
RASTER TECHNOLOGIES
MODEL ONE/25
PROGRAMMING GUIDE

RASTER TECHNOLOGIES
MODEL ONE/25
PROGRAMMING GUIDE

Revision 4.0 March 31, 1983

Model One/25 Programming Guide

Raster Technologies Model One/25 Programming Guide
March 31, 1983

Copyright 1983 by Raster Technologies, Inc. All rights reserved. No part of
this work covered by the copyrights herein may be reproduced or copied in any
form or by any means--electronic, graphic, or mechanical, including
photocopying, recording, taping, or infonnation and retrieval systems--without
written permission.

NOTICE:

The information contained in this document is subject to change without
notice.

RASTER TECHNOLOGIES DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS MATERIAL
(INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR PURPOSE), EITHER EXPRESS OR IMPLIED. RASTER TECHNOLOGIES SHALL NOT
BE LIABLE FOR DAMAGES RESULTING FROM ANY ERROR CONTAINED HEREIN, INCLUDING,
BUT NOT LIMITED TO, FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISI~~ OUT OF OR IN CONNECTION WITH THE USE OF THIS MATERIAL.

This document contains proprietary information which is protected by
copyright.

This manual applies to Revision 4.0 (and beyond) of the Model One firmware.

WARNING: This equipment generates, uses, and can radiate radio frequency
energy and if not installed and used in accordance with the instructions
manual may cause interference with to radio commmunications. It has been
tested and found to comply with the limits for a Class A computing device
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference when operated in a commercial
environment. Operation of this equipment in a residential area is likely to
cause interference in which case the user at his own expense will be required
to take whatever measures may be required to correct the interference.

2

Model One/25 Programming Guide

1.0 INTRODUcrION 8

2.0 MODES OF OPERATION 10
2.1 ALPHA Mode 10
2.2 GRAPHICS Mode 10

2.2.1 GRAPHICS Mode From the Local Tenninal 11
2.2.2 GRAPHICS Mode From the Host Computer 12
2.2.3 The Input and Output Buffers 14

2.3 The Model One's Special Characters 15

3.0 COORDINATES AND IMAGE MEMORY ADDRESSING 17
3.1 The Coordinate Origin 17
3.2 The Clipping Window 18
3.3 The Screen Origin 19
3.4 The Scale Factor 19
3.5 Zooming the Displa~ 19
3.6 Inhibiting Screen Refresh 20
3.7 The Current Point 20
3.8 The Coordinate Registers 21
3.9 The Crosshairs 23

4.0 PIXEL VALUES, LOOK-UP TABLES, AND IMAGE MEMORY 25
4.1 Pixel Values 25
4.2 Look-Up-Tables 27
4.3 USlng the Look-Up-Tables 29

4.3.1 4-Bit Plane Model One Sxstems 30
4.3.2 8-Bit Plane Model One S~stems 31
4.3.3 16-Bit Plane Model One Slstems 32

4.4 The Model One's Value Registers 34
4.5 The Pixel Processor 35
4.6 Write-Enable and Read-Enable Masks 36
4.7 Blinking Colors and the Blink Table 38
4.8 The CLEAR and FLOOD Corrmands 38

5.0 1024xl024 ADDRESSING MODE 40

6.0 GRAPHICS PRIMITIVES 42
6.1 Points 42
6.2 Lines 42
6.3 Circles and Arcs 43
6.4 Rectangles 44
6.5 Polygons 44
6.6 Text 46
6.7 Filled Primitives 48
6.8 Seeded Area Fills 48

7.0 DUAL-OVERLAY PLANES 50
7.1 Overlay Plane Screen Origin 51
7.2 Overla~ Plane Color 51
7.3 Overlal Plane write-Protect 51
7.4 Overlal Plane Read-Enable 52
7.5 Overla~ Plane Zooming 52
7.6 Overla~ Plane Pixel Value 52

3

Model One/25 Programming Guide

7.7 Overlay Plane Crosshairs 53

8.0 PIXEL MOVER 54
8.1 Source and Destination Windows 54
8.2 Data Routing 56

9.0 DATA READ-BACK AND IMAGE TRANSMISSION 58
9.1 Reading Back Infonnation to the Host Computer 58
9.2 Image Transmission 60

10.0 MACRO PROGRAMMING 62
10.1 Defining a Macro Command 62
10.2 Executing a Macro 62
10.3 Erasing a Macro 63
10.4 Suggestions for Writing Macros 63
10.5 Using the Button Table 65
10.6 Advanced Macro Programning 66

10.6.1 Panning 66

11.0 APPLICATION DEVELOPMENT FEATURES 69
11.1 The Local Debugger 69
11.2 Command Stream Translator 70
11.3 Instant Replay 72

12.0 PROGRAMMING THE Z8000 73

13.0 HOST FORTRAN LIBRARY
13.1 Output to the Model One
13.2 Entering Graphics Mode
13.3 Initializing I/O to the Model One
13.4 ONELIB COMMON Blocks
13.5 ONELIB Error Reporting
13.6 Input From the Model One
13.7 Additional ONELIB Subroutines

14.0 HOST COMPUTER DMA

15.0 ERROR CONDITIONS

16.0 ALPHABETICAL COMMAND REFERENCE

17.0 QUICK REFERENCE

18.0 INDEX

Appendix I A Model One/20 lK Mode FORTRAN Program .

4

74
74
75
76
77
77
79
79

81

82

85

Model One/25 Programming Guide

List of Figures

Figure 3.1 The Default Addressing Space 17
Figure 3.2 Resetting the Coordinate Origin 18
Figure 4.1 The Interrelationship of the Image Memory, 28

Look-Up-Tables, and Digital-to-Analog Converters
Figure 6.1 A Filled Polygon with a Hole 46
Figure 6.2 Horizontal and Vertical Text 47
Figure 7.1 Overlay Planes in Front of Image Memory 50
Figure 8.1 Settings of CREGs 11 through 14 Allow Mirroring 55

5

Model One/25 Programming Guide

List of Examples

Example 4.1
Example 10.1
Example 10.2
Example 10.3
Example 10.4
Example 10.5
Example 10.6
Example 10.7
Example 10.8
Example 11.1
Example 11.2
Example 13.1
Example 13.2

A Crawling Circle Demonstrates Shading
Defining a Macro
Lots of Little Boxes
Another Fine-Shading Macro
Interactive Cursor Tracking
Display Pans Continuously
Cursor-controlled Panning
Button-controlled Zooming
Rubberbanding Lines Create a Pattern
Using the DEBUG Command
Using the Local Debugger and the DEBUG Ccmnand
Enter and Exit GRAPHICS Mode
Initializing ONELIB

6

26
63
64
65
66
66
67
67
67-68
71
71
76
79

Model One/25 Programming Guide

List of Tables

Table 2.1 Default I/O Buffer Sizes
Table 2.2 The Model One's Special Characters
Table 3.1 Coordinate Register Assignments
Table 4.1 Cammon Look-Up-Table Routing Settings
Table 4.2 Value Register Assignments
Table 4.3 PIXFUN Modes and Functions
Table 4.4 Settings for bankm
Table 8.1 PM::TL Parameter Values
Table 11.1 Summary of Local D~ugger Commands
Table 13.1 Raster COMMON Blocks
Table 13.2 ONELIB Error Codes and Messages
Table 13.3 ONELIB Image Data Transfer Commands

7

15
15
21-22
29
34
36
37
56
70
77
79
80

Model One/25 Programming Guide

1.0 INTRODUCTION

This manual describes, in detail, the standard commands of the Raster
Technologies Model One/25. It is intended for the experienced graphics
applications programmer, and assumes that the user has read the Introduction
to the Raster Technologies Model One.

Before beginning this manual, the user should verify:

1. that the Model One/25 has been installed and tested on the host computer .
system, and

2. that graphics commands may be successfully executed locally at the
alphanumeric tenninal and from the host computer system.

Detailed installation and testing instructions are included
Installation Guide for the Raster Technologies Model One.

in the

This manual has two parts: the first fifteen sections present the Model One
and its commands in conceptual groups, using a tutorial structure; Section 16
provides an alphabetical command reference to all the Model One commands.
Section 16 is intended for reference and gives complete details of every
command. Finally, Section 17 provides a quick reference to the Model One
corrmands.

Each Section is described below.

1.0 Introduction

2.0 Modes of Operation: this section describes the two operating modes for
the Model One: ALPHA mode, in which the programmer communicates in
alphanumerics with the host computer, and GRAPHICS mode, in which the
Model One's command interpreter is used to decode and execute graphics
commands. (Graphics commands may originate fram the host or fran the
local terminal.)

3.0 Coordinates and Image Memory Addressing: this section
Model One's two-dimensional coordinate addressing.
origin, clipping window, screen origin, current point,
registers are described in detail.

describes the
The coordinate
am coordinate

4.0 Pixel Values, Look-Up Tables, and Image Memory: this section explains
the use of look-up tables (LUTs), value registers, and write- and
read-enable masks. Pixel values and the pixel processor are explained.
Blinking colors and the blink tables are descr'ibed; the CLEAR and FLOOD
commands are also explained.

5.0 l024xl024 Addressing Mode: this section explains how to use the Model
One/25 in 1K mode.

6.0 Graphics Primitives: this section describes the graphics primitives
supported by the Model One: points, lines (vectors), circles, arcs,
rectangles, and polygons. The use of text am the text comnands is given

8

MOdel One/25 Programming Guide

in detail.

7.0 Dual-Overlay Planes: this section describes the Model One/25
dual-overlay planes and the associated commands. This section should be
used only by programmers whose systems include the Option Card.

8.0 Pixel Mover: this section explains the Pixel Mover option, and should be
used only by those programmers whose system includes the Option Card.

9.0 Data Read-Back and Image Transmission: this section describes loading
image memory from the host computer and reading back infonmation to the
host canputer.

10.0 Macro Programming: this section explains how to define, write, and
execute a Model One macro program. Use of the button table, which may be
used to execute macros under user control, is covered.

11.0 Application Development Features: this section describes the Model One
local debugger, the cormnand stream translator, and the REPLAY corrmand
(which allows the user to play back the last 32 characters sent fran the
host to the Model One).

12.0 Programming the Z8000: this section describes the commands associated
with downloading and debugging Z8000 object code. This section will be
needed only by those programmers who are adding commands to the Model
One's command set.

13.0 Host FORTRAN Library: this section describes the MOdel One's host
FORTRAN library in detail.

14.0 Host Computer DMA: this section describes the use of the Option Card DMA
(Direct Memory Access) port for high-speed transfers between the host
computer and the Model One's image memory. This section should be used
only by those programmers whose system includes the Option Card.

15.0 Error Conditions: this section lists the possible error messages and
their causes. The possible responses are given.

16.0 Alphabetical Command Reference: this section provides a complete
reference to every MOdel One/25 command. Organized alphabetically, it
supplies full details of all commands.

17.0 Quick Reference: this section supplies a brief listing of all Model One
commands. In addition, it includes a listing of the graphics commands by
opcode.

9

Model One/25 Programming Guide

2.0 MODES OF OPERATION

The Model One functions in two modes: GRAPHICS mode, in which the Model One
comnam interpreter decodes am executes graphics coomands, and ALPHA mode, in
which ASCII characters are passed through the Model One to connect the local
alphanumeric tenninal am the host computer •

. 2.1 ALPHA Mode

When the Model One is powered up, or if the RESET button mounted on the rear
panel is pressed, a COLDstart command is executed. After COLDstart, the Model
One is in ALPHA mode. You can then use the local alphanumeric terminal or
keyboard to communicate directly with the host computer.

The Model One's mLDstart coomand, executed by pressing the RESET button or by
entering the COLD command directly, perfonns a complete COLDstart on the Model
One. The OOLDstart includes clearing defined macros, coordinate and value
registers, resetting the clipping window, am setting the Look-Up-Tables to
the default. Section 16 gives complete details of the OOLDstart command. You
should execute a COLDstart command after each example in this manual to reset
the Model One.

The Model One supports three different host transmission fonmats: 8-bit
binary, ASCII hexadecimal, and pure ASCII. The choice between 8-bit binary
and ASCII hexadecimal is made at installation, as described in the Model One
Installation Guide. ASCII hexadecimal fonnat is used when the host computer
cannot be programmed to transmit 8 bits of binary data over each character
sent to the ter.minal.

Pure ASCII fonnat allows the host computer to issue graphics cammands in
exactly the same fonnat as commands typed at the local tenminal. The ASCII
flag command is used to set the host interface for pure ASCII fonnat; all
subsequent commands must be sent from the host to the Model One exactly as
they would be typed in locally.

Pure ASCII fonmat requires many more characters to be sent from the host to
execute a series of commands and should be used only when the command stream
must be directly interpreted by the programmer or user rather than the Model
One.

2.2 GRAPHICS Mode

In GRAPHICS mode, the Model One command interpreter decodes and executes
graphics commands coming from the local tenminal or from the host computer.
To enter GRAPHICS mode, a [CTRL-D] (04H or 84H) is' sent from the host camp.lter
or fram the local ter.minal. The [CTRL-D] must be sent as a 7-bit ASCII
character, independent of whether the the Model One has been set to accept
data in 8-bit binary or ASCII hex. The SPeHAR (see section 2.3) comnand can
be used to change the ENTERGRAPHICS control character fram a CTRL-D to any
desired ASCII code. In fact, the SPCHAR command can be used to change any
Model One special control character to any user-defined ASCII code.

10

Model One/25 Programming Guide

Only one I/O port, either the port to the local tenninal (ALPHASIO port) or
one of the ports to the host computer (HOSTSIO, HOSTGPIB, or HOSTDMA), can be
in GRAPHICS mode at any given time. When the ENTERGRAPHICS control character
appears at one of these ports, the Model One enters GRAPHICS mode. Once the
Model One is in GRAPHICS mode, the Model One expects graphics commands fran
the host computer or from the local terminal, whichever one initially issued
the ENTERGRAPHICS code.

2.2.1 GRAPHICS Mode From the Local Terminal

When the ENTERGRAPHICS control character appears at the Model One's ALPHASIO
port, the local tenninal is put into GRAPHICS mode; the GRAPHICS pranpt
character! is displayed at the terminal. Now, commands that you type are
processed directly by the Model One and not sent to the host canputer.

The fonmat for graphics commands typed locally is:

COMMAND_MNEMONIC parameterl ••• parameterN

For example, the command to draw a circle of a given radius around the current
point is:

CIRCLE 40

where CIRCLE is the canmand mnemonic, and 40 is the desired radius. Parameter
values may be entered as signOO, base-10 numbers (such as 117 or 45), or as
unsigned hexadecimal numbers when preceded by a * sign (such as #FF, #9E, or
#OAOF).

The parameter values must be separated by a canma or space, as desired. This
can be used to set off sections of the commands, or to clarify what the
command is doing:

Ale 10 45,135

This command draws an arc of radius 10, with starti~g angle 45 degrees and
ending angle 135. You can also use commas to set off x,y pairs or groups of
values, as you will see in the examples in this manual. Same further examples
of locally-typed commands are:

MOVABS 0,0
DRWREL 30 150
VOCPAT #FOFO

The MOdel One command interpreter includes a HELP subsystem.
list of all the Model One comnands, type

HELP

HELP may also be used to obtain parameter information, by typing

11

To receive a

Model One/25 Programming Guide

HELP COMMAND

For example, typing

HELP MOVABS

displays this infonnation:

MOVABS: OPCODE = 001
1. <16 BIT SIGNED NUMBER>
2. <16 BIT SIGNED NUMBER>

and typing

HELP PRMFIL

displays

PRMFIL: OPCODE = 031
1. OFF ON

Abbreviations may be used for the command mnemonic; these abbreviations are
indicated in the Alphabetical Command Listing (section 16). The shortest
abbreviation allowed is indicated by underscores: CIRCLE indicates that C is
a valid abbreviation for the CIRCLE command. AdditTonal characters may be
used, if desired: C, CI, CIR, CIRC, and CIRCL are all valid abbreviations.

The QUIT command is used to leave GRAPHICS mode and return to ALPHA mode.
Type the ENTERGRAPHICS control character [CTRL-D] and then a QUIT command, to
verify that the Model One returns to ALPHA mode. In ALPHA mode, you can once
again use your tenminal to communicate with the host computer.

2.2.2 GRAPHICS Mode From the Host Computer

When the ENTERGRAPHICS character is sent from the host computer to the Model
One, the host port which sent the ENTERGRAPHICS character, whether it was the
HOSTSIO, HOSTGPIB, or HOSTDMA port, is put into GRAPHICS mode.

A host computer application program, using the Model One's Host FORTRAN
library, sends the ENTERGRAPHICS control character by calling the subroutine
ENTGRA. All graphics comnands from the host canputer to the Model One must be
sent between a call to the ENTGRA subroutine and a call to the QUIT
subroutine, as shown in the example below. (The host FORTRAN library is
described in more detail in section 13.)

INTEGER I,J,K,L
INTEGER IRAn, lANG, IJANG

CALLENTGRA

Model One in ALPHA Mode
No graphics commands may be

issued unti 1 a CALL ENTGRA
corrmand is given.

Alphanumeric I/O is allowed.

Enter GRAPHICS Mode~

12

Model One/25 Programning Guide

CALL MOVABS(I,J)
CALL CIRCLE (M)
CALL DRWABS(K,L)

CALL QUIT

· ·
CALL ENTGRA

· ·
CALL CIRCLE (IRAD)
CALL ARC (IRAD, lANG, JANG)
CALL DRAWBS (J , K)

CALL QUIT
STOP
END

Graphics subroutine calls are
allowed: no alphanumeric I/O
to Model One.

Quit GRAPHICS Mode; return to
ALPHA· Mode. Alphanumeric data
to local terminal allowed.

Reenter GRAPHICS Mode.

Exit GRAPHICS Mode.

If you are not using the Model One's host FORTRAN library, your program will
have to send the ENTERGRAPHICS control code to the Model One in same other
way. You should verify that your host programs can send the ENTERGRAPHICS
control code and properly issue graphics commands before continuing. Graphics
canmands from the host comfX,lter are composed of a stream of opcodes and
parameters. Each opcode is one byte, ranging from OOH to FFH. The opcode for
a MOVABS command is OlH. The opcode for a CIRCLE comnand is OEH. The M:>VABS
command has four bytes of parameter data which must immediately follow its
opcode. Thus, the byte stream for a complete M:>VABS corcmand would be:

OlH 03H FFH OOH OFH
opcode parameters

This host command stream is equivalent to typing:

MOVABS #03FF,#OOOF

or

MOVABS 1023,15

at the local alphanumeric keyboard.

The CIRCLE command has one two byte parameter which gives the radius of the
circle to be drawn. Thus, the CIRCLE command would be:

OEH OIH 03H
opcode parameters

when sent from the host computer. This carmand is equivalent to typing:

13

Model One/25 Programming Guide

CIICLE #0103

or

CIRCLE 259

at the local alphanumeric terminal.

The QUIT conrnand, which returns the Model One to ALPHA mode, has an op:::ode of
FFH (with no parameters). Each command stream to the Model One which is to be
followed by normal terminal I/O must end wi th a QUIT corrmand. Thus, a
complete command stream to the Model One would be:

04H (or 84H) OlH
ENTERGRAPHICS opcode

03H FFH OOH OOH OEH
parameters opcode

OIH 03H FFH
parameters QUIT

Note that the ENTERGRAPHICS control code mayor may not have its high bit set;
it is interpreted as a 7-bit ASCII code.

If the Hodel One has been configured to accept 8-bi t binary host transmission
(see the Model One Installation Guide), each byte in the command stream is
sent in a single character from the host computer. For 8-bit binary to work
properly, the host computer may not use the eighth bit of each character for
parity or force it high or low. It also must allow every control code to pass
to the terminal. In addition, the host computer must not insert carriage
control characters unpredictably into the output stream.

ASCII hex fonmat removes all of these restrictions at the cost of doubling the
transmission time. In ASCII hex format, each byte is expanded into two
hexadecLnal characters, one for the high nibble (four bits) of the byte,
follo~ by a second character for the low nibble of the byte. The byte
stream

OIH 03H FFH OOH OFH

requires only five characters when using binary transmission. In ASCII hex,
it would require ten characters:

"0" "1" "0" "3" "F" "F" "0" "0" "0" "F"

In ASCII hex fonmat, all carriage control characters are ignored, so that a
FORTRAN WRITE statement or a BASIC PRINT statement will work properly.

2.2.3 The Model One's InEut and OutEut Buffers

While the local terminal is in GRAPHICS mode, any characters sent by the host
to any of the Model One's host ports (HOSTSIO, HOSTDMA, or HOSTGPIB) are
stored in the Model One's input queue until you type QUIT to reenter ALPHA
mode. The HOSTSIO input queue defaults to 4096 bytes (characters) • The
HOSTDMA input buffer is 2 characters.

Similarly, while the host port is in GRAPHICS mode, any characters typed at
the local alphanumeric terminal are stored in the ALPHASIO input queue until
the host computer issues a QUIT command to exit GRAPHICS mode. The ALPHASIO

1A

Model One/25 Programming Guide

input queue holds 256 characters.

The ALPHASIO and HOSTSIO input queues can be changed with the CONFIG command;
details are given in section 16.0.

Table 2.1 shows the default I/O buffer sizes for the MOdel One.

Port

HOSTS 10
HOSTDMA
ALPHAS 10
HOSTGPIB

Input

4096
2

256
o

Output

256
256
16
o

Table 2.1 Default I/O Buffer Sizes

2.3 The MOdel One's Special Characters

The Model One responds to a set of special control characters, such as the
ENTERGRAPHICS [CTRL-D] described above, to perfonn certain functions. These
are:

Function

Enter GRAPHICS Mode
Send BREAK to host
Execute WARMstart
Kill current line
Backspace
ACKnowledge
Negative ACKnowledge
Enter local debugger
Suspend communications
Restart communications

Default Special Character

[CTRL-D]
[CTRL-P]
[CTRL- [] or [ESC]
@

[CTRL-H]
[CTRL-F]
[CTRL-U]
[CTRL-X]
[CTRL-S]
[CTRL-Q]

Table 2.2 The Mbdel One's Special Characters

Note that [CTRL-S] and [CTRL-Q] are not sent to the host if you are not using
the HOSTSIO port. They do, however, stop and start communications to the
local terminal.

The SPCHAR char,flag,code command can be used to change the default special
characters for the MOdel One. The most commonly modified default special
character is the WARMstart character, which defaults to an ESCAPE. The SPeHAR
command to change the ~start character to a [CTRL-G] (the bell) is:

SPeHAR 2,1,7

15

Model One/25 Programming Guide

The carmaoo

SOCHAR 2,0,0

disables the ~tart character entirely. (While this is dangerous during
program development, it may be desirable after debugging has been completed.)
The SPCHAR carmand is described in detail in Section 16.0.

16

Model One/25 Programming Guide

3.0 COORDINATES AND IMAGE MEMORY ADDRESSING

The Model One uses a two-dilnensional coordinate system to describe the graphic
entities that are drawn into image memory. Each coordinate is stored as an X
canponent am a Y canponent; these canponents are stored wi thin the Model One
as two's ccmplement 16-bi t integers. The r-txlel One' s graphics commands use
this 16-bit "address space" to specify the position of points, lines, circles,
arcs, polygons, rectangles, and so on.

Because the physical ilnage memory of the Model One is not large enough to
allow a full 16-bits of addressing in both the X and Y dimensions, the
physical image memory covers only a patch of the 16-bit address space, ranging
from (-256,-256) to (255,255) in the Model One/25 in 512x512 addressing mode
and (-512,-512) to (511,511) in 1024x1024 addressing mode. (The l024xl024
addressing mode--also called 1K mode--is covered in more detail in section
5.0.) The patch of image memory is called the physical image memory, as it is
that section of the virtual l6-bit address space that can be written into when
making an image.

3.1 The Coordinate Origin

The CORORG x,y conmandcan be used, iIMlediately after a CX>LDstart, to
reposition the physical image memory in the 16-bit address space. Figure 3.1
shows the default coordinate system for the Model One/25. Figure 3.2 shows
the use of the CX>RORG corrmand to set up the screen so that (0,0) is in the
lower-left hand of the screen and all points can be addressed as positive
numbers.

Virtual Image Memory

(-256,255) (255,255)
or or

(-512,511) Physical
(511,511)

Image Memory

X

(-512,-512 (511,'-512)
or or

(-256,-256) (255,-256)

(

Figure 3.1 The Default Addressing Space

17

Model One/25 Programming Guide

y (511,511)

CORORG -256,-256

(0,0) x

Figure 3.2 Resetting the Coordinate Origin

The CORORG command should be issued only immediately following a COLDstart,
because all coordinate registers are modified by the CORORG command.

3.2 The Clipping Window

When a graphic primitive, such as a line or circle, is to be dr2!im, its
coordinates are given as 16-bit addresses. When the primitive is then drawn
by the Model One" it is clipped so that it is dr.awn only into the physical
image manory.

The Model One automatically clips all graphics primitives to a prer~t clipping
window. If no clipping window was specified, it draws only that portion of
all graphics primitives which lie in physical nnage memory. To support this
clipping, the Model One maintains a clipping wirrlow; the clipping window
defines a rectangular area of the virtual address space outside of wh.ich
nothing is drawn. The defaul t clipping window is defined by the physical
image manory. In the M:>del One/25, the default clipping window has the
corners (-256,-256), (-256,255), (255,255), (255,-256). In the Model One/25
lK mode, the corners are (-5l2~-512), (-512!51l), (51l~511), and (51l~-512).

The WINDOW xl,yl x2,y2 command changes the position of the clipping window by
respecifying the lower-left and upper-right corners of the window. For
example, the command WI~l 0,0 255,255 defines the clipping window with a
lower-left corner of (0,0) and an upper-right corner of (255,255).
Positioning all or part of the clipping window outside of the physical image
memory clips the window itself, as clipping occurs automatically beyond llnage
memory bounds.

18

Model One/25 Programming Guide

3.3 The Screen Origin

Ordinarily, the video monitor displays the entire contents of image memory.
The displayed image is essentially a window into image memory, however, and it
can be modified in both size and position.

The screen origin specifies the physical nnage memory location that will
appear at the center of the screen; it may be placed on 4-pixel boundaries
horizontally and 2-pixel boundaries vertically. The default screen origin is
(0,0) '"

The SCRORG x,y command is used to change the position of the screen orlgln
within image memory. For example, SCRORG -40,-40 puts the point (-40,-40) at
the center of the screen. If the image is large enough, wrapping around of
the image can be seen when the corrmarrl is executed. The Model One
automatically wraps the image around (side-to-side and top-to-bottom panning)
when any part of the screen falls off the edge of physical image memory, as
the screen refresh addresses are generated modulus 512 for 512 addressing mode
or modulus 1024 for lK addressing mode. This wraparound cannot be disabled.

3.4 Display Scale Factor

The display scale factor determines the number of pixels that are displayed on
the screen:

Scale Factor
1
2
4
8

512 Mode
5l2x5l2
256x256
l28xl28

64x64

3.5 Zooming the Display

1K Mode
1024xl024 (averaged to 512x512)

5l2x5l2
256x256
l28x128

The size of the window of image memory that is displayed is controlled by the
ZOOM and ZOOMIN commands, which modify the display scale factor.

The ZOOM factor command allows explicit definition of the display scale; the
display scale may be 1, 2, 4, or 8. For example, ZOOM 4 sets the display
scale to 4.

The ZOOMIN command zooms in the display by a factor of two; ZOOMIN sets the
scale to 4 if the current scale is 2, or 8 if the current scale is 4.
Finally, if the current scale is 8, the display is restored to a scale factor
of 1 by a ZOOMIN command.

ZOOM and ZOOM IN do not change the current screen origin, clipping window, or
coordinate origin.

When you zoom in the display, the number of pixels displayed on the screen in
reduced, so that each pixel takes up a larger display area. At a zoom scale
factor 9f eight, for example, you can see each pixel quite clearly.

19

Model One/25 Programming Guide

To zoom in a specific portion of the nnage, you should move that portion of
the image to the center of the screen, using the OCRORG command, then execute
the zoan cannarrl.

3.6 Inhibiting Screen Refresh

The BLANK flag command totally inhibits screen refresh, leaving image memory
available all of the time for updates by the vector generator, pixel
processor, or optional host DMA. BLANK 1 inhibits screen refresh: BLANK 0
restores nonmal screen refresh. When screen refresh is inhibited, the
displayed image is forced to black.

The BLANK command can be used to increase the pixel writing rate, since more
time is available for vector writing when screen refresh is inhibited.

3.7 The Current Point

All MOdel One commands which draw graphics primitives use the current point as
a reference. For example, the CIRCLE command draws a circle of given radius
around the current point.

To draw a line in hnage memory from a given starting point to a specified
ending point, the current point must first be set to the starting point of the
line. Then, the line is drawn fran the current point to the specified ending
point. The line-drawing commands leave the end point of the line as the new
current point after the line is drawn.

Five commands move, and therefore modify, the current point: MOVABS, l'{)VREL,
M:>V3R, MOV2R, an:1 M:>VI.

The M:>VABS x,y command specifies a new current point: MOVABS -10,-10 sets the
current point to (-10,-10).

The MDVREL dx,dy command moves the current point a relative distance from the
previous current point. For example, the carmand sequence

MOVABS 143,271
MOVREL -10,-10

would place the current point at (133,261).

The MOV3R dx,dy andMOV2R dx,dy commands are special fonms of the l'{)VREL
cannand for use when the displacenent to the new current point is small. The
M:>V2R command requires only two bytes to be sent fram the host computer; the
MOV3R comnand requires three bytes. The ~S and MOVREL cammands require
five bytes when sent from the host. Details of the MOV2R and MOV3R commands
are given in Section 16.0.

The MOVI creg command moves the current point to the point specified by the
indicated coordinate register. For example, MOVI 2 moves the current point to
the point specified by coordinate register 2 (coordinate register 2 gives the
location of the cursor on the digitizing tablet). Details of the coordinate
registers are given in the next section.

20

Model One/25 Programming Guide

3.8 The Coordinate Registers

The Model One stores 64 coordinate registers internally. The coordinate
registers store coordinate values within the Model One: some have a
predefined function within the Model One, others are available for programmer
use.

Each coordinate register (CREG) stores a 16-bit X coordinate and a 16-bit y
coordinate. Table 3.1 shows the coordinate register assignments for the Model
One/25.

Coordinate
Register

o

1

2

3

4

5

Function

Current point: used as a reference
point by graphics cannands. The
current point is modified by
MOVE and DRAW commands.

Joystick or trackball location, updated
automatically by the Model One every
1/30th second.

Digitizing tablet cursor location,
updated automatically by the Model One
every 1/30th second.

Coordinate origin: used to position
physical image memory within the virtual
address space. The coordinate origin
is modified by the CORORG command.

Screen origin: specifies the point which
appears at the center of the screen.
The screen origin is changed by the
SCRORG canmand. CREG 4 is used for
horizontal and vertical panning.

Crosshair 0 current location: changes
made to this register move crosshair o.
The crosshair is enabled/disabled using
the XHAIR conmand (see section 3.9).

Table 3.1 Coordinate Register Assignments
(continued on next page)

21

Model One/25 Programming Guide

Table 3.1 Coordinate Register Assignments (continued)

Coordinate
Register

6

7

8

9

10

11,12

13

14

15

16

17-19

20-63

Function

Crosshair 1 current location: changes
made to this register move crosshair 1.
The crosshair is enabled/disabled using
the XHAIR coomand.

For Option Card users only: crosshair
2 current location. Crosshair 2 is
displayed on overlay plane 0, using
the XHAIR carmand.

For Option Card users only: crosshair
3 current location. Crosshair 3 is
displayed on overlay plane 1, using
the XHAIR coomand.

Clipping window, lower-left corner.

Clipping window, upper-right corner.

For Option Card users only: diagonal corners
for source window for PIXMOV command.

For Option Card users only: PIXMOV destination
window.

For Option Card users only: pixel writing
direction for PIXMOV destination window.

For Option Card users only: screen origin
of overlay plane O.

For Option Card users only: screen origin
of overlay plane 1.

Reserved.

Available for use by applications
programner.

Table 3.1 Coordinate Register Assignments

Four coomands load and alter the coordinate registers: CLOAD, CM)VE, CADD,
and CSUB. The canmand REAOCR reads back or displays the contents of a
specified coordinate register.

??

Model One/25 Programming Guide

The CLOAn creg x,y command loads a given 16-bit X coordinate and a 16-bit y
coordinate into the specified coordinate register. For example, CLOAD 25
-75,75 loads the point (-75,75) into coordinate register 25.

The CMOVE edst, csrc command copies data from one coordinate register into
another: CMOVE 0 2 moves the contents of coordinate register 2 (the cursor
location) into coordinate register 0 (the current point). The command CMOVE 0
2 thus specifies that the new current point is to be taken fram the cursor
location on the digitizing tablet.

CADD csum, creg and CSUB edif, creg add and subtract coordinates between two
specified coordinate registers: CADD 0 21 adds the contents of CREG 21 to the
contents of CREG O.

Note that in the coordinate register pairs specified as parameters for CMOVE,
CAnD, and CSUB, the register which is to be modifia:l is specifia:l first.

Several graphics pr imi ti ve canmands include an indirect addressing form. In
this fODm, coordinates which are needa:l to execute the command are given by
specifying a coordinate register instead of being supplied directly: MOVI
moves to the point given by a coordinate register, RECTI uses a coordinate
register to specify the diagonal corner of a rectangle, and so on.

Finally, the command READeR creg reads or displays the contents of a specified
coordinate register. For example, READeR 0 displays the contents of CREG 0
(the current point).

3.9 The Crosshairs

The XHAIR num,flag command controls the crosshairs. For the Model One/25,
four crosshairs are available; two of these are optional and are drawn into
the overlay planes. num gives the crosshair number; if flag=l, the crosshair
is displaya:l. If flag=O, the crosshair returns to its default "invisible"
state.

Crosshairs, when displayed, take their location fram the coordinate registers.
Crosshair 0 uses CREG 5. Crosshair 1 uses CREG 6. For the crosshair to track
the cursor on the digitizing tablet, it is necessary to write a small macro.
(Macro programming is describa:i in detail in section 10.)

MACDEF 10
CMOVE 5 2 Load crosshair 0 location with cursor location
MACEND
BUTTBL 0 10 Execute macro 10 every 1/30th second

This macro will execute every 1/30th of a secom, wr1 ting the cursor location
into the crosshair location. For the crosshair to be displayed, it is still
necessary to execute the command XHAIR 0 1. To turn off the crosshair, use
the command XHAIR 0 O.

23

Model One/25 Programming Guide

The crosshair colors are detennined by value registers 1 (crosshair 0) and 2
(crosshair 1). The crosshair color is then XORed with the color in llnage

memory to display the crosshair; the default crosshair value is 255,255,255.

24

Model One/25 Programming Guide

4.0 PIXEL VALUES, LOOK-UP TABLES, AND IMAGE MEMORY

The Model One's image memory can be used in several ways. In a
fully-configured, 24-bit plane Model One/25, up to 24 bits per picture element
(pixel) can be used to store and display a 5l2x5l2 image with a-bits of
shading for each primary color. This allows 256 levels for each color: red,
green, and blue; full-color imaging is thus provided, with over 16 million
possible simultaneous colors.

This full-color imaging configuration, where the red, green, and· blue
components of the linage are stored independently, is most frequently used to
display smoothly-shaded three-dimensional objects. In a full-color imaging
application, the 24 bits per pixel of Dnage memory are divided into three
banks: red, green, and blue.

In a Model One/25 with less than 24 bit planes, the Model One's image memory
is used for pseudo-color (or false-color) imaging. In pseudo-color imaging,
the Model One's three 5l2x5l2x8 L~age memory banks may not be fully populat9d,
and the Model One's look-up-tables are then used to produce a color display.
Also, a fully populated 24 bit per pixel Model One/25 can be used to store
three independent Sl2x5l2x8 pseudo-color images.

In lKx1K addressing mode, the Model One supports up to 6 bits per pixel,
allowing up to 64 simUltaneous colors (see Section 5).

4.1 Pixel Values

Colors for drawing graphics primitives are selected with the VALUE red,grn,blu
command or stored in value registers. Value registers are analogous to
coordinate registers and are described in more detail below. Combinations of
red, green, and blue are used to create specific shades and varied colors.

Same examples are:

PRMFIL ON
~UE 255,0,0 Selects full-intensity red
CIRCLE 100
VALUE 255,0,255 Selects full-intensity magenta
CIRCLE 80
VALUE 255,255,0 Selects full-intensity yellow
CIRCLE 60
~UE 255,100,100 Selects a shade of pink

You can create fine shades of color by gradually changing the value. For
example, the command sequence below will create a finely-shaded cylinder.

25

MACDEF 10
VADD 0 10

CADD 0 21

Model One/25 Programming Guide

Starts a macro definition
Add contents of value register 10 to value
register 0
Add contents of coordinate register 21
to coordinate register 0

CIRCLE 50 Draw a circle
MAC END End macro definition
PRMFIL ON Draw filled graphics primitives
VALUE 0,0,0 Set value te black
MOVABS -256,-256

VLOAD 10 1,0,0

Set current locatien to lower-left
corner .of the screen

Load value register 10 with 1
CLOAD 21 1,1 Load coerdinate register 21 with (1,1)
BUTTBL ° 10 Set up butten table to execute Macro 10

every 1/30th .of a second

Example 4.1 A Crawling Circle Demonstrates Shading

AlIef the above commands are described in this manual; for the moment, you
can enter them by typing an ENTERGRAPHICS character [CTRL-D] at the
alphanumeric tenninal, then typing the commands exactly as they are written.
Execution can be stepped by typing BUTTBL ° ° at the terminal.

There are three commands available to specify the current pixel value. VALUE,
which specifies a 24-bit pixel value, is described above. The other two
commands are ~8 and ~lK; all three commands modify the current pixel
value.

The current pixel value, stored in value register 0, gives the 24-bit value to
be used whenever graphics primitives are drawn into image memory. For
example, if yeu issue the drawing commands te draw a line into image memory,
the line will be drawn using the current pixel value.

The VALUE r,g,b canmand specifies 24 bits of data, with 8 bits for each of the
red, gr-een, and blue banks. The parameters .of the VALUE corrmand are red,
green, and blue, in that .order. For example, ~UE 0,255,0 sets the current
pixel value~ full-intensity green. The VALUE command is used for 24-bit
full-color imaging applications.

The VAL8 val ccmnand specifies 8 bits of data, and is usually used for
pseudo-color applications, where the Model One is configured with less than 24
bit planes, .or when only one bank of image memory is t.o be written int.o at .one
time. VAL 8 sets the current pixel value for all three .of the red, green, and
blue bankste the same 8-bit value. If only one bank is to be written, the
WRMASK canmand, described belew, can be used t.o protect the ether banks of
image memory while wri ting into the selected bank. Fer example, VAL8 100 sets
the current pixel value t.o (100,100,100).

26

Model One/25 Progranming Guide

In using the Model One for pseudo-color imaging, four special commands are
available to optimize the number of bytes which must be transmitted from the
host to specify the new pixel values. The four commands are VAL 8 , PIXEL 8 ,
RUNLN8, and LOT8. These commands end in 8, indicating that they are designed
specifically for pseudo-color applications and systemss with less than 24 bit
planes. Details of each command are given in the appropriate section8

The VALlK val command specifies the six bits of pixel value data for l024xl024
addressing mode and is described in more detail in Section 5.0.

4.2 Look-Up Tables

The Model One has three video look-up-tables, each of which is 256x8 bits.
Each look-up-table (LUT) is associated with one of the Model One's
digital-to-analog converters; the DACs are used to generate the analog video
output signal to drive the video monitor (as shown in Figure 4.1).

27

Model One/25 Programming Guide

Image Memory

Red

.,-,--------.
~ 256 x 8

1 J - J - LUT , 8 r , 8 ,
8

512x512x8
V

Red Video Output

or
1Kx1Kx2

Green

J ..J i I
""'"

256 x 8 I Ef-t 8 ~

t 8 - LUT 18

512 x 512 x 8

Green Video Output

or
1Kx1Kx2

Blue

J .. , .. 256 x 8 I ~B '8
r , I .. - LUT

I .

e
---------512 x 512 x8 L-UT

lue Video Output

or Input
1Kx1Kx2 Routing

Sync and Blanking ~ ync Output

Figure 4.1 The Interrelationship of the Image Memory, Look-Up-Tables, and
Digital-to-Analog Converters

28

Model One/25 Programming Guide

Each look-up-table drives one DAC: the red LUT drives the red DAC, the green
LUT drives the green DAC, and the blue LUT drives the blue DAC. However, the
input to a given look-up-table does not have to come from its respective bank
of image memory. Figure 4.1 shows the LUT Input Routing block, which controls
the correspondence between the banks of image· memory and the red, green, and
blue LUTs.

The look-up-table input routing is set with the LUTRTE function (Look-Up-Table
RouTE) command. LUTRTE controls which bank of image memory drives which LOTi
the most common settings are given in Table 4.1.

Canmarrl Use

LUTRTE 0 Full color

LUTRTE #7E Pseudo-color

LUTRTE #75 Pseudo-color

LUTRTE #53 Pseudo-color

Result

Red bank drives red LOT
Green bank drives green LOT
Blue bank drives blue LUT

Red bank drives all LOTs

Green bank drives all LUTs

Blue bank drives all LUTs

Table 4.1 Common Look-Up-Table Routing Settings

The Model One can be programmed to provide double buffering by writing into a
single bank of image memory While driving all three look-up-tables from
another bank, and switching between banks to change the display rapidly.

4.3 Using the Look-Up Tables

In a 24 bit-per-pixel system, the red, green, and blue banks of image manory
dri ve the roo, green, am blue look-up-tables. The LUTs are then used to
provide contrast or linearity correction to the displayed image. This direct
correspondence (LUTRTE 0) is the default input routing on 24 bit plane Model
One systems.

The look-up-tables are set to the system default at COLDstart. The default
sets all three LUTs to a linear ramp with an index of 0 as the lowest
intensity of the color, and 255 as full intensity. Combinations of red,
green, and blue are used to create specific shades and variOO colors.

Six Model One commands are available to load the look-up-tables: LUTA, LUTB,
LUTG, LUTR, LUTS, am LUTRMP.

LUTA index, entry: The LUTA conmand sets the same location in all three
look-up-tables to a single value. For example, LUTA 255 0 changes location
255 in all three LUTs to zero.

29

Model One/25 Programnling Guide

LUTB index, entry, LUTG index, entry, am LUTR index, entry: The LUTB corrmand
sets a location in the blue look-up-table; LUTG sets a location in the green
look-up-table; LUTR sets a location in the roo look-up table. For example,
LUTR 100 255 sets location 100 in the red LUT to 255 (full intensity). If you
did this after executing the series of commands above, you would see a sudden
change to the displayed Unage as location 100 was changed. (This creates an
arc of full intensity red.)

LUT8 index r ,g ,b: The LUT8 coamand changes the same location in all three
look-up-tables to the three values specified. For example, LUT8 100
50,100,200 changes location 100 in all three LUTs: location 100 of the red
LUT is changed to 50, location 100 of the green LUT to 100, and location 100
of the blue LOT to 200.

LOTRMP code sind,eind sent,eent:
"ramp" of look-up-table values ..

The LUTRMP command is used to set a
The ccm:nand includes five parameters:

code indicates the look-up-table to be loaded.
code=l indicates the blue LUT.
code=2 indicates the green LUT.
code=4 ind icates the red LOT.
code=7 indicates all LOTs.

sind,eind these indicate the starting and ending
locations within the look-up-table.

sent,eent these indicate the starting and ending
values (entries) to be made into the
look-up-table.

linear

For example, LUTRMP 4 0,255 255,0 totally reverses the power-up default
entries in the red look-up-table. To go back to the example above (Example
4.1), if you typed in LUTRMP 4 0,255 255,0, you will see the background became
red, the areas that were red become black--in general, the intensity
components of the image will reverse.

LUTRMP 7 0 255 ° 255 restores the power-on default contents of the red, green,
and blue LUTs.

4.3.1 4-Bit Plane Model One Systems

In a Model One with four bit planes, the least significant four bit planes of
the BLUE image memory bank have been populated. After power-on or COLDstart,
the LUTRTE canmand should be issued:·

LUTRTE #53
CALL LUTRTE (83)

when typed locally
When executed by an applications
program fran the host

This LUTRTE carmand instructs the Model One to drive the RED, GREEN, and BLUE
look-up-tables from the BLUE Unage memory bank.

Once this is done, the RDMASK command should be used to force the high four
bits to all zeros:

30

RDMASK #OF
CALL RDMASK (15)

Model One/25 Programming Guide

when typOO locally
when executed by an applications
program fram the host

You can now use a series of LOT8 commands to initialize the look-up-tablesto
map the pixel values in image memory to the desired colors, as shown:

LtJr8 ° 0,0,0
LtJr8 1 255,0,0
LtJr8 2 0,255,0
LtJr8 3 100,100,100

canmand is used.

VAL83

FLOOD

LtJr8 3 100,255,100
VAL8 15

CIOCLE 50

Pixel value of 0 is black
Pixel value of 1 is red
Pixel value of 2 is green
Pixel value of 3 is grey

For example:

Change the current pixel value
to 3,3,3
Flood image memory with the
current pixel value
Pixel value of 3 is light green
Change current pixel value to
l5,15,15-the maximum for the 4-bit
system
Draw circle of radius 50

In summary, for a four-bit plane MOdel One system, you should use the cannands

LUTRTE #53
RDMASK #OF

to configure the look-up-table routing, and then use the LOT 8 command to
initialize the look-up-table entries from 0 to 15 to correspond with the
sixteen simultaneously displayable colors you wish to use.

4.3.2 8-Bit Plane Model One Systems

In a Model One with eight bit planes, the BLUE image memory bank has been
popula ted. After power-on or COLDstart, the LUTRTE cannarrl should be issued:

LUTRTE #53
CALL LUTRTE (83)

when typed locally
when executed by an applications
program from the host

This LUTRTE coomarrl instructs the Model One to dr i ve the RED, GREEN, am BLUE
look-up-tables from the BLUE image memory bank.

You can now use a series of LUT8 coomands to initialize the look-up-tables to
map the pixel values in image memory to the desired colors, as shown:

31

LOT8 0 0,0,0
LUT8 1 255,0,0
LUT8 2 0,255,0
LUT8 3 100,100,100

. .

Model One/25 Programming Guide

Pixel value of ° is black
Pixel value of 1 is red
Pixel value of 2 is green
Pixel value of 3 is grey

LOT8 255 255,255,255 Pixel value of 255 is white

To change the current pixel value in a 8-bit per pixel system, the VAL8
canmand is used. For example:

VAL83

FLOOD

LOT8 3 100,255,100
VAL8 15

CIRCLE 50

Change the current pixel value
to 3,3,3
Flood image memory with the
current pixel value
Pixel value of 3 is light green
Change current pixel value to
255,255,255--the maxDnum for the 8-bit
systan
Draw circle of radius 50

In sunmary, for a eight-bit plane Model One system, you should use the ~ammand

LUTRTE #53

to configure the look-up-table routing, and then use the LUT8 corrmand to
initialize the 1ook-up-table entries from ° to 255 to correspond with the 256
simultaneously displayable colors you wish to use.

4.3.3 l6-Bit Plane Model One Systems

In a Model One with sixteen bit planes, the GREEN and BLUE image memory banks
have been populated. After power-on or COLDstart, the LUTRTE command should
be issued:

LUTRTE #75 when typed locally

to select the GREEN image memory bank, or

LUTRTE #53 when typed locally

to select the BLUE image memory bank.

To select the bank from an applications program:

CArL LUTRTE (117) to select the GREEN bank

or

CALL LUTRTE (83) to select the RED bank

32

, Model One/25 Programnling Guide

The LUTRTE #75 comnarrl instructs the Model One to drive the RED, GREEN, and
BLUE look-up-tables from the GREEN image memory bank, which is necessary to
display the contents of the GREEN bank.

The LOTRTE #53 carmand instructs the Model One to drive the RED, GREEN, and
BLUE look-up tables fran the BLUE image manory bank, which is necessary to
display the contents of the BLUE bank.

You can now use a series of LOT8 commands to initialize the look-up-tables to
map the pixel values in image memory to the desired colors, as shown:

LUT8 0 0,0,0
LOT8 1 255,0,0
LOT8 2 0,255,0
LOT8 3 100,100,100

Pixel value of ° is black
Pixel value of 1 is red
Pixel value of 2 is green
Pixel value of 3 is grey

LUT8 255 255,255,255 Pixel value of 255 is white

To change the current pixel value in a l6-bit per pixel system, the VAL8
command is used. You should also use the write-protect masks to control
whether pixel data is written into the BLUE or GREEN bank. For example:

LUTRTE #75
WRMASK 255 2
VAL83
·CI~LE 25
LUT8 3 100,255,100
LUTRTE #53
WRMASK 255 1
VAL8 255

CIR:~ 50
LUTRTE #75

Select the GREEN bank for display
write-enable the GREEN bank
Change current pixel value to 3,3,3
Draw circle of radius 25
Pixel value of 3 is light green
Select the BLUE bank for display
write-enable the BLUE bank
Change the current pixel value to
255,255,255 (maximum for l6-bit system)
Draw circle of radius 50
Select the GREEN bank for display

In summary, for a sixteen-bit plane Model One system, you should use the
command

LUTRTE #75

or

LUTRTE #53

to configure the look-up-table routing, and then use the LOT8 command to
initialize the look-up-tab1e entries from ° to 255 to correspond with the 256
simultaneously displayable colors you wish to use.

You can then use the WRMASK and VAL8 commands to select the RED or GREEN bank
for writing and display.

33

Model One/25 Programming Guide

4.4 The Model One's Value Registers

The Model One uses sixteen value registers, called VREGs, to store 24-bit
pixel values internally. Like the coordinate registers describal in Section
3.0, same value registers have predefined functions; others are available for
use by the programmer. The example above (Example 4.1), used to display fine
shading, uses one of the available value registers to store a constant value
to be added to the current pixel value.

The current pixel value--the value that is used by all coomands that write
graphic data to the Model One-is always stora3 in VREG 0. Table 4.2 shows
the value register assignments.

Value Register

VREG 0

VREG 1

VREG 2

woo 3

VREG 4*

VREG 5*

VREG 6

VREG 7-15

Use

The current pixel value; this is
the value used by all commands
that write graphic data to the
Model One.

Crosshair 0 pixel value.

Crosshair 1 pixel value.

Fill mask used for sea3ed area fills.

COlor assignment for overlay
plane O.

COlor assignment for overlay
plane 1.

Reserva3.

Available for temporary value
storage.

*For Option Card Users Only.

Table 4.2 Value Register Assignments

Five Model One commands are available to load and manipulate the contents of
the value registers directly: VLOAD, VMOVE, VADD, VSUB, and RDPIXR. VALUE,
VAL8, and VALIK also load and manipulate the value registers, by setting the
current pixel value (VREG 0).

_VLO __ AD~_v_r_eg~ __ r~,_g~,_b loads a 24-bit pixel value into anyone of the sixteen value
registers. For example, VLOAD 10 1,0,0, used in Example 4.1, loads value
register 10 with the value (1,0,0); this value is added to value register 0

34

Model One/25 Programming Guide

by the VADD command every time the macro is executed.

VMOVE vdst,vsrc moves the contents of one value register into another value
register: VMOVE 10 11 copies the contents of value register 11 into value
register 10.

VADD vsum,vreg and VSUB vdif,vreg add and subtract values between two value
registers. As you saw above, VADD 0 10 adds the contents of value register 10
to the contents of value register 0; in the same way, VSUB 0 10 subtracts the
contents of value register 10 from the contents of value register O.

RDPIXR vreg places the value found in image memory at the current point into
the specified value register. RDPIXR 10 determines the value at the current
point and then places that value into VREG 10. The RDPIXR command can be used
to select from a menu of colors, allowing the user to be given a choice of
colors, select a color using the cursor, and make that color the current pixel
value: RDPIXR 0 would make the pixel value at the chosen point the current
pixel value.

The READVR vreg command does not affect the value within the value register:
instead, the value of the specified VREG is displayed at the port that is in
GRAPHICS mode (to the host if the host has sent the ENTERGRAPHICS character,
to the local te~inal if the local terminal ·has sent the ENTERGRAPHICS
character.

4.5 The Pixel Processor

Whenever pixel data is written into image memory, the Model One's pixel
processor is used. The pixel processor performs ari ttInetic am logic
functions between incoming pixel data and the pixel values which are already
in image memory. The pixel processor supports addition, subtraction, and the
logical functions XOR, AND, and OR.

The pixel processor has three independent a-bit arithmetic logic units
(ALUs)--one for each of the red, green, and blue image memory banks. The
pixel processor operates on data coming from the Model One's hardware vector
generator (which may came from the host serial port or from the optional host
DMA (Direct Memory Access) port). All graphics prllnitives are drawn into
image memory by the hardware vector generator and are thus performed by the
pixel processor.

Two commands control the pixel processor: PIXCLP and PIXFUN.

The PIXFUN mode command controls the arithmetic or logic function to be
performed by the pixel processor. PIXFUN has a single parameter, mode, which
sets the pixel processor mode, as shown in Table 4-3'.

35

Mode Mnemonic

0
1 INS
2 SUBI
3 SUBN
4 XOR

5 OR
6 AND
7 PRESET
8 CONDITIONAL

Model One/25 Programming Guide

Pixel Function

Replace linage memory with incoming data
Subtract image memory data from incoming data
Subtract incoming data from image memory
Add incoming data values to image memory
Exclusive OR incoming data values with
image memory
OR incoming data values with image memory
AND incoming data values with image memory
PRESET: write all l' s into image memory
Conditional: inhibit writing of pixel values
of (0,0,0). This mode is not available
when performing a PIXMOV command.

Table 4.3 PIXFUN Modes and Functions

PIXCLP flag tells the pixel processor what to do if there is an underflow or
overflow from an add or subtract operation on pixel values. PIXCLP 0
instructs the pixel processor ALUs to wrap-around on overflow or underflow;
this effectively perfonns all computation modulus 256. PIXCLP I tells the
pixel processor ALUs to clip their output to a maximum value of 255 or a
minimum value of O. Clipping may be useful when intensity values from two
images are to be added or subtracted, to avoid unexpected results. If PIXCLP
1 were set, the intensity would reach its maximum value without wrapping
arourrl to black.

4.6 write-Enable and Read-Enable Masks

The MOdel One's image memory planes can be selectively read-enabled and
read-disabled, write-enabled and write-protected.

The Model One's video output section includes an eight-bit register called a
read-enable mask. The read-enable mask is ANDed with the data from image
memory inmediately before the data enters the red, green, and blue
look-up-tables: the same 8-bit read-mask is usej for all three LUTs. If a
bit in the read-mask is zero, the corresponding input bit in all three LUTs is
forcOO to zero.

The RDMASK mask ccmnand sets the read-mask. For example, RDMASK 0 sets the
read-mask to all zeroes and thus completely suppresses display of the image,
forcing the input to all three LUTs to O. (Note that this does not
necessarily force the display to black; the display is dependent on the
contents of the LUTs at index 0.) RDMASK #AA (hexadecimal) converts to
alternating ones and zeroes, suppressing output of every other bit plane.

Whenever you use the RDMASK coomand, keep in mind that it affects the input to
all three LUTs: roo, green, and blue.

36

Model One/25 Programming Guide

You should use the RDMASK command with caution because the Read mask register
is logically "in front of" the look-up-tables. Thus, it has an effect on the
addressing of the look-up-tables. For example, if you have the Read Mask set
to #OF and then issue the command LUTA 255 255, you will actually change the
look-up-table value at address zero to (255,255,255), because of the masking
of the higher-order bits by the Read Mask. NOTE: if you want to be sure you
are changing only the correct look-up-table indices, you should first set the
Read Mask to iFF, then issue the look-up-table commarrls, then reset the Read
Mask to the desired value.

The WRMASK bibn,bankm cam\and selectively write-protects bit planes in the
Model One's image memory. WRMASK uses two parameters: bitm and bankm. bitm
is a single-byte mask controlling the write-protect status of each of the
eight bit planes of image memory in all three image memory banks: each bit of
bibn corresponds to one bit plane in all three banks. Whenever a bit of bibn
is set, the corresponding plane in all three banks is writing-enabled. For
example, setting bitm to iFO (hexadecimal) write-enables the four most
significant bit planes in the red, green, and blue banks; the four least
significant bit planes are write-protected.

bankm is a five bit mask: each bit corresponds to one of the three image
memory banks and the two overlay planes. The least significant bit (bit 0)
corresponds to the blue bank; bit 1 sets the green bank; bit 2 corresponds
to the red bank. If any of these three bits of bankm are set, the
corresponding bank of image memory is then wri te-enabled.

The WRMASKcammand can also be used to write-protect the optional overlay
planes (see section 7.0), as shown in Table 4.4.

bits 7,6,5
bit 4
bit 3
bit 2
bit 1
bit 0
(bit O=LSB,

must be zero
if=l, write-enable overlay plane 0
if=l, write-enable overlay plane 1
if=l, wri te-enable roo image memory bank
if=l, write-enable green image memory bank
if=l, write-enable blue bnage memory bank

bit 7=MSB)

Table 4.4 Settings for bankm

Thus, the bitm and bankm parameters of the WRMASK create a write-enable matrix
(see Figure--i.2). A specific bit plane will be written only if'both bitm and
bankm indicate that the plane is write-enabled. -WRMASK iF il write:enables
only the four least significant bit planes of the blue bank; all other nnage
memory bit planes are write-protected.

In 1024xl024 addressing mode, the 2 most significant bits of bibm
write-protect/write-enable the two bit planes of image memory in each bank;
the least significant 6 bits are ignored. The three bits of bankm are used
identically to 512 mode, to selectively write-enable the three banks: roo,

37

Model One/25 Programnling Guide

green, arrl blue.

Read-masks may be used in conjunction with the write-enable masks in
applications which use the 24 bit-plane capacity of the Model One to store
multiple frames of a movie-loop animation sequence. The write-enable masks
ensure that that only one frame at a time is written by the host; the
read-masks and LOTRTE functions simplify the display of one frame at a time.

Section 10 (Macro Programming) gives examples of the use of the read-enable
and write-enable masks for this type of animation.

4.7 Blinking Colors arrl the Blink Table

The Model One uses its look-up-tables and a blink table to provide blinking
colors. The blink table lists addresses in the look-up-table; for each
index, a pair of LOT entries is stored. The index specifies an address in the
look-up-table: the contents of that address is toggled autanatically between
the specified entries. The blink rate determines the amount of time each·
entry stays in the look-up-table.

Four cannands are used for blinking colors: BLINKC, BLINKD, BLINKE, and
BLINKR.

The BLINKC command clears the blink table and stops all look-up-tables from
blinking. After clearing, the first value given (entryl of BLINKE) remains.

The BLINKD lut,index command removes a single entry fran the blink table and
leaves the rest of the blink table intact. For example, BLINKD 7 100 disables
blinking of address 100 in all look-up-tables.

The BLINKE lut,index entryl,entry2 command enables blinking of a specified
index in the look-up-tables by making an entry in the blink table. For
example, BLINKE 7 100 255 125 blinks location 100 in all look-up-tables
between values 255 and 125. Up to 32 entries may be made in the blink table.

The BLINKR frames command sets the blink rate. The blink rate can be set to a
multiple of the frame time (1/60th of a secorrl). For example, BLINKR 30 sets
the blink rate to once per secorrl.

4.8 The CLEAR and FLOOD Commands

The CLEAR and FLOOD commands fill image memory with a uniform pixel value.

The CLEAR coomand fills the current clipping window as defined by CREGs 9 and
10 (WINDOW command) with the current pixel value. The selected pixel function
(PIXFUN cammand) determines the actual pixel values that left in image memory
when the CLEAR is done. For example:

VALUE 100,200,50
CLFAR

fills image memory with a pixel value of (100,200,50). If this is followed by

38

PIXFUN ADD
VALUE 20,0,200
CLFAR

Model One/25 Programming Guide

All pixels in image manory would have (20,0,200) ADDed to their current pixel
value of (100,200,50), resulting in a value of (120,200,250) in image menory.

The CLEAR command does not affect the current point.

The VECPAT mask command can be used to change the fill pattern for a CLEAR
command, by specifying a pattern of pixels to be repeated along every scan
line during the execution of the CLEAR ccmnarrl. mask is a 16-bit parameter;
for example, VECPAT iAAAA contains alternating ones and zeroes. CLEARing the
image memory with VECPAT iAAAA set will create a-dotted fill pattern. More
infoDnation on the VECPAT command is given in section 6.2.

The FLOOD conmarrl instantly fills every displayed pixel with the current pixel
value. If the screen is zoanErl in when the FLOOD cannand is issued, only the
displayed portion will be FLOODed; FLOOD has no effect on undisplayed
portions of the screen. The pixel function (PIXFUN· cammand) does not affect
the FLOOD command.

39

Model Ooe/25 Prograntning Guide

5.0 l024xl024 ADDRESSING MODE

The Model One/25 can also use its image memory as a l024xl024 array, instead
of a 5l2x5l2 array. with a full memory configuration (24 bit planes), the
Model One/2S can store up to 6 bit planes of image data at l024xl024. Each of
the red, green, and blue banks stores l024xl024x2.

In l024xl024 addressing mode, the Model One/25's look-up-tables are bypassed.
The output of the red, green, and blue banks are used to drive the red, green,
and blue DACs (digital-to-analog converters) directly. The MODElK func
command selects the pixel data routing. The command description in Section
16.0 gives full details.

The MODDIS flag command selects between the 512xS12 and 1024xl024 addressing
modes:

MOODIS 1

sets the display mode to 1024xl024.

MODDIS 0

sets the display mode to S12x5l2 (the power-on default).

In addition, the MODDIS command clears image memory to a pixel value of
(0,0,0) whenever the addressing mode is changed. Whenever MODDIS is executed,
the look-up-tables and clipping window are reset to their default values.
CREG 0, VREG 0, PIXE'UN, PIXCLP, PRMFIL, and DEBUG are also reset to their
COLDstart default values.

The VALlK val command specifies the six bits of pixel value data which are
needed for l024xl024 addressing mode. Two bits of data are used for each
bank. (The format is packed red-green-blue, in a single byte.) The VALlK val
command is the most efficient way of changing the current pixel value when
running in l024xl024 addressing mode.

When reading back data to the host computer (see section 9.2 for details), the
READF command allows you to select the appropriate format for reading back the
pixel data. READF func, with func=4, will read back data to the host using
the same format as the pixel values in the lK command. However, you should
note that no image transmission commands are available to support this format,
should you wish later to reload the Model One with the image. To store a
complete ~age, you should use READF 0 and then restore the image with either
RUNLEN or PIXELS.

In l024xl024 addressing mode, the WRMASK command'differs slightly from 512
mode. The two most significant bits of bibn write-protect/write-enable the
two bit planes of image memory in each ba~ the least significant 6 bits are
ignored. The three bits of bankm are used identically to 512 mode, to
selectively write-enable the three banks: red, green, and blue. Therefore,
you must enable bit-planes in pairs; it is not possible to enable a single
plane at a time.

40

Model One/25 Programming Guide

Appendix I provides a full FORTRAN program using Model One/25 lK mode.

41

Model One/25 Programming Guide

6.0 GRAPHICS PRIMITIVES

The Model One graphics primitive commands support local generation of common
geometric entities: points, lines, circles, arcs, rectangles, polygons, and
text. These entities are called graphics primitives and are used as building
blocks for more complex images.

All commands which draw graphics primitives use the Model One's 16-bit virtual
address space to define position and shape. The coordinate registers (current
point, coordinate origin, and clipping window) control the placement of the
graphics primitives within physical image memory, as described in Section 3.0,
Coordinates and Image Memory Addressing.

6.1 Points

The simplest graphic entity, the point, is drawn with the POINT command~
POINT sets the pixel located at the current point (CREG 0) to the current
pixel value (VREG 0); the current pixel value and current point are
unchanged.

6.2 Lines

When drawing lines or vectors, the Model One uses the current point as the
starting point for the line; a DRAW command then specifies the ending point
of the line.

Five DRAW commands are available, which are analogous to the five MOVE
commands described in section 3.7. All DRAW commands use the current pixel
value to draw the line. The DRAW comnands are: DRWABS, DRWREL, DRW2R, DRW3R,
and DRWI. The current point is always set to the endpoint of the line after
the DRAW command has executed.

The DR~S x,y command draws a line from the current point to the given ending
point. The current point is set to (x,y) after execution. For example,
DRWABS 10,10 draws a line to (10,10) fram the current point. After execution,
the new current point is (10,10).

The DRWRELdx,d~ command draws a vector from the current point to the point
specified by addIng dx to the X coordinate and dy to the Y coordinate. For
example, DRWREL -10,-10 would draw a line to (-20,-20) fram the current point
of (-10,-10). The new current point will again be set to the ending point of
the line: (-20,-20) •

The DRW2R dx ,dy and DRW3R dx ,dy cammands are spec ial forms of the DRWREL
command for use when the displacement to the ending point of the line is
small. The DRW2R command requires only two bytes; DRW3R requires only three
bytes. Details of DRW2R and DRW3R are given in Section 16.0.

The DRWI creg command draws a line fram the current point to the point
specified by the given coordinate register. As with the other DRAW commands,
the current point is set to the endpoint of the new line after execution of
the command. For example, if CREG 23 holds the value (-20,30) and the current
point is (10,10), the command DRWI 23 draws a line from (10,10) to (-20,30)
and sets the new current point to (-20,30).

42

Model One/25 Programming Guide

Because all DRAW commands set the last pixel of the line to be the current
point, drawing a series of lines can produce overwriting of the pixels at the
beginning am ending points of the lines. This is particularly obvious if the
current pixel function (PIXFUN) is ADD, SUB, or XOR. The FIRSTP flag canmand
can be used to inhibit writing of the first pixel of each line as it is drawn.
The command FIRSTP 1 inhibits writing of the first pixel; FIRSTP 0 allows
writing of the first pixel. FIRSTP 0 is the default.

Lines drawn by the Model One's DRAW comnarrls may be sol id, dotted, dashed, or
any repetitive pattern you can specify with a l6-bit parameter. The VECPAT
mask command specifies the pattern of pixels to be repeated along every
subsequent line that is drawn. VECPAT iAAAA contains alternating ones and
zeroes: lines drawn with this mask are drawn with every other pixel omitted
and appear dotted. VECPAT iFOFO draws lines with four pixels drawn followed
by four omitted: these lines appear dashed. Other values will create other
patterns. Repeating patterns can be generated; every time a pixel is
written, the vector pattern is rotated by a single bit, without regard to the
starting and ending points of lines.

Note that the VECPAT command also affects filling of graphics primitives (the
PRMFIL command) and the fill pattern used in CLEAR.

The default mask for VECPAT is iFFFF, so that every pixel along the line is
drawn.

6.3 Circles and Arcs

Three canmands can be used to draw a circle: CIRCLE, CIRCXY', and CIRCI.

The CIRCLE radius command draws a circle of the specified radius centered
around the current point. For example, to draw a circle with a radius of 30,
centered around {50, 50) , use these commands:

M:>VABS 50,50
CIOCLE 30

The CIRCXY' x,y canmand draws a circle centered around the current point;
point (x,y) is on the circumference. (The distance from the current point to
point (x,y) de tennines the radius.) For example, if the current point is
(0,0) and the ccmnand CIRCXY' 10,0 is executed, a circle centered around (O,O),
with (10,0) on its circumference, will be drawn.

The CIOCI creg command draws a circle centered arourrl the current point; the
point specified by creg lies on the circumference. For example, if the
current point is (10,10) and CREG 21 holds point (25,25), the canmand CIRCI 21
draws a circle whose center is (lO,IO) and with point (25,25) on the
circumference. The eIRCI command can be used to specify arbitrary circles
interactively, using the digitizing tablet: the cursor can be used to specify
the center point, then used again to specify the radius (by specifying a point
on the circumference).

43

ModelOne/25 Programming Guide

A single Model One corcmarrl is available for drawing arcs: ARC. The ARC
rad,al,a2 command draws an arc around the current point by giving the radius
(rad) , the starting angle (a1) , and the ending angle (a2). The starting and
ending angles are given in one-degree increments counterclockwise; zero
degrees is the posi tive X-axis; ninety degrees is the posi tive Y-axis.

For example, ARC 10 0,90, with the current point at (0,0), draws an arc of
radius 10 from (0,10) to (10,0).

6.4 Rectangles

Three commands are available to draw rectangles: RECTAN, RECREL, and RECTI.

The RECTAN x,y command draws a rectangle: the current point defines one
corner, and point (x,y) defines the diagonal corner. For example, with the
current point at (10,10), the command RECTAN 20,20 draws a rectangle with
(10,10) as one corner and (20,20) as the diagonally opposite corner.

The RECREL dx,dy command draws a rectangle using the current point as one
corner and (dx,dy) as the displacement from the current point to specify the
diagonally opposite corner. For example, with the current point at (100,100),
the command RECREL 10,10 draws a rectangle with (100,100) as one corner and
(110,110) as the diagonal corner.

The RECTI cr~ command draws a rectangle, using the current point as one
corner and t e point specified by ~ as the diagonal corner. If the current
point is (100,100) and CREG 21 holds the point (10,10), the canmand RECTI 21
draws a rectangle with (100,100) as one corner and (10,10) as the diagonal
corner.

The rectangle cannands do not change the current point.

6.5 Polygons

The MOdel One's POLYGN command allows you to draw arbitrary polygons. The
POLYGN comman1 has the fonnat

POLYGN npoly nverts,vertl,vert2 ••• vertn nverts,vertl,vert2 ••• vertn

The coomarrl is of varying length, depending on the number of polygons being
drawn and the number of vertices in each polygon. The first parameter,
npolys, specifies the number of polygons to be drawn, too secom parameter,
nverts, specifies the number of vertices in the first polygon. Then the
vertices, vertl, vert2 ••• vertn, are specified (as relative offsets to the
current point). The number of vertices, nverts, in the second polygon may
then be specifioo, am its vertices, vertl, vert2. ;.vertn, am so on until all
of the polygons have been drawn.

In using the POLYGN command, all vertices are relative to (or offset from) the
current point; the current point is unchanged by the POLYGN command.

Because the POLYGN command allows specification of more than one polygon at a
time, the Model One supports arbitrary polygons with interior holes. The
polygons which are drawn by the POLYGN command can be filled or unfilled (see

44

Model One/25 Programming Guide

section 6.7): with PRMFIL ON, the nested interior polygons (islands) will be
left unfilled, while the surrounding polygon is filled, as shown in Figure
6.1. '

Same examples will clarify the use of the POLYGN npoly
vertl,vert2 ••• vertn nverts,vertl,vert2 ••• vertn command:

MOVABS 0,0
POLYGN 1 3 10,10 10,-10 -10,-10

nverts,

will draw a triangle (a 3-vertex polygon) from (10,10) to (10,-10) to
(-10,-10) •

Because the POLYGN is drawn offset from the current point, you can change the
current point and issue the same POLYGN command:

MOVABS 100,100
POLYGN 1 3 10,10 10,-10 -10,-10

The above ccmnands draw the same polygon (a triangle) from (110,110) to
(110,90) to (90,90).

The command sequence

MOVABS 20,0
POLYGN 2 3 10,10 10,-10 -10,-10 4 20,20 20,-20 -20,-20 -20,20

would draw a triangle and a rectangle; the triangle would be inside the
rectangle. (If PRMFIL ON had been executed first, the rectangle would be
fi1la:1, the triangle would not be.) Figure 6.1 shows the two polygons.

45

Model One/25 Programning Guide

Figure 6.1 A Filled Polygon with a Hole

Whenever you use the POLYGN comnand, keep in mind that the vertices are
relative to the current point. This facilitates dragging of the polygon
interactively. For example, by writing Macros (see section 10) Which set the
pixel function (PIXFUN) to XOR, you could drag the polygon until the user
wished to confinn it (without affecting image memory). Then, when the user
confirms the location of the polygon, the PIXFUN could be set to change the
value of pixel memory appropriately.

6.6 Text

The Model One supports seven text drawing canmands: TEXTl, TEXT2, VTEXTI,
VTEXT2, TEXTC, TEXTDN, arrl TEXTRE.

The TEXTC size,angle command sets the size and baseline orientation angle for
subsequent text drawing commands. Text may be drawn at any angle, in
one-degree increments counterclockwise; the scale factor may range fran 0 to
255. A scale factor of 16 is the default; a scale factor of 32 doubles the
size of the text. Details of how the angle and scale affect the drawing of
text are given below.

The TEXTDN char,veclst command defines a second font (font 2) for text
drawing. Font 2 is used by the TEXT2 and VTEXT2 can:nands. char gives the
character to be defined. veclst defines the vectors that will draw the
character. Details of the TEXTDN command are given in Section 16.0.

The TEXTRE command erases the definition of font 2 and allows a new font 2 to
be defined if desired.

46

Model One/25 Programming Guide

The four ccmnands TEXTI, TEXT2, VTEXTl, and VTEXT2 are all used for drawing
text. The canmands TEXTI string and TEXT2 string use font 1 and font 2 to
draw text into image me:nory, at the angle and scale factor specified by the
TEXTC command. If a particular character in font 2 has not been defined, the
corresponding character in font I is used.

TEXTI and TEXT2 draw horizontal text. Angles are calculated fram the positive
X axis.

The commands VTEXTI string and VTEXT2 string also·use fonts 1 and 2 to draw
text into image me:nory, at the angle and scale factor given by TEX'IC. The
text is drawn vertically, starting at the current point and writing down.
Angles are calculated from the negative Y axis counterclockwise; an angle of
90 degrees draws side-ways text along the X axis.

Figure 6.2 shows the various text angles and the differences betwen vertical
and horizontal text.

y '1 Y

H 'l
r::C J
8 I z· 0 0081 0 0 J,
~ m 0
H H 0

~ m

0081 0 :!I
::r:: . 'HORI ZONTAL A :>~~8HUr::CH

TlJ,NOZIHOH :r: 0 0 X X
0 l:""~nHI-3~t:rJ<: V
~ E

I\J H l\.)

'-l t-::I '-l R
0 0 0 T 0 0 0 Z 0

t-3 I
:t='

C t-t
A
L

Figure 6.2 Horizontal and Vertical Text

Each text string is drawn with its lower-left corner placed at the current
point. If the current scale factor is 16 (the default), each character uses
five pixels horizontally and seven pixels vertically (excluding descenders,
which take an additional two pixels).

47

Model One/25 Programming Guide

When a TEXT command is sent from the host computer, it includes a one-byte
parameter which indicates the number of characters to be drawn, followed by
the 7-bit ASCII codes for each of the characters. All TEXT commands may be
issued from the local tenminal without counting the number of characters to be
drawn. Each character after the command and del~iting blank is assumed to be
part of the text string. For example:

TEXTl Draw this text

will draw the text "Draw this text" horizontally from the current point.

VTEXTI Draw vertical text

will draw "Draw vertical text" down from the current point.

6.7 Filled Primitives

Circles, arcs, rectangles, and polygons may be drawn filled or unfilled, using
the PRMFIL flag command. When the command PRMFIL 1 or PRMFIL ON is issued,
any sUbsequent graphics commands will draw filled graphics prnnitives. When a
primitive is filled, the current pixel value is used for all interior pixels,
as well as for the border. With PRMFIL OFF, the border only is drawn in the
current pixel value.

The default setting is PRMFIL OFF.

6.8 Seeded Area Fills

In addition to filling of graphics primitives, the MOdel One also supports two
area fill commarrls. In a seErled area fill, a seed point and a boundary
condition are given. The seed point designates the interior of the area to be
filled; the bourrlary corrlition tells the Model One the coooitions which
define the boundary of the area to be filled.

The ARFAl carmand uses the current point as its seed point. The boundary of
the region is defined as any pixel whose value is different from the current
pixel value. For example:

VALUE 0,0,0
CLEAR
PRMFIL OFF
VALUE 255,0,0
MOVABS 0,0
CIRCLE 25
VALUE 0,0,255
AREAl

Set current pixel value to black

Red outlined shapes

Draws a circle of radius 25, center (0,0)
Value is now blue

The ccmnands above will draw a red unfilled circle. When the ARFAl carmand is
executed, the circle is filled with blue, creating a blue disk with a red
edge.

The AREA2 vreg camnand also uses the current point as its seed fX>int.
However, AREA2 does not stop filling an area until it encounters a pixel whose
value is equal to the value stored in ~ or a pixel whose value is equal to

48

Model One/25 Programming Guide

the value stored in vreg O. For example:

CLEAR
VALUE 255,0,0
MOVABS 0,0
PRMFIL OFF
CIRCLE 25
VALUE 0,255,0
ROCTAN 25,25
VALUE 0,0,255
VLOAD 8 0,255,0
MOVABS 1,1
AREAl

ARFA2 8

Set value to red

Set value to green
Draw green rectangle from (0,0) to (25,25)
Set value to blue
Load VREG 8 with green
Move into rectangle-circle overlap
The arc defined by the rectangle
will be filled with blue.
The entire rectangle will be filled
with blue.

Whenever an area fill is done, using either AREAl or AREA2, the fill mask,
specified by the FILMSK Dnsk,~sk,bmsk command, is ANDed with all pixel values
read from bnage memory. Then the resultant pixel values are tested to see if
they meet the prescribed boundary condition. The fill mask allows the
boundary pixel values to lie in a different bit plane or image memory bank
while perfonning the area fill in another bit plane or memory bank. The fill
mask value is stored in VREG 3; the default value is (255,255,255).

For example:

MOVABS 0,0
VALUE 255,255,255
CIRCLE 50
VALUE 0,0,255
CIRCLE 40
VALUE 0,255,0
CIRCLE 30
FILMSK 255,0,0
AREAl

Move to (0,0)
Set value to white
Draw white circle
Set value to blue
Draw blue circle
Set value to green
Draw green circle
Set fill mask to red only
Fill area: green and blue circles are
ignored because of ANDing with
the red fill mask

49

Model One/25 Programming Guide

7.0 DUAL OVERrAY PLANES

This section applies only to Model One/25 systems that include the Option
Card.

The Option Card for the Model One/25 supports two 5l2x5l2xl bit-planes. These
bit-planes can non-destructively overlay the output fram the Model One's bnage
memory. Each overlay plane can be panned independently (each overlay plane
has its own screen origin) and can be zoomed to either the same scale factor
as image memory or at a scale factor of 1:1.

Each overlay plane may be assigned one of eight possible colors: black, red,
green, blue, cyan, magenta, yellow, or white.

Display of the overlay planes has priority over display of image memory;
thus, the overlay planes are logically in front of the image memory, as shown
in Figure 7.1.

Figure 7.1 Overlay Planes in Front of Image Memory

The overlay planes function as binary bit maps which contain a pattern of l's
and O's. If both overlay planes contain a zero in a particular screen
location, then both planes are transparent, and the contents of the Model
One's image memory are displayed at the specified screen location. If either
overlay plane contains a one in the screen location, that location takes on
the color of that overlay plane. If both overlay planes contain a one in the
specified location, the screen location takes on the color of overlay plane O.

50

Model One/25 Programning Guide

7.1 Overlay Plane Screen Origin

Coordinate registers 15 and 16 specify the screen orIgIn for overlay planes a
and 1. Changes to the contents of these CREGs initiate automatic panning of
the overlay planes.

For example:

OCRORG 100,100
CT .. OAD 15 90,90
CLOAD 16 80,80

Screen origin is 100,100
Overlay plane 0 screen origin is 90,90
Overlay plane 1 screen origin is 80,80

Macros (see section 10.0) can be used for interactive panning of the overlay
planes:

MACDEF 10
CMOVE 15 2
MAC END
BUTTBL 0 10

Define macro 10
Put cursor location into CREG 15
End macro 10
Execute macro 10 every 1/30th second

The commands above define a macro which transfers the current cursor position
(CREG 2) into CRa:; 15 (the screen origin of overlay plane 0). Repeated
execution of this macro provides interactive panning of the overlay plane.

7.2 Overlay Plane Color

Value registers 4 and 5 give the color of the overlay planes when a bit in the
overlay plane equals 1. VREG 4 detennines the color for overlay plane O.
VREG 5 determines the color for overlay plane 1. The most significant bit of
each of the rErl, green, am blue bytes specifies the color for the overlay
plane.

For example:
VLOAD 5 #80 #80 #80
VLOAD 5 #80 #00 #00

Overlay plane 0 is white
Overlay plane 1 is red

7.3 Overlay Plane Write-Protect

The WRMASK command also supports write-protecting each of the overlay planes.
In using the overlay planes, the bankm bits are used as follows:

bits 7,6,5
bit 4
bit 3
bit 2
bit 1
bit 0
(bit O=LSB,

must be zero
if=l, write-enable overlay plane 0
if=l, write-enable overlay plane 1
if=l, write-enable red image memory bank
if=l, write-enable green ~age memory bank
if=l, write-enable blue image memory bank

bit 7=MSB)

Software which runs on systems which do not possess overlay planes will run
identically, as the overlay plane bits of bankm are ignorErl on systems without
the Option Card. Nonnally, the overlay planes are wri te-protected; they must
be explicitly write-enabled before any data can be written.

51

Model One/25 Programming Guide

7.4 Overlay Plane Read-Enable

The OVRRD plane,fla~ command allows you to turn on or off the output of each
overlay plane selectlvely. plane indicates which overlay plane (0 or 1) is
being selected; then, if flag=l the overlay plane is displayed (as described
in section 7.0). If flag=O the overlay plane is not displayed, regardless of
its contents.

For example, the command OVVRD 0 1 enables display of overlay plane O.

7.5 Overlay Plane Zooming

The overlay planes may be zoomed independently for display. Either overlay
plane may be displayed at a scale factor of 1:1 or at the same scale factor as
current image memory display.

The OVRZM plane,fla~ command controls the zooming of the overlay planes. As
for OVRRD, plane Indicates which overlay plane is being set. If flag=O, the
overlay plane is always displayed at a scale factor of 1:1. If flag=l, the
overlay plane is displayed at the same scale factor as image memory. For
example, the canmand OVRZM 0 1 displays overlay plane 0 at the same scale
factor as image memory: if image memory is zoomed, so is overlay plane O.

This independent zooming allows you to use the overlay planes for infonnation
that should not be zoomed, such as descriptive text.

7.6 Overlay Plane Pixel Value

Vectors and graphics pr imi ti ves drawn by the Model One graphics canmands into
the overlay planes may write ones or zeroes into the overlay planes, as
defined by the OVRVAL plane,flag canmand. plane, of course, defines which
overlay plane is being referenced; if flag=O, zeroes are written into the
overlay plane. If flag=l, ones are written--Into the overlay plane. For
example, the command OVRVAL 1 1 causes all subsequent graphics canmands to
write ones into overlay plane 1.

The more detailed example will demonstrate how this works:

OVRVAL 0 1
OVRVAL 1 1
WRMASK 0 #18
CIRCLE 50
CLOAD 15 20,20

write ones into overlay plane 0
Write ones into overlay plane 1
Write enable only the overlay planes
Draw a circle
Set screen origin of overlay plane 0

52

to 20,20

Model One/25 Programming Guide

7.7 Overlay Plane Crosshairs

Crosshairs 2 and 3 are used with the overlay planes. Crosshair 2 is drawn
into overlay plane Oi crosshair 3 is drawn into overlay plane 1. The XHAIR
command (see section '3.9) enables these crosshairs. The overlay plane
crosshairs are displayed in the color chosen for the overlay plane and do not
depend on the image memory data or the look-up-tables (as do crosshairs 0 and
1). Crosshairs 2 and 3 damage any data already drawn into the overlay planes,
and should be used with caution. Crosshairs 2 and 3 take their positions from
CREGs 7 and 8.

53

Model One/25 Programning Guide

8. a PIXEL MOVER

This section applies only to Model One systems that include the Option Card.

The Option Card pixel mover allows a window of pixel data to be moved between
banks of image memory and to a different location wi thin any bank. The pixel
mover uses coordinate registers 11, 12, 13, and 14 tO'specifythe location of
the pixel data which is to be moved. You must set the CREGs which control the
pixel mover before the pixel move is initiated.

8.1 Source and Destination Windows

The pixel mover moves data from a rectangular source window to a destination
window of the same size. Coordinate register 11 contains the location of one
corner of the source window; CREG 12 contains the diagonal corner of the
window.

The pixel mover begins scanning the source window by moving the pixel at the
location specified by CREG 11 first. Subsequent pixels in the window are
moved in rows, proceeding towards CREG 12. Thus, the selection of the corners
of the source window, as placed in CREGs 11 arrl 12, give you control over the
order in which pixels are moved.

The destination window is specified by CREGs 13 and 14. CREG 13 contains the
location of one corner of the destination window. CREG 14 controls the
direction of scanning of pixels into the destination window. The ,direction of
the displacement of CREG 14 relative to CREG 13 defines the position of the
diagon~l corner of the destination window, allowing mirroring as shown in
Figure 8.1.

After loading CREGs 11 through 14, the PIXMOV canmand is executed to perform
the actual move.

For example:
To move a 20 by 50 pixel array defined by the corner points (-100,100) and
(-81,51) to the rectangle defined by the corner points (100,100) and
(119,51), this command sequence would be used:

CLOAD 11 -100,100
CLOAD 12 -81,51
CLOAD 13 100,100
CLOAD 14 119,51
PIXMOV

Load source corner
Load diagonal source corner
Load destination corner
Load destination scanning direction
Perfonn the actual pixel move

54

CREG 11

Model One/25 Programming Guide

...------------- GREG 12

r------------_ GREG 14

GREG 13

CREG 13

GREG 1~ ____ -------------__

Translation

Mirroring
About
X Axis

GREG 14

Mirroring
About
Y Axis

-----------.... GREG 13

,...--_____ ---_----, GREG 13

CREG 14

Mirroring
About
X and Y Axes

Figure 8.1 Settings of CREGs 11 Through 14 Allow Mirroring

55

Model One/25 Programning Guide

8.2 Data Routing

The pixel mover can also be used to move data between the red , green, and blue
banks of image memory. The default is to read pixel data fram one color bank
into the same color bank. For example, data from the red bank is transferred
into the red bank during a pixel move.

The PMCTL 0 0 0 0 redrte,greenrte,bluerte canmand changes ,the default pixel
mover routing and allows pixel data to be moved between the red," green, and
blue banks. The PMCTL comnarrl includes seven paramet.ers: the first four must
be set to zero for successful cammarrl execution.

The redrte r:arameter controls which bank of image memory is to be moved into
the red bank. If redrte equals zero, no data is moved into the red bank. If
redrte equals one, data from the red bank is moved into the red bank (the
default). If redrte equals two data from the green bank is loaded into the
red bank. Finally, if redrte equals three, data from the blue bank is
transferred into the red bank by the pixel mover.

The greenrte and bluerte parameters function in the same way, as shown in
Table 8.1.

redrte greenrte bluerte
0 nothing into red -0 nothing into green 0 nothing into blue
1 red to red 1 red to green 1 raj to blue
2 green to red 2 green to green 2 green to blue
3 blue to red 3 blue to green 3 blue to blue

Table 8.1 PMCTL Parameter Values

For example, the commarrl

PMCTL 0 0 0 0 1,2,3

is the default setting for pixel mover data routing: red into red, green into
green, and blue into blue.

The canmand

PMCTL 0 0 0 0 1,1,1

writes all pixel data from the red bank: red into red, red into green, red
into blue.

You may also use the WRMASK command to prevent the pixel mover from writing
into the red, green, or blue banks. For example, if you are using the pixel
mover to transfer data from the red bank into the green bank but not into the
blue bank, only the green bank should be write-enabled. This allows maximum
flexibility in specifying pixel moves.

56

Model One/25 Programning Guide

The PIXFUN command controls the pixel proces$or mode--whether new data is
inserted, ANDed, ORoo, and so on--during a pixel -move. The CONDITIONAL mode
is not available during a pixel move.

Thus, you can use the pixel mover to pick up a wl,ndow--perhaps containing a
coomonly-used area of the image-aI'Xl transfer it to any desire:l area of the
screen. This image section can then be inserted, ADDed, XORed, and so on.
XOR can be usErl to drag the wiooow until the corJ:;ect posi tioning is
determinoo, when the pixel function would be switched to INSERT.

57

Model One/25 Programming Guide

9.0 DATA READ-BACK AND IMAGE TRANSMISSION

This section describes the Model One commands which are used to load image
memory with data from the host computer, and also describes the commands which
read data fram the Model One back to the host computer.

9.1 Reading Back Information to the Host Computer

The Model One supports seven commands for reading back data from the Model One
to the host canputer: READP, READeR, READVR, READW, READWE, READBU, and
READF.

Whenever any of these READ canmands is issued and data is sent by the Model
One to the host computer, the host must acknowledge receipt of the transmitted
data by sending a 7-bit ASCII ACK character (06H or 86H) back to the Model
One. Any data sent fram the host before the ACK is received is ignored by the
Model One.

The host acknowledge character must be sent as a 7-bi t ASCII ACK, regardless
of whether the host normally sends data to the Model One in 8-bit binary or
ASCII hexadecimal fonnat.

This handshaking protocol ensures proper operation of
communicating with the host over a full-duplex serial
full duplex host computer will echo back the characters
ignoring characters sent by the host until the ACK is
problem.

the Model One when
communication line. A
sent by the Model One;
sent alleviates this

When a READ command is issued, the data requested is sent back to the port
that requested the information.

When the READ command is issued from the local alphanumeric terminal, no
acknowledgement is expected or required.

The READP command reads the pixel value of the current point and sends that
value to whichever port (host or alphanumeric terminal) is in graphics mode.
The value is sent as three ASCII decimal numbers, representing the red, green,
and blue pixel values. When the pixel value is sent to the host, three
three-digit integers (FORTRAN 313 format) are sent.

The READeR creg and READVR vreg commands read back the contents of the
coordinate registers and value registers. The READeR command returns two
6-digit integers (216), representing the X and Y cooordinates; the READVR
command returns three 3-digit integers (313) representing the red, green, and
blue pixel values. For example, if CRro 23 holds the point (10,-10), the
command READeR 23 returns 00010 -00010.

The READF func command specifies the format of the pixel data that is sent to
the host when a READW or READWE command is executed. (The READW and READWE
commands are described in the next few paragraphs.) func=O tells the Model
One to send full 24 bit per pixel values--red, green, and blue--in FORTRAN 313
format. func=l, 2, or 3 selects data from a single image memory bank (red=l,
green=2, blue=3) and send the data in 13 fonnat. func=4 instructs the Model
One to send data in the same packed RGB format used to send data to the Model

58

Model One/25 Programming Guide

One in the VALIK command; the data is sent in 13 fonnat to the host computer.

The READW nrows,ncols bf command instructs the Model One to read back a
rectangular array of pixelsC!> nrows and ncols specify the number of rO\\7S and
columns to be read. bf, the blocking factor, specifies the number of pixels
to be sent back to the host before waiting for the ~Knowledge character to be
sent to the Model One fran the host. If the errl of the window is reached
before the block is full, it is padded with zeroes and sent.

If, after the READW conmarrl has been issued am before it canpletes, the host
wants the MOdel One to discontinue sending data blocks, the host can send the
NACK (negative acknowledge) character instead of an ACK. The NACK character
must be sent as a seven-bit ASCII NACK (ISH or 95H)i the character may be
changed with the SPeHAR ccmnam, described in section 2.3. Once the NACK is
sent, the command is completely aborted--in fact, the Model One leaves
graphics mode.

The ~ block factor, bf, prevents host input buffer overflows.

Once the window is defined by nrows and ncols, the READW comnand sends the
pixels in the window from left-to-right and to,l>-to-bottom. The current point
is used to specify the upper-left corner of the wimow. For example, to read
back all of image memory, the current point is moved to (-256,255) for the
Model One/25 in 512 mode. Then, the corrmarrl R.EAI:M 512 512 bf, with the
correct blocking factor, is given.

The READW command sends data to the host computer in the same fonnat that the
PIXELS am PlXEL8 commarrls use to send data to the Model One.

The REAIliE nrows,ncols bf cannand is a run-length encoded fonn of the READW
c<mnand. Like the ~ canmand, the REAIliE canmand is aborted if the host
canputer sems a NACK character. When the READWE comnand is executerl, it
sends back data in a form that can later be transmitted to the Model One by
the RUNLEN arrl RUNU~8 ccmnarrls: it includes a pixel value (r,g,b for RUNLEN
and val for RUNLN8) and a count. The count is from 0 to 255, and indicates
one less than the actual number of pixels set to that value. (Note: the
count is done this way to allow 256 pixels--one half of a scanning line for
the Model One/25--to be set at once, if appropriate.) The count is sent in
FORTRAN 13 format. As in ~, the blocking factor, bf, specifies the number
of pixels to be sent before waiting for an ACK. Again~if the end of window
is reached before the block is full, the block is padded with zeroes and sent.

The READBU flag,cflg command allows the host computer to deter:mine which
function buttons have been pressed at the user's workstation. Whenever a
function button is pressed, the Model One makes an entry in the function
button event queue; this entry includes the button number and the digitizer
or joystick coordinates. The function button event queue is eight events
deep. The READBU corrmand ranoves one entry fran the event queue and sends the
data to the host. The event queue is first-in, first-out (FIFO): if more
than one button is pressed, the first button is sent to the host.

The ~ parameter of the READBU command indicates whether the Model One
should respond imnooiately.

59

Model One/25 Programming Guide

If flag=l, the Model One will wait until there is an entry in the button queue
and then send the data; if the button queue is not empty, the Model One sends
the data imnediately. if flag=O, the Model One resporrls imnerliately: if the
queue is empty, a button number of zero is sent; if there is data in the
queue, the data is sent. The button number is returned as a three-digit
integer (13). The (x,y) coordinates--whether from the digitizer or joystick-
are returned as 216.

The cflg parameter of the READBU command indicates whether the digitizer
coordinate (cflg=O) or the joystick coordinate (cflg=l) should be returned.

If, for example, the user presses button 4 twice, and you execute this command
sequence, you will see:

READBU 1 0
004 00010 -00015

RFADBU 0 0
004 00010 -00015

RFADBU 1 0

and no value will be returned from the third READBU command until another
button is pressed.

9.2 Image Transmission

Four commands are available to load a rectangular array of image memory pixels
with arbitrary data specified by the host computer. PIXELS and PIXEL8 send
data to the MOdel One in a pixel-by-pixel form. RUNLEN and RUNLN8 send pixel
data in a run-length encoded fonnat, in which each pixel value is followed by
a one-byte count specifying the number of pixels (horizontally) to be set to
the specified pixel value.

The transmission time for some images is reduced by using the run-length
transmission fonnat; other images may require more time to transmit because
of the overhead involved in sending the one-byte count along with each pixel
value. The easiest way to detenmine Which fonnat is more rapid for a
particular type of image is to compare the required transmission time for
sample images in each of the two possible formats.

The PIXELS nrows,cols r,g,b ••• r,g,b command transmits 24 bits of pixel
value data per pixel to fill a specified rectangle. nrows and ncols specify
the number of rows--the height-- and the number of columns--the width--of the
rectangular array of pixels which is to be filled. For each pixel in the
rectangle, one byte each of red, green, and blue pixel value data is sent,
starting at the upper-left corner and working left-to-right and top-to-bottom.
The upper-left corner of the rectangle begins at the current point (CREG 0).

For example, to fill the entire image memory of the Model One/25 in 5l2x5l2
addressing mode, the current point is moved to (-256,255) --the upper-left
corner of pixel memory--and the command PIXELS 512 512 given, followed by
3x5l2x5l2 bytes of image memory data, used to fill the 512x5l2 rectangle with
red, green, and blue pixel values.

60

Model One/25 Programming Guide

The PIXELS corrmarrl is analogous to issuing a series of VALUE, POINT, and
MOVREL 1,0 commands to fill image memory. (Of course, the analogy breaks down
at the end of the scan line, when you would have to move explicitly to the
next line.)

The PIXEL8 nrows,ncols val val command also defines a rectangular array
of pixels in the Model One's image manory. The pixel value data is given as a
single one-byte value, as in the VAL8 ccmnand (see section 4.0). The PIXEL8
ccmnand functions in the same way as the PIXELS ccmnand: nrows and ncols
define the rectangle; the series of val is used to fill the rectangle with
pixel values.

The PIXEL8 command is most often used to transmit 8 bit-per-pixel pseudo-color
images; it is analogous to a series of VAL8, POINT, and MOVREL 1,0 commands.

The RUNLEN nrows ,ncols r,g,b count carmand is a run-length encoded form of the
PIXELS command. nrows and ncols again define the rectangle for the pixel
data. r,9,b and count define the pixel value and the number of horizontal
pixels to be set to the given r,g,b pixel value. count gives one less than
the number of adjacent pixels to be set: for example, if count=O, one pixel
is set; if count=l, two pixels are set. The maximum count of 255 sets 256
pixels to the r,g,b pixel value.

The RUNLN8 nrows,ncols val count command is the pseudo-color foen of the
RUNLEN camnand. The pixel value is interpreted as in the VAL8 command. Like
the PIXEL8 carmaoo, RUNLN8 is used in applications using less than 24 bits per
pixel.

61

Model One/25 Programming Guide

10.0 MACRO PROGRAMMING

The Model One's macro programming facility allows you to define a group of
graphic commands to be executed together by issuing a single command whenever
desired.

Up to 256 macros may be simultaneously defined and stored at anyone time; a
COLDstart or power-up will erase all macros.

Four commands are available for defining and executing macro cammards. MACDEF
and MACEND define a macro command; MACRO executes a macro; and MACERA erases
a macro.

10.1 Defining a Macro

Macros are referred to by number, from 0 to 255. The canmand MACDEF num
starts a macro definition. The command MACEND ends the macro definition. In
between these two corrmarrls, you can include any number of graphics ccmnarrls,
including a MACRO command to execute another macro. The only graphics
commands which cannot be included in a macro are ASCII and QUIT.

Afteryou issue the MACDEF command fran the local terminal, you will receive
the special macro definition prompt $. Graphics commands may be entered
without being executed; they are -included in the macro definition and
executed when the macro is executed. Macro definition ends when you type the
canmand MACEND.

For example:

MACDEF 11

$ CM)VE 4 2

$ MACEND

Start definition of macro 11:
user command is underlined.
Make digitizer location (CREG 2) the
screen origin(CREG 4)
End macro definition

The commands above define Macro 11. Macro 11 provides for interactive panning
of the display. Every tUne Macro 11 is executed, the screen origin will be
placed at the current digitizer location. If you want to constantly update
the screen origin to reflect the digitizer origin, you can use the button
table (section 10.5, example 10.4).

If you make an error--a typo or an invalid parameter-- while entering a macro
definition, you will be given an error message, and the line will be erased.
Lines cannot be changed or edited, however. You can then continue entering
the macro command.

10.2 Executing a Macro

Once you've defined a macro, you can then execute it. To execute macro 11
once, type

MACRO 11

62

Model One/25 Programming Guide

The more g
number you used in defining the macro coomand.

Calling a macro that has not been defined does nothing. No error message is
given.

10.3 Erasing a Macro

To erase any macro, you can type the coomand MACERA num.
you can use the COLDstart carmarrl. COLDstart, however,
number of other functions.

To erase all macros,
does reset a large

For example, you can erase Macro 11 with the command MACERA 11.

To redefine a macro, snnply type ~DEF num. This will erase the old
definition of the macro and provide you with a clean slate. '

10.4 Suggestions for writing Macros

As a programming practice, you should be careful to restore conditions to what
they were before the macro was executed. For example, in defining macros
which draw objects using MOVE and DRAW commands, you should restore the
current point to its original value before the end of the macro. Relative
MOVE and DRAW commands allow you to execute the macro with the current point
positioned anywhere in the image memory by assigning the current point
appropriately.

The examples below show several macros.

MlCDEF 25
ZOOMIN
VALUE 0,255,0
MACEND
VAL8 255
CIRCLE 50
MACRO 25

CIRCLE 40

ZO(l.1 1

Begin Macro 25
Zoom in by factor of two
Set color to green
End Macro 25
Set color to white (255,255,255)
Draw circle of radius 50 around current point
Execute Macro 25: zoamin and change the color
to green
Draw green circle of radius 40 around current
point
Restore scale factor

Example 10.1 Defining A Macro

Example 10.1 shows a simple macro; all it does is change the color to green
and zoamin, by a factor of 2.

63

MPCDEF 5
DRWREL 10,0
D~ 0,10
DRWREL -10,0
DIMREL 0,-10
MAC END
VALUE 255,255,255
MOVABS 50,50
MACRO 5
MOVABS 70, 70
MACRO 5
MACDEF 6
MACRO 5

MOVREL 20,0
MACRO 5
MOVREL 0,20
MACRO 5
MOVREL -20,0
MACRO 5
MOVREL 0,-20
MACEND
MOVABS 0,0
MACRO 6

MOVABS -50,-50
MACRO 6

Model One/25 Programming Guide

Start definition of Macro 5
Draw four line segments: these define a box
with the lower-left corner at the current
point

End Macro 5
Change color to white
Move to the point (50,50) -
Draw the box defined by Macro 5
Move to (70,70)
Draw the box defined by Macro 5
Define Macro 6
Macro 5 will be executed as part of
Macro 6
Move right 20
Execute Macro 5 again
Move up 20
Execute Macro 5 again
Move left 20
Execute Macro 5 one more time
Move back to starting point
End definition of Macro 6
Move to (0,0)
Execute Macro 6
--This will draw four boxes.
Move to (-50,-50)
Draw four more boxes.

Example 10.2 Lots of Little Boxes

Example 10.2 defines a macro, which in turn is executed by another macro to
draw a collection of boxes. You can nest macros up to 16 deep. For example,
you could set up macro 6 to be executed by a macro similar to the one in
Example 4.1:

64

MACDEF 10
VADD 0 10
CADD 0 21
MACRO 6
MACEND
VALUE 0,0,0
MOVABS -256,-256
VLOAD 10 1,0,4
CLOAn 21 1,1
BurTBL 0 10

Model One/25 Programning Guide

Define macro 10
Add contents of VREG 10 to current value
Add contents of CREG 21 to current point
Execute macro 6
End macro 10
Set initial current value to black
Move current point to lower-left corner
Load VREG 10
Load CREG 21
Execute macro 10 everyl/30th second

Example 10.3 A Fine-Shading Macro

Example 10.3 takes advantage of the button table to execute macro 10 every
1/30th of a second. The net result is a set of finely-shaded square tubes.
CADD and VADD are used to change the location and the color gradually. The
next section describes the button table in detail. Issue the command BUTTBL 0
o to tenminate its execution.

10.5 Using the Button Table

Many interactive applications require the display controller to perfoDn
graphics operations in response to user input. The digitizing tablet's cursor
supplies a set of function buttons; macro ca:rmands can be set to be executed
in response to these function buttons.

When a function button is pressed by the user, the button number is sent to
the Model One over the TABLETSIO interface. The Model One then uses the
button number to specify the macro to be executed in response to the function
button. The button table keeps track of which macro should be executed in
response to which button. The BtJrTBL index ,rmac ccmnand is used to load the
button table. index gives the button number; nmac gives the number of the
macro to be executed in response to that button. --

The 13 or 16 buttons on the digitizing tablet cursor correspond to entries 1
through 13 (for the 13 button cursor) or entries 1 through 15 (for the 16
button cursor, where button 0 is ignored by the Model One). For example, if
button 5 were pressed, entry 5 of the button table would indicate which macro
should be executed in response.

Every 1/30th of a second, the ~IDdel One checks to see if any function buttons
have been pressed. If a function button has been pressed, the button table is
used to indicate which macro to execute; if no button has been pressed, the
macro indicated by button table location zero is executed.

Button table location zero provides a "background macro"-- the macro specified
by location zero is executed every 1/30th of a secorrl when no buttons are
pressed. For example, button table location zero can be used to provide
interactive cursor tracking, by setting the cursor location equal to the data
tablet 1 s current coordinate evetyl/30th second.

65

XHAIR 0 1
MACDEF 15
CM>VE 5 2

MACEND
BorTBL 0 15

Example 10.4

Model One/25 Programming Guide

Turn on crosshair °
Define Macro 15
Copy current cursor location into current
crosshair location
En:] Macro 15
Execute Macro 15 if no button is pushed

Interactive Cursor Tracking

The macro running from location 0 cannot be interrupted until the final MACEND
is executed. However, the macro at location ° can interrupt other executing
macros.

10.6 Advanced Macro Programming

This section gives several examples of macro programming, such as
rubber-barrling, panning, double-buffering, and movie-loop animation.

10.6.1 Panning

This macro continuously pans the display in steps set by the contents of CREG
20, one step every 1j30th second:

MOVABS 0,0
CIRCLE 50

MlCDEF 10
CADD 4 20

MACEND
CLOAD 20 10,15
BtJrTBL 0 10

Add the contents of CREG 20 to the
screen origin (CREG 4)

Execute Macro 10 every 1/30th second

Example 10.5' Display Pans Continuously

In Example 10.5, the panning of the display depends on the contents of CREG
20; to change the step, change CREG 20. To stop the panning entirely, change
the button table entry at location 0 (BtJrTBL 0 0, for example) or erase macro
10 (MACERA 10).

The digitizing tablet cursor can also be used for panning, as shown in the
next example, where the cursor location controls the center of the screen.

66

~DEF 11
Q10VE 4 2
MACEND
BUTTBL 0 11

Model One/25 Programming Guide

Make the cursor location the screen origin

Execute Macro 11 every 1/30th second

Example 10.6 Cursor-controlled Panning

You can also define a macro to zoom in on the display whenever a function
button is pressed:

MACDEF 12
ZOOMIN
FLUSH
MACEND
BUrTBL 2 12

Empty the function button event queue

Execute Macro 12 when button 2 is pressed

Example 10.7 Button-controlled Zooming

The FLUSH command in Example 10.7 empties the function button event queue.
(The event queue is described in section 9.2, with the READBU carmand.) The

FLUSH command should be used whenever you want to make sure that no extraneous
buttons have been pushed. Note that once the function button event queue has
been filled, further button depressions are ignored. The function button
event queue holds up to eight events.

The READBU flag,cflg canmand, described in detail in section 9.2, takes an
entry from the event queue and sends it to the host; the flag indicates
whether or not the Model One should wait for a button to be pressed or send a
button number of zero if the event queue is empty. clfg indicates whether the
digitizer or joystick coordinates should be sent.

The next set of macros allow you to perfonn rUbber-banding and confirmation of
lines. To execute the set of macros, type in the three macros, enter the last
three commands, and start entering lines. Button 1 confirms the endpoint of
each line (and the start point of the next line).

MACDEF 40
MOVI 22
DRWI 21
MOVI 22
moVE 21 2
DlMI 21
MACEND

MACDEF 41
XHAIR 0 0
PIXFUN 4
BUTTBL 0 40

Macro to draw and un-draw lines
CREG 22 gives the starting point of the line
CREG 21 gives the current endpoint

Make cursor location the current endpoint

Macro to start rUbberbanding of lines
Disable crosshair 0
XOR lines with image memory
Execute Macro 40 every 1/30th second

67

FLUSH
MACEND

MACDEF 42
MOVI 22
DRWI 21
PIXE'UN 0
MOVI 22
DRWI 21
PIXFUN 4
CMOVE 22 21
BUTTBL 0 40
FLUSH
MACEND

Model One/25 Programming Guide

Macro to confi~ a given line and
restart rubberbanding

Add the line to image memory

Make line endpoint the new starting point
Execute Macro 40 every 1/30th second

VALUE 0,0,255 Set value to blue
MACRO 41 Execute setup macro
BUTTBL 1 42 Press button 1 to confinm the endpoint

Example 10.8 Rubberbanding Lines Create a Pattern

Example 10.8 sets up two states for the Model One: macro 40, which executes
every 1/30th second, repeatedly draws a line (using the pixel function XOR to
keep from destroying image memory), while macro 42 confirms the line and draws
it into image memory_ (Macro 41 sets things up.)

This sort of multi-state macro programming can be extended to support
movie-loop anbnation and double-buffering. In movie-loop anlination the bit
planes of image memory are used to store a series of sequential frames from an
anbnation sequence; the bit planes are then played back.

To perfonm this sort of animation, the various frames of the sequence are
first loaded into the proper bit planes. The ~K command helps in making
sure the planes are loaded correctly.

Then, to perform the playback of the images, a series of macro carmands is
used. Each macro displays one frame of the animation, perhaps changing the
read-enable masks, look-up-tables, and screen origin. The last command of
each macro changes the button table to display the next fra'lle in the sequence.
Thus, you can create a linked list of macros to display the desired animation
sequence.

68

(·100e1 One/25 Programning Guide

11.0 APPLICATION DEVELOPMENT FEATURES

The Model One includes special features to help the applications programner to
identify and correct problems with host-based applications programs and Model
One macro commands.

The local debugger allows the user to step through the command sequence being
sent by the host, display a listing of currently defined macros, and issue
graphics carroands to the Model One from the local keyboard.

The command stream translator disassembles commands that are being executed by
the MOdel One and displays them at the local alphanumeric terminal in mnemonic
fonn.

The REPLAY camand allows the user to examine the last 32 characters that were
sent from the host.

The ALPHAO strlen, string command allows ASCII data to be sent to the local
terminal while the Model One is in GRAPHICS mode. This allows an applications
program to issue prompt messages at the local workstation.

11.1 The Local Debugger

To enter the local debugger, type a [CTRL-X] at the terminal. (See section
2.3 for more infonnation about special characters.) If you are in GRAPHICS
mode when you type the [CTRL-X], type a carriage return after the [CTRL-X].
Once the current graphics cammarrl has been completed, the Model One resporrls
with the debugger prompt DEBUG>. This prompt indicates that the Model One has
suspended command execution and is ready for debugger cannands. You can now
enter any valid graphics cammarrl, as if you were in local GRAPHICS mode, or
any of the special debugger commands (/S, IL, /M, /C, and IV).

The /S (Step) command allows you to step through the host command stream or a
localmacro. /S may include a number to indicate the number of ccmnands to
execute before returning to the debugger. Once you specify a number, this
number becanes the new default: /S 3 changes the default number of cannands
to three, instead of one. For example:

DEBUG> /S
DEBUG> /S 1000
DEBUG) /S 5
DEBUG> /S

Execute one command
Execute 1000 commands
Execute 5 commands
Execute 5 commands

The /M (Macro) command lists the numbers of all currently-defined macros. For
example:

DEBUG>/M
a 25 100 101 102 200
DEBUG>

Lists all non-empty macros

The /L mac (List macro) comnand lists the macro whose number is given. For
example:

69

Model One/25 Programming Guide

DEBUG> 1M List numbers of defined macros
o 25 100 101 102
DEBUG> /L 100 List contents of macro number 100
MOVABS 105 230
DRWREL 10 20
CIOCLE 50
DRWREL -10 20
CIOCLE 20
DEBUG> After listing, returns to debugger

The IV flag enables or disables execution of the macro associated with button
table entry o. During nonmal execution, the macro indicated by button table
entry 0 is executed every 1/30th of a second; when in the debugger, execution
is automatically suspended. The carmand IV 1 restarts execution (every 1/30th
second) of the macro indicated by button table entry O. Note that, like all
commands, the macro will not be executed unless you type IS. (IV 0 disables
execution, if desirErl, once execution has been restarted.) - --

The IC command exits the local debugger and returns to normal operation of the
MOder-One. Command execution continues from the point where it was
interrupted.

Table 11.1 summarizes the local debugger commands.

Camtand Use
IS number
1M
/L mac
IV flag

IC
All graphics conmarrls

Step through number commands
List all defined macros
List contents of macro number nmac
flag=l enable macro at button table
entry 0; flag=O disable macro at
button table entry O.
Exit debugger and continue nonnal
command execution

Normal execution of graphics canmands
directly

Table 11.1 Summary of Local Debugger Commands

11.2 Command Stream Translator

The Model One graphics cannand set includes the ccmnand DEBUG flag, which is
used to turn the command stream translator on and off. The command stream
translator should not be confused with the local debugger. The command stream
translator disassembles the commands which are being executed by the Model One
and displays them on the local alphanumeric terminal in mnemonic fonn.

The command stream translator will work with both DMA and serial int'erfaces;
however, the Model One should be configured with XON/XOFF ccmnunications
protocol enablErl, to avoid host input buffer overflow problems.

70

Each carmarrl opcode
CIRCLE, for example);

Model One/25 Programming Guide

is translated into the command name (OE (hex) becomes
the parameters are converted to ASCII decimal.

DEBUG 1 starts the command stream translator; DEBUG 0 disables the command
stream translator.

The command stream translator can be used from within an applications program
to help diagnose problems. For example, if a particular section of code is
causing problems, you can call the DEBUG command before entering that section
of code:

CALL PROCI
CALL DEBUG
CAL~ PROC2

CALL DEBUG
CALL PROC3 . .

(1)

(0)

Call user procedure PROCl
Enable the command stream translator
Call user procedure PROC2 and
use the command stream translator to
follow it in detail
Disable the comman:] stream translator
Call user procedure PROC3

Example 11.1 Using the DEBUG Command

You can also use the cammarrl stream translator in conjunction with the local
debugger (see section 11.1). For example, you can halt normal cannand
execution wi th the [CTRL-X] entry into the local debugger, type DEBUG 1 to
turn on the command stream translator, and inspect the carmands being executed
by using the IS command of the local debugger to step through the commands.
The next example shows what such a carmand sequence would look like:

CTRL-X
DEBUG> DEBUG 1
DEBUG> IS 5
MOVABS 0,0
DRWABS 50,100
CIRCLE 20
DRWABS 10,10
DRWABS 10,20
DEBUG> DEBUG 0
DEBUG> IC

Enter local debugger with [CTRL-X]
Enable command stream translator
Execute 5 commands
Display disassembled command stream

Disable command stream translator
Exi t local debugger

Example 11.2 Using the Local Debugger and the DEBUG Cammand

71

Model One/25 Programming Guide

11.3 Instant Replay

The Model One command REPLAY displays the last 32 characters which were sent
by the host to the Model One. The characters are displayed in ASCII
hexadecimal form. For example, the corrmarrl REPLAY executed fran the local
alphanumeric terminal outputs an array of ASCII hex characters:

00 FF FD FO AD AA AB BF
FF FO Fe 00 00 00 00 00
FO FF 3F 3C 80 89 8A 76
7F FF FF FF 30 3F 55 F5

The command stream starts at the upper-left corner, goes across the top row,
and continues until it reaches the lower-right corner.

The REPLAY command may also be useful in debugging the HOSTSIO interface to
identify stray characters from a modem or bad transmission line.

72

Model One/25 Programming Guide

12.0 PROGRAMMING THE zaooo

The Model One supports four commands for downloading and debugging zaooa
object code: DNLOAD, MAP, PEEK, am POKE.

The DNLOAD cannand allows zaooo object code to be downloaded and added to the
standard command set.

The MAP command displays a zaooo memory map on the local alphanumeric
terminal. The map is used to determine the starting address for downloading
code.

The PEEK addr command displays the contents of address addr. For example,
PEEK 10FFE displays FOAO in response. --

The POKE addr,data canmand changes the data at address addr to data. The POKE
cannand allows one word of memory to be changed each time it is issued. Like
all the zaooo programming cammam, POKE should be used with great caution:
POKING AROUND CARELESSLY CAN CRASH THE CENTRAL PROCESSOR. If you do crash the
processor wi th careless POKEs, you can recover by pressing the srART button on
the back panel (which perfonns a COLDstart). Poking into PROM memory will
have no effect.

73

Model One/25 Programning Guide

13.0 HOST FORTRAN LIBRARY

The Model One host FORTRAN library, called ONELIB, gives the programmer access
to all of the Model One commands through subroutine CALLs from the host
application program.

To send any ccmnand from the host to the Model One, the programner issues a
CALL to a ONELIB subroutine. All ONELIB command subroutines have the same
name as the local cannand mnenonic. For example, these FORTRAN lines:

CALL MOVABS (0,0)
CALL CIRCLE (100)
CALL DRWABS (20,50)

are identical to typing thesal:

MOVABS 0,0
CIRCLE 100
DR'WABS 20,50

The FORTRAN library contains several levels of subroutines. The subroutines
which generate Model One commands are called by the application program;
those subroutines in turn call low-level subroutines to perform I/O between
the host am the Model One.

Each Model One command has an equivalent FORTRAN subroutine. The command
descriptions in section 16.0 contain full descriptions of the FORTRAN call,
the parameters, and the variable names for the parameters. For example, the
FORTRAN call for the MOVABS command is:

CALL MOVABS (IX,IY)

IX and IY are INTEGER*2 variables; the order for parameters is the same as
for locally-typed commands.

For all FORTRAN subroutines, these conventions are used: parameters are given
in the same order as for locally-typed commands; they are always INTEGER*2
(ranging from -32,768 to 32,767); and they are never changed by the FORTRAN
call.

13.1 Output to the Model One

ONELIB uses buffered output when sending data to the Model One. The command
subroutines do not actually perfonn output; instead, data is packed into an
output buffer which is sent to the Model One when it is full. Two subroutines
are used by the ONELIB subroutines to put data into the output buffer: SENDl
and SEND2.

SENDl puts a single byte of data into the output buffer, passed in the low
eight bits of the calling parameter. For example:

CALL SENDl (64)
CALL SEND1 (255)
CALL SENDI (0)

Put 40H into the output buffer
Put FFH into the output buffer
Put 0 into the output buffer

74

Model One/25 Programming Guide

SEND2 puts a 16-bit value into the output buffer, passed in the single calling
parameter. For example:

CALL SEND2 (256)
CALL SEND2 (32767)
CALL SEND2 (OOOOH)

Put OlOOH into the output buffer
Put FFFFH (maxbnum) into the buffer
Put OOOOH into the buffer

Both SENDI and SEND2 automatically make calls to empty the output buffer if it
becomes full as a result qf the call to SENDI or SEND2.

Note that you can use SENDl and SEND2 to send commands without using the
FORTRAN subroutine calls. These subroutines are not nonmally called directly
by the programmer. For example:

CALL SENDI (01)
CALL SEND2 (IX)
C~L SEND2 (IY)
CALL EMP1'YB

Put OlH into buffer: opcode for MOVABS
X coordinate
Y coordinate
Sem ccmnarrl, padded wi th null s

Thus, the cannand sequence above duplicates the direct carmand MJVABS IX, IY or

The EMP1'YB subroutine empties the output buffer. Several ONELIB subroutines
use EMPrYB to dump the buffer. The READ carmands, which read data from the
Model One, dump the output buffer to ensure that the READ ccmnand was sent. A
READ command which is still in the host's buffer cannot be executed until the
buffer is sent; thus, the buffer is dumpej, the READ cannarrl is sent, am the
host awai ts input from the Mcx:1el One.

The QUIT carmand, which exits the Model One's GRAPHICS mode, uses EMPrYB to
force dumping of the output buffer to make sure the QUIT command is received
before any other terminal I/O is started.

The user may call EMPl'YB fran the application program to force emptying of the
output buffer.

For example, the program can use SENDI, SEND2, and EMPrYB as follows:

CALL SENDI (1)
CALL SEND2 (64)
CALL SEND2 (65)
CALL EMPl'YB

Put OIH into the output buffer
Put 0040H into the output buffer
Put 004lH into the output buffer
Dump the output buffer

which will send this to the Model One:

OIH OOH 40H OOH 41H (Fi ve bytes)

75

Model One/25 Programming Guide

13.2 Enteri02 Graphics Mode

The Model One po\Yers up and COLDstarts into ALPHA mode (see Section 2.1).
Before an application program can issue graphics commands to the Model One,
the MOdel One must be placed into GRAPHICS mode, using the ENTGRA subroutine
(which is the equivalent of [CTRL-D]), as shown in the next example.

WRITE (IOUT,1000) Nonnal operation
1000 FORMAT ('ENTER X, Y ,RAD,Al,A2: ')

READ (IN,1010) IX,IY,IRAD,IA1,IA2
1010 FORMAT(I6)
C

CALL ENrGRA Enter GRAPHICS mode
C

c

C

CALL VAL8 (100)
CALL FLOOD
CALL PRMFIL(l)
CALL MOVABS (IX,IY)
CALL VAL8 (255)
CALL CIOCLE (IRAn)
CALL VAL8 (0)
CALL ARC (IAAD, IAl, IA2)

CALL QUIT

WRITE (lOUT, 1020)
1020 FORMAT ('DONE WITH GRAPHICS')

Program may now use
graphics commands to
the Model One. No
normal terminal I/O
until exit GRAPHICS
mode.

Exit GRAPHICS mode.

Nonnal operation.

Example 13.1 Enter and Exit GRAPHICS Mode

An application program can enter am exit GRAPHICS mode as many times as
n in ALPHA mode, and QUIT only when in GRAPHICS mode. ONELIB

traps violations of this rule and signals an error.

13.3 Initializing I/O to the Model One

Before beginning I/O to the Model One, ONELIB must be initialized, using the
subroutine RTINIT. The application program must make a call to RTINIT before
any other library calls are made. For example:

76

Model One/25 Programming Guide

CALL RTINIT
CALL ENrGRA
DO 1000 1=10,200,10
CALL CIRCLE (I)

Initialize the library
Enter GRAPHICS mode

1000 CONTINUE
CALL QUIT
STOP

Exit GRAPHICS mode

END

Example 13.2 Initializing ONELIB

13.4 ONELIB COMMON Blocks

There are two primary COMMON blocks used by ONELIB subroutines for global
variables and parameters. The application program can check the ERRCOD
parameter in the /ERROR/ COMMON block to detennine whether a OMELIB subroutine
has generated an error; ERRWHO contains the subroutine's name.

C

C

INTEGER BUFFER(256),BUFSIZ,PTR,BYTCNT
INTEGER LUNERR,LUNIN ,LUNOUT
INTEGER IBF,IBFMIN,IBFMAX,IFMT
LOGICAL GRFMOD,HIBYTE,BUFFLG,FILFLG

COMMON /RASTEK/ BUFFER,BUFSIZ,PTR,BYTCNT
COr+tON /RASTEK/ LUNERR,LUNIN,LUNOUT
COMMON /RASTEK/ IBF, IBFMIN , IBEMAX, IFMT
COMMON /RASTEK/ GRFMOD,HIBYTE,BUFFLG,FILFLG

C ---ERROR---
c

C
INTEGER ERRWHO(3),ERRCOD

COMMON /ERROR/ ERRWHO, ERRCOD

Table 13.1 Raster COMMON Blocks

13.5 OMELIB Error Reporting

The ONELIB subroutines perfonn error checking on parameters and report any
illegal values; no Merlel One ccmnand will be output if an illegal parameter
value is given. Instead, the subroutine IERROR is used to generate an error
message, which is sent to the LUNERR logical unit.

77

Model One/25 Programming Guide

For example, if the ZOOM subroutine is given an illegal scale factor, it calls
IERROR:

ONELIB _ [ZOOM]: ERROR #18

You can then call subroutine ERRMSG for more detail. For example, if you call
ZOOM with an illegal scale factor, and then call ERRMSG, these messages are
displayed on the LUNERR logical unit:

ONELIB -- [ZOOM] : ERROR #18
ONELIB -- [ZOOM]: ILLEGAL SCALE (ZOOM) FACTOR

If the LUNERR am LUNOUT logical units are the same (the tenninal is on the
Model One's ALPHASIO port), the error message routines manentarily leave
GRAPHICS mcde, serrl the error message, anI reenter GRAPHICS mode.

The ONELIB error codes are given in Table 13.2.

78

Model One/25 Programming Guide

Code Error Messase

1 Illegal angle
2 Illegal value register
3 Illegal radius
4 Illegal flag
5 Illegal button table index
6 Illegal macro number
7 Illegal coordinate register
8 Illegal coordinate
9 Illegal displacement
10 Illegal value
11 Illegal look-up-tab1e index
12 Illegal look-up-table entry value
13 Illegal function
14 Illegal mask
15 Illegal string length
16 Illegal scale
17 Illegal crosshair number
18 Illegal scale (zoom) factor
19 Illegal number of polygons
20 Illegal pixel functions
21 Illegal look-up-table routing
22 Illegal look-up-table number
23 Illegal frame rate
24 Illegal light number
25 Illegal font
26 Illegal array dimension
27 Illegal parameter range
28 I/O error
29 Illegal count parameter
30 Run-lengths and window size disagree

Table 13.2 ONELIB Error Codes and Messages

13.6 Input From the Model One

The subroutines which read data back from the MOdel One are included in
ONELIB. These routines--READBU, READeR, READP, READVR, READW, AND READWE-
change some of their calling parameters to return the requested data. (READF
sets the readback fonnat and does not actually read data back.) The FORTRAN
calls for these commands are described in Section 16.0.

13.7 Additional ONELIB Subroutines

In addition to the ONELIB subroutines corresponding to the Model One local
commands, there are additional subroutines available to supplement the
library. These subroutines add to the standard image transfer commands and
provide greater flexibility. They are listed in Table 13.3.

79

Model One/25 Programming Guide

Subroutine Function

PX8HDR (ROWS,COLS) Starts an image data transfer by sending
the PIXEL8 conmand, but does not send data.

PX8STR (VAL) Sends one 8-bit pixel data value

PXSHDR (ROWS,COLS) Starts an image data transfer by sending
the PIXELS coomand, but does not send data

PXSSTR (RED,GRN,BLU) Sends one 24-bit pixel data value

RN8HDR (ROWS,COLS) Starts an image data transfer by sending
the ROOLN8 carmand, but does not send data

RN8STR (VAL,CNT) Sends one 8-bit pixel data value and a count

RNLHDR (ROWS,COLS) Starts an image data transfer by sending
the RUNLEN comnaoo, but does not sen:] data

RNLSTR (RED ,GRN,BLU ,CNT)
Sends one 24-bit pixel data value and a count

Table 13.3 ONELIB Image Data Transfer Commands

80

Model One/25 Programming Guide

14.0 HOST CCl1PUTER DMA

The Model One option card includes a DMA (Direct Memory Access) port for high
speed transfers between the host computer and the Model One. The fonnat of
the data which sent over the DMA interface is the sam~ a-bit binary
transmission fonmat supported over the HOSTSIO RS-232 interface. Note that
the selection made when installing the Model One, between ASCII hexadecimal
and a-bit binary, applies only to the HOSTSIO interface. DMA transmission
always occurs in a-bit binary.

The Model One's host FORTRAN library, ONELIB, provides supported r:J.1A drivers
for some host computers. Users of other host computers wishing to construct
their own DMA drivers can use these as a reference point for their
developnent.

81

Model One/25 Programming Guide

15.0 ERROR CONDITIONS

The MOdel One command interpreter sends error status infonnation to the local
alphanumeric tenminal whenever an error occurs. This section lists the error
messages.

The number indicates the error message number (Which is given to simplify
looking up the message in this manual)~

o. Illegal call to routine "ERROR": If you receive this error message,
please write down the circumstances under which it happened and then
contact Raster Technologies, Inc. or your local representative.

1. Bad cammand opcode:
an undefined opcode.

the host computer has tried to issue a command
(Section 17.0 lists all the cammandopcodes.)

with

2. Unrecognized ccmnarrl: the cannand mnenonic that was given does not
exist. The command HELP lists all the available commands.

3. Unimplenented canmand: the coomand mnanonic exists but has not been
implemented.

4. Number is out of range: the range for the parameter has been exceeded;
for example, the range for CREGs is 0 to 63. pp

5. String is not a number: the value given for a parameter was not a valid
number. Keep in mind that hexadecimal numbers must be preceded by a i:
#FFFF or iAO.

6. Bad hex digit in stream: the r-tXlel One received a bad ASCII hex digit
from the host computer over its HOSTSIO interface. (To get this message,
the HOSTSIO interface must be set up for operation in ASCII hexadecimal
mode: see the Installation Guide for details.)

7. Illegal parameter: an illegal parameter was given that was not out of
range; for example, this message would appear if you gave the cannand
ZO<l1 3.

14. Macro calls nested too deeply: macro calls may not be nested more than
16 levels deep.

15. Call to undefined macro: you attempted to execute a macro that had not
been defined.

16. Attempt to erase active macro: you cannot erase a macro that is
currently being executed. (Note: if the macro is being executed as a
result of button table location zero, you can change the button table
wi th the BtJrTBL carmand.)

17. Not enough space for definition: the available space for macros and
downloaded text has been used. Reconfigure user manory with the OONFIG
command or erase text and macro definitions.

82

Model One/25 Programming Guide

18. Unknown coomarrl in macro defini tion: the QUIT am AOCII comnands may not
be usErl in a macro.

19. Allowed only in macro definitions: the MACEND command cannot be used
outside of a macro.

20. Arithmetic overflow in calculation: a calculation perfonmed by the Model
One central processor resulted in an overflow. This happens most
ccmnonly with graphics conmands that "falloff" the edge of the 16-bi t
virtual address space.

21. ASCII command not allowed in macro definition: the ASCII command may not
be used in a macro.

22. LUTRTE command has illegal data--ignored: the function given for the
LUTRTE comnand is illegal. The can:nand is ignored.

23. Insufficient space to canplete operation: the POLYGN, AREAl, or AREA2
command ran out of stack space to fill the specified area. Reconfigure
user memory with the CONFIG command to allocate more space.

24. Lookup table cammarrls not usErl in 1K mode: the Model One/25's lK mode
does not allow use of the look-up-table commarrls.

25. Add and subtract not allowed in lK mode: the Model One/25' s lK mode does
not allow PIXFUN add or subtract functions.

26. Not allowErl in ALPHA mode: the DNLOAD comnand can only be issued by the
host canputer.

27. Bad name length: this message is generated by the DNLOAD comnand.

28. Bad record format: this message is generated by the DNLOAD command.

29. No start address: this message is generated by the DNLOAD comnand.

30. Bad checksum: this message is generated by the DNLOAD comnand.

31. Name table overflow: this message is generated by the DNLOAD command.

32. Blink table overflow: the blink table (see section 4.7) has been filled.
You can clear the blink table with the BLINKC command.

33. Loading into protecte:1 area: this message is generatErl by the DNLOAD
comnand.

34. No graphic input box present

35. Only from parallel port

37. Input queue full on serial port

83

Model One/25 Programming Guide

38. Overrun error on serial port

39. Parity error on serial port

40. Framing error on serial port

41. Break detected on serial port

47. Model One Firmware Failure: If you receive this error message, please
write down the circumstances under which it happened and then contact
Raster Technologies, Inc. or your local representative.

48. IEEE-488 bus error

49. Bad Z80002 vectored interrupt: You may receive this message during a
DNLOAD command; otherwise, if you receive this error message, please
write down the circumstances under which it happened and then contact
Raster Technologies, Inc. or your local representative.

50. Illegal Z8002 instruction: You may receive this message during a DNLOAD
command; otherwise, if you receive this error message, please write down
the circumstances under which it happened and then contact Raster
Technologies, Inc. or your local representative.

51. Privileged Z8002 instruction: You may receive this message during a
DNLOAD command; otherwise, if you receive this error message, please
write down the circumstances under which it happened and then contact
Raster Technologies, Inc. or your local representative.

52. Z8002 segmentation trap: You may receive this message during a DNLOAD
command; otherwise, if you receive this error message, please write down
the circumstances under which it happened and then contact Raster
Technologies, Inc. or your local representative.

53. Bad Z8002 non-vectored interrupt: You may receive this message during a
DNLOAD command; otherwise, if you receive this error message, please
write down the circumstances under which it happened and then contact
Raster Technologies, Inc. or your local representative.

54. Bad Z8002 non-maskable interrupt: You may receive this message during a
DNLOAD command; otherwise, if you receive this error message, please
write down the circumstances under which it happened and then contact
Raster Technologies, Inc. or your local representative.

55. Bad Z8002 system call: You may receive this message during a DNLOAD
command; otherwise, if you receive this error message, please write down
the circumstances under which it happened and then contact Raster
Technologies, Inc. or your local representative.

56. Insufficient memoEY space for configuration: there is insufficient
memory space available for the configuration specified.

84

A L P H A 0

SYNTAX

ALPHAO strlen, string

FUNCTION

The ALPHAO (ALPHA Output) command outputs a text string on the
local alphanumeric display screen. The text to be output is
specified by string. If the command is being entered in
ASCII mode from the local alphanumeric terminal or keyboard,
string is the set of ASCII characters remaining on the
command line. If the command is not being sent in ASCII mode,
then strlen must be given. Strlen contains the number of
characters in the string followed by a string with strlen
bytes.

PARAMETERS

strlen the number of characters in string; needed only if the
command is not sent in ASCII mode.

string the text to be output.

HOST BINARY COMMAND STREAM

[B4H] [strlen] ([charI] [char2] ... [charn])

B4H=2648=18010

FORTRAN CALL

CALL ALPHAO (STRLEN,STRING)

STRLEN is an integer specifying the number of characters that
are to be output. STRING is an integer array with two
characters packed per l6-bit word, as in FORTRAN A2 format.

EXAMPLE

!ALPHAO ABCDEF I 2 3
!ALPHAO WXYZ

Output text string "ABCDEF 1 2 3"
Output text string "WXYZ"

ARC

SYNTAX

ARC rad,al,a2

FUNCTION

The ARC command draws a circular arc with its center at the
current point (CREG S) and with a radius of rad, the starting
angle al and ending angle a2. The angle is specified in
integer degrees measured counter-clockwise. An angle of S
specifies horizontal along the positive X axis. The arc is drawn
counter-clockwise from the start angle to the end angle.

PARAMETERS

rad gives the radius of the arc; range is -32,768 to +32,767.
al starting angle; range is -32,768 to +32,767.
a2 ending angle; range is -32,768 to +32,767.

HOST BINARY COMMAND STREAM

[IIH] [highrad] [lowrad] [highal] [lowal] [higha2] [lowa2]
11H=0218=1710 7 bytes

FORTRAN CALL

CALL ARC (IRAD,IAl,IA2)

EXAMPLE

!MOVABS S S
!ARC 75 45 135

!ARC 100 -30 60

!PRMFIL ON
!ARC 40 -10 40

Move current point to location 0,0
Draw circular arc of radius 75, starting
at 45° and ending at 135°
Draw circular arc of radius 100, starting
at -30° and ending 60°
Select filled primitives
Draw filled (pie shape) arc of radius 40,
starting at 10°, ending at 40°

A REA 1

SYNTAX

AREAl

FUNCTION

The AREAl command is used for area fill. AREAl sets all pixels
in a given closed region to the current value (VREG g). The
region extends from the current poin.t. (CREG ~) outward in all
directions until a boundary whose pixel values differ from the
pixel value at the current point is reached. The boundary pixel
values and the original pixel value are AND'ed with FILMSK (VREG
3) before the comparison is made. The FILMSK is set by the
FILMSK command.

HOST BINARY COMMAND STREAM

[13Hl (1 byte)

13H=023S=1910

FORTRAN CALL

CALL AREAl

EXAMPLE

!VALS 255 ----
!PRMFIL OFF

!MOVABS ° °
!CIRCLE 30
!MOVABS 25 20
!CIRCLE 35

!VALUE 255 ° °
!AREA 1

!MOVABS 10 -10

!VALUE ° 255 °
!AREA 1

RELATED COMMAND

FILMSK

Set current pixel value to 255,255,255
Select unfilled primitives
Move current point to 0,0
Draw circle of radius 30
Move current poin.t to 25, 20
Draw circle of radius 35
Set current value to 255,0,0
Begin area fill from 25,20
outward to boundary
Move current point to 10,-10
Set current pixel value to 0,255,0
Begin area fill from 10,-10
outward to boundary

A REA 2

SYNTAX

AREA2 vreg

FUNCTION

The AREA2 command performs area filling. AREA2 sets all pixels
in a given closed region to the current value (VREG ~). The
region extends from the current point (CREG ~) outward until a
boundary of pixels whose value is specified by value register
vreg or vreg' is reached. The bounda~y pixel values and
the value specified by value register vreg are AND'ed with
FILMSK (VREG 3) before the comparison is made. The FILMSK is
set by the FILMSK command.

The AREA2 command differs from AREAl in that the pixel value of
the boundary must be known and placed in vreg before the
area fill is begun.

PARAMETERS

vreg gives the value register containing the boundary pixel
value. Range is 0-15.

HOST BINARY COMMAND STREAM

[14H] [vreg] (2 bytes)
l4H=024S=20 lO

FORTRAN CALL

CALL AREA2 (IVREG)

EXAMPLE

!VALS 255 ----!PRMFIL OFF
!MOVABS 0 0
!CIRCLE 20
IVALUE 0 0 255
!CIRCLE 25
!VLOAD 9 0 0 255
!AREA2 9

RELATED COMMAND

FILMSK

Set current pixel value to 255,255,255
Select unfilled primitives
Move to 0,0
Draw circle of radius 20
Set current pixel value to 0,0,225
Draw circle of radius 25
Load VREG 9 with 0,0,255
Begin area fill. Boundary pixel value is
found in VREG 9. (The inner circle is
over-written because it is not drawn in
boundary pixel value.)

A SCI I

SYNTAX

ASCII flag

FUNCTION

The ASCII command sets the host input port. If flaq=l the

host port input command stream is interpreted as free format

ASCII (as from the local alphanumeric terminal/ keyboard). If

flag=~, the host port input command stream is interpreted as

the default a bit binary or ASCII hex.

PARAMETERS

flag If flag=l, host is free-format ASCII. If flag=O

host is a bit binary or ASCII hex (normal default).

HOST BINARY COMMAND STREAM

[9BH][flag]

9BH=233 a=155l0

FORTRAN CALL

(2 bytes)

CALL ASCII (IFLAG)

* (A S T E R I S K)

SYNTAX

*

FUNCTION

The * command allows use of program comments in ALPHA mode. Any

characters following the asterisk (before the carriage return)

are ignored.

EXAMPLE

1* Just a waste of typing.

B LAN K

SYNTAX

BLANK flag

FUNCTION

The BLANK command changes the blank flag. If flag=l, the
screen is blanked, and the contents of image memory are no
longer displayed. This frees all cycles of image memory for
writing and reading operations by the CPU, vector generator,
pixel processor and DMA. vector generator, pixel processor, and
DMA performance is therefore substantially improved, since all
memory cycles are available.

PARAMETERS

flag Blank the screen when flag=l, if flag=g unblank
screen.

HOST BINARY COMMAND STREAM

[3lH][flag] (2 bytes)

31H=06la=4910

FORTRAN CALL

CALL BLANK (IFLAG)

EXAMPLE

!PRMFIL ON
!CIRCLE 50
!BLANK 1 ----
!CIRCLE 100
!BLANK ~

Select filled primitives
Draw circle of radius 50
Blank screen
Draw circle of radius 100
Unblank screen

B LIN K C

SYNTAX

BLINKC

FUNCTION

The BLINKC command clears the blink table, and disables blink

of all LUT locations. The LUT entries are set to entryl of

their blink values.

HOST BINARY COMMAND STREAM

[23Hl (I byte)

23H=043a=3510

FORTRAN CALL

CALL BLINKC

B L INK D

SYNTAX

BLINKD lut,index

FUNCTION

The BLINKD command disables blinking of the LUT location
specified by lute The index gives the pixel value in
image memory that will address this location in the LUT.

When the blink is disabled, the entry. in the LUT will be the
same as the first LOT entry in the BLINKE command which enabled
it.

PARAMETERS

lut lut=7, use all look-up-tables
lut=l, use blue LOT
lut=2, use green LUT
I ut=4, use red LUT

index LUT index locatiop;

HOST BINARY COMMAND STREAM

[2IH][lut][index] (3 bytes)

2IH=04I S=3310

FORTRAN CALL

CALL BLINKE (LUT,INDEX)

range is 0-255

B L I N K E

SYNTAX

BLINKE lut, index, entryl, entry2

FUNCTION

The BLINKE command enables blinking of the LUT location
specified by lute The index specifies the address of
the location in the LUT to blink. entryl and entry2 are
swapped back and forth at the rate set by the BLINKR command.

PARAMETERS

lut lut=7, use all look-up-tables
1 ut=l, use blue LUT
lut=2, use green LUT
1 ut=4, use red LOT

index LUT index location; range
entryl and entry2 give LOT values

0 to 255.

HOST BINARY COMMAND STREAM

[2gH][lut][index][entry1] [entry2]

20H=040a=32l0

FORTRAN CALL

is
to

CALL BLINKE (LUT,INDEX,IENTl,IENT2)

EXAMPLE

0...;255
blink between; range is

!BLINKE 7 100 255(125 Blink location 100 in all LUTs between

255 and 125
!BLINKC Location 100 has value 255 in all LUTs
!BLINKE 7 100 100,255 Blink between 100 and 255
!BLINKC Location 100 has value 100 in all LUTs ---

B LIN K R

SYNTAX

BLINKR frames

FUNCTION

The BLINKR command sets the blink rate to frames frame

times. This rate is specified as the number of frame times

between swapping the two LUT entries. One frame time is 1/60

second.

PARAMETERS

frames each frame time is 1/60 second; the range is 0 to 255.

HOST BINARY COMMAND STREAM

[22H] [frames]

22H=042a=3410

FORTRAN CALL ------

(2 bytes)

CALL BLINKR (FRAMES)

BUT T B L

SYNTAX

BUTTBL index,macnum

FUNCTION

The BUTTBL command is use to load the Button Table. Index
gives the button number; macnum gives the macro number to
execute when button number index is pressed.

PARAMETERS

index
macnum

button number; range is 0 to 64.
macro number; range is 0 to 255.

HOST BINARY COMMAND STREAM

[AAH] [index] [macnum] (3 bytes)
AAH=252a=17010

FORTRAN CALL

CALL BUTTBL (INDEX,MACNUM)

EXAMPLE ----

!MACDEF 37
$ZOOMIN
$MACEND
!BUTTBL 13 37

RELATED COMMANDS

FLUSH

Start definition of Macro #37
Increase scale factor by 2
End Macro definition
Execute Macro #37 when buttbn #13
is pressed

BUT TON

SYNTAX

BUTTON index

FUNCTION

The BUTTON command executes the Macro specified by the Button
Table at location index. This command performs the same
function as pressing function button index on the cursor of
the digitizing tablet.

PARAMETERS

index button number; range is 0 to 31.

HOST BINARY COMMAND STREAM

[ABH] [index] (2 bytes)
ABH= 253 a=17110

FORTRAN CALL ------

CALL BUTTON (INDEX)

EXAMPLE

!MACDEF 15
$ZOOMIN
$MACEND
! BUTTBL 21 15

! BUTTON 21

RELATED COMMANDS

BUTTBL

Begin definition of Macro i15
zoominby a factor of 2x
End Macro definition
Execute Macro i15 when button i21 is
depressed
Simulate having pushed button i21

CAD D

SYNTAX

CADD csum, creg

FUNCTION

The CADD command adds the contents of coordinate register
creg to the contents of coordinate register cswn. The
result is put into coordinate register CSUDl.

PARAMETERS

csum, creg coordinate registers for addition; range is 0 to 63.

HOST BINARY COMMAND STREAM

[A2H] [csum] [creg]

A2H=2428=162l0

FORTRAN CALL

CALL CADD (ICSUM,ICREG)

EXAMPLE

!CLOAD 25 100 150

!CLOAD 26 10 20
!CADD 25 26

!READCR 25
110 170

!CADD 25 26

! READCR 25
120 190

Load CREG 25 with 100,150
Load CREG 26 with 10,20
Add the contents of CREG 26 to
CREG 25 and place result in CREG 25
Read the contents of CREG 25
(Response from Model One)
Add the contents of CREG 26 to
CREG 25 place result in CREG 25
Read contents of CREG 25
(Response from Model One)

C I R C I

SYNTAX

CIRCI creg

FUNCTION

The CIRCI command draws a circle with the center point of the
circle at the current point (CREG fl) and the point specified by
coordinate register creg on the circumference of the circle.
The CIReI command is useful for drawing circles with the radius
controlled by an interactive device such as the digitizing
tablet.

PARAMETERS

creg coordinate register for point on circumference; range is
o to 63.

HOST BINARY COMMAND STREAM

[l~H][creg] (2 bytes)

10H=020 a=1610

FORTRAN CALL

CALL CIRCI (ICREG)

EXAMPLE

!MOVABS 100 100
!CIRCI 4

!MOVABS 120 150
!CLOAD 27 200 220
!CIRCI 27

Move to location 100,100
Draw circle whose center is 100,100 and
whose perimeter includes the lQcation
given in CREG 4.
Move to location 120,150
Load CREG 27 with 200,220
Draw circle whose center is at 120,150 and
whose perimeter includes the location
given in CREG 27 (200,220)

C I R C L E

SYNTAX

CIRCLE rad

FUNCTION

The CIRCLE command draws a circle of radius rad, with the
center at the current point (CREG g). The circle is drawn in
the current pixel value. A circle of radius zero sets the
current point to the current pixel value.

PARAMETERS

rad ,the circle radius; range is -32,768 to 32,767.

HOST BINARY COMMAND STREAM

[gEH] [highrad] [lowrad]

OEH=016S=1410

(3 bytes)

FORTRAN CALL

CALL CIRCLE (IRAD)

EXAMPLE

!MOVABS 100 150 Move current point to
!CIRCLE 30 Draw circle of radius

100,150
!MOVREL 10 0 Move current point by
!CIRCLE 20 Draw circle of radius

110,150
!CIRCLE 10 Draw circle of radius

110,150

100,150
30 centered at

10,0 to 110,150
20 centered at

10 centered at

C I R C X Y

SYNTAX

CIRCXY x,y

FUNCTION

The CIRCXY command draws a circle with the center of the circle
at the current point (CREG g) and the point x,y on its
circumference.

PARAMETERS

x, y coordinate (x,y) is on circumference.

HOST BINARY COMMAND STREAM

[gFH] [highx] [lowx][highy] [lowy]
OFH=Ol7a=l510

(5 bytes)

FORTRAN CALL

CALL CIRCXY (IX,IY)

EXAMPLE

!MOVABS 0 0 Move current point to 0,0
!CIRCXY 30 30 Draw circle centered at 0,0

on its circumference
!CIRCXY 30 40 Draw circle centered at 0,0

on its circumference
!CIRCXY 50 50 Draw circle centered at 0,0

on its circumference

with 30,30

with 30,40

with 50,50

C LEA R -----
SYNTAX

CLEAR

FUNCTION

The CLEAR command changes all pixels in the currently defined
window to the current pixel value (VREG g). Pixels outside the
current clipping window are unchanged. The corners of the
current window are held in CREGs 9 and 10.

HOST BINARY COMMAND STREAM

[87H l (1 byte)

87H=2078=13510

FORTRAN CALL

CALL CLEAR

EXAMPLE

!VALUE 100 100 255
!CLEAR

!VAL8 0
!CLEAR

RELATED COMMANDS

WINDOW
VALUE

Change current pixel value to 100,100,255
Clear current window to current pixel
value (100,100,225)
Change current pixel value to 0,0,0
Clear current window to current
pixel value

SYNTAX

CLOAD creg,x,y

FUNCTION

The CLOAD command loads coordinate register creg with the
given (x,y) coordinate.

PARAMETERS

creg
x, y

coordinate register; range is 0 to 63.
(x,y) coordinate pair; range is -32,768 to 32,767.

HOST BINARY COMMAND STREAM

[A~H] [creg] [highx] [lowx] [highy] [lowy] (6 bytes)

A.0H=2408=16010

FORTRAN CALL

CALL CLOAD (ICREG,IX,IY)

EXAMPLE

!CLOAD 17 100 150
!READCR 17
100 150

!CLOAD 17 50 -50
!READCR 17

50 -50

Load CREG 17 with 100,150
Read contents of CREG 17
(Response from Model One)
Load CREG 17 with 50,-50
Read contents of CREG 17
(Response from Model One)

C M 0 V E

SYNTAX

CMOVE cdst,csrc

FUNCTION

The CMOVE command copies the contents of coordinate register
csrc to coordinate register cdst. Any data in cdst
is replaced by the new data.

PARAMETERS

cdst, csrc coordinate register; range is 0 to 63.

HOST BINARY COMMAND STREAM

[A1H] [cdst] [csrc] (3 bytes)

A1H=241 a=16110

FORTRAN CALL

CALL CMOVE (ICDST,ICSRC)

EXAMPLE

!CLOAD 25 100 150
!CLOAD 26 20 -50
!READCR 26

20 -50
!CMOVE 26 25
!READCR 26
100 150

Load CREG 25 with 100,150
Load CREG 26 with 20,-50
Read contents of CREG 26
(Response from Model One)
Move contents of CREG 25 into CREG 26
Read contents of CREG 26
(Response from Model One)

SYNTAX

COLD

FUNCTION

COL D

The COLD command performs a coldstart to the Model One,
equivalent to pushing the START button on the back panel. COLD
executes the Model One's restart sequence and diagnostics. The
COLDstart state of the Model One is defined as follows:

MODDIS ~
LUTR'rE ~
LUTRMP 7 0,255 0,255
ZOOM I
CORORG 0,0
SCRORG 0,0
WINDOW -256,-256 255,255

PRMFIL ~
MACERA 0 through MACERA 255
TEXTRE
VAL 8 a
FLOOD
VAL8 255

BUTTBL 0, 0 to BUTTBL 32,0
DELAY a
VECPAT #FFFF
PIXFUN °
PIXCLP °
WRMASK 255,7
RDMASK 255

Display Mode of 512x5l2
Look-up-table routing (full color)
Ramp function in all LUTs
Scale factor of 1:1
Coordinate Origin 0,0
Screen Ori~in 0,0
Clipping wl.ndow set to image memory
bounds
Unfilled primitives
Erase all macros
Erase all user defined fonts
Set current pixel value to 0,0,0
Flood image memory to 0,0,0
Set current pixel value to
255,255,255
Set all button table entries to zero
No delay
Draw solid lines
INSert mode
Use wraparound on pixel clipping
All bit-planes write-enabled
No read masking, all planes read
enabled.

The Model One is in ALPHA mode after the COLDstart.

NOTE: If you want to reset the Model One to a state other than
the above, you will want to set up a standard command to
execute after the COLDstart command. In addition, if the
COLD command is sent from the host, you must wait several
seconds before sending any more data.

HOST BINARY COMMAND STREAM

[FDHl (1 bytes)
FDH=375a=25310

FORTRAN CALL

CALL COLD

EXAMPLE

!COLD COLDstart the Model One
MoaeT One Firmware Rev. X Response (after 2-3 seconds or so)

CON FIG

SYNTAX

CONFIG dwnlod, maclst, txtfnt, inpque

FUNCTION

The CONFIG command is used to configure central processor RAM.
Each parameter in the CONFIG command specifies the number of words
that are to be used for that function.

The CONFIG command should be executed immediately following a
COLDstart. All affected memory space is cleared when this command
is executed. This clears the Serial I/O queues, user downloaded
code, macro definitions, and text font descriptions. The range of
all parameters is ~ to 32,767 such that the sum of all parameters
does not exceed the available memory space. Use the MAP command
to check space available. If an error condition results, no
action will be taken. The CONFIG command takes several seconds to
execute; if the CONFIG command is sent from the host, you must
wait several seconds before sending any more data.

PARAMETERS

dwnlod

maclst

txtfnt

inpque

(Continued)

specifies number of words of memory to be used for
user downloaded commands.

specifies number of words of memory to be used for
macro definitions.

specifies number of words of memory to be used for
vector list description of characters when using text
font 2.

specifies number of additional words of memory to
be used for the host port serial input queue. The host
serial input queue must be configured to a power of 2.
(e.g. #100, #400, #800 ..•)

HOST BINARY COMMAND STREAM

[24H] [highdwn,lod] [lowdwnlod] [highmaclst] [lowmaclst]

[hightxtfnt] [lowtxtfnt] [highinpque] [lowinpque]

(9 bytes)

24H=044a=3610

FORTRAN CALL

CALL CONFIG (DWNLOD,MACLST,TXTFNT,INPQUE)

DWNLOD, MACLST, TXTFNT and INPQUE are integers.

RELATED COMMANDS

MAP

COLD

CON F I G • 1

COR 0 R G

SYNTAX

CORORG x,y

FUNCTION

The CORORG command sets the coordinate origin register (CREG3) to

the point specified by x, y. The contents of this register

are added to all incoming coordinates; all coordinates are

relative displacements from the coordinate origin. The CORORG

command resets all other coordinate registers and should be used

only immediately after a COLDstart.

PARAMETERS

x, y the new coordinate origin; x and y range from -32,768 to

32,767

HOST BINARY COMMAND STREAM

[37H][highx][lowx][highy][lowy]

37H=067g=5510

FORTRAN CALL

CALL CORORG (X,Y)

C SUB

SYNTAX

CSUB cdif, creg

FUNCTION

The CSUB command subtracts the contents of coordinate register
ereg from the contents of coordinate register edif and
places the result into coordinate register edif.

PARAMETERS

cdif, creg coordinate registers: range is from 0 to 63.

HOST BINARY COMMAND STREAM

[A3H][cdif][creg]

A3H=243a=16310

FORTRAN CALL

(3 bytes)

CALL CSUB (ICDIF,ICREG)

EXAMPLE

!CLOAD 20 100 150
!CLOAD 21 25 30
!CSUB 20 21

! READCR 20
75 120

Load CREG 20 with 100,150
Load CREG 21 with 25,30
Subtract the contents of CREG 21 from
CREG 20 and place result in CREG 20
Read contents of CREG 20
(Response from Model One)

DEB U G

SYNTAX

DEBUG flag

FUNCTION

The DEBUG command is used to enter and exit the command stream

interpreter. When flag is 1, the central processor displays,

in mnemonic form, the commands-that are being executed by the

command interpreter. If the flag is g, DEBUG is disabled.

PARAMETERS

flag flag=l, enable Command Stream Interpreter; flag=O, disable

Command Stream Translator.

HOST BINARY COMMAND STREAM

[ASH] [flag]

ASH=250S=16SlO

FORTRAN CALL

CALL DEBUG (FLAG)

DEL A Y

SYNTAX

DELAY amount

FUNCTION

The DELAY command inserts a preprograromed delay between

characters sent to the host computer over the HOSTSIO interface.

The DELAY command is necessary because many host computers can

not process incoming characters as fast as characters can be

sent by the Model One. Amount specifies the amount of time

to insert between characters. The Model One inserts a delay

of approximately 750*amount microseconds. The default is

no delay.

PARAMETERS

amount the amount to delay; range is from 0 to 255.

HOST BINARY COMMAND STREAM

[B6H] [amount]

B6H=266S=lS2l0

FORTRAN CALL

CALL DELAY (IAMT)

DFTCFG

SYNTAX

DFTCFG

FUNCTION

The DFTCFG command restores all ports on the Model One to the default
configuration. In addition, it restores all special characters to the default
special characters (see SPCHAR). The default configuration is:

Port mnemonic RTS CTS Baud Parity XIN XOUT CTRL STOP NBITS
o MODEMSIO off off 1200 none on off off 1 8
1 KEYBDSIO off off 1200 none on off on 1 8
2 TABLETSIO off off 1200 none on off off 2 8
3 GRINSIO off off 1200 none off off off 2 7
4 HOSTSIO off otf 9600 none off on off 2 8
5 ALPHASIO off off 9600 none on off on 2 8
6 IEEE

The default configuration is modified through the use of the SYSCFG and SAVCFG
commands. The SYSCFG command configures the Model One's ports; the SAVCFG
command stores those configurations (which are then loaded whenever a
COLDstart is performed) •

The default configuration is not modified by SYSCFG or SAVCFG;
command should be used only when it is necessary to restore all
One's ports to a known state.

the DFTCFG
the Model

In an dire emergency, where all ports have been rendered totally incommunicado
through injudicious use of the SYSCFG and SAVCFG commands, the top board
includes an Internal Reset Button which restores all configurations to the
default configuration above. rnIIS BUTTON SHOULD BE USED ONLY IN AN EMERGENCYl

To display the current configurations, you can use the DISCFG command.

The DFTCFG command can be executed only from the local alphanumeric terminal,
and cannot be included in a macro.

EXAMPLES

SYSCFG SERIAL HOSTSIO RTS OFF CTS OFF XIN ON XOUT ON'PARITY N

SAVCFG
DFTCFG

configures port HOSTSIO as indicated (see
SYSCFG for details)
saves the configuration of port HOSTSIO
restores the default configuration
for all ports (not just port HOSTSIO)

DISCFG

SYNTAX

DISCFG

FUNCTION

The DISCFG command displays the current configurations, as set with the SYSCFG
comnand. The DISCFG conmand can be executed fran the local terminal only, and
may not be included in a macro.

RELATED COMMANDS
SYSCFG
DFTCFG
SAVCFG

D N LOA D

SYNTAX

DNLOAD string

FUNCTION

The DNLOAD command is used to download new Za002 graphics

commands to thecModel One central processor.

PARAMETERS

string

HOST BINARY COMMAND STREAM

[FBH] [Object code and header] .•.

FBH=373a=25ll0

D R W 2 R

SYNTAX

DRW2R dx,dy

FUNCTION

The DRW2R command is a two-byte version of the DRWREL command.
The DRW2R command draws a vector from the current point (CREG ~)
to the point relative to the current point by dx and dy
(+7 to -S) and changes the current point (CREG g) to this new
point. This command minimizes the number of bytes which must
pass between the host computer and the Model One for drawing
short vectors.

PARAMETERS

dX, dy the relative distance; range is -S to 7.

HOST BINARY COMMAND STREAM

[S4H] [dxdy] (2 bytes)

S4H=204S=13210

The most significant nibble (high four-bits) of dxdy specifies
dx and the least significant nibble (low four-bits) of dxdy
specifies dYe

FORTRAN CALL

CALL DRW2R (IDX,IDY)

D R W 3 R

SYNTAX

DRW3R dx, dy

FUNCTION

The DRW3R command is a three byte form of the DRWREL command.
The DRW3R command draws a vector from the current point (CREG
~) to the point relative to the current point offset by dx
and dYe The current point is changed to this new point.
The range of dx and dy is -128 to +127. This command
reduces the number of bytes which must pass between the Model
One and the host computer for vectors whose maximum
displacement is within the given range.

PARAMETERS

dx, dy the relative distance; range is -128 to 127.

HOST BINARY COMMAND STREAM

[83H][dx][dy]

83H=2038=13l10

FORTRAN CALL

(3 bytes)

CALL DRW3R (IDX,IDY)

RELATED COMMANDS

All DRW Commands
FIRSTP

DRWABS

SYNTAX

DRWABS x,y

FUNCTION

The DRWABS command draws a vector from the current point (CREG S)
to the point specified by x,y and changes the current point
(CREG ~) to x,y. The pixels along the line are drawn in the
current pixel value (VREG ~).

PARAMETERS

x, y the absolute x,y coordinate; range is -32,768 to 32,767.

HOST BINARY COMMAND STREAM

[81H][highx][lowx][highy][lowy]

81H=2018=12910

FORTRAN CALL

CALL DRWABS (IX,IY)

EXAMPLE

!MOVABS 50 50 Move current point
!DRWABS 60 50 Draw line to 60,50

pixels long - both
!MOVABS 60 60 Move current point
!DRWABS 60 70 Draw line to 60,70

long) •
! DRWABS 70 70 Draw line to 70,70

to previous line).
! DRWABS 80 100 Draw line to 80,100

RELATED COMMANDS

All DRW Commands
FIRSTP

to 50,50
(horizontal line 11
end points included) .
to 60,60
(vertical line 11 pixels

(diagonal line connected

D R W I

SYNTAX

DRWI creg

FUNCTION

The DRWI command draws a vector from the current point (CREG g)
to the point given be coordinate register creg and changes
the current point (CREG g) to the new point.

PARAMETERS

creg coordinate register: range is 0 to 63.

HOST BINARY COMMAND STREAM

[S5H][creg] (2 bytes)

S5H=205S=13310

FORTRAN CALL

CALL DRWI (ICREG)

EXAMPLE

!MOVABS -100 -50
! DRWI 4

!MOVABS -30 -60
!CLOAD 33 100 150
!DRWI 33

RELATED COMMANDS

All DRW Commands
FIRSTP

Move current point to -100,-50
Draw vector from -100,-50 to location given
in CREG 4
Move current point to -30,-60
Load CREG 33 with 100,150
Draw vector from current point (-30,-60) to
location given in CREG 33 (100,150)

F I L M S K

SYNTAX

FILMSK rmsk, gmsk, bmsk

FUNCTION

The FILMSK command sets the fill mask (VREG 3) with the value
specified by rmsk, gmsk, bmsk. The FILMSK is AND'ed with
boundary values before the boundary check comparison is made.
The FILMSK command is equivalent to VLOAD 3 rmsk gmsk
bmsk, which loads VREG 3 with the fill mask.

PARAMETERS

rmsk
gmsk
bmsk

red mask; range is 0 to 255.
green mask; range is 0 to 255.
blue mask; range is 0 to 255.

HOST BINARY COMMAND STREAM

[9FH][rmsk] [gmsk] [bmsk]
9FH=237S=159IO

FORTRAN CALL

(4 bytes)

CALL FILMSK (IRMSK,IGMSK,IBMSK)

EXAMPLE

MOVABS 0,0
VALS 255
CIRCLE 50
VALUE 0 0 255
CIRCLE 40
VALUE 0 255 0
CIRCLE 30
FILMSK 255 0 0

!AREAI

RELATED COMMANDS

AREAl
AREA2

Move current point to 0,0
Set current pixel value to 255,255,255
Draw circle of radius 50
Set current pixel value to 0,0,255
Draw circle of radius 40
Set current pixel value to 0,255,0
Draw circle of radius 30
Set fill mask to 255,0,0
(ignore green and blue)
Fill area, green and blue circles
are ignored because of ANDing with
fill mask

D R W R E L

SYNTAX

DRWREL dx,dy

FUNCTION

The DRWREL command draws a vector from the current point (CREG
~) to the point relative to the current point offset by dx
and dy. The current point is set to the sum of the
x-component of the old current point plus dx and the sum of
the y-component of the old current point plus dYe

PARAMETERS

dX, dy relative offset for the coordinate; range is -32,768
to 32,767.

HOST BINARY COMMAND STREAM

[82H][highdx] [lowdx] [highdy] [lowdy] (5 bytes)

82H=2028=13010

FORTRAN CALL

CALL DRWREL (IDX,IDY)

EXAMPLE ----

!MOVABS 50 30 Move
!DRWREL 10 20 Draw
!DRWREL 10 0 Draw
!DRWREL o 10 Draw

RELATED COMMANDS

All DRW Commands
FIRSTP

to location 50,30
line from 50,30 to 60,50
line from 60,50 to 70,50
line from 70,50 to 70,60

FIR S T P

SYNTAX

FIRSTP flag

FUNCTION

The FIRSTP command inhibits the writing of the first pixel on
vectors when the flag=l. If flag=" all pixels are
written. This prevents shared endpoints of concatenated lines
from being written twice into image memory.

PARAMETERS

flag flag=l, inhibit writing of first pixel; flag=O, write
all pixels.

HOST BINARY COMMAND STREAM

[2FH][flag] (2 bytes)
2FH=057a=4710

FORTRAN CALL ------

CALL FIRSTP (IFLAG)

RELATED COMMANDS

All DRW Commands

FLOOD

SYNTAX

FLOOD

FUNCTION

The FLOOD command changes all displayed pixels to the current
pixel value "(VREG g) in a single frame time. Pixels that are
not being displayed when the FLOOD command is issued are not
changed. FLOOD does not affect the overlay planes.

HOST BINARY COMMAND S'rREAM

[g7 Hl (1 byte)

07H=007S=710

FORTRAN CALL

CALL FLOOD

EXAMPLE

IVALUE 100 255 200
1 FLOOD
IVALS 0
!FLOOD
!VALUE 255 0 0
!FLOOD

RELATED COMMANDS

CLEAR
ZOOM
ZOOMIN

Change current pixel value to 100,255,200
Flood displayed image
Change current pixel value to 0,0,0
Flood displayed image
Change current pixel value to 255,0,0
Flood displayed image

F L U S H

SYNTAX

FLUSH

FUNCTION

The FLUSH command empties the function button event queue.
The event queue keeps a record of all function buttons which
have been pushed at the workstation. Each time the host
issues a READBU command, one entry is taken out of the event
queue and sent to the host. If the host is not interested in
knowing which buttons have been pushed at the workstation, the
FLUSH command should be included in macros which use function
button. The event queue holds eight entries. Overflow of the
event queue results in subsequent function buttons being
ignored.

HOST BINARY COMMAND STREAM

[ISH] (1 byte)

1SH=02Sa=21l0

FORTRAN CALL

CALL FLUSH

EXAMPLE

!MACDEF 10
$ZOOMIN
$FLUSH
$MACEND
!BUTTBL 13 10

RELATED COMMANDS

All BUTTON Commands

Start definition of Macro #10
Increase scale factor by 2X
Empty event queue
End macro definition
Execute Macro #10 in response to
Button #13

H 0 S T 0

SYNTAX

HOSTO strlen, string

FUNCTION

The HOSTO (HOST Output) command outputs a text string to the
host computer over the currently selected host interface. The
text is specified by string. If the command is being
entered in ASCII mode from the local alphanumeric terminal or
keyboard, the string to be output is the set of ASCII
characters remaining on the command line. If the command is not
being sent in ASCII mode, then the first byte of string
contains the number of characters in the string (strlen)
followed by strlen bytes containing the ASCII characters to
be dra-wn.

PARAMETERS

strlen the number of bytes; needed only if command not sent
in ASCII mode.

string the text string.

HOST BINARY COMMAND STREAM

[B5H][strlen]([char1][char2] •.. [charn])
B5 H= 2 658=18110

FORTRAN CALL

CALL HOSTO (STRLEN,STRING)

STRLEN is an integer specifying the number of characters that
are to be output. STRING is an integer array with two
characters packed per 16-bit word, as in FORTRAN "A2" format.

EXAMPLE

!HOSTO ABCDEF 1 2 3

!HOSTO WXYZ

RELATED COMMANDS

ALPHAO

output text string "ABCDEF 1 2 3"
to the host
Output text string "WXyz .. to the host

L I G H T S

SYNTAX

LIGHTS bl, b2, b3, b4

FUNCTION

The LIGHTS command controls the lights on the Graphic Input Box
by setting the 32 bit light mask. The high eight bits of the
light mask are specified by hI. The low eight bits are
specified by b4. If a bit in the mask is set, the
corresponding button on the Model One's optional Graphic Input
Box will be lighted. The range of bI through b4 is g to
255.

PARAMETERS

bl, b2, b3, b4 the 32-bit light mask; bl holds the high a bits,
b2 the next a bits, b3 the next, and b4 the low
a bits.

HOST BINARY COMMAND STREAM

[ACH][bl][b2][b3][b4]

ACH=254a=17210

FORTRAN CALL

(5 bytes)

CALL LIGHTS (IBI,IB2,IB3,IB4)

RELATED COMMANDS

All BUTTON Commands

L U T 8

SYNTAX

LUT8 index, rentry, gentry, bentry

FUNCTION

The LUT8 command changes the entries in all three Look-Up
Tables (LUTs) at the location specified by index to the
new values rentry, gentry, bentry. The Red LUT is loaded
with rentry, the Green with gentry, and the Blue with
bentry. The entries are the values that are stored in the
red, green and blue LUTs that will be loaded into their
respective digital-to-analog converters (DACs) when a pixel of
value entry is encountered when screen refresh is being
performed. The LUT8 command is most useful when the LUT input
routing (LUTRTE command)is set to other than its default
value.

PARAMETERS

index
rentry
gentry
bentry

the LUT location to be set; range is 0 to 255.
red entry; range is 0 to 255.
green entry; range is 0 to 255.
blue entry; range is 0 to 255.

HOST BINARY COMMAND STREAM

[lCH] [index] [rentry] [gentry] [bentry]
lCH=0348=28l0

FORTRAN CALL

CALL LUT8 (INDEX,IRENT,IGENT,IBENT)

EXAMPLE

!VAL8 100

!FLOOD

!LUT8 100 50 100 200

!LUT8 100 200 70 30

Change current pixel value to
100,100,100
Flood displayed pixels to current
pixel value
Change location 100 in red LUT to
50 in green LOT to 100, and blue
LUT to 200
Change location 100 in red LOT to
200, green LUT to 70, blue LUT to 30

L UTA

SYNTAX

LUTA index, entry

FUNCTION

The LUTA command makes three identical entries in all three
Look-Up-Tables. The value stored in the red, green and blue
LUTs is passed to each of the digital-to-analog converters
(DACs) when a pixel of value index is encountered when
reading from image memory to refresh the display screen.
PARAMETERS

index
entry:

the LUT location; range is 0 to 255.
the entry at the LOT location; range is 0 to 255.

HOST BINARY COMMAND STREAM

[IBH][index][entry]
IBH=033S=2710

FORTRAN CALL

(3 bytes)

CALL LUTA (INDEX,IENTRY)

EXAMPLE

!VALS 255
!FLOOD

!LUTA 255 0

!LUTA 255 100

Set current pixel value to 255,255,255
Flood displayed pixels to current
pixel value (screen goes white if LUTA
has not been set otherwise)
Change entry in location 255 of the
red, green, and blue LUTS to 0
(screen goes black)
Change entry in location 255 of the
red, green, and blue LUTS to 100
(screen goes to grey)

L U T B

SYNTAX

LUTB index, entry

FUNCTION

The LUTB command changes the entry in the Blue Look-Up-Table
(LUT) at location index to the new value entry. The
entry stored in the LUT is passed to the blue digital-to-analog
converter (DAC) when a pixel of value index is encountered
when reading from image memory to refresh the display screen.
PARAMETERS

index
entry.

the blue LUT location; range is 0 to 255.
the entry at the location; range is a to 255.

HOST BINARY COMMAND STREAM

[lAH] [index] [entry]
lAH=032S=2610

(3 bytes)

CALL LUTB (INDEX,ENTRY)

EXAMPLE

!VALUE a a 100
!FLOOD

!LUTB 100,0

!LUTB 100 255

!VALS a
!FLOOD

!LUTB 0 100

Set current pixel value to 0,0,100
Flood all displayed pixels to current
pixel value
Change entry in blue LUT location
100 to a (black)
Change entry in blue LUT location
100 to 255 (full intensity)
Change current pixel value to 0,0,0
Flood all displayed pixels to current
pixel value
Change entry in blue LUT location a to 100

L U T G

SYNTAX

LUTG index, entry

FUNCTION

The LUTG command changes the entry in the Green Look-Up-Table
(LUT) at location index to the new value entry. The
entry stored in the LOT is passed to the green digital-to
analog converter (DAC) when a pixel of value index is
encountered when reading from image memory to refresh the
display screen.

PARAMETERS

index
entry

the green LUT location; range is 0 to 255.
the entry at the location; range is 0 to 255.

HOST BINARY COMMAND STREAM

[19H] [index] [entry]
19H=03lS=25lO

FORTRAN CALL

CALL LUTG (INDEX,ENTRY)

EXAMPLE

IVALUE 0 100 0
1 FLOOD

ILUTG 100,0

ILUTG 100 255

!VALS 0
!FLOOD

!LUTG a 100

Set current pixel value to 0,100,0
Flood all displayed pixels to current
pixel value
Change entry in green LOT location
100 to 0 (black)
Change entry in green LOT location
100 to 255 (full intensity)
Change current pixel value to 0,0,0
Flood all displayed pixels to current
pixel value
Change entry in green LUT location 0
to 100

L U T R

SYNTAX

LUTR index, entry

FUNCTION

The LUTR command changes the entry in the Red Look-Up-Table
(LUT) at location index to the new value entry. The
entry stored in the LUT is passed to the red digital-to-analog
converter (DAC) when a pixel of value index is encountered
when reading from image memory to refresh the display screen.

PARAMETERS

index
entry

the red LUT location; range is a to 255.
the entry at the location; range is a to 255.

HOST BINARY COMMAND STREAM

[18H] [index][entry]
18H=0308=2410

FORTRAN CALL

(3 bytes)

CALL LUTR (INDEX,IENTRY)

EXAMPLE ----
!VALUE 100 a
!FLOOD

!LUTR 100,0

!LUTR 100 255

!VAL8 a
!FLOOD

!LUTR a 100

a Set current pixel value to 100,0
Flood all displayed pixels to current
pixel value
Change entry in red LUT location
100 to a (black)
Change entry in red LUT location
100 to 255 (full intensity)
Change current pixel value to 0,0,0
Flood all displayed pixels to current
pixel value
Change entry in red LUT location a to 100

L U T R M P

SYNTAX

LUTRMP num, sind, eind, sent, eent

FUNCTION

The LUTRMP command loads the Look-Up-Tables (LUT's) specified by
num from LUT index sind to LUT index eind with a ramp
function linearly interpolated from the start entry sent to
the end entry eent. The LUTRMP command is useful whenever
multiple, successive look-up-table entries are to be set to
either a ramp function or to a constant value.

PARAMETERS

num The LUT(s) to load:

sind
eind
sent
eent

num=l, load blue LUT; num=2, load green LUT;
num=4, load red LUT; num=?, load all LUTs.
start index; range is 0 to 255.
end index; range is 0 to 255.
start entry; range is 0 to 255.
end entry; range is 0 to 255.

HOST BINARY COMMAND STREAM

[IDH][num][sind][eind][sent][eent]

IDH=03 5 a= 29IO

FORTRAN CALL

(6 bytes)

CALL LUTRMP (NUM,ISIND,IEIND,ISENT,IEENT)

(Continued)

EXAMPLE

!PRMFIL ON
! VAL8 255
!MOVABS 0 0
!CIRCLE 110
!VAL8 200
!CIRCLE 90
!VAL8 150
!CIRCLE 70
!VAL8 100
!CIRCLE 50
!VAL8 50
!CIRCLE 30
!VAL8 0
!CIRCLE 10
!LUTRMP 7 0 255 255 0

!LUTRMP 1 0 255 0 255

!LUTRMP 2 0 255 0 0
!LUTRMP 4 0 100 255 255
!LUTRMP 7 0 255 0 255

L U T R M P • 1

Select filled primitives
Set current pixel value to 255,255,255
Move current point to 0,0
Draw circle of radius 110
Set current pixel value to 200,200,200
Draw circle of radius 90
Set current pixel value to 150,150,150
Draw circle of radius 70
Set current pixel value to 100,100,100
Draw circle of radius 50
Set current pixel value to 50,50,50
Draw circle of radius 30
Set current pixel value to 0,0,0
Draw circle of radius 10
Load locations 0-255 in all LUTS to
value of 255-0 (reverse ramp function)
Load blue LUT locations 0-255 with
values of 0-255 (ramp function)
Load green LUT location 0-255 with 0
Load red LOT locations 0-100 with 255
Restore default LUT for 24 bit system

L U T R T E

SYNTAX

LUTRTE func ---

FUNCTION

The LUTRTE command changes the routing of data between the RED,
GREEN and BLUE banks of image memory and the red, green and
blue look-up-tables within the Model One. The parameter
func specifies the input routing. The most useful values
of func are:

COMMAND
!LUTRTE 0

!LUTRTE #7E

!LUTRTE #75

!LUTRTE #53

PURPOSE
full-color imaging

pseudo-color imaging

pseudo-color imaging

pseudo-color imaging

RESULT
RED bank drives red
LUT
GREEN bank drives
green LUT
BLUE bank drives blue
LUT
RED bank drives red,
green, and blue LUTs
GREEN bank drives red,
green, and blue LUTs
BLUE bank dr ives red,
green, and blue LUTs

Sections 4.1 and 4.2 give more information about using the
LUTRTE commands.

PARAMETERS

func input routing; range is 0 to 127 (00 to 7F hex).

HOST BINARY COMMAND STREAM

[lEH][func] (2 bytes)
lEH=036a=3010

FORTRAN CALL

CALL LUTRTE (IFUNC)

MACDEF

SYNTAX

MACDEF num

FUNCTION

The MACDEF command defines a new Macro specified by num.
After entering the MACDEF command, a series of commands is
entered. A Macro ends with a MACEND command. A Macro may
include any combination of valid command strings (commands and
parameters) including nested MACDEF commands and user-defined
commands. Macros cannot contain QUIT or ASCII commands. The
length of a Macro command is limited only by the available memory
space. See Section 10 for extensive examples.

Up to sixteen Macros can be nested.

PARAMETERS

num

HOST BINARY COMMAND STREAM

[SBH][num] (2 bytes)
SBH=2l3S=139lO

FORTRAN CALL

CALL MACDEF (NUM)

EXAMPLE

!MACDEF 40
$CIRCLE 50
$CIRCLE 40
$MACEND
!MACRO 40

RELATED COMMANDS

CONFIG
MACRO
MAC END
MACERA

Start definition of Macro #40
Draw circle of radius 50
Draw circle of radius 40
End Macro definition
Execute Macro #40

M A C END

SYNTAX

MACEND

FUNCTION

The MACEND command ends a Macro definition. If no Macro is being

defined, an error results. A MACEND command must be used for

each MACDEF command.

HOST BINARY COMMAND STREAM

[~CH] (1 byte)

OCH=014a=1210

FORTRAN CALL

CALL MAC END

EXAMPLE

!MACDEF 17

$MOVABS 50 50

$DRWABS 100 150

$MACEND

!MACRO 17

Start definition of Macro #17

Move current point to 50,50

Draw to 100,150

End Macro definition

Execute Macro #17

M A C ERA

SYNTAX

MACERA num ----

FUNCTION

The MACERA command clears Macro definition number num. Macro
number num cannot be executed after the MACERA command has

·been issued.

PARAMETERS

num the Macro number; range is 0 to 255.

HOST BINARY COMMAND STREAM

[SCH][num] (2 bytes)

SCH=2l4S=l40lO

FORTRAN CALL

CALL MACERA (NUM)

EXAMPLE

!MACDEF 23
$ZOOMIN
$MACEND
!MACRO 23
!MACERA 23
!MACRO 23

Define Macro #23
Zoom in by factor of 2
End Macro definition
Execute Macro 23 (Zooms in)
Erase the definition of Macro #23
Execute Macro 23 (has no effect now)

M A C R 0

SYNTAX

MACRO num

FUNCTION

The MACRO command executes Macro number num. Note that Macros
can also be executed by pressing buttons or by using the BUTTON
command. Executing a macro that has not been defined has no
effect.

PARAMETERS

num the Macro number; range is 0 to 255.

HOST BINARY COMMAND STREAM

[~BH] [num]

OBH=OI38=IIIO

FORTRAN CALL

CALL MACRO (NUM)

EXAMPLE

!MACDEF 23
!ZOOMIN
$MACEND
!MACRO 23

RELATED COMMANDS

Define Macro 23

Execute Macro 23

All Macro commands
BUTTON
BorTBL

MAP

SYNTAX

MAP

FUNCTION

The MAP command displays the ASCII text memory map at the local
alphanumeric terminal; the map shows the RAM, ROM, and control
register areas used by the firmware.

HOST BINARY COMMAND STREAM

[FCH] (l byte)

FCH=374a=252l0

FORTRAN SUBROUTINE CALL

CALL MAP

EXAMPLE

!MAP

a~~~
99g~

BC~~

CC~~

DC~~

FC~~

99~~

BC~~

CC~~

DC~~

FC~~

~~~~ 

RELATED COMMANDS 

DNLOAD 
PEEK 
POKE 
CONFIG 

Display a memory map 

Monitor area 
Temporary data area 
HOSTSIO input queue 
User defined fonts area 
Macro definition area 
System stack 



MOD DIS 

SYNTAX 

MODDIS flag 

FUNCTION 

The MODDIS command changes the display addressing mode. If the 
flag=', the display mode is set to 512x512. If the 
flag=l, the display mode is set to lKxlK. The image memory 
is cleared to a pixel value of 0,0,0 whenever the display mode is 
changed. 

PARAMETERS 

flag" display mode flag: flag=O, mode is 512 x 512: flag=l, 
mode is lK x lK 

HOST BINARY COMMAND STREAM 

[2CH1[flagl (2 bytes) 
2CH=0 54 a=4410 

FORTRAN SUBROUTINE CALL 

CALL MODDIS (IFLAG) 

EXAMPLE 

!MODDIS S 
!CIRCLE 200 
!MOVABS -256 -256 
!RECT 255 255 

!MOVABS ° ° 
!TEXTI 512 MODE 
!MODDIS 1 
!CIRCLE 200 

!CIRCLE 400 
!MOVABS -512 -512 
!RECT 511 511 

!MOVABS ° ° 
!TEXTI lK MODE 
!MODDIS S 

Select 512x512 mode 
Draw circle of radius 200 
Move current point to -256,-256 
Draw rectangle whose corners are at 
(-256,-256) (255,-256) (255,255) (-256,255) 
Move current point to 0,0 
Draw text string 
Select lK mode 
Draw circle of radius 200 (note 
smaller size) 
Draw circle of 400 
Move current point to -512,-512 
Draw rectangle whose corners are at 
(-512,-512) (511,-512) (511,511) (-512,511) 
Move current point to 0,0 
Draw text string (note its smaller size) 
Restore 512 mode 



MOD ElK 

SYNTAX 

MODElK func 

FUNCTION 

The data routing of the pixel data in lK mode is selected by 
func. When lK mode is selected, the standard red, green and 
blue look-up-tables are no longer used. To increase the 
flexibility of lK mode, several display options are available. 
If the function, specified by func, is ~, the two bits of 
red, two bits of green and two bits of blue image memory data is 
routed directly to the DAC's. 

In the other modes, the image memory is organized as two 
separate 3 bit per pixel images using 1 bit per primary color 
(red, green, blue). These 3 bits are used to turn on and off 
each of the three primary colors. 

Func=l will display lK image g and lK image 1 overlayed on 
top of one another. If func=2, lK image g will be 
displayed. Writing into this lK image plane is controlled by 
bit 7 (MSB) of the write enable mask. If func is 3, lK 
image 1 will be displayed (controlled by bit 6 of the write 
enable mask). 

PARAMETERS 

func the data routing function in lK mode; range is 0 to 3. 

HOST BINARY COMMAND STREAM 

[2DH][func] (2 bytes) 
2 DH=055a=45lO 

Fo'RTRAN SUBROUTINE CALL 

CALL MODElK (IFUNC) 



M 0 V 2 R 

SYNTAX 

MOV2R dx,dy 

FUNCTION 

The MOV2R command changes the current point (CREG ~) by a 

relative amount specified by dx,dy. The MOV2R command is a 

two-byte form of the MOVREL command. MOV2R reduces the number 

of bytes which must be sent from the host computer to the Model 

One to specify displacements of the current point which are 

very small (within the range -S to +7 in both dx and dy). 

PARAMATERS 

dx,dy relative offset; range is -S to 7. 

HOST BINARY COMMAND STREAM 

[~4H][dxdy] 

04H=004S=410 

(2 bytes) 

The most significant nibble (high four-bits) of dxdy specifies 

dx and the least significant nibble (low four-bits) specifies 

dye 

FORTRAN SUBROUTINE CALL 

CALL MOV2R (IDX,IDY) 



M 0 V 3 R 

SYNTAX 

MOVIR dx,dy 

FUNCTION 

The MOV3R command changes the current point (CREG g) by the 

relative amount specified by dx,dy. The MOV3R command is a 

three-byte form of the MOVREL command. MOV3R reduces the number 

of bytes which the host must send to the Model One when the 

displacement of the current point is within the -128 to +127 

range in both dx and dYe 

PARAMETERS 

dx,dy the relative offset; range is -128 to 127. 

HOST BINARY COMMAND STREAM 

£113 H] [dx ] [d Y ] 

03H=0038=310 

FORTRAN SUBROUTINE CALL 

CALL MOV3R (IDX,IDY) 

(3 bytes) 



M 0 V A B S 

SYNTAX 

MOVABS x,y 

FUNCTION 

The MOVABS command changes the current point (CREG ~) to the 
point specified by x,y. All subsequent graphics primitives 
(lines, circles, arcs, polygons .•. ) are drawn beginning at the 
location of the current point. 

PARAMETERS 

x,y the x,y coordinate; range is -32,768 to 32,767. 

HOST BINARY COMMAND STREAM 

[glH] [highx] [lowx][highy][lowy] 

01H=0018=110 

FORTRAN SUBROUTINE CALL 

CALL MOVABS (IX,IY) 

EXAMPLE 

(5 bytes) 

!MOVABS 50 70 Move the current point to 50,70 
! DRWABS 100 -10 Draw line from current point (50,70) 

to 100,-10. 
!CIRCLE 15 Draw a circle of radius 15. 
!MOVABS 0 0 Move the current point to 0,0 
!CIRCLE 20 Draw a circle of radius 20. 



M 0 V I 

SYNTAX 

MOVI creg 

FUNCTION 

The MOVI command changes the current point (CREG ~) to the 
address specified in coordinate register creg. This command 
effectively performs a 'CMOVE ~ creg', which copies a given 
coordinate register into CREG~. The MOVI command is most often 
used to access the current coordinate from the digitizing tablet 
which is stored in CREG 2. 

PARAMETERS 

creg coordinate register; range is 0 to 63. 

HOST BINARY COMMAND STREAM 

[~5H] [creg] 
05H=005a=510 

(2 bytes) 

FORTRAN SUBROUTINE CALL 

CALL MOVI (ICREG) 

EXAMPLE 

!CLOAD 15 100 150 
!VALUE 255 255 255 
!MOVI 15 
!DRWABS 140 100 

! MOVI 2 ----

!CIRCLE 25 

Load 100,150 into CREG 15 
Set current pixel value to 255,255,255 
Move to location given in CREG 15 
Draw line from current point (100,150) 
to 140,100 
Move to the location given in CREG 2 (the 
current digitizing tablet location) 
Draw circle of radius 25 at current point 



M 0 V R E L 

SYNTAX 

MOVREL dx,dy 

FUNCTION 

The MOVREL command changes the current point (CREG g) by a 
relative amount specified by dx, dy. The new current point 
is equal to the sum of the x-component of the old current point 
plus dx and the sum of the y-component of the old current point 
plus dy. 

PARAMETERS 

dx,dy the relative offset; range is -32,768 to 32,767. 

HOST BINARY COMMAND STREAM 

[g2H] [highdx] [lowdx] [highdy] [lowdy] 

02H=0028=210 

(5 bytes) 

FORTRAN SUBROUTINE CALL 

CALL MOVREL (IDX,IDY) 

EXAMPLE 

!MOVABS 100 -130 
!MOVREL 50 100 
!CIRCLE 30 

!MOVREL 20 20 
!CIRCLE 10 

!MOVREL -20 -20 
!CIRCLE 25 

Move the current point to 100,-130 
Move current point by 50,100 to 150,-30 
Draw circle of radius 30 centered 
at current point 
Move current point by 20,20 to 170,10 
Draw circle of radius 10 centered 
at current point 
Move current point by -20,-20 to 150,-30 
Draw circle of radius 25 centered 
at current point 



NUL L 

SYNTAX 

NULL 

FUNCTION 

The NULL command is analogous to a NOP (No OPeration) and has 
no effect. The NULL command has several opcodes 
(OOH,OAH,ODH,80H,8AH,8DH)' all of which execute the 
NULL command. The NULL command can be used to pad a command 
data buffer so that the Model One can be used on systems 
capable of transmitting only fixed length blocks. 

The opcodes of the NULL command were chosen so that the Model 
One ignores carriage returns and line-feeds sent between 
commands for hosts that can not be made to inhibit sending 
these characters. 

HOST BINARY COMMAND STREAM 

[OOH or OAH or ODH or 80H or 8AH or 8DH] 
OOH=0008=OIO 

FORTRAN SUBROUTINE CALL 

CALL NULL 

EXAMPLE 

!NULL Just a waste of typing 

RELATED COMMANDS 

*(Asterisk) 



o V R R D 

SYNTAX 

OVRRD* plane, flag 

FUNCTION 

The OVRRD command sets the display mode of the specified overlay 
plane. Plane is either 1 or ~ to specify overlay plane 1 or 

~. 

If flag is g then the plane specified will not be displayed 
on the screen. If the flag is 1 then the plane will be 
displayed. The default is to display neither plane. 

PARAMETERS 

plane 
flag 

plane specifies overlay plane 1 or , 
display flag: flag=O, do not display; flag=l, display 

HOST BINARY COMMAND STREAM 

[BAH] [plane] [flag] 3 bytes 

FORTRAN SUBROUTINE CALL 

CALL OVRRD (IPLANE,IFLAG) 

EXAMPLE 

OVRRD , , 

OVRRD 1 1 
Overlay plane , will not be displayed. 
Overlay plane 1 will be displayed. 

Note that display is further controlled by display rules. If 
both planes are zero, image memory is displayed; if one is zero 
and the other is one, the plane with the one is displayed; if 
both are one (and OVRRD does not. inhibit display), overlay 
plane , is displayed. 

* Option Card users only. 



o V R V A L 

SYNTAX 

OVRVAL* plane, flag 

FUNCTION 

The OVRVAL command sets the value for writes into the specified 
overlay plane. Plane is either 1 or ~ to specify overlay plane 
1 or ~. 

If flag is ~ then all vectors drawn into the specified 
plane will reset the bits in that plane to zero. If flag is 
1, then vectors will set bits in that plane to one. The 
default is to write ones into both overlay planes. 

PARAMETERS 

plane 
flag 

plane specifies overlay plane 1 or ~. 
write mode flag: flag=O, set bits to ~; 
flag=l, set bits to 1. 

HOST BINARY COMMAND STREAM 

[B9H] [plane] [flag] 3 bytes 

FORTRAN SUBROUTINE CALL 

CALL OVRVAL (IPLANE,IFLAG) 

EXAMPLE ----

!OVRVAL ~ 1 Causes writes into overlay plane 
set bits in that plane. 

!OVRVAL 1 ~ Causes writes into overlay plane 
reset bits in that plane. 

* Option Card users only. 

~ to 

1 to 



o V R Z M 

SYNTAX 

OVRZM* plane, flag 

FUNCTION 

The OVRZM command sets the zoom factor for the specifed overlay 

plane. Plane is either 1 or g to specify overlay plane 1 or 

g. 

If flag is g then the specified plane will be displayed at 

a scale of 1:1. If flag is 1, the plane will be displayed 

at the same scale as image memory. The default is to display 

both planes at scale 1:1. 

PARAMETERS 

plane 

flag 

plane specifies overlay plane g or 1. 

zoom scale flag: flag=O, display scale is 1:1; 

flag=l, display at image memory scale. 

HOST BINARY COMMAND STREAM 

[B8H][plane][flag] 3 bytes 

FORTRAN SUBROUTINE CALL 

CALL OVRZM (IPLANE,IFLAG) 

EXAMPLE 

!OVRZM g 1 

!OVRZM 1 ~ 

Causes overlay plane~ to be displayed 

at same scale as image memory. 

Causes overlay plane 1 to be displayed 

at a scale of 1:1. 

* Option Card users only. 



PEE K 

SYNTAX 

PEEK addr 

FUNCTION 

The PEEK command sends the contents of the central processor 
memory location addr to the requesting device. The address 
must be an even number (word address), the data is displayed in 
ASCII hexadecimal. 

PARAMETERS 

addr word address 

HOST BINARY COMMAND STREAM 

[BDH] [highaddr] [lowaddr] 
BDH=275S=IS910 

FORTRAN SUBROUTINE CALL 

CALL PEEK (IADDR, IWORD) 

(3 bytes) 

IADDR and IWORD are integers. IWORD is changed by the call. 
IWORD is set equal to the contents of the location specified by 
IADDR. 

EXAMPLE 

!PEEK ~ 
FFOO 
!PEEK #OFFE 
F~A~ 

RELATED COMMANDS 

DNLOAD 
MAP 
POKE 
CONFIG 

Display contents of location 0 

Display contents of location OFFEH 



P I X C L P 

SYNTAX 

PIXCLP flag 

FUNCTION 

The PIXCLP command sets the pixel clipping status. When 

flag=l, the pixel processor will clip to 255 on overflow 

conditions and clip to ~ on underflow conditions. If the 

flag=" the Pixel Processor will perform all computations 

MODULUS 256 for 512 mode. 

PARAMETERS 

flag clipping flag: flag=l, clip; flag=O, disable clipping. 

HOST BINARY COMMAND STREAM 

[ 3 C H] [f I ag ] 

3CH=074a=6010 

(2 bytes) 

FORTRAN SUBROUTINE CALL 

CALL PIXCLP (IFLAG) 



P I X E L 8 

SYNTAX 

PIXEL8 nrows,ncols, [vall, val2 •.. vaIn] 

FUNCTION 

The PIXEL8 command transmits an image to the Model One 
pixel-by-pixel. The array of data is nrows high and 
neols wide. The upper left corner of the array is defined 
by the current point (CREG ~). Pixels in image memory are 
filled left-to-right, top-to-bottom. Each pixel value is sent 
as an 8-bit quantity, as in the VAL8 command. The PIXEL8 
command is most useful in loading one of the image memory banks 
with pixel data, as in an 8-bit pseudo-color application. 

PARAMETERS 

nrows,ncols, [vall, val2, .•• vaIn] 

HOST BINARY COMMAND STREAM 

[29H] [highnrows] [lownrows] [highncols] 
[lowncols][val] .• (5+nrows*ncols bytes) 
29H=0518=4Il0 

FORTRAN SUBROUTINE CALL 

CALL PIXEL8(INROWS,INCOLS,IPIXELS) 

NROWS and NCOLS are integers which specify the number of 
rows and columns in the rectangle to be filled. 

IPIXELS is an integer array which has the pixel values. The 
first pixel is in the first element of IPIXELS. Each 
subsequent pixel is stored in successive array elements. 
IPIXELS contains at least NROWS*NCOLS elements. 



P I X E L S 

SYNTAX 

PIXELS nrows,ncols, [r,g,b] ..• [r,g,b] 

FUNCTIONS 

The PIXELS command transmits an image to the Model One pixel-by
pixel. The array of data is nrows high and neols wide. 
The upper left corner of the array is given by the current point 
(CREG g). Pixels in image memory are filled left-to-right, 
top-to-bottom. Each pixel value is sent as a full, 24-bit 
quantity, one byte each of red, green and blue. 

PARAMETERS 

nrows,ncols, [r,g,b] •.• [r,g,b] 

HOST BINARY COMMAND STREAM 

[28H] [highnrows] [lownrows] [highncols] 
[lowncols][r][g][b] .•• (S+3*nrows*ncols bytes) 
28H=OS08= 40 lO 

FORTRAN SUBROUTINE CALL 

CALL PIXELS(NROWS,NCOLS,IRED,IGRN,IBLU) 

Where NROWS and NeOLS are integers which specify the 
number of rows and columns in the rectangle to be filled. 

IRED, IGRN and IBLU are integer arrays which contain the 
pixel values. Each element of the array has a single one-byte 
pixel value in its least significant eight bits. Each array must 
be dimensioned to at least NROWS*NCOLS elements. The RUNLEN 
subroutine encodes the data found in the arrays into run-length 
form automatically. 



P I X FUN 

SYNTAX 

PIXFUN mode 

FUNCTION 

The PIXFUN command sets the pixel processor mode. All operations 
which affect the image memory (with the exception of FLOOD) are 
performed by the pixel processor. These include graphics 
primitives draw by the vector generator, pixel mover, and DMA 
write operations. 

The operation to be performed by the pixel processor is specified 
by mode. A character string can be substituted for the mode 
number when entered from the local alphanumeric terminal. Valid 
character strings are: 

Function 
INS 
SUBI 
SUBN 
ADD 
XOR 
OR 
AND 
PRESET 
CONDITIONAL 

Mode Operation 
mode=~ - Directly insert new data. (default) 
mode=l - Subtract image data from new data. 
mode=2 - Subtract new data from image data. 
mode=3 - Add new data to image data. 
mode=4 - XOR new data to image data. 
mode=5 - OR new data to image data. 
mode=6 - AND new data to image data. 
mode=7 - Write all ones into image memory. 
mode=8 - Inhibit writing of all pixels whose 

value is 0,0,0. 

Note that ADD, SUBI, and SUBN are not available in IK addressing 
mode. PRESET and CONDITIONAL are not available with DMA and 
PIXMOV. 

PARAMETERS 

mode the mode may be ° to 8; it can also be given as a 
character string. 

HOST BINARY COMMAND STREAM 

[3BH] [mode] (2 bytes) 
3BH=0738=5910 

FORTRAN SUBROUTINE CALL 

CALL PIXFUN (MODE) 

EXAMPLES 

IPIXFUN 4 
IPIXFUN INS 

mode is XOR of new data with image data. 
mode is insertion of new data. 



P I X M 0 V 

SYNTAX 

PIXMOV* 

FUNCTION 

The PIXMOV command initiates a Pixel Mover transfer. This 
command moves the block of pixels in the window specified by 
CREGs 11 and 12 into the window specified by CREGs 13 and 14. 
The windows are of the same size, and the size is specified by 
CREGS 11 and 12 (the source). CREG 13 corresponds to CREG 11; 
the pixel at the location in CREG 11 is transferred to the 
location in CREG 13. CREG 14 indicates the direction in which 
the window extends from CREG 13. The PMCTL and PIXFUN commands 
not including 7, 8, control the data routing and functions 
applied to the moved data. Note that judicious setting of CREGs 
13 and 14 allows mirroring around the X and Y axes. 

HOST BINARY COMMAND STREAM 

[BBH ] 1 byte 

FORTRAN SUBROUTINE CALL 

CALL PIXMOV (MODE) 

EXAMPLE 

!CLOAD 13 -256 255 
!CLOAD 14 -156 155 
!CLOAD 11 -50 50 
!CLOAD 12 50 -50 
!PIXMOV 

!CLOAD 13 -156 
!CLOAD 14 -256 255 
!PIXMOV 

Sets up destination window. 

Sets up source window. 

Moves data in center window up 
to upper left corner. 
Sets up new destination window. 

Moves data in center window to 
upper left corner upside down 
and flipped left to right. 

*Option Card users only. 



P M C T L 

SYNTAX 

PMCTL* ~ ~ ~ ~ redrte greenrte bluerte 

FUNCTION 

The PMCTL command sets up the routing for pixel mover 
operations. 

Redrte is a 2 bit value indicating the data to be written 
into the red bank: 

~: load no data into the red. 
1: load red data into the red. 
2: load green data into the red. 
3: load blue data into the red. 

Similarly, greenrte is a 2 bit value indicating which data 
will be written into the green bank, the legal values being: 

~: load no data into the green. 
1: load red data into the green. 
2: load green data into the green. 
3: load blue data into the green. 

Also bluerte is a 2 bit value indicating which data will be 
written into the blue bank, the legal values being: 

~: load no data into the blue. 
1: load red data into the blue-
2: load green data into the blue. 
3: load blue data into the blue. 

The WRMASK command may be used in conjunction with the PMCTL 
\ 

command to control writing into the image -planes. The first four 
parameters (now ~s) are reserved for future use. 

(Continued) 

*Option Card users only. 



P M C T L • 1 

continued from previous page 

PMCTL g g S g redrte, greenrte, bluerte 

PARAMETERS 

redrte, greenrte, bluerte 

HOST BINARY COMMAND STREAM 

[BFH][~][~][~][~][redrte][greenrte][bluerte] (8 bytes) 

FORTRAN SUBROUTINE CALL 

CALL PMCTL (~,g,g,~,IREDRT, IGRNRT, IBLURT) 

EXAMPLE 

!PMCTL g g g g 1 2 3 

!PMCTL g g S g 2 2 2 

Data is moved unmodified (default) 

Green data is moved into all three 

banks. 



POI N T 

SYNTAX 

POINT 

FUNCTION 

The POINT command sets the current point (CREG ~) to the current 

pixel value (VREG ~). The current point and the current pixel 

value remain unchanged. 

HOST BINARY COMMAND STREAM 

[88H] 

88H=2108=13610 

(1 byte) 

FORTRAN SUBROUTINE CALL 

CALL POINT 

EXAMPLE 

!VALUE 255 0 255 

!MOVABS 100 100 

!POINT 

!MOVREL 1 0 

!POINT 

!VALUE 0 0 255 

!MOVREL 1 1 

!POINT 

Change current pixel value to 255,0,255 

Move current point to location 100,100 

Set pixel at location 100,100 to 255,0,255 

Move current point by 1,0 to 101,100 

Set pixel at location 101,100 to 255,0,255 

Change current pixel value to 0,0,255 

Move current point by 1,1 to 102,101 

Set pixel at 102,101 to 0,0,255 



P 0 K E 

SYNTAX 

POKE addr,data 

FUNCTION 

The POKE command writes a given word of data into a given 
address, addr, in central processor memory. The POKE command 
is dangerous and should be used with care. POKING around 
carelessly can crash the central processor. The POKE command can 
be used in conjunction with the PEEK command to assist in 
debugging downloaded object code. POKEs into PROM memory are 
harmless and futile. 

HOST BINARY COMMAND STREAM 

[BEH] [highaddr] [lowaddr] [highdata] [lowdata] (5 bytes) 

BEH=2768=l90l0 

FORTRAN SUBROUTINE CALL 

CALL POKE (IADDR,IDATA) 

EXAMPLE 

!PEEK #8050 
FFOO 

!POKE #8050 #0000 
!PEEK #8050 

0000 

RELATED COMMANDS 

DNLOAD 
MAP 
PEEK 
CONFIG 

Display contents of location 

Change location 8050H to 0 
Display contents of location 

8050H 

8050H 



POL Y G N 

SYNTAX 

POLYGN npoly, nvertl,xl,yl ..• 

FUNCTION 

The POLYGN command draws polygons in image memory in the 
current pixel value (VREG ~). The number of polygons is given 
by npoly. Polygons are specified by giving the number of 
vertices followed by the list of vertices. The number of 
vertices is specified by nvertl for each polygon. Each 
vertex is specified by four bytes (two for x and two for y). 
The X,Y pair describing each vertex is taken to be a 
displacement from the current point (CREG ~); polygons are 
relative to the current point. 

PARAMETERS 

npoly 
nvertl 

the number of polygons to draw; range is 0 to 255. 
the number of vertices for polygon 1; range is 
o to 32,767. 

xl,yl first vertex; coordinates may range from -32,768 
to 32,767. 

HOST BINARY COMMAND STREAM 

[12H][npoly] [hinvertl] [lownvertl] [highXl] [lowXl] 
[highYl][lowYl]. 
12H=0228=18l0 

FORTRAN SUBROUTINE CALL 

CALL POLYGN (NPOLY,NVERT,NVERTS) 

NPOLY is an integer specifying the number of polygons to be 
drawn. 

NVERT is an integer array containing the number of vertices in 
each of the NPOLY polygons. 

IVERTS is an integer array of vertices. The first element of 
the array contains the x-component of the first vertex. The 
second element contains the y-component. The total number of 
vertices equals the sum of NPOLY elements of the NVERT array, 
each vertex requiring 2 elements of the IVERTS array. 

(Continued) 



EXAMPLES 

!MOVABS 0 0 
Move current point to 0,0 

!POLYGN 1 3 20 20 30 30 30 20 
Draw 1 polygon with 3 vertices located at 
(20,20), (30,30), and (30,20) 

!POLYGN 1 4 10 10 50 70 -20 65 30 -10 
Draw 1 polygon with 4 vertices located at 
(10,10), (50,70), (-20,65), and (30,-10) 

!PRMFIL ON 
Select filled graphics primitives 

!POLYGN 1 3 -50 100 50 75 30 65 
Draw 1 polygon with 3 vertices located at 
(-50,100), (50,75), and (30,65) 

POL Y G N • 1 

!POLYGN 2 3 -50,100 50,75 30,65 3 20,20 30,30 30,20 
Draw 2 polygons, each with 3 vertices 



P R M F I L 

SYNTAX 

PRMFIL flag 

FUNCTION ----

The PRMFIL command changes the primitive Fill flag to indicate 
the desired Fill. If flag=l, filled graphics primitives will 
be drawn when a graphics primitive command is executed. If 
flag=~, the perimeter of the graphics primitive will be 
drawn. The graphics primitive commands affected by this flag are 
CIRCLE, CIRCXY, CIRCI, ARC, RECTAN, RECTI, RECREL, and POLYGN. 

PARAMETERS 

flag fill flag: flag=O, disable filling; flag=l, enable 
filling 

HOST BINARY COMMAND STREAM 

[lFH][flagl (2 bytes) 
lFH=037a=3ll0 

FORTRAN SUBROUTINE CA"LL 

CALL PRMFIL (IFLAG) 

EXAMPLE ----
PRMFIL ON 
MOVABS 50 50 
CIRCLE 20 
MOVABS 100, 100 
PRMFIL OFF 
CIRCLE 20 
MOVABS 100 50 
RECTAN 110 60 

!PRMFIL ON 
!MOVABS 50 100 
!RECTAN 60 110 

Select filled primitives 
Move current point to 50,50 
Draw filled circle of radius 20 
Move current point to 100,100 
Select unfilled primitives 
Draw circle of radius 20 
Move current point to 100,50 
Draw rectangle from current point 
to 110,60 
Select filled primitives 
Move current point to 50,100 
Draw filled rectangle from current point 
to 60,110 



QUI T 

SYNTAX 

Q.UIT 

FUNCTION 

The QUIT command exits GRAPHICS mode and returns to ALPHA 

mode. This command should be used to return to ALPHA mode 

when the host or local alphanumeric terminal is finished 

issuing graphics commands. 

HOST BINARY COMMAND STREAM 

[FFH] (1 byte) 

FFH=377a=25510 

FORTRAN SUBROUTINE CALL 

CALL QUIT 



R D MAS K 

SYNTAX 

RDMASK mask 

FUNCTION 

The RDMASK command sets the Read Mask. The Read Mask is an 

8-bit mask which is ANDed with the output of the red, green, 

and blue banks of image memory before the values are fed into 

the Look-Up-Tables. The same 8-bit mask is used on all 

three (red, green, blue) image banks. If a bit in the mask 

is ~, the corresponding bit plane in the image memory is forced 

low. The read masks are used in conjunction with write masks 

to allow multiple images to be stored in image memory and 

selected for display without changing Look-Up-Table entries. 

The Read Mask should always be set to iFF (255) before the 

Look-Up-Tables are loaded; any other value may interfere with 

loading of the LUTs. 

PARAMETERS 

mask the 8-bit read mask; range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[9EH] [mask] (2 bytes) 

9EH=2368=15810 

FORTRAN SUBROUTINE CALL 

CALL RDMASK (MASK) 



R D P I X R 

SYNTAX 

RDPIXR vreg 

FUNCTION 

The RDPIXR command reads the pixel value from image memory at 
the current point (CREG ~) and places the value into VREG number 
vreg. 

PARAMETERS 

vreg value register; range is 0 to 15. 

HOST BINARY COMMAND STREAM 

[AFH] [vreg] (2 bytes) 
AFH=257a=175l0 

FORTRAN SUBROUTINE CALL 

CALL RDPIXR (IVREG) 

EXAMPLE ----

!VALUE 255 100 105 
!POINT 
!RDPIXR 13 

!READVR 13 
255 100 105 

Change current pixel value to 255,100,105 
Set current point to current value 
Read current point and place value in 
VREG 13 
Display contents of VREG 13 



SYNTAX 

READBU 

FUNCTION 

flag, cflg 

REA D B U 

The READBU command sends to the port in GRAPHICS mode, the 
function button number of a button which was pushed. The READBU 
command removes one entry from the function button event queue. 
The function button event queue is eight events deep. 

If the event queue is not empty, send the button number of the 
entry in the event queue. If the queue is empty and f1ag=1, 
wait for the next button to be pushed; if the queue is empty and 
flag=O, send a button number of zero. 

If cflg=l, return the location of the digitizing tablet at 
the time the button was pushed. If cflg=g, send the location 
of the joystick or trackball. 

The function button number and coordinate are sent in ASCII 
decimal. The format is FOR~RAN 13,216 followed by a carriage 
return. 

If the READBU command was sent from the host, the host must send 
an ACK (06H or 86H) to the Model One to resume normal command 
interpretation. The acknowledge character must be sent from the 
host as a single 7-bit control character, regardless of whether 
the host normally sends data to the Model One in 8-bit binary or 
ASCII hex. 

PARAMETERS 

flag 

cflg 

event queue flag: flag=l, empty queue and wait for next 
button; flag=O, send next queue entry (or zero). See 
above for details. 
coordinate flag: flag=l, digitizing tablet location; 
cflg=O, joystick/trackball location. 

HOST BINARY COMMAND STREAM 

[9AH][flag][cflg] 
9AH=232S=15410 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL READBU (IFLAG, ICFLAG,IBUTT, IX,IY) 

IFLAG and ICFLAG are integers which specify whether or not to 
wait for a button and whether the coordinate returned should be 
from the digitizing tablet of the joystick/trackball. 

IBUTT is an integer number returned from the subroutine call 
containing the number of the function button that was pushed. 

IX,IY are inte~ers returned from the call containing the location 
of the digitizlng tablet or joystick/trackball when the button 
was pushed. 



REA D C R 

SYNTAX 

READ£R creg. 

FUNCTION 

The READCR command sends the data in Coordinate Register 
creg to the port in GRAPHICS mode. The address is sent as 
two ASCII decimal numbers representing the x and y component of 
the address respectively. The numbers are sent in FORTRAN 216 
format, followed by a carriage return. 

If the command was issued by the host over the HOSTSIO interface, 
the Model One will wait for an acknowledge character (06H or 
86H) from the host before command in.terpretation continues. 
The acknowledge character must be sent from the host as a single 
7-bit control character, regardless of whether the host normally 
sends data to the Model One in 8-bit binary of ASCII hex. 

PARAMETERS 

creg coordinate register; range is 0 to 63. 

HOST BINARY COMMAND STREAM 

[98H][creg] (2 bytes) 

98H=2308=152l0 

FORTRAN SUBROUTINE CALL 

CALL READCR (ICREG,IX,IY) 

IX AND IY are changed by the call and are returned from the 
subroutine with the X and Y components of the address contained 
in the coordinate register specified by ICREG. 

EXAMPLE 

!CLOAD 23 110 200 
! READCR 23 
110 200 

Load CREG 23 with 110,200 
Read contents of CREG 23 
(Response from Model One) 



REA D F 

SYNTAX 

READF func 

FUNCTION 

The READF command controls the format and meaning of the data 

sent by the Model One as a result of READW or READWE command. 

The parameter func specifies the format. Its range is g to 

4, interpreted as follows: 

Func Data Format 

g* Full 24 bit data FORTRAN 3I3 

I Red channel only FORTRAN I3 

2 Green channel only FORTRAN I3 

3 Blue channel only FORTRAN I3 

4 IK mode packed r,g,b FORTRAN I3 

*Default setting after COLDSTART 

PARAMETERS 

func format function; range is g to 4. 

HOST BINARY COMMAND STREAM 

[27H][func] (2 bytes) 

27H=047a=3910 

FORTRAN SUBROUTINE CALL 

CALL READF (IFUNC> 



REA D P 

SYNTAX 

READP 

FUNCTION 

The READP command sends the pixel value of the current point 
(CREG ~) to the port in graphics mode. The pixel value will be 
sent as three ASCII decimal numbers representing the red, green, 
and blue pixel values. The format of the data sent is FORTRAN 
313 followed by a carriage return. 

If the READP command was issued by the host, the Model One will 
wait for an ACK (06H or 86H) character from the host before 
continuing command interpretation. The acknowledge character 
must be sent from the host as a single 7-bit control character, 
regardless of whether the host normally sends data to the Model 
One in 8-bit binary or ASCII hex. 

HOST BINARY COMMAND STREAM 

[95H] (1 byte) 
95H=2258=14910 

FORTRAN SUBROUTINE CALL 

CALL READP (IRED,IGRN,IBLU) 

IRED, IGRN AND IBLU are integers, which are returned from the 
subroutine call, containing the red, green and blue values of the 
pixel found at the current point in image memory. 

EXAMPLE 

!VAL8~ Set current pixel value to 0,0,0 
!FLOOD Flood displayed image memory 
!READP Read pixel value at current point 

000 000 000 (Response from Model One) 

RELATED COMMANDS 

READF 



REA D V R 

SYNTAX 

READVR vreg 

FUNCTION 

The READVR command sends the pixel value in Value Register 
vreg to the port in GRAPHICS mode. The data is sent as three 
ASCII decimal numbers representing the red, green and blue 
components of' the pixel value respectively. The numbers are sent 
in FORTRAN 313 format and are followed by a carriage return. 

If the READVR command was issued by the host, the Model One will 
wait for an ACK (06H or 86H) character from the host before 
continuing command interpretation. The acknowledge character 
must be sent from the host as a single 7-bit control character, 
regardless of whether the host normally sends data to the Model 
One in 8-bit binary or ASCII hex. 

PARAMETERS 

vreg value register; range is 0 to 15. 

HOST BINARY COMMAND STREAM 

[99H][vreg] (2 bytes) 
99H=2318=15310 

FORTRAN SUBROUTINE CALL 

CALL READVR (IVREG,IRED,IGRN,IBLU) 

IRED,IGRN and IBLU are changed by the call and returned from the 
subroutine with the red, green and blue components of the value 
contained in the value register specified by IVREG. 

EXAMPLE 

!VLOAD 3 35 100 255 
!READVR 3 

35 100 255 

Load VREG 3 with 35,100,255 
Read contents of VREG 3 
(Output from Model One) 



SYNTAX . 

READ~ nrows,ncols,bf 

FUNCTION 

REA D W 

The READW command sends the values of the pixels (r,g,b) in a 
window which is nrows high and neols wide to the port in 
GRAPHICS mode. The current point is used as the upper left corner 
of the window. The window is scanned left to right and top to 
bottom. 

The pixels are sent to the host as ASCII decimal numbers, in format 
set by the READF command. The numbers sent from the Model One can 
range from ~ to 255. 

The bf parameter (blocking factor) tells the Model One how many 
pixel values to send before inserting a carriage return into the 
output stream. If the end of the window is reached before the 
block is filled, the block is padded with zeroes and sent. 

The Model One will then wait for an ACK (06H or 86H) character 
from the host before sending out another block of data. The 
acknowledge character must be sent from the host as a single 7-bit 
control character (ASCII 06H or 86H)' regardless of whether the 
host normally sends data to the Model One in 8-bit binary of ASCII 
hex. 

PARAMETERS 

nrows, ncols, number of rows and columns. 
bf blocking factor. 

HOST BINARY COMMAND STREAM 

[96H] [highnrows] [lownrows] 
[highncols] [lowncols] [bf] 
96H=2268=l5010 

FORTRAN SUBROUTINE CALL 

(6 bytes) 

CALL READW (NROWS, NCOLS,IRED,IGRN,IBLU) 

NROWS and NCOLS are integers specifying the number of rows and 
columns in the image to be read. 

IRED, IGRN and IBLU are integer arrays which contain the pixel 
values returned by the subroutine call. The array must be 
defined in the main program to a dimension at least as large 
as the number of pixels in the window which is to be read. 

RELATED COMMANDS 

READF 



REA D W E 
SYNTAX 

READWE nrows,ncols,bf 

FUNCTION 

The READWE command sends the pixel values (r,g,b) in a window 
which is nrows high and ncols wide to the port in GRAPHICS 
mode. The data is sent in a run-length encoded format. 

Each pixel value sent from the Model One has a one byte count 
parameter indicating the number of pixels in a row which are of 
this same pixel value. 

The current point is used as the upper left-hand corner of the 
window. The window is scanned left to right and top to bottom. 
The pixel~ and "count" are sent to the host as ASCII decimal 
numbers. 

The format of the data sent is set by the READF command. The 
numbers sent from the Model One range from ~ to 255. 

The bf parameter (blocking factor) tells the Model One how 
many pixels and counts to send before inserting a carriage return 
into the output stream. If the end of the window is reached 
before the block is filled, the block is padded with zeroes and 
sent. 

The Model One will then wait for an ACK (06H or 86H) character 
from the host before sending out another block of data. The 
acknowledge character must be sent from the host as a single 7-bit 
control character (ASCII 06H or 86H), independent of host 
configuration. 

PARAMETERS 

nrows,ncols 
bf 

number of rows and columns. 
blocking factor. 

HOST BINARY COMMAND STREAM 

[97H] [highnrows] [lownrows] 
[highncols] [lowncols][bf] 
97H=2278=l5l10 

FORTRAN SUBROUTINE CALL 

(6 bytes) 

CALL READWE (NROWS,NCOLS, IBF, IRED,IGRN, IBLU) 

NROWS and NCOLS are integers specifying the number of rows and 
columns in the image to be read. 

IRED, IGRN AND IBLU are integer arrays which contain the pixel 
values returned by the subroutine call. The array must be 
defined in the main program to a dimension at least as large 
as the number of pixels in the window which is to be read. 

RELATED COMMANDS 

READF 



R E eRE L 

SYNTAX 

RECREL dx,dy 

FUNCTION ----

The RECREL command draws a rectangle in image memory with one 
corner at the current point (CREG ~) and the diagonally opposite 
corner displaced from the current point by dx,dy. The 
rectangle is drawn in the current pixel value (VREG ~). The 
current point is unchanged. 

PARAMETERS 

dx,dy the relative opposite corner; range is -32,768 
to 32,767. 

HOST BINARY COMMAND STREAM 

[89H] [highdx] [lowdx] [highdy] [lowdy] (5 bytes) 

89H=211a=13710 

FORTRAN SUBROUTINE CALL 

CALL RECREL (IDX,IDY) 

EXAMPLE 

!MOVABS 100 150 
!RECREL 10 10 

!RECREL -20 -30 

Move current point to 100,150 
Draw rectangle with ,diagonally 
opposite corner displaced by 10,10 
(at 110,160) 
Draw rectangle with diagonally 
opposite corner displaced by -20,-30 
(at 80,120) 



R E C TAN 

SYNTAX 

RECTAN x,y 

FUNCTION 

The RECTAN command draws a rectangle in image memory with one 

corner at the current point (CREG ~) and the diagonally opposite 

corner at the point specified by x,y. 

PARAMETERS 

x,y the bpposite corner of the rectangle; range is 

from -32,768 to 32,767. 

HOST BINARY COMMAND STREAM 

[8EH] [highx]lowx] [highy][lowy] (5 bytes) 

8EH=2168=14210 

FORTRAN SUBROUTINE CALL 

CALL RECTAN (IX,IY) 

EXAMPLE 

!MOVABS 30 50 Move current point to location 30,50 

!RECTAN 70 100 Draw rectangle whose corners are located 

at 30,50 30,100 70,100 70,50 

!MOVABS -20 -10 Move current point to -20,-10 

!RECTAN -25 15 Draw rectangle whose corners are located 

at -20,-10 -20,15 -25,15 -25,15 



R E C T I 

SYNTAX 

RECTI creg 

FUNCTION 

The RECTI command draws a rectangle primitive with one corner 
at the current point (CREG g) and the diagonally opposite 
corner at the point specified by coordinate register creg. 

PARAMETERS 

creg coordinate register; range is 0 to 63. 

HOST BINARY COMMAND STREAM 

[SFH] [creg] (2 bytes) 

SFH=217S=14310 

FORTRAN SUBROUTINE CALL 

CALL RECTI (ICREG) 

EXAMPLE 

!MOVABS -20 -100 
!CLOAD 17 50 70 
!RECTI 17 

!CLOAD IS 40 60 
!RECTI IS 

Move current point to -20,-100 
Load 50,70 into CREG 17 
Draw rectangle whose corners are 50,70 
50,-100 -20,-100 -20,70 
Load 40,60 into CREG IS 
Draw rectangle whose corners are 40,60 
40,-100 -20,-100 -20,60 



REP LAY 

SYNTAX 

REPLAY 

FUNCTION 

The REPLAY command senJs a dump of the last 32 characters sent by 

the host over the HOSTSIO interface to the local alphanumeric 

display screen. The last character output is the last character 

that was sent by the host. 

HOST BINARY COMMAND STREAM 

[ BCH ] (l byte) 

BCH=2748=188l0 

FORTRAN SUBROUTINE CALL 

CALL REPLAY 

EXAMPLE 

!REPLAY 

gg FF Fg FD Eg E2 20 40 

30 3F E3 20 21 31 gg gg 

33 53 E5 25 20 32 37 70 
7F FF FF FF 30 3F 55 F5 

Dump last 32 characters from 

host input queue 

(Response from Model One) 



RUN LEN 

SYNTAX 

RUNLEN nrows,ncols,[r,g,b,cnt] .•• [r,g,b,cnt] 

FUNCTION 

The RUNLEN command is used to transmit a run-length encoded image 
to the Model One. The array of pixels is nrows high and 
ncols wide. The location of the upper left corner of the 
array is given by the current point (CREG ~). 

Pixels in image memory are filled left-to-right, top-to-bottom. 
Each pixel value is sent as a full, 24-bit quantity one byte 
each of red, green and blue. 

Each pixel value is followed by a one byte count, cnt, which 
specifies the number of horizontally contiguous pixels which are 
to be set to the given r,g,b value. If cnt=" one pixel 
is set, if cnt=l, two pixels are set; the range is up to 
cnt=255, where 256 pixels are set. 

PARAMETERS 

nrows, ncols 
r,g,b 
cnt 

number of rows and columns. 
24-bit pixel value. 
number of horizontal pixels to be set 
to the r,g,b value; range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[2AH] [highnrows] [lownrows] [highncols] 
[lowncols][r][g][b][cnt] ••. (5+4*number of runs) 
2AH=0528= 42 lO 

FORTRAN SUBROUTINE CALL 

CALL RUNLEN(NROWS,NCOLS,IRED,IGRN,IBLU) 

Where NROWS and NeOLS are integers which specify the 
number of rows and columns in the rectangle to be filled. 

IRED, IGRN and IBLU are integer arrays which contain the pixel 
values. Each element of the array has a single one-byte pixel 
value in its least significant eight bits. Each array must be 
dimensioned to at least NROWS*NCOLS elements. The RUNLEN 
subroutine encodes the data found in the arrays into run-length 
form automatically. 

RELATED COMMANDS 

READF 



RUN L N 8 

SYNTAX 

RUNLN8 nrows,ncols, [val][cnt] ..• [val,cnt] 

FUNCTION 

The RUNLN8 command transmit an image to the Model One in a 
run-length encoded fashion. The array of data is nrows high 
and neols wide. The location of the upper left corner of 
the array is given by the current point (CREG g). 

pixels in image memory are filled left-to-right, top-to-bottom. 
Each pixel value is sent as an 8-bit quantity as in the VAL8 
command. 

Each pixel value is followed by a one byte count parameter, 
ent, which specifies the number of horizontally contiguous 
pixels which are to be set to the given value. If ent=" 
one pixel is set, if ent=l, two pixels are set; the range is 
up to ent=255 where 256 pixels are set. 

PARAMETERS 

nrows,ncols 
val 
cnt 

the number of rows and columns. 
8-bit pixel value. 
the number of horizontal pixels to be set 
to val; range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[2BH] [highnrows] [lownrows] [highncols] 
[lowncols][val][cnt].. (5+2*number of runs) 
2BH=0538=4310 

FORTRAN SUBROUTINE CALL 

CALL RUNLN8(NROWS,NCOLS,IPIXELS) 

Where NROWS and NCOLS are integers which specify the 
number of rows and columns in the rectangle to be filled 

IPIXELS is an integer array which has the pixel values. The 
first pixel is in the first element of IPIXELS, each 
subsequent pixel is stored in successive arr~y elements. The 
IPIXELS array contains at least NROWS*NCOLS elements. 
The RUNLN8 subroutine encodes the pixel data into run-length 
form automatically. 

RELATED COMMANDS 

READF 



SAVCFG 

SYNTAX 

SAVCFG 

FUNCTION 

The SAVCFG command saves the Model One port configurations defined with the 
SYSCFG command. SAVCFG saves all port configurations; any port 
configurations that were not changed by SYSCFG, however, are not changed by 
SAVCFG. In addition, if special characters have been changed with the SPCHAR 
command, the SAVCFG command also saves the new special characters. 

Port configurations in the Model One are stored in NVRAM (non-volatile 
rando~access memory). On COLDstart, the configurations are copied into the 
NVRAM from PROM (programmable read-only memory). The SYSCFG command modifies 
the NVRAM; the SAVCFG command copies the NVRAM into PROM. Thus, changed 
configurations can be modified by a COLDstart until they are copied into PROM 
by a SAVCFG command. To ensure that configurations are saved, the SAVCFG 
command must be executed. 

The DFTCFG command can be used to 
configuration (see DFTCFG for details). 
restored to the default. 

restore all ports to the default 
All special characters are also 

If a SYSCFG command inadvertantly renders all ports incommunicado, the DFTCFG 
command description will explain how to reset the system so that SYSCFG and 
SAVCFG can be used again. 

The SAVCFG command can be executed only from the local alphanumeric terminal, 
and cannot be included in a macro. 

EXAMPLES 

SYSCFG SERIAL HOSTSIO RTS OFF CTS OFF XIN ON XOUT ON PARITY N 
configures serial port HOSTSIO (see the 
SYSCFG command for details) 

SYSCFG ALPHA ALPHASIO configures serial port ALPHASIO as the 
local alphanumeric port 

SYSCFG HOST MODEMSIO MODE BINARY configures serial port MODEMSIO as the 
host port 

SYSCFG ERROR HOSTSIO configures serial port HOSTSIO as the 
error port 

SAVCFG stores the configurations defined 
by the above commands; ports that 
were not changed are left unchanged 



S C R 0 R G 

SYNTAX 

SCRORG x,y 

FUNCTION 

The SCRORG command sets the Screen Origin Register (CREG 4) to 
the point specified by x,y. The screen origin specifies the 
coordinate in image memory that will be displayed at the center 
of the screen. This command is used to pan the displayed image. 
The range of x and y is -32,768 to +32,767. 

PARAMETERS 

x,y screen origin coordinate; range is -32,768 to 32,767. 

HOST BINARY COMMAND STREAM 

[36H] [highx][lowx][highy][lowy] 

36H=0668=54 lO 

(5 bytes) 

FORTRAN SUBROUTINE CALL 

CALL SCRORG (IX,IY) 

EXAMPLE ----

!MOVABS a a 
!CIRCLE 100 
!SCRORG 50 50 
!SCRORG 60 50 
!SCRORG 70 50 
!SCRORG 255 a 

!SCRORG o 0 

Move current point to 0,0 
Draw circle of radius 100 
Set screen origin to 50,50 
Set screen origin to 60,50 
Set screen origin to 70,50 
Set screen origin to 255,0 
(note wrap-around) 
Restore screen origin to 0,0 



S P C H A R 
SYNTAX 

SPCHAR char,flag,code 

FUNCTION 

The SPCHAR command may be used to redefine the special characters 
used by the Model One, thereby circumventing problems with certain 
host computers and operating systems. The parameter char 
specifies which of the special characters is to be defined. The 
eight special characters are defined as follows: 

Char Purpose Default ASCII Code 

0 Enter GRAPHICS mode 04H or 84H CTRL-D 
1 Send BREAK to host lOH or 90H CTRL-P 
2 WARMs tart Model One lBH or 9BH CTRL-[ or ESC 
3 Kill line 40H or BOH @ 

4 Backspace 08H or 88H CTRL-H 
5 ACK (Acknowledge) 06H or 86H CTRL-F 
6 NACK (Negative Acknowledge) ISH or 9SH CTRL-U 
7 Enter Debug 18H or 98H CTRL-X 
8 Restart communications 13H or 93H CTRL-Q 
9 Suspend communications IlH or 9lH CTRL-S 

The parameter flag may be 1 or O. If flag=l the third 
parameter, code, specifies the new ASCII code of the special 
character. If flag=O, the Model One no longer responds to the 
special character and code is ignored but must be present. 

The COLDstart sequence restores the default settings of the special 
characters. 

PARAMETERS 

char 
flag 
code 

special character number. 
use flag; flag=l, redefine; flag=O, ignore. 
hex code for character. 

HOST BINARY COMMAND STREAM 

[B2H][char][flag][code] 
B2H=2628=17810 

(4 bytes) 

FORTRAN SUBROUTINE CALL 

CALL SPCHAR (ICHAR,IFLAG,ICODE) 

EXAMPLE 

!SPCHAR g 1 #05 

!SPCHAR g 1 #04 
!SPCHAR 2 g g 

Change the ENTER-GRAPHICS mode control 
code to OSH or 8SH (CTRL-E) 
Restore default ENTER-GRAPHICS code 
Disable the WARMs tart character 



SYSCFG 

SYNTAX 

SYSCFG SERIAL [port mnemonic] [RTS on/off] leTS on/off] [STOP 1/2] 
[BITS 7/8] [PARITY e/o/l/h/n] [BAUD rate] [CTRL on/off] 
[XIN on/off] [XOUT on/off] 

SYSCFG SERIAL TABLETSIO [GTCO old/new] [SUMMA] 

SYSCFG IEEE [address] [NORMAL] [TALK] [LISTEN] 

SYSCFG ALPHA [port mnemonic] 

SYSCFG ERROR [port mnemonic] 

SYSCFG HOST [port mnemonic] [ASCII] [BINARY] 

FUNCTION 

The SYSCFG command is used: 

1. To configure the Model One's serial ports, using the SYSCFG SERIAL command 
and its parameters, 

2. To configure the Model One's IEEE port, using the SYSCFG IEEE command and 
its options, and 

3. To configure the Model One's HOST, ALPHAnumeric, and ERROR ports, using 
the SYSCFG HOST, SYSCFG ALPHA, and SYSCFG ERROR ccmnands wi th the 
appropriate port mnemonic. 

Once the ports have been configured, the new configurations must be saved with 
the SAVCFG conmand. Until the SAVCFG conmand is executed, the new 
configurations will be overwritten by a COLDstart; once they have been saved 
by SAVCFG, however, they will restored by a COLDstart. 

If it is necessary to restore the port configurations to a known state, the 
DFTCFG conmand is used. 

The configurations can be displayed using the DISCFG command. 

The SYSCFG command can be executed only fram the local alphanumeric tenninal, 
and cannot be included in a macro. 

The default configurations are listed below. In using the SYSCFG command, the 
port assignments given in this list should be followed. The mnemonic for the 
port (HOST, KEYBD, etc.) should be used in place of the port number; 
however, the port number can be used if desired. 



Port mnemonic RTS CTS Baud Parity XIN XOUT CTRL STOP BITS 
o MODEMSIO off otf 1200 none on off off 1 8 
1 KEYBDSIO off off 1200 none on off on 1 8 
2 TABLETSIO off ott 1200 none on off off 2 8 
3 GRINSIO off off 1200 none off off off 2 7 
4 HOSTSIO off off 9600 none off on off 2 8 
5 ALPHASIO off off 9600 none on off on 2 8 
6 IEEE 

PARAMETERS 

SYSCFG SERIAL 

The SYSCFG SERIAL command has the following parameters: 

PORT mnemonic supplies the mnemonic of the serial port that is to be 
configured. The port mnemonic (or number) must be given. 

RTS specifies that Request-To-Send should be asserted only before 
transmit (on) or at all times (off). 

CTS 

PARITY 

BAUD 

specifies whether the Clear-To-Send protocol should be 
observed: wi th CTS OFF, the Model One (may transmi tat any 
time; with CTS ON, the Model One must wait for a 
Clear-To-Send. 

specifies the parity on input/output for the given serial port. 
Parity may be Even, Odd, High (parity bit always set), Low, or 
Not used. 

specifies the baud rate for the serial port. The baud rate may 
be: 75, 110, 134.5, 150, 300, 600, 1200, 1800, 2000, 2400, 
4800, 9600, 19200, or 38400. 

If an illegal baud rate is specified, the command will generate 
an error and then tenninate. 

XIN indicates whether XON/XOFF is to be accepted at input: XIN ON 
specifies that output will be enabled or disabled according to 
the XON/XOFF signals received by the port; XIN OFF indicates 
that XON/XOFF signals should be ignored. XIN does not apply to 
TABLETSIO. 

XOUT indicates whether XON/XOFF should be sent when the port's queue 
is near full (XOUT ON) or simply not used (XOUT OFF). XOUT 
does not apply to TABLETSIO. 

CTRL instructs the Model One whether it should accept control 
characters from the port (CTRL ON) or ignore them (CTRL OFF) • 
Note that this includes [CTRL-S] and [CTRL-Q]. 

STOP specifies whether one or two stop bits should be used. 



STOP specifies whether one or two stop bits should be used. 

BITS tells whether seven or eight bits are sent per byte. 

SYSCFG TABLETSIO [GTCO old/new] specifies the old (prior to 8/26/82) or new 
GTCO tablet setup for the TABLETSIO port; SYSCFG TABLETSIO SUMMA specifies 
the Summagraphics Bit-Pad settings. 

SYSCFG IEEE [address] l~Q.RMALL [T~K] [LISTEN] 

The SYSCFG IEEE command is used to configure the Model One's IEEE-488 port. 
The command uses a single hexadecimal number to specify the address for the 
IEEE 488 port. [address] gives the address; it may be between 0 and 31 for 
an existing device. -1 indicates that no IEEE port exists. (The default is 
-1: no IEEE port.) 

[NORMAL], [TALK], and [LISTEN] are mutually exclusive options. In NORMAL 
mode, the IEEE 488 port operates with a controller; TALK and LISTEN are used 
for local talk and listen on a bus with no controller. 

SYSCFG ALPHA [port mnemonic] 
SYSCFG ERROR [port mnemoniC] 

These commands are used to specify which ports are to be used as the 
ALPHAnumeric and ERROR ports. 

SYSCFG HOST [port _mnemonic] [MODE [ASCII] [BINARY]] 

This command configures the HOST port. The port mnemonic, if given, indicates 
a port other than HOSTSIO port. The MODEMSIO port can be designated as the 
host port by using this command, as can the IEEE port. The port may be 
configured to expect ASCII hexadecimal characters or 8-bit binary characters 
from the host. One or the other parameter must be given. For example, the 
command SYSCFG HOST MODE BINARY is valid; it does not change the default host 
port. 

~PLES 

SYSCFG SERIAL HOSTSIO RTS OFF CTS OFF XIN ON XOUT ON PARITY N BAUD 9600 - . 
configures serial port HOSTSIO for 9600 
baud, to ignore RTS and CTS, to 
expect XON!XOFF protocol on both 
input and output, and to ignore 
parity bits 

SYSCFG ALPHA ALPHASIO configures serial port ALPHASIO as the 
local alphanumeric device 

SYSCFG HOST MODEMSIO MODE.BINARY configures serial port MODEMSIO as the 
host port 

SYSCFG ERROR HOSTSIO configures port HOSTSIO as the error port 
(the port to which error messages are 
sent) 

SAVCFG saves the configurations for ports 
HOSTSIO and 0; the configurations for the 
other ports are left unchanged 



fQ!Q 

DFI'CFG 

RELATED COMMANDS 

SAVCFG 
DETCFG 
DISCFG 

the new configurations are used at 
mLDstart 
restores all Model One ports to a 
known default state 



T EXT 1 
SYNTAX 

TEXTI strlen, string 

FUNCTION 

The TEXTI command draws horizontal text into image memory, 
using font 1. At a size of 16 (set by TEXTC command), text 
drawn with font 1 will look like 5x7 dot matrix characters. 
The text to be drawn is specified by string_ 

If the command is being entered in ASCII mode from the local 
alphanumeric terminal/keyboard, the string to be drawn is 
the set of ASCII characters remaining on the command line. If 
the command is not being sent in ASCII mode, then the first 
byte of string contains the number of characters in the 
string (strlen) followed by strlen bytes containing the 
ASCII characters to be drawn. The current point (CREG g) 
specifies the starting point for the text string and remains 
unchanged. 

PARAMETERS 

strlen the length of the string; required if string is not 
sent in ASCII mode. 

string the text string. 

HOST BINARY COMMAND STREAM 

[9~H][strlen]([charl][char2] ••. [charn]) 
90H= 220 8=144l0 

FORTRAN SUBROUTINE CALL 

CALL TEXTI (STRLEN,STRING) 

STRLEN is an integer specifying the number of characters that 
are to be drawn. STRING is an integer array with two 
characters packed per l6-bit word, as in FORTRAN A2 format. 

EXAMPLE 

!MOVABS 0 0 
!TEXTI ABCDEF 1 2 3 
!MOVABS 0 20 
!TEXTC 32 0 
!TEXTI WXYZ 

Move current point to 0,0 
Draw text string "ABCDEF 1 2 3" 
Move current point to 0,20 
Change scale to 32, angle to 0° 
Draw text string "WXYZ" 



T EXT 2 
SYNTAX 

TEXT2 strlen, string 

FUNCTION 

The TEXT2 command draws horizontal text into image memory using 
font 2. Font 2 is a user-defined character set which is 
downloaded using the TEXTDN command. 

At power-on or coldstart, each character in font 2 defaults to 
the same character in font 1. When font 2 is downloaded, each 
character replaces the power-on default definition. 

The TEXT2 command is issued in the same manner as 
TEXTl. The current point (CREG g) specifies the starting 
point for the text string and remains unchanged. 

Strlen specifies the length of the string when text is not 
sent in ASCII mode. 

PARAMETERS 

strlen the length of the string; required if string is not 
sent in ASCII mode. 

string the text string. 

HOST BINARY COMMAND STREAM 

[9lH][strlen]([charl][char2] ..• [charn]) 
91H=22la=145l0 

FORTRAN SUBROUTINE CALL 

CALL TEXT2 (STRLEN,STRING) 

STRLEN is an integer specifying the number of characters that 
are to be drawn. STRING is an integer array with two 
characters packed per l6~bit word, as in FORTRAN A2 format. 

EXAMPLE 

!MOVABS -100 -100 Move to -100,-100 
!TEXT2 This is font 2 Draw text string in font 2 
!MOVABS -100 -50 Move up to -100,-50 
!TEXTI This is font 1 Draw string in font 1 to compare 



T EXT C 

SYNTAX 

TEXTC size,ang 

FUNCTION 

The TEXTC command specifies the size and angle of text for 
subsequent TEXT commands. A size of 16 will cause the text to 
be drawn at normal scale. Doubling the size parameter will double 
the size of the text. 

The angle parameter ang specifies the angle in degrees at 
which the text will be drawn. The angle is measured 
counter-clockwise from the g degree direction. An angle of g will 
cause the TEXTl and TEXT2 commands to draw normally oriented text 
from left to right, and cause the VTEXTI and VTEXT2 commands to 
draw normally oriented text from top to bottom. 

PARAMETERS 

size text size; range is 0 to 255. 
ang text angle; range is -32,768 to 32,767. 

HOST BINARY COMMAND STREAM 

[92H][size] [highang] [lowang] 

92H=2228=146IO 

FORTRAN SUBROUTINE CALL 

CALL TEXTC (ISIZE,IANG) 

EXAMPLE 

(4 bytes) 

Move current point to 0,0 !MOVABS 0,0 
!TEXTC 16 0 Set text size to 16, angle to 0° 
!TEXTI This is a test Draw text string 
!TEXTC 16,0 Set text size to 16, angle to 30° 
!TEXTI of angled text Draw text string 
!TEXTC 32 0 Set text size to 32, angle 0° 
!MOVABSO 50 Move current point to 0,50 
!TEXTI and scaled text Draw text string 



T EXT D N 

SYNTAX 

TEXTDN char,veclst 

FUNCTION 

The TEXTDN command defines the vectors to be drawn into image 
memory for the character specified by char. Whenever this 
character is encountered when using the TEXT2 and VTEXT2 
commands, the vectors specified by veclst will be drawn. 

If the scale and orientation are normal (scale=16, angle=g), the 
characters will be drawn exactly as specified. The character is 
specified as a series of relative moves and draws. Each relative 
move or draw requires one word (two bytes) to specify. The first 
two bytes of veclst specify the number of points that will be 
output. 

The format for each point is defined as follows: 

Bit g - 6 7 bit two's complement delta Y. (-64<=Y<=63) 
Bit 7 Don't care. (May be 1 or g) 
Bit S - 14: 7 bit two's complement d,elta X. (-64<=X<=63) 
Bit 15 Set if a draw, cleared if a move. 

The range of char is g to 127. The number of vectors per 
character is limited only by the available memory space. 

PARAMETERS 

char 
veclst 

character to be defined. 
vector list for char. 

HOST BINARY COMMAND STREAM 

[26H][char][highnumpts] [lownumpts] 
[highvl][lowvl] ...• [highvn][lowvn] 
(4+2*numpts bytes) 

26H=046S=3Sl0 

(Continued) 



T EXT D N • 1 

FORTRAN SUBROUTINE CALL 

CALL TEXTDN (ICHAR,NUMPTS, IPOINTS) 
ICHAR gives the character number, from 1 to 255. 

NUMPTS is an integer specifying the number of points in the user 
defined character; range is 0 to 32,767. 

IPOINTS is an integer array containing the list of moves and 
draws required to draw the character specified by CHAR. It must 
be dimensioned to at least NUMPTS, and must be in the above 
format. 

Bit 0 to 6 : 7-bit 2's complement delta Y. 
Bit 7 1 or ~. 
Bit 8 to 14: 7-bit 2's complement delta X. 
Bit 15 1, draw; f(f, move. 



T EXT R E 

SYNTAX 

TEXTRE 

FUNCTION 

The TEXTRE command erases the definition of any user defined 

characters sent via the TEXTDN command and restores the default 

character font #2. The TEXTRE command frees all of the space 

used by previously defined characters. 

HOST BINARY COMMAND STREAM 

[BIH] (I byte) 

BIH=26I a=17710 

FORTRAN SUBROUTINE CALL 

CALL TEXTRE 



V ADD 

SYNTAX 

VADD vsum,vreg 

FUNCTION 

The VADD command adds the contents of value register vreg to 

the contents of value register vsum and places the result 

into value register vsum. 

PARAMETERS 

vsum,vreg coordinate registers; range is 0 to 15. 

HOST BINARY COMMAND STREAM 

[A6H] [vsum] [vreg] 

A6H=246a=16610 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL VADD (IVSUM,IVREG) 

EXAMPLE 

!VLOAD 10 37 103 200 

!VLOAD 11 100 100 50 

!VADD 10 11 

!READVR 10 

137 203 250 

Load VREG 10 with 37,103,200 

Load VREG 11 with 100,100,50 

Add VREG 10 and VREG 11 place 

result in VREG 10 

Read contents of VREG 

(Response from Model One) 



V ALI K 

SYNTAX 

VALIK rgbval 

FUNCTION 

The VALIK command changes the current pixel value (VREG g) to 
the value rgbval. The two least significant two bits of 
rgbval (bits 1 and g) specify the two bits which are used in 
the blue channel of image memory. Bits 3 and 2 of rgbval 
specify the two bits of green; bits 5 and 4 specify the two bits 
of red. The VALlK command reduces the number of bytes which 
must pass between the host and the Model One to change the 
current pixel value in lK mode. The two most significant bits 
(bits 7 and 6) of rgbval should be zeros. 

PARAMETERS 

rgbval the lK mode value; only the 6 least-significant bits 
are used. 

HOST BINARY COMMAND STREAM 

[BgHl[rgbvall (2 bytes) 
BOH=260a=17610 

FORTRAN SUBROUTINE CALL 

CALL VALIK (IRGBV) 

EXAMPLE 

!MODDIS 1 
!VALIK 13F 
!CIRCLE 50 
! VALIK 13 
!CIRCLE 40 
!VALIK #0 
!FLOOD ----

Put the model One in lK addressing mode 
Set the current pixel value to 192,192,192 
Draw circle of radius 50 
Set current pixel value to 0,0,192 
Draw circle of radius 40 
Set current pixel value to 0,0,0 
Flood image memory to the current pixel value 



V A L 8 -----

SYNTAX 

VAL 8 val 

FUNCTION ----

The VAL8 cOlnmand changes the current pixel value (VREG g) to 
the value val. Each of the three bytes of VREG g (red, 
green, and blue) are set to the· same value. All operations 
which write into image memory use this value. This command can 
be used whenever the red, green, and blue components of the 
current pixel value are to be set to the same value. This 
command is particularly useful in systems with less than 24 
planes of image memory. 

PARAMETERS 

val the red, green, and blue pixel value to be used; 
range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[86H][val] (2 bytes) 

86H=2068=13410 

FORTRAN SUBROUTINE CALL 

CALL VAL8 (IVAL) 

EXAMPLE 

!VAL8 255 

!MOVABS 10,10 
! DRWABS 25, 35 
!VAL8 100 

!DRWABS 40, 60 
!VAL8 100 

!CIRCLE 75 

Set current pixel value to red=255, 
green=255, blue=255 
Move current point to 10,10 
Draw vector in current pixel value to 25,35 
Set current pixel value to red=lOO, 
green=lOO, blue=lOO 
Draw vector in current pixel value to 40,60 
Set current pixel value to red=50 
green=50, blue=50 
Draw circle of radius 75 



V A L U E -----

SYNTAX 

VALUE red,grn,blu 

FUNCTION 

The VALUE command changes the current pixel value (VREG g) to 
the value specified by red,grn,blu. All operations which 
write into image memory use VREG ~, the current pixel value. 
The VALUE command specifies a full 3 bytes (24 bits) of pixel 
value data. 

PARAMETERS 

red the red component of the current pixel value; 
range is 0 to 255. 

grn the green component of the current pixel value; 
range is 0 to 255. 

blu the blue component of the current pixel value; 
range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[g6H][red][grn][blu] 

06H=0068=610 

(4 bytes) 

FORTRAN SUBROUTINE CALL 

CALL VALUE (IRED,IGRN,IBLU) 

EXAMPLE 

IVALUE 0 255 0 

IMOVABS -10 25 
IDRWABS 50 -30 

IVALUE 255 100 50 

!MOVABS 50 100 
ICIRCLE 50 

Set current pixel value to red=g, 
green=255, blue=g 
Move to -10,25 
Draw line from current point to 50, -30 in 
current pixel value 
Set current pixel value to red=255, 
green=lOO, blue=50 
Move current point to 50,100 
Draw circle of radius 50 at current point 



V E CPA T 
SYNTAX 

VECPA'r mask 

FUNCTION 

The VECPA'r command sets the vector generator pattern register to 
mask. The vector generator incorporates a pattern mask 
which allows patterned lines, such as dotted or dashed, to be 
generated. 

This mask is loaded with a 16 bit value specified by mask. 
Every time a pixel is generated by the vector generator, the 
mask is rotated by one bit. If the least significant bit of the 
mask is set to 1, the pixel will be written into image memory. 
If the bit is reset to ~, the pixel will be skipped. 

The VECPAT command also affects the filling of graphics 
primitives when PRMFIL is on, as well as the fill pattern used 
when the CLEAR command is executed. 

PARAMETERS 

mask pattern register mask; range is 0 to 65,535. 

HOST BINARY COMMAND STREAM 

[2EH] [highmask] [lowmask] (3 bytes) 
2EH=056a=4610 

FORTRAN SUBROUTINE CALL 

CALL VECPAT (MASK) 

EXAMPLE 

!VECPAT #FOFO 

!MOVABS 0 0 
!DRWABS 100,200 
!VECPAT #AAAA 

!DRWABS 100 -200 
!VECPAT #OOFF 
!DRWABS -100 -200 
!VECPAT #FFFF 

RELATED COMMANDS 

Set vector pattern mask to FOFOH 
(# indicates hex literal) 
Move current point 0,0 
Draw vector to 100,200 
Set vector pattern mask to AAAAH 
(alternating lis and O's) 
Draw vector from 100,200 to 100,-200 
Set vector pattern mask to OOFFH 
Draw vector from 10,-200 to -100,-200 
Restore vector pattern mask to FFFFH 

all graphics primitives commands (RECTAN,CIRCLE,etc.) 
all line drawing commands 
CLEAR 
PRMFIL 



V G W A I T 

SYNTAX 

VGWAIT frames 

FUNCTION 

The VGWAIT command inhibits transfer of vectors from the vector 

queue for a number of frame times, as specified by frames. 

This command may be used to synchronize vector writing with 

vertical blanking. For example, if a ~ is specified for the 

frames parameter, vector writing will be inhibited until 

the next vertical blanking interval. The delay in seconds will 
be frames divided by sixty. 

PARAMETERS 

frames the number of frames to wait; range is 0 to 65,535. 

HOST BINARY COMMAND STREAM 

[3~H][highframes][lowframes] 

30H=0608=4810 

FORTRAN SUBROUTINE CALL 

CALL VGWAIT (IFRAMES) 

(3 bytes) 



V LOA D 

SYNTAX 

VLOAD vreg,red,grn,blu 

FUNCTION 

The VLOAD command loads value register vreg with the pixel 

value specified by red, grn, blue 

PARAMETERS 

vreg 

red 

value register; range is 0 to 15. 

the red component of the current pixel value; 

range is 0 to 255. 

grn the green component of the current pixel value; 

range is 0 to 255. 
blu the blue component of the current pixel value; 

range is 0 to 255. 

HOST BINARY COMMAND STREAM 

[A4H][vreg][red][grn][blu] (5 bytes) 

A4H=2448=16410 

FORTRAN SUBROUTINE CALL 

CALL VLOAD (IVREG,IRED,IGRN,IBLU) 

EXAMPLE 

!VLOAD 13 50 25 100 

!READVR 13 
50 25 100 

Load VREG 13 with 50,25,100 

Read contents of VREG 13 
(response from Model One) 



V M 0 V E 

SYNTAX 

VMOVE vdst,vsrc 

FUNCTION 

The VMOVE command copies the value in value register vsrc 

to value register vdst. 

PARAMETERS 

vdst,vsrc value registers; range is 0 to 15. 

HOST BINARY COMMAND STREAM 

[A5H] [vdst] [vsrc] 

A5H=245a=16510 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL VMOVE (IVDST, IVSRC) 

EXAMPLE 

IVLOAD 10 25 25 50 

IVMOVE 11 10 

IREADVR 11 
25 25 50 

Load VREG 10 with 25 25 50 

Move contents of VREG 10 into 

VREG 11 



SYNTAX 

VSUB vdif,vreg 

FUNCTION 

The VSUB command subtrdcts the contents of value register 

vreg from the contents of value register vdif and places 

the result into the value register specified by vdif. 

PARAMETERS 

vdif, vreg value registers; range is 0 to 15. 

HOST BINARY COMMAND STREAM 

[A7H] [vdif] [vreg] 

A7H= 247 a=16710 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL VSUB (IVDIF,IVREG) 

EXAMPLE 

!VLOAD 10 25 10 50 

!VLOAD 11 100 200 140 

!VSUB 11 10 

!READVR 11 

75 190 90 

Load VREG 10 with 25,10,50 

Load VREG 11 with 100,200,140 

Subtract VREG 10 from VREG 11 

place result in VREG 11 

Read contents of VREG 11 

v SUB 



V T EXT 1 

SYNTAX 

VTEXTI strlen, string 

FUNCTION 

The VTEXTI command draws vertical text into image memory using 
font 1. At a size of 16 (set by TEXTC command), text drawn 
with font 1 will look like 5x7 dot matrix characters. The ,text 
to be drawn is specified by string. 

If the command is being entered in ASCII mode from the local 
alphanumeric terminal/keyboard, the string to be drawn is 
the set of ASCII characters remaining on the command line. 

If the command is not being sent in ASCII mode, then the first 
byte of string contains the number of characters in the 
string (strleh) followed by strlen bytes containing the 
ASCII characters to be drawn. The current point (CREG g) 
specifies the starting point for the text string and remains 
unchanged. 

PARAMETERS 

strlen the length of the string; required if string is not 
sent in ASCII mode. 

string the text string. 

HOST BINARY COMMAND STREAM 

[93H][strlen]([charl][char21 .•. [charn]) 
93H= 223 a=147l0 

FORTRAN SUBROUTINE CALL 

CALL VTEXTI (STRLEN,STRING) 

STRLEN is an integer specifying the number of characters that 
are to be drawn. STRING is an integer array with two 
characters packed per l6-bit word in FORTRAN A2 format. 

EXAMPLE 

IMOVABS 0,0 
IVTEXTI ABCDEF 1 2 3 
IMOVABS ° 20 
ITEXTC 32 ° 
IVTEXTI WXYZ 

RELATED COMMANDS 

TEXTC 

Move current point to 0,0 
Draw vertical text string 
Move current point to 0,20 
Change scale to 32, angle to 0 0 

Draw vertical text string 



V T EXT 2 

SYNTAX 

VTEXT2 strlen, string 

FUNCTION --------
The VTEXT2 command draws vertical text into image memory using 
font 2. Font 2 is a user-defined character set which is 
downloaded using the TEXTDN command. 

At power-on or COLDstart, each character in font 2 defaults to 
the same character in font 1. When font 2 is downloaded, each 
character replaces the power-on default definition. The 
VTEXT2 command is issued in the same manner as TEXT2. 
The current point (CREG g) specifies the starting point for the 
text string and remains unchanged. 

Strlen gives the number of characters in the string if the 
. command is not given in ASCII mode. 

PARAMETERS 

strlen the length of the string; required if string is not 
sent in ASCII mode. 

string the text string. 

HOST BINARY COMMAND STREAM 

[94H][strlen]([charl][char2].~.[charn]) 

94H=2248=148l0 

FORTRAN SUBROUTINE CALL 

CALL VTEXT2 (STRLEN,STRING) 

STRLEN is an integer specifying the number of characters that 
are to be drawn. STRING is an integer array with two 
characters packed per l6-bit word in FORTRAN A2 format. 

EXAMPLE 

!MOVABS -100 -100 
!VTEXT2 This is font 2 
!MOVABS -50 -100 
!VTEXTI This is font 1 

. RELATED COMMANDS 

TEXTC 
VTEXTI 

Move current point to -100,-100 
Draw vertical text string in font 2 
Move current point up to -100,-50 
Draw vertical text string in font 1 



W A I T 

SYNTAX 

WAIT frames 

FUNCTION 

The WAIT command waits for frames frame times (each frame 

time is a sixtieth of a second) before continuing command 

execution. This command is often used for choreographing 

graphic displays and synchronizing updates with vertical 

blanking. The delay in command execution in seconds will be 

frames divided by sixty. 

If the frames parameter is zero, command execution will 

stop until the next vertical blanking interval. 

PARAMETERS 

frames the number of frames to wait; range is 0 to 65,535. 

HOST BINARY COMMAND STREAM 

[3DH] [highframes] [lowframes] 

3DH=075a=6ll0 

FORTRAN SUBROUTINE CALL 

CALL WAIT (IFRAMES) 

(3 bytes) 



WAR M 

SYNTAX 

WARM 

FUNCTION 

The WARM command warm starts the Model One firmware. This clears 

the serial input and output queues, re-initializes the DIP switch 

programmable functions, and returns the system to ALPHA mode. 

HOST BINARY COMMAND STREAM 

[ FEH ] ( 1 byt e ) 

FEH=376a=254l0 

FORTRAN SUBROUTINE CALL 

CALL WARM 



WINDOW 

SYNTAX 

WINDOW xl,yl,x2,y2 

FUNCTION 

The WINDOW command sets the current clipping (CREGS 9 and 10) 
window to the rectangle specified by xl, yl, x2, y2. The 
lower left corner of the window (CREG 9) is specified by xl 
and yl. The upper right corner of the window (CREG 10) is 
specified by x2 and y2. The range of xl, yl, x2 and 
y2 is -32,768 to +32,767 with xl<=x2 and yl<=y2. All 
vectors and graphics primitives are clipped to the current 
window. 

PARAMETERS 

xl,yl 
x2,y2 

lower left corner of clipping window. 
upper right corner of clipping window. 

HOST BINARY COMMAND STREAM 

[3AH] [highxl] [lowxl] [highyl] [lowyl] 
[highx2] [lowx2] [highy2] [lowy2] (9 bytes) 
3AH=072S=5810 

FORTRAN SUBROUTINE CALL 

CALL WINDOW (IXl,IYl,IX2,IY2) 

EXAMPLE 

!WINDOW -20 -20 30 30 

!MOVABS 0 0 
ICIRCLE 25 
!TEXTC 32 0 
ITEXTl CLIPPED TEXT 
!CLEAR 

IVAL8 0 
IWINDOW -256 -256 255 255 

!CLEAR 

Set current window to rectangle 
[-20,-20][-20,30][30,30][30,-20] 
Move the current point to 0,0 
Draw circle of radius 25 
Set text scale to 32, angle=Oo 
Draw text string 
Clear current window to current 
pixel value 
Set current pixel value to ~ 
Restore default window for 
512 mode 
Clear current window 



W R MAS K 
SYNTAX 

WRMASK bitm,bankm 

FUNCTION 

The WRMASK command sets the write-enable masks. An a-bit mask 
specified by bitm enables or disables write operations to 
specific bit planes of image memory. The same a-bit mask is used 
for the red, green and blue image memory banks. If a bit in 
bitm is set, the corresponding bit plane in image memory will 
be write-enabled. 

Bankm is used to enable or disable write operations into the 
red, green, blue image memory banks, and to the two overlay 
planes. 

If bit ~ (the least significant bit) of bankm is set, the 
blue bank is write-enabled. If bit 1 is set, the green bank is 
write-enabled. Bit 2 of bankm write-enables the red bank if 
set. Similarly, bit 3 of bankm write-enables overlay plane 1 
if set and bit 4 of bankm write-enables overlay plane ~ if 
set. As bits 3 and 4 are used to write-enable the overlay planes 
(on the Option Card), they will be ignored if the hardware does 
not include the Option Card. The range of bankm is ~ to 32. 
The range of bitm is ~ to 255. 

Bankm is set as follows: 

(MSBs) bits 7,6,5 currently unused: must be zeros 

bit 4 1: write-enable overlay plane ~ 
0: do not write-enable overlay plane ~ 

bit 3 1: write-enable overlay plane 1 
0: do not write-enable overlay plane 1 

bit 2 1: write-enable red bank 
0: do not write-enable red bank 

bit 1 1: write-enable green bank 
0: do not write-enable green bank 

(LSBs) bit 0 1: write-enable blue bank 
0: do not write-enable blue bank 

(Continued) 



PARAMETERS 

bitm 
bankm 

a-bit mask; range is 0 to 255. 
bank to write enable; range is 0 to 32. 

HOST BINARY COMMAND STREAM 

[9DH] [bi tm] [bankm] 
9DH=235a=l57l0 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL WRMASK (IBITM,IBANKM) 

W R MAS K • 1 



X H A I R 

SYNTAX 

XHAIR num,flag 

FUNCTION 

The XHAIR command is used to enable the crosshairs. If the 
flag=l, crosshair num is enabled. If the flag=" 
crosshair num is disabled. 

The choices for num are 0, 1, 2 or 3. Crosshairs ~ and 1 
are XOR'ed into the image memory and are always available. 
Crosshair 2 is drawn into overlay plane ~, and crosshair 3 is 
drawn into overlay plane 1; crosshairs 2 and 3 are available 
only to users whose systems include the Option Card. 

The color of crosshair ~ is taken from VREG 1. The color of 
crosshair 1 is taken from VREG 2. The position of crosshair ~ 
is taken from CREG 5, crosshair 1. from CREG 6, crosshair 2 from 
CREG 7, and crosshair 3 from CREG B. Crosshairs 2 and 3 are 
always displayed in the color of the overlay plane into which 
they are drawn. Further, crosshairs 2 and·3 are drawn directly 
into the overlay planes and will damage data already drawn into 
the overlay planes. 

The position of crosshairs is updated automatically every 
thirtieth of a second. 

PARAMETERS 

num 
flag 

crosshair: range is 0 to 3. 
enable/disable flag: flag=l, enable; flag=O, disable. 

HOST BINARY COMMAND STREAM 

[9CH] [num] [flag] 
9CH=234B=15610 

(3 bytes) 

FORTRAN SUBROUTINE CALL 

CALL XHAIR (NUM,IFLAG) 



ZOO M 

SYNTAX 

ZOOM fact 

FUNCTION 

ZOOM sets the scale factor of the display screen to 1, 2, 4 or 
8. In 512 mode, a scale factor of 1 has a 512 pixel-wide 
window visible. Scale factors of 2, 4 or 8 use pixel 
replication to display 256 X 256, 128 X 128 or 64 X 64 pixel 
windows of the 512 X 512 image memory. 

In lK mode, the entire lK X lK array is viewed at a scale 
factor of 1. This is done by performing hardware pixel 
averaging on 4 pixels in the 1K X lk array to display each 
pixel on the screen. At a scale factor of 2, pixel averaging 
is no longer performed. Instead, a 512 X 512 window into the 
lK X lK array is displayed. At scale factors of 4 and 8, pixel 
replication is used to display 256 X 256 and 128 X 128 windows 
respectively. 

When the scale factor is changed, the display is zoomed about 
the center of the screen. 

PARAMETERS 

fact scale factor: values may be 1, 2, 4, or 8. 

HOST BINARY COMMAND STREAM 

[ 34 H ] [ f ac t ] 
34H=0648=5210 

FORTRAN SUBROUTINE CAL (2 bytes) 

CALL ZOOM (IFACT) 

EXAMPLE 

MOVABS 0 0 
CIRCLE 30 
ZOOM 2 
ZOOM 4 
ZOOM 8 
ZOOM 1 

RELATED COMMANDS 

ZOOMIN 
FLOOD 

Move current point to 0,0 
Draw circle of radius 50 
Set scale factor to 2:1 
Set scale factor to 4:1 
Set scale factor to 8:1 
Restore scale factor of 1:1 



ZOO MIN 

SYNTAX 

ZOOMIN 

FUNCTION -----

The ZOOMIN command sets the scale factor of the display screen 
to a factor of two greater than the current scale factor. The 
maximum scale factor is 8. If the current scale factor is 8, 
the ZOOMIN command sets the scale factor to 1. 

HOST BINARY COMMAND STREAM 

[35H] (1 byte) 
35H=065a=53l0 

FORTRAN SUBROUTINE CALL 

CALL ZOOMIN 

EXAMPLE 

!MOVABS 0 0 
!CIRCLE 30 
!ZOOMIN 

!ZOOMIN 

!ZOOMIN 

!ZOOMIN 

RELATED COMMAND 

ZOOM 
FLOOD 

Set current point 0,0 
Draw circle of radius 
Increase current scale 
2x (set to 2:1) 
Increase current scale 
2x (set to 4:1) 
Increase current scale 
2x (set to 8:1) 
Increase current scale 
2x (set to 1:1) 

30 
factor by 

factor by 

factor by 

factor by 





Model One/25 Programning Guide 

16.0 ALPHABErICAL COMMAND REFERENCE 

This section lists, one cannand to a page, every Model One cannand. These 
sUbsections are included for each command: 

SYNTAX: this section gives the coomand syntax. 

FUNCTION: this section describes the function of the command. 

PARAMETERS: this section lists the parameters for the command, gives their 
ranges, and supplies any other needed infonmation on the command parameters. 

HOST BINARY COMMAND STREAM: this section gives the host binary command stream 
and the hexadecimal, octal, and decimal opcodes for the cannand. 

FORTRAN CALL: this section describes the FORTRAN call for the command, 
including the variable names. 

EXAMPLE: this section gives an example of how the command is used. 

RELATED C<M1ANDS: this section lists any related carmands. 

The following pages present the MOdel One commands in alphabetical order. 

85 





Model One/25 Programming Guide 

17.0 QUICK REFERENCE 

This section provides you with a brief summary of each command, its 
parameters, and its hexadecimal opcode. The teKt is identical to that of the 
MOdel One Programming Reference Card. 

86 





MODEL ONE 
PROGRAMMING REFERENCE CARD 

The following is a summary of the graphics commands supported by 
the standard firmware in the Model One product family. Brackets 
[] indicate the hexadecimal opcode of each command. 

HELP 

HELP mnemonic 

Graphics Primitives 

ARC rad,al,a2 

AREAl 

AREA2 vreg 

CIRCI creg 

CIRCLE rad 

CIRCXY x,y 

CLEAR 

DRW2R dx,dy 

DRW3R dx,dy 

DRWABS x,y 

DRWI creg 

DRWREL dx,dy 

FILMSK rmsk,gmsk,bmsk 

List all command mnemonics. 

Give comand information. 

Draw arc of radius rad. Starting 
angle is ali ending angle is a2. 
[IIH] 

Area fill. Boundary is any pixel 
different in value from the current 
point. The area is filled with 
current value. [13H] 

Area fill. Boundary pixel value given 
in vreg. [14H ] 

Draw circle. Location given by creg 
lies on the circumference. [IOH] 

Draw a circle of radius rad. [OEHl 

Draw circle. Point x,y lies on the 
circumference. [OFH] 

Flood current window to current pixel 
value. [S7H] 

Draw vector relative by dx,dy. [S4H] 

Draw vector relative by dx,dy. [S3H] 

Draw vector from current point to the 
point x,y. [SIHl 

Draw vector to location given by creg .. 
[SSH] 

Draw vector relative by dx,dy. [82Hl 

Image data is ANDed with masks before 
checking value in AREA fill commands. 
[9FH] 



FLOOD 

MOV2R dx,dy 

MOV3R dx,dy 

MOVABS x,Y 

MOVI creg 

MOVREL dx,dy 

POINT 

POLYGN npoly, verts 

PRMFIL flag 

RECREL dx,dy 

RECTAN x,y 

RECTI creg 

TEXTI string 

TEXT2 string 

TEXTC size,ang 

TEXTDN char,veclst 

TEXTRE 

VALIK val 

VAL8 val 

Flood displayed image memory to 
current pixel value. [07] 

Move relative by dx,dy. [04H] 

Move relative by dx,dy. [03H] 

Move absolute location of current 
point to x,y. [OIH] 

Move to location given by coordinate 
register creg. [OSH] 

Move relative by dx,dy. [02H] 

Set current point to current pixel 
value. [88H] 

Draw polygons. Npoly gives number of 
polygons; for each polygon, verts 
gives number of vertices and the 
vertices. [12H] 

Primitive fill. Filled primitives are 
drawn if flag=l. If flag=O, the 
perimeter of graphics primitives is 
drawn. [IFU] 

Draw rectangle. Diagonal corner is 
dx,dy away from current point. [89H] 

Draw rectangle Diagonal corner is 
point x,y. [8EH] 

Draw rectangle. Location given by 
creg is diagonal corner. [8FH] 

Draw text string with font 1. [90H] 

Draw text string with font 2. [9IH] 

Specify size of text and draw at angle 
ang. [92H] 

Define downloaded character in font 2. 
[26H] 

Restore default character set. 
[ BlH] 

Set current pixel value (for lK mode). 
[BOH] 

Set current pixel value to 
val, val ,val. [86H] 



VALUE r ,g, b 

VTEXTI string 

V'rEXT2 string 

Look-Up Table Commands 

LUT8 index,r,g,b 

LUTA index, entry 

LUTB index,entry 

LUTG index,entry 

LUTR index,entry 

LUTRMP code,sind,eind, 
sent,ent 

LUTRTE+ func 

Set current pixel value to r,g,b. 
[06Hl 
vertical text string with font 1. 
[93Hl 

vertical text string with font 2. 
[94Hl 

Make entry r,g,b at location given by 
index in Red, Green, and Blue LUTS. 
[lCHl 

Make entry in all LUTs. Place entry 
at location given in index. [IBHl 

Make entry in Blue LUT. Place entry 
at location given in index. [IAHl 

Make entry in Green LUT. Place entry 
at location given in index. [l9Hl 

Make entry in Red LUT. Place entry at 
location given in index. [18H] 

Load LUTs with ramp function. [IDH] 

Change LUT routing function specified 
by func. [IEHl 

+Model One/20 and Model One/25 Users Only. 

Image Transmissions 

PIXEL8 nrows,ncols,val 

PIXELS nrows,ncols,r,g,b 

Pixel by pixel image definition. 
Pixel values are val,val,val. [29Hl 

Pixel by pixel image definition. 
Pixel values are r,g,b. [28Hl 



RUNLEN nrows, ncols, 
r,b,b,cnt 

RUNLN8 nrows,ncols,val, 
cnt 

Display Control 

ASCII flag 

BLANK flag 

COLD 

CORORG x,y 

FIRSTP flag 

MODDIS flag 

MODElK func+ 

OVRRD*+ plane, flag 

OVRVAL*+ plane, flag 

OVRZM*+ plane, flag 

PIXCLP flag 

PIXFUN mode 

PIXMOV* 

Run-length encoded stream. Pixel 
value is r,g,b. Horizontal count is 
cnt. [2AH] 

Run-length stream. Pixel value is 
val,val,val. Horizontal count is cnt. 
[2BH] 

Sets host port input as free format 
ASCII if flag=l, if flag=O binary. 
[9BH] 

Blanks screen when flag=l, normal 
video is restored when flag=O. [3lH] 

Coldstart. Reset the Model One. 
[FDH] 

Loads coordinate origin register with 
x, y. [3 7H ] 

First pixel'on vectors is inhibited 
when flag=l, uninhibited when flag=O. 
[2 FH] 

Select display mode. 512 mode is 
selected if flag=O, lK mode is 
selected if flag=l. [2CH] 

Select output data routing in lK 
mode. [2DH] 

Display specified overlay plane when 
flag=O, inhibit display when flag=l. 
[ BAH] 

Set bits to 1 in specified overlay 
plane when flag=l, reset bits to 0 
when flag=O. [B9H] 

Display plane at scale factor 1:1 if 
flag=O, display at same scale fact as 
image memory if flag=l. [B8H] 

Pixel processor clipping status. Clip 
on over/underflow flag=l. [2] 

Set pixel processor mode. All vectors 
and DMA writes are affected. [2] 

Initiate pixel mover transfer. Move 
window specified by CREG 11 and 12 as 
controlled by CREG 13 and 14. [BB 

H] 



PMCTL* ~ ~ ~ ~ 
redrte,greenrte,bluerte 

QUIT 

RDMASK mask 

SCRORG x,y 

SPCHAR string 

VECPAT mask 

VGWAIT frames 

WAIT frames 

WARM 

WINDOW xl,yl,x2,y2 

WRMASK bitm,bankm 

XHAIR num,flag 

ZOOM fact 

ZOOMIN 

*Option Card Users Only. 

Set pixel mover mode; redrte, 
greenrte, and bluerte control writing 
into the red, green, and blue banks. 
[ BFHl 

Exit graphics mode. [FFHl 

Set Read Mask. All pixel values read 
from image are ANDed with mask. [9EHl 

Set screen origin register to x,y. 
[36Hl 

Redefine special characters (ENTER
GRAPHICS, etc.) [B2H] 

Vector generator pattern register is 
set to mask. [2EH] 

Inhibit transfer of vectors from 
vector queue for frames frame times. 
[30Hl 

Wait for given number of frame times 
before continuing command execution. 
[ 3DHl 

Warmstart. Reinitialize Model One. 
[FEHl 

Set current window. Defined by 
diagonal xl,yl and x2,y2. [3AHl 

Set Write-Enable Mask. Bit planes 
indicated by bitm and banks indicated 
by bankm are write-enabled. [9DHl 

Enable/Disable Crosshair number num. 
If flag=l enable, if flag=O disable. 
[9CHl 

Zoom by factor of fact=1,2,4 or 8. 
[34Hl 

Zoom in by factor of 2. [35Hl 

+Model One/20 and Model One/25 Users Only. 

Special Characters (Default Values) 

CTL D 
CTL P 

o 
1 

ENTERGRAPHICS 
Break 



ESC 2 Warmstart 
@ 3 Line Kill 
CTL H 4 Backspace 
CTL F 5 ACK 
CTL U 6 NACK 
CTL X 7 Invoke Debug 
CTL S 8 Suspend Communications 
CTL Q 9 Resume Communications 

FORTRAN utility Subroutines 

Call ENTGRA 
Call EMPTYB 
Call SENDI(val) 
Call SEND2(val) 

Readback Commands 

Enter Graphics Mode 
Empty Buffers 
Send one byte to output buffer. 
Send two bytes (16 bits) to output buffer. 

All Read commands require a 7-bit ASCII ACK. 

READBU flg,cflg 

READCR creg 

READF func 

READP 

READVR vreg 

READW nrows,ncols,bf 

READWE nrows,ncol 

Register Operations 

CADD csum,creg 

CLOAD creg,x,y 

Read button number. If flag=l wait 
for next button. If flag=O send 
number of last button pushed. If 
cflg=l send current digitizing tablet 
coordinate, if clfg=O send current 
joystick/trackball coordinate. 
[9AH] 

Read coordinate register. Send x,y to 
port in graphics mode. [98H] 

Sets pixel readback format. Func 
specifies format. [27H] 

Read Pixel. Send value of pixel to 
port in graphics mode. [95H] 

Read value register. Send pixel value 
to port in graphics mode. [99H] 

Read Window. Send values of pixels in 
window to port in graphics mode. 
[96H] 

Read Window run-length encoded. Send 
values of pixels .in window in run
length encloded form to port in 
graphics mode. [97H] 

Place result of csum+creg in csum. 
[A2H] 

Load coordinate register creg with 
x,y. [A.0'H] 



CMOVE cdst,csrc 

CSUB cdif,creg 

VADD vsum,vreg 

VLOAD vreg,r,g,b 

VMOVE vdst,csrc 

VSUB vdif,vreg 

Software Development 

* 
ALPHAO strlen,string 

CONFIG dwnlod,maclst, 
textfrst, inpque 

DEBUG flag 

DELAY factor 

DNLOAD 

HOSTO strlen,string 

MAP 

NULL 

PEEK addr 

POKE addr,data 

REPLAY 

Move contents of csrc into cdst. 
[AlH] 

Place result of cdif-creg in cdif. 
[A3H] 

Place result of vsum+vreg into 
vsum. [A6H] 

Load contents of value register vreg 
with r,g,b. [A4H] 

Move contents of vsrc with vdst. 
[ASH] 

Place result of vdif-vreg into 
vdif. [A7H] 

program comment 

Send text string to local alpha
numeric display. [B4H] 

Configure central processor RAM. 
[24H] 

Enter/Exit Command Stream Translator. 
Exit when flag=O, else enter. 
[A8H] 

Delay transmission of characters. 
[ B6H] 

Download Z8002 object code. String 
format is Tektronix Hex. [FBH] 

Send a text string to the host. 
[BSH] 

Display Z8002 memory map on local 
terminal. [FeH] 

No operation. [~~H] 

Display contents of CPU memory. 
[BDH] 

Change contents of addr in CPU memory. 
[ BEH ] 

Dump last 32 characters of HOSTSIO 
input buffer to ALPHASIO port. 



Macro programming 

MACDEF num 

MACEND 

MACERA num 

MACRO num 

Interactive Device Support 

BLINKC 

BLINKD lut,index 

BLINKE lut,index 
entryl,entry2 

BLINKR frames 

BUTTBL index,nmac 

BurTON index 

FLUSH 

RDPIXR vreg 

Define Macro number num is terminated 
by MACEND command. [8BH] 

End of Macro definition. [~CH] 

Erase Macro num. [8CH] 

Execute Macro num. [~BH] 

Clear blink table. [23H] 

Disable Blink of specified 
lut, index. [2IH] 

Enable Blink of specified lut, index. 
Use entry I and entry 2 as alternate 
values. [2~H] 

Blink rate is frame times. [22H] 

Place Macro nmac in Button Table at 
location index. [AAH] 

Execute Macro indicated by Button 
Table at location index. [ABH] 

Empty function button event queue. 
[ISH] 

Places value of pixel at current point 
in specified value register vreg. 
[AFH] 

Coordinate Register Assignment 

CREG 0 

CREG I 

CREG 2 

CREG 3 

Current Point. Starting point of 
graphics primitives. Updated by a 
MOVE or DRAW command. 

Joystick/Trackball Cursor Location. 
Current coordinate from the joystick 
or trackball. Updated automatically. 

Digitizing Tablet Cursor Location. 
Current coordinate from the digitizing 
tablet. Updated automatically. 

Coordinate Origin. Coordinate of the 



CREG 4 

CREG 5 

CREG 6 

CREG 7*+ 

CREG 8*+ 

CREG 9 

CREG 10 

CREG 11,12* 

CREG 13* 

CREG 14* 

CREG 15*+ 

CREG 16*+ 

CREG 17-19 

CREG 20-63 

*Option Card Users Only. 

center of image memory. 

Screen Origin. Coordinate of the 
pixel in the center of the screen. 

Crosshair 0 location in Image Memory. 

Crosshair 1 Location in Image Memory. 

Crosshair 2 Location in Image Memory. 

Crosshair 3 Location in Image Memory. 

Clipping Window Origin. Lower left 
corner of current clipping window. 
All vectors are clipped to this 
window. 

Clipping Window Origin. Upper right 
corner of current clipping window. 
All vectors are clipped to this 
window. 

Diagonal corners for PIXMOV command 
source window definition. 

Defines start corner for PIXMOV 
destination window. 

Controls direction of pixel writing 
for PIXMOV destination window. 

Screen origin of overlay plane g. 

Screen origin of overlay plane 1. 

Reserved for future definition. 

Unassigned. Available for temporary 
coordinate storage. 

+Model One/20 and Model One/25 Users Only. 

Value Register Assignments 

VREG 0 Current Value 

VREG 1 

VREG 2 

VREG 3 

The value used in all graphics 
primitives commands. 

Value used for crosshair O. 

Value used for crosshair 1. 

Fill Mask used for Area fills. 



VREG 4*+ 

VREG 5*+ 

VREG 6 

VREG 7-15 

VREG 16** 

VREG 17** 

VREG 18** 

VREG 19** 

VREG 20** 

VREG 21** 

VREG 22** 

VREG 23** 

VREG 24** 

VREG 25** 

VREG 26** 

VREG 27** 

*Option Card Users Only. 

Color assignment for overlay plane ~. 

Color assignment for overlay plane 1. 

For future definition. 

Available for temporary value 
storage. 

Foreground color, alphanumeric window O. 

Background color, alphanumeric window O. 

Cursor color, alphanumeric window O. 

Foreground color, alphanumeric window 1. 

Background color, alphanumeric window 1. 

Cursor color, alphanumeric window 1. 

Foreground color, alphanumeric window 2. 

Background color, alphan umer ic window 2. 

Cursor color, alphanumeric window 2. 

Foreground color, alphanumeric window 3. 

Background color, alphanumeric window 3. 

Cursor color, alphanumeric window 3. 

+Model One/20 and Model One/25 Users Only. 
**Advanced Graphics Development Firmware 

System Configuration Commands 

DFTCFG 

DISCFG 

SAVCFG 

SYSCFG HOST 

SYSCFG IEEE 

SYSCFG SERIAL 

Default Port Configurations 

Restore all ports to default 
configurations. 

Display current system configurations. 

Save configuration set with SYSCFG. 

[ASCII/BINARY] 

[address] [NORMAL] [TALK] [LISTEN] 

[port-mnemonic] [RTS on/off] [CTS on/off] 
[STOP 1/2] [BITS 7/8] [PARITY e/o/l/h/n] 
[BAUD rate] [XIN on/off] [XOUT on/off] 



port Mnemonic RTS CTS Baud Parity X1N XOUT STOP NB1TS 
MODEMS 10 off off 1200 none on off 1 8 
KEYBS10 off off 1200 none on off 1 8 
TABLETS10 off off 1200 none on off 2 8 
GRINSIO of·f off 1200 none off off 2 8 
HOSTS10 off off 9600 none off on 2 8 
ALPHAS10 off off 9600 none on off 2 8 

AlEhanumeric Terminal Emulation** 

ALPHEM** flag 

BOLD** flag 

DEFW1N** window,xl,yl,x2,y2 
bitm,bankm 

D1RCUR** x,y 

GETCUR** 

GETPOS** 

GETW1N** 

HOME** 

MOVCUR** x,y 

OVRSTK** flag 

SCROLL** flag 

SELW1N** window 

SETCUR** flag 

Enables (flag=l or ON) or disables 
(flag=O or OFF) the alphanumeric terminal 
emulator. Routes text to selected 
window. [C2Hl 

Enables (flag=l or ON) or disables 
(flag=O or OFF) drawing of bold 
text. [CCHl 

Defines size and position of indicated 
window number. (xl,yl) defines first 
corner; (x2, y2) defines diagonal corner. 
bitm, bankm define write mask for window 
(see WRMASK command). [COHl 

Moves cursor to character position 
x,y within window. [C4Hl 

Returns Model One coordinates of cursor 
in currently-selected window. [C9Hl 

Returns character position of cursor in 
currently-selected window. [CSHl 
Returns number of active window (-1 for 
no active window). [CEHl 

Moves cursor to character position (0,0), 
the upper-left corner of the window. 
[CFHl 

Moves cursor to Model One coordinate 
x,y within window limits. [C8Hl 

Enables (flag=l or ON) or disables 
(flag=O or OFF) overstriking of text. 
[CDH 1 • 

Enables (flag=l or ON) or disables 
(flag=O or 'OFF) scrolling of text. 

Select window as defined by DEFWIN. 
Sets routing for ALPHEM command. [C1Hl 

Enables (flag=l or ON) or disables 
(flag=O or OFF) cursor. [C7Hl 



SETSIZ** xscale,yscale 

WRAP** flag 

Sets x,y scaling (multiples of 16 
pi xe 1 s ) . De fault is ( 1 , 1 ). [C 6 H ] 

Enables (flag=l or ON) or disables 
(flag=O or OFF) wraparound of 
text. [CBH] 

**Advanced Graphics Development Firmware 



18.0 INDEX 

1024xl024 addressing mode (see also lK mode) 40 
lK mode 37 
lK mode 40 
lK mode 40 
lK mode on Model One/40 40 
Abbreviations 12 
ACKnowledge character 58 
Addressing, Image Memory 17 
ALPHA Mode 10 
Alphabetical command reference 85 
ALPHAO 69 
ALPHASIO queue 15 
ALUs 35 
Animation 38 
Animation 68 
Applications development 69 
Arc 43 
ARC 44 
Area fill 48 
AREAl 48 
AREAl 48 
AREA2 48 
AREA2 48 
Arithmetic logic units 35 
BLANK 20 
Blink table 38 
BLINKC 38 
BLINKD 38 
BLINKE 38 
Blinking colors 38 
BLINKR 38 
BUTTBL 65 
Button 59 
Button table 65 
Button table 65 
CADD 23 
CIRCI 43 
Circle 43 
CIRCLE 43 
CIRCXY 43 
CLEAR 38 
Clipping window 18 
Clipping window 38 
CLOAD 23 
CMOVE 23 
Color, overlay plane 51 
Command format 11 
Command macros 62 
Command Reference 85 



Command replay 72 
Command stream translator 69 
Command stream translator 70 
Command values 11 
COMMON blocks 77 
Coordinate Origin 17 
Coordinate Registers 21 
Coordinate registers 42 
Coordinates 17 
CORORG 17 
CREG 0 20 
CREGs 21 
Crosshair 23 
Crosshairs, overlay plane 53 
CSUB 23 
Cl'RL-D 15 
CTRL-X 69 
Current pixel value 34 
Current Point 20 
Cursors 23 
DACs 27 
Dashed lines 43 
Data routing, pixel mover 56 
DEBUG 70 
Debugger 69 
Debugger, local 69 
Definition of macros 62 
Digital-to-analog converters 27 
Direct manory access (see DMA) 81 
Display zoom 19 
DMA 81 
DNLOAD 73 
Dottoo lines 43 
Double buffering 29 
Double-buffering 68 
DRW2R 42 
DRW3R 42 
DRWABS 42 
DIMI 42 
DRWREL 42 
EMPTYB 75 
ENTERGRAPHICS 10 
ENTERGRAPHICS 12 
ENTERGRAPHICS 76 
ENTGRA 76 
ENTGRA Subroutine 12 
Entity fill 48 
Erasing macros 63 
ERRMSG 77 
Error checking, FORTRAN 77 
Error codes, FORTRAN 78 
Error conditions 82 
Error messages 82 
Error reporting, FORTRAN 77 

2 



Execution of macros 62 
FIRSTP 43 
FLOOD 38 
FLUSH 67 
FORTRAN 74 
FORTRAN and ALPHA mode 76 
FORTRAN and GRAPHICS mode 76 
FORTRAN COMMON Blocks 77 
FORTRAN error checking 77 
FORTRAN error codes 78 
FORTRAN error reporting 77 
FORTRAN I/O initialization 76 
FORTRAN read-back 79 
FORTRAN subroutines 79 
Full-color imaging 29 
Graphics commands fonmat 11 
GRAPHICS Mode 10 
GRAPHICS Mode 10 
GRAPHICS Mode 12 
GRAPHICS mode 75 
GRAPHICS mode 76 
Graphics primitives 42 
HELP 11 
Host communications 74 
Host communications 81 
Host computer communications 58 
Host computer communications 58 
Host Computer GRAPHICS Mode 12 
Host DMA 81 
Host FORTRAN library 74 
Host transmission fonmats 10 
Host/Mode1 One communications 74 
HOSTDMA queue 14 
HOSTSIO interface 72 
HOSTSIO queue 14 
I/O Buffers 14 
I/O initialization 76 
Image Manory 17 
Image manory 25 
Image manory planes 36 
Image memory read-back 58 
Image transmission 58 
Image transmission 60 
Introduction 8 
Line 42 
Lines, patterned 43 
Local Tenmina1 11 
Look-Up Tables 25 
Look-up Tables 27 
Look-up tables 29 
LUT routing 29 
LUT8 30 
LUTA 29 
LUTB 30 

3 



LUTRMP 30 
LUTRMP 38 
LUTRTE 29 
LUTs 25 
LUTs 29 
MACDEF 62 
MACEND 62 
MACERA 63 
MACRO 62 
Macro definition 62 
Macro erase 63 
Macro execution 62 
Macro programming 62 
Macro writing suggestions 63 
Macros 51 
Macros 62 
MAP 73 
Masks, read-enable 36 
Masks, write-enable 36 
Mirroring 55 
MODDIS 40 
Model One input 79 
Model One/40 40 
Model One/Host communications 74 
~V2R 20 
MOV3R 20 
MOVABS 20 
MOVI 20 
Movie-loop animation 68 
MOVREL 20 
NACK 59 
Negative Acknowledge 59 
ONELIB 74 
ONELIB COMMON Blocks 77 
ONELIB error checking 77 
ONELIB error codes 78 
ONELIB error reporting 77 
ONELIB initialization 76 
ONELIB read-back 79 
ONELIB subroutines 79 
Opcodes with FORTRAN 75 
Operation Modes 10 
Option Card 50 
Option Card 54 
Overlay plane crosshairs 53 
Overlay plane pixel value 52 
Overlay plane read-enable 52 
Overlay plane write-protect 51 
Overlay plane WRMASK 51 
Overlay plane, color 51 
Overlay plane, screen origin 51 
Overlay plane, zooming 52 
Overlay planes 50 
OVRRD 52 

4 



OVRVAL 52 
OVRZM 52 
Panning 66 
Parameter values 11 
Parameters 11 
Patterned lines 43 
PEEK 73 
PIXCLP 36 
Pixel mover 54 
Pixel mover data routing 56 
Pixel mover mirroring 55 
Pixel mover window 54 
Pixel processor 35 
Pixel value, overlay plane 52 
Pixel values 25 
Pixel values 25 
PIXEL8 61 
PIXELS 60 
PIXFUN 35 
PIXFUN 38 
PIXFUN 57 
PIXMOV 54 
Pt-CrL 56 
Point 42 
POINT 42 
POKE 73 
Polygon 44 
Primitive fill 48 
Primitives 42 
PRMFIL 48 
Programming Card 86 
Pseudo-color imaging 26 
Quick Reference 86 
QUIT 62 
QUIT 75 
RDMASK 36 
RDPIXR 35 
Read button 59 
READ commands 58 
Read-back 58 
Read-back, FORTRAN 79 
Read-enable masks 36 
Read-enable, overlay plane 52 
READBU 59 
READBU 67 
READeR 23 
REAOCR 58 
READF 40 
READF 58 
READP 58 
READVR 35 
READVR 58 
READW 59 
READWE 59 

5 



RECREL 44 
RECTAN 44 
RECTI 44 
REPLAY 72 
RTINIT 76 
Rubber-banding lines 67 
RUNLEN 61 
RUNLN8 61 
Screen origin 19 
Screen origin, overlay plane 51 
Screen Refresh 20 
SCRORG 19 
Seeded Fills 48 
SENDI 74 
SEND2 74 
SPCHAR 10 
SPCHAR 15 
Special characters 10 
Special characters 15 
Subroutines, FORTRAN 74 
TABLETSIO interface 65 
Text 46 
Text angle 46 
Text fonts 46 
Text scale factor 47 
Text size 46 
TEXTI 47 
TEXT2 47 
TEXTC 46 
TEXTDN 46 
TEXTRE 46 
Transmission formats 10 
VADD 35 
VALIK 27 
VALIK 40 
VAL8 26 
VALUE 25 
VALUE 26 
Value registers 25 
Value Registers 34 
VECPAT 43 
VLOAD 34 
VMOVE 35 
VREGs 25 
VREGs 34 
VSUB 35 
VTEXTI 47 
VTEXT2 47 
WINDOW 18 
Write-enable masks 36 
Write-protect (see WRMASK) 51 
WRMASK 37 
WRMASK 40 
WRMASK 51 

6 



WRMASK 56 
WRMASK 68 
XHAIR 23 
XHAIR 53 
Z8000 programming 73 
ZOOM 19 
ZOOMIN 19 
Zoaning 19 
Zooming overlay planes 52 

7 





APPENDIX I A MODEL ONE/25 lK MODE PROGRAM 

C* 
C EXAMPLE PROGRAM. 
C This program has been developed to run on a Prlme 50-Series computer. Changes 
C to the program will be necessary to adapt the program for other computers. 
C Descriptions of the PRIMOS routines used are provided to aid in this process. 
C 
C 
C PRIMOS operating system routines used throughout this program: 
C 
C Name 
C 
C 
C TNOU 
C 
C 
C 
C TNOUA 
C 
C 
C 
C 
C OPEN$A 
C 
C 
C 
C 
C 
C CLOS$A 
C 
C 
C RNAM$A 
C 
C 
C 

Function 

Outputs a single character string of fixed length directly on 
the users tenninal. This routine appends a new line character 
at the end of the user's string. 

Performs the same function as TNOU except that it does OOT append 
a new line character at the end of the string. Therefore, this 
routine can be used to prompt a user and accept data off the same 
line as the prompt text is on. 

Opens or closes a given file and file-unit 
pair on the PRIMOS disk system. Note: this routine uses a physical 
device unit number which is 12 units less than the actual FORTRAN 
unit used by standard reads and writes. Also, the unit number 
number is returned by the routine. 

This routine will close a given file by its' physical file unit 
number. No name is necessary. 

This routine will prompt the user with a given fixed length string 
and accept as input another string typed in from the users 
terminal. In most cases, the string is assumed to be a PRIMOS 
tree name reference to a given file in the file system. 

A- 1 



Polygon Editor--eopyright Raster Technologies, 1982 

e Routines defined locally to this program: 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

Name 

LOCVTX 

SINGLE 

DOUBLE 

SCOLOR 

DISPMU 

FATTXT 

ISNAP 

NXTOBJ 

Function 

This routine takes as input a pick point defined by IX,IY and 
searches a list of vertices defined by IVERTS. IeoUNT is used 
to define the number of vertices in lVERTS. 
Upon returning fram this routine, 3 variables will be modified; 
IX,IY will now reflect the actual point within the list that was 
closest to the original IX,IY and WHERE will be an index to the 
IVERTS array pointing to the x,y pair of that list closest to 
the original IX,IY, (this x,y pair will have the same value as the 
returned IX,IY). (There might be a bug in this routine for 
version 7.) 

This routine simply defines a set of macros to be run locally 
on the Model One to rubber-band a single line. This set of 
Model One macros is invoked when the user goes into the "CREATE
POLYGON" mode of this program. 

This routine is similar to SINGLE except that it defines a set 
of macros to rubber-band two lines with a common vertex locally 
on the Model One. These macros are invoked by this program 
when the user selects the "EDIT" sub-mode of the systan. 

(*** Both routines SINGLE and DOUBLE define macros in the Model 
One that will run asynchronously fram the host on the Model One. ***) 

This routine is a function which takes as input an x,y pair found 
in a linear array and generates a new color which is a function 
of the radius described by the pair. Since the VALIK ONELIB 
routine is called after the color is selected, the Model One is 
ready to generate graphics in the new color upon returning from 

any call. 

This routine takes as input a reference to an existing file and 
reads the contents to generate new menu selection within the 
defined menu area. The HOME argument to this routine is not 
used in this program, but could be used to write part 
of the new menu in a different color. Can be used to identify 
parts of the menu that ranain static fram menu to menu and make 
those parts that change stand out. 

This a very simple routine to generate fat text from the standard 
Model One text font-I. This assumes that the programmer has 
already set the text size and angle before making the call. The 
text location is specified as part of the call along with the 
text its self. 

A function to take an arbitrary x or y value and return the 
closest logical grid point on the screen. 

This routine is used to traverse the complete list of objects, 

2 



C 
C 
C 
C 
C 
C 
C 
C NXTMTY 
C 
C 
C 
C 
C 
C 
C PICK 
C 
C 
C 
C 
C 
C 
C 
C 
C BLDGRD 
C 
C 
C 
C 

Polygon Editor--Copyright Raster Technologies, 1982 

(defined or undefined), and find the next DEFINED object in that 
list. The routine takes as input the list to be searched and 
a start point within that list fram which to begin the search. 
It returns as its' value a pointer index to the next DEFINED 
object. If the list is empty, it returns an undefined pointer 
index and generates an error. 

This routine is much like NXTOBJ except that is searches the 
list of object looking for the next UNDEFINED slot in the list. 
Takes as input the list to be searched and returns as its' value 
a pointer index to the next UNDEFINED object in the list. 
If the list is full, it returns an undefined pointer and generates 
an error message. 

This function takes as input an arbitrary x,y pair defined by 
IX,IY and searches the complete list of objects to find the 
object with the vertex closest to the original pick point. It 
returns as its value the x,y pair that was closest, (IX,IY) and 
sets WHERE to point to the object within the object list 
that was closest. 
This routine makes multiple calls to LOCVTX to find the closest 
vertex/object. 

This routine simply defines a macro to be run locally on the 
Model One every time the grid needs to be drawn or undrawn. This 
macro will be invoked by the host program, (this program) and 
will locally draw the grid in XOR mode. The grid size corresponds 
to the grid size defined in the SNAP function, (20x20 pixels) • 

3 



Polygon Editor--Copyright Raster Technologies, 1982 

C Model One MACROS used 
C 

in conjunction with this program. 

C Macro-# Function 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

5 

40-44 

50-57 

101 

153 

C 156-255 
C 
C 
C 
C 
C 
C 
C 

General purpose macro used to track the cross hairs. When 
working it will be associated with buttbl location 0 and there
fore be updating the cross hair location every 30th of a second. 

This set of macros runs locally on the Model One to control the 
function of rubber-banding a single line. For more details, 
refer to the actual code found in the subroutine definition 
of SINGLE. 

This set of routines handles the rubber-banding of two lines 
joined at a single vertex run locally on the Model One. For 
more details, see DOUBLE. 

This macro is used to drag a given object locally on the Model 
One. It uses the same basic algorithm as SINGLE and DOUBLE· 
only it calls one of the object macros to draw th figure. 

This macro holds all the graphics necessary to display the 
"POLYGON-DRAG" sub-menu. It is run locally when called by the 
host program by a MACRO(153) command. 

These macros are "object" macros. They are defined by the host 
each time a new object is created or edited. All they contain 
is a POLYGN command and the vertices necessary to define the 
object. These macros are used in order to reduce the amount of 
information sent between the Host and the Model One every time 
an obj ect needs to be redrawn. 
Only objects DEFINED in the host should have active macros in 
this range of values. 

4 



Polygon Editor--Copyright Raster Technologies, 1982 

C For a complete definition of the ONELIB routines used in this program, please 
C refer to the Model One Programming Guide. 
C 

C--- SYSCOM keys are system defined constants and variables for system calls. 
INTEGER*2 MAXOBJ,MXOBJ2,MAXVRT 
PARAMETER (MAXOBJ=50,MXOBJ2=MAXOBJ*2,MAXVRT=200) 

$INSERT SYSCOM)A$KEYS.INS.FTN 

INTEGER*2 INVERT(MAXOBJ) 
INTEGER*2 IVERTS(MAXVRT,MAXOBJ) 
INTEGER*2 ICOUNT(MAXOBJ) 
LOGICAL*2 EMPTY (MAXOBJ) 
INTEGER*2 I COLOR (MAXOBJ) 

IN INTEGER*2 NAME(40),NAMEL 

INTEGER*2 PICK,SCOLOR 

INTEGER*2 IBUTT,IX,IY,WHERE 
LOGICAL*2 GRIDON,OGRDON, DRAGNG 
INTEGER*2 NXTMTY,NXTOBJ 
LOGICAL*2 FIRST 
INTEGER*2 I,J,K,JUNK(2) 
INTEGER*2 IXDEL,IYDEL 
INTEGER*2 NSTART,NOBJX 
INTEGER*2 IUNIT,FIUNIT, OUNIT,FOUNIT 

C* <*)modellconsts.ins.ftn> (Created: Thursday, April 1, 1982) */ 

INTEGER*2 WHITE$, BLACK$ 

INTEGER*2 CREGO, CREGl, CREG2, CREG3, CREG4, CREG5 
INTEGER*2 CREX;6, CREG7, CREG8, CREX;9, CREGIO ,CREGll 
INTEGER*2 CREG12,CREG13,CREG14,CREG15,CREG16,CREG17 
INTEGER*2 CREG18,CREG19,CREG20,CREG21,CREG22,CREG23 
INTEGER*2 CREG24,CREG25,CREG26,CREG27,CREG28,CREG29 
INTEGER*2 CREX;30,CREG31,CREG32,CREG33,CREX;34,CREG35 
INTEGER*2 CREG36,CREG37,CREG38,CREG39,CREG40,CREG41 
INTEGER*2 CREG42,CREG43,CREG44,CREG45,CREG46,CREG47 
INTEGER*2 CREG48,CREG49,CREG50,CREG51,CREG52,CREG53 
INTEGER*2 CREG54,CREG55,CREX;56,CREG57,CREG58,CREG59 
INTEGER*2 CREG60,CREG61,CREG62,CREG63 

INTEGER*2 CURPNT,JOYSTK,DIGTZR,CORRG ,SCRRG ,XHAIRO 
INTEGER*2 XHAIRl,LWNORG,UWNORG,OVRPLO,OVRPLl 

INTEGER*2 VRroO, VREGl, VREG2, VREG3, VREG4, VREG5 
INTEGER*2 VREG6, VREG7, VREG8, VREG9, VREGIO, VREGll 
INTEGER*2 VREG12,VREG13,VREG14,VREG15 

5 



Polygon Editor--Copyright Raster Te9hnologies, 1982 

INTEGER*2 CURVAL, XROVAL, XRlVAL, FLMSK 

PARAMETER (WHITE$=255, BLACK$=O) 

PARAMETER (CREGO = 0, CREGI = 1, CREG2 = 2, CRm3 = 3) 
PARAMETER (CREG4 = 4, CREG5 = 5, CREG6 = 6, CREG7 =-l) 
PARAMETER (CREG8 =-1, CREG9 = 9, CREGI0=10, CREGl1=11) 
PARAMETER (CREG12=l2, CREGI3=13, CREG14=14, CREGlS=15) 
PARAMETER (CREGI6=l6, CREGI7=-I, CRroI8=-I, CREGI9=-I) 
PARAMETER (CREG20=20, CREG21=2l, CREG22=22, CREG23=23) 
PARAMETER (CREG24 =24 , CREG25=25, CREG26=26, CREG27=27) 
PARAMETER (CREG28=28, CREG29=29, CREG30=30, CREG31=3l) 
PARAMETER (CREG32=32, CREG33=33, CREG34=34, CREG35=35) 
PARAMETER (CREG36=36, CREG37=37, CREG38=38, CREG39=39) 
PARAMETER (CREG40=40, CREG41=41, CREG42=42, CREG43=43) 
PARAMETER (CREG44=44, CREG4S=45, CREG46=46, CREG47=47) 
PARAMETER (CREG48=48, CREG49=49, CREG50=SO, CREG51=51) 
PARAMETER (CREG52 =52 , CREG53=53, CREG54=54, CREGS5=S5) 
PARAMETER (CREG56=56, CREG57=57, CREG58=58, CREG59=59) 
PARAMETER (CREG60=60, CREG61=61, CREG62=62, CREG63=63) 

PARAMETER (CURPNT=CREGO, JOYSTK=CREx:;l, DIGTZR=CREG2) 
PARAMETER (CORRG =CREG3, SCRRG =CREG4, XHAIRO=CREG5 ) 
PARAMETER (XHAIRl=CREG6, LWNORG=CREG9, UWNORG=CREGI0) 
PARAMETER (OVRPLO=CREGlS, OVRPLI =CRE(16) 

PARAMETER (VREGO = 0, VREGI = 1, VREG2 = 2, VREG3 = 3) 
PARAMETER (VREG4 = 4, VREG5 = S, VREG6 =-1, VREG7 =-1) 
PARAMETER (VREG8 = 8, VREG9 = 9, VREGI0=lO, VREGll=ll) 
PARAMETER (VREG12=l2, VREG13=13, VREGI4=14, VREG15=15) 

PARAMETER (CURVAL=VREGO, XROVAL=VREGl, XRl VAL=VRE(2) 
PARAMETER (FLMSK =VREG3) 

INTEGER*2 XLLl,YLLl, XURl,YURl /* SCREEN BOUNDIRES 
PARAMETER (XLLl=-960,YLLl=-930, XURl=958,YURl=988) 

INTEGER*2 XLLB, YLLB, XURB, YURB /* WORK AREA BOUNDRIES 
PARAMETER (XLLB=-478,YLLB=-220, XURB=464,YURB=380) 

INTEGER*2 XLLH,YLLH, XURH,YURH /* HOME MENU BOUNDRIES 
PARAMETER (XLLH=-474,YLLH=-478, XURH=-280,YURH=-242) 

INTEGER*2 UPXFUN,UBTTBO,UPRMFL,URTNP,GOHOME 
PARAMETER (UPXFUN=250,UBTTBO=251,UPRMFL=252,URTNP=253, 

+ GOHOME=215) 

6 



Polygon Editor--Copyright Raster Technologies, 1982 

C--- Prelude. This section defines the screen fonnat, clipping 
C--- window and sets all counters, constants, etc. to 
C--- their initial values. 

CALL TNOU(' [EditPoly Rev 7.0]' ,18) 

DO 45 I = I,MAXOBJ 
I COUNT (I) = 0 
INVERT (I) = 0 
EMPTY (I) = • TRUE. 

45 CONTINUE 

CALL ENTGRA 
00 46 I = 1,255 

CALL MACERA (I ) 
46 CONTINUE 

CALL BUTTBL (0,0 ) 

CALL MODDIS(l) 
CALL PRMFIL(l) 
CALL FLUSH 
CALL SINGLE 

/* Mode 1k. (1024X1024 addressing mode.) 
/* Fill all polygons from here on. 
/* Flush the Model One button queue. 
/* Load local macros for rubberband ing a 
/* single line into the Model One Z8002 
/* memory. 

CALL OOUBLE /* Load local macros for rubberbanding 
/* two lines with a common single floating 
/* vertex into the Z8002 memory. 

C--- Write Raster Technologies name and program title into the Model 
C--- Ones' frame buffer. 

CALL MACDEF(153) /* Polygon Drag sub-menu 
CALL DISPMU ( , SHavS>. POLY>DRAG • MENU ' ,21,. TRUE. ) 

CALL MACEND 

CALL VALlI< (52) 
CALL BUTTBL(1,43) 
CALL WINDOW(-512,-512, 511,511) 
CALL VAL1K (52) 
CALL TEXTC(64,0) 
CALL FATTXT('Raster' ,6,-450,434) 
CALL FATTXT('Technologies',12,-469,402) 
CALL MOVABS(XURB-340,422) 
CALL TEXT 1 (14, 'Polygon Editor') 
CALL VAL8 (WHITE$) 
CALL MOVABS (XLLB-1, YLLB-1) 
CALL PRMFIL(O) 
CALL ROCTAN (XURB+ 1, YURB+ 1) 
CALL PRMFIL(l) 
CALL WINOOW.(XLLB, YLLB, XURB, YURB) 

CALL MACDEF (5 ) 
CALL (M)VE (5,2) 

/* General purpose macro for tracking the cross hairs. 

7 



Polygon Editor--Copyright Raster Technologies, 1982 

CALL MACEND 

C--- Initialize constants. 

CALL PIXCLP(l) 
CALL VLOAD (VREG15, 100,100,110) 
NOBJ = 0 
OBJNO = 1 
INVERT (OBJNO) = 1 
GRIOON = • TRUE. 
CALL BLDGRD 
IF (GRIDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (0) 

8 



Polygon Editor--Copyright Raster Technologies, 1982 

C RETURN HERE FOR MAIN MENU 
C 
6000 CONTINUE 
C 

C DISPLAY TOP MENU 
C 

CALL DISPMU('SHOWS).POLY)MAIN.MENU',21,.TRUE.) 
C 
6050 CONTINUE /* GET NEXT BUTTON, MAIN MENU 

NAMEL = 80 
CALL QUIT 
WRITE (1,101) 

101 FORMAT(lX,/,'Select a menu option using the cursor.' ,//) 
CALL ENTGRA 

C 

CALL XHAIR(2,1) 
CALL BUTTBL(0,5) 
CALL READBU(l,l,IBUTT,IX,IY) /* WAIT FOR A BUTTON 

IF(IBUTT .EQ. 1) GO TO 6100 /* RESTORE SOME EXISTING DATA 
IF(IBUTT .EQ. 2) GO TO 6200 /* SAVE THE DATA FROM ON SCREEN 
IF(IBUTT .EQ. 3) GO TO 6300 /* BEGIN AN EDIT SESSION 
IF (IBUTT .EQ. 4) GO TO 9999 /* HE WANTS TO QUIT OUT 
CALL ALPHAO(21,'***Invalid response.') 
GOTO 6050 /* LOOP AND WAIT FOR A VALID BUTTON 

6100 CONTINUE /* RESTORE OBJECTS. 
CALL QUIT 

6150 CONTINUE 
IF (NAMEL .GT. 0) GOTO 6160 
CALL ENTGRA 
GOTO 6000 

6160 CONTINUE 
NAMEL = 80 
CALL RNAM$A('Input file' ,1l f A$FUPP,NAME,NAMEL) 
NAMEL = NLEN$A(NAME,NAMEL) 
IF (.NOT. OPEN$A(A$READ+A$GETU,NAME,NAMEL,IUNIT)) GOTO 6150 
FIUNIT = IUNIT + 12 
READ (FIUNIT,6112) NOBJX 
NSTART = NOBJ+1 
NOBJ = NOBJ + NOBJX 
CALL ENTGRA 
IF (GRlDON) CALL MACRO(154) /* Grid erase 
CALL PIXPUN (0) 
OBJNO = 0 
DO 6110 I = NSTART,NOBJ 

OBJNO = NXTMTY(EMPTY) 
EMPTY (OBJNO) = • FALSE. 
READ (FIUNIT,6113) ICOLOR(OBJNO),INVERT(OBJNO) 
K = INVERT (OBJNO) *2 
READ (FIUNIT,6114) (IVERTS(J,OBJNO),J=l,K) 
I VERTS (K+1,OBJNO) = IVERTS(l,OBJNO) 
I VERTS (K+2,OBJNO) = lVERTS(2,OBJNO) 

9 



Polygon Editor--Copyright Raster Technologies, 1982 

ICOUN!' (OBJNO) = K+1 
CALL VAL1K(ICOLOR(OBJNO» 
CALL MACDEF(OBJNO+155) 

CALL POLYGN (1, INVERT (OBJNO) ,IVERTS (l,OBJNO» 
CALL MACEND 
CALL MACRO(OBJNO+155) 

6110 CONTINUE 
IF (GRIDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (0) 
CALL QUIT 
CALL CLOS$A(IUNIT) 
WRITE (1,6111) NOBJX,NAME 

6111 FORMAT (lX,I3,, Objects read from: ',40A2,//) 
CALL ENTGRA 
GOTO 6050 

6200 CONTINUE /* SAVE OBJECTS. 
CALL QUIT 

6250 CONTINUE 
IF (NAMEL .GT. 0) GOTO 6260 
CALL ENTGRA 
GOTO 6000 

6260 CONTINUE 
NAMEL = 80 
CALL RNAM$A ( 'Output file', 12, A$FUPP, NAME, NAMEL) 
NAMEL = NLEN$A(NAME,NAMEL) 
IF (.NOT. OPEN$A (A$WRIT+A$GETU ,NAME,NAMEL,OUNIT» GOTO 6250 
FOUNIT = OUNIT + 12 
WRITE(FOUNIT,6112) NOBJ 
OBJNO = 0 
DO 6210 I = I,NOBJ 

OBJNO = NXTOBJ(EMPTY, OBJNO+1) 
WRITE (FOUNIT,6113) ICOLOR(OBJNO),INVERT(OBJNO) 
K = INVERT (OBJNO) *2 
WRITE (FOUNIT,6l14) (IVERTS(J,OBJNO) ,J=l,K) 

6210 CONTINUE 
CALL CLOS$A(OUNIT) 
WRITE (1,6211) NOBJ,NAME 

6211 FORMAT (lX,I3,, Objects written to: ',40A2,//) 
CALL ENTGRA 
GOTO 6050 

6300 CONTINUE /* EDIT OBJECTS. 
C 
C DISPLAY MAIN MENU 
C 

CALL DISPMU ( , SHOWS>. POLY>PE2. MENU' ,20, • TRUE. ) 

10 



Polygon Editor--Copyright Raster Technologies, 1982 

C--- Main Loop. This section of code interprets the main menu 
C--- buttons and calls the appropriate subroutines to handle 
C--- each button. 

1000 

lC05 

C 1. 
C 2. 
C 3. 
C 4. 
C 5. 
C 6. 
C 7. 
C B. 
C 9. 
C 10. 
C 11. 
C 12. 
C 13. 
C 14. 
CIS. 

CONTINUE 
FIRST=. TRUE. 
CALL XHAIR(O,l) 
CALL BUTTBL(O,5) 
CONTINUE 
CALL READBU(l,l,IBUTT,IX,IY) 

Define a polygon 
Edit a polygon 
Delete an existing polygon 
Read colors from the grid 
Drag an existing polygon 
Grid On/Off 
(Undefined) 
(Undefined) 
Return to previous menu for Restore, Save, and Quit functions 
(UNdefined) 
(Undefined) 
(Undefined) 
Confirm a polygon being created. 
(Undefined) 
(Undefined) 

GOTO (1010,2000,3000,4000,5000,7000,1005,1005,9000), IBUTT 
GOTO 1005 

C--- Define Polygon. This section is invoked when button #1 is pressed 
C--- and the user is looking at the main menu. A check 
C--- is made to see if the max number of objects has been 
C--- exceeded. 

1010 CONTINUE 
CALL VAL 8 (WHITE$) 
IF (NOBJ .LT. MAXOBJ) GOTO 1011 
CALL ALPHAO(26,'On1y 100 objects allowed.') 
GOTO 1000 

1011 CONTINUE 
OBJNO = NXTMTY (EMPTY) 
ICOUNT (OBJNO) = 1 

1012 CONTINUE 
IF(.NOT.FIRST) CALL READBU(l,l,IBUTT,IX,IY) 
IF(IBUTT .EQ. 9 ) GOTO 9999 /* EXIT PROGRAM 
IF(IBUTT .EQ. 13) GOTO 1020 /* CLOSE & FILL THE POLYGON. 
IF(IBUTT .NE. 1 ) GOTO 1012 /* ONLY RECOGNIZE BUTTON 1 
IF (ICOUNT(OBJNO) .LT. MAXVRT-1) GOTO 1014 
CALL ALPHAO(27,'Only 200 vertices allowed.') 
GOTO 1020 

11 



Polygon Editor--Copyright Raster Technologies, 1982 

1014 CONTINUE 
IX = ISNAP(IX, GRlDON) 
IY = ISNAP(IY, GRlDON) 
lVERTS(ICOUNT(OBJNO),OBJNO)=IX 
I VERTS (ICOUNT (OBJNO)+1,OBJNO) =IY 
CALL CLOAD(CREG25,IX,IY) 
I COUNT (OBJNO) = I COUNT (OBJNO) +2 

IF (FIRST) GOTO 1234 
CALL MACRO(42) /* NOT THE FIRST POINT, CONFIRM THE CURRENT LINE. 
GO TO 1012 /* KEEP GOING UNITL BUTTON 13 IS PUSHED 

1234 CONTINUE /* FIRST POINT OF THE POLYGON, DEFINE COLOR AND DRAW THE CIRCLE 
lCOLOR (OBJNO) = SCOLOR (IVERTS (1, OBJNO) ) 
CALL MOVABS(380,-300) 
CALL WINDOW(-512,-S12,511,511) 
CALL CIRCLE (40) 
CALL O1OVE(CREG2l,CREG25) 
CALL CMOVE(CREG22,CREG25) 
CALL MACRO (41) /* START RUBBERBANDING 
FIRST = .FALBE. 
GO 'ro 1012 

1020 CONTINUE /* CONNECT LAST LINE TO THE START VERTEX; REDRAW 
/* THE POLYGON FILLED AND IN THE CORRECl' COLOR. 

IF (ICOUNT(OBJNO) .GT. 3) GOTO 1025 

C--- POLYGON HAD LESS THAN 3 LINES: ERASE IT AND RETURN TO THE MAIN MENU .. 

CALL MOVABS (IVERTS (1, OBJNO) ,IVERTS (2, OBJNO) ) 
CALL POINr 
CALL DRWI (CREG21) 
CALL MACRO (44 ) 
ICOUNT (OBJNO) = 0 
lVERTS (1 ,OBJNO) = 0 
IVERTS(2,OBJNO) = 0 
EMPTY (OBJNO) = • TRUE. 
GOTO 1000 

1025 CONTINUE /* THIS IS A VALID POLYGON, DRAW IT INTO IMAGE MEMORY. 
CALL BUTTBL(O,O) 
CALL MOVI(CREG22) 
CALL DRWI (CREG21) 
lVERTS(ICOUNT(OBJNO),OBJNO)=IVERTS(1,OBJNO) 
I VERTS (ICOUNT (OBJNO)+1,OBJNO) = I VERTS (2,OBJNO) 
CALL MOVABS (IVERTS (l,OBJNO) ,IVERTS (2,OBJNO» 
J = lcoum (OBJNO) - 2 
DO 1030 I = 3,J,2 

CALL DRWABS (IVERTS (I , OBJNO) ,IVERTS (I +1, OBJNO) ) 
1030 CONTINUE 

INVERT (OBJNO) = I COUNT (OBJNO)/2 
CArL PIXFUN (0) /* INSERT MODE 
CALL CMOVE (30,0) 
IF (GRlDON) CALL MACRO(154) /* Grid erase 

12 



Polygon Editor--Copyright Raster Technologies, 1982 

CALL PIXFUN (0) 
CALL MOVABS(O,O) 
CALL VALIK(ICOLOR(OBJNO)) 
CALL MACDEF(OBJNO+155) 

CALL POLYGN (1, INVERT (OBJNO) ,IVERTS (l,OBJNO)) 
CALL MACEND 
CALL MACRO(OBJNO+155) /* DRAW THE POLYGON VIA THE MACRO 
CALL MOVI (30) 
NOBJ = NOBJ + 1 
EMPTY (OBJNO) = • FALSE. /* INDICATE THIS IS A VALID OBJECT 
OBJNO = NXTMTY (EMPTY) /* GET THE NEXT OBJECl' IN THE LIST 
CALL MACRO(44) /* DISPLAY MAIN MENU 
IF (GRlDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (0 ) 
GO TO 1000 

13 



Polygon Editor--Copyright Raster Technologies, 1982 

C--- Edit a polygon. Locate the closest polygon and vertices within that 
C--- polygon. 

2000 CONTINUE /* EDIT POLY 

t 

OGRDON = GRIOON 

CALL BUTTBL(O,O) 
CALL BUTTBL (1,0) 
CALL BUTTBL(2,55) /* Always turn off buttbl 0, O. 
CALL MACRO (56) /* Display this sub-menu 

OBJNO = PICK(IX,IY,WHERE,IVERTS,EMPTY,ICOUNT,NOBJ) /* Locate the closest objec 

IF (GRIOON) CALL MACRO (154) /* Grid erase 
CALL PIXFUN (0) 
CALL MOVABS(O,O) 
CALL VAL8 (0) 

/* and vertex within that object. 

CALL MACRO (OBJNO+ 155) /* DRAW THE POLYGON LOCALLY ON THE Z8002 
IF (GRIDON) CALL MACRO (154) /* Grid on 
CALL PIXFUN (0) 
CALL MOVABS (0,0) 
J = ICOUNT (OBJNO) 
CALL VAL8 (WHITE$) 
DRAGNG = • TRUE. 

2001 CONTINUE/* Return here when in edit more than vertex on a given obj. 
CALL MOVABS(IVERTS(1,OBJNO),IVERTS(2,OBJNO)) 
CALL PIXFUN(4) /* XOR MODE 

DO 2003 I = 3,J,2 
CALL DRWABS (IVERTS (I ,OBJNO) ,IVERTS (I+1,OBJNO)) 

2003 CONTINUE 
I = WHERE 
IF (I .EQ. 1) I = ICOUNT(OBJNO) 
CALL CLOAD(CREG21,IVERTS(I-2,OBJNO),IVERTS(I-1,OBJNO)) 
CALL CLOAD(CREG22,IX,IY) 
I = WHERE 

CALL CLOAD (CREG23 , lVERTS (I +2, OBJNO) ,IVERTS (I +3, OBJNO) ) 

IF (.NOT. FIRST) OOTO 2004 
CALL MACRO(51) /* Track 2 lines, first time 
FIRST = .Nor. FIRST 
GOTO 2005 

2004 CONTINUE 
IF (DRAGNG) GOTO 2005 
CALL MACRO (54) /* Track cross hairs 
GaTO 2006 

2005 CONTINUE 
CALL MACRO(51) /* Rubberband 2 lines 

14 



Polygon Editor--Copyright Raster Technologies, 1982 

2006 CONTINUE 
GRlDON = .FALSE. 
CALL READBU(l,l,IBUTT,IX,IY) 
CALL BUTTBL (0,0) 
IF ((IBUTT .EQ. 13) .AND. DRAGNG) GOTO 2010 
IF ((IBUTT .EQ. 13) .AND •• NOT. DRAGNG) GO'ro 2017 
IF (IBUTT .NE. 2) GOTO 2005 

IF (DRAGNG) GOTO 2010 
c--- We were not dragging. Therefore find the vertex closest 

CALL LOCVTX(IX,IY,WHERE,ICOUNT,IVERTS(l,OBJNO)) 
IX = ISNAP(IX, OGRDON) 
IY = ISNAP(IY, OGRDON) 
GOTO 2017 

2010 CONTINUE 
IX = ISNAP (IX, OGRDON) 
IY = ISNAP(IY, OGRDON) 
lVERTS (WHERE, OBJNO) = IX 
IVERTS (WHERE+1,OBJNO) = IY 
IF (WHERE .NE. 1) GOTO 2015 
lVERTS (ICOUN!' (OBJNO) ,OBJNO) = IX 
I VERTS (ICOUNT(OBJNO)+l,OBJNO) = IY 

2015 CONTINUE 
CALL MACRO (52) 
CALL CLOAD(CREG22,IX,IY) 
CALL MACRO (52 ) 

2017 CONTINUE /* Enter here when we go from tracking xhairs to dragging lines 
CALL MOVABS (IVERTS (1, OBJNO) , lVERTS (2, OBJNO) ) 
J = ICOUNT (OBJNO) 
DO 2020 I = 3,J,2 

CALL DRWABS (IVERTS (I , OBJNO) , lVERTS (I +1, OBJNO) ) 
2020 CONTINUE 

DRAGNG = • NOT. DRAGNG 
IF (IBUTT .EQ. 2) GOTO 2001 /* Go back and edit more vertices 

2025 CONTINUE /* All done editing, redraw the new object. 
CALL BUTTBL (1,43) 
GRlDON= OGRDON /* Restore the use of button 1 

IF (GRlDON) CALL MACRO(154) /* Grid erase 
CALL PIXFUN (0) 

. CALL MOVABS (0,0) 
CALL MACDEF(OBJNO+155) /* DEFINE OBJECT MACRO 

CALL POLYGN(l,INVERT(OBJNO),IVERTS(l,OBJNO)) 
CALL MACEND 
OBJNO = 0 
DO 2099 I = 1,NOBJ 

OBJNO = NXTOBJ(EMPTY,OBJNO+1) 
CALL VALlK (ICOLOR (OBJNO)) 
CALL MACRO(OBJNO+155) /* DRAW THE POLYGON LOCALY ON THE Z8002 

15 



Polygon Editor--Copyright Raster Technologies, 1982 

2099 CONTINUE 
CALL MACRO(57) /* Display main menu 
IF (GRIDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (0) 
GOTO 1000 

16 



Polygon Editor--Copyright Raster Technologies, 1982 

3000 CONTINUE /* DELETE POLYGON 
OBJNO = PICK(IX,IY,WHERE,IVERTS,EMPTY,ICOUNT,NOBJ) 
IF (GRIDON) CALL MACRO(154) /* Grid erase 
CALL PIXFUN (0) 
CALL MOVABS(O,O) 
CALL VAL 8 (0) 
CALL MACRO(OBJNO+155) /* DRAW THE POLYGON LOCALLY ON THE Z8002 
CALL MACERA (OBJNO+ 155) /* ERASE THAT OBJOCT, Nor NEED NOW. 
ICOUNT (OBJNO) = 0 
NOBJ = NOBJ - 1 
EMPTY (OBJNO) = .TRUE. 
IF (NOBJ .EQ. 0) GOTO 3008 /* DON'T ATTEMPr TO DRAW POLYGONS THAT DON'T EXIST 
OBJNO = 0 
DO 3007 I = 1,NOBJ 

OBJNO = NXTOBJ(EMPTY,OBJNO+l) 
CALL VAL1K (ICOLOR (OBJNO» 
CALL MACRO(OBJNO+155) /* DRAW THE POLYGON LOCALLY ON THE Z8002 

3007 CONTINUE 
3008 IF (GRIDON) CALL MACRO (154) /* Grid on 

CALL PIXFUN (0) 
GOTO 1005 

17 



Polygon Editor--Copyright Raster Technologies, 1982 

4000 CONTINUE /* READ COLOR 
JUNK (1) = ISNAP(IX, GRIDON) 
JUNK (2) = ISNAP(IY, GRIDON) 
J = SCOLOR (JUNK) 
CALLMOVABS(380,-300) 
CALL WINDOW(-512,-512,511,511) 
CALL CIRCLE (40) 
CALL WINDOW (XLLB I YLLB, XURB, YURB) 
ooro 1005 

18 



Polygon Editor--Copyright Raster Technologies, 1982 

5000 CONTINUE /* DRAG POLYGON 
C U TO BE DRAGGED 

CALL BUTTBL(l,O) 
CALL MACRO(153) /* Display sub-menu 
CALL BUTTBL(O,O) 

OBJNO = PICK(IX,IY,WHERE,IVERTS,EMPTY,ICOUNT,NOBJ) 

IF (GRlDON) CALL MACRO(154) /* Grid erase 
CALL PIXFUN (0) 
CALL MOVABS(O,O) 
CALL VAL8 (0) 
CALL MACRO(OBJNO+155) /* DRAW THE POLYGON LOCALLY ON THE Z8002 
CALL MOVABS(IVERTS(1,OBJNO),IVERTS(2,OBJNO» 
J = ICOUNT (OBJNO) 
CALL VAL8 (WHlTE$) 
IF (GRIDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (4) /* XOR MODE 

C SELECTED POLYGON IS DRAWN BY CALL TO MACRO (OBJNO +155) 

CALL VAL8 (255) 

C CREG 30 HOLDS COORDS OF POLY IN ITS LAST POSITION 
C CREG 31 HOLDS COORDS OF POLY IN CURRENT POSITION 
C CREG 32 HOLDS COORDS OF THE FIRST POINT ON THE POLYGON 

CALL MACDEF (101) /* MACRO 101 IS EXOCUTED OVER AND OVER 
CALL CMOVE (31,2) /* SAVE THE NEW POSITION IN CREG 31 
CALL CSUB (31, 32) /* SUBTRACT AWAY THE START POINT 
CALL MOVI(30) /* MOVE BACK TO THE OLD POSITION 
CALL MACRO (OBJNO+155) /* UNDRAW THE POLY FRCM THE OLD POSITION 
CALL MOVI(31) /* MOVE TO THE NEW POSITION 
CALL MACRO (OBJNO+ 155) /* REDRAW THE POLY IN THE NEW POSITION 
CALL CMOVE(30,31) /* NOW MAKE THE CURRENT POS INTO THE OLD POS 
CALL WAIT (0) 

CALL MACEND /* THATS IT 

C TO START THE WHOLE THING, CHANGE THE PIXEL FUNCTION AND 
C DRAW THE SHAPE THE FIRST TIME 

CALL CMOVE(30,2) /* LOAD THE CURRENT POSITION 
C LOAD THE STARr POINr OF THE POLYGON INTO CREG 32 

CALL CLOAD(32,IVERTS(1,OBJNO),IVERTS(2,OBJNO» 
CALL CSUB (30,32) /* SUBTRACT AWAY THE STARr POINT 
CALL MOVI(30) /* AND MOVE THERE 
CALL PIXFUN(4) /* PIX FUNCTION TO XOR 
CALL PRMFIL(O) /* SELECT UNFILLED PRIMS 
CALL XHAIR {O, 0) /* SHUT THE CROSSHARS OFF 
CALL MACRO (OBJNO+ 155) /* DRAW THE POLY 
CALL BUTTBL (0,101) /* AND LEr IT RIP 

C WAIT FOR A CONFIRM 
5057 CONTINUE 

19 



Polygon Editor--Copyright Raster Technologies, 1982 

CALL READBU(l,l,IBUTT,IX,IY) 
IF(IBUTT .EQ. 5 .OR. IBUTT .EQ. 13)GO TO 5058 
GO TO 5057 

5058 CONTINUE 
C GJT THE CONFIRMATION, NOW, ERASE OLD WHITE PERIMETER 

CALL BUTTBL(0,5) 

IF (GRlDON) CALL MACRO(154) /* Grid erase 
CALL PIXFUN (0) 
CALL VAL 8 (0) /* CHANGE COLOR TO BLACK 
CALL MOV! (30) 
CALL MACRO(15S+OBJNO) 

C NOW REDEFINE THE POLYGON IN THE ARRAY TO REFLECT ITS NEW POSITION 

J = ICOUNr (OBJNO) *2 
IXDEL = ISNAP(IX, GRIDON) - IVERTS(l,OBJNO) 
IYDEL = ISNAP(IY, GRIDON) - IVERTS(2,OBJNO) 
DO 5060 I=1,J,2 

I VERTS (I,OBJNO) = I VERTS (I,OBJNO)+IXDEL 
I VERTS (I+l,OBJNO)=IVERTS (I+l,OBJNO) +IYDEL 

5060 CONTINUE 

C REDO THE MACRO THAT REDRAWS THIS POLY 

CALL MACDEF(155+OBJNO) 
CALL POLYGN(l,INVERT(OBJNO),IVERTS(l,OBJNO» 

CALL MACEND 

C NOW REDRAW IT THE OLD FASHIONED WAY 
CALL PRMFIL (1) 
CALL MOVABS (0,0) 

OBJOO=O 
DO 5099 1= 1,NOBJ 

OBJNO = NXTOBJ (EMPTY, OBJNO + 1) 
CALL VALlK (ICOLOR (OBJNO» 
CALL MACRO(OBJNO+155) 

5099 CONTINUE 

IF (GRIDON) CALL MACRO(154) /* Grid on 
CALL PIXFUN (0) 
CALL MACRO(57) /* Display main menu 
GO TO 1000 

20 



Polygon Editor--Copyright Raster Technologies, 1982 

7000 CONTINUE /* Grid ON/Off 
CALL MACRO(154) /* Complement the current grid state (i.e. If on, 

/* turn if off. If off, turn it on.) 
CALL PIXFUN (0) 
GRIDON = .NOT. GRIDON 
GOI'O 1000 

9000 CONTINUE /* PROCESS RETURN 
GO TO 6000 /* RETURN TO TOP MENU 

9999 CONTINUE 
CALL QUIT 
CALL EXIT 

6112 FORMAT (I3) 
6113 FORMAT (I2II3) 
6114 FORMAT (I4) 

END 

21 



Polygon Editor--Copyright Raster Technologies, 1982 

SUBROUTINE SINGLE 

C* <*>modellconsts.ins.ftn> (Created: Thursday, April 1, 1982) */ 

INTEGER*2 WHITE$, BLACK$ 

INTEGER*2 CREGO, CREGl, CREG2, CREG3, CREG4, CREGS 
INTEGER*2 CREG6, CREG7, CREG8, CREG9, CREGIO ,CREGll 
INTEGER*2 CREG12,CREG13,CREG14,CREGlS,CREG16,CREG17 
INTEGER*2 CREG18,CREG19,CREG20,CREG21,CREG22,CREG23 
INTEGER*2 CREG24,CREG25,CREG26,CREG27,CREG28,CREG29 
INTEGER*2 CREG30,CREG31,CREG32,CREG33,CREG34,CREG3S 
INTEGER*2 CREG36,CREG37,CREG38,CREG39,CREG40,CREG41 
INTEGER*2 CREG42,CREG43,CREG44,CREG45,CREG46,CREG47 
INTEGER*2 CREG48,CREG49,CREGSO,CREGS1,CREGS2,CREGS3 
INTEGER*2 CREGS4,CREGSS,CREGS6,CREGS7,CREG58,CREGS9 
INTEGER*2 CREG60,CREG61,CREG62,CREG63 

INTEGER*2 CURPNT,JOYSTK,DIGTZR,CORRG ,SCRRG ,XHAIRO 
INTEGER*2 XHAIR1,LWNORG,UWNORG,OVRPLO,OVRPLI 

INTEGER*2 VREGO, VREG1, VREG2, VREG3, VREG4, VREGS 
INTEGER*2 VREG6, VREG7, VREG8, VREG9, VREG10,VREG11 
INTEGER*2 VREG12,VREG13,VREG14,VREG15 

INTEGER*2 CURVAL, XROVAL, XR1VAL, FLMSK 

PARAMETER (WHITE$=2SS, BLACK$=O) 

PARAMETER (CREGO = 0, CREGI = 1, CREG2 = 2, CREG3 = 3) 
PARAMETER (CREG4 = 4, CREGS = 5, CREG6 = 6, CREG7 =-1) 
PARAMETER (CREG8 =-1, CREG9 = 9, CREG10=10, CREG11=11) 
PARAMETER (CREG12=12, CREG13=13, CREG14=14, CREG15=15) 
PARAMETER (CREG16=16, CREG17=-1, CREG18=-1, CREG19=-1) 
PARAMETER (CREG20=20, CREG2l=2l, CREG22=22, CREG23=23) 
PARAMETER (CREG24=24, CREG25=2S, CREG26=26, CREG27=27) 
PARAMETER (CREG28=28, CREG29=29, CREG30=30, CREG31=31) 
PARAMETER (CREG32=32, CREG33=33, CREG34=34, CREG3S=3S) 
PARAMETER (CREG36=36, CREG37=37, CREG38=38, CREG39=39) 
PARAMETER (CREG40=40, CREG41=4l, CREG42=42, CREG43=43) 
PARAMETER (CREG44 =44 , CREG4S=4S, CREG46=46, CREG47=47) 
PARAMETER (CREG48=48, CREG49=49, CREGSO=SO, CREGS1=Sl) 
PARAMETER (CREGS2=S2, CREG53=53, CREGS4=54, CREGSS=5S) 
PARAMETER (CREGS6=S6, CREGS7=S7, CREGS8=58, CREG59'=S9 ) 
PARAMETER (CREG60=60, CREG6l=61, CREG62=62, CREG63=63) 

PARAMETER (CURPNT=CREG0 , JOYSTK=CREG1, DIGTZR=CREG2 ) 
PARAMETER (CORRG =CREG3, SCRRG =CREG4, XHAIRO=CREG5 ) 
PARAMETER (XHAIR1 =CREG6 , LWNORG=CREG9, UWNORG=CREGlO) 
PARAMETER (OVRPLO =CREG1 5 , OVRPL1=CREG16 ) 

PARAMETER (VREGO = 0, VREGI = 1, VREG2 = 2, VREG3 = 3) 

22 



Polygon Editor--Copyright Raster Technologies, 1982 

PARAMETER (VREG4 = 4, VREX;S = S, VREX;6 =-1, VREG7 =-1) 
PARAMETER (VREG8 = 8, VREG9 = 9, VREG10=10, VREG1l=11) 
PARAMETER (VREG12=12, VREG13=13, VREG14=14, VREG1S=1S) 

PARAMETER (CURVAL=VREGO, XROVAL=VREG1, XRl VAL=VREG2) 
PARAMETER (FLMSK =VREX;3) 

CALL MACDEF(40) 
CALL MOVI (CREX322) 
CALL DRWI (CREG21) 
CALL WAIT (0) 
CALL MOVI(CREG22) 
CALL CMOVE(CREX321,DIGTZR) 
CALL DRWI (CREG21) 
CALL WAIT (0) 

CALL MACEND 

CALL MACDEF ( 41) 
CALL DISPMU ( , SHCMS). POLY >CREATE • MENU' ,23,. TRUE. ) 
CALL XHAIR(O,O) 
CALL PI XFUN (4 ) 
CALL BUTTBL(0,40) /* DRAG A SINGLE LINE 
CALL FLUSH 

CALL MACEND 

CALL MACDEF(42) /* BUTTON 4 PUSHED, CONFIRM POINT. 
CALL MOVI(CREX322) 
CALL DRWI (CREG21) 
CALL MOVI(CREX322) 
CALL CMOVE(CREG21,CREG2S) 
CALL DRWI (CREX321) 
CALL CMOVE(CREG22,CREG21) 
CALL BUTTBL (0,40) 

CALL MACEND 

CALL MACDEF (43) 
CALL BUTTBL (0 ,0) 

CALL MACEND 

CALL MACDEF(44) 
CALL DISPMU('SHOWS).POLY)PE2.MENU',20,.TRUE.) 

CALL MACEND 

RETURN 
END 

23 



Polygon Editor--Copyright Raster Technologies, 1982 

SUBROUTINE LOCVTX(IX,IY,WHERE,ICOUNT,IVERTS) 
INTEGER*2 IX, IY,WHERE f ICOUNT, lVERTS (1) 
INTEGER*2 I,J,K,MIN,DIST(lOOO) 
REAL *4 DX,DY 

DX = IX-lVERTS(l) 
DY = IY-lVERTS(2) 
DIST(l) = SQRT(DX*DX + DY*DY) 
DO 1000 I = 3,ICOUNT,2 

DX = IX-IVERTS (I) 
DY = IY-lVERTS(I+l) 
DIST(I) = SQRT(DX*DX + DY*DY) 

1000 CONTINUE 

WHERE = 1 
IF (IeOUNT .EQ. 1) GOTO 3000 
K = DIST(l) 
DO 2000 I = 3,ICOUNT,2 

IF (K .LE. DIST(I» GOTO 2000 
K = DIST(I) 
WHERE = I 

2000 CONTINUE 
3000 CONTINUE 

IX = lVERTS (WHERE) 
IY = lVERTS (WHERE;+l) 

RETURN 
END 

24 



Polygon Editor--Copyright Raster Technologies, 1982 

SUBROUTI~1E DOUBLE 

C* <*>modellconsts.ins.ftn> (Created: Thursday, April 1, 1982) */ 

INTEGER*2 WHlTE$, BLACK$ 

INTEGER*2 CREGO, CREGl, CREG2, ·CREG3, CREG4, CREG5 
INTEGER*2 CREG6, CREG7, CREG8, CREG9, CREGI0,CREGII 
INTEGER*2 CREGI2,CREGI3,CREGI4,CREGI5,CREGl6,CREGI7 
INTEGER*2 CREGI8,CREGI9,CREG20,CREG21,CREG22,CREG23 
INTEGER*2 CREG24,CREG25,CREG26,CREG27,CREG28,CREG29 
INTEGER*2 CREG30,CREG31,CREG32,CREG33,CREG34,CREG35 
INTEGER*2 CREG36,CREG37,CREG38,CREG39,CREG40,CREG41 
INTEGER*2 CREG42,CREG43,CREG44,CREG45,CREG46,CREG47 
INTEGER*2 CREG48,CREG49,CREG50,CREG51,CREG52,CREG53 
INTEGER*2 CREG54,CREG55,CREG56,CREG57,CREG58,CREG59 
INTEGER*2 CREG60,CREG61,CREG62,CREG63 

INTEGER*2 CURPNT,JOYSTK,DIGTZR,CORRG ,SCRRG ,XHAIRO 
INTEGER*2 XHAIRl,LWNORG,UWNORG,OVRPLO,OVRPLI 

INTEGER*2 VREX;O, VREGl, VREX;2, VREG3, VREG4, VREG5 
INTEGER*2 VREG6, VREG7, VREG8, VREG9, VREGlO,VREGII 
INTEGER*2 VREG12,VREGI3,VREGI4,VREGl5 

INTEGER*2 CURVAL, XROVAL, XRIVAL, FLMSK 

PARAMETER (WHITE$=255, BLACK$=O) 

PARAMETER (CREGO = 0, CREGI = 1, CREG2 = 2, CREG3 = 3) 
PARAMETER (CREG4 = 4, CREJ35 = 5, CREG6 = 6, CRro7 =-1) 
PARAMETER (CREG8 =-1, CREG9 = 9, CREGI0=10, CREGll=ll) 
PARAMETER (CREGI2=12, CREGI3=13, CREGI4=14, CREG15=15) 
PARAMETER (CREGI6=16, CREG17=-1, CREGI8=-1, CREGI9=-1) 
PARAMETER (CREG20=20, CREG21=21, CREG22=22, CREG23=23) 
PARAMETER (CREG24=24, CREG25=25, CREG26=26, CREG27=27) 
PARAMETER (CRro28=28, CREG29=29, CREG30=30, CREG31=31) 
PARAMETER (CREG32=32, CREG33=33, CREG34=34, CREG35=35) 
PARAMETER (CREG36=36, CREG37=37, CREG38=38, CREG39=39) 
PARAMETER (CREG40=40, CREG41=41, CREG42=42, CREG43=43) 
PARAMETER (CREG44=44, CREG45=45, CREG46=46, CREG47=47) 
PARAMETER (CREG48=48, CREG49=49, CREG50=50, CREG51=51) 
PARAMETER (CREG52=52, CREG53=53, CREG54=54, CREG55=55) 
PARAMETER (CREG56=56, CREG57=57, CREG58=58, CREG59=59) 
PARAMETER (CREG60=60, CREG61=61, CREG62=62, CREG63=63) 

PARAMETER (CURPNT=CREGO, JOYSTK=CREGl, DIGrZR=CREG2 ) 
PARAMETER (CORRG =CREG3, SCRRG =CRro4, XHAIRO=CREG5 ) 
PARAMETER (XHAIR1=CREG6, LWNORG=CREG9, UWNORG=CREG10) 
PARAMETER (OVRPLO =CREG1 5 , OVRPL1=CREGl6) 

PARAMETER (VREGO = 0, VREGI = 1, VREG2 = 2, VREG3 = 3) 

25 



Polygon Editor--Copyright Raster Technologies, 1982 

PARAMETER (VREG4 = 4, VREG5 = 5, VREG6 =-1, VREG7 =-1) 
PARAMETER (VREG8 = 8, VREG9 = 9, VREGIO=lO, VREGll=ll) 
PARAMETER (VREG12=12, VREG13=13, VREG14=14, VREG15=15) 

PARAMETER (CURVAL=VREGO, XROVAL=VREGl, XRIVAL=VREG2) 
PARAMETER (FLMSK =VREG3) 

CALL MACDEF(50) /* Runs in buttbl 0 to rubber-band both lines. 
CALL MACRO (52) 
CALL CMOVE(CREG22,DIGTZR) 
CALL MACRO (52) 

CALL MACEND 

CALL MACDEF(51) /* Invoked at the start of an edit session. 
CALL XHAIR(O,O) 
CALL PIXFUN (4) 
CALL BUTTBL(13,53) 
CALL BUTTBL (0,50 ) 
CALL FLUSH 

CALL MACEND 

CALL MACDEF(52) /* Perfonns the actual draw when called from 50. 
CALL MOVI(CREG2l) 
CALL DRWI(CREG22) 
CALL DRWI (CREG23) 

CALL MACEND 

CALL MACDEF(53) /* this is invoked at the end of an edit session. 
/* (I.e., button 13 waspushed to confinn the last edited 
/* vertex.) 

CALL BUTTBL (13,0) 
CALL BUTTBL(1,43) 
CALL BUTTBL(2,0) 

CALL MACEND 

CALL MACDEF(54) /* invoked When were dragging a vertex and now want to 
/* get another. 

CALL BUTTBL(0,5) /* Restart xhairs tracking 
CALL XHAIR (0,1) 

CALL MACEND 

CALL MACDEF (55 ) 
CALL BUTTBL (0,0) 

CALL MACEND 

CALL MACDEF (56) 
CALL DISPMU('SHOWS).POLY)EDIT.MENU',21,.TRUE.) 

CALL MACEND 

CALL MACDEF (57) 
CALL DISPMU ( 'SHOWS). POLY)PE2.MENU' ,20, • TRUE. ) 

CALL MACEND 

26 



REl'URN 
END 

Polygon Editor--Copyright Raster Technologies, 1982 

27 



Polygon Editor--Copyright Raster Technologies, 1982 

INTEGER*2 FUNCTION SCOLOR (X) 
INTEGER*2 X(2),COLOR 
RFAL*4 XX,YY 

xx ::; X (1) 
YY = X(2) 
COLOR = AND(INTS(SQRT(XX*XX/lOO.+YY*YY/lOO.»,63) 
IF (COLOR .LE. 0) COLOR = LS(1,MOD(COLOR,5» 
CALL VALIK (COLOR) 
SCOLOR = COLOR 

RETURN 
END 

28 



Polygon Editor--Copyright Raster Technologies, 1982 

C* <*>dispmu.ftn> (Created: Thursday, June 3, 1982) */ 
SUBROUTINE DISPMU (FN,FNL,HOME) 
I NTEGER * 2 FN(l),FNL 
LOGICAL*2 HOME 

C--- SYSCOM keys are system defined constants and variables for system calls. 
$INSF~T SYSCOM>A$KEYS.INS.FTN 
$INSERT SYSCOM>KEyS.INS.FTN 

C* <*>rnodellconsts.ins.ftn> (Created: Thursday, April 1, 1982) */ 

INTEGER*2 WHITE$, BLACK$ 

INTEGER*2 CREGO, CREGl, CREG2, CREG3, CREG4, CREG5 
INTEGER*2 CREG6, CREG7, CREG8, CREG9, CREGlO,CREGll 
INTEGER*2 CREG12,CREG13,CREG14,CREG15,CREG16,CREG17 
INTEGER*2 CREG18,CREG19,CREG20,CREG2l,CREG22,CREG23 
INTEGER*2 CREG24,CREG25,CREG26,CREG27,CREG28,CREG29 
INTEGER*2 CREG30,CREG3l,CREG32,CREG33,CREG34,CREG35 
INTEGER*2 CREG36,CREG37,CREG38,CREG39,CREG40,CREG4l 
INTEGER*2 CREG42,CREG43,CREG44,CREG45,CREG46,CREG47 
INTEGER*2 CREG48,CREG49,CREG50,CREG5l,CREG52,CREG53 
INTEGER*2 CREG54,CREG55,CREG56,CREG57,CREG58,CREG59 
INTEGER*2 CREG60,CREG6l,CREG62,CREG63 

INTEGER*2 CURPNT,JOYSTK,DIGTZR,CORRG ,SCRRG ,XHAIRO 
INTEGER*2 XHAIRl,LWNORG,UWNORG,OVRPLO,OVRPLl 

INTEGER*2 VREGO, VREl3l, VREG2, VREG3, VREG4, VREG5 
INTEGER*2 VREG6, VREG7, VREG8, VREG9, VREGlO, VREGII 
INTEGER*2 VREG12,VREG13,VREG14,VREG15 

INTEGER*2 CURVAL, XROVAL, XRlVAL, FLMSK 

PARAMETER (WHITE$=255, BLACK$=O) 

PARAMETER (CREGO = 0, CREG1 = 1, CREG2 = 2, CREG3 = 3) 
PARAMETER (CREG4 = 4, CREG5 = 5, CREG6 = 6, CREG7 =-1) 
PARAMETER (CREG8 =-1, CREG9 = 9, CREGlO=lO, CREGll=ll) 
PARAMETER (CREG12=12, CREG13=13, CREG14=14, CREG15=15) 
PARAMETER (CREG16=16, CREG17=-lr CREG18=-1, CREG19=-1) 
PARAMETER (CREG20=20, CREG2l=2l, CREG22=22, CREG23=23) 
PARAMETER (CREG24=24, CREG25=25, CREG26=26, CREG27=27) 
PARAMETER (CREG28=28, CREG29=29, CREG30=30, CREG3l=3l) 
PARAMETER (CREG32=32, CREG33=33, CREG34=34, CREG35=35) 
PARAMETER (CREl336=36, CREG37=37, CREG38=38, CREG39=39) 
PARAMETER (CREG40=40, CREG4l=4l, CREG42=42, CREG43=43) 
PARAMETER (CREG44=44, CREG45=45, CREG46=46, CREG47=47) 
PARAMETER (CREG48=48, CREG49=49, CREG50=50, CREG5l=5l) 
PARAMETER (CREG52=52, CREG53=53, CREG54=54, CREG55=55) 
PARAMETER (CREG56=56, CREG57=57, CREG58=58, CREG59=59) 
PARAMETER (CREG60=60, CREG6l=6l, CREG62=62, CREG63=63) 

29 



Polygon Editor--Copyright Raster Technologies, 1982 

PARAMETER (CURPNT=CREGO, JOYSTK=CREG1, DIGTZR=CREG2) 
PARAMETER (CORRG =CREG3, SCRRG =CREG4, XHAIRO=CREG5) 
PARAMETER (XHAIR1=CREG6, LWNORG=CREG9, UWNORG=CREG10) 
PARAMETER (OVRPLO=CREG15, OVRPL1=CREG16) 

PARAMETER (VREGO = 0, VREG1 = 1, VREG2 = 2, VREG3 = 3) 
PARAMETER (VREG4 = 4, VREG5 = 5, VREG6 =-1, VREG7 =-1) 
PARAMETER (VREG8 = 8, VREG9 = 9, VREG10=10, VREG11=11) 
PARAMETER (VREG12=12, VREG13=13, VREG14=14, VREG15=15) 

PARAMETER (CURVAL=VREGO, XROVAL=VREG1, XR1 VAL=VREG2) 
PARAMETER (FLMSK =VREG3) 

INTEGER*2 XLL1,YLL1, XUR1,YUR1 /* SCREEN BOUNDIRES 
PARAMETER (XLL1=-960,YLL1=-930, XUR1=958,YUR1=988) 

INTEGER*2 XLLB,YLLB, XURB,YURB /* WORK AREA BOUNDRIES 
PARAMETER (XLLB=-478,YLLB=-220, XURB=464,YURB=380) 

INTEGER*2 XLLH,YLLH, XURH,YURH /* HOME MENU BOUNDRIES 
PARAMETER (XLLH=-474,YLLH=-478, XURH=-280,YURH=-242) 

INTEGER*2 UPXFUN,UBTTBO,UPRMFL,URTNP,GOHOME 
PARAMETER (UPXFUN=250,UBTTBO=251,UPRMFL=252,URTNP=253, 

+ GOHOME=215) 

INTEGER*2 I,J,K,UNIT,FUNIT,CODE,L(40) 

CALL OPEN$A(A$READ+A$GETU,FN,FNL,UNIT,CODE) 
IF (CODE .NE. 0) CALL ERRPR$(K$NRTN,CODE,FN,FNL,'OPEN$A' ,6) 
FUNIT = UNIT + 12 

CALL MOVABS(-474,-478) 
CALL WINDOW(-512,-512, 511,511) 
CALL CLOAD(CREG26,-240,-242) 
CALL TEXTC(32,O) 
CALL PIXFUN (0) 
CALL PRMFIL(l) 
CALL BUTTBL(O,O) 
CALL VAL8 (BLACK$) 
CALL RECTI (CREG26) /* CREG26 HOLDS COORDS OF UPPER RIGHT CORNER OF MENU 
CALL MOVABS(-474,-242) 
CALL VAL8 (WHITE$) 
DO 3000 I = 1,20 

CALL MOV3R(0,-20) 
READ (FUNIT,100,END=4000) L 

100 FORMAT (40A2) 
K = 40 
00 1000 J = 1,39 

IE' (L (K) .NE.' ') GOTO 2000 
K = K - 1 

1000 CONTINUE 

30 



Polygon Editor--Copyright Raster Technologies, 1982 

2000 CONTINUE 
IF «.NOT. HOME) .AND. (I .EQ. 5)) CALL VAL1K(8) 
CALL TEXT 1 (K*2,L) 

3000 CONTINUE 

4000 CONTINUE 
CALL SRCH$$(K$CLOS,O,O,UNIT,O,O) 
CALL WINOOW (XLLB, YLLB, XURB, YORB) 

RETURN 
END 

31 



Polygon Editor--Copyright Raster Technologies, 1982 

SUBROUTINE FATTXT(T,L,X,Y) 
INTEGER*2 T(l),X,Y,L 

CALL MOVABS(X,Y) 
CALL TEXT1(L,T) 
CALL MOVABS (X,Y+l) 
CALL TEXTl (L,T) 
CALL MOVABS(X+l,Y+l) 
CALL TEXTl (L,T) 
CALL MOVABS(X+l,Y) 
CALL TEXTl (L,T) 

RETURN 
END 

INTEGER*2 FUNCTION ISNAP(I, GRIDON) 
INTEGER*2 I 
LOGICAL*2 GRIDON 

ISNAP = I 
IF (.NOT. GRIDON) RETURN /* Don't snap unless the grid is on. 

IF (I .LT. 0) GOTO 1000 
ISNAP = (1+10)/20*20 
GOTO 2000 

1000 CONTINUE 
ISNAP = (1-10)/20*20 

2000 CONTINUE 
RETURN 
END 

32 



Polygon Editor--Copyright Raster Technologies, 1982 

c--- NXTOBJ 
C SEARCH FROM START TO END FOR A NON-EMPTY ITEM. 

INTEGER*2 FUNCTION NXTOBJ (MTYLST,START) 
INTEGER*2 START,I 
LOGICAL*2 MTYLST (1) 

INTEGER*2 MAXOBJ,MXOBJ2,MAXVRT 
PARAMETER (MAXOBJ=50,MXOBJ2=MAXOBJ*2,MAXVRT=200) 

DO 1000 I = START,MAXOBJ 
IF ( .. NOT. MTYLST(I)) ooro 2000 

1000 CONTINUE 

C--- ERROR 
CALL IlNOU (' *** Error, too many objects.' ,28) 
RETURN 

2000 CONTINUE /* FOUND THE NEXT OBJECT. 
NXTOBJ = I 
RETURN 
END 

C--- NXTMTY 
C SEARCH FROM THE FIRST ELEMENT IN THE LIST UNTIL WE FIND AN EMPTY LIST. 

INTEGER*2 FUNCTION NXTMTY(MTYLST) 
LOG I CAL *2 MTYLST(l) 
INTEGER*2 I 

INTEGER*2 MAXOBJ,MXOBJ2,MAXVRT 
PARAMETER (MAXOBJ=50,MXOBJ2=MAXOBJ*2,MAXVRT=200) 

DO 1000 I = 1,MAXOBJ 
IF (MTYLST(I)) ooro 2000 

1000 CONTINUE 

C--- ERROR 
CALL TNOU('*** Error, no empty slots.',26) 
RETURN 

2000 CONTINUE /* FOUND AN EMPTY SLOT, RETURN IT. 
NX1MTY = I 
RETURN 
END 

33 



Polygon Editor--Copyright Raster Technologies, 1982 

C--- PICK, Pick a point within the closest object. 

INTEGER*2 FUNCTION PICK(IX,IY,WHERE,IVERTS,EMPTY,ICOUNT,NOBJ) 

INTEGER*2 MAXOBJ ,MXOBJ2 ,MAXVRT 
PARAMETER (MAXOBJ=50,MXOBJ2=MAXOBJ*2,MAXVRT=200) 

I NTEGER* 2 IX,IY,WHERE,IVERTS(MAXVRT,MAXOBJ),ICOUNT(MAXOBJ),NOBJ 
LOG I CAL *2 EMPTY(MAXOBJ) 
INTEGER*2 A(MXOBJ2),B(MAXOBJ),OBJNO(MAXOBJ) 
INTEGER*2 I,J 

OBJNO (1) = 1 
00 2050 I = 1,NOBJ 

J = NXTOBJ(EMPTY,OBJNO(I» 
OBJNO (I) = J 
A (J*2-1) = IX 
A(J*2) = IY 
CALL LOCVTX(A(J*2-1),A(J*2) ,B(J) , 

+ ICOUNT(J),IVERTS(l,J» 
OBJNO(I+1) = J+ 1 

2050 CONTINUE 
CALL LOCVTX(IX,IY,WHERE,NOBJ*2-1,A) 
PICK = OBJNO(WHERE/2+1) 
WHERE = B(WHERE/2+1) 

RETURN 
END 

34 



Polygon Editor--Copyright Raster Technologies, 1982 

SUBROUTINE BLOORD 
INTEGER*2 I 

CALL MACDEF(154) 
CALL PIXFUN (4) 
CALL VALIK(l) /* Very dim blue. 
CALL MOVA8S(-512,O) 
DO 1000 I = 1,10 

CALL DRWREL(1024,O) 
CALL MOVREL(0,20) 
CALL DRWREL(-1024,0) 
CALL MOVREL(0,20) 

1000 CONTINUE 
CALL MOVABS(0,400) 
DO 2000 I = 1,12 

CALL DRWREL(0,-620) 
CALL MOVREL(-20,O) 
CALL DRWREL(0,620) 
CALL MOVREL (-20,0) 

2000 CONTINUE 
CALL MOVABS(-512,-20) 
DO 3000 I = 1,5 

CALL DRWREL(1024,O) 
CALL MOVREL(0,-20) 
CALL DRWREL(-1024,O) 
CALL MOVREL(0,-20) 

3000 CONTINUE 
CALL MOVABS(20,400) 
DO 4000 I = I,ll 

CALL DRWREL(0,-620) 
CALL MOVREL(20,O) 
CALL DRWREL(0,620) 
CALL MOVREL(20,O) 

4000 CONTINUE 
CALL MOVABS(O,O) 

CALL MACEND 

RETURN 
END 

35 




