RIDGE OPERATING SYSTEM REFERENCE MANUAL

February 24, 1983

Ridge Operating System Reference Manual

SECTION 1

OPERATING SYSTEM ARCHITECTURE

The Ridge Operating System (ROS) is a multiprocessing operating system
for multiple users in a virtual memory environment, with extensive file
system support, input/output device interfaces, and message-oriented
interprocess communication facilities. ROS consists of a set of utility
vcommands” and a set of program-callable "interfaces" that together
provide a foundation for application-level activities. The extensible
architecture of ROS allows new commands and interfaces to be added by the
user to the existing structure of the operating system.

The design of the Ridge Operating System has been heavily influenced by
the UNIX operating system. The hierarchical file system, system
interface routines, and utility commands of ROS are very similar to UNIX,
thus providing a well-known environment to those ‘users who are already
familiar with UNIX or other similar systems.

The underlying architecture of ROS, however, differs from UNIX in several
significant ways, which contribute to high performance, reliability, and
extensibility. The operating system is composed of several independent
processes that communicate via messages rather than sharing memory.
Virtual memory management, the file system, and the interprocess
communication mechanisms are completely integrated with each other, thus
leading to high performance. The functional isolation of the components
of the system leads to better reliability. The modularity of the system
allows easy extension by adding new service processes that are
independent of other system processes.

The majority of ROS is written in the programming language Pascal (refer
to the Ridge Pascal Reference Manual). The system interfaces are
described in terms of Pascal definitions throughout this manual. Other
high-level languages provide their own interfaces to the system, which
are described in the appropriate language manuals.

KERNEL

The Kernel is the lowest level software in the operating system., The
Kernel implements process creation and deletion, multitasking primitives,
and message-oriented interprocess communication. Several memory
management functions are handled by the Kernel, including maintenance of
the virtual-to-real translation table, which supports the virtual memory
system, The Kernel also provides the first level handling of program
traps and faults, and dispatches input/output device drivers when an
interrupt occurs.

The Kernel routines are the only routines in the system that run in a
~special processor mode called "kernel mode". Kernel mode is used to

Ridge Operating System) Reference Manual

provide all privileged activity that involves data sharing or
synchronization. In kernel mode, the processor uses real memory addresses
instead of performing address translation of virtual addresses. Certain
privileged processor instructions are valid only in kernel mode, thus
allowing the Kernel to protect user and system processes from interfering
with each other.

All other routines in the system run in "user mode" which uses virtual
addresses., User and system processes request Kernel services via
interface routines that cause the Kernel to be entered, thus switching to
kernel mode. When the Kernel routine is completed, the processor returns
to user mode and execution proceeds.

The Kernel is also entered whenever an "exception" such as a program
fault or an external interrupt occurs. There are several mechanisms for
dispatching a process as a result of various exceptions, thus allowing
the process to handle the exception.,

Processes

Processes are software entities which perform some computational task,
interacting with other processes to provide application-level functions
or system services. A process is an instance of a running program. All
user programs run as processes, and the operating system itself is
composed of a set of processes that manage various system resources.

Each process has a set of private address spaces, including a code
segment, a data segment, and a queue segment (used for interprocess
communication). Each process also has a state maintained by the Kernel
which includes the current program counter and the general registers.
Processes share the use of the processor via priority scheduling, and
thus appear to be running concurrently with each other, allowing
multitasking and multiprocessing.

Objects, Managers, and Clients

The hardware and software resources of the Ridge computer system are
represented in ROS as "objects". Examples of hardware objects include
the processor, memory, disc volumes, terminals and other input/output
devices., Software objects include files, directories, and user programs.,

Objects are controlled by processes called "managers". A manager is
responsible for «creating, deleting, and modifying objects under its
control. Each manager specifies an interface that allows access to its
objects. The interface specification defines the services of the
manager, and allows the implementation of a manager to vary without
impacting the wusers of its services. ROS includes managers for virtual
memory, volumes, directories, files, terminals, and other input/output
devices, Manager processes can be created to manage new types of
hardware or software objects.

Ridge Operating System Reference Manual

Application programs, on behalf of their users, become "clients" of the
services of a manager. A manager may become a client of another manager
which helps it accomplish its task. A client process requests the
services of a manager via the interprocess communication primitives
supported by the Kernel. Examples of clients include processes
requesting access to files, directories, device drivers, or other user or
system processes.

Messages

Processes communicate with each other by exchanging "messages". At the
lowest level, messages are fixed size blocks of data that can be sent or
received via the Kernel. Processes use messages to synchronize their
activities as well as to share data with each other. The message
mechanisms are also used by the Kernel to indicate events such as
external interrupts, faults, or traps encountered by a process.

Two processes that wish to communicate using the Kernel primitives must
set up two unidirectional communication paths, one in each direction. A
"1ink" is an outbound channel from one process to a queue of another
process, while a "queue" is an inbound channel that may receive messages
via one or more links. A message is sent on a particular 1link, and is
buffered in the associated queue until the receiver requests the message.
The link, queue, and message buffer data structures are maintained in the
queue segment of each process, and can only be accessed by the Kernel.

Context switching from process to process is handled by the Kernel as a
side effect of process communication primitives. Attempting to receive a
message on an empty queue causes the receiver to be suspended until a
message appears, allowing other processes to run. Sending a message may
suspend the sender if the receiver is of higher priority and is waiting
for a message.

The sequence of information that is exchanged between a client and a
manager is called a "protocol". Each manager defines a protocol that is
used to access objects under its control. A message-oriented protocol
usually consists of a set of request messages and corresponding response
messages.,

Client processes usually provide some insulation from the details of
manager-object protocols in the form of "runtime libraries”. A runtime
library contains subroutines that are linked with the user program, and
among other things, handle the details of communicating with the system
processes.

FILE SYSTEM

The ROS file system supports the storage and retrieval of data on
secondary storage devices (usually discs). Files serve as both long-term
storage of data to be used by one or more programs, as well as backing
store for the code, data or queue segments of the virtual address space
of a process.

Ridge Operating System Reference Manual

A "file" is a sequence of 8-bit bytes, with no other interpretation
placed upon the data by the file system. A file may be given a name and
cataloged in a "directory". Commands and interface routines exist to
create, delete, read, and write files; other modes of access include
listing directories and changing file properties.

The file system is a collection of manager processes, with each manager
implementing a part of the overall services provided by the file system
as a whole. The file system provides interfaces for accessing files via
read and write requests from user and system processes. In addition,
interfaces exist that allows virtual memory management to be integrated
with the file system.

Volume Manager

The Volume Manager maintains the space on a disc volume, allocating pages
of 4096 bytes each to files. An internal file identifier is used to
specify a file to the Volume Manager. The Volume Manager creates,
deletes and changes the space allocation for a file, and maintains
information about the file such as its size and the time of creation or
last reference in a "file label".

The allocation of a file to actual disc addresses is handled by the
Volume Manager using an extent-based data structure. An "extent" is a
variable number of contiguous pages on the volume that corresponds to
contiguous pages in the file. Sequential accesses can be thus be
accomplished with minimal disc latency.

An extent can be identified simply by the address of the first page and
the number of pages in the extent. All the extent identifiers for a file
are kept in a single "extent page", which guarantees that at most one
extra disc access would be necessary to locate a given page of a file.
The Volume Manager attempts to allocate single-extent files if possible.
A single-extent file does not use an extent page, thus eliminating any
extra indirect access,

The Volume Manager interacts with the virtual memory system to map file
accesses to actual disc addresses. The virtual memory system supports
the Volume Manager by making its data segment be the entire disc volume.
This permits the Volume Manager to easily manipulate file labels and
extent pages by making references to the virtual addresses that
correspond to the disc addresses of the desired file labels and extent
pages. The most frequently referenced Volume Manager data will tend to
stay in memory through the virtual memory system's page replacement
algorithms, thus increasing file system performance. Multiple volume
managers are used in the case of multiple disc volumes.

Directory Manager

The Directory Manager maintains the mapping of character string file
names into internal file identifiers. The internal file identifiers are

Ridge Operating System » Reference Manual

used by the Volume Manager and the virtual memory system to specify a
file object, rather than referring to it by the character string.

A basic name in the file system consists of from 1 to 16 characters. The
characters may be either alphabetic ("A" to "Z", or "a" to "z"), numeric
("0" to "9"), or the period character ("."). The name must start with an
alphabetic character. Upper and lower case alphabetic characters are
stored and retreived as given, but upper case matches lower case and vice
versa when a name is looked up.

By convention, the period character "." is used to separate a name into
one or more parts, with the trailing parts called "extensions", For
example, program source files usually end with the extension ".s", as in
"prog.s". The number of extensions in a name is not limited by the file
system; the file system itself places no interpretation on file name
extensions,

The directory structure is hierarchical; directories may contain other
directory names as well as file names, thus providing a tree-like
organization, A "pathname" is a string of characters that uniquely
identifies a file or directory. The sequence of directory names starting
from the file system "root" describes a path within the directory
structure that specifies a particular node in the tree.

The root directory is specified as "/"; the sequence of directory names
are then concatenated together with a "/" separating each name, where
left-to-right corresponds to higher-to-lower from the root towards the
leaves in the tree structure. For example, "/usr/bin/date" would
identify the "date" file within the "bin" subdirectory within the "usr"
directory that springs from the root directory.

Each user has a "current working directory" which supplies the default
pathname prefix for a name which does not start with "/ For example,
if the current working directory is "/usr/bin", then the name "date"
would be equivalent to the full pathname "/usr/bin/date". If the current
working directory has subdirectories, the pathname of a file therein
begins with the name of the subdirectory with no leading "/".

The current working directory can be changed to provide access to files
in other directories using shorter, partially specified pathnames. A
fully or partially specified pathname may be used anywhere a file name is
required in user commands or as parameters to interface routines,

Two special directory names are recognized by the Directory Manager. The
name "." in each directory stands for the directory itself. Thus the
current working directory can be referred to as "." without having to
know its complete pathname. The name ".." refers to the parent of a
directory, that is, the directory that contains a given directory. These
special names can be used with any directory and as a part of any
pathname, but are not actually stored in the directories. Instead, they
are interpreted by the Directory Manager as part of resolving pathnames.

The data structures defining the directory hierarchy are part of the data

Ridge Operating System Reference Manual

segment of the Directory Manager, which is allocated when the disc volume
is initialized and is proportional in size to the disc volume. The
directory data structures remain in a contiguous area of the disc, and
the most frequently referenced Directory Manager data will tend to stay
in memory through the wvirtual memory system's page replacement
algorithms, thus increasing file system performance.

File Manager

Each open file in the file system has a separate File Manager associated
with it. The File Manager accepts requests to read or write blocks of
data of up to 4096 bytes at a given page within the file.

A File Manager allows access to a file as though it was a
variable-length, contiguous sequence of bytes, which insulates the client
of a File Manager from the details of the extent-based disc space
allocation. The size of a file grows automatically as new bytes are
written to the end of the file. The desired page address is given as a
parameter of each request, thus supporting sequential or random access to
the file.

A File Manager process is created when a user process opens a file, with
the file as the data segment of the File Manager. The user process makes
read and write requests directly to the File Manager, which then
references the requested page as part of its virtual address space. The
File Manager process is deleted when the file is closed.

File pages are transferred to and from secondary storage as a part of the
virtual memory system's management of memory. The entire main memory
thus serves as a global buffer pool for file pages. A page of a file is
moved directly from the disc volume to the user address space and vice
versa via the Kernel message primitives. This is accomplished without
any memory-to-memory copying required, thus increasing the speed of file
access.,

VIRTUAL MEMORY MANAGER

The virtual memory system consists primarily of the Virtual Memory
Manager, which interacts with the Kernel, the file system, and
input/output processes to implement the virtual memory environment for
all ROS processes. The Virtual Memory Manager maintains real memory
pages of 4096 bytes each, assigning them to virtual pages for each
process on a demand basis.

The Kernel maintains the Virtual to Real Translation (VRT) table, a table
in memory which contains entries mapping virtual pages to real pages.
The Virtual Memory Manager makes requests to the Kernel to examine and
modify entries in the VRT, thus mapping virtual pages in secondary
storage to real pages in memory.

When a process attempts to access a virtual page that is not mapped in

Ridge Operating System ‘ Reference Manual

the VRT, a "page fault" occurs and the Virtual Memory Manager is notified
by the Kernel, Page faults are handled by the Virtual Memory Manager,
which interacts with the Volume Manager and various peripheral device
driver processes to find and then read or write the appropriate secondary
storage to or from memory. Once the page has been mapped, the process
can be resumed at the instruction that caused the page fault., If there
is no virtual page assigned for a particular reference, then a message is
sent to the parent of the faulting process which is responsible for
handling the page fault.

The memory hardware maintains referenced and modified ("dirty") bits for
each page. These bits enable the Virtual Memory Manager to implement
sophisticated page replacement algorithms that tend to keep the most
frequently referenced pages in memory, thus improving system performance.

DRIVERS

A "device driver" is a software process that interfaces directly to a
hardware peripheral device. A driver is responsible for initiating input
and output commands to «control a particular device, and servicing
interrupts generated by that device. A driver also has a client
interface which accepts requests from other processes to perform input
and output on their behalf.

There are several Kernel interface routines to help support device
drivers, A device driver can associate itself with a particular device,
and then receive a message when that device generates an interrupt.
Direct memory access (DMA) by input/output devices uses real memory
addresses, not virtual addresses, so there is a routine that translates a
virtual address to a real memory address.

There are Kernel routines to lock a page in memory, making it always
resident, or to unlock a page. A page must be locked during access by a
device to insure that its contents are not disturbed by the virtual
memory system. Part of the queue segment for a device driver should be
locked in memory so that interrupt messages are not discarded.

A device driver provides a client interface that allows its device to be
accessed in the same manner as a regular file in the file system. That
is, the same messages are sent to open, close, read, and write a device
driver as a file., Additional device control protocol may be defined by a
particular device driver, which serves as the manager of the device
object.

Currently, the User Monitor process serves as the device driver for all
devices accessible to commands and user processes. The User Monitor
manages user processes, providing them an interface to the rest of the
system, and is described 1later in this section, The User Monitor
contains a fixed set of device handling routines for the terminals,
printers, and floppy disc devices that can be attached to a Ridge system.

The names of the ROS-supplied device drivers always begin with a colon

Ridge Operating System Reference Manual

"." +o differentiate them from regular files in the file system, since a
device driver name can be used anywhere a pathname is accepted. For
example, the terminal is referred to as ":term". These names are
recognized specially by the User Monitor in an open request, and further
input/output requests to the device are handled by the User Monitor. The
ROS device driver interface and naming conventions are subject to change,

Terminals

The name ":term" refers to the device driver for a particular user's
terminal. The terminal device may be either a Ridge display, or a CRT
attached to the J-1 RS-232 connector (with a baud rate of 9600).

The terminal device driver buffers up to 256 incoming characters,
allowing "type-ahead". The device driver ":term" supplies one input
character at a time, which is echoed to the terminal when a program makes
a read request to the driver. The device driver ":termnoecho" is
similar, but does not echo its input.

The Control-C character is used to indicate end-of-file on input. There
is currently no special handling of input characters such as Backspace or
Return by the device drivers, although most programs do interpret these
control characters in a conventional manner as described later.

On output, one character at a time is sent to the device; if an ASCII
Return character is output, an ASCII Linefeed character is automatically
appended.

Printers

The name ":1lp" refers to the device driver for the Data
Products/Centronics compatible line printer. The name ":vers" refers to
the device driver for the Versatec printer/plotter, which currently is
only supported in character mode (not bit-oriented plot mode).

Both printers are output-only devices, which buffer characters to be
printed until at least an entire line is accumulated. The device drivers
accept single characters to be written at a time; if an ASCII Return
character is output, an ASCII Linefeed character is automatically
appended. When the device driver receives a close request, an ASCII
Formfeed is output.

Floppy Discs

ROS supports the floppy disc drive packaged in the Ridge system processor
cabinet. If an additional floppy disc drive is attached, then the drive
mounted in the processor cabinet is referred to as the "left" drive, and
the other is the "right" drive.

The floppy disc can be either single or doubled-sided, with either single

Ridge Operating System | Reference Manual

or double density formatting following the IBM 3740 soft-sectored
,standard. A floppy disc is normally formatted by ROS utilities as
double-sided, double-density with 512 bytes of data per block.

The directory and file structure maintained on a floppy disc is
compatible with the University of California, San Diego (UCSD) Pascal
system format. This structure allows up to 77 files per volume, with a
single directory for the entire volume. The name of a file on the volume
may have from 1 to 15 characters, which may be either alphanumeric ("A"
to "z", "a" to "z", "O0" to "9") or a period ("."). Upper and lower case
match each other, but upper case is always stored in the directory.

A file on the floppy disc is referred to by its name, with the colon
prefix ":". By default, floppy disc files are accessed on the left
drive; the prefix ":L: or ":1:" explicitly accesses the left drive; if
the prefix ":R:" or ":r:" is specified, then the right drive is accessed.
For example, both ":data" and ":l:data" refer to a file whose name 1is
"data" which is found on the left drive.

Files on a floppy disc may be read or written a block of bytes at a time,
with no transformation or interpretation of the data performed by the
device driver. Several ROS utilities are provided to format a new floppy
disc, to 1list the directory, and to compact the space allocation of a
floppy disc.

Null Device

The name ":null" refers to the null device driver, which serves és a sink
for unwanted data. Data written to the null device is always discarded,
and no data is returned with an end-of-file status if the null device 1is
read.

USER MONITOR

Client processes (including user-written application programs) generally
request operating system services via the User Monitor process. There is
one User Monitor process per active user. The User Monitor receives
requests from client processes and interacts with the appropriate object
managers on behalf of the client.

The User Monitor helps to simplify the system interfaces by insulating
the client processes from the details of interacting directly with the
various object managers. In addition, much of the access control and
other protection mechanisms supported by the system can be implemented by
the User Monitor rather than by each manager.

A user program or a system-supplied command runs as a "user process"
which is created and managed by the User Monitor. The user process
communicates with the User Monitor to open and close files or device
drivers, query and modify the file system, or create and manage other
user processes. The User Monitor maintains an environment for each user

Ridge Operating System , Reference Manual

process, which includes information about its code, data, and queue
segments, its open files, and its command arguments.,

When a program is run as a process, it will typically access one or more
input or output files. The program opens a file by name via a system
interface routine. The User Monitor handles the "open" request by
binding the program to the appropriate File Manager, device driver or
other input/output process, which then services "read" and ‘"write"
requests. When the program is finished with the file, a "close" request
causes the file to become inactive,

A "name equation" provides a mapping from one string to another. The
User Monitor maintains a set of name equations for each user process that
can be used as convenient abbreviations for a pathname, or can be used to
redirect a program's access to different named objects without changing
the alias name used by the program,

Many programs use one file for input, one file for output, and may need
to report errors to the user on another output file. The name equation
mechanisms can be used to support this common need, allowing the standard
input, standard output, and standard error output of a program to be
redirected to different files each time the program is run.

For example, if a program always opens its standard input using the name
"input", then setting the name equation for "input" to map to some file
name before running the program will cause that file to be accessed,
without requiring changes to the program. Likewise, by convention, the
name ‘"output" is used to refer to the standard output, and "stderr" is
used to refer to the standard error output. The default name equations
for these names, and any changes to the mappings, are typically handled
by a command interpreter process which invokes user processes via the
User Monitor.

SHELL

The Shell is a command interpreter process that is wused to invoke
programs that execute as commands. The Shell interacts with a user at
the terminal, reading text 1lines typed in and interpreting them as
requests to execute other programs.

The Shell runs as a reqular user process, dgetting its input either from
the terminal or from a file containing commands. The first word in each
line is taken to be the pathname of a program's code file, and any
remaining arguments are either interpreted by the Shell or passed on to
the command process,

The Shell makes requests to the User Monitor to invoke command processes
and redirect their standard input or standard output. Command arguments
are accumulated by the Shell and passed to the User Monitor, which then
delivers them to the user process when they are requested. The Shell
also expands file name patterns by reading file system directories and
generating all the matching names for a given pattern.

-10-

Ridge Operating System Reference Manual

The Shell and the command environment is described in detail later in
this manual.

RUNTIME LIBRARY ROUTINES

A user program interfaces to the system via routines that are linked into
the program. A "runtime library" contains routines that handle the
details of communicating with the system processes, and provide other
common functions,

The ROS system interfaces described in this manual are referred to as the
Runtime Library interface, which consists of Pascal-callable routines
that may be referenced by a user program. Other runtime libraries may be
created that support additional features and interfaces, for instance, to
support other high level languages.

The Runtime Library supports a higher level abstraction for dealing with
system objects such as files and devices. The Runtime Library routines
implement "streams" on top of the fixed size block-oriented Kernel
message primitives, A stream of data can be accessed a byte at a time,
with the necessary buffering or device-dependent aspects of managing the
data hidden by the routines.

The stream file interface provides a uniformity of access to the file
system, device drivers, and other processes which fit the model of access
,defined by the file manipulation routines. For example, a program uses
exactly the same routines to open, close, read and write a device driver
that it uses for a file system access.

A calling program does not have to be concerned with the setup of
interprocess communication channels, or other system implementation
details such as the mapping of directory names to internal file
identifiers, volume space allocation, or peripheral device initialization
and servicing. Thus, the Runtime Library routines support a more general
model of access for a "file" than that provided by the implemention of
the actual file system or device drivers.

The ROS-supplied file "/lib/rtl.o" contains the Kernel interfaces and
Runtime Library interfaces described in the other sections of this
manual. This £file should be linked with a user program that uses those
interfaces. The user program may invoke the routines either directly or
as a result of language-defined operations that are built on top of the
basic interfaces.,

SYSTEM INITIALIZATION

The Ridge Operating System software resides on secondary storage, and
during normal operation only active parts are resident in memory due to
the operation of the virtual memory system.

-11-~-

Ridge Operating System Reference Manual

System Installation

The system software 1is installed on the secondary storage using a
procedure described in the Ridge Operating System Installation Guide.
This procedure is used to build a new file system, or modify an existing
one, to include new or changed components of ROS supplied by Ridge
Computers. The result of installing ROS will be a file system with a
prototype directory structure that contains the code files of all the
system processes and utility commands,

The directory "/ROS"™ contains the files for the Kernel, Virtual Memory
Manager, Volume Manager, Directory Manager, File Manager, User Monitor,
and other code, data and queue files used by the operating system.

The directory "/usr" is the typical place new user directories are
created.

The directory "/bin" contains the most commonly used commands (in binary
executable form), while "/usr/bin" contains commands used less often.

The directory "/l1lib" generally contains library routines to be linked
with user programs,

System Load

System initialization occurs when the processor is first powered on, or
when the processor is reset by pressing the Load Switch. The operating
system goes through a procedure called "bootstrapping" during which the
necessary parts of ROS are read into memory from secondary storage.

Upon reset, the microcode of the processor sends a request to the
bootstrap device selected by the Device Switch. The bootstrap device
then reads a small block of code into memory, which contains the
Bootstrap Debugger RBUG (refer to the Ridge Bootstrap Debugger Manual).

RBUG contains a table of disc addresses and sizes of possible files to be
read into memory. By default, RBUG reads the file referred to by the
first entry, which contains the Kernel, Virtual Memory Manager, and the
Volume Manager code. Then RBUG begins executing the file just read in.

The Kernel is started, which initializes itself, and then creates the
Virtual Memory Manager and Volume Manager processes.

The Virtual Memory Manager checks the current system date and time,
requesting that a new date be entered if the date is nonsensical, as is
the case when the system is first powered on. The input format for the
date is given in the message at the terminal, and is similar to the
"date" command described later in this manual.

The Volume Manager then finds the Directory Manager code file, which has

~-12-

Ridge Operating System Reference Manual

a special internal file identifier known to the Volume Manager. The
Directory Manager process is created. The Volume Manager also creates a
process called Startup, which also has a special internal file identifier
for its code file,

The Startup process finds the file that contains the User Monitor code by
interacting with the Directory and Volume Managers to £ind "/ROS/um".
Startup creates one User Monitor process for each Ridge display attached
to the system. Each User Monitor uses a different display for its
terminal. Currently, if no display hardware exists, then a single User
Monitor is created and it uses the CRT attached to the J-1 RS-232
connector for its terminal.

Each User Monitor sets its current working directory to the root "/", and
then starts a process using the file "/bin/sh", which normally is the
Shell command interpreter. The Shell prints its prompt "$" to indicate
its readiness to accept commands.

-13-

Ridge Operating System Reference Manual

SECTION 2

COMMANDS

Commands are programs which are invoked directly by the interactive user
of the Ridge Operating System. The user interacts with a command
interpreter program, called the Shell, via a terminal. The 8Shell reads
lines of text and interprets them as requests to execute each named
command, which may be either a system-supplied utility or a user-written
program.,

USING THE TERMINAL

Most programs, including the Shell, support a simple, standard interface
to the terminal.

Type-ahead is possible, which means characters can be typed even while a
program is printing characters on the terminal. Whatever is typed will
be saved and interpreted in correct sequence. There is a generous 1limit
on the amount of type-—ahead characters; if the limit is exceeded, all the
saved characters will be thrown away.

Input from the terminal is typically line-oriented, with typed characters
echoed and accumulated until a RETURN character is typed. Typing
mistakes can be corrected in the input. The backspace character
(BACKSPACE or Control-H) erases the last character typed. Successive
uses of backspace erase characters back to, but not beyond, the beginning
of the input line.

The terminal may be used as a source of input wherever a file is
expected. The Control-C character is used to indicate end-of-file. The
input is terminated, and the Control-C character is not passed through to
the requesting program.

The DEL character is used to abort programs, such as those that run
indefinitely or produce unwanted printouts. All processes started by the
user are terminated when the DEL character is typed, except for the
original Shell created during system load.

-14-

Ridge Operating System Reference Manual

'THE SHELL

The Shell is a command interpreter that reads a text line, breaking it
into a command name and arguments, and executes the given command. When
execution of a command is complete, the Shell resumes execution and
displays a "$" prompt to indicate that it is ready for another command.

The following description provides an overview of the Shell facilities
that apply to any command that may be invoked by the user. The Shell is
a command itself, and is described in detail under the name SH later in
this section.

Command Syntax

A command line consists of a command name (the first word), and its
arguments (any other words), which are separated by spaces, as follows

command argumentl argument2 ...

Multiple commands can be placed on the same line separated by semicolons.
Each command is executed in sequence.

The name of any executable program can be used as a command. A new
process is created to execute the command, using the code file specified
by the command name. If the command name starts with w/", then that
exact pathname is wused for the code file, Otherwise, the command is
searched for first in the current working directory, then in the "/bin"
directory (standing for binary programs), and finally in the "/usr/bin"
directory where less commonly used commands reside.

The arguments collected by the Shell are made available to the program,
which can retrieve them by calling a system interface routine. Certain
arguments are interpreted specially by the Shell as described below, and
are not passed through to the executing command.

Upon termination each command returns a 32-bit word of status. By
convention, the value is zero for successful execution, or nonzero to
indicate problems such as invalid or inaccessible arguments or other
troubles encountered during execution., This status word is referred to
as the "exit code" or "return code", and is described only where special
conventions apply. The Shell currently ignores the exit code of all
commands.

An example of a simple command is
cd /usr/john
The Shell will 1look £first for the program "cd" in the current working

directory, then for the program "/bin/cd", and then for the program
"/usr/bin/cd". Assuming the system-supplied utility command "cd" is

~15-

Ridge Operating System ' Reference Manual

found, the current working directory will be changed by this command to
the argument "/usr/john",

File Name Patterns

A command argument that contains the character "*" is treated as a file
name pattern by the Shell. Each file name pattern is replaced by all the
file names that match the pattern, where each "*" in the pattern matches
zero or more characters. The 1list of matching £file names is
alphabgtically sorted, with each name becoming a separate argument to the
command.

For example, if the directory "/exam" contains the following names

asm.s
demo
demo.s
model.data
models
test.s

then the argument pattern "/exam/*m*s" would be replaced by the following
arguments

/exam/asm.s /exam/demo.s /exam/models

Standard Input/Output Redirection

Many programs that are run as commands use the terminal for both their
input and output. The Shell provides a notation that allows the input or
output to be redirected to a file or another device without requiring
changes to the program.

Each time a command is run, the Shell uses the aliasing mechanism of the
User Monitor to set up a name mapping for the three special files known
as standard input, standard output, and standard error output. Standard
input has the alias "input", standard output has the alias "output", and
standard error output has the alias "stderr". When a file is opened by
the program using one of these aliases, the alias is mapped into an
actual file name which identifies the target for input or output.

By default, the Shell sets up a mapping for all three aliases to the
device name ":termnoecho". Thus the input and output are directed to the
terminal unless special arguments interpreted by the Shell are present in
the command line. All other files are accessed explicitly by name and
generally appear as regular arguments to the command.

The Shell interprets special arguments which set the mapping of standard

input and standard output for a command. These special arguments may be
used with any command, and are interpreted by the Shell but not passed on

-16~-

Ridge Operating System Reference Manual

as arguments to the command. The symbols "<", ">", "from", or "to"
(upper or lower case) followed by a file name indicate a special
input/output redirection argument.

An argument of the form "< name" or "from name" indicates that the alias
"input" should be mapped into the string "name", thus redirecting
standard input.

An argument of the form "> name" or "to name" indicates that the alias
"output" should be mapped into the string "name", thus redirecting
standard output.

There is no Shell notation for redirecting standard error output
("stderr"), which in general remains mapped to the terminal since it is
the target of error messages meant for the interactive user.

For example, the command
1ls

lists the names of the £files in the current directory, writing its
standard output on the terminal. The command

1s >dirlist

will create a file called "dirlist" and place the listing there.

Command Files

A command file is a file that contains lines of commands which can be
executed by the Shell. Because the Shell is itself a command (called
"sh"), it can be invoked with a command file as its standard input, thus
creating a subshell that executes the commands in the file. For example,
assume the file "demos" contains the text

demol
demo?2
demo3

Then the command
sh <demos

would be the same as if the commands "demol", "demo2", and "demo3" had
been typed at the terminal.

Arqguments to the subshell can be referred to in the command file using
the positional parameters "$1", "$2", ... , "$n", where "n" is a decimal
number. As the command file is interpreted, the parameters are replaced
by the corresponding argument strings, where "$1" corresponds to the
first argument, "$2" to the second argument, and so -on. For example,
assume the file "append2" contains the text

-17~-

Ridge Operating System
Reference Manual

cat $1 >temp
cat temp $2 >$1
rm temp

where "cat" concatenates files together, and "rm" removes files. Then
the command

sh <append2 lib subr
would be equivalent to
cat 1lib >temp

cat temp subr >1lib
rm temp

-18-

Ridge Operating System ' Reference Manual

SUMMARY OF COMMANDS

The following list of system-supplied commands summarizes their usage,
and is - grouped according to function, Each command is described in
detail later in this section, where each command is listed alphabetically
in a standard format for easy reference.

File Manipulation

CAT Concatenate one or more files onto the standard output.
Print files on the terminal, or copy them to another
device,

CMP Compare two files byte-by-byte and report if they are
different.

HEXDUMP Dump arbitrary files in hexadecimal notation, byte-by-byte

with the corresponding ASCII characters if printable.
Directory Manipulation

'MKDIR Make a new directory.

RM Remove files or directories,
CD Change the current working directory.
PWD Print the pathname of the current working directory.

Status Inguiry

LS List the names of files or directories within one or more
directories. Optional information includes file size,
date last modified, permissions, and internal file
identifier.

DATE Print or set the current system date and time.

VOLMGR.TEST - Query and test the file system. Allows interactive
maintenance-level operations.

Floppy Disc Maintenance

-19-

Ridge Operating System Reference Manual

DIR

ZERO

CRUNCH

List floppy disc directory. All files are 1listed, with
file attribute information and volume space usage
indicated.

Clear floppy disc directory. Optionally format disc for
use in Ridge system.

Compact floppy disc space allocation.

Program Development Tools

EDIT

PASC
FORT

PTRANS

RASM

LINK

Interactive text editor oriented to the Ridge display.
TELEDIT is functionally similar, but oriented to the
Televideo 950 CRT. Allows creation and modification of
program sources, textual data, and other documents.

Compiler for Pascal language source programs.,

Compiler for FORTRAN language source programs.

Translator for P-code, the intermediate result of the
Pascal and FORTRAN compilers. Produces an object module
to be linked into an executable program.

Assembler for Ridge assembly language source programs.

Linker that binds several object modules into an
executable program,

Program Execution

SH

The Shell, a command interpreter.

-20-

Ridge Operating System Reference Manual

NOTATION

The following conventions are used in the description of each command's
format.

Uppercase words or characters are considered literals that are typed as
they appear. Most ©programs, including the Shell, treat lowercase as
equivalent to uppercase, so that it is possible to type literals in
either upper or lower case when actually using the commands,

Lowercase words or characters represent arguments that are given a value
by the user. Arguments such as "file" or "pathname" refer to a specific
file name that will be passed to the command.

Square brackets "[" and "]" surround items which are optional. The
brackets are not typed as part of the command; they are merely a
descriptive notation.

Ellipses "..." indicate that the preceding item may be repeated one or
more times. Ellipses are also only a descriptive notation, and do not
appear in the actual command.

Most commands employ a common convention for arguments that indicate
flags or other options. Arguments that are preceded by a minus sign "-"
are generally interpreted by the command as a flag option rather than a
file name. Commands that allow two or more flag options generally accept
either each option as a separate argument, or all options concatenated
into a single argument. For example:

~LI would be equivalent to =L ~-I

-21-

Ridge Operating System Reference Manual

CAT - concatenate and copy files

FORMAT

CAT [file ...]

DESCRIPTION

CAT reads each of the input files in sequence and writes them to the
standard output. A file can be printed on the terminal (the default
for standard output). For example:

CAT filel

copies filel to the standard output. Several files can be
concatenated together into a single file. For example:

CAT filel file2 > file3

concatenates the contents of filel and file2 together, placing the
result in file3.

If no input file is given, the standard input is read and copied to
the standard output. For example:

CAT > filel

copies the standard input (the terminal) to filel. The end of file
on the terminal is indicated by typing CONTROL-C.

NOTES
Beware of using the same file for both input and output, as in "CAT

filel file2 > filel", since opening the output file will truncate it
to zero length before it is read.

-22-

Ridge Operating System Reference Manual

CD - change current directory

FORMAT

CD directory

DESCRIPTION
CD makes directory the new current working directory. This
directory becomes the default prefix for any pathname not starting
with the root "/".

SEE ALSO

PWD

-23 -

Ridge Operating System Reference Manual

CMP - compare two files

FORMAT
CMP [-L] [-S] filel file2

DESCRIPTION

CMP compares the two files byte by byte. If no options are given,
CMP prints nothing if the files have identical contents., If they
differ, the byte number (in decimal) and the values (in hexadecimal)
of the first difference are printed on the standard output. If one
file is an initial subsequence of the other, that fact is printed.

The -L option causes the byte number and the differing values for
each difference (not just the first) to be printed.

The -S option inhibits printing in the case of differing files; only
the exit code returned by CMP is of value. Options =S and ~L are
mutually exclusive (only one may be given).

NOTES
Exit code 0 is returned for identical files, code 1 for different

files, and code 2 for any errors such as missing or invalid
arguments or inaccessible files,

-24-

Ridge Operating System Reference Manual

CRUNCH - compact floppy disc space allocation

FORMAT

CRUNCH [=L] [-R]

DESCRIPTION

CRUNCH compacts the space allocation of a floppy disc to maximize
usage of the secondary storage. Free space for new files is always
allocated at the end of the space in use; unused holes in the space
allocation are created when files are deleted or a new version of a
file is written. CRUNCH copies files from the end of the disc down
over the holes, 1leaving them in the same order, thus freeing the
unused space.

The default disc drive is the left floppy:; the -L option specifies
the left floppy, and the -R option specifies the right floppy.

SEE ALSO

DIR, RM, ZERO

' NOTES

An error message (which includes a decimal number returned by the
disc driver software) is printed if the disc is not mounted,
unreadable or unwriteable, or if the drive is not functioning
correctly.

-25-

Ridge Operating System Reference Manual

DATE - print or set the date and time

FORMAT

DATE [yymmddhhmm [. s8s]]

DESCRIPTION

DATE prints the current system date and time on the standard output
if no argument is given.

If an argument is given, the current date and time are set to that
value, and then printed on the standard output. The argument is
written as a single number, where "yy" is the last two digits of the
year; the first "mm" is the month number; "dd" is the day number in
the month; "hh" is the hour number in the 24 hour system; the second
"mm" is the minute number; and ".ss" is the seconds, which if
omitted defaults to zero. The year, month, and day may be omitted,
with the current values being the defaults. For example:

DATE 09281748

sets the date to Sep 28, 5:48 PM in the current year.
NOTES

The error message "bad conversion" is printed if the argument given
is not in the correct format.

-26-

Ridge Operating System Reference Manual

DIR - list floppy disc directory

FORMAT

DIR [-L] [-R]

DESCRIPTION

DIR lists the contents of the directory of a floppy disc on the
standard output. The listing contains the volume name and date of
creation, single/double sides and density information, and the
number of blocks on the first line. For each file in the directory,
the name, number of blocks, creation date, starting block number,
number of bytes in the last block, and the file type are listed on
following lines. The last line lists the number of files, plus used
and unused blocks in the volume.

The default disc drive is the left floppy; the -L option specifies
the left floppy, and the =R option specifies the right floppy.

SEE ALSO

CRUNCH, RM, ZERO

NOTES
An error message (which includes a decimal number returned by the

disc driver software) is printed if the disc 1is not mounted,
unreadable, or if the drive is not functioning correctly.

-27-

Ridge Operating System - Reference Manual

EDIT - display-oriented text editor

FORMAT

EDIT [file]

DESCRIPTION

EDIT is the standard text editor for the Ridge display. It uses the
special features of the Ridge display and keyboard to support
full-screen editing for program text and documents. The set of
commands and the function of EDIT are described in the Ridge Text
Editor Reference Manual.

If an argument is given, EDIT simulates an "attach" command on that
file when the editor is first started. The given file is read in so
that it can be edited.

SEE ALSO

Ridge Text Editor Reference Manual, TELEDIT

-28-

Ridge Operating System Reference Manual

FORT - FORTRAN compiler

FORMAT
FORT [-L listfile] [-0 objfile] file

DESCRIPTION

FORT is the FORTRAN compiler. FORT takes a source input file and
compiles it into an intermediate format called P-code. The source
file name must end in the extension ".S" (upper or lower case).

The resulting P-code file is suitable as input to the P-code
translator PTRANS. The default name of the P-code file is the same
as the source name, but with ".P" replacing the ".S". The -0 option
takes a file name argument which is used to explicitly specify the
P-code file name,

The -L option takes a file name argument which is used to specify
the name of a file where a listing is written. The listing includes
the compiled source, with line numbers, and any syntax errors. No
listing is produced by default.

SEE ALSO

Ridge FORTRAN Reference Manual, LINK, PTRANS

-29-

Ridge Operating System Reference Manual

HEXDUMP - hexadecimal dump

FORMAT

HEXDUMP [file ...]

DESCRIPTION

HEXDUMP reads each of the input files in sequence and prints their
contents on the standard output in hexadecimal notation. The input
bytes are printed 16 to a line, preceded by the byte number within
the file. To the right of the hexadecimal values, each byte is also
printed in ASCII, with non-printable characters appearing as a dot
" "

If no input file argument is given, the standard input is read and
dumped to the standard output.

-30-

Ridge Operating System Reference Manual

INVERT - invert display screen

FORMAT
INVERT

DESCRIPTION

INVERT complements the Ridge display screen, changing all black
pixels to white, and all white pixels to black. Screen memory bits
are not modified; instead, the display hardware is told to change
its interpretation of binary ls and 0s mapping into black and white.
This interpretation remains in effect until the next INVERT.

-3]1-

Ridge Operating System Reference Manual

LINK - object module linker

FORMAT

LINK [-H] [-L listfile] [-O objfile] file ...

DESCRIPTION

LINK combines several object files into one, resolving external
references between the object modules. The result of LINK is
usually an executable code file, with virtual addresses assigned to
the code starting at zero,

The input file arguments are concatenated in the order specified,
where the first file name must end in the extension ".0" (upper or
lower case). The default name of the resulting output file is the
same as the first file argument given without the ".0" extension.,
The -0 option takes a file name argument which is used to specify
the resulting output file.

The -~L option takes a file name argument which is used to specify
the name of a file where a listing is written. The listing includes
a list of global names with their assigned addresses, sorted both by
name and by address. No listing is produced by default.

The -H option specifies that the format of the resulting output file
is to remain in "hex" format, which can become the input to a later
LINK run. The "hex" format maintains the unresolved external
references and global names of the object modules., The default
output format is executable binary code.

SEE ALSO

FORT, PASC, PTRANS, RASM

-32-

Ridge Operating System Reference Manual

LS - list directory or file

FORMAT

LS [-I 1 [=L] [name ...]

DESCRIPTION

LS lists the contents of the directory for each directory argument.
The entries within each directory are listed in alphabetic order.
Each file argument is listed with any attributes specified by the
options. If no argument is given, the contents of the current
working directory are listed. Nothing is listed for arguments which
are nonexistent or inaccessible. The 1listing is written on the
standard output, :

‘The ~-L option indicates long format. The access mode, the number of
links, the size in bytes, and the time of 1last modification are
given for each file entry. Only the mode and number of links are
given for directory entries,

The access mode of an entry is printed as 10 characters, using the
following format. The first character is

d if the entry is a directory,
- if the entry is a file,

The other 9 characters represent three sets, each with three
permission bits. The first set specifies the permissions granted to
the owner, the second set specifies the permissions granted to
others in the same wuser group, and the third set specifies the
permissions granted to all others., Within each set, from left to
right, the three bits grant permission to read, to write, or to
execute the file as a program. For a directory, execute permission
means the permission to search the directory for a specified file.
The permission bits are

if the file is readable,

if the file is writeable,

if the file is executable,

if the permission is not granted.

I X g

The -1 option causes the internal file identifier to be 1listed in
the first column of a file entry.

NOTES

Currently, the access mode permission bits are ignored by ROS, that
is, any file can be used in any way with no checking performed.

-33-

Ridge Operating System Reference Manual

MKDIR - make directory

FORMAT

MKDIR directory ...

DESCRIPTION

MKDIR creates each of the specified directories in the order given.
SEE ALSO

LS, RM

-34-

Ridge Operating System Reference Manual

PASC - Pascal compiler

FORMAT

PASC [-L listfile] [-0 objfile] file

DESCRIPTION

PASC is the Pascal compiler. PASC takes a source input file and
compiles it into an intermediate format called P-code. The source
file name must end in the extension ".S" (upper or lower case).

The resulting P-code file is suitable as input to the P-code
translator PTRANS. The default name of the P-code file is the same
as the source name, but with ",P" replacing the ".S". The -0 option
takes a file name argument which is used to explicitly specify the
P-code file name,

The ~L option takes a file name argument which is wused to specify
the name of a file where a listing is written. The listing includes
the compiled source, with line numbers, and any syntax errors. No
listing is produced by default.

SEE ALSO

Ridge Pascal Reference Manual, LINK, PTRANS

-35-

Ridge Operating System Reference Manual

PTRANS - P-code translator

FORMAT

PTRANS [-L listfile] [-0 objfile] file

DESCRIPTION

PTRANS takes a P-code input file and translates it into an object
file. The P-code file name must end in the extension ".P" (upper or
lower case).

The resulting object file is in "hex" format (representing Ridge
machine instructions), and is suitable as input to the object module
linker LINK. The default name of the object file is the same as the
P-code name, but with ".0" replacing the ".P". The -0 option takes
a file name argument which is used to explicitly specify the object
file name,

The -L option takes a file name argument which is used to specify
the name of a file where a listing is written. The listing includes
an assembly language representation of the translated code. No
listing is produced by default,

SEE ALSO

FORT, LINK, PASC

-36~-

Ridge Operating System Reference Manual

PWD -~ print working directory

FORMAT

PWD

DESCRIPTION

PWD prints the pathname of the current working directory on the
standard output.

SEE ALSO

CD

-37 -

Ridge Operating System Reference Manual

RASM - Ridge assembler

FORMAT

RASM [-L listfile] [-O objfile] file

DESCRIPTION

RASM is the assembler for Ridge assembly 1language. RASM takes a
source input file and assembles it into an object file. The source
file name must end in the extension ",S" (upper or lower case).

Depending on an assembler directive placed in the source file, the
resulting object file can be created in one of two formats. The
object file may be either executable binary code, or it may be in
"hex" format which is suitable as input. to the object module linker
LINK. The default name of the object file is the same as the source
name, but with ".0" replacing the ".S", The -0 option takes a file
name argument which is used to explicitly specify the object file
name,

The -L option takes a file name argument which is used to specify
the name of a file where a listing is written. The listing includes
the assembly language source, with line numbers and the
corresponding hexadecimal object code. No listing is produced by
default,

SEE ALSO

Ridge Assembler Reference Manual, LINK

-38-

Ridge Operating System Reference Manual

RM - remove files or directories

FORMAT

RM name ...

DESCRIPTION
RM removes each of the named files or directories., The named entry
is deleted from the containing directory and any allocated disc
space is made available for subsequent use. A directory must be
empty to be removed.

SEE ALSO

CRUNCH, DIR, LS, MKDIR

-39-

Ridge Operating System Reference Manual

SH - shell

FORMAT

SH [argument ...]

DESCRIPTION

SH is the shell, a command interpreter that executes commands read
from the terminal or a file. As part of command interpretation, SH
accumulates command arguments, performs parameter substitution,
input/output redirection, and file name pattern matching prior to
executing each command.

The prompt "$ " is printed on the standard output before each
command is read. Commands are read from the standard input, and
echoed on the standard output. SH terminates when it encounters
end-of-file on its input,

A command is a sequence of nonblank words separated by blanks, where
a blank is either a space or a tab character, A semicolon ";"
separates commands on the same line, while a return character ends a
command and causes each command on the line to be executed
sequentially. The first word in each command specifies the file
name of the program to be executed. Any remaining words are passed
as arguments to the invoked program, unless they are interpreted by
the shell as described below. The command name is passed as
argument 0.

Within the input, the character "$" is wused to indicate a
substitutable parameter. A parameter consists of the leading "§"
concatenated with a decimal number, which stands for one of the
arguments passed to the shell when it was invoked. The
correspondence is positional, where "S$1" corresponds to the first
argument, "S$2" to the second argument, and so on., The corresponding
argument is substituted for the parameter; if there is no argument,
the parameter is replaced by the null string, effectively removing
it from the input. Parameter substitution is performed before the
input is separated into individual words, thus allowing
concatenation of the substitution with nonblank words.

The standard input and standard output of a command may be
redirected using a special notation interpreted by the shell.
Following parameter substitution, the resulting input is scanned for
the special symbols "<", ">", "FROM", or "TO" (upper or lower case),
followed by a nonblank word. The symbol "<" or "FROM" indicates
that the following word is the name of a file that should become the
standard input of the command., The symbol ">" or "TO" indicates
that the following word is the name of a file that should become the
standard output of the command. The redirection symbol and the file

-40-

Ridge

NOTES

Operating System Reference Manual

name word are not passed as arguments to the command. Input/output
redirection is performed before the command input is separated into
individual words.

After parameter substitution, input/output redirection, and
separation into individual words, each word is scanned for the
character "*", which indicates a file name pattern., Each file name
pattern is replaced with all the alphabetically sorted file names
that match the pattern, where each "*" in the pattern matches zero
or more characters. The character "/" must be matched explicitly as
part of a pathname. The special directory names "." and ".." also
must be matched explicitly. If no file name is found that matches
the pattern, the word is left as is.

A new process is created to execute the command, using the code file
specified by the command name. If the command pathname starts with
/", then that exact file name is used, Otherwise, the command is
first searched for in the current working directory, then in the
"/bin" directory, and finally in the "/usr/bin" directory.

Since SH is a command itself, it is possible to create a subshell to
execute commands read from a file. The commands within a shell
command file are executed by invoking SH with the command file as
its standard input, with any other arguments being used for
parameter substitution., For example, if the file "make" contains
the text

pasc $l.s; ptrans $l.p; link $l.0 /lib/rtl.o
then the command

sh <make prog
would cause the following commands to be executed

pasc prog.s

ptrans prog.p
link prog.o /lib/rtl.o

The message "bad syntax" from SH indicates that an input/output
redirection argument is improperly used.

The method of using command files via standard input rather than as
an argument is subject to change.

Currently, command files may not be nested more than one level; that
is, the SH command should not appear within a command file.

-41-

Ridge Operating System Reference Manual

TELEDIT - TeleVideo-oriented text editor

FORMAT

TELEDIT [file]

DESCRIPTION

TELEDIT is a text editor for the Televideo 950 CRT. It is similar
to EDIT, which is oriented to the Ridge display, but uses different
function keys and other specific features of the Televideo, allowing
editing from an RS-232 device. The set of commands and the function
of TELEDIT are described in the Ridge Text Editor Reference Manual.

If an argument is given, TELEDIT simulates an "attach" command on
that file when the editor is first started. The given file is read
in so that it can be edited.

SEE ALSO

Ridge Text Editor Reference Manual, EDIT

-—42=

Ridge Operating System Reference Manual

VOLMGR.TEST - test and query file system

FORMAT

VOLMGR, TEST

DESCRIPTION

VOLMGR.TEST is wused to test file system integrity, 1list file
allocation and disc usage, and perform maintenance-level operations
on the file system. VOLMGR.TEST is an interactive program, using

the standard input and output, with a set of self-explanatory
commands and prompts.,

NOTES

Qderies and other requests (including updating file attributes) are
performed by directly interacting with the Volume Manager, and thus

should be wused with caution to avoid destroying the file system
structure on disc.

-43-

Ridge Operating System Reference Manual

ZERO - clear floppy disc directory

FORMAT

ZERO [=F] [=L'] [=R] volumename

DESCRIPTION .
ZERO clears the directory of a floppy disc; that 1is, all file
entries are removed from the volume, leaving an empty directory.
The volume is given the indicated name (up to 7 characters).

The -F option causes the floppy disc to be formatted first; a floppy
disc must be formatted before other usage in a Ridge system.,

The default disc drive is the left floppy; the -L option specifies
the left floppy, and the -R option specifies the right floppy.

SEE ALSO

CRUNCH, DIR

NOTES

An error message (which includes a decimal number returned by the
disc driver software) 1is printed if the disc is not mounted,
unreadable or unwriteable, or if the drive is not functioning
correctly.

-44-

Ridge Operating System Reference Manual

SECTION 3
KERNEL INTERFACE

The Kernel is the lowest level of the Ridge Operating System. The Kernel
implements process creation and deletion, message-oriented interprocess
communication, memory management, and multitasking primitives. In
addition, it provides the first 1level handling of program traps and
faults, and dispatches input/output device drivers when an interrupt
occurs.

KERNEL ORGANIZATION

The Kernel routines are the only routines in the system that run in a
special processor mode called "kernel mode". Kernel mode is used to
perform all privileged activity that involves data sharing or
synchronization. In kernel mode, the processor uses real memory
addresses instead of performing address translation of virtual addresses.
Certain privileged processor instructions are valid only in kernel mode,
thus allowing the Kernel to protect user and system processes from
interfering with each other.

All other routines in the system run in "user mode" which uses virtual
addresses., User and system processes request Kernel services via a
special KCALL instruction, The KCALL instruction causes the processor to
switch from user mode to kernel mode and enter the appropriate Kernel
routine based on the instruction operand. The calling process is
suspended for the duration of the KCALL instruction. When the Kernel
routine is completed, the processor returns to user mode and execution
proceeds.

The Kernel is also entered whenever an "exception" occurs. An exception
is either a user mode program fault or trap, or an external interrupt.
Exception handling is described later in this section.

Process Management

The Kernel provides routines to create, delete and manage "processes". A
process is an instance of a running program that performs some
computational task or function. The Ridge Operating System is composed
of several system processes that manage various system resources and
provide a service interface to other client processes. Each user program
is run as an individual process that interacts with the system processes
to accomplish its task.,

A process runs in its own private environment, which includes a code
segment, a data segment and a queue segment, plus process state
information maintained in a process control block managed by the Kernel.
.The code segment contains the executable processor instructions for the
process, while the data segment contains the data (variables, stack,

-45-

Ridge Operating System - Reference Manual

heap, etc.). The queue segment is used for interprocess communication
and is only addressable by the Kernel.

Each code, data or queue segment is a full 32-bit addressable virtual
memory address space, which gives a maximum size of four gigabytes that
is demand-paged in 4096-byte blocks. The secondary storage for a segment
is usually a file, which is specified using a file identifier known to
the file system. The executable code file for a process serves as the
code segment, while the data and queue segments are usually temporary
files that exist only for the life of the process.

A process is created via the CreateProcess routine, The code, data, and
queue segments are specified, as well as the initial program counter and
traps word. A process priority is specified which is used by the Kernel
when scheduling which process is to be run. Smaller numbers indicate
higher priority. A process ID (PID) is returned by CreateProcess, which
is used in further requests to manipulate the new process. The process
which called CreateProcess becomes the "parent" of the new process, and
may receive special messages related to the status of the "child"
process.

The routines Activate and Suspend can be used to make a process active or
inactive. A process is deleted by the Kill routine, or it may delete
itself by calling the Terminate routine.

The state of each process is maintained in a memory-resident set of
process control blocks which is managed by the Kernel. The process state
includes the contents of the general registers, the program counter, the
traps word, the amount of processor time wused, and other status
information. The routines ReadProcessState and WriteProcessState allow
access to the state of a process.

A process can determine its own PID via the MyID routine. The PID of
special system processes can be found via the GetSpecialPID routine,
while SetSpecialPID is used by special processes to register themselves.

The Kernel maintains a "ready list" of the processes that are eligible to
run, sorted by process priority. All other processes are blocked from
running for various reasons, such as encountering a fault, or waiting for
a message. When the conditions causing a process to be blocked are
removed, the process is inserted into the ready list after any other
processes of the same priority.

The Kernel simply runs the highest priority process. Process scheduling
is handled by adjusting the priorities of processes or by causing the.
ready list to be modified by activating or suspending processes.

Process Communication
Processes communicate with each other via "messages”. Messages are
fixed-size blocks of data that are transferred £from one process to

another via Kernel routines. The message primitives are optimized to
make fast transfer of information between processes possible. o

—-46—

Ridge Operating System Reference Manual

Processes use messadges to synchronize their activities as well as to
share data with each other. The message mechanisms are also used by the
Kernel to indicate events such as external interrupts, faults, or traps
encountered by a process,

The queue segment of each process contains the data structures which
support messages. The data structures include "links" and "queues", plus
message buffers, which are accessed only by the Kernel routines. A link
and queue form a unidirectional channel between two processes. The 1link
is an outbound channel from one process to a queue of another process,
while the queue is an inbound channel that may receive messages via one
or more links.

Messages are buffered in a first-in-first-out manner, using data
structures and buffers maintained in the queue segment. Since the
message resources are allocated on a per process basis, the number of
links, queues, and message buffers can be matched to the needs of a
particular process. The InitQSeg routine is used to initialize a queue
segment by specifying the number of links, queues, and message buffers
for a process.

In order to receive messages, a process must create a queue via the
OpenQueue routine. In order to send messages, a process must create a
link to the specific receiver's queue via the OpenLink routine. Messages
may only be sent over valid links to a specific process, so a receiving
process does not have to be concerned with illegitimate messages or
message buffer overflow generated by an unknown sender. Queues can be
deleted via the CloseQueue routine, while 1links may be deleted via
CloseLlink.

Messages can be in one of two forms. Short 32-byte messages are
exchanged using the Send and Receive routines. Larger data transfer is
accomplished by using SendPage and ReceivePage, which include a 4096-byte
page in addition to a 32-byte message. The Test routine allows a process
to check if a queue has any messages,

When a message is sent, the Kernel accesses the queue segment ©of the
sending process to find the specified link data structure. The link
indicates where the queue segment of the receiving process is located.
The Kernel then acts as a bridge between the two separate address spaces
by transferring the message into the receiver's queue, The message is
retrieved from the queue segment of the receiver when the process calls
the Receive or ReceivePage routine,

Context switching from process to process is handled by the Kernel as a
side effect of process communication primitives., Attempting to receive a
message on an empty dqueue causes the receiver to be suspended until a
message appears, allowing other processes to run. Sending a message does
‘not suspend the sender who is free to resume execution immediately after
the Send or SendPage routine returns. However, if the sender's priority
is lower than a receiver who is waiting for a message, then the Kernel
performs a context switch to the receiving process. External interrupts
,may also cause context switching. Interrupt handling is described later
in this section,

-47-

Ridge Operating System Reference Manual

A process may need to wait for messages in several queues. Each queue
can be armed to provide a process wakeup trigger via the Arm routine, and .
then the process can call the Wait routine. The process will be
suspended until a message appears at one of the armed queues, and then it
will be activated once all higher priority processes become suspended.
Each queue can then be tested, and any outstanding messages can be
received. A queue can be disarmed via the Disarm routine.

Memory Management

The Kernel provides memory management routines that assist the system in
implementing virtual memory. The Kernel manages the Virtual to Real
Translation (VRT) table that provides a mapping of virtual addresses to
real memory addresses. Most of the memory management routines are
privileged routines that are only meant to be called by the Virtual
Memory Manager. These routines are therefore not described here.

The Kernel is the first 1level handler for page faults, which are
references to a virtual memory page that is not currently mapped to a
real memory page. When a process encounters a page fault, it is
suspended and the Kernel causes a message to be sent to the Virtual
Memory Manager. After the fault has been handled by causing the
appropriate page to be read in from secondary storage, the Virtual Memory
Manager calls a Kernel routine that makes the faulting process ready to
resume execution,

In some cases while executing a Kernel routine entered via a KCALL
instruction, the Kernel may need to reference a virtual memory address of
a process and thus may cause a page fault. When this happens, the
registers are restored and the user process program counter is reset to
point to the KCALL instruction. Thus, when the page fault is handled and
the process is resumed, the KCALL will be executed again. By restarting
the KCALL from the beginning the process state manipulation is greatly
simplified, and all Kernel operations can be treated as atomic.

There are several memory management routines that may be applicable to
special processes such as device drivers. The Trans routine is used to
translate a virtual address into a real address. A real memory address
might be necessary when setting up a peripheral device. The Flush
routine causes a portion of the address space of a process to be written
to secondary storage. The pages of memory that have become "dirty" due
to write references can be flushed to secondary storage, for instance, to
insure that <changes to data structures also appear on a non-volatile
storage medium,

The Fix routine is wused to 1lock a virtual page in memory, making it
always resident. Locking part of the queue segment is necessary to
insure that messages denerated by the Kernel are not lost for special
events such as external interrupts or faults., Pages can be unlocked by
the Free routine,

-48-

Ridge Operating System Reference Manual

'Exception Handling

Abnormal execution of a processor instruction is termed an "exception".
This may be caused by an error in the instruction which causes a trap, by
a page fault, by an external interrupt from a peripheral device, or by
some other wunusual condition. The occurence of an exception will cause
the processor operating in user mode to switch to kernel mode and begin
execution of a specific Kernel routine which depends on the exception.
See the Ridge Processor Reference Manual for a description of the
possible exceptions and the processor's response.

The Kernel provides the first 1level handling of interrupts from
peripheral devices by getting the 1I/0 1Interrupt Read word from the
hardware which includes the device 1ID. A device driver process can
associate itself with a particular device via the AcquireDevice routine
and then automatically receive a message from the Kernel when an
interrupt occurs, The driver's queue must be locked in memory so that
messages are not discarded.

When an interrupt occurs for a device that has an associated interrupt
process, the Kernel formats a message containing the device ID and the
I/0 Interrupt Read word and places it into the queue of the interrupt
process. If the interrupt occurs for a process of higher priority than
the currently executing process, the current process is suspended and the
interrupt process begins executing. The ReleaseDevice routine breaks the
association of an interrupt process with a device.

An error encountered during the execution of an instruction generally
causes a trap. Some traps can be enabled or disabled by the traps word
which is part of the state of a process. The traps word of a process is
initialized as part of the CreateProcess routine, and can be accessed by
the ReadProcessState and WriteProcessState routines.

When a trap occurs, the current process is suspended and then the Kernel
sends a message to the parent process of the process that caused the
trap. The parent process is responsible for handling the trap, and may
resume the child process via Activate, or decide to Kill the process
depending on the trap.

All other exceptions, such as page faults, power fail warnings, Switch 0
interrupts, and timer interrupts are handled by the Kernel in special
ways and are not described here.

Time PFunctions

The Kernel provides several routines that allow access to time functions
supported by the processor. The Runtime routine returns the current
number of milliseconds used by the calling process. The TimeOfDay
routine returns a 64-bit number that represents the system date and time
in terms of nanoseconds since the start of the year 1900. The 64-bit

-49-

Ridge Operating System Reference Manual

"timestamp" can be used to create unique internal identifiers. The
SetTimeOfDay routine allows the system date and time to be set.

-50-

Ridge Operating System Reference Manual

'KERNEL INTERFACE DATA STRUCTURES

The Kernel interface routines have arguments that can be defined in terms
of several data structures. The following Pascal type definitions
describe these data structures, and are assumed in the description of
each of the routines found later in this section.

The packing option must be used in Pascal programs that call Kernel
routines which use types that are affected by the packing option, such as

Boolean or Halfword. See the Ridge Pascal Reference Manual for
information on packing of data.

Halfword = 0,.65535;
A Halfword is 16 bits.

Double = Set of 0..63;

A Double is a 64-bit double word that is normally treated as just a
string of bits.

Error = Integer;
An Error is a status that is returned by most interface routines. The
value zero indicates successful completion, while nonzero values indicate
some failure. Each routine may define specific values to indicate
certain errors.

ProcessID = Integer;
A ProcessID is an identifier for a process which is returned when a
process is created. Further manipulation of the process requires the
ProcesslD.

Link = Integer;

A Link is an identifier for an outbound channel which is used to send a
message to another process.,

Queue = Integer;

A Queue is an identifier for an inbound channel which is used to receive
messages from other processes.

-51-

Ridge Operating System Reference Manual

Message = Array [0..7] of Integer;

A Message is 8 words of data that are sent or received by the
communication routines. The Message array must be double-word aligned
(start at an address that is a multiple of 8).

VirtualAddress = Integer;

A VirtualAddress 1is a virtual address within a code, data or queue
segment.

PageAddress = Integer;

A PageAddress contains the virtual address of a 4096-byte page, which
must be aligned on a page boundary.

SegmentID = Integer;

A SegmentID identifies either the code, data or queue segment of a
process., The value 0 specifies the code segment, 1 specifies the data
segment, and 2 specifies the queue segment.

DeviceNumber = Integer;

A DeviceNumber identifies a peripheral device. The possible values 0 to
255 correspond to the device numbers that are set on a device controller
and are used by the input/output hardware.

TimeStamp = Double;

A TimeStamp is an encoding of a date and time. It represents the number
of nanoseconds since the beginning of the year 1900.

FileID - = Double;

A FileID 1is an internal file identifier wused by the file system to
specify a particular file.

Traps = Set of
(TDebug,T1,T72,73,T74,75,T6,T7,T8,
T™,T10,711,T12,T13,T14,T15,
TIntOvflow,TIntDiv0,TRealOvflow,
TRealUflow,TRealDiv0,T21,T22,
T23,T24,T725,T26 ,T727,T728,T29,T30,
TPriv) ;

The Traps word contains 32 bits that enable or disable some processor
exceptions for a each process (refer to the Ridge Processor Reference
Manual) . If the named bit is in the set (represented by a 1 bit), then
the corresponding trap is enabled.

The TPriv bit is enabled to allow a process to execute privileged

-52-

Ridge Operating System Reference Manual

instructions or call privileged Kernel routines, The TIntOvflow,
TIntDiv0, TRealOvflow, TRealUflow, and TRealDiv0 bits enable traps on
integer and floating point arithmetic operations resulting in overflow,
underflow, or division by zero. The TDebug bit is used with the TRAP
processor instruction by a debugger to implement software breakpoints.

The other bits are currently unused by ROS.

PProcessState = " ProcessState;

ProcessState = Record
register : Array [0..15] of Integer;
pc : Integer;
parent : ProcesslID;
trapBits : Traps;
runTime : Integer;
status ¢ Integer;
priority : Integer;
msgWait : Integer;

end;

The ProcessState structure is used to access information about the state
of a process. The structure must be double-word aligned, and must not
cross a page boundary.

The "register" array contains the contents of the general registers,
while "pc" contains the current program counter. The "parent" is the
iprocess which created the specified process, and may be notified in the
event of a fault or termination of the child process. The "trapBits"
contains the traps word, and "runTime" contains the number of
milliseconds of processor time used by the process,

The "status" of a process is only meaningful to the Kernel and the
virtual memory system, The ‘"priority" of a process is used when
scheduling processes, with smaller numbers indicating higher priority.
The "msgWait" flag is nonzero if the process is waiting for a message.

-53~

Ridge Operating System Reference Manual

KERNEL ROUTINES

The following list of Kernel interface routines summarizes their usage,
and is grouped according to function, Each routine is described in
detail later in this section, where each routine is listed alphabetically
in a standard format for easy reference.

Certain routines may only be executed by "privileged" processes, and are
so indicated in the detailed descriptions. Privileged processes must
have the privileged mode bit "TPriv" on in the traps word. Attempted
execution of a privileged routine by a non-privileged process results in
an error being returned from the routine to the caller.

Process Management

CreateProcess Create a new process. Specify a code, data, and queue
segment, plus initial program counter, traps word, and

priority.
Activate Activate a process, allowing it to resume execution.
Suspend Suspend a process, making it ineligible to execute.
Kill Delete a process.,
Terminate Delete the process of the caller, returning an exit code

to the parent process.

ReadProcessState
Get the current state information of a process.

WriteProcessState
Modify the current state information of a process.

MyID Get the process ID of the caller.

GetSpecialPID Get the process ID of a special process.

SetSpecialPID Register the process ID of a special process with the
Kernel.

Process Communication

InitQSeg Initialize the queue segment of a process, Specify the
number of links, queues, messages and pages to allocate.

OpenLink Open a message link to a process,

-54-

Ridge Operating System

.CloseLink
OpenQueue
CloseQueue
Send
SendPage
Receive
ReceivePage
Test

Arm

Disarm

Wait

DeleteMessage

Reference Manual

Close a 1link.

Open a queue for receipt of incoming messages.
Close a queue.

Send a message to a process,

Send a message and a data page to a process.
Receive a message from a process.

Receive a message and a data page from a process.
Check if a message is available in a queue.

Arm a queue to trigger a wakeup when a message arrives on
the queue.

Disarm the wakeup trigger from a queue.

Memory Management

Fix

Free

Flush

Trans

Wait for a message to arrive. Suspends the process until
some armed queue receives a message.

Delete a message from a queue.

Fix a virtual page in memory. Locks a page within the

code, data, or queue segment into real memory.
Free a locked page in memory.

Flush a part of virtual memory to secondary storage.
Forces any modified pages to be written out.

Translate a virtual address to a real memory address.

Device Management

AcquireDevice

ReleaseDevice

Acquire an external device,
calling process.
messages.

associating it with the
Specify a queue for receiving interrupt

Release an external device.

-55=

Ridge Operating System

Time Functions

Runtime Get the
TimeOfDay Get the

SetTimeOfDay Set the

process runtime in milliseconds.
current system date and time.

current system date and time,

-56-

Reference Manual

Ridge Operating System Reference Manual

Assembler Interface Notation

The definition of the Kernel interface routines is given in Pascal. In
addition, each description contains an assembly language level interface
specification,

Kernel functions are invoked by the KCALL instruction, which has an
operand with a value from 0 to 255 which specifies which operation is to
be performed. Parameters are passed via the general registers RO through
Rl11l, which may be modified by the Kernel. Registers R12 through R15
remain unmodified by any KCALL. The Pascal-callable routines are
actually small assembly language routines that copy the parameters from
the Pascal stack to the registers, execute the appropriate KCALL, and
then return to the caller.

In the ASSEMBLER part of each routine's description, the KCALL operand
number is given in decimal, preceded by the input parameters and followed
by the output parameters. The parameters are given with the name of the
register followed by the associated parameter name from the Pascal
definition. Register Rll always contains the status after a KCALL, which
corresponds to the "Error" value returned by a Pascal function.

Error Return Codes

In the detailed description of each routine, error return codes are
specified symbolically. An error code always starts with the characters
"Er", as in "ErQueueFull". The mapping of these symbols to actual
integer values, plus a brief description of each error, is contained in
the Appendix.

-57-

Ridge Operating System Reference Manual

AcquireDevice - acquire an external device

FORMAT

FUNCTION AcquireDevice (dev : DeviceNumber;
interruptQ : Queue) : Error;

DESCRIPTION

AcquireDevice is used by a process to notify the Kernel that it
wants to receive interrupt messages from a particular peripheral
device. The device number "dev" is a number from 0 to 255 that
corresponds to the hardware device identifier of a peripheral
controller.

A queue "interruptQ" is specified where interrupt messages should be
placed. To guarantee that interrupt messages are not discarded, the
portion of the queue segment that contains the interrupt queue data
structures (usually page zero at least) must be locked in memory.

ASSEMBLER

RO: dev
Rl: interruptQ
KCALL 41

SEE ALSO

NOTES

Fix, ReleaseDevice

ErNotPriv is returned if the caller is a non-privileged process.

ErInvDevice 1is returned if the device number is not valid, while
ErDevicelInUse is returned if the device has already been acquired by
another process.,

ErInvQueue is returned if the interrupt queue is not valid.

-58=~

Ridge Operating System Reference Manual

Activate - activate a process

FORMAT

FUNCTION Activate (pID : ProcessID) : Error;

DESCRIPTION
Activate will make a suspended process "pID" eligible to resume
execution, A process is inactive when first created, and must be
activated before it begins running. A process may become inactive
as the result of a Suspend call.
A newly activated process is inserted on the ready 1list after all
other processes of the same priority. If the process to be
activated is higher priority than the caller, the newly activated
process will start executing instead of the caller.
A process which is waiting for a page fault to complete or a message
to appear will not start running until the condition it is waiting
for becomes satisfied., It is not considered an error to Activate an
already active process.

ASSEMBLER
RO: pID
KCALL 16

SEE ALSO

CreateProcess, Kill, Suspend

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErInvProc is returned if the process ID is not valid.

-59-

Ridge Operating System Reference Manual

Arm - arm a queue to trigger wakeup

FORMAT

FUNCTION Arm (g : Queue) : Error;

DESCRIPTION

A process may need to wait for a message to appear in one of several
different queues at the same time. Arm is called for each queue "g"
that is to trigger a wakeup. Then the process calls the Wait
routine, and will be suspended until a message appears in one of the
armed queues,

In order for a queue to retain its armed status, the Test routine
must be used after waiting to insure that a message exists before
the Receive or ReceivePage routine is called.

ASSEMBLER

R8: g
KCALL 6

SEE ALSO

NOTES

Disarm, Receive, Test, Wait

ErInvQueue is returned if the queue is not valid.

-60-

Ridge Operating System Reference Manual

CloseLink -~ close a link

FORMAT

ProcesslID;

FUNCTION CloseLink (pID :
¢+ Link) : Error;

1
DESCRIPTION
CloseLink closes the link "1" for the process "pID".
Any messages sent on the link prior to the CloseLink call may still
be received by the receiving process. A 1link is automatically
closed if the corresponding queue is closed.
ASSEMBLER
RO: pID
Rl: 1
KCALL 22
SEE ALSO

CloseQueue, OpenLink

NOTES
ErNotPriv is returned if the caller is a non-privileged process.
ErInvProc is returned if the process ID is not valid.

ErInvlLink is returned if the link is not valid.

-61-

Ridge Operating System Reference Manual

CloseQueue - close a queue

FORMAT
FUNCTION CloseQueue (pID : ProcesslID;
g : Queue) : Error;
DESCRIPTION
CloseQueue closes the queue "g" for the process "pID".
Any messages in the queue waiting to be received will be discarded.
A1l 1links to the queue are closed automatically, which involves
modifying the queue segment of each process linked to the queue.
ASSEMBLER
RO: pID
Rl: g
KCALL 21
SEE ALSO

CloseLink, OpenQueue

NOTES
ErNotPriv is returned if the caller is a non-privileged process.
ErInvProc is returned if the process ID is not valid.

ErInvQueue is returned if the queue is not valid.

-62-

Ridge Operating System

Reference Manual

CreateProcess - create a new process

FORMAT

FUNCTION CreateProcess (codeFile : FileID;
dataFile : FilelD;
queueFile : FilelD;
pc : Integer;
priority : Integer;
trapBits : Traps;

var pID : ProcesslD) : Error;

DESCRIPTION

CreateProcess creates a new process. The code, data, and gqueue
segments for the process are specified as the file identifiers
"codeFile", "dataFile", and "queueFile", respectively.

The process is initially suspended, and the contents of the general
registers are undefined. The initial program counter is specified
as "pc", which is the address in the code segment where execution
begins when the process is activated. The initial traps word is
given by "trapBits". Only a privileged process can create another
privileged process.

An initial process priority is specified in "priority" which is used
when scheduling which process is to be run. Smaller values indicate
higher priority.

The process identifier "pID" is returned, which is used in further
requests to manipulate the process. The process which calls
CreateProcess becomes the "parent" of the new process, and may
receive special messages related to the status of the "chilg"
process.

ASSEMBLER

RO,Rl: codeFile
R2,R3: dataFile
R4 ,R5: gueueFile
R6: pc

R7: priority

R8: trapBits
KCALL 15

RO: pID

SEE ALSO

Activate,

InitQSeg, Kill, Suspend

-63-

Ridge Operating System Reference Manual

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErNoProcBlock is returned if all of the process control blocks are
in use.,

ErNoFreeSegments is returned if all of the segment identifiers are
in use,

-64-

Ridge Operating System Reference Manual

DeleteMessage - delete a message from a queue

FORMAT

FUNCTION DeleteMessage (g : Queue) : Error;

DESCRIPTION

DeleteMessage deletes a message from queue "g". The next message to
be received, along with any associated page of data, is discarded.

Typically, DeleteMessage is used when a message arrives with a data
page attached when no page is expected, and the receiver does not
want to receive the page.

ASSEMBLER
R8: g
KCALL 35

SEE ALSO

Receive, Test

NOTES
ErInvQueue is returned if the queue is not valid.

ErQueueEmpty is returned if the queue is empty.

-65-

Ridge Operating System Reference Manual

Disarm - disarm the trigger from a queue

FORMAT

FUNCTION Disarm (g : Queue) : Error;

DESCRIPTION
Disarm removes the wakeup trigger for queue "q". After Disarm
returns, newly arriving messages on the specified queue will not
cause the process which calls Wait to wakeup.

ASSEMBLER
R8: g
KCALL 7

SEE ALSO

Arm, Wait

NOTES

ErInvQueue is returned if the queue is not valid.

-66~—

Ridge Operating System Reference Manual

Fix - fix a page in memory

FORMAT

FUNCTION Fix (seg : SegmentlID;
addr : VirtualAddress) : Error;

DESCRIPTION
Fix locks the virtual page which contains the address "addr" into
real memory. The specified page is in the code segment ("seg" is
0), the data segment ("seg" is 1), or the queue segment ("seg" is 2)
of the calling process.

The locked virtual page remains in memory, and does not move or
become unmapped by the virtual memory system.

ASSEMBLER
R2: seg
R3: addr
KCALL 37
SEE ALSO

AcquireDevice, Free, Trans

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErInvSeg is returned if the segment selector is other than 0, 1, or
2,

ErNoFreePages is returned if not enough real memory pages would
remain as a result of fixing the desired page.

-67-

Ridge Operating System Reference Manual

Flush - flush virtual memory to secondary storage

FORMAT

FUNCTION Flush (seg : SegmentID;
lowAddr : VirtualAddress;
highAddr : VirtualAddress) : Error;

DESCRIPTION

Flush <causes a portion of the virtual memory segment "seg" to be
written to its corresponding secondary storage. The data segment
(if "seg" is 1) or the queue segment (if "seg" is 2) of the calling
process is flushed. The code segment is never modified, so Flush
does nothing if "seg" is 0.

Any pages that include the addresses from "lowAddr" to "highAddr",
inclusively, are written out if any modification to them has
occurred in real memory. This forces the secondary storage to
reflect the updated contents of those pages.

ASSEMBLER

NOTES

R2: seg
R3: lowAddr
R4: highAddr
KCALL 34

ErInvSeg is returned if the segment selector is other than 0, 1, or
2.

-68-

Ridge Operating System Reference Manual

Free - free a page in memory

FORMAT

FUNCTION Free (seg : SegmentlID;
addr : VirtualAddress) : Error;

DESCRIPTION
Free unlocks the virtual page which contains the address "addr" from
real memory. The specified page is in the code segment ("seg" |is
0), the data segment ("seg" is 1), or the queue segment ("seg" is 2)
of the calling process.

The unlocked virtual page becomes available for use by the virtual
memory system.

ASSEMBLER
R2: seg
R3: addr
KCALL 38
SEE ALSO

Fix

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErInvSeg is returned if the segment selector is other than 0, 1, or
2.

ErPageNotReserved is returned if the page was not locked.

-69-

Ridge Operating System Reference Manual

GetSpecialPID - get a special process ID

FORMAT

FUNCTION GetSpecialPID (genericID : Integer;
var pID : ProcessID) : Error;

DESCRIPTION
GetSpecialPID allows a process to find the process ID of certain
special system processes, The "pID" of the Volume Manager is
returned if ‘“"genericID" is 1, while the "pID" of the Directory
Manager is returned if "genericID" is 2.
The allocation of the generic identifiers must be coordinated by the
processes using them as the Kernel attaches no meaning to them.
This interface is subject to change.

ASSEMBLER
RO: genericlID
KCALL 44
RO: pID

SEE ALSO

MyID, SetSpecialPID

NOTES

ErBadSpecialPID is returned if the generic ID is invalid.

-70-

Ridge Operating System

InitQSeg - initialize a queue segment

FORMAT

FUNCTION InitQSeg (pID : ProcessID;
numLinks : Integer;
numQueues : Integer;
numMsgs : Integer;
numPages : Integer)

DESCRIPTION

Reference Manual

InitQSeg initializes the queue segment for the process "pID". The
gueue segment data structures must be initialized before any
interprocess communication with the process can take place, and
before any queues or links are opened.

The maximum number of outgoing links which may be opened for the
process is specified in "numLinks". The maximum number of queues
which may be opened for the process is specified in "numQueues".

The maximum number of messages which can be buffered by all of the
queues open at one time is specified in "numMsgs". Each open queue
is allocated a given number of these message buffers by OpenQueue.

The maximum number of data pages associated with messages which can
be buffered at one time is specified in "numPages". The pool of
data page buffers is shared dynamically by all the open queues of a
process.,

ASSEMBLER

RO: pID

Rl: numLinks
R2: numQueues
R3: numMsgs
R4: numPages
KCALL 24

SEE ALSO

CreateProcess, OpenLink, OpenQueue

NOTES

ErNotPriv is returned if the caller is a non-privileged process.

ErInvProc is returned if the process ID is not valid.

-71-

Ridge Operating System Reference Manual
ErTooManyLinks is returned if the given number of links will not fit
in a page. Currently, the maximum number of links is 255,

ErTooManyQueues is returned if the given number of queues will not
fit in a page. Currently, the maximum number of queues is 127.

ErTooManyPages is returned if the page pool data structure will not
fit in a page. Currently, the maximum number of pages is 255.

-72-

Ridge Operating System ‘ Reference Manual

Kill - delete a process

FORMAT

FUNCTION Kill (pID : ProcesslD) : Error;

DESCRIPTION
Kill destroys the specified process "pID". The process may be
active or suspended, and is terminated immediately. All 1links and
queues owned by the process are closed.

A message is sent to the parent of the process indicating the
process has terminated.

ASSEMBLER

RO: pID
KCALL 18

SEE ALSO

CreateProcess, Terminate

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErInvProc is returned if the process ID is not valid.

-73-

Ridge Operating System

MyID - get the process ID of the caller

FORMAT

FUNCTION MyID : ProcesslD;

DESCRIPTION

MyID returns the process ID of the caller.
ASSEMBLER

KCALL 23

RO: MyID
SEE ALSO

GetSpecialPID, SetSpecialPID

-74~

Reference Manual

Ridge Operating System Reference Manual

OpenLink - open a link

FORMAT
FUNCTION OpenLink (sender : ProcesslID;
receiver : ProcesslID;
d : Queue;
var 1 : Link) : Error;
DESCRIPTION
OpenLink creates a 1link from the sending process "sender" to the
queue "g" in the receiving process "receiver". Messages may then be
sent on the link "1" returned by OpenLink.
ASSEMBLER
RO: sender
Rl: receiver
R2: g
KCALL 20
RO: 1
'SEE ALSO

CloseLink, InitQSeg, Send

NOTES
ErNotPriv is returned if the caller is a non-privileged process.

ErInvProc is returned if either the sender or receiver process IDs
are invalid,

ErInvQueue is returned if the receiver's queue is not valid.

ErNoFreeLinks is returned if there is no unused link in the sender.

-75=

Ridge Operating System Reference Manual

OpenQueue - open a queue

FORMAT
FUNCTION OpenQueue (pID : ProcesslD;
numMsgs : Integer;
var q : Queue) : Error;
DESCRIPTION
OpenQueue creates a queue in the process "pID" which is wused for
receiving messages. The queue holds messages sent over a link which
have not yet been received., The number of message buffers to
allocate for the queue is specified in "numMsgs".
The queue "g" is returned, which is used to receive messages from
processes that have links established to the open queue. The queue
may have any number of links attached to it.
ASSEMBLER
RO: pID
R1l: numMsgs
KCALL 19
RO: g
SEE ALSO

CloseQueue, InitQSeg, Receive

NOTES
ErNotPriv is returned if the caller is a non-privileged process.
ErInvProc is returned if the process ID is not valid.

ErNoFreeQueues is returned if there is no unused queue in the
receiver,

ErTooManyMessages is returned if there are not enough unused message
buffers.

-76-

Ridge Operating System Reference Manual

ReadProcessState - get the state of a process

FORMAT
FUNCTION ReadProcessState (pID : ProcesslID;
state : PProcessState) : Error;
DESCRIPTION
ReadProcessState is used to determine the current state of process
"pID". The process state includes the general registers, program
counter, and the traps word of the process. The parent process, the
priority, process runtime, and other status is also returned.
ReadProcessState places a block of information into the data area
specified by "state". The ProcessState record is described earlier
in this section,
ASSEMBLER
RO: pID
Rl: state
KCALL 39
SEE ALSO

WriteProcessState

NOTES
ErNotPriv is returned if the caller is a non-privileged process.
ErInvProc is returned if the process ID is not valid.

ErBadPCBPointer is returned if the ProcessState record is improperly
aligned, or the data structure crosses a page boundary.

-77 =

Ridge Operating System Reference Manual

Receive = receive a message

FORMAT
FUNCTION Receive (g : Queue;
var msg : Message;
var sender : ProcessID) : Error;

DESCRIPTION

Receive returns the next message "msg" from the queue "q". The
process ID of the sending process is returned in "sender".

If the message had no data page associated with it, the message is
then removed from the queue. If the message did have a data page
associated with it, the message portion is returned to the «caller
but an error is given. The message is not removed from the queue so
that it can be returned by a subsequent ReceivePage call.

If the queue has no messages in it, then the calling process is
suspended until a message arrives.,

ASSEMBLER
R8:
KCALL 2
RO-R7: msg
R8: sender

SEE ALSO

ReceivePage, Send, SendPage, Test

NOTES

Attempting to receive a message on an empty queue that is armed for
wakeup will lose the armed trigger status.

ErInvQueue is returned if the queue is not valid.

ErPageSent is returned if the message returned has a data page
associated with it.

-78-

Ridge Operating System Reference Manual

ReceivePage - receive a message and a data page

FORMAT

FUNCTION ReceivePage (g : Queue;
var msg : Message;
dataPage : PageAddress;
var sender : ProcessID) : Error;

DESCRIPTION

ReceivePage returns the next message "msg" from the queue "q", plus
any associated data page. The process ID of the sending process is
returned in "sender".

If the message had a data page associated with it, the contents of
the page is placed at the address specified in "dataPage". If the
message had no data page associated with it, the message portion is
returned to the caller and an error is given., In either case, the
message is then removed from the queue.

If the queue has no messages in it, then the calling process is
suspended until a message arrives.

' ASSEMBLER
R8: g
R9: dataPage
KCALL 4
RO-R7: msg
R8: sender
SEE ALSO

Receive, Send, SendPage, Test

NOTES

Attempting to receive a message on an empty queue that is armed for
wakeup will lose the armed trigger status.

ErInvQueue is returned if the queue is not valid.

ErNoPageSent is returned if the next message in the queue does not
have a data page associated with it.

ErNotPageBound is returned if the page address is not aligned on a
page boundary.

-79-

Ridge Operating System | Reference Manual

ReleaseDevice - release an external device

FORMAT

FUNCTION ReleaseDevice (dev : DeviceNumber) : Error;

DESCRIPTION

ReleaseDevice breaks the association of the calling interrupt
handling process with the peripheral device "dev". The device
number is a value from 0 to 255 that corresponds to the hardware
device identifier of a peripheral controller.

After ReleaseDevice returns, no more interrupt messages for the
device will be sent to the calling process. The calling process can
then unlock pages associated with interrupt messages or input/output
for the device.

ASSEMBLER

RO: dev
KCALL 42

SEE ALSO

NOTES

AcquireDevice, Free

ErNotPriv is returned if the caller is a non-privileged process.

ErInvDevice is returned if the device number is invalid or not
acquired by the calling process.

-80-

Ridge Operating System Reference Manual

Runtime - get the process runtime

FORMAT

FUNCTION Runtime : Integer;

DESCRIPTION

Runtime returns the runtime of the calling process., The runtime is
the number of milliseconds used by the process since its creation.

ASSEMBLER
KCALL 25
RO: Runtime
SEE ALSO

TimeOfDay

-81-

Ridge Operating System Reference Manual

Send - send a message

FORMAT
FUNCTION Send (1 : Link;
var msg : Message) : Error;
DESCRIPTION

Send sends the message "msg" using the link "1", The message is
placed in the queue of the receiving process.

If the receiving process is waiting for a message on the queue, and
is higher priority than the sending process, then the sender is
suspended.

ASSEMBLER
R0-R7: msg
R8: 1
KCALL 1

SEE ALSO

Receive, ReceivePage, SendPage

NOTES
ErInvLink is returned if the link is not valid.
ErRcvrDead is returned if the receiving process has terminated.

ErQueueFull is returned if the receiver's queue is full, and the
message is discarded.

-82-

Ridge Operating System Reference Manual

SendPage - send a message and a data page

FORMAT

FUNCTION SendPage (1 : Link;
var msg : Message;
dataPage : PageAddress) : Error;

DESCRIPTION
SendPage sends the message "msg" and the associated data page
specified by "dataPage" wusing the link "1". The message and the
data page are copied to the queue of the receiving process. The
content of the data page in the sender's data segment is not
modified.
If the receiving process is waiting for a message on the queue, and
is higher priority than the sending process, then the sender is
suspended.

ASSEMBLER
RO-R7: msg
R8: 1
R9: dataPage
KCALL 3

SEE ALSO

Receive, ReceivePage, Send

NOTES
ErInvLink is returned if the link is not valid.
ErRcvrDead is returned if the receiving process has terminated.

ErQueueFull is returned if the receiver's queue is full, and the
message is discarded.

ErNoPageRoom is returned if the receiver's data page pool is full,
and the message is discarded.

-83-

Ridge Operating System Reference Manual

SetSpecialPID - set a special process ID

FORMAT

FUNCTION SetSpecialPID (genericID : Integer;
pID : ProcesslID) : Error;

DESCRIPTION
SetSpecialPID is used to register the process ID of certain special
system processes, which can then be accessed by other processes.
The "pID" of the Volume Manager is registered if "genericlD" is 1,
while the "pID" of the Directory Manager is registered if
"genericID" is 2.
The allocation of the generic identifiers must be coordinated by the
processes using them as the Kernel attaches no meaning to them.
This interface is subject to change.

ASSEMBLER
RO: genericlD
Rl: pID
KCALL 43

SEE ALSO

GetSpecialPID, MyID

NOTES
ErNotPriv is returned if the caller is a non-privileged process.
ErBadSpecialPID is returned if the genericID is not valid.
ErInvProc is returned if the process ID is not valid.

ErSpecialPIDInUse is returned if the genericID has already been
registered.

-84-

Ridge Operating System Reference Manual

SetTimeOfDay - set the system date and time

FORMAT

FUNCTION SetTimeOfDay (time : TimeStamp) : Error;

DESCRIPTION

SetTimeOfDay sets the current system date and time. The "time"

the number of nanoseconds since the start of the year 1900.
ASSEMBLER

RO,R1l: time

KCALL 27
SEE ALSO

TimeOfDay

NOTES

ErNotPriv is returned if the caller is a non-privileged process.

-85-

is

Ridge Operating System Reference Manual

Suspend - suspend a process

FORMAT

FUNCTION Suspend (pID : ProcessID) : Error;

DESCRIPTION

Suspend makes the process "pID" ineligble to execute, removing it
from the ready list.

The process will be suspended until a subsequent Activate call is
made to reactivate the process. It is not considered an error to
Suspend an already suspended process.

ASSEMBLER
RO: pID
KCALL 17

SEE ALSO

Activate, CreateProcess, Kill

NOTES

ErNotPriv is returned if the caller is a non-privileged process.

-86-

Ridge Operating System Reference Manual

Terminate - delete the process of the caller

FORMAT

PROCEDURE Terminate (errorCode : Error);

DESCRIPTION

Terminate is the normal method of deleting the calling process when
the process is finished.

The exit code "errorCode" is returned in a message to the parent of
the process, notifying the parent of the termination. By
convention, the value zero indicates successful completion, while
nonzero values indicate some type of error.

ASSEMBLER
RO: errorCode
KCALL 33

SEE ALSO

Kill

NOTES

This routine never returns to the calling process.

-87-

Ridge Operating System Reference Manual

Test - check if a message is available

FORMAT

FUNCTION Test (g : Queue) : Error;

DESCRIPTION
Test examines the queue "q" to see if a message is available.

The status returned indicates whether the queue is empty, or if the
first message in the queue has a data page associated with it.

ASSEMBLER
R8: g
KCALL 5

SEE ALSO

Arm, Receive, ReceivePage, Wait

NOTES
ErInvQueue is returned if the queue is not valid.
ErQueueEmpty is returned if the queue is empty.

ErNoPageSent is returned if a message is available, and it does not
have a data page associated with it.

ErPageSent is returned if a message is available, and it has a data
page associated with it.

-88-~

Ridge Operating System Reference Manual

TimeOfDay - get the system date and time

FORMAT

FUNCTION TimeOfDay : TimeStamp;

DESCRIPTION

TimeOfDay returns the current system date and time. The date and
time are encoded as the number of nanoseconds since the start of the
year 1900.

Different, increasing values will be returned for each successive
call to TimeOfDay from any process in the system.

ASSEMBLER
KCALL 26
RO,Rl: TimeOfDay

SEE ALSO

Runtime, SetTimeOfDay

~-89-

Ridge Operating System Reference Manual

Trans -~ translate a virtual address to a real address

FORMAT

FUNCTION Trans (virtualAddr : VirtualAddress;
dirty : Boolean;
var realAddr : VirtualAddress) : Error;

DESCRIPTION

Trans translates a virtual address in the data segment of the
calling process into the real address in memory that currently maps
the virtual page. The virtual address "virtualAddr" is translated,
and the real memory address is returned in "realAddr". The virtual
page should first be locked in memory, so that the translation will
not later be made invalid by the virtual memory system.

If "dirty" is True, then the modified bit for the virtual page will
be set in the VRT, otherwise, it is not changed. The modified bit
for the page reflects whether the memory contents have been changed.
ASSEMBLER
RO: virtualAddr
Rl: dirty
KCALL 32
RO: reallAddr
SEE ALSO

Fix

NOTES

ErNotPriv is returned if the caller is a non-privileged process.

-90-

Ridge Operating System Reference Manual

Wait - wait for a message

FORMAT

PROCEDURE Wait;

DESCRIPTION

Wait suspends the calling process until a message arrives on an
armed queue. When a message arrives on any armed queue, the process
will be awakened and the Wait routine will return.,

Since no indication is given of which queues received messages since
Wait was called, the process should check all armed or unarmed
queues using the Test routine. The process should receive all the
messages on each queue that is not empty before Wait is called
again,

Any messages which arrive while the process 1is not waiting will
cause the next Wait to return immediately.

ASSEMBLER

KCALL 8

SEE ALSO

Arm, Receive, ReceivePage, Test

-9]-

Ridge Operating System Reference Manual

WriteProcessState - set the state of a process

FORM_AT

FUNCTION WriteProcessState (pID : ProcessID;
state : PProcessState) : Error;

DESCRIPTION

WriteProcessState is used to modify the current state of process
"pID"., The process state includes the general registers, program
counter, and the traps word of the process. The priority and the
process runtime may also be changed. The "parent", "status" and
"msgWait" fields are ignored.

WriteProcessState retrieves a block of information from the data
area specified by "state". The ProcessState record is described
earlier in this section.

ASSEMBLER

RO: pID
Rl: state
KCALL 40

SEE ALSO

NOTES

ReadProcessState

ErNotPriv is returned if the caller is a non-privileged process.
ErInvProc is returned if the process ID is not valid.

ErBadPCBPointer is returned if the ProcessState record is improperly
aligned, or the data structure crosses a page boundary.

-92-

Ridge Operating System Reference Manual

SECTION 4

RUNTIME LIBRARY INTERFACE

The Runtime Library provides an interface to the Ridge Operating System
for user application programs. The Runtime Library supports file system
and input/output device access, including file and directory
manipulation, plus command process manhagement primitives. In addition, a
set of string utilities and time conversion routines are included.

RUNTIME LIBRARY ORGANIZATION

The Runtime Library is a collection of routines that are 1linked into a
user process, and communicate with the system processes to access their
services., The basic Kernel process communication primitives are used to
send and receive messages between the user process and the system
processes. Most requests are directed to the User Monitor process, which
provides an interface to the other system processes, Some requests, such
as reading or writing a file or device, are sent directly to a File
Manager process or a device driver process.

The Runtime Library routines are called by the user program which
supplies the appropriate arguments, A particular routine will convert
the arguments into one or more messages that are sent to the appropriate
system process, and then the routine will wait for a response message.
The user process is suspended until a response message is received. When
a response is received, the routine will convert the message back into
the appropriate return values and return to the calling program.

The procedural interface supported by the Runtime Library insulates the
user program from the details of interprocess communication. In
addition, several higher 1level functions such as buffering of data or
string manipulation can be performed in the user process address space,
thus contributing to higher performance.

Several of the routines in the Runtime Library use arguments that require
variable length sequences of characters to specify file or directory
pathnames, These routines use a data structure called a "string"™ that
contains an array of characters and a length field. Strings and routines
to manipulate them are described later in this section. Strings that
must be passed from one process to another process are generally
restricted to fit in a 4096-byte page that is used by the interprocess
message primitives.,

Basic File Manipulation
The Runtime Library interface includes several routines that allow access
to a "file". A file is simply a sequence of bytes, which may be stored

on a secondary storage medium and accessed via the file system, or it may
be data exchanged with a peripheral device driver. A file is external to

-03 -

Ridge Operating System Reference Manual

the address space of a process, and must be explicitly read or written to
gain access to its contents.

Throughout this section, the word "file" is used to refer to a named
collection of data that is managed by the system and accessed from a
program via the Runtime Library routines. Thus, a file subsumes the more
limited meaning of a storage container within the file system, since it
includes data exchanged with a device driver or other process that
supports the file manipulation primitives,

The model of a file supported by the basic file manipulation routines is
very simple. More sophisticated styles of access are provided by the
"stream" file routines described later in this section, or by high-level
language statements supported by the various language translators. These
higher 1level abstractions are provided on top of the basic file
primitives described here.

A file is a sequence of 8-bit bytes, with no other interpretation placed
upon the data by the system. For instance, fixed-size records within a
file or the use of text line separators such as the RETURN character are
supported by higher 1level software, and the methods of their
implementation are not dictated by the basic file system primitives.

Before any data can be read or written to a file, it must be activated by
either the Open or the Create routine, which takes a file name specified
as a string. The Open routine takes an existing file, and prepares it
for either read-only, write-only , or both read and write access. The
Create routine either creates a file if one by that name did not exist,
or it erases the previous contents of the file so it can be rewritten. A
"1ink" to the activated file is returned by these routines, and is used
in all further accesses to the open file.

A file has a certain size, which is expressed in terms of the number of
bytes in the file. The Open routine returns the file size as an
argument. The size of a file that represents an interactive device may
not be determinable when the file is first accessed, and the device
driver may employ some special mechanism for indicating the end of file.

It is not possible to read past the end of the file. The file size may
be automatically increased by writing more data at the end of the file.
Alternatively, the size of an open file may be extended or truncated by
the ChangeFileSize routine.

A file can be read or written using either character or block mode. Some
files may only be accessed in one or the other mode, while others may be
accessed using either mode. The mode can be determined from a flag that
is returned by the Open and Create routines.

Character mode allows single byte transfers, which are usually
appropriate for an interactive device such as a terminal that is accessed
as a file. Character mode always assumes sequential access to the data,
so that for instance, the next character written follows the previous one
written to the file. The routines ReadChar and WriteChar are used for
character mode access,

-94~-

Ridge Operating System Reference Manual

Block mode allows transfers of up to 4096 bytes of data in one request,
which is oriented towards files implemented on secondary storage such as
a disc. Block mode assumes random access to a specified page of the
file. The desired page is given as a byte position within the file, and
is transferred directly to or from a specified buffer address within the
user process data segment. The routines ReadBlock and WriteBlock are
used for block mode access.

When no further access is desired to an open file, it should be
deactivated by the Close routine. A file can be removed from the file
system by the Delete routine, which takes a name in the form of a string.
An empty directory (one that contains no file or subdirectory entries)
can also be removed by the Delete routine.

Stream Files

The Runtime Library interface includes several routines that allow access
to "stream" files. A stream file helps support the model of files as
defined in the language Pascal, acting as a bridge to the basic file
handling provided by the Runtime Library.

A stream file is implemented on top of the basic file manipulation
primitives described above. Conceptually, a stream file has a read/write
cursor associated with it that indicates the next character to be
accessed. Normally, access is sequential, with each read or write moving
the cursor forward in the file by the number of characters accessed. The
Runtime Library routines handle any buffering that must be done to make
block-oriented files accessible one character at a time.

Stream files are associated with Pascal variables of type Text (File of
Char). The standard Pascal input/output operations on Text variables,
including ‘"get", '"put", "read", '"readln", "write", "writeln", "eof",
"eoln" and "page", are implemented using stream files. Refer to the
Ridge Pascal Reference Manual for details concerning the standard Pascal
input/output operations.

The routine OpenFile is used to associate a Text variable with a stream
file. The name of the file is specified as a string, and refers to a
file or device driver supported by the Ridge Operating System. The mode
of access can be either for reading, writing, appending (writing at the
end of the file), or updating (reading and writing). Depending on the
mode, the file may be created if it does not exist. A stream file must
be opened before any input/output operations are applied to the
corresponding Text variable.

The routine FileStatus is used to check for any errors on an open stream
file. The status can be checked immediately after an OpenFile call to
insure that the file was correctly opened, or it may be checked after an
input/output operation to insure that the transfer was completed without
error,

The routine PositionFile allows random access to any byte position within

-95-

Ridge Operating System Reference Manual

a stream file, provided the wunderlying basic file or device driver
supports random access. The read/write cursor can be placed at any byte
position relative to the start, end, or current position, thus affecting
any further reads or writes.

The SetFileSize routine is used to extend or truncate a stream file to
the specified number of bytes., When no further access to a stream file
is required, the CloseFile routine should be used to close the file. Any
open stream files are automatically closed when a user program terminates
normally.

Directory Manipulation

Several routines in the Runtime Library support directory manipulation,
The CreateSpecial routine takes a pathname and creates a directory with
that name. The current working directory pathname is retrieved by the
GetCurrentDir routine, while ChangeDir changes the current working
directory to the given pathname,

The routine LookupName takes a pathname and either returns the mapping of
that name to an internal file identifier, or indicates that the pathname
is a directory. The internal file identifier can be used to read the
file label for that f£ile. The ReadLabel routine returns the contents of
a file label, which includes information about the file such as the last
time of reference or modification, the ownership and access rights, and
the file size.

The ReadDirectory routine takes a pathname of a directory and returns its
contents in a standard format., A directory contains entries that map a
name to an internal file identifier, or indicate that the entry is the
name of a subdirectory.

Command Process Management

A "command process" provides an environment for a program that is invoked
as a command, Most user programs are generally invoked by the Shell
command interpreter and run as a command process. The Runtime Library
interface includes several routines to manage command processes.,

The environment of a command process includes the command arguments
accumulated by the invoking process. The GetArgs routine allows a
command process to retrieve its command arguments. The command arguments
are returned as a vector of strings, where each string represents a
single argument to the command. The command process can then interpret
its arguments, which may be file names to be operated on or options to
control the execution of the program.

The SysExit routine exits back to the system, thus terminating the
command process. Any open files are closed, and a exit code is returned
to the invoking process. By convention, an exit code value of zero means
successful completion, while nonzero values indicate some form of
failure.

-96—

Ridge Operating System Reference Manual

A command process can be created by the LoadCommand routine. The code
file name of the process is specified as a string, and a process 1ID is
returned which 1is wused in all further management of the process. The
command process is inactive when first created, and must be activated by
the StartCommand routine. The command arguments are supplied with the
StartCommand routine, and a flag indicates whether the invoking process
should be suspended until the command process terminates. The
AbortCommand routine is used to terminate a command process.

The environment of a command process includes a set of aliases or "name
equations". A name equation provides a mapping from one string to
another string., Name equations can be used as a convenient abbreviation
for a file or directory pathname, or they can be used to allow a program
to access several different objects by one name without requiring changes
to the program. A name equation for a command process is created via the
CreateEquate routine, while DeleteEquate deletes a name equation.

String Manipulation

The Runtime Library contains a set of routines to manipulate "strings".
A string is a data structure that contains an arbitrary sequence of
characters and a length field that indicates how many characters are in
the sequence, Any 8-bit character can appear in a string, and there is
no limit on the length of a string, provided of course that it £fits in
the data segment of a process.,

A string is implemented as a pointer to a record, which contains a length
field and an array of characters that is indexed from one. Thus, the
arguments to the string routines are simply pointers and a new result
string can be passed back as a pointer. The precise Pascal definition of
a string is given later in this section.

A string data structure is allocated in the heap by the NewString
routine, The size of the string is given as the number of characters,
and the initial sequence of characters is undefined. The calling program
must f£ill in the desired characters.

The Dispose routine is used to deallocate a string when it is no longer
needed. The heap storage management allows strings to be allocated and
deallocated in any order.

The ConcatString routine takes two strings as arguments, and returns a
new string that is the concatenation of the two strings. CopyOfString
returns a new string that is a copy of the argument string. SubString
returns a new string that is a substring of the argument string. A
substring is specified as the sequence of characters starting at one
position in a string and ending at another position.

The OverlayString routine copies the contents of one string onto another,
which should be the same 1length as the source string. CopySubString
copies a substring of one string into a specified place in another
string.

-97-~

Ridge Operating System Reference Manual

Two strings may be compared to determine if they have identical contents
by the EqualString routine. SearchString searches for a given character
in a string, and returns the first position in which it is found.
FillString is used to fill a part of a string with a given character.

In order to increase their efficiency, the string routines do little or
no checking of input arguments to insure that they are in range for the
given function. Instead, the calling program is responsible for checking
arguments that might be invalid.

Time Conversion

The Runtime Library interface provides two routines for conversion of
"timestamps". A timestamp is a 64-bit encoding of the number of
nanoseconds since the beginning of the year 1900. The system keeps track
of the current date and time as a timestamp, and uses timestamps to
record when certain events occur, such as the updating of a file.

The EncodeTime routine takes a date and time, specified as several
numbers including the year, the month, the day, the hour, the minute and
the second, and converts them into a timestamp. The reverse conversion
is accomplished by the DecodeTime routine.

-98-

Ridge Operating System Reference Manual

RUNTIME LIBRARY INTERFACE DATA STRUCTURES

The Runtime Library interface routines have arguments that can be defined
in terms of several data structures., The following Pascal type
definitions describe these data structures, and are assumed in the
description of each of the routines found later in this section. Some of
the definitions are the same as the ones used for the Kernel, since the
underlying support for these data types is provided by the Kernel.

The packing option must be used in Pascal programs that call Runtime
Library routines which use types that are affected by the packing option,
such as Boolean or Halfword. See the Ridge Pascal Reference Manual for
information on packing of data.

Halfword = 0..65535;
A Halfword is 16 bits.

Double = Set of 0..63;

A Double 1is a 64-bit double word that is normally treated as just a
string of bits.

Error = Integer;
An Error 1is a status that is returned by most interface routines. The
value zero indicates successful completion, while nonzero values indicate
some failure. Each routine may define specific values to indicate
certain errors, Additionally, higher level routines may pass back error
values returned by lower level routines.

ProcessID = Integer;
A ProcessID is an identifier for a process which is returned when a
process 1is created. Further manipulation of the process requires the
ProcesslID,

Link = Integer;
A Link is an identifier for an outbound channel to another process. A
Link is returned when a file 1is opened, and is used for further
manipulation of that file.

PageAddress = Integer;

A PageAddress contains the virtual address of a 4096-byte page, which
must be aligned on a page boundary.

TimeStamp = Double;

-99-

Ridge Operating System Reference Manual
A TimeStamp is an encoding of a date and time. It represents the number
of nanoseconds since the beginning of the year 1900,

FilelID = Double;

A FileID serves as an internal file identifier. A string name maps into
a FileID, which is used by the file system to internally specify a file.

String = * StringBody;
StringBody = Record
length : Integer;
chars : Array [l..l1l] of Char;
end;

A String is a pointer to a data structure that contains a sequence of
characters. The StringBody contains a "length" field which specifies the
number of characters in the sequence, while the "chars" array holds the
characters. The sequence can contain an arbitrary number of characters,
which are indexed starting at one. For example, if the variable "s" is
of type String, then "s".length" gives the number of characters in "s",
while "s".chars[l]" accesses the first character in "s".

-100-

Ridge Operating System Reference Manual

RUNTIME LIBRARY ROUTINES

The following list of Runtime Library interface routines summarizes their
usage, and is grouped according to function. Each routine is described
in detail later in this section, where each routine is listed
alphabetically in a standard format for easy reference.

Stream File Manipulation

OpenFile Open a stream file, preparing it for read or write access.
CloseFile Close a stream file.
FileStatus Check the status of an open stream file.

PositionFile Move the read/write cursor within a stream file, placing
it at any byte position relative to the start, end, or
current position.

SetFileSize Extend or truncate a stream file to the specified number
of bytes.

Basic File Manipulation

Create Create a new file, or prepare to rewrite an existing file,

Delete Delete a file. An empty directory can also be deleted.

Open Open an existing file for reading or writing.

Close Close an open file,

ReadBlock Read a block of data from a file. Up to 4096 bytes can be
read from any page within a file.

WriteBlock Write a block of data to a file., Up to 4096 bytes can be
written to any page within a file.

ReadChar Read a single character from a file.

WriteChar " Write a single character to a file.

ChangeFileSize Change the size of a file, either extending or truncating
the file to the specified number of bytes.

-101-

Ridge Operating System Reference Manual

Directory Manipulation

CreateSpecial
GetCurrentDir

ChangeDir

LookupName

ReadDirectory

ReadLabel

Create a directory or special file.
Retrieve the pathname of the current working directory.

Change the current working directory to the given
pathname.

Lookup a pathname to determine its internal identifier in
the file system.

Read the contents of a directory. A directory contains
entries that map a name to an internal identifier in the
file system.

Retrieve the contents of a file label. A file label
contains information about a file such as reference or
modification times, ownership and access rights, and file
size,

Command Process Management

GetArgs

SysExit

LoadCommand

StartCommand

AbortCommand
CreateEquate

DeleteEquate

Retrieve the command arguments of a process.

Exit from a process back to the system, thus terminating
that process,

Create a command process by specifying the code file name.

Activate a command process, supplying its command
arguments,

Terminate a command process.
Create a name equation for a command process.

Delete a name equation.

String Manipulation

NewString
Dispose

ConcatString

Create a new string of the specified length.
Deallocate a string.

Concatenate two strings, creating a third string.

-102-

Ridge Operating System Reference Manual

CopyOfString Make a copy of a string, creating a new string.
SubString Make a new string that is a substring of another one.
OverlayString Copy the contents of one string onto another string.

CopySubString Copy a substring of one string into a specified place in
another string,

EqualString Test if two strings have identical contents.
SearchString Search a string for a given character.

FillString Fill a string with a given character.
Time Conversion

EncodeTime Convert a date and time to a timestamp encoding.

DecodeTime Convert a timestamp encoding to a date and time.

-103-

Ridge Operating System Reference Manual

Error Return Codes

In the detailed description of each routine, error return codes are
specified symbolically. An error code always starts with the characters
"Er", as in "ErBadFileName". The mapping of these symbols to actual
integer values, plus a brief description of each error, is contained in
the Appendix.

It is not feasible to 1list all possible error codes returned by each
routine. Some routines may return many different error codes, usually
because an error is encountered at a lower level and the error code is
passed back through several levels to the caller.

-104-

Ridge Operating System Reference Manual

AbortCommand - abort a command process

FORMAT

FUNCTION AbortCommand (pID : ProcessID) : Error;

DESCRIPTION

AbortCommand is used to kill a command process. Any files left open
by the command process will be closed, and other system resources
will be freed.

The command process "pID" must have been created by the LoadCommand
routine, and can be either active or suspended. A user process that
calls AbortCommand must be managed by the same User Monitor that
manages the process "pID"; in other words, it is not possible with
AbortCommand to kill processes that belong to another user.

An exit code is returned to the invoking process that started the
command process via the StartCommand routine. The exit code value
is currently undefined when a process is killed by AbortCommand.

SEE ALSO

NOTES

LoadCommand, StartCommand

ErBadPID is returned if "pID" is not a valid command process ID.

-105-

Ridge Operating System Reference Manual

ChangeDir - change current working directory

FORMAT

FUNCTION ChangeDir (name : String) : Error;

DESCRIPTION
ChangeDir changes the current working directory to the pathname
"name". The current working directory is the default prefix for
pathnames not beginning with "/".

SEE ALSO

GetCurrentDir

NOTES
ErBadFileName is returned if the name is too 1long, or contains

invalid characters, while ErNotDirectory is returned if the name is
not a directory.

-106-

Ridge Operating System Reference Manual

ChangeFileSize - change the size of a file

FORMAT

FUNCTION ChangeFileSize (handle : Link;
desiredSize : Integer) : Error;

DESCRIPTION
ChangeFileSize extends or truncates the size of the open file
specified by "handle" to the number of bytes specified by
"desiredSize". The amount of secondary storage space allocated to
the file is changed if necessary.
The file must have been opened for writing.

SEE ALSO

Create, Open
NOTES

ErBadLink is returned if "handle" is not a valid open file, while
ErNotWritable indicates that the file cannot be written.

-107-

Ridge

FORMA

Operating System Reference Manual

Close - close a file

T
FUNCTION Close (handle : Link) : Error;

DESCRIPTION

Given a link "handle" to a file as returned by a Create or Open
call, Close will close the associated file. Programs which use
large numbers of files should use Close when no more access to a
file is required, since there is a limit on the number of open files
per process. All open files for a process are closed automatically
when the process terminates.

Unused secondary storage space may be deallocated, although Close
does not change the logical size of a file.

SEE ALSO

NOTES

Create, Open

ErBadLink is returned if "handle" is not a valid open file.

-108-

Ridge Operating System Reference Manual

CloseFile - close a stream file

FORMAT

PROCEDURE CloseFile (var f : Text);

DESCRIPTION
CloseFile closes the stream file associated with "f", which must
have been opened by the OpenFile routine. Closing a stream file
causes any buffers to be flushed if necessary. and the file becomes
inactive.

All open stream files are closed automatically when a program
terminates normally, or when the SysExit routine is called.

SEE ALSO

Close, OpenFile, SysExit

-109-

Ridge Operating System Reference Manual

ConcatString - concatenate two strings

FORMAT

FUNCTION ConcatString (sl
s2

String;
String) : String;

DESCRIPTION
ConcatString creates a new string that is the concatenation of the
strings "sl" and "s2". The new string is returned, and neither "sl1"
nor "s2" are modified.

SEE ALSO

NewString

-110-

Ridge Operating System Reference Manual

CopyOfString - make a copy of a string

FORMAT

FUNCTION CopyOfString (s : String) : String;

DESCRIPTION
CopyOfString creates a new string that is a copy of string "s". The
new string is returned, with the same length and same contents as
"g"_ gtring "s" is not modified.

SEE ALSO

NewString, OverlayString

-111-

Ridge Operating System Reference Manual

CopySubString -~ copy a substring into another string

FORMAT

PROCEDURE CopySubString (dest : String;

dFirst : Integer;
dLast : Integer;
source : String;
sFirst : Integer);

DESCRIPTION

CopySubString copies the substring from "source" to the substring in
"dest". The characters starting at position “"sFirst" in the
"source" are copied to the characters
"dLast" in the string "dest".

string
in positions "dFirst" to

SEE ALSO

NewString, SubString
NOTES

No bounds check is made to insure that either of the substrings are
completely contained within the strings. No <check is made for

overlapping substrings when the source and destination are the same
string.

-112-

Ridge Operating System Reference Manual

Create - create a file

FORMAT

FUNCTION Create (name : String;
accessMode : Halfword;
allocSize : Integer;

var handle : Link;
var flag : Integer) : Error;

DESCRIPTION

Create tries to create a new file, or prepares to rewrite an
existing file. The string "name" represents the pathname of the
file.

If the file did not exist, it is given access mode "accessMode", and
a file size of zero. If the file did exist, its mode and owner
remain unchanged, but the file size is truncated to zero length. 1In
either case, the file will be allocated sufficient storage space to
hold "allocSize" bytes.

The file is then opened for both reading and writing, and "handle"
will contain a 1link which is used for subsequent input/output
operations on the file.
A value is returned in "flag" that indicates whether the file should
be accessed using block mode only (0), character mode only (1), or
either mode (2).

SEE ALSO

Close, Delete, Open

NOTES

ErBadFileName is returned if the name is too 1long, or contains
invalid characters.

If the file could not be created because of insufficient secondary
storage space, ErVolumeFull is returned.,

ErNotWritable is returned if either the file exists and its access
mode is not writable, or the file does not exist but the directory
in which it is to be created is not writable.

ErCantModifyDir is returned if a directory with the pathname "name"
already exists.

-113-

Ridge Operating System ' Reference Manual

CreateEquate - create a name equation

FORMAT

FUNCTION CreateEquate (pID : ProcesslID;
mapFrom : String;
mapTo : String) : Error;

DESCRIPTION

CreateEquate creates a name equation for the alias "mapFrom" to the
string "mapTo". The name equation is added to the list of name
equations maintained by the User Monitor for each command process.
When a name is specified in a request to the User Monitor, the name
equation list is searched and if the name matches "mapFrom", the
string "mapTo" is substituted for the name. The most recent
equation for "mapFrom" is used in the case of multiple equations for
the same string.

The parameter "pID" specifies to which command process the name
equation applies. If the value of "pID" 1is -1, then the name
equation applies to all of the command processes managed by a single
User Monitor.
When a command process terminates, its list of name equations is
automatically deleted. The 1list associated with all command
processes managed by a single User Monitor can only be shortened by
DeleteEquate.
SEE ALSO

DeleteEquate
NOTES

ErBadFileName is returned if the strings are too 1long, while
ErBadPID is returned if "pID" is not a valid command process ID.

-114-

Ridge Operating System Reference Manual

CreateSpecial - create a directory or special file

FORMAT
FUNCTION CreateSpecial (name : String;
accessMode : Halfword;
deviceFlag : Integer) : Error;

DESCRIPTION

CreateSpecial creates a directory whose pathname is given by "name".
The directory is given the access mode "accessMode".

The parameter "deviceFlag" must be zero to create a directory. A
nonzero value is used to create a device driver, which is not
implemented. This interface is subject to change.

SEE ALSO

Create, Delete
NOTES

ErBadFileName is returned if the name is too 1long, or . contains
invalid characters.

-115-

Ridge Operating System

Reference

DecodeTime - convert a timestamp to a date and time

FORMAT

PROCEDURE DecodeTime (time
var year
var
var
var
var
var
var
var

day
hour

DESCRIPTION

month

minute
second
millisecond :
nanosecond :

TimeStamp;
Integer;
Integer;

Integer;

Integer;

: Integer;

¢ Integer;
Integer;

Integer);

Manual

DecodeTime converts a timestamp to a set of numbers that represent a

date and time.,

nanoseconds since the
converts the timestamp as
properly.

The "year"

"month" will contain a value from 1
a value from 1 to 31.

contain

beginning

of the year 1900.

described below,

to 12, and the

The

The timestamp "time" is an encoding of the number of
DecodeTime
handling leap years

will contain a value greater than or equal to 1900, the
ndayn
"hour" will contain a value from

will

0 to 23, and both the "minute" and the "second" will contain a value

from 0 to 59.
and the

SEE ALSO

EncodeTime

-116-

The "millisecond™ will contain a value from 0 to 999,
"nanosecond" will contain a value from 0 to 999999,

Ridge Operating System Reference Manual

Delete - delete a file

FORMAT

FUNCTION Delete (name : String) : Errorj;

DESCRIPTION

Delete removes "name" from the file system. The contents of a file
are destroyed, and the secondary storage space is freed.

A directory may be removed only if it is empty.
SEE ALSO

Create

NOTES

ErBadFileName is returned if the name is too long, or contains
invalid characters.

ErFileNotFound is returned if the name cannot be found.

ErDirNotEmpty is returned if "name" is a directory, and it contains
one or more entries.

-117-

Ridge Operating System Reference Manual

DeleteEquate - delete a name equation

FORMAT

FUNCTION DeleteEquate (pID : ProcessID;
mapFrom : String) : Error;

DESCRIPTION

DeleteEquate removes the name equation for the alias "mapFrom" from
the list of name equations maintained by the User Monitor for the
command process "pID",. If "pID" 1is the value -1, then the name
equation is removed from the list of name equations that applies to
all command processes managed by a single User Monitor. If multiple
name equations exist for "mapFrom", then only the most recent
mapping will be deleted.

When a command process terminates, its list of name equations is
automatically deleted. DeleteEquate is used to either delete a name
equation before using CreateEquate to change a mapping, or to delete
a name equation from the list for all command processes.

SEE ALSO

CreateEquate

NOTES

ErBadFileName is returned if the name igs too long, or contains
invalid characters.

ErBadPID is returned if "pID" is not a valid command process ID.

ErNoEquate is returned if "mapFrom" cannot be found.

-118-

Ridge Operating System Reference Manual

Dispose - deallocate a string

FORMAT

PROCEDURE Dispose (s : String);

DESCRIPTION
Dispose deallocates the data structure associated with string "s",
and makes its space on the heap available for reuse. The heap
storage management allows strings to be allocated and deallocated in
any order.

SEE ALSO

NewString
NOTES

Unpredictable results will occur if "s" had never been allocated, or
if it had already been disposed.

-119-

Ridge Operating System

Reference

EncodeTime - convert a date and time to a timestamp

FORMAT

PROCEDURE EncodeTime (year : Integer;

DESCRIPTION

month : Integer;

day : Integer;

hour : Integer;

minute : Integer;
second : Integer;
millisecond : Integer;
nanosecond : Integer;

var time : TimeStamp):;

Manual

EncodeTime converts a set of numbers that represent a date and time

to a

converts
properly.

timestamp.

year 1900,

The timestamp "time" is an encoding of the number
of nanoseconds since the beginning of the EncodeTime

the set of numbers as described below, handling leap years

The "year" should contain a value greater than or equal to 1900, the

"month" should contain a value from 1 to 12, and the
from 1 to 31.

contain a

value

Ilday“

from 0 to 23, and both the "minute" and the "second" should

a value from 0 to 59.
0 to 999, and the "nanosecond" should contain a

999999.
SEE ALSO

DecodeTime

NOTES

should .
The "hour" should contain a value
contain

The "millisecond" should contain a value from

value

from O

to

An input parameter that is out of range results in a timestamp that

is equal to zero.,

-120-

Ridge Operating System Reference Manual

EqualString — compare two strings for equality

FORMAT

FUNCTION EqualString (sl : String;
s2 ¢ String) : Boolean;

DESCRIPTION

EqualString compares the two strings "sl" and "s2" for equality.
The value True is returned if both strings have exactly the same
length and contents, otherwise the value False is returned. The
contents are compared character by character, using the underlying

character code values, thus upper and lower case characters are not
identical.

SEE ALSO

-NewString

-121-

Ridge Operating System

Reference Manual

FileStatus - check the status of a stream file

FORMAT

FUNCTION FileStatus (var £ : Text) : Error;

DESCRIPTION

FileStatus checks
ngw, The wvalue
any operations on

The status may be
that the file was

the status of the open stream file associated with
returned is zero if no errors have occurred during
the stream file.

tested immediately after an OpenFile call to check
correctly opened, or it may be checked after an

input/output operation to insure that the transfer was successfully
completed. Reaching the end of file is not considered an error.

SEE ALSO

OpenFile

ErNotOpen is returned if the stream £file is not open, while
ErFileStatus is returned if any error has occurred.

-122-

Ridge Operating System Reference Manual

FillString - £ill a string with a character

FORMAT
PROCEDURE FillString (s : String;
first : Integer;
last : Integer;
ch : Char):;
DESCRIPTION:
FillString fills a substring within string "g" with the character
"ch". The characters from the position "first" to the position
"last" are all given the value of "ch".
SEE ALSO

NewString
NOTES

No bounds check is made to insure that the substring is completely
contained within the string.

-123-

Ridge Operating System Reference Manual

GetArgs - get command arguments

FORMAT

FUNCTION GetArgs (var argc : Integer) : PStringVector;

DESCRIPTION

GetArgs 'is wused by a command process to retrieve its command
arguments from the User Monitor, The command arguments are
typically file names to be operated on, or options to control the
execution of the program. The invoking process, usually the Shell,
accumulates the command arguments and passes them to the User
Monitor via StartCommand when a command process is started.

GetArgs sets the argument count into "argc" and returns a pointer to
an array of strings, as described by the following Pascal type
definitions:

PStringVector = " StringVector;
StringVector = Array [0..0] of String;

The array is indexed from zero, and actually contains "argc"+1
elements, where the last element is the value Nil.

By convention, the string at position =zero is the name of the
command process, and the other strings are the command arguments in
sequence. Thus "argc" is always at least one.

SEE ALSO

StartCommand
NOTES

The strings returned by GetArgs should not be deallocated via
Dispose since they are not allocated by NewString.

-124-

Ridge Operating System Reference Manual

GetCurrentDir - get the name of the current working directory

FORMAT

FUNCTION GetCurrentDir : String;

DESCRIPTION

GetCurrentDir returns a string which is the pathname of the current
working directory.

SEE ALSO

ChangeDir

-125-

Ridge Operating System Reference Manual

LoadCommand - create a command process

FORMAT

FUNCTION LoadCommand (name : String;
var pID : ProcessID) : Error;

DESCRIPTION

LoadCommand creates a command process, using the file "name" as the
executable code segment., The code file is found using the standard
search order. If the name starts with "/", then that exact pathname
is used. Otherwise, a pathname is constructed by appending "name"
first to the current working directory, then the directory "/bin",
and finally the directory "/usr/bin".

If a code file is found, a data and a queue segment are allocated,

and an inactive process is created. A process ID is returned in
"pID", which is used for further management of the command process.

SEE ALSO

AbortCommand, StartCommand

NOTES

ErBadFileName is returned if the name is too 1long, or contains
invalid characters.

ErFileNotFound is returned if the file can not be found, while
ErBadFileType is returned if it is not a regqular file.

-126-

Ridge Operating System Reference Manual

LookupName - lookup a file name

FORMAT

FUNCTION LookupName (name : String;
var fType : Integer;
var fID : FileID) : Error;

DESCRIPTION

LookupName takes a pathname "name" and determines its mapping in the
file system. If the name is a regular f£file, then "fType" will
contain the value 1, and "fID" will contain the internal file
identifier.

If the name is a directory, then "fType" will contain the value 0.
The contents of "fID" for a directory are interpreted as four 16-bit
values in sequence according to the following Pascal type

definitions:
ownerlD = Hal fword;
groupID = Halfword;
protect = Halfword;
linkCount = Halfword;

The "ownerID" and "groupID" fields indicate the owner of the
directory. The ‘"protect" field is the protection bits, or access
mode, for the directory. The "linkCount" field represents the
number of aliases, or links, to the directory from other directories
in the file system.

SEE ALSO

ReadDirectory, ReadLabel

NOTES

ErBadFileName is returned if the name is too 1long, or contains
invalid characters.

ErFileNotFound is returned if the file or directory can not be
found.

-127-

Ridge Operating System Reference Manual

NewString - create a new string

FORMAT

FUNCTION NewString (length : Integer) : String;

DESCRIPTION

NewString creates a new string, with enough space to hold "length"
characters. A data structure is allocated on the heap, with the
length field filled in, and undefined values for the sequence of
characters. A pointer to this structure is returned by NewString,
and the calling program can £ill in the desired characters.

When the string is no longer required, its space should be
deallocated by the Dispose routine,

SEE ALSO

Dispose

-128-

Ridge Operating System Reference Manual

Open - open a file

FORMAT
FUNCTION Open (name : String;
mode : Integer;
var handle : Link;

var flag : Integer; '
var fileSize : Integer) : Error;

DESCRIPTION

Open tries to open an existing file, where the string "name"
represents the pathname of the file. The file will be opened for
reading ("mode" is 0), writing ("mode" is 1), or both reading and
writing ("mode" is 2).

If the file 1is opened successfully, "handle" will contain a 1link
which is used for subsequent input/output operations on the file.
The file will be positioned at its beginning.
A value is returned in "flag" that indicates whether the file should
be accessed using block mode only (0), character mode only (1), or
either mode (2).
The value returned in "fileSize" is the number of bytes in the file.
The size of a file that represents a device driver may not be
determinable when the file is first accessed, and will be zero in
this case.

SEE ALSO

Close, Create

NOTES

ErBadFileName is returned if the name is too long, oOr contains
invalid characters.

ErOpenMode is returned if "mode" is not 0, 1, or 2.

ErFileNotFound is returned if the file can not be found.

-129-

Ridge Operating System Reference Manual

OpenFile - open a stream file

FORMAT

PROCEDURE OpenFile (var f : Text;
name : String;
mode : Char);

DESCRIPTION

OpenFile is wused to associate a stream file with the variable "f£",
which can then be used in standard Pascal input/output operations or
can be a parameter to other stream file routines. The string "name"
specifies the pathname of the file. The character "mode" can be one
of four different 1letters (upper or lower case) that indicate how
the file should be opened, as described below.

The value "r" indicates the file should be opened for reading only,
and therefore must exist.

The value "w" indicates the file should be opened for writing only,
and is either created if it did not exist, or truncated to zero
length if it did exist.

The value "a" indicates the file should be appended to, which is
similar to writing only. The file is created if it did not exist.
If the file exists, it is not truncated and the read/write cursor is
positioned at the end of file,

The value "u" indicates that the file should be opened for update,
which permits both reading and writing. The file is created if it
did not exist, and the read/write cursor is positioned at the
beginning of the file.,

SEE ALSO

CloseFile, Create, FileStatus, Open

NOTES

The FileStatus routine should be used to determine if a stream file
was opened successfully. A stream file may not be opened correctly
if the file name is not valid, does not exist or cannot be accessed
according to the mode, or if too many open files already exist.

=130~

Ridge Operating System Reference Manual

OverlayString - copy one string onto another

FORMAT
PROCEDURE OverlayString (dest : String;
source : String);
DESCRIPTION
OverlayString copies the characters of the “source" string onto the
previous contents of the "dest" string, and sets the length of
"dest" to that of "source". The "source" string is not modified.

SEE ALSO

CopyOfString, NewString .
NOTES

Unpredictable results may occur if the destination string was not at
least as long as the source string.

-131-

Ridge Operating System Reference Manual

PositionFile - move the read/write cursor of a stream file

FORMAT

FUNCTION PositionFile (var f : Text;
offset : Integer;
origin : Integer) : Integer;

DESCRIPTION

PositionFile moves the read/write cursor of the stream file
associated with "f", The next input or output operation on the
stream file will occur at the new position, where position 0 is the
first byte of the file.

The new position becomes the byte position determined from the
signed value in "offset" and the value of "origin", 1If "origin" is
0, then the offset is from the beginning of the file; if "origin" is
1, then the offset is relative to the current position; and if
"origin" is 2, then the offset is relative to the end of the file.
The resulting byte position in the file is returned.

A successful PositionFile always clears the end of file status.
SEE ALSO

OpenFile, SetFileSize

NOTES

The value -1 is returned to indicate an error. An error may occur
if "origin" is not 0, 1, or 2, if the stream file is not open or
does not support block mode or random access, or if the position
would be beyond the end of file,

-132-

Ridge Operating System Reference Manual

ReadBlock - read a block of a file

FORMAT

FUNCTION ReadBlock (handle : Link;
bufAddr : PageAddress;
fileCursor : Integer;
length : Integer;
var actual : Integer) : Error;

DESCRIPTION

ReadBlock is used to read a block of data from the file specified by
"handle". The "handle" is a file link returned from a successful
Create or Open call, and it represents a file that must allow block
mode access,

The block of data from the file at the byte position specified by
"fileCursor" is transferred to the buffer address in the user
process data segment specified by "bufAddr", which must be
page—aligned.

The amount of data to be read is specified in "length", and the
amount actually transferred is returned in "actual", which can be
from 0 to 4096 bytes.

SEE ALSO

Create, Open, ReadChar, WriteBlock, WriteChar

NOTES
ErBadLink is returned if "handle" is not a valid open file.
ErNotAligned is returned if "bufAddr" is not page-aligned, that is,
an address that is not a multiple of 4096, while ErBadBlockLength is
returned if "length" is greater than 4096.

ErNotReadable is returned if the file was not opened to allow
reading.

ErEOF is returned if an attempt is made to read a block past the end
of file,

-133-

Ridge Operating System Reference Manual

ReadChar - read a character

FORMAT

FUNCTION ReadChar (handle : Link;
var ch : Char) : Error;

DESCRIPTION
ReadChar reads a single character from the file specified by
"handle"., The "handle" is a file link returned from a successful
Create or Open <call, and it represents a file that must allow
character mode access.
The character is returned in "ch", and can be any 8-bit value.

SEE ALSO

Create, Open, ReadBlock, WriteBlock, WriteChar

NOTES
ErBadLink is returned if "handle" is not a valid open file.,

ErNotReadable is returned if the file was not opened to allow
reading.

ErEOF is returned if an attempt is made to read a character past the
end of file,

-134-

Ridge Operating System Reference Manual

ReadDirectory - read the contents of a directory

FORMAT

FUNCTION ReadDirectory (name : String;
firstRequest : Boolean;
dirPage : PDirectoryPage;
var numEntries : Integer;
var anyMore : Boolean) : Error;

DESCRIPTION

ReadDirectory is wused to read the contents of a directory. The
directory contents are returned in a standard format, which contains
entries that map a name to an internal file identifier, or indicate
that an entry is the name of a subdirectory.

Each call to ReadDirectory returns only one 4096-byte page of
information. The entries are returned in alphabetical order so that
multiple requests can be made, each time specifying a different
place in the alphabetical list to start returning more entries. The
parameters "firstRequest" and "anyMore" are used as described below
to make multiple requests, thus enabling a 1large directory to be
read.

The first call to ReadDirectory for a directory whose pathname is
"name" should have the parameter "firstRequest" set to True. The
number of valid entries for the returned directory page is returned
in "numEntries". If more information exists in the directory than
can be returned in a single response, then the parameter "anyMore"
will be set to True upon return, otherwise "anyMore" will be set to
False,

If "anyMore" is True, then another call to ReadDirectory should be
made with "firstRequest" set to False. The parameter "name" should
be extended to include the directory name and the name of the last
entry returned, separated by a "/". The returned information will
start with the next alphabetical entry.

-135-

Ridge Operating System Reference Manual

ReadDirectory places a block of directory information into the data
area specified by "dirPage" in the following format:

PDirectoryPage = "~ DirectoryPage;
DirectoryPage = Array [0..127] of DirectoryEntry;
DirectoryEntry = Record
name : Array [l1..16] of Char;
fType : Integer;
£fID : FileID;
end;

The page may contain up to 128 entries, starting with entry number
Zero. Each entry has a "name" field, which is 1 to 16 characters
with blanks filled at the end. The "fType" field has the value 1 if
the entry is a regular file, and the "fID" field contains an
internal file identifier in this case.

The "fType" field has the value 0 if the entry is a directory. The
contents of the "fID" field for a directory are interpreted as four
l16-bit values in sequence according to the following Pascal type

definitions:
ownerID = Hal fword;
groupID = Halfword;
protect = Halfword;
linkCount = Halfword;

The "ownerID" and "groupID" fields indicate the owner of the
directory. The "protect" field is the protection bits, or access
mode, for the directory. The "linkCount" field represents the
number of aliases, or links, to the directory from other directories
in the file system.

SEE ALSO

CreateSpecial, LookupName, ReadLabel

NOTES

ErBadFileName is returned if the name is too 1long, or contains
invalid characters, while ErNotDirectory is returned if the name is
not a directory.

-136-

Ridge Operating System Reference Manual

ReadLabel - read a file label

FORMAT

FUNCTION ReadLabel (fID
lab

FilelD;
PFilelLabel) : Error;

DESCRIPTION

ReadLabel is used to read the contents of the file label for the
file specified by the internal file identifier "£1D",. The file
label contains information about the file that is maintained by the
file system.

ReadLabel places a block of file label information into the data
area specified by "lab" in the following format:

PFileLabel = ~ FileLabel;

FileLabel = Record
internalCreate : TimeStamp;
createTime : TimeStamp;
refTime :+ TimeStamp;
modTime : TimeStamp;
ownerlD : Halfword;
grouplD : Halfword;
protect : Halfword;
linkCount ¢ Halfword;
fileSize : Integer;
uType : Integer;

end;

The "internalCreate" field contains the time that the file was
actually created. The "createTime" field contains the time that the
file was logically created, which may be different than the
"internalCreate" time if the file is a copy of another £file, for
instance, The "refTime" field contains the last time that the file
was referenced, that is, closed after being opened for reading or
writing. The "modTime" field contains the last time that the file
was modified, that is, closed after being opened for writing.

The "ownerID" and "groupID" fields indicate the owner of the
directory. The "protect" field is the protection bits, or access
mode, for the file. The "linkCount" field represents the number of
name mappings, or links, to the file from directories in the file
system.,

The "fileSize" field maintains the size of the file in bytes. The
"uType" field contains a file type value maintained by the system.

-137-

Ridge Operating System

SEE ALSO

LookupName, ReadDirectory

NOTES

ErBadFilelID is returned
identifier.

if

"fIDll

-138-

is

not

Reference Manual

a valid internal file

Ridge Operating System Reference Manual

SearchString - search for a character in a string

FORMAT

FUNCTION SearchString (s : String;
ch : Char) : Integer;

DESCRIPTION
SearchString searches the string "s" for the first occurrence of the
character value "ch". If "ch" is found, then its position in the
sequence of characters is returned. Zero is returned if "ch" can
not be found.

SEE ALSO

NewString

-139-

Ridge Operating System Reference Manual

SetFileSize - change the size of a stream file

FORMAT

FUNCTION SetFileSize (var £ : Text;
desiredSize : Integer) : Error;

DESCRIPTION

SetFileSize extends or truncates the size of the stream file
associated with "f" to the number of bytes specified by
"desiredSize". The amount of secondary storage space allocated to
the file is changed if necessary.

The stream file must have been opened with a mode that allows
writing.

If the stream file is truncated in front of the current read/write
cursor, then the read/write cursor is positioned to the new end of
file.

SEE ALSO

NOTES

OpenFile, ChangeFileSize, PositionFile

ErNotWritable is returned if the file is not writable.

-140-

Ridge Operating System Reference Manual

StartCommand - start a command process executing

FORMAT

FUNCTION StartCommand (pID : ProcessID;
args : PArgPage;
wait : Boolean) : Error;

DESCRIPTION

StartCommand is used to start execution of a command process. The
command process "pID" must have been created by the LoadCommand
routine; StartCommand activates "pID", supplying its command
arguments,

The command arguments are passed in a 4096-byte page to the User
Monitor, which transmits them to the command process when it calls
GetArgs. The parameter "args" points to a page which contains the
arguments in the following format:
PArgPage = " ArgPage;
ArgPage = Record

argc : Integer;

strings : Array [0..0] of StringBody;

end;

The argument page contains an argument count and zero or more
strings packed sequentially. The strings consist of a length field
followed by the sequence of characters, with the length fields
aligned on word (4-byte) boundaries. By convention, the argument
count is at least one, with the first string being the command name
the process was invoked with.

If "wait" is True, then the invoking process is suspended until the
command process terminates. In this case, the exit code of the
command process is returned as the value of the StartCommand
routine. If "wait" is False, then the invoking process is not
suspended and no indication is given when the command process
terminates.

SEE ALSO

NOTES

AbortCommand, GetArgs, LoadCommand, SysExit

ErBadPID is returned if "pID" is not a valid command process 1ID.

ErCantStart is returned if the command process cannot be properly
activated.

=141~

Ridge Operating System Reference Manual

SubString - make a copy of a substring

FORMAT
FUNCTION SubString (s : String;
first : Integer;
last : Integer) : String;
DESCRIPTION
SubString creates a new string that is a substring of string "s",
The characters from position "first" through position "last" in "s"
are copied into the new string, which is then returned. String "s"
is not modified.
SEE ALSO

CopySubString, NewString
NOTES

No bounds check is made to insure that the substring is completely
contained within the string.

~142-

Ridge

Operating System Reference Manual

SysExit - exit back to the system

FORMAT

PROCEDURE SysExit (errorCode : Error);

DESCRIPTION

SysExit exits back to the system, thus terminating the calling
command process. Any open stream files are closed before the
process is terminated.

The exit code "errorCode" is returned to the invoking process which
started the command process via StartCommand. By convention, the
value zZero indicates successful completion, while nonzero
"errorCode" values indicate different errors defined by the command
process.

SEE ALSO

NOTES

CloseFile, StartCommand

This routine never returns to its caller.

-143-

Ridge Operating System Reference Manual

WriteBlock - write a block of a file

FORMAT

FUNCTION WriteBlock (handle : Link;
bufAddr : PageAddress;
fileCursor : Integer;
length : Integer;
var actual : Integer) : Error;

DESCRIPTION

WriteBlock is used to write a block of data to the file specified by
"handle". The "handle" is a file link returned from a successful
Create or Open call, and it represents a file that must allow block
mode access,

The block of data from the buffer address in the user process data
segment specified by "bufAddr", which must be page-aligned, is
transferred to the file at the byte position specified by
"fileCursor".

The amount of data to be written is specified in "length", and the
amount actually transferred is returned in "actual", which can be
from 0 to 4096 bytes.

The file size is increased by any bytes which extend past the
current end of file.

SEE ALSO

Create, Open, ReadBlock, ReadChar, WriteChar

NOTES
ErBadLink is returned if "handle" is not a valid open file.
ErNotAligned is returned if "bufAddr" is not page-aligned, that is,
an address that is not a multiple of 4096, while ErBadBlockLength is
returned if "length" is greater than 4096.

ErNotWritable is returned if the £file was not opened to allow
writing.

ErBadFileCursor is returned if an attempt is made to write a block
beyond the current end of file, which would leave a gap in the file.

-144-

Ridge Operating System : Reference Manual

WriteChar - write a character

FORMAT

FUNCTION WriteChar (handle : Link;
ch : Char) : Error;

DESCRIPTION
WriteChar writes a single character to the file specified by
"handle". The "handle" is a file link returned from a successful
Create or Open call, and it represents a file that must allow
character mode access.
The character "ch" that is written can be any 8-bit value.

SEE ALSO

Create, Open, ReadBlock, ReadChar, WriteBlock

NOTES
ErBadLink is returned if "handle" is not a valid open file.

ErNotWritable is returned if the file was not opened to allow
writing.

-145-

Ridge Operating System

The system interface routines may
routine 1is
following list contains the error values in decimal, the

for

19

20

21

unable

Reference Manual

APPENDIX

ERROR RETURN CODES

return various error codes when a
successfully complete the desired function. The
symbolic name

the error starting with the characters "Er", and a short explanation
of what the error indicates.

ErQueueFull

ErRcvrDead

ErInvLink

ErNotPageBound

ErNoPageRoom

ErNotPriv

ErPageSent

ErNoPageSent

ErQueueEmpty

ErEOF

ErTooManyLinks

ErTooManyQueues

ErTooManyPages

A message can not be sent because the queue of
the receiving process is full.

A message can not be sent because the receiving
process has terminated.

The specified link is invalid or not open.

A page address is not aligned on a 4096-byte
boundary.
There is not enough room in the queue of the

receiving process to
data page attached.

accept a message with a

The calling process is not privileged.

The next message to be received has a data
associated with it.

page
The next message to be received does not have a
data page associated with it,.

No messages have been received in a queue.

An attempt has been made to read past the end of
file, or write beyond the end of file, leaving a
gap.

Too many links have been requested when
initializing a queue segment,
Too many dueues have been requested when
initializing a queue segment.
Too many pages have been requested when

initializing a queue segment,

-146-

Ridge Operating System

22

23

24
25

26

27

28

29
30

31

32

33

34

35
102

201

206

208

303

ErTooManyMessages
ErInvProc

ErInvQueue

ErNoProcBlock
ErNoFreéSegments
ErNoFreeQueues
ErNoFreeLinks

ErInvDevice

ErDevicelInUse

ErBadPCBPointer

ErBadSpecialPID
ErPageNotReserved
ErSpecialPIDInUse

ErInvSeg

ErNoFreePages
ErBadFilelD
ErvVolumeIndexFull
ErVolumeFull

ErBadFileName

Reference Manual

Too many messages have been

opening a queue.

requested when

The specified process identifier is invalid, or
the process has terminated.

The specified queue is invalid or not open.

A process cannot be created because there are
not enough unused process control blocks.

A process cannot be created because there are
not enough unused segment identifiers,

A queue cannot be opened because there are not
enough unused queues.

A link cannot be opened because there are not

enough unused links.

The specified device number is invalid.

The device number is already in use by another
process,
The process control block address is not

properly aligned, or causes the block to cross a
page boundary.

The specified special process identifier is
invalid.

A page cannot be unlocked because it is not
currently locked.

The special process identifier is already in use
by another process.

The specified segment selector is invalid.

Not enough memory pages would be left if the

requested page was locked.

The specified internal file identifier is
invalid.
A file cannot be created because there are not

enough unused file labels.

created or extended because
room on the volume.

A file cannot be
there is not enough

The specified file
invalid characters.

name is too long or contains

~147-

Ridge Operating System

304

306
308
313

401

402
403
404
405

407

408

410

411
412

413

499
500
501
502

ErBadFileType

ErFileNotFound
ErNotDirectory

ErDirNotEmpty
ErBadPID

ErOpenMode
ErBadLink
ErNoEquate
ErCantStart

ErCantModifyDir

ErBadFileSpace

ErNotReadable
ErNotWritable

ErBadFileCursor

ErBadBlockLength

ErNotImplemented
ErNotOpen
ErFileStatus

ErNotAligned

Reference Manual

The type field in a directory for the specified
name is invalid.

A file with the specified name cannot be found.

The specified name is not a directory.

The directory cannot be deleted because it is
not emptye.

The specified command process identifier is
invalid.

The mode given when opening a file is invalid.
The specified file link is invalid or not open.

The specified name equation does not exist.

The command process cannot be activated or
otherwise started.

A directory cannot be modified using the given
operation.

The space allocation of a file is not one
contiguous sequence of bytes starting from

position zero.
The specified file does not allow read access.
The specified file does not allow write access.

The specified address of a page to be read or
written is not within the file.

The length of a block to be read or written to a
file is less than 0 or greater than 4096 bytes
long.

A feature has not been implemented yet.

A stream file is not currently open,

An error has occurred on an open stream file.
not aligned on a 4096—byte

A page address is

boundary.

-148-

	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148

