
The XENIX® System V

Development System

Release Notes

Version 2.3

The Santa Cruz Operation~ Inc.

Infonnation in this document is subject to change without notice and does not
represent a commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft
Corporation. The software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the terms ofthe agreement. It is against the law to copy this software
on magnetic tape, disk, or any other medium for any purpose other than the
purchaser's personal use.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS
SET FORTH IN SUBDIVISION (b) (3) (ii) FOR RESTRICTED RIGHTS IN
COMPUTER SOFTWARE AND SUBDIVISION (b) (2) FOR LIMITED RIGHTS
IN TECHNICALDATA,BOTH AS SET FORTH IN FAR 52.227-7013.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988 Microsoft
Corporation
All rights reserved.
Portions © 1983,1984,1985,1986,1987,1988 The Santa Cruz Operation, Inc.
All rights reserved.

XENIX is a registered trademark of Microsoft Corporation.

Document Number: X386/286-1 0-31-88-5.0/2.3

Part Number: 014-030-008

Processed Date: Wed Dec 2102:07:26 PST 1988

XENIXSystem v 2.3
386/286 Development System
Release Notes

1. Preface 1

2. Installation Notes 1
2.1 Packages In The Development System 3

3. Software Notes 5
3.1 Include Files 5
3.2 MINDOUBLE 5
3.3 286 Floating Point Emulation 5
3.4 Substituting Parameters in Quoted Strings 6
3.5 Transforming Formal Parameters to Strings 7
3.6 setvbuf(S) 7
3.7 Terminfo Curses 7
3.8 Tokens Following #else and #endif 7
3.9 COFF Support 8
3.10 Include Files and Utilities 8
3.11 crypt(C) and crypt(S) Libraries 8
3.12 cxref(CP) 8
3.13 cc(CP) Notes 9

3.13.1 Register Variables 9
3.13.2 -Zi Option 9
3.13.3 Variable Declarations 10

3.14 sdb(CP) 10
3.15 ld 11
3.16 irand480 and krand480 11
3.17 asx(CP) 11
3.18 stdio.h 11
3.19 types.h 12
3.20 malloc Issues 12

3.20.1 mallinfoO 13

X86-8-15-88-5.0/2.3 - i - The Santa Cruz Operation

Release Notes

4. Operating System Specific Software Notes 13
4.1 80386 Operating System 13

4.1.1 cc(CP) Defaults 13
4.1.2 String Constants 13
4.1.3 Variable Assignments 14
4.1.4 brkctl(S) Library 14
4.1.5 masm 15
4.1.6 Memory Models 15
4.1.7 nm(CP) 16
4.1.8 Stack Size 16
4.1.9 sccs(CP) Line Size 17

4.2 80286 Operating System 17
4.2.1 cc(CP) Defaults 17
4.2.2 brkctl(S) 17
4.2.3 tty.h 18
4.2.4 Id(CP) 18
4.2.5 Stack Size Limitations 18
4.2.6 Floating-Point Exceptions 18

5. Differences Between 286 and 386 Code Generation
5.0.1 Size of Integers 19
5.0.2 Size of Pointers 19
5.0.3 Assembly language interface 19
5.0.4 Zp2 and Zp4 structure alignment

6. Documentation Errata 20
'6.1 Device Driver Writer's Guide 20
6.2 cc(CP) 21
6.3 dosld(CP) 21
6.4 dirent(F) 21
6.5 sigset(S) 21
6.6 curses(S) 21

19

19

X86'-8-15-88-5.0/2.3 - ii - The Santa Cruz Operation

Release Notes
XENIX® 386/286 System V Development System

Version 2.3
For computers running the

XENIX-386, and XENIX-286 System V Operating System
October 31, 1988

1. Preface

These notes pertain to the SCQ XENIX 386/286 System V
Development System for computers running the seQ XENIX-386,
and XENIX-286 System V Operating System. They contain notes
on the software and documentation, and the procedure for installing
the software.

We are always pleased to hear of a user's experience with our
product, and recommendations of how it can be made even more
useful. All written suggestions are given serious consideration.

2. Installation Notes

Note that you must have the XENIX System V Operating System
installed on your computer in order to use the XENIX System V
Development System.

To use the seo XENIX System V release 2.3 Development System,
you must have installed release 2.3 (or later) of the sea XENIX
System V Operating System.

Before you install the Development System, make sure that you
have:

• The Development System diskettes.

• The Operating System "N" volume diskettes. Depending
on your installation, you are prompted to insert one or
more of these diskettes as part of your Development
System installation procedure.

X86-8-1S-88-S.0/2.3 - 1 - The Santa Cruz Operation

Release Notes

• Your Development System serial number and activation
key.

To install· the XENIX Development System, you must perfonn the
following operations:

• First, log in as root (the "Super-User") and bring the
system to system maintenance mode.

• Enter the command: custom and press RETURN.

• Select the Development System installation option.

• Install the Development System as prompted.

The XENIX System V Development System contains several
packages that can be installed selectively using the custom(ADM)
utility. For example, the DOS cross development environment
(linker, libraries and include files) is a distinct package that you can
either install or leave out of your system.

custom(ADM) can display a complete list and short description of
the packages included in the Development System and the amount
of disk space needed to install each package. You can use
custom(ADM) at any time to install or remove all or part of the
Development System. Refer to the cnstom(ADM) manual page for
instructions on using custom(ADM).

During the installation, you are asked to choose a default tenninal
description library for use with the cnrses(S) screen handling
package. You can choose terminfo, termcap, or you can choose to
have no default package, by selecting neither. The curses include
file (/usrlinclude/curses.h) will conditionally include the correct
information that will enable it to be used with terminfo or term cap
depending on whether M_ TERMINFO or M_ TERMCAP is
defined. The choice you make at installation time detennines which
of these packages is the default for your system. You can always
override the default by explicitly defining either M_ TERMINFO or
M_ TERMCAP either in your program before the statement that

X86-8-15-88-5.0/2.3 - 2 - The Santa Cruz Operation

XENIX System V 2.3

includes curses.h in the source code, or by using the -D directive
on the C compiler command line. If you do not select a default, you
must #define either M_ TERMINFO or M_ TERMCAP whenever
you compile a source module that includes curses .h.

Towards the end of the installation procedure you are prompted to
insert one or more of the "N" volumes. These diskettes are not
part of the Development System distribution. (Although
custom(ADM) may refer to them as "Development System"
diskettes.) They are volumes from the Operating System
distribution and certain Operating System dependent files and
utilities must be extracted from them when you install the
Development System.

2.1 Packages In The Development System

The 386 Development System consists of the following packages:

Name

ALL
SOFf
LEX
YACC
CREF
CFLOW
LINT
SMALL
MEDIUM
COMPACT
LARGE
SCCS
DOSDEV

Development System Packages

Description

Entire Development System set
Basic software development tools
Generates programs for lexical analysis
Yet another compiler-compiler
Cross reference programs
Generates C flow graphs
Syntax and usage check files and tools
Small Model Library routines
Medium Model Library routines
Compact Model Library routines
Large model Library routines
Source code control system
DOS cross development libraries and utilities

Size

13694
8254
114
106
466
114
402
442
460
472
490
692
1460

X86-8-15-88-5.0/2.3 - 3 - The Santa Cruz Operation

Release Notes

HELP Help utility and related files 166

Note that the SMALL, MEDIUM, and LARGE packages in the 386
development system allow development of programs to run on
8086 and 80286 systems. 80386 systems do not use memory
models.

Once you have installed the 80386 Development System, please
check the file / etc! defa u It/ cc to confirm that the default settings for
the compiler are those you desire.

The 286 Development System consists of the following packages:

Name

ALL
SOFT
LEX
YACC
CREF
CFLOW
LINT
SMALL
MEDIUM
COMPACT
LARGE
SCCS
DOSDEV
HELP

Development System Packages

Description

Entire Development System set
Basic software development tools
Generates programs for lexical analysis
Yet another compiler-compiler
Cross reference programs
Generates C flow graphs
Syntax and usage check files and tools
Small Model Library routines
Medium Model Library routines
Compact Model Library routines
Large model library routines
Source code control system
DOS cross development libraries and utilities
On-line help utility

Size

9466
3652
94
88
368
86
274
612
768
544
862
558
1214
172

Once you have installed the 80286 Development System, please
check the file / etc! default/ cc to confirm that the default settings for
the compiler are those you desire.

X86-8-15-88-5.0/2.3 - 4 - The Santa Cruz Operation

3. Software Notes

3.1 Include Files

XENIX System V 2.3

Some include files shipped with releases 2.3.0 and 2.3.1 of XENIX
were missing or incorrect. These files have been re-shipped with
this·' distribution of the Development System. These files can be
found in lusrlincludelsys_2.3. If you have release 2.3.0 or 2.3.1 of
the XENIX Operating System, you can move these include files to
lusrlincludel sys to correct any difficulties.

3.2 MINDOUBLE

The XENIX C compiler does not compute the value of the constant
MINDOUBLE correctly. It always evaluates to 0 when used in
expressions. This constant is defined in lusrlincludelvalues.h.

3.3 286 Floating Point Emulation

286 floating point emulation software in 286 Operating Systems
prior to 2.3 does not correctly execute floating point comparisons
between the top of the floating point stack and memory. When you
develop applications using the -dos, or the -MO, -Ml, or -M2 flags,
you should use the -Go option to cc(CP) to instruct the Compiler to
allow for this. Note that the -compat flag implies the -Go option
automatically.

When using masm, special care needs to be taken not to make
floating comparisons with memory operands. To execute correctly
on previous 286 floating point emulators, only comparisons of
different stack elements should be made. Note that pushing a
memory operand onto the stack causes the source/destination
relation between the two operands to be reversed in a subsequent
comparison operation. As an example:

fcom memory_address
jg label

should be written as:

X86-8-1S-88-S.0/2.3 - S - The Santa Cruz Operation

Release Notes

tid memory_address
fcomp ST(l)
jl label

3.4 Substituting Parameters in Quoted Strings

There is a commonly used programming technique that must be
slightly altered to operate correctly when compiling 286 binaries.
The proposed ANSI standard for C does not allow the substitution
of macro formal parameters within quoted strings. However, many
existing C compilers, including the XENIX 386 C compiler, do
allow this. Consider the following macro definition and use:

#define CTRL(c)

putchar(CTRL(g));

('c' & Ox If)

The above statement operates correctly on 386 machines. The
existing 80386 compiler expands this to:

putchar«'g' & Oxlf));

But according to the ANSI standard it must be:

putchar«'c' & Oxlf));

The 286 compiler follows the ANSI standard strictly, therefore you
must use this substitution as follows:

#define CTRL(c)

putchar(CTRLC g'));

Then the compiler expands this to:

putchar(Cg' & Oxlf));

(c & Ox If)

The -Me option to the 386 C compiler allows the non-ANSI
functionality described above, but displays a warning that a non
standard extension has been used.

X86-8-15-88-5.0/2.3 - 6 - The Santa Cruz Operation

XENIXSystem v 2.3

3.5 Transforming Formal Parameters to Strings

The ANSI standard defines a mechanism for transforming macro
fonnal parameters into quoted strings (the stringising operator,
"#") and an operator for pasting strings, "##". These have been
added to both the 286 and 386 preprocessors. A slight restriction on
the 386 is that white space is not allowed between the stringising .
operator and the fonnal parameter it operates on.

3.6 setvbuf(S)

The order of the parameters to setvbuf(S) has been changed to
confonn with the SVID. Prior to release 2.3, the order of the
parameters was:

int setvbuf (stream, type, buf, size)

In release 2.3, the order of the parameters is:

int setvbuf (stream, buf, type, size)

The files lliblcompat[LMCS]setvbu!o can be used for backwards
compatibility.

3.7 Terminfo Curses

When you use tenninfo curses in a 286 binary, you should compile
with the -F option set to 2000 or greater to increase the fixed stack
size. For small model programs, compile with the -i flag.

3.8 Tokens Following #else and #endif

The C compiler issues a warning if it finds anything other than
blank space or comments following an #else or #endif preprocessor
directive. Thus the first example below would produce a warning
but the second would not.

#endif M_I386
#endif /* M_I386 */

These warnings are only produced if the warning level is set to 2 or
greater on the 386 compiler, but are produced at the default level of
1 on the 286 compiler.

X86-8-15-88-5.0/2.3 - 7 - The Santa Cruz Operation

Release Notes

3.9 COFF Support

The SCQ XENIX System V Development System supports the
transparent execution of COFF binaries. Certain utilities also
operate transparently on COFF binaries. These include ar(CP) ,
adb(CP), directory(S), Id(CP), nm(CP), prof(CP), nlist(S), and
xlist(S). Where there is no direct symbol matching, utilities make
the closest possible translation of COFF symbols.

3.10 Include Files and Utilities

The machine dependent Development System include files and
utilities are included on the XENIX version 2.1.3 (or later)
Operating System N Volumes. The terminfo database is part of the
XENIX Operating System extended utilities not available prior to
release 2.2.

3.11 crypt(C) and crypt(S) Libraries

The crypt(C) utility and crypt(S) libraries are not included in this
release. If you are a United States resident, you can request a copy
of crypt by calling SCO support.

3.12 cxref(CP)

cxref(CP) does not correctly handle function prototypes. It's syntax
analysis is based on an older version of the compiler. To work
around this problem, make function prototypes subject to a
conditional compilation definition. For example:

#ifndef NO_PROTOTYPES
int func(char *, long);
#endif

Then use the flag:

-DNO PROTOTYPES

when using cxref.

X86-8-15-88-5.0/2.3 - 8 - The Santa Cruz Operation

XENIXSystem V 2.3

3.13 cc(CP) Notes

3.13.1 Register Variables

Attempts to compile certain complex expressions that involve
pointer arithmetic and register variables may fail with an internal
compiler error.

Usually, removing the "register" storage class specifier from the
declarations avoids this problem, but occasionally you must
simplify the expression by splitting it into several, less complex,
expressions.

Note that only objects of type int, short, or char and the unsigned
versions of these types are candidates for register storage class in
large model programs. Unless such an item is accessed very
frequently, making it an "auto" rather than a "register" item
probably does not have much impact on the program's
performance.

If you do not wish to alter your source code, add this flag to your cc
command line to remove all register declarations from a program:

-Dregister=auto

3.13.2 -Zi Option

The -Zi option to cc(CP) cannot be used if function prototypes with
a variable number of arguments are present. If you have a
declaration such as:

int vargfunc(char *, oo.);

in your code, then the -Zi option cannot be used. If you wish to use
-Zi when prototypes with ellipses (oo.) are present, the prototype
should be conditionally declared as follows:

#ifndef DEBUG
int vargfunc(char *, ...);
#endif

X86-8-1S-88-S.0/2.3 - 9 - The Santa Cruz Operation

Release Notes

3.13.3 Variable Declarations

The error: Segmentation Violation: core dumped may occur if you
declare too many variables within a single declaration statement.
For example, the following text may cause the compiler to dump
core:

char *
xl, /* comment */
x2, /* more comment * /

x934; /* more comment * /

Twenty five variables in a declaration is a safe maximum. Break
longer declarations into two or more statements to avoid this
possible problem.

3.14 sdb(CP)

Programs that are to be debugged with sdb must be compiled and
linked with the following options:

cc -Zi or cc -g

ld -g

The -g option should only be used when invoking Id directly.

The following features of sdb that are . described m the
documentation are not supported in this release:

• Pattern matching for function and variable names. For
example,

x*/

should display the values of all variables with names
beginning with "x".

X86-8-15-88-5.0/2.3 - 10 - The Santa Cruz Operation

XENIX System V 2.3

• The"." command to redisplay the value of the last
variable typed.

• The command:

* <file

to read sdb commands in from a file works correctly only
when there is no space placed between the "<" character
and the file name.

3.15 ld

The -r option of ld(ep) does not work correctly for object files that
contain the additional symbol table information used by the
symbolic debugger. If you use the ·r option of ld to partially link
together several object modules that contain symbolic debugging
information, the code, data, and relocation information in the
resulting object module will be correct, but the symbolic debugging
information will be unusable.

3.16 irand480 and krand48()

The functions irand480 and krand480 are not supported in this
release.

3.17 asx(CP)

The pre-cmerge assembler is included with this release for those
users who have programs that require it. It is called /bin/asx and is
documented on the manual page asx(CP).

3.18 stdio.h

The buffer size used by the standard I/O library is now 1024 bytes.
This change is reflected in the standard I/O header file
/usr/include/ stdio.h where BUFSIZ is defined as 1024 bytes.

This change does not affect existing XENIX executable binaries.
However, it is important that any object modules that use standard
I/O functions and that were compiled using the old stdio.h with a
BUFSIZ of 512 bytes should be recompiled before they are linked
with the new libraries.

X86-8-1S-88-S.0/2.3 - 11 - The Santa Cruz Operation

Release Notes

An alternative is to include the file llib/compat/[SML]setbu[o on
the command line when you link your program. This enables the
new libraries to work correctly with object modules that assume a
BUFSIZ of 512 bytes.

You should take particular care when you install products on
XENIX that are in the form of linkable objects rather than
executable binaries. It is generally necessary to include
/lib/compat/[SML]setbujo in the link.

For example, if the installation procedure for a product includes a
link command such as:

cc -Mm -i -0 prog proglib.a progsub.o -ltermlib

You should edit it to read:

cc -MOm -i -0 prog proglib.a progsub.o /lib/compat/Msetbuf.o -ltermlib

Note that it is safe to include /lib/compat/[SML]setbujo, even if
the application was compiled with a standard I/O BUFSIZ of 1024
bytes. The only consequence is that your buffer size is reduced to
512 and the standard I/O package is slightly less efficient.

386 Development System users should also note that since their
default code generation mode is -M3e, they need to explicitly
specify -MO or -M2 when they link 8086 or 80286 code.

3.19 types.h

Some of the C language .h files require that <sys/types.h> be
included first. An error message generally occurs when a type is
used in an #include file but not declared. Often, the problem is
corrected by including <sys/types.h> earlier in the program.

3.20 malloc Issues

There are two versions of malloc distributed with the XENIX
Development System. The standard malloc is contained in the file
tlib/ libc .a. There is an alternate malloc in tlib/ libmalloc .a. Both are
documented under the malloc(CP) manual page.

X86-8-15-88-5.0/2.3 - 12 - The Santa Cruz Operation

XENIX System V 2.3

If your program uses many malloc and free calls, running the
program under the XENIX 386 Operating System may cause an
excessive page swapping problem as malloc must search the entire
list of allocated and free blocks. If you are using malloc and free
calls extensively, it is suggested that you use the alternate malloc
found in /Ubllibmalloc.a. To use Ilibllibmalloc.a, compile your
program with the -lmalloc flag on your cc(CP) command line. Note
that the alternate malloc found in Ilibllibrnalloc.a does not include
a large model version.

The alternate malloc maintains a separate list of free blocks and
may be faster, but data in any allocated block is immediately
overwritten when the block is declared free. The standard malloc
preserves data between consecutive free and malloc calls. Some
programs rely on this functionality of the standard malloc.

3.20.1 mallinfoO

Note that you must call mallocO at least once before calling
mallinfoO. Otherwise, calling mallinfoO may result in
unpredictable behavior.

4. Operating System Specific Software Notes

4.1 80386 Operating System

4.1.1 cc(CP) Defaults

The default code generation model for the 80386 is -M3e. (80386
with non-ANSI extensions enabled.) This default can be changed
by editing /etc!default/cc. See the cc(CP) manual page for details.

4.1.2 String Constants

The 386 C compiler has been extended to allow 4K bytes in string
constants. The compiler fails ungracefully if this limit is exceeded.
386 C compiler:

X86-8-15-88-5.0/2.3 - 13 - The Santa Cruz Operation

Release Notes

4.1.3 Variable Assignments

Assignments of the following form generate incorrect code when
compiled with optimization enabled:

int i;
register char *buf;

buf[i + i] = buf[i];
buf[i] = buf[i + i];

Note that if "buf" is not a register variable, or if the index
expression "i + i" contains any term other than "i", such as a
constant or another variable, correct code is generated. Thus:

buff i + i + 1] = buf[i];
buf[i + n] = buf[i];

both work correctly.

4.1.4 brkctl(S) Library

XENIX 386 does not support 386 processes which have more than
one data segment. For compatibility, a special library
(llibI386ISlibbrkctl.a) has been provided that maps brkctlO
functions into calls to sbrk(S). This provides for the most common
uses of brkctl(S), such as the allocation of additional memory.

Programs which rely on allocating . multiple data segments and
manipulating the sizes of those segments will need to be altered to
work under XENIX 386.

The following describes the functionality implemented by the 386
libbrkctl.a. Note in particular that the 386 brkctl(S) returns a near
pointer and that the third argument is also a near pointer. If you do
not wish to alter your source code when compiling for the 386 you
should include -Dfar[=string] on the cc(CP) command line. This
will cause the preprocessor to remove all "far" keywords from
your code.

X86-8-15-88-5.0/2.3 - 14 - The Santa Cruz Operation

#include <sys/brk.h>
char *brkctl(cmd, inc, ptr)
int cmd;
long inc;
char *ptr;

XENIX System V 2.3

When called from 386 processes brkctlO does not cause the
allocation or de-allocation of far data segments, it can only be used
to increase or decrease the memory allocation in the single data
segment available to 386 processes.

Any of the commands BR _ IMPSEG, BR _ ARGSEG or
BR _ NEWS~G can be used as they all have the same effect.

The ptr argument in the above program example is ignored.

It is unusual to allow the use of BR _ NEWSEG with 386 processes
since it is not possible to allocate additional data segments.
However, since BR _NEWSEG is commonly used in small and
middle model 86/286 processes to allocate additional memory it
was decided to allow BR _ NEWSEG but to make its functionality
the same as BR IMPSEG.

In order to link a 386 binary with this version of brkctlO you
should specify -Ibrkctl on the cc(CP) command line.

4.1.5 masm

In addition to supporting the 386 instruction set, the 386 version of
masm shipped with the 386 Development System has some minor
differences in source code syntax from previous versions. For
compatibility, the 86/286 masm has been included in this
distribution as Ibinlmasm86.

4.1.6 Memory Models

The only memory model supported for 386 code is "small" model.
Small model has two 32 bit segments; one for code and one for
data. Small, middle, large, and huge models are supported for
8086/286 code.

X86-8-15-88-5.0/2.3 - 15 - The Santa Cruz Operation

Release Notes

4.1.7 nm(CP)

The -n option of nm(CP) generates an error with long name lists.
To sort a long name list, use the command line:

nm executable I sort

instead of the -n option.

4.1.8 Stack Size

80386 programs have a variable sized stack that is expanded by the
kernel as needed. 8086/286 programs run under the 386 Operating
System have a fixed size stack. The default stack size for 8086/286
binaries is 4 Kilobytes unless the -F option of the linker was used.
Once compiled, you can change the stack size of an 8086/286
program using the -F option to fixhdr(C).

Preprocessor Names

Symbols which are used in #define, #ifdef and other preprocessor
commands must now conform with the same .rules as those for C
identifiers. They must begin with an alphabetic character or an
underscore and may only contain alphanumeric characters and the
underscore character.

Previous versions of the C compiler allowed other non
alphanumeric characters such as "." in preprocessor symbols.

Stricter Checking of Storage Class in Declarations

The ANSI standard requires that declarations and definitions of
functions and variables must have matching storage classes as well
as matching types. Typically, this causes problems in code when a
function is first used (and implicitly declares it as an "extern int")
and is later defined as "static int." ANSI requires that the first use
of the function be preceded by an explicit declaration. Thus:

X86-8-1S-88-S.0/2.3 - 16 - The Santa Cruz Operation

static int fooO; /*required by ANSI C * /

Program text

fooO;

static fooO

XENIX System V 2.3

The -Me option disables this strict checking of storage class.

4.1.9 sccs(CP) Line Size

There is a limit of 508 characters on any physical line of any file
placed under sccs. Writing a changed file with a line containing
more than 508 characters results in corruption of the file.

4.2 80286 Operating System

4.2.1 cc(CP) Defaults

The default code generation model is -MO (8086 small model).
This default can be changed by editing letcldefault/cc. See the
cc(CP) manual page for details.

4.2.2 hrkctl(S)

brkctl(S) is a XENIX specific system call that can be used by
86/286 processes to allocate memory in far data segments. (see
brkctl(S).)

The full functionality of brkctlO is only available to 8086/286
binaries running under the XENIX 286 or XENIX 386 Operating
Systems.

XENIX 86 does not support the allocation of additional data
segments, therefore when brkctlO requests that require this are
made by an 8086 binary running under XENIX 86 they will fail.
The -compat option of the C compiler can be used to link 8086
binaries with a special version of brkctlO (in llib/[SML]libbrkctl.a)
that satisfies requests for additional data segments under XENIX 86
by allocating shared memory segments.

)(86-8-15-88-5.0/2.3 - 17 - The Santa Cruz Operation

Release Notes

4.2.3 tty.h

In the file lusrlincludel sysltty.h, tJlroc is an:

int (far *t_proc)o

When including this file, be sure to enable near and far keywords
by using the -Me flag to cc(CP).

4.2.4 Id(CP)

The -S option of Id(CP) only accepts values up to 8192. Any
argument greater than 8192 returns the error message "segment
limit set too high".

4.2.5 Stack Size Limitations

The default stack for programs running under the XENIX 286
Operating System is a fixed size stack of 1000 hexadecimal bytes.
Use the -F flag to specify a different stack size. Variable stack size
is not supported by the XENIX 286 Operating System. Note that
you can change the stack size on a compiled program with the
fixhdr(C) command.

4.2.6 Floating-Point Exceptions

For compatibility reasons, floating-point exceptions (like dividing
by zero) are masked within the libc libraries for 286 binaries. 286
binaries should check the floating point status word for evidence of
masked exceptions.

X86-8-1S-88-S.0/2.3 - 18 - The Santa Cruz Operation

XENIX System V 2.3

5. Differences Between 286 and 386 Code Generation

In general there will be few problems in recompiling existing C
programs to run on the 80386. However, the following differences
between the 8086/80286 and the 80386 should be noted.

5.0.1 Size of Integers

386 integers are 32 bits whereas 86/286 integers are 16 bits. This
may cause problems in programs that exchange binary data with
other programs or programs that have to read binary data from
existing data files. Note that the signed and unsigned short data
types are 16 bits on both 86/286 and 386 processors.

5.0.2 Size of Pointers

386 small model code and data pointers are 32 bits. On the
8086/286, the size of pointers depends on the memory model.

5.0.3 Assembly language interface

The 386 assembly language interface is very similar to the 86/286
assembly language interface, but note that 386 C code may use up
to 3 register variables (esi, edi, ebx) whereas 86/286 code used at
most 2 variables (si, di). It is essential that 386 assembly language
routines preserve the contents of ebx as well as esi and edi.

5.0.4 Zp2 and Zp4 structure alignment

There are different rules for calculating the size of structures and
alignment of structure members on the 386 and the 86/286. These
differences are described in detail in Chapter 2 of the C User's
Guide.

The #pragma packO directive is supported by the 386 compiler.
This directive allows you to override the default structure packing
rules within a C source file.

You may specify pack(I), pack(2), or pack(4) after the #pragma
directive. This has the same effect as placing one of the -Zpl,
-Zp2, or -Zp4 command line arguments in your C compiler

X86-8-15-88-5.0/2.3 - 19 - The Santa Cruz Operation

Release Notes

command. packO with no arguments returns structure packing to
whatever was explicitly specified on the cc command line or the
default (4) if nothing was specified.

This directive is useful for insuring that structures have the same
alignment regardless of whether they are part of 286 or 386
binaries. Note that this directive is supported by both the 286 and
386 C compilers.

Note that the 80386 C libraries are compiled with the -Zp4 flag. It
is important that you compile any programs that pass information
to and from library functions and system calls in structures with ·the
-Zp4 flag. When you compile a program with -Zp4 set, you should
use the #pragma pack(2) construct to select two byte alignment
for any structures that need two byte alignment.

6. Documentation Errata

6.1 Device Driver Writer's Guide

There is an error on pages 6-1 to 6-2 in the examples for db _ allocO
and db_freeO. In the examples for each of these functions, you see
the following line:

struct devbuf tb[2];

This line should read:

struct devbuf tb[2], *ptb = tb;

Then, in the db _ allocO example, you see:

if(db_alloc(&tb, 2) == 0) {

This line should read:

if(db_alloc(&ptb, 2) == 0) {

In the db _freeO example, you see:

db_free(&tb, 2);

This line should read:

X86-8-15-88-5.0/2.3 - 20 - The Santa Cruz Operation

(' db_free(&ptb, 2);

6.2 cc(CP)

XENIXSystem V 2.3

The -0 flag to cc(CP) is documented as having the same function as
the -i flag. However, the -0 flag instructs the linker to produce an
impure non-split i/d binary.

6.3 dosld(CP)

The dosld(cp) man page IS Incorrect in stating that the -C flag
makes this utility case insensitive. This utility is case insensitive by
default. The -C flag makes this utility case sensitive.

6.4 direot(F)

The dirent(F) manual page is included with these Release Notes.
Please add this page to the (F) manual page section of your XENIX
User's Reference. This page describes the file formats related to
directory searching with the getdeots(S) system call.

6.S sigset(S)

The sigset(S) manual page is also included with these Release
Notes. Please add this page to the (S) manual page section of your
XENIX Programmer's Reference. This page describes various
signal maintenance routines.

6.6 curses(S)

The following functions should be documented in the curses(S)
manual page:

addkeyO
keypadO
dmpwinO
wattronO
wattroffO
wattrsetO

These functions and other curses features are currently

. X86-8-15-88-5.0!2.3 - 21 - The Santa Cruz Operation

Release Notes

documented in Chapter 7 of the XENIX C Library Guide.

X86-8-15-88-5.0/2.3 - 22 - The Santa Cruz Operation

DIRENT(F)

Name

dirent - file system independent directory entry

Syntax

#include <sys/types.h>
#include <sys/dirent.h>

Description

DIRENT(F)

Different file system types may have different directory entries. The
dirent structure defines a file system independent directory entry,
which contains information common to directory entries in different
file system types. A set of these structures is returned by the
getdents (S) system call.

The dirent structure is defined below.
struct dirent {

} ;

long
off t
unSigned short
char

d_ino;
d_off;
d_reclen;
d_name[l];

The d _ino is a number which is unique for each file in the file system.
The field d _off is the offset of that directory entry in the actual file
system directory. The field d _name is the beginning of the character
array giving the name of the directory entry. This name is null ter
minated and may have at most MAXNAMLEN characters. This
results in file system independent directory entries being variable
length entities. The value of d reclen is the record length of this
entry. This length is defined tobe the number of bytes between the
current entry and the next one, so that it will always result in the next
entry being on a long boundary.

Files

/usr/include/sys/dirent.h

See Also

getdents(S).

June 7,1988 Page 1

SIGSET(S) SIGSET(S)

Name

sigset, sighold, sigrelse, sigignore, sigpause - signal management rou
tines.

Syntax

#include <signal.h>

void (*sigset (sig, func»)()
int sig;
void (*func)();

int sighold (sig)
int sig;

int sigrelse (sig)
int sig;
int sigignore (sig)
int sig;
int sigpause (sig)
int sig;

Description

These functions provide signal management for application processes.
The sigset system call specifies the system signal action to be taken
upon receipt of signal sig. This action is either calling a process
signal-catching handler Junc or performing a system-defined action.

Sig can be assigned anyone of the following values except SIGKILL.
Machine- or implementation-dependent signals are not included (see
Notes below). Each value of sig is a macro, defmed in <signal.h>,
that expands to an integer constant expression.

SIGHUP
SIGINT
SIGQUIT*
SIGILL*
SIGTRAP*
SIGABRT*
SIGFPE*
SIGKILL
SIGSYS*
SIGPIPE
SIGALRM
SIGTERM
SIGUSRI
SIGUSR2
SIGCLD

November 7, 1988

hangup
interrupt
quit
illegal instruction (not held when caught)
trace trap (not held when caught)
abort
floating point exception
kill (cannot be caught or ignored)
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user,:"defined signal 1
user-defined signal 2
death of a child (see WARNING below)

Page 1

SIGSET(S)

SIGPWR
SIGPOLL

SIGSET(S)

power fail (see WARNING below)
selectable event pending (see NOTES below)

See below under SIG_DFL regarding asterisks (*) in the above list.

The following values for the system-defined actions of June are also
defined in <signal.h>. Each is a macro that expands to a constant
expression of type pointer to function returning void and has a unique
value that matches no declarable function.

SIG _ DFL -default system action
Upon receipt of the signal sig, the receiving process is to
be terminated with all of the consequences outlined in
exit (S). In addition a "core image" will be made in the
current working directory of the receiving process if sig is
one for which an asterisk appears in the above list and the
following conditions are met:

The effective user ID and the real user ID of the
receiving process are equal.

An ordinary file named core exists and is writable
or can be created. If the file must be created, it
will have the following properties:

a mode of 0666 modified by the file crea
tion mask [see umask(S)]

a file owner ID that is the same as the
effective user ID of the receiving process

a file group ID that is the same as the effec
tive group ID of the receiving process.

SIG_IGN -ignore signal
Any pending signal sig is discarded and the system signal
action is set to ignore future occurrences of this signal type.

SIG_HOLD-hold signal
The signal sig is to be held upon receipt. Any pending sig
nal of this type remains held. Onl y one signal of each type
is held.

Otherwise, June must be a pointer to a function, the signal-catching
handler, that is to be called when signal sig occurs. In this case, sigset
specifies that the process will call this function upon receipt of signal
sig. Any pending signal of this type is released. This handler address
is retained across calls to the other signal management functions listed
here.

November 7, 1988 Page 2

SIGSET(S) SIGSET(S)

When a signal occurs, the signal number sig will be passed as the only
argument to the signal-catching handler. Before calling the signal
catching handler, the system signal action will be set to SIG_HOLD.
During nonnal return from the signal-catching handler, the system sig
nal action is restored to June and any held signal of this type released.
If a non-local goto (/ongjmp) is taken, then sigrelse must be called to
restore the system signal action and release any held signal of this
type.

In general, upon return from the signal-catching handler, the receiving
process will resume execution at the point it was interrupted. How
ever, when a signal is caught during a read(S), a write (S), an open (S),
or an ioetl (S) system call during a sigpause system call, or during a
waiteS) system call that does not return immediately due to the
existence of a previously stopped or zombie process, the signal
catching handler will be executed. Then the interrupted system call
may return a -1 to the calling process with errno set to EINTR.

sighold and sigrelse are used to establish critical regions of code. sig
hold is analogous to raising the priority level and deferring or holding
a signal until the priority is lowered by sigrelse. sigreise restores the
system signal action to that specified previously by sigset.

sigignore sets the action for signal sig to SIG_IGN (see above).

sigpause suspends the calling process until it receives a signal, the
same as pause(S). However, if the signal sig had been received and
held, it is released and the system signal action taken. This system
call is useful for testing variables that are changed on the occurrence
of a signal. The correct usage is to use sighold to block the signal
first, then test the variables. If they have not changed, then call sig
pause to wait for the signal. sigset will fail if one or more of the fol
lowing is true:

[EINVAL]

[EINTR]

See Also

Sig is an illegal signal number (including SIG
KILL) or the default handling of sig cannot be
changed.

A signal was caught during the system call sig
pause.

kill(S), pause(S), signal(S), waiteS), setjmp(S).

Diagnostics

Upon successful completion, sigset returns the previous value of the
system signal action for the specified signal sig. Otherwise, a value of
SIG_ERR is returned and errno is set to indicate the error. SIG_ERR is

November 7, 1988 Page 3

SIGSET (S) SIGSET(S)

defined in '<signal.h>.

For the other functions, upon successful completion, a value of 0 is
returned. Otherwise, a value of -1 is returned and errno is set to indi
cate the error.

Notes

SIGPOLL is issued when a file descriptor corresponding to a
STREAMS [see intro(S)] file has a "selectable" event pending. A
process must specifically request that this· signal be sent using the
CSETSIG ioctl(S) call. Otherwise, the process will never receive SIG
POLL.

For portability, applications should use only the symbolic names of
signals rather than their values and use only the set of signals defined
here. The action for the signal SIGKILL cannot be changed from the
default system action.

Specific implementations may have other implementation-de fined sig
nals. Also, additional implementation-de fined arguments may be
passed to the signal-catching handler for hardware-generated signals.
For certain hardware-generated signals, it may not be possible to
resume execution at the point of interruption.

The signal type SIGSEGV is reserved for the condition that occurs on
an invalid access to a data object. If an implementation can detect
this condition, this signal type should be used.

The other signal management functions, signal(S) and pause (S),
should not be used in conjunction with these routines for a particular
signal type.

Warnings

Two signals that behave differently from the signals described above
exist in this release of the system:

SIGCLD
SIGPWR

death of a child (reset when caught)
power fail (not reset when caught)

For these signals, Junc is assigned one of three values: SIG_DFL,
SIG_IGN, or a Junction address. The actions prescribed by these
values are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

November 7, 1988 Page 4

SIGSET(S) SIGSET (S)

SIG _ IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the cal
ling process's child processes will not create zombie
processes when they tenninate [see exit (S)].

sfunction address - catch signal
If the signal is SIGPWR, the action to be taken is the same
as that described above for June equal to Junction address.
The same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching function,
any received SIGCLD signals will be ignored. (This is the
default action.)

The SIGCLD affects two other system calls [wait(S), and exit(S)] in
the following ways:

wait If the June value of SIGCLD is set to SIG_IGN and a wait is
executed, the wait will block until all of the calling
process's child processes terminate; it will then return a
value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the Junc value of
SIGCLD is set to SIG_IGN, the exiting process will not
create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the preceding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

November 7, 1988 Page 5

10-31-88

014-030-008

P.O.22858
PAT 050

