

..

Plexus S1s3 UNIX 3.0 Release Notioe

98-40032.1 June 3, 1983·

PLEXUS COMPUTERS INC

2230 Martin Ave

Santa Clara, CA 95050

408/988-1755

Copyright 1983
Plexus Computers Inc, Santa Clara, CA

All rights reserved.

No part of this manual may be reproduced in any
without written permission from the publisher.

Printed in the United States of America

form .

1.

2.

4.

5.

CONTENTS

INTRODUCTION •••

1 .1 Purpose •••

1.2 How to Use This Manual ••

Release 3.0 Overview ••

1.4 Differences Between Sys3 1.1 (ZaOOO) and 3.0 (MC6aOOO) ••••••••

1.5 Of Special Note for Sys3 3.0 ••••••••••••••••••••••••••••••••••

REI..OADING SYS3 •••

2.1 Checklist for Reloading Sys3 ••••••••••••••••••••••••••••••••••

2.2 Run dcont1g •••••••••••••.•••••••••••••••••••••••••••••••••••••

Install the Release Tape ••••••••••••••••••••••••••••••••••••••

2.4 Sy stem Startup •...••...................•..•..•..•.••..•.•.•.••

2.5 Go to lnit State 2 (Multi-user) •••••••••••••••••••••••••••••••

UPGRADING TO SYS3 REL 3.0 FROM REL 1.0 or 1.1 ••••••••••••••••••••••

OTHER PROCEDURES •••

4.1 Setting the System Console Default Baud Rate ••••••••••••••••••

4.2 Setting Up for csh and vi •••••••••••••••••••••••••••••••••••••

SYS3 GENERAL INFORMATION •••

5.1

5.2

5.4

Sys3: 16, 32, or 40 Users •••••••••••••••••••••••••••••••••••••

Processor Board LEDs ••

Disk Blocking •••
5.3.1 Disk Organization ••••••••••••••••••••••••••••••••••••••
5.3.2 Special Devices ••

Comparisons of Sys3 1.1 and Sys3 3.0 ••••••••••••••••••••••••••
5.4.1 Plexus Additions to SYSTEM III •••••••••••••••••••••••••
5.4.2 Incompatibilities between V7 and Sys3 ••••••••••••••••••
5.4.3 Known Bugs in Stock SYSTEM III •••••••••••••••••••••••••
5.4.4 Known Deficiencies in Plexus Sys3 ••••••••••••••••••••••
5.4.5 Known Problems with Sys3 3.0 •••••••••••••••••••••••••••

- i -

1

1

1

2

2

2

4

4

4

5

6

7

a

9

9

9

11

11

11

11
12
13

13
13
14
15
15
16

6.

5.4.6
5.4.7
5.4.8

Not Provided
Not Provided
Not Provided

Not Applicable ••••••••••••••••••••••••••
No Source ••• e •••••••••••••••••••••••••••

Not Yet Available •••••••••••••••••••••••

SYS3 3.0 MANUAL PAGES ••••••••••••••••.•••••••••••••••••••••••••••••

ii

17
17
18

18

1 • INTRODUCTION

Sys3 is the implementation of the UNIX SYSTEM III operating system by
Plexus Computers Inc. This document, which accompanies Release 3.0 of Sys3
for the P/35 and P/60, is a collection of information about Sys3.

In this document, "SYSTEM III" refers to the stock software provided by
Western Electric. "Sys3" refers to the equivalent software provided by
Plexus. "V7" is the Version 7 equivalent of Plexus software.

This document has five chapters. The first chapter contains the
introduction. The second describes in detail how to reload Sys3 Release
3.0; the third chapter tells how to install Sys3 Release 3.0 as an upgrade
from 1.0 or 1.1 (Z8000 versions). Optional and site-dependent procedures
are described in Chapter 4, and Chapter 5 gives general information about
Sys3.

This manual was written to describe every ordinary case of Sys3 3.0
installation and reload, and not everything in this manual applies to every
site. You probably won't need to use every chapter of this manual. See
section 1.2 for guidelines.

1.1 Purpose

This document describes installation procedures for release 3.0 of Plexus
Sys3. It is intended as a supplement to the Plexus ~'s Manual. This
document also contains some usage and troubleshooting information.

If you encounter any problems with this software or documentation, please
contact:

Marketing Technical Support
Plexus Computers Inc
2230 Martin Ave
Santa Clara, CA 95050
408/988-1755

1.2 How to Use This Manual

If you are receiving a new Plexus P/35 or P/60, Sys3 Release 3.0 will
normally be already on disk, and you need only start up the system as
described in section 2.3 (and in the Plexus User'~ Manual).

This document mainly contains procedures for reloading Sys3 (described in
Chapter 2), and for moving from Sys3 1.0 or 1.1 (Z8000 versions) to Sys3
3.0 (MC68000 version).

Follow the reload procedures (Chapter 2) if

1. your system has a new disk and system software must all be reloaded;
or

Introduction

Plexus Sys3 ReI. 3.0 Plexus Computers

2. your system has experienced a ca·tastrophic failure such that all the
software is lost.

Follow the procedures outlined in Chapter 3 if you are moving from Sys3
Release 1.0 or 1.1 (ZaOOO versions).

1.3 Release 3.0 OVerview

Plexus UNIX Sys3 Release 3.0 consists of a Release Tape and this release
document.

The Release Tape comprises at least 21 files. Files 0-19 are blocked at
1024 bytes per record; file 20 is blocked at 10240 bytes per record; file
21 through the end of the tape are blocked at 5120 bytes per record. Most
of the tape files are copies of Release 3.0 standalone programs. These are
for backup and emergency purposes, in case the disk copies of the
standalones become inaccessible and you need to run the standalone programs
from tape. File 20 has a dump of a standard release 3.0 system.

1.4 Differences Between Sys3 1.1 (ZaOOO) and 3.0 (MC6aOOO)

Sys3 Release 3.0 (MC6aOOO) differs from Sys3 Release 1.1 (ZaOOO) in the
following ways:

1. The compiler (co), assembler (as), debugger (adb), and linker (ld)
deal with the MC6aoOo processor instead of the zaooo. When porting C
programs, keep in mind that integers and pointers are 32 bits in the
MC6aOOO and 16 bits in the zaooo.

2. Maximum user address space is 2 megabytes in this release. Split
instruction and data (as on the ZaOOO) is no longer necessary.

3. Floating point format does not conform to the IEEE standard in this
release.

1.5 Of Special Note for Sys3 3.0

The following are of special note for Sys3 3.0:

1. The file system format may chang.e for compatibility with SYSTEM V.

2. Floating point format may change to IEEE floating point format in the
next release.

3. All changes to the root file system should be monitored so that the
next release can be brought up quickly and painlessly.

4. No cpnsiderations for software performance were taken for this
rele~se. The C compiler optimizer is not hooked up, nor is it
completely reliable.

Introduction 2

Plexus Computers Plexus Sys3 ReI. 3.0

5. For the next release, you should be able to look forward to

• smaller object files and faster program execution;

• less UNIX kernel overhead;

• IEEE format floating point;

• a much improved C compiler and optimizer;

• larger (8 megabyte) user address space.

3 Introduction

Plexus Sys3 Rel. 3.0 Plexus Computers

2. RELOADING SYS3

This chapter gives procedures for the basic steps required to reload Sys3.
Remember to follow these reload procedures only if

1. your system has a new disk and system software must all be reloaded;
or

2. your system has experienced a catastrophic failure such that all the
software is lost.

The first section of this chapter is a checklist for reloading Sys3 3.0.
Each subsequent section of this chapter corresponds to one item in the
checklist.

If you are rece2v2ng a brand new Plexus system, you don't have to follow
ANY procedures except start the system (section 2.3).

2.1 Checklist for Reloading Sys3

This section gives a checklist for reloading Sys3. Each step in this
checklist is described in a separate subsection below.

1. Verify that the data on disk block 0 is correct by running dconfig.

2. Install the Release Tape.

3. Startup the system.

4. The following steps are optional:

a. Set the console default baud rate.

b. Enable the accounting package.

c. Add additional disk and special files.

5. Go to multi-user state.

2.2 Run dconfig

Shut down your system, press reset, and obtain the primary boot prompt.
Then run standalone deonfig; see the Plexus ~'A Manual for instructions.
If you need to get the dconfig program off tape, you will have to mount a
tape.

If you intend to use uucp, you may install the system node name using
deonfig at this time.

Reloading Sys3 4

r

Plexus Computers Plexus Sys3 Rel. 3.0

2.3 Install the Release Tape

Follow these directions to load the system software onto a new disk. This
procedure destroys any previous contents of the disk.

To load the tape, do the following:

1. Turn on system power. Press reset button.

2.

3.

4.

Wai t for "PLEXUS SELFTEST REV X. X COMPLETE" message. The system
informs you about the disk and tape driver names in use on your
system (e.g., pd, pt), tells you about the various boards (e.g.,
Ethernet, ICPs) , and tells the memory size. Then the boot message
appears. The boot message is "PLEXUS PRIMARY BOOT REV 2.0". After
the boot message comes the ":" prompt.

The disks come preformatted from the factory. Only in the event of a
major catastrophe will you be required to reformat the disks. See the
Plexus ~,~ Manual for instructions on how to do this if necessary.

Make a file system on the disk with mkfs. To do this, mount the
Release Tape and respond as indicated in bold below. The file system
size is given in 1024-byte blocks.

NOTE: mkfs DESTROYS THE DATA ON THE
DESIGNATED FILE SYSTEM, SO USE CAUTION!!!

The sequence is

: mkfs

$$ mkfs Idev/dk1 18000 1 500
~sue = 4496
mIn = 1 500

When the mkfs finishes executing, the system prints the message "Exit
0" and re-executes the self test. Thus you again see the "SELFTEST
COMPLETE" message, initial information lines, and primary boot
message.

5. Restore the file system onto the disk. Your response is in bold.
The sequence is

: restor

$$ restor r Idev/dk1 +20
Spacing forward 20 files on tape

5 Reloading Sys3

r
Plexus Sys3 ReI. 3.0 Plexus Computers

The final remark from the restor program before it commences to
restore the file system is

Last chance before scribbling on /dev/dk1.

Respond with a <return> when you are ready to restore the file
system. To abort the process, hit the reset button. The restoration
of the file system should take about 30 minutes for a P/60, 60
minutes for a P/35. Then the self test is done again, and the boot
prompt sequence reappears.

2.4 System Startup

Obtain the primary boot prompt, a colon (:), by pressing the reset key if
necessary. Once you have the boot prompt, type <return>. The machine should
respond

: /sys3

The following lines appear:

SYS3/x.x: sys3.yy
real mem = xxxxxx bytes
avail mem = xxxxxx bytes
sys3
single-user
I

This response includes the amount of memory in the system, and the amount
available for user processes. Note that for this release, this number is
wrong by one page. The "xx" after "SYS3/" is the release number of the
software. The "yy" after "sys3." is the number of users supported by the
software.

These messages indicate that

1. The bootstrap program has been executed from the processor PROM;

2. Plexus Sys3 has been loaded from the system disk; and

3. The Sys3 operating system is ready for use.

The system is now in "init state 1" and only the system console is active.

While in init state 1, examine the date and correct it if necessary. (See
date(1». Also while in init state 1, perform configuration procedures as
descri bed in the PI exus User' li. Manual. You may al so want to run the
program rsck(1) to check the integrity of the file system(s). See the
Plexus ~'s Manual for more information.

Reloading Sys3 6

Plexus Computers Plexus Sys3 Rel. 3.0

2.5 Go to Init State 2 (Multi-user)

The last required step in reloading Sys3 is to go to multi-user state.
Type

/eto/init 2

Messages reporting the startup of oron, the startup of errdemon, and the
initialization of the Intelligent Communications Processors (ICPs) appear
on the system console. The message "ICP software initialization complete"
appears on /dev/ttyO, /dev/tty8, /dev/tty16, /dev/tty24. and /dev/ttY32.
The last two messages are

multi-user
type otrl-d

Respond by typing d with the control key depressed. The message:

login:

should appear on your console and on all active terminals.

7 Reloading Sys3

Plexus Sys3 Hel. 3.0 Plexus Computers

3. UPGRADING TO SY53 REL 3.0 FROM REL 1.0 or 1.1

If you currently have Sys3 1.1 on the zaooo, upgrading to Sys3 3.0 should
be relatively easy. The files are, for the most part, identical in
function, and many are identical in form. The following files may have
been modified by your installation for Sys3 1.1, and will need to be
modified similarly for Sys3 3.0:

/etc/rc
/etc/passwd
/etc/group
/etc/checklist
/etc/ttytype
/etc/inittab
/usr/lib/orontab

Upgrade to 3.0 a

Plexus Computers Plexus Sys3 ReI. 3.0

4. OTHER PROCEDURES

This chapter describes site-dependent and other procedures that may be
necessary to complete the installation of Sys3. Included here are
instructions for setting the console default baud rate and setting up for
the commands csh and vi. See the Plexus ~,~ Manual for detailed
instructions on other procedures such as shutdown, adding line printers,
and enabling accounting.

4.1 Setting the System Console Default Baud Rate

Setting the system console default baud rate is optional. You will want to
do it if for any reason you don't want to use the default 9600 baud rate.

The Sys3 software does not need to use the processor board switches to
determine the baud rate of the console or any other terminal. The baud rate
can be set by software with the getty(8) command within the file
/etc/inittab. On boot and self test, however, the baud rate must be set to
match the terminal. For details, please read about the getty(8) and
init(8) commands in the Plexus~]NIl Prograrnrner'~ Manual --]Ql~.

The baud rate for a terminal, ttyXX, is taken from the processor switches
only if a line like the following is put in the file letc/inittab:

2:XX:c:/etc/getty ttyXX b

The 'b' argument to letc/getty directs it to get the baud rate from the
processor switches.

4.2 Setting Up tor csh and vi

The commands csh and vi require that you perform certain setup tasks. These
are outlined below.

Two files are provided along with csh: login and cshrc. These are examples
of the .login and .cshrc files that set the working environment of the C­
shell. See csh(1) for more information.

Users desiring to have the C-shell as their login shell must have their
entries in letc/passwd changed appropriately. The environment variable
SHELL in the .login file should still be set to /bin/sh, however, because
some Sys3 programs use this variable in determining which shell to use, and
do not work correctly otherwise (see below).

The file leto/cshprotile is a command file that implements several startup
features: message of the day, mail notification, and news. It also sets
the time zone (TZ) automatically. The default time zone is Pacific

9 Other Procedures

Plexus Sys3 Rel. 3.0 Plexus Computers

Standard Time. If you are in a different time zone, the line 'setenv TZ'
in /et%shprofile must be modified to refleot this.

Csh oheoks the format of shell soripts before executing them. It uses the
presence of a shell comment in line 1 ('I' followed by text) to distinguish
a osh shell soript from a Sys3 sh shell soript: soripts having the comment
are treated as C-shell scripts. C-shell scripts are executed by the 'C­
shell; Sys3 shell soripts are exeouted by the Sys3 shell. When the C-shell
enoounters a Sys3 shell soript, it automatically invokes the Sys3 shell to
exeoute it. However, several stock Sys3 commands are Bourne (Sys3) shell
scripts with first line comments, so they look like C-shell scripts to the
C-shell. Sys3 shell scripts may contain commands unintelligible to the C­
shell. so when osh encounters these, it becomes confused and aborts.
Therefore, if you use the C-shell, you should set your environment variable
SHELL tQ /b1n/sh. This oauses the C-shell to invoke the Bourne shell by
default. If you really want the C-shell to exeoute your shell scripts, you
can call them from another C-shell, either by executing another C-shell or
from within the sor1pt.

The following files have been altered for use with the C-shell:
/usr/b1n/greek
/usr/b1n/man
/usr/b1n/manovt
/usr/b1n/mm
/usr/b1n/mmt
/usr/b1n/mvt
/usr/b1n/osdd
/usr/b1n/socsdiff
/usr/b1n/spell
/usr/b1n/typo
/usr/b1n/uupiok

Vi requires two files: /etc/termoap and /eto/ttytype. The termoap file
already exists in the right place. You must modify the file /etc/ttytype
according to your terminal oonfiguration. The environment variable TERM
must also be set to the terminal type for each TTY port. See the login and
oshro files in /usr/plx for examples of how to do this. Vi has both a
manual page and an associated document in the direotory /usr/man/doos/ex as
well as in the Plexus ~ .ImIX Programmer'.§. Manual --.Y.2l. .2.k: see these
for more information.

Other Procedures 10

Plexus Computers Plexus Sys3 ReI. 3.0

5. SYS3 GENERAL INFORMATION

This chapter contains general information about Sys3, including disk
blocking data and comparisons with V7 and SYSTEM III.

5.1 S1s3: 16, 32, or 40 Users

Sys3 comes in three versions: a 16-user system, a 32-user system, and a
40-user system. The operating system limits the number of logins to the
maximum allowed, either 16, 32, or 40.

5.2 Processor Board LEDs

The LEDs on the processor board as shown in the the figure titled
"Processor Board Option Selectors" of the Plexus ~,~ Manual have the
following meaning when Sys3 is running.

LED S
+---+---+---+---+---+---+---+---+--
17161514131211101
+---+---+---+---+---+---+---+---+--

I
I
I

I
+--- Toggled each swap

+--- Toggled once a second
I
+--- System in user mode

+--- Waiting for tape

+--- Waiting for disk

LEDs 0-2 are reserved.

5.3 Disk Blocking

Sys3 presents a logical file system blocked in 1024-byte blocks. This means
that all disk blocks, including the super block, are 1024 bytes long, all
blocked disk I/O is done with 1024-byte blocks, and commands that report or
use block values assume the values are 1024-byte blocks. These commands
include aoctdusg, acctdisk, du, df, find, /etc/fsck, Is -s, /eto/mkfs, and
sum.

Note that the blocking factor is independent of the physical size of a
sector on the disk.

11 Sys3 General Information

Plexus Sys3 Rel. 3.0 Plexus Computers

5.3.1 Disk Organization
The default mapping of minor disk device (/dev/dkX) number to physical
sections of disks is as follows. You can override the default and define
your own mapping via the dconfig program described in Chapter 4 of this
document. The disk starting sector and size in sectors are given below. The
numbers are in 512-byte sectors.

Device Number Starting Sector Size

/dev/dkO 0 1000000
/dev/dk1 0 40000 (last 4000 sectors

are swap)
/dev/dk2 40000 to end of disk
/dev/dk3 60000 to end of disk
/dev/dk4 80000 to end of disk

/dev/dk15 300,000 . .
sectorspp The amount of space available on the disk varies with different
disks.

Users frequently want to create other file systems, in addition to the
18000K block root file system. To make a second file system spanning the
rest of the disk, you need to run the mkfs (1) program. Type

mkfs /dev/dk2 nblks 1 500

where "nblks" is one of the following:

Size of /dev/dk2 I
I

I
Disk IMSP I

I
22 Mbyte 8" 43 1
36 Mbyte 8" 13405 1
72 Mbyte 8" 47473 1
72 Mbyte 14" 48085 1
145 Mbyte 14" 1161701

"IMSP" is the name of the P/35 and P/60 disk controller.

The mknod for /dev/dk2 (which ordinarily must be done before the mkfs) is
done by Plexus at the factory. Once /dev/dk2 is made, you must do the
standard mkdir and mount steps;

Sys3 General Information 12

Plexus Computers Plexus Sys3 ReI. 3.0

To create additional file systems (devices Idev/dk3 and higher), you must
perform mknods to create the logical disk devices for each new file system;
then make each file system on its device using mkfs; then do the mkdir and
mount steps.

5.3.2 Special Deyices
Sys3 defines and uses the following special devices:

/dev/dk[0-2]
/dev/rdk[0-2]
/dev/mtO
/dev/rmtO
/dev/nrmtO
/dev/tty[0-40]
/dev/lp
/dev/pp[0-4]
/dev/console
/dev/ic[0-4]
/dev/swap
/dev/mem
/dev/kmem
/dev/liomem
/dev/mbmem
/dev/mbiomem
/dev/null
/dev/error
/dev/prf

Disk, blocked I/O
Disk, unblocked I/O
Magnetic media, blocked I/O
Magnetic media, unblocked I/O
Magnetic media, unblocked, no rewind
Serial ports
Line printer port
Parallel ports
System console
ICP download ports
Swap device, used by ps(1) and a few other commands
Memory
Kernel data space within memory
Special I/O ports on processor board
System's bus memory address space
System's bus I/O address space
Bit bucket
Provides access to error records in the kernel
Provides access to activity information in the kernel

YoU may add additional disks as needed with the mknod(1) command.

5.4 Comparisons of Sys3 1.1 and Sys3 3.0

Sys3 3.0 is a full implementation of SYSTEM III with the exceptions noted
below.

5.4.1 Plexus Additions to SYSTEM III

Sys3 has the following additions, which are not part of SYSTEM III.

/usr/plx/dumpdir

/etc/openup

/usr/plx/arcv6

/usr/plx/tape

Lists contents of dump/restor tape.

Enables efficient access to key files.

Converts ar (1) files from UNIX Version 6 format to
Sys3 format.

Efficient tape manipulation program.

13 Sys3 General Information

Plexus Sys3 ReI. 3.0 Plexus Computers

ms

File locking

date

Document preparation macros available in Version 7.

Allows a program exclusive access to a file.
locking(2).

See

The clock is battery powered. Must be reset only if
the processor board is removed.

Sys3 also includes many of the programs that were on the Sys3 Release 1.0
Addenda tape, including those based on commands from the University of
California at Berkeley, Rev. 2.0, such as csh and vi.

5.4.2 Incompatibilities between V7 and Sys3
Here is a partial list of incompatibilities between Sys3 and V7 software.
All incompatibilities but the programs in Istand are also part of SYSTEM
III.

basename

chdir

date

du

echo

kill

Id

login:root

mount

open(2)

overlays

ps

/usr/dict

su

"base name If/abcde xe" prints nothing; V7 printed last
member.

Replaced by cd.

Argument format is different.

Block total includes indirect blocks; V7 did not.

"-n" no longer recognized. Replaced by \c.

"1" arguments no longer kill all active processes.

No longer recognizes SYMDEF symbol table in archive.

Default PATH variable does not include "." for root and SUo

Therefore, to execute files in the current directory, user
must type ./<file>.

Warns you if you have an incorrectly labeled or unlabeled
file system. Label with letc/labelit.

Does not accept null length file.

A program can no longer overlay part of its code.

Some of the flags have changed, notably the "ax" flags.

Directory and files no longer exist •.

See login:root.

Sys3 General Information 14

Plexus Computers Plexus Sys3 ReI. 3.0

umask

uucp

The summing algorithm has changed. The -r option uses the
V7 algorithm, but gets a different second word.

Set such that created files are 666 and dirs 777. umask = o.

The node name is now embedded within the operating system,
but may be changed ~ dconf1g. See uname (1). In V7, the
node name was defined by the file lusr/l1b/uucp/L.sysname.

5.4.3 Known Bugs in Stock SYSTEM III
The following are known bugs in the standard SYSTEM III UNIX.

calendar

checkcw

letc/cron

csplit

dd

tp

Does not recognize ntodayn and ntomorrow n as advertised.

When given many file arguments, it may not be able to open
some of them.

Goes awry when date changed or is wrong.

csplit does not always create files of the proper number of
lines if given a file with an excessively long line.

Does not swap bytes (conv=swab) for small block sizes such
as bs=2.

Cannot write a tape with r option.

5.4.4 Known Deficiencies in Plexus Sys3
The following are known deficiencies in Plexus Sys3.

adb

cref

ps

stty

Running a program may change some of the terminal modes.

n_a" flag:
comments;
symbols.

does not
considers

recognize comments /* ••• */ as
instructions, condition codes as

"_en flag: unsigned, int, etc. treated as symbols.

Will not work with -c option.

Raw mode (stty raw) exists for compatibility with V7 and
works as documented. It clears all flags and sets CSS.
However, because there is not a one to one correspondence
between stty settings in V7 and Sys3, the command stty -raw
does not simply reverse the effects of a stty raw. stty
-r~ sets BRKINT, IGNPAR, ISTRIP, IXON, OPOST, ISIG, CS7,
INPCK, and ICANON; it also resets EOF and EOL and clears
PARENB.

15 Sys3 General Information

r-

Plexus Sys3 Rel. 3.0 Plexus Computers

sysdef

timex

/ etc/vol copy

graphics

Not implemented.

The values for diskO, disk1, and disk2 are not to be
believed.

Prints erroneous info when doing copy disk to tape and told
2400 feet, 1600 bpi.

Most SYSTEM III graphics capabilities are not yet part of
the Plexus Sys3 release.

5.4.5 Known Problems with Sys3 3.0
The following are known problems with Plexus Sys3 3.0;

structures

documents

admin -i

pack, pcat, unpack

reform +s

sact

division by 0

uucp

profiling

efl

gettytab

Structures with bit fields can cause bad code from
the C compiler. Filling out fields to 32 bits seems
to get around this problem.

Aside from this release notice and the attached new
manual pages, no new hardcopy documentation is
provided for Sys3 3.0.

When used with the "_a" option causes an error. Use
If_i" and "_a" separately to get around this.

Cause unpacking error.

The "+s" option causes an error message when used on
a non-SCCS or empty file.

Does not work when file is non-SCCS or non-existent.

Works differently from on the Z8000. The MC68000
traps it, causing a floating point error signal.

Does not work.

Kernel profiling does not work.

Not available.

Not released.

indirect system call Not supported.

uts Can't relink kernel.

games Do not work.

/etc/rc For 40-user system, you need to add a line to /etc/rc
to inform you about downloading the fifth ICP during

Sys3 General Information 16

Plexus Computers Plexus Sys3 ReI. 3.0

the boot process.

5.4.6 Not ProVided - Not Applicable
The following list defines programs, libraries and other software that are
not provided because they are:

1. specific to non-PLEXUS hardware; or

2. replaced by equivalent software.

/bin/kas
/bin/kasb
/bin/kun
/bin/kunb
/etc/fscv
/etc/stcntrl
/etc/stload
/etc/stproto
/etc/vlx
/lib/as2
/lib/cO
/lib/c1
/lib/fcO
/lib/fc1
/lib/fcrtO.o
/ li b/ fmcrtO • 0

/stand/boot1

/stand/boot2
/stand/il td
/stand/rf11boot
/stand/rk11 boot
/stand/rI11 boot
/stand/rp03boot
/stand/rp04boot
/stand/rs04boot
/unixhpht
/unixhptm
/unixrktm
/unixrlht
/unixrltm
/unixrpht
/unixrptm
/usr/bin/sdb
/usr/include/sys.s

5.4.7 Not ProVided - No Source

/usr/lib/lib2A.a
/usr/lib/lib2B.a
/usr/man/man1/kas.1
/usr/mdec
/usr/mdec/copy
/usr/mdec/dldr
/usr/mdec/iltd
/usr/mdec/list
/usr/mdec/mboot
/usr/mdec/rf11booti
/usr/mdec/rk11 boot
/usr/mdec/rkf
/usr/mdec/rp03boot
/usr/mdec/rp04boot
/usr/mdec/rs04boot
/usr/mdec/tapeboot
/usr/mdec/tboot

The following commands are documented in SYSTEM III but were omitted from
the SYSTEM III source:

/bin/primes
/bin/factor

17 Sys3 General Information

Plexus Sys3 Rel. 3.0 Plexus Computers

5.4.8 Not Provided - Not Yet Ayailable
The following are not provided in this release but will likely be provided
in a future one.

/etc/contig
/etc/crash
/usr/bin/efl
/usr/bin/f77
/usr/lib/f77pass1
/usr/lib/libF77.a
/usr/lib/libI77.a

6. SYS3 3.0 MANUAL PAGES

This section contains new manual pages for Sys3 3.0 commands that differ
significantly from Sys3 1.1 versions. These include a.out(5), adb(1),
00(1), and Id(1). Also included is a new page for the MC68000 assembler
a8(1). These pages are in Volume 1 format so you can insert these into
your current manuals.

Sys3 General Information 18

A.OUT(5) A.OUT(5)

a.out - assembler and link editor output

DESCRIPTION
A.out is the output file of the assembler ~ and the link
editor ld. Both programs will make a.out executable if
there were no errors in assembling or linking, and no
unresolved external references.

This file has four sections: a header, the program text and
data segments, relocation information, and a symbol table
(in that order). The last two sections may be missing if
the program was linked with the -s option of ~(1) or if the
symbol table and relocation bits were removed by strio(1).
Also note that if there were no unresolved external
references after linking, the relocation information will be
removed.

The sizes of each segment (contained in the header,
discussed below) are in bytes and are even. The size of the
header is not included in any of the other sizes.

When an a.out file is loaded into memory for execution,
three logical segments are set up: the text segment, the
data segment (initialized data followed by uninitialized,
the latter actually being initialized to all O's), and a
stack. The text segment begins at location 0 in the core
image; the header is not loaded. If the magic number (the
first field in the header) is 107 (hexadecimal), it
indicates that the text segment is not to be write-protected
or shared, so the data segment will be contiguous with the
text segment. If the magic number is 108 (hexadecimal), the
data segment begins at the first 0 mod 2K byte boundary
(Z8000) or the first 0 mod 4K byte boundary (MC68000)
following the text segment, and the text segment is not
writable by the program; if other processes are executing
the same a.out file, they will share a single text segment.
For the Z8000 only, if the magic number is 109
(hexadecimal), the text segment is again pure (write­
protected and shared); moreover, the instruction and data
spaces are separated. The text and data segment both begin
at location O. See the Zilog Z8000 Instruction Manual for
restrictions that apply to this situation.

The stack will occupy the highest possible locations in the
core image: on the Z8000, from FFFE (hexadecimal) and
growing downwards; on the MC68000, from 1FFFFC and growing
downwards. The stack is automatically extended as required.
The data segment is only extended as requested by the p~(2)
system call.

The start of the text segment in the a.out file is hsize;

Page 1 (printed 6/2/83)

A.OUT(S) A.OUTeS)

the start of the data segment is hsize+St (the size of the
text), where hsize is 10 (hexadecimal).

The value of a word in the text or data portions that is not
a reference to an undefined external symbol is exactly the
value that will appear in memory when the file is executed.
If a word in the text or data portion involves a reference
to an undefined external symbol, as indicated by the
relocation information (discussed below) for that word, then
the value of the word as stored in the file is an offset
from the associated external symbol. When the file is
processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added to the word
in the file.

Header-ZaOOO
The format of the a.out header is as follows:

struct exec {
short a_magic; 1* magic number II
unsigned a_textj/l size of text segment II
unsigned a_data;l* size of data segment II
unsigned a_bss; II size of bss segment II
unsigned a_symsj/* size of symbol table II
unsigned a_entryj/l entry point of program II
unsigned a_stampj/* version stamp II ~
unsigned a_flagj/* set if relocation info stripped II

} j

Header-MC6aOOO
The format of the header on the MC68000 is as follows:

struct bhdr {
long fmagic; II magic number II
long tSize; II size of text segment *1
long dsize; If size of data segment II
long bsize; I' size of bss segment II
long ssize; II size of symbol table II
long rtsize; II size of text relocation info II
long rdsize; II size of data relocation info II
long entry; II entry point of program *~

} ;

Page 2 (printed 6/2/83)

r

A. CUT(5) A.OUT(5)

Relocation-Z8000
If relocation information is present, it amounts to two
bytes per relocatable datum. There is no relocation
information if the "suppress relocation" flag (a flag) in
the header is on.

The format of the relocation data is:

struct r_info {

} ;

int r_symbolnum:11;
r_segment:3;
r-pcrel: 1;

The r pcrel field is not used.

The r segment field indicates the segment referred to by the
text or data word associated with the relocation word:

00 indicates the reference is absolute;
02 indicates the reference is to the text segment;
04 indicates the reference is to initialized data;
06 indicates the reference is to bss (uninitialized

data) ;
10 indicates the reference is to an undefined

external symbol.

The field r symbolnum contains a symbol number in
of external references, and is unused otherwise.
symbol is numbered 0, the second 1, etc.

the case
The first

The start of the relocation information is

hsize + a text + a data

Relocation-MC68000
Relocation information, if it is present, is given for each
datum to be relocated.

The format of the relocation information is:

struct reloc {
unsigned rsegment:2;1* RTEXT, RDATA, RBSS, or REXTERN *1
unsigned rsize:2; 1* RBYTE. RWORD, or RLONG *1
unsigned rdisp:1; 1* 1 => a displacement *1
unsigned relpad1:3;1* unused portion of relocation tag *1
char relpad2; 1* unused portion of relocation tag *1
short rsymbol; 1* id of the symbol of external relocations *1
long rpos; 1* position of relocation in segment *1

} ;

The rsegment field indicates the segment referred to by the

Page 3 (printed 6/2/83)

A.OUT(5) A.OUT(5)

relocated datum.

00 indicates the reference is to the text segment;
01 indicates the reference is to initialized data;
02 indicates the reference is to bss (unini tialized

data) ;
03 indicates the reference is to an undefined

external symbol.

The rsize field indicates the size of the datum:

00 indicates the datum is one byte;

01 indicates the datum is one word;

02 indicates the datum- is a long.

The field rsymbol contains a symbol number in the case of
external references. The first symbol is numbered 0, the
second 1, etc. The start of the text relocation information
is

tsize + dsize + ssize

The start of the data relocation information is

hsize + tsize + dsize + ssize + rtsize

Symbol Table-Z8000
The symbol table on the Z8000 consists of entries of the
form:

struct nlist {
char n_name [8] ; -
int n_type;
unsigned n_valuej

} j

The n name field contains the ASCII name of the symbol,
null-padded. The n type field indicates the type of the
symbol; the following values are possible:

Page 4 (printed 6/2/83)

r-
A.OUT(5) A.OUT(5)

000 undefined symbol
001 absolute symbol
002 text segment symbol
003 data segment symbol
004 bss segment symbol
037 file name symbol (produced by li)
040 undefined external symbol
041 absolute external symbol
042 text segment external symbol
043 data segment external symbol
044 bss segment external symbol

The start of the symbol table on the zaooo is:

hsize+2(a text+a data)

if relocation information is present, and

hsize+a text+a data

if it is not.

If a symbol I s type is undefined external and, the value field
is non-zero, the symbol is interpreted by the link editor
Id(1) as the name of a common region whose size is indicated
by the value of the symbol.

Symbol Table-MC68000
The symbol table on the MC68000 consists of entries of the
form:

struct sym {
char stype; 1* symbol type *1
char sympad; .1* pad to long align *1
long svalue; 1* value 51

} ;

The symbol follows each entry and is null-terminated. The
stype field indicates the type of the symbol; the following
values are possible:

000
001
002
003
004
037
024
040
"%08x"

undefined symbol
absolute symbol
text segment symbol
data segment symbol
bss segment symbol
file name symbol (produced by li)
r~gister name
external bit orld in
format for printing a value

The start of the symbol table on the MC68000 is

Page 5 (printed 6/2/83)

A.OUT(5) A.OUT(5)

hsize + tsize + dsize

If a symbol's type is undefined external and the value field
is non-zero, the symbol is interpreted by the link editor
ld(1) as the name of a common region whose size is indicated
by the value of the symbol.

SEE ALSO
as(1), ld(1), nm(1), strip(1).

Page 6 (printed 6/2/83)

ADB(1) ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used
to examine files and to provide a controlled environment for
the execution of UNIX programs.

Obifil is normally an executable program file, preferably
containing a symbol table; if not then the symbolic features
of adb cannot be used although the file can still be
examined. The default for obifil is a.out. Corfil is
assumed to be a core image file produced after executing
objfil; the default for corfil is core.

Requests to .ru1Q. are read from the standard input and
responses are to the standard output. If the -w flag is
present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be
modified using s£Q. ~ ignores QUIT; INTERRUPT causes
return to the next .ruil2. command.

In general requests to ~ are of the form

[address] [, count] [command] [;]

If address is present then ~~ is set to address. Initially
dot is set to O. For most commands count specifies how many
times the command will be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it
is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
•

+

The value of ~Q1 •

The value of ~ incremented by the
increment.

The value of ~ decremented by the
increment.

current

current

n The last address typed.

integer An octal number if integer begins with a 0; a

Page 1 (printed 6/2/83)

ADB(1) ADB(1)

hexadecimal number if preceded by I; otherwise a
decimal number.

integer. fraction
A 32 bit floating point number.

, cccc' The ASCII value of up to 4 characters. \ may be
used to escape a '.

< ~ The value of~, which is either a variable name
or a register name. ~ maintains a number of
variables (see VARIABLES) named by single letters
or digits. If ~ is a register name then the
value of the register is obtained from the system
header in corfil. The register names are rO •••
r15 few seg pc for the zeooo, dO ••• d1 aO a1
ps pc for the MC68000.

symbol A symbol is a sequence of upper or lower case
letters, underscores or digits, not starting with a
digi t. The value of the symbol is taken from the
symbol table in obifil. An initial _ or - will be
prepended to symbol if needed.

_ symbol In C, the ~~true name" of an external symbol
begins with _. It may be necessary to utter this
name to distinguish it from internal or hidden
variables of a program.

routine • .lliY!1&

(exp)

The address of the variable ~ in the specified C
routine. Both routine and ~ are symbols. If
~ is omitted the value is the address of the
most recently activated C stack frame corresponding
to routine. (Not implemented in the MC68000.)

The value of the expression~.

Monadic operators:

.~ The contents of the location addressed by ~
in corfH.

@~ The contents of the location addressed by ~
in objfH.

-~ Integer negation.

Bitwise complement.

Dyadic operators are left associat~ve and ar~ less binding
than monadic operators.

Page 2 (printed 6/2/83)

("

ADB(1) ADB(1)

ll+.§.2. Integer addition.

ll-e.2. Integer subtraction.

ll-~ Integer multiplication •

. ill~ Integer division.

ll~ Bitwise conjunction.

lll~ Bitwise disjunction.

ll#~ Z1 rounded up to the next mul tiple of e.2..

COMMANDS
Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands ? and 1 may be followed by -; see ADDRESSES for
further details.)

?f Locations starting at address in objfil are printed
according to the format~. ~ is incremented by the
sum of the increments for each format letter (q.v.).

I~ Locations starting at address in corfil are printed
according to the format ~ and ~ is incremented as for
?

=~ The value of address itself is printed in the styles
indicated by the format~. (For i format ? is printed
for the parts of the instruction that reference
subsequent words.)

A format consists of one or more characters that specify a
style of printing. Each format character may be preceded by
a decimal integer that is a repeat count for the format
character. While stepping through a format ~ is
incremented by the amount given for each format letter. If
no format is given then the last format is used. The format
letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output
by ~ are preceded by o.

o 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unSigned decimal number.
U 4 Print long unsigned decimal.

Page 3 (printed 6/2/83)

ADB(1) ADB(1)

~ 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
Q 1 Print the addressed character.
C 1 Print the addressed character using the following

escape convention. Character values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The
character @ is printed as @@.

S A Print the addressed characters until a zero
character is reached.

S A Print a string using the @ escape convention. ~
is the length of the string including its zero
terminator.

Y 4 Print 4 bytes in date format (see ~(3C».
i n Print as Z8000 instructions. ~ is the number of

bytes occupied by the instruction. This style of
printing causes variables 1 and 2 to be set to the
offset parts of the source and destination
respectively.

Z n Prints as Z8000 assembler listing. (Not available
on the MC68000.)

a 0 Print the value of ~ in symbolic form. Symbols
are checked to ensure that they have an
appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

p 2 Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

t 0 When preceded by an integer tabs to the next
appropriate tab stop. For example, at moves to
the next 8-space tab stop.

r 0 Print a space.
n 0 Print a new-line.
ft ••• " 0

Print the enclosed string.
~ is decremented by the current increment.

+
Nothing is printed.
~ is incremented by 1.
~ is decremented by 1.

Nothing is printed.
Nothing is printed.

new-line
Repeat the previous command with a ~ of 1.

[?/]1 value ~

Page 4

Words starting at~ are masked with ~ and compared
with value until a match is found. If L is used then
the match is for 4 bytes at a time instead of 2. If no
match is found then~ is unchanged; otherwise ~ is

(printed 6/2/83)

,.

ADB(1) ADB(1)

set to the matched location. If ~ is omitted then
-1 is used.

[?/]w value •••
Write the 2-byte value into the addressed location. If
the command is W, write 4 bytes. Odd addresses are not
allowed when writing to the subprocess address space.

[1/] m .ll1 .tl 1.1[1/]
New values for (.ll1, .tl, 1.1) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the ? or I is
followed by • then the second segment (Aa,~,12) of the
mapping is changed. If the list is terminated by? or
I then the file (objfil or ~orfil respectively) is used
for subsequent requests. (So that, for example, 1m?
will cause I to refer to objfil.)

>name
Dot is assigned to the variable or register named.

A shell is called to read the rest of the line
following I.

$modifier
Miscellaneous commands. The available modifiers are:

<t Read commands from the file X and return.
>~ Send output to the file ~, which is created if it

does not exist.
r Print the general registers and the instruction

addressed by pc. Dot is set to po.
t Print the registers as double precision values.
b Print all breakpoints and their associated counts

and commands.
c C stack backtrace. If address is given then it is

taken as the address of the current frame (instead
of r14 (ZaOOO) or tp (MC6aOOO). If C is used then
the names and (16 bit) values of all automatic and
static variables are printed for each active
function (ZaOOO only). If count is given then

e

w

s

0

x
d
q

only the first count frames are printed.
The names and values of external variables are
printed.
Set the page width for output to address (default
80) •
Set the limit for symbol matches to address
(defaul t 255).
All integers input are regarded as octal.
Changes default output to hexadecimal.
Reset integer input as described in EXPRESSIONS.
Exi t from a&Q.

Page 5 (printed 6/2/83)

ADB(1)

v
m

Print all non zero variables in octal.
Print the address map.

ADB(1)

:modifier
Manage a subprocess. Available modifiers are:

bQ Set breakpoint at address. The breakpoint is
executed count-1 times before causing a stop.
Each time the breakpoint is encountered the
command Q is executed. If this command sets dot
to zero then the breakpoint causes a stop.

d Delete breakpoint at address.

x Delete all breakpoints.

e If address is given, set breakpoint upon exit from
the routine on stack whose address is address. If
address is not given, set breakpoint upon exit
from current routine. This is useful for looking
at the values returned (in r7 or rr6 or rg4) by a
procedure.

p Similar to b, except that address is assumed to be
a procedure name, and the breakpoint is positioned
after the stack frame has been set up.

q Does for p what d does for b.

r Run objfil as a subprocess. If address is given
explicitly then the program is entered at this
pOint; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the
same line as the command. An argument starting
with < or > causes the standard input or output to
be established for the command. All Signals are
turned on on entry to the subprocess.

os The subprocess is continued with signal A (see
signal(2». If address is given then the
subprocess is continued at this address. If no
signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint
skipping is the same as for r.

SA As for 0 except that the subprocess is single
stepped count times. If there is no current·
subprocess then objfil is run as a subprocess as
for r. In this case no Signal can be sent; the
remainder of the line is treated as arguments to

Page 6 (printed 6/2/83)

ADB(1) ADB(1)

the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set
initially by ~ but are not used subsequently. Numbered
variables are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil. If corfil does not appear to be a core file then
these values are set from objfil.

b The base address of the data segDient.
d The data segment size.
e The entry point.
m The "magic" number (0405, 0407, 0410 or 0411).
s The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (Q1, ~, Ll) and (~,
~, ~) and the ~ address corresponding to a written
address is calculated as follows:

bl<address~ => ~ address=address+f~-b~
otherwise

b2<address<~ => ~ address=address+f~-bZ,

otherwise, the requested address is not legal. In some
cases (e.g. for programs with separated I and D space) the
two segments for a file may overlap. If a ? or I is
followed by an * then only the second triple is used.

The initial setting of both mappings is suitable for normal
a.out and core files. If either file is not of the kind
expected then, for that file, Q1 is set to 0, ~ is set to
the maximum file size and L1 is set to 0; in this way the
whole file can be examined with no address translation.

In order for ~ to be used on large files all appropriate
values are kept as signed 32 bit integers.

FILES
/dev/mem

Page 7 (printed 6/2/83)

ADBC 1) ADB(1)

/dev/swap
a.out
core

HOTES
Plexus ~ differs from the standard SYSTEM III ~ in the
following ways.
The number of registers and certain register names have
changed.
Format option 1 prints Z8000 or MC68000 instructions instead
of PDP-11 instructions.
A new z format option is provided for disassembly (ZaOOO
only) •
The a (ALGOL stack backtrace) modifier is not supported.
A new modifier x changes default output to hexadecimal.
Four new modifier options are provided: e, p, q, and x (e
available on Z8000 only).

SEE ALSO
ptrace(2), a.out(5), core(5).

DIAGNOSTICS

BUGS

"Adb" when there is no current command or format.
Comments about inaccessible files, syntax errors, abnormal
termination of commands, etc. Exit status is 0, unless last
command failed or returned nonzero status.

A breakpoint set at the entry point
initial entry to the program.
Local variables whose names are the
variable may foul up the accessing of
The MC68000 disassembly (1 option) is

is not effective on

same as an external
the external.
not always correct.

Page a (printed 6/2/83)

AS(1) (MC68000 only) AS(1)

NAME
as - MC68000 assembler

SYNOPSIS
as [-g] [-0 OBJFILE] [-e] [-1] FILE

DESCRIPTION
As assembles the concatenation of the named files. The
options may be placed in any order.

The "_1" option causes a listing to be created in a file
whose name has ".list" substituted for ".s".

The "_glr option causes undefined symbols to be made global.

The "_en option causes only external symbols to be placed in
the ".0" file.

The output of the. assembler is by default placed on the file
with ".0" substituted for ".s" in the current directory; the
"_0" flag causes the output to be placed on the named file.
If there were no unresolved external references, and no
errors detected, the output file is marked executable;
otherwise, if it is produced at all, it is made non­
executable.

FILES
/usr/tmp/as*
a.out
xref

SEE ALSO

temporary
object
cross reference

ld(1), nm(1), adb(1), a.out(5)
]NIX MC68000 Assembler Reference Manual

DIAGNOSTICS
Diagnostics are meant to be self explanatory and are
accompanied by either the offending file or the appropriate
line number. If the listing option is used, then the error
messages also are placed in the listing file.

Page 1 (printed 6/2/83)

..

. "

'~
'- .

o

AB(1) (Z8000 only) AS(1)

NAME
as - Z8000 assembler

SYNOPSIS
as [-1] [-m] [-n] [-0 OBJFILE] [-u] [-v] [-x] FILE

DESCRIPTION
As assembles the concatenation of the named files. The
options may be placed in any order.

The "_1" option causes a listing to be created on the
standard output.

The "-m" option places a tab at the left margin of each line
when the listing option "_1" has been selected.

The "_nil option causes a listing to be created on the
standard output, but causes a narrower listing than the "_I"
option. This is sometimes useful for 80 column paper, but
does not contain line numbers.

The "_un option causes all undefined symbols in the current
as~embly to be made undefined-external.

The "-v" option puts the assembler in verbose mode, which
causes the files to be listed during the first pass, along
with the errors encountered.

The "-x" option causes a cross refererence to be created on
the file named "xref". The cross reference consists of an
alphabetical listing of all user symbols along with the
value, line number, and line numbers for all references.

The output of the assembler is by default placed on the file
"a. out" in the current directory; the "_0" flag causes the
output to be placed on the named file. If there were no
unresolved external references, and no errors detected, the
output file is marked executable; otherwise, if it is
produced at all, it is made non-executable.

FnoES
/usr/tmp/as*
a.out
xref

SEE ALSO

temporary
object
cross reference

Id(1), nm(1), adb(1), a.out(5)
UNIX z800a Assembler Reference Manual by Craig C. Forney

DIAGNOSTICS
Diagnostics are meant to be self explanatory and are

Page 1 (printed 6/2/83)

AS(1)

BUGS

(ZBOOO only) AS(1)

accompanied by either the offending file or the appropriate
line number. If the listing option is used, then the error
messages also are placed in the listing file.

Cross reference ("-x" option) is not implemented.
single file may be assembled at a time.

Only a

Page 2 (printed 6/2/83)

CC(1) CC(1)

cc, pcc - C compiler

SINOPSIS
00 [option] ••• file •••
poo [option] ••• file •••
noo [option] ••• file •••

DESCRIPTION
~ is the UNIX C compiler. ~ is another name for~. ~
is a SYSTEM III-compatible version of the C compiler; its
optimizer does a slightly better job. ~ represents the
latest version of ~ and may not be available in some
releases. These commands accept several types of arguments:

Arguments whose names end with .0 are taken to be C source
programs; they are compiled, and each object program is left
on the file whose name is that of the source with .0
substituted for .0. The.o file is normally deleted,
however, if a single C program is compiled and loaded all at
one go.

In the same way, arguments whose names end with .s are taken
to be assembly source programs and are assembled, producing
a .0 file.

The following options are interpreted by ~ and ~.
~(1) for link editor options.

See

-0 Suppress the link edit phase of the compilation, and
force an object file to be produced even if only one
program is compiled.

-p Arrange for the compiler to produce code that counts
the number of times each routine is called; also, if
link editing takes place, replace the standard
startoff routine by one that automatically calls
monitor(3C) at the start and arranges to write out a
mon.out file at normal termination of execution of
the object program. An execution profile can then
be generated by use of ~~(1). (Z8000 only)

-0 Invoke an object-code optimizer.

-S Compile the named C programs, and leave the
assembler-language output on corresponding files
suffixed .s.

-E

Page 1

Run only the macro preprocessor on the
programs, and send the result to the
output.

named C
standard

(printed 6/2/83)

CC(1) CC(1)

-p Run only the macro preprocessor on the named C
programs, and leave the result on corresponding
files suffixed .1.

-C Comments are not stripped by the macro preprocessor.

-Dname=-<1~
-Dname Define the ~ to the preprocessor, as if by

Idefine. If no definition is given, the name is
def ined as 1.

-u~ Remove any initial definition of n~.

-Idir Change the algorithm for searching for Ii nclude
files whose names do not begin with / to look in ~
before looking in the directories on the standard
list. Thus, linclude files whose names are enclosed
in ftft will be searched for first in the directory of
the file argument, then in directories named in -I
options, and last in directories on a standard list.
For linclude files whose names are enclosed in <>,
the directory of the ~ argument is not searched.

Other arguments are taken to be either link editor option
arguments, or C-compatible object programs, typically
produced by an earlier ~ or ~ run, or perhaps libraries
of C-compatible routines. These programs, together with the
results of any compilations specified, are linked (in the
order given) to produce an executable program with the name
a.out.

The loader (~(1» accepts 8-character symbols, and the
first character of each symbol is an underbar (' __ r), which
~ prefixes at compile time. Therefore, symbol names in
program modules that are to be linked must be unique within
the first seven characters.

FILES
Files with '[n]' are~ versions.

file.c input file
file. 0 object file
a.out linked output
/lib/cpp preprocessor
/usr/lib/[n]ccom

compiler, pec
/lib/[n]c2 optional optimizer
/lib/crtO.o runtime startoff
/lib/mcrtO.o startoff for profiling
/lib/libc[n].a standard library, see (3)
/usr/include standard directory for linclude files

Page 2 (printed 6/2/83)

CC(1) CC(1)

SEE ALSO
B. W. Kernighan and D. M. Ritchie, ..Ib& ~ Programming
Language, Prentice-Hall, 1978.
B. W. Kernighan, Programming ~~-A Tutorial.
D. M. Ritchie, ~ Reference Manual.
adb(1), as(1), ld(1), prof(1), monitor(3C).

DIAGNOSTICS

BUGS

The diagnostics produced by C. itself are intended to be
self-explanatory. Occasional messages may be produced by
the assembler or the link editor.

If a Idefine line contains a continuation (\ newline), QQ
miscounts the number of lines in the program.

The following SYSTEM III options are not supported: -f, -g,
-d, -B, and -to

~ does not allow more than 250 switches in a case
statement. (Z8000 only)

Page 3 (printed 6/2/83)

/~

...

.. y

r

"'•

\'

LD(1) LD(1)

NAME
ld - link edi tor

SYNOPSIS
1d [-sulxXrdnim] [-0 name] [-t name] [-V num] file ...

DESCRIPTION
Ld combines several object programs into one; resolves
external references; and searches libraries (as created by
~(1». In the simplest case several object files are
given, and 14 combines them, producing an object module
which can be either executed or become the input for a
further ~ run. (In the latter case, the -r option must be
given to preserve the relocation bits.) The output of 1& is
left on a.out. This file is made executable if no errors
occurred during the load and the -r flag was not specified.

The argument routines are concatenated in the order
specified. The entry point of the output is the beginning
of the first routine.

The loader accepts a-character symbols, and the first
character of each symbol is an underbar ('_ '), which ~
prefixes at compile time. Therefore, symbol names in
program modules that are to be linked must be unique within
the first seven characters.

If any argument is a library, it is searched exactly once at
the point it is encountered in the argument list. Only
those routines defining an unresolved external reference are
loaded. If a routine from a library references another
routine in the library, the referenced routine must appear
after the referencing routine in the library. Thus the
order ·of programs within libraries is important.

The symbols _etext, _edata and _end (etext, edata and end in
C) are reserved, and if referred to, are set to the first
location above the program, the first location above
initialized data, and the first location above all data
respectively. It is erroneous to define these symbols.

tg understands several flag arguments which are written
preceded by a -. Except for -1. they should appear before
the file names.

-s "Strip" the output, that is, remove the symbol table
and relocation bits to save space (but impair the
usefulness of the debugger). This information can also
be removed by strip(1). This option is turned off if
there are any undefined symbols.

Page 1 (printed 6/2/83)

LD(1) LD(1)

-u Take the following argument as a symbol and enter it as
undefined in the symbol table. This is useful for
loading wholly·from a library, since initially the
symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

-1 This option is an abbreviation for a library name. -1
alone stands for /l1b/l1bc.a, which is the standard
system libraFy for C and assembly language programs.
-lx stands for /l1b/l1bz.a, where ~ is a string. If
that does not exist, Id tries /usr/lib/l1bx.a A library
is searched when its name is· encountered, so the
placement of a -1 is significant.

-x Do not preserve local (non-.globl) symbols in
output symbol table; only enter external symbols.
option saves some space in the output file.

the
This

-x Save local symbols except for those whose names' begin
with L. This option is used by ~ to discard
internally generated labels while retaining symbols
local to routines.

-r Generate relocation bits in the output file so that it
can be the subject of another 1~ run. This flag also
prevents final definitions from being given to common
symbols, and suppresses the "undefined symbol"
diagnostics.

-d Force definition of common storage even if the -r flag
is present.

-n Arrange that when the output file is executed, the text
portion will be read-only and shared among all users
executing the file. This involves moving the data
areas up to the first possible 2K-byte (Z8000) or 4K­
byte (MC68000) boundary following the end of the text.
On the MC68000, this option is on by default; use -N to
turn it off.

-1 When the output file is executed, the program text and
data areas will live in separate address spaces. The
only difference between this option and -n is that here
the data starts at location O. This option is
meaningful only on the Z8000; it does nothing on the
MC68000.

-m The names of all files and archive members used to
create the output file are written to the standard
output. (Z8000 only)

-0 The ~ argument after -0 is used as the name of the

Page 2 (printed 6/2/83)

..

..

LD(1)

-t

LD(1)

1& output file, instead of a.out.

The ~ argument is taken to. be a symbol name, . and any
references to or definitions of that symbol are listed,
along with their. types. There can be up to 16
occurrences of -t~ on the command line. (ZaOOO
only)

-y The ~ argument is taken as a decimal version number
identifying the a.out that is produced. BYm must be in
the range 0-32767. The version stamp is stored in the
a.out header; see ~.out(5). (ZaOOO only)

FILES
/lib/lib?a

libraries
/usr/lib/lib?a

more libraries
a.out output file

SEE ALSO
ar(1), as(1), cc(1), a.out(5) •

Page 3 (printed 6/2/a3)

I~

