3000/4000 SERIES SYNCHRONOUS WRITE TAPE TRANSPORT

Peripheral
 Equipment
 Corporation

J201 Reel Servo 100129-01
J202 Capstan Drive Synch. 100475-03
J203 Function Control, Syn. B 100443-02
J204 Transmitters, DTL 100339-01
J205 Receivers, DTL 100334-01
J206 Double Buffer, 9-Channel W/A 100239-01
$J 208$ CRC 100265-01
J209 Function Control, Syn. A 100359-01

OPERATING

 AND SERVICE MANUALPeripheral
Equipment
Corporation

CHATSWORTH, CALIF. 91311
TELEPHONE (213) 882-0030 TWX: (910) 494-2093

FOREWORD

This manual provides operating and servicing instructions for the Synchronous Write Tape Transport, 3000 and 4000 Series, manufactured by PERIPHERAL EQUIPMENT CORPORATION, Chatsworth, California.

The content includes a detailed description, specifications, installation instructions and checkout of the tape transport. Also included is the theory of operation and preventive maintenance instructions. Section VII contains the schematics, parts lists, and wiring diagrams necessary to provide an understanding of the transport and to perform troubleshooting when required. The Glossary contains definitions of abbreviations referred to in this manual.

All graphic symbols used in logic diagrams conform to the requirements of MIL-STD-806 and all symbols used in schematic diagrams are as specified in MIL-STD-15.

The models of tape transports covered by this manual are listed in the following tabulation.

3000 Series	4000 Series	Bit Packing Density (bpi)	Character Rate at 25 ips (KHz)	Number of Channels
$3800-9$	$4800-9$	800	20	9
$3800-7$	$4800-7$	800	20	7
3500	4500	556	13.9	7
3200	4200	200	5	7

SERVICE AND WARRANTY

This tape unit has been rigorously checked out by capable quality control personnel. The design has been engineered with a precise simplicity which should assure a new level of reliability. Ease of maintenance has been taken into consideration during the design phase with the result that all components (other than mechanical components) have been selected from manufacturers "off the shelf" stock. Should a component fail, it may be readily replaced from PEC or your local supplier. The tape unit has been designed for "plug-in" replacement of circuit boards or major components which will ensure a minimum of equipment down time.

PEC warrants its equipment and materials to be free from defects in material and workmanship under normal use and service for a period of 12 months from the original date of shipment. Under the warranty period, the company's obligation being limited to repairing or replacing any defective part or parts of such products that are returned to PEC. All repairs and replacements made under this warranty are F. O. B. company's factory shipping point or company designated service depot.

Please read the instruction manual thoroughly as to operation, maintenance and component reference list. Should you require additional assistance in servicing this equipment, please contact the following regional Service Centers. A trained service representative will be pleased to assist you.

FIELD SERVICE OFFICES

Chatsworth, California	(213) 882-0030	Brussels, Belgium	$02-358065$
Houston, Texas	(713) 622-3620	Munich, Germany	5133056
Waltham, Massachusetts	(617) 899-0126	Stockholm, Sweden	(08) 870240
Ottawa, Canada	$(613) 725-3354$	Geneva, Switzerland	$358-415$

Section Page
I GENERAL DESCRIPTION AND SPECIFICATIONS
1-1 Introduction 1-1
1-2 Purpose of Equipment 1-1
1-3 Physical Description of Equipment 1-1
1-4 Functional Description 1-3
1-5 Specifications 1-7
1-6 Mechanical and Electrical Specifications 1-7
1-7 Intèrface Specifications 1-7
1-8 DTL Interface 1-9
1-9 DTL Interface Receivers and Transmitters. 1-11
II INSTALLATION AND INITIAL CHECKOUT
2-1 Introduction 2-1
2-2 Uncrating the Transport 2-1
2-3 Power Connections 2-2
2-4 Interface Connections 2-3
2-5 Initial Checkout Procedure. 2-3
2-6 Rack Mounting the 3000 Series Transport 2-5
2-7 Rack Mounting the 4000 Series Transport 2-8
III OPERATION
3-1 Introduction 3-1
3-2 Manual Controls. 3-1
3-3 Power 3-1
3-4 Load Forward 3-1
3-5 Forward 3-4
3-6 Ready. 3-5
3-7 Rewind 3-6
3-8 Interface Inputs 3-6
3-9 Synchronous Forward Command 3-6
3-10 Write Data Strobe 3-6
3-11 Rewind Command 3-6
3-12 Remote Reset 3-7
3-13 Load Forward Command 3-7
3-14 Ready Command 3-7
3-15 Disable Manual Controls 3-7
3-16 Write Data Parity 3-7
3-17 File Gap Command 3-8
3-18 Echo Check Reset (Optional) 3-8
3-19 Write Data Lines (WD0 through WD5 or WD7) 3-8
3-20 Inter-Record Gap Command 3-9
3-21 Interface Outputs 3-9
3-22 Data Busy 3-9
3-23 Gap In Process 3-9
3-24 End of Tape (EOT) 3-9
Section Page
III (continued)
3-25 Echo Check Error (Optional) 3-9
3-26 Beginning of Tape (BOT) 3-10
3-27 Tape Not Tensioned 3-10
3-28 Transport Ready 3-10
3-29 Loading Tape on Transport 3-10
3-30 Reel Loading 3-11
3-31 Tape Threading 3-11
3-32 Bring Tape to BOT 3-12
3-33 Bring Tape to the Ready State. 3-13
3-34 Unloading the Tape 3-13
IV THEORY OF OPERATION
4-1 Introduction 4-1
4-2 General Theory 4-1
4-3 Power Supplies 4-1
4-4 Capstan Drive System 4-3
4-5 Record Mode 4-3
4-6 Rewind Mode 4-6
4-7 Reel Servo System 4-6
4-8 Bringing the Transport to Operational Status. 4-8
4-9 Switch Power Control 4-8
4-10 Press LOAD FORWARD Control (First Time). 4-11
4-11 Press LOAD FORWARD Control (Second Time) 4-11
4-12 Special Case When a BOT Tab is Not Attached. 4-13
4-13 Special Case When Operational Status is Required Without Tape Motion 4-13
4-14 Rewinding Tape 4-14
4-15 Press REWIND Control 4-14
4-16 General Reset Generation 4-15
4-17 Recording Information. 4-16
4-18 Digit Representation 4-16
4-19 Data Recording 4-19
4-20 Error Checking Systems 4-24
4-21 General 4-24
4-22 Echo Check System 4-24
4-23 Error Correction Characters 4-25
4-24 Insertion of IBM-Compatible Gaps and Special Characters 4-26
4-25 Inter-Record Gap 4-26
4-26 File Gap 4-27
4-27 Generation of Inter-Record Gaps 4-30
4-28 Case (a) IRG Generation - 7-Track Mode 4-30
4-29 Case (a) IRG Generation - 9-Track Mode 4-36
4-30 Case (b) IRG Generation "On the Fly"' 7-Track Mode 4-40

TABLE OF CONTENTS (continued)
Section Page
IV (continued)
4-31 Case (b) IRG Generation "On the Fly" - 9-Track Mode 4-43
4-32 File Gap Generation 4-43
4-33 Echo Check Control 4-51
V PRINTED CIRCUIT BOARDS THEORY OF OPERATION
5-1 Introduction. 5-1
5-2 Theory of Operation 5-3
5-3 Reel Servo and Voltage Regulator - B 5-3
5-4 Reel Servo Amplifiers 5-3
5-5 Voltage Regulators 5-4
5-6 Overvoltage Protection 5-5
5-7 Capstan Drive, Synchronous 5-5
5-8 Capstan Servo Amplifier 5-5
5-9 Ramp Generators 5-6
5-10 Forward l (Synchronous Forward and Load Forward) 5-6
5-11 Rewind 5-6
5-12 Lamp Drivers 5-6
5-13 General Reset Circuit 5-6
5-14 Function Control, Synchronous B 5-7
5-15 Switch Contact Filter Circuit 5-8
5-16 Differentiators 5-8
5-17 Photosensor Circuits 5-8
5-18 Single-Shot 5-9
5-19 Write Power Control. 5-9
5-20 Transmitter - DTL 5-9
5-21 Receiver - DTL 5-10
5-22 Configuration A 5-10
5-23 Configuration B 5-11
5-24 Configuration C 5-11
5-25 Parity Generator 5-11
5-26 Binary Zero to BCDl0 Conversion 5-12
5-27 Double Buffer - Write Amplifier 5-12
5-28 Double Buffer, 9-Channel Write Amplifier 5-14
5-29 Function Control, Synchronous A 5-16
5-30 Differentiators 5-16
5-31 Single-Shots 5-17
5-32 Echo Check Parity 5-18
5-33 Cyclic Redundancy Check (CRC) Generator 5-20
5-34 Circuit Board Locations 5-23
5-35 Signal List 5-23

TABLE OF CONTENTS (continued)

Section Page
VI MAINTENANCE AND TROUBLESHOOTING
6-1 Introduction 6-1
6-2 Fuse Replacement 6-1
6-3 Electrical Adjustments 6-1
6-4 Power Supply 6-1
6-5 Required Test Equipment 6-1
6-6 Adjustment Procedure 6-1
6-7 Capstan Servo 6-2
6-8 Ramp Generators 6-2
6-9 Ramp Rise and Fall Time. 6-2
6-10 Synchronous Forward Speed 6-2
6-11 Reel Servo Potentiometers 6-2
6-12 Reel Servo Potentiometer Adjustment Procedure 6-3
6-13 BOT Photosensor Amplifier 6-4
6-14 Required Test Equipment 6-4
6-15 Adjustment Procedure 6-4
6-16 EOT Photosensor Amplifier 6-4
6-17 Motion Command and Check Character Delay Adjustments 6-5
6-18 Required Test Equipment. 6-5
6-19 Command Busy Delay 6-5
6-20 Write Pulse Delay 6-6
6-21 LRCC Delay 6-6
6-22 CRC Delay (9-track systems only) 6-7
6-23 Data Busy Delay 6-8
6-24 Mechanical Adjustments 6-8
6-25 Reel Servo Belt Tension 6-8
6-26 Tape Path Guide Alignment 6-8
6-27 Fixed Guides 6-9
6-28 Tension Arm Guides 6-9
6-29 Supply Tension Arm Guide 6-9
6-30 Take-up Tension Arm Guide 6-9
6-31 Guide Perpendicularity 6-11
6-32 Tape Tension. 6-11
6-33 Supply Tension Arm 6-11
6-34 Take-up Tension Arm 6-11
6-35 Limit Switch (Take-up Tension Arm) 6-13
6-36 Mechanical Maintenance 6-13
6-37 Preventive Maintenance Schedule 6-13
6-38 Cleaning the Transport 6-15
6-39 Maintenance Tools 6-16
6-40 Troubleshooting 6-16

TABLE OF CONTENTS (continued)

SectionVII SCHEMATICS, PARTS LISTS, AND WIRINGDIAGRAMS
7-1 Introduction. 7-1
APPENDIX A - GLOSSARY
Figure Page
1-1 Tape Transport (8-1/2 Inch Reel) 1-2
1-2 Tape Transport (10-1/2 Inch Reel). 1-4
1-3 Block Diagram of Synchronous Write Tape Transport, 3000/4000 Series 1-5
1-4 DTL Interface Circuit 1-10
2-1 Power Connector 2-3
2-2 Mounting Dimensions (8-1/2 Inch Transport) 2-6
2-3 Mounting Dimensions (10-1/2 Inch Transport) 2-9
3-1 Tape Path and Controls (3000 Series) 3-2
3-2 Tape Path and Controls (4000 Series) 3-3
4-1 Block Diagram of Power Supplies 4-2
4-2 Capstan Drive Block Diagram 4-4
4-3 Capstan Drive Waveforms 4-5
4-4 Reel Servo Diagram 4-7
4-5 Control Logic to Bring Transport to Operational Status 4-9
4-6 Allocation and Spacing for 9- and 7-Track Tape. 4-17
4-7 Write and Read Waveforms 4-18
4-8 One Channel of Data Electronics and Controls 4-21
4-9 Control Waveforms 4-23
4-10 IRG Format - 7-Track 4-28
4-11 IRG Format - 9-Track 4-28
4-12 File Gap Format - 7-Track. 4-29
4-13 File Gap Format - 9-Track 4-29
4-14 Gapping Control Logic 4-31
4-15 IRG Sequence for Case (a) Timing Diagram - 7-Track 4-33
4-16 IRG Sequence for Case (a) Timing Diagram - 9-Track 4-37
4-17 IRG Sequence On the Fly Timing Diagram - 7-Track 4-41
4-18 IRG Sequence On the Fly Timing Diagram - 9-Track 4-45

LIST OF ILLUSTRATIONS (continued)

Figure Page
4-19 File Gap Sequence Timing Diagram - 7-Track 4-47
4-20 File Gap Sequence Timing Diagram - 9-Track 4-49
5-1 Simplified Logic Diagram, "Master-Slave" Flip-Flop 5-2
6-1 Supply Tension Arm Guide Adjustment 6-10
6-2 Take-up Tension Arm Guide Adjustment. 6-10
6-3 Supply Tension Spring Measurement 6-12
6-4 Take-Up Tension Spring Measurement 6-12

LIST OF TABLES

Table Page
1-1 Mechanical and Electrical Specifications 1-8
l-2 Noise Margins 1-11
2-1 DTL Interface Signals 2-4
4-1 Cross Reference Chart 4-15
5-1 Function Control B, Cross Reference Chart 5-7
5-2 Function Control A, Cross Reference Chart 5-17
5-3 Circuit Board Locations 5-24
6-1 Preventive Maintenance Schedule 6-14
6-2 System Troubleshooting 6-17
7-1 List of Schematics 7-2
7-2 Part Number Cross Reference 7-3

SECTION I

GENERAL DESCRIPTION AND SPECIFICATIONS

1-1. INTRODUCTION

This section provides a functional description, physical description, and specifications for the Synchronous Write Tape Transport, 3000 and 4000 Series, manufactured by PERIPHERAL EQUIPMENT CORPORATION, Chatsworth, California.

1-2. PURPOSE OF EQUIPMENT

The Synchronous Write Tape Transport can record digital data on 7- (or 9-) track magnetic tape in IBM-compatible format, at speeds up to 25 ips. This transport accepts data at the corresponding rate up to a maximum of 20,000 characters per second.

The transport operates directly from 117- or 230-volts ac single-phase 48 to 400 Hz power.

1-3. PHYSICAL DESCRIPTION OF EQUIPMENT

The 3000 Series Transport is shown in Figure l-1 and utilizes an 8-1/2 inch tape reel. All electrical and mechanical components that are necessary to operate the transport are contained within a single unit designed to mount on the standard 19-inch retma rack.

The transport mechanism is mounted on the front plate, which is hinged to provide easy access to the electrical components and the printed circuit boards. The dust cover, which is also hinged, affords protection to the magnetic tape, magnetic head, capstan, and other tape components from dust and other contaminants.

Figure 1-1. Tape Transport (8-1/2 Inch Reel)

The operational controls, which illuminate when the relevant function is being performed, are mounted on the front plate and are accessible with the dust cover door closed. Two connectors, one for power and one for interface lines, are mounted on the rear panel.

The 4000 Series Transport, shown in Figure l-2, utilizes a 10-1/2 inch tape reel and also mounts in the standard 19-inch retma rack. Except for the physical size, the 4000 Series Transport is almost identical to the 3000 Series Transport.

1-4. FUNCTIONAL DESCRIPTION

Figure 1-3 shows a block diagram of the system. The transport utilizes a single capstan drive for controlling tape motion during the normal recording and rewind modes. This provides several operating advantages. It minimizes the number of mechanical components required to handle magnetic tape and completely eliminates troublesome parts such as pinch rollers (a major skew-producing component). The tape is always under a constant tension of 8 ounces, thus eliminating the possibility of tape "cinch" when the tape reel is placed on a computer transport.

The capstan is controlled by a velocity servo. The velocity information is generated using a dc tachometer that is directly coupled to the capstan motor shaft and produces a voltage that is directly proportional to the rotational velocity of the capstan. This voltage is compared to a reference voltage from the ramp generators using operational amplifier techniques and the difference is used to control the capstan motor. This capstan control technique gives precise control of tape accelerations and tape velocities, thus minimizing tape tension transients.

Figure 1-2. Tape Transport (10-1/2 Inch Reel)

Figure 1-3. Block Diagram of
Synchronous Write Tape Transport, 3000/4000 Series

During a Writing operation, the tape is accelerated in a controlled manner to the required velocity. This velocity is maintained constant and data characters are written on the tape at a constant rate such that:

$$
\text { Bit density }=\frac{\text { Character Rate }}{\text { Tape Velocity }}
$$

When data recording is complete, the tape is decelerated to zero velocity in a controlled manner.

Since the writing operation relies on a constant tape velocity, Inter-Record Gaps (IRGs) (containing no data), must be provided to allow for the tape acceleration and deceleration periods. Control of tape motion to produce a defined IRG is provided in conjunction with the tape acceleration and deceleration characteristics defined within the transport.

In addition to the capstan control system, the transport consists of a mechanical tape storage system, supply and take-up reel servo systems, write head and its associated electronics, and the control logic.

The mechanical storage system buffers the relatively fast starts and stops of the capstan from the high inertia of the supply and take-up reels. As tape is taken from or supplied to the storage system, a long-life potentiometer measures the displacement of the storage arm and feeds an error signal to the reel motor amplifier. This signal is amplified and used to control the reel motor such that the reel will either supply or take up tape to maintain the storage arm in its nominal operating position. The storage arm system is designed to give a constant tape tension as long as the arm is within its operating
region. This tape path design minimizes tape wear because there is only relative motion of the tape oxide at the magnetic head and the head guides.

The magnetic head writes the flux transitions on the tape under control of the data electronics.

The control logic operates on manual or remote commands and controls tape motion for synchronously writing IBM-compatible tapes.

The transport is also supplied with a photoelectric sensor for detection of the Beginning-of-Tape (BOT) tab and End-of-Tape (EOT) tab. The BOT signal is used internally in the transport for control purposes and both BOT and EOT signals are sent as levels to the customer.

The transport is designed with an interlock control to protect the tape from damage due to component or power failure.

1-5. SPECIFICATIONS

1-6. MECHANICAL AND ELECTRICAL SPECIFICATIONS
The mechanical and electrical specifications for the tape transport are shown in Table l-l.

1-7. INTERFACE SPECIFICATIONS
One interface is available with the Synchronous Write Tape Transport. This is the DTL interface that is described in the following paragraphs.

The interface circuits are designed so that a disconnected wire results in a false signal being interpreted at the receiver end of the wire. The customer must have specified which interface alternative is required (see Figure 1-4).

Table 1-1

Mechanical and Electrical Specifications

	3000 Series	4000 Series
Tape (computer grade) Width (inches) Thickness (mil)	0.5 1.5	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$
Tape Tension (ounces)	8.0	8.0
Reel Diameter (inches)	8.5	10.5
Recording Mode (IBM compatible)	NRZ1	NRZ 1
Tape Speed (ips) Standard	25.0	25.0
Instantaneous Speed Variation (\%)	± 3	± 3
Long-Term Speed Variation (\%)	± 1	± 1
Rewind Speed (ips)	75 nominal	75 nominal
```Interchannel Displacement Error* (static and dynamic) 800 bpi (microinches) 556 bpi (microinches)```	150 maximum 200 maximum	150 maximum 200 maximum
Start/Stop Time (milliseconds)**	$\frac{431.25 \pm 18.75 \mathrm{~ms}}{\text { Tape Velocity (ips) }}$	$\frac{431.25 \pm 18.75 \mathrm{~ms}}{\text { Tape Velocity (ips) }}$
Start/Stop Displacement (inch)**	$0.21 \pm 0.02$	$0.21 \pm 0.02$
Beginning of Tape (BOT) and End of Tape (EOT) Detectors	Photoelectric***   IBM compatible	Photoelectric***   IBM compatible
Weight (pounds)	60.0	85.0
Dimensions		
Height (inches)	12.25	24.5
Width (inches)	19.0	19.0
(from mounting surface)	11.7	11.7
Depth (inches) (total)	14.0	15.0
Operating Temperature ( ${ }^{\circ} \mathrm{F}$ )	35 to 122	35 to 122
Altitude (feet)	0 to 20,000	0 to 20,000
Power (volts ac) (watts) ( Hz )	$\begin{aligned} & 117 \text { or } 230 \\ & 120 \\ & 48 \text { to } 400 \end{aligned}$	$\begin{aligned} & 117 \text { or } 230 \\ & 250 \\ & 48 \text { to } 400 \end{aligned}$
Mounting	Standard 19-inch retma rack	Standard 19-inch retma rack
Electronics	All silicon DTL Logic	All silicon DTL Logic
*This is defined as the maximum displacement between any two bits of a character when the tape is written with all "ones".   **Start time and distance are related to actual tape motion and do not include start delays. ***Approximate distance from detection area to head gap equals 1.2 inches.		

Levels: Consistent with circuit configurations shown in Figure l-4.
Noise margins are as shown in Table l-2.

Pulses: Minimum pulse width of $2 \mu$ seconds.
Maximum width of 10 milliseconds, except WRITE DATA STROBE (see Paragraph 3-10).

Edge transmission delay not greater than 200 nanoseconds.

It is assumed that interconnection of PERIPHERAL EQUIPMENT CORPORATION and Customer equipment uses a harness of individual twisted pairs, each with the following characteristics.
(1) Maximum length of 20 feet.
(2) Not less than 1 twist per inch.
(3) 22 gauge or 24 gauge conductor with minimum insulation thickness of 0.01 inch.

It is important that the ground side of each twisted pair is grounded within a few inches of the customer's interface card to which it is connected.

Figure 1-4 shows the configuration for which the PERIPHERAL EQUIPMENT CORPORATION transmitters and receivers have been designed. Noise margins will depend on the circuit configuration, ambient temperature, and whether the interface line is in a high or low state.

In the high state, the relative movement of the transmitter +5 -volt line and receiver ground is important. In the low state, transmitter-ground-to-receiver-ground relative movement is important.


HIGH=FALSE LOW=TRUE


Figure 1-4. DTL Interface Circuit

Table l-2
Noise Margins*

Circuit State	$0{ }^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	
A\&C low	500 mv	400 mv	200	mv
A\&C high	2.0 v	2.1 v	2.25 v	
B\&D low	650	mv	550	mv
B\&D high	600	mv	700	mv
E low	450	mv	250	mv
E high	300	mv	450 mv	200
			mv	550
			mv	

*These margins are in excess of maximum crosstalk on a 20-foot long continuous cable without shielding.

1-9. DTL Interface Receivers and Transmitters
The design of the interface is based on the limited temperature range ( 0 to $75^{\circ} \mathrm{C}$ ) series of Diode Transistor Logic (DTL) dual in-line modules. DTL 944 power gates are used as transmitters and DTL 936 inverters or DTL 946 dual-input gates are used as receivers. The system is also suitable for using equivalent Transistor Transistor Logic (TTL) modules.

The interface is designed so that all signal inputs can be included in one harness and all signal outputs can be included in a second harness. The maximum transmission distance is 20 feet. The two harnesses can be run in close proximity. The signals are transmitted via individual twisted pairs to reduce crosstalk.

The high edge speeds involved result in considerable distortion of the signal. Matching techniques must be employed to avoid spurious signals due to distortion. The interface circuits are designed so that a disconnected wire results in a false signal.

To give maximum flexibility, the interface transmitters and receivers used by PERIPHERAL EQUIPMENT CORPORATION transports incorporate the matching that is necessary to interface satisfactorily with unmatched transmitters and receivers in the customer's equipment.

## SECTION II

INSTALLATION AND INITIAL CHECKOUT

## 2-1. INTRODUCTION

This section contains a summary of interface lines, information for uncrating the transport, as well as the procedure for electrically connecting and initially checking out the transport.

## 2-2. UNCRATING THE TRANSPORT

The transport is shipped in a protective container to minimize the possibility of damage during shipping.

Place the shipping container in the position indicated on the container.

Open the shipping container and remove the packing material so that the transport and its metal mounting frame can be lifted from the container.

Lift the transport out of the container using the metal shipping frame.

This metal shipping frame may be used during checkout of the transport if desired; however, it should be operated with the tape deck closed during checkout.

Check the contents of the shipping container against the packing slip and investigate for possible damage. If there is any damage, notify the carrier.

Open the tape deck and check that all cards are secured in their respective card slots. Also check for any visible mechanical damage.

## CAUTION


#### Abstract

THE TAPE DECK MAY BE OPENED, BUT PRECAUTION SHOULD BE TAKEN TO PREVENT THE TRANSPORT FROM TIPPING FORWARD AND POSSIBLY SUSTAINING DAMAGE.


The tape deck is opened by releasing the screw that secures it to the sheet metal electronic chassis. This may be accomplished by using a large flat-head screwdriver and turning the screw counterclockwise. This locking screw is located on the right-hand side of the transport under the dust cover door.

## 2-3. POWER CONNECTIONS

A power cord is supplied for plugging into a polarized ll7-volt outlet. The power requirement is 120 watts, nominal, for the 3000 series and 250 watts for the 4000 series. Figure 2-1 shows the pin allotment for the power connector.


1054

Figure 2-1. Power Connector

## 2-4. INTERFACE CONNECTIONS

Table 2-1 shows the Input/Output lines required. Details relating to the interface are contained in Section III.

## 2-5. INITIAL CHECKOUT PROCEDURE

Section III contains a detailed description of all controls. To check the proper operation of the transport before placing it in the system, follow the specified procedure.
(1) Connect the power cord.
(2) Place tape on the transport as described in Paragraph 3-29.
(3) Turn the transport power ON.
(4) Depress the LOAD FORWARD control momentarily to apply capstan-motor and reel-motor power.

Table 2-1
DTL Interface Signals

(5) Depress the LOAD FORWARD control a second time and hold it in until tape reaches the BOT tab and stops. Then release the LOAD FORWARD control. The READY indicator will be illuminated.
(6) The transport is now ready to receive remote or local commands.
(7) FORWARD can be checked by depressing the control and checking that tape runs at the specified speed.
(8) Run several feet of tape onto the take-up reel by using the FORWARD control.
(9) Depress the REWIND control momentarily to initiate the rewind mode and illuminate the REWIND indicator. The tape will rewind to the BOT tab.
(10) When at BOT, depress the REWIND control and hold it down until all of the tape rewinds onto the supply reel. The reel is then removed as described in Paragraph 3-34.

## 2-6. RACK MOUNTING THE 3000 SERIES TRANSPORT

The physical dimensions of the transport are such that it may be mounted in a standard retma rack. A 12-1/4 inch panel space is required. It requires a depth behind the mounting surface of at least 12 inches.

To rack mount the transport, follow the specified procedure. (Figure 2-2 shows the relevant mounting dimensions.)
(1) Place the transport in the normal operating position with the reels facing the operator.


1023
Figure 2-2. Mounting Dimensions (8-1/2 Inch Transport)
(2) Open the dust cover door and remove the capstan using the spline drive wrench supplied (note the position of the capstan for replacement). Unlock the tape deck as described in Paragraph 2-2. Close dust cover door.
(3) Open the tape deck, taking care that the transport does not tip forward.
(4) Remove the dust cover door and rim by removing 5 flathead screws that are located at the perimeter on the back of the tape deck. Lift off the cover door and rim.

## CAUTION

WHEN REMOVING TRIM FROM THE DECK, CARE MUST BE TAKEN TO AVOID CONTACT BETWEEN THE HEAD AND GUIDES AND THE OVERLAY PLATE.
(5) Close the tape deck and lock in place.
(6) Place the transport on its back so that the reels are facing up.
(7) Remove the screws that mount the transport to the metal shipping frame.
(8) Lift the transport out of the shipping frame and place it in the new cabinet.
(9) Line up the mounting holes of the transport and cabinet and bolt the transport to the cabinet.

## NOTE

Transport mounting holes are for standard retma rack mounting.
(10) Open the tape deck and replace the dust cover door, rim, and capstan.
(11) Clean the tape deck as described in the maintenance procedure, Paragraph 6-38.
(12) Close the dust cover door.

## 2-7. RACK MOUNTING THE 4000 SERIES TRANSPORT

The physical dimensions of the transport are such that it may be mounted in a standard retma rack. A 24-1/2 inch panel space is required. It requires a depth behind the mounting surface of at least 12 inches.

To rack mount the transport, follow the specified procedure. (Figure 2-3 shows the relevant mounting dimensions.)
(1) Place the transport, still in its shipping frame, in the normal operating position with the reels facing the operator.
(2) Open the dust cover door and unlatch the tape deck by rotating the fastener.
(3) From the inside of the deck plate, disconnect the interchassis connector and the head cable connector bracket. Disconnect the deck retaining linkage.
(4) Remove the two hinge retainers located at the bottom of the hinge blocks. Lift the deck plate assembly until the painted arm of the hinge (attached to the deck plate) clears the hinge pins and the deck is free from the chassis.


1043
Figure 2-3. Mounting Dimensions (10-1/2 Inch Transport)
(5) Separate the electronic chassis from the hinge frame and the shipping supports.
(6) Mount the electronic chassis in the rack with four screws positioned opposite the relief holes in the hinge frame.
(7) Mount the hinge frame over the chassis utilizing the remaining mounting holes.
(8) Hang the deck on its hinges. Replace the hinge retainer, deck retaining linkage, the interchassis connector, and the head connector .
(9) Clean the tape deck as described in the maintenance procedure, Paragraph 6-38.
(10) Close dust cover door.

## 3-1. INTRODUCTION

This section contains information to manually operate the tape transport and specifications related to the interface input and output signal lines.

## 3-2. MANUAL CONTROLS

A power switch and four operational controls, are located on the front of the tape transport (see Figures 3-1 and 3-2). These controls are used to apply ac power to the transport, bring the tape to Beginning of Tape (BOT), rewind the tape to BOT and bring the transport to the Ready state.

## 3-3. POWER

The POWER control supplies ac power to the transformer. Both sides of the power line are switched. When power is turned on:
(1) All power supplies are established
(2) The ground returns of all the motors are open-circuited.
(3) A GENERAL RESET signal is applied to all the relevant control flip-flops.

## 3-4. LOAD FORWARD

The LOAD FORWARD control is a momentary switch. After power has been applied to the transport and tape has been loaded, momentarily depressing the LOAD FORWARD switch closes the interlock relay, applies ground returns to the capstan motor and reel


Figure 3-1. Tape Path and Controls (3000 Series)


Figure 3-2. Tape Path and Controls (4000 Series)
motors, and removes the GENERAL RESET signal. When tape is loaded on a transport, but has not been tensioned, the limit switch on the take-up storage arm is still open; momentary depression of the LOAD FORWARD control bypasses the switch and allows the reel motors to bring the storage arms to their nominal operating position.

After the tape has been loaded and power has been applied to the capstan motor and reel motors, each reel servo will maintain its respective storage arm in the nominal operating position.

To bring the tape to BOT, the LOAD FORWARD control must again be depressed and held depressed until the BOT tab has passed the phototab detector. After the BOT tab has been detected, the tape will be brought to a controlled stop with the BOT tab displaced the proper distance from the magnetic head, even though the LOAD FORWARD control is still depressed. Detecting the BOT tab also places the transport in the READY condition and illuminates the READY indicator. When the tape has come to a stop, the LOAD FORWARD control may be released.

After the tape has been brought to BOT, when the LOAD FORWARD control is again depressed, the tape will move at the specified speed until the control is released.

## 3-5. FORWARD

The FORWARD control is a momentary switch which, when held depressed, enables tape to move forward at the normal synchronous forward speed.

3-6. READY
The READY control is a momentary switch that is illuminated when the transport is in the READY state. READY state indicates that the transport is ready to receive remote commands.

The transport can be placed in the READY state by any of the following procedures.
(1) Load the tape on the transport and bring the tape to BOT by using the LOAD FORWARD control.
(2) Apply power to the transport, momentarily depress the LOAD FORWARD control and then the READY control. This is useful when bringing the transport to READY without tape movement.

Remove the READY state by using one of the following.
(1) Turn power to OFF.
(2) Apply REMOTE RESET.
(3) Place the transport in the Rewind mode.

All of the manual controls except POWER may be inhibited remotely using the DISABLE MANUAL CONTROLS interface input.

The REWIND control is a switch which, when momentarily depressed, causes the tape to move in reverse at a nominal speed of 75 ips. Upon reaching the BOT tab, the rewind operation ceases and the tape comes to a controlled stop. If already at Load Point when the REWIND control is depressed, tape will run in reverse at 75 ips until the control is released. The REWIND indicator is illuminated while the tape is rewinding.

3-8. INTERFACE INPUTS
3-9. SYNCHR ONOUS FORWARD COMMAND
This is a level which, when true, causes tape to move forward at the specified speed. When the level goes false, tape motion ceases. The velocity profile is trapezoidal with nominally equal rise and fall times.

3-10. WRITE DATA STROBE
This is an input pulse for each character to be written. It is assumed that the data lines change before or coincident with the leading edge of the WRITE DATA STROBE pulse. The recording density is determined by the frequency of the pulse train. Frequency stability of the pulse train should be better than 0.25 percent. WRITE DATA STROBEs should be not less than $2 \mu \mathrm{~seconds}$ wide and the leading edge of a subsequent WRITE DATA STROBE must be separated from the trailing edge of the preceding WRITE DATA STROBE by a minimum duration of $20 \mu$ seconds. WRITE DATA STROBEs should never be issued if the transport is not ready.

## 3-11. REWIND COMMAND

This is a pulse which causes tape to move in reverse at a nominal speed of 75 ips. Upon detecting the

BOT tab, the rewind operation will cease and the tape will decelerate to a controlled stop. The velocity profile is trapezoidal with rise and fall times of less than 1.0 second.

## 3-12. REMOTE RESET

This is a level which, when true, resets all relevant flip-flops in the control logic. It must be true for a minimum of 2 milliseconds.

## 3-13. LOAD FORWARD COMMAND

This is a level which, when true, causes tape to move forward at the specified tape speed. When the BOT tab reaches the photosensor, the tape stops after completing the initial gap sequence. If the level is returned to the false state and then back to the true state, motion is again initiated. Tape motion stops when the LOAD FORWARD command becomes false.

## 3-14. READY COMMAND

This is a pulse which, if tape is tensioned, can be used to place the transport in the READY state and illuminate the READY indicator. READY state indicates that the transport is ready to receive remote commands. This line will normally be used when a BOT tab is not present on the tape and a LOAD FORWARD command is given.

3-15. DISABLE MANUAL CONTROLS

This is a level which, when true, causes the Manual Controls to be inoperative, except the power switch.

3-16. WRITE DATA PARITY

This is a level which, when true, will cause the writing of a bit in the parity channel, provided the selector switch on the Receiver

PCBA is in the external (X) position. With the switch in the "odd" (O) or "even" (E) positions, the selected parity is internally generated and the WRITE DATA PARITY interface line is ineffective. It must adhere to the timing requirements established for the WRITE DATA lines.

3-17. FILE GAP COMMAND
This is a pulse which, when true, will initiate the generation of a 3.8-inch gap where the File Mark character and its associated LRC character is written.

In a 7-track transport, the File Mark character and its associated LRC character consists of bits recorded on tape in data bit positions WD0, WDl, WD2, and WD3. In a 9-track transport, these characters are recorded on tape in data bit positions WD3, WD6, and WD7. In the 9-track transport, the CRC character is omitted in the File Mark.

The leading edge of the FILE GAP command can occur coincident with, or at any time after, the termination of the SYNCHRONOUS FORWARD command.

3-18. ECHO CHECK RESET (Optional)
This is a level which, when true, will reset the Echo Check Error flip-flop. Note that this flip-flop is also reset by internal logic at the end of each record.

3-19. WRITE DATA LINES (WD0 through WD5 or WD7)
A true level on a data line occurring coincident with the WRITE DATA STROBE line transition will cause a "one" bit to be recorded in its corresponding track. The level on the WRITE DATA line must be maintained for a duration of $10 \mu s e c o n d s$ after the leading edge transition of the WRITE DATA STROBE.

Normally, the writing of check characters at the end of a record is initiated by the termination of the SYNCHRONOUS FORWARD command. If it is required to generate an Inter-Record gap (IRG) "on the fly" (i.e., at a constant tape speed), the SYNCHRONOUS FORWARD command remains enabled and a pulse on the IRG line initiates the check character generation. The IRG signal must be coincident with the leading edge of the last WRITE DATA STROBE for the record.

## 3-21. INTERFACE OUTPUTS

## 3-22. DATA BUSY

This is a signal which goes false at a specified time related to tape speed, after the receipt of a SYNCHR ONOUS FORWARD command. The false condition of this signal is used by the controller to release WRITE DATA STROBEs to the transport.

## 3-23. GAP IN PR OCESS

This is a level which, when true, indicates that a File Gap or initial BOT gap sequence is in process.

## 3-24. END OF TAPE (EOT)

This line is true when the EOT tab is being detected. Circuitry using this output should not assume that the transitions to and from the true state are clean.

3-25. ECHO CHECK ERROR (optional)
This is a line which, when true, indicates that an Echo Check Parity Error has been detected. This line remains true until receipt of an ECHO CHECK RESET command, or until reset by internal logic at the end of each record.

## 3-26. BEGINNING OF TAPE (BOT)

This line is true when the BOT tab is being detected. Circuitry using this output should not assume the transitions to and from the true state are clean.

## 3-27. TAPE NOT TENSIONED

This line is true when the tape storage arms are not in the nominal operating position.

## 3-28. TRANSPORT READY

This line is true when the tape transport is in a condition to receive remote commands.

## 3-29. LOADING TAPE ON TRANSPORT

The 3000 Series transport, in the position shown in Figure 3-1, has the take -up reel on the left side (facing the transport) and is located below the manual controls. The supply reel (reel to be recorded) is located on the right-hand side.

The 4000 Series transport, in the position shown in Figure 3-2, has the take -up reel on the top (facing the transport) and is located below.

## CAUTION

BE SURE THE SUPPLY REEL IS SUCH THAT TAPE WILL UNWIND FROM THE REEL WHEN THE REEL IS TURNED CLOCKWISE WHILE FACING THE TRANSPORT. THIS IS SHOWN IN FIGURE 3-1.

To load the supply reel, position the reel over the reel retainer hub and then depress the center plunger. This will allow the reel to slip over the rubber ring on the reel retainer. Press the reel evenly and firmly against the back of the reel retainer hub while the center plunger is depressed. While holding the reel in this position, release the center plunger. The reel is now properly aligned in the tape path and ready for tape threading.

## 3-31. TAPE THREADING

Thread the tape through the transport as shown in Figure 3-1. Wrap the tape leader on the take up reel so that the tape will be wound on the reel when the reel is rotated clockwise. Wind several turns on the take-up reel and then turn the supply reel counterclockwise until the slack tape has been taken up.

## CAUTION

IF SLACK IS LEFT IN THE TAPE, TAPE DAMAGE MAY RESULT WHEN POWER IS APPLIED. AFTER THE TAPE HAS BEEN MANUALLY TENSIONED, CHECK TO BE SURE THE TAPE IS PROPERLY LOCATED ON ALL GUIDES OR TAPE DAMAGE MAY RESULT.

CLOSE THE DUST COVER DOOR AND KEEP IT CLOSED EXCEPT WHEN CHANGING TAPE REELS. DATA RELIABILITY DUE TO TAPE CONTAMINATION WILL BE IMPAIRED IF THE DOOR IS LEFT OPEN.

## 3-32. BRING TAPE TO BOT

After the tape has been loaded on the transport, the following steps will bring the tape to BOT.
(1) Turn the power on with the power switch on the Manual Control Panel.
(2) Momentarily depress the LOAD FORWARD control. This will apply power to the capstan motor and reel motors and allows the reel servos to operate, bringing the tape storage arms to the nominal operating position.

## CAUTION

CHECK TO SEE THAT THE TAPE IS POSITIONED PROPERLY ON ALL GUIDES OR TAPE DAMAGE MAY RESULT.
(3) Depress the LOAD FORWARD control and hold depressed. This will move the tape forward at the specified velocity. When the BOT tab is detected, the tape will come to a controlled stop with an IBM-compatible displacement between the tab and the record head.

The LOAD FORWARD control may now be released.

When the above sequence has been followed, the READY indicator will be illuminated when the BOT tab is detected.

The transport is now ready to receive remote commands.

CAUTION
CLOSE THE DUST COVER DOOR AND KEEP IT
CLOSED EXCEPT WHEN EXCHANGING TAPE
REELS. DATA RELIABILITY WILL BE IM-
PAIRED DUE TO TAPE CONTAMINATION IF THE DOOR IS LEFT OPEN.

## 3-33. BRING TAPE TO THE READY STATE

If the power is turned off, complete the following procedure to bring the transport to the Ready State.
(1) Turn power on with the POWER control.
(2) Momentarily depress the LOAD FORWARD control.
(3) Depress the READY control.

The transport is now in a Ready State.

3-34. UNLOADING THE TAPE
To unload a tape, complete the following procedure if the power has been switched off (if power has not been switched off and the READY indicator is illuminated, start the procedure at Step (3)).
(1) Turn the transport power on.
(2) Momentarily depress the LOAD FORWARD control to apply capstan-motor and reel-motor power.
(3) Momentarily depress the REWIND control. When the tape has rewound to BOT, the tape will come to a controlled stop.

NOTE
When rewind has been initiated, the tape cannot be stopped until it reaches BOT (unless transport power is turned off). After detecting BOT, the last few feet of tape can be unwound by using the REWIND control. When the REWIND control is released, the tape will stop. Depress the REWIND control and allow the tape leader to wind onto the supply reel. When the tape leader has emptied from the take-up reel, tape tension will be lost which allows the tension arms to move to the unload position. When the storage arms move to this position, an interlock switch is activated which removes power from the capstan motor and reel motors.
(4) Open the dust cover door, depress the reel hub retainer plunger and remove the supply reel. Close the dust cover door.

## SECTION IV <br> THEORY OF OPERATION

## 4-1. INTRODUCTION

This section provides a general theory of operation of the Synchronous Write Tape Transport.

## 4-2. GENERAL THEORY

The transport consists of the mechanical and electronic components necessary to record data on magnetic tape which can be reproduced on an IBM digital tape transport or its equivalent. The systems that comprise the transport are:
(1) Power supplies
(2) Capstan drive system
(3) Tape storage systems and associated reel servos
(4) Magnetic recording head and associated tape guides
(5) General reset logic
(6) Data recording electronics
(7) Control logic required to bring the transport to operational status and the logic necessary to allow forward and rewind operations.

## 4-3. POWER SUPPLIES

Figure 4-1 is a block diagram of the power supplies. The ac power lines, both live and neutral, are controlled by the power switch. A series 20 -ohm resistor in the neutral line limits the surge of current into the power supply capacitors. This resistor is shorted when the interlock relay contacts are closed. Unregulated dc (at a nominal $\pm 16$


Figure 4-1. Block Diagram of Power Supplies
volts) is used to drive the motors and the regulated supplies. Four regulated supplies are generated. The +10 - and -10 -volt lines are regulated to $\pm 7$ percent and can supply 300 milliamps each. The reference diodes in the +5 - and -5 -volt regulators are driven from their respective 10 -volt line. The 5 -volt lines are adjusted and regulated to within $\pm 1$ percent and can supply 3.0 amps . (Note that certain of these voltages are brought out to the interface connector; however, this is for monitoring only. These voltages should not be utilized by the customer.)

Since DTL integrated circuits are widely used, it is necessary to employ a silicon controlled rectifier (SCR) for "crowbar" protection against over-voltages on the +5 -volt line. The circuits used can withstand up to 12 volts for 1 second. When the +5 -volt line rises above 8 volts, the SCR connected between the +16 volts and 0 volt is turned on.

This holds the voltage across the integrated circuits down until the fuse opens (a few milliseconds later). A separate 0 -volt line is used for the high-current servo circuitry and is called OV(S) (S represents servo). The logic circuitry 0 -volt line is called $0 V(L)$ (L represents logic). They are connected together at the power-distribution terminal block (TB201).

4-4. CAPSTAN DRIVE SYSTEM
Figure 4-2 is a block diagram of the capstan drive. The capstan drive mechanism is a direct-coupled system that consists of a dc motor, capstan, and dc tachometer. The dc tachometer indicates the angular velocity of the capstan.

The motor and tachometer are used in a conventional velocity servo that is controlled by the output of one of two ramp generators, depending upon the mode of operation (forward or rewind). Resistors R1 and R2 determine the output of the ramp generators which, in conjunction with the dc tachometer via $R 3$, controls the capstan speed. When the transport is in the standby condition, none of the ramp generators is enabled. In this case, the capstan position is maintained by the motor friction.

Tape is held on the capstan by friction and is in contact with the capstan through an angle of 180 degrees. A tape tension of approximately 8 ounces assures no possibility of slippage.

## 4-5. Record Mode

The receipt of a SYNCHRONOUS FORWARD command enables the Forward 1 ramp generator and the tape is accelerated to a prescribed velocity, depending on the speed selected by the customer. This velocity is maintained until the ramp generator is disabled and the tape is decelerated. Figure 4-3 shows the relevant waveforms.


Figure 4－2．Capstan Drive Block Diagram


Figure 4-3. Capstan Drive Waveforms

The Forward 1 ramp generator is activated by the SYNCHRONOUS FORWARD or FILE GAP commands, or the FORWARD or LOAD FORWARD controls. This ramp generator is designed to allow the tape velocity to reach the specified value before a distance equal to one-half of an IBM IRG distance has been traversed. In Figure 4-3 a typical forward, stop sequence is shown. Also shown are the ramps and the tachometer output that are directly related to the actual tape movement. Note that this tachometer output is delayed slightly behind the Ramp Generator waveform. This is inherent in this type of directdrive capstan servo system because of the system bandwidth.

4-6. Rewind Mode
The Rewind ramp generator rises and falls in less than 1.0 second to generate a high-speed reverse velocity. The long rise and fall times of the Rewind ramp generator are required to prevent the tape storage arms from moving outside their operating region during tape acceleration and deceleration.

Tape speed is controlled in the Rewind mode by the capstan. The tape is in contact with the capstan through an angle of 180 degrees and the tape tension of 8 ounces assures proper packing of the tape on the supply reel.

## 4-7. REEL SERVO SYSTEM

Figure 4-4 is a diagram of a reel servo. Identical linear position servos control the supply and takeup of tape by the reels. The storage arms isolate the inertia of the reels from the capstan. Lowfriction ball-bearing guides are used to minimize tape tension variations. The position of the storage arm is sensed by a long-life potentiometer. The potentiometer output, after amplification, drives the reel motor in the direction to center the arm. The geometry of the storage arm and spring ensure that only negligible changes in tape tension occur as the storage arm moves through its approximately 30-degree arc.

With the tape stationary, the storage arms take up a position such that the amplified potentiometer output, when applied to the reel motor, produces enough torque to balance the spring torque. Initially, the potentiometers have been set by rotating the body of the potentiometers so that the tension arms operate in the center of their range. The position of the storage arm changes slightly for different steadystate capstan velocities. This occurs because the amplifier output varies with the back-emf of the motor, requiring corresponding input voltages from the potentiometer.


Figure 4-4. Reel Servo Diagram

When the capstan applies a tape velocity transient in either direction, the arm moves and the potentiometer output changes, driving the reel motor in the direction to recenter the arm.

Without tape, the arms rest against the stops and the tensionarm limit switch is open, causing the interlock relay to be de-energized, removing power to all motors.

Each reel motor is driven by a linear amplifier with transitional lead servo stabilization. The low frequency gain of the amplifier is 11 volts per volt. The zero of the stabilization network is at 1.5 Hz , and the pole is 15 Hz .

When the transport operates in the Rewind mode, the gain of the amplifier is approximately doubled to accommodate the higher velocity.

4-8. BRINGING THE TRANSPORT TO OPERATIONAL STATUS
Operation is best understood by considering the sequence required to achieve operational status. Figure 4-5 is a basic logic diagram illustrating the necessary components and interconnections. When the tape transport is located some distance from the associated equipment, it is desirable (after bringing the machine to operational status) to ensure that the manual controls cannot be inadvertently operated. When the DISABLE MANUAL CONTROLS signal (which is generated externally) is true, operation of any of the manual controls (except the power switch) cannot generate the signal required to set the associated flip-flops.

4-9. Switch Power Control
This applies ac power to the power supply via the 20 -ohm resistor. The value of this resistor is chosen to limit the input surge caused by the capacitor-input filter network, but it is not sufficient to disturb the regulation of the stabilized power supplies. The following conditions now exist.
(1) All power supplies are established; i. e., $\pm 16, \pm 10$, and $\pm 5$ volts.
(2) The interlock relay is de-energized and contacts $\mathrm{KA}, \mathrm{KB}$, $\mathrm{KC}, \mathrm{KD}$, and KE are open.
(3) The return lines for the two reel motors and the capstan motor are open-circuited via contacts $K C, K D$, and $K E$.
(4) A GENERAL RESET signal is applied to all relevant flip-flops (it can also be initiated externally).


Figure 4-5. Control Logic to Bring
Transport to Operational Status
(5) The TRANSPORT READY line is false.
(6) The TAPE NOT TENSIONED line is true.

Tape can be loaded and threaded while in this condition, since power is not applied to the motors.

4-10. Press LOAD FORWARD Control (First Time)
This bypasses the tension-arm limit switch and relay-latching contact KB, energizing the interlock relay. Provided that the tape is correctly loaded, power is now applied to the reel motors. The motors move the reels in a direction to establish tape tension. The tension arms move into their operational region and the tension-arm limit switch closes, allowing the interlock relay to latch. The LOAD FORWARD control may now be released. At this time the GENERAL RESET signal is removed and the TAPE NOT TENSIONED signal becomes false.

If at any time the tension arms move outside their operating region, the interlock relay de-energizes, power is disconnected from the motors, and the GENERAL RESET signal is applied. The tensionarm limit switch opens at both extremes of the arm travel. This provides protection against over-tension as well as under-tension conditions.

## 4-11. Press LOAD FORWARD Control (Second Time)

If the LOAD FORWARD control is depressed and held, the following sequence occurs.
(1) Flip-flop 5A is set via OR gate 501 and the $\bar{Q}$ output is differentiated by 5dl. The output pulse sets flip-flop 5B. Flip-flop 5A is used in conjunction with the LOAD FORWARD switch to eliminate the effects of contact bounce.
(2) The $\bar{Q}$ output of flip-flop 5B enables the Load Forward lamp driver and the Load Forward (Forward l) ramp generator, causing the tape to accelerate to the specified speed. One input of AND gate 503 is enabled by the $Q$ output of flip-flop 5B.
(3) Tape motion will continue as long as the LOAD FORWARD switch is held depressed, until the BOT tab reaches the BOT sensor, at which time the second input of AND gate 503 is enabled.
(4) The output of AND gate 503 sets flip-flop 5 E via OR gate 505.
(5) Since the LOAD FORWARD control is still depressed, the BOT sequence is initiated via AND gate 506 and flip-flop 5B is reset via OR gates 511 and 5l2, disabling the Forward 1 ramp generator and lamp driver.
(6) Prior to the time that the BOT is initiated, the magnetic head is adjacent to the tape just forward of the BOT tab. The tape advances so that the trailing edge of the BOT marker is less than 0.5 inch forward of the head gap which establishes IBM compatibility.
(7) While the BOT sequence is in process, the NOT GAP IN PROCESS signal will be false. When flip-flop 5E is set, one input to AND gate 513 is true. After completion of the BOT sequence, the NOT GAP IN PROCESS signal is true and enables AND gate 513 which indicates TRANSPORT READY. Since the TRANSPORT READY signal is true, the transport is now ready to receive remote commands.

If at any time before the BOT tab arrives the LOAD FORWARD control is released, flip-flop 5A resets flip-flop 5B via OR gate 5ll, differentiator 5d2 and OR gate 512. When flip-flop 5B is reset, the Load Forward (Forward l) ramp generator is disabled. Depressing the LOAD FORWARD control again will restart tape motion.

## 4-12. Special Case When a BOT Tab is Not Attached

Sometimes a BOT tab is not attached to the tape. It is then possible to bring the transport to operational status by the following sequence.
(1) After the operations described in Paragraphs 4-9 and 4-10 are performed, tape motion will be initiated as described in the first two steps of Paragraph 4-ll.
(2) The READY control is depressed, flip-flop 5E is set via OR gates 504 and 505 and results in the conditions described in Steps (5) through (7) of Paragraph 4-11.

In essence, depressing the READY control simulates the occurrence of the BOT tab.

## 4-13. Special Case When Operational Status is Required Without Tape Motion

Provision has been made to cover the situation described in the following paragraphs.

After recording data, it may be required to turn power off and, at a later time, turn power on and re-establish operational status without tape motion.

It is noted that due to the possibility of tape motion during off/on switching, a spike may be written onto the tape. Therefore, with this type of operation, data errors may occur in the off/on switching sequence.

Operational status is re-established by the following procedure.
(1) When the power control is on and the LOAD FORWARD control is momentarily depressed, tape tension is established and the GENERAL RESET signal is removed from all flip-flops.
(2) Depressing the READY control sets flip-flop 5E via OR gates 504 and 505, enabling the Ready lamp driver. However, since the LOAD FORWARD control is not depressed, AND gate 506 is not enabled and the BOT sequence is omitted.

## 4-14. REWINDING TAPE

The necessary logic and interconnections are shown in Figure 4-5.

## 4-15. Press REWIND Control

When the REWIND control is momentarily depressed, the following sequence occurs.
(1) Flip-flop 5D is set via OR gate 502.
(2) The Rewind ramp generator is enabled and the tape accelerates to the rewind speed.
(3) Flip-flop 5E is reset, disabling WRITE POWER CONTROL and the Ready lamp driver. The TRANSPORT READY signal becomes false.

Once initiated in this manner, rewind cannot be stopped until a BOT tab is detected, power is switched off, or a REMOTE RESET signal is applied via the interface.

When the BOT tab is detected, flip-flop 5C is set and flip-flop 5D is reset. The Rewind ramp generator is disabled and the tape comes to a halt. Since flip-flop 5B is not set, AND gate 503 is not enabled. The output of inverter 508 is used instead of the $\bar{Q}$ output of flip-flop 5D because the permanent clear input clamps $\bar{Q}$ and only $Q$ can respond to the set signal from OR gate 502.

Since flip-flop 5C is set, the Rewind flip-flop 5D has a permanent clear input and further rewind operation is now under the control of the REWIND control. Thus, if the control is depressed, tape moves in reverse until it is released. This mode of operation assists in unloading tape from the take-up reel.

Flip-flop 5C is reset when the LOAD FORWARD control is depressed via flip-flop 5A, differentiator 5dl, and OR gate 510. The other input to OR gate 510 is used to reset flip-flop 5C after the BOT tab has been detected when bringing the transport to operational status (as described in Paragraph 4-8).

4-16. GENERAL RESET GENERATION
Because of the complexity of the GENERAL RESET wiring, the generation of this signal and its path through the system is discussed. Figure 4-5 in conjunction with Table 4-1 will assist in understanding the system.

Table 4-1
Cross Reference Chart

Component   (Shown in Figure 4-5)	Circuit Location		
	Input   Pin	Circuit Board	Output   Pin
Inverter 515		Function Control   J203	17
Inverter 514	Y	Receiver, DTL   Interface J205	25
General Reset Signal   Generator 516	L	Capstan Drive   J202	M

On examination of Figure 4-5, note that a GENERAL RESET signal can be generated by either one of two methods: when the interlock relay is open or by a REMOTE RESET signal from the customer via the interface.

Since the input of inverter 515 is floating when the interlock relay is open, the output of inverter 515 is low, providing a true TAPE NOT TENSIONED signal. The output of inverter 515 is also fed to inverter 514 whose output becomes high and in turn is fed to GENERAL RESET signal generator 516. The output of generator 516 being low provides a GENERAL RESET signal to all relevant flip-flops in the system. Actually the output of the generator 516 is at -0.7 volt; however, this voltage is compensated for by the diodes at the GENERAL RESET signal inputs of each flip-flop.

When the customer initiates a REMOTE RESET signal, the signal (which is collector OR'd to the TAPE NOT TENSIONED signal at Receiver circuit board J205) is true at the input of inverter 514. The GENERAL RESET signal is then generated as explained in the previous paragraph.

## 4-17. RECORDING INFORMATION

## 4-18. Digit Representation

Information is recorded in the NRZI mode; (i.e., a "l" on the information line causes a change of direction of magnetization between positive and negative saturation levels). Two tape formats are in general use. They are the IBM 727/729 7-track format which can operate at 200 , 556 and 800 bpi , and the IBM 2400 9-track format which operates at 800 bpi only. Figure 4-6 illustrates the relevant 7- and 9track allocations and spacing. In the 9-track system consecutive data channels are not allocated to consecutive tracks. This organization


ALL TRACK LOCATIONS $\pm 0.003$ in


Figure 4-6. Allocation and Spacing for 9- and 7-Track Tape
increases tape system reliability since the most used data channels are located near the center of the tape; consequently, they are least subject to errors caused by contamination of the tape.

Figure 4-7 shows typical waveforms which occurred during a write operation and, for reference, the associated readback waveforms which can be obtained by reading at a constant speed. It is shown that the the magnetization transitions recorded on the tape are not perfectly sharp. This is due to the limited resolution of the magnetic reproducing process.

During reading, the amplified readback voltage is full-wave rectified (since no significance is attributable to the sign of the readback voltage) and clipped to remove base line noise. This is necessary because there is no read signal output for a recorded zero. The output of the rectifier is peak sensed and a pulse generated for each "l" recorded.


Figure 4-7. Write and Read Waveforms

Figure 4-8 shows a logic diagram of one channel of data electronics together with the necessary control.

Included in the transport is a parity generation circuit (not shown in Figure 4-8) which can generate odd or even parity, depending on the setting of a switch and a specialcircuitto provide Binary Zero to BCDl0 conversion. This may be required because zero in some systems is represented by all "zeros" on the data lines. If BCD recording with even parity is being used, an invalid character will result. Therefore, the special circuit is arranged to detect the all-zero input condition and force the " 1 " and " 3 " channels to a " 1 " state so that BCD10 is recorded. The circuits are detailed in Section V. This system is capable of accepting and recording data at a rate between 300 and 20,000 characters per second.

Flip-flops 8A and 8B (see Figure 4-8) comprise the two-stage input buffer and flip-flop 8 C is the Write current generator. This generator, in conjunction with the center-tapped head, maintains the magnetization on the tape in the appropriate direction between changeovers as required by the NRZI format. In a 7 -track system, data bit N is routed directly to gate 806. In a 9-track system, data bit $N$ is routed to the CRC generator. During data recording, gate 802 is enabled and the data bit transferred to gate 806 via AND gate 802 and OR gate 804 . It is also used to generate the CRCC.

During a Gapping sequence, gate 802 is disabled and gate 803 is enabled so that CRCC bit $N$ is transferred to gate 806. The lines marked PRIME for LRCC and PRIME for FM are also required by the Gapping sequence. Details of this Gapping sequence are discussed in Paragraphs 4-27 through 4-32. Flip-flops 8D and 8E together with gate 811 and the $4-\mu$ second delay comprise the control loop.

Operation of the system can be understood by considering what happens during a recording operation. It is assumed that the transport has been brought to operational status so that WRITE POWER CONTROL is enabled and current is flowing in the heads. Initially, all flip-flops are reset so that their outputs are false. On receipt of a SYNCHR ONOUS FORWARD command, the transport accelcrates under the control of the Forward l ramp generator. Throughout the acceleration period, a DATA BUSY signal generated on the Function Control A (see Schematic 100358) circuit board indicates that the transport is unable to accept data. At the end of the acceleration period, the DATA BUSY signal goes false; therefore, data and WRITE DATA STROBEs can be accepted. Figure 4-9 shows typical waveforms.

On receipt of a WRITE DATA STROBE, the data level on the input wire is strobed into the Buffer 2 flip-flop for each channel via AND gate 806. In the transport, a "l" on the data line causes Buffer 2 to toggle (a " 0 " leaves it unchanged).

Flip-flop 8D is set and the $Q$ output transmitted via AND gate 811 (since flip-flop 8 E is reset) to the $4-\mu$ second delay. The output of the delay resets flip-flop 8D and sets flip-flop 8E. The output of the delay is therefore a pulse delayed approximately $9 \mu$ seconds from the leading edge of the WRITE DATA STROBE. This output also enables AND gates 807 and 808, which transfers the status of Buffer 2 to Buffer l. Approximately $15 \mu^{\text {seconds after the WRITE DATA STROBE, }}$ a pulse (WRITE PULSE) is generated (from the Function Control A circuit board) which copies the status of Buffer 1 into flip-flop 8C via AND gates 809 and 810 and resets flip-flop 8E. Flip-flop 8C is the Write current generator. The magnetization direction is changed on the tape whenever a " 1 " is to be recorded.


WRITE DATA STROBE

WRITE DATA STROBE DELAYED

OUTPUT OF $4 \mu S E C$ DELAY

FLIP－FLOP 8E

WRITE PULSE


Figure 4－9．Control Waveforms

## 4-20. Error Checking Systems

4-21. General
In any information recording system, it is desirable to provide safeguards against loss of information during the recording process and also to provide error detection and correction during the subsequent reproducing process.

The most satisfactory way to check the recording process is to read back the recorded information and check it against the data source before discarding the original data. Alternatively, the parity of the readback information can be checked.

These techniques require a read facility and particularly a read-after-write system for efficient operation. In the absence of read-after-write facilities, an Echo Check system can be used and this is offered as an option with PEC tape transport systems.

To provide facilities for error detection and correction during the reproducing process, a parity bit is recorded with each data character and at the end of a record, Cyclic Redundancy Check characters (CRCC) and/or Longitudinal Redundancy Check characters (LRCC) are recorded. Parity, LRCC, and, where appropriate, CRCC generation facilities are provided in all PEC Synchronous Write Tape Transports.

These error checking systems are briefly described in the following paragraphs.

4-22. Echo Check System
Information is recorded in the NRZI mode; i. e., reversal of magnetization on the tape occurs for each "l" recorded. This is accomplished by feeding current into either one or the other half
of a center-tapped head. Whenever current is switched off in one half of the head (and switched on in the other half) the voltage at the end of that half swings below the return voltage of the center tap due to the inductive nature of the recording head. The negative swings from each half of the head associated with a particular channel are used to generate pulses. These pulses trigger a flip-flop associated with that channel. The outputs of these flip-flops are fed to a parity-tree check system whose output is interrogated at the appropriate time. If the parity is incorrect, a flip-flop is set and the output, ECHO CHECK ERROR, is fed to the interface. This flip-flop will remain set until reset by the customer or at the end of a record by internal logic. The occurrence of an ECHO CHECK ERROR signal does not cause any internal action in the transport. The circuitry and control logic associated with the Echo Check system is described in Paragraph 5-32.

4-23. Error Correction Characters
In addition to the usual parity bit associated with each character, additional error detection and correction characters are provided. In a 7 -track system, one LRCC is written at the end of a record. This character is used to give a Longitudinal Parity Check on each track and is such that the total number of "ls" (i.e., transitions) in any one track including the LRCC bit is even.

In a 9-track system, two check characters are written at the end of each record. The first character is the CRCC; the second character is an LRCC similar to the one used in 7-track operation. The use of a CRCC is the basis for an error correction technique which employs a modified cyclic code in conjunction with the character parity to correct error bursts of unlimited length in any one of the 9 tracks. Errors involving more than one track within the same record are detected but cannot be corrected.

The CRCC is generated in the CRC Register (CRCR) (see Paragraph 5-33) according to the following rules.
(1) All data characters in the record are added to the contents of the CRCR without carry. Each data bit is exclusive OR'd to the corresponding bit of the CRCR.
(2) Between additions, the CRCR is shifted one position (CRCP to CRCO, etc., and CRC7 to CRCP).
(3) If shifting will cause CRCP to become a " 1 ", the bits being shifted into positions CRC2, CRC3, CRC4, and CRC5 are inverted.
(4) After the last data character has been added, the CRCR is shifted once more in accordance with the first two steps.
(5) The contents of all the CRCR positions except CRC2 and CRC4 are inverted and the resultant character written on the tape.

4-24. Insertion of IBM-Compatible Gaps and Special Characters
Two types of gaps are used when writing IBM-compatible tapes. These are the Inter-Record gap and the File gap.

4-25. Inter-Record Gap
An Inter-Record Gap (IRG) is used to separate groups of characters which comprise a record of information. Records may be of variable length.

In a 7-track system, the IRG control generates a standard 0.75-inch IBM-compatible IRG (see Figure 4-10). When an IRG is inserted, an LRCC is written four character spaces after the last data character of the record as shown in Figure 4-10. This Longitudinal Parity Check character is such that the total number of "ls" (i.e., transitions) in any one track is even.

In a 9-track system, the IRG control generates a standard 0.6-inch IBM-compatible IRG. When an IRG is inserted, a CRCC is written four character spaces after the last data character of the record. This is followed after four character spaces (i.e., a total of 8) by the LRCC (see Figure 4-11).

4-26. File Gap
A File Gap is used to separate files of information and is identified by a special character on the tape. In general, the number of different files on a single reel of tape will be small and the File Gap time is not critical. The File Gap control is designed to generate a standard IBM-compatible File Gap with appropriate identification.

In a 7 -track system, the sequence is writing an LRCC for the last record, moving approximately 3.8 inches, writing the File Mark character (binary l5), and then inserting an IRG. This IRG contains the LRCC associated with the File Mark character (see Figure 4-12).

In a 9-track system, the sequence is writing the CRCC and the LRCC for the last record, moving approximately 3.8 inches, writing the File Mark character ( $\mathrm{a}^{\prime \prime} 1$ " digit in data channels 3, 6, and 7) and then inserting an IRG. This IRG contains the LRCC associated with the File Mark character, but no CRCC is written (see Figure 4-13).


Figure 4-10. IRG Format - 7-Track


Figure 4-11. IRG Format - 9-Track


Figure 4-12. File Gap Format - 7-Track


Figure 4-13. File Gap Format - 9-Track

4-27. Generation of Inter-Record Gaps
There are two methods for generating an IRG with this system. They are detailed in the following paragraphs.
(1) Case (a). Whenever the SYNCHR ONOUS FORWARD command is terminated, an IRG is inserted together with the appropriate check characters. The distance during deceleration of the tape is approximately one-half of the IRG; the second half of the IRG distance occurs after the next SYNCHR ONOUS FORWARD command is issued. It is assumed that the termination of the SYNCHR ONOUS FORWARD command occurs coincident with the last WRITE DATA STROBE in the record, otherwise incorrect placement of the check characters might result.
(2) Case (b). When an IRG command is given while the SYNCHR ONOUS FORWARD command is true, an IRG will be inserted "on the fly". This is used to generate IRGs between records, and to write the appropriate check characters at a constant tape velocity; i.e., when tape stopping is not desired. It is assumed that the IRG command is issued coincident with the last WRITE DATA STROBE in the record, otherwise incorrect placement of the check characters might result.

4-28. Case (a) IRG Generation - 7-Track Mode
Refer to Figure 4-14, a block diagram of the control logic, and Figure 4-15, the relevant timing diagrams, for this discussion. During data recording, the SYNCHR ONOUS FORWARD command is true and the Forward l ramp generator is enabled, causing tape to move. WRITE DATA STROBEs (Plot 7) are received via the interface and trigger the $15-\mu$ second single-shot 14 SS 5 via gate 1413 . The output (WRITE PULSE) from the single-shot is therefore a train of pulses.


Figure 4-14. Gapping Control Logic


Figure 4-15. IRG Sequence for Case (a) Timing Diagram - 7-Track
(Plot 8) delayed $15 \mu$ seconds from the WRITE DATA STROBE. The WRITE DATA STROBEs are used in the data recording electronics as described in Paragraph 4-19. When the SYNCHRONOUS FORWARD command goes false (Plot l) the Forward 1 ramp generator is disabled and the tape decelerates. In addition, the output of inverter 1406 goes true and a pulse is generated by differentiator 14 d 8 (Plot 9). This pulse does the following.
(1) Sets flip-flop 14D (Plot 6) generating a DATA BUSY signal.
(2) Sets flip-flop 14 F (Plot 10) generating a COMMAND BUSY delay. (This COMMAND BUSY delay is used internally to ensure that tape motion has stopped before the transport will act upon the next motion command.)
(3) Triggers single-shot 14 SS 4 via gate 1407 . The single-shot time is the duration of four character spaces and at the end of this time a pulse is generated (Plot 12). This output (PRIME for LRCC) is used to reset all the Buffer 1 flipflops in the recording electronics (see Figure 4-8) using the leading edge. It is also used to trigger the $15-\mu$ second single-shot 14 SS 5 via gates 1412 and 1413 . An additional WRITE PULSE is generated (Plot 8) in this way and is used to write the LRCC on the tape.

The process described occurs during the deceleration of the tape; however, the deceleration time is several milliseconds so that the change of velocity over the four character spaces involved is negligible.

The deceleration time from the synchronous tape velocity results in a tape motion of less than one-half of an IRG distance from the last character until motion ceases. When the SYNCHRONOUS FORWARD command goes true, one input of gate 1404 is enabled. If
sufficient time has elapsed since the termination of the previous SYNCHR ONOUS FORWARD command, the $\bar{Q}$ output of flip-flop $14 F$ will be true and the SYNCHR ONOUS FORWARD command will be transmitted to differentiator $14 d 4$ and to the Forward 1 ramp generator via gate 14l4. If insufficient time has elapsed, gate 1404 will be inhibited by the $\bar{Q}$ output of flip-flop 14 F (Plot 10 ) until the COMMAND BUSY delay is complete.

The SYNCHRONOUS FORWARD command then re-enables the Forward 1 ramp generator and the tape accelerates to the specified velocity. A pulse is generated by differentiator l4d4 (Plot 4) which triggers flip-flop l4E, enabling single-shot l4SS3. After an appropriate delay, a pulse is generated by the single-shot (Plot 5) which resets flipflops 14 E and 14D, causing the DATA BUSY signal (Plot 6) to go false. This indicates to the customer controller that data may be transmitted to the transport. It has already been stated that the tape moves somewhat less than one-half of an IRG distance during the deceleration time. Similarly, during the acceleration period the tape also moves somewhat less than one-half of an IRG distance. The single-shot (14SS3) delay is designed so that after the acceleration phase, the tape moves at synchronous velocity for some distance before the first data are recorded. The magnitude of the delay is chosen so that the sum of the distance moved during the deceleration phase plus the distance moved during the acceleration phase and the extra distance discussed is equal to the required displacement.

4-29. Case (a) IRG Generation - 9-Track Mode
Refer to Figure 4-14, a block diagram of the control logic, and to Figure 4-16, the relevant timing diagrams, for this discussion. Data recording proceeds as described in Paragraph 4-28 until the SYNCHR ONOUS FORWARD command goes false (Plot l), and the


D = DENSITY (bpi)
$\mathrm{V}=\mathrm{VELOCITY}$ (ips)

Forward 1 ramp generator is disabled and the tape decelerates. The output of inverter 1406 goes true and a pulse is generated by differentiator 14 d 8 (Plot 9). This pulse does the following.
(1) Sets flip-flop l4D (Plot 6) generating a DATA BUSY signal.
(2) Sets flip-flop l4F (Plot 10) generating a COMMAND BUSY delay. (This COMMAND BUSY delay is used internally to ensure that tape motion has stopped before the transport will act upon the next motion command.)
(3) Triggers single-shots 14 SS4 and 14 SS6 via gates 1407 and 1417, respectively.

The output of single-shot 14SS6 (ENABLE CRCC) is a gate (Plot 13) of duration equivalent to four character spaces at synchronous forward velocity. It is used by the CRC generator to complete the generation of the CRCC (see Paragraph 5-33) and transfers it to the Buffer 2 and then Buffer 1 flip-flops in the recording electronics.

A pulse (Plot 14) is generated from the back edge of the gate by differentiator 14 d 9 , which triggers the $15-\mu$ second single-shot 14 SS 5 via gate 1412. An additional WRITE PULSE is thus generated (Plot 8) and is used to write CRCC on the tape.

The output of single-shot l4SS4 is a pulse (Plot 12) delayed the equivalent of eight character spaces at synchronous forward velocity. This pulse is used to reset all the Buffer 1 flip-flops in the recording electronics, using the leading edge. It also triggers the $15-\mu$ second single-shot 14 SS 5 via gates 1412 and 1413. A second additional WRITE PULSE is thus generated (Plot 8) and used to write the LRCC on tape. The remainder of the IRG sequence is identical with that described in Paragraph 4-28.

Refer to Figures 4-14 and 4-17 for this discussion. If an IRG command is given while the SYNCHR ONOUS FORWARD command is still true, the following sequence occurs. Figure 4-17 shows the relevant timing diagram.

Data recording proceeds as previously described. When the IRG command is given (Plot 9), a pulse is generated by differentiator 14d5. This pulse does the following.
(1) Sets flip-flop 14D (Plot 6) via gates 1418 and 1407, informing the controller that data is busy.
(2) Triggers single-shot l4SS4 via gates 1418 and 1407. The single-shot time is the duration of four character spaces and at the end of this time a pulse is generated (Plot 12). This output (PRIME for LRCC) is used to reset all the Buffer 1 flip-flops in the recording electronics (Figure 4-8), using the leading edge. It is also used to trigger the $15-\mu$ second single-shot 14SS5 via gates 1412 and 1413. Thus, an additional WRITE PULSE is generated (Plot 8) to write the LRCC on the tape.

The pulse output of 14 SS 4 is also transmitted to gate 1408 , via gate 1412. Since SYNCHR ONOUS FORWARD command is still enabled, the output of gate 1406 is true and flip-flop 14 E is set via gate 1409. After an appropriate time which allows the IRG distance to be traversed at a constant tape speed, single-shot 14 SS3 generates the reset pulse (Plot 5) for flip-flops 14D and 14 E .

DATA BUSY goes false, signaling that further data recording should begin. The distance traversed between the last WRITE DATA STROBE of the previous record and the first WRITE DATA STROBE of the next record is nominally 0.75 inch.


Figure 4-17. IRG Sequence On the Fly
Timing Diagram - 7-Track

When the SYNCHR ONOUS FORWARD command goes false, an LRCC character is inserted and the tape decelerates to rest in approximately one-half of an IRG as described in Paragraph 4-28.

4-31. Case (b) IRG Generation "On the Fly" - 9-Track Mode
Refer to Figures 4-14 and 4-18 for the block diagram and the relevant timing diagrams for this 9 -track mode. The discussion of the IRG generation is similar to Paragraph 4-30. The exception is writing the CRCC via 14SS6 as described in Paragraph 4-29.

4-32. File Gap Generation
This discussion assumes that data recording is proceeding and a FILE GAP command is issued coincident with the termination of the SYNCHR ONOUS FORWARD command. Figure 4-14 is a block diagram of the control logic and Figures 4-19 and 4-20 represent the timing diagrams relevant to 7 -track and 9-track operation, respectively.

The FILE GAP command (Plot 12) is applied to differentiator
14dl. The output pulse sets flip-flop 14B which then sets flip-flop 14C via differentiator 14 d 2 , thus enabling single-shot 14 SS 1 . The $\bar{Q}$ output of flip-flop 14C is transmitted to the Forward 1 ramp generator via OR gate 1414. Therefore, the Forward l ramp generator continues to be enabled after the termination of the SYNCHR ONOUS FORWARD command for a time defined by single-shot l4SSl. At the end of this time flip-flop 14C is reset, disabling the Forward 1 ramp generator and the tape decelerates (Plot 3).

In addition, the termination of the SYNCHR ONOUS FORWARD command (coincident with the FILE GAP command), generates a pulse via inverter 1406 and differentiator 14 d 8 , which is fed to OR gate 1407 and AND gate 1417. The output of gate 1407 sets flip-flop 14D
(Plot 6) generating a DATA BUSY signal, and also triggers single-shot 14SS4 in both 7-track and 9-track systems. However, in a 9-track system, single-shot 14 SS 6 is also triggered via AND gate 1417.

In a 7-track system, the output of single-shot 14SS4 (Plot 10) resets the Buffer l flip-flops in the recording electronics (as discussed in Paragraph 4-28) and generates an additional WRITE PULSE (Plot 8) which writes the LRCC four character spaces after the last data character. In a 9-track system, the output of single-shot 14SS6 initiates the completion of the CRCC generation and causes the CRCC to be loaded into the Buffer 2 and then Buffer 1 in the recording electronics (as discussed in Paragraph 4-29). It also generates an additional WRITE PULSE (Plot 8) which writes the CRCC four character spaces after the last data character. The output of single-shot l4SS4 causes the LRCC to be written eight character spaces after the last data character (as discussed in Paragraph 4-29).

At the end of the File Gap time, flip-flop 14C is reset and the $\bar{Q}$ output goes high. This edge is transmitted by inverter 1405 and differentiator 14 d 6 , which generates a pulse (Plot l4). This pulse (PRIME for FM) is used to set the relevant flip-flops (depending on whether the 7 -track or 9 -track modes are operational) in the recording electronics (Figure 4-8), using the leading edge. It also triggers single-shot 14SS5 via gates 1412 and 1413, generating a WRITE PULSE which is used to write the File Mark on the tape.

The pulse output of differentiator 14 d 6 also triggers single-shot 14SS4 via gate 1407. The output of the single-shot (Plot 10) resets the Buffer 1 flip-flops in the recording electronics and generates a corresponding WRITE PULSE via single-shot 14SS5 (Plot 8). This writes the LRCC character for the File Mark four character spaces after the File Mark for 7-track, or eight character spaces after the File Mark for 9 -track systems. The distance traversed in the deceleration phase is less


Figure 4-18. IRG Sequence On the Fly Timing Diagram - 9-Track


Figure 4-19. File Gap Sequence Timing Diagram - 7-Track


```
D = DENSITY (bpi)
V = VELOCITY (ips)
```

Figure 4-20. File Gap Sequence Timing Diagram - 9-Track
than the IRG distance required at the end of a File Gap. The remainder of the IRG distance is covered in the acceleration phase prior to the next data recording period.

4-33. Echo Check Control
During the gapping process, File Mark and LRCC characters are written (Figure 4-14). The parity of the File Mark is even in a 7 -track system and odd in a 9-track system. The LRCC character parity depends on the number of characters in the record. Since the Echo Check system operates on the assumption that the parity will be the same as that of the data, it is necessary to inhibit the Echo Check system during gapping. In a 7 -track system, the output of single-shot 14SS4 is used to disable the Echo Check system via gates 1412 and 1416. Note that this occurs $15 \mu$ seconds before the LRCC character is written on the tape.

In a 9 -track system, the output of single-shot 14 SS 6 is used to disable the Echo Check system via gates 1412 and 1416. Note that this occurs $15 \mu$ seconds before the CRCC is written on the tape.

The pulse output of single-shot 14 SS 3 that causes the DATA BUSY signal to go false is also used to enable the Echo Check system.

## SECTION V

## PRINTED CIRCUIT BOARDS THEORY OF OPERATION

## 5-1. INTRODUCTION

This section contains the theory of operation of the printed circuit boards used in the Synchronous Write Tape Transport. All standard boards are included. The specific boards and the relevant versions used in a typical transport are discussed in Paragraph 5-34. The schematic and assembly drawing for each board and the system wiring diagrams are contained in Section VII.

A better understanding of the logic utilized in the tape transport can be gained when the operation of the J-K flip-flop is fully understood. The following paragraphs provide a brief summary of the operation of the 852 J -K flip-flop, which is the type most commonly used in the system.

This flip-flop operates on a "Master-Slave" principle. A logic diagram of the flip-flop is shown in Figure 5-1. The flip-flop is designed so that the threshold voltage of AND gates 101 and 102 is higher than that of AND gates 103 and 104. Since operation depends exclusively on voltage levels, any waveform of the proper voltage levels can trigger the J-K flip-flop.

Assume that the trigger voltage is initially low. When the trigger voltage goes high, AND gates 103 and 104 are disabled. Subsequently, AND gates 101 and 102 are enabled by the trigger pulse, the $J$ and $K$ inputs, and the information previously stored at the output of the "slave" unit. The J and $K$ input information at this time is transferred to the input of the "master" unit. When the trigger voltage goes


Figure 5-1. Simplified Logic Diagram, "Master-Slave" Flip-Flop
low, AND gates 101 and 102 are disabled. AND gates 103 and 104 are then enabled and the information stored in the "master" unit is transferred to the output of the "slave" unit.

## 5-2. THEORY OF OPERATION

5-3. REEL SERVO AND VOLTAGE REGULATOR - B
Refer to Schematic 100912 for this description. This circuit board contains reel servo amplifiers and four voltage regulators ( +10 , $+5,-10$, and -5 volts) that operate in conjunction with several externally mounted power transistors (shown in Schematic 100388 and referenced in Schematic 100912).

## 5-4. Reel Servo Amplifiers

Identical dc linear-position servo amplifiers are used for both the take-up and supply reel storage systems. The amplifiers are the conventional dc, Class B type.

In normal operation, the feedback network (R19, R20, R45, C7, C8, and R21 for the supply reel or R4, R5, R52, C2, C3, and R6 for the take-up reel) defines a gain of approximately 11 at frequencies below 1.5 Hz and a gain of approximately 100 above 15 Hz .

When the Rewind ramp is enabled, Q22 is turned on. Current through CR12 turns on Q23, establishing a ground return for resistor R51. This increases the dc gain of the take-up reel servo by a factor of approximately two when in the Rewind mode, to accommodate the higher velocity.

The gain of the supply reel servo is also increased in the Rewind mode. The ground return for resistor R46 is established through CR11.

Two external heatsink-mounted output transistors are associated with each amplifier (see Schematic 100388). Q201 and Q202 are used in the take-up amplifier and Q203 and Q204 in the supply amplifier. The input resistors, Rl and R16 (Schematic 100912), are driven by the 1000ohm tension-arm potentiometers, Rl01 and R102 (Schematic 100388), which are connected between the +5 - and -5 -volt lines.

5-5. Voltage Regulators
(1) +10 Volts. A 10 -volt zener diode (CR1) in series with diode CR2, supplied with current from a 100-ohm resistor (R31), connected to the +16 -volt unregulated line is the voltage reference for the +10 -volt supply. A power transistor (Q210) connected as an emitter-follower with the voltage reference on the base, completes the circuit. The +10-volt line is taken from the emitter of Q210 to the circuit board under discussion, where it drives the 6.8 -volt zener diode (CR5) for the +5 -volt regulator.
(2) +5 Volts. The +5 -volt regulator supplies the bulk of the power to the circuit boards and is stablized within $\pm 1$ percent. A 500-ohm potentiometer (R36) is connected across the 6.8-volt reference diode (CR5) and an emittercoupled comparator (Q16 and Q17) compares the +5 -volt line with the voltage on the potentiometer wiper. The difference is amplified by transistor Q20 and again by power transistor Q207. Test Point 1 is connected to the +5 -volt line. The +5 -volt regulator can supply 3.0 amps.
(3) - 10 Volts. Except for the additional inverting PNP transistor (Q15), operation of the -10-volt regulator is similar to the +10 -volt regulator. The -10 -volt line is returned from the collector of Q208 to the voltage regulator circuit board where it drives the 6.8-volt zener diode (CR6) for the -5-volt regulator.
(4) -5 Volts. Operation of the -5 -volt regulator is identical in principle to that of the +5 -volt regulator. Q209 is the power transistor associated with the -5 -volt regulator. Test Point 2 is connected to the $-5-$ volt line and Test Point 3 is connected to OV(L).

5-6. Overvoltage Protection
The anode of zener diode CR9 is connected to the gate of the "crowbar" SCR (Q211 on Schematic 100388) for the overvoltage protection. R44 and Cl5 keep the SCR from triggering due to transients during the power-on cycle.

5-7. CAPSTAN DRIVE, SYNCHR ONOUS
Refer to Schematic 100474 for this description. This board comprises the capstan servo amplifier and stabilization networks, ramp generators, lamp drivers, general reset circuit, and the interlock relay driver.

## 5-8. Capstan Servo Amplifier

This consists of an integrated circuit input stage (U3-A) and a discrete component output stage with externally mounted power transistors Q205 and Q206 (see Schematic 100388). The low frequency gain from the tachometer to the amplifier output is defined by the ratio of R34 to R62 and R63, (i.e., $K=36$ ). The dead-band of the amplifier is large enough that, with no input, the input offset voltage is not large enough to produce any output voltage. Test Point 1 is connected to the amplifier output. Test Point 5 is connected to the filtered tachometer output.

A l-ohm power resistor (R203) is placed in series with the - 16-volt line to the output stage to reduce power dissipation in Q206. Filter Ll, Cl6 stabilizes the servo.

5-9. Ramp Generators
5-10. Forward 1 (Synchronous Forward and Load Forward)
This circuit is used to generate the command voltage for moving tape at the specified speed. Test Point 4 can be brought to approximately 1.5 volts by applying a 0 -volt level to the appropriate input. ( 0 volt on pin 23 or pin 24 takes the voltage at TP4 to 1.5 volts for forward operation.) The rate at which the voltage on TP4 changes is controlled by the integrator, which consists of U2-B, C3, or C17, C18, or C19, C20, R13, R14, R16, and R17. The resulting tape velocity is determined by R21 and R22.

## 5-11. Rewind

This circuit generates the command voltage which results in a tape speed of 75 ips in the reverse direction. Rise and fall times are approximately 0.5 second, determined by R58, R64, and C15. When 0 volt is applied to pin 20, the emitter of Ql3 reaches -5 volts.

## 5-12. Lamp Drivers

The four lamp drivers connect the lamps between +5 and -16 volts when the relevant input $\mathrm{H}, \mathrm{K}, 8$, or 5 is taken to 0 volt. The circuit is designed to supply 60 milliamps.

## 5-13. General Reset Circuit

When input $L$ is high or open, a GENERAL RESET signal is applied to the appropriate control flip-flops by turning on Q18 so that the output, pin M , is taken to -0.8 volt.

5-14. FUNCTION CONTROL, SYNCHR ONOUS B
Refer to Schematic 100442 for this description. This circuit board contains the logic required to bring the transport to operational status in conjunction with the manual and remote controls and photosensors.

Operation of the logic is described in detail in Paragraph 4-8 through 4-15, using Figure 4-5. The Cross Reference Chart, Table 5-1, will assist in identifying the major components in the system; however, 100 percent correspondence is not possible since Figure 4-5 is a logic diagram, while the schematic shows every component.

In addition to the integrated circuit logic, the circuit board contains the following discrete component circuits: switch-contact filter, differentiator, photosensors, and a single-shot.

Table 5-1
Function Control B
Cross Reference Chart

Figure 4-5   Reference Designations	Schematic 100442   Reference Designations
Flip-Flop 5A	Ul-A, Ul-B
Flip-Flop 5B	Ul-C, U1-D
Flip-Flop 5C	U4-A, U4-B
Flip-Flop 5D	U4-C, U4-D
Flip-Flop 5E	U2-B, U2-A and Associated   Inverter 515

## 5-15. Switch Contact Filter Circuit

The combination of resistor R7, capacitor C4, and resistor R6 is a typical switch-contact filter circuit. The main purpose of the circuit is to filter out noise caused by capacitive crosstalk between the switch lines that are cabled together in the same harness. R7 and C4 form the filter, while R6 ensures that the input to pin 1 of Ul is at +5 volts when the switch contact is open. Since the threshold of the IC is approximately 1.8 volts, considerable noise rejection is available.

## 5-16. Differentiators

A typical differentiator is designated 5dl in Figure 4-5 and consists of components C5, R12, R10, and Rll (in Schematic 100442). Resistors R10 and Rl2 set the static level at the output of the differentiator at +3 volts, giving a noise immunity of 1.2 volts (typically). C5 is the differentiating input capacitor and resistor Rll limits the current that flows when the IC input is driven below 0 volt by capacitor C5, causing the substrate diode to conduct.

## 5-17. Photosensor Circuits

Two photosensor circuits are provided: one to detect the BOT tab and one to detect the EOT tab.

Two photo transistors and a lamp make up the Photosensor Assembly that is located on the head plate. Two collector loads for the two transistors are potentiometers R15 and R30, which allow the sensitivity of the circuit to be adjusted. The photo transistor output drive emitter followers Q1, Q10, and Q3; capacitors C7, C10, and C21 filter out any spurious signals picked up in the harness. Resistors R14, R64, and R31 limit the charging current that flows on positive-going edges.

5-18. Single-Shot
This circuit provides a delay for timing the distance between detecting the BOT tab and stopping tape. C1l and C12 are timing capacitors and R37 is the timing resistor. The gap time is adjusted by varying the potential (with R35) from which the capacitors start discharging. To generate the BOT gap, flip-flop Ull-B, Ull-A is set; therefore, Q4 is cut off.

When the potential at Cll, C12 discharges to approximately 0 volt, transistor $Q 5$ turns on, Q6 turns off, causing $Q 7$ to turn on. The voltage at the collector of $Q 7$ goes low, resetting flip-flop Ull-B, Ull-A; Q4 is then saturated and the circuit is returned to its initial state.

## 5-19. Write Power Control

In this circuit, the Ready status causes R44 to be taken to 0 volt, which turns on Q8 and Q9. The turning on of Q9 is slowed by C 14 to avoid head current transients. The center taps of all of the head windings are connected to the collector of Q9. This point is connected to TP3.

5-20. TRANSMITTER - DTL
Refer to Schematic 100338 for this description. This circuit board is designed to convert the transport's internal logic levels to levels suitable for transmission over an interface cable that consists of twisted pairs of up to 20 feet in length. It operates with the ReceiverDTL circuit board or equivalent.

The input is compatible with DTL integrated circuits ( 0 volt true and 5 volts false). Two configurations are available resulting in high-true or low-true outputs. The high level as measured at the test
points is between +3 or +5 volts, depending on the receiver configuration. The low level is between 0 and +0.4 volt.

Inverters U1, U2, U3, and U7 are used only in the low-true configuration when the "dotted" jumper wire is inserted. In the hightrue configuration, inverters U1, U2, U3, and U7 are omitted and the solid jumper wires are inserted. The 180 -ohm pull-up resistors are connected to +5 volts externally, except where a pull-up resistor is used at the receiver end of the cable; in this case, they are omitted. The series 68 -ohm resistor is included in certain versions to provide a partial source termination for negative-going edges. The output stage uses the DTL power gate type 844 , or equivalent.

## 5-21. RECEIVER - DTL

Refer to Schematic 100333 for this description. This circuit board is designed to convert interface signals to standard logic levels. It terminates an interface cable that consists of multiple twisted pairs of up to 20 feet in length. It operates with the Transmitter - DTL circuit board or its equivalent. The board is also used to generate the parity bit for 6-or 8-bit characters in certain versions. Three configurations are used in different versions and are discussed in the following paragraphs.

## 5-22. Configuration A

Configuration A is used for high-true logic where a 180 -ohm pull-up resistor is used at the transmitter output. The 68-ohm resistor (R1) and capacitor Cl reduce the reflections due to imperfect termination. The 470-ohm resistor (R2) causes the input to go low-false on removal of the cable.

## 5-23. Configuration B

Configuration $B$ is used for low-true logic where a 180 -ohm pull-up resistor is used at the transmitter output. The 68-ohm resistor (R1) and capacitor Cl reduce the reflections due to imperfect termination. The 470-ohm resistor (R2) of configuration A is removed so that the input goes high-false on removal of the cable. However, note that the removal of power at the transmitter results in a low-true condition if the 180 -ohm resistor on the transmitter is allowed to "turn off" the input inverter of the receiver.

## 5-24. Configuration C

Configuration C is used for low-true logic and circumvents the possibility of interpreting the removal of power at the transmitter as a low-true signal. The pull-up for the input inverter of the receiver is located at the received end of the cable and a high resistance at the transmitter output ensures that loss of transmitter power or interruption of the interface cable cannot be interpreted as anything except a high-false signal. The parallel combination of resistors R1 and R2 results in the termination with close to the characteristic impedance of the line.

5-25. Parity Generator
The parity generation circuit used in certain configurations of the transport consists of cascaded "half-adders" which produce the parity bit at pins 8 and 11 of U7. If the total number of " 1 s " in the 6or 8 -bit character is odd, a low level results at this point; by switching Sl to the E position (for even parity), a "l" is written in the check bit track. If the total number of "ls" in the 6-or 8-bit character is even, a low level appears at pin 3 of U7; by switching Sl to the O position (for odd parity), a "l" is written in the check bit track. The third switch position, X , is used when the parity bit is included with the data
character and internal generation is not required. The externally generated parity bit must be brought into circuit 100 .

## 5-26. Binary Zero to BCDl0 Conversion

Inverters U4-F, U4-E, Ul-A, Ul-B, Ul-D, and Ul-F form an AND gate which produces a high output at pin $\overline{\mathrm{E}}$ when the data character consists of six " 0 s". Unless pin $\overline{\mathrm{E}}$ is tied to 0 volt externally, bits $2^{1}$ and $2^{3}$ will be forced to the " 1 " state by inverters U4-C and Ul-F to produce the BCDlolo character. Unless otherwise specified, pin $\overline{\mathrm{E}}$ is connected externally to 0 volt on J205, removing this facility.

5-27. DOUBLE BUFFER - WRITE AMPLIFIER
Refer to Schematic 100233 for this description. This circuit board is comprised of seven write amplifiers, two buffer registers for temporary storage of the write data, and control circuits.

The two buffer registers consist of seven J-K flip-flops; each is comprised of a master and a slave flip-flop. These correspond to flip-flops 8A and 8B of Figure 4-8. The master flip-flop toggles on receipt of a "l" and the output is copied successively into the slave flip-flops and then to Write amplifiers Q4 through Q17 (see flip-flop 8C of Figure 4-8). The Write amplifier is a resistor-transistor flip-flop which defines the write current by means of resistors (R26, etc.) in series with the head windings. The head-winding center tap is taken to -5 volts when the write current is enabled. Test points 1 through 7 are connected to the write amplifier outputs.

At the Write Data inputs (WD0 through WDP) 0 volt represents a "l". The WRITE PULSE that toggles the master flip-flop in response to write data " 1 s " is generated from the WRITE DATA STROBE. The $2-\mu$ second pulse at TP8 is generated from the trailing edge of the output
of single-shot Q1, Q2. After being delayed $4 \mu$ seconds by U12-A, U12-B, R20, C8 and R21, C9, this pulse sets the control flip-flop, Ul3-D, U13-C (see flip-flop 7E of Figure 4-8). This delayed pulse also copies the content of the master flip-flops into the slave flip-flop register. This pulse is visible at TP9.

When power is switched on and before write current is turned on, the buffer slave flip-flops are reset and gates U7, U8, U9, and Ul0 are held enabled to force the state of the write amplifier flip-flops when the write current enable waveform takes the head center taps to -5 volts. After write current is turned on, the U18-A, U18-B flip-flop is reset via pin $\overline{\mathrm{A}}$ when DATA BUSY goes false, by the output of singleshot 14SS3 (see Figure 4-14), thus returning control of these gates to the WRITE PULSE.

Data is copied into the write amplifiers by enabling gates U7, U8, U9, and Ul0 for $2 \boldsymbol{\mu}$ seconds. This copy pulse appears on TPl0 and is generated on both the positive- and negative-going edges of the WRITE PULSE waveform by gates and discrete capacitors and resistors.

The negative-going ENABLE CHECK CHARACTER (ECC) pulse resets all buffer slave flip-flops when an $L R C C$ is required. The presence of an ENABLE FILE MARK signal and an ECC pulse sets the first four (WD0 to WD3) buffer slave flip-flops to write a File Mark character at the receipt of the following WRITE PULSE.

Note that certain nomenclature is not directly applicable to this transport. For example, EAO (pin $\overline{\mathrm{E}}$ ) is actually the WRITE PULSE (WRP). This is due to the utilization of this circuit board in other PEC tape transports.

5-28. DOUBLE BUFFER, 9-CHANNEL WRITE AMPLIFIER
Refer to Schematic 100238 for this description. The Double Buffer, 9-Channel Write Amplifier has 9 channels of write electronics. Each channel is comprised of the following.
(1) Two buffer registers for temporary storage of the write data (these correspond to flip-flops 8A and 8B of Figure 4-8).
(2) A write waveform generator and a write amplifier circuit (these are combined into flip-flop 8C of Figure 4-8).
(3) Control circuits

The two data buffer registers consist of the master and slave sections of J-K flip-flops U4-A, U4-B, U5-A, U5-B, U6-A, U6-B, U7-A, U7-B. The write waveform generator is comprised of J-K flipflops U9 through Ul7. The outputs of these flip-flops drive the write current amplifier transistors (Q4 through Q21). Test points lithrough 9 are connected to the write amplifier outputs.

In operation, the WRITE DATA STROBE at pin 13 triggers the $5-\mu$ second single-shot Q1, Q2. A $2-\mu$ second pulse is generated from the back edge of the single-shot and fed to power gate U2l-B via inverters U25-C and U25-D. The output of U2l-B is used to strobe the low-true data inputs WD0 through WDP into the master section of the buffer J-K flip-flops via AND gates Ul-B, Ul-C; Ul-D, Ul-A through U3-F, U3-E. This pulse is visible at TP10. If the data input is a " 1 ", the corresponding master section of the flip-flop toggles.

The pulse also triggers the control loop consisting of flip-flops U20-A, U20-B and U20-D, U20-C (see flip-flops 8A and 8B in Figure 4-8), gate U24-A and R20, U19-B, R21, and U19-A, which comprise the 4$\mu$ second delay. A $2-\mu$ second shift pulse is generated by this control loop and is fed to power gate U21-A. The output of U2l-A, which is visible at TPll, copies the content of the master section of the buffer flip-flops into the slave section. The WRITE PULSE from Function Control $A$ is fed to pin $\bar{F}$. This results in a positive-going pulse ENCODER PULSE WIDE (EPW) at pin 24 and a $2-\mu s e c o n d$ positive-going pulse ENCODER PULSE NARROW POWERFUL (EPNP) at pin 22 (visible at TP12). (Note that certain nomenclature is not directly applicable because the circuit board is utilized in other PEC tape transports.)

The EPNP pulse copies the output of the buffer flip-flops into the master sections of the write waveform generator flip-flops. EPNP is also fed to the toggle inputs (pins C, 3, 7, 10, 15, 16, 21, Y, $\bar{C}$ ) of these flip-flops so that at the trailing edge of EPNP, the content of the master sections of the $J-K$ flip-flops is transferred to the slave sections. The slave outputs feed the write amplifiers. EPNP also resets flip-flop U20-D, U20-C.

The ENABLE FILE MARK and ENABLE CHECK CHARACTER waveforms are combined to produce signals at the outputs of U23-B and U24-B that correspond to PRIME for LRCC and PRIME for FM (described in Paragraph 4-27). These signals are used to reset the second stage of the buffer flip-flops for LRCC generation and those stages relevant for File Mark generation.

The WRITE CRC (WCRC) pulse on pin 28 is $O R^{\prime} d$ into the WRITE DATA STROBE channel and is used to copy CRCC into the buffer during a 9-track gapping sequence.

Flip-flops U18-A, U18-B, gates U18-C and U27-C, and inverters U19-D and U19-E are not used in Synchronous Write Tape Transports.

Two versions of the Double Buffer, 9-Channel Write Amplifier circuit board are available which are suitable for 7-and 9-track operation. The appropriate File Mark generation is selected by jumpers Wl and W2. The components within the dotted box are omitted in the 7track version.

5-29. FUNCTION CONTROL, SYNCHR ONOUS A
Refer to Schematic 100358 for this description. This circuit board provides the logic required to generate IBM-compatible gaps and special characters; also, the delays required for the COMMAND BUSY delay and the DATA BUSY signal.

Operation of the logic has already been described in Paragraph 4-27 (see Figure 4-14). The Cross Reference Chart, Table 5-2, will assist in identifying the major components in the system; however, 100 percent correspondence is not possible since Figure 4-14 is a logic diagram while the schematic shows every component.

## 5-30. Differentiators

A typical differentiator is designated 14 d 4 in Figure 4-14 and consists of components C5, Rl7, R18, and R19 (in Schematic 100358). R17 and R18 set the static level at the output of the differentiator at +3 volts, giving a noise immunity of 1.2 volts (typically). C5 is the differentiating input capacitor and R19 limits the current which flows when the IC input is driven below 0 volt by C5, causing the substrate diode to conduct.

Table 5-2
Function Control A Cross Reference Chart

Figure 4-14   Reference Designations	Schematic 100358   Reference Designations
Flip-Flop 14D	U2-A, U2-B
Flip-Flop 14E	U2-C, U2-D
Flip-Flop 14F	U6-A, U6-B
Single-Shot 14SS2	Q5, Q6, Q7, Q8
Single-Shot 14SS3	Q1, Q2, Q3, Q4
Single-Shot 14SS4	Q12, Q13, Q14
Single-Shot 14SS5	Q9, Q10, Q11
Single-Shot 14SS6	Q15, Q16, Q17

5-31. Single-Shots
Single-shots 14SS4, 14SS5, and 14SS6 are conventional single-shots and are not described.

Single-shot 14SS2 (and 14SS3) operates as follows. Cl0 and C24 are the timing capacitors and R40 is the timing resistor. The gap time is adjusted by varying the potential (with R38) from which the capacitors start discharging. Flip-flop U6A, U6B is reset and Q5 is turned on, charging the timing capacitors to a potential defined by the resistor chain R37, R38, and R39.

When flip-flop U6-A, U6-B is set, Q5 is turned off and CR6 cut off. The capacitors discharge on an exponential toward -5 volts with time constant (Cl0 + C24) x (R40). Q6, Q7, and Q8 comprise a comparator whose threshold is approximately 0 volt.

Normally, Q6 and CR7 are cut off, Q7 is on, and Q8 off, so that the collector of $Q 8$ is high. When the potential of the capacitors is approximately -0.7 volt, Q6 starts to conduct and begins to turn off Q7. Positive feedback is provided by C1l and R45 and the comparator latches. The collector of Q8 goes low, resetting flip-flop U6-A, U6-B. As a result, Q5 is turned on and the capacitors are charged to their starting potential through the 220 -ohm resistor (R37). After a time which is determined by R42, R45, and Cll, the comparator switches back to the quiescent state.

## 5-32. ECHO CHECK PARITY

Refer to Schematic 100363 for this description. This circuit board has the facilities for detecting an error during the recording process.

Information is recorded in the NRZI mode; i.e., reversal of magnetization on the tape occurs for each "l" recorded. This is accomplished by feeding current into one-half of a center-tapped recording head. The center-tap of the head is returned to -5 volts and current is supplied to the relevant half-winding from a PNP transistor connected to +5 volts through a current-defining resistor. Both the PNP transistor and current-defining resistor are located on the Double Buffer Write Amplifier circuit board.

Whenever current is switched off in one-half of the magnetic head (and switched on in the other half), the voltage at one end swings negative, relative to -5 volts, due to the inductive nature of the
recording head. The negative swings from each half of the head windings are fed to diodes CR1 and CR2, cutting off transistor Q1. A positivegoing pulse is thus generated at the junction of resistors R3 and R4 for each "l"bit recorded. The typical circuits, designated 100 through 900 , provide this function for each of the seven or nine heads. In a 7 -track system, circuits 100 through 600 and circuit 900 are used. The positive pulses are inverted by Ul-B, Ul-A, etc., and fed to flip-flops U2-C, U2-D, etc., and in turn are fed to a parity-tree check system where the appropriate output of gate Ul3-B (even parity) or gate Ul7-D (odd parity) is selected by parity switch Sl. If the parity is incorrect, pin 12 of AND gate U13-D is enabled.

Input ENC ODER PULSE WIDE is an $8-\mu$ second positive-going pulse whose leading edge is used totrigger the flip-flops, located on the Double Buffer Write Amplifier circuit board, and whose negative-going edge is used to generate a positive pulse at transistor Q2. This, inturn, is fedtothe interface transmitter via Ul3-D as the ECHO CHECK ERROR signal.

The negative-going edge of ENCODER PULSE WIDE also triggers the single-shot circuit consisting of transistors Q3 and Q4. The output of this single-shot is inverted by U9-D where the trailing edge is differentiated by capacitor C7 and inverted by transistor Q5. This pulse resets flip-flops U2-D, U2-C, etc., via inverter U9-E, OR gate UlO-D and inverters Ull-E and Ull-C. The Echo Check Error flip-flop Ul3-C, Ul2-B is reset externally via pin $\bar{F}$ (ECR).

It is necessary to disable the Echo Check system under two circumstances. The first condition occurs when write current is switched on during the time that the transport is being brought to operational status. This could cause spurious signals to inputs 1 and 2, which could set the flip-flops prematurely. Flip-flop U12-D, U12-C prevents this situation as follows. The flip-flop is reset initially by the

GENERAL RESET signal, which disables the system by holding flip-flop U13-C, Ul2-B reset. When the DATA BUSY signal goes false just prior to the start of recording, the ENABLE ECHO CHECK signal (from the Function Control Synchronous A circuit board) goes true and sets flipflop Ul2-D, Ul2-C enabling the Echo Check system.

At the end of each record, an ECHO CHECK DISABLE signal is generated which resets flip-flop U12-C, Ul2-D, disabling the Echo Check system until the DATA BUSY signal goes false at the beginning of the next record. This also pertains to the situation that occurs during a gapping sequence. The parity of the check characters (LRCC and CRCC) and the File Mark depends on the number of characters in the record and whether 7 - or 9 -track recording is being used. Therefore, it is not always the same as the data; thus, the Echo Check system must be disabled during gapping.

5-33. CYCLIC REDUNDANCY CHECK (CRC) GENERATOR
Refer to Schematic 100264 for this description. The CRC Generator circuit board comprises the CRC register (CRCR), 22 exclusive OR gates, and two single-shots. The CRC Generator circuit board is used only in 9-channel systems. The operating procedures for generating the CRC characters (CRCC) are discussed in Paragraph 4-23. The actual mechanization of the system is as follows.

Each bit of the 9-bit character ( 8 plus parity) is presented to one input of each of the nine low-true AND gates (U8-B, U8-E; U8-A, U8-F; etc.). During data recording, one input of each of these gates is enabled and the output of each gate is fed to one input of each of the nine AND gates: U9-B, U9-C, U7-B, U7-C, U5-B, U5-C, U4-B, U4-C, and U2-B. The other inputs of each of these gates are enabled at this time and the outputs of these gates feed the Double Buffer Write Amplifier circuit board.

The output of gates U8-B, U8-E; U8-A, U8-F; etc., are inverted by $\mathrm{U} 20-\mathrm{A}, \mathrm{U} 20-\mathrm{F}$, etc., and the two phases of each bit of the character are fed to the first level of Exclusive OR circuits. For bits $\mathrm{P}, 0,1,6$, and 7, the other input is from the adjacent position in the CRCR. Thus, for example, data bit $P$ is exclusively OR'd with CRCC bit 7 by U29-C, U29-D, and U20-B, etc. For bits 2, 3, 4, and 5, two other inputs are OR'd with each data input using three-way Exclusive OR circuits. Therefore, data bit 2 is exclusively OR'd with CRCC bit 7 and with CRCC bit l, using U31-A, U31-B, and U19-F and U26-C, U26-D, and U19-E.

The second level of Exclusive OR circuits U29-A, U29-B, and U20-C; U28-A, U28-B, and U20-D, are similar for all nine positions. The first level Exclusive OR circuit outputs form one input; the other input is from the same bit position of the CRCR. The outputs of the second level Exclusive OR circuits are each fed to one of the nine J-K flip-flops Ul5-A, Ul5-B, Ul4-A, Ul4-B, etc., which comprise the CRCR.

The WRITE DATA STROBE corresponding to each data character, is fed via OR gate Ul6-C, U16-A, U16-B to the single-shot, Q4, Q5, Q6, which delays the WRITE DATA STROBE $5 \mu$ seconds before it is fed to the clock input of each J-K flip-flop. This pulse can be observed at TP2. If the output of the second level Exclusive OR circuit for a particular bit is true, the J-K flip-flop for that bit is toggled by the delayed WRITE DATA STROBE. The status of each bit of the CRCR can be observed at Test Points $11,12,10,8,9,5,7,3$, and 4.

After the termination of data recording, the IRG or FILE GAP command is given, causing the ENABLE CRC waveform to go low. This negative-going edge is delayed approximately $10 \mu$ seconds via R1, C2, U33-A and U33-C, and used to trigger the $10-\mu$ second single-shot (Q1
and Q2). As a result, a $10-\mu$ second positive-going pulse is generated at the outputs of inverters U32-A and U33-F. This pulse disables the low-true AND gates $\mathrm{U} 8-\mathrm{B}, \mathrm{U} 8-\mathrm{E}$; U8-A, U8-F; etc., so that the nine data inputs in the first level Exclusive OR circuits are guaranteed false (i.e., " 0 "). The positive-going edge of the $10-\mu$ second pulse is OR'd into the WSC (nomenclature is not applicable to this transport - other PEC transports only) line and triggers single-shot Q4, Q5, and Q6 generating an artificial WRITE DATA STROBE, $5 \mu$ seconds later. This generates an extra shift.

The delayed ENABLE CRC waveform, which is inverted by power gate Ul-B and can be observed at TP6, enables one input of each of the nine AND gates U9-A, U9-D, U7-A, U7-D, U5-A, U5-D, $\mathrm{U} 4-\mathrm{A}, \mathrm{U} 4-\mathrm{D}$, and U2-A. The other input to these gates is from the J-K flip-flops that comprise the CRCR. In this manner, the output of the CRCR is routed to the Double Buffer Write Amplifier circuit board. Note that the $\bar{Q}$ outputs of the J-K flip-flops are used, except CRC2 and CRC4 which use the $Q$ outputs.

The negative-going edge of the $10-\mu$ second positive-going pulse is differentiated by R9, C5, R10, and Q3, generating a negative-going WRITE CRC pulse at the output of inverter U33-B. This pulse, observed at TP13, is used to copy the content of the CRCR into the Double Buffer (Write Amplifier) circuit board, where it is held until the appropriate WRITE PULSE causes the CRCC to be written. This pulse is generated four character spaces after the last WRITE DATA STROBE of the record by a delay circuit on the Function Control Synchronous A circuit board.

Four character spaces after the CRCC has been written, the LRCC is written. This is accomplished in the Double Buffer (Write Amplifier) circuit board by the Enable Check Character waveform which is generated on the Function Control Synchronous A circuit board. This

This information is also fed to pin 6 of the CRC Generator circuit board and inverted by $\mathrm{U} 2-\mathrm{D}$. The output of $\mathrm{U} 2-\mathrm{D}$ is fed to power gate $\mathrm{Ul} 0-\mathrm{A}$. The output of gate Ul0-A, which can be observed at TPl4, resets the $C R C R$ and is ready for CRC generation during the next record.

## 5-34. CIRCUIT BOARD LOCATIONS

Table 5-3 shows locations of the printed circuit boards for a standard tape transport.

## 5-35. SIGNAL LIST

The Glossary lists the signal abbreviations referenced in this manual and on the Schematics contained in Section VII. Unless otherwise specified, the signal description defines the status of each line in its true ("1") state.

Table 5-3
Circuit Board Locations

Circuit Board		Location
Reel Servo	100913	J201
Capstan Drive	100475	J202
Function Control -   Synchronous B	100443	J203
Transmitter   Receiver	100339	J204
Double Buffer Write   Amplifier   or	100334	J205
Double Buffer -   9-Channel Write   Amplifier*	100234	J206
Echo Check Parity**   CRC Generator*	100364	J207
Function Control -   Synchronous A	100265	J208

* This circuit board is used only with 9-track transports. ** Optional


## SECTION VI <br> MAINTENANCE AND TROUBLESHOOTING

6-1. INTRODUCTION
This section provides the information necessary to perform electrical adjustments, mechanical adjustments, maintenance, parts replacement and troubleshooting.
Section VII contains the schematic diagrams required for reference when electrical adjustments or troubleshooting are necessary.
6-2. FUSE REPLACEMENT
Line Fuse: 100-to l25-volts ac line; 3.0 amps, 3AG, slow-blow 200 - to 250 -volts ac line; 2.0 amps, 3AG, slow-blow
XF201: $\quad 8 \mathrm{amps}, 3 \mathrm{AG}$
XF202: 8 amps, 3AG
6-3. ELECTRICAL ADJUSTMENTS
6-4. POWER SUPPLY
6-5. Required Test Equipment
VTVM
6-6. Adjustment Procedure

## NOTE

Make certain that the transport does not contain any circuit board other than J201.
(1) Depress the POWER control.
(2) Connect the VTVM to TPl (ground on TP3) of J201, Reel Servo-B circuit board, see Schematic 100912.
(3) Adjust trimpot R36 (top) for $+5 \pm 0.05$ volts.
(4) Connect the VTVM to TP2 (ground on TP3) of J201.
(5) Adjust trimpot R37 (second from top) for $-5 \pm 0.05$ volts.

## 6-7. CAPSTAN SERVO

6-8. RAMP GENERATORS
Only the Synchronous Forward ramp generator is adjustable. Adjustment is only necessary if the capstan drive circuit board or one of the generator components has been replaced.

## 6-9. Ramp Rise and Fall Time

With a $5-\mathrm{Hz}$ square wave applied to the SYNCHR ONOUS FORWARD command input, set the upper trimpot so that the rise and fall times appearing on TP4 of the Capstan Drive (J202) are as specified. This single adjustment sets both the rise and fall times.

6-10. Synchronous Forward Speed
With the SYNCHR ONOUS FORWARD command in the true state, set the lower trimpot on the capstan drive (J202) for the specified speed. The correct speed can be determined by reading a standard tape or examining the capstan with a stroboscope.

## 6-11. REEL SERVO POTENTIOMETERS

The adjustment procedures are applicable to both the take-up and supply servo potentiometers. The potentiometers are located directly behind the shaft of the respective tension arm.

6-12. Reel Servo Potentiometer Adjustment Procedure
Complete the following procedure.
(1) Using a 3/32 Allen wrench, loosen Allen screws that secure clamps to the potentiometer housing.
(2) Bring the transport to READY status.
(3) Depress the FORWARD control and keep depressed.
(4) Turn the housing of the potentiometer in the appropriate direction until the tension arm is operating in the approximate center of the slotted area of the overlay plate.
(5) Release the FORWARD control.
(6) Apply a SYNCHR ONOUS FORWARD command from a pulse generator to the appropriate interface pin (refer to Paragraph 1-7 for the required pulse specification and to Table 2-1 for the appropriate SYNCHR ONOUS FORWARD command interface pin).
(7) Set the pulse generator to approximately 5 Hz .
(8) With a full supply reel, ensure that the transport operates satisfactorily.
(9) Run forward until the take-up reel is nearly full.
(10) With a full take-up reel, ensure that the transport operates satisfactorily when a SYNCHR ONOUS FORWARD command is applied at approximately 5 Hz .
(11) Momentarily depress the REWIND control.
(12) If the transport operates in the Rewind mode, switch the POWER switch off and tighten the Allen screws that secure the clamps to the potentiometer housing. If the transport does not operate in the Rewind mode, continue to step (13).
(13) Turn the housing of the take-up potentiometer 1 or 2 degrees in the counterclockwise direction.
(14) Bring the transport to READY status.
(15) Repeat steps (12) through (15) until the transport operates in the Rewind mode.

6-13. BOT PHOTOSENSOR AMPLIFIER
6-14. Required Test Equipment
Multimeter.

6-15. Adjustment Procedure
Complete the following procedure.
(1) Apply power to the transport.
(2) Making certain the BOT tab is not over the photosensor, connect the multimeter to TPl of J203 (Function Control B circuit board, see Schematic 100442).
(3) Adjust trimpot R15 (top) for +3 volts.
(4) Bring the BOT tab over the photosensor.
(5) Voltage should drop to less than +0.4 volt.

6-16. EOT PHOTOSENSOR AMPLIFIER
Adjustment of the EOT Photosensor Amplifier is identical to the BOT adjustment, except that voltage is measured at TP2 and adjusted by trimpot R30 (second from top).

## 6-17. MOTION COMMAND AND CHECK CHARACTER DELAY ADJUSTMENTS

These delays are provided by single-shot circuits contained on the Function Control Synchronous A circuit board (see Schematic 100358).

The SYNCHR ONOUS FORWARD command is applied to the appropriate interface pin (refer to Paragraph l-7 for the required pulse specification and to Table 2-1 for the SYNCHR ONOUS FORWARD command interface pin).

6-18. Required Test Equipment
Pulse Generator ( 100 Hz ).
Oscilloscope.

6-19. Command Busy Delay
Complete the following procedure.
(1) Apply SYNCHR ONOUS FORWARD commands at a rate of approximately 100 Hz .
(2) Synchronize the oscilloscope on the trailing edge of the SYNCHR ONOUS FORWARD command.
(3) Monitor TP8.
(4) Adjust trimpot R38 (fifth from the top) so that the positive pulse width is:

Stop Time $+(5$ to 10$)$ milliseconds.
(See Paragraph 6-9 for stop time.)
6-20. Write Pulse DelayComplete the following procedure.
(1) Apply SYNCHR ONOUS FORWARD commands at a rate ofapproximately 100 Hz .
(2) Apply WRITE DATA STROBES at a rate of:
D x V Hz
where
D is bit density in bpi
V is tape speed in ips
(3) Synchronize the oscilloscope on the leading edge of the WRITE DATA STROBE.
(4) Monitor TP6.
(5) Adjust trimpot R48 (third from top) so that the leading edge of the negative-going WRITE PULSE is delayed in the range of 15 to $20 \mu$ seconds from the WRITE DATA STROBE.

## 6-21. LRCC Delay

Complete the following procedure.
(1) Apply SYNCHR ONOUS FORWARD commands at a rate of approximately 100 Hz .
(2) Synchronize the oscilloscope on the trailing edge of the SYNCHRONOUS FORWARD command.
(3) Monitor TP4.
(4) Adjust trimpot R61 (second from top) so that the negativegoing ENABLE CHECK CHARACTER pulse is delayed four character spaces for a 7 -track system or eight character spaces for a 9-track system, after the termination of the SYNCHR ONOUS FORWARD command. A character space is:

$$
\frac{1}{D V}
$$

where
D is bit density in bpi
V is tape speed in ips
For example, one character space equals $50 \mu$ seconds for an 800 bpi, 25 ips system.

6-22. CRC Delay (9-track systems only)
Complete the following procedure.
(1) Apply SYNCHR ONOUS FORWARD commands at a rate of approximately 100 Hz .
(2) Synchronize the oscilloscope on the trailing edge of the SYNCHRONOUS FORWARD command.
(3) Monitor TP3.
(4) Adjust trimpot R72 (top) so that the negative-going ENABLE CRC pulse is delayed four character spaces after the termination of the SYNCHR ONOUS FORWARD command. A character space is defined in Paragraph 6-21.

Complete the following procedure.
(1) Apply SYNCHR ONOUS FORWARD commands at a rate of approximately 100 Hz .
(2) Synchronize the oscilloscope on the leading edge of the SYNCHR ONOUS FORWARD command.
(3) Monitor TP7.
(4) Adjust trimpot R28 (fourth from the top) so that the positive pulse width (in milliseconds) is:

$$
\frac{\mathrm{IRG}}{\mathrm{~V}}
$$

where
IRG $=0.75$ inch for a 7 -track system, or
IRG $=0.60$ inch for a 9 -track system
V is tape speed in ips
For example, 24 milliseconds for 9-track, 25 ips systems.

## 6-24. MECHANICAL ADJUSTMENTS

6-25. REEL SERVO BELT TENSION
The belts should not be over-tightened, since low motor bearing life and over-heating might result. Tension is applied by loosening the four screws that retain the reel motor, moving the motor until the belt is at the required tension, and tightening the screws. The proper tension will be applied when the following is established. With a steel scale placed on the belt, extending across the two pulleys, the belt deflection should be $3 / 8 \pm 1 / 8$ inch when a $1 / 2$-pound force is applied midway between the pulleys.

6-26. TAPE PATH GUIDE ALIGNMENT
All tape guiding elements in the tape path are referenced to the outer edge of the head guides. It is assumed that the tension-arm spring tension has been set up as described in Paragraph 6-32.

With the trim removed, measure the distance to the outer tapeguiding edge of each head guide from the tape deck. These measurements will normally be within 0.001 inch of each other. Measure the distance from tape deck to the outer tape-guiding edge of the supply and take-up fixed guides. Shim the guides between the guide post and roller to within 0.002 inch of the head guide dimensions. This places the outer edge of all fixed guides the same distance from the tape deck.

## 6-28. Tension Arm Guides

With the trim removed from the deck, the tension arms should be rotated so that the tape guides are as nearly as possible perpendicular to the tape deck and secured. The reel retainer hubs should be positioned so that the reel locating edge is located $0.625 \pm 0.005$ inch from the tape deck. Secure the reel retainer hubs with the two set screws on the shaft flats.

6-29. Supply Tension Arm Guide
Remove the head retaining screws and move the head from between the head guides. Place a 6 -inch steel scale across the head guides as shown in Figure 6-1. The scale should preferably be narrower than $1 / 2$ inch so that it can easily be held against the outer edges of the guides at $A$ and $B$. The tension-arm guide-shaft set screw is loosened and the guide positioned so that the outer edge lines up with the scale. Secure the guide-shaft set screw and replace the head.

## 6-30. Take-up Tension Arm Guide

Place a 6 -inch steel scale across the fixed guides as shown in Figure 6-2. The scale should be held against the outer edge of the guides. Rotate the take-up tension arm counterclockwise until the roller contacts the guide. Move the guide so that the outer edge lines up with the scale. Secure the guide-shaft set screw.


Figure 6-1. Supply Tension Arm Guide Adjustment


Figure 6-2. Take-up Tension Arm Guide Adjustment

The head is replaced and the tape threaded in the normal tape path. Power is turned on and the final adjustment is made to the tension arm guide perpendicularity by running the tape and noting the tension arm rollers. When the guides are perpendicular, the tape has an even tension across the guide with no buckling at the flanges. After adjustment, secure tension arm securely to ensure that there is no rotation during operation.

## CAUTION

USE EXTREME CARE TO AV OID CONTACT WITH THE HEAD AND GUIDES WHEN REPLACING THE TRIM.

## 6-32. TAPE TENSION

6-33. Supply Tension Arm
With the trim removed from the deck, thread a loop of tape as shown in Figure 6-3. Using a force gauge, measure the force required to pull the tension arm off its backstop and slowly through its stroke. The force required should not vary by more than a total of 0.3 ounce as the motion of the arm is slowly reversed at any part of the stroke. Adjust the spring tension screw (A) until the average force (as measured) is 8 ounces. Tighten the lock nuts.

6-34. Take-Up Tension Arm
Thread the tape as shown in Figure 6-4. Using a force gauge, measure the force required to pull the tension arm off the backstop and slowly through its stroke. The force required should not vary by more than a total of 0.3 ounce as the motion of the arm is slowly reversed at any point of the stroke. Adjust the spring tension screw (A) until the


Figure 6-3. Supply Tension Spring Measurement


Figure 6-4. Take-up Tension Spring Measurement
average force as measured above is 8 ounces. Tighten the lock nuts. Tension should be adjusted with the transport oriented in the direction of intended use.

## 6-35. Limit Switch (Take-Up Tension Arm)

In normal operation this switch is closed, shorting the inputs, When the take-up tension arm is resting on its backstop or at the other end of its stroke, the switch should be open, which indicates that the tension arm is out of the normal operating region. The cam on the tension arm shaft should be positioned so that the switch roller has moved enough to open the switch just before the tension arm contacts the backstop. A pin prevents the switch roller from contacting the cam surface when the tension arm is in the normal operating area. The oversize mounting holes for the switch are used to position the switch so that it is positively closed in the normal operating region and is opened before the arm reaches the limits of its stroke. Care should be taken to see that the cam does not contact the roller in a line drawn along the lever and through the center of the roller.

## 6-36. MECHANICAL MAINTENANCE

The tape transport is designed to operate with a minimum of maintenance and adjustments. Replacement of parts is designed to be as simple as possible. Repair equipment needed is kept to a minimum and only simple tools are required in most cases. Paragraph 6-39 lists the tools required to maintain the tape transport.

6-37. PREVENTIVE MAINTENANCE SCHEDULE
To assume that the transport operates at its optimum design potential and to assure long life, a program of planned preventive maintenance is recommended. A suitable schedule is shown in Table 6-1.

Table 6-1
Preventive Maintenance Schedule

Maintenance   Operation	Frequency   (hours)	Quantity   to   Maintain	Time   Required   (minutes)	Manual   Paragraph   Reference
Clean Transport	16 (or end of   operating day)	-	5	$6-38$
Check Roller   Guides	While cleaning	4	3	$6-38$
Check Capstan   Surface	While cleaning	1	2	$6-38$
Check Tape   Tracking	200	2	5	$6-36$
Check Tape   Tension	500	15	$6-32$	
Replace Reel   Motor	15,000	1	10	-
Replace Capstan   Drive Assembly	20,000	10	-	
Check Head Wear	5,000			

## 6-38. CLEANING THE TRANSPORT

The transport requires cleaning in three major areas: head and associated guides, capstan, and Delrin roller guides.

To clean the head and associated guides, use a lint-free cloth or cotton swab moistened in isopropyl alcohol. Wipe the head carefully to remove all accumulated oxide and dirt.

## CAUTION

> ROUGH OR ABRASIVE CLOTHS SHOULD NOT BE USED TO CLEAN THE HEAD AND HEAD GUIDES. USE ONLY ISOPROPYL ALCOHOL. OTHER SOLVENTS, SUCH AS CARBON TETRACHLORIDE, MAY RESULT IN DAMAGE TO THE HEAD LAMINATION ADHESIVE.

To clean the capstan, use only a cotton swab moistened with isopropyl alcohol to remove accumulated oxide and dirt.

To clean the Delrin roller guides, use a lint-free cloth or cotton swab moistened in isopropyl alcohol. Wipe the guide surfaces carefully to remove all accumulated oxide and dirt.

## CAUTION

DO NOT SOAK THE GUIDES WITH EXCESSIVE SOLVENT. EXCESSIVE SOLVENT MAY SEEP INTO THE PRECISION GUIDE BEARINGS, CAUSING CONTAMINATION AND A BREAKDOWN OF THE BEARING LUBRICANT.

## 6-39. MAINTENANCE TOOLS

The following list of tools is required to maintain the tape transport.
(l) Socket wrench set for 4-40, 10-32 cap screws.
(2) Socket wrench set for 4-40, 6-32, 10-32 set screws.
(3) Splined socket wrenches for 4-40, 6-40, set screws
(4) Open end wrenches for 3/16-, 1/4-, 5/16-, and 3/8-inchbolts.
(5) Long-nose pliers.
(6) Phillips screwdriver set.
(7) Standard screwdriver set.
(8) Soldering aid.
(9) Soldering iron.
(10) One-pound force gauge.
(11) Lint-free cloth.
(12) Cotton swabs.
(13) Isopropyl alcohol.

## 6-40. TROUBLESHOOTING

Table 6-2, System Troubleshooting chart, provides a means of isolating faults, the possible causes, and the remedies. Table 6-2 is used in conjunction with the schematic, assembly drawings, and wiring diagrams listed in Section VII.

Table 6-2
System Troubleshooting

Symptom	Probable Cause	Remedy	Reference
Tape does not tension and capstan shaft rotates freely when LOAD FORWARD is depressed for the first time.	Interlock relay K201 does not close.	Check operation of relay. Replace if necessary.	Schematic 100388
	LOAD FORWARD switch Sl03 not operative.	Check operation of switch. Replace if necessary.	Schematic 100388
	Relay Driver defective.	With power on, check for a maximum of 0.5 volt at pin E. If greater, replace defective delay driver component.	Schematic 100474
Tape tension is present when LOAD FORWARD control is depressed, but is removed when control is released.	Limit switch Sl0l not operative.	Replace switch if defective.	Schematic 100388
	Limit switch Sl0l not adjusted properly.	Adjust switch.	Paragraph 6-35
Tape runs away when LOAD FORWARD control is depressed or tape speed is excessive.	Fuse XF202 blown.	Replace fuse.	Paragraph 6-2
	No tachometer feedback.	Check resistance between pins 7 and 8 of TB301 for approximately 150 ohms. Replace entire capstan assembly if tachometer is defective.	Schematic 100388
		Check ramp generator for proper output. Replace defective component.	Schematic 100474

Table 6-2 (continued)

Symptom	Probable Cause	Remedy	Reference
Tape unwinds or tension   arm hits stops when   LOAD FORWARD   control is depressed.	Tape improperly   threaded.	Rethread tape.   J201.	Nolts at pin 4 of
	Repair or replace Reel   Servo circuit board.	Schematic 100912	
Tape continues to run   when BOT tab reaches   photosensor.	BOT tab dirty or   tarnished.	Replace tab or increase   sensitivity of photo tab   amplifier.	Paragraph 6-15
	Photosensor not   properly adjusted.	Adjust photosensor.	Paragraph 6-15
	Photosensor or   amplifier defective.	Check for +3 volts at pin   D of J203 with tab not over   photosensor. Repair or   replace defective parts.	Schematic 100442   Paragraph 6-15
Transport does not move   in response to SYNCHRO-   NOUS FORWARD   commands.	Interface cable fault   or receiver fault.	Check relevant receiver   test point.	Schematic 100474
	Fault on Capstan Drive   card.	Check TP4, J202.	

Table 6-2 (continued)

Symptom	Probable Cause	Remedy	Reference
Parity is written   incorrectly.	Parity generator switch   set incorrectly on   Receiver circuit board.	Set switch to correct   position.	Schematic 100333   Paragraph 5-25.
CRC and/or LRC check   characters spacing   incorrect.	Single-shot timings mal-   adjusted.	Adjust trimpot R61 and/   or R72 on Function   Control Synchronous A   circuit board.	Schematic 100358   Paragraphs 6-21   and 6-22
IRG distance too short   or too long.	Data Busy single-shot   maladjusted.	Adjust trimpot R28 on   Function Control   Synchronous A circuit board.	Schematic 100358   Paragraph 6-23
	Last WDS of record not   coincident with termina-   tion of SFC.	Correct interface timing.	Paragraph 3-10

## SECTION VII

SCHEMATICS, PART LISTS, AND WIRING DIAGRAMS

## 7-1. INTRODUCTION

Printed circuit board schematics, assembly drawings, and wiring diagrams are included in this section and are collated in the same order shown in Table 7-1.

Table 7-2, Part Number Cross Reference, provides a cross reference to the manufacturer's part numbers from PEC part numbers.

Table 7-1
List of Schematics

Description	Schematic   Number	Assembly   Number
Reel Servo and Voltage Regulator	100912	100913
Capstan Drive	100474	100475
Function Control, Synchronous B	100442	100443
Function Control, Synchronous A	100358	100359
Transmitter, DTL	100338	100339
Receiver, DTL	100333	100334
Double Buffer Write Amplifier	100233	100234
Double Buffer - 9 Channel	100238	100239
Write Amplifier	100363	100364
Echo Check Parity	100264	100265
CRC Generator	101200	101201
Wiring Diagram - 9-Track	100388	
Wiring Diagram - 7-Track		
Power and Harness Wiring Diagram		

Table 7-2
Part Number Cross Reference

$\begin{gathered} \text { PEC } \\ \text { Part Number } \end{gathered}$	Manufacturer   (or equivalent)	Description or Part Number*
Carbon Comp. Resistors $\begin{aligned} & 101-1525 \\ & 102-1525 \\ & 107-1525 \end{aligned}$	Allen Bradley, Stancor	RC20 (1500 ohms, 5\%, 1/2 watt)   RC32 (1500 ohms, 5\%, 1 watt)   RC42 (1500 ohms, 5\%, 2 watts)
Precision Resistor $104-2612$	Corning, IRC	RL20C, (26, 100 ohms, $1 \%$, l/4 watt)
Variable Resistors $\begin{aligned} & 121-1010 \\ & 121-1020 \end{aligned}$	Beckman Helipot	79PR100, (100 ohms, $10 \%, 3 / 4$ watt)   79PR1K, (1000 ohms, $10 \%$, 3/4 watt)
Dipped Mica Capacitors $130-1515$	El Menco	CM05CJ03 (150   picofarads, 500 volts, 5\%)
Mylar Capacitors $131-1540$	Cornell - Dubilier	WMF1P15 (0.15 $\mu$ farads, 100 volts, $10 \%$ )
Solid Tantalum Capacitors $132-2752$	Kemet	TK2R7W 35 (2.7 $\mu$ farads, 35 volts, 20\%)
Aluminum Electrolytic Capacitors $133-7060$	Mallory	MTA70E20 (70 $\mu$ farads, 20 volts $-10+100 \%$ )

*For resistors and capacitors typical part numbers only are shown.

Table 7-2
Part Number Cross Reference (Continued)

$\begin{gathered} \text { PEC } \\ \text { Part Number } \end{gathered}$	Manufacturer (or equivalent)	Description or Part Number
Transistors		
200-4123	Motorola	2N4123 (NPN switching)
200-4125	Motorola	2N4125 (PNP switching)
200-3053	RCA	2N3053 (NPN, T05, medium power)
200-5321	RCA	2N5321 (NPN, T05, medium power)
200-4037	RCA	2N4037 (PNP, T05, medium power)
200-5323	RCA	2N5323 (PNP, T05, medium power)
200-3771	RCA	$\begin{aligned} & \text { 2N3771 (NPN, T03, } \\ & \text { power) } \end{aligned}$
200-3055	RCA	$\begin{aligned} & \text { 2N3055 (NPN, T03, } \\ & \text { power) } \end{aligned}$
Diodes		
300-4446	TI	1N4446 (logic diode)
Rectifier Bridge $320-9622$	Motorola	MDA 962-2 (100 volts, $10 \mathrm{amps})$
Zener Diodes		
330-0685	Motorola	1N4736A ( 6.8 volts, $5 \%$ )
330-1005	Motorola	$\begin{aligned} & 1 \mathrm{~N} 4740 \mathrm{~A}(10 \text { volts, } \\ & 5 \%) \end{aligned}$
OP Amplifier		
400-1435	Motorola	MCl435P

> Table $7-2$
> Part Number Cross Reference (Continued)

PEC   Part Number	Manufacturer   (or equivalent)	Description or   Part Number
Digital IC		
$700-8360$	Fairchild	U6A993659
$700-8440$	Fairchild	U6A994459
$700-8450$	Fairchild	U6A994559
$700-8460$	Fairchild	U6A994659
$700-8520$	Fairchild	U6A909959





5) FOR PART NO'S WHICH ARE AFFECTED BY
VERSION NO. SEE TABLE
(4) FOR PART NO'S WHICH ARE NOT AFFECTED BY
VERSION NO. SEE TABLE I.
(3) RUBBER STAMP PART No., INCLUDING VERSION No. and
2. ASSEMBLE PER STANDARD MANUFACTURING METHODS. SCHEMATIC-100474
SPEC- 100476
6) for applicable capacitors see version SPEC-100476

NOTES: UNLESS OTHERWISE SPECIFIED





















## APPENDIX A

GLOSSARY

GLOSSARY

Symbol	Description	Symbol	Description
BCD10	Binary Coded Decimal	DBY	Data Busy
BOTO	Beginning of Tape Output	DMC	Disable Manual Controls
CBY	Command Busy	ECC	Enable Check Character
CCS	Check Character Strobe	ECD	Echo Check Disable
CRC0	Cyclic Redundancy Check 0	ECE	Echo Check Error
CRC1	Cyclic Redundancy Check 1	ECR	Echo Check Reset
CRC2	Cyclic Redundancy Check 2	ECRC	Enable CRC
CRC3	Cyclic Redundancy Check 3	EEC	Enable Echo Check
CRC4	Cyclic Redundancy Check 4	EF	Erase Winding Finish
CRC5	Cyclic Redundancy Check 5	EFM	Enable File Mark
CRC6	Cyclic Redundancy Check 6	EOTO	End of Tape Output
CRC7	Cyclic Redundancy Check 7	EPNP	Encoder Pulse Narrow
CRCP	Cyclic Redundancy Check Parity	EPW	Eowerful
CT0	Center Tap 0	Encoder Pulse Wide	
CT1	Center Tap 1	ES	Erase Winding Start
CT2	Center Tap 2	FGC	File Gap Command
CT3	Center Tap 3	FGL	File Gap Lamp
CT4	Center Tap 4	FGR	File Gap Ramp
CT5	Center Tap 5	GIP	Gap In Process
CT6	Center Tap 6	General Reset	
CT7	Center Tap 7	CTP	Center Tap Parity

GLOSSARY (continued)

Symbol	Description	Symbol	Description
LFC	Load Forward Command	WDS	Write Data Strobe
LFR	Load Forward Ramp	WDSN	Write Data Strobe Narrow
RD	Relay Driver	WF0	Write Finish 0
RRS	Remote Reset	WF1	Write Finish 1
RWC	Rewind Command	WF2	Write Finish 2
RWR	Rewind Ramp	WF3	Write Finish 3
RYC	Ready Command	WF4	Write Finish 4
SFC	Synchronous Forward Command	WF5	Write Finish 5
SFCD	Synchronous Forward Command	WF6	Write Finish 6
	Delayed	WF7	Write Finish 7
TNT	Tape Not Tensioned	WFP	Write Finish Parity
TRR	Transport Ready	WPC	Write Power Control
WCRC	Write CRC	Write Pulse	
WD0	Write Data 0	WRP	Writa
WD1	Write Data 1	WS0	Write Start 0
WD2	Write Data 2	WS1	Write Start 1
WD3	Write Data 3	WS2	Write Start 2
WD4	Write Data 4	WS3	Write Start 3
WD5	Write Data 5	WS4	Write Start 4
WD6	Write Data 6	Write Start 5	
WD7	Write Data 7	WS5	Write Start 6
WDP	Write Data Parity	WS6	Write Start 7

