2. 5	TBD	--	-----	-----
PLS	PLS155	9667	303A-011A;V02	303A-011B;V02	V1. 5	-------	V01	360A002	-----
PLS	PLS155	9667	303A-001;V05	303A-011B;V02	V1. 5	CPSITE;V1. 5	V12	------	360A009
PLS	PLS157	9668	303A-001;V05	303A-011B;V02	V1.5		V13	360A002	
PLS	PLS157	9668	303A-011 A;V02	303A-011B;V02	V1.5	CPSITE;V1. 5	V13	-	360A009
PLS	PLC42VA12	868A	TBD	TBD	V2.7	TBD	V15	TBD	TBD
PLS	PLS159A	6466	303A-011A;V02	303A-011B;V02	V2.4	CPSITE;V2.4	V12	360A002	360A009
PLS	PLS159A	6466	----	-------	V2.4	-------	--	------	--
PLS	PLS167/A	9660	303A-011 A;V02	303A-011B;V02	V1. 5	CPSITE;V1. 5	V05	360A002	

PLD Programmer Reference Guide

(CONTINUED)

Data I/O Corporation
10524 Willows Road, N.E.
Redmond, Washington 98073-9746
Telephone Number: (800) 247-5700

TYPE	SIGNETICS PART NUMBER	DEVICE CODE	MODEL 29B ADAPTER REVISION		UNISTE		MODEL 60		
					SYSTEM REVISION DIP	ADAPTER REVISION PLCC	SYSTEM REVISION	ADAPTER REVISION	
			DIP	PLCC				DIP	PLCC
PLS	PLS167/A	9660	--------	--------	--	-------	V12	-----	3604009
PLS	PLS168/A	9674	303A-011A:V02	303A-011B;V02	V1.5	CPSITE;V1. 5	V05	360A002	-----
PLS	PLS168/A	9674	303A-001;V06	--------	--	-------	V12	-----	360A009
PLS	PLS179	9677	303A-011A;V02	303A-011B;V02	V2.4	CPSITE;V2. 4	TBD	TBD	TBD
PLS	PLUS405	$1 \mathrm{B79}$	303A-011A;V07	303A-011B;V04	V2.6	CPSITE;V2.6	TBD	TBD	TBD
PML	PLHS501	1002	--------	--------	--	CPSITE;V1. 7	--	-----	-----
PML	PLHS502	01C05E			V2.4	**	--	-----	
PML	PML2552	TBD		--------	V2.8	***	--	--	

NOTES:

1. The software and hardware revisions listed are the first revisions released. All following revisions maintain support.
2. FOR UNISITE USERS ONLY: Family codes listed above (the first two digits) must be preceeded with a " 0 " for PLCC packages.

Pin codes listed above (the last two digits) must be preceeded with a "7" for PLCC packages.
3. ${ }^{* * * N e e d s ~ a ~} 40-$ Pin DIP to $68-P i n$ PLCC adaptor available from Emulation Technology
Part Number: AS-68-40-01P-6
****Needs a 40-Pin DIP to 68-Pin PLCC adaptor that is available from Emulation Technology.
Part Number: AS-68-40-04P-6
EMULATION TECHNOLOGY, INC.
2368B Walsh Avenue, Blvd. D
Santa Clara, California 95051
Telephone No. (408) 982-0660
Fax. No. (408) 982-0664
4. DEVICE CODE: XXYY
$X X=$ FAMILY CODE
$Y \mathrm{Y}=$ PIN CODE

PLD Programmer Reference Guide

Stag Micro Systems, Inc.

Western Area: 1600 Waytt Drive, Suite 3 Santa Clara, CA 95054 (408) 988-1118						Eastern Area: 3 Northern Blud. Suite B4 Amherst, NH 03031 (603) 673-4380	
	DEVICE CODES		MODEL ZL30 (DIP ONLY)	MODEL ZL30A		MODEL PPZ: ZM2200	
SIGNETICS PART NUMBER	FAMILY CODES	$\begin{gathered} \text { PIN } \\ \text { CODES } \end{gathered}$		DIP	PLCC	DIP	PLCC
PHD-TYPE DEVICES							
PHD16N8			30 A36	30A36	30A	TBA	
ECL-TYPE DEVICES							
10H/10020EV8			30A36	TBA	TBA	TBA	
PAL-TYPE DEVICES							
PLC16V8	12	154	30 A27	30 A 27	30A001	30	
PLC18V8Z	12	205	30A34	30434	30A001	TBA	
PLC20V8	12	155	30A29	30A29	30A001	TBA	
PLHS16L8 A/B	10	029	N/A	30A29*	30A101	TBA	
PLHS18P8 A/B	10	10	N/A	30A23*	30A101	29	
PLUS20L8 D/7	11	56	30A31	30A31	30A001	TBA	
PLUS20R8 D/7	11	57	30A31	30A31	30A001	TBA	
PLUS20R6 D/7	11	58	30A31	30A31	30A001	TBA	
PLUS20R4 D/7	11	59	30A31	30A31	30A001	TBA	
PLUS16L8 D/7	11	29	30A31	30A31	30A001	TBA	
PLUS16R8 D/7	11	30	30A31	30A31	30A001	TBA	
PLUS16R6 D/7	11	31	30A31	30A31	30A001	TBA	
PLUS16R4 D/7	11	32	30A31	30A31	30A001	TBA	SOCKET
PLA DEVICES							
PLS100/101	13	00	30401	30401	30A001	17	
PLC153	12	05	30 A27	30 A 27	30A001	34	ADAPTORS
PLS153/153A	14	05	30A01	30A01	30A001	17	
PLHS153	10	05	N/A	30A27*	30A101	34	
PLUS153 B/D	11	05	30 A27	30 A27	30A001	34	ARE
PLS173	15	96	30401	30401	TBA	23	
PLUS173 B/D	11	96	30A31	30A31	TBA	TBA	
PLC473	12	132	30A24	30A24	30A001	32	REQUIRED
PLHS473	10	132	N/A	30A27*	30A101	30	
PLS DEVICES							
PLS $105 / 105 \mathrm{~A}$	13	02	30401	30401	30A001	17	
PLUS105-40	11	02	30A34	30A34	30A001	TBA	
PLC415	12	177	30A34	30A34	30A001	TBA	
PLC42VA12	12	197	30A34	30A34	30A001	TBA	
PLS155	14	06	30A01	30A01	30A001	17	
PLS157	14	07	$30 \mathrm{A01}$	30A01	30A001	17	
PLS159A	13	08	30A25	30A25	30A001	27	
PLS167/167A	15	91	30A01	30A01	30A001	TBA	
PLS168/168A	15	97	30A01	30A01	30A001	23	
PLS179	15	130	30 A27	30 A 27	30A001	24	
PLUS405	11	138	30A31	30A31	30A001	TBA	
PML DEVICES							
PLHS501	10	133	N/A	30A22*	30A101	-----	
PLHS502	10	189	N/A	----	30A102	-----	

NOTES:

The software and hardware revisions listed are the earliest revisions that support these products. Later revisions can also be assumed to support these products.
*Requires 30A101 adaptor; includes PLCC support.

Section 9 Application Notes

INDEX
PLD Application Notes
AN7 Single Chip Multiprocessor Arbiter 435
AN8 Introduction to Signetics Programmable Logic 447
AN11 PLD Programmable Retriggerable One-Shot 459
AN14 Latches and Flip-Flops with PLS153 463
AN15 PLS159 Primer 476
AN18 Schmitt Trigger Using PLS153 and PLS159 487
AN21 9-Bit Parity Generator/Checker with PLS153/153A 495
AN23 PLS168/168A Primer 501
AN24 PLS173 as a 10-Bit Comparator, 74LS460 514
AN26 PLHS18P8A Primer 520
AN27 PLHS473 Primer 529
AN28 High-Speed 12-Bit Tracking A/D Converter Using PLS179 537
PML Application Notes
AN29 PLHS501 Programmable Macro Logic Primer 547
PLHS501 Application Notes, Vol. 1Chapter 1 Introduction to PML Design Concepts562
Performance 562
NAND Gate Flip-Flops 569
Chapter $2 \quad$ Functional Fit 572
Chapter 3 Design Examples 575
Chapter 4 Successor Architectures 580
Chapter 5 Support Issues 581
Chapter 6 PLHS501 Examples Using AMAZE Revision 1.6 582
Simple Gate Implementations 582
8-Bit Barrel Shifter 585
12-Bit Comparator with Dual 1-of-8 Decoders 591
8-Bit Carry Look-Ahead Adder 594
32-to-5-Bit Priority Encoder 597
8-Bit Shift Register with Sequence Detector 602
4-Bit Synchronous Counter 608
PLHS501 Application Notes, Vol. 2
Designing with Programmable Macro Logic
Chapter 1 Introduction 612
Chapter 2 PLHS501 Review 613
Chapter 3 Flip-Flop Basics 615
Notation 615
Flip-Flop Merging 615
Chapter 4 VME Bus Examples 621
Omnibyte VSBC20 Mailbox Interrupt Structure 621
VME Bus EPROM Interface 626
Chapter 5 Micro Channel Interface 633
Chapter 6 NuBus Interface 638
Chapter 7 Nuggets 644
Data Bus Parity 644
Data Bus Operations 651
PLHS502 Application Notes, Vol. 1Designing with Programmable Macro Logic
Chapter 1 Introduction 652
Chapter 2 Development Support 654
Chapter 3 Capacity and Partitioning Considerations 656
Chapter 4 State Machine Design 657
Chapter 5 Additonal Design Guidelines 668
Chapter 6 Additional PLHS502 Applications 670
Chapter 7 Advanced Flip-Flop Merging 689
Programmable Logic Design and Application Notes
Introduction 69
Acknowledgements 691
AMAZE Software 91
Product Section Introduction 691
Chapter 1 PLA Devices 692
Signetics PLUS153D 692
Signetics PLUS 173D 692
The PLHS473 692
Chapter 2 PAL-Type Devices 696
Signetics PLHS18P8B 696
The PLUS16L8D and -7 698
The PLUS16R8D and -7 699
The PLUS20L8D and -7 700
The PLUS20R8D and -7 701
The PLC18V8Z 701
Chapter 3 Sequencer Devices 703
Introduction 703
State Equation Tutorial 704
The PLUS105 704
The PLS155 707
The PLS157 708
The PLS159A 709
The PLS167A 710
The PLS168A 711
The PLS179 712
The PLUS405 713
Application Section Introduction 715
Chapter 4 Microprocessor Interfacing with Signetics PLDs 715
Introduction 715
System Partitioning 715
Bus Size Decoding for the 68020 - PLUS18P8B 716
Interfacing to SPARC - PLUS20L8-7 717
The 80386 Pipeline Decoder - PLUS153D 721
68030 Address Decoding - PLUS173D 725
The 29000, SRAM and the PLUS20L8D 727
Interrupt Handler - PLS179 730
SCSI Target Interface - PLUS105 and PLUS153B 735
Introduction 735
Functional Description 735
Programmer's Interface 735
Port Operation 736
Arbitration Software Sequence 737
RESELECT Software Sequence 737
TRANSFER Software Sequence 737
DISCONNECT Software Sequence 737
Hardware Description 738
Chapter 5 Communications using PLDs 750
The CCITT V. 27 Scrambler - PLC18V8Z 750
A Novel Speech Synthesizer - PLS159A 752
CCITT Forward CRC Polynomial - PLUS405 755
Chapter 6 Instrumentation 757
Heart Beat Monitor - PLS159A, PLS168A and PLS153 757
The Pulse Width Monitor - PLS168 764
Scope Trace Sweep Circuit - PLS153 and PLS155 769
Chapter 7 . General Applications 772
Motor Stepper Controller with the PLS155 772
Chapter 8 Security Systems 776
A Programmable Alarm System - PLS168 776

Signetics

Application Specific Products

INTRODUCTION

In multiprocessor environments there is considerable savings to be made through sharing system resources. If each processor must support its own bus structure, 1/O devices, and bulk storage medium, system cost could be very high. In the configuration shown in Figure 1, all processors share a common communication bus, and a number of system resources.

Since every processor must use the common system bus to communicate with its peripherals, a priority structure that resolves simultaneous processor bus requests into a single bus grant must be integrated into the system. In addition to making request-grant transactions, transient bus contention due to grant switching must be removed by inserting precise guard band times between bus grants.
Signetics' Field Programmable Logic Sequencer provides a convenient and costeffective means for implementing a synchronous arbiter to perform these tasks within a single chip.

AN7

Single Chip Multiprocessor Arbiter

Application Note

ARBITER STRUCTURE

Within a multiprocessor system, two general classes of processors can be recognized: Priority A and Priority b. Priority A processors have the highest request priority and must only compete with other Priority A processors for bus control. The arbiter must issue " A " grants in manner that prevents any high priority " A ' processor from locking out another Priority A processor. To enable this, the Priority A rules implemented here use a Last Granted Lowest Priority (LGLP) ring structure. After an " A " processor has completed a busrelated task, its next arbitrated request priority will be lowest in the " A " request group. The previously second highest priority " A " processor will then become highest priority requester. The net effect of the 'round robin' exchange is that every Priority A processor will have a turn at being highest priority processor. Priority A processors are typically ones that perform real-time operations or vital system tasks.

Priority b processors are lower in priority than the " A 's' and may only be granted system control when no " A " requests are pending. " b " processors usually perform background tasks. Within the Priority b group, further priority ordering exists such that each ' b '" processor has a fixed priority position.

Plumber ${ }^{1}$, Pearce ${ }^{2}$, and Hojberg ${ }^{3}$ present asynchronous techniques of arbiter implementation. These methods all have hardwired priority rules and imprecise guard band times during grant switching. As pointed out by Hojberg, a synchronous state machine can be configured as a Mealy-type controller to provide not only precise guard band times and programmable priority rules, but also programmable input/output polarity. The state machine in Figure 2 is made from a control PROM array and an edge-triggered latch. The " A " and ' b ' requests and the machine's present state are used by the control PROM to determine the next " A " and ' b ' grants and the next state.

a. A and b service requests $\left(R_{N}, r_{N}\right)$ plus the present state determine, through the control PROM, the next state and the next grant outputs (G_{N}, g_{N}).

b. Requests R_{0}, R_{1}, r_{0}, and r_{1} are asserted low in the same clock sample period. The priority rules that determine the order in which the grants are issued and the shaded guard-band areas are programmed into the control PROM. Note that the A and b request lines and the present state input to the PROM must have a set-up time equal or greater than the latch set-up time plus the PROM access time.

Figure 2. Arbiter Constructed from a Mealy-Type State Machine

SYSTEM OPERATION

Two machine states can be identified by inspection: a wait state and a grant state. The state machine enters a grant state as a response to a system request on either R_{N} or r_{N}. The machine will remain in this state with a single grant line asserted as long as the request remains asserted. Upon releasing the request line, the machine will pass through a single wait state before considering other pending requests. This provides a single state guard band time. The requests received must meet the set-up requirement of the edgetriggered latch after propagating through the control PROM. If these time considerations do not fit within a given multiprocessor structure, an input latch may be added such that the R_{N} and r_{N} lines are clocked through the latch by the system clock, thereby removing asynchronous set-up time considerations. On the basis of a state machine approach, two techniques of implementation are feasible: 1) using an architecturally advanced single IC controller, the FPLS, and, 2) a traditional PROM/LATCH configuration.

Figure 3

FPLS ARBITER

IMPLEMENTATION

A five Priority ' A " and three Priority " b " arbiter will be constructed such that all grant outputs will be asserted low for grants and all request inputs will be asserted low for system requests.

Brief FPLS Description

The FPLS block diagram shown in Figure 3(a) consists of a control PLA and 14 clocked S/R flip-flops. The control PLA is actually an ANDOR logic array that functions as a Content Addressable PROM. The PLA is organized as 48 words of 28 bits with 16 external input
lines, and six internal inputs fed back from the State Register. The 28 PLA outputs drive the S/R inputs of the six-bit State Register and eight-bit Output Register. Note that the state feedback path is made inside the FPLS.
I_{N} and present state inputs, P_{S}, represent 2^{22} possible input codes; 48 of these codes may be mapped in the PLA to provide a 14 bit register control word. As shown in Figure 3(b) each input code may be specified by assigning to the variables either Low "L", High "H", or Don't Care "--" logic states. If any input code falls logically outside the programmed codes, the PLA asserts a Low on all its 28
internal outputs, thereby issuing a "no change" command to the R/S flip-flops.
This is an important architectural feature because it requires that only state or output transition terms be programmed. Looping terms that change neither state nor output need not be programmed in the FPLS, owing to the functional characteristics of S/R flipflops tabulated in Figure 3(c). An example of this is shown in Figure 4.
The S/R inputs of both state and output registers are specified by using PLA outputs (' 'AND' functions of request inputs and present state) in the program table of Figure 3(c).

The corresponding next state of each bit will be set to 0 for ' L ', 1 for ' H '', and No Change for '"-'. The FPLS's PR/OE line may be assigned either Asynchronous Preset or Output Enable functions, via a user programmable option.
The entire function is integrated into a single 28-pin package designated as PLS105.

State Algorithm

Figure 5(a) displays the circular state form and all possible state transitions of the LGLP priority structure. Hex states 3F, 3E, 3D, 3C, and $3 B$ are arbiter wait states W_{0-4}. In these states, processor ' A " and ' b ' requests are monitored. Figure 5(b) illustrates a typical grant to processor A_{1} in hex state 07. As long as A_{1} asserts its request line low, the next state will be 07_{16} and the next output will remain with G_{1} asserted low and all the other grant outputs asserted high. Since no change in state or grant output results from this transition, no PLA resources are required.

As soon as processor A_{1} returns its request line, R_{1}, to 1 , a state transition is made to 3D, and an output transition is made to set all grant outputs to 1 . Since processor A_{1} was the last to be granted system resources, it will now have the lowest A level request priority (LGLP). In wait state W_{2}, the highest priority processor will be A_{2}, second A_{3}, third A_{4}, and fourth A_{0}. To maintain the LGLP rule, grant transitions must follow the state rule $G_{N} \rightarrow W_{(N+1)}$, and wait states, W_{M}, must set their " A " priorities so that processor A_{M} is highest priority. Priority decreases as one proceeds clockwise around the state ring to the lowest priority processor, $A_{(m-1)}$.
When no " A " requests are pending, ' b " requests may be granted. To avoid upsetting the LGLP priority rule, a ' b ' grant must leave and return to the same wait state. Since the ' b ' priority structure is the same regardless of the wait state, only a single set of " b " transition terms are required.

For example, a grant transition to g_{2} (Hex 20-25) can be issued only if there are no " A^{\prime} ", " b_{0} ", or " b_{1} " requests pending. Given the binary wait state code 111XXX, where " X 's" represent Don't Cares, a request code of 01111111 will transfer the arbiter to the grant state g_{2} from any of the wait states, W_{0-4}.
It is important to realize that in making this transition, the lower three-state bits will not be changed - they provide the wait state return address. When r_{2} returns high, 1XXXXXXX, a transition back to the previously exited wait state is made by forcing a " 1 " in the three most significant state bits and leaving the lower three-state bits unchanged.
All output and state bits are initially preset to " 1 " through the use of the optional preset function. Grant output lines are only forced low when transitions are made to grant states and are returned to " 1 " when jumping back to a wait state.

Table 1 provides the complete arbiter program. The complete arbiter circuit diagram is shown in Figure 6. The AMAZE equations are shown in Figure 7.

PROM/LATCH IMPLEMENTATION

The same five " A " processor and three " b " processor arbiter can be implemented with discrete PROM's and Latches using the same state diagrams for the FPLS, except that now looping transition terms must be programmed. Coding of all state and output transitions requires programming of two memory fields: the " A " request PROM's $(2 K X 6)$ and the ' b ' request PROM (64×3). The complete circuit diagram is shown in Figure 6(b).
The " A " request PROM's determine the next machine state (N_{0-5}) at all times, except when there are no ' A " requests pending and there is a " b " request, or if the machine is presently in a " b " grant state. In these cases, the " b " request PROM controls the machine's next state.

The grant control lines are decoded from the next state lines and latched in two quad output latches. This PROM/LATCH organization is conceptually the same as that shown in Figure 2.

Single Chip Multiprocessor Arbiter

a.

b.

Figure 5. Arbiter State Transition Diagram

b.

Figure 6. Arbiter Circuit Diagram Summary

Single Chip Multiprocessor Arbiter

Table 1. FPLS Program Table for Priority Arbiter

OUTPUT TERM														
NEXT STATE (Ns)						OUTPUT FUNCTION (Fn)								
5	4	3	2	1	0	7	6	5	4	[3	2	1	0	
1.	L	L	H	H	L	H	H	H	H	H	H	H	L	4
L	L	L	H	H	H	H	H	H	H	H	H	L	H	
L	L	H	H	H	L	H	H	H	H	H	L	H	H	W_{0}
L	1	H	H	H	H	H	H	H	H	L	H	H	H	
L	H	L	H	H	L	H	H	H	L	H	H	H	H	
L	L	L	H	H	H	H	H	H	H	H	H	L	H	
L	1	H	H	H	L	H	H	H	H	H	L	H	H	
1	L	H	H	H	H	H	H	H	H	L	H	H	H	W,
L	H	L	H	H	L	H	H	H	L	H	H	H	H	
L	1	L	H	H	L	H	H	H	H	H	H	H	L	
L	L	H	H	H	L	H	H	H	H	H	L	H	H	-
L	1	H	H	H	H	H	H	H	H	L	H	H	H	
L	H	L	H	H	1	H	H	H	1	H	H	H	H	W_{2}
L	L	1	H	H	1	H	H	H	H	H	H	H	L	
L.	L	L	H	H	H	H	H	H	H	H	H	L	H	
L	L	H	H	H	H	H	H	H	H	L	H	H	H	4
L	H	L	H	H	L	H	H	H	L	H	H	H	H	
L	L	L	H	H	L	H	H	H	H	H	H	H	L	W_{3}
L	L	L	H	H	H	H	H	H	H	H	H	L	H	
L	L	H	H	H	L	H	H	H	H	H	L	H	H	
L	H	L	H	H	L	H	H	H	L	H	H	H	H	4
L	L	L	H	H	1	H	H	H	H	H	H	H	L	
L	L	1	H	H	L	H	H	H	H	H	H	1	H	W4.
L	L	H	H	H	H	H	H	H	H	H	L	H	H	
L	L	H	H	H	H	H	H	H	H	L	H	H	H	
H	L	H	-	-	-	H	H	L	H	H	H	H	H	\sim
H	H	L	-	-	-	H	L	H	H	H	H	H	H	\mathbf{W}_{0}
H	L	L	-	-	-	L	H	H	H	H	H	H	H	1
H	H	H	H	H	L	H	H	H	H	H	H	H	H	G_{0}
H	H	H	H	L	H	H	H	H	H	H	H	H	H	G_{1}
H	H	H	H	L	L	H	H	H	H	H	H	H	H	G_{2}
H	H	H	L	H	H	H	H	H	H	H	H	H	H	G_{3}
H	H	H	H	H	H	H	H	H	H	H	H	H	H	G_{4}
H	H	H	-	-	-	H	H	H	H	H	H	H	H	g_{0}
H	H	H	-	-	-	H	H	H	H	H	H	H	H	g_{1}
H	H	H	-	-	-	H	H	H	H	H	H	H	H	g_{2}
						100	10.	108	10	10	105	110	188	

Single Chip Multiprocessor Arbiter

```
lo********************* AREITERS *********************
ARBITERB/82SIOS
@STATE VECTORS
[ FF5, FF4, FF3, FF2, FF1, FFO ]
WO =OJFh;
W2 =
W2 =O3Dh
W.3 = OSCh;
W4 = OSBh;
WO4 = 111---b;
GAO = O6h ;
GA1 = 07h ;
GA2 = OEh;
GA3 = OFh ;
GA4 = 16h ;
GEO = 101---b ;
GB1 = 110---b;
GE2 = 100--b;
@INPUT VECTORS
@OUTFUT VECTORS
[OE2, OB1, OBO, OA4, OAS, OA2, OA1, OAO]
QAO' == FEh ;
QA1' = FDh ;
QA2' = FBh ;
QA3' = F7h;
QA4' = EFh ;
QEO' = DFh ;
QB1' = BFh;
QE2' = 7Fh;
NOGRANT' = FFh ;
@TRANSITIONS
WHILE [WO]
    CASE
        [/FAO] :: [GAO] WITH [QAO']
        [/RA1 * RAO] :: [GA1] WITH [QAI']
        [/RA2 * RA1 * RAO] : : [GA2] WITH [QA2']
        [/RA3 * RA2 * RA1 * RAO] :: [GA3] WITH [QA3']
        [/RA4 * RA3 * RA2 * RA1 * RAO] :: [GA4] WITH [QA4']
    ENDCASE
WHILE [W1]
    CASE
        [/RA1] :: [GA1] WITH [QA1']
        [/RA2 * RA1] :: [GA2] WITH [QAZ']
        [/RA3 * RA2 * RA1] : : [GA3] WITH [QA3']
        [/RA4 * RA3 * RA2 * RA1] :: [GA4] WITH [QA4']
        [/RAO * RA4 * RAS * RA2 * RA1] :: [GAO] WITH [QAO']
    ENDCASE
```


a. Arbiter State Equations

Figure 7

```
WHILE [W2]
    CASE
        [/FAZ] : : [GAZ] WITH [QAZ']
        [/RAS * FAA2] :: [GAS] WITH [QAS']
        [/FA4 * FAS3 * FA2] : [GA4] WITH [GA4']
        [/FAO * RA4 * FIAS * FAZ] :: [GAO] WITH [QAO]
        [/FAA1 * FIAO * FiA4 * FIAS * FIA2] : [GA1] WITH [GA1']
    ENDCASE
WHILLE [WS]
    CASE
        [/FAS] :: [GAS] WITH [QAS']
        [/FA4 * RAE] : : [GA4] WITH [QA4']
        [/FiAO * FAA4 * FAAS] : [GAO] WITH [GAO']
        [/FA1 * FAOO * FA4 * FAS] :: [GA1] WITH [QA1.]
        [/FAA2 * FIA1 * FAO * FiA4 * FAAS] : : [GA2] WITH [QAZ']
    ENDCASE
WHILE [W4]
    CASE
        [/FA4] :: [GA4] WITH [GA4']
        [/FAO * FA4] : : [GAO] WITH [DAO']
        [/FA1 * FAAO * FA4] : : [GA1] WITH [GA1]]
        [/FAA2 * FA1 * FAO * FAA4] : : [GA2] WITH [QA2']
        [/FAAS * FIA2 * FIA1 *FIA1 * FIA4] : : [GAS] WITH [QAS']
    ENDCASE
WHILE [WO4]
    CASE
        [/FEG! * FIAA * FIAS * FIAZ * FAA1 * FiAO] : : [GEO] WITH [OBO']
        [/FB1 * FBO * FAA4 * FAS * FA22 * FA1 * FAO] :: [GB1] WITH [OB1.]
        [/FE2 * FE1 * FEO * FIA4 * FAS * FAA2 * FAA1 * FAOO] : [ [GB2] WITH [OE2]]
    ENDCASE
WHILE [GAO]
    IF [FiAO] THEN [W1] WITH [NOGFIANT']
WHILE [GA1]
    IF [FAA1] THEN [W2] WITH [NOGFIANT ]
WHILE [GAZ]
    IF [FFAZ] THEN [WS] WITH [NOGFANT']
WHILEE [GAS]
    IF [FAAS] THEN [W4] WITH [NOGFANT ]
WHILE [GA4]
    IF [F'A4] THEN [WO] WITH [NOGRANT']
WHILE [GEO]
    IF [FEO] THEN [GE1] WITH [NOGFIANT']
WHILE [GE1]
    IF [FE1] THEN [GB2] WITH [NOGFANT']
WHILE [GB2]
    IF [FB2] THEN [GBO] WITH [NOGFIANT']
```


a. Arbiter State Equations (Continued)

Figure 7 (Continued)

Table 2. Arbiter Program Table

$$
\begin{aligned}
& \text { Cust/Project - } * * * * * * * * * * * * \text { DAVID K. WONG }
\end{aligned}
$$

> Rev/I. D. - $\mathrm{R}_{\mathrm{H} * * * * * * * * * * *}$ ARBITERB REV. 0
> 825105
O!A! -
1:A!- - - , - - - , - - - - - - L H!H H,H H H H!L L, L H H H!H H H H, H H L H!
4!A! - - - , - - - , - - - , H H H H!H H,H H H H!L H, L H H L!H H H L, H H H H!
6!A! - - - , - - - , - - - , - L H - !H H,HHHL!LL,HHHL!H HH H,HLH H!
8!A! - - - , - - - - - - - L, H H H - !H H,H H HL!L H, L H H L!H H H L, H H H H!
12!A! - - - - - - , - - L, H H - - !H H,HHLH!LH,LHHL!HH HL,HHHH!
1S!A! - - - , - - - - - H,HH-L!HH,HHLH!LL,LHHL!HHHH,HHHL!
14!A!- - - , - - - - - - H,HHL H!H H, H HL H!L L, L H H H!H H H H, H H L H!
15!A! - - - , - - - , - - - , L - - - H H,H HLL!LL,HHHH!HHHH,LHHH!
16!A! - - - - - - - - - L, H- - - H H,HHLL!LH,LHHLYHHL,HHHH!
17!A!- - - - - - - - - H, H- LHH,HHLL!LLLHHL!HHHH,HHHL!
21!A!- - - , - - - - - - H, - - L!H H,HL HH!L L, L H H L! H H H H, H H H L!
24!A! - - - - - - - - - - H,LHH-!H H, HLHH!L. L, H H H H!HHHH,LHH H!
34!A!- - - , - - - , H- - - - - !H H, L - - - HL,L - - - HHHH,HHHH!
$46!0!0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0100,0 \quad 0 \quad 0 \quad 010 \quad 0,0 \quad 0 \quad 0 \quad 010 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0!$
47! $0!0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 010 \quad 0,0 \quad 0 \quad 0 \quad 0!0 \quad 0,0 \quad 0 \quad 0 \quad 0!0 \quad 0 \quad 0 \quad 0,0 \quad 0 \quad 0 \quad 0!$

NNNNNNNNFRFFRFRFFFFFFFFFFFFFOOOOOOO (1, 1,1, B B B A A A A A F F F F FFFFFFFFFBB B A A A A A

SUMMARY

As can be seen from the circuit diagrams, the FPLS can offer significant advantages over discrete MSI arrays in the design of state machines. The tradeoff in both design alternatives for the Priority Arbiter is shown in Table 2. Clearly, the FPLS approach uses fewer parts, with savings in PC board space and power requirements.

REFERENCES

1. W.W. Plumber: ''Asynchronous Arbiters''; IEEE Transactions on Computers, January 1972, pp. 37-42.

Table 3. Design Alternatives for the Priority Arbiter

PARAMETER	F.P.L.S.	PROM/LATCH
Parts count	1 IC	$\approx 191 \mathrm{C's}^{\prime}$
PCB space	$.84 \mathrm{in}^{2}$	$7.92 \mathrm{in}^{2}$
Power	.65 W	2.85 W
Voltage	+5 V	+5 V

2. R.C. Pearce, J.A. Field, and W.D. Little: ''Asynchronous Arbiter Module"; IEEE Transactions on Computers, September 1975, pp. 931-933.
3. K. Soe Hojberg: "An Asynchronous Arbiter Resolves Resource Allocation Con-
flicts on a Random Priority Basis''; Computer Design, August 1977, pp. 120-123.
4. K. Soe Hojberg: ''One-Step Programmable Arbiter for Multiprocessors' '; Computer Design, April 1978, pp. 154-158.

Signetics

Application Specific Products

Author: K. A. H. Noach

INTRODUCTION

Custom logic is expensive - too expensive if your production run is short. 'Random logic' is cheaper but occupies more sockets and board space. Signetics Programmable Logic bridges the gap. Using PLD, you can configure an off-the-shelf chip to perform just the logic functions you need. Design and development times are much shorter, and risk much lower than for custom logic. Connections are fewer than for random logic, and, for all but the simplest functions, propagation delay is usually shorter. Yet another advantage that PLD has over custom logic is that it allows you to redesign the functions without redesigning the chip - giving you an invaluable margin not only for cut-and-try during system development, but also for later revision of system design. You're not tied down by the need to recover capital invested in a custom chip.

A PLD chip is an array of logic ele-ments-gates, inverters, and flip-flops, for instance. In the virgin state, everything is connected to everything else by nichrome fuses, and although the chip has the capacity to perform an extensive variety of logic functions, it doesn't have the ability to. What gives it that is programming: selectively blowing undesired fuses so that those that remain provide the interconnections necessary for the required functions.

Signetics Series 20 PLD, named for the number of pins, supplements the well-known Series 28. The package is smaller-little more than a third the size, in fact - but the improved architecture, with user-programmable shared I/O. compensates for the fewer pins. The series comprises the following members, in order of increasing complexity:

- PLS151 - field-programmable gate array
- PLS153 - field-programmable logic array

AN8
 Introduction To Signetics Programmable Logic

Application Note

- PLS155-field-programmable logic sequencer
 - PLS157-field-programmable logic sequencer
 - PLS159 - field-programmable logic sequencer

Entry to all the devices is via a product matrix, an array of input and shared 1/O lines fuseconnected to the multiple inputs of an array of AND gates (see Figures 1, 2 and 5). To exploit the capacity of any device, it is important to make the most economical use of the AND gates it has available. Application of de Morgan's theorem can help in this. For example, inputs for the function

$$
F=A+B+C+D
$$

would occupy four of the AND gates of the product matrix. However, the same function rewritten as

$$
\bar{F}=\bar{A} \bar{B} \bar{C} \bar{D}
$$

would occupy only one. Moreover, the second function could be done on the simplest of the Series 20 devices (and leave eleven gates over for other functions), whereas the first could not. The fact that all inputs of the Series 20 devices, including the shared ones, incorporate double buffers that make the true and complement forms of all input variables equally accessible, greatly facilitates the use of de Morgan's theorem for logic minimization.

To convert the minimized logic equations to the pattern of fuses to be blown, you can use either a programming sheet (see e.g. Table 1) or Boolean equation program-entry software that lets you enter the equations via the keyboard of a terminal. The direct programmability of logic equations makes system design with PLD simple and sure. Functional changes can be made by replacing one PLD chip by another differently programmed. In many cases you can even remove the original one, reprogram it on the spot, and re-insert it. Programming machines qualified for the Se-
ries 20 are at present available from DATA I/ O, KONTRON, and STAG.

FPGA PLS151

The field-programmable gate array is the simplest of the Series 20 PLD devices; Figure 1 shows the functional diagram. The array can accept up to 18 inputs. There are six dedicated input pins (A) and twelve (A^{\prime}) that can be programmed as inputs, outputs, or bidirectional I/O. All input variables, whether on dedicated or programmed input pins, are available in both true and complement form in the product matrix (B), and both forms are buffered: either form can drive all 12 product lines if required. In the virgin state, all the input variables and their complements are connected to all the product lines via a diode and a fuse (C), and the product matrix is effectively inoperative. To enable it to generate the required functions, unrequired connections between individual input lines and product lines are severed by blowing the connecting fuses.
At the output of the product matrix are 12 NAND gates, each with 36 inputs to accommodate the 18 possible input variables and their complements. Each of the product terms is normally active-Low, but a unique feature of Signetics PLD is that any or all of them can be independently programmed active-High. This is done by means of an array of exclusive-OR gates (D) at the NAND-gate outputs; when the fuse that grounds the second input of each OR gate is blown, the output of that gate is inverted.

The product matrix and exclusive OR-gate connections shown in Figure 1 illustrate the flexibility conferred by having buffered complements of all input variables internally available, together with independently programmable output polarities. Output B_{11}, shown with its exclusive OR-gate fuse intact, is programmed

$$
\overline{B_{11}}=I_{0} I_{1} \overline{I_{5}}
$$

LD01341S

NOTE:

A, dedicated inputs; A^{\prime}, programmable I/O. B, product (NAND) matrix with fused connections C; each of the vertical lines in the matrix represents 36 inputs to the terminating NAND gated. D, exclusive-OR array with inputs grounded via fuses for polarity control. E, programmable Tri-state output buffers. F, fuse-programmable control matrix. Square dots (\mathbf{m}) represent permanent connections; round dots (\bullet) intact fuse connections. Connected as shown, the array is programmed for the functions $\bar{B}_{11}=I_{0} I_{1} \bar{I}_{5}$ and $B_{10}=\bar{I}_{0} \bar{\Gamma}_{1} \bar{I}_{5}$.

Figure 1. Field-Programmable Gate Array PLS151A

Introduction To Signetics Programmable Logic

.D013805

NOTE:

A to F, as in Figure 1. G, sum (OR) matrix. Connected as shown, the array is programmed as a single-bit adder with Carry Enable.
Figure 2. Field-Programmable Logic Array PLS153

At the same time, and without using any additional inputs, output B_{10} (fuse blown) is programmed

$$
B_{10}=T_{0} \Gamma_{1} \Gamma_{5}
$$

Each of the exclusive-OR gates drives a three-state output buffer. In the virgin state all the buffers (E) are disabled and therefore in the high-impedance state. The function of the programmable I/O pins (A^{\prime}) is then determined by the I/O control matrix (\dot{F}). The three AND gates at the control-matrix output are

Active-High, and when one of them is in the High state, the four output buffers it controls are enabled; the corresponding I/O pins then act as outputs. conversely, when a controlmatrix AND-gate output is Low and the control fuse for the corresponding Tri-state buffer is intact, the pins controlled by that gate act as inputs. Thus, these pins can be programmed in groups of up to four to act as inputs or outputs according to the state of selected input variables. If required, any of the programmable 1/O pins can be made a
dedicated output by blowing the control fuse of the output buffer associated with it.

The speed of the FPGA compares favorably with TTL, although its propagation delay is longer than the individual gate delay of TTL. When the number of inputs required is large, however, the FPGA more than makes up for this. When more than eight inputs are required, for example, the FPGA has a distinct advantage. Then, the overall propagation de-
lay of TTL often amounts to two or three gate delays, but that of the FPGA to only one.

FPLA PLS153

Architecture

With two levels of logic embodied in a product matrix terminating in 32 AND gates coupled to a ten-output OR matrix (Figure 2), the FPLA is a step up in complexity from the FPGA. Again, there is provision for 18 input variables, internally complemented and buffered, but here divided between eight dedicated input pins and ten individually programmable I/O pins. As before, exclusive-OR gates grounded by fuses provide output polarity control, and any of the programmable I/O pins can be made a dedicated output by blowing the control fuse of the output buffer associated with it.

Programming

When the required functions have been defined, corresponding programming instructions are entered in a programming table, the layout of which reflects the FPLA architecture. (A Signetics computer program named AMAZE, which accepts Boolean equations as input and generates an FPLA programming table as output, is also available.) The programming machine blows the FPLA fuses in the pattern prescribed by the table.

As an illustration of FPLA programming, consider a full adder. Figure 3 shows a TTL version (74LS80) and the corresponding logic equations. Note that the feedback of $\overline{\mathrm{C}}_{\mathrm{n}}+1$ introduces a second propagation delay. In the FPLA this is eliminated by redefining Σ in terms of A, B, and C_{n}, as shown in Figure 4, and using the right side of the equation for $\overline{\mathrm{C}}_{\mathrm{n}+1}$ instead of the term itself. At first glance this would appear to require a minimum of three product terms for $\overline{\mathrm{C}}_{\mathrm{n}+1}$ plus four for Σ, or a total of seven. The Karnaugh maps, however, show considerable overlap between the two functions: the map for $\overline{\mathrm{C}}_{\mathrm{n}+1}$ differs from that for Σ only by having ABC C_{n} instead of $\bar{A} \bar{B} \bar{C}_{n}$. Rewriting the equation for \bar{C}_{n+1} to introduce $\bar{A} \bar{B} \bar{C}_{n}$ and eliminate $A B C_{n}$,

$$
\bar{C}_{n+1}=A \bar{B} \overline{C_{n}}+\bar{A} B \overline{C_{n}}+\bar{A} \bar{B} C_{n}+\bar{A} \bar{B} \overline{C_{n}}
$$

increases the number of product terms by one, but now $\overline{\mathrm{C}}_{\mathrm{n}+1}$ and Σ have three terms in common. Therefore, since the FPLA allows multiple use of product terms, it is sufficient to program each of the common terms only once; thus, the original seven product terms are effectively reduced to five.

To fill in the programming table (Table 1), first allocate inputs and outputs.

FULL ADDER

Figure 3. Single-Bit Full Adder in TTL (e.g. 74LS80)

Inputs: $A=I_{0}$
$B=I_{1}$
$C_{n}=I_{2}$
Outputs: $\bar{C}_{\mathrm{n}}^{\mathrm{\Sigma}}+1=\mathrm{B}_{7}$

$$
\begin{aligned}
& =B_{8} \\
& =B_{9}
\end{aligned}
$$

Next, enter the product terms of Σ in the product-matrix (AND) part of the table, using H to indicate a true input and L a false one.

- Term 0 is $A \bar{B} \bar{C}_{n}$: mark H, L, L in columns I_{0}, I_{1}, I_{2} of row 0
- Term 1 is $\bar{A} B \bar{C}_{n}$: mark L, H, L in columns I_{0}, I_{1}, I_{2} of row 1
- Term 2 is $\bar{A} \bar{B} C_{n}$: mark L, L, H in columns I_{0}, I_{1}, l_{2} of row 2
- Term 3 is $A B C_{n}$: mark H, H, H in columns l_{0}, l_{1}, l_{2} of row 3 .

Fill the rest of rows $0,1,2$, and 3 with dashes to indicate that all other inputs are to be disconnected from Terms $0,1,2$, and 3 (fuses blown).
The product terms of Σ must be added to form the sum-of-products required at output
B_{9}. Indicate the required addition by putting an A (for Attached, i.e. fuse unblown) in the Term $0,1,2$, and 3 spaces of column $\mathrm{B}(\mathrm{O})_{9}$; Term 4 is not required for Σ, so put a dot in the Term 4 space to indicate that it is to be disconnected (fuse blown). To indicate that the output is to be Active-High, put an H in the polarity square above the $\mathrm{B}(\mathrm{O})_{9}$ column. Finally, fill row D_{9} with dashes to indicate that all fuses on line D_{9} of the control matrix are to be blown and B_{9} is to be a dedicated output. This completes the programming of Σ.
The $\bar{\Sigma}$ output on B_{8} is programmed in just the same way, except that the polarity square above the $B(O)_{8}$ column is marked L to indicate Active-Low. (Note that in the FPLA, the Σ and $\bar{\Sigma}$ outputs change simultaneously, because all output signals traverse the exclu-sive-OR array (D), whether they are ActiveHigh or Active-Low. In the TTL full adder shown in Figure 3, the output inverter delays the change of Σ with respect to Σ.)

Introduction To Signetics Programmable Logic

Table 1．FPLA Programming Table Filled in for the Full Adder of Figure 2

																							POL	Anif			
																					L］	L］					
	T								AND	ND														OR			
	E				1	1								B（1）	（1）									（0）			
	M	7	6	5	4	3.	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	65	4	32	1	0
I里	0	－	－	－	－	－	L	L	H	－	－	－	－	－	－	－	－	－	－	A	A	A					
	1	－	－	－	－	－	L	H	L	－	－	－	－	－	－	－	－	－	－	A	A	A					
¢ \sim_{0}	2	－	－	－	－	－	H	L	L	－	－	－	－	－	－	－	－	－	－	A	A	A					
	3	－	－	－	－	－	H	H	H	－	－	－	－	－	－	－	－	－	－	A	A	\bullet					
	4	－	－	－	－	－	L	L	L	－	－	－	－	－	－	－	－	－	－	－	－	A					
40	5																										
$0, \omega$	6																										
¢	7																										
	8																										
	9																										
	10																										
\sum_{\sim}^{2}	11																										
山 ¢ w	12																										
	13																										
长 -5	13																										
E＝	14																										
¢	15																										
O	16																										
	17																										
	18																										
	19																										
	20																										
	21																										
	22																										
－	23																										
	24																										
	25																										
	26																										
	27																										
	28																										
	29																										
	30																										
	31																										
	D9	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－				T		\bigcirc		
	D8	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－	－								
	D7	－	－	－	－	H	－	－	－	－	－	－	－	－	－	－	－	－									
	D6																										
	D5																										
	D4																										
	D3																										
	D2																										
	D1																										
	D0																										
	PIN No．	8	7	6	5	4	3	2	11	191	181	17	16	15	14	13	12	11	9								
						（		B	A	Σ		${ }_{0}^{+}$															

The output C_{n+1} on B_{7} contains three of the same terms as Σ, plus the term $\bar{A} \bar{B} \bar{C}_{n}$. Only this last term needs to be additionally programmed in the product matrix: mark L, L, L in columns I_{0}, I_{1}, I_{2} of the Term 4 row. Indicate the addition

$$
A \bar{B} \overline{C_{n}}+\bar{A} B \bar{C}_{n}+\bar{A} \bar{B} C_{n}+\bar{A} \bar{B} \overline{C_{n}}
$$

by putting an A in rows $0,1,2$, and 4 of column $\mathrm{B}(\mathrm{O})_{7}$, and show that Term 3 ($\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{C}_{n}$) is not required by putting a dot in the Term 3 row to indicate disconnection (fuse blown). Put an L in the $B(O)_{7}$ polarity square to indicate Active-Low.

Identifying B_{7} as a dedicated output by indicating that all the fuses to control term D_{7} are to be blown, would now complete the programming of the full adder. However, a useful supplementary feature would be a Carry Enable function to keep the B_{7} output buffer in the high-impedance state except when the enable input I_{3} is true. The output buffer is enabled when both the fuses of a control term are blown, or when one is blown and the term that controls the output buffer is true. Thus, a Carry Enable can be provided via the I_{3} input by leaving intact the fuse for ActiveHigh operation of the enable signal to control term D_{7}. To indicate this, put an H in the I_{3} column of row D_{7} and fill the rest of the row with dashes.

The full adder with output Carry Enable uses only four of the eight dedicated inputs, three of the ten programmable I/O pins, and five of the 32 AND gates. The remaining capacity can be used for programming other functions which may, if required, also make use of AND-gate outputs already programmed for the full adder.

All fuses not indicated as blown in the programming table are normally left intact to preserve capacity for later program revisions or the addition of supplementary functions. If it is essential to minimize propagation delay, however, the finalized program should include instructions for blowing all unused fuses to minimize load capacitance.

FPLS PLS155 - PLS157 - PLS159

Architecture

The FPLS (Figure 5) is the most complex of the Series 20 PLD devices. Like the FPLA, it has a 32 -term product matrix followed by an OR matrix. In the FPLS, however, the OR matrix is larger and comprises three distinct parts, with architecture differing in detail from type to type. In the PLS155, for instance, the first part consists of eight 32 -input gates coupled, like those of the FPLA, to an output-polarity-controlling exclusive-OR array. The
second consists of twelve additional gates which control four flip-flops. These are what give the FPLS its sequential character, enabling it to dictate its next state as a function of its present state. The third part is the deceptively simple Complement Array (I in Figure 5): a single OR gate with its output inverted and fed back into the product matrix. This enables a chosen sum-of-products to become a common factor of any or all the product terms and makes it possible to work factored sum-of-products equations. it is also useful for handshaking control when interfacing with a processor and for altering the sequence of a state machine without resorting to a large number of product terms.

PLS155 has four dedicated inputs and eight programmable 1/O pins that can be allocated in the same way as in the FPLA. It also has four shared I/O pins (L) whereby the flip-flops can be interfaced with a bidirectional data bus. Two product terms, L_{A} and L_{B} in the control matrix F, control the loading of the flip-flops, in pairs, synchronized with the clock.

Figure 6 shows the architecture of the flip-flop circuitry in the PLS155. The flip-flops are positive-edge-triggered and can be dynamically changed to J-K, T, or D types according to the requirements of the function being performed; this considerably lessens the demands on the logic. The Tri-state inverter between the J and K inputs governs the mode of operation, under the control of the product term F :

- When the inverter is in the highimpedance state, the flip-flop is a J-K type, or a T type when $\mathrm{J}=\mathrm{K}$.
- When the inverter is active, $K=J$ and the flip-flop is a D type; the K input must then be disconnected from the OR matrix.
All the product terms from the product matrix (T_{0} to T_{31} in Figure 5) are fuse-connected to the J and K input $O R$ gates. if both fuses of any one product term are left intact, $J=K$ and the flip-flop is a T type.

The flip-flops of the PLS155 have asynchronous Preset and Reset controlled by terms in the OR matrix that take priority over the clock. Their three-state output buffers can be controlled from the enable pin OE or permanently enabled or disabled by blowing fuses or leaving them intact in the enable array (K in Figure 5).
The PLS157 and PLS159 sequencers have, respectively, six and eight flip-flops. The architecture differs in detail but is similar in principle to that of PLS155.

Programming

The FPLS is programmed in much the same way as the FPLA, using a table to instruct the machine that blows the undesired fuses. It is not necessary to work with a circuit diagram; in fact, it is even undesirable to do so, since applying the necessary logic reduction techniques would in most cases make the diagram difficult to read and more a hindrance than a help. An example of how to program the FPLS as a universal counter/shift-register is given in the Appendix.

DEVELOPMENT AND PRODUCTION ECONOMY WITH PLD

Underlying the design philosophy of the Signetics Series 20 PLD is the concept of programmable arrays whose architecture emulates logic equation formats rather than mere aggregations of gates. The unique combination of features which support this philosophy includes:

- double-buffered true and complement inputs
- programmable-polarity outputs
- programmable I/O for internal feedback and maximum freedom in allocating inputs and outputs
- truth-table programming format

These features are common to all the PLD devices. In the field-programmable logic sequencers they are further supported by:

- flip-flops with dynamically alterable operating modes
- a complement array for simplified handshaking control

From the development engineer's point of view an important advantage of PLD is that it eliminates breadboarding. Once the functions required in terms of minimized logic equations are worked out, a PLD can be programmed accordingly. Once programmed, it will perform those functions.

Loading the instructions into the programming machine usually takes no more than a couple of hours; after that, the machine can program the devices at a rate of 100 an hour. Moreover, since any PLD can be programmed in many different ways, PLD has considerable potential for simplifying purchasing and stock control. One type of device can be programmed to perform a diversity of tasks for which it would otherwise be necessary to purchase and stock many different devices.

Series 20 PLD is second-sourced by Harris Semiconductor.

Introduction To Signetics Programmable Logic

LDO1350S

```
@- denotes wire-OR
    - denotes fixed connection
```

Figure 6. Architecture of the PLS155 Flip-Flop Circuitry

APPENDIX

Programming an FPLS as a Counter/Shift-Register

Objective: to program a PLS155 FPLS as a count-up, count-down, shift-right, shift-left machine governed by three control terms - COUNT/SHIFT, RIGHT/UP, LEFT/ DOWN. Direct implementation would result in a machine with 64 state transitions (see Table A-1), which is beyond the scope of the PLS155 or even the 28-pin PLS105. Logic reduction is therefore necessary.

As there are only four feedback variables (D, $C, B, A)$, you can do the reduction by hand, one mode at a time; the control terms need not be included till the summary equations are written. Using the transition mapping method suggested here, you can examine the excitation equations for all types of flip-flops
(R-S, J-K, D, T) and choose those types that will perform the required functions using the fewest product terms. Table A-2 summarizes the rules for flip-flop implementation using transition maps; the transition symbols used in the table mean:

PRESENT STATE	NEXT STATE	TRANSITION SYMBOL
0	0	0
0	1	a
1	0	β
1	1	1

Using these symbols, construct Table A-3 from Table A-1 to enable you to examine the excitation equations for all types of flip-flops. Proceeding one mode at a time, transfer the state conditions from Table A-3 to Karnaugh maps, as in Figure A-1. Following the rules in

Table A-2, derive the excitation equations for the different types of flip-flops (the examples shown in Figure A-1 omit the T type because it is the same as the $\mathrm{J}-\mathrm{K}$ type when $\mathrm{J}=\mathrm{K}$). In deciding which types of flip-flop to use, remember that logic minimization with PLD is different from logic minimization with 'random logic': with random logic you seek to reduce the number of standard packages required; with PLD you seek to reduce the number of product terms.

From Figure A-1 it is evident that you should choose J-K or T flip-flops for the counter mode and D flip-flops for the shift mode, for you then require only one product term per flip-flop per mode. Table A-4 summarizes the number of product terms per mode the various types of flip-flops would require.
Table A-5 shows the completed programming table for the counter/shift-register. The programming of Terms 0 to 15 reflects the flipflop excitation equations and illustrates the value of being able to switch the flip-flops dynamically from one type of operation to another. Terms 16, 17 and 18, respectively, provide for INITIALIZE, asynchronous RESET, and STOP functions.

The programming of the two additional inputs HALT and BUSY illustrates the value of the complementary, which is made active when $\overline{H A L T}$ and $\overline{B U S Y}$ are Low (A in the Complement square of Term 18) and propagated into all the other terms (dot in the Complement squares of Terms 0 to 17). This means that unless the HALT and BUSY inputs are High, none of the product terms will be true and the state of the machine will not change. If the Complement Array were not used, twice the number of product terms would be required, even if one of the additional inputs were omitted.

As it is, the design uses only 19 of the 32 product terms available, so there is ample capacity for extending its capabilities. For example, the shift-left function can be augmented by a binary multiplication capability, using a D type flip-flop to make it shift one, two, or three places according to the state of two extra inputs, X and Y. Table $A-6$ shows the revised programming table. The binary multiplication function occupies nine additional product terms.

ACKNOWLEDGEMENT

Electronic Components and Applications; Vol. 4, No. 2, February 1982. Reprinted with the permission of PHILIPS.

Table A-1. Present-State/Next-State Table for Counter/Shift-Register

STATE		RE	EN									EX	AT							
NO.						un	Dow			oun	U			hif	Lef			ift	igh	
	D	C	B	A	D	C	B	A	D	C	B	A	D	C	B	A	D	C	B	A
0	0	0	0	0	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0
2	0	0	1	0	0	0	0	1	0	0	1	1	0	1	0	0	0	0	0	1
3	0	0	1	1	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1
4	0	1	0	0	0	0	1	1	0	1	0	1	1	0	0	0	0	0	1	0
5	0	1	0	1	0	1	0	0	0	1	1	0	1	0	1	0	1	0	1	0
6	0	1	1	0	0	1	0	1	0	1	1	1	1	1	0	0	0	0	1	1
7	0	1	1	1	0	1	1	0	1	0	0	0	1	1	1	0	1	0	1	1
8	1	0	0	0	0	1	1	1	1	0	0	1	0	0	0	1	0	1	0	0
9	1	0	0	1	1	0	0	0	1	0	1	0	0	0	1	1	1	1	0	0
10	1	0	1	0	1	0	0	1	1	0	1	1	0	1	0	1	0	1	0	1
11	1	0	1	1	1	0	1	0	1	1	0	0	0	1	1	1	1	1	0	1
12	1	1	0	0	1	0	1	1	1	1	0	1	1	0	0	1	0	1	1	0
13	1	1	0	1	1	1	0	0	1	1	1	0	1	0	1	1	1	1	1	0
14	1	1	1	0	1	1	0	1	1	1	1	1	1	1	0	1	0	1	1	1
15	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1
CONTROL TERMS																				
COUNT/SHIFT					1				1				0				0			
RIGHT/U					0				1				0				1			
LEFT/DO					1				0				1				0			

Table A-2. Rules for Flip-Flop Implementation Using Transition Maps

FLIP-FLOP TYPE	INPUT	MUST INCLUDE	MUST EXCLUDE	REDUNDANT
R-S	S	a	$\beta, 0$	$1, \mathrm{x}$
	R	β	$a, 1$	x
D	D	$a, 1$	$\beta, 0$	x
J-K	T	a, β	0,1	$1, \beta, \mathrm{x}$
	J	0	0	$0, a, \mathrm{x}$

Table A-3. Transition Table for Counter/Shift-Register

STATE NO.	PRESENT STATE				TRANSITION															
					Count Down				Count Up				Shift Left				Shift Right			
	D	C	B	A	D	C	B	A	D	C	B	A	D	C	B	A	D	C	B	A
0	0	0	0	0	a	a	a	a	0	0	0	a	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	β	0	0	a	β	0	0	a	β	a	0	0	β
2	0	0	1	0	0	0	β	a	0	0	1	a	0	a	β	0	0	0	β	a
3	0	0	1	1	0	0	1	β	0	a	β	β	0	a	1	β	a	0	β	1
4	0	1	0	0	0	β	a	a	0	1	0	a	a	β	0	0	0	β	a	0
5	0	1	0	1	0	1	0	β	0	1	a	β								
6	0	1	1	0	0	1	β	a	0	1	1	a	a	1	β	0	0	β	1	a
7	0	1	1	1	0	1	1	β	a	β	β	β	a	1	1	β	a	β	1	1
8	1	0	0	0	β	a	a	a	1	0	0	a	β	0	0	a	β	a	0	0
9	1	0	0	1	1	0	0	β	1	0	a	β	β	0	a	1	1	a	0	β
10	1	0	1	0	1	0	β	a	1	0	1	a	β	a	β	a	β	a	β	a
11	1	0	1	1	1	0	1	β	1	a	β	β	β	a	1	1	1	a	β	1
12	1	1	0	0	1	β	a	a	1	1	0	a	1	β	0	a	β	1	a	0
13	1	1	0	1	1	1	0	β	1	1	a	β	1	β	a	1	1	1	a	β
14	1	1	1	0	1	1	β	a	1	1	1	a	1	1	β	a	β	1	1	a
15	1	1	1	1	1	1	1	β	β	β	β	β	1	1	1	1	1	1	1	1

Table A-4. Number of Product Terms Required for Counter/Shift-Register Flip-Flop Excitation

FLIP-FLOP TYPE	COUNT UP	COUNT DOWN	SHIFT RIGHT	SHIFT LEFT	TOTAL
SR only	8	8	8	8	32
JK only	4	4	8	8	24
D only	10	10	4	4	28
FPLS	$4(\mathrm{~J}-\mathrm{K})$	$4(\mathrm{~J}-\mathrm{K})$	$4(\mathrm{D})$	$4(\mathrm{D})$	16

Introduction To Signetics Programmable Logic

Table A-5. PLS155 FPLS Programming Table for the Counter/Shift-Register

Table A-6. Modified PLS155 FPLS Programming Table for the Counter/Shift-Register With the Addition of a Binary Multiplier

Signetics

Application Specific Products

Author: David Wong

FEATURES

- Programmable pulse-width/delay
- Maximum 256 clock cycles
- Asynchronous TRIGGER input
- Active-High and Active-Low outputs
- Asynchronous RESET
- 20-pin package

THEORY OF OPERATION

The one-shot consists of an FPLS PLS159 and an external clock which may be part of the system in which this one-shot is to work. As shown in Figure 1 and Table 1 the FPLS is configured to have a latch and an eight-bit binary up counter which is presettable by input data to any number less than 256 . Since the input data is inverted before it is loaded into the registers, counting from the comple-

AN11
 PLD Programmable Retriggerable One-Shot

Application Note

ments of the input to FF will give the correct number of counts as counting from the input down to 00.
Pulse-width/delay inputs may be the outputs of another device or switches. When /RESET goes Low, flip-flops are set to all 1's (terms PB and PA). At the rising edge of the next clock, data is latched into the registers (terms LB and LA). When /TRIG goes Low, it is latched into the input latch formed by term \# $0,1,2$ and 13. The output O_{1} of the latch goes High and O_{2} goes Low which enables the 8 -bit counting cycle. The O_{1} and $/ \mathrm{O}_{1}$ will maintain their output levels until the end of the counting cycle at which time the counter reaches the count FF , resets the latch by term \# 13, and sets O_{2} High. At the rising edge of the next clock, terms LA and LB cause data to be loaded again into the registers, and the device is ready for another /TRIG input. The output wave-forms are illustrated in Figure 2.

If the /TRIG pulse-width is longer than the desired pulse-width of the one-shot, the device will react as mentioned above, and at the end of the count cycle new data will be loaded, another count cycle begins while the outputs remain set by the /TRIG input without changing throughout the change-over of one count cycle to another. $\mathrm{O}_{1 \mathrm{a}}$, on the other hand, will go Low for one clock period at the change-over. As long as the /TRIG is Low, $\mathrm{O}_{1 \mathrm{a}}$ will continue to pulse Low for one clock period at the change-over of one count cycle to another. The output O_{2} will pulse High for one clock cycle at the change-over. Figure 2 illustrates output wave-forms for both cases. The output wave-forms are as illustrated in Figure 2.
The one-shot is implemented by programming the PLS159 as shown in Table 1. The logic representation of the program is shown in Figure 3.

Figure 1. Programmable Retriggerable One-Shot

Table 1. PLS159 FPLS Program Table

PROGRAMMABLE RETRIGGERABLE ONE-SHOT																																		
												FF MODE								REMARK	E_{8}				E_{A}				POLARITY				REMARK	
												A	A	A	A	A	A	\|A		A			-	-			-	-		L	1	H	H	
	T	AND																			(OR)													
	E				1			B(1)				Q(P)									Q(N)								B(0)					
	m	c	3	2		1	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0	3	2	1	0		
	0	-	L	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	LATCH	-	-	-	-	-	-	-	-	A	\bullet	-	A	$B_{0}=\overline{B_{3}}$	
	1	-	-	-		-	-	-	H	-	-	-	-	-	-	-	-	-	-	"	-	-	-	-	-	-	-	-	A	\bullet	-	A		
	2	-	-	-		-	-	H	-	-	-	-	-	-	-	-	-	-	-	"	-	-	-	-	-	-	-	-	\bullet	A	\bullet			
	3																																	
	4	-	-	-		H	-	-	H	-	-	-	-	-	-	-	-	-	-	COUNT CYCLE	-	-	-	-	-	-	-	0	\bullet	\bullet	\bullet	\bullet		
	5	-	-	-		H	-	-	H	-	-	-	-	-	-	-	-	-	H	1	-	-	-	-	-	-	0	-	\bullet	\bullet	\bullet	\bullet		
	6	-	-	-		H	-	-	H	-	-	-	-	-	-	-	-	H	H		-	-	-	-	-	0	-	-	\bullet	\bullet	-	-		
	7	-	-	-		H	-	-	H	-	-	-	-	-	-	-	H	H	H		-	-	-	-	0	-	-	-	\bullet	\bullet	\bullet	\bullet		
	8	-	-	-		H	-	-	H	-	-	-	-	-	-	H	H	H	H		-	-	-	0	-	-	-	-	\bullet	\bullet	\bullet	\bullet		
	9	-	-	-		H	-	-	H	-	-	-	-	-	H	H	H	H	H		-	-	0	-	-	-	-	-	\bullet	\bullet	\bullet	\bullet		
	0	-	-	-		H	-	-	H	-	-	-	-	H	H	H	H	H	H		-	0	-	-	-	-	-	-	\bullet	\bullet	\bullet	\bullet		
	11	-	-	-		H	-	-	H	-	-	-	H	H	H	H	H	H	H	\downarrow	0	-	-	-	-	-	-	-	\bullet	\bullet	\bullet	\bullet		
	12																																	
	13	-	-	-		-	-	-	-	-	-	H	H	H	H	H	H	H	H	LATCH	-	-	-	-	-	-	-	-	\bullet	A	A	\bullet		
	14																																	
	15																																	
	16																																	
	17																																	
	18																																	
	19																																	
	20																																	
	21																																	
	22																																	
	23																																	
	24																																	
	25																																	
	26																																	
	27																																	
	28																																	
	29																																	
	30																																	
	31																																	
2	F_{c}																																	
3	Pa_{B}	-	-	-		L	-	-	-	-	-	-	-	-	-	-	-	-	-	SET Q_{4} TO Q ${ }_{7} \mathrm{HIGH}$														
4	R_{8}																																	
5	$L_{\text {b }}$	-	-	-		-	-	-	-	-	-	H	H	H	H	H	H	H	H	LOAD DAFA AT NEXT CK														
6	$\mathrm{Pa}_{\text {a }}$	-	-	-		L	-	-	-	-	-	-	-	-	-	-	-	-	-	SET Q. TO Qs HIGH														
7	R_{A}																																	
8	L_{A}	-	-	-		-	-	-	-	-	-	H	H	H	H	H	H	H	H	LOAD DATA AT NEXTCK														
9	D3	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-															
0	D2	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-															
1	D1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-															
2	Do	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-															
	PIN		5	4		3	2	9	8	7	6	19	18	17	16	15	14	13	12															
	N \mathbf{N} \mathbf{M} \mathbf{E} \mathbf{S}		-			$\begin{aligned} & 1 \\ & \omega \\ & 2 \\ & 2 \\ & 2 \end{aligned}$		$\begin{gathered} 0 \\ -1 \\ 0 \end{gathered}$		N	Ö																							

[^17]
PLD Programmable Retriggerable One-Shot

AN11

Figure 2. Timing Diagram of Programmable Retriggerable One-Shot

PLD Programmable Retriggerable One-Shot

Figure 3. Logic Representation of Table 1

Signetics

Application Specific Products

DESCRIPTION

Using the simple AND, OR and INVERT logic functions of the PLS153, memory functions such as latches and edge-triggered flip-flops may be implemented with a relatively small part of the chip and without external wiring. In this application note, we will discuss the implementation of two R-S latches, a D-latch, an edge-triggered R-S flip-flop, and an edgetriggered D flip-flop.

INTRODUCTION TO PLS153

To implement this function, let's first take a look at the PLS153 logic diagram and its programming table as shown in Appendices A and B. On the left side of the logic diagram (Appendix A) are eight dedicated inputs, I_{0} to 1_{7}, each of which has a true and a complement output. Each output is connected to the inputs of 32 AND functions (we will call them AND-terms from now on), the outputs of which are, in turn, connected to the inputs of ten OR functions. The output of each OR function is connected to one input of an Exclusive-OR function, which is in turn connected to a non-inverting output buffer. The function of the XOR is to control the output polarity. The output, in its virgin state, is noninverting, since one side of the XOR is

AN14 Latches and Flip-Flops With PLS153

Appiication Note

connected to ground by the fuse X_{n}, where $\mathrm{n}=0,1,3 \ldots 9$. To have the output inverted, one needs only to blow fuse X_{n} open so that the X_{n} input is unconditionally High. The output buffers are all three-state buffers which may be enabled or disabled by their corresponding AND gates. The output buffers are disabled in their virgin state. All pins labeled ' B ' are bidirectional. Input buffers of the " B ' pins are identical to those of the ' η "' pins.
The programming table shown in Appendix B emulates a truth table. All the inputs to the device are positioned on the left side, and all the outputs are on the right side. Each row in the table corresponds to an 18 -input ANDterm with up to ten outputs. On the left side, or the input side of the table, each column represents an input. The 18 columns represent input buffers I_{0} to $\mathrm{I}_{7}, \mathrm{~B}_{0}$ to B_{9}. To distinguish between inputs and outputs of the bidirectional pin, $\mathrm{B}(\mathrm{I})$ is used for input and $B(O)$ is used for outputs as shown in the programming table. On the right side of the table, each column represents an output circuit $\left(B(O)_{0-9}\right)$ which consists of an OR gate, an XOR, and a non-inverting three-state buffer. The output buffers are controlled by AND-terms D_{0} to D_{9}, the inputs of which may be connected to any number of the 18 inputs.

The polarity of the outputs is defined by the POLARITY entries which are on the upper right corner of the programming table.

To program the inputs to the AND-terms, an " H " will cause the fuse of the inverting input buffer to be blown, leaving the non-inverting buffer connected to the AND-term; an "L'" will do the opposite. A " - " will cause both fuses to be blown, and therefore the programmed input is a "Don't care'". A ' 0 ', the virgin state of the device, has both fuses intact, which causes the output of the ANDterm to be unconditionally Low.

To program the outputs, a ".." causes the fuse that connects the output of AND-term to the input of an OR to be blown and thus renders the output inactive. An ' A ' causes the fuse to remain intact and thus the output is active.

The output polarity of each output buffer may be programmed by entering an ' H ' ' or an " L "' in the POLARITY section. An "L" causes the XOR to blow its grounding fuse and become inverted, whereas an ' H ' leaves the fuse intact and the output is non-inverted.

To AND several inputs, we put them in a row; to OR several inputs, we put them in different rows, as shown in illustrations in Appendix B.

SIMPLE R-S LATCH

A simple R-S latch may be formed by crosscoupling two NAND functions together as shown in Figure 1.

As an illustration, let's assign the input R to I_{0} of the PLS153, input S to I_{1}, output Q to B_{0}, and output \bar{Q} to B_{1}. As shown in Table 1, to form the NAND gates we need to program the POLARITY Low on $\mathrm{B}(\mathrm{O})_{0}$ and $\mathrm{B}(\mathrm{O})_{1}$. To unconditionally enable the output buffers, we 'dash'" out all inputs to D_{0} and D_{1}. As for the inputs, we put an ' H ' on I_{0}, term-0 for the input R , non-inverted; another ' H ' on $\mathrm{B}(\mathrm{I})_{1}$, term-0 for the feedback from Q. In the same manner, we program I_{1}, term-1 and $\mathrm{B}(\mathrm{O})_{0}$ ' H '. The POLARITY, rows $0,1, \mathrm{D}_{0}$ and D_{1}, forms a "truth table" with which one can analyze his own or someone else's design. The program in Table 1 may be illustrated as shown in Figure 2.

Latches and Flip-Flops With PLS153

Table 1. PLS153/153A Programming Table

CODENO.																	REMARKS	POLARITY							REMARKS	
																							L ${ }_{\text {L }}$			
\square	AND																	OR								
		1 A						B(1)																		
	7	6	5	43	32		10	9	8	7	6	5	4	32	2	10		9187		6	54	312		10		
0	-	-	-	-1-	-	-	H	-	-	-	-	5	-	-	$-\mathrm{H}$	H-						\bullet		- A	$Q=/(R \cdot \bar{Q})$	
1	-	-	-	-	-	H	-	-	-	-	-	-	-	-	-	- H		-	-		\cdot	-	-		A \cdot	$\bar{Q}=/(S \cdot Q)$
2																										
3																										
4																										
5																										
6																										
7																										
8																										
9																										
10																										
11																										
12																										
13																										
14																										
15																										
16				1																						
17				+																						
18																										
19																										
20				1																						
21																										
22																										
23																										
24				,																						
25																										
26																										
27				+																						
28																										
29																										
30																										
31				,																						
D9				,																						
D8				,															11		1	1	1			
D7				$+$														11	$1 \begin{array}{ll}1 & 1 \\ 1\end{array}$			11	1			
D6				$+$														11	11	11	11	11	1	1		
D5																		11	11	11	11	11	1	1		
D4																		11	11	11	11	11	1			
D3																		11	11	11	11	11		1		
D1	-	-	-		-	-	-	-			-	-						11	11	11	11	11	1			
D0	-	-	-	-1-	- -	-	-	-			-	-							11	11	11	11	1		1 c	
PN	8	7	6	54	43	2	1	19	18	17	16	15			21	119			1817	716	1514	131	121	119	10	
号						0	α																-	(1)	\%	

ANOTHER SIMPLE R-S LATCH

Another way to implement a simple latch is shown in Figure 3, in which two NOR functions are cross-coupled to form a latch.

As with the previous example, we first define the input and output pins. For this example, we use I_{2} for the R input, I_{3} for the S input, B_{2} for the Q output, and B_{3} for the \bar{Q} output. We program B_{2} and B_{3} to have inverted outputs by programming POLARITY of B_{2} and B_{3} Low, as shown in Table 2. Terms 6 and 7 are ORed together by $B(O)_{2}$, rows 6 and 7. In the same manner $\mathrm{B}(\mathrm{O})_{3}$ ORs Terms 8 and 9 . The programmed table of this design may be represented as shown in Figure 4.
Since each AND-term of the PLS153 can accommodate up to 18 inputs (true or inverting inputs of eight from I_{0} to I_{7} and ten from B_{0} to B_{9}), and each OR circuit can be connected to up to thirty-two AND-terms, we can add additional features such as those shown in Figure 5.
The programming of this design is left to the reader as an exercise.

Figure 4. RS Latch

LSO1740S

Figure 5. RS Latch

Table 2. PLS153/153A Programming Table

CODE NO.																				POLARITY									
																			REMARKS						L	L	414		
T E R M	AND																												
	1								B(1)											B(O)									
	7	6	5	4	31	12	1	0	9	8 [7	7	6	5 5	43	3	21	1	0		9	81	76	55	[4	3	2	110		
0	-	-	$-$	-	-	-	-	H	-	-1		-	-	-	-	-1	1	-	R.Q	-	\cdots	-	-	-	!	-	- A	$Q=/(R \cdot \bar{Q})$	
1	-	-	-	-	-	-	H	-	-	-1-		-	-	-	-	-		H	S.Q	-	, 1	-	-	-	-	\bullet	A ${ }^{\text {- }}$		$\hat{Q}=/(S \cdot Q)$
2																													
3																													
4																													
5																													
6	-	-	-	-1	-	H	-	-	-	-1		-	-	-		-		-	R	-		-	-	-	${ }^{-}$	A	$\cdot{ }^{-}$		$Q=/(R+\bar{Q})$
7	-	-	-	-	-	-	-	-	-	-		-	-	$-\mathrm{H}$		- -		-	\bar{Q}	-	-	-	-	-	${ }^{\circ}$	A	$\bullet \cdot$		$Q=/(R+\bar{Q})$
8	-	-	-	-	-	-	-	-	-	-		-	-	+	-	H			Q	-	1	-	-	-	,	-	- \bullet		$\bar{Q}=/(Q+S)$
9	-	-	-	$-$	H	-	-		-	-		-	-	-	-	- -		-	S	-		-	-	-	A	-	- \cdot		$\bar{Q}=/(Q+S)$
10																													
11														,															
12 1																													
13																													
14 \|														,															
15																													
16																													
178																													
18																													
19														1															
20																													
21																													
22																													
23																													
24																													
25																													
26																													
27														1															
28																													
29																													
30																													
31																													
D9																													
D8																							1	1	1	11	1		
D7														+						1					1	11	1		
D6														+						1	11	1			1	1	1		
D5																					1				1		1		
D4														,								1	1	1		1	1		
D3																					11		1	1		1	11		
D2																					1				1	11	1		
D1	-	-	-	-1	-	-	-	-	-			-									11	1	1	1	1	11	1		
DO	-	-	-	-	-	-	-	-	-				-								1		1	1	1	1	1		\cdots
PN	8	7	6	5	4	3	2	1		181		61				21	11	9			18.1	1716							4
						α		α						10				-			1				-	$\underbrace{2}_{8}$	-		5

Latches and Flip-Flops With PLS153

D-LATCH

A simple D-latch can be constructed with an PLS153 as shown in Figure 6.

This circuit may be easily programmed into the PLS153 as shown in Table 3. The program may, in turn, be represented as shown in Figure 7.

This circuit may be expanded to have multiple D-latches using the same latch enable (LE).

Figure 6. D Latch

R-S FLIP-FLOP

Two R-S latches may be combined to form a master-save flip-flop that is triggered at the rising-edge of the clock (or the falling-edge of the clock, if the designer so desires). Figure 8 shows a combination of two sets of crosscoupled NOR gates concatenated to form the flip-flop. The implementation of this circuit using PLS153 is as illustrated in Table 4 and Figure 9.

Figure 9. RS Flip-Flop

Table 3. PLS153/153A Programming Table

CODE NO.																			POLARITY								REMARKS
																		REMARKS					H\|L				
$\begin{array}{\|l\|} \hline \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \hline \end{array}$	AND																										
		1							B(I)										B(O)								
	7	6	5	4	3	2	1	0	9	8	7	65	5	43	3	2	10		9	87	6	5	$4]$	2		10	
0	-	-	-	-		-	-	4	-	-1	$1-$	-	-1	--	-	H	H-	R. \bar{Q}	\bullet	\cdots	-	-	- ${ }^{\text {- }}$	-		A	/(R, $\bar{Q})$
1	-	-	-	-	-	-	H	-	-	-	-	-1	-	-	-	-	- H	S.Q	-	\cdots	-	-	-	-	A	A.	$1(5.0)$
2																											
3																											
4																											
5														,						1							
5	-	$-$	-	-	-	H	-	-	-	-1	-	-1	-	-1-	-	-	- $1-$	R	\bullet	$\cdots{ }^{-}$	\cdot	-	$\cdots \cdot$	A	-	,	/ $/(R+\bar{Q})$
7	-	-	-	-	-	-	-	-	-	-1	-	-	-		H	-	- -	Q	-	${ }^{1} \cdot$	-	-	$\cdots \cdot$	A	-	\cdot	-
$\begin{array}{\|c\|} \hline 8 \\ \hline 9 \\ \hline \end{array}$	-	-	-	I-	-	-	-	-	-		-	-	-	-1-	-	H-	-	Q	-	\cdots	-	-	- A	A		-	$/(Q+5)$
	-	-	-	-1	H	-	-	-	-	-1	-	-	-	-1-	-	-	-	s	\bullet	$\cdot 1 \cdot$	\bullet	\cdot	- A	-	-	-)
10																											
11	-	H	H	-	-	-	-		-	-	-	-	-	$-\mathrm{C}$	-	- -	-	LE. D	-	- ${ }^{\circ}$	-	-	A ${ }^{-}$	\bullet	\bullet	-	(LE \cdot D+
12	-	L	-	-	-	-	-	-	-	-	-	-	-	$\mathrm{H}_{1}-$		- -	- -	$\overline{L E} \cdot Q$	-	$\bullet \cdot$	-	-	A,	-	-	\bullet) $\overline{L E} \cdot Q$)
13																											
14																											
15																											
16 17																											
17																											
18																											
19																											
20																											
21																											
22																											
23																											
24																											
25																											
26																											
27																											
28																											
29																											
30																											
31																											
D9																											
D8																			11	11			1	1	1	1	
D7																				1			1	1	1	1	
D6														$+$					11	11	11		1	1	1	1	
D5																				11							
	-	-	-		I-	-	-	-	-			-	-						11	1	1				1	1	
D3	-	-	-		-	-	-	-	-			-	-			$-$				11		11	1				
D2	-	-	-		1-	$-$	-	-	-	-		-	-	-1-	-	-			11	11	11	11	1	11		1	
D1	-	-	-		$1-$	-	-	-	-			$-$	-						11	11	11	11	1	11	1		
D0	-	-	-	-	1	-	-	-	-				-							1	11	1	1				\cdots
PN	8	7	6	5	4	3	2	1	19	181										1817		15	1412		11	19	19
			Δ					\sim						0110			10								0	8	\%

Table 4. PLS153/153A Programming Table

CODE NO.																			POLARITY								REMARKS
$\begin{array}{\|l\|} \hline \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \hline \end{array}$	AND																	REMARKS	OR								
				1				B()											B(O)								
	7			43	32		10	9			6	5		3	2		0		9	817	76	5		32		10	
0	-	-	5	- -	-L	-	H	-	-		-	-	-	-	-	1	-	$\overline{C K} \cdot R$	-	- \cdot	-	-	$\bullet \cdot$	-	- \bullet	A	\}/(R. $\left.\overline{C K}+B_{1}\right)$
1	-	-	-	-	-	-	-	-	-	-	-	-	-1	-	-	H	-	B_{1}	\bullet	\cdots	-	\bullet	$\bullet \cdot$	-	-	A)
2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	H	Bo	-	-	-	\bullet	${ }^{-} \cdot$		- A	A	द/ $\left(s \cdot \overline{c k}+B_{0}\right)$
3	-	-	-	-	L	H	-	-	-	-	-	-	-	-	-	-	-	$\overline{C K} \cdot \mathrm{~S}$		\bigcirc	-	-	-	-	- A	A)
4																											
5	-	-	-		- H	-	-	-		-	-	-		-	-	-	H	CK. B_{0}	-	\cdots	\bullet	\bullet		A	A \bullet	-	$] /\left(B_{0} \cdot C_{K}+B_{3}\right)$
6	-	-	-	- -	-	-	-	-	-	-	-	-		H	-	-	-	B_{3}	\bullet	-	-	-	-	A	A \cdot	-	$)$
7	-	-	-	-1-	-	-	-	-	-1	-	-	-	+	-	H	-	-	B_{2}	-	-	-	-	- ${ }^{\text {A }}$	A \cdot	$\bullet \cdot$	-	$\beta /\left(B_{1} \cdot C K+B_{2}\right)$
8	-	-	-		- H	-	-	-		-	-	-	-	-	-	H	-	$C K \cdot B_{1}$	-	$\stackrel{+}{ }$	-	-	- A	A	-	-	-
9																											
10																											
11																											
12																											
. 13																											
14																											
15																											
16																											
17																											
18																											
19																											
20																											
21																											
22																											
23																											
24																											
25																											
26																											
27																											
28																											
29																											
30																											
31																											
D9																											
D8																			1					1	1		
D7																			1	1				1	1		
D6																			11	11	11			1	1	1	1
D5																			11	1 1	11						1
D4																			11	11	1						1
D3	-	-	-		-	-	-	-			-	-		-	-		-		11	11	1	11			1		
D2	-	-	-		-	-	-	-			-	-			-	-	-		1	11	1	11	1	1	1	1	
D1	-	-	-		-	-	-	-		-	-	-			-	-	-		1	11	1	11	1	1	1	1	
DO	-	-	-	-1-	- -	-	-	-	-		-	-			-					1							$\boldsymbol{\square}$
PN	8	7	6	54	43	2	1	19		17		15					9			1817	716	15		312			19
					v	n	α							¢	$\left[\left.\begin{array}{c} \\ m_{0} \\ 10 \\ 10 \end{array} \right\rvert\,\right.$		∞										5

Latches and Flip-Flops With PLS153

D FLIP-FLOP
An edge-triggered master-slave D flip-flop may be constructed with two D-latches in the manner shown in Figure 10.

An PLS153 may be programmed as shown in Figure 11 to implement the D flip-flop which is equivalent to the circuit shown in Table 5 in the PLS153 logic representation.

Figure 10. D Flip-Flop

Figure 11. D Flip-Flop

Table 5. PLS153/153A Programming Table

CODENO.																		REMARKS	POLARITY								REMARKS	
																					[H	\| $]^{\prime}$		LIL				
T \mathbf{E} \mathbf{R} M	AND																											
		1						B(l)											B(O)									
	7	6	5	43	312	2	10	9	8	7	6	5	4	31	2	1	0		9	817	6	5	413	32	21	10		
0	-	-	-	-1,	- L	L	- H	-	-	-	-	-	4	-	-	-	-		R. $\overline{C K}$	-	${ }^{+1}$	-	-	- ${ }^{\circ}$	- \cdot	-	A	/(R. $\left.\overline{C K}+B_{1}\right)$
1	-	-	-	-	- -	-	-	-	-	-	-	-	-	-	-	H	-	B1.	-	\cdots	-	.	,	\bullet	$\bullet \cdot$	A		
2	-	-	-		-	-	- -	-	-	H-	-	-	-	-	-	-	H	Bo.							A			
3	-	-	-	-	- 1	4	H-	$1-$	$-$	-	-	-	-	-	-	-	-	S. $\overline{C k}$							A	A		
4																												
5	-	-	-	-	- ${ }^{\text {H }}$	H	- -		-	+	-			-	-	-	H	Ck. B_{0}							A		Y/($\left.B_{0} \cdot C K+Q\right)$	
6	-	-	-	-	-	-	- -	-	-	$1-$	-	-	-	H	-	-	-	Q		,					4		$)=$	
7	-	-	-	-1	-	-	-	-	-	-	-	-	-	-	H	-	-	B_{2}						A			W/($\left.B_{1} \cdot C k+B_{2}\right)$	
8	-	-	-	-1	-	H	-	-		-	-	-	-		-	H	-	$B_{1} \cdot C K$						A			-	
9																												
10																												
11	-	-	-	L H	H-	-	- -	-	-	-	-	-		-	-	-	-	$\overline{C K} \cdot D$					A				($\overline{C K} \cdot D+C K \cdot$	
12	-	-	-	H^{1}	- -	-	-	-	-	-	-	-	H	-	-	-	-	CK. B_{4}					A				B_{4})	
13	-	-	-	-	--	-	-	-	-	-	-	-	-	-	-	-	-											
14	-	-	-	H_{1}	-	-	-	-	-	+	-	-	H	-	-	-	-	CK. B_{4}				A					(CK. $B_{4}+\overline{C K} \overline{C N}_{0}$	
15	-	-	-	L	- -	-	- -	-		-	-	H		-	-	-	-	$\overline{C K} \cdot Q$				A					Q)	
16																												
178				,																								
18																												
19																												
20																												
21																												
22																												
23				1																								
24																												
25																												
26																												
27																												
28																												
29																												
30																												
31																												
D9																												
D88																							$1 \begin{array}{ll}1 \\ 1 & 1\end{array}$	1	1	1		
D7																							1	1				
D6																									1			
D5	-	-	-	-	-	- -	- -				-	-		-	-	-	-			11	1				1	1		
D4	-	-	-	-	-		- -				-	-		-	-	-				1	1	1	11		1			
D3	-	-	-	- +	-	-	- -		-	+	-	-		+	-	-	-		,	11	1	1	11	1	1	1		
D2	-	-	-	- +	-	-	- -	-	-	+	-	-		-	-		-		11	11	1	1	11	1	1	1		
D1	-	-	-	-1	-	-	-			+	-	-		-	-	-	-		11	11	1	1	11	1	1	1		
D0	-			-1-	-			-	-	-	-	-								1	1	1	11	1	1		\cdots	
PN	8	7	6	54	43		21	19	918	17	16									18.17				1312	211		10	
				\triangle	Δ		$n \mathrm{~s}$					3	$\mid \infty$	((20	-	\cdots					-	\|			9	\%	

APPENDIX A

NOTES:

1. All programmed "AND" gate locations are pulted to logic " 1 "
2. All programmed "OR" gate locations are pulled to logic " 0 ".
3. Programmable connection.

Figure A-1. FPLA Logic Diagram

Appendix B. PLS153/153A Programming Table

CODE NO.																		REMARKS				OLA	ARI	ITY			REMARKS	
\square	AND																											
				1				B()																				
	7		5	143	32		10	9		7	6	5	4	3	2		0											
0	H	H	H	$\mathrm{H}_{1}-$	--		-	-	+	-	-	-	-1		-	-	-	A.B.C.D	A	\bullet	-	A	-	${ }^{\circ}$	-	\bullet		$X=A \cdot B \cdot C \cdot D$
1																												$T=/(A \cdot B \cdot C \cdot D)$
2																												
3																												
4	L	L	L	L;	- -	-	-	-		-	-	-	-	-	-	-	-	$\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$	-	$A^{+} \cdot$	-	-	A	$1 \cdot$	\bullet	- -		$=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$
5																												$\overline{=} /(\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}$
6																												
7																												
8										+																		
9	-	H	L	-	- -		-	-		-	-	-		-	-	-		B.C	-	- A	-	-		A	-	-		$z=\left(B \cdot \bar{C}+B \cdot \overline{D_{1}}\right.$
10	-	H	-	$\mathrm{L}_{1}{ }^{-}$	--	-	-	-	-	-	-	-	-	-	-	-	-	B. \bar{D}	-	- A	A	-	-	A	-	- \cdot		$\overline{\mathrm{C}} \cdot \overline{\text { D }}$)
11	-	-	L	L_{4}^{+}	-	-	-	-	-	+	-	-	-	-	-	-	-	$\bar{C} \cdot \bar{D}$	-	- ${ }^{\text {A }}$	-	-		A	-	-		$r=/(B \cdot \bar{C}+B \cdot \bar{D}$
12																												+ $\bar{C} \cdot \bar{D})$
13																												
14																												
15																												
16																												
17																												
18																												
19																												
20																												
21																												
22																												
23																												
24																												
25																												
26																												
27																												
28																												
29																												
30																												
31																												
D9	-	-	-	- -	- -	-	-	-		-	-	-			-	-	-											
D8	-	-	-	- -	- -	-	-	-			-	-		+	-	-				11		1	1	11		1		
D7	-	-	-	-1-	-	-	-	-			-	-		-	-	-			1	11			1	11	1	1		
D6																				11					1	1	1	
D5		-	-			-	-	-			-	-		-	-					11			1	11				
D4	-	-	-		--	-	-	-			-	-			-	-				11	11	11	11	11	1			
D2																				11	11	11	11	11				
D1																				11	1	1	1	1				
D0																				11	1		1	11				$\boldsymbol{¢}$
PN	8	7	6	5	43	2	21	19		817	116	15	14	13	12	11	9			1817	716	15	14	13	12			10
				\bigcirc					$x>$		v		3	$>$					$\|x\|$				\mid					\%

APPENDIX C

Signetics

Application Specific Products

INTRODUCTION

The PLS159 is a field programmable logic sequencer which consists of four dedicated inputs, four bidirectional I/O's, eight flip-flops, thirty two 16 -input AND gates, twenty 32 -inpuit OR gates, and a complement array. Each flipflop has a bidirectional 1/O and may be individually programmed as J-K or D flip-flop, or switch between the two types dynamically. The flip-flops will accept data from the internal logic array or from the bidirectional I/O, or they may be set or reset asynchronously from the AND array. The output polarity of the four bidirectional I/O's are programmable and the direction is controlled by the AND array. Figure 1 is the logic diagram of PLS159.

PROGRAMMING THE PLS159

The programming table is shown in Table 1 where there is a place for everything that is

Application Note

shown in Figure 1. The program table is basically divided into two main sections. The left hand side of the table, section A, represents the input side of the AND gates, while the right hand side, section B, represents the OR gates sections which includes the flipflops and the combinatorial outputs $B(0)$ to $B(3)$. The flip-flops modes are defined in section C and the output polarities of the combinatorial outputs are defined in section E. The programming symbols are detailed in Figure 2.
As shown in Table 1, the programming table is very similar to a truth table. Each column in section A represents an input to the 32 AND gates, and each row represents an AND gate connecting to 17 inputs. Columns I_{0} to I_{3} represent the 4 dedicated inputs, I_{0} to I_{3}. Columns $\mathrm{B}(\mathrm{I})_{0}$ to $\mathrm{B}(\mathrm{I})_{3}$ represent the inputs of the 4 bidirectional $I / O, B_{0}$ to B_{3}. Columns
$Q(P)_{0}$ to $Q(P)_{7}$ represent the feedback, F_{0} to F_{7}, from the flip-flops (the present state). Column " C " represents the complement array.

As shown in Figure 1, the outputs of the AND gates are connected to an array of OR gates which, in turn, are connected to either flipflops or output circuits. Columns $Q(N)_{0}$ to $Q(N)_{7}$ represent the next state which the flipflops will be in. Columns $\mathrm{B}(\mathrm{O})_{0}$ to $\mathrm{B}(\mathrm{O})_{3}$ represent the combinatorial outputs B_{0} to B_{3}.

Each row represents an AND gate with 17 inputs each of which may be true and/or complement and is, therefore, a perfect decoder. Referring to the programming symbols in Figure 2, to implement the equation

$$
Z=A * B * C * D
$$

all one has to do is to enter one line as shown in Table 2, term-0.

Figure 1. FPLS Logic Diagram
PLS159 Primer

Table 1. FPLS Program Table

The FPLS can be programmed by means of Logic Programming equipment.

With Logic programming, the AND/OR-EXOR input connections necessary to imple-
ment the desired logic function are coded directly from the State Diagram using the Program Tables on the following pages.

In these Tables, the logic state or action of all I/O, control, and state variables is assigned a symbol which results in the proper fusing pattern of corresponding links defined as follows:

"AND" ARRAY - (I), (B), (Qp)

'COMPLEMENT' ARRAY - (C)

"COMPLEMENT" ARRAY (cont.)
"OR" ARRAY - (MODE)

'OR" ARRAY - ($\mathbf{Q}_{\mathrm{N}}=\mathbf{D}$-Type $)$
Figure 2

''OR' ARRAY - ($Q_{n}=\mathbf{J - K}$ Type $)$

'OR' ARRAY - (S or B), (P), (R)

'' $\overline{O E}$ ' ARRAY - (E)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates.
2. Any gate ($\left.T, F_{C}, L, P, R, D\right)_{n}$ will be unconditionally inhibited if any one of the I, B, or Q link pairs is left intact.
3. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}, F_{C}.
4. $E_{n}=O$ and $E_{n}=$ - are logically equivalent states, since both cause F_{n} outputs to be unconditionally enabled.
5. These states are not allowed for control gates ($L, P, R, D)_{n}$ due to their lack of "OR" array links.

Figure 2 (continued)

Table 2. FPLS Program Table

CODE NO.											FF MODE								REMARKS	E_{B}				$E_{\text {A }}$			POLARITY				REMARKS
																											H	H	H	H	
		AND																		O(N) ${ }^{\text {(OR) }}$											
		1					B(1)				Q(P)																B(0)				
		3	2	1	10	0	32		1	0	7	76	6	4	3	211		0		7	6	5	4	3	2	0	3	2	1	0	
0 -	-	H	H	H	1 H	H	-	-	-	-	-	-	-	-	-	-	-	-	$A * B * C \times D$	-	-	-	-	-	- -	- -	-	-	-	A	$2 * A * B * C * D$
1																															
2 -	-	L	H	L	L	-	-	-	-	-	-	-	-	-	-	-	-	-	IA* B*/C	-	-	-	-	-	- -	- -	-	-	A	-	$Y=\mid A * B * / C$
3																															
4 -	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	"1"	-	-	-	-	-	- -	- -	-	A	\bullet	-	$x=1$
5																															
6	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	"0"	0	0	0	0	0	0	00	$\bigcirc 14$	A	A	A	VIREIN CONOITIN
7 -	-	-	-	0	O-	-	-	-	-	-	-	-	-	-	-	-	-	-	- $0^{\prime \prime}$		-	$-$	-	-	-	- -	-A	-	-	-	$W=0$
8																															
9 9-	-	H	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A*/B	-	-	-	-	-	-	- -	- A	\bullet	-	-	$W=A * / B$
10 - 11	-	-	-	H	12	L	-	-	-	-	-	-	-	-	-	-	-	-	$C * / D$	-	-	-	-	-	-	-	- A	-	-	-	$W=C * / D$
11																															
12																															
13																															
14																															
15																															
16																															
17																															
18																															
19																															
20																															
21																															
22																															
23																															
24																															
25																															
26																															
27																															
28																															
29																															
30																															
31																															
FC																															
PB																							1	1			1	1			
RB																							1				1	1			
LB																					1	I	I	11			1	1			
PA																						1					1	,			
RA																						11	11	11	1			1	1	1	
LA																					1	1	1	1				1	1	1	
D3																						11	11	11				1	1	1	
D2																					11	11	11	11				1	1		
D1																					$T 1$							T			
D0																															
PIN		5	4	3	3	2	9	8	7	6	19	18	171	16	151	14	13	12		19	18	17	16	15	14.1	131	129	8	7	6	19
		A	B	C	D	D																					w	x	Y	Z	

Notice that only I_{0} to I_{3} on the left hand side and $\mathrm{B}(\mathrm{O})_{4}$ on the right hand side have entries to implement the equation. All unused columns are dashed out or dotted out.

To implement the equation

$$
Y=/ A * B * / C,
$$

enter one line as shown in Table 2, term-2 where the entry " H " represents the noninverting input buffer while the entry "L'" represents the inverting buffer. To have the AND gate to be unconditionally 'High', dash out all the inputs of that particular AND gate as shown in Table 2, term-4. The virgin condition of the device, as shipped from the factory, has all connections intact, which means that the inverting and the non-inverting buffers of the same inputs are connected together. Such connection will cause the AND gate to be unconditionally 'Low' as shown in Table 2, terms 6 and 7. The unconditional High and Low states are normally useful only internally and seldom brought out to the output pins.
To implement the equation

$$
W=A * / B+C * / D
$$

enter one line for A */B and another line for C */D as shown in Table 2, terms 9 and 10. Use one line to AND something together; use different lines to OR something together one line per item to be OR'ed.

All the pins which are labelled B's are bidirectional I/O pins. Their input buffers are represented by the $B(I)$ columns on the left hand side of the programming table. An ' H ' entry represents the non-inverting buffer and an 'L" entry represents the inverting buffer. Their output buffers are represented by the $B(O)$ columns on the right hand side of the table. An " A " entry means that the output is active (connected to the AND gates); a '."'
entry means that the output is inactive (not connected). The outputs may be programmed to be inverting or noninverting. The polarity of each output is determined by its exclusive OR gate (Figure 1 and Figure 2). To have a noninverting output, enter an " H ' in the section labelled ''POLARITY'" (Table 1, Section E). To have an inverting output, enter an ' L ''. For example, Table 3, terms-0 and-2 implement the equation

$$
Z=/(A * B) \text { and } Y=A * B
$$

respectively. The above two equations may also be implement by term- 4 which uses the same AND gate to drive two OR gates.

Besides being able to have programmable Active-High or Active-Low output, the programmable output polarity feature also low output, the programmable output polarity feature also allows the user to minimize his AND term utilization by converting his logic equation into other forms such as conversion by De Morgan Theorem.

For example, the equation

$$
X=A+B+C+D
$$

takes four AND terms to implement as shown in Table 3, terms 6 to 9 . By using De Morgan Theorem, the same equation is changed to

$$
/ W=/ A * / B * / C * / D
$$

The result is as shown in term 11-a saving of three AND terms. The output buffers are disabled in their virgin states so that they all behave as inputs. The buffers are enabled or disabled by their corresponding Control AND terms D_{0} to D_{3} (see Figure 1). The Control AND terms are represented in the programming table on the last four rows on the left hand side. Dashing out all the inputs will
cause the output buffer to be unconditionally enabled, whereas a ' 0 ' (zero) will cause the buffer to be unconditionally disabled. The buffers may also be controlled by a logical condition, e.g. $A^{*} / B * / C$, etc.
There are eight flip-flops on the chip each of which may be programmed as a J/K or a D flip-flop, or they may be programmed to switch dynamically. As shown in Figure 1, each flip-flop is a J / K to begin with. A tri-state inverter is connected in between the J and K inputs of each flip-flop, which when enabled by the AND gate F_{C}, will cause the flip-flop to function as a D flip-flop. The inverters are enabled by F_{C} through fuses M_{0} to M_{7}. $A^{\prime \prime}$.'" in the F/F Mode entry of the programming table means that particular fuse is to be disconnected and that particular flip-flop is to be J / K. An " A " entry will leave the M fuses intact, which allow the flip-flop to be D or J/K as controlled by the output of F_{C} (see Figure 2, "OR" ARRAY - (MODE)). The inputs to the flip-flops are represented by the programming table as the next state, $\mathrm{Q}(\mathrm{N})_{0}$ to 7 since their inputs are from the OR array. The outputs of these registers are connected to their respective tri-state inverting output buffers, four of which are controlled by EA and the other four by EB. A ' '.' in EA will enable outputs F_{0} to F_{3}, whereas a " - " will disable them. An " A " will allow the output buffers to be controlled by /OE, pin 11 . Table 4, terms 0,1 and 3 represent the following equations

$$
\begin{array}{ll}
Q_{0}: J=A * C+/ B * / E & \text { eq. } 1 \\
Q_{0}: K=A * / C & \text { eq. } 2
\end{array}
$$

Notice that the J input in equation 1 is represented by the " H " entry in terms-0 and 1, column $Q(N)_{0}$ while the K input in equation 2 is represented by the ' L " entry in term-3, column $Q(N)_{0}$. An undefined input, J or K, is considered 'Low'"

Table 3. FPLS Program Table

CODE NO.											FF MODE								REMARKS	E_{B}				$E_{\text {A }}$			POLARITY				REMARKS			
																											L	H	H	1				
$\begin{array}{l\|} \hline \mathbf{T} \\ \mathbf{E} \\ \mathbf{R} \\ \mathbf{M} \\ \hline \end{array}$	AND																			(OR)														
	C	1					B(1)				Q(P)									Q(N)							B(O)							
		3	2	1	10	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	2	10	03	2	1	0				
0 -	-	-	-	H	H H	H	-	-	-	-	-	-	-	-	-	-	-	-	A*B	-	-	-	-	-	-	- -	-	-	-	A	$z=/(A * B)$			
1																																		
2 -	-	-	-	H	H	H	-	-	-	-	-	-	-	-	-	-	-	-	A* B	-	-	-	-	-	-	-	-	-	A	-	$Y=A * B$			
3																																		
4 -	-	-	-	H	H H	H	-	-	-	-	-	-	-	-	-	-	-	-	A*B	-	-	-	-	-	-	- -	-	-	A	A	$z=/ C A * B)$			
5																															$Y=A * B$			
6 -	-	H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	A	-	-	-	-	-	-	- -	-	A	-	-				
7 -	-	-	H	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	B	-	-	-	-	-	-	- -	- \cdot	A	\bullet	-				
8 -	-	-	-	H	H-	-	-	-	-	-	-	-	-	-	-	-	-	-	C	-	-	-	-	-	-	-	-	A	-	-	$3 x=A+B+C+D$			
9 -	-	-	-		- H	H	-	-	-	-	-	-	-	-	-	-	-	-	D	-	-	-	-	-	-	-	- \cdot	A	-	-				
10																																		
11 - 12	-	L	L	L	- L	L	-	-	-	-	-	-	-	-	-	-	-	-	$1 / * * / B * K * / D$	-	-	-	-	-	-	- -	- A	-	-	-	$W=/(1 A * / B * / C$			
12																															*/D)			
13 14																																		
14 15																																		
15 16																																		
16 17																																		
17 18																																		
18																																		
19																																		
20																																		
21																																		
22																																		
23																																		
24																																		
25																																		
26 27																																		
27																																		
28																																		
29																																		
30																																		
31																																		
FC																																		
RB																																		
LB																						1	11				1	11						
PA																				I	1													
LA																																		
$\left.\begin{array}{\|l\|l\|l\|l\|l\|lll\|l\|l\|l\|l\|l\|lllllllll}\hline \text { D2 } & & & & & & & & & & & & & & & & & & 1 & 1 & 1 & 1\end{array}\right)$																																		
PIN		5	4	3	32	2	9	8	7	6	19	18	171	161	151	14	13	12		19	18	17	16	15	14.	1312	129	8	7	6	19			
			B																								W	$\|x\|$		z				

Table 4. FPLS Program Table

PLS159 Primer

A D flip-flop may be implemented by first entering an ' A '" in F/F MODE. Then enter ' 0 ' ' in the row F_{C}, which will unconditionally enable the tri-state inverter between the J and K inputs. The following logic equation may be implemented as shown in Table 4, term 5

$$
Q_{1}: D=/ A * / B * / C+E
$$

Notice that the entries in term 5, columns $Q(N)_{0}$ to 7 are " A " and '.'" instead of ' H "' and ' L '" as in the case of J/K flip-flops. The entry " A "' will cause the fuse connecting to the " K " input to be disconnected and the " J '" fuse to be intact. Whereas the entry ".." will cause both fuses to be disconnected. This feature enables the user to quickly recognize the mode in which the flip-flops are operating without having to go through the control terms. Some commercially available device programmers in the market may not have the software capability to implement this feature, in which case an ' H ' and a "-'" may be used in place of ' A ' and ' '.' respectively as shown in Table 4, terms 8 and 9.

Of course, the term F_{C} may have inputs instead of zeros and dashes, in which case the flip-flop modes are controlled dynamically.

When both the J and K inputs are ' 1 's', the flip-flop will toggle. A simple 3-bit counter may be implemented using only AND terms as shown in Table 4 terms 11, 12 and 13. The logic equations for the three flip-flops are as the following:

$$
\begin{array}{ll}
Q_{5}: T=1 ; & \left(Q_{5}\right. \text { toggles unconditionally } \\
Q_{6}: T=Q_{5} ; & \left(Q_{6} \text { toggles when } Q_{5}=1\right) \\
Q_{7}: T=Q_{5}{ }^{*} Q_{6} ; & \left(Q_{7} \text { toggles when } Q_{5} *\right. \\
& \left.Q_{6}=1\right)
\end{array}
$$

The above equations represent an octal upcounter. However, since the outputs of the flip-flops are inverted, the counting sequence of the outputs is that of a down-counter.
The flip-flops may be asynchronously set and reset by the Control AND terms PA/PB and

RA/RB respectively. As shown in Figure 1, PA and RA controls flip-flops F_{0} to F_{3}, while $P B$ and $R B$ control F_{4} to F_{7}.

In order to save the number of input pins, the eight flip-flops may be synchronously loaded directly from their own output pins. To use this feature, EA and/or EB must be programmed " A " or " - " so that the output buffers may be disabled before loading. As shown in Figure 1, every flip-flop has an OR/ NOR gate the input of which is directly connected to the output pin and the outputs of the OR/NOR are connected to the K and J inputs respectively. This OR/NOR gate inverts the input and feeds it to the flip-flop in a ''wire-OR' fashion. Therefore, when loading data directly into the flip-flops from the output pins, caution must be exercised to insure that the inputs from the OR array does not interfere with the data being loaded. For example, if the data being loaded is a ' 1 ' ' on the output
pin, the J input will be a " 0 ' and the K input will be a " 1 ". If, at the same time, a " 1 " is present at the J-input from the OR array, the flip-flop will see ' 1 ' s ' ' in both J and K inputs. It will toggle as a result. The OR/NOR gates are enabled by the Control AND terms LA and LB. LA controls flip-flops F_{0} to F_{3} and LB controls F_{4} to F_{7}.

All Control AND terms function and are programmed in the same manner as the other AND terms. The only difference is that the Control AND terms are not connected to the OR array.
The outputs of the flip-flops may be fed back into the AND array as the present state, $\mathrm{Q}(\mathrm{P})$. The output of the AND array into the OR array and the inputs to the flip-flops is the next state, $Q(N)$. As an example, Figure 3 is a state machine implemented in a PLS159 as shown in Table 5, terms 0 to 6.

Table 5. FPLS Program Table

CODE NO.							FF MODE							REMARKS	E_{B}				E_{A}			POLARITY				
								-1 1	$1 \cdot$	$1 \cdot 1$	$\cdot 1 \cdot$	$1 \cdot 1 \cdot$,							H] H			
$\begin{array}{\|l\|} \hline T \\ \\ \hline \\ \text { A } \\ \hline \end{array}$	AND														(OR)											
		1			B(I)			Q(P)								Q(N)						B(0)				
	3	21	10	03	32	10	07	76	514	43	32	10	0		7	65	54	43	3	1	0	32	21	10		
0	H	H	--	-	-	-	L	Lᄂ	- L	L L	Lᄂ	L	L		L	L	L L	L	-	L	H	-	-	- A		
1 -	-	-	HL	-	- -	-	- L	ᄂ ᄂ	Lᄂ	L L	Lᄂ	$\stackrel{\mathrm{L}}{4}$	H		L	L	L-	1	L	L	4	- ${ }^{\text {A }}$	A	-		
-	-	- -	--	- -	-	-	L	L L	L H	H	LL	L H	H		L	LH	HL	H	H	H	L	A	\cdot.	.		
3																										
4 -	H	L	--	- -	-	-	- 2	L L	-L	L L	L L	L	L		L	L	LL	L	L	H	L	-	- A			
5 -	-	-	H-	- -	-	-	-	L	1	1	1	H_{2}	L		1	L	1		L	L	H					
																	-					- 4	,			
6	-	- H	HL	L	- -	-	L	LL	LL	L L	LL	H	L		L	4	LL	L	L L	L	H	- A	A A			
7																										
8																										
9																										
10																										
11																										
12																										
13																										
14																										
15																										
16																										
17																										
18																										
19																										
20																										
21																										
22																										
23																										
24																										
25																										
26																										
27																										
28																										
29																										
30																										
31																										
FC																										
PB																									1	
RB																,	1	1			1		1	,	,	
LB															11			1	1					1		
PA															11	1	1	1	,		11		,	1	,	
RA															11	1	1	1	1	1	11		1	1	1	
LA															11	1	1	1	1	11	11			1	,	
D3 --	-	-	-	- -	- -	-	-	--	--	-	--	--				1		1	1	11					,	
D2	-	--	-	-	-	-	- -	--	--	- -	- -	-						1								
D1-	-	- -	-	- -	--	- -	-	- -	-	-	--				1	1	1	1	1							
DO -1 	-	-	--	-	-	- -	- -	--	--	-	--	-														-)
PIN	5	4	32	29	98	7		1918	81711		1514	4131	12		191	181	1716	615	514	13	12	9	8	7		18
先	A	B C	$C D$																							5

Signetics

Application Specific Products

INTRODUCTION

One of the many features of the PLS153 to 159 series is the availability of individually controlled Tri-state 1/O pins. Taking advantage of this feature, a Schmitt trigger may be constructed using one input pin, two bidirectional I/O pins and additional components of three resistors. The two threshold voltages, as well as the hysterisis, are determined by the values of the three resistors and the parameters of the PLS153/159 device, which are 1) input threshold voltage, V_{TH}, 2) High output voltage, V_{OH}, and 3) Low output voltage, $V_{O L}$. The circuit may be simplified if Schmitt function is needed only on Low going High or High going Low, and if the hysterisis and threshold voltages are not important.

DESCRIPTION

A simplified block diagram of a non-inverting Schmitt trigger is shown in Figure 1 where R_{1}, R_{2}, and R_{1}, R_{3}, form two pairs of voltage dividers one of which get into action at input voltage direction of High going Low and the other Low going High. Assuming that input voltage starts at zero volt, the output voltage is therefore at $V_{O L}$ which causes Q_{2} to pull R_{3} towards ground. As the input voltage increases, only a fraction of the voltage is

AN18 Schmitt Trigger Using PLS153 and PLS159

Application Note

impressed upon the input buffer due to the dividing network R_{1} and R_{3}. As soon as the input voltage reaches a point where $V_{1}=V_{T H}$ ($\mathrm{V}_{\mathrm{TH}}=1.38 \mathrm{~V}$ typical), the output switches to V_{OH} which, in turn, turns off Q_{2} and turns on $Q_{1} . V_{1}$ will jump to a value greater than $V_{T H}$ and Q_{1} then pulls the input pin, through R_{2}, towards V_{OH}, which in turn locks the output to a High state even if the input voltage fluctuates, as long as it does not fluctuate outside of the designed hysterisis. When the input voltage goes from a High to a Low, the Schmitt function repeats itself except that Q_{1} and Q_{2} reverse their roles.

The triggering voltages, V_{H} (Low going High) and V_{L} (High going Low) are:
$V_{H}=V_{T H}\left[\left(R_{1}+R_{3}\right) / R_{3}\right]-V_{O L}\left(R_{1} / R_{3}\right) ;$
$V_{L}=V_{T H}\left[\left(R_{1}+R_{2}\right) / R_{2}\right]-V_{O H}\left(R_{1} / R_{2}\right)$;
where, at room temperature, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}<1 \mathrm{~mA}$. V_{TH} is the threshold voltage of the device, typically $1.38 \mathrm{~V} ; \mathrm{V}_{\mathrm{OL}}$ is the output Low voltage of the device, typically 0.36 V at $|\mathrm{loL}|<1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{OH}}$ is the output High voltage of the device, typically 3.8 V at $\left|I_{\mathrm{OH}}\right|<1 \mathrm{~mA}$.
The implementation of Figure 1 using PLS153/153A is as shown in Table 1, and Figure 2a. A scope photo of the operation of the circuit is shown in the Appendix. The
implementation using PLS159 is shown in Table 2 and Figure 2b. In Tables $1 \& 2, \mathrm{~V}_{1}$ is the input pin, V_{0} is the output pin, V_{2} is the output which pulls down V_{1} and V_{3} is the output pin that pulls up V_{1}. The Schmitt output is available at pin B_{0} for external use, and is available internally at the input buffers of I_{0} and $\mathrm{B}\left(\mathrm{I}_{0}\right.$. However, there is a propagation delay between the two signals from the I_{0} buffer and the $B(I)_{0}$ buffer.
An inverting Schmitt triggered buffer may be constructed using the same principle. A simple block diagram of such inverter is shown in Figure 3a. The circuit is implemented using H/L programming table as shown in Table 3 for PLS153 and Table 4 for PLS159. Table 3 is also represented in logic symbols in Figure 3b. If the voltage levels $\left(V_{L}\right.$ and $\left.V_{H}\right)$ and the hysterisis are not critical, one I/O pin may be used to pull the input pin High and Low. Therefore one I/O pin and a resistor may be saved. The drawback is that the range of V_{H} and V_{L} is quite limited. The circuit is as shown in Figure 4.

If Schmitt function is needed only in one direction, one of the resistor/output circuit may be eliminated. The circuit is as shown in Figure 5.

Figure 1. Simplified Block Diagram of a Schmitt Trigger

Table I. PLS153/153A Programming Table

NOTE:
Schmitt trigger output may be obtained from both 1_{0} and $\mathrm{B}(1)_{0}$ to drive the AND-ARRAY.

b. Using PLS159

Figure 2. Schmitt Trigger

Table 2. PLS159 FPLS Programming Table

CODE NO.									FF MODE								REMARKS	E_{B}				E_{A}				POLARITY				REMARKS
																											H\|H	H	H	
	AND																	(OR)												
	1				B(1)				Q(P)									C(N)								B(O)				
	3	2	1	0	3	2	1	0	7	6	5	4	3	2	1	0		7	6	5	4	3	2	10	0	32	21	1	0	
0 -	-	-	-	H	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	- -	-	$\bullet \cdot$	\bullet	\bullet	A	NON-INV. BUFR
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		-	-	-	-	-	-	-	-	$\bullet \cdot$	\bullet -	A	\bullet	CuTput $\mathrm{VOL}^{\text {a }}$
2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	- A	A	\bullet	-	OUTPUT VEH
3																														
4																														
5																														
6																														
7																														
8																														
9																														
10																														
11																														
12																														
13																														
14																														
15																														
16																														
17																														
18																														
19																														
20																														
21																														
22																														
23																														
24																														
25																														
26.																														
27.																														
28																														
29																														
30																														
31																														
FC																														
PB																					1	\|				1	1			
RB																		11		1	11				1	1		1		
LB																				1	1					1				
PA																		11	11	1	1				1	1	1	1		
RA																				1	$1 T$	1	1			1		-		
LA																				11								1		
D3																												,	1	
D2	-	-	-	-	-	-	-	H	-	-	-	-	-	-	-				11	1								1	1	
D1 -	-	-	-	-	-	-	-	L	-	-	-	-	-	-	-				11	1		1								
DO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-														\cdots
PIN	5	4	3	2	9	8	7	6	19	18	171	16	15	14	13	12		19	18	17	16	15	14.1	131	12	9	8	7	6	19
里				$>$		8	>	$>^{\circ}$																						8

8001710S
a. Simplified Block Diagram

LOO1550S
b. Using PLS159

Figure 3. Inverting Schmitt Trigger

Table 3. PLS153/153A Programming Table

Table 4. PLS159 FPLS Program Table

CODE NO.									FF MODE								REMARKS	E_{B}				$E_{\text {A }}$				POLARITY				REMARKS	
																											H	H	L		
	AND																	(OR)													
	1				B(1)				 7 6 5 4 3									$\mathbf{Q}(\mathrm{N})$								B(O)					
	3	2	1	0	$3{ }^{3} 211$			0										76	5	4	3	21	10		3	2 110					
0	-	-	-	H	-	-	-	-	-	-	-	-	-	-	-	-				-	-	-	-	-	-	-	\bullet	\bullet	\bullet	A	INV. EUFFER
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			-	-	-		-	-	-	\bullet	\bullet	A	\bullet	OUTAT VOL	
2 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	A		\bullet	OUTPUT V $\mathrm{V}_{\text {OH }}$	
4																															
5																															
(6																															
7																															
8																															
9																															
10 11																															
11 12																															
12																															
13																															
14																															
15 16																															
16 17																															
17.																															
18 19																															
19 20																															
20 21																															
21 22																															
22																															
23																															
24																															
25																															
26																															
27																															
28																															
29																															
30																															
31 FC																															
FCC																															
RB																															
LB																															
RA																															
D0 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-														-	
(1)																															
				7			$>^{\prime}$	$>^{\circ}$																							

Figure 4. Schmitt Trigger Using One I/O Pin

TCO1900S
a. High Going Low Direction

TCO1910S
b. Low Going High Direction

Figure 5. Schmitt Trigger

APPENDIX A

Output
nput
$05 \mathrm{~ms} / \mathrm{div}$
NOTE:
$R_{1}=3.9 \mathrm{k} \Omega, \mathrm{R}_{2}=10.8 \mathrm{k} \Omega, \mathrm{R}_{3}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Ambient temperature $\approx 25^{\circ} \mathrm{C}$
Figure A-1. A Non-Inverting Schmitt Triggered Buffer

AN21
9-Bit Parity Generator/Checker With 82S153/153A

Application Note

Signetics

Application Specific Products

INTRODUCTION

This application note presents the design of a
parity generator using Signetics PLD, 82S153 or 82S153A, which enables the designers to or 82S153A, which enables the designers to
customize their circuits in the form of "sum-of-products". The PLA architecture and the 10 bi-directional 1/O's make it possible to 10 bi-directional $1 / \mathrm{O}$ s make it possible to
implement the 9 -bit parity generator/checker in one chip without any external wiring between pins. A logic diagram of the device is shown in Appendix A.

The parity of an 8 -bit word is generated by counting the number of " 1 ' s " in the word. If the number is odd, the word has odd parity. If the number is even, the word has even parity. Thus, a parity generator designed for even parity, for example, will generate a ' 0 ' if the parity is even, or a " 1 " if parity is odd. Conversely, an odd parity generator will generate a " 0 " if the parity of the word is odd, or a " 1 " if the parity is even. This bit is then concatinated to the word making it 9 -bits - Cascaded to expand word length

DESCRIPTION

The most straight forward way of implementing the parity generator/checker is to take the 9 -input truth table (8 inputs for the 8 -bit word, and 1 input for cascading the previous stage) and put it in a 256×4 PROM. Since there are 2^{9} combinations and half of them is odd,
the other half is even, the circuit will take 256 terms. An alternative is to divide the 9-bits into 3 groups of 3-bits as shown in Figure 1. If the sum of the 3-bits is odd, then the intermediate output SU1, or SU2, or SU3 equals 1. Otherwise it equals 0 . The intermediate results are grouped together and $\mathrm{SUM}_{\mathrm{O}}$ becomes " 1 "' if the sum is odd, otherwise $S^{S} M_{O}$ equals ' 0 '. The circuit is implemented using AMAZE as shown in Figure 3. SU1 is an intermediate output for inputs I_{0}, I_{1} and I_{2}. In the same manner, SU2 and SU3 are intermediate outputs for I_{3}, I_{4}, I_{5} and I_{6}, I_{7}, I_{8}. The design uses up 16 product terms and 5 control terms leaving 16 product terms and 4 bi-directional I/O's to implement other logic designs.

The design is tested by using the logic simulator provided by AMAZE. The input test vector is chosen to exhaustively test for all 8 input combinations at all 4 sections of the circuit.

9-Bit Parity Generator/Checker With 82S153/153A

I_{0}	I_{1}	I_{2}	SU1
0	0	0	0
0	0	1	1
0	1	1	0
0	1	0	1
1	0	1	0
1	0	0	1
1	1	0	0
1	1	1	1

$\mathbf{I}_{\mathbf{3}}$	$\mathbf{I}_{\mathbf{4}}$	$\mathbf{I}_{\mathbf{5}}$	SU2
0	0	0	0
0	1	1	0
0	0	1	1
0	1	0	1
1	0	1	0
1	1	0	0
1	0	0	1
1	1	1	1

I_{6}	I_{7}	I_{8}	SU3
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	0
0	0	1	1
0	1	0	1
1	0	0	1
1	1	1	1

SU1	SU2	SU3	SUM $_{\mathbf{O}}$	SUM $_{\mathbf{E}}$
0	0	0	0	1
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0

Figure 1. Block Diagram of 9-Bit Parity Generator/Checker


```
**********)
aDEVICE TYPE
825153
@DRAWING
****************************** PARITY GENERATOR/CHECKER
@REVISION
******************************* REV. -
@DATE
****************************** 
@SYMBOL
******************************* FILE ID: FARGEN
aCOMPANY
****************************** SIGNETICS
GNAME
ADESCFIFTION
**************************************************************************
* This circuit is a 9-bit parity generator/checker commonly used
* for error detection in high speed data transmission/retrieval.
* The odd parity output (SUMO) is high when the sum of the data
* bits is odd. Otherwise it is low.
* The even parity output (SUME) is high when the sum of the data
* bits is even. It is low otherwise.
```



```
@COMMON FRRODUCT TERM
GI/O DIRECTION
"
***********************************************************************
* SUl, SU2 and SUS are outputs which are defined in the FIN LIST *
* and therefore they don't need to be defined here again.
"`OUTFUT FOLAFITY
"
**************************************************************************
* The output polarities of different outputs are defined in the
* FIN LIST. They don't have to be defined again here.
**********************************************************************
@LOGIC EQUATION
"
```



```
* SUl, SU2, and SUS are intermediate terms
*******************************************************************************
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TFUTH TABLE} \\
\hline \multicolumn{3}{|c|}{INFUTS} & \multicolumn{3}{|c|}{OUTFUTS} \\
\hline SU3 & SU2 & SU1 & SUMO & SUME & /Sumo \\
\hline 18 & 17 & 16 & SU3 & & \\
\hline 15 & 14 & 13 & SU2 & & \\
\hline I2 & I 1 & 10 & SU1 & & \\
\hline 0 & 0 & 0 & 0 & 1 & \\
\hline 0 & 0 & 1 & 1 & 0 & \\
\hline 0 & 1 & \(\bigcirc\) & 1 & \(\bigcirc\) & \\
\hline 0 & 1 & 1 & 0 & 1 & \\
\hline 1 & 0 & 0 & 1 & 0 & \\
\hline 1 & 0 & 1 & 0 & 1 & \\
\hline 1 & 1 & 0 & 0 & 1 & \\
\hline 1 & 1 & 1 & 1 & 0 & \\
\hline
\end{tabular}
SU1 = /I2 */I1 * IO +/I2 * I1 * /IO +
12*/111*/10* 12* 11 * 10,
SU2 = 115 */14 * IS + 1I5 * I4 * /13 +
    IS*/I4*/I3 + IS* 14*IS;
SUS = /18 */I7 * IG + /I8 * I7 */16 +
    18*/17*/16 + 18* 17 * 16 ;
SUMO =/SU1 */SU2 * SUS + /SU1 * SU2 * /SUS +
    SU1 * /SU2 * /SUS + SU1 * SU2 * SU3 ;
SUME =/ (/SU1 * /SU2 * SU3 +/SU1 * SU2 * /SUZ +
    SU1 * /SU2 * /SU3 + SU1 * SU2 * SUS) ;
```

TBooseos
Figure 3. AMAZE Implementation of the Parity Generator/Checker Circuit

Table 1. Programming Table


```
"
```


* This is a test pattern for the 9 -bit parity gerierator/checker
* circuit. The simulatar will use this file as ari irput te
* Simulate the lagical functicir.
*********************************)
" SS EXFECTED
" UU SSS OUTFUTS
"IIIIIII MMEEEBUUUI BEEEE
"76543ご10 E07E543こ18
$983 こ 1$
LLLLLLLL ////////L
HLHHLHLL $/ / / / / / / / / \mathrm{H}$
LHHLLHHL ////////H
HHLHLLHL /////////L
LLHLHHLH /////////H
HLLHHLLH /////////L
LHLLHLHH /////////L
HHHHHHHH /////////H "LHHHH
"HLLLL
"LHLLH
"LHLHL
"HLLHH
"LHHLL
"HLHLH
"HLHHL
QUIT
a．Input Pattern PARGEN．TST

82S153 A：pargen．STD
＂This file is the result of logic simulation of the parity generator／chect：er ＂circuit．The inputs are read from input file FARGEN．TST
＂INFUTS $<=E(I / O)=>$ TFACE TEFMS
＂ 765432109876543210
$00000000 \mathrm{HL} . .$. LLLO ；
10110100 LH．．．．LLH1 ；
01100110 LH．．．LHL 1 ； $11010010 \mathrm{HL} . . . \operatorname{LHHO}$ ； 00101101 LH．．．．HLLI ； $10011001 \mathrm{HL} . .$. HLHO ； 01001011 HL．．．．HHLO ； 11111111 LH．．．．HHH1；
＂

I／O CONTFOL LINES OOIIIIDOOI DESIGNATED I／O USAGE OOIIIIOOOI ACTUAL I／O USAGE
＂FIN LIST．．．

| 18 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 09

b．Output File From SIMULATOR
Figure 4．Test Vectors

APPENDIX A

NOTES:

1. All programmed "AND" gate locations are pulled to logic " 1 "
2. All programmed "OR" gate locations are pulled to logic " 0 ".
3. Programmable connection.

Figure A-1. FPLA Logic Diagram

Signetics

Application Specific Products

INTRODUCTION

THE PLS168/168A is a bipolar Field-Programmable Logic Sequencer as shown in Figure 1, which consists of 12 inputs, a 48 product term PLA and $14 \mathrm{R} / \mathrm{S}$ flip-flops. Out of the 14 flip-flops, six are buried State Registers $\left(P_{4}-P_{9}\right)$, four Output Registers ($F_{0}-F_{3}$), and four Dual-purpose Registers ($P_{0}-P_{3}$), which may be used as Output or State Registers. All flip-flops are positive edge-triggered. They are preset to "1" at power-up, or may be asynchronously set to " 1 "' by an optional PR/OE pin, which may be programmed either as a preset pin or as an Output Enable pin. Additional features includes the Complement Array and diagnostics features.

ARCHITECTURE

As shown in Figure 2, the device is organized as a decoding AND-OR network which drives a set of registers some of which, in turn, feedbacks to the AND/OR decoder while the rest serve as outputs. Outputs P_{0} to P_{3} may be programmed to feedback to the AND/OR decoder as State Registers and, at the same time, used as outputs. The user now can design a 10 -bit state machine without external wiring. The AND/OR array is the classical PLA structure in which the outputs of all the AND gates can be programmed to drive all

AN23
PLS168/168A Primer

Application Note

the OR gates. The schematic diagram of the AND-OR array is shown in Figure 3. This structure provides the user a very structured design methodology which can be automated by CAD tools, such as Signetics AMAZE software package. The output of the PLA is in the form of sum-of-products which, together with the RS flip-flops, is the ideal structure for implementation of state machines. (Refer to Appendix A for a brief description of synchronous finite state machines.)

Design Tools

A direct approach to implement a design using the PLS168/168A is the H/L table supplied in the data sheet as shown in Table 1. The table is organized according to input and output of the PLA decoding network. The lefthand side of the table represent the inputs to the AND-array, which includes input from input pins and present state information from the feedback buffers which feedback the contents of the State Register. The righthand side of the table represents the output of the OR-array, which drives the State and Output Registers as the next state and output. Each column in the lefthand side of the table represents an input buffer, which may be inverting, non-inverting, disconnected or unprogrammed. Each column in the righthand side of the table represents a pair of outputs to the flip-flops, which may be set, reset,
disconnected, or unprogrammed. The programming symbols are $\mathrm{H}, \mathrm{L},-$, and 0 . (See Figure 4 for details.) For inputs buffers, " H "' means that the non-inverting buffer is connected, ' 'L' means that the inverting buffer is connected, "-" means that both inverting and non-inverting buffers are disconnected, and ' 0 ' means that both inverting and noninverting buffers are connected which causes that particular AND-term to be unconditionally Low. On the output side of the table, "H" means that the particular AND-term is connected to the OR-term on the ' S ' input of the particular flip-flop, ' 'L'' means that the ANDterm is connected to the " R " side, "-" means that the AND-term is not connected to the flip-flop at all, and ' 0 ' means that the AND-term is connected to both the ' S ' and ' R ' sides. More details of the symbols and their meanings are shown in Appendix B. Each row in the table represents an ANDterm. There are 48 AND-terms in the device. Therefore, there are 48 rows in the table. An example of implementing a transition from one state to another is shown in Figure 4a. The state diagram can be implemented by the PLS168 as shown in Figure 4b. The state diagram is translated into H / L format as shown in Figure 4c. The first column on the lefthand side of the table is for the Complement Array which will be discussed in detail in the next section.

PLS168/168A Primer

AN23

NOTES

1. All programmed "AND' gate locations are pulled to logic " 1
2. All programmed "OR" gate locations are pulled to logic " 0 "
3. Programmable connection.

Figure 1. Logic Diagram of PLS168/168A
PLS168/168A Primer AN23

Table 1. PLS168/168A Programming Table

LDO2650S
Figure 2. The Architecture of PLS168/168A

Figure 3. Schematic Diagram of AND-OR Array

Figure 4. Implementing State Machine with PLS168

Figure 5. Logic Diagram of Complement Array

Complement Array

An additional feature is the Complement Array, which is often used to provide escape vectors in case the state machines get into undefined states during power-up or a timing violation due to asynchronous inputs. A logic diagram of the Complement Array is shown in Figure 5. The output of the Complement Array is normally Low when one or more ANDterms are High. If all of the AND-terms are Low, then the output of the Complement

Array will be High. In this example, if each AND-term is a decoder for a particular state and input combination, and if the circuit gets into an undefined state, none of the ANDterms will be High. Therefore, the output /C will be High, which will then enable the ANDterm S which in turn may be used to reset all registers to Low or High as predefined. The state machine thus escapes from being in an undefined state by using the Complement Array and one AND-term. Without the Complement Array an alternate way of escaping
from being in an undefined state is by defining all possible states which are not being defined. This method may require quite a few AND-terms depending on the design. Another application for the Complement Array is illustrated by the following example. As shown in Figure 6, when the machine is in state 23, if input vector equals 1001, it will go to next state 24. If the input is 1101, then go to state 25. But if the input is neither 1001 nor 1101, then go to state 03. It takes only two terms to implement the first two transition vectors. To implement the third vector "go to state 03 if input is neither 1001 nor 1101 '", the Complement Array accepts the outputs of the first two AND-terms as inputs. If the input vector is neither 1001 nor 1101, then both terms will be Low, which causes the output of the Complement Array (/C) to be High. A third AND-term is used to AND state 24 and /C together to set the registers to state 03. The State Diagram is translated into AMAZE syntex as shown in Figure 6b, where all vectors are in square brackets and the Complement Array is represented by the ELSE statement. The State diagram Figure 6a can also be expressed in the format of a program table as shown in Figure 6c. The complement array may be used to exit from different present states to different next states. It can be used many times in one state machine design as shown in Figures $7 \mathrm{a}, \mathrm{b}$, and c where the state diagram is implemented using the AMAZE state equation syntex and the H / L format.

a. State Diagram

WHILE [23]
IF [1001] THEN [24] WITH
[OUT1]
IF [1101] THEN [25] WITH
[OUT2]
ELSE: [03] WITH [OUT9]
b. AMAZE State Equation Syntex

c. H/L Format

Figure 6. Application of Complement Array

a. State Diagram

WHILE [00]
IF [0000] THEN [01] WITH [OUTO]
IF [0001] THEN [02] WITH [OUT1]
ELSE: [3F] WITH [OUT9]
WHILE [01]
IF [0010] THEN [03] WITH [OUT2]
IF [0011] THEN [04] WITH [OUT3]
ELSE: [2F] WITH [OUT6]
WHILE [02]
IF [0100] THEN [05] WITH [OUT4]
IF [0101] THEN [06] WITH [OUT5]
ELSE: [2F] WITH [OUT7]
b. AMAZE State Equation

	AND																			OPTION (PRIOE)											
																				OR											
$\left\lvert\, \begin{aligned} & E \\ & R \end{aligned}\right.$		INPUT										PRESENT STATE								NEXT STATE									UT	PU	
		$\left[\begin{array}{l} 1 \\ 0 \end{array}\right.$	9			6	5	$4 \vdots 3$	2	1	0	9		6	5	$4: 3$	2	1	0	9		6	5	$4 \vdots 3$	2	1	0	3	2	1	0
00 A	$A L$	L	L		L:-	-	-		-	-	-	L	$L \vdots L$	L	L	L	-	-	-	L	L	L	L	H:	-	-	-	L	L	L	L
01 A	$A L$	L	L		H:-	-	-	- : -	-	-	-	L	$L \vdots L$	L	L	L:-	-	-	-	L	$L \vdots L$	L	H	L:-	-	-	-	L	L	L	H
02 -	- -	-	-		-	-	-	- - -	-	-	-	L	$L \vdots L$	L	L	L	-	-	-	H	H: H	H	H	H:-	-	-	-	H	L	L	H
03								\vdots																							
04 A	$A L$	L	H		L:-	-	-	- : -	-	-	-	L	$L \vdots L$	L	L	H:-	-	-	-	L	$L \vdots L$	L	H	H:-	-	-	-	L	L	H	L
05 A	$A L$	L	H		H:-	-	-	- - -	-	-	-	L	L	L	L	H:-	-	-	-	L	$L \vdots L$	H	L	L:	-	-	-	L	L	H	H
06 •	- -	-	-		-	-	-	- : -	-	-	-	L	$L \vdots L$	L	L	H:	-	-	-	H	L! H	H	H	H:-	-	-	-	L	H	H	L
07					:								\vdots																		
08.	$A L$	H	L		L	-	-	-:-	-	-	-	L	$L \vdots L$	L	H	L	-	-	-	L	$L \vdots L$	H	L	H:-	-	-	-	L	H	L	L
09 A	$A \quad L$	H	L		H:	-	-	- : -	-	-	-	L	$L \vdots L$	L	H	L	-	-	-	L	$L \vdots L$	H	H	L	-	-	-	L	H	L	H
10 •	- -	-	-		-	-	-	- - -	-	-	-	L	$L \vdots L$	L	H	L:-	-	-	-	H	L:H	H	H	H:-	-	-	-	L	H	H	H
11																															
$\begin{aligned} & \text { PIN } \\ & \text { NO. } \end{aligned}$	$\begin{array}{l\|l} 1 & 1 \\ \hline & 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{1} \\ \hline \end{array}$	$\begin{aligned} & 2 \\ & 0 \\ & \hline \end{aligned}$		$\begin{array}{l:l} 2 & 2 \\ 1 & 2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \\ \hline \end{array}$	2		5	6	7													$\begin{aligned} & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \mathbf{3} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ \hline \end{array}$	9	8
$\begin{gathered} \mathbf{N} \\ \mathbf{A} \\ \mathbf{M} \\ \mathbf{E} \end{gathered}$	\cdots	N	\%		+																							m	N	-	Q

c. PLS168 Programming Table

Figure 7. Applications of Complement Array

Figure 9. Difference in Propagation Delay Due to Different P-Term Loading

Figure 8

Figure 10. Change of $\mathbf{t}_{\mathbf{c k o}}$ Due to Metastable Condition of Flip-Flop

Optional Preset/Output Enable

The PR/OE pin provides the user with the option of either using that pin to control the Tri-state output buffers of the Output Registers, or have that pin to asynchronously preset all registers to High. The purpose of the preset function is to provide the system a way to set the PLS168 to a known state, all Highs. The output enable function are sometimes used where the state machine is connected to a bus which is shared by other output circuits. It is also used during power-up sequence to keep the PLS168 from sending power glitches to other circuits which it drives. By programming the PR/OE pin to control the Tri-state output buffers, the preset function is permanently disabled. By programming the PR/OE pin to control the asynchronous preset of the registers, the output buffers are permanently enabled. While using the preset function to asynchronously preset the register, if a rising edge of the clock occurs while the preset input is High, the registers will remain preset. Normal flip-flop operation will resume only after the preset input is Low and the rising edge of the next clock. Setting the registers to a predefined pattern other than all Highs may be accomplished by using a dedicated p-term, which is activated by an input pin which will also inhibit all other p-terms which are being used. The inhibiting of other p-terms eliminates the problem of undetermined state of an RS flip-flop caused by having Highs on both R and S inputs.

Diagnostic Features

In debugging a state machine, sometimes it is necessary to know what is the content of the state register. The buried State Register may be read by applying +10 V on I_{0}, which will cause the contents of register bits P_{4} to P_{5}, P_{6} to P_{9} to be displayed on output pins F_{2} to F_{3} and P_{0} and P_{3} respectively. While the device can handle the +10 V on pin l_{0}, prolonged and continuous use will cause the chip to heat up since more power is being dissipated at +10 V . To facilitate more expedient functional tests, synchronous preset vectors as described above may be used to set the State Register to different states without having to go through the entire sequence.

Timing Requirements

Since the PLS168 is intended to be a synchronous finite state machine, the inputs are expected to be synchronous to the clock and set-up and hold time requirements are expected to be met. In general, the set-up time requirement is measured at its worst case as having the entire AND-array connected to the OR-term being measured and there is only one active AND-term to drive the entire line. The set-up time decreases from there as less p-terms are used. This is due to the capacitance of the unused AND-terms being removed from the line. Figure 8a shows the typical set-up time requirement of a PLS168A device. Figure 8b shows the normalized setup time as a percentage of the worst case,
which is with 48 terms connected. In a typical state machine design, some flip-flops will change states more frequenily ihan others. Those that change more frequently will have more p-term loading on its OR gates than those that change states less frequently. The different loadings on the OR-terms cause different delay on the inputs of the flip-flops as shown in Figure 9. If an input fails to meet the set-up time specification, it is possible that the resultant of the input change gets to one set of flip-flops before the rising edge of the clock while it gets to other flip-flops during or after the clock's rising edge. The result is that some flip-flops have changed states and some have not, or some get into metastable condition as shown in Figure 10. The state machine is now either out of sequence or is in an undefined state. This problem often occurs with asynchronous inputs which is generated totally independent of the clock on the system. A common remedy for the problem of asynchronous inputs is to use latches or flipflops to catch the input and then synchronously feed it to the state machine. This minimizes the problem with the different propagation delays due to different p-term loading. But there is still a finite probability that the external latches or flip-flops will get into metastable condition, which may be propagated into the state machine. Nevertheless, the window for the flip-flops in state machine to get into undefined states or metastable condition is narrowed by a great extent.

APPENDIX A

INTRODUCTION TO STATE MACHINE

A state machine is a synchronous sequential circuit which interprets inputs and generates outputs in accordance with a predetermined logic sequence. It is analogous to running a computer program with a computer. The state machine, with its sequence coded in hard-
ware, can run much faster than a computer running the sequence in software. Therefore, it is often used in controller applications where speed is important.
Generally, state machines may be classified as Mealy or Moore machines as shown in Figures 1a and 1b. The fundamental difference of the two types are: the output of a Moore machine is a dependent of only the
state of the memory elements whereas the output of a Mealy machine is a dependent of both the state of the memory elements and the inputs to the state machine. The figures also show graphic representations of the logic sequence in the form of state diagram in which the bubbles represent state vectors, and the arrows represent transitions from present states to next states.

AF02220S
Appendix A-1. Moore Machine Model

Appendix A-2. Mealy Machine Model

APPENDIX B

LOGIC PROGRAMMING

The FPLS can be programmed by means of Logic programming equipment.
With Logic programming, the AND/OR gate input connections necessary to implement the desired logic function are coded directly from the State Diagram using the Program Table on the following page.

In this table, the logic state or action of control variables C, I, P, N, and F, associated with each Transition Term T_{n}, is assigned a symbol which results in the proper fusing pattern of corresponding link pairs, defined as follows:

PRESET/OE OPTION - (P/E)

PROGRAMMING:
The PLS168A has a power-up preset feature. This feature insures that the device will power-up in a known state with all register elements (state and output register) at a logic high (H). When programming the device it is important to realize this is the initial state of the device. You must provide a next state jump if you do not wish to use all highs (H) as the present state.
"AND' ARRAY - (I), (P)

''OR'' ARRAY - (N), (F)

'COMPLEMENT' ARRAY - (C)

NOTES:

1. This is the initial unprogrammed state of all link pairs. It is normally associated with all unused (inactive) AND gates T_{n}.
2. Any gate T_{n} will be unconditionally inhibited if any one of its I or P link pairs is left intact.
3. To prevent simultaneous Set and Reset flip-flop commands, this state is not allowed for N and F link pairs coupled to active gates T_{n} (see flip-flop truth tables).
4. To prevent oscillations, this state is not allowed for C link pairs coupled to active gates T_{n}.

Signetics

Application Specific Products

DESCRIPTION

The PLS173 is a 24-pin PLA device which has 10 bidirectional outputs and 12 dedicated inputs. The output of the device is the sum of products of the inputs. The polarity of each output may be individually programmed as Active-High or Active-Low. A logic diagram of the device is shown in Appendix A. A 10-bit comparator similar to the 74LS460 compares two 10-bit data inputs to establish if EQUIVALENCE or NOT EQUIVALENCE exists. The output has True and Complement comparison status outputs. The logic diagram of the comparator is shown in Figure 1.

The truth table is as shown in Table 1 where vectors a and b are 10-bit inputs to A9 to A0 and $\mathrm{B9}$ to BO . If the input to $\mathrm{A} 9-\mathrm{AO}$ is bit-to-bit equivalent to the input to B9-B0, the two input vectors are considered EQUIVALENT, and output EQ goes High and NE goes Low. If the two input vectors are not bit-to-bit equivalent, then EQ goes Low and NE goes High. The circuit is implemented with AMAZE as shown in Figures $2 \mathrm{a}, 2 \mathrm{~b}$ and 2 c . The result of logic simulation of the circuit is shown in Figure 2d.

PLS173 as a 10-Bit Comparator, 74LS460

Application Note

Notice that on the OR side of the program table in Figure 5, all the fuses in the OR-term are intact, which means that all the ANDterms are still connected to all the OR-terms. This feature provides for future modification. But if all the unused AND-terms are deleted, the device will run faster. There are also many unused AND-terms which will provide for future modification. But if they are deleted (both on the AND and OR side), it will amount to about $450 \mu \mathrm{~A}$ per term power saving. Figure 3 is the program table with all unused terms deleted.

Table 1. Function Table

$\mathbf{A g}_{\mathbf{9}}-\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{9}}-\mathbf{B}_{\mathbf{0}}$	$\mathbf{E Q}$	$\mathbf{N E}$
a	a	H	L
b	b	H	L
a	b	L	H
b	a	L	H

Figure 1. Logical Equivalent Circuit of 10-Bit Comparator

a. Pin List of $\mathbf{1 0 - B i t}$ Comparator

Figure 2

```
lon
825173
eDRAWING
..................... 10-BIT COMPARATOR USING FLS173
EREVISION
@DATE
................. OCT-14-85
GSYMEOL
................. AN24_173
@COMFANY
O...................SIGNETICS
QNAME
GDESCRIPTION
This circuit compares two lo-bit inputs. If they are bit-ta-bit equivalent,
outputs EQ goes HIGH and NE goes LOW. If the inputs are not bit-to-bit equiv-
alent to each other, outputs EQ goes LOW and NE goes HIGH.
@COMMON FRODUCT TERM
```



```
GI/O DIRECTION
@OUTPUT POLARITY
@LOGIC EQUATION
EQ = / TO TO T1 +T2 +T3 +T4 +T5 +T6 +T7 +TB +T9 +
    T10 +T11 +T12 +T13 +T14 +T15 +T16 +T17 +T18 +T19);
NE= TO + T1 + T2 +T3 +T4 +TS +TG +T7 +TB +T9 +
        T10 +T11 +T12 +T13 +T14 +T15 +T16 +T17 +T18 +T17;

\section*{b. Boolean Equations of 10 -Bit Comparator}
```

Figure 2 (Continued)

```


000000000000 OOOOLHOOOO ; 010000000000 0000HLOOOO 1000000000000000 HL 0000 110000000000 OOOOLHOOOO 000100000000 OOOOHLOOOO ; 0010000000000000 HL 0000 ; 001100000000 OOOOLHOOOO 000001000000 0000HL0000; 000010000000 0000HLOOOO ; 000011000000 OOOOLHOOOO 0000000100000000 HL 0000 0000001000000000 HL 0000 000000110000 OOOOLHOOOO ; 000000000100 O00OHL0000 000000001000 O000HL0000 000000001100 OOOOLHOOOO 000000000001 OOOOHLOOOO ; 000000000010 0000HL0000 ; 000000000011 OOOOLHOOOO 0000000000000100 HL 0000 000000000000 1000HLOOOO ; 0000000000001100 LHOOOO 0000000000000001 HL 0000 000000000000001 HLL 0000 000000000000 OO11LHOOOO 0000000000000000 HLO 100 ; \(0000000000000000 H L 1000\) : 000000000000 OOOOLH110O 0000000000000000 HL 0001 0000000000000000 HLOO 10 ; 000000000000 0000LHOO11;
"


" IIIIDQIIII ACTUAL I/O USAGE
" PINLIST...
\(\begin{array}{lllllllllllll}\text { " } & 13 & 11 & 10 & 09 & 08 & 07 & 06 & 05 & 04 & 03 & 02 & 91\end{array}\)
\(\begin{array}{llllllllllll}\text { " } & 25 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & \text {; }\end{array}\)
d. Test Vectors Generated by AMAZE After Logic Simulation

Figure 2 (Continued)

\section*{PLS173 as a 10-Bit Comparator, 74LS460}
```

******************** AN24_173 ********************

```

Date - ........................ OCT-14-85
Rev/I. D. - ........................ REV-0
825173 ! POLARITY


Figure 3. Program Table of 10-Bit Comparator with All Unused Terms Deleted

\section*{APPENDIX A}

\section*{FPLA LOGIC DIAGRAM FOR PLS173}


\footnotetext{
NOTES:
1. All programmed "AND" gate locations are pulled to logic " 1
2. All programmed "OR" gate locations are pulled to logic " 0 ".
3. 䜌 Programmable connection.
}

\section*{Signetics}

\section*{Application Specific Products}

\section*{FEATURES}
- 100\% functional replacement for all 20-pin PALs
- 1/O propagation delay: 20ns (max)
- Security fuse lock
- 10 inputs
- 8 bidirectional 1/O lines
- Tri-state outputs have programmable polarity
- Architecture: 8 groups of nine AND gates. Total of 72 product terms
- Software support on Signetics AMAZE
- Complete TTL compatibility
- Each bidirectional I/O has individually controllable output enable

\section*{ARCHITECTURE}

The PLHS18P8A is an oxide-isolated, bipolar field-programmable logic array. This device is configured as a decoding two-level AND-OR (sum of products) structure. The PLHS18P8A block diagram is shown in Figure 1. All the AND gates are linked to ten inputs \(\left(I_{0}-I_{9}\right)\) and eight bidirectional \(1 / O\) lines \(\left(B_{(0)}-B_{(7)}\right)\). These links can be made via the on-chip true/complement buffers. The 72 AND gates are configured in 8 groups which contain 9 AND gates each. In every group, eight AND gates are used for user-defined logic functions and the ninth AND gate is used as a tristate output enable control. This gives the user capability to control the output enable by means of a product term. The outputs of the eight logical product terms are ORed together (see Figure 1). The output polarity of each OR gate is individually programmable via an Ex-clusive-OR gate. The user has a choice of Active-Low or Active-High on each of the eight outputs. Figure 2 shows the logic diagram of the PLHS18P8A.

\section*{HOW A DEVICE IS PROGRAMMED}

There are three main programmable sections on the PLHS18P8A:
A. The AND array.
B. The output polarity.
C. The security fuse.

AN26 PLHS18P8A Primer

\section*{Application Note}
A. The AND Array - The AND array fuses are back-to-back diode pairs which act as open connections in a virgin device. These open connections are configured as 'Don't Cares \({ }^{1}\) (' - ') in an unprogrammed device. The open connections are pulled to a logic High ('1') (see Figure 3). Consequently, all unprogrammed AND locations are pulled to a logic High (' 1 ') state. This means that in an unprogrammed device, all the product terms are active. During fusing, current is avalanched across individual diode pairs. This essentially short circuits the diode and provides a connection for the associated product term. Figure 3 shows how a typical connection is made to the AND array (see Appendix B for a description of the vertical fuses).
The inputs to the AND array consist of 10 dedicated inputs ( \(10-19\) ) and 8 bidirectional I/Os \((B(0)-B(7))\). Initially, all these inputs are configured as 'Don't Cares' (' - '). These inputs can be connected to the AND array through an inverting or non-inverting buffer. The AND gate can be connected to the inverting buffer by programming the inverting fuse. Similarly, a connection can be made to the non-inverting buffer by programming the non-inverting fuse. Disabling an AND term is achieved by implementing a logical Low ('0') on the output of the specified AND gate. When both fuses of an input (e.g. 10 and \(\overline{10}\) ) are programmed, both the inverting and noninverting buffers are connected to the inputs of the AND gate. To achieve this a '0' should be entered on the program table under the specified input. This will in turn create a logical Low ('0') on the output. To avoid any glitches on the output, it is a good practice to program all inputs to force a logical Low (' 0 ').

In each block of nine AND gates, one gate is used as an output enable control for the tristate output (Terms 0, 9, 18, 27, 36, 45, 54, 63 , designated as \(D\) on Table 2). The remaining eight gates are connected to a fixed OR gate. Since in the unprogrammed state the outputs of all the AND gates are at logic High ('1'), the output of the OR gate also acquires a logic High state. Therefore the user is responsible for deactivating any unwanted product terms. This is done by creating a logic

Low (' 0 ') on the outputs of the unwanted product terms as previously explained. Moreover, the output buffer is always enabled since the product term controlling the tri-state output buffer also has a logic High state. If any of the bidirectional pins are to be defined as inputs, the product term controlling the specified bidirectional pin must be disabled. The bidirectional pin can also be configured as a dynamic \(1 / O\) by defining the required logic for the output-enable-control product term.
The actual programming of the PLHS18P8A is carried out according to JEDEC \({ }^{1}\) standards and the specific programming algorithm developed for the part.
According to JEDEC standards on data preparation for the PLD programmer, a " 1 '' specifies a high impedance for the specified fuse and " 0 " a low impedance for the designated fuse.

For the AND array, the programming algorithm leaves the fuse intact (open-circuited) when a JEDEC ' 1 ' ' is specified. Consequently, a JEDEC " 0 " programs and short circuits the specified fuse. The programming algorithm is different for the output polarity and will be explained in the next paragraph on Special Conditions for the Output Polarity.
B. Special Conditions For The Output Polarity - In an unprogrammed device, all the output polarities are configured as inverting buffers. In this state, the device will have logic Low on all its outputs. The outputs of the PLHS18P8A are configured as tri-state buffers. The two inputs of each Ex-OR gate are connected as follows: one input is connected to the output of the fixed OR gate. The second input is a connection to ground (logic Low) through a fusible link.

As mentioned earlier, an unprogrammed fuse acts as an open connection which is pulled to a logic High. Therefore the output of the ExOR gate acts as an inverting buffer. When the fuse is programmed, there is a connection between ground (logic Low) and the input of the Ex-OR gate. This will cause the Ex-OR gate to act as a non-inverting buffer.

\footnotetext{
1. For more information on standard data transfer format between the data preparation system and PLD programmer, refer to JEDEC - Solid State Engineering Council publications.
}


Figure 1. Block Diagram of the PLHS18P8A


LD02622S

\footnotetext{
NOTES:
1. All unprogrammed or virgin "AND" gate locations are pulled to logic "1"
2. All unprogrammed or virgin "OR" gate locations are pulled to logic " 1 "
3. Programmable corrections.
}

Figure 2. Logic Diagram of the PLHS18P8A

a. Unprogrammed Connection
b. Programmed. The Non-Inverting Buffer is Connected to the AND Gate

Figure 3. How a Fuse is Programmed



\begin{tabular}{|c|c|c|c|}
\hline FUSE & \begin{tabular}{c} 
AND/OR \\
INPUT
\end{tabular} & OUTPUT & \begin{tabular}{c} 
OUTPUT \\
POLARITY
\end{tabular} \\
\hline\(U\) & 0 & 1 & \multirow{2}{*}{-} \\
\hline\(U\) & 1 & 0 & \\
\hline\(P\) & 0 & 0 & \multirow{2}{*}{-} \\
\hline P & 1 & 1 & \\
\hline
\end{tabular}
P \(=\) PROGRAMMED
\(U=\) UNPROGRAMMED

L0083115
Figure 4. Output Polarity Definition
Table 1. Programming Algorithm
\begin{tabular}{|c|c|c|}
\hline JEDEC SPECIFICATION & \begin{tabular}{c} 
AND ARRAY FUSE \\
PROGRAMMING \\
ALGORITHM
\end{tabular} & \begin{tabular}{c} 
OUTPUT POLARITY FUSE \\
PROGRAMMING \\
ALGORITHM
\end{tabular} \\
\hline 1 - High impedance & \begin{tabular}{c} 
Fuse unprogrammed \\
(open circuit)
\end{tabular} & \begin{tabular}{c} 
Fuse programmed \\
(short circuit)
\end{tabular} \\
\hline 0 - Low impedance & \begin{tabular}{c} 
Fuse programmed \\
(short circuit)
\end{tabular} & \begin{tabular}{c} 
Fuse unprogrammed \\
(open circuit)
\end{tabular} \\
\hline
\end{tabular}

Figure 4 shows the definition of the output polarity for the PLHS18P8A. As can be seen, the output configuration of the PLHS18P8A is equivalent to an Ex-OR gate.
The programming algorithm for the output polarity section of the PLHS18P8A is different from that of the AND array. For the output polarity a JEDEC " 1 " (high impedance) programs (short circuits) the Ex-OR gate fuse, whereas a " 0 "' (low impedance) leaves the fuse intact (open circuit).

The programming specifications are transparent to the user and do not need to be taken
into consideration when designing with the PLHS18P8A. Table 1 shows the resulting programming algorithm from the JEDEC specification.
C. The Security Fuse - Programming equipment used to program the PLHS18P8A are capable of determining the logic pattern stored in this device (see Appendix A). The security fuse can be blown to disable the programmer from reading the pattern in a programmed device. This feature adds a measure of protection for proprietary designs.

The procedure for programming this fuse depends on the programmer manufacturer and is explained in the manufacturer's operations manual.

\section*{DESIGN TOOLS FOR THE PLHS18P8A}

Many CAD tools such as Signetics' AMAZE software \({ }^{2}\) are available to implement designs using the PLHS18P8A. The AMAZE software enables the user to enter the design in the form of Boolean equations or via the program table shown in Table 2. This program table is a one-to-one map of all the programmable links of Figure 2. The following explains the implementation of designs using the program table. Also, an example on using the Boolean Logic Entry program of the AMAZE software is given.
Using PTE (Program Table Entry) - Assume that \(Z\) is a typical logic function with the following equation:
\[
Z=P 0+P 1
\]

Where P0 and P1 are product terms with the following equations:
\[
\begin{aligned}
& P 0=A * / B * C \\
& P 1=/ A * B * / D
\end{aligned}
\]

The program table in Table 2 is used to implement this equation. Table 3 shows the implementation of the logic function using the PTE. The first group of AND terms is used to implement this function. \(B(7)\) is used for the output, 10, 11, and 12 as inputs.
- Term 0 is the direction control term. It is the tri-state output enable control term. Since \(Z\) is configured as an output, leaving Term 0 in its unprogrammed state causes the output to be unconditionally enabled.
- Term 1 is the P-term labeled PO, where \(A^{*} / B^{*} C\) is designated by HLH in columns 10 , 11, and 12 .
- Term 2 is the P-term labeled P1, where \(/ A^{*} B^{*} / D\) is designated by LHL in columns 10,11 , and 12.
- Terms 3, 4, 5, 6, 7. At least one input (or all the inputs) must be set to zero to disconnect these terms from the OR gate.
- The output polarity for \(\mathrm{B}(7)\) is H , and this is entered in the 'Polarity' section.

Using BLAST (Boolean Logic And State Transfer) - The BLAST module in AMAZE can be used to implement the above equation. Figures 5 and 6 show the pin list and logic equation format. Table 4 is the program table generated from these equations.
PLHS18P8A Primer ..... AN26


```

File Name : 18PRIMER
Date : 5/22/1986
Time:13:52:54

```



Figure 5


Figure 6. Boolean Equation File


Table 4. Programming Table Generated by AMAZE

\section*{APPENDIX A}

\section*{Programmers}

The PLHS18P8A can be programmed by means of logic programming equipment. With Logic Programming, the AND/Ex-OR gate input connections necessary to implement the desired logic are coded directly from the logic equations using the program table shown in Table 2.

The symbols used in the program table correspond to the fusing pattern of the corresponding link pairs, defined in Figure 6.
To program the device, the address of every fuse to be programmed must be entered in the programmer. This is a tedious and errorprone method of implementing the required logic pattern. Using CAD software, such as Signetics' AMAZE software, enables users to go directly from program table or logic equations to a fuse plot. The fuse plot can be downloaded to a programmer through a serial port. The downloaded fuse plot is in JEDEC format.

\section*{APPENDIX B}

The vertical fuse is the latest in programmable logic technology. It combines reliability,
low capacitance and testability in an incredibly small space.

The vertical fuse takes advantage of the properties of silicon and aluminum. The virgin fuse is a three-layer device: a shallow layer of N -type silicon on top, a layer of P-type silicon in the middle, and a layer of N -type silicon on the bottom. This forms a pair of PN diodes, back-to-back, which will not allow current to pass under normal circumstances.

There is a cap of aluminum on top of this structure. During programming, high current conditions ( 50 to 100 times what is seen during normal operation) is induced by avalanche breakdown of the reverse-biased diode. The aluminum will 'spike" through the shallow \(N\)-type layer. Once the aluminum has spiked through, the top diode in the pair is shorted out. The whole vertical fuse will then look like a pure PN diode. Before programming, the fuse is an excellent blocking element, having current leakages in the order of nanoamps. After programming, the fuse is set as a small, well-defined diode.

\section*{QUALITY}

Besides the AC and DC parametrics, each and every fuse goes through three tests for forward characteristics, reverse characteris-
tics, and programmability. Extensive on-chip test circuitry ensures full AC parametric testing before and after the part is programmed. This insures that the customer receives the highest possible fusing yield which is made possible by vertical fuses. Vertical fuses also offer the smallest and fastest array structure together with the highest reliability possible.

\section*{APPENDIX C}

\section*{Test Array}

The PLHS18P8A may be subjected to AC and DC parametric tests prior to programming via an on-chip test array. Table C1 shows the test columns in the part. The test sequence is as follows.

Test column 1 is connected to \(\mathrm{B}(\mathrm{O}) 0,2,4,6\) while test column 2 is connected to \(\mathrm{B}(\mathrm{O}) 1,3\), 5, 7. Applying 10 V to Pin 11 will put all the outputs in the Active-High mode and tri-state its associated input buffer.

Applying 10V to Pin 8 will disable \(\mathrm{B}(\mathrm{O}) 0-3\), enable \(B(O) 4-7\), tri-state \(B(I) 4-7\), tri-state its associated input buffer, disable the AND array and enable test columns 1 and 2 . The test columns are defined during programming by the PLD programmer.

Table C1. Test Columns of PLHS18P8A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TEST COLUMN} & \multicolumn{18}{|c|}{INPUTS} \\
\hline & \multicolumn{10}{|c|}{Is} & \multicolumn{8}{|c|}{B(Is)} \\
\hline & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 1 & & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline 2 & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L & L \\
\hline
\end{tabular}

\section*{Signetics}

\author{
Application Specific Products
}

\section*{INTRODUCTION}

The PLHS473 is a 24-pin field- programmable logic array (FPLA) which has 11 dedicated inputs, 2 dedicated outputs and 9 bidirectional \(1 / \mathrm{Os}\). The logic array consists of 24 programmable product terms which are connected to 22 programmable OR terms in the classical PLA architecture. A functional diagram is shown in Figure 1. The shaded areas represent programmable interconnects between vertical and horizontal lines. Eleven dedicated inputs, \(I_{0}\) to \(l_{10}\), are located on the upper lefthand corner of the diagram, and the 9 bidirectional I/Os, \(\mathrm{B}_{0}\) to \(\mathrm{B}_{8}\) are located on the lower righthand corner. All inputs to the AND array have true and inverting input buffers. The output portion of the 9 bidirectional I/Os and 2 outputs may be programmed to be Active-High or Active-Low by altering fuses \(X_{0}\) to \(X_{8}, X_{A}\) and \(X_{B}\) which are connected to one leg of the Exclusive-OR gates. Each output is connected to two ORterms, one of which provides the logic function OR to the output while the other provides the ENABLE function for the tri-state output buffer. Alternatively, each output may be configured to emulate an open-collector output by programming the output to an unconditional LOW and apply the logic function on the tri-state controlling OR-term as shown in Figure 2. In addition, the PLHS473 has a security fuse which may be programmed to lock out unauthorized access to the fuse map of the design.
This device is fabricated with an oxide-isolation process for the best speed/power performance. The programmable element is a 'vertical fuse" which is actually two PN diodes connected back-to-back (anode-to-anode
stacked on top of one another) as shown in the insets of Figure 1. The fuses are normally open-circuited. To program a fuse, a sufficiently high voltage is applied across the two diodes such that one diode breaks down which induces metal migration across the PN junction of the avalanched diode. This technology allows smaller chip size and faster speed performance. The guaranteed propagation delay may be tested by using the two factory-programmed test columns and a test row as a test vehicle for speed testing. These test columns are to be deleted automatically in the process of programming.
The vertical fuses of an unprogrammed device, being normally open-circuited, set all AND terms to a High state and disconnected to all OR terms. The OR terms are normally Low when they are not connected to the AND terms. Once an AND term is programmed to make connections with the OR array, it cannot be disconnected. However, AND terms may be disabled by having the true and inverting input buffers (e.g., A * /A, B * /B, etc.) of all inputs connected to the AND term which is to be disabled.
While even a single input, ( \(A^{*} / A\) ), will hold the AND term to a Low, glitches may develop if the input voltage changes state. Therefore, it is recommended that the complementary buffers of all inputs in the disabled AND term be connected.

\section*{Programming the PLHS473}

The programming table and symbols of the PLHS473 are shown in Table 1 where there is a place for every function that is shown in Figure 1. The table is divided into two main
sections. The left side of the table, sections \(A\) and \(B\), represents the input side of the AND array (section \(A\) has all dedicated inputs \(I_{0}\) to \(l_{10}\), section \(B\) has inputs from the bidirectional I/Os \(B_{0}\) to \(B_{8}\) ), whereas the right side, sections \(C, D\), and \(E\), represents the outputs of the OR array. Section C represents the OR array which controls the tri-state output buffers of the bidirectional \(1 / O s B_{0}\) to \(B_{8}\) and outputs \(O_{A}\) and \(O_{B}\), while section \(D\) represents the OR array which drives the outputs. Section E controls the output polarity of each output. As shown in Table 1, the program table is very similar to a truth table. Each row represents one of the 24 product terms, while each column in sections \(A\) and \(B\) represents an input to the 24 product terms and in sections C and D, each column represents an output. The intersection of a column and a row in sections \(A\) and \(B\) represents four possible fuse configurations, namely, 1) both inverting and non-inverting input buffers are connected to the AND term, 2) only the inverting buffer is connected, 3) only the noninverting input buffer is connected, and 4) both inverting and non-inverting buffers are disconnected. These four configurations are represented as " 0 '", "L", " \(\mathrm{H}^{\prime \prime}\), and " - "', respectively. Each intersection of a row and a column in sections C and D involves only two fuse configurations, either connected or disconnected. Therefore, the entry there is either " \(A\) " or " - '", respectively. In the polarity control section (section E), each square represents the configuration of the fuse connected to the Exclusive-OR, which is connected to a particular output pin. An " H " represents an Active-High or non-inverting output, an "L" represents an Active-Low or inverting output. See Table 1 for further details.

\section*{PLHS473 Primer}

AN27


NOTES:
1. All unprogrammed or virgin "AND" gate locations are pulled to logic " 1 "
2. All unprogrammed or virgin "OR" gate locations are pulled to logic " 0 ".

3 . \({ }_{3}\). Programmable connections.

Figure 1. PLHS473 Logic Diagram


TCH1320S
Figure 2. Emulation of Open-Collector Output

Notice that as shown in Figure 1, all fuses in their unprogrammed state are normally opencircuited. This means that all product terms are initially disconnected to the OR array, all

OR gates are initially at a logic LOW, and all output pins are initially in High-Z state. Therefore, if anys of the outputs are to be enabled, its controlling OR term must be set to a logic

HIGH. An example is shown in Table 2, term 0 where pins \(\mathrm{O}_{\mathrm{A}}, \mathrm{O}_{\mathrm{B}} \mathrm{B}(\mathrm{O})_{8}\) are programmed as dedicated outputs. The input section of term 0 is entirely 'dashed out' (this is actually its unprogrammed state) which causes the AND term to be unconditionally HIGH. OR terms \(E_{A}, E_{B}\), and \(D_{8}\) are connected to product term 0 by the ' \(A\) "' entries in their respective squares. The rest of the \(D\) section and the \(\mathrm{B}(\mathrm{O})\) section are "dotted out' (left unconnected) since we are not concerned with them for the moment. If more outputs are needed later on, their corresponding squares may be changed to ' As' from 'dots' as the need arises.

Table 1. PLHS473 Programming Table


\section*{OUTPUT POLARITY - ( \(0, B\) )}


\section*{AND ARRAY - (I, B)}


OR ARRAY - \((0, B)\)


NOTES:
1. This is the initial unprogrammed state of all link pairs.
2. Any gate \(P_{n}\) will be unconditionally inhibited if any one of its ( \(1, B\) ) link pairs is programmed for a connection.

VIRGIN STATE
A factor shipped virgin device contains all fusible links.
1. All output at "L'" polarity.
2. All \(P_{n}\) terms are enable.
3. All \(P_{n}\) terms are active on all outputs.

Figure 3. Emulation of Open-Collector Output

Once we have determined the outputs, we can proceed with defining the logic functions. As an example, the logic function

\section*{OUT-0 = INPUT-1 * /INPUT-2}
is shown in Table 2, term \#2 where in the column labeled "INPUT-1', an " H ' is entered to represent a connection of the noninverting input buffer of INPUT-1 and the AND term 2. In the column labelled 'INPUT-2'", an ' \(L\) '" is entered to represent the connection of the inverting input buffer of INPUT-1 and the AND term 2. On the output side of the table, \(\mathrm{O}_{\mathrm{B}}\) in term 0 is programmed " A ' to make a connection between term 2 and the OR term which is connected to the output pin \(\mathrm{O}_{\mathrm{B}}\) : The output polarity of \(\mathrm{O}_{\mathrm{B}}\) is arbitrarily set to Active-High by programming an " H " in the \(\mathrm{O}_{\mathrm{B}}\) column of the polarity section.

A sum of several product terms (AND-OR) is implemented by connecting multiple AND terms to the same OR term. An example is shown in Table 2, terms 4 and 5, which implement the logic function

OUT-1 \(=(\) INPUT-1 \(* /\) INPUT-2) + (INPUT-3 * INPUT-4)

The logic function
\[
\begin{aligned}
\text { OUT-2 }= & /((\text { INPUT }-1 * \text { INPUT-2 })+ \\
& (\text { INPUT-3 * INPUT-4) })
\end{aligned}
\]
is shown in terms 9 and 10 . The output is Active-Low as programmed ' \(L\) '" in the polarity section of OUT-2. As a rule, the AND function is implemented in a row, whereas the OR function is implemented in a column. Since the AND portions of terms 2 and 4 are the same, they may be combined as shown in term 7, which saves a duplicated term.

Table 2 terms 12 and 13 together emulate an open-collector output as an example. The logic equation
\[
\begin{aligned}
\mathrm{O}-\mathrm{C}= & /((\text { INPUT }-1 * \text { INPUT-2) }+ \\
& (\text { INPUT-3 * INPUT-4) })
\end{aligned}
\]
is implemented by first programming O-C Active-High in the polarity section. Terms 12 and 13 implement the sum of product func-
tion. Notice that the \(\mathrm{B}(\mathrm{O})\) of \(\mathrm{O}-\mathrm{C}\) is programmed as a '"dot'' in both terms 12 and 13, which, together with the polarity control, causes it to be unconditionally Low, since a disconnected OR term is unconditionally Low. The intersections of column \(D_{7}\) and terms 12 and 13 are programmed " A " so that the tristate output buffer of \(\mathrm{B}(\mathrm{O})_{7}\) is enabled at input conditions (INPUT-1 * INPUT-2) \(=1\) or (INPUT-3 * INPUT-4) \(=1\). Terms 10 and 11 may be represented as shown in Figure 3.

Signetics produces a software package, AMAZE, as a design tool which assists implementation of logic design and documentation. For further information on AMAZE software, refer to the AMAZE User's Manual. Two simple circuits shown as examples are implemented using AMAZE. The first circuit is a simple cross-coupled RS latch. The second circuit is a multiplexer/demultiplexer which multiplexes four inputs to one output or demultiplexes one input into four outputs. Both circuits are put into the same PLHS473 device.

Table 2. Examples of Programming PLHS473

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
File Name : 473PRIME \\
Date : 9/4/1986 \\
Time : 15:53:28
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LABEL & ** FMC & 4FPIN & & PIN:* FNC & ** & LABEL \\
\hline IS & ** 1 & ** 1-i & & :-24 ** +5V & **VCC & \\
\hline 18 & **1 & ** 2-1 & & i-23** 10 & * +8 & \\
\hline N/C & ** 1 & 4* 3-1 & \(F\) & -22 1 * 10 & **QNOT & \\
\hline N/E & ** & ** 4-1 & 1 & i-21 ** 18 & **N/C & \\
\hline N/E & ** 1 & ** 5-i & H & : -20 \# \({ }^{\text {B }}\) & **F & \\
\hline N/C & ** 1 & ** 6-1 & S & :-19 \(* * 0\) & WW/C & \\
\hline N/C & 4*1 & ** 7-1 & 4 & \(1-18 \pm 40\) & **N/C & \\
\hline N/C & **1 & ** 8-1 & 7 & 1-17*/8 & **N/C & \\
\hline 50 & * 1 & 4* 9-1 & 3 & :-16 ** B & + 5 & \\
\hline SI & **1 & * \(+10-1\) & & :-15 + 1 - & \(1+C\) & \\
\hline DIR & ** 1 & ** 11-1 & & :-14 ** 8 & * \({ }^{\text {B }}\) & \\
\hline 6N0 & ** OV & ** 12-i & & :-13 + +8 & **A & \\
\hline
\end{tabular}

Figure 4. Pin List
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{File Mane : 473PRIME} \\
\hline \multicolumn{2}{|l|}{Date : 9/4/1986} \\
\hline & Tine : 15:54:14 \\
\hline \multicolumn{2}{|l|}{CDEVICE TYPE} \\
\hline \multicolumn{2}{|l|}{PLHS473} \\
\hline \multicolumn{2}{|l|}{CDRAMING} \\
\hline \multicolumn{2}{|l|}{CREVISION} \\
\hline \multicolumn{2}{|l|}{EDATE} \\
\hline \multicolumn{2}{|l|}{CSYMBOL} \\
\hline \multicolumn{2}{|l|}{File nane \(=473\) PRIME} \\
\hline \multicolumn{2}{|l|}{econpany} \\
\hline \multicolumn{2}{|l|}{ename} \\
\hline \multicolumn{2}{|l|}{CDESCRIPTION} \\
\hline \multicolumn{2}{|l|}{ECOMMON PRODUCT TERK} \\
\hline & EI/O DIRECTION \\
\hline
\end{tabular}

The \(1 / 0\) DIRECTION definition is optional, and ay be defaulted to the PIN LIST unless it is bidirectional and is controlled by
* logic equation."

D8 = 1; "Each output aust be defined seperately by its own logic equation. *
\(07=1 ;\)
***t\#t*ttttt*t I/O DEFINITION FOR MUXIDENUX CIRCUIT **t**t***4t***
\(D 3=D I K\); * When \(D I K=1, B 3, B 2,81, B 0\) becone outputs, Data flows troe \(F\) to \(A, B, C, D\).
\(D 2=01 R ;\)
\(D I=D I R ;\)
\(D O=\) DIR;
\(D 5=10 I R\); " When DIR \(=0\), B5 becones an output, output buffer 5 of 80 to \(B 3\) are disabled. Data flows from \(A, B, C\), \(D\) to \(F\). "

Figure 5. Boolean Equations

\section*{geutpur polanity}
*The definition of output polarity is optional and may be defaulted the FIN LIST.
" \(* * * * * * * * * * * * *\) POLARITY DEFINITION FOR K/S LATCH \(* * * * * * t * * * * *\)
x8, \(x 7=1 ; \quad\) : Outputs mith the same polarity aay be defined in the same equation. Since the outputs \(Q\) and QHOT are detined as active LOM, this equation causes the xOR to function as an inverter. "
********** FOLARITY DEFINITION FOR NUX /DEMUX CIRCUIT **********
X5, X3, X2, X1, X0 \(=0\) : " Output5 BO, 81, B2, B3, B5 are active HIGH."
sLOGIC EQUATION
" \(\# * * * * t 4 * * * * * t * t *\) E
\(0=1 /\) is * QNOT ) ; " The equation must used the format output \(=/(\ldots . .\). ); since output \(\theta 15\) defined as active Lom."
QNOT \(=/(/ R * Q)\);

\begin{tabular}{rl}
\(F=\) & \((A * / S 0 * / S 1)+\) \\
& \((5 * S 0 * / S 1)+\) \\
& \((C * / S 0 * S 1)+\) \\
& \((D * S 0 * S 1) ;\) \\
\(A=\) & \((F * / S 0 * / S 1) ;\) \\
\(B=\) & \((F * S 0 * / S 1) ;\) \\
\(C=\) & \((F * S O * S 1) ;\) \\
\(D=\) & \((F * S 0 * S 1) ;\)
\end{tabular}

Figure 5. Boolean Equations (Continued)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
File Nage: 473FRINE \\
Date: 9/4/1986
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{liae : 15:56:24} \\
\hline \multicolumn{2}{|l|}{Cust/Project -} \\
\hline \multicolumn{2}{|l|}{Date} \\
\hline \multicolumn{2}{|l|}{Rev/1. D.} \\
\hline PLHS473 & ' POLARITY ! \\
\hline --- & \\
\hline Y! & !LLLLLHLHEHH! \\
\hline \multicolumn{2}{|l|}{\(E\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{0!--------H!-H------! \(A\). . A.A.... ! AAA, A, A....!} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{2!-LL-------------H!AR. A.A....! AR. . AAA....! \(^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{3!-LH------------H-!AA. A.A.... !AA. , AAR....!} \\
\hline \multicolumn{2}{|l|}{4!-HL------------H--!AA. A. A....! \(A R\). ARA....!} \\
\hline \multicolumn{2}{|l|}{5!-HH-------------- \(A\). . A. A.....!AA. AAR....!} \\
\hline \multicolumn{2}{|l|}{6!-LL--------------!AA. A.A.... \(:\) AA. . A.A... \(A\) !} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{13!-------------------1........... ! ............!} \\
\hline \multicolumn{2}{|l|}{14!----------- ---------1..........!............} \\
\hline \multicolumn{2}{|l|}{15!-------------------1..........!............!} \\
\hline \multicolumn{2}{|l|}{16!-------------------1...........!............!} \\
\hline \multicolumn{2}{|l|}{17!-------------------1...........! ........... !} \\
\hline \multicolumn{2}{|l|}{18!--------------------.......................} \\
\hline \multicolumn{2}{|l|}{19!-------------------.........................!} \\
\hline \multicolumn{2}{|l|}{20!--.--------1---------1...........!. . . . . . . . .} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{22!------------------1..........................} \\
\hline \multicolumn{2}{|l|}{} \\
\hline DSSNNMNNK// QQNFNDCBA & NWEQNFNDCPR \\
\hline [10/1/1//RS W/1 & / W/ / \\
\hline P CCCCCC OC C & CC OC C \\
\hline 1 & \(T\) \\
\hline
\end{tabular}

Figure 6. Program Table

\section*{Signetics}

\section*{Application Specific Products}

\section*{INTRODUCTION}

The general technique underlying the operation of this A/D converter is illustrated by the fuctional block diagram in Figure 1. The system consists of a D/A converter, a comparator circuit, and digital logic circuitry. The digital logic circuitry outputs a digital vaue which is converted to analog by the D/A converter.

The comparator senses when the output is greater or less than the input and causes the digital circuit to decrement or increment its digital output respectively. The initial conversion is completed in 13 clock cycles. If tracking mode is used, the A/D converter then tracks the input voltage as it changes by incrementing or decrementing 1-LSB per clock. The tracking function makes it possible to make an A/D conversion in one clock cycle if the input changes less than the value of 1-LSB per clock period. The conversion may be halted and the digital output, as well as the converted analog output from DAC, will hold their output constant indefinitely. This feature works well as sample-and-hold since its output voltage will not decay over time whereas the output of an analog sample/hold will decay due to charge leakages.

In order to avoid the violation of setup time by the output of the comparator, its output is latched. There is a built-in 2-phase clock in U2 which may be used to drive the logic circuitry and the latch of the comparator (see Signetics NE5105 data sheet for details on output latches of voltage comparators).
The analog input voltage may be sampled and held by an analog sample/hold circuit to

\section*{AN28}

\title{
High-Speed 12-Bit Tracking A/D Converter Using PLS179
}

\author{
Application Note
}
keep the input to the ADC from changing. The DONE output may be used to control the sample-and-hold if needed.
This paper discusses only the digital circuit which contains the SAR and the Up/Down Counter. The analog circuits are not within the scope of this paper.

\section*{SAR}

Two PLS179s are connected together to form a 12-bit shift register and up/down counter. The schematic diagram of the A/D converter is shown in Figure 2. U2 contains bits 0 to 4 and U1 contains Bits 5 to 11. Interconnects are made as shown in the diagram. The digital output to the DAC is in natural binary format (e.g. 000000000000 equal zero, and 111111111111 is full scale or 4095). After the/ST input becomes 0 , at the rising edge of the next clock, the SAR is initialized to halfscale (1000 0000 0000) and the DONE flipflop is reset to output 0 which causes the open-collector output /DONE_OC to become high impedance. The digital output is converted by the DAC and is compared to the analog input voltage by the comparator. If the digital output is greater than the analog input, the SAR shifts the 1 to next MSB on the right. The content of the SAR becomes (0100 0000 0000 ). If the digital output is still greater than the input, the SAR shifts right one bit again. The content of the SAR then becomes (0010 00000000 ). The shifting of 1 to the next MSB in equivalent to reducing by half the value of the bit under consideration. If the output is still too large, the SAR reduces it by half again by shifting to the right one more time.

The SAR keeps shifting to the right until the digital output is less than the input. When the output is less than the input, the SAR adds one bit to the next MSB while keeping all the higher order bits unchanged. For example, if the current output is 000100000000 and the output is less than the input, the SAR adds one bit to the right at the next clock. The output becomes 000110000000 . The output is again compared to the input. If the addition of that one bit is too much, it will be shifted to the right until the output becomes less than the input. When that happens, that SAR will again add one bit to the right. The algorithm of the SAR may be summarized as the following: If the output is greater than the input, shift to the right; otherwise add one bit to the right. This process continues until all 12 bits have been operated on. The last bit (Bit 0 ) is always changed from 0 to 1 , which is used as the condition to set DONE to 1 which, in turn, sets open-collector output, /DONE_OC, to 0 .

\section*{UP/DOWN COUNTER}

After DONE becomes 1 , if /ST and /HOLD are 1 and /TRACK is 0 , the SAR turns into a 12-bit up/down counter. If the analog input voltage increases, the counter will increment by 1 at every clock until it matches the input. If the input decreases, the counter will decrement by 1 . When /HOLD becomes 0 , the counter is inhibited and the output is held indefinitely. The counters consist of 12 toggle flip-flops and 2 p-terms per flip-flop for directional control. The counter will operate only


Figure 1. Functional Block Diagram of 12-Bit High-Speed A/D Converter

High-Speed 12-Bit Tracking A/D Converter Using PLS179


Figure 2. Schematic Diagram of 12-Bit High-Speed A/D Converter
after the approximation cycle is completed and DONE is 1 .

Since the /ST and /HOLD inputs may be asynchronous with the clock, in order to minimize the possibilities of having a metastable condition from happening, these inputs close-up are latched by flip-flops / START of U1 and /HLD of U2 respectively. Once they are latched, subsequent operation begins at the rising-edge of the next clock. The output of the comparator may be latched to prevent setup time violation. (Signetics NE5105 is a high-speed comparator with an output latch. External latch may be used with other comparators.)

\section*{CLOCKS}

U2 generates an optional 2-phase clock which may be used to control the latch of the comparator. The two clocks are basically \(180^{\circ}\) out of phase and CLOCK2 has an additional 25 ns propagation delay behind CLOCK1. CLOCK2 is used to drive the clockinputs of the PLS179 devices.

The clock frequency is controlled by \(R\) and \(C\). Those who want to use the built-in clock
should experiment with RC time constants for the best value. It is recommended that the capacitance shouid ie less than 1000 pF for best results (see Ap Note AN13 for more detail).

\section*{DONE AND /DONE_OC}

The output DONE is reset to 0 when /ST is 0 It remains 0 until the approximation cycle is completed. After the least significant bit becomes 1, the DONE bit becomes 1 at the next clock. It remains 1 until it is reset again by input /ST.

The /DONE_OC output is configured to emulate an open-collector output. The output is programmed to have a logic 0 . When DONE is 0 , the Tri-state output buffer is set to \(\mathrm{Hi}-\mathrm{Z}\) condition. As soon as DONE equals 1, the Tristate buffer is enabled and /DONE_OC becomes 0.

In the initial phase of A/D conversion, 13 clock cycles are required. It is essential that the input voltage to the comparator remains unchanged while the SAR is converting. It may be necessary to have a sample/hold at
the front end. The DONE output may be used to control the analog sample/hold circuit.

\section*{INPUT LATCHES}

Flip-flop /START and 2 p-terms in U1 are configured as a non-inverting D flip-flop. The input, /ST, and the output /START have the same polarities. Flip-flop /HLD and 2 p-terms in U2 also form a non-inverting D flip-flop. The output /HLD and the input /HOLD have the same polarities.

\section*{AMAZE INPLEMENTATION}

The implementation of the logic circuit using AMAZE is as shown in the appendices. The SAR circuit is first designed as a state machine (file name: ADCS.SEE). It is then partitioned into two PLS179s after proper pin assignments are made. Then the up/down counter, input latches, 2-phase clocks and the open-collector output, are implemented by using Boolean equations in their respective .BEE files (file names: ADCB1.BEE and ADCB2.BEE) in AMAZE. The files are then assembled to produce the fuse-maps of PLS179 (ADCB1.STD and ADCB2.STD).


Figure 3. Timing Diagram of Successive Approximation Cycle

\section*{APPENDIX A: STATE EQUATIONS OF SAR}


\section*{APPENDIX A: STATE EQUATIONS OF SAR (Continued)}
\begin{tabular}{|c|}
\hline ```
GTRANSITIONS
WHILE [ INIT ]
    IF [] THEN [ HALFSCALE ] "INITIALIZE REGISTER TO HALF SCALE"
WHILE [ ST2O48 ]
    IF [ GREATER ] THEN [ SH1024 ] "IF GREATER THAN, SHIFT 1 BIT"
    IF [ LESS ] THEN [ AD1O24 ] "IF LESS THAN, ADD 1 BIT"
WHILE [ ST1024 ]
    IF [ GREATEF ] THEN [ SH512 ]
    IF [ LESS ] THEN [ ADS12 ]
WHILE [ ST512 ]
    IF [ GREATER ] THEN [ SH256 ]
            IF [ LESS ] THEN [ AD256 ]
WHILE [ ST256 ]
    IF [ GREATEF ] THEN [ SH128 ]
    IF [ LESS ] THEN [ AD128 ]
WHILE [ ST128]
    IF [ GREATER ] THEN [ SH64 ]
    IF [ LESS ] THEN [ AD64 ]
WHILE [ ST64 ]
    IF [ GREATER ] THEN [ SH32 ]
    IF [ LESS ] THEN [ AD32 ]
WHILE [ ST32 ]
    IF [ GREATER ] THEN [ SH16 ]
    IF [ LESS ] THEN [ AD16 ]
WHILE [ ST16 ]
    IF [ GREATER ] THEN [ SH8 ]
    IF [ LESS ] THEN [ ADS ]
WHILE [ STB ]
    IF [ GREATER ] THEN [ SH4 ]
    IF [ LESS ] THEN [ AD4 ]
WHILE [ ST4 ]
    IF [ GREATER ] THEN [ SH2 ]
    IF [ LESS ] THEN [ AD2 ]
WHILE [ ST2 ]
    IF [ GREATER ] THEN [ SH1 ]
    IF [ LESS ] THEN [ ADI ]
WHILE [ ST1 ]
    IF [ GREATER ] THEN [ SHO ]
    IF [] THEN [END]
``` \\
\hline
\end{tabular}

\section*{APPENDIX B: PIN LISTS}
File Name: ADCB2
Date : \(10 / 21 / 1986\)
Time : \(10: 58: 26\)

Time : 10:58:26

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline LABEL & ** FNC & \multicolumn{3}{|l|}{**PIN} & \multicolumn{2}{|l|}{PIN**} & FNC & ** LABEL \\
\hline CLOCK & ** CK & ** & 1-: & & :-24 & ** & +5V & **VCC \\
\hline /START & ** I & ** & 2-1 & & : -23 & ** & /B & **/DONE_OC \\
\hline COMPARE & * I & ** & 3-: & & i-22 & ** & B & **N/C \\
\hline /HOLD & ** I & ** & 4-1 & \(p\) & : -21 & ** & 0 & **/HLD \\
\hline /TRACK & ** I & ** & 5-1 & L & :-20 & ** & 0 & **BIT4 \\
\hline BITS & ** I & ** & 6-1 & 5 & :-19 & ** & 0 & **BIT3 \\
\hline N/C & * I & * & 7-1 & 1 & :-18 & ** & 0 & **BIT2 \\
\hline N/C & ** I & ** & 8-: & 7 & :-17 & ** & 0 & **BITI \\
\hline N/C & ** I & ** & 9-1 & 9 & i-16 & ** & 0 & **BITO \\
\hline RC & **/B & ** & 10-1 & & :-15 & ** & 0 & **DONE \\
\hline CLOCK1 & ** O & ** & 11-: & & :-14 & ** & 10 & **CLOCK2 \\
\hline GND & ** OV & ** & 12-: & & i-13 & ** & /DE & **N/C \\
\hline
\end{tabular}
```

File Name : ADCBI
Date : 10/21/1986
Time : 10:53:7

```


\section*{APPENDIX C: BOOLEAN EQUATIONS OF UP/DOWN COUNTER AND INPUT LATCH}
```

File Name : ADCB1
Date : 10/21/1986
Time : 10:54:48
CDEVICE TYPE
PLS179
EDRAWING
EREVISION
gDATE
esymboL
FILE NAME : ADCB1
eCOMPANY
GNAME
EDESCRIFTION
@COMMON PRODUCT TERM
ECOMFLEMENT ARRAY
GI/O DIRECTION
GOUTPUT POLARITY
GFLIF FLOP CONTROL
FC = 1;
"SET ALL FLIP FLOP TO BE J/K"
GOUTPUT ENABLE
@REGISTER LOAD
GASYNCHRONOUS PRESET/RESET
aFLIF FLOP MODE
@LQGIC EQUATION
"NON-INVERTING INFUT LATCH: /START = /ST "
START : J = ST ;
"UF/DOWN COUNTER ROUTINE"
/BITS : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BITI *
/BIT2 * /BIT3 * /BIT4 +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2 * BIT3 * BIT4;
/BITG : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BITI *
/BIT2 * /BIT3 * /BIT4 * /BITS +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2 * BIT3 * BIT4* BITS ;
/BIT7 : T = /START * TRACK * DONE * /HLD * COMPARE *
/BITO * /BIT1 * /BIT2 * /BIT3 * /BIT4 * /BITS * /BIT6 +
/START * TRACK * DONE * /HLD * /COMPARE *
BITO * BIT1 * BIT2 * BIT3* BIT4 * BITS * BITG;
/BITB : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BITI *
/BIT2 * /BIT3 * /BIT4 * /BITS * /BIT6 * /BIT7 +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2 * BIT3 * BIT4 * BIT5 * BIT6 * BIT7 ;
/BITQ : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO */BITI *
/BIT2*/BITS*/BIT4 */BITS */BITG */BIT7 */BITB +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2 * BIT3 * BIT4 * BITS * BIT6 * BIT7 * BIT8;
/BITIO : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO */BITI *
/BIT2 */BIT3 * /BIT4 * /BITS * /BIT6 * /BIT7 * /BITB *
/BIT9 +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2* BIT3* BIT4 * BITS* BITG* BIT7 * BITE*
BIT9;
/BIT11 : T = /START * TRACK * DONE * /HLD * COMPARE * /BITO * /BITI *
/BIT2 * /BIT3 * /BIT4 * /BITS * /BITG * /BIT7 * /BIT8 *
/BIT9 *
/BIT1O +
/START * TRACK * DONE * /HLD * /COMPARE * BITO * BITI *
BIT2 * BIT3 * BIT4 * BITS * BIT6 * BIT7* BIT8 *
BIT9 * BITIO;

```

\section*{APPENDIX C: BOOLEAN EQUATIONS OF UP/DOWN COUNTER AND INPUT LATCH (Continued)}

\section*{APPENDIX D: U1 ADCB1 FUSE MAP}

APPENDIX D: U2 ADCB2 FUSE MAP (Continued)

\section*{Signetics}

AN29

\title{
PLHS501 Programmable Macro Logic Primer
}

\author{
Application Note
}

\section*{Application Specific Products}

\section*{SUMMARY}

The evolution of Programmable Logic Devices (PLD's) has led to the birth of a new generation of programmable devices designated as PML (Programmable Macro Logic). The immense versatility of these devices brings them closer as plausible alternatives to semicustom design approaches in low-tomedium ranges of applications. The following paper begins with a background on PML and a brief description of the PML basic architecture (See Reference 1.) Next, the first PML devices are introduced with a detailed discus-

Figure 1. One of the Latest Registered PALs \({ }^{\text {TM }}\)
sion of the PLHS501. The implementation of PML in the AMAZE software package is presented. A system level example intends to demonstrate the capabilities of PML as an eloquent and efficient design alternative.

\section*{THE EMERGENCE OF THE THIRD GENERATION PLD ARCHITECTURE}

PML was introduced at WESCON '85 by Signetics Corporation. The unique architecture of PML breaks away into a new era of
-_ـ_ـ_
programmable logic devices. The purpose of the PML architecture is to overcome the two level AND-OR bottleneck and provide the user with a higher level of logic integration. Current PLD's rely on two levels of logic transformation to implement combinational logic in Sum-Of-Products (SOP) form. In addition various PLD's make use of higher level macros such as flip-flops to form sequential logic functions. These macros connect the AND-OR chain to dedicated I/O pins.

Figure 1 show the basic architecture of one of the most recent PAL \({ }^{\text {TM }}\) devices. It is clear that this architecture is inefficient in making full use of the available on-chip resources. This is due to the fact that an unused I/O macro will be wasted and remains futile.

For example, if an I/O pin is used as an input, the output macros are all wasted. Obviously, such an architecture cannot provide the user with an increase in the levels of logic integration. The PML device takes advantage of the fundamental architecture shown in Figure 2 to overcome these deficiencies and waste of on-chip resources. As shown in Figure 2, PML incorporates the NAND-NAND gate equivalence to break the AND-OR bottleneck.

The core of the PML is the programmable NAND-NAND network which connects the input and output macros to each other. Thus the inputs, outputs, and function macros are all connected by a single array.

At the present, two devices are under development which employ the above architecture. Both devices are fabricated by the Signetics state-of-the-art oxide isolation process and are packaged in 52-pin PLCC.

The first device available will be the PLHS501. The seemingly simple structure of this device can implement every logic function furnished by the current PAL \({ }^{\text {TM } / P L A}\) devices. Although the PLHS501 is principally a combinational logic device, its unique architecture makes it an ideal tool for applications involving asynchronous state machines (See Reference 2.)

The PLHS502 is a sequential logic device. It supplements the PLHS501 features with sixteen edge-triggered flip-flops. The device can provide diverse applications encompassing synchronous and asynchronous state machine designs.

\section*{PLHS501 Programmable Macro Logic Primer}

Table 1. Functional Description of PLHS501 I/O Pins
\begin{tabular}{|c|c|c|}
\hline PIN NO. & IDENTIFIER & FUNCTION \\
\hline \[
\begin{gathered}
41-45,47-52 \\
1-7,9-14
\end{gathered}
\] & 10-123 & Dedicated inputs \\
\hline 37-40 & /B0-/B3 & Fuse-programmable bidirectional I/Os with Active-Low outputs. Can be configured as open-collector outputs. \\
\hline 15-18 & B4-B7 & Logic controlled bidirectional I/Os with Active-High Tri-state outputs. \\
\hline \[
\begin{aligned}
& 28-29 \\
& 30-31 \\
& 32-33 \\
& 35-36
\end{aligned}
\] & \[
\begin{aligned}
& X 0-X 1 \\
& X 2-X 3 \\
& X 4-X 5 \\
& X 6-X 7
\end{aligned}
\] & Pairs of Tri-state Exclusive-OR outputs that have common Output Enable. \\
\hline \[
\begin{gathered}
19,21 \\
22-23
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{OO-O1} \\
& \mathrm{O}-\mathrm{O} 3
\end{aligned}
\] & Pairs of dedicated Active-Low Tri-state output buffers. Each pair has common Output Enable control. \\
\hline \[
\begin{aligned}
& 24-25 \\
& 26-27
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{O} 4-05 \\
& 06-07
\end{aligned}
\] & Pairs of dedicated Active-High Tri-state output buffers. Each pair has common Output Enable control. \\
\hline
\end{tabular}

Figure 2. PML Fundamental Architecture

THE PLHS501 PML
The PLHS501 architecture in Figure 3 exhibits an exquisite logic tool. The device provides a combination of 72 NAND terms, 24 dedicated inputs (\(10-123\)), eight bidirectional I/O's (\(B 0-B 7\)), eight exclusive-OR outputs (\(\mathrm{X} 0-\mathrm{X} 7\)),
and eight dedicated outputs (O0-O7). Figure 4 shows the PLHS501 logic diagram and Table 1 illustrates the functional breakdown of the PLHS501 \(1 / \mathrm{O}\) pins.

Since the output of each NAND term feeds back to the inputs of the NAND array, intri-
cate logic functions can be implemented without wasting valuable I/O pins. For example, in order to impiement an internal 'RS' latch in a combinational PAL \({ }^{\text {TM }} /\) PLD, at least two inputs and two outputs are required. The same internal latch can be configured by the PLHS501 without using any I/O pins.

LD07900s
Figure 3. PLHS501 Logic Diagram

TOP VIEW

Figure 5 illustrates how 'RS' and 'D' latches are implemented in the PLHS501.
Another eminent application of the PLHS501 is in generating asynchronous state machines.

The blend of internal feedback paths together with the abundant number of gates makes this device suitable for designing asynchronous state machines which employ propagation delays of feedback paths as memory elements as shown in Figure 6. (See Reference 2.)

Figure 4. PLHS501 Pin Assignments

Figure 5. R/S and D Latch Implementation with PML

Figure 6. Model of Asynchronous State Machines Using Propagation Delays of the Feedback Path as Memory Elements

\section*{PML DEVELOPMENT}

\section*{SOFTWARE}

Programmable logic development software has become an integral part of the PLD design process. Without software tools PLDs become perplexing devices which are inconvenient to use. Development software enables the user to take full advantage of the programmable logic's resources. The complexity of the PML devices makes software an indispensable element in the design process.

The AMAZE PLD design software, as noted in Reference 3, has been developed for Signetics programmable logic devices. PML
design and development will be fully supported by AMAZE. Figure 7 shows the AMAZE configuration for supporting PML. The structure of the software is based on the following modules:
.BLAST (Boolean Logic And State Transfer entry)
.DPI (Device Programmer Interface)
.SIM (PLD functional SIMulator)
.PI (PML Integrator)
The foundation for the above modules is an AMAZE standard fuse file (STD). The STD file is the common means of communication between all the modules. The following para-
graphs briefly explain the implementation of PML in the AMAZE structure.

\section*{BLAST}

The basic elements of BLAST are:
1. Boolean Equation Entry (BEE).
2. State Equation Entry (SEE).
3. Schematic To Boolean Converter (STBC).
1. BEE accepts user defined logic in the form of boolean equations and produces an AMAZE standard fuse file. The boolean notation in BEE will account for the following PML features.
a. The single array architecture provides an option to specify the number of logic (gate) levels that accommodate a specified function. The number of gate levels dictate the delay between the inputs and outputs. The number of logic levels for each function can be specified using the following notation:

LABEL [number of logic levels] = equation; where LABEL is the user designated name of the output pin.
b. Some outputs have more than one gate associated with them (for example registered or EXOR outputs). The input SIDE of these outputs can be specifically defined: For example:
\[
\text { Pin Label: } \begin{aligned}
& R=\mathrm{eqn} ; \\
& S=\mathrm{eqn}
\end{aligned}
\]
c. User definable CLOCK Logic (e.g. as in the PLHS502.) can be specified.
d. For PML devices the Sum-of-Products (SOP) can be defined as common terms.

Figure 7. AMAZE Configuration for PML
2. SEE accepts state machine definitions and produces the AMAZE standard fuse file. Particularly, SEE will include asynchronous state machine implementations utilizing the PLHS501.
3. STBC converst schematic netlists produced by CAD systems such as Futurenet \({ }^{\text {TM }}\), Daisy, and Mentor into an AMAZE BEE file. STBC will fully embody the PML in the following manner:
a. De Morgan's theorem is applied to produce equations in SOP form. All the functions in SOP form are then converted into their NAND- NAND equivalent.
b. The converter will determine the polarity and the number of levels in each equation and will automatically determine the correct output polarity.

\section*{DPI}

Device Programmer Interface provides the interface between the AMAZE standard fuse file and a commercial programmer. It allows the transmission of data to and from the device programmer.

\section*{SIM}

The functional simulator uses the AMAZE standard fuse file in the following manner:
a. An event driven simulator will assess the delays within the PML in order to properly simulate the pattern.
b. Automatically generates test vectors for the pattern simulation.

\section*{PI}

The PML Integrator is a conversion that transforms various PAL \({ }^{\text {TM }}\) or PLD circuits into a PML device. It will automatically fit multiple PAL \({ }^{T M} / P L D\) devices into a single PML. It is capable of automatically receiving patterns from a commercial device programmer and downloading it back to the programmer after the PML transformation. The implementation of an 'Integrator' will allow the automatic conversion of numerous \(\mathrm{PAL}^{\mathrm{TM}} /\) PLDs into a single PML device.
AMAZE will not be the total extent of development software available for the PML devices. The task of implementing PML design software is already underway by a number of different vendors of CAD software.

\section*{PLHS501 DESIGN EXAMPLE}

The following example intends to manifest the capabilities of the PLHS501. Figure 8 shows a system formed with TTL logic. The system requirements make it imperative only to use discrete asynchronous latches. Thus, none of the 7 latches in the system can be directly replaced by registers. The system diagram is drafted using Futurenet \({ }^{\text {TM }}\) DASH-2 Schematic Designer. The system is partitioned into two PLS173s and one PLS153. In order to convert the system into its targeted PLD's, the PINLIST (see Figures 9a-9c) has to be defined. Using the AMAZE PIN-LIST editor, the specified PLD's are labeled with the same labels as those on the system schematic (Figure 8). After the declaration of labels, AMAZE automatically converts the system to the designated PLDs. The AMAZE
generated boolean equation files are shown in Figures 9a, 9b, and 9c. Figure 10 shows the overall system implemented with PLDs. The logic condensation capabilities of PML makes it feasible to replace the whole system by a single PLHS501 (Figure 11). The PLHS501 in this design will still have ample space for any future additions.
The above example demonstrates only part of the PLHS501 capabilities. The introduction of PML devices and their immense logic power will pave the way for a new generation of efficient and elegant systems.

\section*{REFERENCES}
1. Cavlan, Napoleone 1985. 'Third Generation PLD Architecture Breaks AND-OR Bottleneck', WESCON 1985 Conference Proceedings.
2. Wong, David K. "Third Generation PLS Architecture and its Applications", Electro 1986 Conference Proceedings.
3. '1986 PLD Data Manual', Signetics Corporation.

Fille Nane : FAFili
Date : 12/10/1986
Time : 18:25:54
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LAEEEL & ** & FNC & \multicolumn{3}{|l|}{**FIN} & - FIN & *** & FNC & ** Label. \\
\hline IN1A & ** & I & ** & 1-1 & & 1-24 & ** & +5V & **VCC \\
\hline INIE & ** & I & ** & 2-1 & & 1-23 & ** & 0 & **OUTII \\
\hline 0130 & ** & I & ** & 3-1 & & 1-22 & ** & 0 & **DUTIH \\
\hline INID & ** & I & ** & 4-1 & F & 1-21 & ** & 0 & **OUTIG \\
\hline INIE & ** & I & ** & 5-1 & L. & 1-20 & ** & 0 & **ロT1F \\
\hline OTSAINIF & ** & I & ** & 6-1 & 5 & 1-19 & ** & 0 & **OTIEIN3B \\
\hline IN1G & ** & 1 & ** & 7-1 & 1 & 1-18 & ** & 0 & **OUT10 \\
\hline INIH & ** & I & ** & 8-1 & 7 & 1-17 & ** & 0 & **OT1C \\
\hline IN1I & ** & I & ** & 9-1 & 3 & 1-16 & ** & O & **OTIEINBA \\
\hline INIJ & ** & I & ** & 10-1 & & \(1-15\) & ** & 0 & **ouria \\
\hline OTSEINX & ** & I & ** & 11-1 & & 1-14 & ** & I & **OT2CINIM \\
\hline QND & ** & OV & ** & 12-1 & & 1-13 & ** & 1 & **INIL \\
\hline
\end{tabular}

File Name : FARTi
Date: 12/10/1986
Time: 18:26:56

GDEVICE TYPE
FLS173
GDRAWING
GFEVISION
@DATE
QSYMEOL
CCOMPANY
GNAME
FAFTT 1
GDESCRIPTION
GI/O DIFECTION
©LOGIC EQUATION
OUT1A =/IN1A*/INIE* (IN1J+/OT3AIN1F):
OTIBINSA \(=/\) INIE*INII:
OT1C = /IN1H+OT2CIN1M+/IN1D*/OT3AIN1F+OTBEIN1K:
OUT1D =IN1B+/IN13:
OTIEINBE =/INIE*IN1J+OT2CIN1M+/OT3G*IN1A+/INIA*/IN1G:
OTIF =OT2CINIM*/INIG*/INIL:
OUT1G =OT2CIN1M+/IN1G*INIE+IN1E+/OTSG*INIA:
OUTIH \(=/\) INIH* (INIE) +OTSAINIF+/INIA+INIE+INID:
OUTII \(=(/\) INIE) \(* O T 3 G ;\)

Figure 9a. Part 1: PLS173

\section*{File Name : PART! \\ Date : \(12 / 10 / 1986\) \\ Time: 18:27:40}
Cust/Froject - FART 1.
Date

Rev/I. D.
FLS173

\section*{FOL ARITY}

Figure 9a. Part 1: PLS173 (Continued)

\section*{PLHS501 Programmable Macro Logic Primer}

AN29

File Name a FAFT?
Date : 12/10/1986
Time : 18:30:42

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline LABEL. & ** & FNC, & \multicolumn{2}{|l|}{**FIN} & & \multicolumn{2}{|l|}{FIN**} & FNC, & ** LAEEI. \\
\hline IN1A & ** & I & ** & 1-1. & & 1-24 & ** & +5V & **VCC \\
\hline INOE & ** & I & ** & 2-1 & & 1-23 & ** & B & **N/C \\
\hline JN2C & ** & 1 & ** & 3-1 & & 1.22 & ** & B & **N/C \\
\hline INJ & ** & I & ** & 4-1 & F & 1-21 & ** & 0 & **OT2GINSE \\
\hline IN1I & ** & I & ** & ㄷ․․․ 1 & ! & 1-20 & ** & 0 & **/orzfinso \\
\hline INIS & ** & I & ** & 6-1 & 5 & 1-17 & ** & 0 & **OTッCIMIM \\
\hline TNIE & ** & I & ** & 7-1 & 1 & 1-18 & ** & 0 & **OUT2E \\
\hline OUT1G & ** & 1 & ** & 8-1 & 7 & 1-17 & ** & 0 & * * OUTr2D \\
\hline OUTIH & ** & I & ** & 9-1 & 3 & 1-16 & ** & 0 & **OUT20 \\
\hline OT1C & ** & I & ** & 10-1 & & 1-15 & ** & 0 & **OUT28 \\
\hline OTSAINIF & ** & I & ** & 11-1 & & 1-1.4 & ** & 10 & ** ourca \\
\hline GND & ** & OV & ** & 12-1 & & 1-13 & ** & I & **OTsg \\
\hline
\end{tabular}

File Name : Faftr
Date : 1. \(2 / 10 / 1986\)
Time : 18:31:49
@DEVICE TYFE
FL.S. 7 S
@DFAWING
GREVISIOM
GDATE
ESYMEOL.
©COMF'ANY
©NAME
FAFT2
GDESCRIFTION
@I/O DIFECTION
GLOGIC EQUATION
/OUT2A \(=/((\) OUT \(2 E * /\) OUT \(1 G)):\)
OUT2E =OUTIH+OUTT2A:
OUT2C =OT2CIN1M+/IN1G+OT2FIN3D:
OUT2D =OT3AINIF*/INIG+(/OTSAINIF* ((INIB+/IN1J)*/INII))*INIE +(OT2FINBD*/OTSG*/IN1A)* (/IN1A*/IN1E* (IN1J+/OTBAIN1F)) * (/IN1E*INIJ)) +/OT2GINSE:

OUT2E =/OT2CIN1M*/IN2C;
OT2CINIM =INIG*/OUTCE:
/OT2FIN3D \(=/((\) OUT \(2 C *(I N 2 B))):\)
OT2GINBE \(=/\) OUT2D+OT1C:
```

File Name : PART2
Date: 12/10/1986
Time : 18:32:35
Cunt/Froject - PART2
Date
Rev/1. D.

```


Figure 9b. Part 2: PLS173 (Continued)
```

File Name : FAFils
Date : 1%;10/1986
Time : 18:35:38

```


IABEL ** FNC **FIN …
OTIETMSA
OTIE IMBG
INSC.
OT2NED
Gregmase
\(011 F\)
1H11
IMIH
cotsalmit
GND
** I
** \(1 \quad * * *\)
** 1 ** \(4 \cdots 11 \quad 1 \cdots 1 \% * * 0 \quad * * 0 T 14\)

** 1. ** \(0 \cdots 11 \quad 1 \cdots 16 * * 0 \quad * * 011 \mathrm{~F}\)

** \(1 \quad * * \quad 8 \cdots i \quad 3 \quad 1 \cdots 13 * * 0 \quad * * 01130\)
** iO **

File Name : FAFTS
Date : 12/10/1986
Time : 18:36: 18

EDEVICE TYFE
FLS 153
GDRAWING
GREVISION
GDATE
agymernl
GCOMMF'ANY
gNAME
GDESCFIFTION
GCOMMON FRODUCT TERM
(※I/ODIFECTION
gOUTFUT FOLAFITY
©LOGIC EOUATION

Figure 9c. Part 3: PLS153
```

Filg Name : PARTS
Date : 12/10/1986
Time: 18:36:47
Cust/Froject -
Date
Rev/I. D. -

```
F.LS153 : FOLARITY

IIOOOIOONNO/OOOOI/NNO/OOOOI/ NNTTTNTT/1, TOUTUUNO/1 TOUTUUNO

 \(H 1 F G I C E B \quad H 3 B E 3 G 3\)

Figure 9c. Part 3: PLS153 (Continued)

Figure 10. System in Figure 8 Implemented with PLD s

Figure 11. System in Figure 10 Implemented with PLHS501

\section*{Signetics}

\section*{Application Specific Products}

\section*{INTRODUCTION TO PML \\ DESIGN CONCEPTS}

Programmable Macro Logic, an extension of the Programmable Logic Array (PLA) concept combines a programming or fuse array with an array of wide input NAND gates wherein each gate folds back upon itself and all other such NAND gates. This is called a foldback NAND structure and its basic elements have been outlined previously (Cavlan \({ }^{1}\), Wong \({ }^{2}\), Gheissari and Safari \({ }^{3}\)).

The choice of an internal NAND logic cell is appropriate because the cell is functionally complete, requiring but a single cell type to generate any Boolean function. A cell within the PLHS501 may be configured to accommodate from one to 32 inputs from the outside world, and up to 72 inputs from within the chip. Because the user can select either direct or inverted input variables, and either a direct or complemented output, the NAND function can generate, with a single pass through the programming array, the basic four logic functions of AND, OR, NAND, NOR. All these basic functions, can be extremely wide, of course (see Figure 1.1). This convenient structure allows efficient exploitation of all widely used minimization techniques (Karnaugh Maps, Quine-McCluskey, Boolean AIgebra, etc.).

\section*{Designing with Programmable Macro Logic}

The obvious extensions to additional combinational functions for decoding, multiplexing and general Boolean functions is straightforward. Adding feedback to the system expands the range of realizeable functions to include sequential as well as combinational functions. Figure 1.2 illustrates the basic arrangement of the PLHS501. Because of the large number of inputs each NAND gate has available, logic functions that require several levels of conventional 4 or 8 input gates may be able to be reduced to 1 or 2 levels. However, it is important to realize that unlike AND-OR PLD architectures, more than 2 levels of logic may be implemented in the PLHS501 without wasting output or input pins. Up to 72 levels of logic may be implemented due to each of the 72 foldback NAND gates.

So far, the concept of a "macro" is still not evident. Two ways for the generation of a macro exist - namely, hard and soft. Borrowing from the concept in computer programming wherein a section of code (called a macro) is repeated every time its use is required, we can establish subfunctions which can be repeated each time required. The user defined or soft macro can be one which will generate a function by fused interconnect. When a fixed design function is provided, it is a hard macro. This may be an optimized structure like a flip-flop or an adder,

Figure 1.1 PML Basic Functions
or some other function which is generated on the foundation, by the manufacturer. Soft macros are seldom optimized or precisely consistent, but hard macros are both optimized and unalterable.

When a user function for a particular use is isolated, defined and repetition of the function is required, special software constructs are provided which will allow it to be defined as a soft macro and efficiently replicated. For higher performance and functional density, an array of choices which contain optimized functions or hard macros will be offered in successor chips. In particular, the PLHS502 (described in Section 4) will include an array of flip-flops for high performance state machine design.

Optimizing combinational functions in PML consists largely in making choices and tradeoffs. For single output logic functions, the choice is obvious from the truth table. If a particular function's truth table has fewer entries that are logical zeroes than logical ones, product of sums should be chosen and the appropriate OR-AND structure generated. Otherwise, the usual sum of products should be chosen, minimizing as usual, before dropping into the two level AND-OR structure (using the NAND-NAND realization). Combining the availability of inversion at the input and output of the chip, the NAND-NAND structure can perform either the OR-AND or the AND-OR rendition of a function with equal ease, using precisely the same number of logic levels. The designer needs only to choose the optimal rendition to suit his needs (see Table 1.1). Truth tables with \(50 \%\) ones can use either version at the designers whim unless other uses arise.

\section*{PERFORMANCE}

The PLHS501 (Figure 1.2) is a high speed, oxide isolated, vertically fused PML device containing 72 internal NAND functions which are combined with 24 dedicated inputs, 8 bidirectionals and 16 dedicated outputs. A large collection of applications, both combinational and sequential, may be configured using this part which looks roughly like a small, user definable gate array. For the sake of clarity, worst case passing a signal from an input, making one pass through the NAND array (output terms) and exiting an output takes around 25 nanoseconds with each incremental pass through the NAND foldback array taking about 8 nanoseconds.

\section*{Designing with Programmable Macro Logic}

TABLE 1.1 EXAMPLE DEMONSTRATION

If we group on the one entries we shall get: \(F_{1}=A B^{-}+\overline{B C}+B C\)

If we group on the zero entries we get instead: \(F_{1}=(B+C)(A+B+C)\)

\section*{Designing with Programmable Macro Logic}

Figure 1.2 PLHS501 Logic Diagram

\section*{Designing with Programmable Macro Logic}

The data sheet first lists some maximum propagation delays from an input, through a NAND output term and out through various output gates. Secondly, it lists maximum propagation delays from an input, through a NAND foldback term, through a NAND output term and out through the different output gates.

It is intriguing that subtracting one from the other yields a NAND foldback gate delay of 5 to 6 ns when the worst case gate delay of an internal foldback gate is listed as 8 ns . This is due to the fact that a gate has less of a delay when it's output is falling (tPHL) than when it's output is rising (tPLH). When passing a signal through two NAND gates one gate will
have less of a delay than the other, and since the individual rise and fall delays are not specified, this causes the apparent discrepancy between the two delays.

Figure 1.3, Figure 1.4, Figure 1.5 and Figure 1.6 show graphically the timing paths listed in the PLHS501 data sheet.

\section*{PLHS501 TIMING}

\section*{NOTES:}
pd3 = 22ns maximum.
Input Buffer +1 NAND gate + Output Buffer (\(0,10, B\)).
Figure 1.3 tpd \(\mathbf{~ - ~} 22 n s\) Maximum

PLHS501 TIMING (Continued)

\section*{Designing with Programmable Macro Logic}

\section*{PLHS501 TIMING (Continued)}

L009261S

\section*{Designing with Programmable Macro Logic}

PLHS501 TIMING INTERNAL

NOTE:
\(t_{P D} 7=8 n s\) maximum.
Figure 1.6 tpD \(\mathbf{7}\)-8ns Maximum

\section*{Designing with Programmable Macro Logic}

\section*{NAND GATE FLIP-FLOPS}

Various types of flip-flops and latches may be constructed using the NAND gate building blocks of the PLHS501. A typical 7474 type of edge-triggered \(D\) flip-flop requires 6 NAND gates as shown in Figure 1.7.
No additional gates are required to implement asynchronous set and reset functions to the flip-flop. The equations necessary for AMAZE to implement the D flip-flop are shown in Figure 1.8. However, please note that the equations of Figure 1.8 define a D flip-flop configured as a divide by 2 (i.e., QN is connected to the data input) whereas Figure 1.7 shows a general case. Also note that flipflops with some additional features may be constructed without using more than the six NAND gates. This is possible because of the large number of inputs associated with each NAND gate. For instance, a flip- flop may be required to have a clock gated by one or more signals. Using the PLHS501, it may be implemented by adding additional input signal
names to NAND gate equations of gates \#2 and \#3 of Figure 1.7. If the data input is to the AND of several signals, extra inputs to NAND gate \#4 may be used. Or if additional set or reset lines are required, they may be added simply by using more of the inputs of each NAND gate connected to the main set or reset.

Figure 1.10 shows two simulations of the same flip-flop. The first one is at a little less than maximum frequency, for clarity in following the waveforms, and the second is at the maximum toggling frequency. For these simulations each NAND gate has a maximum tpHL or tpLH of 8 nsec (which is the gate delay of a NAND gate in the PLHS501's foldback array). First of all, it can be seen from these simulations that for proper simulation or testing of such a device a set or reset input is mandatory. Both \(Q\) and \(Q N\) outputs are unknown no matter what the inputs do, until they are put into a known state by either a set or reset input. Secondly, various timing parameters
such as propagation delay, as well as setup and hold times may be determined. For the general case, referring to Figure i.7.

Tsetup \(=\) tpd4 + tpd1, Thold \(=\) tpd3 + tpd4 and Clock to \(Q=\operatorname{tpd} 3+\operatorname{tpd} 6+\operatorname{tpd} 5\).

Therefore, performance of the flip-flop depends a great deal on which gates in the PLHS501 are used, either NAND gates in the foldback array or output NAND gates, connected to bidirectional pins. As a test of the simulation, a D flip-flop connected as a divide by 2 was constructed using only the foldback NAND terms (see Figure 1.8). An output NAND term was used to invert the QN output and drive an output buffer. The only inputs were the clock and a reset. The data input to the flop was driven internally by the QN output. According to the simulation, it was possible to drive the clock at a frequency of 25 Mhz and this small circuit also functioned at that frequency.

Figure 1.7 Edge Triggered D Flip-Flop

Figure 1.8 PLHS501 Test Flip-Flop

\section*{Designing with Programmable Macro Logic}

WF23160S

Figure 1.10 Waveforms of Test Flip-Flop

\section*{Signetics}

\section*{Application Specific Products}

\section*{FUNCTIONAL FIT}

In the late 1960's and early 1970's designers used SSI, MSI and small amounts of early LSI to generate logic solutions. Frustrated by the lack of wide input gates to accommodate a lot of product terms for two level solutions, they turned toward the budding ROM and PROM products. These devices relied on literally realizing a function by generating its truth table in silicon. The logic function had to have each logical one and zero realized distinctly as an entry for a particular combination of input variables, usually supplied on the address lines of the memory. Observing that many such truth tables were dense in ones or zeroes and sparse in the remainder, a cadre of initial manufacturers emerged with focus on supplying a programmable product with a few AND gates and OR gates which were versatile enough to compete against the ROM/PROM parts. The gimmick supplied by these PLA manufacturers was to illustrate the functional equivalency of the PLA to the PROM by comparing the number of product terms (to be shortened to 'p-terms'') the PLA supplied and comparing this to the width and depth of available PROMs. P-terms became the "currency" of the PLA world and a designer only had to assess the equivalent number of Boolean product terms required by his function to determine whether a particular PLA was a suitable candidate for his design.

Almost in parallel, gate arrays became available. These provided an array of identical, fixed input gates (usually two input NANDs or NORs). These were generated in a regular fashion on a substrate which had a fixed input/output pin arrangement. Also recognizing that all logic functions could be built from the appropriate two input gates, when interconnected correctly, manufacturers offered these devices to customers who required increased density.

\section*{Designing with Programmable Macro Logic}

The designer's responsibility was to generate what would ultimately be a metal interconnect pattern of his design. Special tools were required to allow an untrained system designer to do this successfully. Flip-flops, decoders, registers, adders, etc., could all be generated from the low level gate building blocks.

The currency of gate arrays became known as gate equivalent functions. That is, with a limited number of available gates on a substrate, the user needed to know precisely how many gates were used up, on a function by function basis, to generate each piece of his design. A D flip-flop requires about six gates, a D latch four, a 3 to 8 decoder takes about 14 gates and so forth. This allowed estimation regarding whether the function could conceivably be fit onto a particular substrate or not. Manufacturers had to offer multiple foundations so that a designer could be assured that his design would result in a working I.C.

The classic method of estimating whether a logic function would fit into a PLA was to determine the number of I/O pads required and the number of product terms required to generate the logical function, then select the PLA. For a gate array, the required measure included the I/O pad arrangement but substituted the number of available gates to generate the logical function (usually by table lookup). In an attempt to reconcile the two measures, Hartman \({ }^{4}\) has evolved a formula for his product line. A calculation using this method and developing an appropriate "exchange rate" is shown in Table 2.1 for the PLHS501 and PLHS502. An alternate method of generating an estimate is to consider the gate equivalent of generating, say for the PLHS501, a gate equivalent of the part in an optimistic functional configuration (72 occurrences of a 32 input NAND gate). Figure 2.1
shows how this will result in over 2000 equivalent gates. Conversely, by stacking the NAND gates into D flip-flops, its least efficient function, the PLHS501 will have a gate equivalent of only about 100 gates.

The most rational method of assessing fit is to isolate functions and identify the correct configuration in terms of gates, to allow direct tally of the gates used, to generate the proposed configuration. Table 2.2 may assist in doing this analysis. Note that all basic gates require precisely one gate to generate the function. Also note the occurrence of functions in the table which could never be generated as standard I.C.'s previously. The procedure is to tally the design against a total budget of 72 multiple input NAND gates.
Table 2.2 is illustrative only, and should by no means be taken as complete. It may be simply expanded by designing the proposed function with disregard to the usual restrictions on the number of inputs to a gate, realize the function as one, two, three, or more levels of interconnected logic and count the number of gate ocurrences required. Special software has been provided to allow pyramided logic structures to be generated under the designer's control. These structures may, however, be no deeper than 72 levels for the PLHS501. Functions should be generated in accord with the guidelines mentioned before, for selecting an optimal 2 level logical solution.

It is an interesting observation that manufacturers of gate arrays and standard cell products which offer embedded PROMS, ROMS or RAMS have not successfully described these embedded functions in terms of equivalent gates, but rather resort to other means (such as divulging their relative area with respect to the area of a basic gate). There is, as yet, no standard in this arena.

\section*{Designing with Programmable Macro Logic}

\section*{TABLE 2.1 EQUIVALENCY RATIO}

Hartman's method is based on a CMOS gate array equivalency wherein 4 transistors constitute a 2 input NAND or NOR gate, equal to one gate. Thus, his 'exchange rate" is as follows:
\[
\begin{aligned}
\text { E.R. }= & 4 \times \# \text { inputs } \\
& +9 \times \# \text { FFs } \\
& +7 \times \# \text { 3-State outputs } \\
& +(15 \text { to } 30) \times \# \text { OR outputs from the AND/OR array. }
\end{aligned}
\]

For the PLHS501: (using CMOS numbers which may be inappropriate)
```

E.R. = 4 < 32
+9\times0
+7\times24
+(15 to 30) }\times50%\mathrm{ of }72\mathrm{ feedbacks = 836 to 1376 gates

```

For the PLHS502:
\[
\begin{aligned}
\text { E.R. }= & 4 \times 32 \\
& +9 \times 16 \\
& +7 \times 12 \\
& +(15 \text { to } 30) \times 50 \% \text { of } 64 \text { feedback }=962 \text { to } 1502 \text { gates }
\end{aligned}
\]

Being for two bipolar I.C.'s, in this case, the method may be inappropriate, but may be taken as an estimating procedure.

NOTE:
Double this and add one for a 32 input NAND.

TABLE 2.2 PLHS501 GATE COUNT EQUIVALENTS
\begin{tabular}{|c|c|c|}
\hline FUNCTION & PLHS501 INTERNAL NAND EQUIVALENT & COMMENTS \\
\hline \multicolumn{3}{|l|}{Gates} \\
\hline \begin{tabular}{l}
NANDs \\
ANDs \\
NORs \\
ORs
\end{tabular} & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
For 1 to 32 input variables. \\
For 1 to 32 input variables. \\
For 1 to 32 input variables. \\
For 1 to 32 input variables.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Decoders} \\
\hline \begin{tabular}{l}
3 to 8 \\
4 to 16 \\
5 to 32
\end{tabular} & \[
\begin{gathered}
8 \\
16 \\
32
\end{gathered}
\] & Inverted inputs available. Inverted inputs available. Inverted inputs available (24 chip outputs only). \\
\hline \multicolumn{3}{|l|}{Encoders} \\
\hline \begin{tabular}{l}
8 to 3 16 to 4 \\
32 to 5
\end{tabular} & \[
\begin{aligned}
& 15 \\
& 32 \\
& 41
\end{aligned}
\] & Inverted inputs, 2 logic levels. Inverted inputs, 2 logic levels. Inverted inputs, 2 logic levels, factored solution. \\
\hline \multicolumn{3}{|l|}{Multiplexers} \\
\hline \begin{tabular}{l}
4 to 1 \\
8 to 1 \\
16 to 1 \\
27 to 1
\end{tabular} & \[
\begin{gathered}
5 \\
9 \\
17 \\
28
\end{gathered}
\] & \begin{tabular}{l}
Inverted inputs available. \\
Can address only 27 external inputs - more if internal.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Flip-Flops} \\
\hline \[
\begin{aligned}
& \text { D-FF } \\
& \text { T-FF } \\
& \text { J-K-FF }
\end{aligned}
\] & \[
\begin{aligned}
& 6 \\
& 6 \\
& 8
\end{aligned}
\] & With asynch S-R With asynch S-R With asynch S-R \\
\hline \multicolumn{3}{|l|}{Adders} \\
\hline 8-bit & 45 & Full carry look-ahead (four levels of logic) \\
\hline \multicolumn{3}{|l|}{Barrel Shifters} \\
\hline 8-bit & 72 & 2 levels of logic \\
\hline
\end{tabular}

\section*{Signetics}

\section*{Application Specific Products}

\section*{DESIGN EXAMPLES}

Most designers tend to view a PLD as a mechanism for collecting logical glue within a system. That is, those pieces which tie together the larger LSI microprocessors, controllers, RAMs, ROMs, UARTs, etc. However, there is a tendency of viewing a gate array as an entire system on a chip. PML based products will fit well in either casting as will be demonstrated by a series of small but straightforward examples. For starters, we shall examine how the fusing process embeds functions, progress to glue-like decoding operations and finally demonstrate some

\section*{Designing with Programmable Macro Logic}
coprocessor like functions as well as homemade 'standard products'.

The method of associating gates within the NAND foldback structure is depicted in Figure 3.1 wherein a simple three to eight decoder is fused into the array. The corresponding inputs are on the left and outputs at the top. This figure shows inputs and their inverse formed in the array resulting in a solution that requires 6 inverting NANDs that would probably be best generated at the input receivers. Hence, this diagram could be trimmed by six gates, down to eight to achieve the function. Figure 3.2 shows two consecutive D-flip-flop
fusing images. Note that asynchronous sets and resets may be achieved for free, in this version. In both Figures 3.1 and 3.2 the gates are numbered in a one-to-one arrangement. As well, the accompanying equations are in the format used by Signetics AMAZE design software. For clarity, consider the gate labeled 2A in Figure 3.1. Schematically, this is shown as a 3 input NAND. However, in the fused depiction, it combines from three intermediate output points with the dot intersect designation. Hence, all gates are drawn as single input NANDs whose inputs span the complete NAND gate foldback structure.

1 OF 8 DECODER/DEMULTIPLEXER

TWO EDGE-TRIGGERED FLIP-FLOPS

Figure 3.2 Two Flip-Flops Implemented in the NAND Foldback Structure

One straightforward example of using a PLHS501 is shown in Figure 3.3. Here, the device is configured to accept the 23 upper address lines generated by a 68000 microprocessor. By selecting the direct and complemented variables, at least 16 distinct address selections can be made using only the dedicated outputs. The designer can combine additional VME bus strobes, or other control signals to qualify the decode or, define 8 additional outputs for expanded selection. As well, the designer could transform the bidirectionals to inputs and decode over a 32 bit
space, selecting combinations off of a 32 bit wide address bus. Because this simple level of design requires only NAND output terms plus 4 NAND gates in the foldback array (for inversion of signals connected to O3.O0), there may be as many as 68 remaining gates to accomplish additional handshaking or logical operations on the input variables.

Figure 3.368000 Microprocessor Address Decode

\section*{Designing with Programmable Macro Logic}

Figure 3.4 8-Bit Barrel Shifter Implemented with the PLHS501

An eight bit barrel shifter exploits most of the PLHS501 as depicted in Figure 3.4. This implementation utilizes all 72 internal foldback NANDs in a relatively brute force configuration as well as 8 output NANDs to generate transparent latched and shifted results. The shift position here is generated by the shift 0 , shift 1 and shift 2 inputs which are distinguished and selected from the input cells. Variations on this idea of data manipulation could include direct passing data, mirror
imaged data (bit reversal) or byte swapping to name a few.

Part of an eight bit, look-ahead parallel adder is shown in Figure 3.5. Gates necessary to form the level-0 generate and propagate, as well as the XOR output gates generating the resulting sum are not shown. The reader should be aware that this solution exploits four layers of pyramided gates and only utilizes a total of about 58 gates. Additional
comparison or Boolean operations could still be generated with remaining NAND functions to achieve additional arithmetic operations. This application should make the reader aware of a new class of applications achieveable with third generation PLDs - user defineable I/O coprocessors. The approach of increasing microprocessor performance by designing dedicated task coprocessors is now within the grasp of user defineable single chip solutions.

\section*{Designing with Programmable Macro Logic}

Figure 3.5 Partial NAND Gate Equivalence of the 8-Bit Look-Ahead Adder

An example of one of the least efficient structures realizeable on the PLHS501 is shown in Figure 3.6. Here, a cascade of 12 D-flip-flops are formed into a toggle chain that uses all available NAND gates in the main logic array. In the PLHS501 simple cross coupled latches or transparent D latches are preferred over edge triggered flip flops simply because they conserve NAND gates. Applications for structures like this include timing generators, rate multiplication, etc. Additional output gates exist on the output terms as shown in Figure 1.2, which could gate the output in multiple state detection configurations. As well, rearranging Figure 3.6 as a 12-bit shifter, picking off states at the output terms could result in a general purpose sequence recognizer capable of recognizing binary string sequences. These strings could be up to 13 bits long (in a Mealy configuration) and 24 distinct sequences could be sensed and detected.

Figure 3.7 shows a 32 to 5 -bit priority encoder. This sort of device could generate encoded vector interrupts for 32 contending devices. Of particular interest is the fact that ordinary encoders are not this wide. The designer is, of course, not constrained to generating combinational functions in even powers of two. Thus, the PLHS501 can easily perform customized functions like a 5 to 27 decoder or a 14 to 4 encoder or, even an 18 to 7 multiplexor. For the sake of optimization, the designer is encouraged to implement precisely the function he needs, no more and no less!

The design examples given are illustrative of some typical operations used in ordinary systems. In each case, the example could be thought of as simply an "off the shelf" standard solution to an every day problem (i.e., a de facto standard product).

\section*{Signetics}

\section*{Application Specific Products}

\section*{SUCCESSOR ARCHITECTURES}

The design examples described and Table 2.2 illustrate the combinational power and the sequential limitations of the PLHS501 - Signetics first PML entry. Clearly, the next family members must address the flip-flop issue, and they do. The PLHS502 (Figure 4.1) shows a similar NAND function array of 64 gates with the vital addition of 8 buried D-flip-flops and 8 buried S-R flipflops. Again, 16 pins are devoted to dedicated outputs, 20 straight inputs, 4 clock or general

\section*{Designing with Programmable Macro Logic}
inputs and 8 bidirectionals can be configured to expand input or output capabilities. Slated to operate in the middle 30 MHz clocking range, this part greatly expands the sequencer capability beyond the initial PLHS501. The PLHS502 application range will include state machines like CRC generation/detection, Bus handshakers, LAN handshaking, arithmetic coprocessors, single chip systems and a complete bevy of general sequencer operations such as sequence generation and detection. It should be emphasized that the

NAND array is fully connected and circumvents limitations on connectivity as found in other PLD products.

Almost simultaneous with the arrival of the PLHS502 (a bipolar part) will be the first CMOS PML entry. Expanding on the functional capabilities of the PLHS502, the CMOS part will offer 52 flip-flops in a variety of natural configurations with a NAND array near 200 gates. Due to complexity and density, the part will combine a distinctive power-save option and the benefits of scan-design.

Figure 4.1 PLHS502 Diagram

\section*{Signetics}

\section*{Application Specific Products}

\section*{SUPPORT ISSUES}

The current PML architecture, the PLHS501, is adequately supported by Signetics AMAZE software. Offered free to qualified users, AMAZE can generate the required design files, fusemaps and simulations within the appropriate modules of AMAZE. From a simple menu driven environment on an IBM personal computer (or compatible under MS/ DOS), the user can generate a design with logic equations, state equations or schematic entry (using FutureNet Dash or ORCAD SDT software). Once the design is entered, the user must "assemble" it prior to fusing the PML product. If required, the user may simulate the assembled file to determine the accuracy and functional operation of his design. Iteration between design entry, assembly and simulation may be required, depending on the users expectations and the completeness of design. Automatic test vector generation is a simulation option. Currently

\section*{Designing with Programmable Macro Logic}
the designer may fuse his design using either a DATA I/O Unisite programmer, a Stag ZL-30A or a STREBOR fusing system with corresponding configuration modules.
The AMAZE product is fully contained and complete except for the schematic capture program. Although it is used for the complete line of Signetics PLD products (PLAs, Sequencers and PROMs), it has undergone additional modification to support special features required by the nature of the PML products. These include the following:
- Internal Nodes - the ability to define and refer to nodes completely within the array and isolated from direct contact with the device I/O pins.
- Bracket Freezing - the ability to tag (with square brackets) a Boolean subfunction which is not to be optimized by the AMAZE assembler but is to be realized within the design explicitly as described by equation.

Both features are key to the AMAZE approach to macro generation. In particular, "bracket freezing" allows the designer to make tradeoffs between wide and shallow combinational paths and long, narrow combinational paths.
In the current rendition of AMAZE, automatic placement and interconnect of the fused Boolean functions is the recommended approach. Should the user decide to intervene, a special fuse table editor exists for manual alteration of the design file. This is not the recommended approach, but it also serves as a diagnostic tool to review design placement and interconnect.

Future directions for software support include enhanced simulation, exhaustive automatic Boolean optimization, the development of a full library of macros, automatic design partitioning and a wide assortment of bells and whistles.

\section*{Signetics}

\section*{Application Specific Products}

\section*{PLHS501 EXAMPLES USING}

AMAZE REVISION 1.6
- Simple gate implementations
- 8-bit barrel shifter
- 12-bit comparator with dual 1 of 8 decoders
- 8-bit carry look-ahead adder
- 32 to 5 priority encoder
- 8-bit shift register with 3 -bit counter and sequence detector
- 4-bit synchronous counter

Following are six example applications for the PLHS501 using AMAZE Rev. 1.6. They should not be viewed as showing all possible capabilities of the device. They have been designed to demonstrate some of the PLHS501 features, syntax of AMAZE, and to give the reader some ideas for possible circuit implementations.

Note that these examples were written using AMAZE Rev. 1.6. Although Signetics will try to keep succeeding versions of AMAZE compatible, it may be necessary to change some syntax rules. Therefore, please refer to your AMAZE manual for any notes on differences, if using a revision later than Rev. 1.6.

\section*{SIMPLE GATE IMPLEMENTATIONS}

In this example six functions were implemented for each of the three major types of output structures. The six functions are AND/ OR, AOI, NAND, AND, OR and NOR. A requirement for the AND/OR and AOI gates was to use only two gates each from the foldback array and to combine these product terms in one NAND output gate. To achieve this result, it was necessary for the /B and /O outputs to write equations using internal nodes and brackets around the equation. Refer to Figures 6.1 and 6.2.
For the simulation (Figures 6.3 and 6.4) a binary count of 0 through 15 hex was applied to the input D-A. Each output of the log file was checked against anticipated and other device outputs of the same function for correct operation.

\section*{Designing with Programmable Macro Logic}

\section*{Designing with Programmable Macro Logic}

Figure 6．2 Gates Boolean Equations

\footnotetext{
＂Simulation input file for GATES
＂＜－－－－－－－INPUTS－－－－－－－＞＞\(\langle\) B，\(/ \mathrm{B}\rangle\)
＊ 222211111111111
． 32109876543210987654321076543210
＊DCBA A is MSB，D is LSB
ННL工LLHНнннннНннНнннннНН HHHLLLHHHHHHHHHHHHHHHHHH
\(\qquad\) ＂Input all 0＇s A－D＂ ннг
\(\qquad\) Input count \(1^{*}\)期 \(\qquad\) ＂Through．．．
 HHL工HLHHHHHHHHHHHHHHHHHH HHHLHLHHHHHHHHHHHHHHHHHH HHLHHLHHHHHHHHHHHHHHHHHH
 ННL工 НННІ工ННННННННННННННННННН HHL HLHHHHHHHHHHHHHHНHННН ННННL HHHHHHHHHHHHHHHHHHH ННL工सHHHHHHHHHHHHHHHHHHH НННLНнНННННННННННННННнНН HHLHHHHHHHHHHHHHHKHHHHHH QUIT
}

Figure 6．3 Gates Simulation Input File

\section*{Designing with Programmable Macro Logic}

Figure 6.4 Gates Simulation Log File

\section*{8 BIT BARREL SHIFTER}

This 8 -bit shifter wiil shifi to the right, data applied to A7-A0 with the result appearing on OUT7 - OUT0. Data may be shifted by 1 to 7 places by indicating the desired binary count on pins SHIFT2 - SHIFT0. Data applied to the OUTO position for a shift of 1 . For a shift of \(0, A 7\) will appear on OUT7.
Also included is a transparent latch for the output bits. The input 'COMPLMTO' will invert all output bits simultaneously and input /OE will 3-State all outputs.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Left} & & \multicolumn{4}{|c|}{Right} \\
\hline LABEL & ** FNC & **PIN & & PIN** & FNC & ** & LABEL \\
\hline VCC & ** +5V & ** 8-1 & & |-46 ** & +5V & **VCC & \\
\hline A2 & ** I & ** 9-1 & & |-45 ** & I & **N/C & \\
\hline A3 & ** I & ** 10-1 & & -44** & I & **N/C & \\
\hline A4 & I & ** 11-1 & P & -43** & I & **N/C & \\
\hline A5 & * I & ** 12-1 & L & -42 ** & I & **N/C & \\
\hline A6 & ** I & ** 13-1 & H & -41 ** & I & **N/C & \\
\hline A7 & ** I & ** 14-1 & S & -40 ** & 10 & **LO & \\
\hline L4 & ** 0 & ** 15-1 & 5 & |-39 ** & 10 & **L1 & \\
\hline L5 & ** 0 & ** 16-1 & 0 & |-38 ** & 10 & **L2 & \\
\hline L6 & ** 0 & ** 17-1 & 1 & -37** & 10 & **L3 & \\
\hline L7 & ** 0 & ** 18-1 & & - -36 ** & 0 & **OUT7 & \\
\hline N/C & ** 0 & ** 19-1 & & |-35 ** & 0 & **OUT6 & \\
\hline GND & ** OV & ** 20-1 & & -34 ** & OV & **GND & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Bottom} & & \multicolumn{3}{|r|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** & FNC & ** LABEL \\
\hline N/C & ** 0 & ** 21-1 & & 1-7** & I & **Al \\
\hline N/C & ** 0 & ** 22-1 & & 1-6 ** & I & **AO \\
\hline N/C & ** 0 & ** 23-1 & & 1-5 ** & I & **SHIFT2 \\
\hline N/C & ** 10 & ** 24-1 & P & 1-4 ** & I & **SHIFTl \\
\hline N/C & ** \(/ 0\) & ** 25-1 & L & 1-3** & I & **SHIFTO \\
\hline N/C & ** /0 & ** 26- & H & 1-2 ** & I & **COMPLMTO \\
\hline N/C & ** / 0 & ** 27-1 & S & 1-1 ** & I & **/LE \\
\hline OUTO & ** 0 & ** 28-1 & 5 & |-52 ** & I & **/OE \\
\hline OUT1 & ** 0 & ** 29-1 & 0 & |-51 ** & I & **N/C \\
\hline OUT2 & ** 0 & ** 30-1 & 1 & -50 ** & I & **N/C \\
\hline OUT3 & ** 0 & ** 31-1 & & -49 ** & I & **N/C \\
\hline OUT4 & ** 0 & ** 32-1 & & -48** & \(I\) & **N/C \\
\hline OUT5 & ** 0 & ** 33-1 & & -47** & I & **N/C \\
\hline
\end{tabular}
reo3700s

Figure 6.5 Barrel Shifter Pin List

\section*{Designing with Programmable Macro Logic}
```

File Name : BRLSHFT
Date : 9/15/1987
Time : 9:32:14
@DEvICE TYPE
PLHS501
@DRAWING
ZREVISION
aDATE
@SYMBOL
@COMPANY
aNAME
@DESCRIPTION
8 Bit Barrel Shifter
with 3-state latched outputs
@INTERNAL NODE
nod1,nod2,nod3,nod4,nod5,nod6, nod7, nod8;
nod9, nodl0, nodl1, nodl12,nod13,nodl4, nodl5,nodl6;
nodl7, nodl8, nod19, nod20,nod21, nod22, nod23, nod24;
nod25, nod26, nod27, nod28, nod29, nod30, nod31, nod32;
i3,i2,i1,i0;
@COMMON PRODUCT TERM
rot0 =/ shift2 *//shiftl * /shift0;
rotl = /shift2 * /shiftl * shift0;
rot2 - /shift2 * shiftl * /shift0;
rot3 =/ shift2 * shiftl * shift0;
rot4 = shift2 */shiftl */shift0;
rot5 = shift2 * /shiftl * shift0;
rot6 = shift2 * shiftl * /shift0;
rot7 = shift2 * shiftl * shift0;
@I/O DIRECTION
xe0 = oe;
xel = oe;
xe2 = oe;
xe3 - oe;
@I/O STEERING
@LOGIC EQUATION
17=/[a] * rot0 */le +
a6 * rotl * /le +
a5 * rot2 * /le +
a4 * rot3 * /le +
a3 * rot4 */le +
a2 * rot5 * /le +
al * rot6 * /le +

## Designing with Programmable Macro Logic

```
 a0 * rot7 * /le +
 le * /l7];
 16 = /[a6 * rot0 * /le +
 a5 * rotl * le +
 a4 * rot2 */le +
 a3 * rot3 * /le +
 a2 * rot4 * /le +
 al * rot5 * /le +
 a0 * rots * /le
 a7 * rot7 * /le +
 le */16];
 15 = /[a5 * roto */le +
 a4 * rotl * /le +
 a3 * rot2 * /le +
 a2 * rot3 * /le +
 al * rot4 *
 a0 * rot5 * /le +
 a7 * rot6 * /le +
 a6 * rot7 * /le +
 le * /l5];
 14 = /[a4 * rot0 * /le +
 a3 * rotl * /le +
 a2 * rot2 * /le +
 al * rot3 */le +
 a0 * rot4 */le +
 a7 * rot5 */le +
 a6 * rot6 * /le +
 a5 * rot7 * /le +
 le*/14];
 nodl = [a3 * rot0 * /le];
 nod2 = [a2 * rot1 * /le];
 nod3 - [al * rot2 * lle];
 nod4 = [a0 * rot3 * /le];
 nod5 = [a7 * rot4 * /le];
 nod6 - [a6 * rot5 * /le];
 nod7 = [a5 * rot6 * /le];
 nod8 = [a4 * rot7 * /le];
 i3 = [1e * 13];
 13 = /([/nodl*/nod2*/nod3*/nod4*/nod5*/nod6*/nod7*/nod8*/i3]),
nods = [a2 * rot0 * /le];
nodl0= [al * rotl * /le];
```

Figure 6.7 Barrel Shifter Boolean Equations (Continued)

```
nodll- [a0 * rot2 * /le];
nodl2= [a7 * rot3 * /le];
nodl3= [a6 * rot4 * /le];
nodl4- [a5 * rot5 * /le];
nodl5= [a4 * rot6 * /le];
nodl6m [a3 * rot7 * /le];
i2-[1e * 12];
```

$12=/([/$ nod9*/nodl0*/nodll*/nod12*/nodl3*/nodl4*/nod15*/nodl6*/i2]);
nodil= [al * roto * /le];
nod18- [a0 * rotl * /le];
nodi9- [a7 * rot2 */le];
nod20- [a6 * rot3 * /le];
nod21- [a5 * rot4 */le];
nod22- [a4 * rot5 */le];
nod23- [a3 * rot6 * /le];
nod24- [a2 * rot7 */le];
il - [1e * 11];
$11=/([/ \operatorname{nod} 17 * /$ nod18*/nod19*/nod20*/nod21*/nod22*/nod23*/nod24*/ill) ;
nod25= [a0 * rot0 */le];
nod26= [a7 * rotl * /le]
nod27= [a6 * rot2 * /le];
nod28= [a5 * rot3 * /le];
nod29- [a4 * rot4 * /le];
nod30- [a3 * rot5 * /le];
nod31- [a2 * rot6 */le];
nod32= [al * rot 7 */le];
$10=[1 \mathrm{e} * 10]$;
$10=/([/ \operatorname{nod} 25 * / \operatorname{nod} 26 * / \operatorname{nod} 27 * / \operatorname{nod} 28 * / \operatorname{nod} 29 * / \operatorname{nod} 30 * / \operatorname{nod} 31 * / \operatorname{nod} 32 * / i 0])$;
out7 : xrl = /17;
$\mathrm{xr} 2=$ complmto
out6 : $\mathrm{xrl}=/ 16$;
xr2 $=$ complmto;
out5 : xrl $=/ 15$;
xr2 $=$ complmto;
out4 : xrl $=/ 14$.
xr2 - complmto;
out3: $\mathrm{xrl}=13$; xr2 = complmto;
out2 : $\mathrm{xrl}=12$;
xr2 = complmto;
outl : $\mathrm{xrl}=11$;
out0 : $\begin{aligned} \mathrm{xr} 2 & - \text { complmto; } \\ \mathrm{xr} 1 & =10 ; \\ \mathrm{xr} 2 & =\text { complmto; }\end{aligned}$
TB03740S
Figure 6.7 Barrel Shifter Boolean Equations (Continued)

## Designing with Programmable Macro Logic



Figure 6.8 Barrel Shifter Simulation Input File

```
PLHS501 BRLSHFT Time = 14:12:36 Date = 9/14/1987
* <------INPUTS-------> < B,/B\rangle\langleXOR \rangle\langle/O,0\rangle TRACE TERMS
* 222211111111111
~ 321098765432109876543210765432107654321076543210
 0000000000001011111111111 HHHHLLLL LLLLLLLL LLLLHHHH ;
 111111110000101111111111 LLLLHHHH HHHHHHHH LLLLHHHH;
 1010101000001011111111111 LHLHLHLH HLHLHLHL LLLLHHHH ;
 0101010100001011111111111 HLHLHLHL LHLHLHLH LLLLLHHHH ;
 0000000100001011111111111 HHHHHLLL LLILLLLH LSLLHHHH ;
 0000000100101011111111111 HHHHLHLL LILLLLHL LLLLHHHH ;
 000000010100101111111111 HHHHLLHL LLLLLHLL LLLLHHHH ;
 0000000101101011111111111 HHHHLLLH LLLLHLLL LLLLHHHH ;
 0000000110001011111111111 HHHLILLLL LLLHLLLL LLLLLHHHH ;
 0000000110101011111111111 HHLHLLIL LLHLLLLL LLLLHHHH ;
 0000000111001011111111111 HLHHLLTL LHLLLLLL ILLLHHHHH ;
 0000000111101011111111111 LHHHLLLL HLLLLLLL LLLLHHHH ;
 0000111110001011111111111 LLLLLLLL HHHHLLLL LL工LHHHH ;
 1010101000101011111111111 HLHLHLHL LHLHLHLH ILLLHHHH ;
 0000000000001011111111111 HHHHLLLL LLLLLLVL LLLLHHHH ;
 0000000000011011111111111 HHHHL工LL HHHHHHHH LLLLHHHH ;
 0000111100001011111111111 HHHHHHHH LLLLHHHH ILLLHHHH ;
 1010101000000011111111111 HHHHHHHH LLLLHHHH LLLLHHHH;
 0000000100000011111111111 HHHHHHHH LLLLHHHH LLLLHHHH ;
 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 ~ H H H H H H H H ~ L L L L H H H H ~ L L L L H H H H ; ;
 0000010000000011111111111 HHHHHHHH LLLLHHHH LLLLHHHH ;
 0000100000000011111111111 HНННHHHH LLLLHHHH LLLLHHHH ;
 0001000000000011111111111 HННННННН LLLLHHHH LLLLHHHH ;
 0010000000000011111111111 HHHHHHHH LLLLHHHH LLLLHHHH ;
 0100000000000011111111111 HННННННH LLLLHHHH LLLLHHHH ;
 1000000000000011111111111 HНННННHH LLLLHHHH LLLLHHHH ;
 0000000000001011111111111 HHHHLLLL LLILLLLL LLLLHHHH
 00000000000011111111111111 HHHHLLLL LLLLHHHH;
*
" ------------------------------------- I/O CONTROL LINES
"* 00000000 DESIGNATED I/O USAGE
* PINLIST
* 14}1
-18}17716 15 40 39 38 37 36 35 33 32 31 30 29 28
* 27 26 25 24 23 22 21 19 ;
```

Figure 6.9 Barrel Shifter Simulation Log File

## Designing with Programmable Macro Logic

## File Name : i2bITCiF <br> Date : 9/15/1987 <br> Time : 9:36:0

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Left				Right	
LABEL	** FNC	**PIN		PIN** FNC	** LABEL
VCC	** +5V	** 8-1		1-46** + 5V	**VCC
B6	** 1	** 9-1		$\mid-45$ ** I	**A4
B7	** I	** 10-1		$\mid-44$ ** I	**A3
B8	** I	** 11-1	P	\|-43 ** I	**A2
B9	** I	** 12-1	L	\|-42 ** I	**A1
B10	** I	** 13-1	H	-41 ** I	**A0
B11	** I	** 14-1	S	\|-40 **/0	**CMPOUT
ENCOMP	** I	** 15-1	5	\|-39 ** I	**DA2
DCDREN	** I	** 16-1	0	\|-38 ** I	**DA1
RW	** I	** 17-1	1	\|-37 ** I	**DAO
N/C	** B	** 18-1		\|-36 ** 0	**R7
W0	** 0	** 19-1		-35 **0	**R6
GND	** OV	** 20-1		-34 ** OV	**GND


Bottom				Top				
LABEL	** FNC	**PIN			**	FNC	**	LABEL
W1	** 0	** 21-1		1-7	**	I	**B5	
W2	** 0	** 22-1		1-6	**	I	**B4	
W3	** 0	** 23-1		1-5	**	I	**B3	
W4	** 10	** 24-1	- p	1-4	**	I	**B2	
W5	** 10	** 25-1	L	1-3	**	I	**B1	
W6	** $/ 0$	** 26-1	H	1-2	**	I	**BO	
W7	** 10	** 27-1	S	1-1	**	I	**All	
RO	** 0	** 28-1	5	\|-52	**	I	**A10	
R1	** 0	** 29-1	0	\|-5]	**	I	**A9	
R2	** 0	** 30-1	1	\|-50	**	I	**A8	
R3	** 0	** 31-1		\|-49	**	I	**A7	
R4	** 0	** 32-1		\|-48	**	I	**A6	
R5	** 0	** 33-1		\|-47	**	I	**A5	

Figure 6.10 12-Bit Comparator Pin List

## 12 BIT COMPARATOR WITH DUAL 1 OF 8 DECODERS

Two functions that are very often associated with controlling I/O parts are address comparison and address decoding. In this example, both functions are programmed into a PLHS501 using 52 out of the 72 foldback NAND terms.

The comparator compares 12 bits on inputs A11-A0 to inputs B11-B0 when the input 'ENCMP' is High. Output 'CMPOUT' will become active-Low when all 12 bits of the A input match the $B$. Selection between the two decoders is done with input 'R/W'. Only one output may be active (Low) at a time. Although currently separate functions, the decoder enable may be derived internally from 'CMPOUT' freeing 2 bidirectional pins which together with available foldback NAND terms, may be used to incorporate a third function.


Figure 6.11 12-Bit Comparator with Dual 1-8 Decoders Block Diagram

## Designing with Programmable Macro Logic

## File Name : 12BITCMP <br> Date : 9/15/1987 <br> Time : 9:36:17 <br> @DEVICE TYPE <br> PLHS501 <br> @DRAWING <br> @REVISION <br> @DATE <br> @SYMBOL <br> @COMPANY <br> @NAME <br> @DESCRIPTION

12-bit address comparator and dual 1 of 8 decoders
@INTERNAL NODE
axb0, axbl , axb2, axb3, axb4, axb5, axb6;
axb7, axb8, axb9, axbl0, axbll;
@COMMON PRODUCT TERM
ado $=/$ da $2 \star /$ dal $* /$ da $0 *$ dcdren;
adl-/da2*/dal* da0*dcdren;
ad2=/da2* dal*/da0*dcdren;
ad3=/da2* dal* da0*dcdren;
ad4 $=$ da $2 \star /$ dal $* /$ da $0 *$ dcdren;
ad5= da2*/dal* da0*dcdren;
ad6= da2* dal*/da0*dcdren;
ad7= da2* dal* da0*dcdren;
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
"12-Bit Address Comparator"

```
axb0 =a0*/b0 + /a0*b0;
axbl =al*/bl + /al*bl;
axb2 =a2*/b2 +//a2*b2;
axb3 =a3*/b3 +/a3*b3;
axb4 = a4*/b4 +/a4*b4;
axb5 =a5*/b5 +//a5*b5;
axb6 =a6*/b6 +/a6*b6;
axb7 = a7*/b7 + /a7*b7;
axb8 = a8*/b8 + /a8*b8;
axb9 =a9*/b9 +/a9*b9;
axbl0 =al0*/bl0 +/al0*bl0;
axbll = all*/bll + /all*bll;
```

cmpout $=/(/ \mathrm{axb} 0 * / a x b 1 * / a \times b 2 * / a x b 3 * / a \operatorname{axb} 4 * / a \times b 5 * / a \times b 6 * / a x b 7 * / a x b 8 * / a x b 9 *$ /axbl0*/axbll*encomp);

Dual 1 of 8 decoders

- da2-da0 are address inputs
- dcdren is an enable input
- rw selects which group of 8 outputs r7-r0 or w7-w0 will have the decoded active low output"
w7 - $/(\mathrm{ad7} * / \mathrm{rw})$;
w6 $=/(\mathrm{ad6} / \mathrm{rw})$;
w5 $=/(\mathrm{ad} 5 * / r w) ;$
$\mathrm{w} 4=/(\mathrm{ad} 4 * / \mathrm{rw})$;
$\mathrm{w} 3=/(\mathrm{ad} 3 \star / \mathrm{rw}) ;$
$\mathrm{w} 2=/(\mathrm{ad} 2 * / \mathrm{rw})$;
wl = /(adl*/rw);
$\mathrm{wO}=/(\mathrm{adO} / \mathrm{rw}) ;$
$r 7=/(\operatorname{ad7*} r w) ;$
$\mathbf{r 6}=/\left(\right.$ ad6* $\left.^{*} \mathrm{rw}\right)$;
$r 5=/\left(a d 5^{*} r w\right) ;$
$r 4=/\left(a d 4^{*} r w\right)$;
$r 3=/($ ad3* $r w)$;
$r 2=/($ ad2* $r w)$;
rl = /(adl* rw)
ro = /(ado* rw);

Figure 6.12 12-Bit Comparator Boolean Equations

```
* Simulation inputs for 12BITCMP
~ <--------INPUTS--------> < B,/B >
* 2222HHHHHHHHHHH
* 32HL98765432HL98765432HL 765432HL
LIMILLLLLLLLLLLELLILLILL -LLL-LLL "disable comp"
LLULLILLILLLLLLLLLILLLL -LLH-ILL "enable comp"
HLHLHLHLHLHLHLHLHLHLHLHL -LLH-LLL "comp AA"
LHLHLHLHLHLHLHLHLHLHLHLH -LLH-LLL "COmp 55"
ННННННнннннНнннннНнннннн -LLH-ILL "comp FF"
HHHHHHHHHHHHLHHHHHHHHHHH -LLH-LJL "A not equal B"
LLILLLILILLILLILILILLLLL -LHL-LLL "enable decoder W"
LILLLLLLLLLLLLLLLLLLLLLL -HHL-LLL "enable decoder R"
LLLLLLLLULLLLLLLLILLLLIL -HHL-LLH "count 1"
LLILMLLLLLLLLLILLLLLLLLL -HHL-LHL *
LLLLLLLLLLLJLULLLLLLL\LL -HHL-LHH *
LLLILLLLLLLLLLLLLILLILLLL -HHL-HLL.*
LILLLLLLLILLLIL血LLLLLLL -HHL-HLH *
LLLLLJLLLLLILILLLLILLJLL - HHL-HHL *
LLLLLLLLLLLLLLLWLLLLLILL -HHL-HHH * 7"
LLLLILLLYLLLLLILLILLILLL -LHL-HHH "enable decoder W*
QUIT
```

tBoz8oos
Figure 6.13 12-Bit Comparator Simulation Input File

```
PLHS501 12BITCMP Time = 15:0:58 Date = 9/14/1987
*
 <---------->><
 222211111111111
 32109876543210987654321076543210 7654321076543210
 000000000000000000000000 H000H000 HНHHHHHH HHHHHHHH
 000000000000000000000000 H001L000 НННННННН НННННННН ;
 101010101010101010101010 H001L000 HННННННН НННННННН
 010101010101010101010101 H001L000 HHHHHHHH HHHHHHHH
 111111111111111111111111 H001L000 %ННННННН HННННННН
```



```
 000000000000000000000000 HO10H000 HHHHHHHH HHHHHHHL
 000000000000000000000000 H110HOOO HHHHHHHL HHHHHHHH
 000000000000000000000000 H110HOO1 HHHHHHLH HHHHHHHH
 000000000000000000000000 H110H010 HHHHHLHH HHHHHHHH
 000000000000000000000000 H110HOll HHHHLHHH HHHHHHHH
 000000000000000000000000 Hl10HlO0 HHHLHHHH HHHHHHHH
 000000000000000000000000 H110H101 HHLHHHHH HHHHHHHH
 000000000000000000000000 Hl10H110 HLHHHHHH HННННННН
 000000000000000000000000 Hll0H111 LHHHHHHH HHHHHHHH
 000000000000000000000000 H010Hlll HHHHHHHH LHHHHHHH
 *
 - _-_-_-_-_-_-_-_-_-------------- I/O CONTROL LINES
 .. OIIIOIII DESIGNATED I/O USAGE
 .
 * PINLIST...
 * 14
```



```
 * 27 26 25 24 23 22 21 19 ;

Figure 6.14 12-Bit Comparator Simulation Log File

\section*{8-BIT CARRY LOOK-AHEAD ADDER}

This function may be used as part of an ALU design or simply to off-load a microprocessor. Figure 6.16 is a block diagram showing the individual components needed for each bit.

A carry input (CO) is provided along with a carry output (C8). The result of an addition between the inputs \(\mathrm{A} 7-\mathrm{A} 0\) and \(\mathrm{B} 7-\mathrm{B} 0\) occurs on outputs SUM7-SUM0.

\section*{File Name : 8BITADDR \\ Date : 9/15/1987 \\ Time : 9:37:21}
\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Left} & & \multicolumn{5}{|c|}{Right} \\
\hline LABEL & & FNC & **PIN & & PIN & & FNC & ** & LABEL \\
\hline VCC & & \(+5 \mathrm{~V}\) & ** 8-1 & & |-46 & ** & \(+5 \mathrm{~V}\) & **VCC & \\
\hline A2 & ** & I & ** 9-1 & & |-45 & ** & I & **N/C & \\
\hline A3 & ** & I & ** 10-1 & & |-44 & ** & I & **N/C & \\
\hline A4 & ** & I & ** 11-1 & P & |-43 & ** & I & **N/C & \\
\hline A5 & ** & I & ** \(12-1\) & L & |-42 & ** & I & **N/C & \\
\hline A6 & ** & I & ** 13-1 & H & \(\mid-41\) & ** & I & **N/C & \\
\hline A7 & ** & I & ** 14-1 & S & |-40 & ** & 10 & **N/C & \\
\hline N/C & ** & B & ** 15-1 & 5 & |-39 & ** & 10 & **N/C & \\
\hline N/C & ** & B & ** 16-1 & 0 & |-38 & ** & 10 & **N/C & \\
\hline N/C & ** & B & ** 17-1 & 1 & |-37 & ** & & **N/C & \\
\hline N/C & ** & B & ** 18-1 & & |-36 & ** & 0 & **SUM7 & \\
\hline C8 & ** & 0 & ** 19-1 & & |-35 & ** & 0 & **SUM6 & \\
\hline GND & & OV & ** 20-1 & & |-34 & ** & OV & **GND & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Bottom} & & \multicolumn{4}{|c|}{Top} \\
\hline IABEL & ** FNC & **PIN & & PIN** & FNC & ** & LABEL \\
\hline N/C & ** 0 & ** 21-1 & & 1-7** & I & **Al & \\
\hline N/C & ** 0 & ** 22-1 & & 1-6** & I & **A0 & \\
\hline \(\mathrm{N} / \mathrm{C}\) & ** 0 & ** 23-1 & & 1-5** & I & **B7 & \\
\hline N/C & ** 10 & ** 24-1 & P & 1-4** & I & **B6 & \\
\hline N/C & ** 10 & ** 25-1 & L & 1-3** & I & **B5 & \\
\hline N/C & ** 10 & ** 26-1 & H & 1-2 ** & I & **B4 & \\
\hline N/C & ** \(/ 0\) & ** 27-1 & S & 1-1 ** & I & **B3 & \\
\hline SUMO & ** 0 & ** 28-1 & 5 & |-52 ** & I & **B2 & \\
\hline SUMl & ** 0 & ** 29-1 & 0 & |-51 ** & I & **B1 & \\
\hline SUM2 & ** 0 & ** 30-1 & 1 & - -50 ** & I & **BO & \\
\hline SUM3 & ** 0 & ** 31-1 & & -49 ** & I & **C0 & \\
\hline SUM4 & ** 0 & ** 32-1 & & -48 ** & I & **N/C & \\
\hline SUM5 & ** 0 & ** 33-1 & & -47** & I & **N/C & \\
\hline
\end{tabular}

T803820S

Figure \(\mathbf{6 . 1 5}\) 8-Bit Adder Pin List

\section*{notes:}

G1' \(=\mathrm{G} 4+\mathrm{P} 4 * \mathrm{G} 3+\mathrm{P} 4\) *P3 *G2 + P4 *P3 * P2 *G1; \(P 1^{\prime}=P 4 * P 3\) * P2 *P1
\(\mathrm{G} 2 '=\mathrm{G} 8+\mathrm{P} 8 * \mathrm{G} 7+\mathrm{P} 8\) * P7 * G6 + P8 * P7 * P6 * G5; P2' = P8 * P7 * P6 * P5
\(\mathrm{C} 1=\mathrm{G} 1+\mathrm{P}_{1} * \mathrm{C}_{0}\);
\(\mathrm{C} 2=\mathrm{G} 2+\mathrm{P}_{2} * \mathrm{G}_{1}+\mathrm{P}_{2} * \mathrm{P}_{1} * \mathrm{C} 0\);
\(\mathrm{C} 3=\mathrm{G} 3+\mathrm{P}_{3} * \mathrm{G} 2+\mathrm{P} 3 * \mathrm{P}_{2} * \mathrm{G} 1+\mathrm{P}_{3} * \mathrm{P}_{2}\) * P 1 * C 0 :
\(\mathrm{C} 4=\mathrm{G} 1^{\prime}+\mathrm{P} 1^{\prime} * \mathrm{C} 0\);
\(\mathrm{C} 5=\mathrm{G} 5+\mathrm{P} 5 * \mathrm{G} 1^{\prime}+\mathrm{P} 5 * \mathrm{P}_{1}{ }^{*} \mathrm{C} 0\);
\(\mathrm{C} 6=\mathrm{G} 6+\mathrm{P} 6 * \mathrm{G} 5+\mathrm{P} 6 * P 5 * \mathrm{G} 1{ }^{\prime}+\mathrm{P} 6 * P 5 * P 1{ }^{\prime} * \mathrm{C} 0\);
\(\mathrm{C} 7=\mathrm{G} 7+\mathrm{P} 7 * \mathrm{G} 6+\mathrm{P} 7 * \mathrm{P} 6 * \mathrm{G} 5+\mathrm{P} 7 * \mathrm{P} 6 * \mathrm{P} 5 * \mathrm{G} 1{ }^{\prime}+\mathrm{P} 7\) * P6 *P5 *P1 * C ;
\(\mathrm{C} 8=\mathrm{G} 2^{\prime}+\mathrm{P} 2^{\prime} * \mathrm{G} 1^{\prime}+\mathrm{P} 2^{\prime} * \mathrm{P}^{\prime}{ }^{\prime} * \mathrm{C} 0\);

Figure 6.16 8-Bit Carry Look-Ahead Adder Block Diagram and Equations

\section*{Designing with Programmable Macro Logic}

Figure 6.17 8－Bit Adder Boolean Equations
```

```
p6 = /(/a5*/b5);
```

```
p6 = /(/a5*/b5);
g6 = /gn6;
g6 = /gn6;
gn7 - /(a6*b6);
gn7 - /(a6*b6);
p7 = /(/a6*/b6);
p7 = /(/a6*/b6);
g7 = /gn7;
g7 = /gn7;
gn8 = /(a7*b7);
gn8 = /(a7*b7);
p8 = /(/a7*/b7);
p8 = /(/a7*/b7);
g8 - /gn8;
g8 - /gn8;
"level-1 functions"
"level-1 functions"
gl_1 = g4 + p4*g3 + p4*p3*g2 + p4*p3*p2*gl;
gl_1 = g4 + p4*g3 + p4*p3*g2 + p4*p3*p2*gl;
g2_1 - g8 + p8*g7 + p8*p7*g6 + p8*p7*p6*g5;
g2_1 - g8 + p8*g7 + p8*p7*g6 + p8*p7*p6*g5;
"carry information"
"carry information"
cl - gl + pl*c0;
cl - gl + pl*c0;
c2 = g2 + p2*gl + p2*pl*c0;
c2 = g2 + p2*gl + p2*pl*c0;
c3 - g3 + p3*g2 + p 3*p2*gl + p3*p2*pl*c0;
c3 - g3 + p3*g2 + p 3*p2*gl + p3*p2*pl*c0;
c4 - g1_1 + p4*p3*p2*pl*c0;
c4 - g1_1 + p4*p3*p2*pl*c0;
c5 = g5 + p5*gl_l + p5*p4*p3*p2*pl*c0;
c5 = g5 + p5*gl_l + p5*p4*p3*p2*pl*c0;
c6 - g6 + p6*g5 + p6*p5*gl_1 + p6*p5*p4*p3*p2*p1*c0;
c6 - g6 + p6*g5 + p6*p5*gl_1 + p6*p5*p4*p3*p2*p1*c0;
c7 = g7 + p7*g6 + p7*p6*g5+p7**6*p5*g1_1 +
c7 = g7 + p7*g6 + p7*p6*g5+p7**6*p5*g1_1 +
 p7*p6*p5*p4*p3*p2*pl*c0;
 p7*p6*p5*p4*p3*p2*pl*c0;
c8 - g2_l + p8*p7*p6*p5*gl_l + p8*p7*p6*p5*p4*p3*p2*pl*c0;
c8 - g2_l + p8*p7*p6*p5*gl_l + p8*p7*p6*p5*p4*p3*p2*pl*c0;
"addition functions"
"addition functions"
sum0 : xrl - co;
sum0 : xrl - co;
 xr2 - pl * gnl;
 xr2 - pl * gnl;
suml : xrl - cl;
suml : xrl - cl;
 xr2 - p2 * gn2;
 xr2 - p2 * gn2;
sum2 : xrl = c2;
sum2 : xrl = c2;
 xr2 = p3 * gn3;
 xr2 = p3 * gn3;
sum3 : xrl = c3;
sum3 : xrl = c3;
 xr2 = p4 * gn4;
 xr2 = p4 * gn4;
sum4 : xrl = C4;
sum4 : xrl = C4;
 xr2 = p5 * gn5;
 xr2 = p5 * gn5;
sum5 : xrl = c5;
sum5 : xrl = c5;
 xr2 = p6 * gn6;
 xr2 = p6 * gn6;
sum6 : xr1 = C6;
sum6 : xr1 = C6;
 xr2 = p7 * gn7;
 xr2 = p7 * gn7;
sum7 : xrl = c7;
sum7 : xrl = c7;
 xr2 = p8 * gn8;
```

```
 xr2 = p8 * gn8;
```

```

Figure 6.17 8－Bit Adder Boolean Equations（Continued）
* 8 Bit Adder Simulation input
* 8 Bit Adder Simulation input
" <--------INPUTS--------> 〈 B,/B >
" <--------INPUTS--------> 〈 B,/B >
* 2222HHHHHHHHHH1
* 2222HHHHHHHHHH1
* 32109876543210987654321076543210
* 32109876543210987654321076543210
 LL工LLLLLILLL工LLLLHHHHHHH -------- "0 + 0"
 LL工LLLLLILLL工LLLLHHHHHHH -------- "0 + 0"
 HHHHHHHL工L工LLILHLHHHHHHH -------- "O + FF"
 HHHHHHHL工L工LLILHLHHHHHHH -------- "O + FF"
 HHHHНННL工工工工LLHL工HHHHHHH -------- "1 + FF"
 HHHHНННL工工工工LLHL工HHHHHHH -------- "1 + FF"
 LHHHHHHHL工YLLLLLHHHHHHHH ------- "O + 7F + CARRY IN"
 LHHHHHHHL工YLLLLLHHHHHHHH ------- "O + 7F + CARRY IN"
 HLHLHLHLLHLHLHLHLHHHHHHH -------- "AA + 55"
 HLHLHLHLLHLHLHLHLHHHHHHH -------- "AA + 55"
 HLHLHLHLLHLHLHLHHHHHHHHH -------- "AA + 55 + CARRY IN"
 HLHLHLHLLHLHLHLHHHHHHHHH -------- "AA + 55 + CARRY IN"
 LLHHHHHHLLLHHHHHLHHHHHHH -------- "3F + 1F"
 LLHHHHHHLLLHHHHHLHHHHHHH -------- "3F + 1F"
QUIT
QUIT

Figure 6.18 8－Bit Adder Simulation Input File

\section*{Designing with Programmable Macro Logic}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
File Name : ENCODER \\
Date : 9/15/1987 \\
Time : 9:38:43
\end{tabular}} \\
\hline \multicolumn{3}{|c|}{Left} & \multicolumn{3}{|r|}{Right} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** LABEL \\
\hline VCC & ** +5 V & ** 8-1 & & |-46** +5v & **VCC \\
\hline I18N & ** I & ** 9-1 & & -45 ** I & \(* * 14 N\) \\
\hline I19N & ** I & ** 10-1 & & -44** I & **I3N \\
\hline I20N & ** I & ** 11-1 & P & -43** I & **I2N \\
\hline I21N & ** I & ** 12-1 & L & -42** I & **IIN \\
\hline 122N & ** I & ** 13-1 & H & -41 ** I & **ION \\
\hline 123N & ** I & ** 14-1 & S & -40 ** I & **I31N \\
\hline I24N & ** I & ** 15-1 & 5 & -39 ** I & **I30N \\
\hline 125N & ** I & ** 16-1 & 0 & -38** I & **I29N \\
\hline I26N & ** I & ** 17-1 & 1 & -37 ** I & **I28N \\
\hline 127N & ** I & ** 18-1 & & -36 ** 0 & **N/C \\
\hline N/C & ** 0 & ** 19-1 & & -35 ** 0 & **A4N \\
\hline GND & ** OV & ** 20-1 & & 1-34 ** 0 V & **GND \\
\hline \multicolumn{3}{|c|}{Bottom} & \multicolumn{3}{|r|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** LABEL \\
\hline N/C & ** 0 & ** 21-1 & & 1-7** I & **I17N \\
\hline N/C & ** 0 & ** 22-1 & & - 6 ** I & **I16N \\
\hline N/C & ** 0 & ** 23-1 & & - 5 ** I & **I15N \\
\hline N/C & ** \(/ 0\) & ** 24-1 & P & -4** I & **I14N \\
\hline N/C & ** 10 & ** 25-1 & L & - 3 ** 1 & **I13N \\
\hline N/C & ** 10 & ** 26- & H & -2 ** I & **I12N \\
\hline N/C & ** 10 & ** 27-1 & S & -1 1 ** I & **IIlN \\
\hline GSN & ** 0 & ** 28-1 & 5 & |-52** I & **I10N \\
\hline EON & ** 0 & ** 29-1 & 0 & -51 ** I & **I9N \\
\hline AON & ** 0 & ** 30-1 & 1 & -50 ** I & **I8N \\
\hline AlN & ** 0 & ** 31-1 & & -49 ** I & **I7N \\
\hline A2N & ** 0 & ** 32- & & -48 ** I & **I6N \\
\hline A3N & ** 0 & ** 33-1 & & |-47** I & **I5N \\
\hline & & & & & T803860 \\
\hline \multicolumn{6}{|c|}{Figure 6.20 Encoder Pin List} \\
\hline
\end{tabular}

\section*{32- to 5-BIT PRIORITY ENCODER}

This relatively simple example demonstrates the capability of the PLHS501 to be programmed with functions that are not available in 'standard' device libraries. The equations may look difficult at first glance. However, there is a pattern to the encoding. Referring to Figure 6.21, Lab4 - Lab1 are terms that are common to several outputs (A4n-A0n). Separating them from the main equations allows a total reduction in the numbers of gates used.

Figure 6.2132 to 5 Priority Encoder Block Diagram

\section*{Designing with Programmable Macro Logic}

\section*{Designing with Programmable Macro Logic}
```

    + [/i27n*i28n*i29n*i30n*i31n]
    +[/i26n*i27n*i28n*i29n*i30n*i31n]
    + [/i25n*cptl]
    + [/i24n*i25n*cptl])
    eo = /(iOn*iln*i2n*i3n*i4n*i5n*i6n*i7n
*i8n*i9n*il0n*illn*il2n*il3n*il4n*il5n
*il6n*il7n*i18n*il9n*i20n*i2ln*i22n*i23n
*i24n*i25n*Cptl);
gsn - /eo;
eon = eo;
aOn = /( labl
+[/i29n*i30n*i3ln]
+ [/i25n*cptl]
+ [/i2ln*i22n*i23n*i24n*i25n*cptl]
+ [/il7n*i18n*i19n*cpt2*cptl]
+[/i13n*cpt3*cpt2*cpt1]
+ [/i9n*ilOn*illn*il2n*il3n*cpt3*cpt2*cpt1]
+ [/i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]
+ [/iln*i2n*i3n*i4n*i5n*i6n*i7n*cpt.4*cpt3*cpt2*cptl]);
aln - /( labl
+ [/i30n*i31n]
+[/i26n*i27n*i28n*i29n*i30n*i3ln]
+ [/i22n*i23n*i24n*i25n*cptl]
+ [/i18n*il9n*cpt2*cptl]
+[/i14n*il5n*i16n*i17n*il8n*il9n*cpt2*cptl]
+ (/ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]
+ [/i6n*i7n*cpt4*cpt3*cpt2*cpt1]
+ [/i2n*i3n*i4n*i5n*i6n*i.7n*cpt4*cpt3*cpt2*cptl]);
a2n = /c /i3ln
+ [/i30n*i3ln]
+ [/i29n*i30n*i31n]
+ [/i28n*i29n*i30n*i31n]
+ lab2
+ lab3
+ [/i7n*cpt4*Cpt3*cpt2*cptl]
+ [/i6n*i7n*cpt4*cpt3*cpt2*cptl]
+ [/i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]
+ [/i4n*i5n*i6n*i7n*cpt4*cpt3*cpt2*cptl]);
a3n = /( lab4
+ lab3
+ [/illn*il2n*il3n*cpt3*cpt2*cptl]
+[/ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]
+[/i9n*ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]
+[/i8n*i9n*ilOn*illn*il2n*il3n*cpt3*cpt2*cptl]);
a4n = /( lab4
+ lab2
твозвво咅
+ [/il9n*cpt2*cptl]
+ [/il8n*il9n*cpt2*cptl]
+ [/il7n*i18n*i19n*cpt2*cptl]
+[/il6n*il7n*il8n*il9n*cpt2*cptl]):
TB0з890S

```

Figure 6.22 Encoder Boolean Equations (Continued)

\section*{Designing with Programmable Macro Logic}
```

* 32 to 5 Priority Encoder Simulation Input

```

```

    нННННННННННННННННННННнНн ННННLLHH "I31 - LSB low"
    НННННННННННННННННННННННL HННННННН "IO - MSB low"
    ```


```

    HНHHHHHHHHHHHHHHHHHHHHHH HНHHHHHL "I28"
    ```


```

    HННННННННННННННННННННННН HНLHHHHH "I25"
    HHHHHHHHHHHHHHHHHHHHHHHH HHHLHHHH "I24*
    ```


```

    HHLHHННННННННННННННННННН нННННННН "I21"
    HHHLLHHHHHHHHHHHHHHHHHHH НнННнНHH "I2O"
    HHHHLHHHHHHHHHHHHHHHHHHH ННННHHHH "I19"
    ```

```

    HHHHHHLHHННННННННнНННННН ННнНнНнН "Il7
    HHHHHHHLHHHHHHHHHHHHHHHH HHHHHHHH " I16
    HНННННННLHНННННННННННННН НННННННН "I15"
    ```

```

    HНННННННННLHНННННННННННН ННННННнН "I13`
    ```



```

    #НННННННHHHHHHHLHHHHHHHH HНHHHHHH "18"
    ```

```

    НННННННННННННННННLНННННН НННННННН "I6"
    ```



```

    НнНннннннкнннннннннНнцнн нннннннн "I2"
    ```

```

    HHHHHHHHHHHHHHHHHHHHHHHL HHHHHHHH "IO"
    HHHHHHHHHHHHHHHHHHHHHHHH HHHHHHHH "AL工 HIGH"
    LILLLLLLLLMLLLLLJLLLLLLL LLILLLLL "ALL LOW"
    HHHLHHHLHHHHLHHHHLHHHLHH HHHLHHLH "Several simultaneously"
    QUIT

```

Figure 6.23 Encoder Simulation Input File

\section*{Designing with Programmable Macro Logic}

" 22221111111111
- 321098765432109876543210765432107654321076543210

1111111111111111111111111111111 LHHHHHLH LLLLHHHH ; 111111111111111111111111110111 LLLLLLHL LLLLHHH ; 11111111111111111111111011111111 LHHHHHHL LLLLHHHH ; 111111111111111111111111111111011 LLLLLHHL LLLLHHH ; 11111111111111111111111111111101 LLLLHLHL LLLLHH 11 1111111111111111111111111111110 LLLLHHHL LLLLHHHH ; 1111111111111111111111101111111 LLLHLLHL LLLLHHHH ; 11111111111111111111111110111111 LLLHLHHL LLLLHHH ; 11111111111111111111111111011111 LLLHHLHL LLLLHHH ; 1111111111111111111111111101111 LLLHHHHL LLLLHHHH ; 01111111111111111111111111111111 LLHLLLHL LLULHHHH ; 10111111111111111111111111111111 LLHLLHHL LILLHHHH ; 11011111111111111111111111111111 LLHLHLHL LLLLHHH ; 11101111111111111111111111111111 LLHLHHHL LLLLHHH ; 1111011111111111111111111111111 LLHHLLHL LLLLHHHH ; 11111011111111111111111111111111 LLHHLHHL LLLLHHH ; 11111101111111111111111111111111 LLHHHLHL LLLLHHH ; 1111111011111111111111111111111 LLHHHHHL LLLLHHH ; 11111111011111111111111111111111 LHLLLLHL LLLLHHHH 1111111110111111111111111111111 LHLLLHHL LLLLLHHH 11111111110111111111111111111111 LHLLHLHL LLLLHHAH 11111111111011111111111111111111 LhLLHHHL LLLLHHHH 11111111111101111111111111111111 LhLHLLHL LLLLHHHH 11111111111110111111111111111111 LHLHLHHL LLLLLHHH 11111111111111011111111111111111 LHLHHLHL LLLLHHHH 11111111111111101111111111111111 LhLHHHHL LLLLHHHH 11111111111111110111111111111111 LhHLLLHL LLLLHHHH 11111111111111111011111111111111 LHHLLHHL LLLLHHHH 11111111111111111101111111111111 LHHLHLHL LLLLHHHH 11111111111111111110111111111111 LHHLHHHL LLLLHHH 1111111111111111111011111111111 LHHHLLHL LLLLHHHH 11111111111111111111101111111111 LHHHLHHL LLLLHHH 11111111111111111111110111111111 LHHHHLHL LLLLHHHH 1111111111111111111111011111111 LHHHHHHL LLLLHHHH 111111111111111111111111 11111111 LHHHHHLH LLLLHHHH 00000000000000000000000000000000 LULLLLHL LLLLHHHH ; 11101110111101111011101111101101 LLLLHLHL LLLLHHHH ;
- --------------------------------- I/O CONTROL LINES

" IIIIIIII ACTUAL I/O USAGE
- PINLIST...

TB03910S
* 141312111009070605040302015251504948474544434241
- \(\begin{array}{llllllllllllll}18 & 17 & 16 & 15 & 40 & 39 & 38 & 37 & 36 & 35 & 33 & 32 & 31 & 30\end{array} 29 \quad 28\)
- \(\begin{array}{llllllll}18 & 26 & 25 & 24 & 23 & 22 & 21 & 19 \text {; }\end{array}\)

Figure 6.24 Encoder Simulation Log File

\section*{8-BIT SHIFT REGISTER WITH SEQUENCE DETECTOR}

This example demonstrates an application using D type edge-triggered flip-flops. Six NAND gates are used for each flip-flop (Figure 3.2). Note that to add an asynchronous reset and/or set to any flip-flop requires no additional gates. Also, every flip-flop must have a reset or set line to initialize it. Without being initialized, the simulator will not be able to determine the output states as it could power-up in either a set or reset condition. An uninitialized flip-flop will cause AMAZE 1.6 to display a message indicating the outputs are not stabilized within a certain time period.

As can be seen from the block diagram (Figure 6.26) this design consists of an 8-bit shift register, 3-bit ripple counter and 2 flipflops that are set only upon detection of specific patterns. The patterns are read from the \(Q\) and \(Q N\) outputs of the shift register. Since the input to the second flip-flop has the output of the first flip-flop as a product term, detection of the first pattern is a requirement for the detection of the second.

File Name : 8BTSHFT
Date : 9/15/1987
Time : 9:4l:16
\# P I N L I S T \#
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Left} & & \multicolumn{3}{|c|}{Right} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline Vcc & ** + 5 V & ** 8-1 & & |-46 ** +5V & **VCC & \\
\hline N/C & ** I & ** 9-1 & & |-45** 1 & **N/C & \\
\hline N/C & ** I & ** 10-1 & & |-44 ** I & **N/C & \\
\hline N/C & ** I & ** 11-1 & P & -43 ** I & **N/C & \\
\hline data & ** I & ** 12-1 & L & 1-42 ** I & **N/C & \\
\hline CLK & ** I & ** 13-1 & H & |-41 ** I & **N/C & \\
\hline RST & ** I & ** 14-1 & S & 1-40 ** 10 & **N/C & \\
\hline DETI & ** 0 & ** 15-1 & 5 & 1-39 ** / 10 & ** CQ 2 & \\
\hline DETIN & ** 0 & ** 16-1 & 0 & |-38**/0 & **CO1 & \\
\hline DET2 & ** 0 & ** 17-1 & 1 & 1-37 ** 10 & **CQO & \\
\hline DET2N & * 0 & ** 18-1 & & |-36 ** 0 & **07 & \\
\hline N/C & ** 0 & ** 19-1 & & |-35 ** 0 & **06 & \\
\hline GND & ** OV & ** 20-1 & & -34 ** OV & **GND & \\
\hline \multicolumn{3}{|c|}{Bottom} & & \multicolumn{3}{|c|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** FNC & ** & LABEL \\
\hline N/C & ** 0 & ** 21-1 & & 1-7** I & **N/C & \\
\hline N/C & ** 0 & ** 22-1 & & 1-6 ** I & **N/C & \\
\hline N/C & ** 0 & ** 23-1 & & 1-5** I & **N/C & \\
\hline N/C & ** 10 & ** 24-1 & P & - 4 ** I & **N/C & \\
\hline N/C & ** 10 & ** 25-1 & L & - 3 ** I & **N/C & \\
\hline N/C & ** 10 & ** 26-1 & H & 1-2 ** I & **N/C & \\
\hline N/C & ** 10 & ** 27-1 & S & - 1 ** I & **N/C & \\
\hline 00 & & ** 28-1 & 5 & -52 ** I & **N/C & \\
\hline 01 & ** 0 & ** 29-1 & 0 & -51 ** I & \(* * N / C\) & \\
\hline 02 & ** 0 & ** 30-1 & 1 & -50 ** I & **N/C & \\
\hline 03 & ** 0 & ** 31-1 & & -49** I & \(* * N / C\) & \\
\hline 04 & ** 0 & ** 32-1 & & -48** I & \(* * N / C\) & \\
\hline 05 & ** 0 & ** 33-1 & & -47** & \(* * N / C\) & \\
\hline
\end{tabular}
tвоз9зоs

Figure 6.25 8-Bit Shifter Pin List

Figure 6.26 Shift Register with Sequence Detector Block Diagram

\section*{Designing with Programmable Macro Logic}
```

SN2 =/(CLK*RST* (/(SN2*(/[Q1*RST*RN2])))),
RN2 - /(SN2*CLK*(/[Q1*RST*RN2]));
Q2 - /(SN2*(/[RN2*Q2*RST]));
SN3 = /(CLK*RST* (/(SN3*(/[Q2*RST*RN3])))) ;
RN3 = /(SN3*CLK* (/[Q2*RST*RN3]));
Q3 = /(SN3*(/[RN3*Q3*KST]));
SN4 - /(CLK*RST* (/(SN4* (/[Q3*RST*RN4]))));
RN4 = /(SN4*CLK*(/[Q3*RST*RN4]));
Q4 - /(SN4*(/[RN4*Q4*RST]));
SN5 = /(CLK*RST* (/(SN5*(/[Q4*RST*RN5]))));
RN5 = /(SN5*CLK* (/[Q4*RST*RN5]));
Q5 = /(SN5*(/[RN5*Q5*RST]));
SN6 - /(CLK*RST*(/(SN6*(/[Q5*RST*RN6]))));
RN6 = /(SN6*CLK*(/[Q5*RST*RN6]));
Q6 - /(SN6*(/[RN6*Q6*RST]));
SN7 = /(CLK*RST*(/(SN7*(/[Q6*RST*RN7]))));
RN7 = /(SN7*CLK*(/[Q6*RST*RN7]));
Q7 - /(SN7*(/[RN7*Q7*RST]));
O0-Q0;
O1-01;
02-Q2;
03-Q3;
O4-Q4;
05-05;
06 - Q6;
07 = Q7;
"3 D-TYPE FLIP FLOPS CONNECTED AS A RIPPLE COUNTER"
CSNO - /(CLK*RST*(/(CSNO*(/[CQNO*RST*CRNO]))));
CRNO = /(CSNO*CLK*(/[CQNO*RST*CRNO]));
CQO - /(CSNO*CQNO);
CQNO = /(CRNO*CQO*RST);
CSNl = /(CQNO*RST* (/CSNl*(/[CQNl*RST*CRNl]))));
CRN1 = /(CSN1*CQNO*(/[CQN1*RST*CRN1]));
CQ1 = /(CSNl*CQNl);
CQN1 = /(CRN1*CQ1*RST);
CSN2 = /(CQN2*RST*(/(CSN2*(/[CQN2*RST*CRN2]))));
CRN2 = / (CSN2*CQN1* (/[CQN2*RST*CRN2]));
CQ2 = /(CSN2*CQN2);
CQN2 = /(CRN2*CQ2*RST);

```
* 2 D-TYPE FLIP FLOPS USED FOR PATTERN SEQUENCE DETECTION.

Sequence to be detected is 16 bits - 55AA Hex.
When the pattern is detected, pin det2 will go high.
In this example, both pattern 1 and pattern 2 are set to \(F F\) hex. To change the pattern to 55AA, the STD file (P68 and P70) was edited using FTE. This was necessary because AMAZE 1.6 only allows 40 internal labels, so it was not possible to reference the \(Q N\) nodes of the shift register flip-flops."
```

PSNO = /(CQN2*RST*(/(PSNO*(/[PATl*RST*PRNO]))));
PRNO = /(PSNO*CQN2*(/[PAT1*RST*PRNO]));
DETIN = (PSNO*/DETl);
DETI = (PRNO*/DETIN*RST);
PSN1 = /(CQN2*RST*(/(PSN1*(/[PAT2*DETl*RST*PRN1]))));
PRN1 = /(PSN1*CQN2*(/[PAT2*DET)*RST*PRN1]));
DET2N = (PSN1*/DET2);
DET2 = (PRN1*/DET2N*RST);

```

Figure 6.27 8-Bit Shifter Boolean Equations (Continued)

HHHH
Original STD file showing P 68 and P 70

```

*"8 Bit Shift Register Simulation Input

```

```

    ІНLННнннННнНннНнНнННнНнН
    工工НННННнНННННННННННННННН 
    ```



```

    HI工 ННННННННННННННННННННН 
    ```

```

    ННLHНННННННННННнНННННННН 
                            --------
    ```

```

    НННННННННННННННННННННННН ------ "BIT 4 H"
    HLLHНННННННННННННННННННН 
    HНLHНННННННННННННННННННН
    * BIT 4 H
    HLHHНННHННННННННННННHHHH
    ```

```

    HL工ННННННННННННННННННННН 
    ншшнннннннннннннннннннн
    ```

```

    HLHHHHHННHНННННННННННHHH
    ```

```

    HLHHHHHHHHHHHHHHHHHHHHHH ------- "END OF FIRST SEQ"
    ```


```

    ННLHНННННННННННННННННННН ----------------- "BIT 6 L"
    HLHHHHHННННННННННННННННН 
    НННННННННННнНННННННННННН 
    ```


```

    HLHHHHHHHHHHHННННННННННН
    НННННННННННННННННннННННН --.---- "BIT 3 H"
    HLLHHHHHHHHНHННННННННННН
    ННLНННННННннНнНННннннннН ------- "BIT 2 L"
    HLHHНнHННННННННННННННННН 
    ННННнннннННннННННННННННн
    ```

```

    НL工ннннНнННННнннНнНнННнН
    HНLHНННННННННННННННННННН --------"BIT 0 L"
    HL工HHHHHHHHHHHHHHHHHHHHH -------- "END OF SECOND SEQ"
    ННІНнННННННННННННННННННН 
        ---------
    LHнНнннНнНнннннннннНнннн -------- "RESET"
    QUIT

## Designing with Programmable Macro Logic



Figure 6.30 8-Bit Shifter Simulation Log File

## Designing with Programmable Macro Logic

## 4-BIT SYNCHRONOUS COUNTER

This counter produces a binary count on outputs Count3 - Count0. Note the required reset (RST) input to initialize all of the flipflops. The inputs for each flip-flop were first determined by drawing the desired output waveforms. Next, Karnaugh maps were used to reduce the number of terms and determine the logic equations for the input to each flipflop. This technique could be used to construct a counter whose outputs produce some count other than binary.
The simulation only consists of a reset, followed by a number of clocks to count from 0 through 15 and back to 0 .

File Name : 4BTCOUNT   Date : 9/15/1987   Time : 9:57:5							
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P ( N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#							
Left			Right				
LABEL	** FNC	**PIN		PIN**	* FNC	**	LABEL
vcc	** + 5 V	** 8-1		\|-46**	* +5 V	**VCC	
CLK	** I	** 9-1		\|-45**	* I	**N/C	
RST	** I	** 10-1		\|-44**	* I	**N/C	
N/C	** I	** 11-	P	\|-43 *	* I	**N/C	
N/C	** I	** 12-1	L	$\mid-42$ *	* I	**N/C	
N/C	** I	** 13-	H	-41**	* I	**N/C	
N/C	** I	** 14-1	S	\|-40 *	* 10	**N/C	
counto	** 0	** 15-1	5	\|-39 *	* 10	**N/C	
COUNT 1	** 0	** 16-1	0	-38 *	* 10	**N/C	
COUNT2	** 0	** 17-1	1	\|-37*	* 10	**N/C	
COUNT3	** 0	** 18-1		\|-36 *	* 0	**N/C	
TC	** 0	** 19-1		\|-35*	* 0	**N/C	
GND	** 0 V	** 20-1		1-34**	* 0V	**GND	
Bottom			тop				
LABEL	** FNC	**PIN		PIN*	* FNC	**	LABEL
N/C	** 0	** 21-1		1-7*	* I	**N/C	
N/C	** 0	** 22-1		-6 *	* I	**N/C	
N/C	** 0	** 23-		- 5 *	* I	**N/C	
N/C	** 10	** 24-1	P	- 4 *	* I	**N/C	
N/C	** 10	** 25-1	L	- 3 *	* I	**N/C	
N/C	** 10	** 26-1	H	- 2 *	** I	**N/C	
N/C	** 10	** 27-1	S	-1**	* I	**N/C	
N/C	** 0	** 28-1	5	-52 *	* I	**N/C	
N/C	** 0	** 29-1	0	-51 *	* I	**N/C	
N/C	** 0	** 30-1	1	-50 *	* I	**N/C	
N/C	** 0	** 31-1		-49 *	** I	**N/C	
N/C	** 0	** 32-1		-48**	* I	**N/C	
N/C	** 0	** 33-1		-47*	** I	**N/C	
							T800400
Figure 6.31 4-Bit Counter Pin List							

## Designing with Programmable Macro Logic

File Name : 4BTCOUNT
Date : 9/15/1987
Time : 9:57:28
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION

4 bit synchronous counter
@INTERNAL NODE
datal, data2, data3;
csn0, crno, cq0, cqno;
csnl,crnl,cql,cqnl;
csn2, crn2, cq2, cqn2;
csn 3 , crn 3 , cq3, cqn 3 ;
@COMMON PRODUCT TERM
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
"INPUTS FOR EACH FLIP-FLOP*
DATAI $=[(\mathrm{CQ1} * \mathrm{CQNO})+(\mathrm{CQNl} \times \mathrm{CQO})] ;$
DATA2 $=[(C Q O * C Q 1 * C Q N 2)+(C Q N 0 * C Q 2)+(C Q N 1 * C Q 2)] ;$
DATA3 $=[(\mathrm{CQN} 2 * \mathrm{CQ} 3)+(\mathrm{CQN} 0 * \mathrm{CQ} 3)+(\mathrm{CQO} * \mathrm{CQ1*CQ2*CQN3)+(CQN1*CQ3)];}$
" 4 D-TYPE FLIP FLOPS CONNECTED AS A SYNCHRONOUS COUNTER"

CRNO $=/\left(\operatorname{CSNO} * \operatorname{CLK}^{*}(/[\operatorname{CQNO} * \mathrm{RST} * \mathrm{CRNO}))\right) ;$
$\mathrm{CQO}=/(\mathrm{CSNO} \mathrm{CQNO})$;
$\mathrm{CQNO}=/(\mathrm{CRNO} \times \mathrm{CQO} * \mathrm{RST}) ;$
$\operatorname{CSN1}=/\left(\operatorname{CLK} * \operatorname{RST}^{*}(/(\operatorname{CSN1} *(/[\right.$ DATAl $*$ RST*CRNL $\left.])))\right) ;$
CRNL $=/(C S N 1 * C L K *(/[D A T A l * R S T * C R N 1])) ;$
$\mathrm{CQ1}=/(\mathrm{CSNL} \times \mathrm{CQN1}) ;$
CQN1 - /(CRN1*CQl*RST);

CSN2 - /(CLK*RST* (/(CSN2*(/[DATA2*RST*CRN2]) )));
CRN2 $=/(C S N 2 * C L K *(/[D A T A 2 * R S T * C R N 2])) ;$
CQ2 - /(CSN2*CQN2);
$\mathrm{CQN} 2=/(\mathrm{CRN} 2 * \mathrm{CQ} 2 * \mathrm{RST}) ;$
CSN3 $=/(\operatorname{CLK} * R S T *(/(\operatorname{CSN} 3 *(/[D A T A 3 * R S T * C R N 3])))) ;$
CRN3 $=/(\operatorname{CSN} 3 * C L K *(/[D A T A 3 * R S T *$ CRN3]) $)$;
$\mathrm{CQ} 3=/(\operatorname{CSN} 3 * \operatorname{CQN} 3) ;$
CQN3 $=/($ CRN3*CQ3*RST $)$;
"Connection to output pins"
count $0=\mathrm{cq0}$;
countl-cql;
count2-cq2;
count3-cq3;
"TERMINAL COUNT PIN"
$\mathrm{TC}=(\mathrm{CQO} * \mathrm{CQ1} * \mathrm{CQ} 2 * \mathrm{CQ} 3)$;

Figure 6.32 4-Bit Counter Boolean Equations

## Designing with Programmable Macro Logic

4 Bit Synchronous Counter Simulation Input

Figure 6.33 4-Bit Counter Simulation Input File

## Designing with Programmable Macro Logic



* 222211111111111
~ 321098765432109876543210765432107654321076543210
111100111111111111111111 LLLLLLLL LLLLLLLL LLLLHHHL ; 11111011111111111111111 LLLLLLLL LLLLLLLL LITLHHHL; 1111111111111111111111 LLLHLLLL LELLLLLL LLLLHHHL ; 11111011111111111111111 LELHLLU LLEIELLL LLLLHHHL ; 1111111111111111111111 LLHLLLLL LLLJLLLL LLLLHHHL ; 111110111111111111111111 LLHLLLL LLLLLLL LL工LHHLL ; 11111111111111111111111 LLHHLLLL LLLJLLLL LLLLHHHL ; 1111101111111111111111 LLHHLLIL LLLLLLLL LLLLHHHL ; 11111111111111111111111 LHLLLLLL LLKLLLLL LLLLHHHL ; 11111011111111111111111 LHLLLLL LLUKLUC LLLHHHL ; 111111111111111111111111 LHLHLYLU LLLLLULL LLLHHHL ; 1111101111111111111111 LHLHLLLL LLLLLLLL LIJLHHHL ; 11111111111111111111111 LHHLLLLL LLLLLLLL LLLLHHHL ; 11111011111111111111111 LHHLULLL LLLLLLCL LLJLHHHL ; 111111111111111111111 LHHHLLLE LULULLLL LIJLHHHL ; 1111101111111111111111 LHHHLLLL LLLLLLL LLLLHHHL ; 11111111111111111111111 HLLLLLLL LLLLLLLL LILLHHHL ; 11111011111111111111111 HLLLLLLL LLILILLL LLILHHKL ; 1111111111111111111111 HLLHLLLL LLLLTLLL LULLHHHL ; 1111101111111111111111 HLLHLLLL LTILLLLL LLLLHHHL ; 111111111111111111111111 HLHLLLLL LLLLLLLL LLLLHHHL ; 11111011111111111111111 HLHLELLL LYLLLLL LLLLHHHL ; 1111111111111111111111 HLHHLLLL LLLULLL LWLLHHHL ; 1111101111111111111111 HLHHLLLL LLULLLL LYLLHHLL ; 11111111111111111111111 HHLLLLLL LLLLLLLL LLLLHHHL ; 111110111111111111111111 HHLLLLLL LLLLLILL LULLHHHL ; 1111111111111111111111 HHLHLLLL LLLLLLLL LLLLHHHL ; 11111011111111111111111 HHLHLLLL LLLLLLLL LLLLHHHL ; 11111111111111111111111 HHHLLLLL LVLLLLUL LLLLHHHL ; 11111011111111111111111 HHHLLLLL LLLLLLLL LLLLHHHL ; 11111111111111111111111 HHHHLLLL LLLLLLLL LLLLHHHH ; 11111011111111111111111 HHHHLLLL LLLLLLLL LLLLHHHH ; 111111111111111111111111 LULTLLL LLLLLLL LILLHHHL ;

	0000000	I/O CONTROL LINES
	0000000	DESIGNATED I/O USAGE
ACTUAL I/O USAGE		

" PINLIST...

" $1817 \begin{array}{llllllllllllll}18 & 17 & 15 & 40 & 39 & 38 & 37 & 36 & 35 & 33 & 32 & 31 & 30 & 29\end{array} 28$

- $27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 19$,

Figure 6.34 4-Bit Counter Simulation Log File

## Bibliography

1. Cavalan, N., 1984, Third Generation PLD Architecture Breaks AND-OR Bottlenecks. Proceedings of WESCON.
2. Wong, D., 1985, New Developments in Programmable Logic Devices. MIDCON Session 19. Chicago
3. Gheissari, A and Safari, B., 1987, High Speed, High Complexity PLDs and Applications. ELECTRO-87 Session 35.
4. Hartman, Robert, May 1984, Estimating Gate Complexity of Programmable Logic Devices. VLSI Design. PP 100-103
5. Minnick, R.C., Dec. 1964, Cutpoint Cellular Logic, I.E.E.E. Transactions on Electronic Computers, PP 685-698.
6. Minnick, R.C., 1965, Cobweb Cellular Arrays, Proceedings of the Fall Joint Computer Conference, PP 327-341. Las Vegas, NV.
7. Canaday, R., 1965, Two-Dimensional Iterative Logic, Proceedings of the Fall Joint Computer Conference, PP 343-353. Las Vegas, NV.
8. Gardner, P.L., Dec. 1970, Functional Memory and Its Microprogramming Implications, Technical Report TR.12. 091, IBM United Kingdom Laboratories Limited. Hursley Park, Winchester Hampshire.
9. Roth Jr., C.H. Fundamentals of Logic Design, Second Edition, West Publishing Co., 1979, PP: 136.144. St. Paul, MN.

## Signetics

## Programmable Logic Devices

## INTRODUCTION

This document is written assuming the reader is familiar with Signetics PLHS501. As well, we shall assume familiarity with the predecessor document "Designing with PML" and some exposure to Signetics AMAZE software. The goal of this document (i.e., Vol. 2) is to expand on the original ideas and present some cookbook solutions to some useful design problems. Vol. 2 also reflects nearly a year of experience through the multitude of design-ins achieved with the PLHS501. In fact, several of the design solutions

## PLHS501 Application Notes

presented here were contributions from our customers through our field applications organization. Designs we have encountered fell into a couple of interesting categories. First, many users view the part as a natural step in eliminating extraneous board "glue" (10 or more chips) or eliminating multiple programmable array logic devices (usually 3 to 5 units). Others recognized the PLHS501 capabilities of extremely wide logic functions and still others chose to invent their own solutions to standard bus interfaces. Commercially available bus interfaces often "miss the
mark" and creative designers wish to implement exactly the functions they need in a concise, effective manner. To date, we have seen PLHS501 interfaces to the VME Bus II, FAST Bus, NuBus, GPIB and the IBM Micro Channel for the PS/2 system.
Before presenting these solutions however, it is appropriate to review the PML basics and expand on a number of issues which have been found to be important but which were previously treated lightly.

## Signetics

## Programmable Logic Devices

## PLHS501 REVIEW

The PLHS501 is a $52-\mathrm{Pin}$, bipolar programmable logic device with a very powerful architecture. Unlike classic AND/OR based architectures, its basic building block is the NAND function which is configured in a foldback programming array. By cascading successive NAND functions through the array, both combinational and sequential structures may be obtained. The PLHS501 has 24 dedicated inputs, 16 outputs (with several varieties) and eight bidirectional pins. The internal NANDs may be cascaded to any depth needed, to achieve effective solutions using logic structures such as muxes, decoders and flip-flops without going off chip and wasting l/O pins to achieve cascading. To use the PLHS501 effectively, the designer should attempt to fold in function and

## PLHS501 Application Notes

## Vol. 2

remain within the chip as much as possible before exiting.

Figure 2-1 shows the PLHS501 architecture and illustrates several of the timing paths for internal signals to give the designer a feeling for maximum time delay within the part. These numbers are worst case maximums, regardless of switching directions, so the user may be assured that in general, the PLHS501 will be faster than these numbers.

The shorthand notation of Figure 2-1 hides something with which many designers have been impressed in the PLHS501, the wide input NAND gates. Figure 2-2 shows just how wide the internal NANDs are, from a logical viewpoint. Each NAND can accommodate up to 32 external inputs
and 72 internal inputs. Hence the part is ideal for wide decoding of 32-bit address and data busses. With 72 copies of the wide NAND, the PLHS501 is often compared against low-end gate arrays. While flatter4ing, this gives no usable method to determine the degree to which functions can be fit into the device. As a rule of thumb, the PLHS501 can accommodate three or more PLA devices and usually four to five PAL $\left.{ }^{\circledR}\right)$ devices.

For any particular design, the user should refer to Table 2-1 and evaluate his/her design incrementally, tallying against a 72 gate budget. This is a ballpark estimation against the NAND capacity of the core of the part. The clever designer will find additional function by correctly exploiting the output logic.


Figure 2-1. PLHS501 Logic Diagram

[^18]Table 2-1. PLHS501 Gate Count Equivalents

FUNCTION	$\begin{aligned} & \text { INTERNAL } \\ & \text { NAND } \\ & \text { EQUIVALENT } \end{aligned}$	COMMENTS
Gates: NANDs ANDs NORs ORs	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	For 1 to 32 input variables
$\begin{gathered} \text { Decoders } \\ \text { 3-to-8 } \\ \text { 4-to-16 } \\ 5-\text { to- } 32 \end{gathered}$	$\begin{array}{r} 8 \\ 16 \\ 32 \end{array}$	Inverted inputs available Inverted inputs available Inverted inputs available (24 chip outputs only)
$\begin{gathered} \text { Encoders } \\ 8 \text {-to-3 } \\ 16-\text { to-4 } \\ 32-\text { to-5 } \end{gathered}$	$\begin{aligned} & 15 \\ & 32 \\ & 41 \end{aligned}$	Inverted inputs, 2 logic levels Inverted inputs, 2 logic levels Inverted inputs, 2 logic levels, factored solution.
$\begin{aligned} & \text { Multiplexers } \\ & \text { 4-to-1 } \\ & \text { 8-to-1 } \\ & \text { 16-to-1 } \\ & 27-\text { to-1 } \end{aligned}$	$\begin{array}{r} 5 \\ 9 \\ 17 \\ 28 \end{array}$	Inverted inputs available   Inverted inputs available   Inverted inputs available   Can address only 27 external inputs - more if internal
Flip-Flops D-type Flip-Flop T-type Flip-Flop J-K-type Flip-Flop Transparent-D Latch S-R Latch	$\begin{array}{r} 6 \\ 6 \\ 10 \\ 4 \\ 2 \end{array}$	With asynchronous S-R   With asynchronous S-R   With asynchronous S-R   With asynchronous S-R   With asynchronous S-R
Adders 8-bit	45	Full carry-lookahead (four levels of logic)
Barrel Shifters 8-bit	72	2 levels of logic



Figure 2-2. An Internal NAND Logic Equivalent

## Signetics

## PLHS501 Application Notes

Vol. 2

## Programmable Logic Devices

## FLIP-FLOP BASICS

Most designers view flip-flops as black boxes with data inputs and outputs as well as additional control inputs. Some flipflops are designed as primitive transistor structures, but in the past, gate array designers used their elementary building block, the NAND gate, to make flip-flops. Because the PLHS501 is also largely structured from NANDs, we can draw upon years of well known NAND-based flip-flop designs to readily implement flipflops within the PLHS501.

Figures 3-1, 3-2, 3-3 and 3-4 give single sheet summaries of several flip-flop configurations. It should be noted that the transparent latch is recommended for data capturing, but not for state machines due to potential glitching. The edge triggered D-type is a convenient building block. Although external gates are saved with the J-K structure, it is at the expense of additional NANDs within the J-K flipflop itself.

## Notation

The delay of a NAND gate is most often designated as $t_{\text {PLH }}$ or $t_{\text {PHL }}$, indicating that the gate output makes a High-to-Low ( $\mathrm{t}_{\mathrm{PHL}}$ ) or Low-to-High ( $\mathrm{t}_{\mathrm{PLH}}$ ) transition. For the flip-flops' transition, the High-to-Low ID is D0 and the Low-to-High ID is D1. This also holds true for structures fully contained within the foldback core, because input and output time delays will
differ and change the performance. Knowing the basic concepts, the designer can expand these structures to include I/O pins and generate flip-flops wrapped around the part - but, he must derate his parameters accordingly to reflect the slower paths.
Because it will be lengthy to explain all of the flip-flop configurations given, we will show only one in some detail. The interested reader can verify the rest by manual analysis or by digital simulation. The Table 3-1 gives the typical and worst case values for an internal foldback NAND gate.
The single D-latch with enable ActiveHIGH can be described in terms of the propagation delay formula given in Figure $3-1$. For instance, the first propagation is for $D$ to $Q$, where the $Q$ output transitions from High-to-Low (i.e., tppo). To do this, assume $Q$ is high so the $Q$ term is Low. To switch the state, /Q must be flipped first. Hence, the logic variable enters G2, then passes through G7, G4 and finally G3. This presents four transitions, two from Low-to-High (G2 and G4 outputs) and two from High-to-Low (G1 and G3 outputs). Hence, the formula reflects 2 (d1\&d0) which, using Table 3-1, gives $2(8+6.5)=29 \mathrm{~ns}$.
This is the worst case value, using typicals will give a value of $2(5.5+6.5)=24 \mathrm{~ns}$.

Switching in the other direction is a little different. Assuming tpo1 goes from $\mathrm{Q}=0$ to
$Q=1$, the $/ Q$ signal must be initially 1 . Hence, G3 is armed for immediate transition. Hence, the time delay is simply traversing G2 and G3. One of them will go High-to-Low (G2) and the other Low-toHigh (G3). The formula reflects the sum of the two transitions: $\mathrm{t}_{\text {PD } 1}=\mathrm{d} 1+\mathrm{d} 0$. From the table, this is 14.5 ns (worst case) or 12 ns (typical). The rest of the formula must be similarly analyzed, but the method is straightforward.

## Flip-Flop Merging

Figure 3-5(A) shows the positive edge triggered D flip-flop structure. By putting a two-level AND/OR structure in front of the data input, the D flip-flop can be steered from state to state.

Figure 3-5(B) shows such an input structure realized from a two-level NAND gate section.

Figure 3-5(C) shows this "AND-OR" structure rolled inside of the flip-flop. The gating was merged with the flip-flop inwards to make a faster, composite function. Whereas this may appear as a trick to the uninitiated, this degree of flexibility allowed gate array designers to merge a multitude of logic into a fixed foundation. For highest efficiency, similar thinking allows the designer to break up decoders and multiplexers into their building blocks and generate only the pieces needed.

Table 3-1. Internal Fold Back NAND Gate

InPuT			OUTPUT		
SYMBOL	PARAMETER		LIMITS		UNIT
	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	FROM (INPUT)	Min	Max	
$\begin{aligned} & \mathrm{tpHL} \\ & \mathrm{t}_{\mathrm{pLH}} \end{aligned}$		ANY	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 8.0 \end{aligned}$	ns



NAND Gate Diagram


Function (Truth) Table

OPERATING MODE	$E$	$\mathbf{D}$	$\mathbf{Q}$	$\mathbf{0}$
DATA ENABLED	$\mathbf{1}$	$\mathbf{0}$	0	1
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0
	0	$\mathbf{x}$	0	0
	$n-1$	$\mathbf{n - 1}$		

NOTES:
5. When input Enable $(E)$ is High, data enters the latch at " D " and appears at outputs " Q " and " Q "; the " Q " output follows the data as long as $E$ is High. One setup time before the High-to-Low transition of E, D is stored in the latch; the latched outputs remain stable the latch; the latched
as long as $E$ is Low.
6. $\mathrm{o}_{\mathrm{n}-1}=$ state before High-to-Low transition of $E$.
7. $X=$ don't care

Propagation Delay Formulas:

FROM	TO	FORMULAS
D	Q	$\mathrm{tPDO}^{\text {a }}=\mathrm{d} 1+\mathrm{d} 0 \times 2$
		tPD1 $=d 1+d 0$
D	Q	tPDO $=d 1+2 \times d 0$
		tPD1 $=2 \times d 1+d 0$
E	Q	tPDO $=d 1+2 \times d 0$
		tPD1 $=d 1+\infty 0$
$E$	ठ	$t_{\text {PDO }}=d 1+2 \mathrm{XdO}$
		tPD1 $=d 1+d 0$
SETUP TIME HOLD TIME ENABLE PULSE		$=\mathrm{d} 1+2 \mathrm{XdO}$
		$=0$
		= E TOQ tPDO

Propagation Delays:

PARAMETER	FROM	TO	DELAY in ne
tPDO	D	Q	
	D	Q	
	E	Q	
	E	$\square$	
	D	Q	
	D	Q	
	E	Q	
	E	Q	
D (SETUP TIME)			
D (HOLD TIME)			
ENABLE PULSE WIDTH			

Timing Waveforms:


Figure 3-1. Single D-Latch (Enable Active-HIGH)


NAND Gate Diagram


Timing Waveforms:


Function (Truth) Table

$c$	$D$	$Q_{n+1}$	$\sigma_{n+1}$
$\square$	0	0	1
$\square$	1	1	0

NOTES:

1. Data is transferred to the outputs on the negative-going edge of the clock.
2. $Q_{n+1}=$ state atter High-to-Low transition of C .

Figure 3-2. D Flip-Flop (Negative Edge-Triggered)


Function (Truth) Table

$c$	$D$	$Q_{n+1}$	$\sigma_{n+1}$
$\square$	0	0	1
$\square$	1	1	0
$\square$	0	0	1
$\square$	1	1	0

NOTES:

1. Data is transferred to the outputs on the neg" (Active-LOW) is asynchronous and independent of
2. $\mathrm{Q}_{\mathrm{n}+1}=$ state after High-to-Low transition of C .
3. $X=$ don't care.

Propagation Delay Formulas:

FROM	TO	FORMULAS
C	Q	$\mathrm{tPD} 1=2 \mathrm{~d} 1+\mathrm{d} 0$
		tPDO $=2(\mathrm{~d} 1+\infty)$
C	$\bar{\sigma}$	$t P D 1=2 d 1+d 0$
		$\mathrm{tPD}^{\prime}=2(\mathrm{~d} 1+\mathrm{d} 0)$
R	Q	tPDO $=d 1+d 0$
R	Q	tPD1 $=d 1$
D (SETUP TIME)		$=\mathrm{d} 0$
D (HOLD TIME)		$=\mathrm{d} 1+\mathrm{d} 0$
CL WIDTH (HIGH)		$=\mathrm{d} 1+2 \mathrm{~d} 0$
RESET WIDTH (LOW)		$\mathrm{R} \rightarrow \mathrm{Q}$


PARAMETER	FROM	TO	DELAY in ns
tpD1	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$	
	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & Q \\ & Q \\ & Q \end{aligned}$	
D (SETUP TIME)	ns Min		
D (HOLD TIME)	ns Min		
MINIMUM CLOCK WIDTH	ns		
MINIMUM R WIDTH	ns		

Timing Waveforms:


Figure 3-3. D Flip-Flop with Reset


Figure 3-4. J-K Flip-Flop with Set and Reset


Figure 3-5(A). Positive Edge Triggered D-Flip-Flop with Reset and Set


Figure 3-5(B). As in (A), with Input AND-OR Function


Figure 3-5(C). As Above, with Integral AND-OR Input Function
Figure 3-5. Flip-Flop Merging

## Signetics

## Programmable Logic Devices

## VME Bus EXAMPLES

## Omnibyte VSBC20 Mailbox Interrupt Structure

One of the more popular uses for the PLHS501 is interfacing with 32-bit microprocessors. This section illustrates some of the ways the part has been used with the popular VME Bus. The Omnibyte Corporation manufactures many VME Bus products (as well as others) and was kind enough to release a portion of their VSBC20 board design as an example of using the PLHS501 in a very flexible, user contigurable interrupt generation device. The VSBC20 employs two PLHS501 parts, as shown in Figure 4-1. One device is used largely as an address decoder, the other, which is the object of this Section, is the configurable interrupt generator. The target microprocessor here is a 25 MHz 68020 and the application is interrupt generation. The explanation is in the words of Glenn Case, the designer:
"Following the design philosophy of giving the user as much flexibility as possible, the local interrupt structure of the VSBC20 is implemented in a PLD. It is impossible to "optimize" the assignment of the local interrupts to the interrupt levels of the processor since they are application specific. One system may want the Serial I/O and Parallel I/O to have higher levels than the Omnimodule Interrupts while yet another,
using a SCSI Omnimodule, may want it to have higher level interrupts. Arbitrarily assigning and hard wiring these levels would unnecessarily constrain the use of the VSBC20 for any given application. By using the Signetics PLHS501, the entire logic to implement the interrupt structure fits into one PLD. Furthermore, the AMAZE software to program the part is available free from Signetics. The PLHS501 can be reprogrammed until the unused feedback gates are all used. So, the user can get the software free and change the interrupt levels a couple of times before having to replace the PLHS501 with a new part. This appendix describes how the PLHS501 is used and how to change the interrupt levels.
There are a total of 17 possible interrupt sources to the processor on the VSBC20. There are up to seven possible VMEbus interrupts, nine possible local interrupts, and a Front Panel Non-Maskable interrupt. The local interrupts include: ACFAIL*, SYSFAIL*, parity error, mailbox interrupt, two Omnimodule interrupts, 24 bit timer interrupt, Parallel I/O, and Serial I/O interrupts. Although ACFAIL*, SYSFAIL* and mailbox interrupts are generated by VMEbus, they are referred to as local interrupts because they are acknowledged locally. That is, no VMEbus IACK cycle takes place. The local interrupts are latched during an IACK
cycle to "4reeze" the state of the interrupts. This allows the correct acknowledgement of the interrupts. The ACFAIL*, SYSFAIL* and Front Panel Non-Maskable Interrupt are assigned to Level 7. The Front Panel NMI has the highest priority followed by ACFAIL*, parity error, and SYSFAIL*. The front Panel interrupt is acknowledged by an autovector while the other three generate a vector that is encoded as described in the Error Interrupt Vector CSR. The local interrupts for the mailbox interrupt, Omnimodule Interrupt 0 , Omnimodule Interrupt 1, 24 bit timer interrupt, Parallel I/O Interrupt, and Serial I/O Interrupt have been assigned by the user to the level best suited for the user's application. The mailbox interrupt uses the auto vector while the others provide interrupt acknowledge vectors. However, these may also be changed to generate autovectors. For example, if a unique Omnimodule is designed by the user and there is not enough room to provide an interrupt vector on the module, the PLD can be changed to issue an autovector instead of generating an IACK cycle to the Omnimodule. It is also possible to have two interrupts share the same level, although this seems unnecessary, since there are enough available interrupt levels.
The following examples illustrate how easy it is to change the local interrupt levels."

## EXAMPLE 1 :

Put the P10 interrupt in level 4 and the Omnimodule 0 interring on level 2.

```
LIRQ4 = /LIRQPIO;
LIRQ2 = /LIRQOOM; }\quad|-> change these
IACKOOM = /(/LIRQOM*/A3*A2*/A1*//IACK*/BAS); <-1 equations to
IACKPIIO =/(/LIRQPIO*A3*/A2*/A1*/IACK*/BAS); <-1
```

EXAMPLE 2:
Make both the Omnimodule Interrupt Autovectored instead of bus-vectored. (LITRQOOM uses level 4 and LIRQIOM uses level 5.)

```
AUTOVECTOR = [/FPNMIRQ*A 3*A2*A1*/IACK*/BAS*RESET]
+ [/LIRQMBOX*A2*A2*/A1*/IACK*/BAS*RESET]
[/LIRQOOM*A3*/A2*/A1*/IACK*/BAS*RESET] <-- ADD
+ [/LIRQIOM*A3*/A2*A1*/IACK*/BAS*RESET] <-- ADD
+ [autovector* /BAS*RESET];
IACKIOM = /(0); <-- change
IACKOOM = /(0); <-- equation
```



Figure 4-1. Portion of Omnibyte VSBC20 Highlighting PLHS501 Usage

```
File Name : vsbc20is
Date : 9/13/1988
Time : 9:4:2
##################### P I N L I S T #####################
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Left} & & \multicolumn{5}{|c|}{Right} \\
\hline LABEL & ** & FNC & **P & IN & & PIN & & ENC & ** & LABEL \\
\hline VCC & ** & +5V & ** & 8-1 & & 1-46 & ** & +5V & \(\star *\) & \\
\hline VIRQ1 & ** & I & ** & 9-1 & & 1-45 & ** & I & ** & \\
\hline VIRQ2 & ** & I & ** & 10-1 & & 1-44 & ** & I & ** & \\
\hline VIRQ3 & ** & I & ** & 11-1 & P & 1-43 & ** & I & ** & \\
\hline VIRQ4 & ** & I & ** & 12-1 & L & 1-42 & ** & I & ** & \\
\hline VIRQ5 & ** & I & ** & 13-1 & H & 1-41 & ** & I & ** & \\
\hline VIRQ6 & ** & I & ** & 14-1 & S & 1-40 & ** & 10 & ** & \\
\hline BRDFAIL & ** & I & ** & 15-1 & 5 & 1-39 & ** & 10 & ** & \\
\hline RESET & ** & I & & 16-1 & 0 & 1-38 & ** & 10 & ** & \\
\hline FPNMIIN & ** & I & & 17-1 & 1 & 1-37 & ** & 10 & ** & \\
\hline VIRQ7 & ** & I & & 18-1 & & 1-36 & ** & 0 & ** & \\
\hline N/C & ** & 0 & & 19-1 & & 1-35 & ** & 0 & ** & \\
\hline GND & ** & OV & & 20-1 & & |-34 & ** & 10 & \(\star *\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Bottom} & & & \multicolumn{2}{|r|}{Top} \\
\hline LABEL & ** FNC & **PIN & & PIN** & FNC & ** LABEL \\
\hline N/C & ** 0 & ** 21-1 & & 1-7** & I & **LIRQSIO \\
\hline DSACKO & ** 0 & ** 22-1 & & 1-6** & I & **LIRQPIO \\
\hline N/C & ** 0 & ** 23-1 & & 1-5** & I & **LIRQTMR \\
\hline IACK0OM & ** 10 & ** 24-1 & P & 1-4** & I & **LIRQOOM \\
\hline IACK10M & * 10 & ** 25-1 & L & 1-3** & I & **LIRQ10M \\
\hline IACKTMR & ** 10 & ** 26-1 & H & 1-2** & I & **LIRQMBX \\
\hline IACKPIO & ** 10 & ** 27-1 & S & 1-1 ** & I & **LIRQPE \\
\hline D24 & ** 0 & ** 28-1 & 5 & 1-52 ** & I & **LACFAIL \\
\hline D25 & * 0 & ** 29-1 & 0 & 1-51 ** & I & **LSYSFAIL \\
\hline IACKSIO & ** 0 & ** 30-1 & 1 & 1-50 ** & I & **N/C \\
\hline OFFBRDIACK & ** 0 & ** 31-1 & & 1-49 ** & I & **ACFM \\
\hline AUTOVEC & ** 0 & ** 32-1 & & 1-48 ** & I & **SYSFM \\
\hline IPLO & ** 0 & ** 33-1 & & 1-47** & I & \(\star *\) PRRM \\
\hline
\end{tabular}
```

Figure 4-2. PLHS501 Pinlist for VSBC20 Interrupt Structure

```
@DEVICE TYPE
PLHS501
@DRAWING 1155
@REVISION A
@DATE 9-9-88
@SYMBOL
@COMPANY OMNIBYTE CORP.
@NAME
@DESCRIPTION
 VSBC20 INTERRUPT STRUCTURE PLD
@INTERNAL NODE
LIRQ7 ALLIRQ7 AHIACKF AHFPNMIRQ AUTOVECTOR FPNMIRQ
@COMMON PRODUCT TERM
LIRQ6 = /LIRQMBX; "LIRQ6 goes high when LIRQMBX goes low"
LIRQ5 = /LIRQ1OM;
LIRQ4 = /LIRQ0OM;
LIRQ3 = /LIRQTMR;
LIRQ2 = /LIRQPIO;
LIRQ1 = /LIRQSIO;
```

Figure 4-3. VSCB20IS .BEE File (begins)

```
@I/O DIRECTION
DB4 = 0;
DB5 = 0;
DB6 = 0;
DB7 = 0;
XEO = /IACKF;
XE1 = 1;
XE2 = 1;
XE3 = 1;
OE1 = /IACKF;
OE2 = 1;
OE3 = 1;
@I/O STEERING
@LOGIC EQUATION
LIRQ7 = [/LACFAIL * ACFM] "LIRQ7 goes high when"
 + [/LYSFAIL * SYSFM * BRDFAIL]
 + [/LIRQPE * PERRM];
ALLIRQ7 = /[/[/LACFAIL * ACFM]
 + /[/LSYSFAIL * SYSFM * BRDFAIL]
 + /[/LIRQPE * PERRM]];
AHFPNMIRQ = [/FPNMIIN */IACK * RESET]
 + [AHFPNMIRQ */IACK * RESET]
 + [AHFPNMIRQ *IACK * BAS * RESET]
 + [AHFPNMIRQ *IACK * /BAS * /A1 * RESET]
 + [AHFPNMIRQ *IACK * /BAS * /A2 * RESET]
 + [AHFPNMIRQ *IACK * /BAS * /A3 * RESET]
 + [AHFPNMIRQ *IACK * /BAS * A3 * A2 * A1 * /AUTOVECTOR * RESET];
FPNMIRQ = /(AHFPNMIRQ);
IPLO: XR1=/VIRQ7
 + LIRQ7
 + /FPNMIRQ
 + /LIRQ7 * /LIRQ6 * VIRQ7 * VIRQ6 * LIRQ5
 + /LIRQ7 * /LIRQ6 * VIRQ7 * VIRQ6 * /VIRQ5
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * LIRQ3
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * /VIRQ3
 +/LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * /LIRQ3 * /LIRQ2 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 *
VIRQ3
 * VIRQ2 * LIRQ1
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * /LIRQ3 * /LIRQ2 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 *
VIRQ3
 * VIRQ2 * /IRQ1;
XR2 = 1;
IPL1: XR1 = /VIRQ7
 + LIRQ7
 + /FPNMIRQ
 + /LIRQ7 * VIRQ7 * LIRQ6
 + /LIRQ7 * VIRQ7 * /VIRQ6
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * LIRQ3
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * /VIRQ3
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * /LIRQ3 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * /VIRQ3
 * LIRQ2
 * /LIRQ7 * /LIRQ6 * /LIRQ5 * /LIRQ4 * /LIRQ3 * VIRQ7 * VIRQ6 * VIRQ5 * VIRQ4 * /VIRQ3
 * /VIRQ2;
XR2 = 1;
```

Figure 4-3. VSCB20IS .BEE File (continued)

```
ILP2: XR1 = /VIRQ7
 + LIRQ7
 + /FPNMIRQ
 + /LIRQ7 * VIRQ7 * LIRQ6
 + /LIRQ7 * VIRQ7 * /VIRQ6
 + /LIRQ7 * /LIRQ6 * VIRQ7 * VIRQ6 * LIRQ5
 + /LIRQ7 * /LIRQ6 * VIRQ7 * VIRQ6 * /VIRQ5
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * VIRQ7 * VIRQ6 * VIRQ5 * LIRQ4
 + /LIRQ7 * /LIRQ6 * /LIRQ5 * VIRQ7 * VIRQ6 * VIRQ5 * /VIRQ4;
XR2 = 1;
IACKF = /([A3 * A2 * A1 * FPNMIRQ * /LACFAIL * IACK * /BAS]
 + [A3 * A2 * A1 * FPNMIRQ * /LSYSFAIL * IACK * /BAS]
 + [A3 * A2 * A1 * FPNMIRQ * /LIRQPE * IACK * /BAS]);
OFFBRDIACK: XR1 = /LIRQ7 * A3 * A2 * A1 * IACK * /BAS * FPNMIRQ * /AUTOVECTOR
 + /LIRQ6 * A3 * A2 * /A1 * IACK * /BAS
 + /LIRQ5 * A3 * /A2 * A1 * IACK * /BAS
 +/LIRQ4 * A3 * /A2 * /A1 * IACK * /BAS
 + /LIRQ3 * /A3 * A2 * A1 * IACK * /BAS
 +/LIRQ2 * /A3 * A2 * /A1 * IACK * /BAS
 + /LIRQ1 * /A3 * /A2 * A1 * IACK * /BAS;
XR2 = 1;
AUTOVECTOR = [/FPNMIRQ * A3 * A2 * A1 * IACK * /BAS * RESET]
 + [/LIRQMBX * A3 * A2 * /A1 * IACK * /BAS * RESET]
 + [AUTOVECTOR * /BAS * RESET];
AUTOVEC; XR1 = AUTOVECTOR;
XR2 = 1;
D24: XR1 = /LACFAIL * ACEM
 + /LIRQPE * PERRM;
XR2 = 1;
D25: XR1 = /LACFAIL * ACEM
 + LIRQPE * PERRM * /LSYSFAIL * SYSFM
 + /PERRM * /LSYSFAIL * SYSFM;
XR2 = 1;
IACK1OM = /(/LIRQ1OM * A3 * /A2 * A1 * IACK * /BAS);
IACKOOM = /(/LIRQOOM * A3 * /A2 * /A1 * IACK * /BAS);
IACKTMR = /(/LIRQTMR * /A3 * A2 * A1 * IACK * /BAS);
IACKPIO = /(/LIRQPIO * /A3 * A2 * /A1 * IACK * /BAS);
IACKSIO = /(/LIRQSIO * /A3 * /A2 * A1 * IACK * /BAS);
DSACKO = BAS;
```

Figure 4-3. VSCB20IS .BEE File (end)

# PLHS501 <br> Application Notes Vol. 2 

## VME Bus EPROM Interface

The idea for this VMEbus EPROM board came from WIRELESS WORLD CIRCUIT IDEAS, January, 1988. The implementation was done by a Philips' FAE, John McNally.

The board contains two banks of EPROMs. Each bank consists of either two 27128s or two 27256 s; each of which can be enabled by comparing the address location fo the board. Decoding three other address bits selects which of the banks is accessed. A 4-bit shift register combined with four jumpers provide wait states.

The circuit drawing was entered onto a PC using FutureNet DASH, a schematic capture package (Figures 4-4, 4-5, and 4-6). It was then converted to logic equations using AMAZE (Figure 4-9) and then assembled into a PLHS501.
This application, which needs eight ICs, used forty-four of the available seventy-two NAND Foldback Terms and forth of the available fiftytwo pins. As the PLHS501 contains no registers, an edge-triggered D-type flip-flop was designed using NAND gates and this is used as a soft macro in order to implement the shift register function (Figure 4-6).

As suggested in the original article, the circuit could be expanded to access up to eight ROM banks (Figure 4-8). This was achieved by editing the logic equation file and adding extra equations (Figure 4-9). Modifying the drawing, although fairly easy to do, was not considered necessary as the object was to design with PML and not TTL. The expanded circuit would require another three TTLIC packages, brining the total to eleven. The number of foldback terms increased to fifty-five, with the number of pins rising to fifty. Figure 4-10 shows the pinout of both versions.


Figure 4-4. VME - EPROM Interface


Figure 4-5. Edge-Triggered D Flip-Flop (DFFS)


Figure 4-6. 4-Bit Shifter (7495)


REPLACES 11 PACKAGES - USES 55 FOLDBACK TERMS


Figure 4-7. VMEEXP and FULLEXP

```
File Name : VMEEXP
Date : 2/13/1988
Time : 10:23:5
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Left				Right		
LABEL	** FNC	**PIN		PIN	** FNC	** LABEL
VCC	** +5V	** 8-1		1-46	** +5V	$\star * \mathrm{VCC}$
A21	** I	** 9-1		1-45	** I	**WAIT
A22	** I	** 10-1		1-44	** I	**N/C
A23	** I	** 11-1	P	1-43	** I	**CKBMZ
/DS0	** I	** 12-1	L	1-42	** I	**N/C
/DS1	** I	** 13-1	H	$1-41$	** I	**N/C
R-WN	** I	** 14-1	S	1-40	** 10	**/R-W
Q0	** 0	** 15-1	5	1-39	** 10	**DTAK
Q1	** I	** 16-1	0	$1-38$	** 10	**/DTACK
Q2	** I	** 17-1	1	1-37	** 10	**/MASEL
Q3	** I	** 18-1		1-36	** 0	$\star \star \mathrm{N} / \mathrm{C}$
/ROMOLO	** 0	** 19-1		1-35	** 0	${ }^{* *}$ N/C
GND	** OV	** 20-1		1-34	** 0 V	**GND


Bottom					Top				
LABEL	**	FNC	**PIN		PIN	**	FNC	**	LABEL
/ROMOHI	**	0	** 21-1		1-7	**	I	**A20	
/ROM1LO	**	0	** 22-1		1-6	**	I	**A19	
/ROM1HI	**	0	** 23-1		1-5	**	I	**A18	
N/C	**	10	** 24-1	P	1-4	**	I	**A17	
N/C	**	10	** 25-1	L	1-3	**	I	**A16	
N/C	*	10	** 26-1	H	1-2	**	I	**/A5	
N/C	**	10	** 27-1	S	1-1	**	I	**S17	
ENADD	**	0	** 28-1	5	1-52	**	I	**S18	
EndATLO	**	0	** 29-1	0	1-51	**	I	**S19	
ENDATHI	**	0	** 30-1	1	1-50	**	I	**S20	
N/C	**	0	** 31-1		1-49	**	I	**S21	
N/C	**	0	** 32-1		1-48	**	I	**S22	
N/C	**	0	** 33-1		1-47	**	I	**S23	

Figure 4-8. VMEEXP PLHS501 Pinlist

```
File Name: VMEEXP
Date: 2/13/1988
Time: 10:23:41
@DEVICE TYPE
 PLHS501
@DRAWING
 VMEEXP.DWG
@REVISION
@DATE
 2/12/1988
@SYMBOL
@COMPANY
@NAME
 VMEEXP
@DESCRIPTION
@INTERNAL NODE
 RO3 SO3 DO3 RO2 SO2
 DO2 Q0 RO1 SO1 DO1
 ROO SOO DOO
@I/O DIRECTION
 DB5 = 1 ;
 DB6 = 1;
 DB7 = 1 ;
 OEO = 1 ;
 OE1 = 1 ;
I/O STEERING
@LOGIC EQUATION
 RO3 = (/((//MASEL)*SO3*CK8MZ*DO3)) ;
 SO3 = (/(CKBMZ*(/(SO3*DO3*(//MASEL))))) ;
 DO3 = (/ (Q2*RO3)) ;
 RO2 = (/((//MASEL)*SO2*CKBMZ*DO2)) ;
 SO2 = (/(CKBMZ*(/(SO2*DO2(//MASEL))))) ;
 DO2 = (/(Q1*RO2)) ;
 RO1 = (/((//MASEL)*SO1*CKBMZ*DO1)) ;
 SO1 = (/(CKBMZ*(/(SO1*DO1(//MASEL))))) ;
 DO1 = (/ (QO*RO1)) ;
 ROO = (/((//MASEL) *SOO*CKBMZ *DOO)) ;
 SOO = (/(CKBMZ*(/(SOO*DOO*(//MASEL))))) ;
 DOO = (/ (Q*ROO)) ;
 /ROMOLO = (/DSO+(/(/A16*/0*1*//MASEL))) ;
 /ROMOHI = (/DS1+(/(/A16*/0*1*//MASEL))) ;
 /ROM1LO = (/DS0+(/(A16*/0*1*//MASEL))) ;
 ROM1HI = (/DS1+(/(A16*/0*1*//MASEL))) ;
 QO = (/((/ (ROO*QO))*SOO*(//MASEL))) ;
 Q1 = (/((/(RO1*Q1))*SO1*(//MASEL))) ;
 Q2 = (/((/(RO2*Q2))*SO2*(//MASEL))) ;
 Q3 = (/((/(RO3*Q3))*SO3*(//MASEL))) ;
 /MASEL = /(/(/[/((A17*S17+/A17*/S17)*(A18*S18+/A18*/S18)*(A19*S19+
 /A19*/S19)*(A20*S20+/A20*/S20)*(A21*S21+/S21*/S21)*
 (A22*S22+/A22*/S22)*(A23*S23+/A23*/S23)*//A5)])) ;
 /DTACK = /((/(/MASEL+WAIT))*R-WN) ;
 DTACK = /(/DTACK) ;
/R-W = /(R-WN) ;
ENADD = (//A5) ;
 ENDATLO = ((/R-W+/MASEL) +/DSO) ;
 ENDATHI = (/DS1+(/R-W+/MASEL)) ;
```

```
File Name : FULLEXP
Date : 2/13/1988
Time : 10:11:28
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Left					Right				
LABEL		FNC	**PIN		PIN		FNC	**	LABEL
VCC	**	$+5 \mathrm{~V}$	*** 8-1		1-46		+5V	$\star \star$	
A21	**	I	** 9-1		1-45		I	**	
A22	**	I	** 10-1		1-44		I	**	
A23	**	I	** 11-1	P	1-43	**	I	**	BM2
/DS0	**	I	** 12-1	L	1-42		I	**N	
/DS1	**	I	** 13-1	H	$1-41$		I	**N	
R-WN	**	I	** 14-1	S	1-40	**	10	**	
REG	**	0	** 15-1	5	1-39	**	10	**	
ENADD	**	0	** 16-1	0	1-38	**	10	**	TACK
ENDATLO	**	0	** 17-1	1	1-37	**	10	**	ASEL
ENDATHI	**	0	** 18-1		1-36	**	0	**	M7 HI
/ROMOLO	**	0	** 19-1		1-35	**	$\bigcirc$	$\star *$	M7LO
GND			** 20-1		1-34	**	OV	**	
Bottom					Top				
LABEL		FNC	**PIN		PIN		FNC	**	LABEL
/ROMOHI	**	0	** 21-1		1-7	**	I	**	
/ROM1LO	**	0	** 22-1		1-6	**	I	**	
/ROM1HI		0	** 23-1		1-5	**	I	**	
/ROM1LO			** 24-1	P	1-4	**	I	**	
/ROM1HI			** 25-1	L	1-3	**	I	**	
/ROM3LO			** 26-1	H	1-2	**	I	**	
/ROM3HI		10	** 27-1	S	1-1	**	I	**	
/ROM4LO		0	** 28-1	5	1-52	**	I	**	
/ROM4HI		0	** 29-1	0	\|-51	**	I	**	
/ROM5LO		0	** 30-1	1	1-50		I	**	
/ROM5HI		0	** 31-1		1-49		I	**	
/ROM6LO		0	** 32-1		1-48		I	**	
/ROM6HI		0	** 33-1		$1-47$	**	I	**	

```
File Name: FULLEXP
Date: 2/13/1988
Time: 10:11:30
```

@DEVICE TYPE
PLHS501
@DRAWING
VMEEXP.DWG
@REVISION
@DATE
2/12/1988
@SYMBOL
@COMP ANY
@NAME
VMEEXP
@DESCRIPTION
@INTERNAL NODE
RO3 SO3 DO3 RO2 SO2
DO2 RO1 SO1 DO1 RO0
SOO DOO
QO Q1 Q2 Q3
@I/O DIRECTION
DB4 = 1 ;
DB5 $=1$;
DB6 = 1 ;
DB7 = 1 ;
$\mathrm{OE} 0=1$;
$\mathrm{OE} 1=1$;
$\mathrm{OE} 2=1$;
$\mathrm{OE} 3=1$;
$\mathrm{XE} 0=1$;
$\mathrm{XE} 1=1$;
$\mathrm{XE} 2=1$;
$\mathrm{XE} 3=1$;
@STEERING
SO = Q ;
S1 $=Q$;
$\mathrm{S} 2=\mathrm{Q}$;
$\mathrm{s} 3=\mathrm{Q}$;

Figure 4-11. FULLEXP PLHS501 .BEE File

```
@LOGIC EQUATION
 RO3 = (/((//MASEL)*SO3*CKBMZ*DO3)) ;
 SO3 = (/(CKBMZ*(/(SO3*DO3*(//MASEL))))) ;
 DO3 = (/ (Q2*RO3)) ;
 RO2 = (/((//MASEL)*SO2*CKBMZ*DO2)) ;
 SO2 = (/(CKBMX*(/SO2*DO2*(//MASEL))))) ;
 DO2 = (/(Q1*RO2)) ;
 RO1 = (/((//MASEL)*SO1*CKBMZ *DO1)) ;
 SO1 = (/(CKBMZ*(/(SO1*DO1*(//MASEL))))) ;
 DO1 = (/(00*RO1)) ;
 ROO = (/((//MASEL)*SOO*CKBMZ*DOO)) ;
 SOO = (/(CKBMZ*(/SOO*DOO*(//MASEL))))) ;
 DOO = (/ (Q*ROO)) ;
 /ROMOLO = (/DS0+/(/A16*/A17*/A18*//MASEL)) ;
 /ROM0HI = (/DS1+/(/A16*/A17*/A18*//MASEL)) ;
 /ROM1LO = (/DSO +/(A16+/A17*/A18*//MASEL)) ;
 /ROM1HI = (/DS1+/(A16*/A17*/A18*//MASEL)) ;
 /ROM2LO = /(/(/DS0+/(/A16*A17*/A18*//MASEL))) ;
 /ROM2HI = /(/(/DS1+/(/A16*A17*/A18*//MASEL))) ;
 /ROM3LO = /(/(/DS0 +/(A16*A17*/A18*//MASEL))) ;
 /ROM3HI = /(/(/DS1*/(A16*A17*/A18*//MASEL))) ;
 /ROM4LO = (/DSO+/(A16*/A17*A18*//MASEL)) ;
 /ROM4HI = (/DS1+/(A16*/A17*/A18*//MASEL)) ;
 /ROM5LO = (/SA0+/(A16*/A17(A18*//MASEL)) ;
 /ROM5HI = (/DS1+/(A16*/A17*A18*//MASEL)) ;
 /ROM6LO = (/DSO+/(A16*A17*A18*//MASEL)) ;
 /ROM6HI = (/DS1+/(A16*A17*A18*//MASEL)) ;
 /ROM7LO = (/DS0+/(A16*A17*A18*//MASEL)) ;
 /ROM7HI = (/DS1+/(A16*A17*A18*//MASEL)) ;
 ENADD = (//A5) ;
 ENDATLO = ((/R-W +/MASEL) +/DSO) ;
 ENDATHI = (/DS1+(/R-W+/MASEL)) ;
 QO = /((/(ROO*QO))*SOO*(//MASEL)) ;
 Q1 = /((/(RO1*Q1))*SO1*(//MASEL)) ;
 Q2 = /((/(RO2*Q2))*SO2*(//MASEL)) ;
 Q3 = /((/(RO3*Q3))*SO3* (//MASEL)) ;
 /MASEL = /(/([/((A17*S17+/A17*/A17*/S17*(A18*S18+/A18*/S18)
 *(A19*S19+/A19*/S19)*(A20*S20+/A20*/S20)*(A21*S21
 +/A21*/S21)*(A22*S22+/A22*/S22)*(A23**S23
 +(A23*S23)*/(A5)])) ;
 /DTACK = /((/(/MASEL +/((/Q0*W0*/W1) +(/Q1*WO*/W1) +(/Q2*/W0*W1)
 +(/Q3*W0*W1))))*R-WN) ;
 DTAK = /(DTACK) ;
 /R-W = /(R-WN) ;
 REG = Q0*Q1*Q2*Q3 ;
```

Figure 4-11. FULLEXP PLHS501 .BEE File (Continued)

## Signetics

## Programmable Logic Devices

## MICRO CHANNEL INTERFACE

IBM's new Micro Channel Architecture (MCA) bus implements new features not found on the XT/AT bus. One new requirement for adapter designers is that of Programmable Option Select (POS) circuitry. It allows system software to configure each adapter card upon power on, thereby eliminating option select switches or jumpers on the main logic board and on adapter cards.

Each adapter card slot has its own unique -CDSETUP signal routed to it. This allows the CPU to interrogate each card individually upon power up. By activating a card's -CDSETUP line along with appropriate address and control lines two unique 8 bit ID numbers are first read from the adapter. Based upon the ID number, the system then writes into the card's option latches configuration information that has been stored in the system's CMOS RAM. The CPU also activates POS latch address 102 h bit 0 , which is designated as a card enable bit.

If a new card is added to the system, an auto-configuration utility will be invoked. Each adapter card has associated with it a standardized Adapter Description File with filename of @XXXX.ADF, where XXXX is the hex ID number of the card.

The configuration utility prompts the user according to the text provided in the .ADF file and updates the card's latches and the system's CMOS RAM.

IBM reserves 8 addresses for byte-wide POS latches, however, depending on the card's function, not all addresses need to be used. In addition, of those addresses that are used, only the bits used need to be latched. The first two addresses which are reserved for reading the ID bytes, and bit 0 of the third address, which is defined as a card enable bit, are mandatory. Some of the remaining bits of the third address are suggested by IBM to be used as inputs to an I/O or memory address comparator to provide for alternate card addresses. Many adapter cards will not use more than these three POS locations.

The following example describes an implementation of POS circuitry realized in a PLHS501. It uses only 56 of the possible 72 internal foldback NAND gates and only a portion of the device pins, allowing additional circuitry to ba added. Figure 5-1 shows a block diagram of the circuit, and Figures 5-3 and 5-4 are the AMAZE files. Pins labeled D0O-D7O must be connected externally to pins DOI-D7I. They also must be connected through a 74F245 transceiver to the Micro Channel. External transceiver direction and enable control is
provided for by circuitry within the PLHS501. The external transceiver may also be used by other devices on the adapter card.

In this application, edge-triggered registers are not required and therefore should not be used, as transparent latches use fewer NAND gates to implement. Figure 5-2 shows the various latch circuits described by the AMAZE equations. POS byte 2 was made using four of the /B device pins and four of the $B$ pins. Notice however, from Figure 5-2(B) that the bits on the / B pins used the complement of the input pin, thereby implementing a noninverting latch. Also, all 8 bits of this byte were brought to output pins. If some of the bits are not used by external circuitry, then the specific bit latch may not be needed or may be constructed entirely from foldback NAND gates freeing additional pins.

An external F521 may be added to provide for I/O address decoding. As the MCA bus requires all 16 bits of the I/O address to be decoded, 8 bits may be assigned to the F521 and 8 bits to the 501. Bit fields decoded in the 501 may be done so in conjunction with bits from POS byte 2 to provide for alternate I/O addressing. Additionally, some of the available 501 outputs may be used as device enables for other devices on the card.

PLHS501
Application Notes Vol. 2


Figure 5-1. Block Diagram of Basic POS Implementation in PLHS501


Figure 5-2. Latches Used in MCA Interface


Figure 5-3. PLHS501 MCPOSREG Pinlist

```
File Name: MCPOSREG
Date: 5/31/1988
Time: 11:50:17
@DEVICE TYPE
 PLHS501
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMP ANY
@NAME
@DESCRIPTION
 Basic Programmable Option Select circuitry
 for a Micro Channel Adaptor card
@INTERNAL NODE
 /setup1,/mio1,a01,a11,/a21,ss01,ss11;
 /en,outen,/iow;
@COMMON PRODUCT TERM
 read0 = (setup1*/ss11*ss01*miol*/cmd*a21*/a11*/a01);
 read1 = (setup1*/ss11*ss01*miol*/cmd*a21*/a11* a01);
 read2 = (setup1*/ss11*ss10*miol*/cmd*a21* a11*/a01);
"
 NOTE: In the above equations, setup1, miol and a2l all should be
 preceded by a slash (/). The slash was omitted to correct for
 a mapping error in AMAZE 1.65 when using active low internal node
 definitions in common product terms.
"
 b7h = 0; " Define high ID byte "
 b}6\textrm{h}=1; " (POS byte #1) "
 b5h = 1; " 7E hex "
 b4h = '1;
 b3h = 1;
 b2h = 1;
 b1h = 1;
 bOh = 0;
 b71 = 1; " Define low ID byte "
 b61 = 1; " (POS byte #0) "
 b51 = 1; " FF hex "
 b4l = 1;
 b31 = 1;
 b2l = 1;
 b1l = 1;
 b01 = 1;
@I/O DIRECTION
 "3-state output control of d7o-d0o"
 xe0 = (/setup1*/ss11*ss01*/mio1*/cmd*a21*outen);
 xe1 = (/setup1*/ss11*ss01*/mio1*/cmd*a21*outen);
 xe2 = (/setup1*/ss11*ss01*/mio1*/cmd*a21*outen);
 xe3 = (/setup1*/ss11*ss01*/miol*/cmd*a21*outen);
@I/O STEERING
```

Figure 5-4. PLHS501 MCPOSREG .BEE File (begins)

```
@LOGIC EQUATION
 " 7-Bit Input Latch for Control Signals "
/setup1 = /setup*/ad1 + /setup1*ad1;
/moil = /mio */adl + /miol *adl;
ss11 = ssl */adl + ss11 *adl;
ss01 = ss0 */ad1 + ss01 *ad1;
/a21 = /a2 */ad1 + /a21 *ad1;
a11 = a1 */ad1 + a11 *ad1;
a01 = a0 */ad1 + a01 *ad1;
 " Option Select Octal Data Latch (POS byte #2) "
 "10 is to be used as a card enable signal"
/en = /[/setup1*/ss01*ss11*/miol*/cmd*/a21*a11*/a01]; "write to latch"
/17 = /[/d7i * en] * /[17 * /en] * [/rst];
/16 = /[/d6i * en] * /[16 * /en] * [/rst];
/15 = /[/d5i * en] * /[15 * /en] * [/rst];
/14 = /[/d4i * en] * /[14 * /en] * [/rst];
13 = /(/[d3i * en * /rst] * /[13 * /en * /rst]);
12 = /(/[d2i * en * /rst] * /[12 * /en * /rst]);
11 = /(/[dli * en * /rst] * /[11 * /en * /rst]);
10 = /(/[d0i * en * /rst] * /[10 * /en * /rst]);
 "Octal 3 to 1 Multiplexer "
 " This miltiplexer selects between reading
 POS[0], POS[1] or POS[2] onto the data bus"
d7o = (b7h*read1 + b71*read0 + /l7*read2);
d60 = (b6h*read1 + b6l*read0 + /16*read2);
d5o = (b5h*read1 + b5l*read0 + /l5*read2);
d4o = (b4h*read1 + b4l*read0 + /14*read2);
d3o = (b3h*read1 + b3l*read0 + 13*read2);
d2o = (b2h*read1 + b2l*read0 + l2*read2);
d10 = (b1h*read1 + b11*read0 + 11*read2);
d0o = (b0h*read1 + b0l*read0 + l0*read2);
 "3-State output control for d70-d0o:
outen =/[a11*a01];
 "External F245 transceiver control"
iowb = /(/a2l * /setupl * miol * ss11 * /ssOl);
/iow = /(/a2l * /setupl * miol * ssll * /ssOl);
bufen = cmd * /iow;
```

Figure 5-4. PLHS501 MCPOSREG .BEE File (end)

## Signetics

## Programmable Logic Devices

## NuBus INTERFACE

In Apple Computer's book* "Designing Cards and Drivers for Macintosh II and Macintosh SE", an application was described for interfacing an 8-bit I/O controller to the NuBus. The controller used was a SCSI controller of the type used on the main Macintosh logic board. Seven devices (three of which were PAL architecture) were used as control circuitry interfacing the SCSI controller and two RAM chips to the bus.

This example of using the PLHS501 shows a method of interfacing the same SCSI controller and RAM chips to the NuBus using only three parts. The adapter card schematic is shown in Figure 6-2 and the AMAZE listing is in Figure 6-6. Although the AMAZE listing may seem

## PLHS501 Application Notes Vol. 2

confusing at first glance, the circuitry fused into the PLHS501 can be broken down into small blocks of latches, flipflops, and schematically in Figures 6-4 and 6-5. Circuit timing is shown in Figure 6-3.

Referring to Figure 6-4 and Figure 6-5, the circuitry starts a transaction by first detecting a valid address in either the slot or super slot range. The detection is accomplished by two wide-input NAND gates, and controlled by the /CLK signal. Following each NAND gate is an S-R latch to hold the signal until near the end of the cycle. The two S-R latch signals are combined into one signal named STO such that if either NAND gate output was low, then some delay time after the rising edge of /CLK, STO will go low. The next
rising edge of /CLK will cause signal ST1 to go low. This sets signal DE2 low, which is an input to an external flip-flop to cause ST2 to go low at the next rising /CLK edge terminating the cycle. An externalflip-flop was necessary to achieve a high-speed /CLK to/IOR and /ACK transition. Also, an external FI25 buffer was added to meed the soon to be approved IEEE P1196 specification requirement of $60 \mathrm{~mA} \mathrm{l}_{\mathrm{OL}}$ for signal $/ \mathrm{NMRQ}$ and 24 mA loL for signals /TM0/TM1 and /ACK. Figure 6-5(B) shows an easily implemented latch which controls interrupts generated by the SCSI controller passing onto the bus. Upon /RESET the latch is put into a known state. Under software control, by writing to a decoded address, the latch may be set or reset, thereby gating or blocking the interrupt signals.


[^19]

Figure 6-2. Adapter Card Schematic


Figure 6-3. Timing Diagram


Figure 6-4. Decoding and Latch Circuitry


Figure 6-5. Internal Flip-Flops and Latches

## \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \# \# \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Left						Right				
LABEL	**	FNC	**	IN		PIN	**	FNC	**	LABEL
VCC	**	$+5 \mathrm{~V}$	**	$8-1$		1-46	**	$+5 \mathrm{~V}$	**	
/ID2	**	I	**	9-1		1-45	**	I	**	
/ID3	**	I	**	10-1		1-44	**	I	**D	
DRQ	**	I	**	11-1	P	1-43	**	I	**	
IRQ	**	I	**	12-1	L	1-42	**	I	**	
ST2	**	I	**	13-1	H	1-41	**	I	**	
N/C	**	I	**	14-1	S	1-40	**	10	**	
N/C	$\star *$	0	**	15-1	5	1-39	**	10	**N	
N/C	**	0	*	16-1	0	1-38	**	10	**N	
N/C	**	$\bigcirc$	**	17-1	1	1-37	**	10	**N	
N/C	**	0		18-1		1-36	**	0	**N	
N/C	**	0		19-1		1-35	**	0	**	
GND	**	OV	**	20-1		1-34	**	10	**	



```
@DEVICE TYPE
```

    PLHS501
    @DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION
SCSI-NuBus Interface
@INTERNAL NODE
/sl,/sp,/SLOT,/SUPER;
sn1,sn2,rn1,rn2;
sn3, rn3, st1;
sn4, rn4, tm1l,tm1ln;
CMP 3a, CMP 2a, CMP1a, CMP0a;
CMP 3b, CMP 2b, CMP 1b, CMP 0b;
/slt,/sup,stln, adclk;
setad,rstad,inten;
slotn, supern;
@COMMON PRODUCT TERM
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
"Address Decode"
cmp0a $=(\mathrm{dO} * i d 0+/ \mathrm{dO} /$ /id0);
cmpla $=(\mathrm{d} 1 * i d 1+/ \mathrm{d} 1 * / i d 1) ;$

```
cmp2a = (d2*id2+/d2*/id2);
cmp3a = (d3*id3+/d3*/id3);
cmp0b = (d4*id0+/d4*/id0);
cmplb = (d5*id1+/d5*/id1);
cmp2b = (d6*id2+/d6*/id2);
cmp3b = (d7*id3+/d7*/id3);
/sl = /(d7*d6*d4*cmp0a*cmp1a*cmp2a*cmp3a*start*/ack*clk);
/sp = /(cmp0b*cmp1b*cmp2b*cmp3b*start*/ack*clk);
 "latch slot signal"
/slt = /(/reset*st2*/[/sl*/slt]);
 "latch super signal"
/sup = /(/reset*st2*/[/sp*/sup]);
 "Let /slt or /sup through only
 until after the rising edge
 of /clk"
st0 = /(/[/slt*/sup*clk] * /[st0*clk] * /[/slt*/sup*st0] * /reset);
 "Slot signal D-type Flip-Flop"
sn1 = /(/clk*slt*(/[snl*/reset*/super*(/[st0*rnl*/slt])]));
rn1 = /(/clk*sn1*(/[st0*rn1*/slt]));
/slot = /(/reset*/super*sn1*slotn);
slotn = /(//slot*rn1*/slt);
 "Super signal D-type Flip-Flop"
sn2 = /(/clk*/sup*(/[sn2*/reset*/slot*(/[st0*rn2*/sup])]));
rn2 = /(/clk*sn2*(/[st0*rn2*/sup]));
/super = /(/reset*/slot*sn2*supern);
supern = /(/super*rn2*/sup);
 "State 1 D-type Flip-Flop"
sn3 = /(/clk*(/[sn3*/reset*(/[st0*rn3])]));
rn3 = /(/clk*sn3*(/[st0*rn3]));
st1 =/(/reset*sn 3*st1n);
st1n= /[st1*rn3];
 "output to external flop"
de2 = /(stln * st2);
 "address latch clock"
adclk = clk*st0*st1;
aclk = clk*st0*st1;
 "latch tml signal for r/w info"
sn4 = /(adclk*/reset*(/[sn4*(/[/tm1*rn4*/reset])]));
rn4 = /(adclk*sn4*(/[/tm1*rn4*/reset]));
tmll = /(sn4*tmlln);
tmlln= /(rn4*/reset*tmll);
 "
 tm11 -> 1 read, 0 write
 tm1ln -> 0 read, 1 write
 "
 "straight decode stuff"
/iorr = /(/st0*tmll */reset);
/iow = /(/tm1ln*st0 * /reset);
/scsi = /(slotn*/a19*/a18*/a9 */reset);
/dack = /(slotn*/a19*/a18* a9 * /reset);
/romcs= /(slotn* a19* a18 * /reset);
/ramcs= /(supern */reset);
/resetb= /reset;
 "interrupt control latch"
setad = /(tmlln*/st0*slotn* a19*/a18* a9);
rstad = /(tm1ln*/st0*slotn* a19*/a18*/a9);
inten = /(setad*(/[inten*rstad*/reset]));
/nmrq = /(inten*drq+inten*irq);
```


## Signetics

## Programmable Logic Devices

## NUGGETS

Much current focus for microprocessor design is on the address bus. Typically, most designers assume the processor will handle the data manipulation and the data bus is assumed to be a straight, clean path to and from the memory. Data transformations may be accomplished for specific purposes when the application requires it. For instance, a classic transformation from the early 70 's was the bit reversal required to address operands for a Fast Fourier Transformation. When designers implemented bit reversal as a separate hardware process, the whole system improved. Likewise for hardware multipliers.

Also, a hidden "transformation" is the appending of parity and the calculation of E.C.C. polynomials. Clearly, when the designer recognizes that significant performance improvement can be achieved by realizing the payoff attainable with a special purpose hardware device, he should design it. For example, let's consider parity generation:

## Data Bus Parity

The PLHS501 can span 32 bits of input data. It has four output Ex-OR gates, and the ability to generate literally any function
of the inputs. It would seem that there must be some "best" way to generate and detect parity. Recall that the PLHS501 can generate both deep logic functions (bots of levels) and wide logic functions (lots of inputs). The best solution would require the fewest gates and the fewest number of logic levels. Let's review the basics, first. Table 7-1 (A) shows the parity function for two variables and Table 7-1(B) shows it for three variables. The Ex-OR function generates even parity.

It is noticeable that there are precisely $50 \%$ logical 1 entries in the truth tables. This yields the famous checkerboard Karnaugh Maps. With a checkerboard Kmap, no simplification of Ex-OR functions is possible by Boolean simplification. The two variable Ex-OR has two ones (implying 3 gates to generate), the 3 variable has four ones (implying 5 gates to generate). In general, $2^{n-1}+1$ product terms could generate Ex-OR functions in two levels of NAND gates (assuming complementary input variables exist). You must have an unlimited number of gate inputs for this to hold.

The PLHS501 could do this for 7 input variables in two levels $\left(2^{6}+1=65\right)$, but

## PLHS501

 Application Notes Vol. 2cannot support $8\left(2^{7}+1=129\right)$. Hence, it is appropriate to seek a cascaded solution, hopefully taking advantage of the available output Ex-OR functions. Let's solve a 16 input Ex-OR function, by subpartitioning. First, consider Figure 7-1(A) where two literals are Exclusive-ORed to generate an intermediate Ex-OR function. This requires available complementary inputs and generates even parity in two levels. Figure 7-1(B) also does this (by factoring), requiring 3 gate levels, but does not require complementary inputs.

Assuming inputs must get into the PLHS501 through the pin receivers, it is best to generate as wide of an initial Ex-OR as possible, so a structure like Figure 7-1 (A) expanded is appropriate. Figure 7-1 shows a 2-level 4 input Ex-OR function which may be viewed as a building block. This structure may be repeated four times, across four sets of four input bits generating partial intermediate parity values which may then be treated through two boxes similar to Figure 7-1 (B). These outputs are finally combined through an output Ex-OR at a PLHS501 output pin. Figure 7-3 shows the complete solution which requires 44 NANDs plus one Ex-OR.

A	B	$\mathbf{A} \oplus \mathbf{B}$	A	B	C	$\mathbf{A} \oplus \mathbf{B}$
0	0	0	0	0	0	0
0	1	1	0	0	1	1
1	0	1	0	1	0	1
1	1	0	0	1	1	0
			1	0	0	1
	Tab		1	0	1	0
			1	1	0	0
			1	1	1	1
		Table 7-1(B).				
Table 7-1. Even Parity Functions						




Figure 7-3. 16 Input Even Parity Generation

Two examples follow which were supplied by one of our European Sales Engineers, Nils Lindgren. The first, called "paritet", calculates even and odd parity for 24 input literals. Several output options are available and the design uses a cascade with a different partitioning than just previously discussed.

The second example "compare" implements, a 16-bit comparator over 32 input bits. The design generates outputs for conditions representing the classic "EQUAL", "AGTB" (A>B) and BGTA ( $B>A$ ). The long, triangularized equation for T42 suggests that Nils found a clever editing approach to accurately enter a
relatively long design equation into Signetics AMAZE.

```
File Name : PARITET
Date : 5/31/1988
Time : 10:26:22
##################### P I N L I S T #####################
```

Left				Right				
LABEL	** FNC	**PIN		PIN	**	FNC	**	LABEL
VCC	** +5V	** 8-1		1-46	**	$+5 \mathrm{~V}$	**VCC	
A	** I	** 9-1		1-45	**	I	**K	
B	** I	** 10-1		1-44	**	I	$\star * J$	
C	** I	** 11-1	P	1-43	**	I	**I	
D	** I	** 12-1	L	1-42	**	I	**H	
E	** I	** 13-1	H	1-41	**	I	$\star \star \mathrm{G}$	
F	** I	** 14-1	S	1-40	**	10	**N/C	
N/C	** B	** 15-1	5	1-39	**	10	**N/C	
N/C	** B	** 16-1	0	1-38	**	10	**N/C	
N/C	** B	** 17-1	1	1-37	**	I	**OEN	
N/C	** B	** 18-1		1-36	**	0	**N/C	
N/C	** 0	** 19-1		1-35	**		**N/C	
GND	** OV	** 20-1		\|-34	**	OV	$\star *$ GND	


Bottom						Top		
LABEL	** FNC	**PIN		PIN	**	FNC	**	LABEL
N/C	** 0	** 21-1		1-7	**	I	$\star \star Y$	
N/C	** 0	** 22-1		1-6	**	I	**X	
ODD OC	** 0	** 23-1		1-5	**	I	**V	
ODD	** /0	** 24-1	P	1-4	**	I	**U	
EVEN	** /0	** 25-1	L	1-3	**	I	**T	
EVEN_OC	** 10	** 26-1	H	1-2	**	I	**S	
N/C	** 10	** 27-1	S	1-1	**	I	**R	
N/C	** 0	** 28-1	5	1-52	**	I	**Q	
N/C	** 0	** 29-1	0	1-51	**	I	**p	
N/C	** 0	** 30-1	1	1-50	**	I	$\star * 0$	
N/C	** 0	** 31-1		1-49		I	**N	
N/C	** 0	** 32-1		1-48		I	**M	
N/C	** 0	** 33-1		1-47		I	**L	

Figure 7-4. PARITET PLHS501 Pinlist

File Name : PARITET
@DEVICE TYPE
PLHS501
@DRAWING
@REVISION
@DATE
1988
@SYMBOL
@COMPANY
Philips
@NAME
Nils Lindgren
@DESCRIPTION
24 bit parity circuit
@INTERNAL NODE
J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 T0 T1 T2 T3
@COMMON PRODUCT TERM
@I/O DIRECTION
OE1=T2*T3*/OEN;
OE2=/OEN;
OE3=T0*T1*/OEN;
@I/O STEERING
@LOGIC EQUATION
"FIRST LEVEL: 'EVEN' FROM GROUPS OF THREE INPUTS"
$J 0=/ A^{*} / B^{*} / C+/ A^{*} B^{*} C+A^{*} / B^{*} C+A^{*} B^{*} / C$;
$J 1=/ D * / E * / F+/ D * E * F+D * / E * F+D * E * / F ;$
J2=/G*/H*/I + /G*H*I + G*/H*I + G*H*/I;
$J 3=/ J * / K^{*} / L+/ J^{*} K^{*} L+J * / K \star L+J \star K * / L ;$
$J 4=/ M^{*} / N^{*} / O+/ M^{*} N^{*} O+M^{*} / N^{*} O+M^{*} N^{*} / O ;$
$J 5=/ P * / Q^{*} / R+/ P * Q^{*} R+P * / Q^{*} R+P * Q^{*} / R$;
J6=/S*/T*/U + /S*T*U + S*/T*U + S*T*/U;
J7 $=/ V^{\star} / X^{\star} / Y+/ V^{*} X^{*} Y+V^{\star} / X^{\star} Y+V^{\star} X^{*} / Y$;
"SECOND LEVEL: 'EVEN' FROM FOUR GROUPS AT A TIME"
J8 =/J0*/J1*/J2*/J3 + /J0*/J1*J2*J3 + J0*J1*/J1*/J3 + /J0*J1*J2*J3

+ J0*/J1*/J2*J3 + /J0*J1*/J2*J3 + J0*/J1*J2*/J3 + J0*J1*J2*J3;
J9 =/J4*/J5*/J6*/J7 + /J4*/J5*J6*J7 + J4*J5*/J6*/J7 + /J4*J5*J6*J7
$+J 4 * / J 5 * / J 6 * J 7+/ J 4 * J 5 * / J 6 * J 7+J 4 * / J 5 * J 6 * / J 7+J 4 * J 5 * J 6 * J 7 ;$
T0=/(J8*J9);
T1=/(/J8*/J9) ;
T2=/(J8*/J9);
T3=/(/J8*J9);
ODD=/(T2*T3);
EVEN=/(TO*T1);
ODD_OC=0;
EVEN_OC=/(1);

Figure 7-5. PARITET PLHS501 .BEE File

```
File Name : compare
Date : 5/31/1988
Time : 10:25:29
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#


Bottom				Top			
LABEL	** FNC	**PIN		PIN**	FNC	**	LABEL
EQUAL	** 0	** 21-1		1-7**	I	**BF	
AGTB	** 0	** 22-1		1-6**	I	$\star{ }^{*} \mathrm{BE}$	
BGTA	** 0	** 23-1		1-5 **	I	**BD	
N/C	** 10	** 24-1	P	1-4**	I	**BC	
N/C	** 10	** 25-1	L	1-3**	I	**BB	
N/C	** 10	** 26-1	H	1-2 **	I	**BA	
N/C	** 10	** 27-1	S	1-1 **	I	**B9	
N/C	** 0	** 28-1	5	1-52 **	I	**B8	
N/C	** 0	** 29-1	0	1-51 **	I	**B7	
N/C	** 0	** 30-1	1	1-50 **	I	**B6	
N/C	** 0	** 31-1		1-49 **	I	**B5	
N/C	** 0	** 32-1		1-48 **	I	**B4	
N/C	** 0	** 33-1		1-47 **	I	**B3	

Figure 7-6. PLHS501 Pinlist for 16-Bit Comparator

```
File Name : compare
Date : 5/31/1988
Time : 10:25:43
@DEVICE TYPE
 PLHS501
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
 PHILIPS
@NAME
 NILS LINDGREN
@DESCRIPTION
 16 BIT COMPARATOR WITH THREE OUTPUTS:
 EQUAL,AGTB (A>B), AND BGTA (B>A)
```

Figure 7-7. Compare PLHS501 .BEE File (begins)

```
@INTERNAL NODE
 T1 T2 T3 T4 T5 T6 T7 T8
 T9 T10 T11 T12 T13 T14 T15 T16
 T17 T18 T19 T20 T21 T22 T23 T24
 T25 T26 T27 T28 T29 T30 T31 T32
 T41 T42
@COMMON PRODUCT TERM
@I/O DIRECTION
@I/O STEERING
@LOGIC EQUATION
 T1=/(AF*/BF);
 T3=/(AE*/BE);
 T5=/(AD*/BD);
 T7=/(AC*/BC);
 T9=/(AB*/BB);
 T11=/(AA*/BA); T12=/(/AA*BA);
 T13=/(A9*/B9); T14=/(/A9*B9);
 T15=/(A8*/B8); T16=/(/A8*B8);
 T17=/(A7*/B7); T18=/(/A7*B7);
 T19=/(A6*/B6); T20=/(/A6*B6);
 T21=/(A5*/B5); T22=/(/A5*B5);
 T23=/(A4*/B4); T24=/(/A4*B4);
 T25=/(A3*/B3); T26=/(/A3*B3);
 T27=/(A2*/B2); T28=/(/A2*B2);
 T29=/(A1*/B2); T30=/(/A1*B1);
 T31=/(A0*/B0); T32=/(/A0*B0);
```

    T41=T1*T2*T3*T4*T5*T6*T7*T8*T9*T10*T11*T12*T13*T14*T15*T16*T17*
        T18*T19*T20*T21*T22*T23*T24*T25*T26*T27*T28*T29*T30*T31*T32;
    \(\mathrm{T} 42=\) /T1
                                    /T3*T2+
                                    /T5*T4*T2+
                                    /T7*T6*T4*T2+
                                    /T9*T8*T6*T4*T2+
                                    /T11*T10*T8*T6*T4*T2+
                                    /T13*T12*T10*T8*T6*T4*T2+
                                    /T15*T14*T12*T10*T8*T6*T4*T2+
                                    /T17*T16*T14*T12*T10*T8*T6*T4*T2+
                                    /T19*T18*T16*T14*T12*T10*T8*T6*T4*T2+
                                    /T21*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2+
                                    /T23*T22*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2+
                                    /T25*T24*T22*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2+
                /T27*T26*T24*T22*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2+
                /T29*T28*T26*T24*T22*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2+
        /T31*T30*T28*T26*T24*T22*T20*T18*T16*T14*T12*T10*T8*T6*T4*T2;
    EQUAL=T41;
AGTB=T42;
$B G T A=/(T 41+T 42)$;

Figure 7-7. Compare PLHS501 .BEE File (end)

## Data Bus Operations

The following is basically an acadomic example, posed for the sake of illustration. Suppose some special data bus operations are desirable. For the purpose of illustration, let's label the microprocessor bus output side as ODATO-ODAT15 and the output of our PLHS501 as D0-D15. Basically, the microprocessor will output straight data and the PLHS501 will alter it according to some plan.
We will replicate multiple identical cells, but they need not be identical in practice. Table 7-2 shows the operations to be done (just about any could be chosen, provided they meet the gate budget).

Table 7-2. Data Operations

$I_{2}$	$I_{1}$	DOUT
0	0	ODATI (pass)
0	1	ODATI (complement)
1	0	SWITCH
1	1	DOUBLE SHIFT



Figure 7-8. Basic Cell Structure

It may be observed that in one mode, the data passes directly, it complements in another, switches bits in another and rotates right in the last. Four input gates per bit are required to map the bits, and one output gate. Clearly, the straight PLHS501 NAND outputs can be judiciously used, but care must be taken when using other output functions. A 16-bit data bus requires 16 cell configuration where each cell is essentially identical to Figure 7-8, but its internal structure may be altered to account for the particular output pins logic function.

## Signetics

Programmable Logic Devices

## INTRODUCTION

Certain design techniques are used repeatedly by nearly all digital systems designers. If these useful building blocks occur with enough volume production, they become special purpose contenders for silicon manufacturers to justify rendering as standard products. Some building blocks, however, are never viewed as likely candidates because the performance requirements may be too high, the volumes not high enough, or it never occurred to marketeers that these subsystems would be valuable. System designers could fashion solutions to these building blocks from glue logic or PLDs and sometimes small gate arrays. Several typical building blocks will be illustrated here - including a 4-byte datapipe, a small content addressable memory (CAM), a system resource scoreboard and a synchronous receiver/transmitter. The generation of each building block will be demonstrated with a Signetics PLHS502 (Figure 1-1). This device is rendered in the Programmable Macro Logic

## PLHS502 Application Notes <br> Vol. 1

(PML) architecture which deftly bridges the gap between gate arrays and ordinary PLDs.

Designed with a high-speed bipolar process, the PLHS502 combines 64 extremely wide foldback NAND gates with two types of internal flip-flops. The PLHS502 provides 8 internal D flip-flops and 8 internal S-R flip-flops. Each flipflop can toggle in excess of 50 MHz . These flip-flops are called "hard macro" flip-flops. Unique among such programmable devices, each flip-flop has completely independent clocking. This allows either external clocking (from four different pins) or internally derived clocking events. Ripple and synchronous controllers may be freely mixed. It should be remembered that additional flip-flops and specially custom designed flip-flops may be configured from the NAND array. Clock independence is a requirement for generating distinct internal sequencers and controllers. Additionally, it should be noted that the flip-flop Q outputs cross the clock
fusing array, but $\bar{Q}$ outputs do not. The PLHS502 is packaged in a 68-pin PLCC.

This application note consists of several sections. The next section briefly describes Signetics SNAP software package for implementing PML designs. Section 3 describes the basic process for estimating whether a design will fit into a PLHS502. In Section 4, some guidelines for designing synchronous state machines are given with focus on efficient counter and shifter design. Specific examples are included which may be easily mimiced for successful state machine design. Additional guidelines are then provided in Section 5 , for optimizing a design before it is implemented with SNAP. These guidelines will help guarantee that SNAP implements the function precisely as needed. In Section 6, some larger examples are provided which illustrate some interesting and unique capabilities of the PLHS502. Section 7 details a procedure for merging logic functions into flip-flops for faster, more efficient structures.


Figure 1-1. PLHS502 Logic Diagram

## Signetics

## Programmable Logic Devices

## DEVELOPMENT SUPPORT

Because the architecture encourages deep functional nesting, a new support tool has been developed. Synthesis, Netlist, Analysis and Program (SNAP) software defines a gate array type development environment. SNAP permits several forms of design capture (schematic, Boolean equations, state equations, etc.), a gate array simulator with back annotation, waveform display and a complete fault analyzer and final fusemap compilation and model extraction. SNAP comes with a library of cells, and designs may be captured independently of the ultimate device that will implement the design. This permits the designer to migrate his design among a family of PML devices just as gate array designs can be moved to larger foundations when they do not route on smaller ones. Figure 2-1 shows the SNAP user interface "Shell" which dictates one sequence of operations to complete a design. Other sequences may be used.
The top portion of the shell depicts the paths available for design entry. Any de-
sign may be implemented in any one or a blend of all methods. For instance, a shift register might best be described schematically but a decoder by logic equations. These may be united with a multiplexor described by a text netlist as well. Ultimately, each form of input will be transformed to a function netlist and passed either to the simulation section or to the compiler section. Waveform entry is for simulation stimuli.

The simulator portion of SNAP is a 5-State gate array simulator with full timing information, setup and hold time checking, toggle and fault grade analysis and the ability to display in a wide range of formats, any set of nodes within the design. This permits a designer to zoom in with a synthetic logic state analyzer and view the behavior of any point in the design. Simulations can occur with unit delays, estimations or exact delays. The sequence of operations depicted in Figure 2-1 is entirely arbitrary, as many other paths exist.

It should be noted that the output of the
"merger" block represents the composite design, but as yet is not associated to a PML device. This occurs in the compiler portion wherein association to the device occurs and a fusemap is compiled. This is analogous to placement and routing in a gate array environment. Because of the interconnectibility of PML, this is not difficult. Once compiled, the exact assignment of pins, gates and flip-flops is known, so timing parameters may be associated and a new simulation model generated with exact detailed timing embedded. The design may be simulated very accurately at this point, and if correct, a part should be programmed.

To facilitate future migration to workstations, SNAP has been written largely in C. The internal design representation is EDIF (Electronic Design Interchange Format) compatible which permits straightforward porting to many commercially viable environments. SNAP currently utilizes OrCAD for schematic entry with eminent availability of FutureNet ${ }^{\text {TM }}$ DASH.

[^20]

Figure 2-1. SNAP Shell Design

## Signetics

## Programmable Logic Devices

## CAPACITY AND PARTITIONING CONSIDERATIONS

One of the dominant attributes of PML architecture is its complete interconnectibility. Any function - NAND, flip-flop, input and output structures, can be connected to any other. PML devices do not exhibit the restricted interconnect bottleneck like other programmable gate arrays. If there is capacity within the part for a function, it can be connected without the sad surprise ending of "nonroutability". Estimation for design fit is simply a matter of tallying function usage against a fixed set of resources using a table lookup. An elementary table

## PLHS502

Application Notes

## Vol. 1

of typical useful functions is provided in Table 3-1. Clearly Table 3-1 shows only a few of the typical functions achievable and their relative "expense" from the total function budget. As with gate arrays, the designer needs only to implement the portion of his chosen function that is to be actually used.

Fortunately, if the designer is using SNAP, all unused functions will be automatically eliminated. This is done by netlist analysis where SNAP observes an output within your circuit which is unconnected. It eliminates the unconnected gate and
reanalyzes to see if there are more unconnected gates in the design. The procedure iterates until there are no more unconnected gates. When estimating whether a function will fit or not, the values in Table 3-1, if used without modification, should result in a high gate count. So, to more accurately assess fit, they should be derated to account for automatic netlist trimming. As well, the estimator should consider logic functions which can be obtained for "free" from input buffers and output functions. Guidelines, provided in Section 5, will illustrate this process.

TABLE 3-1. PLHS502 GATE EQUIVALENT TABLE

FUNCTION	INTERNAL NAND EQUIVALENT	COMMENTS
Gates:		
	1	For 1 to 32-pin input variables
ANDs	1	Add'l internal inputs can be used as needed
NORs	1	Add'l internal inputs can be used as needed
ORs		Add'l internal inputs can be used as needed
Gate Macro Flip-Flops:		
D-FF	N/A	$\text { Total Budget }=8$
SR-FF	N/A	Total Budget $=8$
Gate Implemented Flip-Flops:		
D-FF	6	With async S-R
T-FF	6	With async S-R
J-K-FF	10	With async S-R
Transparent-D Latch	4	With async S-R
S-R Latch	2	With async S-R
Decoders:		
3 to 8	8	Inverted inputs available
4 to 16	16	Inverted inputs available
5 to 32	32	Inverted inputs available (24 chip outputs only)
Encoders:		
8 to 3	15	Inverted inputs, 2 logic levels
$16 \text { to } 4$	32	Inverted inputs, 2 logic levels
32 to 5	41	Inverted inputs, 2 logic levels
Multiplexors:		
4 to 1	5	Inverted inputs available
8 to 1	9	Inverted inputs available
16 to 1	17	Inverted inputs available
27 to 1	28	Can address only 27 externally inputs - more if internal only. This disallows clock inputs to flip-flop.

[^21]
## Signetics

## Programmable Logic Devices

## STATE MACHINE DESIGN

Synchronous state machines can be classified in roughly three practical categories - sequence generators, sequence detectors and controllers. These can also be subcategorized as Mealy, Moore, finite state, linear, etc. A very large application market is covered, by considering the basic design of counters and shifters because a counter (with possible decoding) can be viewed as a generalized sequence generator and a shifter (with decoding) can be viewed as a sequence detector. A couple of small examples should illustrate the basic principles of flip-flop selection, picking optimal solutions and trading off hard macro and soft macro functions. First, a few small counters will be dis-

## PLHS502 Application Notes

Vol. 1

cussed in detail from a logic viewpoint. Then, small shifters will be shown. These basic designs are extendible so that a designer can recognize the patterns to make the counters and shifters bigger if necessary. In the next section, some general guidelines for getting "smaller, tighter" designs will be given.

## Counter Design Notes

A straightforward 3-bit up/down counter transition table is depicted in Figure 4-1(a). The state variables are designated $A, B, C$ and the direction control is U . Up counting occurs when $\mathrm{U}=1$ and down counting occurs when $U=0$. Figure 4-1 (b) shows four variable maps with the next state transitions at the current state
and input intersections. These transitions will be useful in reference to Figures 4-2, 4-3 and 4-4 where the design is cast onto D, S-R and J-K flip-flop solutions.
We will not initially be interested in the full design details but rather, only on the number of product terms and sum terms for each solution. Figure 4-2(b) shows the K-map loops for a D flip-flop solution. Figure 4-2(a) shows the required transitions used to generate the three maps in Figure 4-2(b). There are 9 loops for the $A$ and $B$ variables requiring 9 product terms and 2 sum terms for driving the $A$ and $B$ flip-flops. The $C$ flip-flop requires no additional logic. Note the "SUM" terms are free on PLHS502 D flip-flops because of the embedded NANDs.


COUNTER STATE TABLE
(a)


B
TRANSITIONS

(b)

Figure 4-1. 3-Bit U/D Counter Definition

$$
\begin{array}{cccc}
0 \rightarrow 0 & 0 \rightarrow 1 & 1 \rightarrow 0 & 1 \rightarrow 1 \\
D=0 & D=1 & D=0 & D=1
\end{array}
$$

(a)



DB


DC
DA takes 5 P -Terms DB takes 4 P -Terms DC takes 0 P-Terms
3 Variables, 8 States and 9 P-Terms and 2 S Terms
(b)

Figure 4-2. K-Map Loops Using D-FFs

## PLHS502 Application Notes

 Vol. 1

SA	$2 P$	$1 S$	$P=$ Product Terms
SA	$2 P$	$1 S$	$S=$ Sum Terms
SB	$2 P$	$1 S$	
RB	$2 P$	$1 S$	
SC	0	0	
RC	$\frac{0}{8 P}$	$\frac{0}{4 S}$	

(b)

Figure 4-3. K-Map Loops Using S-R-FFs


Figure $4-3$ shows the same design implemented with S-R flip-flops. Figure 4-3 (a) shows the required $S-R$ transitions and Figure $4-3(b)$ maps them onto the corresponding state variable maps. Tallying the loops, we find a total of 8 product terms and 4 sum terms. Again, the sum terms are free.
Figure 4-4 shows the design again on J-K flip-
flops. Figure 4-4(a) shows the transitions and Figure 4-4(b) the K-map loops. Again tallying yields 4 product terms and 4 sum terms. The $C$ variable is realized by $\mathrm{J}=\mathrm{K}=1$ using no product terms, or sum terms.
From standard logic design we know that D flipflops will increase product terms (no don't care transitions), S-R flip-flops are less dramatic
and J-Ks increase product terms the least (i.e., maximum don't cares).

However, the PLHS502 has no J-K flip-flops. For simple toggling, the D flip-flop requires no additional circuitry and is the smallest (usually fastest) implementation. So, Ds should always be assigned for the least significant bit.

$J$	$K$	$Q$	$Q_{+}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0



Figure 4-5. J-K Flip-Flop Derived from a D

If required, J-K flip-flops can be constructed from $D$ flip-flops by utilizing the structure shown in Figure 4-5, as a substitution. The sum term is taken from the NAND physically connected to the D flip-flop and the K input may be derivable from either an input inverter or a $\bar{Q}$ from a flip-flop. There will be a penalty for using this structure from a speed point, but it may save gates if used judiciously.
This example assumes the designer is implementing the counter with the internal hard macro flip-flops. If the design is being generated from the NAND array only, it should be noted that the payoff will be interestingly different. The D flip-flop requires 6 NANDs and the J-K flip-flop will require 10 NANDs. In this version, the sum terms cost an additional NAND gate
each. So, the 3-bit up/down counter will require:

Flip-flops:	$3 \times 6=18$	
Sum terms	$:$	2
Prod. terms	$:$	$\underline{9}$
	Total $=29$	gates

The same design built from J-Ks configured from NANDs will require:

Flip-flops:	$3 \times 10=30$	
Sum terms	$:$	3
Prod. terms	$:$	$\underline{4}$
	Total $=37$	

Total $=37$

The all D version looks pretty good at this point from a total gate count view. Let's take a closer look at the D flip-flop solution:
Figure 4-6 shows the D flip-flop solution with all prime implicants looped and the corresponding transition equations are below. This is implemented in Figure 4-7 using conventional D flip-flops in the PLHS502. An alternate solution would be to substitute the 6 NAND D flip-flop for each D-box in Figure 4-7, but a better (only 25 gates!) solution can be achieved by merging the logic gates on the input of the flip-flops right into the NAND flip-flop structure as shown in Figure 4-8. This technique was described in PLHS501 Applications Notes Volume 2.

## PLHS502 Application Notes Vol. 1



Figure 4-6. D Flip-Flop Equations for 3-Bit Counter


TOTAL COST $=3$ D-FFS

Figure 4-7. 3-Bit Solution using PLHS502 D Flip-Flops


Figure 4-8. 3-Bit Solution With Merged NAND Flip-Flop

A couple of final notes on counter design. The basic structure for a simple up counter is shown in Figure 4-9. This one uses a D flip-flop least significant bit and a generic format for high order bits, as shown. Note that only 2 product terms per bit are needed.
Down counters can be treated similarly. Fairly
general sequence generators can be configured from counters by simply adding a combinational decoder, as needed. One final counter example is shown in Figure 4-10 wherein a 10-bit counter is defined using the SNAP Boolean equation format. Note that the logic equations follow the format described in

Figure 4-9. All resets are shared as well as all clocks. This design would require eight hard macro S-R flip-flops, one hard macro D flipflop and one additional S-R flip-flop which SNAP would automatically configure from a hard macro D flip-flop.


NOTE: Asynchronous reset is not shown.
Figure 4-9. Up Counter Structure

```
@RINLIST
\begin{tabular}{llllllllll}
CLOCK I; RESET I; & A & \(0 ;\) & B & \(0 ;\) & C & \(0 ;\) & D & 0 ; \\
& E & \(0 ;\) & F & \(0 ;\) & G & \(0 ;\) & H & 0 ; \\
& I & \(0 ;\) & L & \(0 ;\) & & & &
\end{tabular}
@LOGIC EQUATIONS
A.D = /A;
B.S = /B*A;
B.R = B*A;
C.S = /C*A*B;
C.R = C*A*B;
D.S = /D*A*B*C;
D.R = D*A*B*C;
E.S = /E*A*B*C*D;
E.R = E*A*B*C*D;
F.S = /F*A* B* C*D*E;
F.R = F*A*B*C*D*E;
G.S = /G*A*B*C*D*E*F;
G.R = G*A*B*C*D*E*E;
H.S = /H*A*B*C*D*E*F*G;
H.R = H*A*B*C*D*E*E*G;
I.S = /I*A*B*C*D*E*F*G*H;
I.R = I*A*B*C*D*E*F*G*H;
L.S = /L*A*B*C*D*E*F****H*I;
L.R = L*A*B*C*D*E*F*G*H*I;
A.RST = /RESET;
B.RST = /RESET;
C.RST = /RESET;
D.RST = /RESET;
E.RST = /RESET;
F.RST = /RESET;
G.RST = /RESET;
H.RST = /RESET;
I.RST = /RESET;
L.RST = /RESET;
A.CLK = CLOCK;
B.CLK = CLOCK
C.CLK = CLOCK;
D.CLK = CLOCK;
E.CLK = CLOCK;
F.CLK = CLOCK
G.CLK = CLOCK;
H.CLK = CLOCK;
I.CLK = CLOCK;
L.CLK = CLOCK;
```

Figure 4-10. 10-Bit Up Counter - SNAP Style

# PLHS502 Application Notes <br> Vol. 1 

## Shifter Design Notes

Efficient shifter design is critical to achieve the fastest, most economical PLHS502 sequence recognizers. For ideal shifters, no additional gates should be required if the designer correctly exploits the hard macro flip-flops for the part. Normally, one views a shifter as an input to $D, Q$ to $D, Q$ to $D$, etc., like circus elephants walking nose to tail. But, the PLHS502 D flipflop has an embedded NAND gate which, for this type of design, appears to "get in the way".

By recognizing the availability of the $\overline{\text { Qoutput, }}$ if it is used instead, the design procedure remains "nose to tail" substituting $\bar{Q}$ for $Q$ into the NAND (using only one input). Should a fancier shifter be required (see the Synchronous Receiver/Transmitter design at the end), the designer may choose to even implement soft macro "merged" shifter flip-flops.

The maximum internal "all shifter" capacity of the PLHS502 is 26 bits, assuming conventional
structure flip-flops. If one were to design a schematic with 26 D flip-flop cells in cascade, SNAP would configure the first 8 from the hard macro Ds, the next 8 from the hardmacro S-Rs and the last 10 from the NAND array.

An example illustrating a nonschematic captured 3-bit shifter follows. Figure 4-11 illustrates its' state diagram, Figure 4-12 shows the state equation solution and Figure 4-13 shows the very compact Boolean equation solution.


Figure 4-11. 3-Bit Shift Register State Diagram

@PINLIST		
CLOCKI;	QA	$0 ;$
RESETI;	QB	0 ;
DATA	I;	QC 0;
@INPUT VECTORS		
I1 = DATA;		
IO =	/DATA	
@OUTPUT VECTORS		
@StATE VECTORS		
	[QA,	QB, QC];
S0 =	000	B;
S1	001	B;
S2 =	010	B;
S3	011	B;
S4	100	B;
S5	101	B;
S6	110	B;
S7 =	111	B;
@TRANSITIONS		
WHILE [ ]		
IF RESET	THEN	[S0]
WHILE [S0]		
IF I1	THEN	[S4]
IF IO	THEN	[S0]
WHILE	[S1]	
IF I1	THEN	[S5]
IF IO	THEN	[SO]
WHILE [S2]		
IF I1	THEN	[S5]
IF 10	THEN	[S1]
WHILE [S3]		
IF I1	THEN	[S5]
IF IO	THEN	[S1]
WHILE [S4]		
IF I1	THEN	[S6]
IF IO	THEN	[S2]
WHILE [S5]		
IF I1	THEN	[56]
IF IO	THEN	[S2]
WHILE [S6]		
IF I1	THEN	[S7]
IF IO	THEN	[S3]
WHILE [S7]		
IF I1	THEN	[S7]
IF IO	THEN	[S3]

Figure 4-12. 3-Bit Shifter State Equations

```
@PINLIST
CLOCKI;
DATA I;
RESETI;
QA O;
QB O;
QC O;
@LOGIC EQUATIONS
;
QA.D = DATA;
QB.D = QA;
QC.D = QB;
QA.RST = RESET;
QB.RST = RESET;
QC.RST = RESET;
QA.CLK = CLOCK;
QB/CLK = CLOCK;
QC.CLK = CLOCK;
```

Figure 4-13. 3-Bit Shifter Boolean Solution

## Signetics

Programmable Logic Devices

## ADDITIONAL DESIGN GUIDELINES

The following guideline summary is by no means complete. Rather, it is a list of straightforward substitutions which the designer can make to help guarantee that the design fits. The basic approach is to build the design using the basic building blocks of the architecture. For the PLHS502 this means using NAND gates, D flip-flops and S-R flip-flops. To make this clear, we will enumerate and illustrate good basic design substitutions.

1. Use NAND gates whenever possible.
2. Use S-R flip-flops for counters over 4 bits long.
3. Use D flip-flops (if possible) for the
least significant counter bit.
4. If possible eliminate NOR functions by converting to AND with complemented input (use $\overline{\text { on }}$ on flip-flops and available input complements).
5. AND gates which feed NAND gates can be replaced by wider NAND gates (exploit NAND width).
6. Eliminate all extra inversions by exploiting input complements and flipflop /Q outputs.
7. If you exceed your flip-flop budget of hard flip-flops, put the most complex flip-flop configurations into soft macros (see Section 6). Fold the gating function into the flip-flop.
8. Careful output pin assignment can result in a free logic function as the signal
leaves the device. So, assign complemented, buffered outputs accordingly. Exclusive-OR/parity controlled outputs are slower, so assign them accordingly.
9. Build toggle chains out of D flip-flops, then S-Rflip-flops, to conserve NAND gates.
10.The NAND-feeding D-FF structure may be thought of as an AND-feeding D-FF with $Q$ and $\bar{Q}$ reversed.
10. For very large counters, converting $D$ FFs to J-K FFs may be appropriate. If necessary, then do so.
12.Efficient methods for implementing Exclusive-OR functions are described in PLHS501 Applications Notes Volume 2.


## Signetics

## Programmable Logic Devices

## ADDITIONAL PLHS502 <br> APPLICATIONS

These examples illustrate various applications the PLHS502 is capable of, which are quite interesting.

## Byte Data Pipe

A common system building block is the byte data pipe illustrated in Figure 6-1. This elementary structure illustrates a parallel cascade of octal registers where each tier is independently clocked. Data arrives at the input pins and is clocked in by clock A. After settling, this is clocked into the second tier by clock B, the third tier by clock $C$ and the output tier by clock $D$.

The two center registers are generated from NAND gate transparent latches comprised of three gates. This classic threegate latch has a static hazard in the ones, but careful timing and masking the input and output logical image to the outside world, with edge triggered registers, essentially eliminates this evidence. This consumes 48 of the 64 gates budget in the PLHS502. The remaining gates may now be used as needed to configure this data path for a more specific applications such as:
a. A distributed decoder as in a RISC pipeline. Each remaining gates can de-
tect 32-bit internal state combinations (expanded to 40 bits if simultaneous examination of the input pins is desired).
b. A 4-byte queue for interprocessor and processor to bus communications and synchronization.
c. A 3-, 4-, or 5-byte sequence detector for byte oriented protocols.

Clearly, one of the internal register tiers could be freed up or the arrangement altered to have a three position data pipe and a group of S-R registers to implement a bus handshaker or internal counters for a queue pointer, etc.

## PLHS502 Application Notes

Vol. 1


Figure 6-1. A Byte Data Pipe

# PLHS502 Application Notes <br> Vol. 1 

## Custom CAMS

Another common block used in memory and I/O systems today is the content addressable memory (CAM), illustrated in Figure 6-2. These are used for associative searching and often implement the TAG structure or VALID bit structure for the translation lookaside buffer in a cache system. CAMs more closely resemble a small register array where each cell has an independent data compare operation with a global polling mechanism. This example illustrates the PLHS502's ability to realize a small, relatively fast 4X4 CAM. In this example, the 16 register cells are made with the D flip-flop and the S-R flip-flops configured as Ds. Each flipflop outputis compared to a corresponding data input with a coincidence function which is
generated from three NANDs. Groups of four comparators are then ANDed together to generate the HIT signals indicating the presence of a 4-bit item. If speed and gate economy are required, the composite compare function can be generated, exploiting wide gates rather than deep cascades.

The CAM operation is simple. The CAM must first be loaded, with four bits in each tier. Loading was chosen to be 4-bit parallel with independentclocking. This allows "one transaction" replacement and is the most flexible approach for implementing arbitrary updating policies. Once it is loaded, the 4-bit data is applied on the same lines (this could easily be changed to four different lines). When a value is applied, a
"HIT" is generated if the current value matches one of the stored 4-bit items. How the "HIT" is used by the outside system is system dependent. If a value is applied and there is no "HIT," there is no response. Again, there are a number of remaining internal NAND gates as well as most of the gates tied to the I/O pins to perform additional tasks and adapt the behavior of this building block.
This is a very efficient structure to implement a direct mapped cache, where four 1-megaword regions could create the logical image of a $16-m e g a w o r d$ region. The time from valid address to valid "HIT" is about 20 nanoseconds - max.


Figure 6-2. $4 \times 4$ CAM

## System Scoreboard

High digital system throughput may be achieved by allowing high-speed processors to run independently at their own rate. Hence, operation speed is only limited when data or function dependencies occur. This requires a special sort of synchronization mechanism to allow independent processes to realign when necessary. A classic solution to this is the Scoreboard concept, illustrated in Figure 6-3. In essence, this is an overall system register with independent status bits assigned to specitic functional units and data registers. The idea is an old one, but has recently resurfaced since modern RISC designers have begun resurrecting highly parallel CISC architectured artifacts.

The concept is valid for a computer system where resources are all viewed as independent processors.

Basically, one bit in the Scoreboard is assigned to each distinct functional unit or independent data register. When a request (from anywhere) arrives for that unit, it is assigned unless the unit is busy. This locks out future assignment until that resource is released. For an elementary Scoreboard, the basic requirement is independent registers cells (i.e., must be able to request, assign and release each one, essentially asynchronously). Figure 6-5 shows an implementation of a 9 -element Scoreboard. This requires 27 inputs and 9 outputs (using cell
version 1) and leaves 5 bi-directional lines, 7 outputs and most of the foldback NANDs. A g̈lobal reset may be addod by logically ORing each release signal with a global reset through the NAND function tied to each flip-flop. This design use the 8 D flip-flops and one S-R flipflop per status sentinel. This leaves 7 flip-flops to implement additional functions as well.

Input pins can be freed up if an external clock is assigned to all of the allocate signals and each request is gated with the flip-flops current status (cell version 2). The rendition using cell version 2 still permits independent release of each cell.


Figure 6-3. System Scoreboard

## Synchronous Receiver/

## Transmitter

This system building block is an elementary synchronous receiver and transmitter. This example will illustrate multiple independent state machine designs as well as some standard design techniques to utilize every available function component out of the PLHS502. Figure 6-4 shows the elementary structure of the synchronous serial communication device. Basically, it is two independent machines where each half is comprised of a counter and shifter. Figure 6-5 depicts the high-level schematic of Figure 6-4. The transmitter must load a byte in parallel and ship the contents out serially. The receiver must receive serial data and indicate the presence of a correctly framed byte. From partitioning considerations, the counters will be be generated from the internal S-R flip-flops. The shifters can be made from the internal D flip-flops but the requirement is for at least 16 D flip-flops - which means at least 8 must be constructed from NANDs. Intuitively, it would be best to exploit the free NAND on the hard macro D flip-flops to construct a simple MUX for each D-cell as shown in Figure 6-6a. This woulduse 16 NANDs. Then, the receive register could be constructed from an octal cascade of flip-flops constructed from six NANDs each (Figure 6-6b). This would use 48 NAND gates and expend the rest of foldback array. This would create a problem to complete the design
of the byte counters because they each require fourgates to construct the drive terms for the $S$ R flip-flops. An old gate array trick is very appropriate here. Figure 6-6c shows a 2 -input multiplexor driving a 6 -gate $D$ flip-flop. By logical merging and exploiting the width and nesting depth of PML, one can get the entire function realized by the final cell version of Figure 6-6d, which takes only seven gates to do the entire cell. Hence, making the transmitter from 56 NANDs ( 8 copies of the 7 -gate cell) gives 8 left over foldback NANDs for the generation of two 3-bit counters. It should be noted that this is a faster solution because the D signal passes through as many gates as without the multiplexor. Two levels of time delay are achieved instantaneously, as shown in Figure $6-6, \mathrm{~T} 1=\mathrm{T} 3$ which is less than T 2 . The receive register is simply constructed from the hard macro D flip-flops in direct cascade. This leaves many remaining input and output pins which can be used elsewhere (i.e., fast I/O decode and such) for other system needs. One obvious addition would be to implement decode of specific characters from the receive buffer using the many remaining output pins.

Figure 6-7 shows the schematic of one of the 3 -bit counter modules which permit byte framing in the receiver and transmitter. Figure 6-8 through 6-10 detail the exact schematics
used to complete the receiver/transmitter ("RECTRAN") design.
Figure 6-11 shows the SNAP simulation of the 7-gate composite cell alternately loading and shifting. In Figure 6-11, the text shown at the top is the Simulation Control File which constitutes the stimuli vectors for the simulation. The waveform below depicts the stimuli and corresponding response vectors. Incidentally, the two remaining S-R flip-flops can be used for anything, but one can signal a data available condition to the outside world for the receiver and the other can indicate Busy or Done for the transmitter to reflect some status to the outside world.
A complete series of simulation is presented in Figures 6-12 through 6-15. The simulation control file depicted in Figure 6-16 performs the operations whose result waveforms are shown in Figures 6-13 through 6-15. Figure 6-17 shows the SNAP macro netlist which binds the smaller pieces of the overall design together. Figure 6-18 provides the netlist which constitutes the receiver piece of RECTRAN while Figure 6-19 gives the same for the transmitter. Expanding the hierarchy, Figure 6-20 displays the exact netlist for the "flopcell" and Figure 6-21 shows how the netlist for one of the three bit counters appears. The entire RECTRAN design was captured schematically using OrCAD/ SDT.



Figure 6-5. High Level RECTRAN Schematic


Figure 6-6. Custom Flip-Flop Metamorphosis


Figure 6-7. 3-Bit Counter Schematic


Figure 6-8. Final Merged D Flip-Flop Schematic


## PLHS502 Application Notes <br> Vol. 1




Figure 6-11. SNAP Simulation of the Merged Flip-Flop


Figure 6-12. RECTRAN.SCL Waveforms


Figure 6-13. Partial RECTRAN.RES File

PLHS502 Application Notes Vol. 1


Figure 6-14. Additional RECTRAN.RES File


Figure 6-15. Final RECTRAN.RES File

```
S 1(20,40,1000) RESETR
0(50,100,ETC)CLKR
O(100,150,300,350,500,550,700,750) SDIN
 1(20,40,1000) resetT
 0 (50,100,etc) clkT
 O(45,70,1025,1050) lodshf
 0(1000) pdin1,pdin2,pdin5,pdin6
 1(100) pdin3,pdin4,pdin7,pdin8
 O(20) CLR
 * s 1(2000) VCC
 p resetT,clKT,lodshf,pdin1,pdin2,pdin3,pdin4,pfin5,pdin6
 # ,pdin7,pdin8,qprev,sdout,SDIN,RESETR,CLKR,PDOUT1,
 # PDOUT2,PDOUT3,PDOUT4,PDOUT5,PDOUT6,PDOUT7,PDOUT8,
 # Q1,Q2,Q3,Q4,Q5,Q6
 PCO
 sutime=2000
 f
```

Figure 6-16. RECTRAN.SCL Text

```
**
* Output of Netgene Version 1.0 *
* Date: 5/ 3/1989 Time: 18:36:25 *

* Input File Name : RECTRAN.EDF *
* Netlist File : RECTRAN.MAC *

*
 MACRO
*
Z RECTRAN_SCH I(CLKR,CLKT,CLR,LODSHF,PDIN1,PDIN2,PDIN3,PDIN4,
PDIN5,PDIN6,PDIN7,PDIN8,QPREV,RESETR,RESETT,SDIN) O(PDOUT1,
PDOUT2,PDOUT3,PDOUT4,PDOUT5,PDOUT6,PDOUT7,PDOUT8,Q1,Q2,
Q3,Q4,Q5,Q6,SDOUT)
*
CELL_REC_O_0 REC I(CLKR,RESETR,SDIN) O(PDOUT1,PDOUT2,PDOUT3,
PDOUT4,PDOUT5,PDOUT6,PDOUT7,PDOUT8)
BLKO1 TRANS I(CLKT,LODSHF,PDIN1,PDIN2,PDIN3,PDIN4,PDIN5,
PDIN6,PDIN7,PDIN8,QPREV,RESETT) O(SDOUT)
BLK02 COUNTER3 I(CLKR,CLR) O (Q1,Q2,Q3)
BLK03 COUTNER3 I (CLKT,CLR) O (Q4, Q5,Q6)
*
 MEND
*
```

Figure 6-17. High-Level RECTRAN Macro File

```
**
* Output of Netgene Version 1.0 *
* Date: 5/ 2/1989 Time: 13:35:45 *

* Input File Name : REC.EDF *
* Netlist File : REC.MAC *

*
MACRO
*
Z REC_SCH I(CLOCKR,RESETR,SDOUTR) O(PDOUT1,PDOUT2,PDOUT3,
PDOUT4,PDOUT5,PDOUT6,PDOUT7,PDOUT8)
*
U1 DFFR I(SDOUTR,CLOCKR,RESETR) O(PDOUT1,DMO1)
U2 DFFR I(PDOUT1,CLOCKR,RESETR) O(PDOUT2,DMO2)
U3 DFFR I(PDOUT2,CLOCKR,RESETR) O(PDOUT3,DMO3)
U4 DFFR I(PDOUT3,CLOCKR,RESETR) O(PDOUT4,DMO4)
U5 DFFR I (PDOUT7, CLOCKR,RESETR) O(PDOUT8,DMO5)
U6 DFFR I (PDOUT6,CLOCKR,RESETR) O(PDOUT7,DMO6)
U7 DFFR I (PDOUT5,CLOCKR,RESETR) O(PDOUT6,DMO7)
U8 DFFR I (PDOUT4,CLOCKR,RESETR) O(PDOUT5,DMO8)
*
 MEND
*
```

Figure 6-18. Receiver Macro File

## PLHS502 Application Notes

Vol. 1

```

 Output of Netgene Version 1.0 *
* Date: 1/ 5/1989 Time: 13:37:13
```



```
* *
* Input File Name : TRANS.EDF *
* Netlist File : TRANS.MAC *
* **
*
MACRO
*
Z TRANS_SCH I(CLOCK,LODSHF,PDIN1,PDIN2,PDIN3,PDIN4,PDIN5,
PDIN6,PDIN7,PDIN8,QPREV,RESET) O(SDOUT)
U1 IN I(LODSHF) O(SNO1)
U2 NIN I(LODSHF) O(SN09)
BLK01 FLOPCELL I (CLOCK,PDIN1,SN01,QPREV,RESET,SN09) O(SNO2,
DM01)
BLK02 FLOPCELL I (CLOCK,PDIN2,SN01,SN02,RESET,SN09) O(SN03,
DM02)
BLK03 FLOPCELL I (CLOCK, PDIN3,SN01,SN03,RESET,SN09) O(SN04,
DMO3)
BLK04 FLOPCELL I (CLOCK,PDIN4,SN01,SN04,RESET,SNO9) O(SN05,
DMO4)
BLK05 FLOPCELL I (CLOCK,PDIN8,SN01, SN08,RESET,SN09) O (SDOUT,
DM05)
BLK06 FLOPCELL I (CLOCK,PDIN7,SN01,SN07,RESET,SN09) O(SN08,
DM06)
BLK07 FLOPCELL I (CLOCK,PDIN6,SN01,SN06,RESET,SN09) O(SN07,
DM07)
BLK08 FLOPCELL I (CLOCK,PDIN5,SN01,SN05,RESET,SN09) O(SN06,
DM08)
*
 MEND
*
```

Figure 6-19. Transmitter Macro File

```
************************ᄎネネ*********************
\star Output of Netgene Version 1.0 *
* Date: 1/ 5/1989 Time: 13:34:36 *
**
*
* Input File Name : FLOPCELL.EDF *
* Netlist File : FLOPCELL.MAC *
* *
**
*
 MACRO
*
Z FLOPCELL_SCH I(CLOCK,DATIN,LOAD,QPREV,RESET,SHIFT) O(Q,
QN)
*
U1 NA3 I(SN05,SN01,SN03) O(SN02)
U2 NA3 I(SNO2,RESET,CLOCK) O(SNO3)
U3 NA4 I(SN03,CLOCK,SN05,SN01) O(SN04)
U4 NA4 I(RESET,SN04,LOAD,DATIN) O(SNO5)
U5 NA4 I(RESET,SN04,SHIFT,QPREV) O(SN01)
U6 NA2 I (SN03,QN) O(Q)
U7 NA3 I(Q,RESET, SNO4) O(QN)
*
MEND
*
```

Figure 6-20. Flopcell Macro File

```

* Output of Netgene Version 1.0 *
* Date: 1/ 5/1989 Time: 13:42:14 *
\star\star***
\star *
* Input File Name : COUNTER3.EDF *
* Netlist File : COUNTER3.MAC *
\star *

*
 MACRO
*
Z COUNTER3_SCH I(CLOCK,CLR) O(Q1,Q2,Q3)
*
U1 NA3 I(SN03,Q2,Q3) O(SN01)
U2 NA3 I(Q1,Q2,Q3) O(SN04)
U3 NA2 I(SN09,Q3) O(SN06)
U4 NA2 I (Q2,Q3) O(SN10)
U5 INV I(SNO1) O(SNO2)
U6 INV I(SNO4) O(SNO5)
U7 INV I(SNO6) O(SNO7)
U8 INV I(SN10) O(SNO8)
U9 INV I(Q3) O(SN11)
U10 INV I(SN12) O(SN13)
U11 SRFF I (SNO2,SNO5,CLOCK,CLR) O(Q1,SN03)
U12 SRFF I(SN07,SN08,CLOCK,CLR) O(Q2,SNO9)
U13 SRFF I(SN11,SN13,CLOCK,CLR) O(Q3,SN12)
*
 MEND
*
```

Figure 6-21. 3-Bit Counter Macro File

## Signetics

## Programmable Logic Devices

## ADVANCED FLIP-FLOP MERGING

Folding logic functions directly into the workings of a flip-flop has a unique payoff with PML. (As illustrated in Sections 4 and 6). Since the basic approach may be extended to other flip-flop structures, this technique may be used more "generally". The figures provided in this section illustrate examples of simple and complicated structures.

Consider the D-latch in Figure 7-1:


Figure 7-1. D-Latch

## PLHS502

Application Notes Vol. 1

If the data input point is driven from a twolevel logic function as shown in Figure $7-2(a)$, the gate count is six with one inverter. The input signals pass through two logic layers before entering the latch, then through two more to reach the Q output.

From Figure 7-2(a), note that the data input to gate G4 is driven High from the G3 output when either G1 or G2 (or both) is driven Low. Also, note that when Data is High, and Enable is High, the output of G4 will be Low. Under these conditions, the outputs of G1 or G2 are driven in a direction similar to the output of G3 and G4. By eliminating G3 and G4 and substituting G1 and G2 where G4 was, some gate and speed saving is gained as shown in Figure 7-2(b). Note that the Enable signal has to be reinserted carefully. This permits a faster, cheaper, and more efficient merged latch. This is the simplest structure and the reader is encouraged to prove
the operation by simulation or construction. The general approach is a simple expansion of these steps.

1. Isolate the positive asserted flip-flop input.
2. Isolate the two-level AND/OR driving function.
3. Eliminate the NAND gate in step 1 but preserve inputs and outputs.
4. Eliminate the second-level NAND from step 2, but preserve inputs in the step 2 AND/OR structure.
5. Place the corresponding intermediate outputs to replace the eliminated flipflop input gates output.
6. Place any inputs which fed the flipflop input gate onto the new input points from step 5 (i.e., the input points of the step 2 AND/OR structure).


Figure 7-2. D-Latch with Driving Logic

Let's illustrate the procedure by applying it to a more complicated flip-flop - the dreaded J-K! Figure $7-3$ depicts a J-K with a two-level logic function tied to J and a different function tied to K. J gets the sum of three product terms and $K$ gets the sum of two.


Because the inputs to gates $A, B, C, D, E$ will be maintained, we don't care what they are. From the recipe:
Step 1. Isolate the positive asserted flip-flop input.

For $J$ this is gate G 2 .
For K this is gate G 3 .
Step 2. Isolate the two-level AND/OR driving function. (see function 1 and 2)
Step 3. Eliminate the NAND inputs in step 1 but preserve inputs and outputs. (Figure 7-4(a))
Step 4. Eliminate the second-level NAND from step 2. (Figure 7-4(a))


Figure 7-4(a). A Merged J-K Flip-Flop

It is hoped that the reader can, in general, avoid the use of the $\mathrm{J}-\mathrm{K}$ structures built from gates as shown due to their inefficiency of gate usage. There is also a potential timing liability
in that the clock path G 1 to GA is faster than the data input paths and creates a possible race. However, this example serves to illustrate that
a merging process can be applied systematically, with success, to even relatively complicated structures.

## Signetics

Programmable Logic Devices

Today's engineer is constantly striving to consolidate higher complexity and more feature-intensive circuits into designs without sacrificing flexibility. In a competitive marketplace, designs need to be brought to market quickly. The Signetics solution is to provide high-performance Programmable Logic Devices (PLDs) that can be quickly and easily integrated into system designs.

In using this manual, some familiarity with PLDs is helpful. In addition, we recommend the recently published text books, Programmable Logic Devices, by Geoff Bostock (McGraw-Hill, copyright 1988), and Programmable Designer's Guide by Roger Alford (Howard W. Sams \& Co., copyright 1989).

This document provides complete, straightforward application examples. The first three sections describe Signetics PLDs. Sections four through eight provide application examples. Most applications are accompanied by one or two pages of text. Some also include a circuit or block diagram and an AMAZE design file listing to implement that application. To save time, the files are available on diskette or by accessing the Signetics toll-free bulletin board: (800) 451-6644.

## ACKNOWLEDGEMENTS

In appreciation for their contributions:

## Dimitrious Douros

Mike Gershowitz
Ali Gheissari
Jim Green
Neil Kellet
Jerry Liebler
Bob Lundeberg
John McNalley
Tony Parisi

# Programmable Logic Design and Application Notes 

## AMAZE SOFTWARE

Design, simulation and device-programming support for all Signetics PLD families is provided by Signetics AMAZE PLD design software. AMAZE, which supports many of Signetics programmable products, includes Boolean logic and direct state-equation entry. Functional and AC timing simulation models and an automatic test vector generator are included in the AMAZE PLD design package. The software runs with MS-DOS 2.0 or newer operating systems and is available free of charge to qualified users. Schematic capture capability is available in conjunction with Data I/O's FutureNet Dash System and the OrCad Systems Corporation OrCAD/SDT ${ }^{\text {TM }}$ schematic capture software packages.

The Signetics families of PLDs are also supported by Data $/ / O ®$ 's design software package, $A B E L^{T M}$, and the $P-C A D$ and CUPL ${ }^{\text {TM }}$ design software.
Automatic Map and Zap Equation Entry (AMAZE) software designed by Signetics will interface with most commercial programmers.
AMAZE consists of five modules:

- BLAST (Boolean Logic and State Transfer entry program)
- PTE (Program Table Editor)
- PTP (PAL to PLD conversion program)
- DPI (Device Programmer Interface program)
- PLD SIM (PLD Simulator program)

The software modules allow expansion for future requirements. They are user friendly with both HELP and ERROR messages. Simulator programs provide applications assistance and automatic test vector generation.
Equipment requirements, products supported and details of product modules are contained in the AMAZE design software manual.

AMAZE is available at no charge by request to the Signetics factory.
Additional design support is usually available with the commercially available packages ABEL, CUPL PLDesigner, LOG/iC, etc. Programming support is always available through DATA I/O, STAG Microsystems, and several other programmers.

## PRODUCT SECTION <br> INTRODUCTION

Signetics manufactures a wide range of PLDs and Programmable Logic Sequencers. In the area of PLDs, there are two basic architectures: Programmable Logic Arrays (PLAs) and Programmable Array Logic (PAL ${ }^{\circledR}$ ).
The PLA architecture consists of two interconnectable arrays with programmable connections between the input pins and a group of AND gates. Another programmable array exists between the AND gate outputs and the inputs to a group of OR-gates. Complete freedom of interconnection is possible with this arrangement. PAL-type devices, on the other hand, provide programmable interconnection between the input pins and the AND gates, but the outputs of the AND gates are tied to specific OR gates, then finally routed to output pins. By eliminating the programmability between the AND-OR area, some speed savings are achieved at the expense of interconnect freedom.
Signetics Programmable Logic Sequencers combine the versatility of the PLA with flip-flops to achieve powerful state machines in a variety of user configurations. This section is designed to familiarize design engineers with the Signetics lines of PLAs, PALs, and Sequencers available, and acquaint them with their general capabilities and features. Each architecture is briefly showcased in an initial rendering with a short capsule description of the part. The serious reader should consult the data sheet sections of this PLD Data Handbook for full electrical details on any part.

## Signetics

## Programmable Logic Devices


#### Abstract

PLA DEVICES Signetics PLAs are particularly useful in the design of wide address decoders and random logic replacement. The primary advantage Signetics brings to these applications with their PLA devices is product term sharing, which is made possible via the two programmable arrays. The familiar PAL architecture supports a programmable AND array, followed by a fixed OR array. Better than $90 \%$ of the PAL devices that are available today are limited to 7 input wide gates. When pursuing a solution to a complex address decoding scheme, this restriction is prohibitive. The Signetics PLA devices support $100 \%$ of all product terms. Once a term is created, it can be shared with any or all of the output functions. No duplication of resources is incurred. The popular PLXX153 family support 32-input wide OR gates which are ideal for memory I/O decoders. The addition of programmable output polarity also enhances design efficiency and logic minimization.


The 2 programmable array concept dominates the Signetics PLD product line. With the exception of the PAL-type devices which have been geared for ulitmate performance, all Signetics PLDs have been architected with efficient and flexible PLA structures. With the largest breadth programmable product line in the industry, Signetics believes the designer can truly fill his requirements from the several product lines-PLA, PAL, and PLS. PLA device descriptions follow.

## Signetics PLUS153D

Figure 1-1 depicts the Signetics PLUS153D. This bipolar PLA is pin and functionally equivalent to all other

Signetics 153 type PLAs (i.e., the PLS153, PLC153, PLHS153), but requires no more than 12 nanoseconds to generate a stable output.

The PLUS153D has eight dedicated inputs and 10 bidirectional pins. The bidirectional pins may be adapted to suit the user's specific needs. 20-pin DIP or PLCC packages are available.

The output structure of the PLUS153D includes programmable polarity controlon each output. Either active HIGH (noninverting) or active LOW (inverting) outputs are configurable via the EX-OR gate associated with each I/O. Individual 3-State control of the I/O is also supported with the ten direction control AND terms (D1-D9).

Other benefits to the PLUS153D include full pin compatibility with most $20-$ pin combinational PAL® parts. The natural product term sharing capabilities of the PLA architecture yield complete freedom of configuration should the engineer implement a particularly creative decode configuration.

## Signetics PLUS173D

Figure 1-2 depicts the Signetics PLUS173D. This bipolar PLA is functionally equivalent to the Signetics PLS173. The 24-pin PLUS173 has four more input pins than the PLUS153. The user may adapt the bidirectional pins to suit particular decoding needs, but the propagation delay time is still no more than 12 nanoseconds from stabilized input to stable output.

By having more inputs than the 153 part, the 173 can either resolve more input lines
or generate more outputs functions for the same number of inputs. Distinct 3-State control over each output may be useful for controlling chip enables where contention (i.e., multiple access) may exist.

For speed and input width, the PLUS173D is probably the best single PLA available today for both memory and I/O decoding. Combining the 12 nanosecond $t_{P D}$ with the distinguishable range of 12 to 21 inputs, the designer can easily decode say 16 input addresses as well as read/write qualifiers or encoded status signals. Output polarity control (active-High or activeLow) is achieved by programming the Exclusive-OR gate associated with each output.

The flexibility achieved with a PLA structure can be quickly appreciated by the designer who has experienced the frustration of the dedicated "OR" structures in PAL ICs. Currently, the only time penalty for the freedom granted by a PLA is a few nanoseconds!

## The PLHS473

The PLHS473 devices are 24-pin PLAs. Each has 24 product terms, 11 inputs, 9 bidirectional pins and 2 dedicated outputs. Each output and bidirectional pin is independently tri-stateable from the OR array.
Unlike the traditional PLA, the 3-State control of the 473 devices is accomplished with an OR function. This feature supports more complex (sum of products) logical control of the outputs. Output polarity is programmable (active-High or Low) via the 11 EX-OR gates that precede the output pins.
The PLHS473 is TTL compatible, with a worst-case propagation of 22 ns .

## Programmable Logic Design and Application Notes



## Programmable Logic Design and Application Notes



Figure 1-2. Signetics PLUS173D

## Programmable Logic Design and Application Notes



Figure 1-3. PLHS473 Architecture

## Signetics

## Programmable Logic Devices

## PAL ${ }^{\circledR}$-TYPE DEVICES

Signetics provides state-of-the-art industry standard PAL devices, both bipolar and CMOS. The range of offers spans the entire gamut of performance options; zerostandby power generic devices specified over the commercial, industrial and military temperature ranges, or the ultimate in high speed, an ECL compatible 20EV8 device. Almost every option in between is also offered.
The PAL architecture consists of a programmable AND array, followed by a fixed OR array. The somewhat rigid architecture lends itself to less complex, narrower logic functions. There are three basic PAL-type device configurations. The XXL8 devices are strictly combinatorial. The XXRX series offers a range of registered and combinatorial outputs.

The XXV8 series is considered to be generic in nature, in that the output macros are variable (hence the " $V$ ") as combinatorial or registered. Most frequent applications include counters and shifters (the RX series), and small decoders and multiplexers (the L8 series).

Industry standard software can be used with Signetics PAL-type devices. Full support is also provided via the Signetics AMAZE Design software.

The Signetics PAL-type device descriptions follow. The line is being expanded continuously. If you don't find the device you need for your circuit, please contact Signetics toll-free at (800)227-1817, Extension 900.

## Signetics PLHS18P8B

Figure 2-1 depicts the Signetics PLHS18P8B which is a bipolar, PAL-type device. The propagation delay time will be 15 nanoseconds maximum from stable inputs to stable outputs. The part has 10 inputs, eight bidirectional pins, and 72 product terms. Due to the programmable output polarity, the PLHS18P8B can functionally replace 13 other standard PAL devices. Being pin compatible to all $20-$ pin combinational PALs increases the parts' versatility considerably. The PLHS18P8B can sink $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ (max).
Output polarity control for this PAL-type part is achieved identically to the procedure for the PLUS153D and PLUS173D.

The PLHS18P8B is ideal for address and I/O decode for moderately fast microprocessors from both a speed and current drive capability.

## Programmable Logic Design and Application Notes



Figure 2-1. Signetics PLHS18P8B

## Programmable Logic Design and Application Notes

## The PLUS16L8D and -7

The PLUS16L8D and -7 PAL-type devices are functionally identical to other commercially available 16L8 PAL ICs. Figure 2-2 shows an extremely simplified version. Less flexible than a PLA, the PLUS16L8D/-7 provides raw speed and current drive so important for driving SRAM arrays on RISC processors or the control/data lines on rapid bus structures. The PLUS16L8D has a worst-case propagation delay of 10 ns . The worst-case TPD of the -7 is 7.5 ns .24 mA output drive is guaranteed.
The PLUS16L8D/-7 have seven product terms per OR function and one per 3-State control. Six of the eight outputs can be configured as inputs or outputs. The PLUS16L8D/-7 are available in 20-pin plastic DIL or 20-pin PLCC packages.


Figure 2-2. PLUS16L8 (D and -7)

## Programmable Logic Design and Application Notes

## The PLUS16R8D and -7

The PLUS16R8D and -7, like the PLUS16L8D and -7 is identical to other manufacturers' registered PAL devices. The parts have eight inputs, eight outputs, and eight D-flip-flops. Each flip-flop feeds an output pin through a 3-State buffer. The output of each D-flip-flop, $\bar{Q}$, is also fed back to the AND array. Each output is capable of driving $24 \mathrm{~mA} \mathrm{l}_{\mathrm{OL}}$ max, with all ouputs simultaneously asserted.
The PLUS16R8D has a worst-case propagation delay of 10 ns . The worst-case $t_{P D}$ of the -7 is 7.5 ns . The PLUS16R8D and -7 are available in 20-pin plastic DIP and 20-pin PLCC.


Figure 2-3. PLUS16R8 (D and -7)

Programmable Logic Design and Application Notes

## The PLUS20L8D and -7

The PLUS20L8D and -7 devices have 14 inputs, two dedicated outputs and six bidirectionals. The tpD are 10 ns max and 7.5 ns max, respectively. The 24 mA of output low current of these devices can drive capacitive address line inputs and pc-board traces through long layouts. This makes the particularly suitable for driving SRAM, video DRAM, and FAST dynamic RAM arrays in 32-bit microprocessor environments.

Identical to other commercially available 20L8 PAL devices, the PLUS20L8D and -7 have 56 functional product terms which are hard-wired to eight OR gates. Each OR gate drives an Active-Low output. The tri-state control of each output is from a dedicated AND product term.
The worst-case propagation delays for the PLUS20L8D and 20L8-7 are 10 ns and 7.5 ns , respectively.


Figure 2-4. PLUS20L8 (D and -7)

## Programmable Logic Design and Application Notes



Figure 2-5. PLUS20R8 (D and -7)

## The PLUS20R8D and -7

The PLUS20R8D and -7 are 24 -pin versions of the 16R8 PAL device. With propagation delays of 10 ns and 7.5 ns max, the parts deliver 24 mA of output low current drive. Eight D-flipflops share a common clock and output enable line. The output of each flip-flop is dedicated to a separate output pin and is also fed back to the AND array.
The PLUS20R8D and -7 are available in 24-pin plastic DIL and 28 -pin PLCC.

## The PLC18V8Z

The PLC18V8Z is a multi-function, generic PAL-type device. It is pin-compatible with, and can replace 22 different 20 -pin registered and combinatorial PAL devices. To accomplish this, the conventional 'single function' output pin has been replaced by a configurable Output Macro Cell. Each Macro Cell contains a D-flip-flop or a combinatorial I/O path. Output polarity and tri-state control functions are also individually configurable. Each OMC is fed by nine AND
product terms, which are hard-wired in the classic PAL fashion.

One of the key features of the part is its ability to sink 24 milliamps loL, compatible with other bipolar PAL devices-yet still comply with internal CMOS circuitry. The UV erasable version is available in 20 -pin ceramic DIL with a quartz window.

## Programmable Logic Design and Application Notes



Figure 2-6. PLC18V8Z Architecture

## Signetics

## Programmable Logic Devices

## SEQUENCER DEVICES

## Introduction

Ten years ago, in their search for a straightforward solution to complex sequential problems, Signetics originated Programmable Logic Sequencers. Signetics Programmable Sequencers represent a product line which combines the versatility of two programmable arrays (PLA concept) with flip-flops, to achieve powerful state machine architectures.
Each arrangement or "architecture" offers a variation of the basic concept which combines two programmable logic arrays with some flip-flops, in an undedicated fashion. The PLA product terms are not specifically dedicated to any particular flip-flop. All, none, or any mix in between may be connected to any flip-flop the designer chooses. The PLA structure therefore supports $100 \%$ product termsharing as well as very wide OR functions preceding the flip-flops.
Signetics line of Programmable Logic Sequencers has been further customized to accommodate specific types of state machine designs. Some have both registered and combinatorial outputs, specifically for synchronous and asynchronous Moore-type state machines. Others have state or buried registers, as well as output registers. These devices (PLUS105, PLC42VA12 and PLUS405) are ideal for synchronous Mealy-type applications.

## Programmable Logic Design and Application Notes

J-K and S-R register functions are another benefit. The logic functions provided by these types of registers far exceed the capability of a D-type register. The functionality of the J-K allows the designer to optimize the logic used in generating state transitions. Ninety percent of PAL devices have D-type registers. All the sequencers are equipped with three state options for bussing operations, JK or SR flip-flops and some form of register Preset/Reset functions.
Finally, all PLS devices have a Transition Complement Array. This asynchronous feedback path, from the OR array to the AND array, generates "complement" transition functions using a single term. Virtually hidden in between the AND array and the OR array is the Complement Array. This single NOR gate is not necessarily "an array," however the inputs and outputs of this complement gate span the entire AND array. The input(s) to the Complement Array can be any of the product terms from the AND array. The output of the Complement Array will be the 'complement' of the product term input. If several product terms are connected to the Complement Array, their respective complements can also be generated. The output of the Complement Array is fed back to the AND array, whereby it can be logically gated through another AND gate and finally propagated to the OR array. The significance being that the complement
state of several product terms can be generated using one additional AND product term. For example, if an efficient method of sensing that no inputs were asserted was needed, the designer could connect the output of appropriate AND gates to the complement NOR gate. The output of the NOR gate could then be used to condition and then set or reset a flip-flop accordingly. As well, he could detect a particular state variable combination and force a transition to a new state, independent of the inputs. Or he could combine input signals and state (AND) terms to generate a new composite term. In any of these applications, the Complement Array greatly reduces the number of state transition terms required.

In order to present the material in the most concise fashion, a brief state equation tutorial is presented first. The PLUS105 description immediately follows. In this capsule description, the level of detail is expanded, so read it first for basic understanding. Each additional presentation will be done with regard to the fundamentals described for the PLUS105. Figure 3-3 shows the detailed drawing of the PLUS105 in full detail. Figure 3-4 shows a compressed rendition of the same diagram so that the reader can understand the diagram notation. The compressed shorthand version will be used for the rest of the sequencers.

## Programmable Logic Design and Application Notes



Figure 3-1. Up-Down Counter State Diagram

## State Equation Tutorial

STATE equation entry is a convenient way to describe elementary sequential machines in a manner which is directly related to a state diagram of the machine. The basic commands are few, but can be combined in a powerful fashion. Figure 3 - 1 shows a 4 state up-down counter for a machine with an $U($ up $) / D(d o w n)$ input line. Figure 3-2 shows the state equation syntax to implement Figure 3-1.

The basic meaning can be summarized in the following way. Simply, "while in state X " if input " Y " occurs, "transverse to state Z ". This is a Moore machine model. Mealy may be accommodated by addition of the "with" operation which designates an output variable being associated as shown below:

```
A.) While [CURRENT STATE] with [OUTPUT VARIABLE]
IF [INPUT VARIABLE] then [NEXT STATE]
```

or
B.) Whil
[CURRENT STATE]
IF [INPUT VARIABLE]
then [NEXT STATE]
with [OUTPUT VARIABLE]

If a latched output variable is desired, the addition of a prime notion (/) to the right of the output variable is required.

The designer must assign the binary values of choice to specific states for a state equation function to be implemented. The Signetics AMAZE manual details state equation solutions with more examples, but the advantage of state equations is that the designer can be less involved with the internal structure of the sequencer than required by other methods.

While	[STATE 0]			
	IF	[U]	THEN	[STATE 1]
	IF	[/D]	THEN	[STATE 3]
While	[STATE 1]			
	IF	[U]	THEN	[STATE 2]
	IF	[/D]	THEN	[STATE 0]
While	[STATE 2]			
	IF	[U]	THEN	[STATE 3]
	IF	[/D]	THEN	[STATE 1]
When	[STATE 3]			
	IF	[U]	THEN	[STATE 0]
	IF	[/D]	THEN	[STATE 2]

Figure 3-2. STATE EQUATIONS to Implement Up-Down Counter

## The PLUS105

This part (Figure 3-3) has sixteen logic inputs and eight outputs. It also has eight S-R flipflops tied directly to those output pins through 3 -State buffers (common control from pin 19). The user may select pin 19 to be an Output Enable signal or an asynchronous preset (PR) signal which is common to all flip-flops. Embedded into the device are 48 AND gates. All flip-flops are S-R type with an OR gate on both S and R. The designer may choose any number of product terms and connect them with any OR gate. The product terms can also be shared across any OR gate, as needed. Six of the 14 flip-flops are termed "buried registers" as their outputs are fed back to the AND array, regenerating both the $Q$ and $/ Q$ state variables. There is no direct connection to an output. Both the input signals and the state variables $Q$ and /Q are fed to the AND array through buffers which provided the TRUE (or noninverted) and Complement (inverted) renditions of the variable. This is critical for the efficient use of the AND array. The designer has all state and input variables necessary to generate any state transition signal to set and/or reset commands to the flip-flops. Because of this AND/OR arrangement, combined with complete freedom of configuration, all sequential design optimization methods are applicable.
There are many other feature capabilities suitable for creative usage. For example, it is common practice to use the 48 product terms with the 6 -bit buried register, treating the output 8 -bit register as an intermediate, loadable data register only. This provides a very good bus "pipeline" for the internal 6-bit machine. However, other logic options can be accomplished by combining internal state information (present state) with current input information, generating a next state which is different from the current internal state.

## Programmable Logic Design and Application Notes



Figure 3-3. PLUS105

## Programmable Logic Design and Application Notes



Figure 3-4. Compressed Drawing of PLUS105

## Programmable Logic Design and Application Notes

The PLS155, 157, and 159A constitute a three part family of 20 -pin sequencers that are well suited for high speed handshakers, counters, shift registers, pattern detectors and sequence generators. Additional applications include testability enhancement, demonstrated in the application examples of signature analysis and pseudo random number generation. The three devices are very similar in architecture. All have a total of 12 possible outputs. The difference is the ratio of combinational I/O to registered outputs available.

## The PLS155

The PLS155 is a sequencer providing four J-K flip-flops with a PLA having 32 logic product terms and 13 control product terms. Eight combinational I/O are available in addition to the
four registered outputs. All of the state variables and combinational variables are presented to the output pins by way of 3-State inverting buffers. The combinational and state variable outputs are fully connected (fed back) back to the AND array in both the True and Complemented form of the variable. The product includes a special feature that allows the user to configure the flip-flops as either J-K or D flip-flops on an individual basis. A Register Preload feature is supported via two product terms (La, Lb) which permit "back loading" of data into the flip-flops, directly from the output pins. The part can now be easily forced into any known state by enabling $L a, L b$, applying data at the outputs (previously "3-Stated"), and applying a clock pulse. Register Preset and

Reset functions are controlled in 2 banks of 2 registers each. Note that control product terms are from the OR array.

The outputs of all variables are 3-State controlled by a unique partition. Pin 11 provides an Output Enable input (OE) which can be asserted with the EA and EB control product terms. EA controls the flip-flops F0 and F1, and EB controls F2 and F3. Each combinational output term has a distinct 3-State control term (D0-D7) originating from the AND array of the PLA. Each combinational output variable can be programmed as inverting (active LOW) or non-inverting (active HIGH) by way of the output polarity EX-OR gate associated with each I/O pin.


Figure 3-5. PLS155 Architecture

## Programmable Logic Design and Application Notes

## The PLS157

This sequencer features all the attributes of the aforementioned PLS155, however, two flipflops have been added, at the expense of two of the combinational outputs. Pins 13 and 18 on the PLS157 are flip-flop driven, where the same pins on the PLS155 are combinatorial, driven from the PLA. Again, all variables (input, output, or state variables) fully connect over the PLA portion with both True and complemented
versions supplied. The number of product terms, the Complement array, Output Enable, 3-State configurations, Register Preload, etc., track the PLS155 part. As with the PLS155, distinct clock input on pin 1 is provided for synchronous operation. Register Preset and Reset are available in 2 banks. Pin $F_{4}$ and $F_{5}$ are controlled from the AND array (Product Terms $P_{B}$ and $R_{B}$ ). The remaining 4 registers, $\mathrm{F}_{0}-\mathrm{F}_{3}$, are controlled by the sum terms (from
the $O R$ array) $P_{A}$ and $R_{A}$.
Designs requiring more than 16 states but less than or equal to 64 states are solid candidates for realization with the PLS157. It can be configured as a Moore machine for counter and shifter designs from the flip-flop outputs, or as high speed pulse generators or sequence detectors with the combinational outputs. Mixed solutions are also possible.


Figure 3-6. PLS157 Architecture

## Programmable Logic Design and Application Notes

## The PLS159A

By extending the PLS157 arrangement even further, the PLS159A can be derived. Again, maintaining identical input, product terms, Complement array and similar 3-State partitioning, the PLS159A also resides in a 20-pin package. The expansion to dual 4-bit banks of flip-flops, at the expense of 2 combinational
outputs, enhances the number of available internal states while maintaining product term and pin compatibiiity. Note that ali registers are controlled from the AND array in 2 groups of four.

The PLS159A is an octal part. It readily enters the environment of the 8-bit data operand as
well as the bus oriented system. For enhanced performance, the flip-flop outputs are inverted. To provide positive ouipuis for shifters and counters, the input variables and state feedback variables can be selectively inverted through an input receiver or the feedback path through the AND gate array.


Figure 3-7. PLS159A Architecture

## Programmable Logic Design and Application Notes

There are three basic members in the 24-pin package family: The PLS167A, the PLS168A, and the PLS179. The PLC42VA12 is discussed elsewhere.

## The PLS167A

The PLS167A has 14 logic inputs and six registered outputs (S-R flip-flops). Six additional buried flip-flops reside beside the 48 product term AND array. This device can support state
machine designs of up to 256 states-as two outputs feed back into the AND array, making a total of eight buried registers. There is complete feedback connectivity of the inputs and the state flip-flop outputs to the PLA AND gates. Organizationally it has much more in common with the PLS105A than the aforementioned 20-pin parts. The asynchronous Preset and the Output Enable are identical
to the PLS105A.
By having the output latched state variable capability, it provides an automatic buffer for bus based systems. The current state may be presented, fully stable and synchronized to a bus-while the internal buried machine is transitioning to the next state based on current input conditions.


Figure 3-8. PLS167A

## Programmable Logic Design and Application Notes

## The PLS168A

This sequencer is a down-scaled version of the PLS105A. Having identical product terms, Complement array, asynchronous PRESET/ Output Enable options, and 3-State controls, its primary difference is having 12 inputs compared to the PLS105A's 16 inputs. However, the PLS168A can become a state machine
of up to 1024 states due to internal feed back of its six state registers, plus the feedback of four of the eight output registers. The PLSi68A is packaged in a 300 mil -wide 24 -pin DIP or 28-pin PLCC.

This is also an octal part, providing an 8-bit register to a bus based system. State registers,
interrupt vector synchronizers, counters, shifters, or just about any basic state machine can be generated and 3 -State interfaced to a com puter bus with a PLS168A. Outputs provided by the positive asserted sense make state transitioning and loading of state variables straightforward.


Figure 3-9. PLS168A

## Programmable Logic Design and Application Notes

## The PLS179

The PLS179 is architecturally similar to the PLS159A. The 3-State enable, number of product terms, flip-flop mode controls, register preload, etc., are all identical to the PLS159A. The four additional inputs are the dominant differentiating feature for this part as compared to the PLS159A. As with the PLS159A, the PLS179 Preset and Reset functions are
controlled from the AND array in 2 groups of 4 registers each.
The PLS179 is also an octal part. Providing the state contents directly to the pin through 3-State buffers allows counters and other sequence generators direct access to an asserted low octal bus. Some design creativity will
generate positive assertion through the pin inverters, for positive driven busses. Additional input pins expand the capability of the part beyond the PLS159A. Input combinations may be presented in a wider format, more fully decoded to the sequencer for faster reaction and less external circuitry than the PLS159A requires.


Figure 3-10. PLS179 Architecture

## Programmable Logic Design and Application Notes

## The PLUS405

The PLUS405 is a functional superset of the PLUS105. It is also much faster. The performance of the PLUS405 has been dramatically improved relative to the PLS105A. Available in two speed versions, the operating frequencies ( $1 / t_{\text {IS }}+t_{\text {CKO }}$ ) range from 37 to 45 MHz (minimum guaranteed frequency). The clock frequencies, or toggle rate of the flip-flops, are 50 MHz and 58.8 MHz , respectively. The PLUS 405 has 16 more product terms and two more buried state registers than the PLUS105. Equipped with two independent clocks, it is partitionable into two distinct state machines with independent clocks. And, it contains two independent

Complement arrays, allowing full benefits over both machines

The PLUS405 can be partitioned as one large state machine (16FFs) with 64 available p-terms using one clock and 16 inputs or alternately two state machines (8FFs each) with independent clocks, sharing 64 p-terms with 15 inputs in any combination the user desires. The Complement arrays can be used to generate the "else" transition over each state machine or alternately used as NOR gates. They can be coupled into a latch if needed.

The Asynchronous Preset option of the

PLS105/167/168 architectures has been replaced with a Programmable Initialization feature. Instead of a Preset to all logic "1"s, the user can customize the Preset/Reset pattern of each individual register. When the INIT pin (Pin 19) is raised to a logic "1", all registers are preset/or reset. The clocks are inhibited (locked out) until the INIT signal is taken Low. Note that Pin 19 also controls the OE function. Either Initialization or OE is available, but not both.

A CMOS extension to the PLUS405 is Signetics PLC415, which is pin compatible and a functional superset of the PLUS405 architecture.


Figure 3-11. PLUS405

## Programmable Logic Design and Application Notes

The Future is Here Now.
Recent architectural extensions are currently available from Philips Components-Signetics. These include the PLC415 and PLC42VA12.
These new "Super Sequencers" are available now for high-end new designs. Please check the data sheet section of this handbook for more information.

## Signetics

Programmable Logic Devices

## APPLICATION SECTION INTRODUCTION

This section provides examples of the wide ranging applications for Signetics PLD products. In microprocessors, for example, PLDs can solve complex interfacing problems. Their wide input gates make them ideal for microprocessor decoding, memory and I/O functions.

Communication is another key area where PLDs can solve difficult problems. Here PLDs simplify the process of developing products to an emerging standard. Signetics has provided a series of examples to show PLDs make it possible to change a design the same instant the standard changes. The examples contain a range of applications from whole protocols and simple scramblers to a customizable speech synthesis system.

Other examples in this section illustrate applications in home security and instrumentation.

The applications in this section are designed to show how Signetics PLDs can solve many classic design problems. However, it is important to note that each example exploits only one of the many facets of the product.

## MICROPROCESSOR <br> INTERFACING WITH SIGNETICS PLDS

Microprocessor interfacing is the art of connecting the attributes of a microprocessor, very skillfully to its surrounding environment. They must lineup carefully and match the appropriate timing, address and data signals to achieve an effective interaction. This section illustrates multiple interfacing examples.

# Programmable Logic Design and Application Notes 

## Introduction

Architectural bottlenecks have migrated from one point to another within a system throughout the history of computer design. Currently, processor speeds and memory cycles have become so tightly designed that little margin exists should any incompatibility arise between them. Driven for both speed and pin compatibility, DRAM manufacturers have added additional modes to their designs such as the nibble and page modes. Processor designers have resurrected the multiple bus Harvard architectures, as evident in some of the commercially available RISC chips. And, by using small block read ahead caches, the processors hide slower DRAM accesses typically by bursting as many as four words in a read cycle. Attempting to match the DRAM to the processor, or perform parity or ECC at full speed (i.e., no wait states) requires a fine balance of time budgeting, cost tradeoff and impedance matching among other issues. Performing all of these functions has resulted in an address decode time between 10 and 20 nanoseconds, depending on the required set of tradeoffs. For example, a tight 80386 memory cycle at full speed may require 10 nanoseconds, which could be accomplished with a Dspeed PLD, or with a fast PROM. Less than 10 ns is desirable, so 7.5 ns PAL-type devices will help. The new PHD16N8 and PHD48N22 are ideal.

## System Partitioning

Currently, most 32-bit processors generate an address capable of logically spanning four gigabytes. This is accomplished with 32 bits of distinct address lines. Available memories occupy much less (i.e., 1 megabit or less). A 1 megabit DRAM requires twenty bits of address, so selecting across twelve bit fields may be appropriate. Single module selection (or common address banks) could be accomplished with any logic device which can decode (i.e., generate a select condition) over the

12 high order address bits. Many contenders exist for this reason. The classic solution would be the 74S133 ( $\mathrm{t}_{\mathrm{PD}}=4 \mathrm{~ns}$ ) 13 input NAND gates with an additional 74S04 inverter to decode. Total decode time is at least eight nanoseconds. Depending on the cycle requirements, this may be required, but typically is not. A more efficient method is simply a PLD which combines the wide logic gate with "free" input inverters where required.

Additional select qualifiers may be needed to distinguish the precise assertion time of the select signal. The total number of decoding inputs will exceed the applied address signals.
Given the memory choices selected, the designer must choose a decoding device which meets his criteria. A typical system would have a mix of PROM (system functions), STATIC RAM (no wait memory or cache), DRAM (slower bulk store) or dual port memory (video RAM or shared store). Each will have different timing constraints. Most systems today will have much less than the four gigabytes they can address, but for software expansion reasons (or other system considerations) the memory may not run contiguously and small patches might be spread over the entire range. It will be important to decode precisely to known regions and avoid accidental reference to nonexistent regions.
In selecting a decode device, assuming one is required, several considerations become key. Should the software allow it, or the performance require it, the fastest decode is by distinct selection via direct connection to high order address lines. In today's organizations this will be the fastest, most fragmented memory space. Electrical drive pitfalls can exist here.

## Programmable Logic Design and Application Notes

Tight layout of the board is also important so that precious, paid for nanoseconds are not given up to long PC connect lines, input capacitance and voltage reflections. Many of the Signetics candidates illustrated in this discussion are limited to speed applications requiring no more than 16 mA output drive. They may be inappropriate for extremely dense RAM arrays with long pc-trace interconnects. For simple, fast decode purposes, the D-speed PAL-type devices are good, with a logical choice being the 7.5 ns PAL ICs. The new PHD family of parts is even better.

Some straight forward decoding examples follow with criteria for selecting specific Signetics PLD products for decode. These examples exploit only one of many facets offered by these products. Other examples illustrate
the use of Signetics PLDs for customized interrupt handling and a most extensive example shows a powerful solution to a SCSI bus interface.

## Bus Size Decoding for the 68020 - PLUS18P8B

Address decode for this class of processor is shown in successive sections (i.e., 68030 and 80386). This example depicts a slightly different problem-"data bus sizing" which is accomplished by decoding the address and control signals replicated in the logic diagram in Figure 4-1. Basically the 68020 device will strobe data onto the 32-bit databus in byte oriented subfields of the large word. Sixteen bit ports can receive either the upper or lower 16 data lines. Other ports can respond to LLD
(Data 0-7), LMDF (Data 8-15), UMD (Data 16-23), or UUD (Data 24-31). All subfields can be simultaneously asserted as dictated from decoding the size control lines ( $\mathrm{SI} \mathrm{ZO}, \mathrm{SIZ} 1$ ) in conjunction with the low order address lines (A0, A1).

Because the solution requires no product term sharing and is intensive on neither input nor outputpins, a simple fast PAL device is the best choice-the PLHS18P8B is designated. The basic operation is to decode the input lines to indicate whether the bus should have 8,16, or 32 bits driven onto it. These signals are supplied to a device external to the microprocessor which then asserts the corresponding data. Figure 4-2 shows an appropriate pinlist under AMAZE with Figure 4-2 showing the logic equation file.


Figure 4-1. 68020 Bus Sizing Logic

## Programmable Logic Design and Application Notes



## Interfacing to SPARC -PLUS20L8-7

The SPARC ${ }^{\text {TM }}$ processor is a modern RISC device configured from a popular CMOS gate array. Architectural details can be found in data sheets and literature. Supporting a full 32 bitaddress decode at full speed requires a 60 nanosecond instruction or data cycle. We will consider a 60 ns part although a 30 ns one is available. Figure $4-3$ shows the pin definition and Figure $4-4$ the basic timing. The address is driven out in two phases (low and high) and the data must be present 54 nanoseconds after the rising edge of clock 1 . To meet the access time will require an SRAM of less than 60 ns . In fact, the address generation requires 30 ns from when the low address is valid to when the high
address is valid. This is almost untenable and most designs will rely on the high order address lines seldom changing with respect to the low order ones. Therefore, assuming the high order lines are static and basing address calculations on the low order transitions seems reasonable. Detecting a change from one "segment" to another in the high lines can key a "wait" condition when addresses make big jumps. By not doing this, will force a very expensive SRAM solution if zero waits are required. Assuming zero wait states are desired, this will require a memory less than 20 ns access, if the fastest ( 7.5 ns ) PLD is chosen. By virtue of its restricted width and even more restricted speed option for a zero wait state solution, the PLUS2OL8-7 is the only contender. This restricts the SPARC
address space to 32 independent modules. The low order address lines must be latched within the RAM or externally.

Full performance can be achieved for $32,64 \mathrm{~K}-$ bit static RAMs comprising $1 / 2$-mega word store at full speed. By allowing a single wait state, the options open enormously to include a full spectrum of SRAMs, PROMs, even DRAMs with any of the other decode devices. Figure $4-5$ shows four such modules selecting off of AL17-AH21 address lines into 16K y 4 -bit, 35 ns SRAMs. This populates the entire lower two megaword space with high performance static RAM. The high order address lines (AH22-AH31) can select other such modules for expansion purposes.

## Programmable Logic Design and Application Notes



Figure 4-3. SPARC Pin Definition

## Programmable Logic Design and Application Notes



## Programmable Logic Design and Application Notes



Figure 4-5. 1/2MEG SPARC SPACE

## Programmable Logic Design and Application Notes

## The 80386 Pipeline Decoder -

## PLuSi53D

For example, select a mix of memory that will be located in small addressing chunk segments within the lower 16 megabytes of the 80386 four gigabyte address space. See Figure 4-6.

This decoding method will impact the memory addressing, but in a different way. The 80386 supports a mode whereby a next address can be asserted early ( 1 clock cycle) if the user asserts the NA\# pin. The interleaved slower memory may be sued by getting the nest
address earlier than normal to trigger an early memory cycle. Because we will be driving a single signal, NA\#, a PLUS153 can be configured with eight inputs and nine of the bidirectionals configured as inputs (i.e., 17 inputs, one output). By decoding addresses $31-17$ with the status signal $M$ asserted high and ADS\# asserted low, an NA\# will assert early to initiate a pipelined early transfer with a slower RAM. This approach allows designers to tune their specific memory speeds to the processor,


Figure 4-7. Functional Signal Groups
Figure 4-7 illustrates the 80386 signal groups.
Figure 4-8 illustrates various bus cycles with no wait states, and no pipelining.

Figure 4-9 illustrates bus cycles with and without pipelining.

Figure 4-10 illustrates the CLK2 time spans.
Figure 4-11 illustrates the NA\# pinlist.
Figure 4-12 illustrates the .BEE file for NA\# generation.
according to timing needs.
Figure 4-10 shows NA\# generated for a pipelined address located in the lowest 128 K of the address space. In Figure 4-11, the PLUS153D is shown as a single 17-input NAND function, most of the remaining portion of the part is unused. The address strobe and $M$ signals are included to correctly qualify the address and not generate glitches into the NA\# pin. Unless the p.c. board is poorly designed, the output drive of the PLUS153D will be adequate to drive the NA\# pin and any additional PC-metal. Figure $4-12$ shows the AMAZE equation to decode.


Figure 4-6. A Typical Address Space

## Programmable Logic Design and Application Notes



IDLE STATES ARE SHOWN HERE FOR DIAGRAM VARIETY ONLY.
WRITE CYCLES ARE NOT ALWAYS FOLLOWED BY AN IDLE STATE.
AN ACTIVE BUS CYCLE CAN IMMEDIATELY FOLLOW THE WRITE CYCLE.

Figure 4-8. Various Bus Cycles and Idle States with Non-Pipeline Address

## Programmable Logic Design and Application Notes



Figure 4-9. Mixed Pipelined/Non-Pipelined Signals


Figure 4-10. Pipelined Region NA\# Generator

## Programmable Logic Design and Application Notes

```
File Name : NA_386
Date : 5/16/1988
Time : 16:37:58
#################### P I N L I S T ####################
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline LABEL & \multicolumn{3}{|l|}{** FNC **} & \multicolumn{2}{|l|}{PIN} & PIN & & FNC & ** & LABEL \\
\hline AD31 & ** & I & * & 1-1 & & 1-20 & ** & \(+5 \mathrm{~V}\) & ** & VCC \\
\hline AD30 & ** & I & ** & 2-1 & P & 1-19 & ** & I & * & AD22 \\
\hline AD29 & ** & I & ** & 3-1 & L & 1-18 & ** & I & ** & AD21 \\
\hline AD2 8 & ** & I & ** & 4-1 & U & 1-17 & * & I & ** & AD20 \\
\hline AD27 & ** & I & ** & 5-1 & S & 1-16 & ** & I & \(\star *\) & AD19 \\
\hline AD26 & ** & I & ** & 6-1 & 1 & 1-15 & ** & I & ** & AD18 \\
\hline AD25 & ** & I & ** & 7-1 & 5 & 1-14 & ** & I & ** & AD17 \\
\hline AD24 & ** & I & ** & 8-1 & 3 & 1-13 & ** & I & ** & M \\
\hline AD23 & ** & I & ** & 9-1 & & 1-12 & & I & ** & /ADS \\
\hline GND & ** & OV & ** & 10-1 & & |-11 & & 10 & ** & /NA \\
\hline
\end{tabular}
```

Figure 4-11. Pinlist NA_386

```
File Name : NA_386
Date : 5/16/88
Time : 16:38:8
@DEVICE TYPE
 PLUS153
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
 /NA386
@DESCRIPTION
THIS DESIGN DRIVES THE NA# SIGNAL LOW WHEN ASSERTED ON AN
80386 PROCESSOR FOR A MEMORY REGION SPANNING THAT DECODED
BY THE EQUATION CONTAINED HEREIN.
@COMMON PRODUCT TERM
@I/O DIRECTION
@LOGIC EQUATION
 /NA=/(/AD31*/AD30*/AD29*/AD28*/AD27*/AD26*/AD25*/AD24*/AD23
 /AD22/AD21*/AD20*/AD19*/AD18*/AD17*/ADS*M);
```

Figure 4-12. NA_386.BEE File

## Programmable Logic Design and Application Notes

## 68030 Address Decoding PLUS173D

Although designers generally try to optimize every nanosecond of microprocessor performance, it is typically not necessary for the CPU to always operate at full speed. Operating the CPU, when acceptable, at a slower speed can bring about a more economical and compact system. This is due to higher costs associated with fast memory and greater board area usage of very wide memory configurations.

Some software routines in which slower performance may be acceptable are during power up initialization, diagnostic routines, or possibly some exception processing routines. Where speed is not critical, an 8-bit bus is the most economical and compact because of readily available byte wide memory components and buffers. The 68030 is easily interfaced to 8, 16, or 32-bit ports because it dynamically interprets the port size of the addressed device during each bus cycle. Figure 4-13 shows an example of interfacing both a relatively slow

200ns 8-bit EPROM and fast 35 ns 32-bit RAM to a 68030. A PLUS173D was chosen for its high speed and large number of inputs and outputs. Figure $4-14$ shows the AMAZE pinlist and Boolean equations for the device. The EPROM occupies memory space 0-32K while the RAM occupies addresses $64 \mathrm{~K}-128 \mathrm{~K}$. However, please note that because not all of the upper memory address bits were decoded, the memory arrays will also appear at other addresses.


Figure 4-13. Example Interfacing Mixed Memory Types

## Programmable Logic Design and Application Notes



Figure 4-14. AMAZE Pinlist and Boolean Equations

## Programmable Logic Design and Application Notes

## The 29000 , SRAM and the PLUS20L8D

The 29000 processor can, in theory, access instruction memory every 40 nanoseconds (Figure 4-15) at top speed. The natural tendency is to place this part into the highest performance environment possible. This is still a very difficult problem. Similar to the SPARC, a
simple brute force SRAM will yield no "wait states" by correctly combining, for instance, a 25 ns access time with the instruction cycle. One additional, and very importantrequirement will be a current drive of 24 mA . The PLUS20L8D PAL (Figure 4-16) can decode up to 20 inputs in 10 nanoseconds with 24 mA of
output drive. Making some assumptions about SRAM input capacitance, pc board trace capacitance, etc., will assure the reader that the PLUS20L8D will not waste valuable time needed to achieve the maximum possible performance. The following outlines verification that the PLUS20L8D will meet timing requirements.

## Programmable Logic Design and Application Notes



## Programmable Logic Design and Application Notes



Figure 4-17. High Speed Burst Mode Configuration

Consider, for example, the configuration depicted in Figure 4-17 with Motorola MCM 6288 SRAMs. As depicted, there are eight modules forming a 16 K word space. The 29000 is targeted to drive 80pf according to the data manual at full speed ( 25 MHz clock). How much additional time delay will be attributed to the bus and RAM loading?

For the chosen RAM configuration $\mathrm{C}_{\text {in }}=8$ (5pf) $=40 \mathrm{pf}$. We will have to assume some values for p.c. wiring. One common one today is about $20 \mathrm{pf} / \mathrm{ft}$. Placing our RAM on the same board,
near the processor should require about a foot of trace/address line. The average $\mathrm{C}_{\mathrm{L}}=(40+$ 20) pf. This is just beyond the 10 ns specified for testing the 20 L 8 (i.e., 50pf), however, if we ignore it, the extra loading will not significantly impact this small system.

To include it would incur additional assumptions about the pull up and pull down resistance of the 20 L 8 (these values are typically between 5 and 20 ohms), but are not strictly specified. The result is that we are within 2 nanoseconds of time delay by ignoring the capacitance.

Tdelay (20L8)	$=10 \mathrm{~ns}($ MAX $)$
Tdelay (RAM access)	$=25 \mathrm{~ns}($ MAX $)$
Tdelay $(29000)$	$=\frac{5 n s(\text { MAX })}{40 n s(M A X)}$

Adding anything into the data path or a poor circuit layout can take the design out of spec., but by these assumptions, is can succeed. Design slack may be generated simply by inserting the 20L8-7 and one gets 2.5 ns of free time margin.

## Programmable Logic Design and Application Notes

## Interrupt Handler - PLS179

In the 1970's I.C. manufacturers made the error of introducing microprocessor chips without having family support chips available. Often, months or years passed before relatively simple family additions arrived. Later, a similar situation arose when bus standards, LAN standards, and disk standards failed to settle down for system designers to get sufficient market lead without LSI solutions. PLDs could have helped much here! As an example of designing a microprocessor family part, consider Figure 4-18, which depicts an interrupt handler. In particular, note that interrupt inputs will be latched into an 8 -bit register. This in turn will be encoded to a 3-bit vector which may be appropriately enabled and applied to the microbus. Figure $4-18$ shows the eight flip-flops as having $J-K$ and /D inputs which will be generated with a PLS179 by switching the flip-flop control. Appropriate control signals for the various transactions might be as follows:

1. CLOCK - the system synchronous time base.
2. Interrupt Enable - when asserted high from the microprocessor, allows interrupts to be generated to the microprocessor.
3. Interrupt - a strobe or level defined to indicate a pending interrupt and a valid encoded vector.
4. Interrupt Acknowledge - a response signal from the microprocessor which may be used to enable the 3-bit vector onto the bus. As well, it may initiate clearing the currently asserted interrupt latch.
5. INTO-/INT7 - eight possible interrupt request signals which must be asserted low and held there until service for that device has occurred.
6. Reset - this is a system override signal which will clear all flip-flops during initial operation.

## Basic Operation

Initially, the part should be reset by asserting the RESET pin high, asynchronously. Then, when interrupts are enabled, the /D-inputs to the 8 flip-flops will be synchronously scanning for interrupt inputs (asserted low). This will put a nonzero value into the eight bit register which will generate an interrupt output, combinationally through the Complement array. In parallel, a 3-bit encoded vector will be applied on the VECO, VEC1, VEC2 lines. Asserted high logic will be assumed for the vector. Presumably, a microprocessor will interrupt this, transfer control to a service routine and clear the interrupt. The clear will be accomplished by disabling interrupts and strobing the vector value back
into the PLS179, using the IACK signal. Disabling the interrupts will put the registers into J-K mode. J is tied to zero and K is decoded from the specifically strobed vector. Therefore, synchronous clear of the high priority bit is done. Interrupts are then re-enabled and the process continues.

The PLS179 solution offers room for user alteration. For example, the IACK condition could be redefined as a combination of the $\mathbf{Z 8 0}$ IOREQ and M1 signals, or any specific splitting of internal signals could be easily done. The design could fit into a PLS159A, but there would be less room for variation for specific users exact needs. Figure 4-20 shows the pinlist for the handler. Figure 4-21 gives the corresponding design file. A simulation Ruler template is given in Figure 4-22, and Figure 4-23 shows a simulation log file for some example interrupt transactions. In Figure 4-23, the simulation begins by asserting RESET followed by successive assertion of each interrupt bit to demonstrate the vector encoding. The second half begins with all eight interrupts asserted simultaneously and each is cleared successively in descending priority. INTO is the highest priority. The interrupt is actually asserted through the PLS179 Complement array behaving as a simple NOR gate.

## Programmable Logic Design and Application Notes



## Programmable Logic Design and Application Notes



Figure 4-20. Interrupt Pin List

## Programmable Logic Design and Application Notes

```
@COMMON PRODUCT TERM
CPT1= /INT0*/INT1*/INT2*INT3 ;
CPT2= /INTO*/INT1*/INT2*/INT3*/INT4*INT5 ;
CPT3= /INTO*/INT1*/INT2*/INT3*/INT4*/INT5*INT6 ;
CPT4=/INTO*/INT1*/INT2*/INT3*/INT4*/INT5*/INT6*INT7 *
KLEAR0 =/VEC*/VEC1*/VECO*IACK; "DECODE VECTOR 0"
KLEAR1 =/VEC2*/VEC1*VEC0*IACK; "DECODE VECTOR 1"
KLEAR2 =/VEC2*VEC1*/VECO*IACK; "DECODE VECTOR 2"
KLEAR3 =/VEC2*VEC1*VECO*IACK; "DECODE VECTOR 3"
KLEAR4 =VEC2*/VEC1*/VEC0*IACK; "DECODE VECTOR 4"
KLEAR5 =VEC2*/VEC1*VEC0*IACK; "DECODE VECTOR 5"
KLEAR6 =VEC2*VEC1*/VEC0*IACK; "DECODE VECTOR 6"
KLEAR7 =VEC2*VEC1*VEC0*IACK ; "DECODE VECTOR 7"
@COMPLEMENT ARRAY
/C = /(INTO + INT1 + INT2 + INT3 + INT4 + INT5 + INT6 + INT7);
@I/O DIRECTION
D3 = ENA;
D2 = ENA;
D1 = ENA;
DO = ENA;
@FLIP FLOP CONTROL
FC = /ENA;
@OUTPUT ENABLE
EA=OTE;
EB=OTE;
@REGISTER LOAD
LA=ENA;
LB=ENA;
@ASYNCHRONOUS PRESET/RESET
RA = RESET;
RB = RESET;
PA = 0;
PB = 0;
@FLIP FLOP MODE
M0,M1,M2,M3,M4,M5,M6,M7 = 1;
@LOGIC EQUATION
VECO = (/INTO*INT1 + CPT1 + CPT2 + CPT4);
VEC1 = (/INTO*/INT1*INT2 + CPT1 + CPT3 +CPT4);
VEC2 = (/INTO * /INT1 * /INT2 */INT3*INT4 + CPT2 + CPT3 + CPT4);
INTERRUPT = (/C);
INTO: J=0;
 K=KLEARO;
INT1: J=0;
 K=KLEAR1;
INT2; J=0;
 K=KLEAR2;
INT3: J=0;
 K=KLEAR3;
INT4: J=0;
 K=KLEAR4;
INT5: J=0;
 K=KLEAR5;
INT6: J=0;
 K=KLEAR6;
INT7: J=0;
 K=KLEAR7;
```

Figure 4-21. Interrupt Design File

## Programmable Logic Design and Application Notes



Figure 4-23. Interrupt Simulation Log File

## Programmable Logic Design and Application Notes

## SCSI TARGET INTERFACE PLUS105 AND PLUS153B

## Overview

This application provides a complete solution to the SCSI Target interface. As well, it includes a detailed rendering of the PLUS 105 controlling transaction with a complete state equation solution.

## Introduction

Fromits first introduction, the SCSI Bus (known as SASI in its initial days), has gained wide acceptance as a small computer peripheral bus. As the performance capabilities of mass storage peripheral devices increased, other bus specifications came into being to handle the increased performance requirements. Interfaces such as the High Speed SCSI, ESDI, and proposed byte/word wide bus for high performance mass storage devices (to replace the de facto standard SMD Interface) are gaining acceptance. Though different from each other, they present the system designer with surprisingly similar handshake requirements for the transfer of command, status, data and other information among hosts and/or targets connected to the bus.

In recent years several IC manufacturers have introduced single-chip controllers for the SCSI Bus, but none yet for the new proposed buses. The purpose of this application note is to use the SCSI Bus, known to most designers, as the vehicle to demonstrate the ease with which such buses can be handled by high performance, low cost programmable sequencers. The design described is based on the PLUS 105 (or the higher performance PLUS405).
High performance programmable sequencers using the architecture exemplified in the PLUS105 have been available since Signetics invented and introduced the PLS105 in 1980.

## Functional Description

The SCSI Interface described in this document is a Full Target Implementation that includes the following features:

- Arbitration Capability
- Reselect Capability
- Software Programmable Target I.D.
- Full DMA interface
- Interrupt Generator

The Reselect and Arbitration capabilities enable the implementation of an efficient, intel-
ligent target controiier. Once a command is received, the target can disconnect from the SCSI Bus, execute the command and reconnect to the SCSI when data or status needs to be transferred to the requester. This reduces the amount of idle time on the bus; it also enables the target to receive multiple commands and execute them in the most efficient manner.
The software programmable Target I.D. allows the same design to be used for multiple targets sharing the same SCSI Bus. The DMA Interface is based on a straight-forward DMA Request/DMA Acknowledge Handshake protocol, enables fast data transfers without undue burden on the local intelligence.

An open collector, active low interrupt is provided to request service by the local intelligence at the completion of transfers or in the event of errors.

## Programmer's Interface

The SCSI Port is operated through the use of five independently addressed registers: STATUS, COMMAND, TARGET ID, DATA IN, DATA OUT.

ADDRESS	REGISTER	ACCESS MODE
Base +0	STATUS	Read only
Base +0	COMMAND	Write only
Base +1	TARGET ID	Write only
Base +2	DATA IN	Read only
Base +2	DATA OUT	Write only

The 5 registers are 8 bits wide with bit definitions as described below:

COMMAND REGISTER

IRQE	PORTE	DMAE	CTLS	MESG	CTRL	SFC	
7	6	5	4	3	2	1	0



## Programmable Logic Design and Application Notes

STATUS REGISTER

CMPL	PARE	SRST	ATTN	SLCT	BUSY	ARBT	SLCD
7	6	5	4	3	2	1	0


CMPL	- Function Completed. This signal gated with BIT 7 (IRQE) of the Command Register generates an Interrupt to the local intelligence.
PARE	- Parity Error. The source of the error can be determined from the state of BIT 4 (CTLS) in the COMMAND Register:   CTLS=0 - Error on SCSI Bus   CTLS=1 - Error in local memory
SRST	- Status of RESET signal on SCSI Bus
ATTN	- Status of ATTENTION signal on SCSI Bus
SLCT	- Status of SELECT signal on SCSI Bus
BUSY	- Status of BUSY signal on SCSI Bus
ARBT	- ASSERTED to indicated that the controller has won Arbitration and is in control of the SCSI Bus.
SLCD	- SELECTED. If both SLCD and SLCT are ASSERTED, the controller is being selected by another device on the SCSI Bus.

TARGET ID REGISTER

not used				TID			
7	6	5	4	3	2	1	0

TID

- Three bit code that defines the Target I.D.


## Port Operation

As described in the previous section, the port
can execute 4 commands:
Arbitrate, Reselect, Transfer and Disconnect.

Arbitrate	$:$The port monitors the SCSI Bus for the "bus free" state. When the bus is free, the port starts the Arbitration   sequence to gain bus mastership. If arbitration is won, the port will generate an interrupt with the appropriate   status in the STATUS Register. If arbitration is lost, the port returns to the monitoring of the SCSI Bus.
Reselect $\quad:$The port transfers the desired ID Byte from local memory (through DMA) to the SCSI Bus and waits for the   appropriate response from the desired controller. When the desired controller responds, the Port generates   an interrupt with the appropriate status in the STATUS Register.	
Transfer $:$The port transfers data between local memory and the selected controller on the SCSI Bus until the DMA   Termination Signal (DMACNTO) is asserted. At completion, the port generates an interrupt with the proper   status in the STATUS Register.	
Disconnect $\quad$The port relinquishes Bus mastership. This results in the "bus free" state allowing other controllers to use   the SCSI Bus. This is also the IDLE state for the Port. The port should be programmed for this state when   there is no SCSI work in progress.	

## Programmable Logic Design <br> and Application Notes

```
Arbitration Software Sequence
PROC (arbitrate)
 negate DMAE, PORTE
 set SFC to ARBITRATE; assert PORTE
 wait for completion
 negate PORTE
 IF port won arbitration
 THEN exit with normal status
 ELSE DO
 IF SRST
 THEN exit with RESET status
 ELSE DO
 set-up single byte DMA transfer
 negate CTLS; assert DMAE, PORTE
 wait for completion
 negate DMAE, PORTE
 exit with Port Selected status
 END
 END
 END
RESELECT Software Sequence
PROC (reselect)
 negate DMAE, PORTE
 place reselect ID byte in local memory
 set-up single byte DMA transfer
 set SFC to RESELECT; assert DMAE, PORTE
 wait for completion
 negate DMAE, PORTE
 IF good completion
 THEN exit with normal status
 ELSE IF SRST
 THEN exit with reset status
 ELSE exit with error status
END
```


## TRANSFER Software Sequence

```
PROC (transfer)
negate DMAE, PORTE
set-up DMA controller
set SFC to TRANSFER; set-up CTRL, CTLS, MESG; assert DMAE, PORTE
wait for completion
negate DMAE, PORTE
IF good completion
THEN exit with normal status
ELSE IF SRST
THEN exit with reset status
ELSE exit with error status
DISCONNECT Software Sequence
PROC (disconnect)
negate DMAE, PORTE
set SFC to DISCONNECT; assert PORTE
wait for completion -
negate PORTE
exit with normal status
END
```


## Programmable Logic Design and Application Notes

## Hardware Description

The SCSI Interface described in this document is implemented using three Programmable Logic Devices and a hand-full of FASTSSI/Octals. Referring to the schematic in Figure 4-30 (page 4-46), the functions of the different components are as follows:
U6 - (74F244) Port STATUS Register
U7 - (74F273) Port COMMAND Register
U1 - (74F374) DATA OUT Register
U2 - (74F374) DATA IN Register
U8 - (74F273) : SCSI Bus signals Synchronization
: Partial Status Latch
U4 - (74145) Asserts proper signal on SCSI bus during Arbitration.
U5 - (PLUS153B) : Register Decode
: 3-bit TARGET ID Register.
U3 - (PLUS153B) :Parity Generator/Checker :Arbitration Win Detection :Port Selected Detection

U9 - (PLUS105) : Executes all commands : Controls handshake with DMA controller : Controls REQ/ACK Handshake with SCSI Bus : Detects "bus free" state : Implements "arbitration delay"
74F38's - High Current, Open Collector Drivers for SCSI Bus
74F14's - $\quad$ Schmitt Trigger Input Receivers for SCSI Bus
NOTES:

1. The interface requires an 8 MHz Clock. The throughput of the interface can be increased by operating this circuit at 24 MHz by using the PLUS405.
2. The interface is initialized by an active low signal: /SYSRESET
3. The DMA Interface consists of four signals:

DMAENBL - Software controlled DMA Enable
DMAREQ - asserted by the port (PLS105A) for each byte transfer /DMACYCLE - asserted by DMA controller as a response to DMAREQ
IDMACNTO - asserted when the DMA transfer count reaches 0
4. The processor (local intelligence) interface consists of 5 signals

A1, AO	The two least significant address bits	
ISYSSEL	-	A block decode signal for the SCSI Port
ISYSREAD	Active low, READ signal	
		$0-$ READ
INTERRUPT-	Active low, Open collector Interrupt	

## Programmable Logic Design and Application Notes

RDFVICF, TYPE				
PLUS105				
@DRAWING			DNW-SIG-105	
@REVISION			A	
@DATE			11-29-87	
@SYMBOL			U9	
@COMPANY			SIGNETICS	
@NAME			DIMITRIOUS DOUROS	
@DESCRIPTION			SCSI CONTROLLER	
$@ \mathrm{PINLIST}$				
"<--------EVUNCTION-------->			<--REFERENCE-->"	
"PINLABEL	PIN \#	PIN_FCT	PIN_ID	OE_CTRL"
8MHZ	1	CK	CLK	- ;
/DMACNTO	2	I	I7	- ;
PORTENB	3	I	I6	-
SELECTED	4	I	I5	- ;
WONARB	5	I	I4	- ;
BBUSY	6	I	I3	- ;
BSELECT	7	I	I2	- ;
BACK	8	I	I1	- ;
BRESET	9	I	I0	- ;
CBUSY	10	0	F7	/OE
CSELECT	11	0	F6	/OE
REQUEST	12	0	F5	/OE
/ARBITRATE	13	0	F4	/OE
GND	14	OV	GND	- ;
SFCMPL	15	0	F3	/ OE
SPARERR	16	0	F2	/OE
SDRVENB	17	0	F1	/OE
DMAREQ	18	0	F0	/OE ;
LOW	19	/OE	PR/OE	- ;
ICBUSY	20	I	I15	- ;
ICSELECT	21	I	114	- ;
IREQUEST	22	I	I13	- ;
PARERROR	23	I	112	- ;
CTLSCSI	24	I	I11	- ;
SFC1	25	I	110	- ;
SFC0	26	I	I9	- ;
/DMACYCLE	27	I	I8	- ;
VCC	28	$+5 \mathrm{~V}$	VCC	- ;

Figure 4-24. PLUS105 SCSI_CTL Pinlist

## Programmable Logic Design and Application Notes

```
@INTERNAL SR FLIP FLOP LABELS
QO Q1 Q2 Q3 Q4 Q5
@COMMON PRODUCT TERM
@COMPLEMENT ARRAY
@LOGIC EQUATION
@DEVICE SELECTION
SCSI_CTL/PLS105
@INPUT VECTORS
[PORTENB,SFC1,SFC0]
 "COMMAND CODE DEFINITIONS"
\begin{tabular}{ll}
DISCONNECT & \(=100 \mathrm{~B} ;\) \\
DATA_XFER & \(=101 \mathrm{~B} ;\) \\
RESELECT & \(=110 \mathrm{~B} ;\) \\
ARB_COMMAND & \(=111 \mathrm{~B} ;\)
\end{tabular}
@OUTPUT VECTORS
[CBUSY, CSELECT,REQUEST,/ARBITRATE, SFCMPL,SPARERR,
SDRVENB,DMAREQ]
 "DISCONNECT STATE OUTPUTS"
DISCNCT_OUT' = 00011000B;
 "POWER-UP STATE OUTPUTS"
POWER_UP_OUT' = 00010000B;
@STATE VECTORS
[Q5,Q4,Q3,Q2,Q1,Q0]
 "INITIALIZATION, IDLE, AND DON'T CARE STATES"
POWER_UP = 3FH;
IDLE= 1FH;
ANY STATE = ------B;
 "PORT SELECTED RESPONSE STATES"
\begin{tabular}{ll}
SELECTED_1 & \(=3 \mathrm{CH} ;\) \\
SELECTED_2 & \(=18 \mathrm{H} ;\) \\
SELECTED_3 \(^{2}\) & \(=19 \mathrm{H} ;\) \\
SELECTED_4 \(^{2}\) & \(=1 \mathrm{AH} ;\)
\end{tabular}
"RESELECT STATE SEQUENCE"
\begin{tabular}{ll}
RESELECT_1 & \(=10 \mathrm{H} ;\) \\
RESELECT_2 & \(=11 \mathrm{H} ;\) \\
RESELECT_3 & \(=12 \mathrm{H} ;\) \\
RESELECT_4 & \(=13 \mathrm{H} ;\) \\
RESELECT_5 & \(=3 \mathrm{BH} ;\) \\
RESELECT_6 & \(=33 \mathrm{H} ;\)
\end{tabular}
```


## Programmable Logic Design and Application Notes

"ARBITRATION STATE SEQUENCE"

```
ARBITRATE 1 = 00H;
ARBITRATE_2 = 0FH;
ARB DELAY_GO = 20H;
ARB_DELAY_IP = 10----B;
ARB_DELAY_QU = 2EH;
"DATA TRANSFER SEQUENCE"
\begin{tabular}{ll}
DATA_XFER_1 & \(=14 \mathrm{H} ;\) \\
DATA_XFER_2 & \(=15 \mathrm{H} ;\) \\
DATA_XFER_3 & \(=16 \mathrm{H} ;\) \\
DATA_XER_4 & \(=17 \mathrm{H} ;\) \\
DATA_XER_5 & \(=34 \mathrm{H} ;\) \\
DATA_XFER_SL & \(=1 \mathrm{AH} ;\)
\end{tabular}
```

"EVENT COMPLETION SEQUENCE"
COMPLETE_1 $=1 \mathrm{CH}$;
COMPLETE $2=1 \mathrm{EH}$;
@TRANSITIONS
"------------- POWER-UP RESET RESPONSE -----------------"
WHILE [POWER_UP]
IF []
THEN [IDLE] WITH [POWER_UP_OUT']
"------------ SCSI BUS RESET RESPONSE ------------------"
WHILE [ANY_STATE]
IF [BRESET]
THEN [COMPLETE_1] WITH [DISCNCT_OUT']
"-------------- DISCONNECT SEQUENCE ------------------"

WHILE [IDLE]
IF [/BRESET*DISCONNECT*ICBUSY]
THEN [COMPLETE_1] WITH [DISCNCT OUT']
Figure 4-25.2 PLUS105 SCSI_CTL .SEE File (continued)

## Programmable Logic Design and Application Notes

```
"----------------------------------
WHILE [IDLE]
 IF [/BRESET*/BSELECT*/BBUSY*RESELECT*ICBUSY*ICSELECT]
 THEN [RESELECT 1] WITH [CBUSY',CSELECT',SDRVENB',DMAREQ']
 WHILE [RESELECT 1]
 IF [/BRESET*DMACYCLE]
 THEN [RESELECT_2] WITH [/DMAREQ']
 WHILE [RESELECT_2]
 IF [/BRESET]
 THEN [RESELECT_3]
 WHILE [RESELECT 3]
 IF [/BRESET]
 THEN [RESELECT_4]
 WHILE [RESELECT_4]
 IF [/BRESET*ICBUSY]
 THEN [RESELECT 5]
 WHILE [RESELECT 5]
 IF [/BRESET*ICBUSY]
 THEN [RESELECT_5] WITH [/CBUSY']
 IF [/BRESET*/ICBUSY]
 THEN [RESELECT 6]
 WHILE [RESELECT_6]
 IF [/BRESET*/ICBUSY*BBUSY]
 THEN [COMPLETE_1] WITH [CBUSY',/CSELECT',SFCMPL']
 "------------- PORT SELECTED RESPONSE --------------------
WHILE [IDLE]
 IF [/BRESET*PROTENB*/ICBUSY*/ICSELECT*/BBUSY*BSELECT*SELECTED*/PARERROR]
 THEN [SELECTED 1] WITH [SFCMPL',DMAREQ']
 WHILE [SELECTED 1]
 IF [/BRESET*/PORTENB*DMACYCLE]
 THEN [SELECTED 2] WITH [CBUSY',/SFCMPL',SDRVENB',/DMAREQ']
 WHILE [SELECTED 2]
 IF [/BRESET]
 THEN [SELECTED 3]
 WHILE [SELECTED 3]
 IF [/BRESET]
 THEN [SELECTED 4] WITH [SFCMPL']
 WHILE [SELECTED 4]
 IF [/BRESET*\overline{PORTENB]}
 THEN [COMPLETE 1]
```


## Programmable Logic Design and Application Notes

```
"------------ ARBITRATION SEQUENCE
-----------------"
WHILE [IDLE]
 IF [/BRESET*ARB COMMAND*/ICBUSY*/BBUSY*/BSELECT]
 THEN [ARBITRĀTE_1]
 WHILE [ARBITRATE_1]
 IF [/BRESET*(BBUSY+BSELECT)]
 THEN [IDLE]
 IF [/BRESET*/BBUSY*/BSELECT]
 THEN [ARB_DELAY_GO] WITH [CBUSY',ARBITRATE',SDRVENB']
 WHILE [ARB_DELAY_IP]
 IF [/BRESET*Q0]
 THEN [/QO]
 IF [/BRESET*/QO]
 THEN [QO]
 IF [/BRESET*Q1*Q0]
 THEN [/Q1]
 IF [/BRESET*/Q1*Q0]
 THEN [Q1]
 IF [/BRESET*Q2*Q1*Q0]
 THEN [/Q2]
 IF [BRESET*/Q2*Q1*Q0]
 THEN [Q2]
 IF [/BRESET*/Q3*Q2*Q1*Q0]
 THEN [Q3]
 IF [/BRESET*ARB_DELAY_QU]
 THEN [ARBITRATE_2]
WHILE [ARBITRATE_2]
 IF [/BRESET*/\overline{BSELECT*WONARB]}
 THEN [COMPLETE_1] WITH [CSELECT',/ARBITRATE',SFCMPL']
 IF [/BRESET*BSELECT]
 THEN [IDLE] WITH [/CBUSY',/ARBITRATE',/SDRVENB']
```



```
WHILE [IDLE]
 IF [/BRESET*ICBUSY*/ICSELECT*DATA_XFER*CTLSCSI]
 THEN [DATA XFER_1] WITH [REQUEST']
 IF [/BRESET*ICBUSY*/ICSELECT*DATA XFER*/CTLSCSI]
 THEN [DATA_XFER-1] WITH [DMARE\']
 WHILE [DATA_XFER_1]
 IF [BRESET*PROTENB*IREQUEST*BACK]
 THEN [DATA_XFER_1] WITH [DMAREQ']
 IF [/BRESET*PORTENB*DMACYCLE]
 THEN [DATA_XFER_2] WITH [/DMAREQ']
 WHILE [DATA_XFER_2]
 IF [/BRESET]
 THEN [DATA_XFER_3]
 WHILE [DATA_XFER_3]
 IF [/BRESET]
 THEN [DATA_XFER 4]
```


## Programmable Logic Design and Application Notes

```
 WHILE [DATA_XFER_4]
 IF [/BRESET*PO्RTENB*/PARERROR*DMACNTO*/CTLSCSI]
 THEN [COMPLETE_1] WITH [SFCMPL']
 IF [/BRESET*PORTENB*/PARERROR*SMACNTO*CTLSCSI]
 THEN [DATA_XFER_5] WITH [REQUEST']
 IF [/BRESET*PO-ORTENB*/PARERROR*/SMACNTO]
 THEN [DATA XFER 1] WITH [REQUEST']
 [/BRESET*/PORTENB]
 THEN [DATA_XFER_SL] WITH [SFCMPL']
 [/BRESET*PORTENB}*\mathrm{ *PARERROR]
 THEN [COMPLETE_1] WITH [SFCMPL',SPARERR']
 WHILE [DATA_XFER_5]
 IF [/BRE\overline{SET*IREQUEST*BACK]}
 THEN [COMPLETE_1] WITH [SFCMPL']
```



```
WHILE [COMPLETE_1]
 IF [/BRESET*/PORTENB]
 THEN [COMPLETE_2] WITH [/SFCMPL',/SPARERR']
WHILE [COMPLETE_2]
 IF [/BRESET*PORTENB]
 THEN [IDLE]
WHILE [IDLE]
 IF [/BRESET*/BSELECT*/ICBUSY*/SFC1*/SFC0]
 THEN [IDLE]
```


## Programmable Logic Design and Application Notes

@DEVICE TYFE						
PLUS 153						
@DRAWING. . . . . . . . . . . . SIG_APN88_02						
@REVISION. . . . . . . . . . . . A						
@DATE. . . . . . . . . . . . . . $8-8$-88						
@SYMBOL. . . . . . . . . . . . . U3						
@COMPANY............... ${ }^{\text {S }}$ IGNETICS						
@NAME.................ASP APPLICATIONS GROUP						
@DESCRIPTION..........cSI TARGET CONTROLLER. ARBITRATION/SELECTION LOGIC						
$@ P$ INLIST						
"<-------FUNCTION------->> <--REFERENCE-->"						
"PINLABEL	PIN \#	\# PIN_FCT	PIN_ID	OE_CI		
SDO	1	I	IO	-	;	
SD1	2	I	I1	-	;	
SD2	3	I	I2	-	;	
SD3	4	I	13	-	;	
SD4	5	I	I4	-	;	
SD5	6	I	I5	-	;	
SD6	7	I	I6	-	;	
SD7	8	I	I7	-	;	
PAR1	9	0	B0	DO	;	
GND	10	OV	GND	-	;	
PAR2	11	-	B1	D1	;	
IDO	12	I	B2	D2	;	
ID1	13	I	B3	D3	;	
ID2	14	I	B4	D4	;	
A-WONARB	15	0	B5	D5	;	
A-SELECTED	16	0	B6	D6	;	
PARERROR	17	0	B7	D7	;	
GEN-PAR	18	0	B8	D8	;	
REC-PAR	19	I	B9	D9	;	
VCC	20	$+5 \mathrm{~V}$	VCC	-	;	

## Programmable Logic Design and Application Notes

```
@COMMON PRODUCT TERM
MAX-ID-MATCH = ID1 * ID1 * ID2 * SD7 ;
@I/O DIRECTION
@LOGIC EQUATION
A-SELECTED = IDO * /ID1 * /ID2 * SD1
 + /ID0 * ID1 * /ID2 * SD2
 + ID0 * ID1 * /ID2 * SD3
 + /ID0 * /ID1 * ID2 * SD4
 + ID0 * /ID1 * ID2 * SD5
 + /ID0 * ID1 * ID2 * SD6
 + MAX-ID-MATCH ;
A-WONARB = ID0 * /ID1 * /ID2 * SD1 * /SD2 * /SD3 * /SD4 * /SD5 * /SD6 *
/SD7
```



```
 /IDO
 + MAX-ID-MATCH ;
 " PARITY GENERATOR (PAR1 AND PAR2 ARE PARTIAL TERMS)."
PAR1 = SD0 * /SD1 * /SD2
 + /SD0 * SD1 * /SD2
 + /SD0 * /SD1 * SD2
 + SD0 * SD1 * SD2 ;
PAR2 = SD3 * /SD4 * /SD5
 + /SD3 * SD4 * /SD5
 + /SD3 * /SD4 * SD5
 + SD3 * SD4 * SD5 ;
GEN-PAR = PAR1 * PAR2 * /SD6 * /SD7
 + PAR1 */PAR2 * SD6 * /SD7
 + PAR1 */PAR2 * /SD6 * SD7
 + PAR1 * PAR2 * SD6 * SD7
 + /PAR1 */PAR2 * /SD6 * /SD7
 +/PAR1 * PAR2 * SD6 * /SD7
 + /PAR1 * PAR2 * /SD6 * SD7
 + /PAR1 */PAR2 * SD6 * SD7 ;
"PARITY ERROR GENERATOR. ERROR FLAGGED IF RECEIVED PARITY IS DIFFERENT
 FROM CALCULATED PARITY."
PARERROR = /GEN-PAR * REC-PAR
 + GEN-PAR * /REC-PAR ;
```

Figure 4-27. PLUS153 SCSI_ARB .BEE File

## Programmable Logic Design and Application Notes

```
RDEVICE TYPE
PLUS153
@DRAWING................SIG_APN88_02
@REVISION....................
@DATE. 8-8-88
@SYMBOL...................U5
@COMPANY...................SIGNETICS
@NAME..................ASP APPLICATIONS GROUP
@DESCRIPTION..........SCSI TARGET CONTROLLER. REGISTER CONTROL LOGIC
@PINLIST
"<---------FUNCTION-------->> <--REFERENCE-->"
"PINLABEL PIN # PIN_FCT PIN_ID OE_CTRL"
/DMACYCLE
AO
A1
/SYSSEL
DBO
DB1
DB1 8
SDRVENB
GND
CTLSCSI
/WRCTRL
/RDSTAT
/RDDATA
IDO
ID1
ID2
BUFENBL
/WRDATA
VCC 20
IO [-
WRCTRL 11 12
RDSTAT -13
I
I1
```

,

## Programmable Logic Design

 and Application Notes| @COMMON PROD @I/O DIRECTI @LOGIC EQUAT BUFENBL $=$ SD | TT TERM <br> N <br> VENB ; |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | SCSI CO | NTROLLER | REGIS | R |  |
| /DMACYCLE | CTLSCSI | /SYSSEL | /SYSREAD | A1 | A0 | FUNCTION |
| H |  |  |  | 0 | 0 | READ STATUS REG. |
| H | X | L | H | 0 | 0 | WRITE CONTROL REG. |
| H | X | L | L | 0 | 1 | DATA BUFFER - READ |
| H | X | L | H | 0 | 1 | - WRITE |
| H | X | L | L | 1 | X | -- NOT VALID -- |
| H | X | L | H | 1 | x | SET TARGET ID |
| L | L | X | X | X | X | DMA : SCSI -> SYSTEM |
| L | H | X | X | X | X | DMA : SYSTEM -> SCSI |

```
/RDSTAT = / (/DMACYCLE * SYSSEL * /AO * /A1 * SYSREAD) ;
/WRCTRL = / (/DMACYCLE * SYSSEL * /AO * /A1 * /SYSREAD) ;
/RDDATA = / (/DMACYCLE * SYSSEL * AO * /A1 * SYSREAD
 + DMACYCLE * /CTLSCSI) ;
/WRDATA = / (/DMACYCLE * SYSSEL * AO */A1 * /SYSREAD
 + DMACYCLE * CTLSCSI) ;
 " IDO-2 ARE THE TARGET ID CODE. THE ID REGISTER IS IMPLEMENTED
 IN THE PLUS153 BY SUPPLYING A SET TERM (WITH DBO-2) AND A
 HOLD TERM (WITH IDO-2).
```



Figure 4-29. PLUS153 SCSI_DCD .BEE File

## Programmable Logic Design and Application Notes



Figure 4-30. SCSI Target Interface

## Signetics

## Programmable Logic Devices

## COMMUNICATIONS USING PLDs

PLD devices are particularly appropriate for digital communications. High speed sequencers form a natural means of handshaking and protocol checking where PLAs and PALs can decode parallel header information. But, PLDs fill a need for digital communications-that of the emerging "standard". Once an initial specification for a communication protocol is agreed upon, the manufacturers may generate product to meet the current specification. This will probably not embody the final specification, but will closely resemble it. Unfortunately, the penalty for
having to redesign a gate array is relatively high should a communication protocol be implemented in one and require change. A PLD solution is an ideal embodiment for a product designed to implement an emerging standard because it can be changed when the "standard" changes.

This section covers several examples of data communication designs from whole protocols to simple scramblers-along with a customizable speech synthesis system using the Philips PCF8200.

## The CCITT V. 27 Scrambler PLC18V8Z

The Radio Shack publication "Understanding Data Communications" contains a brief description of the CCITT V. 27 recommended scrambler for use with 4800 bps modems. The logic diagram for this circuit is a serial cascade of Dflip-flops with Exclusive-OR gates tapped in and out of the data stream. This class of machines implements transformations based upon Galois polynomials which are often described by linear sequential machines (i.e., D-FFs and EX-OR gates).


Figure 5-1. CCITT V. 27 Scrambler

## Programmable Logic Design and Application Notes



Figure 5-2. V. 27 Scrambler

## Programmable Logic Design and Application Notes

## A Novel Speech Synthesizer PLS159A

The goal of this design was to build a small board capable of transmitting a variety of verbal messages in conjunction with the Philips PCF8200 speech synthesis part. Judicious partitioning resulted in a PLS159A acting as a controller, an HC4040 counter addressing an EPROM and an EPROM which provides binary data to the PCF8200

The PLS159A transacts with the PCF8200 (Busy, etc.) and controls pulsing to the HC4040. Upon asserting the pushbutton, the cycle begins and proceeds to advance the HC4040 in increments 3FF (HEX) consecutive addresses. Figure 5-6 shows the system in full detail. The ultimate signal comes from the 8200, and drives an op-amp which delivers the final signal to the speaker. Various R-C combinations implement filtering and a simple pot provides the level control.

Programming the EPROM was accomplished by capturing short messages on audio tape, downloading to a Philips PCF8200 development system which analyzes and compresses the data for efficient storage. The result is an EPROM file which needs 3FF HEX addresses to store about 10sec of speech.
Figure $5-9$ shows the AMAZE state equation entry file for the PLS159A which handshakes with the 8200 and 4040 parts.

```
@DEVICE TYPE
PLS159
@DRAWING
...............................CD CONTROLLER FOR PCF8200 SPEECH SYNTHESIZER
@REVISION
...........................
@DATE
......................9/07/88
@SYMBOL
...............................SS159
@COMPANY
......................SIGNETICS CORPORATION
@NAME
@DESCRIPTION
This circuit will perform most functions required to achieve a minimum
configuration PCF8200 speech synthesizer system.
 REV-A **Original design modified to work in existing ASP demo board. ***
 REV-B **Fixed SEE/BEE file to eliminate random quits during utterances
 1)Gray code for sequencer.
 2) Input latch added on REQ signal from PCF8200 for
 synchronization
FUNCTIONS PERFORMED:
 1.System Oscillator for sequencer controller
 2.Byte update control via EPROM to PCF8200
@PINLIST
"<----------FUNCTION---------> <--REFERENCE-->"
"PINLABEL PIN # PIN_FCT PIN_ID OE_CTRL"
lcccclol
BUSY
 I lll I1 ;
lllll
N[lll
6_MHZ_OUT
START_REQ
N/C \(\quad 9 \quad 1 \mathrm{~B} \quad\) B3 \(\quad\) D3 ;
\begin{tabular}{lllll}
GND & 10 & OV & GND & - \\
N/C & 11 & IOE & IOE & ;
\end{tabular}
\begin{tabular}{cccc}
12 & 12 & 10 & FO \\
SVO & FO & EA
\end{tabular}
\begin{tabular}{lllll}
SV1 & 13 & 10 & F1 & EA ;
\end{tabular}
\begin{tabular}{lllll}
SV2 & 14 & 10 & F2 & EA ; \\
N/C & 15 & \(/ B\) & F3 & EA ;
\end{tabular}
REQLATCH 16 F4 10 EA
\begin{tabular}{lllll}
RESET & 17 & 10 & F5 & EB \\
COUNT & 18 & 10 & ;
\end{tabular}
\begin{tabular}{lllll}
COUNT & 18 & 10 & E6 & EB ; \\
WRITE & 19 & 10 & F7 & EB
\end{tabular}
\begin{tabular}{lllll}
WRITE & 19 & 10 & F7 & EB \\
VCC & 20 & \(+5 V\) & VCC & \\
& & &
\end{tabular}
```

Figure 5-3. PLS159A SPEECHB Pinlist

Programmable Logic Design and Application Notes

```
@COMMON PRODUCT TERM
@COMPLEMENT ARRAY
@I/O DIRECTION
DO = 6 MHZ OUT;
@FLIP FLOP CONTROL
FC = 1;
@OUTPUT ENABLE
EA = 0 ;
EB = 0;
@REGISTER LOAD
@ASYNCHRONOUS PRESET/RESET
@FLIP FLOP MODE
@LOGIC EQUATION
" ** OSCILLATOR SECTION "
6 MHZ OUT = R C;
R C = /(1) ;
"LATCH FOR SYNCHRONIZATION
OF PLD AND SPEECH CHIP
CLOCKS"
"CAPTURE OF REQ SIGNAL FROM
PCF8200"
/REQLATCH : K = /REQ;
 J = REQ;
```

Figure 5-4. PLS159A SPEECHB .BEE File

```
ADFVICE SELECTION
SPEECHB/PLS159
"REVISION-B"
STATE VECTORS
[SV2 , SV1 , SV0]
SO = 000 B;
S1 = 011 B;
S2 = 101 B;
S3 = 110 B;
S4 = 100 B;
S5 = 010 B;
S6 = 111 B;
@INPUT VECTORS
@OUTPUT VECTORS
@TRANSITIONS
"Initialization at powerup"
WHILE [SO]
 IF [] THEN [S1] WITH [/RESET', WRITE', COUNT']
WHILE [S6]
 IF [] THEN [S1] WITH [/RESET', WRITE', COUNT']
"Wait for Start switch to be depressed"
WHILE [S1]
 IF [/START_REQ * /BUSY] THEN [S2] WITH [/WRITE']
WHILE [S2]
 IF [] THEN [S3] WITH [WRITE' , COUNT']
WHILE [S3]
 IF [] THEN [S4] WITH [/COUNT']
WHILE [S4]
 IF [REQLATCH] THEN [S5] WITH [/WRITE',COUNT']
 IF [END_ADRS + /BUSY] THEN [S6] WITH [RESET']
WHILE [S5]
 IF [/REQLATCH] THEN [S3] WITH [WRITE']
```

Figure 5-5. PLS159A SPEECHB .SEE File


## Programmable Logic Design and Application Notes

## CCITT Forward CRC Polynomial PLUS405 <br> This application illustrates the use of Signetics PLUS405 in a high speed data communication application. Typically, larger polynomial encoders permit error checking over larger data streams than smaller ones. This design implements a sixteenth order polynomial and the figures that follow show the logic equations to implement it.

```
File Name : crc gen
Date : 10/30/1987
Time : 11:10:56
\# P I N L I S T \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
LABEL ** FNC **PIN-----.--- PIN ** FNC ** LABEL
CLK ** CK ** 1-1 1-28 ** +5V ** VCC
N/C ** I ** 2-1 1-27 ** I ** G
N/C ** I ** 3-1 1-26 ** I ** N/C
D ** I ** 4-| P | |-25 ** I ** N/C
N/C ** I ** 5-1 L |-24 ** I ** N/C
XI13 ** I ** 6-| U 1-23 ** I ** XI12
XI14 ** I ** 7-1 S |-22 ** I N* XI11
XI15 ** I ** 8-1 4 1-21 ** I ** XIIO
XI16 ** I ** 9-1 0 1-20 ** I ** XI9
X016 ** 0 ** 10-1 5 1-19 ** INT ** RESET
X015 ** 0 ** 11-1 |-18 ** 0 ** XO9
X014 ** 0 ** 12-1 1-17 ** 0 ** X010
X013 ** 0 ** 13-1 1-16 ** 0 ** X011
GND ** OV ** 14-1 |-15 ** 0 ** X012
```

Figure 5-7. PLUS405 Pinlist

```
File Name : crc_gen
Date : 10/30/1987
Time : 11:11:2
@DEVICE TYPE
PLUS405
@DRAWING
@REVISION
@DATE
@SYMBOL
@COMPANY
@NAME
@DESCRIPTION
This design implements the CRC-CCITT forward polynomial with a PLUS405.
The CRC-CCITT forward polynomial is
GF(X)=1 + X^5 + X^12 + X^16
NOTE: Since this polynomial requires a 16-bit shift register together
with an array of exclusive-OR's the contents of the 8 output flip-flops
must be fed back into the array via the input pins of the PLUS405.
Bits 1 to 8 are formed with the 8-bit internal register while the
remaining 8-bits are made out of the 8-bit output register the outputs
of which are externally fed back to inputs XI9 through XI16.
@INTERNAL FLIP FLOP LABELS
 X1, X2, X3, X4, X5, X6, X7, X8
@COMMON PRODUCT TERM
@COMPLEMENT ARRAY
@BURIED REGISTER CLOCK
@INIT/OE
 RESET = R0, R1, R2, R3, R4, R5, R6, R7,
```

Figure 5-8. PLUS405 Design File

## Programmable Logic Design and Application Notes

```
@LOGIC EQUATION
" **
 * X1 : INPUT = (D XOR XI16) * G *
 * =(/D* XI16*G) +(D * /XI16 * G); "*
 X1 : J = (D * /XI16 * G) + (/D * XI16 * G) ;
 K = /G + (D * XI16) + (/D * /XI16) ;
 X2 : J = X1 ;
 K = /X1 ;
 x3 : J = x2 ;
 K = /X2 ;
 X4 : J = x3 ;
 K = /X3 ;
 X5 : J = X4 ;
 K = /X4 ;
" ***
 * X6 : INPUT = X5 XOR ((D XOR XI16) * G) ; "

 X6 : J = (/G * X5) + (/D * X5 * XI16) + (D * X5 * XI16)
 (G * D * /X5 */XI16) + (G * /D * /X5 * XI16) ;
 K = (/G * /X5) + (D * /X5 * XI16) + (/D * /X5 * /XI16)
 (G * D * X5 * /XI16) + (G * /D * X5 * XI16) ;
 X7 : J = X6 ;
 K = /X6 ;
 X8 : J = X7 ;
 K = /X7 ;
 X09 :J = X8 ;
 K = /X8 ;
 XO10:J = XI9 ;
 K = /XI9 ;
 X011:J = XI10 ;
 K = /XI10 ;
 X012:J = XI11 ;
 K = /XI11 ;
" **
 * X13 :INPUT = X12 XOR ((D XOR XI16) * G) ; " *
X013 : J = (/G * XI12) + (/D * XI12 * XI16) + (D * XI12 * XI16)
 (G * D * /XI12 * /XI16) + (G */D * /XI12 * XI16) ;
 K = (/G * XI12) + (D * /XI12 * XI16) + (/D * /XI12 * /XI16) +
 (G * D * XI12 * /XI16) + (G * /D * XI12 * XI16) ;
X014 : J = XI13 ;
 K = /XI13;
X015 : J = XI14 ;
 K = /XI14;
X016 : J = XI15 ;
 K = /XI15;
```


## Signetics

## Programmable Logic Devices

## INSTRUMENTATION

Instrumentation typically involves the measurement and often the display of physical world parameters. Digital systems are particularly effective in this area and as usual, are largely limited only by the designer's imagination. This section describes three distinct examples of instrumentation provided from customer interaction.

The last design involves implementing the sweep circuitry for an oscilloscope. This can be extended and modified for similar designs.

## Programmable Logic Design and Application Notes

Another example is a pulse width monitor which can be used in controlling power pulses, radio strength or radar/sonar timing measurements.
The first example shows several parts being used to make a plethysmographic monitor (i.e., heart rate). This has straightforward medical and health applications. The beauty of PLD solutions to these problems is simple - they are readily modifiable for adaption for another end use. The oscilloscope circuit could be altered for a laser light show. The pulse width monitor could pick up a timing pulse from
a disk and the plethysmographic system could be configured for animals rather than humans.

Heart Beat Monitor - PLS159A, PLS168A and PLS153
PLDs can be used as powerful building blocks in implementing the digital portion of a low cost portable heart beat monitor. This monitor is capable of displaying the heart beat in pulses per minute. Figure 6-1 shows the system block diagram. The digital portion is inside the dashed lines.


Figure 6-1. Heart Beat Monitor System Diagram

## Programmable Logic Design and Application Notes

## Operation

A transducer generates the heart beat pulses which are amplified and filtered. A level detector (one-shot) converts the amplified signals to TTL level signals. A 15 second timer is used to count the number of pulses in fifteen seconds. The number is multiplied by four to approximate the number of pulses in sixty seconds. A binary to BCD converter is used to display the result. A start switch resets the system and initiates the count

## Transducer

There are several techniques to monitor the blood flow in the peripheral system. These
techniques include optical plethysmography, ultrasonic flow measurement, piezoelectric pickup of peripheral arterial pulse, Korotkoff sounds, and recording the ECG.

Light plethysmography is used as the transducer in this design. The Tektronix light plethysmograph (Figure 6-2), operates by measuring the reflectance of skin to red light. As blood flows into the skin's capillary bed with each heart beat, the reflectance changes and this change is amplified and observed.

## Amplifier/Filter

Signetics SA741 OP-amp is used as bandpass
filter with a gain of 20 , and a frequency response of $1-200 \mathrm{~Hz}$. Figure $6-3$ shows the circuit diagram of the amplifier/filter stage.

## Level Detector PLS153

The amplified signal is fed through the 'Level Detector' stage to create a square wave. A Schmitt-Trigger is used to generate the square wave. Application Note 18 in the Signetics PLD Data Manual explains the implementation of the Schmitt-Trigger in detail. APLS153 is used to create the Schmitt Trigger. The PLS153 also holds the glue logic and other functions for the system explained further in this article (see Figure 6-4).


## Programmable Logic Design and Application Notes



Figure 6-5. HTBT_153 Pinlist

```
@COMMON PRODUCT TERM
@I/O DIRECTION
@LOGIC EQUATION
"Level Detector (Schmitt Trigger)"
 HEART_BT_OUT = HEART_BT_IN;
 "Debouncer"
 RESET = /SET + /NTRESET;
 NTRESET =/RESET + /RST;
"15 Second Timer ANDed with the output of the
Level Detector"
 BT_IN_15_SEC = 15_SEC * HEART_BT_OUT;
```

Figure 6-6. HTBT_153 .BEE File


Figure 6-7. Clock Input for the PLS168


Figure 6-8. State Transition Diagram


Figure 6-9. Circuit Diagram of Debouncer

## Fifteen Second Timer

To create a fifteen second timer, a counter can be constructed with the PLS168A such that the number of counts is equivalent to 15 seconds. To achieve this, the 60 Hz signal from the power line is passed through a transformer and ahalfwave rectifier to create the clock input to the PLS168A (see Figure 6-7).
The number of counts needed to create the 15
second time interval is calculated in the following manner:

15 seconds $=15 \times 60$ (cycles/seconds) $=900$
where ' 60 ' is the 60 Hz clock input to the PLS168A.

Figure 6-8 shows the state transition diagram
for the counter. Figure $6-10$ is the timing diagram to generate the number of pulses in 15 seconds.
The reset switch is used to initiate the count. This switch is debounced using the PLS153 of Figure 6-4. Figure 6-9 shows the circuit diagram of the debouncer. The design equations for the debouncer are shown as part of the design equation files of Figure 6-6.

## Programmable Logic Design and Application Notes



If $n=$ number of registers with feedback, then an $n$-bit counter can be created with any of Signetics sequencers using only $n+1$ terms.
Table 6-1 shows the implementation of the 15 second timer in the PLS168A. Input variable 10 is the input from the reset switch and ' 15 _SEC' is the Count_End signal. At the $900^{\text {th }}$ count (terms 12 \& 13; HHHLLLLHLL), output ' 0 ' goes to a logic low, indicating that the end of the count has been reached.


## Programmable Logic Design and Application Notes

Each line (or term) in Table 6-1 is part of the state transition of the 15 second counter/timer. Term 11 is used to reset the counter when the 'RESET' switch goes low. With Don't Cares (-) in the 'Present State' column, any time reset becomes low, the counter resets to zero, regardless of the counter's current state. Terms $0-10$ create the counter. The complement array is used to avoid any undefined states and also to force the counter to a known state upon power up.

To count the number of heart beats in 15 sec onds, the end of count output of the 15 second timer is ANDed with the heart beat pulses. The result of this 'AND' function is the number of pulses in 15 seconds. This 'AND' function is also implemented in the PLS153 of Figure 6-4.

## Pulse Counter and Multiply by Four

The resources on a single PLS159A can be used to construct the 'pulse counter' and 'multi-
ply by four' portion of the heart beat monitor. Figure 6-11 shows the block diagram of the Counter, Shift-Register, and an internal osciilator used as the clock for the shift-register.

To calculate the number of heart beats in one minute, the counter first counts the number of heart beats in 15 seconds. The counter is clocked by the 'NO_HRT_BT' signal which is the number of heart beats in 15 seconds.

When the fifteen seconds is over, the binary number stored in the counter is multiplied by four. The final value of this multiplication is the number of heart beats per minute.

The shift register multiplies the binary output of the counter by four by shifting this value twice to the left. During the 15 second period within which the counter is counting the number of heart beats, the shift register is disabled. When the 15 second period is over the counter is disabled and the shift register and the oscillator which clocks the shift register are enabled.


Figure 6-11. Counter Shift Register - Oscillator

The shift register and the counter use the same flip-flops. When the PLS159A is in the 'counter' mode, the filip-fiops are ' J -K' iype. When the PLS159A is in the shift register mode, the flipflops are switched to 'D' type.

CLOCK: The clock for the PLS159A is supplied from two sources. The number of heart beats clocks the device when the PLS159A is in the counter mode. The oscillator takes over when the device is in the shift register mode. The combinatorial outputs of the PLS159A can be used to create the oscillator. Application Note 13 (AN13) in the Signetics PLD Data Manual explains how this oscillator is implemented. Figure 6-12 shows the oscillator circuit diagram.

The oscillator output is enabled when the 15 second time period is over, so when the shift is over the outputs reflect the heart beat per minute in binary form. The maximum heart beat under extenuating circumstances can reach 300. Therefore, an 8-bit counter could measure a normal person's heart beat.

[^22]
## Programmable Logic Design and Application Notes



Table 6-2. Binary Counter, Shift Register, and Oscillator

Table 6-2 illustrates the implementation of the binary counter, shift register, and oscillator. ' 12 ' is the RESET signal input. 'IO' is the '15_SEC' signal input used to enable/disable the counter, shift register, and oscillator. 'BO' is the oscillator output used to clock the PLS159A when it is in the shift register mode.

## Programmable Logic Design and Application Notes

## Binary to BCD Converter

82S 135 and 82S 126 PROMs can be used to generate $B C D$ code to drive three 7 -segment displays. A look-up table is programmed in the PROMs to generate the correct BCD number. The 7-segment displays have their own decoders and display drivers. Figure 6-13 shows the overall system diagram.


## Programmable Logic Design and Application Notes

## The Pulse Width Monitor -

## PLS168

Simple in concept, this design was implemented at the fuse table level. Its elementary operationis that of a programmable timerwhich can detect a pulse condition exceeding a specified duration. This customer used the part in a system where the timer prevented the destruction of expensive, high-power equipment.

```
@DEVICE TYPE
PLS168/BCA
@DRAWING
TRANSMITTER FAULT MONITOR
aREVISION
@DATE
4/4/1988
@COMPANY
@NAME
@DESCRIPTION
THIS DEVICE IS PROGRAMMED TO EUNCTION AS 12-BIT UP COUNTER RUNNING AT 2.5MHZ (400 NS BIT RESOLUTION
/ TOT. CNT OF 1.64 MS). THE COUNTER IS DYNAMICALLY CONTROLLED TO START COUNTING WHEN THE (SIGIN)
INPUT IS ASSERTED HIGH.
IF THE (SIGIN) INPUT IS NOT NEGATED BY THE TIME THE COUNTER ELAPSES TO 105 US THE COUNTER ASSERTS
THE ALARM OUTPUT HIGH. AT THIS POINT THE COUNTER CONTINUES TO COUNT UNTIL AN ELAPSED TIME OF 922 US
+ 105 US (1.027 MS).
THIS COUNT VALUE RESETS THE COUNTER BACK TO ZERO WHERE IT THEN IDLES UNTIL THE NEXT (SIGIN) INPUT
REQUEST.
DURING THE 922 US CYCLE COUNT THE SEQUENCER SAMPLES THE (SIGIN INPUT) EVERY 53 US. IF THE INPUT IS
ASSERTED HIGH THE SEQUENCER WILL SET THE ALARM FLAG AND TIME OUT FOR THE SPECIFIED ALARM TIME OUT
CYCLE (922 US).
```


## Programmable Logic Design and Application Notes



## Programmable Logic Design and Application Notes

1.578 MS	JUMP	$\mathrm{CNT}=3945$	TEST	N	H	H	H	H	L	H	H	L	H	L	L	H
1.582 MS	(SIGIN)	* CNT $=3957$	ALARM	P	H	H	H	H	L	H	H	H	L	H	L	H
1.588 MS	(SIGIN)	* CNT $=3970$	ALARM	P	H	H	H	H	H	L	L	L	L	L	H	L
1.592 MS	(SIGIN)	* $\mathrm{CNT}=3982$	ALARM	P	H	H	H	H	H	L	L	L	H	H	H	L
1.597 MS	(SIGIN)	* CNT $=3994$	ALARM	P	H	H	H	H	H	L	L	H	H	L	H	L
1.602 MS	(SIGIN)	* $\mathrm{CNT}=4006$	ALARM	P	H	H	H	H	H	L	H	L	L	H	H	L
1.607 MS	(SIGIN)	* CNT $=4019$	ALARM	P	H	H	H	H	H	L	H	H	L	L	H	H
1.612 MS	(SIGIN)	* $\mathrm{CNT}=4032$	ALARM	P	H	H	H	H	H	H	L	L	L	L	L	L
1.617 MS	(SIGIN)	* CNT $=4044$	ALARM	P	H	H	H	H	H	H	L	L	H	H	L	L
1.622 MS	(SIGIN)	* $\mathrm{CNT}=4057$	ALARM	P	H	H	H	H	H	H	L	H	H	L	L	H
1.627 MS	(SIGIN)	* CNT $=4069$	ALARM	P	H	H	H	H	H	H	H	L	L	H	L	H
1.632 MS	(SIGIN)	* CNT $=4082$	ALARM	P	H	H	H	H	H	H	H	H	L	L	H	L
1.636 MS	(SIGIN)	* CNT $=4090$	ALARM	P	H	H	H	H	H	H	H	H	H	L	H	L

IF THE (SIGIN) INPUT IS NEGATED BEFORE THE ELAPSED TIME OF 105 US THE COUNTER CONTINUES TO COUNT UNTIL THE ELAPSED TIME OF 955 MS. AT THIS POINT THE COUNTER AGAIN RESETS ITSELF UNTIL THE NEXT (SIGIN) INPUT REQUEST.

DURING TEST MODE, THE SEQUENCER SAMPLES THE SIGIN PULSE AT A REPETITION RATE OF 72 US. WITH A PULSE WIDTH OF 6.5 US. THE TIME OUT FOR AN ALARM DETECT IS BASED ON SAMPLE A CHECK ONCE EVERY 5 US, AFTER THE 10 US SAMPLE FOR SIGIN NEGATION.
END
Figure 6-14.3 PLS168/BCA TRFDECT .BEE File (end)

## Programmable Logic Design and Application Notes

@PINLIST					
"<-------				<--REFERENCE-->"	
"PINLABEL	PIN	\#	PIN_FCT	PIN_ID	OE_CTRL"
CLK	1		CK	CK	- -
SIGIN	2		I	I5	- ;
N/C	3		I	14	- ;
SIGDLYIN	4		I	I3	- ;
AIN	5		I	I2	- ;
IA1	6		I	I1	- ;
IAO	7		I	IO	- ;
FAO	8		0	F0	/OE ;
FA1	9		0	F1	/OE ;
SIGDLYOUT	10		0	F2	/OE ;
ALARM	11		0	F3	/OE ;
GND	12		OV	GND	- ;
N/C	13		0	PO	/OE ;
N/C	14		0	P1	/OE ;
N/C	15		0	P2	/OE ;
N/C	16		0	P3	/OE ;
/ OE	17.		PR	PR/ / OE	- ;
N/C	18		I	I11	- ;
N/C	19		I	I10	- ;
N/C	20		I	I9	- ;
N/C	21		I	18	- ;
N/C	22		I	17	- ;
N/C	23		I	I6	- ;
VCC	24		$+5 \mathrm{~V}$	VCC	- ;

Figure 6-15. PLS168/BCA TRFDECT Pinlist


## Programmable Logic Design and Application Notes

$$
\begin{aligned}
& \text { 15!A!- - - , - H -, H L L L!L L, H H H H, H H H H!L H, L L L L, L L L L! H - L L! } \\
& \text { 16!A!- - - . - - - H L H L!L H,H L L H,L L L H!L L, L L L L, L L L L!L L L L! } \\
& \text { 17!A!- - .. - - - H H H L!H L, L L L L, L H H L!L L, L L L L, L L L L!L L L L! } \\
& \text { 18!A!- - - - - H -, H L H L!L L,H H L L,L L H L!L H,L L L L, L L L L!H - L L! } \\
& \text { 19!A!- - - - - L -, H L L L!L L, L L L H, H L L H!H H, L H H L, H L L H! - - H H! } \\
& \text { 20!A!- - - - - H -, H L L L!L H,H L L L, L H L L!L H, L L L L, L L L L!H - L L! } \\
& \text { 21!A!- - - - - H - H L L L!H L, L L L L, H L L L!L H, L L L L, L L L L! H - L L! } \\
& \text { 22!A!- - - - - H - H L L L!H L,H L L L, H H L H!L H, L L L L, L L L L! H - L L! } \\
& \text { 23!A!- - - - - H - H L L L!H H,L L L H,L L L H!L H,L L L L, L L L L! H - L } \\
& \text { 24!A!-- - . - H - H L L L!H H,H L L H, L H H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 25!A!- - - - - H -, H L L H!L L, L L L H, H L H L!L H,L L L L,L L L L!H - L L! } \\
& \text { 26!A!- - - - - H - H L L H!L L,H L L H, H H H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 27!A!- - - - - H - H L L H!L H,L L H L, L L H H!L H,L L L L, L L L L!H - L L! } \\
& \text { 28!A!- - - - - H - H L L H!L H,H L H L, H L L L!L H, L L L L, L L L L! H - L L! } \\
& \text { 29!A!- - - - - H - , H L L H!H L, L L H L, H H L L!L H,L L L L, L L L L!H - L L! } \\
& \text { 30!A!- - - - - H - H L L H!H L, H L H H, L L L L!L H, L L L L, L L L L!H - L L! } \\
& \text { 31!A!- - - - - H - H L L H!H H, L L H H,L H L H!L H,L L L L, L L L L! H - L L! } \\
& \text { 32!A!- - - , - H - H L L H!H H,H L H H, H L H L!L H,L L L L, L L L L!H - L L! } \\
& \text { 33!A!- - - - }- \text { H - H L H L!L L, L L H H, H H H L!L H, L L L L, L L L L! H - L } \\
& \text { 34!A!- - - - - H -, H L H L!L H,L H L H,L L H H!L H,L L L L, L L L L!H - L L! } \\
& \text { 35!A!- - - - } H-\text { H L H L!L H,LHH H,H L L H!L H, L L L L, L L L L! H - L L! } \\
& \text { 36!A!- - - - - H -, H L H H!H H,L H H H,L H L H!L H,L L L L, L L L L!H - L L! } \\
& \text { 37!A!- - - - - H - H L H H!H H,H L L L, L L H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 38!A!- - - - - H -, H L H H!H H,H L L L, H H H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 39!A!- - - - - H - H L H H!H H, H L L H, H L H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 40!A!- - - - - H - H L H H!H H, H L H L, L H H L!L H, L L L L, L L L L! H - L L! } \\
& \text { 41!A!- - - - - H - H L H H!H H, H L H H,L L H H!L H, L L L L, L L L L!H - L L! } \\
& \text { 42!A!- - - - - H - H L H H! H H, H H L L, L L L L!L H, L L L L, L L L L! H - L } \\
& \text { 43!A!- - - - - H - H L H H!H H,H H L L, H H L L!L H,L L L L, L L L L!H - L L! } \\
& \text { 44!A!- - - - - H - H L H H!H H,H H L H,H L L H!L H, L L L L, L L L L! H - L L! } \\
& \text { 45!A!- - - - - H - H L H H!H H, H H H L, L H L H!L H, L L L L, L L L L! H - L L! }
\end{aligned}
$$



Table 6-3.2 Transmitter Fault Detector Program Table (end)

## Programmable Logic Design and Application Notes

## Scope Trace Sweep Circuit -

PLS153 and PLS155
Jerry Liebler submitted this spectrum analyzer
sweep circuit design.

```
@DEVICE TYPE
PLS153
@DRAWING
1
@REVISION
1
@DATE
1-27-88
@SYMBOL
@COMPANY
Tektronix Inc.
@NAME
sweep logic
@DESCRIPTION
This chip forms the sweep logic circuit for the 2710
spectrum analyzer.
@PINLIST
"<----------FUNCTION--------->> <--REFERENCE-->"
"PINLABEL PIN # PIN_FCT PIN_ID OE_CTRL"
EOSWP- 1 I IO -
TRIGIN 2 I I1 ;
SLOPE 3 I I2 -
AUTOTRIG- 4 I I3 -
SSTRIG
SINGLSWP
MANSWP-
SGDIS
HOLDOFF
GND
RSFFI2
RSFFIl
SGDFFI
SSFDDO
SSDFFI
STIN
STOUT
SWPGATE-
SWPGATEO
VCC 19
```

Figure 6-16. PLS153 SWP Pinlist

## Programmable Logic Design and Application Notes

```
@COMMON PRODUCT TERM
SWPTRIG=/(EOSWP-)+/((STOUT*/STIN) +/AUTOTRIG-) +/SSDFFO+/RSFFI2;
@I/O DIRECTION
DO=RSFFI2;
D8=/SWPGATE*/SGDIS;
@LOGIC EQUATION
RSFFI2=(EOSWP-)*/RSFFI1;
RSFFI1=/HOLDOFF*/RSFFI2;
SWPGATE = SGDFFI*/SWPTRIG + /MANSWP- + SWPGATE*(EOSWP-)*SWPTRIG;
SWPGATE- =0;
SGDFFI= SWPTRIG+/MANSWP-+(/SWPTRIG*(EOSWP-)*SGDFFI);
HOLDOFF = 0;
STOUT=((TRIGIN*/SLOPE) +(/TRIGIN*SLOPE));
SSDFFO= SSDFFI*SSTRIG+/SINGLSWP+(EOSWP-)*/SSTRIG*SSDFFO;
SSDFFI= /SSTRIG+/SINGLSWP+(EOSWP-)*SSTRIG*SSDFFI;
```

Figure 6-17. PLS153 SWP .BEE File

@DEVICE TYPE						
PLS155						
@DRAWING						
@REVISION						
@DATE						
@SYMBOL						
@COMPANY						
@NAME						
@DESCRIPTION						
@PINLIST						
"<-	UNC		-	<--REFER	NCE-->	->"
"PINLABEL	PIN	\#	PIN_FCT	PIN_ID	OE_C	CTRL"
HCLOCK	1		CK	CK	-	;
VSYNC	2		I	IO	-	;
ENDVSWP	3		I	I1	-	;
VIDMON	4		I	I2	-	;
TC-	5		I	I3	-	;
VIDMON-	6		0	B0	D0	;
PE-	7		0	B1	D1	;
VMTST	8		I	B2	D2	;
FMVID-	9		I	B3	D3	;
GND	10		OV	GND	-	;
N/C	11		/OE	/OE	-	;
SWPGATE	12		B	B4	D4	;
BLANK	13		0	B5	D5	;
QBAR	14		10	F0	EA	;
ST0	15		10	F1	EA	;
ST1	16		10	F2	EB	;
TRIGGER	17		10	F3	EB	;
HSOUT	18		0	B6	D6	;
HSIN	19		I	B7	D7	;
VCC	20		+5V	VCC	-	,

Figure 6-18. PLS155 SWP3 Pinlist

## Programmable Logic Design and Application Notes

```
```

@COMMON PRODUCT TERM

```
```

@COMMON PRODUCT TERM
@COMPLEMENT ARRAY
@COMPLEMENT ARRAY
@I/O DIRECTION
@I/O DIRECTION
d4=blank;
d4=blank;
@FLIP FLOP CONTROL
@FLIP FLOP CONTROL
@OUTPUT ENABLE
@OUTPUT ENABLE
@REGISTER LOAD
@REGISTER LOAD
@ASYNCHRONOUS PRESET/RESET
@ASYNCHRONOUS PRESET/RESET
@FLIP FLOP MODE
@FLIP FLOP MODE
m0=1;
m0=1;
@LOGIC EQUATION
@LOGIC EQUATION
blank=(/(/qbar) +hsout) *vidmon+vmtst*/fmvid-;
blank=(/(/qbar) +hsout) *vidmon+vmtst*/fmvid-;
swpgate=0;
swpgate=0;
hsout=hsin'
hsout=hsin'
vidmon-=/vidmon;
vidmon-=/vidmon;
/qbar : j=vsync*vidmon;
/qbar : j=vsync*vidmon;
k=endvswp+/vidmon;
k=endvswp+/vidmon;
/trigger: d=/(tc-);
/trigger: d=/(tc-);
pe-=/(st0*/st1*vsync);

```
```

pe-=/(st0*/st1*vsync);

```
```

Figure 6-19. PLS155 SWP3 .BEE File

```
aDEVICF SELECTION
swp3/pls155
astate VECTORS
 [st1,st0]
 odd =00b;
 stb1 =01b
 stb2 =10b;
 even =11b
INPUT VECTORS
 [VSYNC]
 vi =1b;
 notvi =0b;
@OUTPUT VECTORS
@TRANSITIONS
while [odd]
if [vi] then [stb1]
if [notvi] then [odd]
while [stbl]
if [vi] then [stb2]
if [notvi] then [odd]
while [stb2]
if [vi] then [stbl]
if [notvi] then [even]
while [even]
if [vi] then [stb1]
if [notvi] then [even]
```

Figure 6-20. PLS155 SWP3 .SEE File

## Signetics

## Programmable Logic Design and Application Notes

## Programmable Logic Devices

## GENERAL APPLICATIONS

## Motor Stepper Controller with the

 PLS155Jim Greene designed and constructed the Stepper Motor Controller. This circuit allows control of bidirectional stepper motors for both single wave drive (only one phase on at a given time), and 2-phase drive (2 phases on at a time).

1. The clock (CLK) input can be driven by a continuous pulse train for steady rate
movement or a clock that ramps up and down to provide for acceleration and deceleration. (Dependent on application.)
2. With the addition of control to another flip-flop, the PLS155 could provide half-step capability for finer resolution.
3. The preset and reset terms on the flipflops could be used with a product term to provide an inhibit function if necessary.
4. The PLS155 will probably not have enough current drive for most stepper motor applications, therefore, a power buffer like the one shown (Figure 7-5) could be used. The components and values can be changed to fit your application.

Figure 7-2 shows the PLS155 pinlist, Figure 7-4 the logic diagram, Figure 7-3 corresponding design file, and Table 7-1 the final program table.


Figure 7-1. Clock Phases for Stepper Control

## Programmable Logic Design and Application Notes

@DEVICE TYPE				
PLS155				
@DRAWING				
@REVISION				
@DATE				
@SYMBOL				
@COMPANY				
@NAME				
@DESCRIPTION				
@PINLIST				
"<--------FUNCTION---------> <--REFERENCE-->"				
"PINLABEL	PIN	\# PIN_FCT	PIN_ID	OE_CTRL"
CLK	1	$\overline{\mathrm{C}} \mathrm{K}$	$\overline{\mathrm{C}} \mathrm{K}$	--
DIR	2	I	IO	-
N/C	3	I	I1	-
N/C	4	I	I2	-
N/C	5	I	I3	-
2PHA	6	0	B0	D0
2PHB	7	0	B1	D1
2PHC	8	0	B2	D2
2PHD	9	0	B3	D3
GND	10	0 V	GND	-
N/C	11	/OE	/OE	-
1PHA	12	0	B4	D4
1PHB	13	0	B5	D5
10	14	10	F0	EA
20	15	10	F1	EA
N/C	16	/B	F2	EB
N/C	17	/B	F3	EB
1PHC	18	0	B6	D6
1PHD	19	0	B7	D7
VCC	20	$+5 \mathrm{~V}$	VCC	-

Figure 7-2. PLS155 STEP Pinlist

## Programmable Logic Design and Application Notes

```
@COMMON PRODUCT TERM
@COMPLEMENT ARRAY
@I/O DIRECTION
dO-1; d1=1; d2=1; d3=1; d4=1; d5=1; d6=1;
d7=1;
@FLIP FLOP CONTROL
@OUTPUT ENABLE
ea=0;
@REGISTER LOAD
 1a =0;
@ASYNCHRONOUS PRESET/RESET
ra=/1;
@FLIP FLOP MODE
m1 = 1; m0 = 1;
@LOGIC EQUATION
1phd = 1q*2q;
1phc = 2q*/1q;
1phb = /2q*/1q;
lpha = /2q*/1q;
2phd = (1q*2q)*(2q+1q)+(/1q+/2q)* (/2q*/1q);
2phc = (2q*/1q)*(/1q+/2q) +(/2q+1q)*(1q*2q);
2phb = (/2q*1q)* (/2q+1q) +(2q+/1q)*(2q*/1q);
2pha = (/2q*/1q)*(2q+/1q)+(2q+1q)*(/2q*1q);
/2q :j = /dir*/1q+1q*dir;
 k =/dir*/1q+1q*dir;
/lq :j = 1;
 k = 1;
```

Figure 7-3. PLS155 STEP .BEE File


Figure 7-4. Stepper Motor Logic Diagram

## Programmable Logic Design and Application Notes

```
File Name : STEP
Date : 9/14/1988
Rev/I. D. IFF TYPE! EB EA ! PSOLARITY
```



```
T ! !A:A:.:.!O :. !. !H:H:H:H:H:H:H:H!
```



```
---! !3 2 1 0!7 6 5 4 3 2 1 0!3 2 1 0!3 2 1 0!. .!. .!7 6 5 4 3 2 1 0!
 0!A!- - - -!- - - - - - -!- - L L!O O - -!. . . .!A . . ., A A . .!
 1!A!- - - -!- - - -.- - - -!- - L H!O O - -!. . . .!. A . .,. A A .!
 2!A!- - - !- - -., - - !- - HL!OOO- -!. . . .!. . A A A!
 3!A!- - - -!- - - , - - -!- - H H!O O - -!. . . .!. . . A,A . . A!
 4!A!- - - -!- - - -.- - - -!- - - H!O O O -!. . . .!.!
 5!A!- - - -!- - - -. - - -!- - - L!O O O -!. . . .!.!
 6!A!- - - -!- - - -,- - - -!- - - -!0 O - 0!. . . .!.!
 7!A!0 O O O!O O O O,O O O O!O O O 0!O O O O!A A A A!A A A A,A A A A!

 31!0!0 O O 0!0 0,0 O O 0!0 0,0 O O O!O O O O!A A A A!A A A A,A A A A!
 Fc!0!0 0 0 0!0 0,0 O 0 0!0 0,0 0 0 0!
 Lb!.!0 0 0 0!0 0,0 0 0 0!0 0,0 0 0 0!
La!.!0 0 0 0!O 0,0 O O 0!0 0,0 0 O 0!
D7!-!- - - -!- -., - - -!0 0,0 0 0 0!
 D6!.!- - - -!- -,- - - -!- -, - - -!
 D5!-!- - - -!- -, - - - !- -,- - - -!
 D4!.!- - - -!- -,- - - -!- -, - - - -!
D3!-!- - - -!- -,- - - -!- -, - - - -!
D2!-!- - - -!- -, - - - -!- -, - - - -!
D1!-!- - - -!- -,- - - -!- -,- - - -!
DO!.!- - - -!- -,- - - -!- -,- - - -!
```



Table 7-1. STEPPER CONTROL Program Table


Figure 7-5. STEPPER CONTROL Power Buffer

## Signetics

## Programmable Logic Devices

## SECURITY SYSTEMS Neil Kellet

Security systems are typified by some sensing circuit (perceiving intrusion, fire, etc.) and some basic activation circuit. Simple logic or complex sequences may be used with the sensors or the alarm generation circuits. Two of the following solutions utilize the innate capability of CMOS EPLDs to work well with RC timing circuits in generating time delays and relaxation oscillators.

## Programmable Logic Design and <br> Application Notes

## A Programmable Alarm System PLS168

This design illustrates an expansion of the design using additional PLS153 devices which were deleted in this version for brevity.

A basic alarm controller can be considered as a black box with several inputs and several outputs (Figure 8-1). Some inputs are used for detection and others for
control. Detect inputs are driven from a variety of alarm transducers such as reed switches, smoke detectors, pressure mats, etc. An ARM input switches the system into a state which allows detection of the various alarm conditions and a $R E$ SETinput is used to reset the system after an alarm has been triggered and dealt with or on re-entering the protected area. Outputs from the system include a sounder, a beacon and status indicators.


Figure 8-1. Basic Alarm Controller

## Programmable Logic Design and Application Notes



Figure 8-2. State Diagram for the Alarm Controller

Detect inputs can be divided into timed, untimed, fire and personal attack inputs. Timed circuits allow entry/exit delay circuits for front and rear doors, to delay operation of the alarm for approximately 16 seconds. Untimed circuits cause the alarm to operate immediately when an alarm condition occurs. These would be used to protect unusual means of entry, such as windows. Both the timed and untimed circuits should operate only if the system is armed.

The personal attack circuit is a special case untimed circuit and should operate only when the system is disarmed. The fire-detect circuit is again a special case untimed circuit and should operate regardless of whether the system is armed or not.

Outputs from the controller drive an external sounder and beacon. After 128 seconds, the sounder should turn off if the alarm has been triggered by either a timed or general untimed circuit. However, when a fire or personal attack triggers the system, the sounder should not turn off until the system is reset and the alarm condition removed.

## State Machine Implementation

This design is best implemented as a state machine. The state diagram is derived from the verbal system description. Please note from

Figure 8-2 the controller can be in one of six possible states. Examine the transitions from ST_NULL as an example. If a personal attack or fire condition occurs while in this state, atransition to $S T_{-} 1$ takes place as indicated by the arrows on the diagram. Also at this time the sounder and beacon are activated, thus giving the alarm. If the fire and personal attack conditions have not occurred and the ARMSWITCH is set, then a transition to $S T_{-} O$ takes place.

Similarly, other arrows on the state diagram represent transitions between other states when specified input conditions occur. Output parameters are shown to the right of the slash line. Where there are no output parameters specified in a transition term, this indicates that no output changes are desired during this transition. That is, an output will hold its present value until told to change.

## PLD Implementation

Having defined the desired system operation it is now time to select the required device to implement the desired system function from the PLD Data Manual. In this case, the device selected is the PLS168. Figure 8-3 shows the pinning information for the alarm controller. A 10-bit counter within the controller produces the entry/exit and sounder turn-off delays since this makes more efficient use of the PLD facili-
ties than implementing the delays as part of the state machine. This counter uses seven internal registers with feedback and three without. For those registers without feedback, external wiring feeds their outputs back into the device to complete the 20 -bit counter. Pins five to ten are used for this purpose. OutputT7 also forms part of the counter.

Three other registers form the state registers and are labeled SR0, SR1 and BEACON. State vectors for these registers have to be chosen with care to ensure that the beacon output is activated at the correct time. Other inputs and outputs are as already discussed. Note that the PR/OE pin is not used. This pin must be tied to ground in the final circuit.

Once the pin information has been entered, any Boolean equations desired can be defined using the Boolean equation entry (.BEE) file of AMAZE. List 1 shows the .BEE file for the alarm controller. Any internal registers used in either the Boolean equation or state equation entry file are given names in this file, in this case 1 to 16. Equations for the 10 -bit counter are entered after the title line @LOGIC EQUATION, using registers t1 to 110 in . Register SRO halts and clears the counter while the controller is in certain states. This needs to be considered when defining the state vectors.

## Programmable Logic Design

 and Application Notes
## State Equation Entry

The state equation entry (.SEE) file of AMAZE uses a state-transition language, parameters of which are taken directly from the state diagram. Information is entered into this file in a free format. The only points to remember are that the square brackets should be used throughout to define the state registers and transitions, semicolons should be used to mark the end of vector definition and apostrophes should be used to indicate a registered output. State vectors can be defined in the state equation entry file as shown in List 2. State vectors are simply a means of labeling an arrangement of state registers which can be used later to define state transitions. Because we are using the BEACON output register as a state register also and SRO is being used to halt and clear the

10-bit counter, particular care must be taken in defining the state vectors in this instance.

From the state diagram, the counter must begin counting during states $S T \_0, S T \_2$ and $S T_{-} 3$ and it must be cleared during states $S T_{-} 1$, ST_4 and ST_NULL. State ST_NULL represents the power-up state of the PLS168 in which all register outputs are at logic one. Thus the inactive state of the counter is defined as being when SRO is at logic one, therefore, SR0 must be at this level during states ST_1 and ST_4 and at logic zero during other states. The alarm beacon is considered to be active by an active-low signal and must be activated during states ST_3 and ST_4. Register SR1 must therefore be chosen to ensure mutual exclusiv-
ity between state vectors. Input and output vectors can be defined in the same manner in terms of input and output label names. In this case, however, the label names are used directly. State transitions can now be derived directly from the state diagram. This is done using a Pascal-like state transition language and can clearly be seen in Table 8-1. Note that multiple IF statements can be implemented as such or as CASE statements as shown. Entry/exit and sounder turn-off delay times are represented as a decoding of the 10 -bit counter states. Thus to get the desired 16 second entry/exit delay. 77 must be decoded and to achieve the 128 second sounder turn-off delay t10in must be decoded.

STATE MACHINE AND TIMER FOR BURGLAR ALARM

```
@INTERNAL SR FLIP FLOP LABELS
t6 t5 t4 t3 t2 t1
@LOGIC EQUATION
t1: s = /t1*/sr0 ;
 r = t1*/sr0
 + sr0 ;
t2 s = t1*/t2*/sr0;
 r=t1*t2*/sr0
 + sr0 ;
t3 s = t1* t2*/t3*/sr0 ;
 r=t1* t2* t3*/sr0;
 + sr0;
t4 s=t1* t2* t3*/t4*/sr0;
 r = t1* t2* t3* t4*/sr0
 + sr0;
t5 s=t1*t2* t3* t4*/t5*/sro;
 r=t1* t2* t3* t4* t5*/sr0
 + sr0 ;
t6 s=t1* t2* t3* t4* t5*/t6*/sr0 ;
 r = t1* t2* t3* t4* t5* t6*/sr0
 + sr0;
t7 s = t1* t2* t3* t4* t5* t6*/t7*/sr0;
 r=t1* t2* t3* t4* t5* t6* t7*/sr0
 + sr0;
t8 s = t1* t2* t3* t4* t5* t6* t7*/t.8*/sr0 ;
 r=t1* t2* t3* t4* t5* t6* t7* t8*/sr0
 + sr0;
t9 s = t1* t2* t3* t4* t5* t6* t7* t8*/t9*/sr0 ;
 r=t1** t2* t3* t4* t5* t6* t7* t8* t9*/sro
 + sr0 ;
t10 s = t1* t2* t3* t4* t5* t6* t7* t8* t9*/t10*/sr0;
 r = t1* t2* t3* t4* t5* t6* t7* t8* t9* t10*/sro
 (Can be used later to define state equations)
```

Table 8-1. Logic Equations

## Programmable Logic Design and Application Notes

PLS168				
clock 1	CK	$+5 \mathrm{~V}$	24	Vcc
Arm 2	1	1	23	Fire
Reset 3	1	1	22	Timed1
Peratak 4	1	1	21	Timed2
I8in	1	1	20	Alarm1
I9in 6	1	1	19	Alarm2
I10in	1	1	18	Alarm3
I10 8	0	PR	17	GND
I9	0	$\bigcirc$	16	N0
I8 $\quad 10$	0	0	15	SRO
Sounder 11	0	0	14	SR1
GND 12	OV	0	13	Beacon

Figure 8-3. Pinning Information for the Alarm Controller


Figure 8-4. Alarm System based on the PLS168

With the system fully defined, simply assemble the design information during the AMAZE assembler to produce the fuse pattern for the desired device. Should any design changes meed to be made to a device, the fuse pattern may be modified directly using the program table editor of AMAZE. However, taking this
action is not recommended since Boolean equation and state equation files are notaltered correspondingly.
Functioning of the device can be verified with the AMAZE simulator, which can also be used
to check A.C. timings before downloading the pattern to a device programmer, such as Stag ZL30A or Data 1/O 29B, to program the device. Test vectors are produced either automatically or interactively by the simulator.

## Programmable Logic Design and Application Notes

## Programmability

The PLS168 device could now be used as the controller of an alarm system. As it stands, the device assumes that all the alarm inputs indicate an alarm condition when in the high state, logic one, and that the alarms are activated when the alarm outputs are active low (i.e., at logic zero).
Should an alarm input transducer be used which indicates an alarm condition as a low state, this can be catered for by altering the .SEE file. For example, consider a smoke detector which outputs logic zero on detection of an alarm condition and assume that this transducer is driving the "fire" input of the device. By changing all references to 'fire' in the .SEE file to '/fire' and all instances of '/fire' to 'fire' then the activation of the alarms will occur when log-
ic zero is applied to this input and not when logic one is applied, as in the original case. Pinlist and .BEE files do not need to be altered.
Polarity of the output signals cannot be altered as easily, as the device will always power-up with the outputs at logic one. This should not prove to be a problem since the outputs simply drive output transistors and these can be used to produce the correct polarity signal for the beacon and sounder.

## System Implementation

Figure 8-4 shows a typical alarm system based on this device. The system clock is produced by a relaxation oscillator built from 74 HC 132 Schmitt Triggers. Values of $\mathrm{R}_{1}$ and $\mathrm{C}_{1}$ shown result in a frequency of approximately 4 Hz which will provide the desired entry/exit and
sounder turn-off delays. These delays can be modified either by changing the external oscillator circuit or by decoding a different internal counter state. For example, to increase the entry/exit delay change all references to 77 in the .SEE file to 88 . Both normally-closed and nor-mally-open loop implementations are shown. Due to the distances involved in an alarm system, the open-loop configuration may cause problems, being driven by the positive supply. to avoid this problem, input-detect polarity of the open-loop circuit can be changed by altering the .SEE file.

Status indication can be provided by connecting LEDs as in Figure 8-5. When the reset button is pressed, any LED being lit will indicate an alarm condition for that input. This will not reset the alarm system unless the arm switch is off.


Figure 8-5. Status LEDs Connected to the alarm controller as shown provide status information

## Programmable Logic Design

 and Application Notes```
[sro, sr1, beacon]
st_null = 111b;
st 0 = 001b;
st_1 = 101b;
st_2 = 011b;
st_3 = 010b;
st_4 = 100b;
@TRANSITIONS
While [st_null]
    case
        [arm* /fire * /peratak] : : [st_0]
        [peratak] : : [st_4 with [/sounder']
        [fire] : : [st_4] with [/sounder']
While [st_0]
        case
            [t7 * /fire * (arm + reset)] : : [st_1]
            [/arm * /reset] : : [st_null] with [sounder']
                [fire] : : [st_4] with [/sounder']
            encase
While [st_1]
    case
        [timed1 * /fire] : : [st_2]
        [timed2 * /fire] : : [st_2]
        [alarm1 * /fire] : : [st_3] with [/sounder']
        [alarm2 * /fire] : : [st_3] with [/sounder']
        [alarm3 * /fire] : : [st_3] with [/sounder']
        [/arm * /reset] : : [st_null] with [sounder']
        [fire] : : [st_4] with [/sounder']
        encase
While [st_2]
    case
        [t7 * /fire] : : [st 3] with [/sounder']
        [alarm1 * /fire] : : [st_3] with [/sounder']
        [alarm2 * /fire] : : [st_3] with [/sounder']
        [alarm3 * /fire] : : [st_3] with [/sounder']
        [/arm * /reset] : : [st_null] with [sounder']
        [fire] : : [st_4] with [/sounder']
    encase
While [st 3]
    case
        [t10in * /fire * (arm + reset)] : : [st_4] with [sounder']
        [[/arm * /reset] : : [st_null with [sounder']
        [fire] : : [st_4] with [/sounder']
While [st_4]
    case
        if [/arm * /reset] then [st_null] with [sounder']
```

Table 8-2. State Equations can be used to define state transitions

Signetics

Programmable Logic Devices
INDEX
A Plastic Leaded Chip Carrier 785
F Ceramic Dual-In-Line 788
FA Ceramic Dual-In-Line with Quartz Window 790
LA Ceramic Leaded Chip Carrier with Quartz Window 792
$N \quad$ Plastic Dual-In-Line 793

Package Outlines

PLCC

1. Package dimensions conform to JEDEC specifications for standard Plastic Leaded Chip Carrier outline (PLCC) package.
2. Controlling dimensions are given in inches with dimensions in millimeters contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M-1982.
4. "D-E" and "F-G" are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed $0.15 \mathrm{~mm}\left(0.006^{\prime \prime}\right)$ on any side.
5. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
6. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
7. Body material: Plastic (Epoxy).
8. Thermal resistance values are determined by Temperature Sensitive Parameter (TSP) method. This method uses the forward voltage drop of a calibrated diode to measure
the change in junction temperature due to a kñown power application. Test conditions for these values are:

Test Ambient-Still Air
Test Fixture- $\theta_{\mathrm{JA}}-$ Glass epoxy test board ($2.24^{n} \times$ $\left.2.24^{\prime \prime} \times 0.062^{\prime \prime}\right)$
$\theta_{\text {JC }}-$ Water cooled heat sink

PLASTIC LEADED CHIP CARRIER (PLCC)

| NO. OF LEADS | PACKAGE CODE | TYPICAL $\theta_{\text {JA }} / \theta_{\text {JC }}$ VALUES $\left({ }^{\circ}\right.$ C/W) | | |
| :---: | :---: | :---: | :---: | :---: |
| | DESCRIPTION | | Average $\theta_{\text {JC }}$ | |
| 20 | A | 350 mil-wide | 70 | 30 |
| 28 | A | 450 mil-wide | 61 | 26 |
| 52 | A | 750 mil-wide | 42 | 14 |
| 68 | A | 950 mil-wide | 42 | 14 |

20-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

28-PIN PLASTIC LEADED CHIP CARRIER

52-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

68-PIN PLASTIC LEADED CHIP CARRIER

Package Outlines

HERMETIC CERDIP

1. Package dimensions conform to JEDEC specificationS for standard Ceramic Dual Inline (CERDIP) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
7. Body material: Ceramic with glass seal at leads.
8. Thermal resistance values are determined by Temperature Sensitive Parameter (TSP) method. This method uses the forward voltage drop of a calibrated diode to mea-
sure the change in junction temperature due to a known power application. Test conditions for these values follow:

Test Ambient-Still Air

Test Fixture- $\theta_{\text {JA }}-$ Textool ZIF socket with $0.04^{\prime \prime}$ standoff
$\theta_{\mathrm{JC}}-$ Water cooled heat sink

CERAMIC DUAL-IN-LINE PACKAGES

| NO. OF LEADS | PACKAGE CODE | DESCRIPTION | TYPICAL $\theta_{\mathrm{JA}} / \theta_{\mathrm{JC}}$ VALUES (${ }^{\circ} \mathrm{C} / \mathrm{W}$) | |
| :---: | :---: | :---: | :---: | :---: |
| | | | Average $\theta_{J A}$ | Average $\theta_{J c}$ |
| 20 | F | 300mil-wide | 72 | 8 |
| 24 | F | 300 mil -wide | 62 | 7 |
| 28 | F | 600 mil -wide | 48 | 6 |

20-PIN CERAMIC DUAL-IN-LINE

FL1 853-0584 88099

NOTES:

1. Controlling dimension: inches. Millimeters are shown in parentheses.
2. Dimensions and tolerancing per ANSI Y14.5M - 1982.
3. "T", "D", and " E " are reference datums on the body and include allowance for glass overrun and meniscus on the seal line, and lid to base mismatch.
4. These dimensions measured with the leads constrained to be perpendicular to plane T.
5. Pin numbers start with pin \#1 and continue counterclockwise to pin \#20 when viewed from the top. 6. Denotes window location for EPROM products.

Package Outlines

24-PIN CERAMIC DUAL-IN-LINE

28-PIN CERAMIC DUAL-IN-LINE (600mil-wide)

Package Outlines

HERMETIC CERDIP WITH QUARTZ WINDOW

1. Package dimensions conform to JEDEC specificationS for standard Ceramic Dual Inline (CERDIP) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M-1982.
4. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Lead material: ASTM alloy F-30 (Alloy 42) or equivalent - tin plated or solder dipped.
7. Body material: Ceramic with glass seal at leads.
8. Thermal resistance values are determined by Temperature Sensitive Parameter (TSP) method. This method uses the forward voltage drop of a calibrated diode to mea-
sure the change in junction temperature due to a known power application. Test condition for these values follow:

Test Ambient-Still Air
Test Fixture- $\theta_{J A}-$ Textool ZIF socket with 0.04" standoff
$\theta_{\mathrm{JC}}-$ Water cooled heat sink

HERMETIC DUAL-IN-LINE PACKAGES

| NO. OF LEADS | | | TYPICAL $\theta_{J A} / \theta_{J C}$ VALUES ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | |
| :---: | :---: | :---: | :---: | :---: |
| | PACKAGE CODE | DESCRIPTION | Average $\theta_{J A}$ | Average $\theta_{J C}$ |
| 20 | FA | 300 mil-wide | 87 | 8 |
| 24 | FA | 300 mil-wide | 72 | 7 |
| 28 | FA | 600 mil-wide | 45 | 6 |

20-PIN CERAMIC DUAL-IN-LINE WITH QUARTZ WINDOW

Package Outlines

24-PIN CERAMIC DUAL-IN-LINE WITH QUARTZ WINDOW

28-PIN CERAMIC DUAL-IN-LINE WITH QUARTZ WINDOW

Package Outlines

CERAMIC LEADED CHIP CARRIER WITH QUARTZ WINDOW

| NO. OF LEADS | | TYPICAL $\theta_{J A} / \theta_{\mathrm{JC}}$ VALUES $\left({ }^{\circ} \mathrm{C} / W\right)$ | | |
| :---: | :---: | :---: | :---: | :---: |
| | | DESCRIPTION | Average θ_{JA} | Average θ_{JC} |
| 68 | | 965 mil-wide | 55 | 25 |

68-PIN CERAMIC LEADED CHIP CARRIER WITH QUARTZ WINDOW

Package Outlines

PLASTIC DIP

1. Package dimensions conform to JEDEC specification MS-001-AA for standard Plastic Dual Inline (DIP) package.
2. Controlling dimensions are given in inches with dimensions in millimeters, mm , contained in parentheses.
3. Dimensions and tolerancing per ANSI Y14.5M - 1982.
4. " T ", " D " and " E " are reference datums on the molded body and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.01 inch (0.25 mm) on any side.
5. These dimensions measured with the leads constrained to be perpendicular to plane T.
6. Pin numbers start with pin \#1 and continue counterclockwise when viewed from the top.
7. Lead material: Olin 194 (Copper Alloy) or equivalent, solder dipped.
8. Body material: Plastic (Epoxy).
9. Thermal resistance values are determined by Temperature Sensitive Parameter (TSP) method. This method uses the forward
voltage drop of a calibrated diode to measure the change in junction temperature due to a known power application. Test conditions for these values are:

Test Ambient-Still Air
Test Fixture- $\boldsymbol{\theta}_{\mathrm{JA}}$ - Textool ZIF socket with 0.04" standoff
$\theta_{\mathrm{JC}}-$ Water cooled heat sink

PLASTIC DUAL-IN-LINE PACKAGES

| NO. OF LEADS | PACKAGE CODE | DESCRIPTION | TYPICAL $\theta_{\text {JA }} / \theta_{\text {Jc }}$ VALUES (${ }^{\circ} \mathrm{C} / \mathrm{W}$) | |
| :---: | :---: | :---: | :---: | :---: |
| | | | Average $\theta_{\text {JA }}$ | Average $\theta_{\text {Jc }}$ |
| 20 | N | Cu. Lead Frame 300 mil-wide | 63 | 27 |
| 24 | N | Cu. Lead Frame 300 mil-wide | 56 | 26 |
| 28 | N | Cu. Lead Frame 600 mil-wide | 46 | 18 |
| 28 | N3 | Cu. Lead Frame 300 mil-wide | 53 | 24 |

20-PIN PLASTIC DUAL-IN-LINE (N PACKAGE)

Package Outlines

24-PIN PLASTIC DUAL-IN-LINE (N PACKAGE)

28-PIN PLASTIC DUAL-IN-LINE (N PACKAGE)

Package Outlines

28-PIN PLASTIC DUAL-IN-LINE (N3 PACKAGE)

Signetics

Programmable Logic Devices
Section 11 Sales Offices, Representatives \& Distributors

Signetics

Sales Offices, Representatives \& Distributors

Programmable Logic Devices

SIGNETICS
HEADQUARTERS
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, CA 94088-3409
Phone: (408) 991-2000
ALABAMA
Huntsville
Phone: (205) 830-4001

ARIZONA

Phoenix
Phone: (602) 968-5777
CALIFORNIA
Calabasas
Phone: (818) 880-6304
Irvine
Phone: (714) 833-8980 (714) 752-2780

Los Angeles
Phone: (213) 670-1101
San Diego
Phone: (619) 560-0242
Sunnyvale
Phone: (408) 991-3737
COLORADO
Aurora
Phone: (303) 751-5011

GEORGIA

Atlanta
Phone: (404) 594-1392
ILLINOIS
Itasca
Phone: (312) 250-0050
INDIANA
Kokomo
Phone: (317) 459-5355
MASSACHUSETTS
Westiord
Phone: (508) 692-6211
MICHIGAN
Farmington Hills Phone: (313) 553-6070
NEW JERSEY
Parsippany
Phone: (201) 334-4405

Toms River Phone: (201) 505-1200
NEW YORK
Wappingers Falls Phone: (914) 297-4074
NORTH CAROLINA
Raleigh
Phone: (919) 781-1900
OHIO
Columbus
Phone: (614) 888-7143
Dayton
Phone: (513) 294-7340
OREGON
Beaverton
Phone: (503) 627-0110
PENNSYLVANIA
Plymouth Meeting
Phone: (215) 825-4404
TENNESSEE
Greeneville
Phone: (615) 639-0251
TEXAS
Austin
Phone: (512) 339-9944
Houston
Phone: (713) 668-1989
Richardson
Phone: (214) 644-3500
CANADA
SIGNETICS CANADA, LTD.
Etobicoke, Ontario
Phone: (416) 626-6676
Nepean, Ontario
Phone: (613) 225-5467
REPRESENTATIVES

ARIZONA

Scottsdale
Thom Luke Sales, Inc. Phone: (602) 941-1901
CALIFORNIA
Folsom
Webster Associates
Phone: (916) 989-0843

FLORIDA
Oviedo
Conley and Assoc., Inc.
Phone: (407) 365-3283

ILLINOIS

Hoffman Estates
Micro-Tex, Inc.
Phone: (708) 382-3001
INDIANA
Indianapolis
Mohrfield Marketing, Inc.
Phone: (317) 546-6969

IOWA

Cedar Rapids
J.R. Sales

Phone: (319) 393-2232

MARYLAND

Columbia
Third Wave Solutions, Inc.
Phone: (301) 290-5990

MINNESOTA

Eden Prairie
High Technology Sales
Phone: (612) 944-7274

MISSOURI

Bridgeton
Centech, Inc.
Phone: (314) 291-4230
Raytown
Centech, Inc.
Phone: (816) 358-8100

NEW MEXICO

Albuquerque
F.P. Sales

Phone: (505) 345-5553
NEW YORK
Ithaca
Bob Dean, Inc.
Phone: (607) 257-1111
Rockville Centre S-J Associates
Phone: (516) 536-4242
Wappingers Falls
Bob Dean, Inc.
Phone: (914) 297-6406

NORTH CAROLINA

Smithfield
ADI
Phone: (919) 934-8136

OHIO
Centerville
Bear Marketing, Inc.
Phone: (513) 436-2061
Richfield
Bear Marketing, Inc
Phone: (216) 659-3131

OREGON

Beaverton
Western Technical Sales
Phone: (503) 644-8860
PENNSYLVANIA
Pittsburgh
Bear Marketing, Inc.
Phone: (412) 531-2002
Hatboro
Delta Technical Sales, Inc.
Phone: (215) 975-0600
UTAH
Salt Lake City
Electrodyne
Phone: (801) 264-8050
WASHINGTON
Bellevue
Western Technical Sales
Phone: (206) 641-3900
Spokane
Western Technical Sales
Phone: (509) 922-7600
WISCONSIN
Waukesha
Micro-Tex, Inc.
Phone: (414) 542-5352
CANADA
Burnaby, B.C.
Tech-Trek, Ltd
Phone: (604) 439-1373
Mississauga, Ontario
Tech-Trek, Ltd.
Phone: (416) 238-0366
Nepean, Ontario
Tech-Trek, Ltd.
Phone: (613) 225-5161
Ville St. Laurent, Quebec Tech-Trek, Ltd.
Phone: (514) 337-7540

PUERTO RICO

Santurce
Mectronics Sales, Inc.
Phone: (809) 728-3280

DISTRIBUTORS

Contact one of our
local distributors:
Anthem Electronics
Falcon Electronics, Inc.
Gerber Electronics
Hamilton/Avnet Electronics
Marshall Industries
Schweber Electronics
Wyle/LEMG
Zentronics, Ltd.

FOR SIGNETICS

PRODUCTS
WORLDWIDE:

ARGENTINA

Philips Argentina S.A.
Buenos Aires
Phone: 54-1-541-4261
AUSTRALIA
Philips Electronic
Components \& Mat'I Ltd.
Artarmon, N.S.W.
Phone: 61-2-439-3322
AUSTRIA
Osterrichische Philips
Wien
Phone: 43-222-60-101-820
BELGIUM
S.A. MBLE Components

Brussels
Phone: 32-2-525-61-11

BRAZIL

Philips Do Brasil, Ltda.
Sao Paulo
Phone: 55-11-211-2600

CHILE

Philips Chilena S.A.
Santiago
Phone: 56-02-077-3816

CHINA,

PEOPLES REPUBLIC OF
Philips Hong Kong, Ltd.
Kwai Chung, Kowloon Phone: 852-0-424-5121

COLUMBIA
Iprelenso, Ltda.
Bogota
Phone:57-1-2497624

DENMARK
Philips Components A/S
Copenhagen S
Phone: 45-1-54-11-33

FINLAND

Oy Philips Ab
Espoo
Phone: 358-0-502-61
FRANCE
R.T.C. Compelec

Issy-les-Moulineaux
Cedex
Phone: 33-1-40-93-80-00

GERMANY

Valvo
Hamburg
Phone: 49-40-3-296-0
GREECE
Philips S.A. Hellenique
Athens
Phone: 30-1-4894-339
HONG KONG
Philips Hong Kong, Ltd. Kwai Chung, Kowloon Phone: 852-0-424-5121
INDIA
Peico Electronics
\& Elect. Ltd.
Bombay
Phone: 91-22-493-0311
INDONESIA
P.T. Philips-Ralin

Electronics
Jakarta Selatan
Phone:62-21-517-795
IRELAND
Philips Electrical Ltd. Dublin
Phone: 353-1-69-33-55
ISRAEL
Rapac Electronics, Lid.
Tel Aviv
Phone:972-3-477115
ITALY
Philips S.p.A.
Milano
Phone: 38-2-67-52-1
JAPAN
Philips Components Japan
Osaka-Shi
Phone: 81-6-389-7722

Philips Components Japan Tokyo Phone: 81-3-740-5028

KOREA
Philips Industries, Ltd. Seoul
Phone:82-2-794-5011 /2/3/4/5

MALAYSIA
Philips Malaysia SDN
Bernhad
Kuala Lumpur
Phone: 60-3-734-5511
MEXICO
Philips Components
Guadalajara, Jal
Phone:52-36-52-27-70
Mexico, D.F.
Phone:52-721-64-984
NETHERLANDS
Philips Nederland
Eindhoven
Phone: 31-40-783-749
NEW ZEALAND
Philips New Zealand Ltd.
Auckland
Phone:64-9-605-914
NORWAY
Norsk A/S Philips
Oslo
Phone: 47-2-68-02-00
PERU
Cadesa
San Isidro
Phone:51-14-707-080
PHILIPPINES
Philips Industrial Dev., Inc. Makati Metro Manila Phone: 63-2-810-01-61
PORTUGAL
Philips Portuguesa SA Lisbon
Phone: 351-1-68-31-21
SINGAPORE
Philips Singapore
Pte., Ltd.
Singapore
Phone: 65-350-2000

SOUTH AFRICA
SA Philips (PTY), Ltd.
Randburg
Phone: 2^{7}-11-889-3911
SPAIN
Copresa S.A.
Barcelona
Phone:34-3-301-63-12
SWEDEN
Philips Components A.B.
Stockholm
Phone:46-8-782-10-00
SWITZERLAND
Philips Components A.G. Zuerich
Phone:41-1-488-2211
TAIWAN
Philips Taiwan, Ltd. Taipei
Phone: 886-2-509-7666
THAILAND
Philips Electrical Co.
of Thailand Ltd.
Bangkok
Phone:66-2-223-63309
TURKEY
Turk Philips
Ticaret A.S.
Istanbul
Phone: 90-1-179-27-70
UNITED KINGDOM
Philips Components London
Phone: 44-1-580-6633
UNITED STATES
Signetics
Sunnyvale, California
Phone: (408) 991-2000
URUGUAY
Luzilectron S.A.
Montevideo
Phone:598-91-56-41/ 42/43/44
VENEZUELA
Magnetica S.A.
Caracas
Phone:58-2-241-7509

Philips Components a worldwide Group of Companies

Argentina: PHILIPS ARGENTINA S.A. Div. Components, Vedia 3892, 1430 BUENOS AIRES, Tel. (01) 541-7141 to 7747.
Australia: PHILIPS COMPONENTS PTY Ltd, 11 Waltham Street, ARTARMON, N.S.W. 2064, TEL. (02) 4393322.
Austria: OSTERREICHISCHE PHILIPS INDUSTRIE G.m.b.H., UB Bauelemente, Triester Str. 64, 1101 WIEN. Tel. (0222) 60 101-820
Belgium: N.V. PHILIPS PROF, SYSTEMS - Components Div., 80 Rue Des Deux Gares, B-1070 BRUXELLES, Tel. (02) 5256111.
Brazil: CONSTANTA-IBRAPE; (Active Devices): Av. Brigadeiro Faria Lima, 1735-SAO PAULO-SP, Tel. (011) 211-2600. CONSTANTA IBRAPE; (Passive Devices \& Materials): Av. Francisco Monteiro, 702 - RIBEIRAO PIRES-SP, Tel. (011) 459-8211.
Canada: For IC Products Refer to United States
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO Tel. (02) 773816.
Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No 56-17 BOGOTA, D.E., Tel. (01) 2497624.
Denmark: PHILIPS COMPONENTS AVS. Prags Boulevard 80, PB1919, DK-2300 COPENHAGEN S, Tel. 01-54113.
Finland: PHILIPS COMPONENTS, Sinikaliontie 3, SF-2630 ESPOO HELSINKI 10, Tel. 358-0-50261.
France: RTC-COMPELEC, 117 Quai du President Roosevelt, 92134 ISSY-LES-MOULINEAUX Cedex, Tel. (01) 40938000.
Germany (Fed. Republic): VALVO, UB Baulemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.
Greece: PHILIPS HELLENIQUE S.A., Components Division, No. 15 , 25th March Street, GR 17778 TAVROS,
Tel. (01) 4894339/4894911.
Hong Kong: PHILIPS HONG KONG LTD., Components Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.
India: PEICO ELECTRONICS \& ELECTRICALS LTD., Components Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. (022) 4920211/4930590.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Components Div., Setiabudi II Building, 6th FI., Jalan H.R. Rasuna Said (P.O. Box 223/KBY) Kuningan, JAKARTA 12910, Tel. (021) 517995.
Ireland: PHILIPS ELECTRONICS (IRELAND) LTD., Componen ts Division, Newstead, Clongskeagh, DUBLIN 14, Tel. (01) 693355
Italy: PHILIPS S.p.A., Philips Components, Piazza IV Novembre 3, I-20124 MILANO, Tel. (02) 67521.
Japan: NIHON PHILIPS CORP., Shuwa Sinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. (03) 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.
Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02) 794-5011.
Malaysia: PHLIPS MALAYSIA SDN BHD, Components Div. 3 Jalan SS15/2A SUBANG, 47500 PETALING JAYA, Tel. (02) 7345511.
Mexico: ELECTRONICA, S.A. de C.V., Carr. Mexico-Toluca km. 62.5, TOLUCA, Edo. de Mexico 50140, Tel. Toluca 91 (721) 613-00.
Netherlands: PHILIPS NEDERLAND, Marktgroep Philips Components, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 783749.
New Zealand: PHILIPS NEW ZEALAND LTD., Components Division, 110 Mt . Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. (09) 605-914.
Norway: NORSK A/S PHILIPS, Philips Components, Box 1, Manglerud 0612, OSLO, Tel. (02) 680200.
Pakistan: PHILIPS ELECTRICAL CO. OF PAKISTAN LTD>, Philips Markaz, M.A. Jinnah Rd., KARACHI-3, Tel. (021) 725772. Peru: CADESA, Av. Pardo y Aliaga No. 695, 6th Floor, San Isidro, LIMA 27, Tel. (014) 707080.
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. (02) 868951 to 59.

Portugal: PHILIPS PORTUGESA S.A.R.L.,Av. Eng. Duarte Pacheeo 6, 1009 LISBOA Codex, Tel. (019) 683121.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Components Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000.
Spain: PHILIPS Components, Balmes 22, 08007 BARCELONA, Tel. (03) 3016312
Sweden: PHILIPS Components, A.B., Tegeluddsvagen 1, S-11584 STOCKHOLM, Tel. (0)8-7821000.
Switzerland: PHILIPS A.G., Components Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. (01) 4882211.
Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22918, TAIPEI, Taiwan, Tel. (02) 7120500.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. (02) 233-6330-9.
Turkey: TURK PHILIPS TICARET A.S., Philips Components, Talatpasa Cad, No. 5, 80640 LEVENT/ISTANBUL, Tel. (01) 1792770.
United Kingdom: PHILIPS COMPONENTS LTC., Mullard House, Torrington Place, LONDON WC1e 7HD, Tel. (01) 5806633.
United States: IC Products:
PHILIPS COMPONENTS-SIGNETICS
811 East Arques Avenue
Sunnyvale, CA 94088-3409
Tel. (408) 991-2000
Discrete Semiconductors, Passive Components,
Materials, and Professional Components:
PHILIPS COMPONENTS-DISCRETE
PRODUCTS DIVISION
2001 West Blue Heron Boulevard
Riviera Beach, FL. 33404
Tel. (305) 881-3200
Color Picture Tubes - Monochrome and Color
Display Tubes:
PHILIPS DISPLAY COMPONENTS
P.O. Box 963

Ann Arbor, MI 48106
Tel. (313) 996-9400
Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. (02) 985395.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931.

For all other countries apply to: Philips Components Division, International Business Relations, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtenl

AS67
©(Chilips Export B.V. 1989

All Rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent - or industrial or intellectual property rights.

11/16/89
98-7001-230

[^0]: $\left.{ }^{\circledR}\right)_{\text {PAL is }}$ a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

[^1]: $\circledR_{\text {PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc. }}$

[^2]: $\circledR_{\text {PAL is a registered tradernark of Monolihhic Mernories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc. }}$

[^3]: (B)PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Corporation.

[^4]: (8)PAL is a registered trademark of Monolithic Memories, Inc., a wholly owried subsidiary of Advanced Micro Devices Corporation.

[^5]: mors

 1. All programmed 'AND' gate locations are puiled to logic "1".
 2. All programmed 'OR' gate locations are pulled to logic "0".
 3. Programmable connection.
[^6]: ⒷPAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices Corporation.

[^7]: Notes on the following page.

[^8]: Notes on following page.

[^9]: Notes on page 270.

[^10]: Notes are on page 291.

[^11]: PML is a trademark of Philips Components-Signetics

[^12]: 1. Limits are guaranteed with internal feedback buffers simultaneously switching cumulative maximum of eight outputs.
[^13]: NuBus is a trademark of Texas Instruments, Inc.

[^14]: (COMMON CLOCK (CKE1) FOR ALL FLIP-FLOPS WHEN IN SCAN MODE)

[^15]: *Not available as a Class B standard product. See M38510 and/or Military Drawing columns for availability
 ** $A=$ available, NA = not available, IP = in process, call for availability.

[^16]: * Under development for future releases.

 SNAP-DASH is a trademark of Data I/O Corporation
 OrCAD STD III is a trademark of Or/CAD, Inc.
 IBM is a registered trademark of International Business Machines Corporation.

[^17]: COMMENTS:
 This one-shot will load data at the end of the count cycle. If TRIG pulse-width is longer than the count cycle, output B3 will go Low for one clock period and go High again for another count cycle. Outputs B_{2} and B_{0} stay Low and High respectively until $\overline{\text { TRIG }}$ goes High and count cycle is completed without interruption.

[^18]: PAL is a registered trademark of Monolithic Memories, Inc., a wholly owned subsidiary of Advanced Micro Devices, Inc.

[^19]: * Designing Cards and Drivers for Macintosh II and Macintosh SE, Addison-Wesley Publishing Company, Inc. 1987.

[^20]: FutureNet and DASH are trademarks of DATA I/O

[^21]: PLHS502 Rough Resource Budget $=64$ NANDs, $8 \mathrm{D}, 8$ SR, 24 inputs, 16 outputs, 8 bidirect.

[^22]: Figure 6-12. Oscillator Circuit

