

APPENDIX B - ASSI, Assembly from Input Driver

The ASSI command allows an assembly to be performed by reading the
source data from a user-supplied Input driver rather than from
the current source file in memory. A typical example of this
application is when it is necessary to assemble a program from
cassette tape which would otherwise not fit within the existing
memory ..

The ASSI command uses the current input driver to retrieve the sour
data. Instead of inputting one byte at a time as would a standard
input driver, the input driver for the ASSI command inputs one en
tire source line each time the driver is called. For this reason,
an ASSI input driver probably would not function for any other
purpose.

Each time the input driver is called it must pass one entire line
into memory beginning at location D1E4 (hex). If line numbers
are to be passed as well, the ASCII characters for the numbers
should be placed into memory beginning at location D1DF (hex) for
four bytes. A line begins at location D1E4 (this is known as
"IBUF") and terminates with a CR (OD hex) •

The assembler requires two passes of the source file in order to
complete an assembly. Therefore, the Input driver must make some
provision both for detecting the end of the first pass as well as
for rewinding the source data so that the entire source data may be
passed to the assembler a second time. When the end of the source
is detected, the input driver must pass a line containing " END"
to the assembler so that the assembler will know that the end of a
pass has been reached.

(80)

APPENDIX C - ALS-S on Cassette and with SOLOS/CUTER

ALS-S is distributed on various media, including CUTS format
cassette. This cassette consists of one file which loads into
memory beginning at location DFSO through the end of the ALS-S
(nearly FFFF, the end of memory address space). Although the
ALS-S program actually begins at EOOO, a short program resides in
front of the ALS-S which establishes the necessary linkages with
either SOLOS or CUTER. This program resides at the very end of the
ALS-S system RAM area and also contains special I/O drivers which
provide compatible operation with either SOLOS, CUTER or other
compatible surrogate.

When the ALS-S cassette is first loaded and executed at location
DFSO, the I/O drivers will be properly altered so that the
standard SYSIO I/O drivers will function properly with SOLOS/CUTER,
a "STAB 0700" will be simulated, and the begin address of the
SOLOS/CUTER jump table will be used to simulate an "ESET" command.
An assembly listing of this initialization program follows. The
SYSIO I/O drivers will be altered within the ALS-S itself, so
that whenever the ALS-8 is later reset (via entry at either E024
or EOOO) the updated SYSIO drivers compatible with SOLOS/CUTER
will be moved into the system RAM area.

The ALS-S cassette contains only one file called "ALS-8". To load
and execute this file under either SOLOS or CUTER:

1. Be certain that 12K of RAM esists from 0000 through FFFF.

2. Place the ALS-8 cassette into the cassette playback unit.

3. Enter "XEQ ALS-S" to either SOLOS or CUTER. The tape
will now read in, and the ALS-8 initialization program
will automatically be executed.

4. Once the initialization program completes, the ALS-8
. will display the message "READY".

(81)

APPENDIX C (cont.)

pF80
DF80 23
DF81 7E
DF82 FE C3
DF84 C2 24 EO
DF87 2E 1F
DF89· 7E
DF8A FE 3A
DF8C C2 24 EO
DF8F 7C
DF90 32 DO DF
D.F93 32 FC DF
DF96 2E 00
DF98 2B
DF99 22 91 D1
DF9C 21 E9 DF
DF9F 22 A1 D1
DFA2 21 00 D7
DFA5 22 4F EO
DFA8 21 D8 DF
DFAB 22 DE E1
DFAE 21 EA DF
DFB1 22 EO E1
DFB4 21 EE E1
DFB7 11 C7 OF
DFBA 06 11

DFBC
DFBC 1A
DFBD 77
DFBE 23
DFBF 13
DFCO 05
DFC1 C2 BC DF
DFC4 C3 24 EO

00A4

OFC7
DFC7 3A FF DF
DFCA B7
DFCB C2 B2 DR
OFCE CD 1F 'CGff
DFD1 c8
DFD2 32 FF DF

DFD5
DFD5 3E 40
OFD7 C9

0011

0010 •
0020 *
0030 *
0040 •

THIS PROGRAM IS LOADED AT THE VERY E~n n~ THE
ALS-8 DOOO RA~ AREA. BECAUSE IT I~ A PART OF T~F.
ALS-8 FILE ON CASSETTE TAPE, IT PERFORMS PRIMARY
INITIALIZATION OF THE ALS-8 FOR EITHER SOLOS OR
CUTER. 0050 •

0060 •
0070 •
0080 START
0090
0100 . /'
0110 Y
0120
0130
0140
0150
0160

EQUm THE. ALS-8 F'ILR REGINS EXFClI"!'Im' '-IE~F.
INX H CHECK BYTE 1 nF SOLOS/CUTER JUMP TARLE
MOV A,M THIS MUST BE A 'JMP'
CPI OC3H IF NOT THEN THIS CANNOT BE SOLnS/CUTER
JfiZ Ak~a ~IQ--USE NORMAL ALS8. I/O DRIVERS
MVI L,>SINP NOW CHECK THE SIMP ROUTINE
MOV A,M THIS MUST BE A 'LDA'
CPI 3AH IF NOT THEN THIS ISN'T SOLOS/CUTER EITHE~
JNZ ALS8 NO--STD I/O DRIVERS THEN
MbV 'A~ R' ",MG'ET THE ADDRESS OF SOLOS/CUTEll

_ STA XXINP+2 RELOCATE THE INPUT CALL W/IN STAT
_§J'..A _.!XOUT+2 W THE OUTPUT CALL W/IN OUTP8

0170
0180
0190
0200
0210 j
0220
0230
0240
0250
0260
0270
0280
0290
0300
()o310
0320
0330

MVI L,O PREP TO GET SOLOS/CUTER MINUS ONE (. l
DCX H NOW IS MI .. ~ ~.UUSS~ O~. ~L-::;' . I A....I-..f '\ -(ICy
BaLD 'w.~U-.JJlS..l'..~LUEFOR ·ESET ~ vvn',.J,'

. LXI H, RET PT' TO T-iff.f'U'P.~RU~'1ffoN .
'il' SHk!l,._Cl1t!t __ ..J!Q.l!!1;~~>, . .!'.2JLf~\J,:;!1..JlURlNJ,t_Wl..-
(., XI H, OD700H PI~K A DUMMY STAB VALUE
\.:LD STA6.NQ,W ALS8 WILL GET IlllIT'ED TO ft. "SA~E" STAB

r LXI H,INP8 GET THE AODR OF THE INPUT RnUTI~E
II SHLD PTRS POST NEvi ADDRF.SSES INTO ALS-8

:; . LXI H, OUTPS l(CSO 1'1'1E OUTPUT ROUTINE .A !)!)R
v SHLD PTRS+2 AND POST IT TOO
--T~r R, MVlO PI t:1"~.RE; 1(') MOVE 2t1JD DATA

LXI D,MVFH THE STAT ROUTINE IS MOVED
MVI B,MVLEN THIS IS THE NUMBER OF RYTES TO MOV~

0340 LP1
0350

EQU • LOOP TO MOVE THE ENTIRE STAT FOUTINE
LDAX D GET ONE RYTE

0360
0370
0380
0390
0400
0410
0420 •
0430 •
0440 *
0450 *

MOV M,A MOVE IT
INX H NEXT
INX D
DCR B DO IT PROPER NUMBER O~ BYTES
JNZ LPl MOVE ENTIRE ROUTINE
JtJfP' Ar.:~-n.r!'I'IALIZATION IS ALL DONE---START IT UP---

0460 * THESE ARE THE 1/0 DRIVERS THAT WILL MA~E TH~ ALS-8
0470 • BE COMPATIBLE WITH SOLOS/CUTER/CONSOLo
0480 *
0490 *
0500 *
0510 *
0520 *
0530 *

THIS ROUTINE WILL BE THE STATUS ROUTINE
THIS IS PLACED INTO THE ALS-8 PROPER,
BUT IS FINALLY PLACED INTO SYSTEM RAM AT LOCATION
DOA4.

0540 STAT EQU
0550 *
0560 MVFM EQU
0570 LDA
0580 ORA
0590 JNZ
0600 XXINP CALL
0610 RZ
0620 STA
0630 STAT2 EQU
0640 HVI
0650 RET
0660 HVLEN EQU
0670 *
0680 •
0690 •

ODOA4H THE STAT ROUTINE WILL BE HERE

$ THIS CODE WILL BE MOVED FROM HERE
CHAR SEE IF STATUS ALREADY GOTTEN
A IS THE STATUS ALREADY THERE
STAT2-MVFM+STAT YES--SAY SO AGAIN AND AGAIN AND AGA
SINP GET STATUS AND/OR CRAR

CHAR
$
A,40H

NO CHAR AVAILABLE
POST !fHS cr-~AR IS WAIT.ING
CHAR ALREADY WArTING
PASS BACK SOMB NON-ZERO CRAR
AND STATUS IS NOW COMPLETE

$-MVFM . THIS IS THE LENGTH OF THE CODE TO MOVE

(82)

APPENDIX C (cont.)

DFD8
DFD8 CD A4 DO
DFDB CA D8 DF
DFDE 3A FF DF
DFE1 E6 7F
DFE3 47
DFE4 AF
DFE5 32 FF DF
DFE8 78
DFE9 C9

DFEA
DFEA CD A4 DO
DFED CA FA DF
DFFO C5
DFF1 CD D8 DF
DFF4 FE 1B
DFF6 C1
DFF7 CA, 60 EO

DFFA ,
DFFA CD 19 ,-CO! \.... ./

DFFD 78---
DFFE C9

DFFF 00

ALS8
CHAR
CTLU
EORMS
ESET
INP8
LP1
MVFM
MVLEN
MVTO
NOCHR
OUTP8
PTRS
RET
SINP
SOUT
STAB
START
STAT
STAT2
XXINP
XXOUT

C01F
C019

E024
E060
E04F
D191
D1A1
E1DE
E1EE

E024
DFFF
D1A1
E060
0191
DFD8
DFBC
DFC7
0011
E1EE
DFFA
DFEA
E1DE
DFE9
C01F
C019
EO-4F
DF80
DOA4
DFD5
DFCE
DFFA

0700 * THESE Rou'i'niEs EXIST AT THE TOP OF THE
0710 * 0000 4K BLOCK OF MEMORY.
0720 *
0730 *
0740 INP8
0750
0760
0770
0780
0790
0800
0810
0820
0830 RET
0840 *
0850 *
0860 *
0870 OUTP8
.0880
0890
0900
0910
0920
0930
0940
0950 NOCHR
0960 XXOUT
0970
0980
0990 *
1000 *

EQU
CALL
JZ
LDA
ANI
MOV
XRA
STA
MOV
RET

EQU
CALL
JZ
PUSH
CALL
CPI
POP
JZ
EQU
CALL
MOV
RET

$
STAT
INP8
CHAR
7FH
B,A
A
CHAR
A,B

$
STAT
NOCHR
B
INP8
1BH
B
EORMS
$
SOUT
A,B

INPUT ROUTINE
GET STATUS
WAIT FOR A KEY
WHEN KEY IS HIT, IT WILL BE HERE
CLEAR HI BIT IN CASE
PASS CHAR BACK IN REG B
BUT WE ALSO HAVE TO CLEAR CHAR WAITING
NO CHAR IS WAITING NOW
ALSO PASS BACK CHAR IN REG A
CHAR IN A AND B (ALRO USED FOR JUST A "RET")

CHA~ACTER OUTPUT ROIITINE
IS THERE BY CHANCE A C~AR WAITING
NO--THEN JUST DO AN OUTPUT
SAVE CHAR TO BE OUTPUT
GET THE CHAR THAT IS THERE
IS IT AN ESCAPE?
RESTORE CHAR TO BE OUTPUT 1ST
YES--THEN ABORT AND SAY READY
NOW WE CAN OUTPUT'CHAR IN REG R
OUTPUT THE CHAR
AND RETURN SAME CHAR IN REG A ALSO
CHAR IS OUT NOW

1010 CHAR DB 0 O=NO CHAR IS WAITING, ELSE IT IS THE CHAR
1020 ********* END OF PROGRAM ************
1030 *
1040 *
1050 SINP EQU
1060 SOUT EQU
1070 *
1080 ALS8
1090 EORMS
1100 STAB
1110 ESET
1120 CTLU
1130 PTRS
1140 MVTO
1150 *
1160 *
1170 *

0120 0160 0410

EQU
EQU
EQU
EQU
EQU
EQU
EQU

0570 0620 0770 0810
0240
0940
0220
0270 0760 0910
0400
0320 0590 0660
0330
0310
0890
0290
0280 0300
0230
0130 0600
0960
0260

0590 0750 0880
0590
0180
0190

OC01FH SOLOS STANDARD INPUT ROUTINE
OC019H SOLOS STANDARD OUTPUT ROUTINE

OE024H
OE060H
OE04FH
OD191H
OD1A1H
OE1DEH
OE1EEH

(83)

ALS-8 INITIAL ENTRY POINT
ALS8 RETURN IF ESCAPE IS HIT
THE STAB GETS INIT'ED HERE
ESET VALUE STORED HERE
CTL-U DURING EDIT ROUTINE ADDR HERE
PTRS TO INP8 AND OUTP8 W/IN ALsa
THE STAT ROUTINE W/IN THE ALsa

Appendix D

SOLOS/CUTER Interface Specifications

The SOLOS/CUTER interface is based on:

1. A predefined set of 'pseudo' I/O ports allowing
software compatibility and providing an easy means
of supporting any I/O device.

2. A well defined set of register usage conventions.

3. A system jump table of entry points.

4. A defined tape format including headers and CRC
characters.

Both SOLOS and CUTER observe and support these specifications
such that any program written using this interface will func
tion (except for specific device dependencies) under the
control of either SOLOS or CUTER. A part of the interface
specifications also allows a user written SOLOS/CUTER surro
gate. Such a surrogate, when properly written, will allow
a program written for SOLOS/CUTER to function with the surro
gate.

The first aspect of the interface is that of the pseudo ports.
The basic SOLOS/CUTER interface allows the support of four
'pseudo' I/O ports (0 - 3). These pseudo ports are logical
ports providing a reference for the program only. System
input (keyboard) and output (display) are directed via
these pseudo ports. The STANDARD definition for pseudo
ports is:

Pseudo Port

o
1
2
3

Input

Keyboard
Serial input
Parallel input
User defined input

Output

VDM Display
Serial output
Parallel output
User defined output

These pseudo ports allow device independent I/O. Provided that
device dependent character sequences are not used, an I/O
request to pseudo port 0 appears to the requesting program
to be the same as a request to pseudo port 1,2 or 3. What
this means is that, although four pseudo ports are defined
in the interface specifications, a user written surrogate
would not need to decode pseudo ports.

(84) © 1977 Software Technology Corporation

Appendix D (cant.)

The second aspect of the SOLOS/CUTER interface is the defined
register usage. Each of the system entry points has specific
register requirements which will be discussed later.

Whenever a program is executed via SOLOS/CUTER the stack pointer,
the stack, and registers HL are defined as follows:

1. The Stack Pointer (register SP) is valid and offers
a useable stack. The size of this stack is not specified
but should be adequate for at least a few calls. The
executed program is expected to establish its own
stack;, however, some stack should be available.

2. The stack itself should be established such that:

(a) A "RET" instruction can be used as an exit
by the executing program.

(b) The locations at Stack Pointer -1 and -2 in
memory contain the address of the executed
program itself. This information can be
accessed by machine code similar to:

LXI
DAD
MOV

H,-1
SP
A,M

A constant minus one.
HL=SP-1 now.
A=our own high address.

Code such as this can be used to allow a
routine to be made self-relocating to a
256 byte boundary.

3. Registers HL contain the address of the SOLOS/CUTER
jump table. Because this jump table may be located
at any 256 byte boundary in memory, register L will
be zero. Register H can then be used to alter the
executing program accordingly. As noted later, the
jump table also provides an indication whether the
program is executing on a Sol or other computer.

The third aspect of the SOLOS/CUTER interface is the jump table.
By making all system requests via this jump table, an executed
program can be made compatible between SOLOS, CUTER or other
properly written surrogate. The jump table is described on
the following page. A more complete description is contained
in the SOLOS/CUTER User's Manual.

(85)

Appendix D (cont.)

SOLOS/CUTER JUMP TABLE

Address Label Length Brief Description

xxOO START 1 This byte allows power-on reset for
SOLOS. It is 00 hex on a Sol; 7F hex
on other than a Sol.

xx01 INIT 3 This is a "JMP" to the power-on reset.

xx04 RETRN 3 Enter at this point to return control
from an executing program.

xx07 FOPEN 3 Byte access file open.

xxOA FCLOS 3 Byte access file close.

xxOD RDBYT 3 Byte access read one byte.

xx10 WRBYT 3 Byte access write one byte.

xx13 RDBLK 3 Read an entire file into memory.

xx16 WRBLK 3 Write an entire file from memory.

xx19 SOUT 3 Standard character output routine. This
must be an "LOA" pointing to the byte
containing the current system output
pseudo port value.

xx1C AOUT 3 Character output to pseudo port specified
in register "A".

xx1F SINP 3 Standard character input routine. This
must be an "LDA" pointing to the byte
containing the current system input
pseudo port value.

xx22 AINP 3 Character input to pseudo port specified
in register "A".

The most often used routines are: RETRN, SOUT and SINP. Other
entry pojnts mayor may not be used.

(86)

Appendix D (cant.)

JUMP TABLE INPUT ENTRY POINTS

SINP

AINP

address xx1F

This entry point will set register "A" to the current
system input pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AINP" described below.

address xx22

This entry point is used to input one character or
status information from any pseudo port. On entry
register "A" indicates the desired pseudo port. I

Because this entry point is a combination status/get
character routine, it is the user's responsibility
to interpret return flags properly. When a character
is not available, the zero flag will be set. When a
character is available, the zero flag will be reset
and the character will be returned in the "A" register.
As an example, the following code will wait for a
character to be entered:

LOOP CALL
JZ

SINP
LOOP

...

get status or the character
status says character not
available yet
character is in register "A"

JUMP TABLE OUTPUT ENTRY POINTS

SOUT

AOUT

address xx19

This entry point will set register "A" to the current
system output pseudo port. This must be an "LDA"
instruction. After loading register "A", this entry
point proceeds by executing "AOUT" described below.

address xx1C

This entry point is used to output the character in
the liB" register to the pseudo port specified by the
value in the "A" register. On return, the PSW and
register "A" are undefined. All other registers are
as they were on entry. A user written output routine
(AOUT surrogate) may buffer or delay the output as
required for the supported device.

(87)

Appendix D (cont.)

The fourth aspect of the SOLOS/CUTER interface is the format in
which the data is recorded on tape. When data is written to tape,
it is referred to logically as a "file". Each file has
its own header which describes the file. On cassette tape, each
header is followed by the file itself. The file itself is
written to tape in segments of 1 to 256 bytes. Each segment
is immediately followed by a Cyclic Redundancy Check character
(the CRe). The following is the general format of one file on
cassette tape:

I

File
Preamble Header The File

1 A B C D H F I GI H

Where:

A. Preamble

Preceding every file header is a special
preamble. This is a series of at least ten nulls
(zeroes) followed by a one (01 hex). This
special sequenc~ and only this sequence, indi
cates a probable file header follows.

B. File Header

This is the 16 byte file header. The layout of
a file header is:

NAME ASC
DB

TYPE DB

'ABCDE' A 5 character file name.
o Should always be zero.
'B'+80H File type character. If bit

7=1, this is a non-executable
data file.

LENGTH Number of bytes in file.

~

SIZE DW
ADDR DW FROM Address file is to be read into

or written from.
XEQ DW EXEC Execution beginning address.

DS 3 Space not currently used.

C. File Header CRC

This is the CRC character for the file header.
If, when reading a file header, the CRC character
is not correct, then the file header is to be
ignored. A search would then be made for a new
preamble (A above) •

(88)

Appendix D (cont.)

D. File Segment First

This is the first segment of the file itself.
A segment is from 1 to 256 bytes. In this
example, this segment is 256 bytes.

E. File Segment One CRC

This is the CRC character for the preceding seg
ment-- in this example, the preceding 256 bytes.

F. File Segment Last

This is the last segment of the file. In this
example, this is 44 bytes. Therefore, the
length of this file is 256+44=300 bytes.

G. File Segment Last CRC

This is the CRC character for the preceding
segment--in this example, the preceding 44 bytes.

H. Interfile GAP

This is a gap between files and is typically a
clear carrier for about five seconds.

CRC Computation

The CRC character is computed for each segment or header.
The following code performs the CRC computation assuming:
Register IIA" is the character just written to tape, and
Register IIC II is the final CRC. ' Register C should be set
to zero prior to writing the first character of a segment.
After writing the last character of a segment and executing
this code, Register "c" is the CRC character for this
segment.

An 8080 Subroutine to do CRC Computation

DOCRC EQU $ A=NEXT character and C=CRC
SUB C
MOV C,A
XRA C
CMA
SUB C
MOV C,A·
RET

(89)

)

ProcessorTechnology Corporation 7100 Johnson Industrial Dr've. Pleasanton, CA 94566 Manual Number 727013

