
Open Desktop~
System

Services

QlJ OPEN
_ '" DESKTOP.

The Complete Graphical Operating System

seQ UNIX® System Vj386

Operating System

User's Guide

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 Microsoft
Corporation.
All rights reserved.
Portions © 1989 AT&T.
All rights reserved.
Portions © 1983,1984, 1985, 1986, 1987, 1988, 1989 The Santa Cruz Operation, Inc.
All rights reserved.

No part of this pUblication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95062, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES
GOVERNMENT IS SUBJECT TO RESTRICTIONS AS SET FORTH IN
SUBPARAGRAPH (c) (1) OF THE COMMERCIAL COMPUTER SOFTWARE -
RESTRICTED RIGHTS CLAUSE AT FAR 52.227-19 OR SUBPARAGRAPH (c) (1)
(ii) OF THE RIGHTS IN TECHNICAL DATA AND COMPUTER SOFTWARE
CLAUSE AT DFARS 52.227-7013. "CONTRACTOR! MANUFACTURER" IS THE
SANTA CRUZ OPERATION, INC., 400 ENCINAL STREET, P.O. BOX 1900, SANTA
CRUZ, CALIFORNIA, 95061, U.S.A.

Microsoft, MS-DOS, and XENIX are trademarks of Microsoft Corporation.

SCQ Document Number: 5-22-89-6.0/3.2.0C

Contents

1 Introduction

Overview 1-1
About This Guide 1-2
Notational Conventions 1-3

2 vi: A Text Editor

Introduction 2-1
Demonstration 2-2
Editing Tasks 2-18
Solving Common Problems 2-55
Setting Up Your Environment 2-57
Summary of Commands 2-64

3 ed

Introduction 3-1
Demonstration 3-2
Basic Concepts 3-3
Tasks 3-4
Context and Regular Expressions 3-33
Speeding Up Editing 3-50
Cutting and Pasting with the editor 3-55
Editing Scripts 3-57
Summary of Commands 3-58

4 mail

Introduction 4-1
Basic Concepts 4-2
Using mail 4-9
LeavingComposeModeTemporarily 4-18
Setting Up Your Environment 4-21
Using Advanced Features 4-24

5 Communicating with Other Sites

Introduction 5-1
Using Micnet 5-2
UsingUUCP 5-6
Logging in to Remote Systems 5-15

-i-

6

7

bc: A Calculator

Introduction 6-1
Demonstration 6-2
Tasks 6-5
Language Reference

The Shell

Introduction 7-1
Basic Concepts 7-2
Shell Variables 7-11
The Shell State 7-18

6-16

A Command's Environment 7-20
Invoking the Shell 7 -22
Passing Arguments to Shell Procedures 7-23
Controlling the Flow of Control 7-26
Special Shell Commands 7-40
Creation and Organization of Shell Procedures 7-44
More About Execution Flags 7-46
Supporting Commands and Features 7-47
Effective and Efficient Shell Programming 7-55
Shell Procedure Examples 7-60
Shell Grammar 7-68

8 The C-Shell

Introduction 8-1
Invoking the C-shell 8-2
Using Shell Variables 8-4
Using the C-Shell History List 8-7
Using Aliases 8-10
Redirecting Input and Output 8-12
Creating Background and Foreground Jobs 8-13
Using Built-In Commands 8-14
Creating Command Scripts 8-17
UsingtheargvVariable 8-18
Substituting Shell Variables 8-19
Using Expressions 8-21
Using the C-Shell: A Sample Script 8-22
Using Other Control Structures 8-25
Supplying Input to Commands 8-26
Catching Interrupts 8-27
Using Other Features 8-28
Starting a Loop at a Terminal 8-29
Using Braces with Arguments 8-31
Substituting Commands 8-32
Special Characters 8-33

-ii-

9 Using A Secure System

Introduction 9-1
LoginSecurity 9-3
Using Commands On A Secure System 9-7
Recommended Security Practices 9-11
Data Encryption-Commands and Descriptions 9-15

10 Simple Programming with awk

Introduction 10-1
Basicawk 10-2
Patterns 10-11
Actions 10-18
Output 10-34
Input 10-39
Using awk with Other Commands and the Shell 10-45
Example Applications 10-48
awk Summary 10-53

11 Using the Stream Editor: sed

Introduction 11-1
OverallOperation 11-2
Addresses 11-4
Functions 11-6

12 Using the Job Scheduling Commands: at, cron and batch

Introduction 12-1
Automatic Program Execution withcron 12-2
Delaying Program Execution with batch and at 12-4

13 Using DOS Accessing Utilities

Introduction 13-1
Accessing DOS Files with the dos(C) Utilities 13-2
Using Mounted DOS Filesystems 13-5

-iii -

Chapter 1

Introduction

Overview 1-1

About This Guide 1-2

Notational Conventions 1-3

Overview

Overview
This guide provides extensive infonnation on several of the most useful
UNIX facilities, including mail, the vi and ed text editors, uuep, mienet
and be, the UNIX "desktop calculator." In addition, the guide includes
infonnation on the two UNIX "shells"; the Bourne shell and the C shell.

Introduction 1-1

About This Guide

About This Guide
This guide is organized as follows:

Chapter 1, "Introduction" provides an overview of the contents of this
guide and gives a list of the notational conventions used throughout.

Chapter 2, "vi: A Text Editor" explains how to use the UNIX fullscreen
editor, vi.

Chapter 3, "ed" explains how to use the UNIX line editor, ed.

Chapter 4, "mail" explains how to use the UNIX electronic mail facility.

Chapter 5, "Communicating with Other Sites" explains how to transfer
files to and from and how to execute commands on other computer sites.
These other sites might be XENIX or UNIX sites, but they do not need to
be. They can, for instance, be MS-DOSTM sites.

Chapter 6, "bc: A Calculator" explains how to use be, a sophisticated
calculator program.

Chapter 7, "The Shell" explains how to use the powerful features of the
UNIX Bourne shell.

Chapter 8, "The C-Shell" explains how to use the powerful features of
the UNIX C shell.

Chapter 9, "Using A 1iusted System" discusses the security features that
may be in use at your site and how to work with them.

Chapter 10, "Simple Programming With Awk" shows how to write sim
ple programs that can be used to manipulate files and data.

Chapter 11, "Using The Stream Editor: sed" demonstrates automated file
editing.

Chapter 12, "Using The Job Scheduling Commands: cron, at, and batch"
demonstrates how to schedule or delay the execution of programs and
utilities.

Chapter 13, "Using The DOS Accessing Utilities" explains how to
access DOS files indirectly using the DOS utilities, or directly using
mounted DOS filesystems.

1-2 User's Guide

Notational Conventions

Notational Conventions
This guide uses a number of notational conventions to describe the syntax
of UNIX commands:

Initial Capitals

boldface

Introduction

Initial Capitals indicate the name of a com
mand or mode. When a command is intro
duced it is followed by the keystroke that
invokes it, (i.e. the Insert (i) command).

Boldface indicates a command, option, flag,
or program name to be entered as shown.
keystrokes are boldfaced when they indicate
a command to enter as shown, (i.e. enter the
i command and press (Return». Commands
that are issued while within a program, such
as a file editor like vi(C), are not boldfaced
so they will not be confused with commands
given to the shell.

Boldface indicates the name of a UNIX util
ity or library routine. (To find more infor
mation on a given utility, consult the
"Alphabetized List" in the appropriate
Reference for the manual page that
describes it.)

1-3

I

Notational Conventions

italics

I

screen font

[]

1-4

Italics indicate a filename. This pertains to
library include filenames (i.e. stdio.h), as
well as, other filenames (i.e. letclttys).

Italics indicate a placeholder for a com
mand argument. When entering a command,
a placeholder must be replaced with an ap
propriate filename, number, or option.

Italics indicate a specific identifier, sup
plied for variables and functions, when
mentioned in text.

Italics indicate a reference to part of an
example.

Italics indicate emphasized words or
phrases in text.

This font is used for screen displays and
messages.

Brackets indicate that the enclosed item is
optional. If you do not use the optional
item, the program selects a default action to
carry out.

Brackets indicate the position of the cursor
in text examples.

Ellipses indicate that you can repeat the
preceding item any number of times.

Vertical ellipses indicate that a portion of a
program example is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a
word rather than a command.

User's Guide

Chapter 2

vi: A Text Editor

Introduction 2-1

Demonstration 2-2
Entering the Editor 2-2
Inserting Text 2-3
Repeating a Command 2-4
Undoing a Command 2-4
Moving the Cursor 2-5
Deleting 2-6
Searching for a Pattern 2-10
Searching and Replacing 2-11
Leaving vi 2-13
Adding Text From Another File 2-13
Leaving vi Temporarily 2-14
Changing Your Display 2-15
Canceling an Editing Session 2-16

Editing Tasks 2-18
How to Enter the Editor 2-18
Moving the Cursor 2-19
Moving Around in a File: Scrolling 2-22
Inserting Text Before the Cursor: i and I 2-23
Appending After the Cursor: a and A 2-24
Correcting 'JYping Mistakes 2-25
Opening a New Line 2-25
Repeating the Last Insertion 2-25
Inserting Text From Other Files 2-25
Inserting Control Characters into Text 2-30
Joining and Breaking Lines 2-30
Deleting a Character: x and X 2-30
Deleting a Word: dw 2-31
Deleting a Line: D and dd 2-31
Deleting an Entire Insertion 2-32
Deleting and Replacing Text 2-32
Moving Text 2-36
Searching: / and? 2-40
Searching and Replacing 2-41
Pattern Matching 2-43

Undoing a Command: u 2-46
Repeating a Command:. 2-47
Leaving the Editor 2-48
Editing a Series of Files 2-49
Editing a New File Without Leaving the Editor 2-51
Leaving the Editor Temporarily: Shell Escapes 2-52
Performing a Series of Line-Oriented Commands: Q 2-53
Finding Out What File You're In 2~54
Finding Out What Line You're On 2-54

Solving Common Problems 2-55

Setting Up Your Environment 2-57
Setting the Terminal Type 2-57
Setting Options: The set Command 2-58
Displaying Tabs and End-of-Line: list 2-59
Ignoring Case in Search Commands: ignorecase 2-59
Displaying Line Numbers: number 2-59
Printing the Number of Lines Changed: report 2-60
Changing the Terminal Type:term 2-60
Shortening Error Messages: terse 2-60
Thrning Off Warnings: warn 2-61
Permitting Special Characters in Searches: nomagic 2-61
Limiting Searches: wrapscan 2-61
Turning on Messages: mesg 2-61
Mapping Keys 2-62
Abbreviating Strings 2-62
Customizing Your Environment: The .exrc File 2-63

Summary of Commands 2-64

Introduction

Introduction
Any ASCII text file, such as a program or document, may be created and
modified using a text editor. There are two text editors available on UNIX
systems, ed and vi. ed is discussed in the "ed" chapter of this manual.

vi (which stands for "visual") combines line-oriented and screen
oriented features into a powerful set of text editing operations that will
satisfy any text editing need.

The first part of this chapter is a demonstration that gives you some
hands-on experience with vi. It introduces the basic concepts you must be
familiar with before you can really learn to use vi, and shows you how to
perform simple editing functions. The second part is a reference that
shows you how to perform specific editing tasks. The third part describes
how to set up your vi environment and how to set optional features. The
fourth part is a summary of commands.

Because vi is such a powerful editor, it has many more commands than
you can learn at one sitting. If you have not used a text editor before, the
best approach is to become thoroughly comfortable with the concepts and
operations presented in the demonstration . section, then refer to the
second part for specific tasks you need to perform. All the steps needed to
perform a given task are explained in each section, so some information is
repeated several times. When you are familiar with the basic vi com
mands you can easily learn how to use the more advanced features.

If you have used a text editor before, you may want to tum directly to the
task-oriented part of this chapter. Begin by learning the features you will
use most often. If you are an experienced user of vi you may prefer to use
vi(C) in the User's Reference instead of this chapter.

This chapter covers the basic text editing features of vi. For more
advanced topics, and features related to editing programs, refer to vi(C) in
the User's Reference.

vi: A Text Editor 2-1

Demonstration

Demonstration
The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before you can
learn more advanced features. You will learn how to enter and exit the
editor, insert and delete text, search for patterns and replace them, and
how to insert text from other files. This demonstration should take one
hour. Remember that the best way to learn vi is to actually use it, so don't
be afraid to experiment.

Before you start the demonstration, make sure that your terminal has been
properly set up. See the section "Setting the Terminal 'JYpe," for more
information about setting up your terminal for use with vi.

Entering the Editor

To enter the editor and create a file named temp, enter:

vi temp

Your screen will look like this:

"temp" [New file)

Note that we show a twelve-line screen to save space. In reality, vi uses
whatever size screen you have.

You are initially editing a copy of the file. The file itself is not altered
until you save it. Saving a file is explained later in the demonstration.
The top line of your display is the only line in the file and is marked by
the cursor, shown above as an underline character. In this chapter, when
the cursor is on a character that character will be enclosed in square
brackets ([]).

2-2 User's Guide

Demonstration

The line containing the cursor is called the current line. The lines con
taining tildes are not part of the file: they indicate lines on the screen
only, not real lines in the file.

Inserting Text

To begin, create some text in the file temp by using the Insert (i) com
mand. To do this, press:

Next, enter the following five lines to give yourself some text to experi
ment with. Press (Return) at the end of each line. If you make a mistake,
use the (BKSP) key to erase the error and enter the word again.

Files contain text,
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press the (ESC) key when you are finished.

Like most vi commands, the i command is not shown (or "echoed") on
your screen. The command itself switches you from Command mode to
Insert mode.

When you are in Insert mode every character you enter is displayed on the
screen. In Command mode the characters you enter are not placed in the
file as text; they are interpreted as commands to be executed on the file. If
you are not certain which mode you are in, press (ESC) until you hear the
bell. When you hear the bell you are in Command mode.

Once in Insert mode, the characters you enter are inserted into the file;
they are not interpreted as vi commands. To exit Insert mode and reenter
Command mode you will always press (ESC). This switching between
modes occurs often in vi, and it is important to get used to it now.

vi: A Text Editor 2-3

EJ

Demonstration

Repeating a Command

Next comes a command that you will use frequently in vi: the Repeat
command. The Repeat command repeats the most recent Insert or Delete
command. Since we have just executed an Insert command, the Repeat
command repeats the insertion, duplicating the inserted text. The Repeat
command is executed by entering a period (.) or "dot" . So, to add five
more lines of text, enter ".". The Repeat command is repeated relative to
the location of the cursor and inserts text below the current line. (Remem
ber, the current line is always the line containing the cursor.) After you
enter dot (.), your screen will look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Undoing a Command

Another command which is very useful (and which you will need often in
the beginning) is the Undo (u) command. Press

u

and notice that the five lines you just finished inserting are deleted or
"undone".

2-4 User's Guide

Files contain text.
Text contains-l4nes.
Lines contain characters.
Characters form words.
Words form text.

Now enter:

u

Demonstration

again, and the five lines are reinserted! This undo feature can be very
useful in recovering from inadvertent deletions or insertions.

Moving the Cursor

Now let's learn how to move the cursor around on the screen. In addition
to the arrow keys, the following letter keys also control the cursor:

h Left

Right

k Up

j Down

The letter keys are chosen because of their relative positions on the key
board. Remember that the cursor movement keys only work in Command
mode.

Try moving the cursor using these keys. (First make sure you are in Com
mand mode by pressing the (ESC) key.) Then, enter the H command to
place the cursor in the upper left comer of the screen. Then enter the L
command to move to the lowest line on the screen. (Note that case is sig
nificant in our example: L moves to the lowest line on the screen; while I
moves the cursor forward one character.) Next, try moving the cursor to
the last line in the file with the goto command, G. If you enter 2G, the
cursor moves to the beginning of the second line in the file; if you have a
10,000 line file, and enter 8888G, the cursor goes to the beginning of line
8888. (If you have a 600 line file and enter 800G the cursor does not
move.)

vi: A Text Editor 2-5

Demonstration

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement commands you
might want to try out are:

w Moves forward a word

b Backs up a word

o Moves to the beginning of a line

$ Moves to the end of a line

You can move through many lines quickly with the scrolling commands:

{CTL)u

{CTL)d

{CTL)f

{CTL)b

Scrolls up 1/2 screen

Scrolls down 1/2 screen

Scrolls forward one screenful

Scrolls backward one screenful

Deleting

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can
be combined with cursor movement commands, as explained below. The
most common Delete commands are:

2-6

dd Deletes the current line (the line the cursor is on),
regardless of the location of the cursor in the line.

dw Deletes the word above the cursor. If the cursor is in the
middle of the word, deletes from the cursor to the end of
the word.

x Deletes the character above the cursor.

d$ Deletes from the cursor to the end of the line.

D Deletes from the cursor to the end of the line.

dO Deletes from the cursor to the start of the line.

Repeats the last change. (Use this only if your last com
mand was a deletion.)

User's Guide

Demonstration

To learn how all these commands work, we will delete various parts of
the demonstration file. To begin, press (ESC) to make sure you are in
Command mode, then move to the first line of the file by entering:

IG

At first, your file should look like this:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

To delete the first line, enter:

dd

Your file should now look like this:

[Tlext contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the word the cursor is sitting on by entering:

dw

vi: A Text Editor 2-7

Demonstration

After deleting, your file should look like this:

[c]ontains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing:

x

This leaves:

[o]ntains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter a w command to move your cursor to the beginning of the
word lines on the first line. Then, to delete to the end of the line, enter:

d$

2-8 User's Guide

Your file looks like this:

ontains
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Demonstration

To delete all the characters on the line before the cursor enter:

dO

This leaves a single space on the line:

Lines contain characters.
Files contain text.
Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
Characters form words.
Words form text.

For review, let's restore the first two lines of the file.

Press i to enter Insert mode, then enter:

Files contain text.
Text contains lines.

Press (ESC) to go back to Command mode.

vi: A Text Editor 2-9

Demonstration

Searching for a Pattern

You can search forward for a pattern of characters by entering a slash (f)
followed by the pattern you are searching for, terminated by a (Return).
For example, make sure you are in Command mode (press (ESC»), then
press

H

to move the cursor to the top of the screen. Now, enter:

Ichar

Do not press (Retum) yet. Your screen should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press (Return). The cursor moves to the beginning of the word characters
on line three. To search for the next occurrence of the pattern char, press
n (as in "next") . This will take you to the beginning of the word charac
ters on the eighth line. If you keep pressing "n" vi searches past the end
of the file, wraps around to the beginning, and again finds the char on line
three.

Note that the slash character and the pattern that you are searching for
appear at the bottom of the screen. This bottom line is the vi status line.

The status line appears at the bottom of the screen. It is used to display
information, including patterns you are searching for, line-oriented com
mands (explained later in this demonstration), and error messages.

2-10 User's Guide

Demonstration

For example, to get status information about the file, press (CTL)g. Your
screen should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain [c)haracters.
Characters form words.
Words form text.

"temp" [Modified) line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are edit
ing' whether it has been modified, the current line number, the number of
lines in the file, and your location in the file as a percentage of the number
of lines in the file. The status line disappears as you continue working.

Searching and Replacing

Let's say you want to change all occurrences of text in the demonstration
file to documents. Rather than search for text, then delete it and insert
documents, you can do it all in one command. The commands you have
learned so far have all been screen-oriented. Commands that can perform
more than one action (searching and replacing) are line-oriented com
mands.

Screen-oriented commands are executed at the location of the cursor. You
do not need to tell the computer where to perform the operation; it takes
place relative to the cursor. Line-oriented commands require you to
specify an exact location (called an "address") where the operation is to
take place. Screen-oriented commands are easy to enter, and provide
immediate feedback; the change is displayed on the screen. Line
oriented commands are more complicated to enter, but they can be exe
cuted independent of the cursor, and in more than one place in a file at a
time.

All line-oriented commands are preceded by a colon which acts as a
prompt on the status line. Line-oriented commands themselves are
entered on this line and terminated with a (Return).

vi: A Text Editor 2-11

Demonstration

In this chapter, all instructions for line-oriented commands will include
the colon as part of the command.

To change text to documents, press (ESC) to make sure you are in Com
mand mode, then enter:

: 1 ,$s/text/documents/g

This command means "From the first line (1) to the end of the file ($),
find text and replace it with documents (s/text/documentsj) everywhere it
occurs on each line (g)".

Press (Return). Your screen should look like this:

Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
[W]ords form documents.

Note that Text in lines two and eight was not changed. Case is significant
in searches.

Just for practice, use the Undo command to change documents back to
text. Press:

u

2-12 User's Guide

Your screen now looks like this:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Leaving vi

Demonstration

All of the editing you have been doing has affected a copy of the file, and
not the file named temp that you specified when you invoked vi. To save
the changes you have made, exit the editor and return to the UNIX shell,
enter:

:x

Remember to press (Return). The name of the file, and the number of lines
and characters it contains are displayed on the status line:

"temp" [New file] 10 lines, 214 characters

Then the UNIX prompt appears.

Adding Text From Another File

In this section we will create a new file, and insert text into it from
another file. First, create a new file named practice by entering:

vi practice

vi: A Text Editor 2-13

Demonstration

This file is empty. Let's copy the text from temp and put it in practice
with the line-oriented Read command. Press (ESC) to make sure you are
in Command mode, then enter:

:r temp

Your file should look like this:

[Fliles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

The text from temp has been copied and put in the current file practice.
There is an empty line at the top of the file. Move the cursor to the empty
line and delete it with the dd command.

Leaving vi Temporarily

vi allows you to execute commands outside of the file you are editing,
such as date. To find out the date and time, enter:

:!date

2-14 User's Guide

Demonstration

Press (Return). This displays the date, then prompts you to press (Return)
to reenter Command mode. Go ahead and try it. Your screen should look
similar to this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

: !date
Mon Jan 9 16:33:37 PST 1985
[Press return to continuel

Changing Your Display

Besides the set of editing commands described above, there are a number
of options that can be set either when you invoke vi, or later when editing.
These options allow you to control editing parameters such as line num
ber display, and whether or not case is significant in searches. In this sec
tion we will learn how to turn on line numbering, and how to look at the
current option settings.

To turn on automatic line numbering, enter:

:setnumber

vi: A Text Editor 2-15

Demonstration

Press {Return}. Your screen is redrawn, and line numbers appear to the
left of the text. Your screen looks like this:

1 Files contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.
6 Files contain text.
7 Text contains lines.
8 Lines contain characters.
9 Characters form words.

10 Words form text.

You can get a complete list of the available options by entering:

:set all

and pressing (Return). Setting these options is described in the section
"Setting Up Your Environment," but it is important that you be aware of
their existence. Depending on what you are working on, and your own
preferences, you will want to alter the default settings for many of these
options.

Canceling an Editing Session

Finally, to exit vi without saving the file practice, enter:

:q!

and press (Return). This cancels all the changes you have made to prac
tice and, since it is a new file, deletes it. The prompt appears. If practice
had already existed before this editing session, the changes you made
would be disregarded, but the file would still exist.

2-16 User's Guide

Demonstration

This completes the demonstration. You have learned how to get in and
out of vi, insert and delete text, move the cursor around, make searches
and replacements, how to execute line-oriented commands, copy text
from other files, and cancel an editing session.

There are many more commands to learn, but the fundamentals of using
vi have been covered. The following sections will give you more detailed
information about these commands and about other vi commands and fea
tures.

vi: A Text Editor 2-17

Editing Tasks

Editing Tasks
The following sections explain how to perfonn common editing tasks. By
following the instructions in each section you will be able to complete
each task described. Features that are needed in several tasks are
described each time they are used, so some infonnation is repeated.

How to Enter the Editor

There are several ways to begin editing, depending on what you are plan
ning to do. This section describes how to start, or "invoke" the editor
with one filename. To invoke vi on a series of files, see the section "Edit
ing a Series of Files. ' ,

With a Filename

The most common way to enter vi is to enter the command vi and the
name of the file you wish to edit:

vi filename

Iffilename does not already exist, a new, empty file is created.

At a Particular Line

You can also enter the editor at a particular place in a file. For example, if
you wish to start editing a file at line 100, enter:

vi +100 filename

The cursor is placed at line 1000ffilename.

2-18 User's Guide

Editing Tasks

At a Particular Word

If you wish to begin editing at the first occurrence of a particular word,
enter:

vi +/word filename

The cursor is placed at the first occurrence of word. For example, to begin
editing the file temp at the the first occurrence of contain, enter:

vi +/contain temp

Moving the Cursor

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.

Moving the Cursor by Characters: h, I, f, F, t, T, (Space), (BKSP)

The (Space) bar and the I key move the cursor forward a specified number
of characters. The (BKSP) key and the h key move it backward a specified
number of characters. If no number is specified, the cursor moves one
character. For example, to move backward four characters, enter:

4h

You can also move the cursor to a designated character on the current
line. F moves the cursor back to the specified character, f moves it for
ward. The cursor rests on the specified character. For example, to move
the cursor backward to the nearest p on the current line, enter:

Fp

To move the cursor forward to the nearest p, enter:

fp

vi: A Text Editor 2-19

Editing Tasks

The t and T keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the
cursor back to the space next to the nearest p in the current line, enter:

If the p were in the word telephone, the cursor would sit on the h.

The cursor always remains on the same line when you use these com
mands. If you specify a number greater than the number of characters on
the line, the cursor does not move beyond the beginning or end of that
line.

Moving the Cursor by Lines: j, k

The j key moves the cursor down a specified number of lines, and the k
key moves it up. If no number is specified, the cursor moves one line. For
example, to move down three lines, enter:

3j

Moving the Cursor by Words: w, W, b, B, e, E

The w key moves the cursor forward to the beginning of the specified
number of words. Punctuation and nonalphabetic characters (such as
!@#$%A&*(L+{ Hr!\'<>!) are considered words, so if a word is fol
lowed by a comma the cursor will count the comma in the specified num
ber.

For example, your cursor rests on the first letter of this sentence:

No, I didn't know he had returned.

If you press:

6w

the cursor stops on the k in know.

2-20 User's Guide

Editing Tasks

W works the same way as w, but includes punctuation and nonalphabetic
characters as part of the word. Using the above example, if you press:

6W

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified num
ber of words. The cursor is placed on the last letter of the word. The e
command counts punctuation and nonalphabetic characters as separate
words; E does not.

B and b move the cursor back to the beginning of a specified number of
words. The cursor is placed on the first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B
does not. Using the above example, if the cursor is on the r in returned,
enter:

4b

and the cursor moves to the tin didn't.

Enter:

4B

and the cursor moves to the first d in didn't.

The w, W, b and B commands will move the cursor to the next line if that
is where the designated word is, unless the current line ends in a space.

Moving the Cursor by Lines

Forward: j, (CTL)n, +, (Return), LINEFEED, $

The (Return), LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, to
move the cursor forward six lines, enter:

6+

The j and (C1L)n keys move the cursor forward a specified number of
lines. The cursor remains in the same place on the line, unless there is no
character in that place, in which case it moves to the last character on the

vi: A Text Editor 2-21

Editing Tasks

line. For example, in the following two lines if the cursor is resting on the
e in characters, pressing j moves it to the period at the end of the second
line:

Lines contain characters.
Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of
lines. For example, to move the cursor to the last character of the line four
lines down from the current line, enter:

4$

Backward: k, (CTL)p

(CTL)p and k move the cursor backward a specified number of lines,
keeping it on the same place on the line. For example, to move the cursor
backward four lines from the current line, enter:

4k

Moving the Cursor on the Screen: H, M, L

The H, M and L keys move the cursor to the beginning of the top, middle
and bottom lines of the screen, respectively.

Moving Around in a File: Scrolling

The following commands move the file so different parts can be displayed
on the screen. The cursor is placed on the first letter of the last line
scrolled.

Scrolling Up Part of the Screen: (CTL)u

(C'lL)u scrolls up one-half screen.

2-22 User's Guide

Editing Tasks

Scrolling Up the Full Screen: (CTL)b

(C1L)b scrolls up a full screen.

Scrolling Down Part of the Screen: (CTL)d

(C1L)d scrolls down one-half screen.

Scrolling Down a Full Screen: (CTL)f

(C1L)f scrolls down a full screen.

Placing a Line at the Top of the Screen: z

To scroll the current line to the top of the screen, press:

z

then press (Return). To place a specific line at the top of the screen, pre
cede the z with the line number, as in

33z

Press (Return), and line 33 scrolls to the top of the screen. For information
on how to display line numbers, see the section "Displaying Line Num
bers: number."

Inserting Text Before the Cursor: i and I

You can begin inserting text before the cursor anywhere on a line, or at
the beginning of a line. In order to insert text into a file, you must be in
Insert mode. To enter Insert mode press:

vi: A Text Editor 2-23

I

Editing Tasks

The "i" does not appear on the screen. Any text typed after the "i"
becomes part of the file you are editing. To leave Insert mode and reenter
Command mode, press (ESC). For more explanation of modes in vi, see
the section "Inserting Text."

Anywhere on a Line: i

To insert text before the cursor, use the i command. Press the i key to
enter Insert mode (the "i" does not appear on your screen), then begin
entering your text. To leave Insert mode and reenter Command mode,
press (ESC).

At the Beginning of the Line: I

Using an uppercase "I" to enter Insert mode also moves the cursor to the
beginning of the current line. It is used to start an insertion at the begin
ning of the current line.

Appending After the Cursor: a and A

You can begin appending text after the cursor anywhere on a line, or at
the end of a line. Press (ESC) to leave Insert mode and reenter Command
mode.

Anywhere on a Line: a

To append text after the cursor, use the a command. Press the a key to
enter Insert mode (the "a" does not appear on your screen), then begin
entering your text. Press (ESC) to leave Insert mode and reenter Command
mode.

At the end of a Line: A

Using an uppercase "A" to enter Insert mode also moves the cursor to the
end of the current line. It is useful for appending text at the end of the
current line.

2-24 User's Guide

Editing Tasks

Correcting Typing Mistakes

If you make a mistake while you are typing, the simplest way to correct it
is with the (BKSP) key. Backspace across the line until you have back
spaced over the mistake, then retype the line. You can only do this, how
ever, if the cursor is on the same line as the error. See the sections
"Deleting a Character: x and X" through "Deleting an Entire Insertion"
for other ways to correct typing mistakes.

Opening a New Line

To open a new line above the cursor, press O. To open a new line below
the cursor, press o. Both commands place you in Insert mode, and you
may begin entering immediately. Press (ESC) to leave Insert mode and
reenter Command mode.

You may also use the (Return) key to open new lines above and below the
cursor. To open a line above the cursor, move the cursor to the beginning
of the line, press i to enter Insert mode, then press (Return). (For informa
tion on how to move the cursor, see the section "Moving the Cursor.") To
open a line below the cursor, move the cursor to the end of the current
line, press i to enter Insert mode, then press (Return).

Repeating the Last Insertion

(CTL)@ repeats the last insertion. Press i to enter Insert mode, then press
(CTL)@.

(CTL)@ only repeats insertions of 128 characters or less. If more than
128 characters were inserted, (CTL)@ does nothing.

For other methods of repeating an insertion, see the sections "Repeating
the Last Insertion," "Inserting Text From Other Files," and "Repeating a
Command."

Inserting Text From Other Files

To insert the contents of another file into the file you are currently editing,
use the Read (r) command. Move the cursor to the line immediately
above the place you want the new material to appear, then enter:

:r filename

vi: A Text Editor 2-25

Editing Tasks

where filename is the file containing the material to be inserted, and press
(Return). The text of filename appears on the line below the cursor, and
the cursor moves to the first character of the new text. This text is a copy;
the original filename still exists.

Inserting selected lines from another file is more complicated. The
selected lines are copied from the original file into a temporary holding
place called a "buffer", then inserted into the new file.

1. To select the lines to be copied, save your original file with the
Write (:w) command, but do not exit vi.

2. Enter:

:e filename

where filename is the file that contains the text you want to copy,
and press (Retum).

3. Move the cursor to the first line you wish to select.

4. Enter:

mk

This "marks" the first line of text to be copied into the new file
with the letter "k".

5. Move the cursor to the last line of the selected text. Enter:

"ay'k

The lines from your first "mark" to the cursor are placed, or
"yanked" into buffer a. They will remain in buffur a until you
replace them with other lines, or until you exit the editor.

6. Enter:

2-26

:e#

to return to your previous file. (For more information about this
command, see the section "Editing a New File Without Leaving
the Editor.") Move the cursor to the line above the place you want
the new text to appear, then enter:

"ap

User's Guide

Editing Tasks

This "puts" a copy of the yanked lines into the file, and the cursor
is placed on the first letter of this new text. The buffer still contains
the original yanked lines.

You can have 26 buffers named a, b, c, up to and including z. To name and
select different buffers, replace the a in the above examples with whatever
letter you wish.

You may also delete text into a buffer, then insert it in another place. For
infonnation on this type of deletion and insertion, see the section "Mov
ing Text."

Copying Lines From Elsewhere in the File

To copy lines from one place in a file to another place in the same file, use
the Copy (co) command.

co is a line-oriented command, and to use it you must know the line num
bers of the text to be copied and its destination. To find out the number of
the current line enter:

:nu

and press (Return). The line number and the text of that line are displayed
on the status line. To find out the destination line number, move the cursor
to the line above where you want the copied text to appear and repeat the
:nu command. You can also make line numbers appear throughout the
file with the linenumber option. For infonnation on how to set this
option, see the section "Displaying Line Numbers: number." The fol
lowing example uses the number option to display line numbers in a file.

1 [Fliles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

vi: A Text Editor 2-27

Editing Tasks

Using the above example, to copy lines 3 and 4 and put them between
lines 1 and 2, enter:

:3,4 co 1

The result is:

1 Files contain text.
2 Lines contain characters.
3 [C]haracters form words.
4 Text contains lines.
5 Lines contain characters.
6 Characters form words.
7 Words form text.

If you have text that is to be inserted several times in different places, you
can save it in a temporary storage area, called a "buffer", and insert it
whenever it is needed. For example, to repeat the first line of the follow
ing text after the last line:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

1. Move the cursor over the F in Files. Enter the following line,
which will not be echoed on your screen:

2-28

"ayy

This "yanks" the first line into buffer a. Move the cursor over the
Win Words.

User's Guide

Editing Tasks

2. Enter the following line:

"ap

This "puts" a copy of the yanked line into the file, and the cursor
is placed on the first letter of this new text. The buffer still con
tains the original yanked line.

Your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
[FJiles contain text.

If you wish to "yank" several consecutive lines, indicate the number of
lines you wish to yank after the name of the buffer. For example, to place
three lines from the above text in buffer a, enter:

"a3yy

You can also use "yank" to copy parts of a line. For example, to copy the
words Files contain, enter:

2yw

This yanks the next two words, including the word on which you place the
cursor. To yank the next ten characters, enter:

lOyl

I indicates cursor motion to the right. To yank to the end of the line you
are on, from where you are now, enter:

y$

vi: A Text Editor 2-29

Editing Tasks

Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in
Insert mode. To remove their special significance, press (C1L)v before
typing the control character. Note that (C1L)j, (C1L)q, and (C1L)s cannot
be inserted as text. (C1L)j is a newline character. (C1L)q and (C1L)s are
meaningful to the operating system, and are trapped by it before they are
interpreted by vi.

Joining and Breaking Lines

To join two lines press:

J

while the cursor is on the first of the two lines you wish to join.

To break one line into two lines, position the cursor on the space preced
ing the first letter of what will be the second line, press:

r

then press (Return).

Deleting a Character: x and X

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes
the character immediately before the cursor. If no number is given, one
character is deleted. For example, to delete three characters following the
cursor (including the character above the cursor), enter:

3x

To delete three characters preceding the cursor, enter:

3X

2-30 User's Guide

Editing Tasks

Deleting a Word: dw

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

3dw

Deleting a Line: D and dd

The D command deletes all text following the cursor on that line, includ
ing the character the cursor is resting on. The dd command deletes a
specified number of lines and closes up the space. If no number is given,
only the current line is deleted. For example, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To
use this command it helps to know the line numbers of the text you wish
to delete. For information on how to display line numbers, see the section
"Displaying Line Numbers: number."

For example, to delete lines 200 through 250, enter:

:200,250d

Press (Return).

When the command finishes, the message:

50 lines

appears on the vi status line, indicating how many lines were deleted.

It is possible to remove lines without displaying line numbers using short
hand "addresses". For example, to remove all lines from the current line
(the line the cursor rests on) to the end of the file, enter:

:.,$d

vi: A Text Editor 2-31

Editing Tasks

The dot (.) represents the current line, and the dollar sign stands for the
last line in the file. To delete the current line and 3 lines following it,
enter:

:.,+3d

To delete the current line and 3 lines preceding it, enter:

:.,-3d

For more information on using addresses in line-oriented commands, see
vi(C) in the User's Reference.

Deleting an Entire Insertion

If you wish to delete all of the text you just entered, press (CTI...)u while
you are in Insert mode. The cursor returns to the beginning of the inser
tion. The text of the original insertion is still displayed, and any text you
enter replaces it. When you press (Esq, any text remaining from the ori
ginal insertion disappears.

Deleting and Replacing Text

Several vi commands combine removing characters and entering Insert
mode. The following sections explain how to use these commands.

Overstriking: rand R

The r command replaces the character under the curSor with the next
character entered. To replace the character under the cursor with a "b",
for example, enter:

rb

2-32 User's Guide

Editing Tasks

If a number is given before r, that number of characters is replaced with
the next character entered. For example, to replace the character above
the cursor, plus the next three characters, with the letter "b", enter:

4rb

Note that you now have four "b"s in a row.

The R command replaces as many characters as you enter. To end the
replacement, press (ESC). For example, to replace the second line in the
following text with "Spelling is important.":

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Move the cursor over the T in Text. Press R, then enter:

Spelling is important.

Press (ESC) to end the replacement. If you make a mistake, use the
(BKSP) key to correct it. Your screen should now look like this:

Files contain text.
Spelling is important[.]
Lines contain characters.
Characters form words.
Words form text.

vi: A Text Editor 2-33

Editing Tasks

Substituting: s and S

The s command replaces a specified number of characters, beginning with
the character under the cursor, with text you enter. For example, to substi
tute "xyz" for the cursor and two characters following it, enter:

3sxyz

The S command deletes a specified number of lines and replaces them
with text you enter. You may enter as many new lines of text as you
wish; S affects only how many lines are deleted. If no number is given,
one line is deleted. For example, to delete four lines, including the current
line, enter:

4S

This differs from the R command. The S command deletes the entire
current line; the R command deletes text from the cursor onward.

Replacing a Word: cw

The cw command replaces a word with text you enter. For example, to
replace the word "bear" with the word "fox", move the cursor over the
"b" in "bear". Press:

cw

A dollar sign appears over the "r" in bear, marking the end of the text
that is being replaced. Enter:

fox

and press (ESC). The rest of "bear" disappears and only "fox" remains.

2-34 User's Guide

Editing Tasks

Replacing the Rest of a Line: C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text of the sentence:

Who's afraid of the big bad wolf?

from big to the end, move the cursor over the b in big and press:

C

A dollar sign ($) replaces the question mark (?) at the end of the line.
Enter the following:

little lamb?

Press (ESC). The remaining text from the original sentence disappears.

Replacing a Whole Line: cc

The cc command deletes a specified number of lines, regardless of the
location of the cursor, and replaces them with text you enter. If no number
is given, the current line is deleted.

Replacing a Particular Word on a Line

If a word occurs several times on one line, it is often convenient to use a
line-oriented command to replace it. For example, to replace the word
removing with "deleting" in the following sentence:

In vi, removing a line is as easy as removing a letter.

Make sure the cursor is at the beginning of that line, and enter:

:s/removing/deleting/ g

vi: A Text Editor 2-35

Editing Tasks

Press (Return). This line-oriented command means "Substitute (s) for the
word removing the word deleting, everywhere it occurs on the current line
(g)". If you don't include a g at the end, only the first occurrence 01
removing is changed.

For more information on using line-oriented commands to replace text,
see the section "Searching and Replacing. "

Moving Text

To move a block of text from one place in a file to another, you can use
the line-oriented m command. You must know the line numbers of YOUI

file to use this command. The number option displays line numbers. To
set this option, press (ESC) to make sure you are in Command mode, then
enter:

set number

Line numbers will appear to the left of your text. For more information
on setting the number option, see the section "Displaying Line Num·
bers: number."

The following example uses the number option. For other ways to dis·
play line numbers, see the section "Finding Out What Line You're On."

1 [FJiles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.

To insert lines 2 and 3 between lines 4 and 5, enter:

:2,3m4

2-36 User's Guidt

Your screen should look like this:

1 Files contain text.
2 Characters form words.
3 Text contains lines.
4 Lines contain characters.
5 [W]ords form text.

To place line 5 after line 2, enter:

:5m2

After moving, your screen should look like this:

1 Files contain text.
2 Characters form words.
3 [W]ords form text.
4 Text contains lines.
5 Lines contain characters.

To make line 4 the first line in the file, enter:

:4mO

vi: A Text Editor

Editing Tasks

2-37

Editing Tasks

Your screen should look like this:

1 [T)ext contains lines.
2 Files contain text.
3 Characters form words.
4 Words form text.
S Lines contain characters.

You can also delete text into a temporary storage place, called a "buffer,"
and insert it wherever you wish. When text is deleted it is placed in a
"delete buffer." There are nine "delete buffers."

The first buffer always contains the most recent deletion. In other words,
the first deletion in a given editing session goes into buffer 1. The second
deletion also goes into buffer I, and pushes the contents of the old buffer 1
into buffer 2. The third deletion goes into buffer I, pushing the contents of
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When
buffer 9 has been used, the next deletion pushes the current text of buffer 9
off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until
you quit the editor, so it is possible to delete text from one file, change
files without leaving the editor, and place the deleted text in another file.

Delete buffers are particularly useful when you wish to remove text, store
it, and put it somewhere else. Using the following text as an example:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by entering:

dd

2-38 User's Guide

Editing Tasks

Delete the third line the same way. Now move the cursor to the last line
in the example and press:

"Ip

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text.
[LJines contain characters.

Now enter:

"2p

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.
Lines contain chaI·acters.
[FJiles contain text.

Inserting text from a delete buffer does not remove the text from the
buffer. Since the text remains in a buffer until it is either pushed off the
stack or until you quit the editor, you may use it as many times as you
wish.

It is also possible to place text in named buffers. For information on how
to create named buffers, see the section "Inserting Text From Other
Files."

vi: A Text Editor 2-39

I

Editing Tasks

Searching: / and ?

You can search forward and backward for patterns in vi. To search for
ward, press the slash (/) key. The slash appears on the status line. Enter
the characters you wish to search for. Press (Return). If the specified pat
tern exists, the cursor will move to the first character of the pattern.

For example, to search forward in the file for the word "account", enter:

/account

Press (Return). The cursor is placed on the first character of the pattern.
To place the cursor at the beginning of the line above "account", for
example, enter:

/account/-

To place the cursor at the beginning of the line two lines above the line
that contains "account", enter:

/account/-2

To place the cursor two lines below "account", enter:

/account/+2

To search backward through a file, use ? instead of / to start the search.
For example, to find all occurrences of "account" above the cursor,
enter:

?account

To search for a pattern containing any of the special characters (. * \ [] -
$ and A), each special character must be preceded by a backslash. For
example, to find the pattern "U.S.A.", enter:

M.s\.A\./

2-40 User's Guide

Editing Tasks

You can continue to search for a pattern by pressing:

n

after each search. The pattern is unaffected by intervening vi commands,
and you can use n to search for the pattern until you enter a new pattern
or quit the editor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (for example, if it appears at the beginning of
a sentence), vi ignores it. To disregard case in a search command, you can
set the ignorecase option:

:set ignorecase

By default, searches "wrap around" the file. That is, if a search starts in
the middle of a file, when vi reaches the end of the file it will "wrap
around" to the beginning, and continue until it returns to where the
search began. Searches will be completed faster if you specify forward or
backward searches, depending on where you think the pattern is.

If you do not want searches to wrap around the file, you can change the
"wrapscan" option setting. Enter:

:set nowrapscan

and press (Return) to prevent searches from wrapping. For more informa
tion about setting options, see the section "Setting Up Your Environ
ment."

Searching and Replacing

The search and replace commands allow you to perform complex changes
to a file in a single command. Learning how to use these commands is a
must for the serious user of vi.

The syntax of a search and replace command is:

g/patternl/s/[pattern2]/[options]

vi: A Text Editor 2-41

Editing Tasks

Brackets indicate optional parts of the command line. The g tells the
computer to execute the replacement on every line in the file. Otherwise
the replacement would occur only on the current line. The options are
explained in the following sections.

To explain these commands we will use the example file from the
demonstration run:

[FJiles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Replacing a Word

To replace the word "contain" with the word "are" throughout the file,
enter the following command:

:g/contain lsI/are Ig

This command says "On each line of the file (g), find contain and substi
tute for that word (sl/) the word are, everywhere it occurs on that line (the
second g)". Note that a space is included in the search pattern for con
tain; without the space contains would also be replaced.

After the command executes your screen should look like this:

[FJiles are text.
Text contains lines.
Lines are characters.
Characters form words.
Words form text.

2-42 User's Guide

Editing Tasks

Printing all Replacements

To replace "contain" with "are" throughout the file, and print every line
changed, use the p option:

:g/contain lsI/are Igp

Press (Return). After the command executes, each line in which "con
tain" was replaced by "are" is printed on the lower part of the screen. To
remove these lines, redraw the screen by pressing (CTL)r.

Choosing a Replacement

Sometimes you may not want to replace every instance of a given pattern.
The c option displays every occurrence of pattern and waits for you to
confirm that you want to make the substitution. Jfyou press y the substitu
tion takes place; if you press (Return) the next instance of pattern is dis
played.

To run this command on the example file, enter:

:g/contain/sl/are/gc

Press (Return). The first instance of "contain" appears on the status line:

Files £9AtNP text.

Press y , then (Return). The next occurrence of contain appears.

Pattern Matching

Search commands often require, in addition to the characters you want to
find, a context in which you want to find them. For example, you may
want to locate every occurrence of a word at the beginning of a line. vi
provides several special characters that specify particular contexts.

vi: A Text Editor 2-43

Editing Tasks

Matching the Beginning of a Line

When a careW) is placed at the beginning of a pattern, only patterns
found at the beginning of a line are matched. For example, the following
search pattern only finds' 'text" when it occurs as the first word on a line:

(text!

To search for a caret that appears as text you must precede it with a
backslash (\).

Matching the End of a Line

When a dollar sign ($) is placed at the end of a pattern, only patterns
found at the end of a line are matched. For example, the following search
pattern only finds' 'text" when it occurs as the last word on a line:

Itext$1

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

Matching Any Single Character

When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find ail words that end with
"ed", use the following pattern:

I.ed I

Note the space between the d and the backslash.

To search for a period in the text, you must precede it with a backslash (\).

2-44 User's Guide

Editing Tasks

Matching a Range of Characters

A set of characters enclosed in square brackets matches any single char
acter in the range designated. For example, the search pattern:

/[a-z]/

finds any lowercase letter. The search pattern:

/[aA]pple/

finds all occurrences of "apple" and "Apple".

To search for a bracket that appears as text, you must precede it with a
backslash (\).

Matching Exceptions

A caret C) at the beginning of string matches every character except those
specified in string. For example the search pattern:

ra-z]

finds anything but a lowercase letter or a newline.

Matching the Special Characters

To place a caret, hyphen or square bracket in a search pattern, precede it
with a backslash. To search for a caret, for example, enter:

If you need to search for many patterns that contain special characters,
you can reset the magic option. To do this, enter:

:set nomagic

This removes the special meaning from the characters ., \, $, [and]. You
can include them in search and replace commands without a preceding
backslash. Note that the special meaning cannot be removed from the
special characters star (*) and caret C); these must always be preceded by
a backslash in searches.

vi: A Text Editor 2-45

Editing Tasks

To restore magic, enter:

:set magic

For more information about setting options, see the "Setting Up Your
Environment" section.

Undoing a Command: u

Any editing command can be reversed with the Undo (u) command. The
Undo command works on both screen-oriented and line-oriented com
mands. For example, if you have deleted a line and then decide you wish
to keep it, press u and the line will reappear.

Use the following line as an example:

[T]ext contains lines.

Place the cursor over the "c" in "contains", then delete the word with
the dw command. Your screen should look like this:

Text [l]ines.

2-46 User's Guide

Editing Tasks

Press u to undo the dw command. contains reappears:

Text [c]ontains lines.

If you press u again, "contains" is deleted again:

Text [l]ines.

It is important to remember that u only undoes the last command. For
example, if you make a global search and replace, then delete a few char
acters with the x command, pressing u will undo the deletions but not the
global search and replace.

Repeating a Command: .

Any screen-oriented vi command can be repeated with the Repeat (.)
command. For example, if you have deleted two words by entering:

2dw

you may repeat this command as many times as you wish by pressing the
period key (.). Cursor movement does not affect the Repeat command, so
you may repeat a command as many times and in as many places in a file
as you wish.

vi: A Text Editor 2-47

Editing Tasks

The Repeat command only repeats the last vi command. Careful planning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use
a global command), use the cw command instead of deleting the word
with the dw command, then inserting new text with the i command. By
using the cw command you can repeat the replacement with the dot (.)
command. If you delete the word, then insert new text, dot only repeats
the replacement.

Leaving the Editor

There are several ways to exit the editor and save any changes you may
have made to the file. One way is to enter:

:x

and press (Return). This command replaces the old copy of the file with
the new one you have just edited, quits the editor, and returns you to the
UNIX shell. Similarly, if you enter:

zz

the same thing happens, except the old copy file is written out only if you
have made any changes. Note that the ZZ command is not preceded by a
colon, and is not echoed on the screen.

To leave the editor without saving any changes you have made to the file,
enter:

:q!

The exclamation point tells vi to quit unconditionally. If you leave out the
exclamation point:

:q

vi will not let you quit. You will see the error message:

No write since last change (:quit! overrides)

2-48 User's Guide

Editing Tasks

This message tells you to use :q! if you really want to leave the editor
without saving your file.

Saving a File Without Leaving the Editor

There are many occasions when you must save a file without leaving the
editor, such as when starting a new shell, or moving to another file.
Before you can perform these tasks you must first save the current file
with the Write (:w) command:

:w

You do not need to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename,
you may name the file by entering:

:w filename

where filename is the name of the new file.

Editing a Series of Files

Entering and leaving vi for each new file takes time, particularly on a
heavily used system, or when you are editing large files. If you have
many files to edit in one session, you can invoke vi with more than one
filename, and thus edit more than one file without leaving the editor, as
in:

vi file1 file2 file3 file4 fileS file6

But entering many filenames is tedious, and you may make a mistake. If
you mistype a filename, you must either backspace over to mistake and
reenter the line, or kill the whole line and reenter it. It is more convenient
to invoke vi using the special characters as abbreviations.

To invoke vi on the above files without typing each name, enter:

vi file*

vi: A Text Editor 2-49

Editing Tasks

This invokes vi on all files that begin with the letters "file". You can plan
your filenames to save time in later editing. For example, if you are writ
ing a document that consists of many files, it would be wise to give each
file the same filename extension, such as" .s". Then you can invoke vi on
the entire document:

vi *.s

You can also invoke vi on a selected range of files:

vi [3-5]*.s

or

vi [a-h]*

To invoke vi on all files that are five letters long, and have any extension:

vi ?????*

For more information on using special characters, see "Naming Conven
tions" in the "Basic Concepts" chapter of the Tutorial.

When you invoke vi with more than one filename, you will see the fol
lowing message when the first file is displayed on the screen:

x files to edit

Mter you have finished editing a file, save it with the Write (:w) com
mand, then go to the next file with the Next (:n) command:

:n

The next file appears, ready to edit. It is not necessary to specify a
filename; the files are invoked in alphabetical (or numerical, if the
filenames begin with numbers) order.

If you forget what files you are editing, enter:

:args

2-50 User's Guide

Editing Tasks

The list of files appears on the status line. The current file is enclosed in
square brackets.

To edit a file out of order, such as file4 after file2, enter:

:e file4

instead of using the (:n) command. If you enter:

:n

after you finish editingfile4, you will go back tofile3.

If you wish to start again from the beginning of the list, enter:

:rew

To discard the changes you made and start again at the beginning, enter:

:rew!

Editing a New File Without Leaving the Editor

You can start editing another file anywhere on a UNIX system without
leaving vi. This saves time when you wish to edit several files in one ses
sion that are in different directories, or even in the same directory. For
example, if you have finished editing lusrljoelmemo and you wish to edit
lusrlmarylletter, first save the file memo with the Write (:w) command
then enter:

:e /usr/mary/letter

lusrlmary/letter appears on your screen just as though you had left vi.

vi: A Text Editor 2-51

Editing Tasks

Note

You must write out your file with the Write (:w) command to save
the changes you have made. If you try to edit a second file without
writing out the first file, the message "No write since last change
(:e! overrides),' appears. If you use :e! all your changes to the first
file are discarded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go
back and edit the file /usr/joe/memo after you have finished with
/usr/marylletter, enter:

:e#

The cursor is positioned in the same location it was when you first saved
/usr/joe/memo.

Leaving the Editor Temporarily: Shell Escapes

You can execute any UNIX command from within vi using the shell
Escape (!) command. For example, if you wish to find out the date and
time, enter:

:!date

The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vi status line. You can use
the ! to perform any UNIX command. To send mail to joe without leaving
the editor, enter:

:!mailjoe

Type your message and send it. (For more information about the UNIX
mail system, see the "mail" chapter.) After you send it, the message

[Press return to continue]

appears. Press (Return) to continue editing.

2-52 User's Guide

Editing Tasks

If you want to perform several UNIX commands before returning to the
editor, you can invoke a new shell:

:!sh

The UNIX prompt appears. You may execute as many commands as you
like. Press (CTL)d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you will see
the message:

[No write since last change]

It is a good idea to save your file with the Write (:w) command before
executing an escape, just in case something goes wrong. However, once
you become an experienced vi user, you may wish to turn off this mes
sage. To turn off the "No write" message, reset the warn option, as fol
lows:

:setnowam

For more information about setting options in vi, see the section "Setting
Up Your Environment."

Performing a Series of Line-Oriented Commands:
Q

If you have several line-oriented commands to perform, you can place
yourself temporarily in Line-oriented mode by entering:

Q

while you are in Command mode. A colon prompt appears on the status
line.

Commands executed in this mode cannot be undone with the u command,
nor do they appear on the screen until you re-enter Normal vi mode. To
re-enter Normal vi mode, enter:

vi

vi: A Text Editor 2-53

Editing Tasks

Finding Out What File You're In

If you forget what file you are editing, press (CTL)g while you are in
Command mode. A line similar to the following appears appears on the
status line:

"memo" [Modified] line 12 of 100 --12%--

From left to right, the following information is displayed:

• The name of the file

• Whether or not the file has been modified

• The line number the cursor is on

• How many lines there are in the file

• Your location in the file (expressed as a percentage)

This command is also useful when you need to know the line number of
the current line for a line-oriented command.

The same information can be obtained by entering:

: file

or

:f

Finding Out What Line You're On

To find out what line of the file you are on, enter:

:nu

and press (Return). This command displays the current line number and
the text of the line.

To display line numbers for the entire file, see the section "Displaying
Line Numbers: number."

2-54 User's Guide

Solving Common Problems

Solving Common Problems
The following is a list of common problems that you may encounter when
using vi, along with the probable solution.

• I don't know which mode I'm in.

Press (ESC) until the bell rings. When the bell rings you are in
Command mode.

• I can't get out of a subshell.

Press (ClL)d to exit any subshell. If you have created more than
one subshell (not a good idea, usually), keep pressing (ClL)d until
you see the message:

[Press return to continue]

• I made an inadvertent deletion (or insertion).

Press u to undo the last Delete or Insert command.

• There are extra characters on my screen.

Press (ClL)1 to redraw the screen.

• When I type, nothing happens.

vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. To reset the keyboard, slowly enter:

stty sane

then press (ClL)j or LINEFEED. Pressing (C1L)j instead of
(Return) is important here, since it is quite possible that the (Return)
key will not work as a newline character. To make sure that other
terminal characteristics have not been altered, log off, turn your
terminal off, turn your terminal back on, and then log back in. This
should guarantee that your terminal's characteristics are back to
normal. This procedure may vary somewhat depending on the ter
minal.

vi: A Text Editor 2-55

Solving Common Problems

• The system crashed while I was editing.

Normally, vi will inform you (by sending you mail) that your file
has been saved before a crash. The file can be recovered by enter
ing:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably
lost.

• I keep getting a colon on the status line when I press (Return)

You are in line-oriented Command mode. Enter:

vi

to return to normal vi Command mode.

• I get the error message "Unknown terminal type [Using open
mode}" when I invoke vi.

2-56

Your terminal type is not set correctly. To leave Open mode, press
(ESC), then enter:

:wq

and press (Return). Thrn to the section "Setting the Terminal
Type" for information on how to set your terminal type correctly.

User's Guide

Setting Up Your Environment

Setting Up Your Environment
There are a number of options that can be set that affect your terminal
type, how files and error messages are displayed on your screen, and how
searches are performed. These options can be set with the set command
while you are editing, they can be defined with the EXINIT environment
variable (see the environ(M) manual page), or they can be placed in the vi
.exrc startup file (see "Customizing Your Environment: The .exrc File").

You can also define mappings and abbreviations to reduce repetitive tasks
with the map and abbr commands while you are editing, with EXINIT, or
in the .exrc file.

The following sections describe how to set some commonly used options
and how to create mappings and abbreviations. There is a complete list
of options in vi(C) in the User's Reference.

Setting the Terminal Type

Before you can use vi, you must set the terminal type, if this has not
already been done for you, by defining the TERM variable in your .profile
or .login file. The TERM variable is a number that tells the operating sys
tem what type of terminal you are using. To determine this number you
must find out what type of terminal you are using. Then look up this type
in terminals(M) in the User's Reference. If you cannot find your terminal
type or its number, consult your System Administrator.

For these examples, we will suppose that you are using an HP 2621 termi
nal. For the HP 2621, the TERM variable is "2621". How you define this
variable depends on which shell you are using. You can usually deter
mine which shell you are using by examining the prompt character. The
Bourne shell prompts with a dollar sign ($); the C-shell prompts with a
percent sign (%).

Setting the TERM Variable: The Bourne Shell

To set your terminal type to 2621 place the following commands in the
file .profile:

TERM=2621
export TERM

vi: A Text Editor 2-57

Setting Up Your Environment

Setting the TERM Variable: The C Shell

To set your tenninal type to 2621 for the C shell, place the following
command in the file .login:

setenv TERM 2621

Setting Options: The set Command

The set command is ~sed to display option settings and to set options.

Listing the Available Options

To get a list of the options available to you and how they are set, enter:

:set all

Your display should look similar to this:

noautoindent open noslowopen
autoprint nooptimize tabstop=8
noautowrite paragraphs=IPLPPPQPP Llbp taglength=O
nobeautify noprompt ttytype=h19
directory=/tmp noreadonly term=h19
noerrorbells redraw noterse
hardtabs=8 report=5 warn
noignorecase scroll=4 window=8
nolisp sections-NHSHH HU wrapscan
nolist shell=/bin/sh wrapmargin=O
magic shiftwidth=8 nowriteany
nonumber noshowmatch

This chapter discusses only the most commonly used options. For infor
mation about the options not covered in this chapter, see vi(C) in the
User's Reference.

2-58 User's Guide

Setting Up Your Environment

Setting an Option

To set an option, use the set command. For example, to set the ignore
case option so that case is not ignored in searches, enter:

set noignorecase

Displaying Tabs and End-of-Line: list

The list option causes the "hidden" characters and end-of-line to be dis
played. The default setting is nolist. To display these characters, enter:

:set list

Your screen is redrawn. The dollar sign ($) represents end-of-line and
(CTL)i cn represents the tab character.

Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase

To change this option, enter:

:set noignorecase

Displaying Line Numbers: number

It is often useful to know the line numbers of a file. To display these num
bers, enter:

:set number

This redraws your screen. Numbers appear to the left of the text.

vi: A Text Editor 2-59

Setting Up Your Environment

Printing the Number of Lines Changed: report

The report option tells you the number of lines modified by a line
oriented command. For example,

:set report=1

reports the number of lines modified, if more than one line is changed.
The default setting is:

report=5

which reports the number of lines changed when more than five lines are
modified.

Changing the Terminal Type:term

If you are logged in on a terminal that is a different type than the one you
normally use, you can check the terminal type setting by entering:

:set term

Press (Return). See the section "Setting the Terminal Type" for more in
formation about TERM variables.

Shortening Error Messages: terse

After you become experienced with vi, you may want to shorten your
error messages. To change from the default noterse, enter:

:set terse

As an example of the effect of terse, when terse is set the message:

No write since last change, quit! overrides

becomes:

No write

2-60 User's Guide

Setting Up Your Environment

Thrning Off Warnings: warn

After you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To turn these messages off, enter:

:set nowarn

Permitting Special Characters in Searches:
nomagic

The nomagic option allows the inclusion of the special characters (. \ $ [
]) in search patterns without a preceding backslash. This option does not
affect caret CA) or star (*); they must be preceded by a backslash in
searches regardless of magic. To set nomagic, enter:

:set nomagic

Limiting Searches: wrapscan

By default, searches in vi "wrap" around the file until they return to the
place they started. To save time you may want to disable this feature. Use
the following command:

:set nowrapscan

When this option is set, forward searches go only to the end of the file,
and backward searches stop at the beginning.

Thrning on Messages: mesg

If someone sends you a message with the write command while you are
in vi the text of the message will appear on your screen. To remove the
message from your display you must press (elL)!. When you invoke vi,
write permission to your screen is automatically turned off, preventing
write messages from appearing. If you wish to receive write messages
while in vi, reset this option as follows:

:set mesg

vi: A Text Editor 2-61

Setting Up Your Environment

Mapping Keys

The map command maps any character or escape sequence to a command
sequence. For example, with the following command defined, when you
enter the pound sign (#) in Command mode, vi adds a semicolon to the
end of the current line.

(C1L)[represents the ESC key you must enter to exit from Insert mode.
When you create a mapping, use (C1L)v to escape control characters.

Here is a more complex example:

(C1L)p key is mapped to two commands; it writes the file, then executes a
shell escape to run the spell checker on the current file (represented by the
percent sign). The (C1L)m represents the (Return) you must enter to exe
cute each command.

Be careful not to map keys that are already defined within vi, such as
(C1L)r, which is defined by default to redraw the screen.

You can remove a mapping with the unmap command.

Abbreviating Strings

The abbr command allows you to avoid typing a frequently used word or
phrase by mapping a short string to a longer string. For example, with the
following command defined, when you enter "Usa" in Insert mode, vi
expands the string to "United States of America".

:abbr Usa United States of America

When you create an abbreviation, it helps to use mixed case (as in
"Usa") so that you can still enter "USA" if you need to without it
expanding.

You can remove an abbreviation with the unabbreviate command.

2-62 User's Guide

Setting Up Your Environment

Customizing Your Environment: The .exrc File

Each time vi is invoked, it reads commands from the file named .exrc in
your home directory. This file sets your preferred options so that they do
not need to be set each time you invoke vi. A sample .exrc file follows:

set number
set ignore case
set nowarn
set report=l
map -W ! }fmt-M
abbr unix \s-lUNIX\s+l

Each time you invoke vi with the above settings, your file is displayed
with line numbers, case is ignored in searches, warnings before shell
escape commands are turned off, and any command that modifies more
than one line will display a message indicating how many lines were
changed. In addition, the (CTL)w key is defined to escape to the shell to
run a formatting command on the current paragraph, and the string
"unix" is defined to expand to a string containing troft'(CT) commands
that print small capital letters.

vi: A Text Editor 2-63

Summary of Commands

Summary of Commands
The following tables contain all the basic commands discussed in this
chapter.

Entering vi

Typing this: Does this:

vi file Starts at line 1

vi +n file Starts at line n

vi + file Starts at last line

vi +/pattem file Starts at pattern

vi -r file Recovers file after a sys
tem crash

2-64 User's Guide

Cursor Movement

Pressing this key:

h
I
(Space)

w
b

k
j
(Return)

)
(

}
{

(CTL)w

(CTL)u

(CTL)d

(CTL)f

(CTL)b

vi: A Text Editor

Summary of Commands

Does this:

Moves 1 space left
Moves 1 space right
Moves 1 space right

Moves 1 word right
Moves 1 word left

Moves 1 line up
Moves 1 line down
Moves I line down

Moves to end of sentence
Moves to beginning of sentence

Moves to beginning of paragraph
Moves to end of paragraph

Moves to first character of inser
tion

Scrolls up 1/2 screen

Scrolls down 1/2 screen

Scrolls down one screen

Scrolls up one screen

2-65

Summary of Commands

Inserting Text

Pressing Starts insertion:

Before the cursor

I Before first character on the line

a After the cursor

A After last character on the line

0 On next line down

a On the line above

r On current character, replaces
one character only

R On current character, replaces
until (ESC)

Delete Commands

Command Function

dw Deletes a word

dO Deletes to beginning of line

d$ Deletes to end of line

3dw Deletes 3 words

dd Deletes the current line

5dd Deletes 5 lines

x Deletes a character

2-66 User's Guide

Summary of Commands

Change Commands

Command Function

cw Changes 1 word

3cw Changes 3 words

cc Changes current line

5cc Changes 5 lines

Search Commands

Command Function Example

land Finds the next oc- and, stand, grand
currence of and

?and Finds the previous and, stand, grand
occurrence of and

(The Finds next line The, Then, There
that starts with

I[bB]ox/

n

The

Finds the next oc
currence of box or
Box

Repeats the most
recent search, in
the same direction

vi: A Text Editor 2-67

Summary of Commands

Search and Replace Commands

Command

:s/pear/peach/g

:1,$s/file/directory

:g/one/s//l/g

Result

All pears become
peach on the
current line

Replaces file with
directory from
line 1 to the end.

Replaces every
occurrence of one
with 1.

Pattern Matching: Special Characters

This character: Matches:

$

[]

2-68

Beginning of a line

Endofa line

Any single character

A range of characters

Example

filename becomes
directoryname

one becomes 1,
oneself becomes
1 self, someone
becomes somel

User's Guide

Summary of Commands

Leaving vi

Command Result

:w Writes out the file

:x Writes out the file, quits
vi

:q! Quits vi without saving
changes

:!command Executes command

:!sh Forks a new shell

!!command Executes command and
places output on current
line

:efile Edits file (save current
file with :w first)

vi: A Text Editor 2-69

Summary of Commands

Options

This option: Does this:

all Lists all options

term Sets terminal type

ignorecase Ignores case in searches

list Displays tab and end-of-line characters

number Displays line numbers

report Prints number of lines changed by a line
oriented command

terse Shortens error messages

warn Thrns off "no write" warning before escape

nomagic Allows inclusion of special characters in search
patterns without a preceding backslash

nowrapscan Prevents searches from wrapping around the
end or beginning of a file.

mesg Permits display of messages sent to your termi
nal with the write command

2-70 User's Guide

Chapter 3

ed

Introduction 3-1

Demonstration 3-2

Basic Concepts 3-3
The Editing Buffer 3-3
Commands 3-3
Line Numbers 3-3

Tasks 3-4
Entering and Exiting The Editor 3-4
Appending Text: a 3-5
Writing Out a File: w 3-6
Leaving The Editor: q 3-7
Editing a New File: e 3-8
Changing the File to Write Out to: f 3-8
Reading in a File: r 3-9
Displaying Lines On The Screen: p 3-10
Displaying the Current Line: dot (.) 3-13
Deleting Lines: d 3-15
Performing Text Substitutions: s 3-16
Searching 3-19
Changing and Inserting Text: c and i 3-23
Moving Lines: m 3-25
Performing Global Commands: g and v 3-26
Displaying Tabs and Control Characters: I 3-29
Undoing Commands: u 3-30
Marking Your Spot in a File: k 3-30
Transferring Lines: t 3-31
Escaping to the Shell:! 3-32

Context and Regular Expressions 3-33
Period: (.) 3-34
Backslash: \ 3-36
Dollar Sign: $ 3-39
Caret: A 3-41
Star: * 3-41
Brackets: [and] 3-44

Ampersand: & 3-45
Substituting New Lines 3-47
Joining Lines 3-48
Rearranging a Line: \(and \) 3-48

Speeding Up Editing 3-50
Semicolon:; 3-52
Interrupting the editor 3-54

Cutting and Pasting with the editor 3-55
Inserting One File Into Another 3-55
Writing Out Part of a File 3-55

Editing Scripts 3-57

Summary of Commands 3-58

Introduction

Introduction
ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus ed is a truly general pur
pose program. Note that the line editor ex is very similar to ed, and there
fore this chapter can be used as an introduction to ex as well as to ed.

ed 3-1

Demonstration

Demonstration
This section leads you through a simple session with ed, giving you a feel
for how it is used and how it works. To begin the demonstration, invoke
ed by entering:

ed

This invokes the editor and begins your editing session. ed has no prompt
unless -p string is used on the command line to specify one. A blank line
prompts you for commands to be entered. Initially, you are editing a tem
porary file that you can later copy to any file that you name. This tem
porary file is called the "editing buffer," because it acts as a buffer
between the text you enter and the file that you will eventually write out
your changes to. Typically, the first thing you will want to do with an
empty buffer is add text to it. For example, after the prompt, enter:

a
this is line 1
this is line 2
this is line 3
this is line 4

Follow this with (CTL)d. This "appends" four lines of text to the buffer.
To view these lines on your screen, enter:

l,4p

where the "1,4" specifies a line number range and the p command
"prints" the specified lines on the screen.

Now enter:

2p

to view line number two. Next enter:

p

This prints out the current line on the screen, which happens to be line
number two. By default, most ed commands operate on only the current
line.

3-2 User's Guide

Basic Concepts

Basic Concepts
This section illustrates some of the basic concepts that you need to under
stand to effectively use ed.

The Editing Buffer

Each time you invoke ed, an area in the memory of the computer is allo
cated for you to perform all of your editing operations. This area is
called the "editing buffer." When you edit a file, the file is copied into
this buffer where you will work on the copy of the original file. Only
when you write out your file, do you affect the original copy of the file.

Commands

Commands are entered at your keyboard. Like normal UNIX commands,
entry of a command is ended by entering a (Return). After you enter
(Retum) the command is carried out. In the following examples, we will
presume that entry of each command is completed by entering a (Return),
although this will not be shown in our examples. Most commands are sin
gle characters that can be preceded by the specification of a line number
or a line number range. By default, most commands operate on the
"current line" described below in the section "Line Numbers." Many
commands take filename or string arguments that are used by the com
mand when it is executed.

Line Numbers

Any time you execute a command that changes the number of lines in the
editing buffer, ed immediately renumbers the lines. At all times, every
line in the editing buffer has a line number. Many editing commands will
take either single line numbers or line number ranges as prefixing argu
ments. These arguments normally specify the actual lines in the editing
buffer that are to be affected by the given command. By default, a special
line number called "dot" specifies the current line.

ed 3-3

Tasks

Tasks
This section discusses the tasks you perfonn in everyday editing. Fre
quently used and essential tasks are discussed near the beginning of this
section. Seldom used and special-purpose commands are discussed later.

Entering and Exiting The Editor

The simplest way to invoke ed is to enter:

ed

The most common way, however, is to enter:

ed filename

where filename is the name of a new or existing file.

To exit the editor, all you need to do is enter:

q

If you have not yet written out the changes you have made to your file, ed
warns you that you will lose these changes by displaying the message:

If you still want to quit, enter another q. In most cases you will want to
exit by entering:

w
q

so that you first write out your changes and only then exit the editor.

3-4 User's Guide

Tasks

Appending Text: a

Suppose that you want to create some text starting from scratch. This
section shows you how to enter text in a file, just to get started. Later
we'll talk about how to change it.

When you first invoke ed, it is like working with a blank piece of
paper-there is no text or information present. Text must be supplied by
the person using ed, usually by entering the text, or by reading it in from a
file. We will start by entering some text, and discuss how to read files
later.

In ed terminology, the text being worked on is said to be "kept in a
buffer." Think of the buffer as a workspace, or simply as a place where
the information that you are going to be editing is kept. In effect, the
buffer is the piece of paper on which you will write, make changes, and
save (write to the disk).

You tell ed what to do to your text by entering instructions called "com
mands." Most commands consist of a single letter, each entered on a
separate line. ed prompts with an asterisk (*). The prompt can be turned
on and offwith the prompt command, P.

The first command we will discuss is append (a), written as the letter "a"
on a line by itself. It means "append (or add) text lines to the buffer, as
they are entered.' Appending is like writing new material on a piece of
paper.

To enter lines of text into the buffer, enter an "a" followed by a (Return),
followed by the lines of text you want, as shown below:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending, enter a line that contains only a period. The period (.)
tells ed that you have finished appending. (You can also use (ClL)d, but
we will use the period throughout this discussion.) If ed seems to be
ignoring you, enter an extra line with just a period (.) on it. You may find
you've added some garbage lines to your text, which you will have to take
out later.

ed 3-5

Tasks

After appending is completed, the buffer contains the following three
lines:

Now is the time
for all good men
to come to the aid of their party.

The a and. aren't there, because they are not text.

To add more text to what you already have, enter another a command, and
continue entering your text.

If you make an error in the commands you enter to ed, and if you have
configured ed to provide details of the error, it will tell you by displaying
the message:

For an explanation of how to turn the error message display on or off,
refer to "Commands" in the User's Reference. By default, the error mes
sage display is turned off.

Writing Out a File: w

You will probably want to save your text for later use. To write out the
contents of the buffer into a file, use the write (w) command, followed
by the name of the file that you want to write to. This copies the contents
of the buffer to the specified file, destroying any previous contents of the
file. For example, to save the text in a file named text, enter:

w text

Leave a space between w and the filename. ed responds by displaying the
number of characters it has written out. For instance, ed might respond
with

(Remember that blanks and the newline character at the end of each line
are included in the character count.) Writing out a file just makes a copy
of the text-the buffer's contents are not disturbed, so you can go on add-

3-6 User's Guide

Tasks

ing text to it. If you invoked ed with the command "edfilename," then
by default, a w command by itself will write the buffer out to filename.

Note that ed at all times works on a copy of a file, not the file itself. No
change in the contents of a file takes place until you give a w command.
Writing out the text to a file from time to time as it is being created is a
good idea. If the system crashes, or you make a mistake (not saving the
file on disk), you will lose all of the text in the buffer, but any text that
was written out to a file is relatively safe.

Leaving The Editor: q

To tenninate a session with ed, save the text you're working on by writing
it to a file using the w command, then enter:

q

The system responds with the UNIX prompt character. If you try to quit
without writing out the file ed will display:

At that point, write out the text if you want to save it; if not, entering
another "q" will get you out of the editor.

Exercise

Enter ed and create some text by entering:

a
... text ...

Write it out by entering:

w filename

Then leave ed by entering:

q

ed 3-7

Tasks

Next, use the cat command to display the file on your tenninal screen to
see that everything has worked.

Editing a New File: e

A common way to get text into your editing buffer is to read it in from a
file. This is what you do to edit text that you have saved with the w com
mand in a previous session. The edit (e) command places the entire con
tents of a file in the buffer. If you had saved the three lines "Now is the
time" etc., with a w command in an earlier session, the ed command:

e text

would place the entire contents of the file text into the buffer and respond
with

which is the number of characters in text. If anything is already in the
buffer, it is deleted first.

If you use the e command to read a file into the buffer, then you don't
need to use a filename after a w command. ed remembers the last
filename used in an e command, and w will write to this file. Thus, a
good way to operate is this:

ed
e file
[editing session]
w
q

This way, you can enter w from time to time and be secure in the
knowledge that if you entered the filename right in the beginning, you are
writing out to the proper file each time.

Changing the File to Write Out to: f

You can find out the last file written to at any time using the file (f) com
mand. Just enter f without a filename. You can also change the name of
the remembered filename with f. Thus, a useful sequence is:

3-8 User's Guide

Tasks

ed precious
f junk

which gets a copy of the file named precious, then uses f to save the text
in the file junk. The original file will be preserved as precious.

Reading in a File: r

Sometimes you want to read a file into the buffer without destroying what
is already there. This function is useful for combining files. This is done
with the read (r) command. The command:

r text

reads the file text into your editing buffer and adds it to the end of what
ever is already in the buffer. For example, suppose you have performed a
read after an edit:

e text
r text

The butrer now contains two copies of text (i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w and e commands, after the reading operation is complete r
prints the number of characters read in.

Exercise

Experiment with the e command by reading and printing various files.
You may get the following error message:

?name
cannot open input file

where name is the name of a nonexistent file. This means that the file
doesn't exist, typically because you spelled the filename wrong, or

ed 3-9

Tasks

perhaps because you do not have pennission to read from or write to that
file. Try alternately reading and appending, to see how they work. Verify
that the command:

ed file. text

is equivalent to

ed
e file.text

Displaying Lines On The Screen: p

Use the "print"(command to print the contents of the editing buffer (or
parts of it) on the tenninal screen. Specify the lines where you want
printing to begin and where you want it to end, separated by a comma and
followed by the letter "p". Thus, to print the first two lines of the buffer
(that is, lines I through 2) enter:

1,2p

ed displays:

(Now" the ti~
for all good men

Suppose you want to print all the lines in the buffer. You could use
" I ,3p" as shown above if you knew there were exactly 3 lines in the
buffer. But you will rarely know how many lines there are, so ed provides
a shorthand symbol for the line number of the last line in the buffer-the
dollar sign ($). Use it as shown below:

l,$p

3-10 User's Guide

Tasks

This will print all the lines in the buffer (from line 1 to the last line). If
you want to stop the printing before it is finished, press the (DEL) key. ed
then displays:

and waits for the next command.

To print the last line of the buffer, enter:

$p

You can print any single line by entering the line number, followed by a
p. Thus:

Ip

produces the response:

(Now is the time

which is the first line of the buffer.

In fact, ed lets you abbreviate even further: you can print any single line
by entering just the line number; there's no need to enter the letter p. If
you enter:

$

ed prints the last line of the buffer.

You can also use $ in combinations like:

$-l,$p

which prints the last two lines of the buffer. This helps when you want to
see how far you are in your entering.

The next step is to use address arithmetic to combine the line numbers
like dot (.) and dollar sign ($) with plus (+) and minus (-). (Note that
"dot" is shorthand for the current line, and is discussed in a later sec
tion.) Thus:

ed 3-11

Tasks

$-1

prints the next to last line of the current file (that is, one line before the
line $). For example, to recall how far you were in a previous editing ses
sion:

$-5,$p

prints the last six lines. (Be sure you understand why it's six, not five.) If
there aren't six lines in the file, an error message is displayed.

The command:

.-3,.+3p

prints from three lines before the current line (line dot) to three lines
after. The plus (+) can be omitted. Thus:

.-3,.3p

is identical in meaning.

Another area in which you can save entering effort in specifying lines is
to use plus and minus as line numbers by themselves. For example:

by itself is a command to move back one line in the file. In fact, you can
string several minus signs together to move back that many lines.
For example:

moves back three lines, as does:

-3

Thus:

-3,+3p

is also identical to

?-3p+3p

3-12 User's Guide

Displaying the Current Line: dot (.)

Suppose your editing buffer still contains the following six lines:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

If you enter:

1,3p

ed displays:

Now is the time
for all good men
to come to the aid of their party.

Try entering:

p

This prints:

(to come to the aid of their party.

Tasks

which is the third line of the buffer. In fact, it is the last (most recent) line
that you have done anything with. You can repeat this p command
without line numbers, and ed will continue to print line 3.

This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be
used instead of an explicit line number. The line most recently acted on
is referred to with a period (.) and is called "dot." Dot is a line number
in the same way that dollar ($) is; it means "the current line" or loosely,
"the line you most recently did something to." You can use it in several
ways. One way is to enter:

.,$p

This prints all the lines from (and including) the current line clear to the
end of the buffer. In our example, these are lines 3 through 6.

ed 3-13

Tasks

Some commands change the value of dot, while others do not. The p
command sets dot to the number of the last line printed. In the example
above, p sets dot to 6.

Dot is often used in combinations like this one:

.+1

Or equivalently:

.+lp

This means, "print the next line" and is one way of stepping slowly
through the editing buffer. You can also enter:

.-1

This means, "print the line before the current line." This enables you to
go backwards through the file if you wish. Another useful command is
shown below:

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these change the value of dot. You can find out
what dot is at any time by entering:

ed responds by printing the value of dot. Essentially, p can be preceded
by zero, one, or two line numbers. If no line number is given, ed prints
the "current line" the line that dot refers to. If one line number is given
(with or without the letter p), ed prints that line (and dot is set there); and
if two line numbers are given, ed prints all the lines in that range (and sets
dot to the last line printed). If two line numbers are specified, the first
cannot be bigger than the second.

Pressing (Return) once causes printing of the next line. It is equivalent to:

.+1p

Try it. Next, try entering a minus sign (-) by itself; it is equivalent to
entering:

.-1p

3-14 User's Guide

Tasks

Exercise

Create some text using the a command, and experiment with the p com
mand. You will find, for example, that you can't print line 0, or a line
beyond the end of the buffer, and that attempting to print lines in reverse
order using "3,lp," does not work.

Deleting Lines: d

Suppose you want to remove three extra lines in the buffer. Use the
delete (d) command. Its action is similar to that of p, except that d
deletes lines instead of printing them. The lines to be deleted are
specified for d exactly as they are for p. Thus, the command:

4,$d

deletes lines 4 through the end. There are now three lines left in our
example, and you can check by entering:

l,$p

Notice that $ now is line 3! Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that
case, dot is set to $.

Exercise

Experiment with the a, e, r, W, p, and d commands until you are sure that
you know what they do, and until you understand how dot (.), dollar ($),
and line numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a
appends lines after the line number that you specify (rather than after
dot); that r reads in a file after the line number you specify (not neces
sarily at the end of the buffer); and that W writes out exactly the lines you
specify, not the whole buffer. These variations are sometimes useful. For
instance, you can insert a file at the beginning of a buffer by entering:

Or filename

ed 3-15

Tasks

and you can enter lines at the beginning of the buffer by entering:

Oa
[input text here]

Notice that entering:

.w

is very different from entering:

w

since the former writes out only a single line and the latter writes out the
whole file.

Performing Text Substitutions: s

One of the most important ed commands is the substitute (s) command.
This is the command that is used to change individual words or letters
within a line or group of lines. It is the command used to correct spelling
mistakes and entering errors.

Suppose that, due to a typing error, line 1 is:

(Now. is th time

The letter "e" has been left off of the word "the" You can use s to fix
this up as follows:

Is/th/the/

This substitutes for the characters "th" the characters "the" in line 1. To
verify that the substitution has worked, enter:

p

3-16 User's Guide

Tasks

to get:

(Now is the time

which is what you wanted. Notice that dot must be the line where the
substitution took place, since the p command printed that line. Dot is
always set this way with the s command.

The syntax for the substitute command follows:

[starting-line ,ending-line] s/ pattern/ replacement/ cmds

Whatever string of characters is between the first pair of slashes is
replaced by whatever is between the second pair, in all the lines between
starting-line and ending-line. Only the first occurrence on each line is
changed, however. Changing every occurrence is discussed later in this
section. The rules for line numbers are the same as those for p, except
that dot is set to the last line changed. (If no substitution takes place, dot
is not changed. This displays the error message:

Thus, you can enter:

1,$s/speling/spelling/

and correct the first spelling mistake on each line in the text.

If no line numbers are given, the s command assumes we mean "make
the substitution on line dot" so it changes things only on the current line.
This leads to the following sequence:

s/something/something else/p

which makes a correction on the current line, then prints it to make sure
the correction worked out right. If it didn't, you can try again. (Notice
that the p is on the same line as the s command. With few exceptions, p
can follow any command; no other multicommand lines are legal.)

ed 3-17

Tasks

It is also legal to enter:

s/string/I

which means "change the first string of characters to nothing" or, in
other words, remove them. This is useful for deleting extra words in a
line or removing extra letters from words. For instance, if you had:

Nowxx is the time

you could enter:

s/xxl/p

to show:

(Now is the time

Notice that two adjacent slashes mean "no characters" not a space.
There is a difference.

Exercise

Experiment with the substitute command. See what happens if you sub
stitute a word on a line with several occurrences of that word.
For example, enter:

a
the other side of the coin

s/the/on the/p

This results in:

(on the other side of the coin

A substitute command changes only the first occurrence of the first string.
You can change all occurrences by adding a g (for "global" to the s com
mand, as shown below:

s/ ... I ... /g

3-18 User's Guide

Tasks

Try using characters other than slashes to delimit the two sets of charac
ters in the s command. Anything should work except spaces or tabs.

Searching

Now that you have been shown the substitute command, you can move on
to another important concept: context searching.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains the word "their" so that
you can change it to the word "the" With only three lines in the buffer,
it's pretty easy to keep track of which line the word "their" is on. But if
the buffer contains several hundred lines, and you have been making
changes, deleting and rearranging lines, you would no longer really know
what this line number would be. Context searching is simply a method of
specifying the desired line, regardless of its number, by specifying a tex
tual pattern contained in the line.

The way to "search for a line that contains this particular string of char
acters" is to enter:

/string of characters we want to find/

For example, the ed command:

/their/

is a context search sufficient to find the desired line. It will locate the next
occurrence of the characters between the slashes (that is, "their"). Note
that you do not need to enter the final slash. The above search command
is the same as entering:

/their

ed 3-19

Tasks

The search command sets dot to the line on which the pattern is found and
prints it for verification:

(to come to the aid of their party.

"Next occurrence" means that ed starts looking for the string at line
".+1," searches to the end of the buffer, then continues at line 1 and
searches to line dot. (That is, the search "wraps around" from $ to 1.) It
scans all the lines in the bufter until it either finds the desired line, or gets
back to dot. If the given string of characters can't be found in any line, ed
displays the error message:

Otherwise, ed displays the line it found. You can also search backwards
in a file for search strings by using question marks instead of slashes. For
example:

?thing?

searches backwards in the file for the word "thing" as does:

?thing

This is especially handy when you realize that the string you want is
backwards from the current line.

The slash and question mark are the only characters you can use to delim
it a context search, though you can use any character in a substitute com
mand. If you get unexpected results using any of the characters:

~.$[*\&

read the section "Context and Regular Expressions."

3-20 User's Guide

Tasks

You can do both the search for the desired line and a substitution at the
same time, as shown below:

/their/s/their/the/ p

This displays:

(to come to the aid of the party.

The above command contains three separate actions. The first is a context
search for the desired line, the second is the substitution, and the third is E
the printing of the line.

The expression "/their/" is a context search expression. In their simplest
fonn, all context search expressions are a string of characters surrounded
by slashes. Context searches are interchangeable with line numbers, so
they can be used by themselves to find and print a desired line, or as line
numbers for some other command, like s. They were used both ways in
the previous examples.

Suppose the buffer contains the three familiar lines:

Now is the time
for all good men
to come to the aid of their party.

The ed line numbers:

/Now/+l
/good/
/party/-l

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, enter:

/Now/+ Is/good/bad/

or

/good!s/good/bad/

or

/party/-ls/good/bad/

ed 3-21

Tasks

The choice is dictated only by convenience. For instance, you could print
all three lines by entering:

/Now/,/party/p

or

/Now/,/Now/+2p

or any similar combination. The first combination is better if you don't
know how many lines are involved.

The basic rule is that a context search expression is the same as a line
number, so it can be used wherever a line number is needed.

Suppose you search for:

/listing!

and when the line is printed, you discover that it isn't the "listing" that
you wanted, so it is necessary to repeat the search. You don't have to
reenter the search, because the construction:

1/

is a shorthand expression for "the previous pattern that was searched for"
whatever it was. This can be repeated as many times as necessary. You
can also go backwards, since:

??

searches for the same pattern, but in the reverse direction.

You can also use / /, as the left side of a substitute command, to mean
"the most recent pattern." For example, examine:

/listing!

ed prints the line containing "listing".

sl/good/p

This changes "listing" to "good." To go backwards and change "list
ing" to "good" enter:

??sl/good/

3-22 User's Guide

Tasks

Exercise

Experiment with context searching. Scan through a body of text with
several occurrences of the same string of characters using the same con
text search.

Try using context searches as line numbers for the substitute, print, and
delete commands. (Context searches can also be used with the r, w, and a
commands.)

Try context searching using ?text? instead of t text t. This scans lines in
the buffer in reverse order instead of normal order, which is sometimes
useful if you go too far while looking for a string of characters. It's an
easy way to back up in the file you're editing.

If you get unexpected results with any of the characters

~.$[*\&

read the section "Context and Regular Expressions."

Changing and Inserting Text: c and i

This section discusses the change (c) command, which is used to change
or replace one or more lines, and the insert (i) command, which is used
for inserting one or more lines.

The c command is used to replace a number of lines with different lines
that you type at the terminal. For example, to change lines ".+1"
through "$" to something else, enter:

.+l,$c
type the lines of text you want here ...

The lines you enter between the c command and the dot (.) will replace
the originally addressed lines. This is useful in replacing a line or several
lines that have errors in them.

If only one line is specified in the c command, then only that line is
replaced. (You can enter as many replacement lines as you like.) Notice
the use of a period to end the input. This works just like the period in the
append command and must appear by itself on a new line. If no line num
ber is given, the current line specified by dot is replaced. The value of dot

ed 3-23

Tasks

is set to the last line you typed in. Note that the tenninating period and
the line referenced by dot are completely different: the first is used simply
to tenninate a command, the second points at a specific line of text.

The i command is similar to the append command. For example:

/string/i
type the lines to be inserted here ...

inserts the given text before the next line that contains "string." The text
between i and the tenninating period is inserted before the specified line.
If no line number is specified, dot is used. Dot is set to the last line
inserted.

Exercise

The c command is like a combination of delete followed by insert.
Experiment to verify that:

start,endd
i
[text]

is almost the same as:

start,endc
[text]

These are not precisely the same, if the last line gets deleted.

Experiment with a and i to see that they are similar, but not the same.
Observe that:

3-24

line-number a
[text]

User's Guide

appends after the given line, while:

line-number i
[text]

Tasks

inserts before it. If no line number is given, i inserts before line dot,
while a appends after line dot.

Moving Lines: m

The move (m) command lets you move a group of lines from one place
to another in the buffer. Suppose you want to put the first three lines of
the buffer at the end instead. You could do it by entering:

1,3wtemp
$rtemp
1,3d

where temp is the name of a temporary file. However, you can do it
easily with the m command:

1,3m$

This will move lines 1 through 3 to the end of the file.

The general case is:

start-line ,end-linemafter-this-line

There is a third line to be specified: the place where the moved text gets
put. Of course, the lines to be moved can be specified by context
searches. If you had:

First paragraph
end of first paragraph.
Second paragraph
end of second paragraph.

you could reverse the two paragraphs like this:

ISecond! ,lend of second/m/First/-l

ed 3-25

Tasks

Notice the -1. The moved text goes after the line mentioned. Dot gets set
to the last line moved. Your file will now look like this:

Second paragraph
end of second paragraph
First paragraph
end of first paragraph

As another example of a frequent operation, you can reverse the order of
two adjacent lines by moving the first line after the second line. Suppose
that you are positioned at the first line. Then:

m+

moves line dot to one line after the current line dot. If you are positioned
on the second line:

m--

moves line dot to one line after the current line dot.

The m command is more efficient than writing, deleting and rereading.
The main difficulty with the m command is that if· you use patterns to
specify both the lines you are moving and the target, you have to take
care to specify them properly, or you may not move the lines you want.
The result of a bad m command can be a mess. Doing the job one step at
a time makes it easier for you to verify, at each step, that you accom
plished what you wanted. It is also a good idea to issue a w command
before doing anything complicated; then if you make a mistake, it's easy
to back up to where you were.

For more information on moving text, see the section "Marking Your
Spot in a File: k" in this chapter.

Performing Global Commands: g and v

The "global" commands g and v are used to execute one or more editing
commands on all lines that either contain g or do not contain v, a
specified pattern.

3-26 User's Guide

Tasks

For example, the command:

g/dump/p

prints all lines that contain the word "dump." The pattern that goes
between the slashes can be anything that could be used in a line search or
in a substitute command; exactly the same rules and limitations apply.

For example:

prints all the trotf formatting commands in a file. For an explanation of
the use of the caret n and the backslash (\), see the section "Context and
Regular Expressions" in this chapter.

The v, command is identical to g, except that it operates on those lines
that do not contain an occurrence of the pattern. (Mnemonically, the "v"
can be thought of as part of the word "in verse".

For example:

prints all the lines that do not begin with a period (Le., the actual text
lines).

Any command can follow g or v. For example, the following command
deletes all lines that begin with"."

This command deletes all empty lines:

Probably the most useful command that can follow a global command is
the substitute command. For example, we could change the word
"DU1>.1P" to "dump" everywhere, and verify that it really worked, with:

g/DUMP/s//dump/gp

Notice that we used / / in the substitute command to mean "the previous
pattern" in this case, "dump." The p command executes on each line
that matches the pattern, not just on those in which a substitution took
place.

ed 3-27

Tasks

The global command makes two passes over the file. On the first pass, all
lines that match the pattern are marked. On the second pass, each marked
line is examined in turn, dot is set to that line, and the command exe
cuted. This means that it is possible for the command that follows a g or
v command to use addresses, set dot, and so on, quite freely. For exam
ple:

prints the line that follows each ".P" command (the signal for a new
paragraph in some formatting packages). Remember that plus (+) means
"one line past dot." And:

g/topic/? '\ .H?p

searches for each line that contains the word "topic" scans backwards
until it finds a line that begins with a ".H" (a heading) and prints it, thus
showing the headings under which "topic" is mentioned. Finally:

prints all the lines that lie between lines beginning with ".EQ" and
".EN" formatting commands.

The g and v commands can also be preceded by line numbers, in which
case the lines searched are only those in the range specified.

It is possible to give more than one command under the control of a glo
bal command. For example, suppose the task is to change "x" to "y"
and "a" to "b" on all lines that contain "thing." Then:

g/thing/s/x/y/\
s/aib/

is sufficient. The backslash (\) signals the g command that the set of
commands continues on the next line; the g command terminates on the
first line that does not end with a backslash.

Note that you cannot use a substitute command to insert a new line within
a g command. Watch out for this.

3-28 User's Guide

The command:

glx/s//y/\
s/alb/

Tasks

does not work as you might expect. The remembered pattern is the last
pattern that was actually executed, so sometimes it will be "x" (as
expected), and sometimes it will be "a" (not expected). You must spell it
out, as shown:

glx/s/x/y/\
s/alb/

It is also possible to execute a, C and i commands as part of a global com
mand. As with other multiline constructions, add a backslash at the end of
each line except the last. Thus, to add an ".nf" and ".sp" command
before each ".EQ" line, enter:

There is no need for a final line containing a period (.) to terminate the i
command, unless there are further commands to be executed under the
global command.

Displaying Tabs and Control Characters: I

ed provides two commands for printing the contents of the text you are
editing. You should already be familiar with p, in combinations like:

1,$p

to print all the lines you are editing, or:

s/abc/def/p

to change "abc" to "def" on the current line. Less familiar is the "list"
(I) command which gives slightly more information than p. In particular,
1 makes visible characters that are normally invisible, such as tabs and
backspaces. If you list a line that contains some of these, I prints each tab
as ">" and each backspace as "<" This makes it much easier to correct
the sort of entering mistake that inserts extra spaces adjacent to tabs, or
inserts a backspace followed by a space.

ed 3-29

Tasks

The I command also "folds" long lines for printing. Any line that
exceeds 72 characters is printed on multiple lines; each printed line
except the last is terminated by a backslash (\), so you can tell it was
folded. This is useful for printing lines longer than the width of your ter
minal screen.

Occasionally, the I command will print a string of numbers preceded by a
backslash, such as \f.)7 or \16. These combinations are used to make visi
ble characters that normally don't print, like form feed, vertical tab, or
bell. Each backslash-number combination represents a single AScn char
acter. Note that numbers are octal and not decimal. When you see such
characters, be aware that they may have surprising meanings when
printed on some terminals. Often, their presence indicates an error in
entering, because they are rarely used.

Undoing Commands: u

Occasionally, you will make a substitution in a line, only to realize too
late that it was a mistake. The undo (u) command, lets you "undo" the
last substitution. Thus the last line that was substituted can be restored to
its previous state by entering:

u

Marking Your Spot in a File: k

The mark command, k, provides a facility for marking a line with a par
ticular name, so that you can later reference it by name, regardless of its
actual line number. This can be handy for moving lines and keeping track
of them as they move. For example:

kx

marks the current line with the name "x." If a line number precedes the
k, that line is marked. (The mark name must be a single lowercase letter.)
You can refer to the marked line with the notation:

'x

Note the use of the single quotation mark (') here. Marks are very useful
for moving things around. Find the first line of the block to be moved and
then mark it with:

3-30 User's Guide

Tasks

ka

Then find the last line and mark it with:

kb

Go to the place where the text is to be inserted and enter:

'a:bm.

A line can have only one mark name associated with it at any given time.

Transferring Lines: t

We mentioned earlier the idea of saving lines that are hard to type or used
often, to cut down on entering time. ed provides another command,
called t (for transfer) for making a copy of a group of one or more lines at
any point. This is often easier than writing and reading.

The t command is identical to the m command, except that instead of
moving lines it simply duplicates them at the place you named. Thus:

1,t

duplicates the entire contents that you are editing.

A common use for t is to create a series of lines that differ only slightly.
For example, you can enter (italics are comments):

a
Now is the time for all good men to come to the aid of their party.

t.
slmen/women/
t.
s/Now is/yesterday was/

[make a copy]
[change it a bit]
[make third copy J
[change it a bit]

Your file will look like this:

ed

Now is the time for all good men to come to the aid of their party.
Now is the time for all good wanen to come to the aid of their party.
Yesterday was the time for all good wanen to come to the aid of their party.

3-31

Tasks

Escaping to the Shell: !

Sometimes it is convenient to temporarily escape from the editor to exe
cute a UNIX command without leaving the editor. The shell escape (!)
command, provides a way to do this.

If you enter:

!command

your current editing state is suspended, and the UNIX command you asked
for is executed. When the command finishes, ed will signal you by print
ing another exclamation (!). At that point, you can resume editing.

3-32 User's Guide

Context and Regular Expressions

Context and Regular Expressions
You may have noticed that things don't work right when you use charac
ters such as the period (.), the asterisk (*), and the dollar sign ($) in con
text searches and with the substitute command. The reason is rather com
plex, although the solution to the problem is simple. ed treats these char
acters as special. For instance, in a context search or the first string of the
substitute command, the period (.) means "any character" not a period,
so:

/x.y/

means a line with an "x" any character, and a "y" not just a line with an
"x" a period, and a "y" A complete list of the special characters that can
cause problems follows: e

The next few subsections discuss how to use these characters to describe
patterns of text in search and substitute commands. These patterns are
called "regular expressions" and occur in several other important UNIX
commands and utilities, including grep(C), sed(C) (See the User's Refer
ence).

Recall that a trailing g after a substitute command causes all occurrences
to be changed. With:

s/this/that/

and

s/this/that/ g

The first command replaces the first "this" on the line with "that." If
there is more than one "this" on the line, the second form with the trail
ing g changes all of them.

ed 3-33

Context and Regular Expressions

Either fonn of the s command can be followed by p or I to print or list the
contents of the line. For example, all of the following are legal and mean
slightly different things:

s/this/that/p
s/this/that/l
s/this/that/ gp
s/this/that/ gl

Make sure you know what the differences are.

Of course, any s command can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of lines. Thus:

l,$s/mispeIUmisspeIU

changes the first occurrence of "mispell" to "misspell" in each line of
the file. But:

1,$s/mispell/misspeIV g

changes every occurrence in each line (and this is more likely to be what
you wanted).

If you add a p or I to the end of any of these substitute commands, only
the last line changed is printed, not all the lines. We will talk later about
how to print all the lines that were modified.

Period: (.)

The first metacharacter· that we will discuss is the period (.). On the left
side of a substitute command, or in a search, a period stands for any sin
gle character. Thus the search:

/x.y/

3-34 User's Guide

Context and Regular Expressions

finds any line where "x" and "y" occur separated by a single character,
as in:

x+y
x-y
x y
xzy

and soon.

Since a period matches a single character, it gives you a way to deal with
funny characters printed by I. Suppose you have a line that appears as:

th\07is

when printed with the I command, and that you want to get rid of the \07,
which represents an ASCII bell character.

The most obvious solution is to enter:

sNJ7//

but this will fail. Another solution is to retype the entire line. This is
guaranteed, and is actually quite reasonable if the line in question isn't
too big. But for a very long line, reentering is not the best solution. This
is where the metacharacter " .. " comes in handy. Since \07 really
represents a single character, if we enter:

s/th.is/this/

the job is done. The period matches the mysterious character between the
"h" and the "i" whatever it is.

Since the period matches any single character, the command:

s/./,!

converts the first character on a line into a comma (,), which very often is
not what you intended. The special meaning of the period can be
removed by preceding it with a backslash.

As is true of many characters in ed, the period (.) has several meanings,
depending on its context. This line shows all three:

.s/././

ed 3-35

Context and Regular Expressions

The first period is the line number of the line we are editing, which is
called "dot." The second period is a metacharacter that matches any sin
gle character on that line. The third period is the only one that really is an
honest, literal period. (Remember that a period is also used to terminate
input from the a and i commands.) On the right side of a substitution, the
period (.) is not special. If you apply this command to the line:

(Now is the time.

the result is:

(.ow is the time.

which is probably not what you intended. To change the period at the end
of the sentence to a comma, enter:

s/\/,/

The special meaning of the period can be removed by preceding it with a
backslash.

Backslash: \

Since a period means "any character" the question naturally arises: what
do you do when you really want a period? For example, how do you con
vert the line:

(Now is the time.

into

(Now is the time?

The backslash (\), turns off any special meaning that the next character
might have; in particular, "\" converts the "" from a "match any-

3-36 User's Guide

Context and Regular Expressions

thing" into a literal period, so you can use it to replace the period in
"Now is the time." like this:

s/\./?I

The pair of characters "\." is considered by ed to be a single real period.

The backslash can also be used when searching for lines that contain a
special character. Suppose you are looking for a line that contains:

.DE

at the start of a line. The search:

I.DEI

isn't adequate, for it will find lines like:

JADE
FADE
MADE

because the "." matches the letter "A" on each of the lines in question.
But if you enter:

I\.DEI

only lines that contain" .DE" are found.

The backslash can be used to turn off special meanings for characters
other than the period. For example, consider finding a line that contains a
backslash. The search:

IV

will not work, because the backslash (\) isn't a literal backslash, but
instead means that the second slash (f) no longer delimits the search. By
preceding a backslash with another backslash, you can search for a literal
backslash:

I\V

ed 3-37

Context and Regular Expressions

You can search for a forward slash (f) with:

/\//

The backs lash turns off the special meaning of the slash immediately fol
lowing, so that it doesn't terminate the slash-slash construction prema
turely.

A miscellaneous note about backslashes and special characters: you can
use any character to delimit the pieces of an s command; there is nothing
sacred about slashes. (But you must use slashes for context searching.)
For instance, in a line that contains several slashes already, such as:

(Ilexec Ilsys.fort.go II etc ...

you could use a colon as the delimiter. To delete all the slashes, enter:

s:/::g

The result is:

(exec sys.fort.go etc ...

When you are adding text with a or i or c, the backslash has no special
meaning, and you should only put in one backslash for each one you want.

Exercise

Find two substitute commands, each of which converts the line:

\x\.\y

into the line:

\x\y

3-38 User's Guide

Context and Regular Expressions

Here are several solutions; you should verify that each works:

s/\\\.//
slx .. /x/
s/ .. y/y/

Dollar Sign: $
The dollar sign "$" stands for "the end of the line." Suppose you have
the line:

(Now is the

and you want to add the word "time" to the end. Use the dollar sign ($)
as shown below:

s/$/ time/

to get:

(Now is the time

A space is needed before "time" in the substitute command, or you will
get:

(Now is thetime

You can replace the second comma in the following line with a period
without altering the first.

(Now is the time, for all good men,

ed 3-39

Context and Regular Expressions

The command needed is:

s/,$/./

to get:

~ Now is the time, for all good men.

The dollar sign ($), here, provides context to make specific which comma
we mean. Without it, the s command would operate on the first comma to
produce:

~ Now is the time. for all good men,

To convert:

(Now is the time.

into:

~ Now is the time?

as we did earlier, we can use:

s/.$/?/

Like the period (.), the dollar sign ($) has multiple meanings depending
on context. In the following line:

$s/$/$/

the first "$" refers to the Il,lSt line of the file, the second refers to the end
of that line, and the third is a literal dollar sign to be added to that line.

3-40 User's Guide

Context and Regular Expressions

Caret: A

The caret (A) stands for the beginning of the line. For example, suppose
you are looking for a line that begins with "the." If you enter:

Ithel

you will probably find several lines that contain "the" in the middle
before arriving at the one you want. But, by entering:

(thel

you narrow the context, and thus arrive at the desired line more easily.

The other use of the caret (A) enables you to insert something at the
beginning of a line. For example:

s(1!

places a space at the beginning of the current line.

Metacharacters can be combined. To search for a line that contains only
the characters:

.P

you can use the command:

Star: *
Suppose you have a line that looks like this:

text x y text

where "text" stands for lots of text, and there are an indeterminate num
ber of spaces between the "x" and the "y." Suppose the job is to replace
all the spaces between "x" and "y" with a single space. The line is too
long to retype, and there are too many spaces to count.

This is where the metacharacter "star" (*) comes in handy. A character
followed by a star stands for as many consecutive occurrences of that
character as possible. To refer to all the spaces at once, enter:

ed 3-41

Context and Regular Expressions

six *y/x y/

The " " means "as many spaces as possible." Thus "x *y" means an
"x" as many spaces as possible, then a "y"

The star can be used with any character, not just a space. If the original
example was:

text x--------y text

then all minus signs (-) can be replaced by a single space with the com
mand:

s/x-*y/x y/

Finally, suppose that the line was:

text x y text

If you enter:

s/x.*y/x y/

The result is unpredictable. If there are no other x's or y's on the line, the
substitution will work, but not necessarily. The period matches any sin
gle character so the ". *" matches as many single characters as possible,
and unless you are careful, it can remove more of the line than you
expected.
For example, if the line is:

x text x y text y

then entering:

s/x.*y/x y/

takes everything from the first "x" to the last "y" which, in this exam
ple, is more than you wanted.

The solution is to tum off the special meaning of the period (.) with the
backslash (\):

s/x\. *y/x y/

Now the substitution works, for "\.*" means "as many periods as possi
ble."

3-42 User's Guide

Context and Regular Expressions

There are times when the pattern ".*" is exactly what you want. For
example, to change:

(Now is the time for all good men

into:

(Now is the time.

use ".*" to remove everything after the "for."

s/for.*/./

There are a couple of additional pitfalls associated with the star (*). Most
notable is the fact that "as many as possible" means zero or more. The
fact that zero is a legitimate possibility, is sometimes rather surprising.
For example, if our line contained:

xyDtextDxDDyDtext

where the squares represent spaces, and we entered:

S/xD*y/xDy/

the first "xy" matches this pattern, for it consists of an "x" zero spaces,
and a "y." The result is that the substitute acts on the first "xy" and
does not touch the later one that actually contains some intervening
spaces.

The way around this is to specify a pattern like:

/xDD*y/

which says an "x" a space, then as many more spaces as possible, and
then a "y" (Le., one or more spaces).

The other pitfall associated with the star (*) again relates to the fact that
zero is a legitimate number of occurrences of something followed by a
star. The command:

s/x*/y/g

ed 3-43

Context and Regular Expressions

when applied to the line:

(abcdef

produces:

(yaybycydyeyfy

which is almost certainly not what was intended. The reason for this is
that zero is a legitimate number of matches, and there are no x's at the
beginning of the line (so that gets converted into a "y," nor between the
"a" and the "b" (so that gets converted into a "y," an,j so on. If you
don't want zero matches, enter:

s/xx*/y/g

since "xx*" is one or more x's.

Brackets: [and]
Suppose that you want to delete any numbers that appear at the beginning
of all lines of a file. You might try a series of commands like:

1,$s(1*11
1,$s(2*11
1,$s(3*11

and so on, but this is clearly going to take forever if the numbers are long.
Unless you want to repeat the commands over and over, until finally all
the numbers are gone, you must get all the digits on one pass. That is the
purpose of the brackets.

The construction:

[0123456789]

matches any single digit; the whole thing is called a "character class."
With a character class, the job is easy. The pattern "[0123456789]*"
matches zero or more digits (an entire number), so:

1 ,$s([O 123456789] *11

deletes all digits from the beginning of all lines.

3-44 User's Guide

Context and Regular Expressions

Any characters can appear within a character class, and there are only
three special characters C.], and -) inside the brackets; even the
backslash doesn't have a special meaning. To search for special charac
ters, for example, you can enter:

It's a nuisance to have to spell out the digits, so you can abbreviate them
as [0-9]; similarly, [a-z] stands for the lowercase letters, and [A-Z] for
uppercase.

Within [], the "[" is not special. To get a "]" (or a "-" into a character
class, make it the first character.

You can also specify a class that means "none of the following charac
ters." This is done by beginning the class with a caret (A). For example:

rO-9]

stands for "any character except a digit." Thus, you might find the first
line that doesn't begin with a tab or space with a search like:

rnspace)(tab)]/

Within a character class, the caret has a special meaning only if it occurs
at the beginning. Verify that:

finds a line that doesn't begin with a caret.

Ampersand: &

To save entering, the ampersand (&) can be used in substitutions to sig
nify the string of text that was found on the left side of a substitute com
mand. Suppose you have the line:

~ Now is the time

ed 3-45

Context and Regular Expressions

and you want to make it:

(Now is the best time

You can enter:

s/the/the best/

It's unnecessary to repeat the word "the." The ampersand (&) eliminates
this repetition. On the right side of a substitution, the ampersand means
"whatever was just matched" so you can enter:

s/the/& best!

and the ampersand will stand for' 'the." This isn't much of a saving if the
thing matched is just "the" but if the match is very long, or if it is some
thing like ". *" which matches a lot of text, you can save some tedious
entering. There is also much less chance of making an entering error in
the replacement text. For example, to put parentheses in a line, regardless
of its length, enter:

s/.*/(&)/

The ampersand can occur more than once on the right side. For example:

s/the/& best and & worst!

makes:

(Now is the best and the worst time

and:

s/.*/&? &11/

converts the original line into:

(Now is the time? Now is the time! !

3-46 User's Guide

Context and Regular Expressions

To get a literal ampersand, use the backslash to turn off the special mean
ing. For example:

s/ampersandM/

converts the word into the symbol. The ampersand is not special on the
left side of a substitute command, only on the right side.

Substituting New Lines

ed provides a facility for splitting a single line into two or more shorter
lines by "substituting in a newline." For example, suppose a line has
become UIimanageably long because of editing. If it looks like:

.... text xy text... ..

you can break it between the "x" and the "y" like this:

s/xy/x\
y/

This is actually a single command, although it is entered on two lines.
Because the backslash (\) turns off special meanings, a backslash at the
end of a line makes the newline there no longer special.

You can, in fact, make a single line into several lines with this same
mechanism. As an example, consider italicizing the word "very" in a
long line by splitting "very" onto a separate line, and preceding it with
the formatting command ".1" Assume the line in question looks like
this:

(text a very big text

The command:

s/very /\
.1\
very \
/

converts the line into four shorter lines, preceding the word "very" with
the line ".1" and eliminating the spaces around the "very" at the same
time.

ed 3-47

Context and Regular Expressions

When a new line is substituted in a string, dot is left at the last line creat
ed.

Joining Lines

Lines may be joined together, with the j command. Assume that you are
given the lines:

r Now is
the time

Suppose that dot is set to the first line. Then the command:

j

joins them together to produce:

(Now is the time

No blanks are added, which is why a blank: was shown at the beginning of
the second line.

All by itself, a j command joins the lines signified by dot and dot + 1, but
any contiguous set of lines can be joined. Just specify the starting and
ending line numbers. For example:

1,$jp

joins all the lines in a file into one big line and prints it.

Rearranging a Line: \(and \)

Recall that "&" is shorthand for whatever was matched by the left side
of an s command. In much the same way, you can capture separate pieces
of what was matched. The only difference is that you have to specify on
the left sio.e just what pieces you're interested in.

3-48 User's Guide

Context and Regular Expressions

Suppose that you have a file of lines that consist of names in the form:

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the name, as in:

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious
and error-prone.

The alternative is to "tag" the pieces of the pattern (in this case, the last
name, and the initials), then rearrange the pieces. On the left side of a
substitution, if part of the pattern is enclosed between \ (and \), whatever
matched that part is remembered, and available for use on the right side.
On the right side, the symbol, "\ 1 " refers to whatever matched the first
\(... \) pair; "\2" to the second \(... \), and so on.

The command:

1,$sl'\([.*]\), *\(.*\)/\2\1/

although hard to read, does the job. The first \(... \), matches the last
name, which is any string up to the comma; this is referred to on the right
side with "\1." The second \(... \), is whatever follows the comma and
any spaces, and is referred to as ''\2.''

With any editing sequence this complicated, it is unwise to simply run it
and hope. The global commands, g and v, provide a way for you to print
exactly those lines which were affected by the substitute command, and
thus, verify that it did what you wanted in all cases.

ed 3-49

Speeding Up Editing

Speeding Up Editing
One of the most effective ways to speed up your editing is knowing what
lines will be affected by a command. If you do not specify the lines it is to
act on, and on what line you will be positioned (i.e., the value of dot)
when a command finishes, your editing speed is slowed. If you can edit
without specifying unnecessary line numbers, you can save a lot of enter
ing.

For example, if you issue a search command like:

/thing!

you are left pointing at the next line that contains "thing.' , Then no
address is required with commands like s, to make a substitution on that
line, or p, to print it, or I, to list it, or d, to delete it, or a, to append text
after it, or c, to change it, or i, to insert text before it.

What happens if there is no occurrence of "thing." Dot is unchanged.
This is also true if the cursor was on the only occurrence of "thing" when
you issued the command. The same rules hold for searches that use ? ... ?;
the only difference is the direction in which you search.

The delete command, d, leaves dot pointing at the line that followed the
last deleted line. When the line dollar ($) gets deleted, however, dot
points at the new line $.

The line-changing commands a, c, and i, by default, all affect the current
line. If you give no line number with them, a appends text after the
current line, c changes the current line, and i inserts text before the
current line.

The a, c, and i commands behave identically in one respect; when you
stop appending, changing or inserting, dot points at the last line entered.

3-50 User's Guide

Speeding Up Editing

This is exactly what you want when entering and editing on the fly. For
example, you can enter:

a
text
botch (minor error)

s/botch/correct/ (fix botched line)
a
more text

without specifying any line number for the substitute command or for the
second append command. Or you can enter:

a
text
horrible botch (major error)

c (replace entire line)
fixed up line

Experiment to determine what happens if you add no lines with an a, C, or
icommand.

The r command reads a file into the text being edited, at the end if you
give no address, or after the specified line if you do. In either case, dot
points at the last line read in. Remember that you can even enter:

Or

to read a file in at the beginning of the text. (You can also enter Oa or Ii
to start adding text at the beginning.)

The w command writes out the entire file. If you precede the command
by one line number, that line is written out. If you precede it by two line
numbers, that range of lines is written out. The w command does not
change dot: the current line remains the same, regardless of what lines
are written out. This is true even if you enter something like:

r\.AB/.r\.AE/w abstract

which involves a context search.

ed 3-51

Speeding Up Editing

(Since the w command is so easy to use, you should save what you are
editing regularly, as you go along just in case the system crashes, or in
case you accidentally delete what you're editing.)

The general rule is simple: you are left sitting on the last line changed; if
there were no changes, then dot is unchanged. To illustrate, suppose that
there are three lines in the buffer, and the line given by dot is the middle
one: r xl x2

x3

Then the command:

-,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines
had been: r xl y2

y3

and the same command had been issued while dot pointed at the second
line, only the first line would be changed and printed, and that is where
dot would be set.

Semicolon: ;
Searches with 1 ... 1 and ? ... ? start at the current line and move forward or
backward, respectively, until they either find the pattern, or get back to
the current line. Sometimes,~ this is not what you want. Suppose, for
example, that the buffer contains lines like this:

ab

bc

3-52 User's Guide

Speeding Up Editing

Starting at line 1, you would expect the command:

/a/,/b/p

to print all the lines from the "ab" to the "be" inclusive. This is not
what happens. Both searches (for "a" and for "b" start from the same
point, and thus, they both find the line that contains "ab." As a result, a
single line is printed. Worse, if there had been a line with a "b" in it
before the "ab" line, then the print command would be in error, since the
second line number would be less than the first, and it is illegal to try to
print lines in reverse order.

This is because the comma separator for line numbers doesn't set dot as E
each address is processed; each search starts from the same place. In ed,
the semicolon (;) can be used just like the comma, with the single
difference that use of a semicolon forces dot to be set at the time the semi
colon is encountered, as the line numbers are being evaluated. In effect,
the semicolon "moves" dot. Thus, in our example above, the command:

/a/;/b/p

prints the range of lines from "ab" to "be" because after the "a" is
found, dot is set to that line, and then "b" is searched for, starting beyond
that line.

This property is most useful in a very simple situation. Suppose you want
to find the second occurrence of "thing." You could enter:

/thing!
II

but this prints the first occurrence as well as the second, and is a nuisance
when you know very well that it is only the second one you're interested
in. The solution is to enter:

/thing!;//

This says "find the first occurrence of "thing" set dot to that line, then
find the second occurrence and print only that".

Closely related is searching for the second to last occurrence of some
thing, as in:

?something?;??

ed 3-53

I

Speeding Up Editing

Finally, bear in mind that if you want to find the first occurrence of some
thing in a file, starting at an arbitrary place within the file, it is not
sufficient to enter:

l;/thing/

because, if "thing" occurs on line 1, it will not be found. The command:

o;/thing/

will work because it starts the search at line 1. This is one of the few
places where 0 is a legal line number.

Interrupting the editor

As a final note on what dot gets set to, you should be aware that if you
press the INTERRUPT key while ed is executing a command, your file is
restored, as much as possible, to what it was before the command began.
Naturally, some changes are irrevocable; if you are reading in or writing
out a file, making substitutions, or deleting lines. These will be stopped in
some unpredictable state in the middle (which is why it usually is unwise
to stop them). Dot mayor may not be changed.

If you are using the print command, dot is not changed until the printing
is done. Thus, if you decide to print until you see an interesting line, and
then press INTERRUPT, to stop the command, dot will not be set to that
line or even near it. Dot is left where it was when the p command was
started.

3-54 User's Guide

Cutting and Pasting with the editor

Cutting and Pasting with the editor
This section describes how to manipulate pieces of files, individual lines
or groups of lines.

Inserting One File Into Another

Suppose you have a file called memo, and you want the file called table to
be inserted just after a reference to Table 1. That is, in memo, somewhere
is a line that reads:

(Table 1 shows that

and the data contained in table has to go there.

To put table into the correct place in the file edit memo, find "Table 1"
and add the file table right there:

ed memo
{fable 1/
response from ed
.r table

The critical line is the last one. The r command reads a file; here you
asked for it to be read in right after line dot. An r command, without any
address, adds lines at the end, so it is the same as "$r."

Writing Out Part of a File

The other side of the coin is writing out part of the document you're edit
ing. For example, you may want to split the table from the previous
example into a separate file so it can be formatted and tested separately.
Suppose that in the file being edited we have:

ed

.TS
[lots of stuff]
.TE

3-55

Cutting and Pasting with the editor

which is the way a table is set up for the tbl program. To isolate the table
in a separate file called table, first find the start of the table (the" .TS"
line), then write out the interesting part. For example, first enter:

r\.TS/

This prints out the found line:

.TS

Next enter:

.,r\ .TE/w table

and the job is done. Note that you can do it all at once with:

r\.TS/;r\.TE/w table

The point is that the w command can write out a group of lines, instead of
the whole file. In fact, you can write out a single line if you like; just give
one line number instead of two. If you have just entered a complicated
line and you know that it (or something like it) is going to be needed later,
then save it, do not retype it. For example, in the editor, enter:

3-56

a
lots of stuff
horrible line

.w temp
a
more stuff

.rtemp
a
more stuff

User's Guide

Editing Scripts

Editing Scripts
If a fairly complicated set of editing operations is to be done on a whole
set of files, the easiest thing to do is to make up a "script" (i.e., a file that
contains the operations you want to perform, then apply this script to each
file in turn).

For example, suppose you want to change every "DUMP" to "dump"
and every "USA" to "America" in a large number of files. Enter the fol
lowing lines into the file script:

g/DUMP/s/ldump/g
glUSA/s/lAmerica/g
w
q

Now you can enter:

ed - filel <script
ed - file2 <script

This causes ed to take its commands from the prepared file script. Notice
that the whole job has to be planned in advance, and that by using the
UNIX shell command interpreter, you can cycle through a set of files au
tomatically. The dash (-) suppresses unwanted messages from ed.

When preparing editing scripts, you may need to place a period as the
only character on a line to indicate termination of input from an a or i
command. This is difficult to do in ed, because the period you type will
terminate input rather than be inserted in the file. Using a backslash to
escape the period won't work either. One solution is to create the script
using a character such as the at-sign (@), to indicate end of input. Then,
later, use the following command to replace the at-sign with a period:

s(@$/'/

ed 3-57

Summary of Commands

Summary of Commands
This following is a list of all ed commands. The general fonn of ed com
mands is the command name, preceded by one or two optional line num
bers and, in the case of e, f, r, and w, followed by a filename. Only one
command is allowed per line, but a p command may follow any other
command (except e, f, r, w, and q).

Command Description

a Appends, i.e., adds lines to the buffer (at line
dot, unless a different line is specified).
Appending continues until a period is entered
on a new line. The value of dot is set to the last
line appended.

c Changes the specified lines to the new text
which follows. The new lines are terminated
by a period on a new line, as with a. If no lines
are specified, replace line dot. Dot is set to the
last line changed.

d Deletes the lines specified. If none are
specified, deletes line dot. Dot is set to the first
undeleted line following the deleted lines
unless dollar ($) is deleted, in which case dot is
set to dollar.

e Edits a new file. Any previous contents of the
buffer are thrown away, so issue a W command
first.

f Prints the remembered filename. If a name fol
lows f, then the remembered name is set to it.

3-58

g The command g/ string /commands executes
commands on those lines that contain string,
which can be any context search expression.

Inserts lines before specified line (or dot) until
a single period is typed on a new line. Dot is
set to the last line inserted.

User's Guide

m

p

q

r

s

t

v

v

u

w

=

ed

Summary of Commands

Lists lines, making visible nonprinting ASCII
characters and tabs. Otherwise similar to p.

Moves lines specified to after the line named
after m. Dot is set to the last line moved.

Prints specified lines. If none are specified,
print the line specified by dot. A single line
number is equivalent to a line-number p com
mand. A single (Return) prints ".+1" the next
line.

Quits ed. Your work is not saved unless you
first give a w command. Give it twice in a row
to abort edit.

Reads a file into buffer (at end unless specified
elsewhere). Dot is set to the last line read.

The command "s/ string] I string2 I" substi
tutes the pattern matched by string] with the
string specified by string2 in the specified lines.
If no lines are specified, the substitution takes
place only on the line specified by dot. Dot is
set to the last line in which a substitution took
place, which means that if no substitution takes
place, dot remains unchanged. The s command
changes only the first occurrence of string] on
a line; to change multiple occurrences on a
line, enter a g after the final slash.

Transfers specified lines to the line named after
t. Dot is set to the last line moved.

The command vi string I commands executes
commands on those lines that do not contain
string.

The command vi string I commands executes
commands on those lines that do not contain
string.
Undoes the last substitute command.

Writes out the editing buffer to a file. Dot
remains unchanged.

Prints value of dot. (An equal sign by itself
prints the value of $.)

3-59

Summary of Commands

!command The line !command causes command to be exe
cuted as a UNIX command.

/string/ Context search. Searches for next line which
contains this string of characters and prints it.
Dot is set to the line where string was found.
The search starts at .+1, wraps around from $ to
1, and continues to dot, if necessary.

?string? Context search in reverse direction. Starts
search at .-1, scans to 1, wraps around to $.

3-60 User's Guide

Chapter 4

mail

Introduction 4-1

Basic Concepts 4-2
Mailboxes 4-2
Messages 4-3
Modes 4-3
Headers 4-5
Command Syntax 4-7
Message Lists 4-7

Using mail 4-9
Composing and Sending a Message 4-9
Reading Your Mail 4-10
Saving a Message 4-12
Replying to a Message 4-13
Deleting a Message 4-14
Forwarding Mail: f and F 4-14
Executing Shell Commands 4-15
Sending Mail to Remote Sites 4-15
Leaving mail: q and x 4-17

Leaving Compose Mode Temporarily 4-18
Editing Headers: -t, -c, D, -s,~, and n 4-18
Adding a File to the Message: -r and -d 4-19
Enclosing Another Message: -m and ~ 4-20

Setting Up Your Environment 4-21
Creating Mailing Lists: a 4-22
Keeping Mail in the System Mailbox: hold 4-23
The Cc Prompt: askcc 4-23
Listing Messages in Chronological Order 4-23

Using Advanced Features 4-24
Using mail as a Reminder Service 4-24
Handling Large Amounts of Mail 4-25

Introduction

Introduction
The UNIX mail system is a versatile communication facility that allows
users to compose, send, receive, forward, and reply to mail. Users can
also create distribution groups to send copies of a message to multiple
users. These functions are integrated so that all users can quickly and
easily communicate with each other.

This chapter is organized to satisfy the needs of both beginning and
advanced users. The first section discusses basic mail concepts. The
second section provides demonstrations of the most commonly used com
mands. Later sections describe the more advanced mail commands and
some advanced uses of mail.

For a quick introduction to get started using mail immediately, see the
Tutorial. For a complete list of mail functions, refer to mail(C) in the
User's Reference.

mail 4-1

I

Basic Concepts

Basic Concepts
It is much easier to use mail if you understand the basic concepts that
underlie it. The concepts discussed in this section are:

• mailboxes

• messages

• modes

• message lists

• headers

• command syntax

Mailboxes

It is. useful to think of the mail system as modeled after a typical postal
system. What is normally called a post office is called the "system mail
box" in this chapter. The system mailbox contains a file for each user in
the directory lusrlspool/mail. Your own personal or "user mailbox" is
the file named mbox in your home directory. Mail sent to you is put in
your system mailbox and is automatically saved in your user mailbox
after you have read it. Note that the user mailbox differs from a real mail
box in these respects:

1. The user mailbox is not the place where mail is initially routed
that place is the system mailbox in the directory lusrlspool/mail.

2. Mail is not picked up from your user mailbox.

4-2 User's Guide

Basic Concepts

Messages

In mail, the message is the basic unit of exchange between users. Mes
sages consist of two parts: a heading and a body. The heading contains
the following fields:

To:

Subject:

Cc:

Bcc:

This field is mandatory. It contains one or more valid
user names to which you can send mail.

This optional field contains text describing the message.

The carbon copy field contains one or more valid names
of those who are to receive copies of a message. Mes
sage recipients see these names in the received message.
This field is optional.

The blind carbon copy field contains the one or more
valid names of people who are to receive copies of a
message. Recipients do not see these names in the
received messages. This field is optional.

The body of a message is the text you enter exclusive of the heading. The
body can be empty.

Modes

The mail program provides two distinct functions: sending mail and
managing messages. mail's two main modes are compose mode and com
mand mode. You create a message in compose mode. In command mode,
you perform mail operations for managing your mail.

The most common way of using mail is to begin a session by entering:

mail

If you have mail waiting, this command automatically places you in com
mand mode. In this mode, you can enter commands for handling your
mail. If you have no mail waiting, you see the message "No mail in
/usr/spool/mail/login " and are returned to the UNIX shell.

mail 4-3

Basic Concepts

From the shell or from mail command mode, you can enter compose
mode to create a message with:

mail user

where user is the user name of the person to whom you want to send mail.
In compose mode, you can enter the text of your message ending each
line with a (Return). Send the message by pressing (C1L)d on a new line;
you then exit from the mail program and return to the UNIX shell. From
compose mode, you can issue commands called compose escapes that
allow you to temporarily leave or escape from compose mode. Compose
escapes, which must be entered at the beginning of a line, begin with a
tilde (-) and so are also called tilde escapes.

Once you have pressed (Return) to end a line of a message you are creat
ing, you cannot change that line from within compose mode. You must
enter edit mode to change the line. In edit mode, you edit the body of a
message using the full capabilities of an editor.

To enter edit mode from compose mode, use the compose escape -e to
enter ed, the line editor, or -v to enter vi, the visual editor. (vi might not
be available on your system.) It is often useful to be able to invoke either
a line or visual editor, depending on the type of terminal you are using.
When you finish editing the message, write it out and quit the editor; mail
responds with:

((continue)

You are now back in compose mode and can continue creating your mes
sage.

You can also enter edit mode from command mode to edit any existing
message. Use either the edit (e) or the visual (v) command. When you
write out the message and quit the editor, mail reads the message back
into the message buffer.

4-4 User's Guide

Basic Concepts

If you want to mail a message that already exists in a file, you can do so
from the command line (without entering mail) as follows:

mail john < letter

Here, the file letter is sent to the user john.

Note

Be very careful when mailing a file with the input redirection sym
bol «). If you accidentally enter the output redirection symbol (»,
you will overwrite the file, destroying its contents.

When invoking mail from the shell, certain mail command-line options
are available. Two useful command-line options are the -s "subject"
option and the -c "carbon copy" option. You can specify a subject and
carbon copy recipients on the command line with these options. For
example, you could send a file named note with the subject line "Impor
tant Meeting" by entering the following command:

mail -s "Important Meeting" -c "ted bob" bill joe sue < note

The To: field will contain bill, joe, and sue; the Cc: field will contain ted
and bob.

All command-line options must appear before the list of users for the To:
field. If an argument to an option contains multiple words, the entire
argument set must be enclosed in quotes. Other command-line options
are described in the mail(C) manual page.

Headers

When you enter mail command mode, a list of message headers is dis
played that looks something like this:

N 3 john Wed Sep 21 09:21 26/782 "Notice"
> N 2 sam Tue Sep 20 22: 55 6/83 "Meeting"

U 1 tom Mon Sep 19 01:23 6/84 "Invite"

mail 4-5

Basic Concepts

By default, mail displays headers in reverse chronological order, the most
recent message is displayed at the top of the list. The messages are num
bered in ascending order from first received to most recently received; the
message at the top of the list has the highest number. You can change the
order in which headers are displayed by setting the chron and mchron
options.

A header is a single line of text containing descriptive information about
a message. (Note that we use the word heading to describe the first part
of a message, and header to describe mail's one-line description of a
message.) The header contains:

• a greater-than sign (» pointing to the current message

• a status indicator: "N" for new and "U" for unread

• the number of the message

• the sender

• the date sent

• the number of lines and characters

• the subject (if the message contains a Subject: field)

Message headers are displayed a screenful at a time. You can set the size
of a screen with the screen= option. You can move forward one screenful
with the headers (h) command:

h +

You can move backward one screenful with h -. Both plus and minus take
an optional numeric argument that indicates the number of header win
dows to move forward or backward before printing. With no argument at
all, the headers command displays a window of headers in which the
header of the current message is at the center.

The following are some characteristics of the header list:

• Deleted messages do not appear in the listing.

• Messages saved with the save or write command are flagged with
a star (*).

• Messages selected with the mbox command to be saved in your
user mailbox are flagged with an "M".

• Messages held in the system mailbox with the hold or preserve
command are flagged with a "P".

4-6 User's Guide

Basic Concepts

Command Syntax

Each mail command has its own syntax. Some commands take no argu
ments, some take only one, and others take several arguments.

Each mail command is entered on a line by itself, and any arguments fol
low the command word. The command need not be entered in its
entirety; you can its unique abbreviation. For example, you can enter "s"
instead of "save" for the save command "se" instead of "set" for the
set command. Throughout this chapter, the appropriate abbreviation is
enclosed in parentheses after the name of the command.

After the command itself is entered, one or more spaces should be entered
to separate the command from its arguments. If a mail command does
not take arguments, any arguments you give are ignored and no error
occurs.

Message Lists

Many mail commands take a list of messages as an argument. A message
list is a list of message identifiers, ranges, users, search strings, or mes
sage types separated by spaces or tabs. For commands that take a mes
sage list as an argument, if no message list is given, the current message
is used.

Message identifiers can be either decimal numbers, which directly specify
messages, or one 0f three special characters: A (caret), . (dot), and $ (dol
lar sign), which specify the first, current, and last non-deleted message,
respectively.

A range of messages is two message identifiers separated by a dash. To
display the headers of all the messages from the current message to the
last message, enter:

h .-$

By giving a user name as part of a message list, you can display the mes
sages sent by a particular user. For example, if you want to read only the
messages sent by your manager, enter:

p markt

The print (p) command displays those messages on the screen one after
another.

mail 4-7

Basic Concepts

You can use a search string to specify all messages with the given string
in the subject line (case is ignored). For example, to display the headers
of only the messages with "meeting" in the subject line, enter:

h /meeting

You can create a message list by defining the type of messages in which
you are interested. Use a colon followed by one of the following key
letters:

d deleted messages
n new messages
0 old messages
r read messages
u unread messages

For example, to see a list of headers of the messages you deleted, enter:

h :d

Message lists can contain combinations of numbers, ranges, and names.
For example, to delete all messages about your print jobs from user /p that
are numbered from the first non-deleted message to 7 or 11 and 12, use
the delete (d) command with the following message list:

d lp A_7 1112

As a shorthand notation, you can specify an asterisk (*) to mean all non
deleted messages. For example, to completely clean out your mailbox,
use the save (s) command with an asterisk and a filename to save all non
deleted messages to the specified file.

s * mail.old

The asterisk symbol cannot be used with any other message list notation.

4-8 User's Guide

Using mail

Using mail
This section demonstrates some of mail's more commonly used features.
Refer to the mail(C) manual page for details about other commands.

Composing and Sending a Message

Try sending a message to yourself by entering the following command
from UNIX command level:

mail self

where self is your user name.

If the asksub option is set, mail prompts for a subject line.

(Subject: Sample Message

Enter a one-line summary of the message, then press (Return) to enter
compose mode.

In compose mode, the text that you enter is appended one line at a time to
the body of the message you are sending. Normal line editing functions
are available when entering text, including (C1L)u to kill a line and
(BKSP) to back up one character.

Next, enter the following lines. Press (Return) at the end of each line.

This is a message sent to myself.
I compose a message by entering lines of text.
Press (C1L)d on a new line to end the message.

To view the message you are composing (including the heading fields) as
it will appear when you send it, enter:

mail 4-9

Using mail

This willilisplay the following:

Message contains:
To: self
Subject: Sample Message

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a new line to end the message.
(continue)

You can abort a message you are composing by entering two interrupts in
a row (Le., pressing INTERRUPT twice), and the message is not sent.
When you abort a message, a copy of the body of the undelivered mes
sage is saved in the file dead.letter in your home directory.

When you are ready to send your message, press (ClL)d on a line by itself
to end the message and to send it. Once you have sent mail, there is no
way to undo the act, so be careful.

If mail cannot be delivered to the address you specified, you will be
notified via return mail, which will include the undeliverable message.

Reading Your Mail

The message you sent yourself should have arrived in your system mail
box. To begin a mail session, enter:

mail

mail then displays a sign-on message and a list of message headers:

sca Mail version 4.1 Type? for help.
"/usr/spool/mail/self": 1 message
> N 1 self Fri Aug 31 12:26 9/229 "Sample Message"
?

4-10 User's Guide

Using mail

The question-mark prompt prompts you to enter a mail command. You
can set the prompt to a different string with the prompt= option. To get
help on all the available mail commands, enter:

?

Next, to display the message that you sent to yourself, press (Return).
mail displays:

From self Fri Aug 20 12:26:52 1985
To: self
Subject: Sample Message

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-D on a new line to end the message.

The message you sent to yourself now contains information about the
sender of the message-a line telling who sent the message and when it
was sent. The next line tells who the message was sent to. If a subject or
a carbon copy (Cc:) field was specified by the sender, they too are dis
played when you read the message.

You can configure your environment so that you are notified whenever
new mail is sent to you even if you are not in mail. To do so, you should
set the MAIL shell variable if you are using the Bourne shell or the mail
shell variable if you are using the C-shell. For more information, see
"The Shell" chapter of the User's Guide and csb(C) in the User's Refer
ence.

Mter examining a message, you will most likely want to either leave the
message in your system mailbox, save it in a file, reply to it, or delete it.
These and other useful mail operations are described in the next sections.

mail 4-11

Using mail

Saving a Message

Sometimes you might want to save a message for future reference. If you
leave mail with the quit (q) command without performing any othe]
operation on your message, the message is normally saved in the use]
mailbox. mail displays the following message before returning you to the
UNIX shell.

(Saved 1 message in /u/self/mbox

To keep the message in the system mailbox, use the hold or preservE
command. mail displays the following message.

Held 1 message in /usr/spool/mail/self

You will see the same message next time you invoke mail.

Saving many messages in the user or system mailbox can be confusing
and can slow down processing. You can use the save (s) command tc
organize your mail by putting messages that relate to each other in a spe·
cific file. The save command writes out each message to the file given a!
the last argument on the command line. For example, the following com·
mand appends the current message to the file letters:

s letters

The file letters is created if it does not already exist. Save writes out the
entire message, including the To:, Subject:, and Cc: fields. mail noVl
treats the file letters as a mail folder.

Each saved message is marked with an asterisk (*). When you quit frOII
mail, saved messages are normally deleted from the system mailbox.

4-12 User's Guidf

Using mail

You can access messages saved in a mail folder by specifying the
filename with the mail -f command-line option or with the folder (fold)
or file (fi) command from within mail. Both of these methods read in the
specified file, giving you access to the messages in that folder in the same
way you have access to the messages in your system mailbox when you
invoke mail nonnally. Your user mailbox is also a mail folder; its mes
sages can be accessed in the same way.

Note

If you leave a mail folder by switching to another folder or back to
your system or user mailbox, you can no longer get back a deleted
message from the original folder. As far as the undelete command
is concerned, leaving a mail folder is like exiting from mail.

Another way to save a message is with the Ipr (I) command, which sends
the message to the lineprinter. This command takes a message list as its
argument, then paginates and prints each message on the lineprinter; For
example:

I doug

prints each message from the user doug.

Replying to a Message

Often, you want to deal with a message by responding to its author right
away. You can use the reply (r) command to set up a response to a mes
sage, automatically addressing a reply to the person who sent the original
message. The original message's subject field is copied as the reply's sub
ject. Each message is created in compose mode; thus, all compose
escapes work, and messages are tenninated by pressing (CTL}d.

The Reply (R) command works just like its lowercase counterpart, except
that copies of the reply are also sent to everyone shown in the original
message's To: and Cc: fields.

mail 4-13

Using mail

Deleting a Message

Unless you indicate otherwise, each message you receive is automatically
saved in the user mailbox when you quit mail. Often, however, you d(
not want to save messages you have received. To delete a message, USf

the delete (d) command. Forexample:

d1

prevents mail from retaining message 1 in the user mailbox. The mes
sage disappears altogether, along with its number.

The dp command deletes the current message and displays the next mes
sage, which is useful for quickly reading and disposing of mail.

The undelete (u) command causes a message that has been previousl)
deleted with d or dp to reappear as if it had never been deleted. FOl
example, to undelete message 1, enter:

u1

You cannot undelete messages from previous mail sessions; they are per
manently deleted.

Forwarding Mail: f and F

To forward a copy of a message, use the forward (I) command. Thi!
causes a copy of the current message to be sent to the specified users. FOl
example, to forward the current message to someone whose login name i!
john, enter:

f john

John will receive the forwarded message, along with a heading showin!
that you forwarded it. The forwarded message is indented one tab stol
inside the new message. An optional message number can also be given
For example:

f 2 john bill

forwards message 2 to john and bill.

The Forward (F) command is identical to the lowercase forward com
mand, except that the forwarded message is not indented.

4-14 User's Guide

Using mail

Executing Shell Commands

You can execute a shell command without leaving mail from either mail
command mode or compose mode. From command mode, precede the
command with an exclamation point. For example:

!date

displays the current date without leaving mail.

From compose mode, precede the command with -I. The command is
executed, and you are returned to mail compose mode without altering
your message.

From command mode, you can enter a new shell with the shell (sh) com
mand. To exit from this new shell and return to mail command mode,
press (CTL)d.

Sending Mail to Remote Sites

You can send mail to users on remote computer sites that are networked
to your own site. The network can either be a Micnet network or a UUCP
network. Ask your system administrator if you are not sure which net
work the site you want to mail to uses.

If the site you want to send mail to is a Micnet site, you would enter the
following command to mail to a user on that site:

mail user@site-name

Note that the user name is followed by an at symbol (@).

For example, to send mail to stevem on the Micnet computer named obie,
you would enter the following command:

mail stevem@obie

After entering this command, you would continue with mail just as if you
were sending mail to a local user.

mail 4-15

Using mail

You can also send mail to users on remote UUCP sites. To find out which
UUCP sites your computer communicates with, enter the following com
mand at the UNIX prompt:

uuname

A list of site names is displayed.

To send mail to a user on a UUCP site, enter the following command:

mail site-name!user

The site name must be followed by an exclamation point (!).

For example, to send mail to user markt on site bowie, you would enter
the following command:

mail bowie!markt

You would then proceed to use mail just as if you were mailing to a local
user.

You can enter several site names on a command line; be sure to follow
each one with an exclamation point. As another example, suppose your
site talked to UUCP site bowie and that bowie talked to UUCP site brad
ley. You could send mail to user cindy on bradley by entering the follow
ing command:

mail bowie!bradley!cindy

Note

If you are using the C-shell, you must "escape" exclamation points
with the backslash (\). A C-shell user would enter the above com
mand as follows:

mail bowie\!bradley\!cindy

For more information on communicating with remote sites, see the
"Communicating with Other Sites" chapter in this guide.

4-16 User's Guide

Using mail

Leaving mail: q and x

When you have read all your messages, you can leave mail with the quit
(q) command. All messages are held in your user mailbox, except the fol
lowing:

• deleted messages, which are discarded irretrievably

• messages marked with the hold or preserve command, which are
saved in your system mailbox; if the hold option is set, messages
that you have read are automatically saved in your system mailbox

• messages saved with the save or write command

Forwarded messages are not removed from the system mailbox.

If you want to leave mail quickly without altering either your system or
user mailbox, you can use the exit (x) command. This returns you to the
shell without changing anything: no messages are deleted or saved in
your user mailbox.

mail 4-17

Leaving Compose Mode Temporarily

Leaving Compose Mode Temporarily
While composing a message to be sent to others, you might need to
change heading fields. invoke the text editor on a partial message, exe
cute a shell command, or perform some other useful function. mail pro
vides these capabilities through compose escapes, which consist of a tilde
(-) at the beginning of a line, followed by a one- or two-character com
mand that specifies the function to be performed.

To get a list of the available compose escapes, enter the following com
mand from compose mode:

The mail(C) manual page contains details about these compose escapes,
which are available only when you are composing a new message; they
have no meaning when you are in mail command mode.

To add additional names to the list of message recipients, enter the
escape:

-t namel name2 ...

You can name as many additional recipients as you like. Note that users
originally on the recipient list will still receive the message: you cannot
remove anyone from the recipient list with -t. To remove a recipient, use
the -h command, which is discussed later in this section.

You can replace or add a subject field by using the -s escape:

-s line-oj-text

This replaces any previous subject with line-oj-text. The subject, if
given, appears near the top of the message, prefixed with the heading
Subject:. You can see what the message looks like by using -p, which dis
plays all heading fields along with the body of the text.

4-18 User's Guide

Leaving Compose Mode Temporarily

You might occasionally prefer to list certain people as recipients of car
bon copies of a message rather than direct recipients. The escape:

-c name1 name2 ...

adds the named people to the Ce: list. Similarly, the escape:

'0 name} name2 ...

adds the named people to the Bee: (Blind carbon copy) list. The people
on this list receive a copy of the message, but are not mentioned any
where in the message you send.

The recipients of the message are given in the To: field; the subject is
given in the Subject: field, and carbon copy recipients are given in the Ce:
field. If you want to edit these in ways impossible with the -t, -s, and -c
escapes, you can use:

where "h" stands for "heading". The escape -h displays To: followed by
the current list of recipients and leaves the cursor at the end of the line. If
you enter ordinary characters, they are appended to the end of the current
list of recipients. You can also use the normal UNIX command-line edit
ing characters to edit these fields, so you can erase existing heading text
by backspacing over it.

When you press (Return), mail advances to the Subject: field, where the
same rules apply. Another (Return) brings you to the Cc: field, and
another brings you to the Bee: field. Each of these fields can be edited in
the same way. Finally, another (Return) leaves you appending text to the
end of your message body. Remember that you can always use -p to see
what the message looks like.

Adding a File to the Message: -r and-d

It is often useful to be able to include the contents of some file in your
message. The escape:

-r filename

is provided for this purpose, and causes the named file to be appended to
your current message. mail complains if the file does not exist or cannot
be read. If the read is successful, mail displays the number of lines and
characters appended to your message. -

mail 4-19

Leaving Compose Mode Temporarily

As a special case oCr, the escape:

reads in the file dead. letter in your home directory. This is often useful
because mail normally copies the text of your message buffer to
dead. letter whenever you abort the creation of a message. You can abort
the message by entering two consecutive interrupts or by entering a -q
escape.

Enclosing Another Message: ~m and ~M

If you are sending mail from within mail's command mode, you can
insert a message, that was previously sent to you, into the message that
you are currently composing. For example, you might enter:

This reads message 4 into the message you are composing, shifted right
one tab stop. The escape:

"M4

performs the same function, but with no right shift. You can name any
non-deleted message or list of messages.

4-20 User's Guide

Setting Up Your Environment

Setting Up Your Environment
You can define your mail environment with switch and string options that
:.:an be set with the mail commands set and unset. A switch option is
either on or off (set or unset). String options are strings of characters that
are assigned values with the syntax option=string. Multiple options can
be specified on a line. For example, you might have a set command that
looks like this:

set dot askcc SHELL=/usr/bin/sh

The options dot and askcc are switch options; SHELL is a string option.

The set command with no arguments displays the options currently set.

You can create a personal mailing list with the alias (a) command. By
LlSing an alias, you can send mail to one name and have it go to a group of
people. With no arguments, alias displays all currently defined aliases.
With one argument, it displays the users defined by the given alias.

[t is most useful to place set, unset, and alias commands in the file
.mailre in your home directory, where they define your personal default
environment when you invoke mail. Whenever mail is invoked, it first
reads the file lusrlliblmaillmailre, then the file .mailre in the user's home
directory. System-wide set options and system-wide aliases

are defined in lusrlliblmaillmailre. These are installed by whoever is in
:.:harge of your system. Personal aliases and personal set options are
defined in .mailre.

mail 4-21

Setting Up Your Environment

The following is a sample .mailre file:

number sign introduces carrments

personal aliases office and cohorts are defined below

alias office bill joe sue
alias cohorts john mary bob beth mike

set dot lets messages be tenninated by period on new line

set asksub pronpts for SUbject: before entering ccmpose mode

set dot asksub

changes to always begin executing from the same directory

cd

The following sections demonstrate how to create mailing lists an(
describe a few of the common set options. Refer to the mail(C) manua
page for details about other options.

Creating Mailing Lists: a

The alias command links a group of names with the single name given b)
the first argument, thus creating a mailing list. For example, you coul(
enter:

alias beatles john paul george ringo

so that whenever you used the name beatles in a destination address (as iJ
"mail beatles "), it would be expanded so that you are really referring t<
the four names aliased to beatles.

Aliases are expanded in mail sent to others so that they will be able t<
Reply to each individual recipient. For example, the To: field in ames
sage sent to beatles will read:

To: john paul george ringo

and not:

To: beatles

4-22 User's Guidi

Setting Up Your Environment

Keeping Mail in the System Mailbox: hold

The hold option determines whether messages remain in the system mail
box when you exit mail. If you do not set hold, the examined messages
are automatically placed in the mbox file in your home directory (your
user mailbox). They are removed from the system mailbox when you
quit.

The Cc Prompt: askcc

The askcc switch causes prompting for additional carbon copy recipients
when you finish composing a message. Responding with a (Return) sig
nals your satisfaction with the current list. Pressing INTERRUPT dis
plays:

I ioCom",
(continue)

so that you can return to edit your message.

Listing Messages in Chronological Order

The chron switch causes messages to be listed and displayed in chrono
logical order. By default, messages are listed and displayed with the most
recent first. Set chron when you want to read a series of messages in the
order they were received.

The mchron switch, like chron, displays messages in chronological order,
but lists them in the opposite order, that is, highest-numbered, or most
recent, first. This is useful if you keep a large number of messages in your
mailbox and you want to list the headers of the most recently received
mail first but read the messages themselves in chronological order.

mail 4-23

Using Advanced Features

Using Advanced Features
This section discusses advanced features of mail, which are useful to
those with some existing familiarity with the mail system.

Using mail as a Reminder Service

Besides sending and receiving mail, you can use mail as a reminder ser
vice. Several UNIX commands have this idea built in to them. For exam
ple, the UNIX Ip command's -m option causes mail to be sent to the user
after files have been printed on the lineprinter. When you log in, the op
erating system automatically examines the file named calendar in each
your home directory and looks for lines containing either today or
tomorrow's date. These lines are sent to you by mail as a reminder of
important events.

If you program in the shell command language, you can use mail to signal
the completion of a job. For example, you might place the following two
lines in a shell procedure:

biglongjob
echo "biglongjob done" I mail self

You can also create a logfile that you want to mail to yourself. For exam
ple, you might have a shell procedure that looks like this:

dosomething > logfile
mail self < logfile

For information about writing shell procedures, see "The Shell" chapter
in this guide.

4-24 User's Guide

Using Advanced Features

Handling Large Amounts of Mail

Eventually, you will face the problem of dealing with an accumulation of
messages in your user mailbox. There are a number of strategies that you
can employ to solve this problem concerning space in your mailbox file.
Keep in mind the dictum:

When in doubt, throw it out.

This means that you should only save important mail in your user mail
box. If your mailbox file becomes large, you must periodically examine
its contents to decide whether messages are still relevant. To save space,
consider summarizing very long messages.

The previously mentioned measures are not always helpful enough in
organizing the many messages that you are likely to receive. Another
effective approach is to save mail in files organized by sender, by topic, or
by a combination of the two. However, be forewarned-this approach to
organizing mail quickly eats up disk space. Using mail folders is
described in "Saving a Message".

You can create a directory to hold your mail folders and define that direc
tory to mail with the foIder= option. Then, whenever you save a message
without giving a pathname, mail puts the message in a file (or folder) in
that directory. For example, if you want to save your messages by default
in the directory mail in your home directory, use:

set foIder=mail

If you forget the names of your mail folders, you can use the folders com
mand to display the names of the files in the directory set by the foIder=
option.

mail 4-25

Chapter 5

Communicating with
Other Sites

[ntroduction 5-1

Using Micnet 5-2
Transferring Files with rcp 5-2
Executing Commands with remote 5-4
Transferring Files with mail 5-5

Using UUCP 5-6
Transferring Files with uucp 5-6
Transferring Files with uuto 5-11
Executing Commands with uux 5-13

l.ogging in to Remote Systems 5-15
Using ct 5-15
Using cu 5-17

Introduction

Introduction
UNIX systems include a series of utilities that allow you to communicate
with other computer sites. The particular utilities you use depend on how
your computer is connected to the other site, what tasks you want to
accomplish on the other site, and what operating system is running on the
other site.

If the site is in close proximity to your computer, in the same room, for
example, then it is likely that the two computers are connected by a sim
ple serial line. If the site is a UNIX site, use the Micnet commands dis
cussed in "Using Micnet" below to transfer files between the two sites
and to execute commands on the remote site. If the site is a UNIX site,
use the UUCP commands discussed in "Using UUCP" below.

If, on the other hand, the site you want to communicate with is on another
floor, or across the country, your computer is connected to it by telephone
lines. If the site is a UNIX or XENIX site, use the UUCP commands dis
cussed in "Using UUCP" below to transfer files between the two sites
and execute commands on the remote site. If the site is not a UNIX or
XENIX site, use the commands discussed in "Using cu" below.

Neither the UUCP commands nor the Micnet commands allow you to
have an interactive session with the remote site. If you want to have an
interactive session, use the commands discussed in "Using cu" below.

This chapter assumes that your UUCP and/or Micnet networks are config
ured already. If this is not true, refer to "Building a Remote Network
with UUCP" and "Building a Local Network with Micnet" in the System
Administrator's Guide for more information.

Communicating with Other Sites 5-1

Using Micnet

Using Micnet
A Micnet network is a network of two or more computers connected by
serial communication lines. A serial communication line is a cable with
RS-232 connectors on each end.

The computers in a Mlcnet network use three commands to "talk" to one
another. These are rep, remote and mail. The rep command is used to
transfer files between machines in the network. The remote command is
used to execute UNIX commands on a remote Micnet machine. The mail
command is used to communicate with users on a remote computer. Each
of these commands is discussed in the following sections.

Transferring Files with rep

The rep command is used to transfer copies of both text and binary files
between machines connected in a Micnet network. Its syntax is similar to
that of the ep command:

rep [options] [src _computer:]src ...file [dest _computer:]dest ...file

These arguments mean the following:

sre file

dest file

dest _computer

The name of the file that you want to copy.

The name of the computer on which src ..file
is located.

The name of the copied file on the receiving
computer. Usually, src ..file and dest ..file are
the same.

The name of the computer on which
dest ..file is located.

You must have read permission on the source file and read and execute
permissions on the directory that contains the source file in order to copy
it with rep. In addition, you must have write permission on the directory
on the computer that is to receive the source file.

As an example, suppose you have three computers named machine}, ma
chine2 and machine3 connected in a Micnet network. Suppose also that
you want to send a copy of a file named trans file in the /usr/markt

5-2 User's Guide

Using Mienet

directory on machinel to the Itmp directory on machine3. To do so, enter
the following command:

rep maehinel:/usr/marktitransfile maehine3:/tmp/transfile

If you are in the directory that contains the source file, specify the
filename only. You do not have to specify the full machine and path
name. Using the example above, enter the following command from
lusrlmarkt on machinel to copy trans file to Itmp on machine3:

rep transfile maehine3:/tmp/trans file

In addition to using rep to send copies of files to remote computers, you
can use rep to retrieve copies of files from remote computers. Using the
example above, suppose that machine3 is your local computer and that
you want to get a copy of lusrlmarktltransfile from machinel. To do so,
enter the following command:

rep maehinel:/usr/marktitransfile Itmp/transfile

This command would place a copy of lusrlmarktltransfile on machinel in
the Itmp directory on machine3.

Because files are not sent immediately, an rep transfer may take a few
minutes. Files are copied to a spool directory and sent when the appropri
ate daemons "awaken." (A daemon is a program that periodically runs
in the background.) In the case of rep, the daemon that transfers files is
the daemon.mn daemon.

rep Options

1\vo options are available for use with rep. These are -m and -u [ma
chine:] user. The -m option causes mail to be sent to the user who entered
the rep command, reporting on the success or failure of the transfer. If
you want mail to report to another user, use -u [machine:]user. This
causes mail to report to user on machine.

The following command, issued from lusrlmarkt on machinel, sends a
copy of lusrlmarktltransfile on machinel to the Itmp directory on ma
chine3. Since the -m option is specified, mail will be sent reporting on
the success or failure of the command:

rep -m transfile maehine3:/tmp/transfile

Communicating with Other Sites 5-3

Using Micnet

For more information on the rcp command, see rcp(C).

Executing Commands with remote

The remote command allows execution of commands across serial lines.
The syntax of the remote command is:

remote [options] site_name command [arguments]

If the remote command produces output, that output is mailed to your sys
tem mailbox. Otherwise, remote sends mail only if the remote command
fails to execute.

As an example, suppose that you are working on machine} and that you
want to list the contents of the Itmp directory on machine2. To do so,
enter the following command:

remote machine2 Is Itmp

Since the Is command produces output, the output is mailed to you. In
this case, your mail contains a listing of the contents of Itmp on machine2.

remote Options

Two very useful options to the remote command are the -m and -ffile
options. The -m option sends mail to you reporting on the success or
failure of the command execution. Suppose, for example, that you want
to remove Itest from Itmplmarkt on machine2. To do so, enter the follow
ing command:

remote -m machine2 rm Itmp/marktltest

After this command is executed, you receive mail reporting on the suc
cess or failure of the rm command.

The -ffile option allows you to specify a file on the local computer that
contains the input for the command that is to be executed on the remote
computer. As an example, suppose that you have a file named chapter}
on your local computer that you want to print on machine2' s default
printer. To do so, enter the following command:

remote -m -f chapterl machine2 Ip

Because the -m option is specified, you are informed by mail of the suc
cess or failure of the remote command.

5-4 User's Guide

Using Micnet

Note

The system administrator can specify which commands are allowed
to execute remotely over serial lines on which computers. The
commands that are allowed to execute remotely on a UNIX system
are listed in the computer's /etc!dejault/micnet file. Any UNIX com
mand can execute remotely if the computer's /etc!dejault/micnet file
contains the statement executeall on a line by itself.

Transferring Files with mail

The mail command can be used to transfer files between computers in a
Micnet network. However, there are several drawbacks to using mail for
this purpose:

• You must transfer the file to a user on the remote system, rather
than to a directory.

• You can only use mail to transfer small files. Large files are ran
domly truncated by mail.

• You cannot transfer binary files with mail.

On the other hand, mail is very useful for sending small files to several
users at once on a remote system. For information on using mail, see
"mail" in this guide.

Communicating with Other Sites 5-5

UsingUUCP

UsingUUCP
UUCP is a series of programs that provide networking capabilities for
UNIX systems. While UUCP commands can be used over serial lines,
they are usually used on computers connected by telephone lines.

The UUCP programs allow you to transfer files between remote computers
and to execute commands on remote computers. Since the computers
may be connected by telephone lines, UUCP transfers can take place over
thousands of miles. A UUCP site in New York City can transfer a file to
or execute a command on a connected UUCP site in San Francisco, or
Jakarta, or anywhere in the world. The following sections explain how to
use these UUCP programs.

Transferring Files with uucp

Both the uucp and uuto commands can be used to transfer copies of
binary and text files between remote UUCP sites. There are advantages
and disadvantages to each. The uucp command gives you great flexibil
ity in specifying where on the remote system the transferred file is to be
placed. However, uucp syntax can be rather long and complicated. The
uuto command, on the other hand, is easy to use. But uuto restricts
where you can place the file on the remote system. In addition, retrieving
a file sent with uuto is slightly more complicated than retrieving a file
sent with uucp.

The uucp command is discussed in this section. The uuto command is
discussed in the following section.

Before You Begin

Before you can copy files to remote sites with uucp, you must verify that:

• Your local site is a "dial out" site.

• Your local site "knows" how to call the remote site.

• The files that you want to send have read permission set for others.

• The directory that contains the file that you want to send has read
and execute permissions set for others.

5-6 User's Guide

UsingUUCP

• Your computer has write permission in the directory on the remote
site to which you want to copy the file.

Each of these is discussed below.

Some UUCP sites are "dial-in" sites, some are "dial-out" sites, and
some are both. Verify that your site is a dial-out site. If it is not, your
computer might have the capability to be on the receiving end of a UUCP
connection, but not on the calling end.

You must be sure that your computer "talks" to the site with which you
want to communicate. The uuname command gives you this informa
tion. Entering uuname with no options lists the UUCP sites your com
puter talks to directly. Entering uuname with the -I option causes the
name of your computer to be displayed.

Note that you may be able to communicate with a site that does not show
up in a uuname listing. This is possible because UUCP sites are often
"chained together." So if you know that a site you want to transfer files
to communicates with a site that your system communicates with, you
can send files to the first site through the second. An example is provided
below under "Indirect Transfers."

In order to copy a file to a remote UUCP site, the file must have read per
mission set for others and the directory that contains the file must have
read and execute permissions set for others. Use the I command to exam
ine the file's permissions and the I -d command to examine the
directory's permissions. If the permissions are not correct, enter the fol
lowing commands to set the correct permissions:

chmod o+r filename
chmod o+rx directory

Finally, you must verify that your computer has write permission on the
directory on the remote site to which you want to transfer files. Each
remote UUCP site has a /usrllib/uucp/Permissions file. This file specifies
the directories on that site from which your computer can read and to
which your computer can write. You can only send a file to a directory on
a remote site if your computer has write permissions on that directory, as
specified on the remote site's lusrllib/uucplPermissions file.

By default, most UUCP sites permit calling-in computers to write to their
lusrlspoolluucppub/ic directory. Since there is no way to find out which
directories your computer can write to on the remote site, short of con
tacting somebody at the site, the safest thing to do when making a UUCP
transfer is to write to /usrlspool/uucppub/ic. The procedure for doing this
is outlined below.

Communicating with Other Sites 5-7

UsingUUCP

Usinguucp

The syntax of the uucp command is similar to the syntax of cp:

uucp [options] src_computer!srcJtle dest_computer!destJile

These arguments mean the following:

src file

dest file

dest _computer

The name of the file that you want to copy.

The name of the computer on which src yle
is located.

The name of the copied file on the receiving
computer. Usually, srcyle and destyle are
the same.

The name of the computer on which
dest Jtle is located.

There are several different ways to specify the location on the remote ma
chine to which you want to transfer the file. The simplest is the
-Idest yle specification. This is also the safest specification, because
-ldestJtle is expanded to lusrlspool/uucppublic/destyle, thereby assur-
ing that the transfer will succeed.

For example, to send lusrlmarktltransfile on machine] to
lusrlspoolluucppublic on machine2, enter the following command:

uucp lusr/marktltransfile machine2! -/transfile

This command creates the file lusrlspool/uucppub/ic/transfile on ma
chine2.

If lusrlmarkt is your current directory, you can copy trans file to machine2
with the following command:

uucp transfile maehine2! -/transfile

The uuep command works much like the rep command. Files are not
copied and sent immediately. Instead, copies are placed in a spool direc
tory and sent once the appropriate daemon awakens. In the case of the
UUCP programs, the daemon is the uucieo daemon. Depending on how
your system is configured, a uucp transfer might take place within
minutes, or it might take hours.

5-8 User's Guide

UsingUUCP

Note

Since the exclamation mark has special meaning to the C-shell, you
must "escape" with a backslash N any exclamation marks that
appear in a uuep command, if you are using the C-shell. For a C
shell user, the command above is specified as:

uuep transfile maehine2\! -/transfile

Another form of the command allows you to specify the full patbname of
the copied file on the remote computer. This is for sending the file to a
specific directory on the remote system. However, you must be sure that
your computer has write permission on this directory, otherwise the
transfer will fail.

As an example, suppose that you want to send trans file in lusrlmarkt on
machine] to the lusrlcindy directory machine2. To do so, enter the follow
ing command:

uuep /usr/marktltransfile maehine2!/usr/cindy/transfile

Note that, like the rep command, the uuep command can be used to
retrieve files from a remote site, in addition to copying files to a remote
site. Using the example above, if your local computer is machine2 and
you want to send a copy of lusrlmarktltransfile on machine1 to the
lusrlcindy directory on machine2, enter the following command:

uuep maehinel!/usr/marktltransfile /usr/cindy/transfile

You can also use -user to specify a location on the remote computer. The
-user argument is expanded to the patbname of the home directory of the
person on the remote computer whose login is user. For example, if
lusrlcindy is the home directory of a user whose login is cindy on ma
chine2, enter the following command from the lusrlmarkt directory on
machine] to copy lusrlmarktltransfile to lusrlcindy:

uuep transfile maehine2!-cindy/transfile

The receiving computer expands -cindy to the full patbname of cindy's
home directory, creating lusrlcindyltransfile. Again, your computer must
have write permission in cindy's home directory in order for this transfer
to succeed.

Communicating with Other Sites 5-9

UsingUUCP

Indirect Transfers

You might be able to send files to a UUCP site not listed in a uuname list
ing. As an example, suppose that your local computer is connected to a
UUCP site named machine2. Suppose also that machine2 is connected to
a UUCP site named machine3. You can send Itmpltransfile on your local
computer to lusrlspooZluucppubJic on machine3. Do so by specifying the
full UUCP address relative to your local computer:

uucp Itmp/transfile machine2!machine3! -/transfile

Note that each site name in the command line is followed by an exclama
tion mark. By placing several site names in a uucp command line, you
can greatly extend the range of systems to which you can copy files with
uucp. This is also true for the uuto and uux commands discussed below.

uucp Options

Several options are available for the uucp command. Some of the most
useful are the -m and -n user options.

The -m option sends you mail reporting on the success or failure of the
file transfer. The -n user option notifies the user on the machine to whom
the files are sent of the file transfer.

Other options are available for use with uucp. Refer to uucp(C) for a
complete list of these options.

Checking the Status with uustat

You can use the uustat command to check on the status of files you
copied with uucp. To check on the status of all your uucp jobs, enter the
following command:

uustat

Your output looks like the following:

1234 markt machine2 2/19-10:29 2/19-10:40 JOB IS QUEUED

5-10 User's Guide

UsingUUCP

Reading from left to right, the elements of this message are:

1234

markt

machine2

2/19-10:29

2/19-10:40

Job Status

This is the job number assigned to this uucp
transfer.

This is the user who requested the transfer.

This is the site name of the recipient's com
puter.

This is the date and time the job was queued in
the spool directory.

This is the date and time of the uustat request.

This message tells you the status of the job. In
this case, JOB IS QUEUED tells you that the job
is in the spool directory waiting to be sent.
When the transfer is completed, uustat displays
the message: COPY FINISHED, JOB DELETED

Several options are available for use with uustat. Refer to uustat(C) for
more information.

Transferring Files with ooto

The uuto command allows you to copy files to the public directory of a
UUCP site to which your system is connected. The public directory on
most UNIX and XENIX systems is lusrlspoolluucppublic. The syntax of
uuto is:

uuto [options] sourceyle destination_computerflogin

The login argument is the login of the user to whom you are sending files.

Before you can send a file with uuto, you must verify that:

• The file has read permission set for others.

• The directory that contains the file has read and execute permis
sions set for others.

Communicating with Other Sites 5-11

UsingUUCP

If the pennissions are not correct, enter the following commands to set
the correct pennissions:

chmod OH filename
chmod OHX directory

Files sent with uuto are placed in the directory:

/usr/spoolluucppublicl receive/login/ source_computer

In this example, login is the login of the user to whom you are sending
files and source_computer is the site name of your system.

As an example, suppose that you want to send a copy of trans file in /tmp
on your computer, machine1, to a user whose login is cindy on machine2.
To do so, enter the following command:

uuto /tmp/transfile machine2!cindy

This command copies trans file to the following directory:

usr/ spoolluucppublicl receive/ cindy/machine1

When the file transfer is complete, the recipient is notified by mail that
the file has arrived. If the -m option is used on the uuto command line,
the sender is notified by mail of the success or failure of the transfer.

Like uucp, files transferred with uuto are not transferred immediately
after the command is entered. Instead, they are placed in a spool direc
tory and sent when the uucico daemon awakens.

Retrieving Files with uupick

In order to retrieve a file sent by uuto, you must use the uupick com
mand. To execute uupick, enter the following command:

uupick

The uupick program searches the public directory for any files sent to
you. If it finds any, it responds with the following prompt:

(from source_computer: file filename ?

5-12 User's Guide

UsingUUCP

The sourceJomputer is the name of the sender's computer andfilename
is the name of the file transferred. In the example above, if the uuto
transfer to cindy on machine2 is successful, cindy sees the following
uupick prompt:

~ from machinel: file transfile ?

Several options are available for responding to the uupick prompt. Two
of the most useful are m [dir] and d. The m [dir] option tells uupick to
move the file to directory dir. Once in dir, you can manipulate the file as
you would any other file on your system. In the example above, cindy
could enter the following in response to the uupick prompt:

m $HOME

This causes trans file to be moved from the public directory to cindy's
home directory. IT no directory is specified after m, the file is moved to
the recipient's current directory.

Entering d at the uupick prompt causes the file to be deleted from the
public directory. You can quit uupick by entering q. Note other uupick
options are available. Refer to uupick(C) for a complete list of these.

Executing Commands with uux

The uux command is used to execute commands on remote UUCP sites
and on files gathered from remote UUCP sites. For security reasons, the
commands available for remote execution on a computer are often very
limited. A computer's lusrllibluucplPermissions file lists the commands
that can be executed remotely on that computer. IT you attempt to exe
cute a command not listed in this file, you will receive mail indicating
that the command cannot be executed on the computer in question.

The syntax of uux is:

uux [options] command-line

The command-line argument looks like any other UNIX command line,
with the exception that commands and filenames may be prefixed with
site-name!.

Communicating with Other Sites 5-13

UsingUUCP

The following is an example of how to execute a command on a remote
system. The command causes Itmplprintfile on machine2 to be sent to
machine2' s default printer:

UUX machine2!1p machine2!/tmp/printfile

Note that prefixing a site name to a command causes the command to be
executed on that site.

The following is an example of how to execute a command on a local sys
tem on files gathered with uux from remote systems. Suppose that your
local computer is connected to both machine2 and machine3. Suppose
also that you want to compare the contents of Itmplchptl on machine2
with Itmplchptl on machine3. To do so, enter the following command:

UUX "diff machine2!1tmp/chptl machine3!1tmp/chptl > ditf.file"

This command will compare the contents of the files on machine2 and
machine3 and place the output in diff.file in the current directory on the
local computer. Since there is no site name prefixed to the diff command,
the command is executed locally.

Note that, in the example above, the uux command line is placed in quo
tation marks. This is because it contains the redirect symbol (». In gen
eral, place the uux command line in quotation marks whenever the com
mand line contains special shell characters such as <, >, I, and so forth.

5-14 User's Guide

Logging in to Remote Systems

Logging in to Remote Systems
The ct command connects your system to a remote terminal with a
modem attached. The co command connects your system to a remote sys
tem. The remote system can be attached via phone lines or via a simple
serial line. These commands differ from the Micnet commands and the
UUCP commands discussed above in that your session with the remote
system is interactive. The remote system "sees" you as just another user
on the system. Both ct and CD are discussed below.

Using ct

The ct command connects a local computer to a remote terminal
equipped with a modem and allows a user on that terminal to log in to the
computer. To do this, the command dials the phone number of the remote
modem. The remote modem must be able to answer the call automatical
ly. When ct detects that the call has been answered, it issues a getty (log
in) process for the remote terminal and allows a user on the terminal to
log in on the computer.

This command is especially useful when issued from the opposite end,
that is, from the remote terminal itself. If you are using a remote terminal
and you want to avoid long distance charges, you can use ct to have the
computer place a call to your terminal. To do so, simply call the com
puter, log in, and issue the ct command. The computer will hang up the
line and call your terminal back.

If ct cannot find an available dialer, it tells you that all dialers are busy
and asks if it should wait until one becomes available. If you answer yes,
it asks how long (in minutes) it should wait. If you answer no, ct quits.

The syntax of ct is:

ct [options] teino

The argument teino is the telephone number of the remote terminal.

Communicating with Other Sites 5-15

Logging in to Remote Systems

As an example, suppose that you have a tenninal with a modem attached
at home and that you want to log in to the computer at work from this ter
minal. To avoid long distance charges, first call your work computer and
log in. Then issue the ct command to make the computer hang up and
call your tenninal back. If your phone number is 932-3497, the ct com
mandis:

ct -s1200 9323497

The -s option tells ct to call the modem at 1200 baud. If no device is
available on the computer at work, you see the following message after
executing ct:

The one 1200 baud dialer is busy
Do you want to wait for dialer? (y for yes) :

If you type n (no), the ct command exits. If you type y (yes), ct prompts
you to specify how long ct should wait:

(Time, in minutes?

If a dialer is available when you enter the ct command, you see the· fol
lowing message:

(Allocated dialer at 1200 baud

This means that a dialer has been found. You are then asked if you want
the line connecting your remote tenninal to the computer to be dropped:

Proceed to hang-up? (y to hang-up, otherwise exit) :

Since you want to avoid long-distance charges by having the computer
call you,answer y (yes). You are then logged off and ct calls your remote
tenninal back.

As another example, suppose that you are logged in on a computer
through a local tenninal and that you want to connect a remote tenninal

5-16 User's Guide

Logging in to Remote Systems

to the computer. The phone number of the modem on the remote terminal
is 932-3497. To connect the terminal, enter the following command:

nohup ct -h -s1200 9323497 &

The -h option tells ct not to disconnect the local terminal (the terminal on
which the command was issued) from the computer. After the command
is executed, a login prompt is displayed on the remote terminal. The user
can then log in and work on the computer just as on a local terminal.

Several options are available for ct. Refer to ct(C) for a complete list of
these options.

Using Cll

The co command connects your local computer to a remote computer and
allows you to be logged in on both computers simultaneously. The
remote computer does not have to be a UNIX system.

If the remote computer is a UNIX system, co allows you to move back and
forth between the two computers, transferring files and executing com
mands on both. Note that cu only allows you to transfer text files. You
cannot transfer binary files with cu. To transfer binary files to a remote
UNIX system, use either rcp or oucp.

The syntax of the cu command is:

cu [options] target

The target argument can take one of three forms:

phone number This is the number of the remote computer
to which you want to connect. You can
embed equal signs, which represent second
ary dial tones, and dashes, which represent
four-second delays, in the phone number. A
sample phone number might be
4084551222--341. This number contains an
area code and number, two dashes for an
eight second delay and an extension.

Communicating with Other Sites 5-17

Logging in to Remote Systems

system-name

-I line

-I line dir

This is the name of a system that is listed in
the lusrllibluucplSystems file. The co com
mand obtains the telephone number and the
baud rate of system-name from this file.
The Os, on, and -I options should not be used
with system-name. To see the list of com
puters in the Systems file, enter: ooname.

This is the device name of the serial line
connected to the remote computer. It has
the form ttyXX, where XX is the number of a
serial line.

Connects directly with serial line instead 01
making a phone connection.

Several options are available for use with the co command. Refer to
cu(C) for a complete list of these options.

Once the connection is made, if the remote computer is a UNIX system,
you are presented with a login prompt. Log in as you would if you were
connected locally. When you finish working on the remote computer, log
off as you would if you were connected locally. Then terminate the co
connection by entering a tilde followed by a period (-.). You are still
logged in on the local computer.

As an example, suppose that you want to log in to a remote UNIX com
puter via the phone lines. Suppose also that the remote computer's num
ber is 847-7867. To connect to the remote computer, enter the following
command:

co -s1200 8477867

The -s1200 option causes co to use a 1200 baud dialer. If the -s option is
not specified, co uses the first available dialer at the speed specified in the
Devices file.

5-18 User's Guide

Logging in to Remote Systems

When the remote UNIX system answers the call, cu notifies you that the
connection has been made by displaying the following message:

(Connected

Next, you are prompted for your login:

(login:

Enter your login and password. Once you enter this information, you can
use this computer as if you were logged in locally. When you are
finished, logout and then enter:

-.
This terminates the cu session.

cu Command Strings

Several "Command Strings" are available with cu that allow your local
computer to communicate with a remote UNIX system. 1\vo of the most
useful are take and put.

The take command allows you to copy files from the remote computer to
the local computer. Suppose, for example, that you want to copy a file
named proposal in the current directory of the remote computer to your
home directory on the local computer. To do so, enter the following com
mand:

-%take proposal $home/proposal

Note that you have to prefix a tilde and a percent sign (-%) to the take
command, and that the tilde must be placed at the start of a line. For this
reason, it is a good idea to press (Retum) before using take.

The put command allows you to do the opposite of take. It copies files
from the local computer to the remote computer. Suppose, for example,
that you want to copy a file named minutes from your home directory on
the local computer to the Itmp directory of the remote computer. Suppose

Communicating with Other Sites 5-19

Logging in to Remote Systems

also that you want the file to be called minutes.9-18 on the remote com
puter. To do so, enter the following command:

-%put $home/minutes Itmp/minutes.9-18

Like the take command, you have to prefix a tilde and a percent sign
(-%) to the put command, with the tilde coming at the beginning of a
line. Note also that take and put copy only text files, and only to UNIX
systems. They do not copy binary files.

Note

The cu command cannot detect or correct transmission errors. After
a file transfer, you can check for loss of data by running the sum
command on both the file that was sent and the file that was
received. This command reports the total number of bytes in each
file. If the totals match, your transfer was probably successful. See
the sum(C) manual page for details.

Other command strings are available for use with cu. For a complete list
of these, see cu(C).

5-20 User's Guide

Chapter 6

bc: A Calculator

Introduction 6-1

Demonstration 6-2

Tasks 6-5
Computing with Integers 6-5
Specifying Input and Output Bases 6-6
Scaling Quantities 6-8
Using Functions 6-9
Using Subscripted Variables 6-11
Using Control Statements: if, while and for 6-11
Using Other Language Features 6-14

Language Reference 6-16
Tokens 6-16
Expressions 6-17
Function Calls 6-18
Unary Operators 6-19
Multiplicative Operators 6-19
Additive Operators 6-20
Assignment Operators 6-20
Relational Operators 6-21
Storage Classes 6-21
Statements 6-22

Introduction

Introduction
be is a program that can be used as an arbitrary precision arithmetic cal
culator. be output is interpreted and executed by a collection of routines
which can input, output, and do arithmetic on indefinitely large integers
and on scaled fixed-point numbers .. Although you can write substantial
programs with be, it is often used as an interactive tool for performing
calculator-like computations. The language supports a complete set of
control structures and functions that can be defined and saved for later
execution. The syntax of be has been deliberately selected to agree with
the C language; those who are familiar with C will find few surprises. A
small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Common uses for be are:

• Computation with large integers.

• Computations accurate to many decimal places.

• Conversions of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point nota
tion. Provision is made for input and output in bases other than decimal.
Numbers can be converted from decimal to octal simply by setting the
output base equal to 8.

The actual limit on the number of digits that can be handled depends on
the amount of storage available on the machine, so manipulation of num
bers with many hundreds of digits is possible.

be: A Calculator 6-1

Demonstration

Demonstration
This demonstration is designed to show you:

• How to get into and out of be.

• How to perfonn simple computations.

• How expressions are fonned and evaluated.

• How to assign values to registers.

A nonnal session with be begins by invoking the program with the com
mand:

be

To exit be enter:

quit

or press {CTL)d. Once you have entered be, you can use it very much like
a nonnal calculator. As with the UNIX shell, commands are read as
command-lines, so each line that you enter must be tenninated by a
(Return). Throughout this chapter, the (Return) is implied at the end of
each command line. Within be, nonnal processing of other keys, such as
(BKSP) and INTERRUPT (also known as (DEL» also works.

For example, enter the simple integer 5:

5

Output is immediately echoed on the next line to the standard output,
which is nonnally the tenninal screen:

Here 5 is a simple numeric expression. However, if you enter the expres
sion:

5*5.25

6-2 User's Guide

Demonstration

(where the star (*) is the multiplication operator) a computation is exe
cuted and the result printed on the next line:

(26.25

What has happened here is that the line 5*5.25 has been evaluated, i.e.,
the expression has been reduced to its most elementary form, which is the
number 26.25. The process of evanuation normally involves some type of
computation such as multiplication, division, addition, or subtraction. For
example, all four of these operations are involved in the following expres
sion:

(10*5)+50-(50/2)

When this expression is evaluated, the subexpressions within parentheses
are evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is "50+50-25" which ultimately
reduces to the number "75".

The simple addition:

10.45+5.5555555

produces the output:

(16.0055555

Note how precision is retained in the above result.

The two-part multiplication:

(8*9)*7

produces the answer:

The next part of this demonstration shows you how to store values in spe
cial alphabetic registers. For example, enter:

a=100; b=5

be: A Calculator 6-3

Demonstration

What happens here is that the registers a and b are assigned the values
100 and 5, respectively. The semicolon is used here to place multiple be
statements on a single line, just as it is used in the UNIX shell. This com
mand line produces no output because assignment statements are not con
sidered expressions. However, the registers a and b can now be used in
expressions. Thus you can now enter:

a*b;a+b

to produce:

(soo
105

The last part of this demonstration shows you how the result of the most
recent calculation is automatically stored.

The period character (.) represents the register that contains this value. It
can be used in any expression, and is reset automatically whenever a new
operation is performed. For example, after entering:

5*10

the . register contains the number 50. If you now enter:

.+20,

the result is:

and the . register now contains thks new value.

To exit be, remember to enter:

quit

or press (CTL)d.

This ends the demonstration. Following sections describe use of be in
more detail. The final section of this chapter is a be language reference.

6-4 User's Guide

Tasks

Tasks
This section describes how to perfonn common be tasks. Mastery of
these tasks should turn you into a competent be user.

Computing with Integers

The simplest kind of statement is an arithmetic expression on a line by
itself. For instance, if you enter:

142857 + 285714

and press (Return), be responds immediately with the line:

(428571

Other operators also can be used. The complete list includes:

+ _ * / 9b A

They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers
produces an integer result truncated toward zero. Division by zero pro
duces an error message.

Any tenn in an expression can be prefixed with a minus sign to indicate
that it is to be negated (this is the "unary" minus sign). For example, the
expression:

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses
are interpreted just as in FORTRAN, with exponentiation n perfonned
first, then multiplication (*), division (I), modulo (9b), and finally, addi
tion (+), and subtraction (-). The contents of parentheses are evaluated
before expressions outside the parentheses. All of the above operations
are perfonned from left to right, except exponentiation, which is per
fonned from right to left.

bc: A Calculator 6-5

Tasks

Thus the following two expressions:

are equivalent, as are the two expressions:

a*b*c and (a*b)*c

be shares with FORTRAN and C the convention that a/b*c is equivalent
to (a/b)*c.

Internal storage registers to hold numbers have single lowercase letter
names. The value of an expression can be assigned to a register in the
usual way, thus the statement:

x=x+3

has the effect of increasing by 3 the value of the contents of the register
named "x". When, as in this case, the outermost operator is the assign
ment operator (=), then the assignment is performed but the result is not
printed. There are 26 available named storage registers, one for each
letter of the alphabet.

There is also a built-in square root function whose result is truncated to an
integer (see also the section on "Scaling"). For example, the lines:

x = sqrt(191)
x

produce the printed result:

Specifying Input and Output Bases

There are special internal quantities in be, called ibase (or base) and
obase. base and ibase can be used interchangeably. ibase is initially set
to 10, and determines the base used for interpreting numbers that are read
by be. For example, the lines:

6-6

kbase =8
11

User's Guide

Tasks

produce the output line:

and you are all set up to do octal to decimal conversions. However,
beware of trying to change the input base back to decimal by entering:

ibase = 10

Because the number lOis interpreted as octal, this statement has no
effect. For those who deal in hexadecimal notation, the uppercase charac
ters A-F are permitted in numbers (no matter what base is in effect) and
are interpreted as digits having values 10-15, respectively. These charac
ters must be uppercase and not lowercase.

The statement:

ibase = A

changes you back to decimal input base no matter what the current input
base is. Negative and large positive input bases are permitted; however
no mechanism has been provided for the input of arbitrary numbers in
bases less than 1 and greater than 16.

obase is used as the base for output numbers. " The value of obase is ini
tially set to a decimal 10. The lines:

obase = 16
1000

produce the output line:

This is interpreted as a three-digit hexadecimal number. Very large out
put bases are permitted. For example, large numbers can be output in
groups of five digits by setting obase to 100000. Even strange output
bases, such as negative bases, and 1 and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line.
A split line that continues on the next line ends with a backslash (\).
Decimal output conversion is fast, but output of very large numbers (i.e.,
more than 100 digits) with other bases is rather slow.

bc: A Calculator 6-7

Tasks

Remember that ibase and obase do not affect the course of internal com
putation or the evaluation of expressions; they only affect input and out
put conversion.

Scaling Quantities

A special internal quantity called scale is used to determine the scale of
calculated quantities. Numbers can have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations.
We refer to the number of digits after the decimal point of a number as its
"scale. "

When two scaled numbers are combined by means of one of the arith
metic operations, the result has a scale determined by the following rules:

Addition, subtraction

Multiplication

Division

Modulo

Exponentiation

Square Root

The scale of the result is the"larger of the scales
of the two operands. There is never any trunca
tion of the result.

The scale of the result is never less than the max
imum of the two scales of the operands, never
more than the sum of the scales of the operands,
and subject to those two restrictions, the scale of
the result is set equal to the contents of the inter
nal quantity, scale.

The scale of a quotient is the contents of the
internal quantity, scale.

The scale of a remainder is the sum of the scales
of the quotient and the divisor.

The result of an exponentiation is scaled as if the
implied multiplications were performed. An
exponent must be an integer.

The scale of a square root is set to the maximum
of the scale of the argument and the contents of
scale.

All of the internal operations are actually carried out in terms of integers,
with digits being discarded when necessary. In every case where digits
are discarded truncation is performed without rounding.

6-8 User's Guide

Tasks

The contents of scale must be no greater than 99 and no less than o. It is
initially set to o.

The internal quantities scale, ibase, and base can be used in expressions
just like other variables. The line:

scale ;:::; scale + 1

increases the value of scale by one, and the line:

scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase or obase are not equal
to 10. The internal computations (which are still conducted in decimal,
regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal or octal or any other kind of digits.

Using Functions

The name of a function is a single lowercase letter. Function names are
permitted to use the same letters as simple variable names. 1Wenty-six
different defined functions are permitted in addition to the twenty-six
variable names.

The line:

define a(x}{

begins the definition of a function with one argument. This line must be
followed by one or more statements, which make up the body of the func
tion, ending with a rigjt brace (}). Return of control from a function
occurs when a return statement is executed or when the end of the func
tion is reached.

The return statement can take either of the two forms:

return
return(x)

In the first case, the returned value of the function is 0; in the second, it is
the value of the expression in parentheses.

be: A Calculator 6-9

Tasks

Variables used in functions can be declared as automatic by a statement
of the form:

auto x,y,z

There can be only one auto statement in a function and it must be the first
statement in the definition. These automatic variables are allocated space
and initialized to zero on entry to the function and thrown away on return.
The values of any variables with the same naoes outside the function are
not disturbed. Functions can be called recursively and the automatic vari
ables at each call level are protected. The parameters named in a func
tion definition are treated in the same way as the automatic variables of
that function, with the single exception that they are given a value on
entry to the function. An example of a function definition follows:

define a(x,y){
auto z
z=x*y
return(z)

The value of this function, when called, will be the product of its two
arguments.

A function is called by the appearance of its name, followed by a string of
arguments enclosed in parentheses and separated by commas. The result
is unpredictable if the wrong number of arguments is used.

If the function "a" is defined as shown above, then the line:

a(7,3.14)

would print the result:

(21.98

Similarly, the line:

x = a(a(3,4),5)

would cause the value of "x" to become 60.

6-10 User's Guide

Tasks

Functions can require no arguments, but still perform some useful opera
tion or return a useful result. Such functions are defined and called using
parentheses with nothing between them. For example:

bO

calls the function named b.

Using Subscripted Variables

A single lowercase letter variable name followed by an expression in
brackets is called a subscripted variable and indicates an array element.
The variable name is the name of the array and the expression in brackets
is called the subscript. Only one-dimensional arrays are permitted in be.
The names of arrays are permitted to collide with the names of simple
variables and function names. Any fractional part of a subscript is
dkscarded before use. Subscripts must be greater than or equal to zero
and less than or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls
and in return statements.

An array name can be used as an argument to a function, as in:

f(a[])

Array names can also be declared as automatic in a function definition
with the use of empty brackets:

define f(a[])
auto a[]

When an array name is so used, the entire contents of the array are copied
for the use of the function, then thrown away on exit from the function.
Array names that refer to whole arrays cannot be used in any other con
text.

Using Control Statements: if, while and for

The if, while, and for statements are used to alter the flow within pro
grams or to cause iteration. The range of each of these statements is a
following statement or compound statement consisting of a collection of
statements enclosed in braces. They are written as follows:

be: A Calculator 6-11

Tasks

if (relation) statement
while (relation) statement
for (expressionl ; relation; expression2)statement

A relation in one of the control statements is an expression of the form:

expressionl rel-op expression2

where the two expressions are related by one of the six relational opera·
tors:

< > <= >= == !=

Note that a double equal sign (=) stands for "equal to" and ar
exclamation-equal sign (!=) stands for "not equal to". The meaning 01
the remaining relational operators is their normal arithmetic and logical
meaning.

Beware of using a single equal sign (=) instead of the double equal sigr
(==) in a relational. Both of these symbols are legal, so you will not get ~
diagnostic message. However, the operation will not perform the intended
comparison.

The if statement causes execution of its range if and only if the relation il
true. Then control passes to the next statement in the sequence.

The while statement causes repeated execution of its range as long as thf
relation is true. The relation is tested before each execution of its rangf
and if the relation is false, control passes to the next statement beyond thf
range of the while statement.

The for statement begins by executing expressionl. Then the relation il
tested and, if true, the statements in the range of the for statement an
executed. Then expression2 is executed. The relation is tested, and so on
The typical use of the for statement is for a controlled iteration, as in thf
statement:

for(i=1; i<=1O; i=i+ 1) i

which will print the integers from 1 to 10.

6-12 User's Guidi

Tasks

The following are some examples of the use of the control statements:

define f(n){
auto i, x
x=1
for(i=1; i<=n; i=i+1) x=x*i
retum(x)

The line:

f(a)

prints "a" factorial if "a" is a positive integer.

The following is the definition of a function that computes values of the
binomial coefficient ("m" and "n" are assumed to be positive integers):

define b(n,m){
auto x,j
x=1
forO=1; j<=m; j=j+1) x=x*(n-j+1)/j
retum(x)

The following function computes values of the exponential function by
summing the appropriate series without regard to possible truncation
errors:

scale = 20
define e(x){

auto a, b, c, d, n
a=1
b=1
c=1
d=O
n=1
while(1==1) {

be: A Calculator

a=a*x
b=b*n
c=c+a/b
n=n+1
if(c==d) retum(c)
d=c

6-13

Tasks

Using Other Language Features

Some language features that every user should know about are listed
below.

• Normally, statements are entered one to a line. It is also permissi
ble to enter several statements on a line if they are separated by
semicolons.

• If an assignment statement is placed in parentheses, it then has a
value and can be used anywhere"that an expression can. For exam
ple, the line:

(x=y+17)

not only makes the indicated assignment, but also prints the result
ing value.

The following is an example of a use of the value of an assignment
statement even when it is not placed in parentheses:

x = a[i=i+l]

This causes a value to be assigned to "x" and also increments "i"
before it is used as a subscript.

• The following constructions work in be in exactly the same
manner as they do in the C language:

6-14

Construction Equivalent
x=y=z x=(y=z)
x=+y x=x+y
x=-y x=x-y
x=* y x=x*y
x=/y x=x!y
x=%y x=x%y
x=

h
Y X=Xhy

x++ (x=x+l)-1
x-- (x=x-l)+1
++x x=x+l
--x x = x-I

Even if you don't intend to use these constructions, if you enter one
inadvertently, something legal but unexpected may happen. Be

User's Guide

Tasks

aware that in some of these constructions spaces are significant.
There is a real difference between "x=-y" and "x= -y". The first
replaces "x" by "x-y" and the second by "-y".

• The comment convention is identical to the C comment conven
tion. Comments begin with "/*" and end with "* /' '.

• There is a library of math functions that can be obtained by enter
ing:

be -1

when you invoke bc. This command loads the library functions
sine, cosine, arctangent, natural logarithm, exponential, and Bessel
functions of integer order. These are named "s", "c", "a", "1",
"e", and "j(n,x)", respectively. This library sets scale to 20 by
default.

• If you enter:

be file .••

be will read and execute the named file or files before accepting
commands from the keyboard. In this way, you can load your own
programs and function definitions.

be: A Calculator 6-15

Language Reference

Language Reference
This section is a comprehensive reference to the bc language. It contains
a more concise description of the features mentioned in earlier sections.

Tokens

Tokens are keywords, identifiers, constants, operators, and separators.
Token separators can be blanks, tabs or comments. Newline characters or
semicolons separate statements.

Comments

Identifiers

Keywords

6-16

Comments are introduced by the characters "/*"
and are terminated by "* /' '.

There are three kinds of identifiers: ordinary
identifiers, array identifiers and function
identifiers. All three types consist of single lower
case letters. Array identifiers are followed by
square brackets, enclosing an optional gxpression
describing a subscript. Arrays are singly dimen
sioned and can contain up to 2048 elements.
Indexing begins at 0 so an array can be indexed
from 0 to 2047. Subscripts are truncated to
integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The
three types of identifiers do not conflict; a pro
gram can have a variable named "x", an array
named "x", and a function named "x", all of
which are separate and distinct.

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto·
length return
while quit
for

User's Guide

Constants

Expressions

Language Reference

Constants are arbitrarily long numbers with an
optional decimal point. The hexadecimal digits
A-F are also recognized as digits with decimal
values 10-15, respectively.

All expressions can be evaluated to a value. The value of an expression is
always printed unless the main operator is an assignment. The pre
cedence of expressions (Le., the order in which they are evaluated) is as
follows:

Function calls
Unary operators
Multiplicative operators
Additive operators
Assignment operators
Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Sim
ply stated, named expressions are legal on the left side of an
assignment. The value of a named expression is the value
stored in the place named.

identifiers
Simple identifiers are named expressions. They
have an initial value of zero.

array-name [expression]
Array elements are named expressions. They have
an initial value of zero.

scale, ibase and obase

bc: A Calculator

The internal registers scale, ibase, and obase are all
named expressions. Scale is the number of digits
after the decimal point to be retained in arithmetic
operations ne 3 and has an initial value of zero.
Ibase and obase are the input and output number
radixes respectively. Both ibase and obase have
initial values of 10.

6-17

Language Reference

Constants
Constants are primitive expressions that evaluate to them
selves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive
expression. The parentheses are used to alter normal operator
precedence.

Function Calls
Function calls are expressions that return values. They are
discussed in the next section.

Function Calls

A function call consists of a function name followed by parentheses con
taining a comma-separated list of expressions, which are the function
arguments. The syntax is as follows:

function-name ([expression [, expression ...]])

A whole array passed as an argument is specified by the array name fol
lowed by empty square brackets. All function arguments are passed by
value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return
statement, the value of the function is the value of the expression in the
parentheses of the return statement, or 0 if no expression is provided or if
there is no return statement. Three built-in functions are listed below:

sqrt(expr)

length (expr)

scale (expr)

6-18

The result is the square root of the expression and
is truncated in the least significant decimal place.
The scale of the result is the scale of the expres
sion or the value of scale, whichever is larger.

The result is the total number of significant
decimal digits in the expression. The scale of the
result is zero.

The result is the scale of the expression. The
scale of the result is zero.

User's Guide

Language Reference

Unary Operators

The unary operators bind right to left.

-expr The result is the negative of the expression.

++ named _ expr The named expression is incremented by one. The
resunt is the value of the named expression after
incrementing.

-- named _ expr The named expression is decremented by one.
The result is the value of the named expression
after decrementing.

named _expr ++ The named expression is incremented by one. The
result is the value of the named expression before
incrementing.

named _ expr - - The named expression is decremented by one.
The result is the value of the named expression
before decrementing.

Multiplicative Operators

The multiplicative operators (*, /, and %) bind from left to right.

expr*expr

expr/expr

expr%expr

bc: A Calculator

The result is the product of the two expressions. If
"a" and "b" are the scales of the two expres
sions, then the scale of the result is:

min (a+b, max (scale, a, b))

The result is the quotient of the two expressions.
The scale of the result is the value of scale.

The modulo operator (%) produces the remainder
of the division of the two expressions. More pre
cisely, a%b is a-a/b*b. The scale of the result is
the sum of the scale of the divisor and the value of
scale.

The exponentiation operator binds right to left.
The result is the first expression raised to the
power of the second expression. The second
expression must be an integer. If "a" is the scale

6-19

Language Reference

of the left expression and "b' , is the absolute
value of the right ezpression, then the scale of the
result is:

min (a*b, max (scale, a))

Additive Operators

The additive operators bind left to right.

expr+expr

expr-expr

The result is the sum of the two expressions. The
scale of the result is the maximum of the scales of
the expressions.

The result is the difference of the two expressions.
The scale of the result is the maximum of the
scales of the expressions.

Assignment Operators

The assignment operators listed below assign values to the named expres
sion on the left side.

named expr=expr
- This expression results in assigning the value of the

expression on the right to the named expression on the
left.

named _ expr= +expr
The result of this expression is equivalent to
named _ expr=named _ expr+expr.

named expr= -expr
- The result of this expression is equivalent to

named _ expr=named _ expr-expr.

named expr=*expr
- The result of this expression is equivalent to

named_expr=named_expr*expr.

named expr=1 expr
- The result of this expression is equivalent to

named _ expr=named _ exprl expr.

6-20 User's Guide

Language Reference

named _ expr=%expr
The result of this expression is equivalent to
named_expr=named_expr%expr.

named expr=Aexpr
- The result of this expression is equivalent to

named _ expr=named _ exprAexpr.

Relational Operators
Unlike all other operators, the relational operators are only valid as the
object of an if or while statement, or inside a for statement.

These operators are listed below:

expr < expr

expr > expr

expr <= expr

expr >= expr

expr == expr

expr 1= expr

Storage Classes
There are only two storage classes in be: global and automatic (local).
Only identifiers that are to be local to a function need to be declared with
the auto command. The arguments to a function are local to the function.
All other identifiers are assumed to be global and available to all func
tions.

All identifiers, global and local, have initial values of zero. Identifiers
declared as auto are allocated on entry to the function and released on
returning from the function. They, therefore, do not retain values
between function calls. Note that auto arrays are specified by the array
namer, followed by empty square brackets.

Automatic variables in be do not work the same way as in C. On entry to
a function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until return is made from the
function, reference to these names refers only to the new values.

bc: A Calculator 6-21

Language Reference

Statements

Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four
types of statements: expression statements, compound statements, quoted
string statements, and built-in statements. Each kind of statement is dis
cussed below:

6-22

Expression statements
When a statement is an expression, unless the
main operator is an assignment, the value of the
expression is printed, followed by a newline char
acter.

Compound statements
Statements can be grouped together and used
when one statement is expected by surrounding
them with curly braces ({ and }).

Quoted string statements
For example:

"string"

prints the string inside the quotation marks.

Built-in statements
Built-in statements include auto, break, define,
for, if, quit, return, and while.

The syntax for each built-in statement is given
below:

Auto statement

The auto statement causes the values of the
identifiers to be pushed down. The identifiers can
be ordinary identifiers or array identifiers. Array
identifiers are specified by following the array
name by empty square brackets. The auto state
ment must be the first statement in a function
definition. Syntax of the auto statement is:

auto identifier [, identifier]

User's Guide

be: A Calculator

Language Reference

Break statement

The break statement causes termination of a for
or while statement. Syntax for the break statement
is:

break

Define statement

The define statement defines a function; parame
ters to the function can be ordinary identifiers or
array names. Array names must be followed by
empty square brackets. The syntax of the define
statement is:

define ([parameter [,parameter ... lD {statements}

For statement

Vhe for statement is the same as:

first-expression
while (relation) {

statement
last-expression

All three expressions must be present. Syntax of
the for statement is:

for (expression; relation;expression) statement

If statement

The statement is executed if the relation is true.
The syntax is as follows:

if (relation) statement

6-23

Language Reference

6-24

Quit statement

The quit statement stops execution of a bc pro
gram and returns control to the Operating System
when it is first encountered. Because it is not
treated as an executable statement, it cannot be
used in a function definition or in an if, for, or
while statement. Note that entering a (CTL)d at
the keyboard is the same as entering "quit". The
syntax of the quit statement is as follows:

quit

Return statement

The return statement terminates a function, pops
its auto variables off the stack, and specifies the
result of the function. The result of the function is
the result of the expression in parentheses. The
first form is equivalent to "retum(O)". The syntax
of the return statement is as follows:

return(expr)

While statement

The statement is executed while the relation is
true. The test occurs before each execution of the
statement. The syntax of the while statement is as
follows:

while (relation) statement

User's Guide

Chapter 7

The Shell

Introduction 7-1

Basic Concepts 7-2
How Shells Are Created 7-2
Commands 7-2
How the Shell Finds Commands 7-3
Generation of Argument Lists 7 -3
Quoting Mechanisms 7-4
Standard Input and Output 7-6
Diagnostic and Other Outputs 7-7
Command Lines and Pipelines 7-7
Command Substitution 7-9

Shell Variables 7-11
Positional Parameters 7-11
User-Defined Variables 7-12
Predefined Special Variables 7-16

The Shell State 7-18
Changing Directories 7-18
The .profile File 7-19
Execution Flags 7-19

A Command's Environment 7-20

Invoking the Shell 7-22

Passing Arguments to Shell Procedures 7-23

Controlling the Flow of Control 7-26
Using the if Statement 7-28
Using the case Statement 7-29
Conditional Looping: while and until 7-30
LoopingOveraList: for 7-31
LoopControl: breakandcontinue 7-32
End-of-File and exit 7-33
Command Grouping: Parentheses and Braces 7-33
Defining Functions 7-35

Input/Output Redirection and Control Commands 7-36
Transfer Between Files: The Dot (.) Command 7-36
InterruptHandling: trap 7-36

Special Shell Commands 7-40

Creation and Organization of Shell Procedures 7-44

More About Execution Flags 7-46

Supporting Commands and Features 7-47
Conditional Evaluation: test 7-47
Echoing Arguments 7 -49
Expression Evaluation: expr 7-49
TrueandFalse 7-50
In-Line Input Documents 7-50
Input/ Output Redirection Using File Descriptors 7-51
Conditional Substitution 7-52
Invocation Flags 7-54

Effective and Efficient Shell Programming 7-55
Number of Processes Generated 7-55
Number of Data Bytes Accessed 7-57
Shortening Directory Searches 7 -58
Directory-Search Order and the PATH Variable 7-58
Good Ways to Set Up Directories 7-59

Shell Procedure Examples 7-60

Shell Grammar 7-68

Introduction

Introduction
When users log into a UNIX system, they communicate with one of ser
veral interpreters. This chapter discusses the shell command interpreter,
sh. This interpreter is a UNIX program that supports a very powerful
command language. Each invocation of this interpreter is called a shell;
and each shell has one function: to read and execute commands from its
standard input.

Because the shell gives the user a high-level language in which to com
municate with the operating system, you can perform tasks unheard of in
less sophisticated operating systems. Commands that would normally
have to be written in a traditional programming language can be written
with just a few lines in a shell procedure. In other operating systems,
commands are executed in strict sequence. With the shell, commands can
be:

• Combined to form new commands

• Passed positional parameters

• Added or renamed by the user

• Executed within loops or executed conditionally

• Created for local execution without fear of name conflict with
other user commands

• Executed in the background without interrupting a session at a ter
minal

Furthermore, commands can "redirect" command input from one source
to another and redirect command output to a file, terminal, printer, or to
another command. This provides flexibility in tailoring a task for a par
ticular purpose.

The Shell 7-1

Basic Concepts

Basic Concepts
The shell itself (that is, the program that reads your commands when you
log in or that is invoked with the sh command) is a program written in the
C language; it is not part of the operating system proper, but an ordinary
user program.

How Shells Are Created

On a UNIX system, a process is an executing entity complete with instruc·
tions, data, input, and output. All processes have lives of their own, and
may even start (or "fork") new processes. Thus, at any given momenl
several processes may be executing, some of which are "children" oj
other processes.

Users log into the operating system and are assigned a "shell" from
which they execute. This shell is a personal copy of the shell command
interpreter that is reading commands from the keyboard: in this context,
the shell is simply another process.

In the UNIX multitasking environment, files may be created in one phase
and then sent off to be processed in the "background." This allows the
user to continue working while programs are running.

Commands

The most common way of using the shell is by entering simple commands
at your keyboard. A simple command is any sequence of arguments
separated by spaces or tabs. The first argument (numbered zero) specifies
the name of the command to be executed. Any remaining arguments,
with a few exceptions, are passed as arguments to that command. FOl
example, the following command line might be entered to request print·
ing of the files allan, barry, and calvin:

lpr allan barry calvin

If the first argument of a command names a file that is executable (as
indicated by an appropriate set of permission bits associated with thaI
file) and is actually a compiled program, the shell, as parent, creates ~
child process that immediately executes that program. If the file is
marked as being executable, but is not a compiled program, it is assumec

7-2 User's Guidt

Basic Concepts

to be a shell procedure, that is, a file of ordinary text containing shell
command lines. In this case, the shell spawns another instance of itself (a
subs hell) to read the file and execute the commands inside it.

From the user's viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implemen
tation has been used, rather than requiring the user to do so. This pro
vides uniformity of invocation.

How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in
the file system. The shell attempts to use the command name as given; if
this fails, it prepends the string Ibin to the name. If the latter is unsuc
cessful, it prepends lusrlbin to the command name. The effect is to
search, in order, the current directory, then the directory Ibin, and finally,
lusrlbin. For example, the pr and man commands are actually the files
Ibinlpr and lusrlbinlman, respectively. A more complex pathname may
be given, either to locate a file relative to the user's current directory, or
to access a command with an absolute pathname. If a given command
name includes a slash ({) (for example, Ibinlsort dirlcmd), the prepending
is not performed. Instead, a single attempt is made to execute the com
mand as named.

This mechanism gives the user a convenient way to execute public com
mands and commands in or near the current directory, as well as the abil
ity to execute any accessible command, regardless of its location in the
file structure. Because the current directory is usually searched first, any
one can possess a private version of a public command without affecting
other users. Similarly, the creation of a new public command does not
affect a user who already has a private command with the same name.
The particular sequence of directories searched may be changed by reset
ting the shell PATH variable. (Shell variables are discussed later in this
chapter.)

Generation of Argument Lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of
this similarity in names, the shell lets the user specify patterns that match
the filenames in a directory. If a pattern is matched by one or more
filenames in a directory, then those filenames are automatically generated
by the shell as arguments to the command.

The Shell 7-3

Basic Concepts

Most characters in such a pattern match themselves, but there are also
UNIX special characters that may be included in a pattern. These special
characters are: the star (*), which matches any string, including the null
string; the question mark (?), which matches anyone character; and any
sequence of characters enclosed within brackets ([and n, which matches
anyone of the enclosed characters. Inside brackets, a pair of characters
separated by a dash (-) matches any character within the range of that
pair. Thus [a-de] is equivalent to [abcde].

Examples of metacharacter usage:

Metacharacter

*
temp
[a-fJ*
*.c
lusrlbinl?

Meaning

Matches all names in the current directory
Matches all names containing "temp"

Matches all single-character names in /usr/bin

This pattern-matching capability saves typing and, more importantly,
makes it possible to organize information in large collections of files that
are named in a structured fashion, using common characters or extensions
to identify related files.

Pattern matching has some restrictions. If the first character of a filename
is a period (.), it can be matched only by an argument that literally begins
with a period. If a pattern does not match any filenames, then the pattern
itself is the result of the match.

Note that directory names should not contain any of the following charac
ters:

* ? []

If these characters are used, then infinite recursion may occur during pat
tern matching attempts.

Quoting Mechanisms

Several characters, including <,>,*,?,[and], have special meanings to the
shell. To remove the special meaning of these characters requires some
form of quoting. This is done by using single quotation marks n or dou
ble quotation marks (") to surround a string. A backslash (\) before a sin
gle character provides this function. (Back quotation marks (') are used
only for command substitution in the shell and do not hide the special
meanings of any characters.)

7-4 User's Guide

Basic Concepts

All characters within single quotation marks are taken literally. Thus:

echostuff.='echo $? $*; Is * I wc'

results in the string:

echo $? $*; Is * I wc

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

Within double quotation marks, the special meaning of certain characters
does persist, while all other characters are taken literally. The characters
that retain their special meaning are the dollar sign ($), the backslash (\),
the back quotation mark ('), and the double quotation mark (") itself.
Thus, within double quotation marks, variables are expanded and com
mand substitution takes place (both topics are discussed in later sections).
However, any commands in a command substitution are unaffected by
double quotation marks, so that characters such as star (*) retain their spe
cial meaning.

To hide the special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters
with a backslash (\). Outside of double quotation marks, preceding a
character with a backslash is equivalent to placing single quotation marks
around that character. A backslash (\) followed by a newline causes that
newline to be ignored. The backslash-newline pair is therefore useful in
allowing continuation of long command lines.

Some examples of quoting are displayed below:

Input Shell interprets as:
, , ,

The back quotation mark (')
~" ". The double quotation mark (")
" echo one ' , the one word" 'echo one' "
n\" II The double quotation mark (")
"'echo one' " the one word "one"
II'" illegal (expects another ')
one two the two words "one" & "two"
"one two" the one word "one two"
'one two' the one word "one two"
'one * two' the one word "one * two"
"one * two" the one word "one * two"
,
echo one

,
the one word "one"

The Shell 7-5

I

Basic Concepts

Standard Input and Output

In general, most commands do not know or care whether their input or
output is coming from or going to a terminal or a file. Thus, a command
can be used conveniently either at a terminal or in a pipeline. A few com
mands vary their actions depending on the nature of their input or output,
either for efficiency, or to avoid useless actions (such as attempting ran
dom access I/O on a terminal or a pipe).

When a command begins execution, it usually expects that three files are
already open: a "standard input" , a "standard output" , and a "diagnos
tic output" (also called "standard error"). A nwnber called a file
descriptor is associated with each of these files. By convention, file
descriptor 0 is associated with the standard input, file descriptor 1 with
the standard output, and file descriptor 2 with the diagnostic output. A
child process normally inherits these files from its parent; all three files
are initially connected to the terminal (0 to the keyboard, 1 and 2 to the
terminal screen). The shell permits the files to be redirected elsewhere
before control is passed to an invoked command.

An argument to the shell of the form "<file" or ">file" opens the
specified file as the standard input or output (in the case of output, de
stroying the previous contents of file, if any). An argument of the form
"»file" directs the standard output to the end of file, thus providing a
way to append data to the file without destroying its existing contents. In
either of the two output cases, the shell creates file if it does not already
exist. Thus:

> output

alone on a line creates a zero-length file. The following appends to file
log the list of users who are currently logged on:

who » log

Such redirection arguments are only subject to variable and command
substitution; neither blank interpretation nor pattern matching of
filenames occurs after these substitutions. This means that:

echo 'this is a test' > *.gal

produces a one-line file named *.gal. Similarly, an error message is pro
duced by the following command, unless you have a file with the name
"?":

cat < ?

7-6 User's Guide

Basic Concepts

Special characters are not expanded in redirection arguments because
redirection arguments are scanned by the shell before pattern recognition
and expansion takes place.

Diagnostic and Other Outputs

Diagnostic output from UNIX commands is normally directed to the file
associated with file descriptor 2. (There is often a need for an error output
file that is different from standard output so that error messages do not get
lost down pipelines.) You can redirect this error output to a file by
immediately prepending the number of the file descriptor (2 in this case)
to either output redirection symbol (> or »). The following line appends
error messages from the cc command to the file named ERRORS:

cc testfile.c 2» ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number
will be passed as an argument to the command.

This method may be generalized to allow redirection of output associated
with any of the first ten file descriptors (numbered 0-9). For instance, if
cmd puts output on file descriptor 9, then the following line will direct
that output to the file savedata:

cmd 9> savedata

A command often generates standard output and error output, and might
even have some other output, perhaps a data file. In this case, one can
redirect independently all the different outputs. Suppose, for example,
that cmd directs its standard output to file descriptor 1, its error output to
file descriptor 2, and builds a data file on file descriptor 9. The following
would direct each of these three outputs to a different file:

cmd >standard 2> error 9> data

Command Lines and Pipelines

A sequence of commands separated by the vertical bar (I) makes up a
pipeline. In a pipeline consisting of more than one command, each com
mand is run as a separate process connected to its neighbors by pipes, that
is, the output of each command (exceptthe last one) becomes the input of
the next command in line.

The Shell 7-7

Basic Concepts

A filter is a command that reads its standard input, transfonns it in some
way, then writes it as its standard output. A pipeline nonnally consists of
a series of filters. Although the processes in a pipeline are pennitted to
execute in parallel, each program needs to read the output of its predeces
sor. Many commands operate on individual lines of text, reading a line,
processing it, writing it out, and looping back for more input. Some must
read large amounts of data before producing output; sort is an example of
the extreme case that requires all input to be read before any output is
produced. The following is an example of a typical pipeline:

nroff -mm text I coli lpr

nroft' is a text fonnatter available in the UNIX Text Processing System
whose output may contain reverse line motions, col converts these
motions to a fonn that can be printed on a tenninal lacking reverse
motion capability, and Ipr does the actual printing. The flag -mm indi
cates one of the commonly used fonnatting options, and text is the name
of the file to be fonnatted.

The following examples illustrate the variety of effects that can be
obtained by combining a few commands in the ways described above. It
may be helpful to try these at a tenninal:

• who
Prints the list of logged-in users on the tenninal screen.

• who »Iog
Appends the list of logged-in users to the end of file log.

• who I we ·1
Prints the number of logged-in users. (The argument to we is pro
nounced "minus ell".)

• who I pr
Prints a paginated list of logged-in users.

• who I sort
Prints an alphabetized list of logged-in users.

• who I grep bob
Prints the list of logged-in users whose login names contain the
string bob.

• who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose log
in names contain the string bob.

7-8 User's Guide

Basic Concepts

• {date; who 1 wc -I; } » log
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and a
semicolon before the right brace .

• wholsed -e 's/ .*//'1 sort 1 uniq -d
Prints only the login names of all users who are logged in more
than once. Note the use of sed as a filter to remove characters
trailing the login name from each line. (The ". *" in the sed com
mand is preceded by a space.)

The who command does not by itself provide options to yield all these
results-they are obtained by combining who with other commands.
Note that who just serves as the data source in these examples. As an
exercise, replace "who I" with "</etc/passwd" in the above examples to
see how a file can be used as a data source in the same way. Notice that
redirection arguments may appear anywhere on the command line, even
at the start. This means that:

< infile >outfile sort I pr

is the same as:

sort < infile I pr > outfile

Command Substitution

Any command line can be placed within back quotation marks C ... ') so
that the output of the command replaces the quoted command line itself.
This concept is known as command substitution. The command or com
mands enclosed between back quotation marks are first executed by the
shell and then their output replaces the whole expression, back quotation
marks and all. This feature is often used to assign to shell variables.
(Shell variables are described in the next section.)

For example:

today='date'

The Shell 7-9

Basic Concepts

assigns the string representing the current date to the variable "today"; for
example "The Nov 26 16:01 :09 EST 1985". The following command saves
the number oflogged-in users in the shell variable users:

users='who I wc -1'

Any command that writes to the standard output can be enclosed in back quo
tation marks. Back quotation marks may be nested, but the inside sets must
be escaped with backslashes (\). Forexample:

logmsg='echo Your login directory is \'pwd\"

will display the line' 'your login directory is name of login directory' '. Shell
variables can also be given values indirectly by using the read and line com
mands. The read command takes a line from the standard input (usually your
terminal) and assigns consecutive words on that line to any variables named.

For example:

read first init last

takes an input line of the form:

G. A. Snyder

and has the same eifuct as entering:

first=G. init=A. last=Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then
echoes it to the standard output.

7-10 User's Guide

Shell Variables

Shell Variables
The shell has several mechanisms for creating variables. A variable is a
name representing a string value. Certain variables are referred to as
positional parameters; these are the variables that are normally set only
on the command line. Other shell variables are simply names to which
the user or the shell itself may assign string values.

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the
command line is assigned to the positional parameter $0. The first com
mand argument is called $1, and so on. The shift command may be used
to access arguments in positions numbered higher than nine. For exam
ple, the following shell script might be used to cycle through command
line switches and then process all succeeding files:

while test -n "$1"

done

do case $1 in
-a) A=aoption shift"
-b) B=boption shift"
-c) C=coption shift"

-*) echo "bad option" ; exit 1 "
*) process rest of files
esac

One can explicitly force values into these positional parameters by using
the set command. For example:

set abc def ghi

assigns the string "abc" to the first positional parameter, $1, the string
"def" to $2, and the string "ghi" to $3. Note that $0 may not be
assigned a value in this way-it always refers to the name of the shell
procedure; or in the login shell, to the name of the shell.

The Shell 7-11

Shell Variables

User-Defined Variables

The shell also recognizes alphanumeric variables to which string values
may be assigned. A simple assignment has the syntax.:

name=string

Thereafter, $name will yield the value string. A name is a sequence of
letters, digits, and underscores that begins with a letter or an underscore.
No spaces surround the equal sign (=) in an assignment statement. Note
that positional parameters may not appear on the left side of an assign
ment statement; they can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but
beware: the shell performs the assignments from right to left. Thus, the
following command line results in the variable "A" acquiring the value
"abc":

A=$B B=abc

The following are examples of simple assignments. Double quotation
marks around the right-hand side allow spaces, tabs, semicolons, and
newlines to be included in a string, while also allowing variable substitu
tion (also known as "parameter substitution") to occur. This means that
references to positional parameters and other variable names that are
prefixed by a dollar sign ($) are replaced by the corresponding values, if
any. Single quotation marks inhibit variable substitution:

MAIL=/usr/mail/gas
echovar="echo $1 $2 $3 $4"
stars=*****
asterisks='$stars'

In the above example, the variable echovar has as its value the string con
sisting of the values of the first four positional parameters, separated by
spaces, plus the string "echo". No quotation marks are needed around
the string of asterisks being assigned to stars because pattern matching
(expansion of star, the question mark, and brackets) does not apply in this
context. Note that the value of $asterisks is the literal string "$stars",
not the string "*****", because the single quotation marks inhibit substi
tution.

7-12 User's Guide

Shell Variables

In assignments, spaces are not re-interpreted after variable substitution, so
that the following example results in $first and $second having the same
value:

first='a string with embedded spaces
second=$first

In accessing the values of variables, you may enclose the variable name
in braces { ... } to delimit the variable name from any following string. In
particular, if the character immediately following the name is a letter,
digit, or underscore, then the braces are required. For example, examine
the following input:

a='This is a string'
echo "${a}ent test of variables."

Here, the echo command prints:

(This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for
"$aent" and print:

(test of variables.

The following variables are maintained by the shell. Some of them are
set by the shell, and all of them can be reset by the user:

HOME

IFS

The Shell

Initialized by the login program to the name of the
user's login directory, that is, the directory that
becomes the current directory upon completion of
a login; cd without arguments switches to the
$HOME directory. Using this variable helps keep
full pathnames out of shell procedures. This is of
great benefit when pathnames are changed, either
to balance disk loads or to reflect administrative
changes.

The variable that specifies which characters are
internal field separators. These are the characters
the shell uses during blank interpretation. (If you
want to parse some delimiter-separated data
easily, you can set IFS to include that delimiter.)

7-l3

Shell Variables

The shell initially sets IFS to include the blank,
tab, and newline characters.

MAIL The pathname of a file where your mail is depo
sited. If MAIL is set, then the shell checks to see
if anything has been added to the file it names and
announces the arrival of new mail each time you
return to command level (e.g., by leaving the edi
tor). MAIL is not set automatically; if desired, it
should be set (and optionally "exported' ') in the
user's .profile. (The export command and .profile
file are discussed later in this chapter.) (The pres
ence of mail in the standard mail file is also
announced at login, regardless of whether MAIL
is set.)

MAILCHECK This parameter specifies how often (in seconds)
the shell will check for the arrival of mail in
the files specified by the MAILP ATH or MAIL
parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell will check before
each prompt.

MAILPATH A colon (:) separated list of file names. If this
parameter is set, the shell infonns the user of the
arrival of mail in any of the specified files. Each
file name can be followed by % and a message
that will be printed when the modification time
changes. The default message is you have mail.

SHACCT If this parameter is set to the name of a file writ
able by the user, the shell will write an accounting
record in the file for each shell procedure exe
cuted. Accounting routines such as
acctcom(ADM) and accton(ADM) can be used to
analyze the data collected.

SHELL When the shell is invoked, it scans the environ
ment for this name. If it is found and there is an
'r' in the file name part of its value, the shell
becomes a restricted shell.

PATH The variable that specifies the search path used by
the shell in finding commands. Its value is an
ordered list of directory pathnames separated by
colons. The shell initializes PATH to the list
:Ibin:lusrlbin where a null argument appears in
front of the first colon. A null anywhere in the

7 -14 User's Guide

CDPATH

PSI

PS2

The Shell

Shell Variables

path list represents the current directory. On some
systems, a search of the current directory is not
the default and the PATH variable is initialized
instead to /bin:/usr/bin. If you wish to search your
current directory last, rather than first, use:

PATH=/bin:/usr/bin:

Below, the two colons together represent a colon
followed by a null, followed by a colon, thus nam
ing the current directory. You could possess a per
sonal directory of commands (say, $HOME/bin)
and cause it to be searched before the other three
directories by using:

PATH=$HOME/bin::/bin:/usr/bin

PATH is normally set in your .profile file.

This variable defines the search path for the direc
tory containing argo Alternative directory names
are separated by a colon (:). The default path is
<null> (specifying the current directory). The
current directory is specified by a null path name,
which can appear immediately after the equal sign
or between the colon delimiters anywhere else in
the path list. If arg begins with a / then the search
path is not used. Otherwise, each directory in the
path is searched for argo

The variable that specifies what string is to be
used as the primary prompt string. If the shell is
interactive, it prompts with the value of PSI when
it expects input. The default value of PS 1 is "$ "
(a dollar sign ($) followed by a blank).

The variable that specifies the secondary prompt
string. If the shell expects more input when it
encounters a newline in its input, it prompts with
the value of PS2. The default value for this vari
able is "> "(a greater-than symbol followed by a
space).

7-15

Shell Variables

In general, you should be sure to export all of the above variables so that
their values are passed to all shells created from your login. Use export
at the end of your .profile file. An example of an export statement fol
lows:

export HOME IFS MAIL PATH PSI PS2

Predefined Special Variables

Several variables have special meanings; the following are set only by
the shell:

7-16

$# Records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. For
instance, $# yields the number of the highest set posi
tional parameter. Thus:

sh cmd abc

automatically sets $# to 3. One of its primary uses is in
checking for the presence of the required number of argu
ments:

if test $* -It 2
then

echo 'two or more args required'; exit
fi

$? Contains the exit status of the last command executed
(also referred to as "return code", "exit code", or
"value"). Its value is a decimal string. Most UNIX com
mands return zero to indicate successful completion. The
shell itself returns the current value of $? as its exit
status.

$$ The process number of the current process. Because pro
cess numbers are unique among all existing processes,
this string is often used to generate unique names for tem
porary files. The operating system provides no mecha
nism for the automatic creation and deletion of temporary
files; a file exists until it is explicitly removed. Tem
porary files are generally undesirable objects; the UNIX
pipe mechanism is far superior for many applications.
However, the need for uniquely-named temporary files
does occasionally occur.

User's Guide

$!

$-

The Shell

Shell Variables

The following example illustrates the recommended prac
tice of creating temporary files; note that the directories
lusr and lusrltmp are cleared out if the system is rebooted.

use current process id
to form unique temp file
temp=/usr/tmp/$$
Is > $temp
commands here, some of which use $temp
rm -f $temp
clean up at end

The process number of the last process run in the back
ground (using the ampersand (&)). This is a string con
taining from one to five digits.

A string consisting of names of execution flags currently
turned on in the shell. For example, $- might have the
value' 'xv" if you are tracing your output.

7-17

The Shell State

The Shell State
The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of exe
cution, and the current working directory.

The state of a shell may be altered in various ways. These include chang
ing the working directory with the cd command, setting several flags, and
by reading commands from the special file, .profile, in your login direc
tory.

Changing Directories

The cd command changes the current directory to the one specified as its
argument. This can and should be used to change to a convenient place in
the directory structure. Note that cd is often placed within parentheses to
cause a subshell to change to a different directory and execute some com
mands without affecting the original shell.

For example, the first sequence below copies the file letclpasswd to
lusrlyoulpasswd; the second example first changes directory to letc and
then copies the file:

cp fetcfpasswd /usrfyou/passwd
(ed fete; cp passwd /usr/You/passwd)

Note the use of parentheses. Both command lines have the same effect.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched), spelling
correction is applied to each component of directory, in a search for the
"correct" name. The shell then asks whether or not to try and change
directory to the corrected directory name; an answer of n means "no",
and anything else is taken as "yes."

7-18 User's Guide

The Shell State

The .profile File
The file named .profile is read each time you log in. It is normally used to
execute special one-time-only commands and to set and export variables
to all later shells. Only after commands are read and executed from
.profile, does the shell read commands from the standard input-usually
the terminal.

If you wish to reset the environment after making a change to the .profile
file, enter

.profile

This command eliminates the need to log out and then log in again to exe
cute .profile.

Execution Flags
The set command lets you alter the behavior of the shell by setting certain
shell flags. In particular, the -x and -v flags may be useful when invoking
the shell as a command from the terminal. The flags -x and -v may be set
by entering:

set -xv

The same flags may be turned offby entering:

set +xv

These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This
flag is particularly useful for isolating syntax errors. The
commands on each input line are executed after that input
line is printed.

-x Commands and their arguments are printed as they are
executed. (Shell control commands, such as for, while,
etc., are not printed, however.) Note that -x causes a
trace of only those commands that are actually executed,
whereas -v prints each line of input until a syntax error is
detected.

The set command is also used to set these and other flags within shell pro
cedures.

The Shell 7-19

I

A Command's Environment

A Command's Environment
All variables and their associated values that are known to a command at
the beginning of its execution make up its environment. This environ
ment includes variables that the command inherits from its parent process
and variables specified as keyword parameters on the command line that
invokes the command.

The variables that a shell passes to its child processes are those that have
been named as arguments to the export command. The export command
places the named variables in the environments of both the shell and all
its future child processes.

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line.
Such variables are placed in the environment of the procedure being
invoked. For example:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a=keyl b=key2 keycommand

then the resulting output is:

keyl key2

Keyword parameters are not counted as arguments to the procedure and
do not affect $#.

A procedure may access the value of any variable in its environment.
However, if changes are made to the value of a variable, these changes
are not reflected in the environment; they are local to the procedure in
question. In order for these changes to be placed in the environment that
the procedure passes to its child processes, the variable must be named as
an argument to the export command within that procedure. To obtain a
list of variables that have been made exportable from the current shell,
enter:

export

7-20 User's Guide

A Command's Environment

You will also get a list of variables that have been made readonly. To get
a list of name-value pairs in the current environment, enter either:

printenv

or

env

The Shell 7-21

Invoking the Shell

Invoking the Shell
The shell is a command and may be invoked in the same way as any other
command:

sh proc [arg ...]

sh -v proc [arg ...]

proc [arg ...]

7-22

A new instance of the shell is explic
itly invoked to read proc. Arguments,
if any, can be manipulated.

This is equivalent to putting "set -v"
at the beginning of proc. It can be
used in the same way for the -x, -e, -U,
and -n flags.

If proc is an executable file, and is not
a compiled executable program, the
effect is similar to that of:

shproc args

An advantage of this form is that vari
ables that have been exported in the
shell will still be exported from proc
when this form is used (because the
shell only forks to read commands
from proc). Thus any changes made
within proc to the values of exported
variables will be passed on to subse
quent commands invoked from proc.

User's Guide

Passing Arguments to Shell Procedures

Passing Arguments to Shell
Procedures
When a command line is scanned, any character sequence of the form $n
is replaced by the nth argument to the shell, counting the name of the
shell procedure itself as $0. This notation permits direct reference to the
procedure name and to as many as nine positional parameters. Additional
arguments can be processed using the shift command or by using a for
loop.

The shift command shifts arguments to the left; i.e., the value of $1 is
thrown away, $2 replaces $1, $3 replaces $2, and so on. The highest
numbered positional parameter becomes unset ($0 is never shifted). F6r
example, in the shell procedure ripple below, echo writes its arguments to
the standard output.

ripple command
while test $# != 0
do

done

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

Lines that begin with a number sign (#) are comments. The looping com
mand, while, is discussed in "Conditional Looping: while and until" in
this chapter. If the procedure were invoked with:

ripple abc

it would print:

The Shell 7-23

Passing Arguments to Shell Procedures

The special shell variable "star" ($*) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above
could be written more compactly as:

echo $*

These two echo commands are not equivalent: the first prints at most
nine positional parameters; the second prints all of the current positional
parameters. The shell star variable ($*) is more concise and less error
prone. One obvious application is in passing an arbitrary number of argu
ments to a command. For example:

we $*

counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the
input. Variables are replaced by their values and then command substitu
tion (via back quotation marks) is attempted. IJO redirection arguments
are detected, acted upon, and deleted from the command line. Next, the
shell scans the resulting command line for internal field separators, that
is, for any characters specified by IFS to break the command line into dis
tinct arguments; explicit null arguments (specified by "" or ") are
retained, while implicit null arguments resulting from evaluation of vari
abIes that are null or not set are removed. Then filename generation
occurs with all metacharacters being expanded. The resulting command
line is then executed by the shell.

Sometimes, command lines are built inside a shell procedure. In this
case, it is sometimes useful to have the shell rescan the command line
after all the initial substitutions and expansions have been performed.
The special command eval is available for this purpose. eval takes a
command line as its argument and simply rescans the line, performing
any variable or command substitutions that are specified. Consider the
following (simplified) situation:

7-24

command=who
output=' I we -1'
eva1 $command $output

User's Guide

Passing Arguments to Shell Procedures

This segment of code results in the execution of the command line:

who I we -1

Uses of eval can be nested so that a command line can be evaluated
several times.

The Shell 7-25

Controlling the Flow of Control

Controlling the Flow of Control
The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures.
Before describing these structures, a few terms need to be defined.

A simple command is any single irreducible command specified by the
name of an executable file. I/O redirection arguments can appear in a
simple command line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands
separated by vertical bars (I). In a pipeline, the standard output of each
command but the last is connected (by a pipe) to the standard input of the
next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is the
exit status of last process in the pipeline.

A command list is a sequence of one or more pipelines separated by a
semicolon (;), an ampersand (&), an "and-if" symbol (&&), or an "or
if" (II) symbol, and optionally terminated by a semicolon or an amper
sand. A semicolon causes sequential execution of the previous pipeline.
This means that the shell waits for the pipeline to finish before reading
the next pipeline. On the other hand, the ampersand (&) causes asynchro
nous background execution of the preceding pipeline. Thus, both sequen
tial and background execution are allowed. A background pipeline con
tinues execution until it terminates voluntarily, or until its processes are
killed.

Other uses of the ampersand include off-line printing, background compi
lation, and generation of jobs to be sent to other computers. For example,
if you enter:

nohup cc prog.c&

You may continue working while the C compiler runs in the background.
A command line ending with an ampersand is immune to interrupts or
quits that you might generate by typing INTERRUPT or QUIT. However,
(CTL)d will abort the command if you are operating over a dial-up line or
have stty hupcl. In this case, it is wise to make the command immune to
hang-ups (i.e., logouts) as well. The nohup command is used for this pur
pose. In the above example without nohup, if you log out from a dial-up
line while cc is still executing, cc will be killed and your output will
disappear.

7-26 User's Guide

Controlling the Flow of Control

The ampersand operator should be used with restraint, especially on
heavily-loaded systems. Other users will not consider you a good citizen
if yo~ start up a large number of background processes without a compel
ling reason for doing so.

The and-if and or-if (&& and II) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating com
mand lines (but both are lower than the ampersand (&) and the vertical
bar (I)). In the command line:

cmdl II cmd2

the first command, cmdl, is executed and its exit status examined. Only
if cmdl fails (Le., has a nonzero exit status) is cmd2 executed. Thus, this
is a more terse notation for:

if cmdl
test $? != 0

then
cmd2

fi

The and-if operator (&&) yields a complementary test. For example, in
the following command line:

cmdl && cmd2

the second command is executed only if the first succeeds (and has a zero
exit status). In the sequence below, each command is executed in order
until one fails:

cmdl && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command list
enclosed in either parentheses or braces. The output of all the commands so
enclosed is combined into one stream that becomes the input to the next com
mand in the pipeline. The following line formats and prints two separate
documents:

{ nroff -mm text!; nroff -mm text2; } I lpr

Note that a space is needed after the left brace and that a semicolon should
appear before the right brace.

The Shell 7-27

Controlling the Flow of Control

Using the if Statement

The shell provides structured conditional capability with the if command.
The simplest if command has the following form:

if command-list
then command-list
6

The command list following the if is executed and if the last command in the
list has a zero exit status, then the command list that follows then is exe
cuted. The word 6 indicates the end of the if command.

To cause an alternative set of commands to be executed when there is a
nonzero exit status, an else clause can be given with the following structure:

if command-list
then command-list
else command-list
6

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement may be better for large numbers of tests. For
example:

if test -f "$1" * is $1 a file?
then pr $1
elif test -d "$1"
else, is $1 a directory?
then (cd $1; pr *)
else echo $1 is neither a file nor a directory
fi

The above example is executed as follows: if the value of the first positional
parameter is a filename (-1), then print that file; if not, then check to see if it is
the name of a directory (-d). If so, change to that directory (cd) and print all
the files there (pr *). Otherwise, echo the error message.

The if command may be nested (but be sure to end each one with a 6). The
newlines in the above examples ofif may be replaced by semicolons.

The exit status of the if command is the exit status of the last command exe
cuted in any then clause or else clause. If no such command was executed, if
returns a zero exit status.

7-28 User's Guide

Controlling the Flow of Control

Note that an alternate notation for the test command uses brackets to
enclose the expression being tested. For example, the previous example
might have been written as follows:

if [-f n$l n
is $1 a file?
then pr $1
elif [-d n$l n
else, is $1 a directory?

(cd $1; pr *) then
else
fi

echo $1 is neither a file nor a directory

Note that a space after the left bracket and one before the right bracket are
essential in this fonn of the syntax.

Using the case Statement

A multiple test conditional is provided by the case command. The basic
fonnat of the case statement is:

case string in
pattern) command-list ;;

pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is found,
the command list following the matched pattern is executed; the double
semicolon (;;) serves as a break out of the case and is required after each com
mandlist except the last. Note that only one pattern is ever matched, and that
matches are attempted in order, so that if a star (*) is the first pattern in a case,
no other patterns are looked at.

The Shell 7-29

Controlling the Flow of Control

More than one pattern may be associated with a given command list by
specifying alternate patterns separated by vertical bars (I).

case $i in
*.c) cc $i

*.h *.sh)
: do nothing

*) echo "$i of unknown type"

esac

In the above example, no action is taken for the second set of patterns
because the null, colon (:) command is specified. The star (*) is used as a
default pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit
status.

Conditional Looping: while and until

A while command has the general form:

while command-list
do

command-list
done

The commands in the first command-list are executed, and if the exit status of
the last command in that list is zero, then the commands in the second
command-list are executed. This sequence is repeated as long as the exit
status of the first command-list is zero. A loop can be executed as long as the
first command-list returns a nonzero exit status by replacing while with
until.

Any newline in the above example may be replaced by a semicolon. The exit
status of a while (or until) command is the exit status of the last command
executed in the second command-list. If no such command is executed,
while (or until) has a zero exit status.

7-30 User's Guide

Controlling the Flow of Control

Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set
of files, or execute some command once for each of several arguments.
The for command can be used to accomplish this. The for command has
the format:

for variable in word-list
do

command-list
done

Here word-list is a list of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. Variable
takes on as its value each word from the word list, in turn. The word list is
fixed after it is evaluated the first time. For example, the following for loop
causes each of the Csource filesxec.c, cmd.c, and word.c in the current direc
tory to be compared with a file of the same name in the directory
/usr/src/cmd/sh:

for CFILE in xec cmd word
do diff $CFILE.c lusrlsrc/cmd/sh/$CFILE.c
done

Note that the first occurrence of CFILE immediately after the word for has no
preceding dollar sign, since the name of the variable is wanted and not its
value.

You can omit the "in word-list" part of a for command; this causes the
current set of positional parameters to be used in place of word-list. This is
useful when writing a command that performs the same set of commands for
each of an unknown number of arguments.

As an example, create a file named echo2 that contains the following shell
script:

for word
do echo $word$word
done

Give echo2 execute status:

chmod +x echo2

The Shell 7-31

Controlling the Flow of Control

Now type the following command:

ech02 rna pa bo fi yo no so ta

The output from this command is:

mama
papa
bobo
fifi
yoyo
nono
so so
tata

Loop Control: break and continue

The break command can be used to tenninate execution of a while or a
for loop. The continue command immediately starts the execution of the
next iteration of the loop. These commands are effective only when they
appear between do and done.

The break command tenninates execution of the smallest (Le., inner
most) enclosing loop, causing execution to resume after the nearest fol
lowing unmatched done. Exit from n levels is obtained by break n.

7-32 User's Guide

Controlling the Flow of Control

The continue command causes execution to resume at the nearest enclos
ing for, while, or until statement, i.e., the one that begins the innermost
loop containing the continue. You can also specify an argument n to con
tinue and execution will resume at the nth enclosing loop:

This procedure is interactive.
"Break" and "continue" commands are used
to allow the user to control data entry.
while true #loop forever
do echo "Please enter data"

read response

done

case "$response" in
"done") break

no more data

"") # just a carriage return,
keep on going
continue

*) # process the data here

esac

End-of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command exe
cuted prior to the end-of-file. The top level shell is terminated by typing a
(CTL)d (which logs the user out of the system).

The exit command simulates an end-of-file, setting the exit status to the
value of its argument, if any. Thus, a procedure can be terminated nor
mally by placing' 'exit 0" at the end of the file.

Command Grouping: Parentheses and Braces

There are two methods for grouping commands in the shell: parentheses
and braces. Parentheses cause the shell to create a subshell that reads the
enclosed commands. Both the right and left parentheses are recognized

The Shell 7-33

Controlling the Flow of Control

wherever they appear in a command line-they can appear as literal
parentheses only when enclosed in quotation marks. For example, if you
enter:

garble(stuff)

the shell prints an error message. Quoted lines, such as:

garble" ("stuff')"
"garble(stuff)"

are interpreted correctly. Other quoting mechanisms are discussed in
"Quoting Mechanisms" in this chapter.

This capability of creating a subshell by grouping commands is useful
when performing operations without affecting the values of variables in
the current shell, or when temporarily changing the working directory and
executing commands in the new directory without having to return to the
current directory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the subshell. Thus:

CURRENTDIR= 'pwd'; cd /usr/docs/otherdir;
nohup nroff doc.n > doc.out&; cd $CURRENTDIR

and

(cd /usr/docs/otherdir; nohup nroff doc.n > doc.out&)

accomplish the same result: /usr/docs/otherdir/doc.n is processed by nroj}
and the output is saved in /usr/docs/otherdir/doc.out. (Note that nrotfis a
text processing command.) However, the second example automatically
puts you back in your original working directory. In the second example
above, blanks or newlines surrounding the parentheses are allowed but not
necessary. When entering a command line at your terminal, the shell will
prompt with the value of the shell variable PS2 if an. end parenthesis is
expected.

Braces ({ and }) may also be used to group commands together. Both the left
and the right brace are recognized only if they appear as the first (unquoted)
word of a command. The opening brace may be followed by a newline (in
which case the shell prompts for more input). Unlike parentheses, no sub
shell is created for braces: the enclosed commands are simply read by the
shell. The braces are convenient when you wish to use the (sequential) out
put of several commands as input to one command.

7-34 User's Guide

Controlling the Flow of Control

The exit status of a set of commands grouped by either parentheses or braces
is the exit status of the last enclosed executed command.

Defining Functions

The shell includes a function definition capability. Functions are like
shell scripts or procedures except that they reside in memory and so are
executed by the shell process, not by a separate process. The basic form
is:

name () { list; }

list can include any of the commands previously discussed. Functions
can be defined in one section of a shell script to be called as many times
as needed, making them easier to write and maintain. Here is an example
of a function called "getyn":

Prompt for yes or no answer - returns non-zero for no
getyn() {

while echo "$* (yin)? \e" >& 2
do read yn rest

case $yn in
[yY]) return 0
[nN]) return 1
*) echo "Please answer y or n" >&2
esac

done

In this example, the function appends a "(yin)?" to the output and
accepts "Y", "y", "n" or "N" as input, returning a 0 or 1. If the -input
is anything else, the function prompts the user for the correct input.
(Echo should never fail, so the while-loop is effectively infinite.)

Functions are used just like other commands; an invocation of getyn
might be:

getyn "Do you wish to continue" I I exit

However, unlike other commands, the shell positional parameters $1, $2,
... , are set to the arguments of the function. Since an exit in a function will
terminate the shell procedure, the return command should be used to
return a value back to the procedure.

The Shell 7-35

Controlling the Flow of Control

Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recog
nizes the control commands (other than parentheses) described above.
However, each command in a pipeline is run as a separate process in
order to direct input to or output from each command. Also, when
redirection of input or output is specified explicitly to a control comrtland,
a separate process is spawned to execute that command. Thus, when if,
while, until, case, and for are used in a pipeline consisting of more than
one command, the shell forks and a subshell runs the control command.
This has two implications:

1. Any changes made to variables within the control command are
not effective once that control command finishes (this is similar to
the effect of using parentheses to group commands).

2. Control commands run slightly slower when redirected, because of
the additional overhead of creating a shell for the control com
mand.

Transfer Between Files: The Dot (.) Command

A command line of the form:

. proc

causes the shell to read commands from proc without spawning a new
process. Changes made to variables in proc are in effect after the dot
command finishes. This is a good way to gather a number of shell vari
able initializations into one file. A common use of this command is to
reinitialize the top level shell by reading the .profile file with:

. .profile

Interrupt Handling: trap

Shell procedures can use the trap command to disable a signal (cause it
to be ignored), or redefine its action. The form of the trap command is:

trap arg signal-list

7-36 User's Guide

Controlling the Flow of Control

Here arg is a string to be interpreted as a command list and signal-list
consists of one or more signal numbers as described in signal (S) in the
Programmer's Reference. The most important of these signals follow:

Number Signal
o
1
2
3
9
11
15

Exit from the shell
HANGUP
INTERRUPT character (DELETE or RUB OUT)
QUIT «CTL)\)
KILL (cannot be caught or ignored)
Segmentation violation (cannot be caught or ignored)
Software termination signal

The commands in arg are scanned at least once, when the shell first
encounters the trap command. Because of this, it is usually wise to use sin
gle rather than double quotation marks to surround these commands. The
former inhibit immediate command and variable substitution. This becomes
important, for instance, when one wishes to remove temporary files and the
names of those files have not yet been determined when the trap command is
first read by the shell. The following procedure will print the name of the
current directory in the user information as to how much of the job was done:

trap 'echo Directory was 'pwd' when interrupted' 2 3 15
for i in /bin /usr/bin /usr/gas/bin
do

cd $i
commands to be executed in directory $i here

done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the direc
tory from which the procedure was first executed:

trap "echo Directory was 'pwd' when interrupted" 2 3 15

A signal 11 can never be trapped, because the shell itself needs to catch it to
deal with memory allocation. Zero is interpreted by the trap command as a
signal generated by exiting from a shell. This occurs either with an exit com
mand, or by "falling through" to the end of a procedure. If arg is not
specified, then the action taken upon receipt of any of the signals in the signal
list is reset to the default system action. If arg is an explicit null string (" or
""), then the signals in the signal list are ignored by the shell.

The Shell 7-37

Controlling the Flow of Control

The trap command is most frequently used to make sure that temporary files
are removed upon termination of a procedure. The preceding example
would be written more typically as follows:

ternp=$HOME/ternp/$$
trap 'rm -f $ternp; exit' 0 1 2 3 15
ls > $ternp

commands that use $ternp here

In this example, whenever signal 1 (hangup),2 (interrupt), 3 (quit), or 15(ter
minate) is received by the shell procedure, or whenever the shell procedure is
about to exit, the commands enclosed between the single quotation marks
are executed. The exit command must be included, or else the shell contin
ues reading commands where it left offwhen the signal was received.

Sometimes the shell continues reading commands after executing trap com
mands. The following procedure takes each directory in the current direc
tory, changes to that directory, prompts with its name, and executes com
mands typed at the terminal until an end-of-file «CTL)d) or an interrupt is
received. An end-of-file causes the read command to return a nonzero exit
status, and thus the while loop terminates and the next directory cycle is ini
tiated. An interrupt is ignored while executing the requested commands, but
causes termination of the procedure when it is waiting for input:

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap: 2

done

ignore interrupts
eval $x

Several traps may be in effect at the same time: if multiple signals are
received simultaneously, they are serviced in numerically ascending order.
To determine which traps are currently set, enter:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received by
the shell, it is passed on to whatever child processes are currently executing.

7-38 User's Guide

Controlling the Flow of Control

When these (synchronous) processes terminate, normally or abnormally,
the shell polls any traps that happen to be set and executes the appropriate
trap commands. This process is straightforward, except in the case of traps
set at the command (outermost, or login) level. In this case, it is possible that
no child process is running, so before the shell polls the traps, it waits for the
termination of the first process spawned after the signal was received.

When a signal is redefined in a shell script, this does not redefine the signal
for programs invoked by that script; the signal is merely passed along. A dis
abled signal is not passed.

For internal commands, the shell normally polls traps on completion of the
command. An exception to this rule is made for the read command, for
which traps are serviced immediately, so that read can be interrupted while
waiting for input.

Shell Script Example

The following is a good shell script for handling signals.

it
it
it

Set signal handlers for shell script

trap "echo
trap "echo
trap "echo
it
it
it
it
it
it

Note: If you ad to a different diJ:ectoJ:y you nay want to
:reset the trap for SICllJIT so it will find the "core" file.
To cb this you w:llid FUt the sane line below the ad amrand
in the shell script.

trap "echo

echo " QJing into locpO
while true
cb

ad /tnp
trap "echo
If
ad/usr
trap "echo
If
sleep 1

echo " IBaving the loop 0
exit 0

The Shell 7-39

Special Shell Commands

Special Shell Commands
There are several special commands that are internal to the shell, some of
which have already been mentioned. The shell does not fork to execute
these commands, so no additional processes are spawned. These com
mands should be used whenever possible, because they are, in general,
faster and more efficient than other UNIX commands.

Several of the special commands have already been described because
they affect the flow of control. They are dot (.), break, continue, exit,
and trap. The set command is also a special command. Descriptions of
the remaining special commands are given here:

cd arg

exec arg ...

7-40

The null command. This command does
nothing and can be used to insert com
ments in shell procedures. Its exit status
is zero (true). Its utility as a comment
character has largely been supplanted by
the number sign (#) which can be used to
insert comments to the end-of-line.
Beware: any arguments to the null com
mand are parsed for syntactic correct
ness; when in doubt, quote such argu
ments. Parameter substitution takes
place, just as in other commands.

Make arg the current directory. If arg is
not a valid directory, or the user is not
authorized to access it, a nonzero exit
status is returned. Specifying cd with no
arg is equivalent to entering
"cd $HOME" which takes you to your
home directory.

If arg is a command, then the shell exe
cutes the command without forking and
returning to the current shell. This is
effectively a "goto" and no new process
is created. Input and output redirection
arguments are allowed on the command
line. If only input and output redirection
arguments appear, then the input and out
put of the shell itself are modified accord
ingly.

User's Guide

hash [-r] name

newgrp arg ...

pwd

read var ...

readonly var ...

return n

The Shell

Special Shell Commands

For each name, the location in the search
path of the command specified by name is
determined and remembered by the shell.
The -r option causes the shell to forget all
remembered locations. If no arguments
are given, information about remembered
commands is presented. Hits is the num
ber of times a command has been invoked
by the shell process. Cost is a measure of
the work required to locate a command in
the search path. There are certain situa
tions which require that the stored loca
tion of a command be recalculated. Com
mands for which this will be done are
indicated by an asterisk (*) adjacent to
the hits information. Cost will be incre
mented when the recalculation is done.

The newgrp command is executed,
replacing the shell. Newgrp in turn cre
ates a new shell. Beware: only environ
ment variables will be known in the shell
created by the newgrp command. Any
variables that were exported will no
longer be marked as such.

Print the current working directory. See
pwd(C) for usage and description.

One line (up to a newline) is read from
the standard input and the first word is
assigned to the first variable, the second
word to the second variable, and so on.
All words left over are assigned to the
last variable. The exit status of read is
zero unless an end-of-file is read.

The specified variables are made
readonly so that no subsequent assign
ments may be made to them. If no argu
ments are given, a list of all readonly and
of all exported variables is given.

Causes a function to exit with the return
value specified by n. If n is omitted, the
return status is that of the last command
executed.

7-41

Special Shell Commands

times

type name

ulimit [-f] n

umasknnn

unset name

7-42

The accumulated user and system times
for processes run from the current shell
are printed.

For each name, indicate how it would be
interpreted if used as a command name.

This imposes a size limit of n blocks on
files written. The -f flag imposes a size
limit of n blocks on files written by child
processes (files of any size may be read).
With no argument, the current limit is
printed. If no option is given and a num
ber is specified, -f is assumed.

The user file creation mask is set to nnn.
If nnn is omitted, then the current value
of the mask is printed. This bit-mask is
used to set the default permissions when
creating files. For example, an octal
umask of 137 corresponds to the follow
ing bit-mask and permission settings for a
newly created file:

user group other
Octal 1 3 7
bit-mask 001 011 111
permissions rw- r- - ---

See umask(C) in the User's Reference
for information on the value of nnn.

For each name, remove the corresponding
variable or function. The variables
PATH, PS 1, PS2, MAILCHECK and IFS
cannot be unset.

User's Guide

wait n

The Shell

Special SheD Commands

The shell waits for all currently active
child processes to terminate. If n is
specified, the shell waits for the specified
process to terminate. The exit status of
wait is always zero if n is not given; oth
erwise it is the exit status of child n.

7-43

Creation and Organization of Shell Procedures

Creation and Organization of Shell
Procedures
A shell procedure can be created in two simple steps. The first is building
an ordinary text file. The second is changing the mode of the file to make
it executable, thus permitting it to be invoked by:

proc args

rather than

sh proc args

The second step may be omitted for a procedure to be used once or twice
and then discarded, but is recommended for frequently-used ones. For
example, create a file named mailall with the following contents:

LETTER=$l
shift
for i in $*
do mail $i < $LETTER
done

Next enter:

chmod +x mailall

The new command might then be invoked from within the current direc
tory by entering:

mailall letter joe bob

Here letter is the name of the file containing the message you want to
send, and joe and bob are people you want to send the message to. Note
that shell procedures must always be at least readable, so that the shell
itself can read commands from the file.

If mailall were thus created in a directory whose name appears in the
user's PATH variable, the user could change working directories and still
invoke the mailall command.

7-44 User's Guide

Creation and Organization of Shell Procedures

Shell procedures are often used by users running the csh. However, if the
first character of the procedure is a # (comment character), the sh assumes
the procedure is a csh script, and invokes /bin/csh to execute it. Always
start sh procedures with some other character if csh users are to run the
procedure at any time. This invokes the standard shell /bin/sh.

Shell procedures may be created dynamically. A procedure may generate
a file of commands, invoke another instance of the shell to execute that
file, and then remove it. An alternate approach is that of using the dot
command (.) to make the current shell read commands from the new file,
allowing use of existing shell variables and avoiding the spawning of an
additional process for another shell.

Many users prefer writing shell procedures to writing programs in C or
other traditional languages. This is true for several reasons:

1. A shell procedure is easy to create and maintain because it is only
a file of ordinary text.

2. A shell procedure has no corresponding object program that must
be generated and maintained.

3. A shell procedure is easy to create quickly, use a few times, and
then remove.

4. Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell pro
cedures are named bin. This name is derived from the word "binary",
and is used because compiled and executable programs are often called
"binaries" to distinguish them from program source files. Most groups of
users sharing common interests have one or more bin directories set up to
hold common procedures. Some users have their PATH variable list
several such directories. Although you can have a number of such direc
tories, it is unwise to go overboard: it may become difficult to keep track
of your environment and efficiency may suffer.

The Shell 7-45

More About Execution Flags

More About Execution Flags
There are several execution flags available in the shell that can be useful
in shell procedures:

-e

-u

-t

-n

-k

7-46

This flag causes the shell to exit immediately if any com
mand that it executes exits with a nonzero exit status.
This flag is useful for shell procedures composed of sim
ple command lines; it is not intended for use in conjunc
tion with other conditional constructs.

This flag causes unset variables to be considered errors
when substituting variable values. This flag can be used
to effect a global check on variables, rather than using
conditional substitution to check each variable.

This flag causes the shell to exit after reading and execut
ing the commands on the remainder of the current input
line. This flag is typically used by C programs which call
the shell to execute a single command.

This is a "don't execute" flag. On occasion, one may
want to check a procedure for syntax errors, but not exe
cute the commands in the procedure. Using "set -nv" at
the beginning of a file will accomplish this.

This flag causes all arguments of the form
variable ==value to be treated as keyword parameters.
When this flag is not set, only such arguments that appear
before the command name are treated as keyword param
eters.

User's Guide

Supporting Commands and Features

Supporting Commands and Features
Shell procedures can make use of any UNIX command. The commands
described in this section are either used especially frequently in shell pro
cedures, or are explicitly designed for such use.

Conditional Evaluation: test

The test command evaluates the expression specified by its arguments
and, if the expression is true, test returns a zero exit status. Otherwise, a
nonzero (false) exit status is returned. test also returns a nonzero exit
status if it has no arguments. Often it is convenient to use the test com
mand as the first command in the command list following an if or a while.
Shell variables used in test expressions should be enclosed in double quo
tation marks if there is any chance of their being null or not set.

The square brackets may be used as an alias to test, so that:

[expression]

has the same effect as:

test expression

Note that the spaces before and after the expression in brackets are essen
tial.

The following is a partial list of the options that can be used to construct a
conditional expression:

-r file

-w file

-x file

-s file

The Shell

True if the named file exists and is readable by the
user.

True if the named file exists and is writable by the
user.

True if the named file exists and is executable by
the user.

True if the named file exists and has a size greater
than zero.

7-47

Supporting Commands and Features

-d file

-f file

-z s1

-n s1

-t fildes

s1 =s2

s1 != s2

s1

n1 -eq n2

True if the named file is a directory.

True if the named file is an ordinary file.

True if the length of string s1 is zero.

True if the length of the string s1 is nonzero.

True if the open file whose file descriptor number
is fildes is associated with a tenninal device. If
fildes is not specified, file descriptor 1 is used by
default.

True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.

True if s1 is not the null string.

True if the integers n1 and n2 are algebraically
equal; other algebraic comparisons are indicated
by one (not equal), -gt (greater than), -ge (greater
than or equal to), -It (less than), and -Ie (lessthan
or equal to).

These may be combined with the following operators:

-a

-0

(expr)

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower pre
cedence than the logical AND operator (-a).

Parentheses for grouping; they must be escaped to
remove their significance to the shell. In the
absence of parentheses, evaluation proceeds from
left to right.

Note that all options, operators, filenames, etc. are separate arguments to
test.

7-48 User's. Guide

Supporting Commands and Features

Echoing Arguments

The echo command has the following syntax:

echo [options] [args]

echo copies its arguments to the standard output, each followed by a sin
gle space, except for the last argument, which is normally followed by a
newline. You can use it to prompt the user for input, to issue diagnostics
in shell procedures, or to add a few lines to an output stream in the middle
of a pipeline. Another use is to verify the argument list generation pro
cess before issuing a command that does something drastic.

You can replace the Is command with

echo *

because the latter is faster and prints fewer lines of output.

The -n option to echo removes the newline from the end of the echoed
line. Thus, the following two commands prompt for input and then allow
entering on the same line as the prompt:

echo -n 'enter name:'
read name

The echo command also recognizes several escape sequences described
in echo (C) in the User's Reference.

Expression Evaluation: expr

The expr command provides arithmetic and logical operations on
integers and some pattern-matching facilities on its arguments. It evalu
ates a single expression and writes the result on the standard output; expr
can be used inside grave accents to set a variable. Some typical examples
follow:

* increment $A
A='expr $a + l' * put third through last characters of * $1 into substring
substring=' expr "$1" : ' .. \ (. *\) , * obtain length of $1
c='expr "$1": '.*

The Shell 7-49

Supporting Commands and Features

The most common uses of expr are in counting iterations of a loop and in
using its pattern-matching capability to pick apart strings.

True and False

The true and false commands perfonn the functions of exiting with zero
and nonzero exit status, respectively. The true and false commands are
often used to implement unconditional loops. For example, you might
enter:

while true
do echo forever
done

This will echo' 'forever' , on the screen until an INTERRUPT is entered.

In-Line Input Documents

Upon seeing a command line of the fonn:

command « eo/string

where eo/string is any arbitrary string, the shell will take the subsequent
lines as the standard input of command until a line is read consisting only
of eo/string. (By appending a minus (-) to the input redirection symbol
«<), leading tabs are deleted from each line of the input document before
the shell passes the line to command.)

The shell creates a temporary file containing the input document and per
fonns variable and command substitution on its contents before passing it
to the command. Pattern matching on filenames is perfonned on the argu
ments of command lines in command substitutions. In order to prohibit
all substitutions, you may quote any character of eo/string:

command «\eofstring

The in-line input document feature is especially useful for small amounts
of input data, where it is more convenient to place the data in the shell
procedure than to keep it in a separate file. For instance, you could enter:

7-50 User's Guide

Supporting Commands and Features

cat «- xx

xx

This message will be printed on the
tenninal with leading tabs removed.

This in-line input document feature is most useful in shell procedures.
Note that in-line input documents may not appear within grave accents.

Input/ Output Redirection Using File Descriptors

We mentioned above that a command occasionally directs output to some
file associated with a file descriptor other than 1 or 2. In languages such
as C, one can associate output with any file descriptor by using the write
(S) system call (see the Programmer's Reference). The shell provides its
own mechanism for creating an output file associated with a particular
file descriptor. By entering:

fdl >& fd2

where fdl and fd2 are valid file descriptors, one can direct output that
would nonnally be associated with file descriptor fdl to the file associ
ated with fd2. The default value for fdl and fd2 is 1. If, at run time, no
file is associated with fd2, then the redirection is void. The most common
use of this mechanism is that of directing standard error output to the
same file as standard output. This is accomplished by entering:

command 2>&1

If you wanted to redirect both standard output and standard error output to
the same file, you would enter:

command l>file 2>&1

The order here is significant: first, file descriptor 1 is associated with file;
then file descriptor 2 is associated with the same file as is currently asso
ciated with file descriptor 1. If the order of the redirections were
reversed, standard error output would go to the tenninal, and standard
output would go to file, because at the time of the error output redirection,
file descriptor 1 still would have been associated with the tenninal.

The Shell 7-51

Supporting Commands and Features

This mechanism can also be generalized to the redirection of standard
input. You could enter:

fda <& fdb

to cause both file descriptors fda and fdb to be associated with the same
input file. If fda or fdb is not specified, file descriptor 0 is assumed. Such
input redirection is useful for a command that uses two or more input
sources.

Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notation to
allow conditional substitution, dependent upon whether the variable is set
or not null. By definition, a variable is set if it has ever been assigned a
value. The value of a variable can be the null string, which may be
assigned to a variable in anyone of the following ways:

A=
bed=" "
efg="
set "

The first three examples assign null to each of the corresponding shell
variables. The last example sets the first and second positional parame
ters to null. The following conditional expressions depend upon whether
a variable is set and not null. Note that the meaning of braces in these
expressions differs from their meaning when used in grouping shell com
mands. Parameter as used below refers to either a digit or a variable
name.

$ { variable: -string}

${ variable :=string }

7-52

If variable is set and is nonnull, then
substitute the value $variable in place
of this expression. Otherwise, replace
the expression with string. Note that
the value of variable is not changed by
the evaluation of this expression.

If variable is set and is nonnull, then
substitute the value $variable in place
of this expression. Otherwise, set vari
able to string, and then substitute the
value $variable in place of this expres-

User's Guide

${ variable :?string}

$ { variable :+string }

Supporting Commands and Features

sion. Positional parameters may not be
assigned values in this fashion.

If variable is set and is nonnull, then
substitute the value of variable for the
expression. Otherwise, print a message
of the form

variable: string

and exit from the current shell. (If the
shell is the login shell, it is not exited.)
If string is omitted in this form, then the
message

variable: parameter null or not set

is printed instead.

If variable is set and is nonnull, then
substitute string for this expression.
Otherwise, substitute the null string.
Note that the value of variable is not
altered by the evaluation of this expres
sion.

These expressions may also be used without the colon. In this variation,
the shell does not check whether the variable is null or not; it only checks
whether the variable has ever been set.

The two examples below illustrate the use of this facility:

1. This example performs an explicit assignment to the PATH vari
able:

PATH=${PATH:-':/bin:/usr/bin'}

This says, if PATH has ever been set and is not null, then it keeps
its current value; otherwise, set it to the string ":/bin:/usr/bin".

2. This example automatically assigns the HOME variable a value:

cd ${HOME:='/usr/gas'}

If HOME is set, and is not nUll, then change directory to it. Other
wise set HOME to the given value and change directory to it.

The Shell 7-53

Supporting Commands and Features

Invocation Flags

There are five flags that may be specified on the command line when
invoking the shell. These flags may not be turned on with the set com
mand:

-i

-s

-c

-t

-r

7-54

If this flag is specified, or if the shell's input and output
are both attached to a terminal, the shell is interactive. In
such a shell, INTERRUPT (signal 2) is caught and
ignored, and TERMINATE (signal 15) and QUIT (signal
3) are ignored.

If this flag is specified or if no input/output redirection
arguments are given, the shell reads commands from stan
dard input. Shell output is written to file descriptor 2. All
remaining arguments specify the positional parameters.

When this flag is turned on, the shell reads commands
from the first string following the flag. Remaining argu
ments are ignored.

When this flag is on, a single command is read and exe
cuted, then the shell exits. This flag is not useful interac
tively, but is intended for use with C programs.

If this flag is present the shell is a restricted shell (see rsh
(C)).

User's Guide

Effective and Efficient Shell Programming

Effective and Efficient Shell
Programming
This section outlines strategies for writing efficient shell procedures, ones
that do not waste resources in accomplishing their purposes. The primary
reason for choosing a shell procedure to perform a specific function is to
achieve a desired result at a minimum human cost. Emphasis should
always be placed on simplicity, clarity, and readability, but efficiency can
also be gained through awareness of a few design strategies. In many
cases, an effective redesign of an existing procedure improves its
efficiency by reducing its size, and often increases its comprehensibility.
In any case, you should not worry about optimizing shell procedures
unless they are intolerably slow or are known to consume an inordinate
amount of a system's resources.

The same kind of iteration cycle should be applied to shell procedures as
to other programs: write code, measure it, and optimize only the few
important parts. The user should become familiar with the time com
mand, which can be used to measure both entire procedures and parts
thereof. Its use is strongly recommended; human intuition is notoriously
unreliable when used to estimate timings of programs, even when the
style of programming is a familiar one. Each timing test should be run
several times, because the results are easily disturbed by variations in sys
tem load.

Number of Processes Generated

When large numbers of short commands are executed, the actual execu
tion time of the commands may well be dominated by the overhead of
creating processes. The procedures that incur significant amounts of such
overhead are those that perform much looping, and those that generate
command sequences to be interpreted by another shell.

If you are worried about efficiency, it is important to know which com
mands are currently built into the shell, and which are not. Here is the
alphabetical list of those that are built in:

The Shell 7-55

Effective and Efficient Shell Programming

break case cd continue echo
eval exec exit export for
if read readonly return set
shift test times trap umask
until wait while
{}

Parentheses, (), are built into the shell, but commands enclosed within
them are executed as a child process, i.e., the shell does a fork, but no
exec. Any command not in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of pro
cesses generated by a shell procedure. In the bulk of observed pro
cedures, the number of processes created (not necessarily simultaneously)
can be described by:

processes = (k*n) + c

where k and c are constants, and n may be the number of procedure argu
ments, the number of lines in some input file, the number of entries in
some directory, or some other obvious quantity. Efficiency improvements
are most commonly gained by reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n ~2 terms or higher
powers of n is likely to be intolerably expensive.

7-56 User's.Guide

Effective and Efficient Shell Programming

As an example, here is an analysis of a procedure named split, whose text
is given below:

it split
trap 'rm temp$$; trap 0; exit' 0 1 2 3 15
startl=O start2=0
b=' [A-Za-z) ,

cat> temp$$
it read stdin into temp file
it save original lengths of $1, $2

if test -s "$1"
then startl='wc -1 < $1'
fi
if test -s "$2"
then start2='wc -1 < $2'
fi
grep "$b" temp$$ » $1

it lines with letters onto $1
grep -v "$b" temp$$ I grep '[0-9)' » $2

it lines without letters onto $2
total=" 'wc-l< temp$$' "
endl=" 'wc-l<$l' "
end2=" 'wc-l<$2' "
lost=" 'expr $total - \($endl - $startl\) \
- \($end2 - $start2\), "
echo "$total read, $lost thrown away"

For each iteration of the loop, there is one expr plus either an echo or
another expr. One additional echo is executed at the end. If n is the
number of lines of input, the number of processes is 2 * n + 1.

Some types of procedures should not be written using the shell. For
example, if one or more processes are generated for each character in
some file, it is a good indication that the procedure should be rewritten in
C. Shell procedures should not be used to scan or build files a character
at a time.

Number of Data Bytes Accessed

It is worthwhile to consider any action that reduces the number of bytes
read or written. This may be important for those procedures whose time
is spent passing data around among a few processes, rather than in creat
ing large nmnbers of short processes. Some filters shrink their output,
others usually increase it. It always pays to put the shrinkers first when

The Shell 7-57

Effective and Efficient Shell Programming

the order is irrelevant. For instance, the second of the following examples
is likely to be faster because the input to sort will be much smaller:

sort file I grep pattern
grep pattern file I sort

Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As
an exercise, try the following commands:

Is -1 /usr/bin/* >/dev/null
cd /usr/bin; Is -1 * >/dev/null

The second command will run faster because of the fewer directory
searches.

Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization
and sharing of procedures. However, it must be used in a sensible
fashion, or the result may be a great increase in system overhead.

The process of finding a command involves reading every directory
included in every pathname that precedes the needed pathname in the
current PATH variable. As an example, consider the effect of invoking
nrotf (i.e., lusrlbinlnroJlj when the value of PATH is ":/bin:/usr/bin".
The sequence of directories read is:

/
/bin
I
/usr
/usr/bin

This is a total of six directories. A long path list assigned to PATH can
increase this number significantly.

7-58 User's Guide

Effective and Efficient Shell Programming

The vast majority of command executions are of commands found in /bin
and, to a somewhat lesser extent, in /usr/bin. Careless PATH setup may
lead to a great deal of unnecessary searching. The following four exam
ples are ordered from worst to best with respect to the efficiency of com
mand searches:

:/usr/john/bin:/usr/localbin:/bin:/ usr/bin
:/bin:/usr/john/bin:/usr/localbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin: :/usr/bin:/usr/john/bin:/usr/localbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of com
mands kept in /bin and /usr/bin.

A procedure that is expensive because it invokes many short-lived com
mands may often be speeded up by setting the PATH variable inside the
procedure so that the fewest possible directories are searched in an
optimum order.

Good Ways to Set Up Directories

It is wise to avoid directories that are larger than necessary. You should
be aware of several special sizes. A directory that contains entries for up
to 30 files (plus the required. and .•) fits in a single disk block and can be
searched very efficiently. One that has up to 286 entries is still a small
directory; anything larger is usually a disaster when used as a working
directory. It is especially important to keep login directories small,
preferably one block at most. Note that, as a rule, directories never
shrink. This is very important to understand, because if your directory
ever exceeds either the 30 or 286 thresholds, searches will be inefficient;
furthermore, even if you delete files so that the number of files is less than
either threshold, the system will still continue to treat the directory
inefficiently.

The Shell 7-59

Shell Procedure Examples

Shell Procedure Examples
The power of the UNIX shell command language is most readily seen by
examining how many labor-saving UNIX utilities can be combined to per
form powerful and useful commands with very little programming effort.
This section gives examples of procedures that do just that. By studying
these examples, you will gain insight into the techniques and shortcuts
that can be used in programming shell procedures (also called "scripts").
Note the use of the null command (:) to begin each shell procedure and
the use of the number sign (#) to introduce comments.

It is intended that the following steps be carried out for each procedure:

1. Place the procedure in a file with the indicated name.

2. Give the file execute permission with the chmod command.

3. Move the file to a directory in which commands are kept, such as
your own bin directory.

4. Make sure that the path of the bin directory is specified in the
PATH variable found in .profile.

5. Execute the named command.

BlNUNIQ

Is /bin /usr/bin I sort I uniq -d

This procedure determines which files are in both Ibin and lusrlbin. It is
done because files in Ibin will "override" those in lusrlbin during most
searches and duplicates need to be weeded out. If the lusr/bin file is
obsolete, then space is being wasted; if the Ibin file is outdated by a corre
sponding entry in lusrlbin then the wrong version is being run and, again,
space is being wasted. This is also a good demonstration of "sort I uniq"
to find matches and duplications.

7-60 User's Guide

Shell Procedure Examples

COPYPAIRS

Usage: copypairs filel file2
Copies filel to file2, file3 to file4,
while test "$2" !=
do

done

cp $1 $2
shift; shift

if test "$1" 1- ""

then echo "$0: odd number of arguments" >&2
fi

This procedure illustrates the use of a while loop to process a list of posi
tional parameters that are somehow related to one another. Here a while
loop is much better than a for loop, because you can adjust the positional
parameters with the shift command to handle related arguments.

COPYTO

Usage: copy to dir file ...
Copies argument files to "dir",
making sure that at least
two arguments exist, that "dir" is a directory,
and that each additional argument
is a readable file.
if test $# -It 2

then echo "$0: usage: copyto directory file ... ">&2
elif test ! -d $1

then echo "$0: $1 is not a directory";>&2
else dir=$I; shift

for eachfile
do cp $eachfile $dir
done

fi

The Shell 7-61

Shell Procedure Examples

This procedure uses an if command with several parts to screen out
improper usage. The for loop at the end of the procedure loops over all of
the arguments to copy to but the first; the original $1 is shifted off.

DISTINCTI

Usage: distinct1
Reads standard input and reports list of
alphanumeric strings that differ only in case,
giving lowercase form of each.
tr -cs 'A-Za-zO-9' '\012' I sort -u I \
tr 'A-Z' 'a-z I sort I uniq -d

This procedure is an example of the kind of process that is created by the
left-to-right construction of a long pipeline. Note the use of the backslash
at the end of the first line as the line continuation character. It may not be
immediately obvious how this command works. You may wish to consult
tr(C), sort(C), and uniq(C) in the User's Reference if you are completely
unfamiliar with these commands. The tr command translates all charac
ters except letters and digits into newline characters, and then squeezes
out repeated newline characters. This leaves each string (in this case, any
contiguous sequence of letters and digits) on a separate line. The sort
command sorts the lines and emits only one line frOiD any sequence of
one or more repeated lines. The next tr converts everything to lowercase,
so that identifiers differing only in case become identical. The output is
sorted again to bring such duplicates together. The "uniq -d" prints
(once) only those lines that occur more than once, yielding the desired
list.

The process of building such a pipeline relies on the fact that pipes and
files can usually be interchanged. The first line below is equivalent to the
last two lines, assuming that sufficient disk space is available:

cmdl I cmd2 I cmd3

cmdl > tempI; < tempI cmd2 > temp2; < temp2 cmd3
nn temp[I23]

Starting with a file of test data on the standard input and working from
left to right, each command is executed taking its input from the previous
file and putting its output in the next file. The final output is then exam
ined to make sure that it contains the expected result. The goal is to cre
ate a series of transfonnations that will convert the input to the desired
output.

7-62 User's Guide

Shell Procedure Examples

Although pipelines can give a concise notation for complex processes,
you should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
for i in $*

do nroff -man $i I lpr
done

Users often write this kind of procedure for convenience in dealing with
commands that require the use of distinct flags that cannot be given
default values that are reasonable for all (or even most) users.

EDFIND

Usage: edfind file arg
Finds the last occurrence in "file" of a line
whose beginning matches "arg", then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 « -EOF

EOF

?"$2?
-,+p
q

This illustrates the practice of using ed in-line input scripts into which the
shell can substitute the values of variables.

The Shell 7-63

Shell Procedure Examples

EDLAST

Usage: edlast file
Prints the last line of file,
then deletes that line.
ed - $1 «-\!

$p
$d
w
q

echo done

This procedure illustrates taking input from within the file itself up to the
exclamation point (!). Variable substitution is prohibited within the
input text because of the backslash.

FSPLIT

Usage: fsplit file1 file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one lette:
to file1, appending any line containing digits but
no letters to file2, and by throwing the rest away.
count=O gone=O
while read next
do

done

count="'expr $count + 1'"
case "$next" in
* [A-Za-z]*)

echo "$next" »$1 II

[0-9])
echo "$next" »$2;;

*)
gone="'expr $gone + 1'"

esac

echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The
loop tenninates only when read encounters an end-of-file. Note the use
of the expr command.

Do not use the shell to read a line at a time unless you must because it can
be an extremely slow process.

7-64 User's Guide

Shell Procedure Examples

LISTFIELDS

grep $* I tr "\012"

This procedure lists lines containing any desired entry that is given to it
as an argument. It places any field that begins with a colon on a newline.
Thus, if given the following input:

joe newman: 13509 NE 78th St: Redmond, Wa 98062

list fields will produce this:

joe newman
13509 NE 78th St
Redmond, Wa 98062

Note the use of the tr command to transpose colons to linefeeds.

MKFILES

* Usage: mkfiles pref [quantity]
it Makes "quantity" files, named pref1, pref2, ... * Default is 5 as determined on following line.
quantity=${2-5}
i=1
while test "$i" -Ie "$quantity"
do

> 1i
i="'expr $i + 1'"

done

The mkfiles procedure uses output redirection to create zero-length files.
The expr command is used for counting iterations of the while loop.

The Shell 7-65

Shell Procedure Examples

NULL

Usage: null files
Create each of the named files as an empty file.
for eachfile
do

>$eachfile
done

This procedure uses the fact that output redirection creates the (empty)
output file if a file does not already exist.

PHONE

Usage: phone initials ...
Prints the phone numbers of the
people with the given initials.
echo 'inits ext home'
grep "$1" «END

END

jfk 1234 999-2345
lbj 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234

This procedure is an example of using an in-line input script to maintain a
small database.

7-66 User's Guide

Shell Procedure Examples

TEXTFILE

if test "$1" = "-s"
then
Return condition code

shift
if test -z "'$0 $*'" # check return value
then

exit 1
else

exit a
fi

fi

if test $# -it 1
then echo "$0: Usage: $0 [-s 1 file

exit a
fi

file $* I fgrep , text' I sed 'sf: .*//'

" 1>&2

To determine which files in a directory contain only textual information,
text file filters argument lists to other commands. For example, the follow
ing command line will print all the text files in the current directory:

pr 'text file *' I lpr

This procedure also uses an -s flag which silently tests whether any of the
files in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise, mails it to user.
echo "$1" I { write "$2" II mail "$2" ;}

This procedure illustrates the use of command grouping. The message
specified by $1 is piped to both the write command and, if write fails, to
the mail command.

The Shell 7-67

Shell Grammar

Shell Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part esac
if command-list then command-list else-part fi

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor II pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file

7-68

« word
» file
digit> file
digit < file
digit »file

User's Guide

Shell Grammar

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list

empty:

word:

name:

digit:

empty

a sequence of nonblank characters

a sequence of letters, digits, or underscores
starting with a letter

0123456789

Metacharacters and Reserved Words

1. Syntactic

I Pipe symbol
&& And-if symbol
II Or-if symbol

Command separator
;; Case delimiter
& Background commands
() Command grouping
< Input redirection
« Input from a here document
> Output creation
» Output append
Comment to end ofline

The Shell 7-69

Shell Grammar

2. Patterns

*
?
[...]

3. Substitution

. ${ ••• }

4. Quoting

\

" "

Match any character(s) including none
Match any single character
Match any of enclosed characters

Substitute shell variable
Substitute command output

Quote next character as literal with no special meaning
Quote enclosed characters excepting the back quota
tionmarksO
Quote enclosed characters excepting: $' \"

5. Reserved words

if esac
then for
else while
elif until
fi do
case done
in {}

7-70 User's Guide

Chapter 8

The C-Shell

Introduction 8-1

Invoking the C-shell 8-2

Using Shell Variables 8-4

Using the C-Shell History List 8-7

Using Aliases 8-10

Redirecting Input and Output 8-12

Creating Background and Foreground Jobs 8-13

Using Built-In Commands 8-14

Creating Command Scripts 8-17

Using the argv Variable 8-18

Substituting Shell Variables 8-19

Using Expressions 8-21

Using the C-Shell: A Sample Script 8-22

Using Other Control Structures 8-25

Supplying Input to Commands 8-26

Catching Interrupts 8-27

Using Other Features 8-28

Starting a Loop at a Terminal 8-29

Using Braces with Arguments 8-31

Substituting Commands 8-32

Special Characters 8-33

Introduction

Introduction
The C-shell program, csh, is a command language interpreter. The C
shell, like the standard UNIX shell sh, is an interface between you and the
UNIX commands and programs. It translates command lines entered at a
terminal into corresponding system actions, gives you access to informa
tion, such as your login name, home directory, and mailbox, and lets you
construct shell procedures for automating system tasks.

This appendix explains how to use the C-shell. It also explains the syntax
and function of C-shell commands and features, and shows how to use
these features to create shell procedures. The C-shell is fully described in
csh (C) in the User's Reference.

The C-Shell 8-1

Invoking the C-shell

Invoking the C-shell
You can invoke the C-shell from another shell by using the csh command.
To invoke the C-shell, enter:

csh

at the standard shell's command line. You can also direct the system to
invoke the C-shell for you when you log in. If you have given the C-shell as
your login shell in your letclpasswd file entry, the system automatically
starts the shell when you log in.

After the system starts the C-shell, the shell searches your home directory for
the command files .cshrc and .login. If the shell finds the files, it executes the
commands contained in them, then displays the C-shell prompt.

The .cshrc file typically contains the commands you wish to execute each
time you start a C-shell, and the .login file contains the commands you wish
to execute after logging in to the system. For example, the following is the
contents of a typical .login file:

set ignoreeof
set mail=(/usr/spool/mail/bill)
set time=15
set history=lO
mail

This file contains several set commands. The set command is executed
directly by the C-shell; there is no corresponding UNIX program for this
command. Set sets the C-shell variable "ignoreeof" which shields the C
shell from logging out if Ctrl-d is hit. Instead of Ctrl-d, the logout command
is used to log out of the system. By setting the "mail' 'variable, the C-shell is
notified that it is to watch for incoming mail and notify you if new mail
arrives.

Next the C-shell variable "time" is setto 15 causing the C-shell to automati
cally print out statistics lines for commands that execute for at least 15
seconds of CPU time. The variable "history" is set to 10 indicating that the
C-shell will remember the last 10 commands typed in its history list,
(described later).

Finally, the UNIX mail program is invoked.

8-2 User's Guide

Invoking the C-shell

When the C-shell finishes processing the .login file, it begins reading com
mands from the terminal, prompting for each with:

%

When you log out (by giving the logout command) the C-shell prints:

logout

and executes commands from the file .logout if it exists in your home direc
tory. After that, the C-shell terminates and logs you ofIthe system.

The C-Shell 8-3

Using Shell Variables

Using Shell Variables
The C-shell maintains a set of variables. For example, in the above dis
cussion, the variables "history" and "time'·' had the values 10 and 15.
Each C-shell variable has as its value an array of zero or more strings.
C-shell variables may be assigned values by the set command, which has
several forms, the most useful of which is:

set name = value

C-shell variables may be used to store values that are to be used later in com
mands through a substitution mechanism. The C-shell variables most com
monly referenced are, however, those that the C-shell itself refers to. By
changing the values of these variables you can directly affect the behavior of
the C-shell.

One of the most important variables is "path". This variable contains a list
of directory names. When you enter a command name at your terminal, the
C-shell examines each named directory in turn, until it finds an executable
file whose name corresponds to the name you entered. The set command
with no arguments displays the values of all variables currently defined in
the C-shell.

The following example file shows typical default values:

argv ()
home /usr/bill
path (. /bin /usr/bin)
prompt %
shell /bin/ csh
status 0

This output indicates that the variable' 'path" begins with the current direc
tory indicated by dot (.), then/bin, and/usr/bin. Your own local commands
may be in the current directory. Normal UNIX commands reside in /bin and
/usr/bin.

Sometimes a number of locally developed programs reside in the directory
/usrllocal. If you want all C-shells that you invoke to have access to these
new programs, place the command:

set path=(. /bin /usr/bin /usr/local)

8-4 User's Guide

Using Shell Variables

in the .cshrc file in your home directory. Try doing this, then logging out and
back in. Enter:

set

to see that the value assigned to ' 'path' , has changed.

You should be aware that when you log in the C-shell examines each direc
tory that you insert into your path and determines which commands are con
tained there, except for the current directory which the C-shell treats spe
cially. This means that if commands are added to a directory in your search
path after you have started the C-shell, they will not necessarily be found. If
you wish to use a command which has been added after you have logged in,
you should give the command:

rehash

to the C-shell. rehash causes the shell to recompute its internal table of com
mand locations, so that it will find the newly added command. Since the C
shell has to look in the current directory on each command anyway, placing it
at the end of the path specification usually works best and reduces overhead.

Other useful built in variables are "home" which shows your home direc
tory, and "ignoreeof" which can be set in your .login file to tell the C-shell
not to exit when it receives an end-of-file from a terminal. The variable
"ignoreeof" is one of several variables whose value the C-shell does not
care about; the C-shell is only concerned with whether these variables are set
or unset. Thus, to set' 'ignoreeof' ' you simply enter:

set ignoreeof

and to unset it enter:

unset ignoreeof

Some other useful built-in C-shell variables are "noclobber" and "mail' '.

The syntax:

>filename

which redirects the standard output of a command just as in the regular shell,
overwrites and destroys the previous contents of the named file. In this way,

The C-Shell 8-5

Using Shell Variables

you may accidentally overwrite a file which is valuable. If you prefer that the
C-shell not overwrite files in this way you can:

set noclobber

in your .login file. Then entering:

date> now

causes an error message if the file now already exists. You can enter:

date >! now

if you really want to overwrite the contents of now. The ">!" is a special
syntax indicating that overwriting or "clobbering" the file is ok. (The space
between the exclamation point (!) and the word "now" is critical here, as
"!now" would be an invocation of the history mechanism, described below,
and have a totally different effect.)

8-6 User's Guide

Using the C-SheU History List

Using the C-Shell History List
The C-shell can maintain a history list into which it places the text of pre
vious commands. It is possible to use a notation that reuses commands, or
words from commands, in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes
in commands.

The following figure gives a sample session involving typical usage of the
history mechanism of the C-shell. Boldface indicates user input:

The C-Shell 8-7

Using the C-Shell History List

% cat bug.e
main ()
(

printf ("hello) ;
}

% ee !$
cc bug.c
bug.c(4) :error 1: newline in constant
% ed!$
ed bug.c
28
3s/); /"&/p

printf("hello") ;
w
29
q
% !e
cc bug.c
% a.out
hello% !e
ed bug.c
29
3s/l.0/l.0\\n/p

printf("hello\n") ;
w
31
q
% !e -0 bug
cc bug.c -0 bug
% size a.out bug
a.out: 5124 + 614 + 1254 = 6692 = Oxlb50
bug: 5124 + 616 + 1252 = 6692 = Oxlb50
% ls -l !*
Is -1 a.out bug
-rwxr-xr-x 1 bill 7648 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill 7650 Dec 19 09:42 bug
% bug
hello
% pr bug.e I l.pt
Ipt: Command not found.
% -lpt-lpr
pr bug.c I Ipr
%

Figure 8-1 Sample History Session

In this example, we have a very simple C program that has a bug or two in
the file bug.c, which we cat out on our terminal. We then try to run the C
compiler on it, referring to the file again as "!$", meaning the last argu
ment to the previous command. Here the exclamation mark (!) is the his
tory mechanism invocation metacharacter, and the dollar sign ($) stands
for the last argument, by analogy to the dollar sign in the editor which
stands for the end-of-line.

8-8 User's Guide

Using the C-Shell History List

The C-shell echoed the command, as it would have been typed without
use of the history mechanism, and then executed the command. The com
pilation yielded error diagnostics, so we now edit the file we were trying
to compile, fix the bug, and run the C compiler again, this time referring
to this command simply as "lc", which repeats the last command that
started with the letter "c".

If there were other commands beginning with the letter "c" executed
recently, we could have said" lcc" or even" !cc:p" which prints the last
command starting with "cc" without executing it, so that you can check
to see whether you really want to execute a given command.

Mter this recompilation, we ran the resulting a.out file, and then noting
that there still was a bug, ran the editor again. After fixing the program we
ran the C compiler again, but tacked onto the command an extra "-0 bug"
telling the compiler to place the resultant binary in the file bug rather than
a.out. In general, the history mechanisms may be used anywhere in the
formation of new commands, and other characters may be placed before
and after the substituted commands.

We then ran the size command to see how large the binary program
images we have created were, and then we ran an "Is -1" command with
the same argument list, denoting the argument list:

1*

Finally, we ran the program bug to see that its output is indeed correct.

To make a listing of the program, we ran the pr command on the file
bug.c. In order to print the listing at a lineprinter we piped the output to
Ipr, but misspelled it as "lpt". To correct this we used a C-shell substi
tute, placing the old text and new text between caret n characters. This is
similar to the substitute command in the editor. Finally, we repeated the
same command with:

11

and sent its output to the lineprinter.

There are other mechanisms available for repeating commands. The his
tory command prints out a numbered list of previous commands. You can
then refer to these commands by number. There is a way to refer to a pre
vious command by searching for a string which appeared in it, and there
are other, less useful, ways to select arguments to include in a new com
mand. A complete description of all these mechanisms is given in csh(C)
the User's Reference.

The C-Shell 8-9

Using Aliases

Using Aliases
The C-shell has an alias mechanism that can be used to make transfonna
tions on commands immediately after they are input. This mechanism
can be used to simplify the commands you enter, to supply default argu
ments to commands, or to perfonn transfonnations on commands and
their arguments. The alias facility is similar to a macro facility. Some of
the features obtained by aliasing can be obtained also using C-shell com
mand files, but these take place in another instance of the C-shell and
cannot directly affect the current C-shell's environment or involve com
mands such as cd which must be done in the current C-shell.

For example, suppose there is a new version of the mail program on the
system called newmail that you wish to use instead of the standard mail
program mail. If you place the C-shell command

alias mail newmail

in your .cshrc file, the C-shell will transfonn an input line of the fonn:

mail bill

into a calIon newmail. Suppose you wish the command Is to always show
sizes of files, that is, to always use the -s option. In this case, you can use the
alias command to do:

alias Is Is -s

or even:

alias dir Is -s

creating anew command named dir. Ifwe then enter:

dir 'bill

the C-shell translates this to:

Is -s /usr/bill

Note that the tilde n is a special C-shell symbol that represents the user's
home directory.

Thus the alias command can be used to provide short names for commands,
to provide default arguments, and to define new short commands in tenns of

8-10 User's Guide

Using Aliases

other commands. It is also possible to define aliases that contain multiple
commands or pipelines, showing where the arguments to the original
command are to be substituted using the facilities of the history mecha
nism.

Thus the definition:

alias cd 'cd \!* ; Is '

specifies an Is command after each cd command. We enclosed the entire
alias definition in single quotation marks (') to prevent most substitutions
from occurring and to prevent the semicolon (;) from being recognized as a
metacharacter. The exclamation mark (!) is escaped with a backslash (\) to
prevent it from being interpreted when the alias command is entered. The
"\!*" here substitutes the entire argument list to the prealiasing cd com
mand; no error is given if there are no arguments. The semicolon separating
commands is used here to indicate that one command is to be done and then
the next. Similarly the following example defines a command that looks up
its first argument in the password file.

alias whois 'grep \!A /etc/passwd'

The C-shell currently reads the .cshrc file each time it starts up. If you place a
large number of aliases there, C-shells will tend to start slowly. You should
try to limit the number of aliases you have to a reasonable number (10 or 15 is
reasonable). Too many aliases causes delays and makes the system seem
sluggish when you execute commands from within an editor or other pro
grams.

The C-Shell 8-11

Redirecting Input and Output

Redirecting Input and Output
In addition to the standard output, commands also have a diagnostic out
put that is normally directed to the terminal even when the standard out
put is redirected to a file or a pipe. It is occasionally useful to direct the
diagnostic output along with the standard output. For instance, if you
want to redirect the output of a long running command into a file and wish
to have a record of any error diagnostic it produces you can enter:

command > & file

The "> &" here tells the C-shell to route both the diagnostic output and the
standard output into file. Similarly you can give the command:

command 1& lpr

to route both standard and diagnostic output through the pipe to the line
printer. The form:

command >&1 file

is used when' 'noclobber" is set andfile already exists. Finally, use the form:

command » file

to append output to the end of an existing file. If' 'noclobber" is set, then an
error results if file does not exist, otherwise the C-shell creates file. The form:

command »1 file

lets you append to a file even if it does not exist and "noc1obber" is set.

8-12 User's Guide

Creating Background and Foreground Jobs

Creating Background and Foreground
Jobs
When one or more commands are entered together as a pipeline or as a
sequence of commands separated by semicolons, a single job is created
by the C-shell consisting of these commands together as a unit. Single
commands without pipes or semicolons create the simplest jobs. Usually,
every line entered to the C-shell creates a job. Each of the following lines
creates a job:

sort < data
Is -s I sort -n I head -5
mail harold

If the ampersand metacharacter (&) is entered at the end of the commands,
then the job is started as a background job. This means that the C-shell does
not wait for the job to finish, but instead, immediately prompts for another
command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the C-shell.
Thus:

du > usage &

runs the du program, which reports on the disk usage of your working direc
tory, puts the output into the file usage and returns immediately with a
prompt for the next command without waiting for du to finish. The du pro
gram continues executing in the background until it finishes, even though
you can enter and execute more commands in the mean time. Backgrowld
jobs are unaffected by any signals from the keyboard such as the INTER·
RUPTorQUIT signals.

The kill command terminates a background job immediately. Normally, this
is done by specifying the process nwnber of the job you want killed. Process
numbers can be found with the ps command.

The C-Shell 8-13

Using Built-In Commands

Using Built-In Commands
This section explains how to use some of the built-in C-shell commands.

The alias command described above is used to assign new aliases and to
display existing aliases. If given no arguments, alias prints the list of
current aliases. It may also be given one argument, such as to show the
current alias for a given string of characters. For example:

alias Is

prints the current alias for the string "Is".

The history command displays the contents of the history list. The num
bers given with the history events can be used to reference previous
events that are difficult to reference contextually. There is also a C-shell
variable named "prompt". By placing an exclamation point (!) in its
value the C-shell will substitute the number of the current command in
the history list. You can use this number to refer to a command in a his
tory substitution. For example, you could enter:

set prompt= \! % '

Note that the exclamation mark (!) had to be escaped here even within back
quotes.

The logout command is used to terminate a login C-shell that has
"ignoreeof" set.

The rehash command causes the C-shell to recompute a table of command
locations. This is necessary if you add a command to a directory in the
current C-shell' s search path and want the C-shell to find it, since otherwise
the hashing algorithm may tell the C-shell that the command wasn't in that
directory when the hash table was computed.

The repeat command is used to repeat a command several times. Thus to
make 5 copies of the file one in the file five you could enter:

repeat 5 cat one » five

8-14 User's Guide

Using Built-In Commands

The setenv command can be used to set variables in the environment. Thus:

setenv TERM adm3a

sets the value of the environment variable "TERM" to "adm3a". The pro
gram env exists to print out the environment. For example, its output might
look like this:

HOME=/usr /bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER=bill

The source command is used to force the current C-shell to read commands
from a file. Thus:

source .cshrc

can be used after editing in a change to the .cshrc file that you wish to take
effect before the next time you login.

The same holds true when using the source command with the .login file.
The time command is used to cause a command to be timed no matter how
much CPU time it takes. Thus:

time cp /etc/termcap /usr/bilVtermcap

displays:

(O.Ou 0.48 0:02 21%

Similarly:

time wc /etc/termcap /usr/bilVtermcap

displays:

2071 5849 92890 /etc/termcap
2071 5849 92890 /usr/bi1l/termcap
4142 11698 185780 total

1.3u 0.78 0:04 47%

This indicates that the cp command used a negligible amount of user time (u)
and about 4/lOths of a second of system time (s); the elapsed time was 2

The C-Shell 8-15

Using Built-In Commands

seconds (0:02). The word count command we used 1.3 seconds of user time
and 0.7 seconds of system time in 4 seconds of elapsed time. The percentage
"47%" indicates that over the period when it was active the we command
used an average of 47 percent of the available CPU cycles of the machine.

The unallas and unset commands are used to remove aliases and variable
definitions from the C-shell.

8-16 User's Guide

Creating Command Scripts

Creating Command Scripts
It is possible to place commands in files and to cause C-shells to be
invoked to read and execute commands from these files, which are called
C-shell scripts. This section describes the C-shell features that are useful
when creating C-shell scripts.

The C-Shell 8-17

Using the argv Variable

Using the argv Variable
A csh command script may be interpreted by saying:

csh script argument ...

where script is the name of the file containing a group of C-shell commands
and argument is a sequence of command arguments. The C-shell places
these arguments in the variable "argv" and then begins to read commands
from script. These parameters are then available through the same mecha
nisms that are used to reference any other C-shell variables.

If you make the file script executable by doing:

chmod 755 script

or:

chmod +x script

and then place a C-shell comment at the beginning of the C-shell script (i.e.,
begin the file with a number sign (#» then /bin/csh will automatically be
invoked to execute script when you enter:

script

If the file does not begin with a number sign (#) then the standard shell /binl sh
will be used to execute it.

8-18 User's Guide

Substituting Shell Variables

Substituting Shell Variables
After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before each
command is executed a mechanism known as variable substitution is per
formed on these words. Keyed by the dollar sign ($), this substitution
replaces the names of variables by their values. Thus:

echo $argv

when placed in a command script would cause the current value of the
variable "argv" to be echoed to the output of the C-shell script. It is an
error for "argv" to be unset at this point.

A number of notations are provided for accessing components and
attributes of variables. The notation:

$?name

expands to 1 if name is set or to 0 if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables
cause errors.

The notation:

$#name

expands to the number of elements in the variable "name". To illustrate,
examine the following terminal session (input is in boldface):

% set argv=(a b c)
% echo $?argv
1
% echo $'argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv.
%

It is also possible to access the components of a variable that has several
values. Thus:

The C-Shell 8-19

Substituting Shell Variables

$argv[l]

gives the first component of "argv" or in the example above "a". Simi
larly:

$argv[$#argv]

would give "c". Other notations useful in C-shell scripts are:

$n

where n is an integer. This is shorthand for:

$argv[n]

the n'th parameter and:

$*

which is a shorthand for:

$argv

The form:

$$

expands to the process number of the current C-shell. Since this process
number is unique in the system, it is often used in the generation of
unique temporary filenames.

One minor difference between "$n" and "$argv[n]" should be noted
here. The form: "$argv[n]" will yield an error if n is not in the range
l-$#argv while "$n" will never yield an out-of-range subscript error.
This is for compatibility with the way older shells handle parameters.

Another important point is that it is never an error to give a subrange of
the form: "n-"; if there are less than "n" components of the given vari
able then no words are substituted. A range of the form: "m-n" likewise
returns an empty vector without giving an error when "m" exceeds the
number of elements of the given variable, provided the subscript "n" is
in range.

8-20 User's Guide

Using Expressions

U sing Expressions
To construct useful C-shell scripts, the C-shell must be able to evaluate
expressions based on the values of variables. In fact, all the arithmetic
operations of the C language are available in the C-shell with the same
precedence that they have in C. In particular, the operations "::" and
"!:" compare strings and the operators "&&" and "II" implement the
logical AND and OR operations.

The C-shell also allows file inquiries of the form:

-? filename

where question mark (?) is replaced by a number of single characters. For
example, the expression primitive:

-e filename

tells whether filename exists. Other primitives test for read, write and exe
cute access to the file, whether it is a directory, or if it has nonzero length.

It is possible to test whether a command terminates normally, by using a
primitive of the form:

{ command}

which returns 1 if the command exits normally with exit status 0, or 0 if the
command terminates abnormally or with exit status nonzero. If more
detailed information about the execution status of a command is required, it
can be executed and the "status" variable examined in the next command.
Since' '$status" is set by every command, its value is always changing.

For the full list of expression components, see csb(C) in the User's Refer
ence.

The C-Shell 8-21

Using tbe C-Sbell: A Sample Script

UsingtheC-Shell: A Sample Script
A sample C-shell script follows that uses the expression mechanism of
the C-shell and some of its control structures:

* * Cc.pyc cx:pies those C programs :in the SfeCified list * to the directo:r:y - /h3.ckup if they differ fi:an the files * already :in - /h3.ckup

* set ncglcb
foreadJ. i ($argv)

end

if ($i != *.c) cont:inue * not a .c file so do oothing

if (! -r - /h3.ckup/$i:t) then

endif

ecro $i:t not :in backup ••. not cp\ 'ed
cont:inue

alP -5 $i - /h3.ckup/$i:t * to set $status

if ($status != 0) then

endif

ecro rEM l:ackup of $i
cp $i -/h3.ckup/$i:t

This script uses the foreacb command, which iteratively executes the
group of commands between the foreacb and the matching end state
ments for each value of the variable "i". I f you want to look more
closely at what happens during execution of a foreacb loop, you can use
the debug command break to stop execution at any point and the debug
command continue to resume execution. The value of the iteration vari
able (i in this case) will stay at whatever it was when the last foreacb
loop was completed.

The "noglob" variable is set to prevent filename expansion of the mem
bers of "argv". This is a good idea, in general, if the arguments to a C
shell script are filenames which have already been expanded or if the
arguments may contain filename expansion metacharacters. It is also
possible to quote each use of a "$" variable expansion, but this is harder
and less reliable.

8-22 User's Guide

Using the C-Shell: A Sample Script

The other control construct is a statement of the form:

if (expression) then
command

endif

The placement of the keywords in this statement is not flexible due to the
current implementation of the C-shell. The following two formats are not
acceptable to the C-shell:

and:

if (expression) # Won't work!
then

command

endif

if (expression) then command endif # Won't work

The C-shell does have another form of the if statement:

if (expression) command

which can be written:

if (expression) \
command

Here we have escaped the newline forthe sake of appearance. The command
must not involve" I", "&" or ";" and must not be another control com
mand. The second form requires the final backslash (\) to immediately pre
cede the end-of-line.

The C-Shell 8-23

Using the C-Shell: A Sample Script

The more general if statements above also admit a sequence of else-if pairs
followed by a single else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in C-shell scripts is the colon (:)
modifier. We can use the modifier :r here to extract the root of a filename or
:e to extract the extension. Thus if the variable "i" has the value
Imntlfoo.bar then

echo $i $i:r $i:e

produces:

/ront/foo.bar /ront/foo bar

This example shows how the :r modifier strips off the trailing " .bar" and the
:e modifier leaves only the "bar". Other modifiers take off the last com
ponent of a pathname leaving the head :h or all but the last component of a
pathname leaving the tail :t. These modifiers are fully described in the
csh(C) page in the User's Reference. It is also possible to use the command
substitution mechanism to perform modifications on strings to then reenter
the C-shell environment. Since each usage of this mechanism involves the
creation of a new process, it is much more expensive to use than the colon (:)
modification mechanism. It is also important to note that the current imple
mentation of the C-shelllimits the number of colon modifiers on a "$" sub
stitution to 1. Thus:

% echo $i $i:h:t

produces:

/a/b/c /a/b:t

and does not do what you might expect.

Finally, we note that the number sign character (#) lexically introduces a C
shell comment in C-shell scripts (but not from the terminal). All subsequent
characters on the input line after a number sign are discarded by the C-shell.
This character can be quoted using "'" or "\" to place it in an argument
word.

8-24 User's Guide

Using Other Control Structures

U sing Other Control Structures
The C-shell also has control structures while and switch similar to those
of C. These take the forms:

and:

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh(C). C programmers should note
that we use breaksw to exit from a switch while break exits a while or
foreach loop. A common mistake to make in C-shell scripts is to use
break rather than breaksw in switches.

Finally, the C-shell allows a goto statement, with labels looking like they
do in C:

loop:

The C-Shell

commands
goto loop

8-25

Supplying Input to Commands

Supplying Input to Commands
Commands run from C-shell scripts receive by default the standard inpu
of the C-shell which is running the script. It allows C-shell scripts t(
fully participate in pipelines, but mandates extra notation for command:
that are to take inline data.

Thus we need a metanotation for supplying inline data to commands it
C-shell scripts. For example, consider this script which runs the editor t<
delete leading blanks from the lines in each argument file:

* deblank -- remove leading blanks
foreach i ($argv)
ed - $i « ' EOF'
l,$s/'[)*11
w
q
'EOF'
end

The notation:

« 'EOF'

means that the standard input for the ed command is to come from thl
text in the C-shell script file up to the next line consisting of exactly EOF
The fact that the EOF is enclosed in single quotation marks ('), Le., it i:
quoted, causes the C-shell to not perform variable substitution on thl
intervening lines. In general, if any part of the word following the "«'
which the C-shell uses to terminate the text to be given to the command i:
quoted then these substitutions will not be performed. In this case SinCI
we used the form "1,$" in our editor script we needed to insure that thi:
dollar sign was not variable substituted. We could also have insured thi:
by preceding the dollar sign ($) with a backslash (\), Le.:

l,\$s;-[)*11

Quoting the EOF terminator is a more reliable way of achieving the saml
thing.

8-26 User's Guid

Catching Interrupts

Catching Interrupts
If our C-shell script creates temporary files, we may wish to catch interr
uptions of the C-shell script so that we can clean up these files. We can
then do:

onintr label

where label is a label in our program. If an interrupt is received the C
shell will do a "goto label" and we can remove the temporary files, then
do an exit command (which is built in to the C-shell) to exit from the C
shell script. If we wish to exit with nonzero status we can write:

exit (1)

to exit with status 1.

The C-Shell 8-27

E

Using Other Features

Using Other Features
There are other features of the C-shell useful to writers of C-shell pro
cedures. The verbose and echo options and the related -v and -x com
mand line options can be used to help trace the actions of the C-shell.
The -n option causes the C-shell only to read commands and not to exe
cute them and may sometimes be of use.

One other thing to note is that the C-shell will not execute C-shell scripts
that do not begin with the number sign character (#), that is C-shell
scripts that do not begin with a comment.

There is also another quotation mechanism using the double quotation
mark ("), which allows only some of the expansion mechanisms we have
so far discussed to occur on the quoted string and serves to make this
string into a single word as the single quote (') does.

8-28 User's Guide

Starting a Loop at a Terminal

Starting a Loop at a Terminal
It is occasionally useful to use the foreach control structure at the tenni
nal to aid in perfonning a number of similar commands. For instance, if
there were three shells in use on a particular system, Ibinlsh, Ibinlnsh, and
Ibinlcsh, you could count the number of persons using each shell by using
the following commands:

grep -c csh$ /etc/passwd
grep -c nsh$ /etc/passwd
grep -c -v /sh$ /etc/passwd

Because these commands are very similar we can use foreach to simplify
them:

$ foreach:i (. sh$' . csh$' . -v sh$')
? grep -c $:i /etc/passwd
? end

Note here that the C-shell prompts for input with "? " when reading the
body of the loop. This occurs only when the foreach command is entered
interactively.

Also useful with loops are variables that contain lists of filenames or
other words. For example, examine the following tenninal session:

% set a=(, ~s')
% echo $a
csh.n csh.rm
% ~s
csh.n
csh.rm
% echo $#a
2

The set command here gave the variable "a" a list of all the filenames in
the current directory as value. We can then iterate over these names to
perfonn any chosen function.

The output of a command within back quotation marks (') is converted
by the C-shell to a list of words. You can also place the quoted string
within double quotation marks (") to take each (nonempty) line as a com
ponent of the variable. This prevents the lines from being split into words

The C-Shell 8-29

Starting a Loop at a Terminal

at blanks and tabs. A modifier :x exists which can be used later to expand
each component of the variable into another variable by splitting the ori
ginal variable into separate words at embedded blanks and tabs.

8-30 User's Guide

Using Braces with Arguments

Using Braces with Arguments
Another fonn of filename expansion involves the characters, , , { " and
, , } , '. These characters specify that the contained strings, separated by
commas (,) are to be consecutively substituted into the containing charac
ters and the results expanded left to right. Thus:

A{strl,str2, ... stm} B

expands to:

AstrlB Astr2B ... AstmB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate arguments
which are not filenames, but which have common parts.

A typical use of this would be:

mkdir -/{hdrs,retrofit,csh}

to make subdirectories hdrs, retrofit and csh in your home directory. This
mechanism is most useful when the common prefix is longer than in this
example:

chown root lusr/demo/ {file 1 ,file2, ... }

The C-Shell 8-31

Substituting Commands

Substituting Commands
A command enclosed in accent symbols (') is replaced, just before
filenames are expanded, by the output from that command. Thus, it is
possible to do:

set pwd='pwd'

to save the current directory in the variable "pwd" or to do:

vi 'grep -1 TRACE *.c'

to run the editor vi supplying as arguments those files whose names end in
which have the string "TRACE" in them. Command expansion also
occurs in input redirected with "«" and within quotation marks (").
Refer to csb(C) in the User's Reference for more information.

8-32 User's Guide

Special Characters

Special Characters
The following table lists the csh and UNIX special characters. A number
of these characters also have special meaning in expressions. See the csh
manual section for a complete list.

Syntactic metacharacters

Separates commands to be executed sequentially

Separates commands in a pipeline

() Brackets expressions and variable values

& Follows commands to be executed without waiting for com
pletion

Filename metacharacters

/ Separates components of a file's patbname

Separates root parts of a filename from extensions

? Expansion character matching any single character

* Expansion character matching any sequence of characters

[] Expansion sequence matching any single character from a set
of characters

Used at the beginning of a filename to indicate home direc
tories

{} Used to specify groups of arguments with common parts

Quotation metacharacters

\ Prevents meta-meaning of following single character

Prevents meta-meaning of a group of characters

Like " but allows variable and command expansion

The C-Shell 8-33

Special Characters

Input/output metacharacters

< Indicates redirected input

> Indicates redirected output

Expansion/Substitution Metacharacters

$ Indicates variable substitution

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substitution

Indicates command substitution

Other Metacharacters

Begins scratch filenames; indicates C-shell comments

Prefixes option (flag) arguments to commands

8-34 User's Guide

Chapter 9

Using A Trusted System

Introduction 9-1
Tennino1ogy 9-1
The Security Administrator 9-2

Login Security 9-3
Logging In 9-3
What To Do If You Cannot Log In 9-3
Changing Your Password 9-4
Using Another Account 9-6

Using Commands On A Trusted System 9-7
Authorizations 9-7
The auths(C) Command 9-8
Using Promains 9-10
Security For Files In Sticky Directories 9-11
Commands You Cannot Use 9-11

Recommended Security Practices 9-12
Password Security 9-12
Logging In And Out 9-13
File Security 9-13
Running Untrustworthy Programs 9-14

Data Encryption-Commands and Descriptions 9-16
crypt-Encode/Decode Files 9-17
Encrypting and Decrypting With Editors 9-18

Introduction

Introduction
Every computer system needs protection from people accessing the com
puter, disks and system files without the system administrator's permis
sion. The operating system carries its own protection in the form of
built-in security features not present in other UNIX systems. These fea
tures apply to all users of the system and are maintained by the system
administrator.

This chapter describes security from the viewpoint of the ordinary user.
If you find that your system does not show a feature discussed in this
chapter, your administrator has switched it off.

This chapter includes the following:

• Terminology used to describe ways of enforcing and breaking
security.

• The role of the security administrator.

• How to log into a trusted system, change password and use another
account.

• How to issue commands on a trusted system.

• Recommended security practices and security tips.

Terminology

The following terms are used to describe ways of enforcing and breaking
security:

A Trojan Horse is a program which masquerades as an innocent program.
It allows a person to steal your data, corrupt your files or gain access to
your account.

A login spoofing program disguises itself as the login program in order to
steal your password. The program displays the login prompt on the termi
nal and waits for you to type in your user name followed by password.
When you respond to the prompts and enter your user name and password,
the program stores the password and reports that your entry was incorrect.
The spoofing program then ends and the correct login program starts.

Using A 1Iusted System 9-1

I

Introduction

A protected subsystem is a collection of files, devices and commands
which protects a set of resources or which performs security tasks.

The trusted computing base (TCB) of a system is the software, hardware
and firmware which provide the system with security. The TCB of your
equipment consists of the system hardware and firmware (supplied by the
hardware vendor) and the operating system.

The Security Administrator

A security administrator is appointed to enforce security practices, moni
tor the system, trace attempts to breach security and return the system to a
trusted state in the unlikely event of a security break-in.

9-2 User's Guide

Login Security

Login Security
This section describes how to log into a trusted system, change password
and use another account. It also explains what to do if you have difficulty
logging in.

Logging In

The following login prompts are displayed:

login: user name
Password: non-echoed password

When you enter your password correctly, the last times you successfully
and unsuccessfully logged in are displayed:

Last successful login for user: date and time
Last unsuccessful login for user: date and time

If these times do not match your actions, consult your administrator
immediately. Someone may have tried to log into your account.

What To Do If You Cannot Log In

If you cannot log in, go through the following checklist:

• The security administrator has given your password a lifetime,
which has now expired. Ask the administrator to change your
password and re-open your account.

• The security administrator has set a limit to the number of unsuc
cessful login attempts you are allowed to make for your account.
When you exceed this number your account is locked automatical
ly. Ask the administrator to re-open the account. If you feel that
you entered your login details correctly, tell the administrator
immediately. It is possible that the system has been interfered
with.

Using A Trusted System 9-3

Login Security

• The security administrator has set a limit to the number of unsuc
cessful login attempts allowed at your terminal. When this number
is exceeded your account is locked automatically. Ask the
administrator to re-open the account. If you believe that you
entered your login details correctly, inform the administrator
immediately.

• The security administrator has locked your account or terminal. To
continue work you must ask the administrator to re-open the
account.

• The security administrator has set a date by which your password
expires. When your password expires you are prompted to change
it.

• If you forget your password, ask the security administrator to
change it.

Changing Your Password

The security administrator decides whether or not you can change pass
word for yourself. The administrator can also set a minimum time period
between changes of password.

If You Are Not Allowed To Change Password For Yourself

If you are not allowed to change password for yourself and you try to use
the passwd(C) command, the message below is displayed. You must ask
the administrator to change your password.

Password cannot be changed. Reason: Not allowed to
execute password for the given user.

If You Are Allowed To Change Password For Yourself

If you are allowed to change the password for yourself, the administrator
sets up your account to allow you to specify the password of your choice
or have the system generate one for you.

When you use the passwd(C) command you are prompted for your
current password:

9-4 User's Guide

Login Security

(Old password:

When you type it in correctly the date and time of your last change of
password are displayed:

Last successful password change for user: date and time
Last unsuccessful password change for user: date and time

Make sure that these messages reflect your last attempts to change pass
word. If they do not, tell your administrator immediately.

The following prompt is then displayed:

Choose password

You can choose whether you pick your own password,
or have the systan create one for you.

1. Pick your own password
2. Pronounceable password will be generated for you

Enter choice (default is 1):

If you enter 1, you are prompted for your new password. You are then
prompted to repeat your entry. Refer to the "Recommended Security
Practices" section for guidelines on choosing a password.

If you select 2, the system generates a password for you. The following
message is displayed:

Generating randan pronounceable password for user.
The password, along with the hyphenated version, is shown.
Hit <RETURN> or <ENTER> until you like the choice.
When you have chosen the password you want, type it in.
Note: Type your interrupt character or 'quit' to abort at any tjme.

Password:= Hyphenation:xx-xx-xx Enter password:

The generated password is displayed with a hyphenated version. The
hyphenation separates the password into logical parts and is designed to
help you commit the password to memory. Do not write the password
down.

If you decide not to change your password type quit or your interrupt
character (normally the key). Your last unsuccessful password
change time is updated and the following message is displayed:

Using A Trusted System 9-5

Login Security

Password cannot be changed. Reason: user stopped program.

Using Another Account

The su(C) command allows you to use another account. The security
administrator may impose restrictions on the way you can use the su(C)
command. For example, you may not be allowed to su to administrator
accounts or the root account.

9-6 User's Guide

Using Commands On A Trusted System

Using Commands On A Trusted
System
The use of commands is restricted on a trusted system. You can issue cer
tain commands only if the security administrator has given you the appro
priate authorization. This section describes the different types of authori
zation and how they affect your use of commands.

Authorizations

The security mechanism has two types of authorization: kernel and sub
system. A kernel authorization allows you to run specific processes on
the operating system. A subsystem authorization allows you to use the
commands of a specific protected subsystem.

The kernel authorizations are as follows:

execsuid

nopromain

chmodsugid

chown

This authorization allows you to run SUID pro
grams. An sum program gains access to all the
files, processes and resources belonging to the per
son running the program or the owner of the pro
gram file.

defines sum program behavior. If the
nopromain authorization is on, smn programs
run as on traditional UNIX systems. Otherwise, a
promain, for protected domain, is created, in
which programs are less likely to be able to cor
rupt or steal your private data.

Allows you to change the setuid and setgid
attributes of a file or directory, using the
chmod(C) command.

Allows you to change the ownership of files using
the chown(C) command.

There are two levels of subsystem authorization: primary and secondary.
A primary subsystem authorization allows you to use the commands of a
protected subsystem as an administrator. Primary authorizations are given
to administrators and are fully described in the Administrator's Guide.
However, the authorizations below can be given to ordinary users:

Using A Trusted System 9-7

Using Commands On A Trusted System

mem

terminal

This authorization allows you to use the ps(C)
command to check the status of other users' pro
cesses, and the ipcs(C) command to report the
status of inter-process communication. Without
the authorization you can only use these com
mands to report on processes belonging to you.

Allows you to use the write(C) command to com
municate with other users. If you use the write(C)
command without the authorization, any control
codes and escape sequences in your message are
converted to ASCn characters.

A secondary subsystem authorization allows you to use the commands of
a subsystem as an ordinary user i.e. you are not given administrative
privilege. Secondary authorizations are described below:

printqueue

printerstat

queryspace

Allows you to view other users' jobs on the print
queue.

Allows you to use the enable(C) and disable(C)
commands to change the status of printers.

Allows you to use the df(C) command to query
the amount of space available on the file systems.

Note that you cannot gain the subsystem authorizations of another
account by changing to the account using the su(C) command. Also, you
do not drop any authorizations which the new account does not possess.

The auths(C) Command

The auths(C) command allows you to list your kernel authorizations, and
start up a shell so that you can issue commands with specific authoriza
tions. The instructions below show you how to use the auths(C) com
mand with a variety of arguments. Examples are given for a user with
execsuid and chown authorizations.

• The auths(C) command without arguments lists your kernel
authorizations. For example:

$ auths
Kernel authorizations: execsuid,chown

9-8 User's Guide

Using Commands On A Trnsted System

• The auths(C) command with the -a option allows you to specify a
restricted set of one or more of your authorizations. For example,
the user with execsuid and chown authorizations can restrict
himself/herself to the chown authorization:

$ auths -a chown
$ auths
Kernel authorizations: chown

To restore your authorizations, leave the shell started by the
auths(C) -a command.

• The auths(C) command with the -r option allows you to specify
which of your authorizations you wish to remove. For example:

$ auths -r chown
$ auths
Kernel authorizations: execsuid

You must leave the shell started by the auths(C) -r command to
restore your authorizations.

• The auths(C) command with the -c option allows you to issue a
command instead of starting an interactive subshell. In the exam
ple below, chown authorization is removed and then the auths(C)
command is issued. The result is a line listing the user's authoriza
tions; the chown authorization is not included.

$ auths -r chown -c auths
Kernel authorizations: execsuid

When the user lists his/her authorizations, the chown authorization
is restored:

$ auths
Kernel authorizations: execsuid,chown

Using A Trusted System 9-9

Using Commands On A Trusted System

Using Promains

The promain feature allows you to control the damage a sum program
can do to your files. Recall that a sum program starts execution with
effective user ID equal to the owner of the sum program file and real
user ID equal to the invoker of the SUID program. On traditional UNIX
systems, a sum program has complete access to all files, processes, and
IPC objects (collectively called resources) to which the invoker or the
owner has access, because the program can use setuid(S) to switch
between the invoker and owner user ID. Outside a promain, this power is
restricted to resources to which the invoker and the owner have access, as
described in this section.

On UNIX systems, the SUIn feature is used when one user (or system
function) needs to protect files from access except through a well-defined
set of programs. An example is the suite of line printer commands, which
work with a set of configuration files, status files, and shell scripts to keep
track of which print jobs are queued to which printers. Users and line
printer administrators use several commands to submit and cancel jobs,
change and query the status of printers,and add and remove printers from
the system or from active duty. All printer files are owned by the pseudo
user Ip, the user ID which is the owner of all files used by the line printer
subsystem, including the printer special devices themselves.

When you invoke the Ip(C) command to print a file, the program can
access the files in the database, but can also access files that you request
to be printed because the program can setuid to your user ID to access
your files. A malicious lp program could just as easily look for protected
files in your directory hierarchy and copy them to a place protected such
that only lp could read them. Thus, the fact that you trust lp enough to
run it as a program means that you trust that it will not abuse the power
you give when you run it.

If you run a SUID program in the and the nopromain kernel authoriza
tion is off, a promain is created, and the current directory is noted as the
promain root. Files in the subtree starting at the promain root are said to
be inside the promain, while files outside that subtree are said to be out
side the promain. Promains protect a user against a malicious SUID pro
gram by restricting the kinds of accesses the program can do outside the
promain when running as you (the invoker). When running with the
invoker's effective user ID outside the promain, the program can access
files if both the invoker and the owner have access (public files). Inside
the promain, the program has access according to the normal rules. Refer
to the promain(M) page in the User's Reference for examples of how to
use promains.

9-10 User's Guide

Using Commands On A Trusted System

Security For Files In Sticky Directories

You can remove a file from a directory which has its sticky bit set, only if
you own the file.

Commands You Cannot Use

A trusted system prevents you from using networking commands. In
order to transport information, the security administrator must record in
formation on disk or tape.

Using A Trusted System 9-11

Recommended Security Practices

Recommended Security Practices
This section gives a list of recommended security practices for the ordi
nary user.

Password Security

It is your responsibility to protect your password. The careless use and
maintenance of passwords represents the greatest threat to the security of
a computer system. Here are some guidelines for choosing and maintain
ing passwords:

• A password should be at least eight characters in length and
include letters, digits and punctuation marks. For example,
frAiJ6*.

• Do not use a password that is easy to guess. A password must not
be a name, nickname, proper noun or word found in the dictionary.
Do not use your birthdate or a number in your address.

• Do not use words spelled backwards.

• Do not start or end a password with a single number. For example,
do not use terry9 as your password.

• Use different passwords on different machines. Do not make the
passwords reflect the names of the machines.

• Always keep your password secret. A password should never be
written down, shared with another person, sent over electronic
mail or spoken.

• Never re-use a password. This just increases the probability of
someone guessing it.

• Never type a password while someone is watching your fingers.

9-12 User's Guide

Recommended Security Practices

Logging In And Out

The following guidelines include "things to look out for" as well as
recommended practices for logging into your system and logging out.

• When logging into a trusted system, check that the reported last
login and logout times are as you remember them. Look out for
login attempts made when you are normally logged out of the sys
tem. Report any discrepancies to your security administrator,
immediately.

• Be careful how you type in your password.

• When you enter your password and the system reports an error,
although you believe your entry to have been correct, tell your
security administrator immediately. Check the reported last login
time against the current time. If there is a discrepancy it is possi
ble that a spoofing program (see "Terminology" section) has taken
your password.

• Never leave yourself logged in at an unattended terminal.

File Security

Follow the guidelines below when you are creating, copying and moving
files. The list also includes security tips related to your startup scripts.

• When you create a file or directory your startup script determines
the permissions given to the file or directory. Newly created files
and directories should only be accessible by you (the owner) or the
group. It is advisable to keep your files and directories secure in
this way, by leaving your startup script set to the system default. If
you wish to share a few files with other users, change the permis
sions on those files, individually.

• When you use the cp(C) command to copy an SUID file owned by
someone else, the new file is also an sum file and is owned by
you. Note that when an SUID file is executed, it has access to all
your files and directories. It is good practice to use the chmod(C)
command to change the permissions on the file so that it can be
accessed only by you.

• When you use the cp(C) command to copy a file so as to create a
new file, the new file takes the permissions of the original file.
Remember to check the permissions of the new file and, if neces
sary, change them using the chmod(C) command.

Using A Trusted System 9-13

Recommended Security Practices

• Remember that temporary directories are world-readable.

• Use the Is(C) command to check the permissions on your shell,
mailer and startup files. If the files can be read and modified by
other users, change the permissions using the chmod(C) command
so that only you have access to them.

Running Untrustworthy Programs

This section gives instructions for running an untrustworthy program.
The instructions show you how to protect all files, which you do not want
a program to access, by protecting private files outside a restricted direc
tory.

A restricted sub-hierarchy can be created by making a gateway directory
in your directory hierarchy. This acts as a ceiling for programs running in
directories underneath the gateway. It prevents malicious programs from
opening files using relative pathnames (those not beginning with a I), and
prevents programs from searching, opening or deleting files using abso
lute pathnames.

The instructions are as follows:

1. Remove execsuid, chmodsugid and chown authorizations from
your program using the auths(C) command. This stops the pro
gram from running other SUID programs, from creating SUID files
with your ownership and from giving your files away with the
chown(C) command:

auths -r execsuid,chmodsugid,chown

2. Create a gateway directory. Then move all files to be manipulated
by the program into a subdirectory of the gateway directory. Then
change the gateway directory's mode to 000 using the chmod(C)
command:

9-14

mkdir lusr/you/gateway
mkdir lusr/you/gateway/test
cd lusr/you/gateway/test
cp lusr/you/testfiles/* .
chmod 000 lusr/you/gateway
Is -Idu lusr/you/gateway

Note the time reported by the Is(C) command, as it is the time that
the chmod(C) command was performed on the gateway directory.
The time should be unchanged unless the program was malicious.

User's Guide

Recommended Security Practices

3. Change your home directory's permission to no access:

chmod 000 /usr/you

4. Note the change time associated with your home directory:

cd
Is -Idu

You can discover if the program has opened and closed your direc
tory, by using the inode change time for the directory.

5. Start the program. Relative pathnames starting at
/usr/you/gateway/test are stopped at the gateway directory and any
other attempts to access files in your directory hierarchy are
stopped at your home directory.

6. Check for background processes. A malicious program can start a
malicious process which waits to do its damage until later.

7. After running the program, look at any error messages and hidden
files (using the Is(C) command with -a option). Note especially the
change times on your home directory and on your gateway direc
tory:

Is -Idu /usr/you
chmod 750/usr/you
Is -Idu /usr/you/gateway

8. If you wish, restore permissions on your gateway directory so that
it can be removed:

chmod 750/usr/you/gateway

You may now copy out the results of the program, remove the gate
way hierarchy and so on.

This procedure protects most of your directory hierarchy from harm.
However, sophisticated attacks, which change permissions on the gate
way and home directories and destroy the integrity of your files, cannot be
discovered until after the event. If you suspect the program, back up your
directory hierarchy before running the program, or analyze the program's
source code before using it.

Using A Trusted System 9-15

Data Encryption-Commands and Descriptions

Data Encryption-Commands and
Descriptions
If you have sensitive data that requires greater protection than that pro
vided by access permission, you can encrypt the data. The encrypted file
can not be read without a password. If somebody tries to read the
encrypted file without a password, it cannot be understood.

Note

You will only have data encryption capabilities if the crypt(C) soft
ware is installed on your system. This software is available only
within the United States and must be requested from your distribu
tor.

There are seven different commands used in data encryption. A brief
summary of these commands appears in the following table.

COMMAND DESCRIPTION
LINE

crypt This command is used to encode and
decode files. The crypt command reads
from the standard input or keyboard and
writes to the standard output or terminal.

makekey This command generates an encryption
key.

ed -x This command line edits a file that has
already been encrypted, or creates a new
encrypted file using the ed editor.

vi -x This command line edits a file that has
already been encrypted, or creates a new
encrypted file using the vi editor.

9-16 User's Guide

Data Encryption-Commands and Descriptions

ex -x This command line edits a file that has
already been encrypted, or creates a new
encrypted file using the ex editor.

edit -x This command line edits a file that has
already been encrypted, or creates a new
encrypted file using the edit editor.

X This command encrypts a file while in
the editor mode (ed, ex, or edit).

crypt-Encode/Decode Files

The crypt command encodes and decodes files for security. When using
crypt, you have to assign a password (key) to encode the file. The same
password is used to decode the file. An encrypted file cannot be read
unless the correct password is used to decode it.

If no password is given with the crypt command, the system will prompt
you for one. For security, the screen does not display the password as you
type it in.

Password security is the most vulnerable part of the crypt command.
Anyone who figures out your password can look at your files. The best
way to ensure your security is to select an uncommon group of characters.
As with your login password, the password should be no more than eight
letters or numbers long.

A file can be encrypted in the shell mode using crypt, or in the edit mode
using the -x or X option. When you are ready to decrypt the file, you can
use the crypt command in the shell mode. The following is the command
format to encrypt a file:

crypt < oldfile > newfile

Before removing the unencrypted oldfile, make sure the encrypted newfile
can be decrypted using the appropriate password. The oldfile is the file to
be encrypted. The newfile is the name of the destination file for the
encrypted text. The oldfile should now be removed. The system will
prompt you for a password.

Using A Trusted System 9-17

Data Encryption-Commands and Descriptions

Note

Always remember to remove the file (oldft,le) from which you are
encrypting because it will not be encrypted. Only the new file will
be encrypted.

Without any arguments, the crypt command takes standard input from the
keyboard and encodes it before directing it to the standard output (the dis
play). To encode an existing file, you must tell crypt to take its input «)
from a file instead of the keyboard. Similarly, you must tell crypt to send
its output (» to a new file instead of the display.

To decrypt a file, redirect the encrypted file to a new file you can read.
The command to decrypt a file is as follows:

crypt < crypted Jtle > new Jtlename

Note

Always encrypt and decrypt files separately.

Encrypting and Decrypting With Editors

The editors (ed, edit, ex, and vi) can be used to either edit an existing file
that has been encrypted or to create a new encrypted file by using the -x
option. When encrypting a file, you have to assign a password to encode
the file. The same password is used to decode the file. An encrypted file
cannot be read unless the correct password is used to decode it.

Select an uncommon group of characters for the password. It should be
no more than eight characters long.

9-18 User's Guide

Data Encryption-Commands and Descriptions

The following is the command fonnat for the editors (ed, edit, ex, and vi)
using the -x option:

ed -x [filename]

edit -x [filename]

ex -x [filename]

vi -x [filename]

The -x option is used either to edit an existing file that has been encrypted
or to create a new encrypted file. The filename variable is the name of the
file that is being created or edited. The system will prompt you for a
password.

When you get ready to decrypt the file, you must use the crypt command
from the shell.

The editor X command is another way to encrypt a file while in the editor
mode. The X command will only work with the ed, edit, or ex editors.
(For the vi editor, type :X.) This command also needs a password to
encrypt and decrypt files.

After you have edited the file, you can easily encrypt it again by using the
X command as follows:

1. While still in the editor, enter X on a line by itself.

2. The system will prompt you for a password.

3. Quit the file.

Using A Trusted System 9-19

Chapter 10

Simple Programming with awk

I:ntroduction 10-1

Basic awk 10-2
Program Structure 10-2
Usage 10-3
Fields 10-4
Printing 10-4
Fonnatted Printing 10-6
Simple Patterns 10-6
Simple Actions 10-8
A Handful of Useful One-liners 10-9
Error Messages 10-10

~atterns 10-11
BEGIN and END 10-11
Relational Expressions 10-12
Regular Expressions 10-13
Combinations of Patterns 10-16
Pattern Ranges 10-17

'\ctions 10-18
Built-in Variables 10-18
Arithmetic 10-18
Strings and String Functions 10-21
Field Variables 10-25
Number or String? 10-26
Control Flow Statements 10-27
Arrays 10-30
User-Defined Functions 10-32
Some Lexical Conventions 10-33

)utput 10-34
The print Statement 10-34
Output Separators 10-34
The printf Statement 10-35
Output into Files 10-37
Output into Pipes 10-37

Input 10-39
Files and Pipes 10-39
Input Separators 10-39
Multi-Line Records 10-40
The getline Function 10-40
Command-Line Arguments 10-43

Using awk with Other Commands and the Shell 10-45
The system Function 10-45
Cooperation with the Shell 10-45

Example Applications 10-48
Generating Reports 10-48
Additional Examples 10-50

awk Summary 10-53
Command Line 10-53
Patterns 10-53
Control Flow Statements 10-53
Input-Output 10-54
Functions 10-54
String Functions 10-54
Arithmetic Functions 10-55
Operators (Increasing Precedence) 10-55
Regular Expressions (Increasing Precedence) 10-56
Built-in Variables 10-56
Limits 10-56
Initialization, Comparison, and Type Coercion 10-57

Introduction

Introduction
Suppose you want to tabulate some survey results stored in a file, print
various reports summarizing these results, generate form letters, reformat
a data file for one application package to use with another package, or
count the occurrences of a string in a file. awk is a programming lan
guage that makes it easy to handle these and many other tasks of informa
tion retrieval and data processing. The name awk is an acronym con
structed from the initials of its developers; it denotes the language and
also the UNIX system command you use to run an awk program.

awk is an easy language to learn. It automatically does quite a few things
that you have to program for yourself in other languages. As a result,
many useful awk programs are only one or two lines long. Because awk
programs are usually smaller than equivalent programs in other lan
guages, and because they are interpreted, not compiled, awk is also a
good language for prototyping.

The first part of this chapter introduces you to the basics of awk and is
intended to make it easy for you to start writing and running your own
awk programs. The rest of the chapter describes the complete language
and is somewhat less tutorial. For the experienced awk user, there is a
summary of the language at the end of the chapter.

You should be familiar with UNIX commands and shell programming to
use this chapter. Although you do not need other programming experi
ence, some knowledge of the C programming language is beneficial
because many constructs found in awk are also found in C.

Simple Programming with awk 10-1

Basicawk

Basic awk
This section provides enough infonnation for you to write and run some
of your own programs. Each topic presented is discussed in more detail
in later sections.

Program Structure

The basic operation of awk(C) is to scan a set of input lines one after
another, searching for lines that match any set of patterns or conditions
that you specify. For each pattern, you can specify an action; this action
is perfonned on each line that matches the pattern. Accordingly, an awk
program is a sequence of pattern-action statements, as Figure 10-1 shows.

Structure:

pattern
pattern

Example:

{action}
{action}

$1 == "address" {print $2, $3 }

Figure 10-1 awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one
pattern-action statement. The program prints the second and third fields
of each input line whose first field is address. In general, awk programs
work by matching each line of input against each of the patterns in tum.
For each pattern that matches, the associated action (which may involve
multiple steps) is executed. Then the next line is read, and the matching
starts over. This process typically continues until all the input has been
read.

Either the pattern or the action in a pattern-action statement may be omit
ted. If there is no action with a pattern, as in

$1 == "name"

10-2 User's Guide

Basicawk

the matching line is printed. If there is no pattern with an action, as in

{ print $1, $2 }

the action is performed for every input line. Because patterns and actions
are both optional, actions are enclosed in braces to distinguish them from
patterns.

Usage

There are two ways to run an awk program. First, you can type the com
mand line to execute the pattern-action statements on the set of named
input files:

awk 'pattern-action statements' optional list of input files

For example, you could say

awk '{ print $1, $2}' filel file2

Notice that the pattern-action statements are enclosed in single quotes.
This protects characters like $ from being interpreted by the shell and
also allows the program to be longer than one line.

If no files are mentioned on the command line, awk(C) reads from the
standard input. You can also specify that input comes from the standard
input by using the hyphen (-) as one of the input files. For example, to
read input first fromfilel and then from the standard input, enter:

awk '{ print $3, $4}' filel -

The arrangement above is convenient when the awk program is short (a
few lines). If the program is long, it is often more convenient to put it
into a separate file and use the -f option to fetch it:

awk -f program file optional list of input files

For example, the following command line says to fetch and execute
my program on input from the file filel:

awk -f myprogram file1

Simple Programming with awk 10-3

Basicawk

Fields
awk normally reads its input one line, or record, at a time; a record is, by
default, a sequence of characters ending with a newline character. awk
then splits each record into fields, where, by default, a field is a string of
non-blank, non-tab characters.

As input for many of the awk programs in this chapter, we use the file
countries, which contains information about the 10 largest countries in
the world. Each record contains the name of a country, its area in
thousands of square miles, its population in millions, and the continent on
which it is found. (Data are from 1978; the U.S.S.R. has been arbitrarily
placed in Asia.) The white space between fields is a tab in the original
input; a single blank space separates both North and South from America.

USSR 8650 262 Asia
Canada 3852 24 North America
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Figure 10-2 The Sample Input File countries

This file is typical of the kind of data awk is good at processing - a mix
ture of words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator.
Fields are normally separated by sequences of blanks and/or tabs, so the
first record of countries would have four fields, the second five, and so on.
It is possible to set the field separator to just tab, so each line would have
four fields, matching the meaning of the data. We will show how to do
this shortly. For the time being, let's use the default: fields separated by
blanks and/or tabs. The first field within a line is called $1, the second $2,
and so forth. The entire record is called $0 .

Printing
If the pattern in a pattern-action statement is omitted, the action is exe
cuted for all input lines. The simplest action is to print each line; you can
accomplish this with an awk program consisting of a single print state
ment

{ print }

10-4 User's Guide

Basicawk

The command line

awk '{ print}' countries

prints each line of countries, copying the file to the standard output. The
print statement can also be used to print parts of a record; for instance,
this program prints the first and third fields of each record:

{ print $1, $3 }

Thus, entering

awk '{ print $1, $3}' countries

produces as output the sequence of lines:

USSR 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

When printed, items separated by a comma in the print statement are
separated by the output field separator, which, by default, is a single
blank. Each line printed is terminated by the output record separator,
which by default is a newline.

Note

In the remainder of this chapter, we only show awk programs,
without the command line that invokes them. Each complete pro
gram can be run, either by enclosing it in quotes as the first argu
ment of the awk command, or by putting it in a file and invoking
awk with the -fflag, as discussed in "awk Command Usage." In an
example, if no input is mentioned, the input is assumed to be the file
countries.

Simple Programming with awk 10-5

Basicawk

Formatted Printing

For more carefully formatted output, awk provides a C-like printf state
ment

printf format, expr h expr 2, ••• , expr n

that prints the exprn's according to the specification in the string format.
For example, the awk program

(printf "%10s %6d\n", $1, $3)

prints the first field ($1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character
field, then a newline (\0). With input from the file countries, this program
prints an aligned table:

USSR 262
Canada 24

China 866
USA 219

Brazil 116
Australia 14

India 637
Argentina 26

Sudan 19
Algeria 18

With printf, no output separators or newlines are produced automatically;
you must create them yourself by using \n in the format specification.
"The printf Statement" in this chapter contains a full description of
printf.

Simple Patterns

You can select specific records for printing or other processing by using
simple patterns. awk has three kinds of patterns. First, you can use pat
terns called relational expressions that make comparisons. For example,
the operator == tests for equality. To print the lines for which the fourth
field equals the string Asia, we can use the program consisting of the sin
gle pattern

$4 == "Asia"

10-6 User's Guide

With the file countries as input, this program yields

USSR
China
India

8650
3692
1269

262
866
637

Asia
Asia
Asia

Basicawk

The complete set of comparisons is >, >=, <, <=, == (equal to) and != (not
equal to). These comparisons can be used to test both numbers and
strings. For example, suppose we want to print only countries with a
population greater than 100 million. All that is needed is the program

$3 > 100

(Remember that the third field in the file countries is the population in
millions.) It prints all lines in which the third field exceeds 100.

Second, you can use patterns called regular expressions that search for
specified characters to select records. The simplest form of a regular
expression is a string of characters enclosed in slashes:

/US/

This program prints each line that contains the (adjacent) letters US any
where; with the file countries as input, it prints

USSR
USA

8650
3615

262
219

Asia
North America

We will have a lot more to say about regular expressions later in this
chapter.

Third, you can use two special patterns, BEGIN and END, that match
before the first record has been read and after the last record has been pro
cessed. This program uses BEGIN to print a title:

BEGIN print "Countries of Asia:"
/Asia/ {print" ", $1 }

The output is

Countries of Asia:
USSR
China
India

Simple Programming with awk 10-7

Basicawk

Simple Actions

We have already seen the simplest action of an awk program: printing
each input line. Now let's consider how you can use built-in and user
defined variables and functions for other simple actions in a program.

Built-in Variables

Besides reading the input and splitting it into fields, awk(C) counts the
number of records read and the number of fields within the current record;
you can use these counts in your awk programs. The variable NR is the
number of the current record, and NF is the number of fields in the record.
So the program

{ print NR, NF }

prints the number of each line and how many fields it has, while

{ print NR, $0 }

prints each record preceded by its record number.

User-Defined Variables

Besides providing built-in variables like NF and NR , awk lets you define
your own variables, which you can use for storing data, doing arithmetic,
and the like. To illustrate, consider computing the total population and
the average population represented by the data in the file countries.

{ st.m = SLill + $3 }
EN) {print "Total p::p:ilat:ion is", sun, "million"

print "Average p::p:ilat:ian of", NR, "oountries is", SLnI/NR

Note

awk initializes sum to zero before it is used.

The first action accumulates the population from the third field; the
second action, which is executed after the last input, prints the sum and
average:

Total population is 2201 million
Average population of 10 countries is 220.1

10-8 User's Guidf

Basicawk

Functions

awk has built-in functions that handle common arithmetic and string
operations for you. For example, there is an arithmetic function that com
putes square roots. There is also a string function that substitutes one
string for another. awk also lets you define your own functions. Func
tions are described in detail in the section "Actions" in this chapter.

A Handful of Useful One-liners

Although awk can be used to write large programs of some complexity,
many programs are not much more complicated than what we have seen
so far. Here is a collection of other short programs that you may find use
ful and instructive. They are not explained here, but any new constructs
do appear later in this chapter.

Print last field of each input line:

{ print $NF }

Print 10th input line:

NR ==

Print last input line:

END
line = SO}
print line

Print input lines that don't have four fields:

NF != 4 { print $0, "does not have 4 fields" }

Print input lines with more than four fields:

NF > 4

Print input lines with last field more than 4:

$NF > 4

Simple Programming with awk 10-9

Basicawk

Print total number of input lines:

END { print NR

Print total number of fields:

END
nf = nf + NF
print nf }

Print total number of input characters:

{ nc = nc + length($O)
END { print nc + NR }

(Adding NR includes in the total the number of new lines.)

Print the total number of lines that contain the string Asia:

IAsial nlines++ }
END { print nlines)

(The statement "nlines++" has the same effect as "nlines = nlines + 1 ".)
IAsial {nlines++}
END { print nlines }

Error Messages

If you make an error in your awk program, you generally get an error
message. For example, trying to run the program

$3 < 200 { print ($1

generates the error messages

awk: syntax error at source line 1
context is

$3 < 200 { print (»> $1) «<
awk: illegal statement at source line 1

1 extra (

Some errors may be detected while your program is running. For exam
ple, if you try to divide a number by zero, awk stops processing and
reports the input record number (NR) and the line number in the program.

10-10 User's Guide

Patterns

Patterns
In a pattern-action statement, the pattern is an expression that selects the
records for which the associated action is executed. This section
describes the kinds of expressions that may be used as patterns.

BEGIN and END

BEGIN and END are two special patterns that give you a way to control
initialization and wrap-up in an awk program. BEGIN matches before
the first input record is read, so any statements in the action part of a
BEGIN are done once, before the awk command starts to read its first
input record. The pattern END matches the end of the input, after the last
record has been processed.

The following awk program uses BEGIN to set the field separator to tab
(\t) and to put column headings on the output. The field separator is
stored in a built-in variable called FS. Although FS can be reset at any
time, usually the only sensible place is in a BEGIN section, before any
input has been read. The program's second printf statement, which is
executed for each input line, formats the output into a table, neatly
aligned under the column headings. The END action prints the totals.
(Notice that a long line can be continued after a comma.)

BEGIN { FS = "\t"
printf "%10s %6s %5s %s\n",

"COUNTRY", "AREA", "POP", "CONTINENT"
{ printf "%10s %6d %5d %s\n", $1, $2, $3, $4

area = area + $2; pop = pop + $3 }
END {printf "\n%10s %6d %5d\n", "TOTAL", area, pop

With the file countries as input, this program produces

COUNTRY AREA POP CONTINENT
USSR 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America

Australia 2968 14 Australia
India 1269 637 Asia

Argentina 1072 26 South America
Sudan 968 19 Africa

Algeria 920 18 Africa

TOTAL 30292 2201

Simple Programming with awk 10-11

Patterns

Relational Expressions

An awk pattern can be any expression involving comparisons between
strings of characters or numbers. To make comparisons, awk has six rela
tional operators and two regular expression matching operators, - (tilde)
and '-, which are discussed in the next section. Table 10.1 shows these
operators and their meanings.

Table 10.1

awk Comparison Operators

Operator
<

<=

!=
>=
>

r

Meaning
less than
less than or equal to
equal to
not equal to
greater than or equal to
greater than
matches
does not match

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value
might be either a number or a string; usually awk can tell what is
intended. The section "Number or String?" contains more information
about this.) Thus, the pattern

$3>100

selects lines where the third field exceeds 100, and the program

$1 >= "S"

selects lines that begin with the letters S through Z, namely,

10-12

USSR
USA
Sudan

8650 262
3615 219
968 19

Asia
North America
Africa

User's Guide

Patterns

In the absence of any other infOlmation, awk treats fields as strings, so the
program

$1 == $4

compares the first and fourth fields as strings of characters, and with the
file countries as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numeri
cally.

Regular Expressions

awk provides more powerful patterns for searching for strings of charac
ters than the comparisons illustrated in the previous section. These pat
terns are called regular expressions and are like those in grep(C) in the
User's Reference. The simplest regular expression is a string of charac
ters enclosed in slashes, like

/Asia/

This program prints all input records that contain the substring Asia (If a
record contains Asia as part of a larger string like Asian or Pan-Asiatic it
is also printed.) In general, if re is a regular expression, then the pattern

fret

matches any line that contains a substring specified by the regular expres
sion reo

To restrict a match to a specific field, you use the matching operators -
(matches) and !- (does not match). The program

$4 - /Asia/ { print $1 }

prints the first field of all lines in which the fourth field matches Asia
while the program

$4 !- /Asia/ { print $1 }

prints the first field of all lines in which the fourth field does not match
Asia.

Simple Programming with awk 10-13

Patterns

In regular expressions, the symbols

\"$.[]*+?()I

are metacharacters with special meanings like the metacharacters in the
UNIX system shell. For example, the metacharacters A and $ match the
beginning and end, respectively, of a string, and the metacharacter •
("dot") matches any single character. Thus,

r .$/

matches all records that contain exactly one character.

A group of characters enclosed in brackets matches anyone of the
enclosed characters; for example, / [ABC] / matches records containing
anyone of A, B, or C anywhere. Ranges of letters or digits can be abbre
viated within brackets: / [a-zA-Z] / matches any single letter.

If the first character after the left bracket ([) is a caret C), this comple
ments the class so it matches any character not in the set: / ra-zA-Z] /
matches any non-letter. The program

$2 !- r [0-9] +$/

prints all records in which the second field is not a string of one or more
digits C for beginning of string, [0-9]+ for one or more digits, and $ for
end of string). Programs of this nature are often used for data validation.

Parentheses () are used for grouping and the symbol I is used for alterna
tives. The program

/(applelcherry) (pieltart)/

matches lines containing anyone of the four substrings "apple pie,"
"apple tart," "cherry pie," or "cherry tart."

To turn off the special meaning of a metacharacter, precede it by a \
(backslash). Thus, the program

/b\$/

prints all lines containing b followed by a dollar sign.

10-14 User's Guide

Patterns

In addition to recognizing metacharacters, the awk command recognizes
the following C programming language escape sequences within regular
expressions and strings:

\b backspace
\f formfeed
\n newline
\r carriage return
\t tab
\ddd octal value ddd
\" quotation mark
\c any other character c literally

For example, to print all lines containing a tab, use the program

/\t/

awk interprets any string or variable on the right side of a - or r as a regu
lar expression. For example, we could have written the program

$2 !- r [0-9] +$/

as

BEGIN { digits = ,,- [0-9]+$")
$2 ! - digits

Suppose you wanted to search for a string of characters like A [0-9] + $
When a literal quoted string like IfA [0-9] + $" is used as a regular expres
sion, one extra level of backslashes is needed to protect regular expres
sion metacharacters. This is because one level of backslashes is removed
when a string is originally parsed. If a backslash is needed in front of a
character to turn off its special meaning in a regular expression, then that
backslash needs a preceding backslash to protect it in a string.

For example, suppose we want to match strings containing b followed by
a dollar sign. The regular expression for this pattern is b\$. If we want to
create a string to represent this regular expression, we must add one more
backslash: "b\\$". The two regular expressions on each of the following
lines are equivalent:

x -
x -
x -
x -

"b\\$"
"b\$"
"b$"
"\\t"

x - /b\$/
x - /b$/
x - /b$/
x - /\t/

Simple Programming with awk 10-15

Patterns

The precise fonn of regular expressions and the substrings they match· is
given in Table 10.2. The unary operators *, +, and? have the highest pre
cedence, with concatenation next, and then alternation I. All operators
are left associative. The r stands for any regular expression.

Table 10.2

awk Regular Expressions

Ex ression
c
\c

$

[s]
rs]
r*
r+
r?
(r)

Matches
any non-metacharacter c
character c literally
beginning of string
end of string
any character but newline
any character in set s
any character not in set s
zero or more r's
one or more r's
zero or one r
r

rlr2
rllr2

r 1 then r '). (concatenation)
r 1 or r2 taltemation)

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the
logical operators II (or), && (and), and! (not). For example, suppose we
want to print all countries in Asia with a population of more than 500 mil
lion. The following program does this by selecting all lines in which the
fourth field is Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500

The program

$4 == "Asia" I I $4 == "Afi-ica"

selects lines with Asia or Africa as the fourth field. Another way to write
the latter query is to use a regular expression with the alternation operator
I:

$4 - /-(AsiaIAfrica)$/

10-16 User's Guide

Patterns

The negation operator! has the highest precedence, then &&, and finally
II. The operators && and II evaluate their operands from left to right;
evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges

A pattern range consists of two patterns separated by a comma, as in

{ ... }

In this case, the action is performed for each line between an occurrence
of pat 1 and the next occurrence of pat2 (inclusive). As an example, the
pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string Canada,
up through the next occurrence of the string Brazil:

Canada
China
USA
Brazil

3852
3692
3615
3286

24
866
219
116

North America
Asia
North America
South America

Similarly, because FNR is the number of the current record in the current
input file (and FILENAME is the name of the current input file), the pro
gram

FNR == 1, FNR == 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the current
input file prepended.

Simple Programming with awk 10-17

Actions

Actions
In a pattern-action statement, the action detennines what is to be done
with the input records that the pattern selects. Actions frequently are
simple printing or assignment statements, but they may also be a combi
nation of one or more statements. This section describes the statements
that can make up actions.

Built-in Variables

Table 10.3 lists the built-in variables that awk maintains. Some of these
we have already met; others are used in this and later sections.

Variable
ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Arithmetic

Table 10.3

awk Built-in Variables

Meaning
number of command-line arguments
array of command-line arguments
name of current input file
record number in current file
input field separator
number of fields in current record
number of records read so far
output format for numbers
output field separator
output record separator
input record separator
index of first character matched by matchO
length of string matched by matchO
subscript separator

Default

blank&tab

%.6g
blank

newline
newline

"\034"

Actions can use conventional arithmetic expressions to compute numeric
values. As a simple example, suppose we want to print the population
density for each country in the file countries. Because the second field is

10-18 User's Guide

Actions

the area in thousands of square miles, and the third field is the population
in millions, the expression 1000 * $3 / $2 gives the population density in
people per square mile. The program

{ printf "%10s %6.lf\n", $1, 1000 * $3 / $2 }

applied to the file countries prints the name of each country and its popu
lation density. The output looks like this:

USSR 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators
are +, -, *, /, % (remainder), and A (exponentiation; ** is a synonym).
Arithmetic expressions can be created by applying these operators to con
stants, variables, field names, array elements, functions, and other expres
sions, all of which are discussed later. Note that awk recognizes and pro
duces scientific (exponential) notation: le6, 1E6, lOeS, and 1000000 are
numerically equal.

awk has assignment statements like those found in the C programming
language. The simplest form is the assignment statement

v=e

where v is a variable or field name, and e is an expression. For example,
to compute the number of Asian countries and their total populations, we
could write

$4 == "Asia" {pop = pop + $3; n = n + 1 }
END { print "population of", n,

"Asian countries in millions is", pop}

Applied to countries, this program produces

population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two assign
ment statements, one to accumulate population and the other to count

Simple Programming with awk 10-19

Actions

countries. The variables are not explicitly initialized, yet everything
works properly because awk initializes each variable with the string
value"" and the numeric value O.

The assignments in the previous program can be written more concisely
using the operators += and ++ as follows:

$4 == "Asia" {pop += $3; ++n

The operator += is borrowed from the C programming language:

pop += $3

It has the same effect as

pop = pop + $3

but the += operator is shorter and runs faster. The same is true of the ++
operator, which adds one to a variable.

The abbreviated assignment operators are +=, _=, *=, /=, %=, and A=.
Their meanings are similar. For example,

vop=e

has the same effect as

v = vope.

The increment operators are ++ and -. As in C, they may be used as prefix
(++x) or postfix (x++) operators. Ifx is 1, then i=++x increments X, then
sets i to 2, while i=x++ sets i to 1, then increments x. An analogous
interpretation applies to prefix and postfix -.

Assignment and increment and decrement operators may all be used in
arithmetic expressions.

We use default initialization to advantage in the following program,
which finds the country with the largest population:

maxpop < $3 maxpop = $3; country = $1
END { print country, maxpop }

10-20 User's Guide

Actions

Note, however, that this program is not correct if all values of $3 are
negative.

awk provides the built-in arithmetic functions shown in Table 10.4.

Table 10.4

awk Built-in Arithmetic Functions

Function
atan2(y,x)
cos(x)
exp(x)
int(x)
log(x)
randO
sin (x)
sqrt(x)
srand(x)

Value Returned
arctangent of y / x in the range -1t to 1t
cosine of x, with x in radians
exponential function of x
integer part of x truncated towards 0
natural logarithm of x
random number between 0 and 1
sine of x, with x in radians
square root of x
x is new seed for randO

Both x and y are arbitrary expressions. The function randO returns a
pseudo-random floating point number in the range (0,1), and srand(x) can
be used to set the seed of the generator. If srandO has no argument, the
seed is derived from the time of day.

Strings and String Functions

A string constant is created by enclosing a sequence of characters inside
quotation marks, as in "abc" or "hello, everyone". String constants may
contain the C programming language escape sequences for special char
acters listed in "Regular Expressions" in this chapter.

String expressions are created by concatenating constants, variables, field
names, array elements, functions, and other expressions. The program

{ print NR ":" $0 }

prints each record preceded by its record number and a colon, with no
blanks. The three strings representing the record number, the colon, and
the record are concatenated, and the resulting string is printed. The con
catenation operator has no explicit representation other than juxtaposi
tion.

awk provides the built-in string functions shown in Table 10.5. In this
table, r represents a regular expression (either as a string or as fr/), sand t
are string expressions, and n and p are integers.

Simple Programming with awk 10-21

Actions

Function
gsub(r,s)

gsub(r, s, t)

index(s, t)
length(s)
match(s,r)
split(s, a)
split(s, a, r)
sprintf(fint, expr-list)

sub(r,s)

sub(r,s,t)

substr(s,p)
substr(s,p, n)

Table 10.5

awk Built-in String Functions

Descri tion
substitutes s for r globally in current record,

returns number of substitutions
substitutes s for r globally in string t,

returns number of substitutions
returns position of string tins, 0 if not present
returns length of s
returns the position in s where r occurs, 0 if not pre
splits s into array a on FS, returns number of fields
splits s into array a on r, returns number of fields
returns expr-list formatted according to format

stringfmt
substitutes s for first r in current record, returns

number of substitutions
substitutes s for first r in t, returns number of

substitutions
returns suffix. of s starting at position p
returns substring of s of length n starting at

positionp

The functions sub and gsub are patterned after the substitute command in
the text editor ed(c), which can be found in both the User's Reference
Manual. The function gsub(r,s,t) replaces successive occurrences of
substrings matched by the regular expression r with the replacement
string s in the target string t. (As in ed, the left-most match is used and is
made as long as possible.) gsub returns the number of substitutions made.
The function gsub(r, s) is a synonym for gsub(r, s, $0). For example, the
program

{ gsub (/USA/, "United States"); print }

transcribes its input, replacing occurrences of USA by United States. The
sub functions are similar, except that they only replace the first matching
substring in the target string.

10-22 User's Guide

Actions

The function index(s, t) returns the left-most position where the string t
begins in s, or zero if t does not occur in s. The first character in a string
is at position 1. For example,

index ("banana", "an")

returns 2.

The length function returns the number of characters in its argument
string; thus,

(print length ($0) , $0 }

prints each record, preceded by its length. ($0 does not include the input
record separator.) The program

length ($1) > max (max = length($l); name = $1 }
END { print name }

applied to the file countries prints the longest country name: Australia.

The match(s, r) function returns the position in string s where regular
expression r occurs, or 0 if it does not occur. This function also sets two
built-in variables RSTART and RLENGTH. RSTART is set to the start
ing position of the match in the string; this is the same value as the
returned value. RLENGTH is set to the length of the matched string. (If
a match does not occur, RSTART is 0, and RLENGTH is -1.) For exam
ple, the following program finds the first occurrence of the letter i, fol
lowed by at most one character, followed by the letter a in a record:

{ if (match ($0, /i.?a/))
print RSTART, RLENGTH, $0 }

It produces the following output on the file countries:

217 2 USSR 8650 262 Asia
26 3 Canada 3852 24 North America
3 3 China 3692 866 Asia
24 3 USA 3615 219 North America
27 3 Brazil 3286 116 South America
8 2 Australia 2968 14 Australia
4 2 India 1269 637 Asia
7 3 Argentina 1072 26 South America
17 3 Sudan 968 19 Africa
6 2 Algeria 920 18 Africa

Simple Programming with awk 10-23

Actions

Note

match() matches the left-most longest matching string. For exam
ple, with the record

AsiaaaAsiaaaaan

as input, the program

{ if (match ($0, /a+/)) print RSTART, RLENGTH, $0 }

matches the first string of a's and sets RSTART to 4 and
RLENGTH to 3.

Notice the following function:

sprintf(format, expr 1, expr 2, ... ,

This returns (without printing) a string containing:

expr n fonnatted according to the printf specifications in the string for
mat. "The printf Statement" in this chapter contains a complete specifi
cation of the fonnat conventions. The statement

x = sprintf("%10s %6d", $1, $2)

assigns to x the string produced by fonnatting the values of $1 and $2 as a
lO-character string and a decimal number in a field of width at least six; x
may be used in any subsequent computation.

The function substr(s,p,n) returns the substring of s that begins at posi
tion p and is at most n characters long. If substr(s,p) is used, the sub
string goes to the end of s; that is, it consists of the suffix of s beginning at
position p. For example, we could abbreviate the country names in coun
tries to their first three characters by invoking the program

{ $1 = substr($l, 1, 3); print}

10-24 User's Guide

This produces

USS 8650 262 Asia
Can 3852 24 North America
Chi 3692 866 Asia
USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 South America
Sud 968 19 Africa
Alg 920 18 Africa

Actions

Note that setting $1 in the program forces awk to recompute $0 and,
therefore, the fields are separated by blanks (the default value of OFS),
not by tabs.

Strings are stuck together (concatenated) merely by writing them one
after another in an expression. For example, when invoked on file coun
tries,

s = s substr($l, 1, 3) " " }
END print s }

prints

USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up, a piece at a time, from an initially empty string.

Field Variables

The fields of the current record can be referred to by the field variables
$1, $2, ... , $NF. Field variables share all of the properties of other vari
ables: they can be used in arithmetic or string operations, and they can
have values assigned to them. So, for example, you can divide the second
field of the file countries by 1000 to convert the area from thousands to
millions of square miles

{ $2 /= 1000; print

or assign a new string to a field:

BEGIN
$4 "North America"
$4 == "South America"

Simple Programming with awk

FS = OFS = "\t"
$4 = "NA" }
$4 = "SA" }
print }

10-25

Actions

The BEGIN action in this program resets the input field separator FS and
the output field separator OFS to a tab. Notice that the print in the fourth
line of the program prints the value of $0 after it has been modified by
previous assignments.

Fields can be accessed by expressions. For example, $(NF-l) is the
second to last field of the current record. The parentheses are needed to
show that the value of $NF -1 is 1 less than the value in the last field.

A field variable referring to a nonexistent field, for example, $(NF+l),
has as its initial value the empty string. A new field can be created, how
ever, by assigning a value to it. For example, the following program
invoked on the file countries creates a fifth field giving the population
density:

BEGIN FS = OFS = "\t" }
$5 = 1000 * $3 I $2; print }

The number of fields can vary from record to record, but there is usually
an implementation limit of 100 fields per record.

Number or String?

Variables, fields, and expressions can have both a numeric value and a
string value. They take on numeric or string values according to context.
For example, in the context of an arithmetic expression like

pop += $3

pop and $3 must be treated numerically, so their values can be coerced to
numeric type if necessary.

In a string context like

print $1 ":" $2

$1 and $2 must be strings to be concatenated, so they can be coerced if
necessary.

In an assignment v = e or v op = e, the type of v becomes the type of e. In
an ambiguous context like

$1 == $2

10-26 User's Guide

Actions

the type of the comparison depends on whether the fields are numeric or
string, and this can only be determined when the program runs; it may
well differ from record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on
the string values. All field variables are of type string; in addition, each
field that contains only a number is also considered numeric. This deter
mination is done at run time. For example, the comparison "$1 == $2"
succeeds on any pair of the inputs

1 1.0 +1 O.le+1 10E-1 001

but fails on the inputs

(null) 0
(null) 0.0
Oa 0
1e50 1.0e50

There are two idioms for coercing an expression of one type to the other:

number "" concatenate a null string to a number to coerce it
to type string

string + 0 add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, say

$1 "" == $2 ""

The numeric value of a string is the value of any prefix of the string that
looks numeric; thus the value of 12.34x is 12.34, while the value of
x12.34 is zero. The string value of an arithmetic expression is computed
by formatting the string with the output format conversion OFMT .

Uninitialized variables have numeric value 0 and string value "". Nonex
istent fields and fields that are explicitly null have only the string value
" "; they are not numeric.

Control Flow Statements

awk provides if-else, while, do-while, and for statements, and statement
grouping with braces, as in the C programming language.

Simple Programming with awk 10-27

Actions

The if statement syntax is

if (expression) statement 1 else statement 2

The expression acting as the conditional has no restrictions; it can include
the relational operators <, <=, >, >=, ==, and !=; the regular expression
matching operators - and r ; the logical operators II, &&, and !; juxtapo
sition for concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and
non-null, statement 1 is executed; otherwise statement 2 is executed. The
else part is optional.

A single statement can always be replaced by a statement list enclosed in
braces. The statements in the statement list are terminated by newlines or
semicolons.

Rewriting the maximum population program from "Arithmetic Func
tions" with an if statement results in

if (maxpop < $3) {
maxpop = $3
country = $1

END print country, maxpop

The while statement is exactly that of the C programming language:

while (expression) statement

The expression is evaluated; if it is non-zero and non-null, the statement
is executed, and the expression is tested again. The cycle repeats as long
as the expression is non-zero. For example, to print all input fields one
per line,

i = 1
while (i <= NF)

print $i
i++

The for statement is like that of the C programming language:

for (expression 1; expression; expression 2) statement

10-28 User's Guide

It has the same effect as

so

expression 1

while (expression) {
statement
expression 2

}

{ for (i = 1; i <= NF; i++) print $i }

Actions

does the same job as the while example above. An alternate version of
the for statement is described in the next section.

The do statement has the form

do statement while (expression)

The statement is executed repeatedly until the value of the expression
becomes zero. Because the test takes place after the execution of the
statement (at the bottom of the loop), it is always executed at least once.
As a result, the do statement is used much less often than while or for,
which test for completion at the top of the loop.

The following example of a do statement prints all lines except those
between start and stop.

/start/ {
do {
getline x
} while (x !- /stop/)

print}

The break statement causes an immediate exit from an enclosing while
or for; the continue statement causes the next iteration to begin. The
next statement causes awk to skip immediately to the next record and
begin matching patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the input
had occurred; no more input is read, and the END action, if any, is exe
cuted. Within the END action,

exitexpr

causes the program to return the value of expr as its exit status. If there is
no expr, the exit status is zero.

Simple Programming with awk 10-29

Actions

Arrays

awk provides one-dimensional arrays. Arrays and array elements need
not be declared; like variables, they spring into existence by being men
tioned. An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input line to the NRth element of the array x. In fact,
it is possible in principle (though perhaps slow) to read the entire input
into an array with the awk program

{ x[NR] = $0 }
END { •.• processing . .. }

The first action merely records each input line in the array x, indexed by
line number; processing is done in the END statement.

Array elements may also be named by nonnumeric values. For example,
the following program accumulates the total population of Asia and
Africa into the associative array pop. The END action prints the total
population of these two continents.

IAsW { p:p(flAsia"] -l= $3 }
IMrica/ {p:p["Africa"] -l= $3 }
END { print "Asian pcpula:ticn in mill.:iCXJs is", p:p["Asia"]

print "African p;:pulaticn in mill.:iCXJs is",
p:p["Africa"] }

On the file countries,
this program generates

Asian population in millions is 1765
African population in millions is 37

In this program, if we had used pop[Asia] instead of pop[''Asia''], the
expression would have used the value of the variable Asia as the sub
script, and because the variable is uninitialized, the values would have
been accumulated in pop£,,"].

Suppose our task is to determine the total area in each continent of the file
countries. Any expression can be used as a subscript in an array refer
ence. Thus,

area[$4] += $2

10-30 User's Guide

Actions

uses the string in the fourth field of the current input record to index the
array area and in that entry accumulates the value of the second field:

BEGIN

END

FS = "\t" }
area[$4] += $2 }
for (name in area)

print name, area [name]

Invoked on the file countries, this program produces

Africa 1888
North America 7467
South America 4358
Asia 13611
Australia 2968

This program uses a form of the for statement that iterates over all
defined subscripts of an array:

for (i in array) statement

executes _statement with the variable i set in turn to each value of i for
which array[iJ has been defined. The loop is executed once for each
defined subscript, which are chosen in a random order. Results are
unpredictable when i or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a list of
subscripts. They are combined into a single subscript with the values
separated by an unlikely string (stored in the variable SUBSEP). For
example,

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

arr[i,j] = '"

creates an array that behaves like a two-dimensional array; the subscript
is the concatenation of i, SUBSEP, and j.

You can determine whether a particular subscript i occurs in an array arr
by testing the condition i in arr, as in

if ("Africa" in area) ...

This condition performs the test without the side effect of creating
area[IIMrica"], which would happen if we used

if (area ["Africa"] != "") ...

Simple Programming with awk 10-31

Actions

Note that neither is a test of whether the array area contains an element
with value "Africa".

It is also possible to split any string into fields in the elements of an array
using the built-in function split. The function

split ("sl:s2:s3", a, ":")

splits the string sl:s2:s3 into three fields, using the separator: ,and stores
sl in a[1], s2 in a[2], and s3 in a[3]. The number of fields found, here
three, is returned as the value of split. The third argument of split is a
regular expression to be used as the field separator. If the third argument
is missing, FS is used as the field separator.

An array element may be deleted with the delete statement:

delete arrayname [subscript]

User-Defined Functions

awk provides user-defined functions. A function is defined as

function name (argument-list) {
statements

}

The definition can occur anywhere a pattern-action statement can. The
argument list is a list of variable names separated by commas; within the
body of the function, these variables refer to the actual parameters when
the function is called. There must be no space between the function name
and the left parenthesis of the argument list when the function is called;
otherwise it looks like a concatenation. For example, the following pro
gram defines and tests the usual recursive factorial function (of course,
using some input other than the file countries):

function fact(n)
if (n <= 1)

return 1
else

return n * fact(n-1)

print $1 "! is " fact($1) }

Array arguments are passed by reference, as in C, so it is possible for the
function to alter array elements or create new ones. Scalar arguments are

10-32 User's Guide

Actions

passed by value, however, so the function cannot affect their values out
side. Within a function, formal parameters are local variables, but all
other variables are global. (You can have any number of extra formal
parameters that are used purely as local variables.) The return statement
is optional, but the returned value is undefined if it is not included.

Some Lexical Conventions

Comments may be placed in awk programs: they begin with the charac
ter # and end at the end of the line, as in

print X, Y * this is a comment

Statements in an awk program normally occupy a single line. Several
statements may occur on a single line if they are separated by semicolons.
A long statement may be continued over several lines by terminating each
continued line by a backslash. (It is not possible to continue a " ... " string.)
This explicit continuation is rarely necessary, however, since statements
continue automatically after the operators && and II or if the line ends
with a comma (for example, as might occur in a print or printf state
ment).

Several pattern-action statements may appear on a single line if separated
by semicolons.

Simple Programming with awk 10-33

Output

Output
The print and printf statements are the two primary constructs that gen
erate output. The print statement is used to generate simple output;
printf is used for more carefully formatted output. Like the shell, awk
lets you redirect output so that output from print and printf can be
directed to files and pipes. This section describes the use of these two
statements.

The print Statement

The statement

print expr h expr 2, ••• , expr n

prints the string value of each expression separated by the output field
separator followed by the output record separator. The statement

print

is an abbreviation for

print $0

To print an empty line use

print ""

Output Separators

The output field separator and record separator are held in the built-in
variables OFS and ORS . Initially, OFS is set to a single blank and ORS
to a single newline, but these values can be changed at any time. For
example, the following program prints the first and second fields of each
record with a colon between the fields and two newlines after the second
field:

BEGIN

10-34

OFS = ":"; ORS = "\n\n" }
print $1, $2 }

User's Guide

Output

Notice that

{ print $1 $2 }

prints the first and second fields with no intervening output field separa
tor, because $1 $2 is a string consisting of the concatenation of the first
two fields.

The printf Statement

awk's printf statement is the same as that in C except that the * format
specifier is not supported. The printf statement has the general form

printfformat, expr h expr2, ••• , exprn

where format is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions
in the argument list, as in Table 10.6. Each specification begins with a %,
ends with a letter that determines the conversion, and may include

left-justify expression in its field
width pad field to this width as needed; fields that begin

with a leading 0 are padded with zeros
.prec maximum string width or digits to right of

decimal point

Simple Programming with awk 10-35
II

Output

Table 10.6

awk printf Conversion Characters

Character Prints Expression as
c single character
d decimal number
e [-] d.ddddddE [+-] dd
f [-] ddd.dddddd
g e or f conversion, whichever is shorter, with

nonsignificant zeros suppressed
o unsigned octal number
s string
x unsigned hexadecimal number
% print a %; no argument is converted

Here are some examples of printf statements with the corresponding out
put:

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf
printf

Hid", 99/2 49
Hie", 99/2 4.950000e+01
"if", 99/2 49.500000
"%6.2f", 99/2 49.50
Rig", 99/2 49.5
"%0", 99 143
"%060", 99 000143
nix", 99 63
"1%51", "January" I January I
"1%1051", "January" I January I
"1%-1051", "January" IJanuary I
"1%.351", "January" IJanl
"I %10.35 I", "January" I
"1%-10.351", "January"IJan
"%%" %

Jan I
I

The default output format of numbers is %.6g; this can be changed by
assigning a new value to OFMT. OFMT also controls the conversion of
numeric values to strings for concatenation and creation of array sub
scripts.

10-36 User's Guide

Output

Output into Files

It is possible to print output into files, instead of to the standard output, by
using the > and » redirection operators. For example, the following pro
gram invoked on the file countries prints all lines where the population
(third field) is bigger than 100 into a file called bigpop, and all other lines
into smallpop:

$3 > 100 {print $1, $3 >"bigpop" }
$3 <= 100 {print $1, $3 >"smallpop"

Notice that the filenames have to be quoted; without quotes, bigpop and
smallpop are merely uninitialized variables. If the output filenames were
created by an expression, they would also have to be enclosed in
parentheses:

$4 - /North America/ { print $1 > ("tmp" FILENAME) }

This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of tmp and FILENAME would not
work.

Note

Files are opened once in an awk program. If > is used to open a file,
its original contents are overwritten. But if » is used to open a file,
its contents are preserved and the output is appended to the file.
Once the file has been opened, the two operators have the same
effect.

Output into Pipes

It is also possible to direct printing into a pipe with a command on the
other end, instead of into a file. The statement

print I "command-line"

causes the output of print to be piped into the command-line.

Simple Programming with awk 10-37

Output

Although we have shown them here as literal strings enclosed in quotes,
the command-line and file names can come from variables, and the return
values from functions, for instance.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates the
population values in the third field for each of the distinct continent
names in the fourth field in an array called pop. Then it prints each con
tinent and its population, and pipes this output into the sort command.

BEGIN

END

FS = "\t" }
pop[$4) += $3 }
for (c in pop)

print c ":" pop[c) I. "sort"

Invoked on the file countries, this program yields

Africa: 37
Asia: 1765
Australia: 14
North Arnerica:243
South Arnerica:142

In all of these print statements involving redirection of output, the files or
pipes are identified by their names (that is, the pipe above is literally
named sort), but they are created and opened only once in the entire run.
So, in the last example, for all c in pop, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously.
The statement close (file) closes a file or pipe; file is the string used to cre
ate it in the first place, as in

close (" sort")

When opening or closing a file, different strings are different commands.

10-38 User's Guide

Input

Input
The most common way to give input to an awk program is to name on the
command line the file(s) that contains the input. This is the method we
have been using in this chapter. However, there are several other
methods we could use, each of which this section describes.

Files and Pipes

You can provide input to an awk program by putting the input data into a
file, say awkdata, and then executing

awk 'program' awkdata

awk reads its standard input if no filenames are given (see "Usage" in
this chapter); thus, a second common arrangement is to have another pro
gram pipe its output into awk. For example, grep(C), in the User's Refer
ence, selects input lines containing a specified regular expression, but it
can do so faster than awk, because this is the only thing it does. We
could, therefore, invoke the pipe

grep 'Asia' countries I awk ' ... '

grep quickly finds the lines containing Asia and passes them on to the
awk program for subsequent processing.

Input Separators

With the default setting of the field separator FS, input fields are
separated by blanks or tabs, and leading blanks are discarded, so each of
these lines has the same first field:

fieldl field2
fieldl

fieldl

When the field separator is a tab, however, leading blanks are not dis
carded.

Simple Programming with awk 10-39

Input

The field separator can be set to any regular expression by assigning a
value to the built-in variable FS. For example,

BEGIN { FS = "(, [\\t]*) I ([\\t]+)" }

sets it to an optional comma followed by any number of blanks and tabs.
FS can also be set on the command line with the -F argument:

awk-F'(,[\t]*) I ([\t]+)' ' .•. '

behaves the same as the previous example. Regular expressions used as
field separators match the left-most longest occurrences (as in subO), but
they do not match null strings.

Multi-Line Records

Records are normally separated by newlines, so that each line is a record,
but this too can be changed, though only in a limited way. If the built-in
record separator variable RS is set to the empty string, as in

BEGIN {RS = "" }

then input records can be several lines long; a sequence of empty lines
separates records. A common way to process multiple-line records is to
use

BEGIN {RS = ""; FS = "\n" }

to set the record separator to an empty line and the field separator to a
newline. There is a limit, however, on how long a record can be; it is usu
ally about 2500 characters. "The getline Function" and "Cooperation
with the Shell" in this chapter show other examples of processing multi
line records.

The getline Function

awk's facility for automatically breaking its input into records that are
more than one line long is not adequate for some tasks. For example, if
records are not separated by blank lines, but by something more compli
cated' merely setting RS to null does not work. In such cases, it is neces
sary to manage the splitting of each record into fields in the program.
Here are some suggestions.

The function getline can be used to read input either from the current
input or from a file or pipe, by using redirection in a manner analogous to

10-40 User's Guide

Input

printf. By itself, getline fetches the next input record and performs the
normal field-splitting operations on it. It sets NF, NR , and FNR. getline
returns 1 if there was a record present, 0 if the end-of-file was encoun
tered, and -1 if some error occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records,
each of which begins with a line beginning with START and ends with a
line beginning with STOP. The following awk program processes these
multi-line records, a line at a time, putting the lines of the record into
consecutive entries of an array

f[l] f[2] ... f[nf]

Once the line containing STOP is encountered, the record can be pro
cessed from the data in the f array:

/"START/ {
f[nf=l] = $0
while (getline && $0 !- /-STOP/)

f[++nf] = $0
now process the data in f[l] ... f[nf]

Notice that this code uses the fact that && evaluates its operands left to
right and stops as soon as one is true. The same job can also be done by
the following program:

/-START/ && nf==O {f[nf=lJ = $0)
nf > 1 { f[++nf] = $0)
/-STOP/ { # now process the data in f[l] ... f[nf]

nf = 0

The statement

getline x

reads the next record into the variable x. No splitting is done; NF is not
set. The statement

get line <"file"

reads from file instead of the current input. It has no effect on NR or FNR
, but field splitting is performed, and NF is set. The statement

get line x <"file"

Simple Programming with awk 10-41

Input

gets the next record from file into x; no splitting is done, and NF, NR and
FNR are untouched.

Note

If a filename is an expression, it should be in parentheses for evalua
tion:

while (getline x < (ARGV[l] ARGV[2])) { ... }

This is because the < has precedence over concatenation. Without
parentheses, a statement such as

get line x < "tmp" FILENAME

sets x to read the file tmp <value of FILENAME. Also, if you use
this getline statement form, a statement like

while (getline x < file) { ... }

loops forever if the file cannot be read, because getIine returns -1,
not zero, if an error occurs. A better way to write this test is

while (get line x < file> 0) { •.. }

It is also possible to pipe the output of another command directly into get
line. For example, the statement

while ("who" I getline)
n++

executes who and pipes its output into getline. Each iteration of the while
loop reads one more line and increments the variable n, so after the while
loop terminates, n contains a count of the number of users. Similarly, the
statement

"date" I getline d

pipes the output of date into the variable d, thus setting d to the current
date. Table 10.7 summarizes the getline function.

10-42 User's Guide

Table 10.7

getline Function

Form
getline
getline var
getline <file
getline var <file
cmd I getline
cmd I getline var

Sets
$0, NF, NR, FNR
var,NR,FNR
$O,NF
var
$O,NF
var

Command-Line Arguments

Input

The command-line arguments are available to an awk program: the array
ARGV contains the elements ARGV[O], ... , ARGV[ARGC-l]; as in C,
ARGC is the count. ARGV[O] is the name of the program (generally
awk); the remaining arguments are whatever was provided (excluding the
program and any optional arguments).

Simple Programming with awk 10-43

Input

The following command line contains an awk program that echoes the
arguments that appear after the program name:

awk '
BEGIN {

for (i = 1; i < ARGC; i++)
printf "%s ", ARGV [iJ

printf "\n"
}' $*

The arguments may be modified or added to; ARGC may be altered. As
each input file ends, awk treats the next non-null element of ARGV (up
to the current value of ARGC-l) as the name of the next input file.

There is one exception to the rule that an argument is a filename: if it is
of the form

var=value

then the variable var is set to the value value as if by assignment. Such
an argument is not treated as a filename. If value is a string, no quotes are
needed.

10-44 User's Guide

Using awk with Other Commands and the Shell

Using awk with Other Commands
and the Shell
awk gains its greatest power when it is used in conjunction with other
programs. Here we describe some of the ways in which awk programs
cooperate with other commands.

The system Function

The built-in function system (command-line) executes the command
command-line, which may well be a string computed by, for example, the
built-in function sprintf. The value returned by system is the return
status of the command executed.

For example, the program

$1 = "#include" {gsub(/[<>"]/, '''', $2); system("cat " $2) }

calls the command cat to print the file named in the second field of every
input record whose first field is #include, after stripping any <, >, or" that
might be present.

Cooperation with the Shell

In all the examples thus far, the awk program was in a file and fetched
from there using the -f flag, or it appeared on the command line enclosed
in single quotes, as in

awk '{ print $1}' •••

Since awk uses many of the same characters as the shell does, such as $
and ", surrounding the awk program with single quotes ensures that the
shell passes the entire program unchanged to the awk interpreter.

Simple Programming with awk 10-45

Using awk with Other Commands and the Shell

Now, consider writing a command addr that searches a file addresslist
for name, address, and telephone information. Suppose that addresslist
contains names and addresses in which a typical entry is a multi-line
record such as

G. R. Emlin
600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.

We want to search the address list by issuing commands like

addrEmlin

That is easily done by a program of the form

awk '
BEGIN { RS = ""
/Emlin/
, addresslist

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr
that contains

awk '
BEGIN { RS = ''''

/'$1'/
, address list

The quotes are critical here: the awk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $1 is
outside the quotes, visible to the shell, which then replaces it by the pat
tern Emlin when the command addr Emlin is invoked. On a UNIX sys
tem, addr can be made executable by changing its mode with the follow
ing command: chmod +x addr.

10-46 User's Guide

Using awk with Other Commands and the Shell

A second way to implement addr relies on the fact that the shell substi
tutes for $ parameters within double quotes:

awk "
BEGIN { RS = \"\"
/$1/
" addresslist

Here we must protect the quotes defining RS with backslashes so that the
shell passes them on to awk, uninterpreted by the shell. $1 is recognized
as a parameter, however, so the shell replaces it by the pattern when the
command addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an awk program that explicitly reads through the address
list with getline:

awk '
BEGIN

} , $*

RS = un

while (getline < "addresslist")
if ($0 - ARGV[l])

print $0

All processing is done in the BEGIN action.

Notice that any regular expression can be passed to addr; in particular, it
is possible to retrieve by parts of an address or telephone number, as well
as by name.

Simple Programming with awk 10-47

Example Applications

Example Applications
awk has been used in surprising ways. We have seen awk programs that
implement database systems and a variety of compilers and assemblers,
in addition to the more traditional tasks of information retrieval, data
manipulation, and report generation. Invariably, the awk programs are
significantly shorter than equivalent programs written in more conven
tional programming languages, such as Pascal or C. In this section, we
will present a few more examples to illustrate some additional awk pro
grams.

Generating Reports

awk is especially useful for producing reports that summarize and format
information. Suppose we wish to produce a report from the file countries
in which we list the continents alphabetically, and after each continent its
countries in decreasing order of population:

Africa:
Sudan 19
Algeria 18

Asia:
China 866
India 637
USSR 262

Australia:
Australia 14

North America:
USA 219
Canada 24

South America:
Brazil 116
Argentina 26

As with many data processing tasks, it is much easier to produce this
report in several stages. First, we create a list of continent-country
population triples, in which each field is separated by a colon. This can
be done with the following program, triples, which uses an array pop,
indexed by subscripts of the form 'continent:country' to store the popula-

10-48 User's Guide

Example Applications

tion of a given country. The print statement in the END section of the
program creates the list of continent-country-population triples that are
piped to the sort routine.

BEGIN {FS = n\t n
{ pop[$4 n:n $1] += $3 }

END {for (cc in pop)
print cc n:n pop[cc] I nsort -t: +0 -1 +2nrn }

The arguments for sort deserve special mention. The -t: argument tells
sort to use: as its field separator. The +0 -1 arguments make the
first field the primary sort key. In general, +i -j makes fields i+ 1 ,
i+2, ... , j the sort key. If -j is omitted, the fields from i+l to the
end of the record are used. The + 2m argument makes the third field,
numerically decreasing, the secondary sort key (n is for numeric, r
for reverse order). Invoked on the file countries, this program pro
duces as output:

Africa: Sudan: 19
Africa:A1geria:18
Asia:China:866
Asia: India: 637
Asia:USSR:262
Austra1ia:Austra1ia:14
North America:USA:219
North America: Canada: 24
South America:Brazi1:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform the
output into the desired form we run it through a second awk program, for
mat.

BEGIN
{

{ FS = n:n }
if ($1 != prev) {

print n\nn $1
prev = $1

printf n\t%-10s %6d\nn, $2, $3

This is a control-break program that prints only the first occurrence of a
continent name and formats the country-population lines associated with
that continent in the desired manner. The command line

awk -f triples countries I awk -f format

Simple Programming with awk 10-49

Example Applications

gives us our desired report. As this example suggests, complex data
transformation and formatting tasks can often be reduced to a few simple
awks and sorts.

As an exercise, add to the population report subtotals for each continent
and a grand total.

Additional Examples

Word Frequencies

Our first example illustrates associative arrays for counting. Suppose we
want to count the number of times each word appears in the input, where
a word equals any contiguous sequence of non-blank, non-tab characters.
The following program prints the word frequencies, sorted in decreasing
order.

{ for (w = 1; w <= NF; w++) count[$w]++ }
END {for (w in count) print count [w], w I "sort -nr" }

The first statement uses the array count to accumulate the number of
times each word is used. Once the input has been read, the second for
loop pipes the final count, along with each word, into the sort command.

Accumulation

Suppose we have two files, deposits and withdrawals, of records contain
ing a name field and an amount field. For each name we want to print the
net balance determined by subtracting the total withdrawals from the total
deposits for each name. The net balance can be computed by the follow
ing program:

awk '
FILENAME == "deposits"
FILENAME == "withdrawals"
END

} , deposits withdrawals

{ balance[$l] += $2 }
{ balance[$l] -= $2 }
for (name in balance)

print name, balance [name]

The first statement uses the array balance to accumulate the total amount
for each name in the file deposits. The second statement subtracts associ
ated withdrawals from each total. If there are only withdrawals associ
ated with a name, an entry for that name is created by the second state
ment. The END action prints each name with its net balance.

10-50 User's Guide

Example Applications

Random Choice

The following function prints (in order) k random elements from the first
n elements of the array A. ill the program, k is the number of entries that
still need to be printed, and n is the number of elements yet to be exam
ined. The decision of whether to print the ith element is determined by
the test rand() < kin.

function choose(A, k, n) {

Shell Facility

for (i = 1; n > 0; i++)
if (rand() < k/n--)

print A[i]
k--

The following awk program simulates (crudely) the history facility of the
UNIX system shell. A line containing only = re-executes the last com
mand executed. A line beginning with = cmd re-executes the last com
mand whose invocation included the string cmd. Otherwise, the current
line is executed.

$1 == "=" if (NF == 1)

1.1

system(x[NR] = x[NR-1])
else

for (i = NR-1; i > 0; i--)

next}

if (x[i] - $2) {
system(x[NR] = xli])
break

{ system (x [NR] $0) }

Simple Programming with awk 10-51

Example Applications

Form-Letter Generation

The following program generates form letters.

BEGIN { FS = "I"
while (getline <"form. letter")

line [++n] = $0

for (i = 1; i <= n; i++) {
s = line[i]
for (j = 1; j <= NF; j++)

gsub("\\$"j, $j, s)
print s

This program uses a template stored in a file called form.letter:

This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

combined with replacement text of this form:

field Ilfield 21field 3
one I two I three
albic

The BEGIN action stores the template in the array template; the remain
ing action cycles through the input data, using gsub to replace template
fields of the form $n with the corresponding data fields.

In all such examples, a prudent strategy is to start with a small version
and expand it, trying out each aspect before moving on to the next.

10-52 User's Guide

awkSummary

awkSummary
The following section summarizes the functions and usage of awk.

Command Line

awk program filenames
awk -f program-file filenames
awk -Fs sets field separator to string s; -Ft sets separator to tab

Patterns

BEGIN
END
Iregular expression/
relational expression
pattern && pattern
pattern I I pattern
(pattern)
!pattern
pattern, pattern

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement
for (expr; expr; expr) statement
for (var in array) statement
do statement while (expr)
break
continue
next
exit [expr]
return [expr]

Simple Programming with awk 10-53

awkSummary

Input-Output

close (filename)
getline
getline <file
getline var
getline var <file
print
print expr-list
print expr-list >file
printf jmt, expr-list
printf jmt, expr-list >file
system(cmd-line)

close file
set $0 from next input record; set NF, NR, FNR
set $0 from next record of file; set NF
set var from next input record; set NR, FNR
set var from next record of file
print current record
print expressions
print expressions on file
format and print
format and print onfile
execute command cmd-line, return status

In print and printf above, »file appends to the file, and I command
writes on a pipe. SimilarlYr command I getline pipes into getline. get
line returns 0 on end of file, and -Ion error.

Functions

fune name(parameter list) { statement }
function name(parameter list) {statement }
!unction-name(expr, expr, •••)

String Functions

gsub(r,s,t)

index(s, t)

length(s)
mateh(s,r)

split(s, a, r)

10-54

substitute string s for each substring
matching regular expression r in string t,
return number of substitutions; if t omit
ted, use $0
return index of string t in string s, or 0 if
not present
return length of string s
return position in s where regular
expression r occurs, or 0 if r is not
present
split string s into array a on regular
expression r, return number of fields; if r
omitted, FS is used in its place

User's Guide

awi!;Summary

sprintf(fmt, expr-list) print expr-list according to fmt, return
resulting string

sub(r, s, t) like gsub except only the first matching
substring is replaced

substr(s, i, n) return n-char substring of s starting at i;
if n omitted, use rest of s

Arithmetic Functions

atan2(y,x)
cos(expr)
exp(expr)
int(expr)
log(expr)
randO
sin(expr)
sqrt(expr)
srand(expr)

arctangent of y / x in radians
cosine (angle in radians)
exponential
truncate to integer
natural logarithm
random number between 0 and 1
sine (angle in radians)
square root
new seed for random number generator;
use time of day if no expr

Operators (Increasing Precedence)

+= *= /= %= = assignment
? : conditional expression
I I logical OR
& & logical AND
- ! - regular expression match, negated match
< <= > >= ! = relationals
blank string concatenation
+ - add, subtract
* / % multiply, divide, mod
+ - unary plus, unary minus, logical negation

exponentiation (* * is a synonym)
++ increment, decrement (prefix and postfix)
$ field

Simple Programming with awk 10-55

awkSummary

Regular Expressions (Increasing Precedence)

c
\c

$
[abc ...]
[-abc ...]
rllr2
rlr2
r+
r*
r?
(r)

matches non-metacharacter c
matches literal character c
matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc .. .
negated class matches any but abc ... and newline
matches either rl or r2
concatenation: matches r 1, then r2
matches one or more r's
matches zero or more r's
matches zero or one r's
grouping: matches r

Built-in Variables

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS
RSTART
RLENGTH
SUBSEP

Limits

number of command-line arguments
array of command-line arguments (O .. ARGC-lfR)
name of current input file
input record number in current file
input field separator (default blank)
number of fields in current input record
input record number since beginning
output format for numbers (default % .6g)
output field separator (default blank)
output record separator (default newline)
input record separator (default newline)
index of first character matched by matchO; 0 if no match
length of string matched by matchO; -1 if no match
separates multiple subscripts in array elements; default ''\034''

Any particular implementation of awk enforces some limits. Here are
typical values:

10-56 User's Guide

100 fields
2500 characters per input record
2500 characters per output record
1024 characters per individual field
1024 characters per printf string
400 characters maximum quoted string
400 characters in character class
15 open files
1 pipe

awkSummary

numbers are limited to what can be represented on the local
machine, e.g., 1e-38 .. 1e+38

Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or both at
any time. When a variable is set by the assignment

var= expr

its type is set to that of the expression. (Assignment includes +=, -=, etc.)
An arithmetic expression is of type number, a concatenation is of type
string, and so on. If the assignment is a simple copy, as in

v1 = v2

then the type of v! becomes that ofv2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and
the comparison is made on strings. The type of any expression can be
coerced to numeric by subterfuges such as

expr + 0

and to string by

expr ""

(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value "".

Simple Programming with awk 10-57

awkSummary

The type of a field is determined by context when possible; for example,

$1++

clearly implies that $1 is to be numeric, and

$1 = $1 "," $2

implies that $1 and $2 are both to be strings. Coercion is done as
needed.

In contexts where types cannot be reliably determined, for example,

if ($1 == $2) ...

the type of each field is determined on input. All fields are strings; in
addition, each field that contains only a number is also considered
numeric.

Fields that are explicitly null have the string value "" ; they are not
numeric. Non-existent fields (Le., fields past NF) are treated this way,
too.

As it is for fields, so it is for array elements created by splitO.

Mentioning a variable in an expression causes it to exist, with the value
"" as described above. Thus, if arr[i] does not currently exist,

if (arr[il == "") •••

causes it to exist with the value "" so the if is satisfied. The special con
struction

if (i in arr) ...

determines if arr[i] exists without the side effect of creating it if it does
not.

10-58 User's Guide

Chapter 11

Using the Stream
Editor: sed

Introduction 11-1

Overall Operation 11-2

Addresses 11-4

Functions 11-6
Whole-Line Oriented Functions 11-6
Substitute Functions 11-8
Input-Output Functions 11-10
Multiple Input-Line Functions 11-12
Hold and Get Functions 11-12
Flow-of-Control Functions 11-13
Miscellaneous Functions 11-14

Introduction

Introduction
This chapter describes the stream editor, sed, that allow you to perform
large-scale, noninteractive editing tasks. The sed editor is useful if you
must work with large files or run a complicated sequence of editing com
mands on a file or group of files.

Although you can perform many of the same tasks with grep, sort, and
the variants of diff, you will find that sed offers an added facility for the
processing of complicated changes to large files, or many files at once.
sed is very handy for large batch editing jobs, but if you choose not to
leam it, many of the same tasks can be performed with ed scripts.

The sed program is a noninteractive editor which is especially useful
when the files to be edited are either too large, or the sequence of editing
commands too complex, to be executed interactively. sed works on only
a few lines of input at a time and does not use temporary files, so the only
limit on the size of the files you can process is that both the input and out
put must be able to fit simultaneously on your disk. You can apply multi
ple "global" editing functions to your text in one pass. Since you can
create complicated editing scripts and submit them to sed as a command
file, you can save yourself considerable retyping and the possibility of
making errors. You can also save and reuse sed command files which
perform editing operations you need to repeat frequently.

Processing files with sed command files is more efficient than using ed,
even if you prepare a prewritten script. Note, however, that sed lacks rela
tive addressing becauses it processes a file one line at a time. Also, sed
gives you no immediate verification that a command has altered your text
in the way you actually intended. Check your output carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in
the class of regular expressions they recognize. The code for matching
patterns is nearly identical for ed and sed.

Using the Stream Editor: sed 11-1

Overall Operation

Overall Operation
By default, sed copies the standard input to the standard output, perfonn
ing one or more editing commands on each line before writing it to the
output. Typically, you will need to specify the file or files you are pro
cessing, along with the name of the command file which contains your
editing script, as in the following:

sed -f script filename

The flags are optional. The -n flag tells sed to copy only those lines
specified by -p functions or -p flags after -s functions. The -e flag tells
sed to take the next argument as an editing command, and the -f flag tells
sed to take the next argument as a filename. (This file must contain edit
ing commands, one to a line.)

The general fonnat of a sed editing command is:

address] ,address2 function arguments

In any command, one or both addresses may be omitted. A function is
always required, but an argument is optional for some functions. Any
number of blanks or tabs may separate the addresses from the function,
and tab characters and spaces at the beginning of lines are ignored.

Three flags are recognized on the command line:

-n Directs sed to copy only those lines specified by p func
tions or p flags after s functions.

-e Indicates that the next argument is an editing command.

-f Indicates that the next argument is the name of the file
which contains editing commands, typed one to a line.

sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the "flow-of
control" functions discussed below. sed works in two phases, compiling
the editing commands in the order they are given, then executing the
commands one by one to each line of the input file.

The input to each command is the output of all preceding commands.
Even if you change this default order of applying commands with one of
the two flow-of-control commands, t and b, the input line to any com
mand is still the output of any previously applied command.

11-2 User's Guide

Overall Operation

You should also note that the range of pattern match is normally one line
of input text. This range is called the "pattern space." More than one
line can be read into the pattern space by using the N command described
below in "Multiple Input-Line Functions".

The rest of this section discusses the principles of sed addressing, fol
lowed by a description of sed functions. All the examples here are based
on the following lines from Samuel Taylor Coleridge's poem, "Kubla
Khan":

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

For example, the command:

2q

will quit after copying the first two lines of the input. Using the sample
text, the result will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

Using the Stream Editor: sed 11-3

Addresses

Addresses
The following rules apply to addressing in sed. There are two ways to
select the lines in the input file to which editing commands are to be
applied: with line numbers or with "context addresses". Context
addresses correspond to regular expressions. The application of a group
of commands can be controlled by one address or an address pair, by
grouping the commands with curly braces ({ D. There may be 0, 1, or 2
addresses specified, depending on the command. The maximum number
of addresses possible for each command is indicated.

A line number is a decimal integer. As each line is read from the input
file, a line number counter is incremented. A line number address
matches the input line, causing the internal counter to equal the address
line number. The counter runs cumulatively through multiple input files.
It is not reset when a new input file is opened. A special case is the dollar
sign character ($) which matches the last line of the last input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1. An ordinary character is a regular expression and matches itself.

2. A caret n at the beginning of a regular expression matches the
null character at the beginning of a line.

3. A dollar sign ($) at the end of a regular expression matches the
null character at the end of a line.

4. The characters \n match an embedded newline character, but not
the newline at the end of a pattern space.

5. A period (.) matches any character except the terminal newline of
the pattern space.

6. A regular expression followed by a star (*) matches any number,
including 0, of adjacent occurrences of regular expressions.

7. A string of characters in square brackets ([]) matches any charac
ter in the string, and no others. If, however, the first character of
the string is a caret n, the regular expression matches any charac
ter except the characters in the string and the terminal newline of
the pattern space.

11-4 User's Guide

Addresses

8. A concatenation of regular expressions is one that matches a par
ticular concatenation of strings.

9. A regular expression between the sequences "\(" and "\)" is
identical in effect to itself, but has side-effects with the s command.
(Note the following specification.)

10. The expression \d means the same string of characters matched by
an expression enclosed in \ (and \) earlier in the same pattern.
Here "d" is a single digit; the string specified is that beginning
with the "dth" occurrence of\(, counting from the left. For exam
ple, the expression '\(.*\)\1 matches a line beginning with two
repeated occurrences of the same string.

11. The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to "match" the input, the whole pattern within the
address must match some portion of the pattern space. If you want to use
one of the special characters literally, that is, to match an occurrence of
itself in the input file, precede the character with a backslash N in the
command.

Each sed command can have 0,1, or 2 addresses. The maximum number
of allowed addresses is included. A command with no addresses specified
is applied to every line in the input. If a command has one address, it is
applied to all lines which match that address. On the other hand, if two
addresses are specified, the command is applied to the first line which
matches the first address, and to all subsequent lines until and including
the first subsequent line which matches the second address. An attempt is
made on subsequent lines to again match the first address, and the process
is repeated. Two addresses are separated by a comma. Here are some
examples:

lanl Matches lines 1,3,4 in our sample text
lan.*an/ Matches line 1
ranI Matches no lines
1,/ Matches all lines
Ir*an/ Matches lines 1,3,4 (number = zero!)

Using the Stream Editor: sed 11-5

Functions

Functions
All sed functions are named by a single character. They are of the fol
lowing types:

• Whole-line oriented functions which add, delete, and change
whole text lines.

• Substitute functions which search and substitute regular expres
sions within a line.

• Input-output functions which read and write lines and/or files.

• Multiple input-line functions which match patterns that extend
across line boundaries.

• Hold and get functions which save and retrieve input text for later
use.

• Flow-of-control functions which control the order of application of
functions.

• Miscellaneous functions.

Whole-Line Oriented Functions

d

n

a

11-6

Deletes from the file all lines matched by its addresses.
No further commands will be executed on a deleted line.
As soon as the d function is executed, a newline is read
from the input, and the list of editing commands is res
tarted from the beginning on the newline. The max
imum number of addresses is two.

Reads and replaces the current line from the input, writ
ing the current line to the output if specified. The list of
editing commands is continued following the n com
mand. The maximum number of addresses is two.

Causes the text to be written to the output after the line
matched by its address. The a command is inherently
multiline; The a command must appear at the end of a
line. The text may contain any number of lines. The

User's Guide

c

Functions

interior newlines must be hidden by a backslash charac
ter (\) immediately preceding each newline. The text
argument is terminated by the first unbidden newline,
the first one not immediately preceded by backslash.
Once an a function is successfully executed, the text
will be written to the output regardless of what later
commands do to the line which triggered it, even if the
line is subsequently deleted. The text is not scanned for
address matches, and no editing commands are
attempted on it, nor does it cause any change in the line
number counter. Only one address is possible.

When followed by a text argument it is the same as the a
function, except that the text is written to the output
before the matched line. It has only one possible
address.

The c function deletes the lines selected by its
addresses, and replaces them with the lines in the text.
Like the a and i commands, c must be followed by a
newline hidden with a backslash; interior newlines in
the text must be hidden by backslashes. The c command
may have two addresses, and therefore select a range of
lines. If it does, all the lines in the range are deleted, but
only one copy of the text is written to the output, not one
copy per line deleted. As in the case of a and i, the text
is not scanned for address matches, and no editing com
mands are attempted on it. It does not change the line
number counter. After a line has been deleted by a c
function, no further commands are attempted on it. If
text is appended after a line by a or r functions, and the
line is subsequently changed, the text inserted by the c
function will be placed before the text of the a or r func
tions.

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To get leading
blanks and tabs into the output, precede the first desired blank or tab by a
backslash; the backslash will not appear in the output.

Using the Stream Editor: sed 11-7

Functions

For example, the list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the
two following command lists:

or:

n
i\
XXXX
d

n
c\
XXXX

Substitute Functions

The substitute function(s) changes parts of lines selected by a context
search within the line, as in:

(2)s pattern replacement flags substitute

The s function replaces part of a line selected by the designated pattern
with the replacement pattern. The pattern argument contains a pattern,
exactly like the patterns in addresses. The only difference between a pat
tern and a context address is that a pattern argument may be delimited by
any character other than space or newline. By default, only the first string
matched by the pattern is replaced, except when the -g option is used.

The replacement argument begins immediately after the second delimit
ing character of the pattern, and must be followed immediately by another
instance of the delimiting character. The replacement is not a pattern,

11-8 User's Guide

Functions

and the characters which are special in patterns do not have special mean
ing in replacement. Instead, the following characters are special:

Is replaced by the string matched by the pattern.

\ d d is a single digit which is replaced by the dth substring
matched by parts of the pattern enclosed in \(and \). If
nested substrings occur in the pattern, the dth substring
is determined by counting opening delimiters .

As in patterns, special characters may be made literal by preceding them
with a backslash (\).

A flag argument may contain the following:

g Substitutes the replacement for all nonoverlapping
instances of the pattern in the line. After a successful
substitution, the scan for the next instance of the pattern
begins just after the end of the inserted characters; char
acters put into the line from the replacement are not res
canned.

p Prints the line if a successful replacement was done.
The p flag causes the line to be written to the output
only if a substitution was actually made by the s func
tion. Notice that if several s functions, each followed by
a p flag, successfully substitute in the same input line,
multiple copies of the line will be written to the output:
one for each successful substitution.

w file Writes the line to a file if a successful replacement was
done. The -w option causes lines which are actually
substituted by the s function to be written to the named
file. If the filename existed before sed is run, it is
overwritten; if not, the file is created. A single space
must separate -wand the filename. The possibilities of
multiple, somewhat different copies of one input line
being written are the same as for the -p option. A com
bined maximum of ten different filenames may be men
tioned after w flags and w functions.

Here are some examples. (Only the lines affected by the changes are
shown for the sake of clarity. In reality, even unchanged lines would be
passed through and printed.) When applied to our standard input, the fol
lowing command:

s/to/by/w changes

Using the Stream Editor: sed 11-9

Functions

produces, on the standard output:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on the file changes:

Through caverns measureless by man
Down by a sunless sea.

The command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

With the g flag, the command:

/X/s/an/AN/p

produces:

In XANadu did Kubla Khan

and the command:

/X/s/an/AN/gp

produces:

In XANadu did Kubla KhAN

Input-Output Functions

p The print function writes the addressed lines to the stan
dard output file at the time the p function is encoun
tered, regardless of what succeeding editing commands
may do to the lines. The maximum number of possible
addresses is two.

11-10 User's Guide

Functions

w The write function writes the addressed lines to
filename. If the file previously existed, it is overwritten;
if not, it is created. The lines are written exactly as they
exist when the write function is encountered for each
line, regardless of what subsequent editing commands
may do to them. Exactly one space must separate the w
command and the filename. The combined number of
write functions and w flags may not exceed 10.

r The read function reads the contents of the named file,
and appends them after the line matched by the address.
The file is read and appended regardless of what subse
quent editing commands do to the line which matched
its address. If r and a functions are executed on the
same line, the text from the a functions and the r func
tions is written to the output in the order that the func
tions are executed. Exactly one space must separate the
r and the filename. One address is possible. If a file
mentioned by an r function cannot be opened, it is con
sidered a null file rather than an error, and no diagnostic
is given.

Note that since there is a limit to the number of files that can be opened
simultaneously, be sure that no more than ten files are mentioned in func
tions or flags; that number is reduced by one if any r functions are
present. Only one read file is open at one time.

Here are some examples. Assume that the file note] has the following
contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The command:

/Kubla/r note1

produces:

Using the Stream Editor: sed 11-11

Functions

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Multiple Input-Line Functions

Three functions, all spelled with upper-case letters, deal specially with
pattern spaces containing embedded newlines. They are intended princi
pally to provide pattern matches across lines in the input.

N Appends the next input line to the current line in the pat
tern space; the two input lines are separated by an
embedded newline. Pattern matches may extend across
the embedded newline(s). There is a maximum of two
addresses.

D Deletes up to and including the first newline character in
the current pattern space. If the pattern space becomes
empty (the only newline was the terminal newline),
another line is read from the input. In any case, begin
the list of editing commands over again. The maximum
number of addresses is two.

P Prints up to and including the first newline in the pattern
space. The maximum number of addresses is two.

The P and D functions: these functions are equivalent to their lowercase
counterparts if there are no embedded new lines in the pattern space.

Hold and Get Functions

These functions save and retrieve part of the input for possible later use:

h

11-12

The h function copies the contents of the pattern space
into a holding area, destroying any previous contents of
the holding area. The maximum number of addresses is
two.

User's Guide

Functions

H The H function appends the contents of the pattern
space to the contents of the holding area. The former
and new contents are separated by a newline.

g The g function copies the contents of the holding area
into the pattern space, destroying the previous contents
of the pattern space.

G The G function appends the contents of the holding area
to the contents of the pattern space. The former and new
contents are separated by a newline. The maximum
number of addresses is two.

x The exchange command interchanges the contents of
the pattern space and the holding area. The maximum
number of addresses is two.

For example, the commands:

lh
lsi did.*11
lx
G
sl \nl : I

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

Flow-of-Control Functions

These functions do no editing on the input lines, but control the applica
tion of functions to the lines selected by the address part.

This command causes the next command written on the
same line to be applied to only those input lines not
selected by the address part. There are two possible
addresses.

Using the Stream Editor: sed 11-13

Functions

{

:label

blabel

tlabel

This command causes the next set of commands to be
applied or not applied as a block to the input lines
selected by the addresses of the grouping command.
The first of the commands under control of the grouping
command may appear on the same line as the { or on the
next line. The group of commands is tenninated by a
matching } on a line by itself. Groups can be nested and
may have two addresses.

The label function marks a place in the list of editing
commands which may be referred to by b and t func
tions. The label may be any sequence of eight or fewer
characters; if two diffurent colon functions have identi
cal labels, an error message will be generated, and no
execution attempted.

The branch function causes the sequence of editing
commands being applied to the current input line to be
restarted immediately after encountering a colon func
tion with the same label. If no colon function with the
same label can be found after all the editing commands
have been compiled, an error message is produced, and
no execution is attempted. A b function with no label is
interpreted as a branch to the end of the list of editing
commands. Whatever should be done with the current
input line is done, and another input line is read; the list
of editing commands is restarted from the beginning on
the new line. Two addresses are possible.

The t function tests whether any successful substitutions
have been made on the current input line. If so, it
branches to the label; if not, it does nothing. The flag
which indicates that a successful substitution has been
executed is reset either by reading a new input line, or
by executing a t function.

Miscellaneous Functions

There are two other functions of sed not discussed above.

=

11-14

The = function writes to the standard output the number
of the line matched by its address. One address is possi
ble.

User's Guide

Functions

q The q function causes the current line to be written to
the output (if it should be), any appended or read text to
be written, and execution to be terminated. One address
is possible.

Using the Stream Editor: sed 11-15

Chapter 12

Using the Job Scheduling
Commands: at, cron and batch

Introduction 12-1

Automatic Program Execution with cron 12-2

Delaying Program Execution with batch and at 12-4

Introduction

Introduction
This chapter explains how to use the cron(C), at(C), and batch(C) pro
grams to schedule or delay the execution of programs (jobs). Each of
these utilities is subject to authorization by the system administrator, who
can permit or deny their use by ordinary users.

The role of the job scheduling programs is as follows:

cron

at

batch

Executes programs repeatedly at a specified time.

Delays the execution of programs until a time specified
by the user.

Delays the execution of programs until the system load
is low (as determined by the system).

This chapter explains how the user or system adminstrator can use each of
the job scheduling programs to automate regular operations or delay exe
cution of programs that would otherwise slow down the system during
peak usage.

Using the Job Scheduling Commands: at, cron and batch 12-1

Automatic Program Execution with cron

Automatic Program Execution with
cron
UNIX systems allow you to have programs run automatically at specified
times. This is done with the cron program. The cron program and, more
specifically, the crontab command allow you to run programs during off
hours such as

• file system administration

• long-running, user-written shell procedures

• cleanup procedures

Any task that needs to be done repeatedly at a specified time is a candi
date for your cron file located in the /usr/spool/cron/crontabs directory.
You can use the crontab command to establish the entries you want.

The crontab command is used as follows:

crontab file
crontab -r
crontab -I

The crontab command copies the specified file or standard input if no file
is specified into a directory that holds all users' crontabs. The -r option
removes a user's crontab from the crontab directory. The -I option will
list the crontab file for the invoking user. See the crontab(C) command
in the for additional information.

Each line in the crontab file defines one procedure. The line entry format
looks like the following:

minute hour day month day-oj-week command

Each field is defined as follows:

minute (0-59),
hour (0-23),
day (1-31),
month (1-12),
day-oj-week (0-6 with O=Sunday)
command (the command to be executed at the time specified)

12-2 User's Guide

Automatic Program Execution with cron

The following rules apply to the first five fields:

• 1\\'0 numbers separated by a hyphen indicate a range of numbers
between the two specified numbers.

• A list of numbers separated by commas indicates only the numbers
listed will be used.

• An asterisk specifies all legal values.

For example, 001,14 * 2 indicates a command will be run on the first and
fourteenth of each month, as well as on every Tuesday. If a percent sign
(%) is placed in the command field (sixth field), the operating system will
translate it as a new-line character. Only the first line of a command field
(character string up to the percent sign) is executed by the shell. Any
other lines are made available to the command as standard input.

For example, let a file called anyfile contain the following cron entry:

o 0 1 * * mailx $LOGNAME % Subject: Call Mom! % now

When the command line crontab anyfile is executed, the user whose log
in is $LOGNAME will get a reminder mail message with "Call Mom!"
as the subject the first of every month.

Using the Job Scheduling Commands: at, cron and batch 12-3

Delaying Program Execution with batch and at

Delaying Program Execution with
batch and at
The batch and at commands allow you to specify a command or sequence
of commands to be run at a later time. With the batch command, the sys
tem determines when the commands run; with the at command, you
determine when the commands run. Both commands expect input from
standard input (the terminal); the list of commands entered as input from
the terminal must be ended by pressing (CTL)d.

The batch command is useful if you are running a process or shell pro
gram that uses a large amount of system time. The batch command sub
mits a batch job (containing the commands to be executed) to the system.
The job is put in a queue and runs when the system load falls to an
acceptable level. This frees the system to respond rapidly to other input
and is a courtesy to other users. Note that if the system load is light, the
submitted batch job is executed immediately.

The general format for batch is

batch
first command

last command
(CTL)d

If there is only one command to be run with batch, you can enter it as fol
lows:

batch command line
(CTL)d -

The next example uses batch to execute the grep command at a con
venient time. Here grep searches all files in the current directory for
"dollar" and redirects the output to the file dol.file:

$ batch qrep dollar * > dol-file
(CTL}d
job 155223141.b at Sun Dec 7 11:14:54 1989
$

12-4 User's Guide

Delaying Program Execution with batch and at

After you submit a job with batch, the system responds with a job num
ber, date, and time. This job number is not the same as the process num
ber that the system generates when you run a command in the back
ground.

Figure 12-1 summarizes the syntax and capabilities of the batch Com
mand.

Figure 12-1 Summary of the batch Command

batch - executes commands at a later time

command options input

batch none command lines

Description: batch submits a batch job, which is
placed in a queue and executed when the
load on the system falls to an acceptable
level.

Remarks: The list of commands must end with a
(CTL)d.

The at command allows you to specify an exact time to execute the com
mands. The general format for the at command is

at time
first command

last command
(CTL)d

The time argument consists of the time of day and, if the date is not today,
the date.

The following example shows how to use the at command to mail a
happy birthday banner to login emily on her birthday:

Using the Job Scheduling Commands: at, cron and batch 12-5

Delaying Program Execution with batch and at

$ at 8:15am Feb 27
banner happy birthday I mail emily
(CTL}d

job 453400603.a at Thurs Feb 27 08:15:00 1986
$

Notice that the at command, like the batch command, responds with the
job number, date, and time.

If you decide you do not want to execute the commands currently waiting
in a batch or at job queue, you can erase those jobs by using the -r option
of the at command with the job number. The general format is

at -r jobnumber

Try erasing the previous at job for the happy birthday banner. Enter:

at -r 453400603.a

If you have forgotten the job number, the at -I command will give you
a list of the current jobs in the batch or at queue, as the following screen
eXanlple shows:

$ at -1
user = mylogin 168302040.a at Sat Nov 29 13:00:00 1988
user = mylogin 453400603.a at Fri Feb 27 08:15:00 1989
$

Notice that the system displays the job number and the time the job will
run.

Using the at command, mail yourself the file memo at noon to tell you it
is lunch time. Then try the at command with the -I option:

$ at 12:00pm
mail mylogin < memo
(CTL}d
job 263131754.a at Jun 30 12:00:001989
$
$at -1
user = mylogin 8263131754.a at Jun 30 12:00:00 1989
$

12-6 User's Guide

Delaying Program Execution with batch and at

Figure 12-2 summarizes the syntax and capabilities of the at command.

Figure 12-2 Summary of the at Command

at - executes commands at a specified time

command options arguments

at -r time (date)
-I jobnumber

Description: at executes commands at the time
specified. You can use between one and
four digits, and am or pm to show the
time. To specify the date, give a month
name followed by the number for the
day. You do not need to enter a date if
you want your job to run the same day.
See the at(C) manual page in the User's
Reference for other default times.

Options: The -r option with the job number
removes previously scheduled jobs.

The -I option (no arguments) reports the
job number and status of all scheduled at
and batch jobs.

Remarks: Examples of how to specify times and
dates with the at command are as fol-
lows:

at 08:15am Feb 27
at 5:14pm Sept 24

Using the Job Scheduling Commands: at, cron and batch 12-7

Chapter 13

Using DOS Accessing Utilities

Introduction 13-1

Accessing DOS Files with the dos(C) Utilities 13-2
Copying Groups of Files 13-3

Using Mounted DOS Filesystems 13-5
Mounting DOS Filesystem 13-5
File and Directory Arguments 13-6
User Configurable Default File 13-6
Appearance of DOS Files 13-7
Newline Conversions with DOS Utilities 13-8
Other Restrictions 13-8

Introduction

Introduction
DOS tools are provided a help you bridge between the two operating sys
tems. These tools are an extension of the features available on UNIX sys
tems. These programs allow you, while working on your UNIX system, to
access DOS files and directories which reside in a non-active DOS parti
tion. If your system administrator permits, you can also gain access DOS
files by mounting a DOS filesystem and using them directly. This chapter
discusses both methods.

Using DOS Accessing Utilities 13-1

Accessing DOS Files with the dos(C) Utilities

Accessing DOS Files with the dos(C)
Utilities
The following is a list of the dos(C) commands and their functions:

doscat

doscp

dosdir

dosformat

dosls

dosrm

dosmkdir

13-2

Copies one or more DOS files to the standard out
put. By default, the standard output is the termi
nal screen. If more than one file is specified, the
files are displayed concatenated together. doscat
functions like the UNIX cat(C) command. The
following is an example of its usage:

doscatldev/fdO:/john/memos

Copies files between DOS and UNIX environ
ments. The first file specified is copied to the
second file. Example of usage:

doscp Imaryllist Idev/fdO:/budgetllist

Lists DOS files in the standard DOS style direc
tory format. Example of usage:

dosdir Idev/fdO:/john

Creates a DOS 2.0 formatted diskette. Example of
usage:

dosformat Idev/fdO

Lists DOS files and directories in a UNIX format.
Example of usage:

dosls Idev/fdO:/john

Removes files from a DOS disk. Example of
usage:

dosrm Idev/fdO:/johnlmemos

Creates a directory on a DOS disk. Example of
usage:

dosmkdir Idev/fdO:/john/memos

User's Guide

Accessing DOS Files with the dos(C) Utilities

dosrmdir Deletes directories from a DOS disk. Example of
usage:

dosrmdir /dev/fdO:/john/memos

Note that you must have a bootable, although not active, DOS partition on
the hard disk or a DOS floppy in order to use these UNIX commands. For
example, you can only transfer a file from a UNIX partition on hard disk
to a DOS floppy if either the DOS floppy is bootable or there is also a DOS
partition on the hard disk. For more information about the DOS accessing
utilities, refer to the User's Reference.

You may also be able to use the UNIX dd(C) and diskcp(C) commands to
copy and compare DOS floppies. The UNIX dtype(C) command tells you
what type of floppies you have (various DOS and UNIX floppies).

Also, the file /etcldefault/msdos describes which DOS filesystems (e.g. A:,
B:, C: ...) correspond to which UNIX devices.

Note

You cannot execute (run) DOS programs or applications under
UNIX.

If you have the Development System, with the emerge compiler, you can
create and compile programs that can be run under DOS operating sys
tems. Refer to the DOS-OS/2 Development Guide for more information.
Also, see the DOS section in the Programmer's Reference.

Copying Groups of Files

The doscp command does not allow the use of wildcards, so it is only
possible to copy one file at a time. To work around this restriction so that
you can copy groups of files to or from a DOS diskette or partition, you
must create the following shell scripts:

DOS file format to UNIX file format transfer script:

Using DOS Accessing Utilities 13-3

Accessing DOS Files with the dos(C) Utilities

: fromdos: copy a batch of files from DOS to UNIX format
if ["$1" = "")
then

fi

echo "Usage: $0 disk: [/dospath/directory)"
exit 1

dosdir=$1
names='dosls $dosdir'
for i in $names
do

doscp "$dosdir/$i" 'echo $i I tr "[A-Z)" "[a-z)"
done

UNIX file fonnat to DOS file fonnat transfer script:

: todos: copy a batch of files from UNIX format to DOS
if [$# -It 2)
then

fi

echo "Usage: $0 file [file ...) disk: [/dospath/directory),
exit 1

files="$1"
while ["$2" != "")
do

files="$files $1"
shift

done
dosdir=$1
for i in $files
do

doscp $1 $dosdir
done

Both of these scripts should be created as executable files under lusrlbin
and should be given appropriate names such as "fromdos" or "todos".
Use the chmod(C) command to make the files executable. For example:

chmod 755 lusrlbinlfromdos

gives read and execute pennissions for the file fromdos to all users. Once
these pennissions are issued, you can use the filename as a substitute for
doscp on your command line, as in the following example:

fromdos Idev/fdO:/john

13-4 User's Guide

Using Mounted DOS Filesystems

Using Mounted DOS Filesystems
In addition to the DOS utilities provided with to manipulate DOS files, it
is also possible to mount a DOS filesystem and access its files directly
while still operating from the UNIX partition.

This means that DOS files can be edited or examined in place, without
first copying them into the UNIX filesystem. The major restriction is that
DOS files and applications cannot be executed under this arrangement;
this requires use of VP/ix (if operating from the UNIX partition) or boot
ing of the DOS partition. However, data files and text files can be exam
ined, copied or edited.

The operating system deals with DOS filesystems by superimposing cer
tain qualities of UNIX filesystems over the DOS filesystem without chang
ing the actual files. UNIX filesystems are highly structured and operate in
a multiuser environment. In order to make DOS files readily accessible,
access permissions and file ownership are superimposed on the DOS
filesystem when mounted.

Mounting DOS Filesystem

Only root can mount a filesystem. Access by users is governed by the
permissions and ownership that root places on the DOS filesystem. The
system administrator must either mount the DOS filesystem or set up the
system so that users can use the mnt(C) command.

Example: Mounting a Floppy Disk

For example, if the system administrator permits it, you could mount DOS
floppy disks, as in the following example using the 96tpi floppy mounted
onlmnt:

mnt -f DOS Idev/fd096 Imnt

Because of the limitations discussed earlier, DOS does not recognize per
missions or ownership. When mounted from the UNIX partition, the DOS
files behave as follows:

• The permissions and ownership of the filesystem are governed by
the mount point. For example, if root creates a mount point IX
with permissions of 777, all users can read or write the contents of

Using DOS Accessing Utilities 13-5

Using Mounted DOS Filesystems

the filesystem. If the mount point is owned by root, all files within
the DOS filesystem and any created by other users are all owned by
root.

• The permissions for regular files will be either 0777 for
readable/writable files or 0555 for read only files. This preserves
the consistency of the DOS filesystem. If a user can access the
filesystem, the user will be limited by the permissions available
under the DOS directory structure. This permission is read-only or
read-write. When a file is created, the permissions are based on
the umask of the creator .. For example, assume the user's umask
is 022, which generates files with permissions of 777. Here are
further examples.

File and Directory Arguments

The file and directory arguments for DOS files take the form:

device:name

where device is a UNIX patbname for the special device file containing
the DOS diskette or DOS partition, and name is a patbname to a DOS file
or directory. For example,

/dev/fdO:/john/memos

indicates that the file memos is in the directory Ijohn, and that both are in
the device file IdevljdO (the UNIX special device file for the primary
floppy drive). Arguments without device: are assumed to be UNIX files.

User ConfigurabJe Default File

For convenience, the user configurable default file letcldefaultlmsdos
defines DOS drive names that you can use in place of UNIX special device
file patbnames. These are short forms that the system administrator can
set up for DOS filesystems using the A:, B:, C: convention instead of, for
example,ldevljd096ds15.

13-6 User's Guide

Using Mounted DOS Filesystems

Appearance of DOS Files

Because no attempt is made to change the nature of DOS files, the car
riage return character eM) will be visible when editing a DOS file from
the UNIX partition. (UNIX files only use a newline, while DOS files use a
carriage return and a newline.) Thus when a DOS file (for example,
KOMMIEBAS) that contains a series of numbers is opened using vi(C), it
looks like this:

1111 2222 3333 4444 5555~M
6666 7777 8888 9999 OOOO~M
1111 2222 3333 4444 5555~M
6666 7777 8888 9999 OOOO~M

1111 2222 3333 4444 5555~M
6666 7777 8888 9999 OOOO~M

"KOMMIE.BAS" 6 lines, 100 characters

You can either ignore these numbers, or remove them with the
dtox/xtod(C) commands.

Note

If you remove the carriage returns in a DOS file, you must replace
them to use the file under DOS.

dtox and xtod

These commands are the easiest way to switch the end-of-line format.
For example, the following commands convert the file KOMMIEBAS to
and from the UNIX file format, respectively:

Using DOS Accessing Utilities 13-7

Using Mounted DOS Filesystems

dtox KOMMIE.BAS > filename
xtod KOMMIE.BAS > filename

Newline Conversions with DOS Utilities

When the doscat(C) and doscp(C) commands transfer DOS format text
files to UNIX format, they automatically strip the AM character. When
text files are transferred to DOS, the commands insert a AM before each
linefeed character. Under some circumstances, the automatic newline
conversions do not occur. The -m option ensures that the newline conver
sion is carried out. The -r option overrides the automatic conversion and
forces the command to perform a true byte copy regardless of file type.

Note

All DOS utilities leave temporary files in Itmp, regardless of
whether or not the utility executed successfully. These files are
removed at the next reboot.

Other Restrictions

There are additional restrictions that must be observed.

File Names

The rules for file names and their conversion follows the guidelines found
in the dos(C) manual page in the User's Reference. All DOS filenames
have a maximum of eight characters, plus a three-character extension.
For example, if you attempt to create a file named rumplestiltski within
the DOS filesystem, it will look like this:

RUMPLEST

In addition, the standard DOS restrICtIons on illegal characters apply.
However, wildcards can be used just as they can with UNIX filesystems.

13-8 User's Guide

Using Mounted DOS Filesystems

Modification Times

When accessed from the UNIX partition, the creation, modification, and
access times of DOS files are always identical and use GMT, or
Greenwich Mean Time. (This is because UNIX systems use GMT inter
nally and convert it for the user.) This means that files created in the DOS
filesystem not have consistent times across the operating systems.

UNIX Backup Utilities

The UNIX backup(C) utility cannot be used to make backups of a
mounted DOS filesystem. DOS utilities and other copy programs like
tar(C) will work as expected.

For more information, including more technical aspects of DOS usage,
refer to the dos(C) page in the User's Reference.

Using DOS Accessing Utilities 13-9

[ndex

Special Characters

} command.
See Braces command ({ })

command.
See Colon (:), command

command.
See Dot (.), command

command.
See escape command (!)

command.
See vi, slash (f)

If variable, argument recording 7-16
! variable, background process number 7-17
? variable, command exit status 7-16
- variable, execution flags 7-17
$ variable, process number 7-16
command.
See vi

A

• command
append at end of line 2-24

command
appending text 2-24
ed use. See ed
mail 4-21, 4-22
vi use. See vi

. Handful of Useful One-liners 10-9
I operator 7-48
bbr command 2-62
.ccumulation 10-50
.ctions 10-18
:tions
awk 10-18

.ddition. See be

.dditional Examples 10-50
idr 10-46,10-47
awk 10-46, 10-47

.lias
C-shell 8-10

mpersand (&)
See also And-if operator (&&)
background process 7-26,7-69
command list 7-26
ed use. See ed

Ampersand (&) (continued)
INTERRUPT and QUIT immunity 7-26
jobs to other computers 7-26
metacharacter. See ed
off-line printing 7-26
use restraint 7-27

And-if operator (&&)
command list 7-26
described 7-27
designated 7-69

Append
See also Insert
ed procedure. See ed
output append symbol. See Output
vi procedure 2-24

Argument
filename 7-3
list, creating 7-3
mail commands 4-7
number checking, $# variable 7-16
processing 7-23
redirection argument, location 7-9
shell, argument passing 7-23
substitution sequence 7-24
test command argument 7-48

Arguments
command line 10-43

Arithmetic 10-18
expr command etrect 7-49

Arithmetic Functions 10-55
Arithmetic functions

awk 10-55
Arithmetic. See bc
Arrays 10-30
arrays

awk 10-30
askcc option. See mail
Asterisk (*)

be
comment convention 6-15, 6-16
multiplication operator symbol 6-3, 6-5

directory name, not used in 7-4
mail

message saved, header notation 4-6, 4-12
mail, all messages, symbol 4-8
metacharacter 7-4, 7-70
pattern matching 7-4
special shell variable 7-24

Authorizations 9-7
chmodsugid 9-7
printerstat 9-8
printqueue 9-8
queryspace 9-8

1-1

Index

Authorizations 9-7 (continued)
secondary 9-8
subsystem 9-7

auths command 9-8
auto command, bc 6-21
awk 10-53

actions 10-18
addr 10-46, 10-47
arithmetic 10-18
arithmetic functions 10-55
arrays 10-30
basic 10-2
BEGIN and END patterns 10-11
built-in variables 10-8,10-18,10-56
close statement 10-38
command line 10-53
command line argument 10-43
comparison 10-57
control flow statements 10-27, 10-53
cooperation with shell 10-45
error messages 10-10
example applications 10-48
field variable 10-25
fields 10-4
Files and Pipes 10-39
formatted printing 10-6
form-letter generation 10-52
functions 10-9, 10-54
generating reports 10-48
getline function 10-40, 10-42
gsub 10-22
index 10-23
initialization 10-57
initialization, comparison, and type coercion

10-57
input 10-39
input separators 10-39
input-output 10-54
introduction 10-1
lexical conventions 10-33
limits 10-56
match 10-23
multi-line records 10-40
operators 10-55
output 10-34
output into files 10-37
output into pipes 10-37
output separators 10-34
pattern combinations 10-16
pattern ranges 10-17
patterns 10-6,10-11,10-53
print statement 10-34
printf 10-6, 10-35, 10-36
printing 10-4

1-2

User's Guide

awk 10-53 (continued)
program structure 10-2
random choice 10-51
regular expressions 10-13
relational expressions 10-12
shell 10-45
shell facility 10-51
simple actions 10-8
sprintf 10-24
statements 10-27
string functions 10-21
strings 10-21
sub 10-22
substr 10-24
system 10-45
type coercion 10-57
usage 10-3
useful one-liners 10-9
user-defined functions 10-32
user-defined variables 10-8

awk Summary 10-53

B

b command. See vi
Background

job
C-shell use. See C-shell

process
$1 variable 7-17
ampersand (&) operator 7-26, 'j
dial-up line

Ctrl-d effect 7-26
nohup command 7-26

INTERRUPT immunity 7-26
QUIT immunity 7-26
use restraint 7-27

Backslash (\)
bc

comment convention 6-15, 6-11
line continuation notation 6-7

C-shell use. See C-shell
ed use. See ed
line continuation notation 7-62
metacharacter escape 7-4
quoting 7-70

BACKSPACE key
bc6-2
mai14-9

Basic
awk 10-2

Basic awk 10-2

User's Guide

be
addition operator

evaluation order 6-17
left to right binding 6-5
scale 6-8, 6-20
symbol (+) 6-5

additive operator
See also specific operator
left to right binding 6-20

alphabetic register 6-3
arctan function

availability 6-1
loading procedure 6-15

array
auto array 6-21
characteristics 6-16
identifier 6-16, 6-22
name 6-11
named expression 6-17
one-dimensional 6-11

assignment
operator

designated, use 6-20
evaluation order 6-17
positioning effilct 6-6
symbol (=) 6-6

statement 6-14
asterisk (*)

comment convention 6-15, 6-16
multiplication operator symbol 6-3, 6-5

auto
command 6-21
keyword 6-16
statement

built-in statement 6-22
backslash (\)

comment convention 6-15, 6-16
line continuation notation 6-7

BACKSPACE key 6-2
bases 6-6
bccommand

file, reading and executing 6-15
invoking 6-2

bc -1 command 6-15
Bessel function

availability 6-1
loading procedure 6-15

braces ({ })
compound statement enclosure 6-22
function body enclosure 6-9

brackets ([])
array identifier 6-16
auto array 6-21
subscripted variable 6-11

Index

bc (continued)
break, keyword 6-16
break statement

built-in statement 6-22
built-in statement 6-22
caret H, exponentiation operator symbol 6-5
comment convention 6-15, 6-16
compound statement 6-22
constant

defined 6-17, 6-18
construction

diagram 6-14
space significance 6-15

control statements 6-11
cos function

availability 6-1
loading procedure 6-15

define, keyword 6-16
define statement

built-in statement 6-22
description and use 6-23

demonstration run 6-2
described 6-1
division operator

left to right binding 6-5, 6-19
scale 6-8,6-19
symbol (f) 6-5

equal sign (=)
assignment operator symbol 6-6
relational operator 6-12, 6-21

equivalent constructions diagram 6-14
evaluation sequence 6-3
exclamation point (!)

relational operator 6-12, 6-21
exit 6-2, 6-4
exponential function

availability 6-1
loading procedure 6-15

exponentiation operator
right to left binding 6-5, 6-19
scale 6-8,6-20
symbolH6-5

expression
enclosure 6-18
evaluation order 6-17
named expression 6-17
statement 6-22

for, keyword 6-16
for statement

break statement effilct 6-23
built-in statement 6-22
description and use 6-11
format 6-23
range execution 6-12

1-3

Index

bc (continued)
for statement (continued)

relational operator 6-21
function

argument absence 6-11
array 6-11
call

defined 6~18
described 6-18
evaluation order 6-17
procedure 6-10
syntax 6-18

defined function 6-9
form 6-9
identifier 6-16
name 6-9
parameters 6-10
return statement 6-9
terminating, return statement 6-24
variable automatic 6-10

global storage class 6-21
greater-than sign (), relational operator 6-12,

6-21
hexadecimal digit

ibase 6-7
obase 6-7
value 6-17

ibase
decimal input 6-7
defined 6-17
initial setting 6-6
keyword 6-16
named expression 6-17
setting 6-7
variable 6-9

identifier
array 6-22
auto statement effect 6-22
described 6-16
global 6-21
local 6-21
named expression 6-17
value 6-21

if, keyword 6-16
if statement

built-in statement 6-22
description and use 6-11
format 6-23
range execution 6-12
relational operator 6-21

INTERRUPT key 6-2
introduction 6-1
invoking 6-2
keywords designated 6-16

1-4

User's Guide

bc (continued)
langnage features 6-14
length

built-in function 6-18
keyword 6-16

less-than sign «), relational operator
6-21

line continuation notation 6-7
local storage class 6-21
log function

availability 6-1
loading procedure 6-15

math function library 6-15
minus sign (-)

subtraction operator symbol 6-5
unary operator symbol 6-5, 6-19

modulo operator
left to right binding 6-5, 6-19
scale 6-8, 6-19
symbol (%) 6-5

multiplication operator
See also specific operator
evaluation order 6-17
left to right binding 6-5, 6-19
scale 6-8, 6-19
symbol (*) 6-3, 6-5

named expression 6-17
negative number, unary minus sign (
obase

conversion speed 6-7
defined 6-17
described 6-7
hexadecimal notation 6-7
initial setting 6-7
keyword 6-16
named expression 6-17
variable 6-9

operator
See also specific operator
designated, use 6-5

parentheses « »
expression enclosure 6-18
function identifier, argument enclo

6-16
percentage sign (%)

modulo operator symbol 6-5
plus sign (+)

addition operator symbol 6-5
unary operator symbol 6-19

program flow alteration 6-11
quit command 6-4
quit, keyword 6-16
quit statement

bc exit 6-24

User's Guide

bc (continued)
quit statement (continued)

built-in statement 6-22
quoted string statement 6-22
register 6-3
relational operator

designated 6-12, 6-21
evaluation order 6-17

return, keyword 6-16
RETURN rt key 6-2
return statement

built-in statement 6-22
described 6-24
form 6-9

scale
addition operator 6-8, 6-20
arctan function 6-15
Bessel function 6-15
built-in function 6-18
command 6-8
cos function 6-15
decimal digit value 6-9
defined 6-17
described 6-8
division operator 6-8, 6-19
exponential function 6-15
exponentiation operator 6-8, 6-20
initial setting 6-9
keyword 6-16
length function 6-18
length maximum 6-8
log function 6-15
modulo operator 6-8, 6-19
multiplication operator 6-8
named expression 6-17
sin function 6-15
square root effect 6-8, 6-18
subtraction operator 6-8, 6-20
value printing procedure 6-9
variable 6-9

scale command 6-9
semicolon (;), statement separation 6-4, 6-22
sin function

availability 6-1
loading procedure 6-15

slash (/), division operator symbol 6-5
space significance 6-15
square root

built-in function 6-18
keyword 6-16
result as integer 6-6
scale procedure 6-8
sqrt keyword 6-16

statement

Index

be (continued)
statement (continued)

See also specific statement
entry procedure 6-14
execution sequence 6-22
separation methods 6-22
types designated 6-22

storage
classes 6-21
register 6-6

subscript
array. See array
described 6-11
fractions discarded 6-11
truncation 6-16
value limits 6-11

subtraction operator
left to right binding 6-5
scale 6-8, 6-20
symbol (-) 6-5

syntax 6-1
token composition 6-16
truncation 6:8
unary operator

designated 6-19
evaluation order 6-17
left to right binding 6-19
symbol (-) 6-5

value 6-17
variable

automatic 6-10,6-21
name 6-9
SUbscripted 6-11

while, keyword 6-16
while statement

break statement effect 6-23
built-in statement 6-22
description cnd use 6-11
executing 6-24
range execution 6-12
relational operator 6-21

be command
bc, invoking 6-2
file, reading and executing 6-15

be -1 command, bc 6-15
BEGIN and END 10-11
Bessel function. See be
/bin directory

command search 7-3
contents 7-45
name derivation 7-45
/usr/bin, files duplicated in 7-60

Binary logical
and operator 7-48

1-5

Index

Binary logical (continued)
or operator 7-48

BINUNIQ shell procedure 7c60
BKSP

vi cursor movement 2-19
Bourne shell

TERM variable 2-57
terminal type 2-57

Braces ({ })
bc

compound statement enclosure 6-22
function body enclosure 6-9

command ({ }) 7-55
command grouping 7-33
pipeline use, enclosing a command list 7-27
variable

conditional substitution 7-52
enclosure 7-13

Brackets ([])
bc

array identifier 6-16
auto array 6-21
subscripted variable 6-11

directory name, not used in 7-4
ed metacharacter. See ed
metacharacter 7-4,7-70
pattern matching 7-4
test command, used in lieu of 7-47

break command
for command control 7-32
loop control 7-32
shell built-in command 7-55
special shell command 7-40
while command control 7-32

Buffer
Seeed
See vi

Built-in Variables 10-8, 10-18, 10-56
Built-in variables

awk 10-18, 10-56

c

c command. See ed
Clanguage

be
comment convention similarity 6-15
syntax agreement 6-1

shell language 7-2
-c option

mail, carbon copy specification 4-5
-c option

1-6

-c option (continued)
shell, invoking 7-54

Calculation. See be

User's Guide

Calculator functions. See be
Calendar reminder service 4-24
Calling a remote terminal

See ct command
Caretn

mail,firstmessa.ge,synaboI4-7
CaretH

be, exponentiation operator symbol 6·
ed use. See ed

case command
description and use 7-29
exit status 7-30
redirection 7-36
shell built-in command 7-55

Case delimiter symbol (;;) 7-69
Case-part 7-69
cat command

ed use. See ed
cd command

directory change 7-18
parentheses use 7-18
searches 7-58

CDPATHvariable 7-15
Changing passwords 9-4
Character class. See ed
chmodsugid authorization 9-7
chown 9-7
chron option. See mail
Close Statement 10-38
Close statement

awk 10-38
Colon (:)

command 7-40
mail

network mail 4-15
PATH variable use 7-14
shell built-in command 7-55
variable conditional substitution 7-53
vi use. See vi

Colon command. See Colon (:), commal
Combinations of Patterns 10-16
Command

defined 7-26
delimiter. See ed
ed commands. See ed
enclosure in parentheses « », effect 7
environment 7-20
execution 7-2

time 7-55
exit status. See Exit status
graInmar 7-68

User's Guide

Command (continued)
grouping

exit status 7-35
parentheses « » use 7-69
procedure 7-33
WRITEMAIL shell procedure 7-67

keyword parameter 7-20
line. See Command line
list. See Command list
mode. See vi
multiple commands 7-9
output substitution symbol 7-70
private command name 7-3
public command name 7-3
search

PATH variable 7-14
process 7-58

separation symbol (;) 7-69
shell, built-in commands 7-55
simple command

defined 7-2, 7-26
grammar 7-68

slash (f) beginning, etrect 7-3
special shell commands

described 7-40
See Shell

substitution
back quotation mark (') 7-4
double quotation mark U 7-5
procedure 7-9
redirection argument 7-6

vi commands. See vi
Command Line 10-53
Command line

awk 10-53
execution 7-24
options

See also specific option
designated 7-54

pipeline, use in 7-27
rescan 7-24
scanning sequence 7-24
substitution 7-9

Command line argument
awk 10-43

Command list
case command, execution 7-29
defined 7-26
for command, execution 7-31
grammar 7-68

Command mode. See vi
Command-line Arguments 10-43
Commands

illegal 9-10

Index

Communication. See mail
Comparison

awk 10-57
Compose escape

See mail
continue command

for command control 7-32
shell built-in command 7-55
special shell command 7-40
until command control 7-33
while command control 7-32

Control command
See also specific control command
redirection 7-36

Control Flow Statements 10-27,10-53
Control flow statements

awk 10-53
Cooperation with shell

awk 10-45
Cooperation with the Shell 10-45
Copy

command 2-27
files

local site. See rcp
remote site. See uucp

text 2-27
COPYPAlRS shell procedure 7-61
COPYTO shell procedure 7-61
crypt 9-15
cshcommand

C-shell, invoking 8-2
C-shell

& symbol
redirecting 8-12

alias command
listing 8-14
multiple command use 8-11
number limits 8-11
pipelines 8-11
quoting 8-11
removing 8-16
use 8-10, 8-14

ampersand (&)
background job symbol 8-13
background job use 8-33
boolean AND operation (&&) 8-21
if statement, not used in 8-23
redirection symbol 8-12

appending
noc1obber variable etrect 8-12
redirection symbol 8-12

argument
expansion 8-31
group specification 8-33

1-7

Index

C-shell (continued)
argv variable

filename expansion, preventing 8-22
script contents 8-18

arithmetic operations 8-21
asterisk (*)

character matching 8-33
script notation 8-20

background job
procedure 8-13
symbol (&) 8-13
terminating 8-13

backslash (\)
filename, separating parts 8-33
if statement use 8-23
metacharacter

canceling 8-33
escape 8-11

separating parts of filenames 8-33
boolean AND operation 8-21
boolean OR operation 8-21
braces ({ })

argument
expansion 8-31
grouping 8-33

brackets ([])
character matching 8-33

break command
foreach statement exit 8-25
loop break 8-22
while statement exit 8-25

breaksw command
switch exit 8-25

ccommand
reuse 8-7

caret (.)
history substitution use 8-34

character matching 8-33
colon (:)

script modifier 8-24
substitution modifier use 8-34

command

1-8

See also specific command
break command 8-22
continue command

loop use 8-22
default argument 8-10
du command 8-13
execution status 8-21
expanding 8-32
file. See C-shell, script
foreach command 8-29

exit 8-25 .
script use 8-22

User's Guide

C-shell (continued)
command (continued)

history
See also C-shell, history
use 8-14

history list 8-7
input supply 8-26
location

determining 8-14
recomputing 8-5

logout command 8-2, 8-14
multiple commands 8-13
prompt symbol (%) 8-3
quoting 8-29
read ouly option 8-28
reading from file 8-15
rehash command 8-5
repeating 8-14

mechanisms 8-9
replacing 8-32
separating 8-33

symbol (;) 8-11
set command 8-4
similarity, foreach command 8-2
simplifying 8-10
source

command reading 8-15
substituting

string modification 8-24
symbol 8-34

termination testing 8-21
timing 8-15
transformation 8-10
unalias command 8-16
unset command 8-16

command prompt-symbol (%) 8-3
commands, multiple

alias use 8-11
single job 8-13

comment
metacharacter 8-34
script use 8-18
symbo18-24

continue command
loop use 8-22

.csbrc file
alias placement 8-10
use 8-2

diagnostic output
directing 8-12
redirecting 8-12

directory
examination 8-5
listing 8-4

User's Guide

C-shell (continued)
disk usage 8-13
dollar sign ($)

last argument symbol 8-8
process number expansion 8-20
variable substitution

symbol 8-19
use 8-34

du command 8-13
:e modifier 8-24
echo option 8-28
else-if statement 8-24
environment

printing 8-15
setting 8-15

equal sign (=)
string comparison use (=), (=18-21

exclamation point (!)
history mechanism use 8-8, 8-14, 8-34
noclobber, overriding 8-6
string comparison use (!=), (I) 8-21

execute primitive 8-21
existence primitive 8-21
expansion

control 8-28
metacharacters designated 8-34

expression
enclosing 8-33
evaluation 8-21
primitives 8-21

extension, extracting 8-24
file

appending 8-12
command content 8-17
enquiries 8-21
overwriting

preventing 8-6
procedure 8-6

filename
expansion 8-31
expansion, preventing 8-22
home directory indicator 8-33
metacharacters designated 8-33
root extraction 8-24
scratch filename metacharacter 8-34

foreach command 8-29
exit 8-25
script use 8-22

goto
label

script cleanup 8-27
statement 8-25

greater-than sign 0
redirection symbo18-12, 8-34

Index

C-shell (continued)
history

command 8-9
use 8-14

list 8-7
command substitution 8-14
contents display 8-14

mechanism
alias, use in 8-11
invoking 8-8
use 8-9

substitution symbol 8-34
variable 8-2

home variable 8-5
if statement 8-23
ignoreeof variable 8-2, 8-5
input

execution procedure 8-19
metacharacters designated 8-34
variable substitution 8-19

INTERRUPI' key
backgroundjob,eftect8-13

invoking 8-2
kill command

background job termination 8-13
less-than sign «)

redirection symbol 8-34
script inline data supply (<<) 8-26

logging out
logout command 8-2, 8-14
procedure 8-3
shield 8-2

.login file, use 8-2
logout command

use 8-2, 8-14
.logout file, use 8-3
loop

break 8-22
input prompt 8-29
variable use 8-29

mail
invoking 8-2
variable 8-5

new mail notification 8-2
metacharacter

cancelling 8-33
expansion metacharacter 8-34
filename metacharacter 8-33
input metacharacter 8-34
output metacharacter 8-34
quotation metacharacter 8-33
substitution metacharacter 8-34
syntactic metacharacter 8-33

metasyntax

1-9

Index

C-shell (continued)
metasyntax (continued)

exclamation point (I) 8-6
minus sign (-)

option prefix 8-34
modifiers 8-24
nkey

out-of-range subscript errors, absence 8-20
script notation 8-20

-n option 8-28
new program, access 8-4
noclobber variable 8-5

appending procedure 8-12
redirection symbols 8-12

noglob variable
filename expansion, preventing 8-22

number sign (#)
C-shell comment

symbol 8-18
use 8-24

C-shell comment symbol 8-28
C-shell comment use 8-34
scratch filename use 8-34

onintr label
script cleanup 8-27

option
metacharacter 8-34

output
diagnostic 8-12
metacharacters designated 8-34
redirecting 8-12

parentheses «»
enclosing an expression 8-33

path variable 8-4
patbname

component separation 8-33
percentage sign (%)

command prompt symbol 8-3
pipe symbol (I)

boolean OR operation (II) 8-21
command separator 8-33
if statement, not used in 8-23
redirection symbol 8-12

pipeline
alias, use in 8-11

primitives 8-21
printenv

environment printing 8-15
process number

expansion notation 8-20
listing 8-13

prompt variable 8-14
pscommand

process number listing 8-13

1-10

User's Guide

C-shell (continued)
question mark (7)

character matching 8-33
loop input prompt 8-29

QUIT signal
background job, effect on 8-13

quotation mark
back (')

command use 8-29
substitutions 8-34

double (")
expansion control 8-28
metacharacter escape 8-33
string quoting 8-29

single (')
alias definition 8-11
metacharacter escape 8-33
quoted string, effect 8-28
script inline data quoting 8-26

quotation metacharacters designated ~
:r modifier 8-24
read primitive 8-21
redirecting

diagnostic output 8-12
output 8-12
symbols designated 8-34

rehash command 8-5
command locations, recomputing 8·

repeat command 8-14
root part of filename

separating from extensions 8-33
script

clean up 8-27
colon (:) modifier 8-24
command input 8-26
comment required 8-28
described 8-17
example 8-22
execution 8-18
exit 8-27
in1ine data supply 8-26
interpretation 8-18
interruption catching 8-27
metanotation for inline data 8-26
modifiers 8-24
notations 8-20
range 8-20
variable substitution 8-19

semicolon (;)
command separator 8-11, 8-33
if statement, not used in 8-23

set command
variable listing 8-4
variable value assignment 8-4

User's Guide

C-shell (continued)
setenv command

environment setting 8-15
slash (j)

separating components ofpathname 8-33
source command

reading a command 8-15
status variable 8-21
string

comparing 8-21
modifying 8-24
quoting 8-29

substitution metacharacters designated 8-34
switch statement

exit 8-25
form 8-25

syntactic metacharacters designated 8-33
TERM variable 2-58
terminal type, setting 2-58
then statement 8-23
tilde (-)

home directory indicator 8-33
time

command timing 8-15
variable 8-2

unalias command
alias, removing 8-16

unset command 8-16
unsetting procedure 8-5
-v command line option 8-28
variable

See also specific variable
component access 8-19

notations 8-19
definition

removing 8-16
environment variable setting 8-15
expansion 8-19, 8-30
listing 8-4
loop use 8-29
setting procedure 8-5
substitution 8-19

metacharacter 8-34
use 8-4
value assignment 8-4

check 8-19
verbose option 8-28
while statement

exit 8-25
form 8-25

write primitive 8-21
-x command line option 8-28

C-shell with UUCP commands 5-9
.cshrc file

Index

.cshrc file (continued)
C-shell use 8-2

ct command 5-15
-h option 5-17
how it works 5-15
-s option 5-16
sample command 5-16
syntax of 5-15
using 5-15
when to use 5-15

Ctrl-d
bc exit 6-2, 6-4

Ctrl-D
mail

message sending 4-10
shell exit 4-15

Ctrl-d
shell exit 7-33
vi, scroll 2-23

Ctrl-f
vi, scroll 2-23

Ctrl-g
vi, file status information 2-11

Ctrl-U
mail, line kill 4-9

Ctrl-u
vi, scroll 2-22

Ctrl-v 2-62
cucommand

calling
UNIX sites 5-17

command line 5-17
dialing phone numbers with 5-17
error checking 5-20
interactive sessions with 5-17
limitations on 5-17
logging in with 5-19
put command 5-19
sample command 5-18
serial lines with 5-18
syntax of 5-17
system names with 5-18
take command 5-19
terminating a remote session 5-18
transfer files 5-19
using 5-17, 5-18

current file (%) 2-62
Current line

See vi
Cursor movement

vi. See vi
Cut and paste procedure. See ed

1-11

Index

D

dcommand
ed use. See ed
mail

message deleting 4-8
d$ command. See vi
dO command. See vi
dd command. See vi
Decrypting a File 9-17
Delete

commands 2-66
vi procedure. See vi, deleting text

Delete bufrer. See vi
Delimiter. See ed
Diagnostic output. See Output
Dial-up line. See Background process
Digit grammar 7-69
Directory

C-shell
listing 8-4
use. See C-shell

name, metacharacters in 7-4
search

optimum order 7-58
PATH variable 7-58
sequence change 7-3
size efrect 7-59
time consumed in 7-58

size consideration 7-59
DISTINCT1 shell procedure 7-62
Division. See bc
Dollar sign ($)

ed use. See ed
mail, final message, symbol 4-7
positional parameter prefix 7 -11, 7 -12
PSI variable default value 7-15
variable prefix 7-12
vi use. See vi

DOS
compile UNIX programs for DOS 13-3
file

access to 13-1
filesysterns

access to 13-1
utilities

access to 13-1
using 13-2

Dot (.)
command

1-12

description and use 7-36
shell built-in command 7-55
shell procedure alternate 7-45

User's Guide

Dot (.) (continued)
command (continued)

special shell command 7-40
ed use. See ed
mail,currentmessage, symbol 4-7
vi use. See vi

Dot command. See Dot (.), command
dp command. See mail
DRAFT shell procedure 7-63
dw command. See vi

E

ecommand
ed use. See ed
mail 4-4

-e option, shell procedure 7-46
echo command

ed

description and use 7-49
-n option efrect 7-49
shell built-in command 7-55
syntax 7-49

a command
appending 3-5, 3-58
backslash (\) characteristics 3-38
dot (.) setting 3-50, 3-58
global combination 3-29
terminating input 3-5, 3-36

address arithmetic 3-11
ampersand (&)

literal 3-47
metacharacter 3-45
substitution 3-45

appending
a command 3-5

asterisk (*), metacharacter 3-33, 3-41
at sign (@), script 3-57
backslash (\)

a command 3-38
c command 3-38
g cummand 3-28
i command 3-38
line folding 3-30
literal 3-37
metacharacter 3-33, 3-36
metacharacter escape 3-36,3-37,3-47
multiline construction 3-29
number string 3-30
v command 3-28

backspace printing 3-29
brackets ([])

User's Guide

ed (continued)
brackets ([]) (continued)

character class 3-45
metacharacter 3-33,3-44

buffer
described 3-5
writing to file 3-6

ccommand
backslash (\) characteristics 3-38
dot (0) setting 3-24,3-50, 3-58
global combination 3-29
line change 3-23,3-58
terminating input 3-23

caret (A)
character class 3-45
line beginning notation 3-41
metacharacter 3-33,3-41

cat command 3-8
change command

c command 3-23
character

class 3-45
deleting 3-44

command
See also specif4: command
combinations 3-28
delimiter character 3-38
described 3-5
editing command 3-56
form 3-58 .
INTERRUPT key effect 3-54
listing 3-58
multicommand line restrictions 3-17
summary 3-58 '

current line 3-13
cut and paste

move command 3-25
procedures 3-55

dcommand
deleting 3-15, 3-58
dot (0) setting 3-50,3-58

DEL key
print stopping 3-11

deleting
d command 3-15

delimiter
character choice 3-38

described 3-1
dollar sign ($)

last line notation 3-10, 3-15, 3-40
line end notation 3-39, 3-40
metacharacter 3-33, 3-39
multiple functions 3-40

dot (0)

Index

ed (continued)
dot (0) (continued)

current line notation 3-11
described 3-13
position in file 3-50
search setting 3-20, 3-60
substitution, setting 3-17
symbol (0) 3-13, 3-36
value determination 3-14,3-59

duplication
t command 3-31

e command 3-8, 3-58
editing

e command 3-8
entry 3-4
equals sign (=)

dot value printing (0=) 3-14, 3-59
last line value printing 3-59

escape command (!) 3-32, 3-59
exclamation point (!)

escape command 3-32
exiting a file

q command 3-4
f command 3-8, 3-58
file

insert into another file 3-55
writing out 3-55

filename
change 3-8
recovery 3-8
remembered filename, printing 3-8
remembered filename printing 3-58

folding 3-30
gcommand

a command combination 3-29
backslash (\) use 3-28
c command combination 3-29
command combinations 3-27,3-28
dot (0) setting 3-28
i command combination 3-29
line number specifications 3-28
multiline construction 3-29

. s command combination 3-27,3-59
search. command execution 3-26, 3-5E
substitution 3-18, 3-33
trailing g 3-33

global command
g command 3-26
v command 3-26

greater-than sign O. tab notation 3-29
grep command 3-33
hyphen (-), character class 3-45
icommand

backslash (\) characteristics 3-38

1-13

Index

ed (continued)
i command (continued)

dot (.) setting 3-24, 3-50, 3-58
global combination 3-29
inserting 3-23, 3-58
terminating input 3-36

in-line input scripts 7-63
input

terminating 3-5, 3-23, 3-36
inserting

i command 3-23
INTERRUPI' key

command execution effect 3-54
dot (.) setting 3-54

introduction 3-1
invoking 3-4
j command

line joining 3-48
k command, line marking 3-30
I command

folding 3-30
line listing 3-29, 3-58
nondisplay character printing 3-29
number string 3-30
s command combination 3-34

less-than sign «)
backspace notation 3-29

line
beginning

character deleting 3-44
notation 3-41

break 3-47
end 3-39

notation 3-39
folding 3-30
joining 3-48
marking 3-30
moving 3-30
new 3-47
number 3-11

o as line number 3-54
combinations 3-11
summary 3-58

rearrangement 3-48
splitting 3-47
writing out 3-56

list
I command 3-29

mcommand
dot (.) setting 3-26, 3-59
line moving 3-25, 3-59
warning 3-26

mail system. See mail
marking

1-14

ed (continued)
marking (continued)

k command 3-30
metacharacter

User's Guide

ampersand (&) 3-45
asterisk (*) 3-33, 3-41
backslash (\) 3-33, 3-36
brackets ([]) 3-33, 3-44
caret H 3-33, 3-41
character class 3-45
combinations 3-41
dollar sign ($) 3-33, 3-39
escape 3-38,3-47
period (.) 3-33, 3-34
search 3-45
slash (f) 3-33
star (*) 3-33, 3-41

minus sign (-), address arithmetic 3-
move

line marking 3-30
m command 3-25

multicommand line restrictions 3-17
newline

substitution 3-47
nondisplay character printing 3-29
pcommand

dot (.) setting 3-54
multicommand line 3-17
printing 3-10, 3-59
s command combination 3-34

pattern search. See ed, search
period (.)

a command, terminating input 3-5
c command

terminating input 3-23
character substitution 3-34
dot symbol. See Dot (.)
i command, terminating input 3-31
literal 3-36
metacharacter 3-33, 3-34
s command, effect 3-34
script problems 3-57
search problems 3-33
trolf command prefix 3-27

plus sign (+), address arithmetic 3-1
print

command 3-10
line folding 3-30
(Return

key effect 3-14
stopping 3-11

qcommand
abort 3-59
quit session 3-7, 3-59

User's Guide

ed (continued)
q command (continued)

w command combination 3-59
question mark (?)

exit waming 3-4
search error message (?) 3-20
search repetition (??) 3-22
search, reverse direction (? ?) 3-20, 3-60
write warning 3-7

quit
q command 3-7

quotation mark, single (')
line marking 3-30

rcommand
dot (.) setting 3-51, 3-59
file inserting 3-55
positioning without address 3-55
read file 3-9, 3-59

reading
r command 3-9

regular expression
described 3-33
metacharacter list 3-33

RETURN key, printing 3-59
scommand

ampersand (&) 3-45
character match 3-34
description and use 3-16,3-59
dot (.) setting 3-17,3-50, 3-59
g command combination 3-18, 3-27, 3-59
1 command combination 3-34
line number 3-34
new line 3-47
p command combination 3-34
removing text 3-18
search combination 3-21
trailing g 3-33
undoing 3-30
v command combination 3-27

script 3-57
search

dot (.) setting 3-60
error message (?) 3-20
forward search (j I) 3-19, 3-60
global search

g command 3-27
v command 3-27

metacharacter problems 3-33
next occurrence description 3-20
procedure 3-19
repetition (jl), (??) 3-22
reverse direction (? ?) 3-20
separator 3-52
substitution combination 3-21

Index

ed (continued)
sed command 3-33
semicolon (;)

dot (.) setting 3-53
search separator 3-52

shell
escape 3-32

slash (j)
delimiter 3-38
literal 3-38
metacharacter 3-33
search forward (j I) 3-19, 3-60
search repetition (jl) 3-22

special character 3-33
spelling correction

s command 3-16
star (*), metacharacter 3-33, 3-41
substituting

s command 3-16
tcommand

dot (.) setting 3-59
transfer line 3-31,3-59

tab printing 3-29
tbl command 3-56
terminating

q command 3-7
text

removing, s command 3-18
saving 3-7

transfer 3-31
trofIcommand printing 3-27
typing-error corrections

s command 3-16
ucommand

undo 3-30, 3-59
undo

u command 3-30
v command

a command combination 3-29
backslash (\) lise 3-28
c command combination 3-29
command combinations 3-27,3-28,3-2
dot (.) setting 3-28
global search, substitute 3-26, 3-59
i command combination 3-29
line number specifications 3-28
s command combination 3-27

wcommand
advantages of frequent use 3-52
description and use 3-6
dot (.) setting 3-51,3-59
e command combination 3-58
file write out 3-55
line write out 3-56

1-15

Index

ed (continued)
w command (continued)

write out 3-6, 3-7, 3-55, 3-59
write out

w command 3-7
waming 3-7

ed scripts 11-1
ed -x 9-15
EDF1ND shell procedure 7-63
edit -x 9-16
Editor

Seeed
See vi, described

EDLAST shell procedure 7-64
elif clause, if command 7-28
else clause, if command 7-28
Else-part grammar 7-69
Empty grammar 7-69
Encrypting a File 9-16
Encryption

data encryption commands 9-15
definition 9-15

Equal sign (=)
be

assignment operator symbol 6-6
relational operator 6-12, 6-21

ed use. See ed
variable

conditional substitution 7-52
string value assignment 7-12

Error Messages 10-10
error messages

awk 10-10
Error output

redirecting 7-51
ESC key 2-62
escape command (!) 3-32
etc/default/micnet 5-5
letc/default/msdos file

contents 13-3
eval command

command line rescan 7-24
shell built-in command 7-55

ex and ed, similarity 3-1
ex -x 9-16
Example Applications 10-48
Example applications

awk 10-48
Exclamation point (!)

bc, relational operator 6-12, 6-21
C-shell use. See C-shell
ed use. See ed
mail

network mail 4-16

1-16

User's Guide

Exclamation point (!) (continued)
mail (continued)

shell command, executing 4-15
unary negation operator 7-48
vi use. See vi

exec command 7-40, 7-55
execsuid 9-7
Execute

commands
over Micnet. See remote
remote machines. See uux comman

EXINIT environment variable 2-57
Exit

code 7-16
command. See exit command
status

$? variable 7-16
case command 7-30
cd arg command 7-40
colon command (:) 7-40
command grouping 7-35
false command 7-50
if command 7-28
read command 7-41
true command 7-50
until command 7-30
waitcoriunand 7-43
while command 7-30

exit command
shell built-in command 7-55
shell exit 7-33
special shell command 7-40

export command
shell built-in command 7-55
variable

example 7-15
listing 7-21
setting 7-20

expr command 7-49

F

fcommand
ed use. See ed
mail 4-14

F command, mail 4-14
-f option

mail, folder specification 4-13
false command 7-50
ficommand

if command end 7-28
Field

User's Guide

Field (continued)
awk 10-4

Field variable
awk 10-25

Field Variables 10-25
Fields 10-4
File

creating
MKFILES shell procedure 7-65
with vi 2-2

descriptor
redirection 7-7, 7-51
use 7-6

grammar 7-68
pattern search

grep command 3-59
See ed, search

pipe interchange 7-62
shell procedure, creating 7-44
textual contents, detennining 7-67
variable file, creating 7-36

file command
mail 4-13

Filename
argument 7-3
ed use. See ed

Files
security 9-12

Files and Pipes 10-39
awk 10-39

Filter
described 7-8
order consideration 7-57

Flag. See Option
folder command

mail 4-13
Folder directory. See mail

folder= option
folder. See mail

folder 4-13
for command

break command effect 7-32
continue command effect 7-32
description and use 7-31
redirection 7-36
shell built-in command 7-55

for loop, argument processing 7-23
fork command 7-56
Fonnatted Printing 10-6
Fonnatted printing

awk 10-6
Fonn-Ietter generation 10-52

awk 10-52
FSPLIT shell procedure 7-64

Index

Function
defined 7-35

Functions 10-9, 10-54
awk 10-9, 10-54

G

G command 2-5
vi use. See vi

g command. See ed
Generating Reports 10-48
Generating reports

awk 10-48
getline function

awk 10-40
Global

substitution
ed use. See ed
See vi, search and replace
vi 2-41

variable check 7-46
global substitution 11-1
goto command 2-5
Greater-than sign 0

be, relational operator 6-12, 6-21
PS2 variable default value 7-15
redirection symbol 7-69

grep command
ed use. See ed

gsub 10-22

H

hcommand
mail 4-6
vi use. See vi

hash command
described 7-41
special shell command 7-41

history command
C-sheIl8-9

HOME variable
conditional substitution 7-53
described 7-13

1-17

Index

I

i command. See ed
-i option

shell, invoking 7-54
if command

COPYTO shell procedure 7-62
description and use 7-28
exit status 7-28
fi command required 7-28
multiple testing procedure 7-28
nesting 7-28
redirection 7-36
shell built-in command 7-55
test command 7-47

IPS variable 7-13
ignorecase option 2-41
Index 10-23

length 10-23
Indirect file transfers over phone lines 5-10
Initialization

awk 10-57
Initialization, Comparison, and Type Coercion

10-57
Initialization, comparison, and type coercion

awk 10-57
In-line input document. See Input
Input 10-39

awk 10-39
ed use. See ed
grammar 7-68
in-line input

document 7-50
EDFIND shell procedure 7-63

standard
input file 7-6

Input Separators 10-39
input separators

awk 10-39
Input-output 10-54

awk 10-54
Insert

See also Append
ed use. See ed
vi procedure 2-25

Insert mode. See vi
Internal field separator

shell scanning sequence 7-24
specified by IPS variable 7-13

Interrupt
handling methods 7-36
key. See JNTERRUPT key

JNTERRUPT key

1-18

User's Guide

JNTERRUPTkey (continued)
background process immunity 7-26
be 6-2
ed use. See ed
mail

askcc switch 4-23
cancel 4-10

Introduction 10-1
awk 10-1

Invocation flag. See Option
Item grammar 7-68

J

jcornmand
ed use. See ed

j command, cursor movement
vi use. See vi

J command, joining lines
vi use. See vi

K

kcommand
ed use. See ed
vi use. See vi

-k option, shell procedure 7-46
kernel authorizations 9-7
Keyword parameter

described 7-20
-k option effect 7-46

kill command
C-shell use. See C-shell

L

I command
ed use. See ed
mail 4-13
vi use. See vi

Less-than sign «)
be, relational operator 6-12, 6-21
redirection symbol 7-69

Limits 10-56
awk 10-56

Line
beginning. See ed

User's Guide

Line (continued)
writing out. See ed

line command
shell variable value assignment 7-10

linenumber option. See vi
Line-oriented commands 2-11
list option. See vi
LISTF1ELDS shell procedure 7-65
Locked account 9-3
Locked terminal 9-3
Logging in 9-12
Logging out

shell termination 7-33
Login directory

defined 7-13
.login file

C-shell use 8-2
Login Security 9-3
login spoofing program 9-1
logout command

C-shell use 8-2
.logout file

C-shell use 8-3
Looping

break command 7-32
continue command 7-32
contro17-32
expr command 7-50
false command 7-50
for command 7-31
iteration counting procedure 7-50
time consumed in 7-55
true command 7-50
unconditional loop implementation 7-50
until command 7-30
while command 7-30
while loop 7-61

lpcommand
mail

-m option 4-24
lprcommand

mail
message printing 4-13

Is command
echo *, used in lieu of 7-49

M

mcommand
ed use. See ed

M flag,mail 4-6
-m option, mail 4-24

Index

magic option. See vi
mail

-? help escape 4-18
-! shell escape 4-15
a command. Seemail.alias
accumulation of 4-25
alias

a command 4-21, 4-22
display 4-21, 4-22
persona14-21,4-22
R command 4-22
system-wide 4-21

askcc option 4-23
asterisk (*)

message saved, header notation 4-6, 4-12
" escape 4-19
BACKSPACE key 4-9
Bcc field 4-19
blind carbon copy field

described 4-3
editing 4-19

box. See Mailbox
-c escape 4-19
-c option 4-5
carbon copy

-c option 4-5
carbon copy field 4-11

blind field 4-3
described 4-3
editing 4-19
escape

-c escape 4-19
option

askcc option 4-23
caret (A), first message, symbol 4-7
cc field 4-19
character matching. See mail

metacharacters
chron option 4-23
colon (:)

network mail 4-15
command

See also the specific command
invoking 4-7
mode

description and use 4-3
syntax 4-7

command line, options 4-5
compose

escape
See also the specific escape
edit mode 4-4
heading escape 4-18
listing 4-18

1-19

Index

mail (continued)
compose (continued)

tilde C) component 4-4, 4-18
compose mode

description and use 4-3
edit mode, entering 4-4
entering from

shell 4-9
concepts 4-2
C-shell

new mail notification 8-2
Ctrl-D

message sending 4-10
Ctrl-U, line kill 4-9
current message 4-6
d command 4-14

message deleting 4-8
-descape 4-19, 4-20
-dead escape 4-19
dead.letter file

aborted message 4-10
escape 4-20

distribution list, creating 4-21, 4-22
dollar sign ($)

final message, symbol 4-7
dot (.), current message symbol 4-7
dp command 4-14
e command 4-4
-e escape 4-4
editor escapes 4-4
escape

editing 4-4
headers 4-18, 4-19
help 4-18
printing 4-9
tilde escapes 4-4,4-18

exclamation point (!)
network mail 4-16
shell command, executing 4-15

exit
q command 4-12, 4-17
x command 4-17

f command 4-14
-f option 4-13
file command 4-13
folder 4-13
folder command 4-13
folder= option 4-25
forwarding

messages not deleted 4-17
procedure 4-14

h command 4-6
""h escape 4-19
header

1-20

User's Guide

mail (continued)
header (continued)

characteristics 4-6
command 4-6
compose escape 4-18
defined 4-6
display 4-5,4-10
windows 4-6

""headers escape 4-19
heading

composition 4-3
help

command (?) 4-11
escape en 4-18

hold command
Pflag 4-6

hold option
description and use 4-23
effect 4-17

INTERRUPT key
cancel 4-10
recipient list 4-23

1 command 4-13
line kill 4-9
Ipcommand

-m option 4-24
Iprcommand

message printing 4-13
-:M escape 4-20
M flag, message saving 4-6
-m option 4-24
mail command

command mode entry 4-3
help 4-11
message reading 4-10
message sending 4-3

mail escapes 4-20
.mai1xrc file

alias command 4-21
distribution list, creating 4-22
example 4-21
set command 4-21
unset command 4-21

message
body 4-3
cancel 4-10
composition 4-3
delete, undoing 4-14
deleting 4-8, 4-14
described 4-3
editing 4-4, 4-9
file, including a 4-19
header 4-6
inserting into new message 4-20

User's Guide

mail (continued)
message (continued)

list. See mail, message list
printing 4-7, 4-14
range described 4-7
reading 4-10
saving 4-8, 4-12
sending 4-10
specification 4-7

message list
composition 4-7

message types 4-7
metacharacters 4-7
Micnet4-15
network mail 4-15
number command 4-7
options

command-line options 4-5
setting 4-21

organizing 4-25
pcommand

message printing 4-7
-p escape 4-9
P flag, message preserving 4-6
period (.), dot use 4-7
preserve command

P flag 4-6
printing

lineprinter, Ipr command 4-13
-p escape 4-9

prompt= option 4-11
qcommand

exit 4-12, 4-17
question mark (1)

compose escape help 4-18
Rcommand

alias eftect 4-22
message reply 4-13

-rescape 4-19
-read escape 4-19
read escape

-d escape 4-19
-rescape 4-19

recipient list, adding a name 4-18
reminder service 4-24
reply command 4-13
scommand

flag 4-6
message saving 4-8, 4-12
saving 4-6, 4-17

-s escape 4-18
-s option 4-5
saving

asterisk (*) notation 4-12

Index

mail (continued)
saving (continued)

automatic 4-14
flag 4-6
M flag 4-6

screen= option 4-6
search string 4-7
sending

cancellation impossible 4-10
network mail 4-15
procedure 4-9
remote sites 4-15

UUCP4-16
session abort 4-17
set command

description and use 4-21
set options defined 4-21
sh command 4-15
shell

commands 4-15
escapes 4-15

special characters. See mail
metacharacters

star (*), asterisk use 4-8
startup file 4-21
status indicator 4-6
string option

setting 4-21
subject

asksub option 4-9
escape 4-18
field 4-3
-s option 4-5

subject field 4-11
switch option, setting 4-21
-t escape 4-18
tilde

compose escapes 4-4,4-18
to field

mandatory 4-3
u command 4-14
undeleting. See mail, u command
undeliverable message 4-10
unset command

description and use 4-21
UUCP4-15
v command 4-4
-v escape 4-4

Mail
variable. See MAIL variable

mail
vi

entering from compose mode 4-4
wcommand

1-21

Index

mail (continued)
w command (continued)

flag 4-6
writing 4-6, 4-17

writing
flag 4-6

x command
exit 4-17
session abort 4-17

mail command 4-3, 5-2, 5-5
advantages of using 5-5
disadvantages of using 5-5
transferring files with 5-5

MAll., variable 7-14
Mailbox

cleaning out 4-25
system mailbox 4-2
user mailbox

filename 4-2
message saving notation 4-6

MAll.,CHECK variable 7-14
MAll.J>ATH variable 7-14
makekey 9-15
map command 2-62
Marking. See ed
Match 10-23
mbox file. See Mailbox
mem authorization 9-7
mesg option. See vi
Message types. See mail, message list
Metacharacter

asterisk (*) 7-70
brackets ([]) 7-70
directory name, not used in 7-4
escape 7-4
list 7-69
mail 4-7
question mark (?) 7-70
redirection restriction 7-7

Micnet network 5-2
Minus sign *-)

be
subtraction operator symbol 6-5

Minus sign (-)
be

unary operator symbol 6-5, 6-19
redirection effect 7-50
subtraction operator symbol 6-5
variable conditional substitution 7-52

Mistakes, correcting 2-25
MKFILES shell procedure 7-65
Multi-Line Records 10-40
Multi-line records

awk 10-40

1-22

User's Guide

Multiple way branch 7-29
Multiplication. See be

N

n command. See vi
-noption

echo command 7-49
shell procedure 7-46

Name grammar 7-69
newgrp command

described 7-41
special shell command 7-41

Newline substitution. See ed
next command. See vi 2-50
nohup command 7-26
Notational conventions 1-3
nu command. See vi 2-27
Null command. See Colon (:), coll1lru
NULL shell procedure 7-66
Number or String? 10-26
Number sign (#), comment symbol 7·

o

-0 operator 7-48
Operator. See bc
Operators

awk 10-55
Operators)Jncreasing Precedence) l(
Option

See also specific option
DRAFf shell procedure 7-63
invocation flags 7-54
tracing, $- variable 7-17
vi options. See vi

Or-if operator (II)
command list 7-26
described 7-27
designated 7-69

Output 10-34
append symbol 07-6,7-69
awk 10-34
creation symbol 0 7-69
diagnostic output file 7-6
error redirection 7-51
grammar 7-68
standard

error file 7-6

User's Guide

Output 10-34 (continued)
standard (continued)

output file 7-6
Output into Files 10-37
output into files

awk 10-37
Output into Pipes 10-37
Output Separators 10-34
Output separators

awk 10-34

p

pcommand
ed use. See ed
mail

message printing 4-7
P flag, mail 4-6
Parentheses « »

bc
expression enclosure 6-18
function identifier, argument enclosure

6-16
command grouping 7-33, 7-56 7-69
pipeline use, command list 7-27
test command operator 7-48

Password security 9-11
PATH variable

conditional substitution 7-53
C-shell use. See C-shell
described 7-14
directory search

effuct 7-58
sequence change 7-3

Pattern
grammar 7-69
metacharacter 7-70

Pattern matching facility
case command 7-29
expr command argument effuct 7-49
limitations 7-4
metacharacter. See Metacharacter
redirection restriction 7-6
shell function 7-3
variable assignment, not applicable 7-12

Pattern Ranges 10-17
pattern ranges

awk 10-17
Patterns 10-11, 10-53
patterns

awk 10-6
Patterns

Patterns (continued)
awk 10-11,10-16,10-53
BEGIN and END 10-11

percent sign, current file 2-62
Percentage sign (%)

Index

bc modulo operator symbol 6-5
Period (.)

See also Dot (.)
ed use. See ed
pattern matching facility, restrictions 7-4
vi use. See vi

PHONE shell procedure 7-66
PID

$$ variable 7-16
$! variable 7-17

Pipe
file interchange 7-62
symbol (I) 7-69

Pipeline
command list 7-27
C-shell use. See C-shell
defined 7-26
described 7-7
DISTINCT 1 shell procedure 7-62
filter 7-8
grammar 7-68
notation 7-7
procedure 7-7

pipes
awk 10-37
output into 10-37

Plus sign (+)
be

addition operator symbol 6-5
unary operator symbol 6-19

variable, conditional substitution 7-53
Positional parameter

assignment statement positioning 7-12
described 7-11
direct access 7-23
null value assignment 7-52
number yield, $# variable 7-16
parameter substitution 7-12
positioning 7-12
prefix ($) 7-12
setting 7-11

Print
command. See p command
ed use. See ed

Print statement
awk 10-34

printerstat authorization 9-8
printf

awk 10-6, 10-35, 10-36

1-23

Index

Printing 10-4
awk 10-4
formatted 10-6

printqueue authorization 9-8
Process

defined 7-2
number. See PID

.profile file
description and use 7-19
PATH variable setting 7-15
variable export 7-15

Program Structure 10-2
Program structure

awk 10-2
Prompt. See mail

prompt= option
protected subsystem 9-2
pscommand

C-shell use. See C-shell
PSI variable 7-15
PS2 variable 7-15

Q

qcommand
bc6-2
ed exit. See ed
mail

exit 4-12, 4-17
q!. See vi
queryspace authorization 9-8
Question mark (1)

directory name, not used in 7-4
ed use. See ed
mail

compose escapes, listing 4-18
help command 4-11

metacharacter 7-4,7-70
pattern matching

See Question mark (1), metacharacter
variable conditional substitution 7-53

quit command
bc exit 6-2, 6-4
q command 6-2

QUIT key, background process immunity 7-26
Quotation mark

back (')
command substitution 7-4,7-10
quoting 7-70

double (")

1-24

User's Guide

Quotation mark (continued)
double (")

metacharacter escape 7-4
quoting 7-70
test command 7-47
variable 7-12

single (')
C-shell use. See C-shell
metacharacter escape 7-4
trap command 7-37
variable substitution, inhibiting,

Quoting
See also Quotation mark
backslash (\) use 7-70
metacharacter escape 7-4

R

rcommand
ed use. See ed
mail use. See mail

R command. See mail
Random Choice 10-51
Random choice

awk 10-51
rep command 5-2

daemon.mn 5-3
how it works 5-3
-m option 5-3
sample command 5-3
syntax of 5-2
-u option 5-3

read command
exit status 7-41
Seeed
See vi
shell built-in command 7-55
special shell command 7-41

Read. See read command
readonly command

described 7-41
shell built-in command 7-55
special shell command 7-41

records
multi-line 10-40

Redirection
argument location 7-9
case command 7-36
cd arg command 7-40
control command 7-36
diagnostic output 7-7
file descriptor 7-51

User's Guide

Redirection (continued)
for command 7-36
if command 7-36
minus sign (-) etrect 7-50
pattern matching,use restriction 7-6
simple command line, appearance 7-26
special character, use restriction 7-7
symbols

«),07-69
until command 7-36
while command 7-36

Regular Expressions 10-13
regular expressions 11-1
Regular expressions

awk 1O-l3
Regular Expressions)Increasing Precedence)

10-56
Regular expressions. See ed
rehash command

C-shell use. See C-shell
Relational Expressions 10-12
Relational expressions

awk 10-12
relative addressing 11-1
Reminder service

mail 4-24
remote command 5-2, 5-4

-f option 5-4
-m option 5-4
restricting remote execution 5-5
sample command 5-4
syntax of 5-4

Repeat command, vi 2-47
reply command 4-l3
Report option. See vi
Reserved word, list 7-70
Retrieving files sent with uuto

See uupick command
Return code 7-16
return command

shell built-in command 7-55
RETURN key

bc 6-2

s

scommand
ed use. See ed
mail 4-6, 4-12, 4-17

message saving 4-8, 4-12
-s option

mail, subject specification 4-5

Index

-s option
shell, invoking 7-54

Escape key
vi use. See vi

scale command 6-9
Scale. See bc
Screen size. See mail

screen= option
Screen-oriented commands See vi
Scripts

Seeed
See Shell

Search
ed use. See ed
vi procedure. See vi

Search string. See mail, message list
secondary authorizations 9-8
Security

files 9-12
passwords 9-11
practices 9-11

Security Administrator 9-2
sed

n 11-2
= function 11-14
: label function 11-14
a function 11-6
addressing 11-4
b label function 11-14
B!function 11-l3
c function 11-7
d function 11-6
D function 11-12
-e 11-2
-f 11-2
flow-of-control11-2
flow-of -control functions 11-l3
functions 11-6
g function 11-9
G function 11-l3
h function 11-12
H function 11-l3
hold and get functions 11-12
i function 11-7
input/output functions 11-10
miscellaneous functions 11-14
multiple input-line functions 11-12
-n 11-2
n function 11-6
N function 11-12
p function 11-9, 11-10
P function 11-12
qfunction 11-15
r function 11-11

1-25

Index

sed (continued)
s function 11-8
substitution functions 11-8
t label function 11-14
wfunction 11-9, 11-11
x function 11-13

sed command. See ed
Semicolon (;)

bc, statement separation 6-4, 6-22
case command break: 7-29
case delimiter symbol 7-69
command list 7-26
command separator symbol 7-69
C-shell use. See C-shell
ed use. See ed

Sending files over serial lines
Seercp

Serial line
commands for 5-1
telecommunication

See cu command
set all. See vi
set command

C-shell
variable value assignment 8-4

mail
description and use 4-21

name-value pair listing 7-21
positional parameters, setting 7-11
shell built-in command 7-55
shell flag, setting 7-19
special shell command 7-40

shcommand
See also Shell
described 7-1
mail 4-15
shell, invoking 7-22

SHACCT variable 7-14
Shell 10-45

argument passing 7-23
awk 10-45
command

See also specific command
executing while in vi 2-14
search procedure 7-3

conditional capability 7-28
shell

cooperation with 10-45
Shell

creating
procedure 7-2

described 7-2
-e option 7 -46
entering from mail 4-15

1-26

Shell (continued)
escape

User's Guide

ed procedure. See ed
execution

flag. See Shell, option
sequence 7-24
terminating 7-33

exit
-e option 7-46
mail mode return 4-15
procedure 7-33
-t option 7-46

function 7-1
grammar 7-68
in-line input document handling 7-5
interactive 7-54
interruption procedure 7-36
invoking

option 7-54
procedure 7-22

-k option 7-46
mail

shell commands 4-15
-n option 7-46
option

See also specific option
description and use 7-46
setting 7-19

pattern matching facility. See Patter
matching facility

positional parameter. See Positional
parameter

procedure
See also specific shell procedure
advantages over C programs 7-4~
byte access, reducing 7-57
creating 7-44
described 7-3
directory 7-45
efficiency analysis 7-56
examples 7-60
filter, order consideration 7-57
option 7-46
scripts, examples of 7-60
time command 7-55
writing strategies 7-55

redirection ability 7-6
scripts 7-60
special command

See also specific special commar
described 7-40
listed 7-40

special shell variable 7-24
state 7-18

User's Guide

Shell (continued)
-t option 7-46
-u option 7-46
-v option 7-19

SHELL
variable 7-14

Shell
variable. See Variable
-x option 7-19

Shell Facility 10-51
Shell facility

awk 10-51
shift corrnnand

argument processing 7-23
shell built-in command 7-55

Simple Actions 10-8
Simple corrnnand. See Corrnnand
Simple Patterns 10-6
Slash (f)

bc, division operator symbol 6-5
command, suppress prepending 7-3
ed use. See ed
search command. See vi

Some Lexical Conventions 10-33
Special character

See also Metacharacter
ed use. See ed
pattern matching facility 7-4

spoofing program 9-12
sprintf 10-24
Standard

error file. See Output
error output 7-51
input file. See Input
output file. See Output

Star (*)
See also Asterisk (*)
ed metacharacter. See ed

Sticky directories 9-9
String

option. See mail
searching for. See vi, searching
variable 7-12

String Functions 10-54
Strings and String Functions 10-21
su command 9-6
sub 10-22
Subshell, directory change 7-18
Substitution command. See s command
substr 10-24
subsystem authorizations 9-7
Subtraction. See bc
Sununary

awk 10-53

Index

System
awk 10-45
mailbox. See Mailbox

System Function 10-45
System function

awk 10-45

T

tcorrnnand
ed use. See ed

-t option, shell procedure 7-46
Table command. See ed
Tabs

ed use. See ed
tbl corrnnand. See ed
Telecorrnnunication

interactive session 5-15, 5-17
over serial lines 5-17
remote terminal

See ct command
See ct corrnnand
See cu command
Seeuucp
See uux command

Temporary file
trap command 7-38
use 7-16

term option. See vi
terminal authorization 9-7
terse option. See vi
test command

argument 7-48
brackets ([]) used in lieu of7-47
description and use 7-47
operators 7-48
options 7-47
shell built-in command 7-55

Text editor
ed use. See ed
vi use. See vi

TEXTFILE shell procedure 7-67
The getline Function 10-40
The print Statement 10-34
The printf Statement 10-35
then clause 7-28
~ilde escape. See mail, compose, escape
tune command 7-55
Transfer command. See ed, t corrnnand
Transferring files

local site. See rep
Micnet

1-27

Index

Transferring files (continued)
Micnet (continued)

See mail
Seercp

phone lines
See cu command
Seeuucp
See uuto command

remote site. See uucp
trap command

description and use 7-36
multiple traps 7-38
shell's implementation method 7-38
special shell command 7-40
temporary file, removing 7-38

troff. See ed
Trojan Horse 9-1
true command 7-50
trusted computing base 9-2
Type coercion

awk 10-57
type command

description 7-42
special shell command 7-42

u

ucommand
ed use. See ed
mail 4-14
See vi

-uoption
shell procedure 7-46

ulimitcommand
description 7-42
special shell command 7-42

umask command
described 7-42
shell built-in command 7-55
special shell command 7-42

Undo command
Seeed
See vi

unset command. See mail
until command

continue command effuct 7-33
description and use 7-30
exit status 7-30
redirection 7-36
shell built-in command 7-55

Untrustworthy programs 9-13
Usage 10-3

1-28

Usage 10-3 (continued)
awk 10-3

User

User's Guide

mailbox. See Mailbox
User-Defined Functions 10-32
User-defined functions

awk 10-32
User-defined Variables 10-8
User-defined variables

awk 10-8
Using awk with Other Commands and

10-45
/usr/bin directory

/bin, files duplicated in 7-60
command search 7-3

uucp
abbreviated pathnames 5-9
advantages of 5-6

UUCP
commands 5-6

uucp
C-shell considerations 5-9
dial out site 5-7
directory permissions 5-7
disadvantages of 5-6
file permissions 5-7
how it works 5-8
indirect transfers 5-7, 5-10
listing remote UUCP systems 5-7
-m option 5-10
-n option 5-10

UUCP
networks 5-6

uucp
options 5-10
pathnames 5-9

UUCP
programs 5-6

uucp
sample command 5-8, 5-9
simplest form of 5-8
status of 5-10
syntax of 5-8
transferring files with 5-6

UUCP
uucp command 5-6
uuto command 5-6
uux command 5-6
when to use 5-1

uuname command 5-7
listing remote UUCP systems 5-7

uupick command 5-12
-d option 5-13
how it works 5-12

User's Guide

uupick command 5-12 (continued)
-m option 5-13
options 5-13
quitting 5-13
retrieving files with 5-12
sample command 5-13

uustat command 5-10
uuto command 5-11

advantages of 5-6
disadvantages of 5-6
how it works 5-12
public directory 5-12
retrieving files with uupick 5-12
sample command 5-12
syntax of 5-11
/usr/spool/uucppublic 5-12

uux command 5-13
local site 5-14
quotation marks 5-14
quoting the command line 5-14
remote sites 5-14
restricting commands 5-13
sample command 5-14
security considerations 5-13
syntax of 5-13
using 5-13

v
v command

ed use. See ed
mail 4-4

-v option, printing an input line 7-19
Value, $? variable 7-16
Variable

$# variable 7-16
$! variable 7-17
assignment

line command 7-10
string value 7-12

bc variable. See be
command environment, composition 7-20
conditional substitution 7-52
described 7-11
double quotation marks <--l 7-12
enclosure 7-13
execution sequence 7-12
expansion 7-5
export 7-15
expr command 7-49
file, creating 7-36
global check 7-46

Index

Variable (continued)
HOME. See HOME variable
IFS. See IFS variable
keyword parameter 7-20
list 7-13
listing procedure 7-21
MAll... See MAll.. variable
MAll..CHECK. See MAll..CHECK variab
MAILPATH. See MAILPATH variable
name defined 7-12
null value assignment procedure 7-52
PATH. See PATH variable
positional parameter. See Positional

parameter
prefix ($) 7-12
PSI. See PSI variable
PS2. See PS2 variable
set variable defined 7-52
SHACCT. See SHACCT variable
shell, list of variables 7-13
SHELL. See SHELL, variable
special variable 7-16
string value assignment 7-12
substitution

double quotation marks <--l 7-12
notation 7-70
redirection argument 7-6
single quotation marks (' ') 7-12
space interpretation 7-13
-u option effuct 7-46

test command 7-47
Vertical bar (I)

vi

or-if operator symbol (II) 7-26
pipeline notation 7-7

. command 2-4
o command

cursor movement 2-6
abbr command 2-62
appending text

a command 2-24
args command 2-50
b command, cursor movement 2-6
Bourne shell

prompt 2-57
breakirig lines 2-30
bulfurs

delete 2-38
naming 2-27
selecting 2-27

C command 2-35
C shell

prompt 2-57
canceling changes 2-48

1-29

Index

vi (continued)
caret (.), pattern matching 2-44, 2-45
cc command 2-35
co (copy) command 2-27
colon (;)

line-oriented command, use 2-11
status line prompt 2-11

command
See also specific command
line-oriented 2-11
repeating, using dot (.) 2-6
screen-oriented 2-11

/command
searching 2-10

Command mode
cursor movement 2-5
entering 2-3

control characters, inserting 2-30
copying lines 2-27
correcting mistakes 2-25

, crash, recovery from 2-55
C-shell

TERM variable 2-58
terminal type, setting 2-58

Ctrl-b
scrolling 2-6

Ctrl-d
scrolling 2-6
subshell exit 2-55

Ctrl-f
scrolling 2-6

Ctrl-g
file status information 2-11, 2-54

Ctrl-j
inserting 2-30

Ctrl-l
screen redraw 2-55

Ctrl-q
inserting 2-30

Ctrl-r
screen redraw 2-55

Ctrl-s
inserting 2-30

Ctrl-u
deleting an insert 2-32
scrolling 2-6

Ctrl-v
use 2-30, 2-62

current file (%) 2-62
current line

1-30

deleting 2-6,2-31
designated 2-3
line containing cursor 2-4
number, finding out 2-27

vi (continued)
cursor movement

+ key 2-21
$ key 2-22
B command 2-20
backward 2-22
BKSP2-19
character 2-19
Ctrl-n 2-22
Ctrl-p2-22
down 2-5, 2-19
e command 2-20
end of file 2-5
F command 2-19
file

end 2-5
forward 2-21
h command 2-19
H command 2-22
j 2-22
j command 2-19

User's Guide

k command 2-19, 2-22
keys 2-5
1 command 2-19
L command 2-22
left 2-5, 2-19, 2-20
line 2-21

beginning 2-6
end 2-6
number 2-5

LINEFEED key 2-21
lower left screen 2-5
M command 2-22
number of specific line 2-5
pattern search 2-10
right 2-5, 2-19, 2-20
(Return

key 2-21
screen 2-22
scrolling 2-6, 2-22
SPACE 2-19
t command 2-20
up 2-5, 2-19
upper left screen 2-5
w command 2-20
word 2-20

backward 2-6
forward 2-6

cw command 2-34
D command 2-6
dO command 2-6
date, finding out 2-14
dd command 2-6, 2-31
delete buffer

User's Guide

vi (continued)
delete buffer (continued)

use 2-38
deleting text

by character 2-30
by line 2-31
by word 2-31
D2-31
dd command 2-6, 2-31
deleting an insert 2-32
dw command 2-31
methods 2-6
repeating a delete 2-47
undoing a delete 2-5,2-46
x command 2-30

demonstration 2-2
described 2-1
dollar sign ($)

cursor movement 2-6
pattern matching 2-44
use in line address 2-32

dot (.)
command 2-6
use in line address 2-32

dw command 2-6
editing several files

changing the order 2-51
end-of-line

displaying 2-59
entering vi

filename specified 2-18
line specified 2-18
procedure 2-2
several filenames 2-49
word specified 2-19

error messages
brevity 2-60
turning off2-53

ESC key 2-62
exclamation point (!)

shell escape 2-14
EXINIT environment variable 2-57
exiting

:q! 2-16
saving changes to file 2-13, 2-48
temporarily 2-14, 2-52
without saving changes 2-48
:x command 2-16, 2-48
7Z command 2-48

.exrc file 2-63
file

creating 2-2
exit without saving, :q! 2-16
saving 2-16

Index

vi (continued)
file (continued)

status information display 2-10
status information procedure 2-11

filename
finding out 2-54
planning 2-50

Gcommand
cursor movement 2-5

global substitution
command syntax 2-42

goto command 2-5
Hcommand

cursor movement 2-5
icommand

inserting text 2-3
ignorecase option 2-41, 2-59
Insert command 2-3, 2-24
Insert mode

entering 2-3
exiting 2-3

inserting text
beginning of line 2-24
commands 2-24
control characters 2-30
from another file 2-14
from other files 2-14, 2-25, 2-26
I command 2-24
Insert mode 2-3
repeating an insert 2-25, 2-47
See vi, appending text
undoing an insert 2-5, 2-46, 2-55

invoking 2-2, 2-18, 2-19, 2-49
J command 2-30
j command

cursor movement 2-5
joining lines 2-30
kcommand

cursor movement 2-5
Lcommand

cursor movement 2-5
leaving

See vi, exiting
See vi, quitting

line addressing
dollar sign 2-32
dot (.) 2-32
procedure 2-31

line numbers, displaying
linenumber option 2-15, 2-59
:nu command 2-27
nu command 2-54

line-oriented commands
:args 2-50

1-31

Index

vi (continued)
line-oriented commands (continued)

colon (:) use 2-11
deleting text 2-31
:e#2-26
:e 2-51
:e#2-52
entering 2-11
:f2-54
:file 2-54
mode 2-53
moving text 2-36
:n 2-50
nu 2-27, 2-54
:q2-48
:r2-25
:rew 2-51
:s 2-35
status line, display 2-10
:w 2-26
:wq2-48

list option 2-59
.login file

terminal type, setting 2-58
magic option 2-45, 2-61
mail, entering vi from compose mode 4-4
map command 2-62
marking lines 2-26
mesg option 2-61
mistakes, correcting 2-25
mode

Command mode 2-55
determining 2-55
Insert mode 2-55

moving text 2-36
n command 2-10, 2-41
new line, opening 2-25
next command 2-50
number option 2-59
opening a new line 2-25
options

1-32

displaying 2-58
ignorecase 2-41
ignorecase option 2-59
linenumber option 2-27
list 2-16
list option 2-59
magic option 2-45, 2-61
mesg option 2-61
number option 2-36, 2-59
report option 2-60
setting 2-57, 2-59
term option 2-60
terse option 2-60

User's Guide

vi (continued)
options (continued)

warn option 2-53, 2-61
wrapscan option 2-41, 2-61

overstrike commands 2-32
pattern matching

beginning of line 2-44
caret (-)2-45
character range 2-45
end of line 2-44
exceptions 2-45
special characters 2-45
square brackets ([]) 2-45

percent sign, current file 2-62
period (.)

See also vi, dot (.)
pattern matching 2-44

problem solving 2-55
.profile file

terminal type 2-57
putting 2-27
:q! 2-16
Q command 2-53
quitting 2-14, 2-16, 2-48, 2-52, 2-55

See also vi, exiting
r command 2-14, 2-32, 2-33
read command 2-14
redrawing the screen 2-55
Repeat command 2-47
repeating a command 2-47
replacing

line 2-35
word 2-34, 2-35

report option 2-60
rew command 2-51
s command 2-34
Escape key, Insert mode exit 2-3, 2-5
saving a file 2-49
screen, redrawing 2-55
screen-oriented commands 2-11
scrolling

backward 2-6
down 2-6, 2-23
forward 2-6
up 2-6, 2-22

search and replace
c option 2-43
choosing replacement 2-43
command syntax 2-42
global 2-42

warning 2-47
p option 2-43
printing replacement 2-43
word 2-42

User's Guide

vi (continued)
searching

See also vi, search and replace
backward 2-40
caret H use 2-44, 2-45
case significance 2-41, 2-59
dollar sign ($) 2-44
forward 2-10, 2-40
next conunand 2-41
period (.) 2-44
procedure 2-10
repetition 2-10
slash (/) 2-10
special characters 2-40, 2-61
square brackets ([]) 2-45
status line, display 2-10
wrap 2-10, 2-41, 2-61

session, canceling 2-16
set all, option list 2-16
set conunand 2-16, 2-57, 2-58
setting options 2-16, 2-57, 2-59
shell

command, executing 2-14
escape 2-52

slash (/)
search conunand delimiter 2-10

special characters
matching 2-45
searching for 2-40, 2-61
vi filenames 2-49

status line
line-oriented conunand entry 2-11
location 2-10
prompt, colon (:) use 2-11

string
pattern matching 2-45
searching for 2-10

subshell
exiting 2-55

substitute conunands 2-34
switching files 2-51
system crash

file recovery 2-56
tabs

displaying 2-59
TERM variable 2-57

Bourne shell 2-57
termcap 2-57
terminal type, setting

Bourne shell 2-57
C-shell 2-58
instructions 2-60

terse option 2-60
time, finding out 2-14

Index

vi (continued)
u command 2-4, 2-46, 2-55
Undo conunand 2-4
w conunand, cursor movement 2-6
warn option 2-53, 2-61
warnings, turning off2-61
word, deleting 2-6
wrapscan option 2-41, 2-61
write messages 2-61
writing out a file

:wq conunand 2-48, 2-49
x conunand 2-6
:x conunand 2-16, 2-48
yanking lines 2-26, 2-29
'Z2 conunand 2-48

vi, used in mail
entry from conunand mode 4-4

vi -x 9-15
visual conunand. See mail

w

wconunand
ed use. See ed
mail 4-6, 4-17
vi use. See vi

wait conunand
described 7-43
shell built-in conunand 7-55
special shell conunand 7-43

warn option. See vi
while command

break conunand etrect 7-32
continue conunand etrect 7-32
description and use 7-30
exit status 7-30
loop 7-61
redirection 7-36
shell built-in conunand 7-55
test conunand 7-47

Word
grammar 7-69

Word Frequencies 10-50
wrapscan option. See vi
Write out. See w conunand
WRlTEMAIL shell procedure 7-67

I-33

Index

x

x command
mail

exit 4-17
session abort 4-17

vi use. See vi
-x option, printing a command 7-19
XENIX command

directory residence
C-shell 8-4

z

zcommand
vi scroll 2-23

ZZ command 2-48

1-34

User's Guide

111111111111~111~1~~~IW~~II~~tllllllllllllll
111111111"~'ijjl I

