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A COMPILER-COMPILER FOR THE CDC 3300

I. INTRODUCTION

The purpose of this thesis is to present a compiler-compiler
system called COMCOM which has been implemented by the author on
the CDC 3300 under the OS-3 operatiﬁg system.

A compiler -compiler accepts a description of the structure and
meaning of a language and builds a translator for the language.
Compiler -compilers can be used to build translators for a wide
variety of languages. Plus, the implementer is relieved of many of
the details present in the traditional methods of writing compilers.
Evolution of compiler -compilers began as early as 1960 when Irons
[13] was able to construct a compiler whose structural phase was
independent of the source language being translated. Some compiler-
compilers are the META systems [14,16,17], Feldman's Formal
Semantic Language (FSL) [7], EULER [18,19], and Compiler Compiler
[5]. A version of META has been implemented at Oregon State
University, META/OS-3 [2]. Some of the external features of
COMCOM are similar to META/OS-3.

Feldman and Gries [8] give an excellent introduction
and state of the art (1968) survey of translator writing systems (TWS,
of which compiler-compilers are a subclass). It also includes an

extensive bibliography.



The heart of a compiler is its method for recognizing or parsing
the source language. The languages for which a compiler can be con-
structed depends heavily on the parsing algorithm selected. Two
general categories of parsers are top-down and bottom-up. Most
top-down processes require backup, a very undesirable feature.
Bottom-up methods using precedence techniques eliminate backup by
using tables of information about the language. Floyd was the first to
formalize the idea of precedence. His operator precedence technique
[9], is used by COMCOM. Other types of precedence are simple
precedence [18,19], weak precedence [12], and various higher order
precedence methods [10].

Summaries of parsing techniques and compiler construction
methods can be found in the book by Gries [10].

The next chapter defines some key terms, discusses bottom-up
recognizers, and describes the operator precedence recognizer which
is used by COMCOM. The third chapter gives a brief description of
the COMCOM system. A more detailed description of some features
can be found in the Appendices. Chapter IV compares COMCOM and

META/OS-3.



II. THEORY

A. Terminology and Definitions

The first section of this chapter reviews some definitions and
terminology used in this thesis. Most of them are from Gries [10]
where the formal definitions can be found.

Translators are programs which translate a source program

into an equivalent object program, for example, compilers, inter-

preters, and assemblers. A translator writing system (TWS) is a

program or set of programs which aids in writing translators. The
main purpose of a TWS is to simplify the implementation of translators.
TWS's which are tailored towards writing compilers are called

compiler -compilers. COMCOM is a compiler-compiler, but it is

flexible enough to be used for other translating tasks such as format
conversions and interpreters.
A vocabulary is a finite set of symbols. A string is a finite

sequence of symbols from some vocabulary. The empty string is the

string containing no symbols and is denoted «. V* denotes the set
of all strings over vocabulary V and includes the empty string. For
example if V = {a,bl, then

v {a.b}* {¢,a,b,aa.ab,ba,bb.aaa, ... v’ denotes V* minus

the empty string.

A context free grammar is a four-tuple G = (N, T,P,S) where




1. N 1is a finite set of nonterminals;
2. T 1is a finite set of terminals (N~ T = é):

3. P is a finite set of productions or rewriting rules of the form

N
R

U—>>x where U in N and x in (N T)
4. S in N is the distinguished start symbol.

Henceforth, the term grammar will mean a context free grammar.

o
S

If U-—>u is a productionof G and x,y in (NUT) then

xUy directly produces xuy (denoted xUy => xuy). We also say

xuy directly reduces to, or is a direct derivation of xUy. 1If there

exist a sequence of direct derivations

where x = Ugr ¥ = us and 'n >0 then x produces vy
n
B . . .

(x =>y) or vy reducesto x. The sequence 1s called a derivaction
of length n. If n >0 then x generates vy (x =>y). Thus
n_n H Hi 1] H Hi: " M

=>" is one, => 1s a sequence of one or more, and > is a
sequence of zero or more direct derivations.

A string is called a sentential form if it can be generated from

the distinguished start symbol. A sentential form which contains only
terminal symbols is a sentence. The language defined by a grammar
1.(G) is the set of all sentences generated from the start symbol. A

grammar which generates the unsigned integers is shown in Figure 1.



G. = (N, T,P,INTEGER)
N = {INTEGER, INT, DIGIT}
T:{O’l:27374a5a67778,9}

The elements of P are:

—_

- INTEGER —> INT

2. INT —>INT DIGIT
3. INT —> DIGIT
4. DIGIT —> 0
5. DIGIT —> 1
6. DIGIT —> 2
7. DIGIT —> 3
8. DIGIT —> 4
9. DIGIT —>5
10. DIGIT —>6
11. DIGIT —>7
12. DIGIT —> 8
13. DIGIT —>9

Figure 1. Context free grammar G| for the
unsigned integers.

A grammar is a description of a language's structure, or syntax,
and conveys nothing about the meaning, or semantics, of the language.
The derivation of a sentential form can be illustrated by drawing a
syntax tree with the start symbol at the top, the branches extending
downward, and the node labels are the terminals and nonterminals of
the grammar. A syntax tree for the sentential form "INT 9 4"

(generated from G]) is shown in Figure 2. Readers not familiar with



syntax trees are referred to Gries' book [10].

INTEGER

|

INT

//\

DIGIT

INT
e |
NT DIGIT 4

|

9

I

Figure 2. Syntax tree for the sentential form "INT 9 4".

A sentence of a grammar is ambiguous if there exists two
different syntax trees for it. A grammar is ambiguous if it contains

an ambiguous sentence; otherwise it is unambiguous. Sometimes an

ambiguous grammar can be converted into an unambiguous grammar
which generates the same language. Notice it is the defining grammar
which is called ambiguous and not the language. However, there are
languages for which no unambiguous grammar exist and these

languages are called inherently ambiguous.

In most theoretical and practical situations the empty string is
not allowed as a production right part. It is well known that given a
context free grammar G and ¢ -free grammar G' can be con-
structed such that L(G") - L(G) - {¢}. Moreover, if G is unambigu -
ous then so is G' [10].

A language which is used to describe another language is called

a metalanguage. A well known syntactic metalanguage is Backus-Naur




Form (BNF) which was first used in the ALGOL 60 Report [4]. A

process which uses a syntactic metalanguage in an algorithm for

recognizing sentential forms is called syntax-directed. COMCOM
and most compiler -compilers are syntax-directed.

A parse of a sentential form is the construction of a derivation
and possibly a syntax tree for it. A program which parses sentential

forms is called a parser, or recognizer. The parsers in this thesis

are called left-to-right because they examine the source language

starting at the left and proceed to the right. Most parsers can also be

classified as either top-down or bottom-up. This refers to the way in

which the syntax tree is constructed. The top-down parsers start at
the distinguished symbol, the root, and work towards the end nodes in
a predictive manner testing alternative productions until the sentential
form is parsed. Top-down recognizers can be programmed in many
different ways such as recuréive descent [10] or a single routine work-
ing on a stack [8], but the distinguishing feature is their predictive or
goal-oriented nature.

The bottom-up recognizers search the input string for a sub-
string which is the right part of a production and replace the substring
with the left part. This reduction corresponds to building a syntax
tree from the bottom up towards the root. When only the start symbol
remains the parse is complete.

Let w = xuy be a sentential form defined by a grammar G.
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Then u is called a phrase of the sentential form w if S o> xUy

+ ,
and U =>u where S 1is the start symbol: u is a simple phrase

if S N xUy and U =>u. For example, in Figure 2 "INT 94"
is a phrase for "INT" and "9" is a simple phrase for "DIGIT".
Cne must be careful with the term phrase. The fact U s u does
not necessarily mean that u is a phrase of a sentential form xuy;
we must also have S s xUy. To illustrate this, consider the
sentential form "INT 9". The existence of a rule

"INTEGER —>INT" in G.l (Figure 1) does not mean that "INT"
is a phrase because "INTEGER 9" can not be generated from the

start symbol "INTEGER".

A prime phrase is a phrase which contains no other phrase but

at least one terminal. For example, "9" in Figure 2 and the left or
right "i" in Figure 3 are prime phrases. Most bottom-up parsers
reduce the handle or leftmost simple phrase which is "FACT" in
Figure 3. However, some recognizers {(such as the one described in
this thesis) reduce the leftmost prime phrase, the leftmost "i" in
Figure 3. Notice the difference between the handle ("FACT") and the
leftmost prime phrase (leftmost "i") in Figure 3. The prime phrase
must contain a terminal whereas the handle could consist of only
nonterminals. OCne would expect the parser which reduces the left-

most prime phrase, instead of the handle to be faster since it does not

have to make reductions such as "FACT" to "TERM" or "TERM" to



"EXPR'" in Figure 3.

S
|
//////EXPR
i
EXPR : TERM
| N
TERM TERM  * FACT
| i |
FACT FACT i

Figure 3. Syntax tree for "FACT + i *1i'".

In bottom-up parsing the main problem is finding the phrase to
reduce. One solution is the precedence scheme. If someone is asked
to evaluate "4 + 3 * 5" they will reply "19". The multiplication is
perforrnekd before or has ''precedence'' over the addition. A formal-
ization of the precedence idea is the operator precedence technique

developed by Floyd [9]. ‘An operator grammar is a context free

grammar in which no production may be of the form U —> xUley

for some strings x and y and nonterminals U, and U'Z. Thus, no

1

sentential form contains two adjacent nonterminal symbols [9].
In order to find the leftmost prime phrase to reduce. the fol-
lowing precedence relations are defined between terminal symbols

Tl and TZ of an operator grammar.
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1. T, = T, if there is a production U —> XTITZY or

1 2
U —> XTlUlTZY where U1 is a nonterminal and x.y: in
(NKJT)*
2. T, >T, if there is a production U —>=xU, T,y and a
derivation U1 >:1:> z where T1 is the rightmost terminal

character of =z.

3. T1 < T, if there is a production U —> leUly and a deri-

vation U1 => g where TZ is the leftmost terminal

character of =z.

An operator precedence grammar is an operator grammar for

which no more than one of the three relations hold between any

ordered pair T., T of terminal symbols. An operator precedence

17 2

grammar GZ for a subset of arithmetic expressions is shown in

Figure 4. ILanguages generated by such grammars are called

operator precedence languages. Any sentence of an operator preced-

ence grammar has a syntax tree with a unique structure. However.,
the language may still contain ambiguous sentences since the name of
the nodes could differ. This occurs when the right parts of productions
are identical. For example, if production 1 of Figure 4 were
replaced by productions la through le of Figure 5a the grammar
would still be an operator precedence grammar. Figure 5b shows a
syntax tree for 'i +i' in which the third node from the top can be

named "REALEXPR'" or "INTEXPR' making the sentence ambiguous.
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This will be discussed further in Section C of this chapter.

G, = (N, T,P,S)
N = {S, T.EXPR, TERM, FACT}
T = {+,%,(,). i}

The elements of P are:

1. S —> EXPR

2. EXPR —> EXPR + TERM
3. EXPR —> TERM

4. TERM —> TERM * FACT
5. TERM —> FACT

6. FACT —>( EXPR )

7. FACT —>1i

Figure 4. Operator precedence grammar G, for a restricted
subset of arithmetic expressions.

The parser described in this thesis reduces not the handle but
the leftmost prime phrase. However, the parse is still left to right,
bottom-up. The prime phrase of a sentential form is found using the
precedence relations. These relations can be represented in an

n x n precedence matrix where n is the number of terminals.

Notice that the three precedence relations ''<', =", and ''>'"" hold
between ordered pairs of terminals and are not necessarily sym-

metric [10]. For example, "T = TZ" does not mean that

n = 1R}
TZ 11 .
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S
t
E
la. S—>E l

REALEXPR or INTEXPR
lb. E —>REALEXPR

EXPR
lc. E—> INTEXPR P N
EXPR + TERM
ld. REALEXPR —> EXPR { |
TERM FACT
le. INTEXPR —> EXPR | I
FACT i
l
1
(a) (b)

Figure 5. An ambiguous sentence 'i + i'' of an operator precedence
grammar.

B. Operator Precedence Grammar Recognizer

This section describes Floyd's operator precedence grammar
recognizer used by COMCOM, and briefly compares it to other bottom -
up recognizers which can be constructed automatically from the
grammar's productions.

The operator precedence grammar recognizer uses the
precedence matrix to find a prime phrase. Figure 6 illustrates the
precedence matrix for the grammar G of Figure 4. Suppose

2

TO x T is a substring of the sentential form s = XlTO X TXZ and

that the terminal symbols in the substring x are, in order,

I ,Tn (n >1). If the following relations hold between
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then x is a prime phrase [10]. A nonterminal to the left of T1
or to the right of Tn always belongs to the prime phrase. The

first symbol in the phrase is the head and the last is the tail.

L TR GRS B

+ > < < > <
% > > < > <
( < < < = <
) > > >
i > > >

Figure 6.‘ Precedence matrix for the grammar GZ-

The algorithm for parsing a sentence is quite straightforward.
Starting at the left of the sentence, the symbols are pushed onto a stack
until Tn > T holds between the top terminal on the stack and the next
incoming symbol T, which is called the window. If the string is
actually a sentence in the language, the top stack elements are the
string Tox as previously described. One searches back in the
stack using the relations to find the head of x. The left most prime
phrase is then x and can be reduced to some nonterminal which is
placed on the top of the stack. This process repeats by comparing TO

to T. Aparseof '"i+i *i" (delimited by "|-'" and '-|') is
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illustrated in Figure 7. Note the nonterminals ("N'") are just place
holders.
Prime Matching
Step Stack Relation Window Phrase Production
1. |- < i
2. i > + j 7
3. N < n
4. ,— N + < i
5. i— N +1 > g i 7
6. N +N < :
7. N+ N < i
8. F N+ N #i > -| i 7
9. F N +N *N > | N % N 4
10. - N+ N > -| N+ N 2
11. |- N STOP

Figure 7. The parse of |- i +i *1i -|.

If one was concerned only with syntactic correctness, the non-
terminals could be completely eliminated and the parse would proceed
essentially unchanged. However, languages have semantic informa -
tion associated with the syntax. When a prime phrase is detected the
productions are searched for a right hand side of the same form and
the associated routine is called to do semantic processing. Thus, the
nonterminals must be retained for at least place holding purposes.

Two other similar precedence schemes are the simple [18, 19]

and weak [12 |- In the simple precedence method there is no
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restriction of adjacent nonterminals and the precedence relations
hold between both terminals and nonterminals. Thus, the precedence
matrix is much larger than for the operator precedence method.
Because of the way simple precedence grammars are defined and the
restriction that right parts of productions be unique, all sentences of
simple precedence languages are unambiguous [1]. The simple and
operator precedence parsing algorithms are the same except the
simple reduces the handle ("FACT' in Figure 3) instead of the leftmost
prime phrase (leftmost "i'"' in Figure 3). The operator parser is
faster since it does not have to make reductions such as "FACT" to
"TERM'" and "TERM' to "EXPR' in Figure 3. Also, it is harder to
manipulate a programming language grammar into a simple preced-
ence grammar [10]. Because of the above the operator precedence
recognizer was chosen over the simple precedence scheme.

The weak precedence technique is a slight modification of the
simple. The relations ""<'" and '"='" are combined into one. The
incoming symbols are stacked until the top stack item has the relation
">"to the window. The head of the handle is found by pattern match-
ing the top stack symbols to the right side of productions, the longest
match being the handle. It is easier to construct weak precedence
grammars, but the size of the precedence matrix is again large. and
this procedure is even slower than the simple precedence method

because of the pattern matching required.
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Higher order precedence methods [10] use more symbols in the
sentential form to detect the head and tail of the handle and thus use
large precedence matrices. Bounded context parsers [10] use tables
consisting of stack configurations and incoming symbols to find the
handle and determine the correct reduction. The higher order preced-
ence and bounded context methods can be made practical but become

complicated [10], especially for a compiler-compiler system.

C. Theory Advantages and Disadvantages

As mentioned in Section A of this chapter, an operator preced-
ence language may contain ambiguous sentences. The structure of the
syntax tree is unique for each sentence but the names of the nodes
may be ambiguous. For a prime phrase x there may be more than
one nonterminal to which it can be reduced, since there is no restric-
tion that right parts of productions be unique. However, nonterminals
are usually manipulated as operands by the semantic routines, and not
so much by the syntax parser. The syntax defines the structure;
whether a node is named say real expression or integer expression as
in Figure 5b is a matter to be handled by the semantic routines.

The restriction of no two adjacent nonterminals and problems
with precedence conflicts can complicate the construction of an opera-
tor precedence grammar for a language with the desired attributes.

Operators in a left recursive rule are usually in an infix notation
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similar to the "+'" and "#'" in Figure 4. For example, Figure 8 shows
an attempt to write a grammar for a language in which each state-
ment is followed by a dollar sign. The statements of the program are
represented by '"PSTATE''. The precedence conflicts can be
eliminated using right recursion by replacing productions 2 through 4
(inclusive) with "BODY —>STATE $ BODY'" and "BODY —>STATE §$''
But then the last statement and dollar sign of the program must be
reduced before any other dollar signs and the parsing stack becomes
very large. The author has been unable to produce an operator
precedence grammar for operators in a postfix notation (operator
appears after operand or operands) so that the stack does not pro-

liferate. However, there is a method in COMCOM to implement

postfix operators and it will be developed in Chapter III, Section B.

G?7 = (N, T,P, PROGRAM)

N

1l

{PROGRAM, BODY,STATEDS,STATE}
T = {BEGIN, END, $, PSTATE}
The elements of P are:
1. PROGRAM —> BEGIN BODY END
2. BODY —> BODY $ STATEDS
3. STATEDS —>STATE $

4. BODY —>STATE
5. STATE —>PSTATE
Precedence conflict: $>$
$<$

Figure 8. Operator precedence grammar with a precedence conflict.
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The restriction of no two adjacent nonterminals is not serious.
Many programming language's grammars are already in this form
and those which are not can be manipulated into operator precedence
grammars without essentially disturbing the structure of the language.
For example, if productions 2 and 3 of Figure 8 are replaced with
"BODY —> BODY $ STATE' the precedence conflicts are eliminated
and the program statements are separated by, instead of followed by,
a dollar sign. The source language is the same except the dollar
sign after the last statement in the source program is omitted.

Precedence conflicts may also occur when the same terminal is
used for multiple purposes, for example, the unary and binary minus
sign. If the preceding operator is checked or if two distinct termi-
nals are used, the unary and binary uses can be distinguished. Thus,
in the operator precedence technique precedence conflicts and the
restriction of no two adjacent nonterminals can require many termi-
nals in the language.

The operator precedence technique yields a recognizer which is
extremely efficient and can be constructed automatically from the
(grammar's) productions. Compared to top-down methods. the
operator precedence technique requires extra processing to produce
the precedence matrix and other tables but is usually justified by the
increased parsing speed and no backup. It is faster and uses less

space than the simple, weak, and other precedence methods mentioned



earlier. Floyd [9] has constructed a grammar for an algol like
language for which the precedence matrix is only about 40 x 40. The
other precedence methods would require a substantially larger matrix
because the precedence felations hold between both vthe terminals and
nonterminals.

Thus, the operator precedence method is very efficient in its
use of time and space, it is easy to understand and is relatively easy
to use. For these reasons it is the recognizer used by COMCOM.

As of 1968 the authors of [8] were not aware of a compiler containing
a mechanically constructed operator precedence recognizer, but indi-
cated the precedence technique itself has been used in quite a few
ALGOL, MAD, and FORTRAN compilers. In a search of the litera-
ture since then the author has been unable to find a TWS using the
operator precedence method. Hence COMCOM appears to be the only

TWS using this scheme.
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II. THE COMCOM SYSTEM

A. Description of COMCOM

The following is only a brief description of the COMCOM sys -
tem. Additional information may be found in the Appendices.

The components of the COMCOM system are the constructor,
parser, scanner, overlay writer, and semantic routines. A
diagram of how these components interact is in Appendix A. Simpli-
fied versions of the algorithms for some of the components are also in
the Appendices.

The constructor accepts the syntactic metalanguage productions
building the precedence matrix and other tables required by the
parser. Any precedence conflicts are indicated and the precedence
matrix may be printed out if desired. The printed matrix and the
productions enable the users to determine how the parse will proceed.
Using a method described by Floyd in [9] the precedence matrix can
often be reduced to two arrays reducing storage requirements. How-
ever, this is not done by COMCOM because the algorithm fails for
some operator precedence grammars and the matrix cannot be reduced.
Also, in a parse syntax errors would go undetected longer using the
arrays because the relation 'no relation' between two terminals is not

detected immediately.
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The syntactic metalanguage input to the constructor resembles
BNF and an example is shown in Figure 9. ".SYNTAX'" and '". END"
are control statements signifying the beginning and end of the pro-
gram. The two lines following '".SYNTAX' are declarations of the
maximum number of rules, terminals, and semantic routines, and
declare the name of an error routine. In the productions (which may
appear in any order) ''="" is used for ''=>'", the terminals are enclosed
in """ ", and the nonterminals are variables such as "PROGRAM' or
"BODY'". Production right sides cannot be the empty string. Seman-
tic routine calls may be associated with each production and are pre-
ceded by a ".", for example "".OUTEND". Each production is ended
with ., ", The syntax specification in Figure 9 describes a language
consisting of a "BEGIN'' followed by a body and an "END'. The body
consists of statements in tbhe form '"'x ="' an arithmetic expression,
where the arithmetic expressions involve the variables '"A'' and "B'',
the operators '"+'" and "*'", and each statement is separated by a "'$'".
Notice in the sample source program of Figure 10 there is no dollar
sign after the last statement. The program of Figure 9 specifies that
each statement is separated by, not followed by, the terminal "$''".

Thus, to build a translator using CCMCOM one writes the syntax
specification in an operator precedence grammar. Production right
parts containing terminals represent prime phrases. If the user wants

control to do semantic processing when a prime phrase is detected (by
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the parser) he includes a semantic routine call after the production
right part. Right parts consisting of a single nonterminal will never
be a prime phrase, by definition, and are forbidden to have semantic
routine calls. If several productions have right parts of the same
form, that is, the terminals match and they have nonterminals in the
same positions, then only one of them is allowed to have an associated
semantic routine call. The called routine must either take the same
action for all productions or determine m&uch,productknlisthe correct
one. This will be discussed further following the description of
terminal classes. Appendix G shows a simple compiler implemented

using COMCOM, complete with semantic routines and sample runs.

« SYNTAX ARITHMETIC EXPRESSIONS

RULES(15) TERMINALS(15) ROUTINESC1G)
ERROR(ERRORSR) :

PROGRAM = 'BEGIN' BODY 'END' «OUTEND -
BODY = BODY '$' STATEMENT ..,
BODY = STATEMENT ..,

STATEMENT = °'X* '=' EXPR ¢ASSIGN e
EXPR = EXPR '+' TERM « PLUS o>
EXPR = TERM .,

TERM = TERM ‘'*' QPERAND «MULT o
TERM = OPERAND ..,

OPERAND = ‘A" « AOPERAND o>
OPERAND = *'B°' +« BOPERAND ..,
« END

Figure 9. COMCOM program for a restricted subset of
arithmetic expressions.
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REGIN

X

A x R ¢

X a4 + B % A %

X R x B x B

END

Figure 10. Sample source program for
compiler of Figure 9.

The scanner reads the source language and classifies each item
as a particular terminal. There is no provision for backup in
COMCOM so this classification is final unless the user changes it with
semantic routines. The properties of the scanner can be changed by
declaring certain terminal classes. For example, an unsigned integer
can either be built from scratch

INTEGER = '0' .,

INTEGER = '1' .,
INTEGER = '2' .,

INTEGER = '9' .,

INTEGER = INTEGER '0' .,
INTEGER = INTEGER '1l' .,
INTEGER = INTEGER '2' .,

INTEGER = INTEGER '9' .,
OPERAND = INTEGER .,

or the terminal class . INTEGER (indicated by a period before the
class name) can be declared with the other declarations (line a.fter

.SYNTAX in Figure 9) as follows
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CLASSES ( . INTEGER)
and writing the production

OPERAND = .INTEGER .,
This will cause the scanner to automatically classify »strings of digits
as the terminal class . INTEGER. When the scanner classifies a
string as a terminal class it copies the actual characters into a block
of storage and hands the parser a pointer to the block.

A special terminal class is the end of line (.EOL). When it is
declared the scanner supplies the terminal . EOL at the end of each
source record. Figure 11 gives the syntax specification of a simple
compiler which uses . EOL between each statement. Notice that the
last source line will contain a statement, the terminal "END", and a
supplied . EOL. The available terminal classes are .ID (identifier),
.INTEGER, .SPECIALC (special character), .LETTER, -NUMBER,
.DIGIT, .STRING, .EOL.

The parser is the basis of the constructed translator. The
parser calls the scanner to get terminals pushing them onto a syntax
stack until a prime phrase is detected. The prime phrase's form is
matched to right parts of the productions and control is transferred
to the semantic routine or routines associated with the matching pro-
duction. Upon return, the parser performs the reduction by popping
the phrase from the stack and placing a nonterminal on top. As an

cxample from the simple compiler in Appendix G
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READ = 'READ' LIST .,

LIST = LIST ',' .ID -READWT .,
WRITE = '"WRITE' WLIST .,
WLIST = WLIST ',' .ID .,

When the stack holds a prime phrase of the form ''N, .ID'" (where
"N'" means nonterminal, '",'" is a terminal, and "".ID" is the identi-
fier terminal class) control is transferred to the subroutine named
"READWT'. Notice the nonterminals are merely place holders on
the stack and an ambiguity problem arises with the write statement.
The prime phrase matches both the '"LIST" and "WLIST'" produc-
tions thus, the phrase may be part of a read or a write statement.
When a number of right parts are of the same form COMCOM allows
only one to have semantic routine calls. In ambiguous situations,
like "LIST'" and "WLIST' or when production right parts are identi-
cal, it is the semantic routine's responsibility to determine the cor -
rect production and take appropriate action. In this example the
user's semantic routine named "READWT'" resolves the ambiguity by
a context check. The top item on the stack is the '"".ID" and the item
below the ''N'' of the prime phrase is either the terminal "READ" or
"WRITE". If it is "READ" ("WRITE"") the routine "READWT'" produces
the code to read (write) the value of the identifier represented by the
terminal class .ID.

There is a library of semantic routines available such as

TPLUS, TMINUS, XLPLUS, or XLMINUS. These routines aid in
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temporary location and label generation. Another option for semantic
processing is the assembler *SAM [3]. This feature enables one to
translate a source language into COMPASS assembly language instruc-
tions and call *SAM to assemble them one line at a time avoiding
intermediate output. Semantic routines which call ¥SAM are OUT and
PUT.

Semantic routines can also be written by the user in COMPASS
or FORTRAN making COMCOM readily expandable and extremely
flexible. The user's routines may call numerous supplied primitives
performing such tasks as to call *SAM, set up labels and temporary
storage locations in an output buffer (to which the user also has
direct access) for interfacing with *SAM, scan ahead in the source
input string, or do context checks on the stack and input string.
Primitives can also be used to access or change the syntax stack,
precedence matrix, window item, or manipulate a supplied operand
stack. These routines are instrumental in translat‘ing, generating
object code, performing syntactic error recovery, and other tasks.

A list of the primitives and supplied semantic routines is in Appendix
F.

Syntax errors often occur in source programs. A practical
translator should recover and continue parsing the remaining source
program. Translators for widely differing languages can have different

error recovery requirements. COMCOM allows the user to write his
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own error recovery routine so that he may apply the recovery method
most appropriate to his language. When COMCOM's parser detects
structural errors or illegal characters in the source program it
transfers control to the user's error routine passing a code indicating
the exact nature of the error. Using the primitives the error routine
can alter the state of the parse allowing it to continue.

Another feature of the COMCOM system is the implementation
of comments. According to the theory, once the recognizer starts
parsing the source language, everything in the program must consist
of terminals arranged structurally as defined in the productions.
However, comments are usually in a natural language different from
the source language. Both the symbols and their arrangement differ.
Unless the comment's structure and symbols are defined in the pro-
ductions the parser will reject them as illegal. In COMCOM the
user can declare the terminals which constitute the beginning and end
of a comment in his source language. When the scanner encounters
the beginning terminal it skips the entire comment and the parse
proceeds as if the comment never occurred. A similar problem
arises with the terminal class .STRING. The structure and charac-
ters within the string are usually illegal in the source language.
Again the user can declare what terminal characters constitute the
beginning and end of a string. In this case the productions must indi-

cate how the terminal class .STRING fits in the structure of the source
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language because when the scanner encounters the heginning of a
string, it scans to the end and hands the parser the terminal class
-STRING with a pointer to the actual terminals constituting the string.
The .EOL terminal class can also be declared as the terminal ending
the string or comment. A sample program illustrating these
features is given in Figure 11. The third line declares the terminal
classes used in the compiler. The fourth line declares the beginning
of a mmingisthefernnnal"'"andthe end is the end of line terminal
class. The fifth declares the beginning of a comment is the terminal

"COMMENT' and the end is again the end of line terminal class.

«SYNTAX SIMPLE COMPILER

RULES(20) TERMINALS(20) ROUTINES(15) ERRORCERR)
CLASSES(C« 1IDs e NUMRER, « INTEGER» « STRING,» «EOL)

STRING(''*', EOL)
COMMENT( *COMMENT®, EOL)

«OUTSTART
PROGRAM = 'BEGIN' BODY °*END®' .EOL +PROG «»
BODY = RODY +FOL STATEMENT «BODY .

BODY = STATEMENT .,
STATEMENT = ASSIGN .»
STATEMENT = STRING «»

STRING = «STRING «STRI o>
ASSIGN = VARB '=' E _ « OUTAS >
E=F "+ T +PLUS o»

F =T «»

T =T "' F +STAR o>

T = F o,

F = UARB .,

UVARR = 1D +VARP «,

F = +NUMBER oNUNM o,

F = +INTEGER « INTEG o>

«OUTEND

« END

Figure 11. A simple compiler.
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The semantic routine call ".QUTSTART" before the productions
is executed before the parse starts, and the call ".OUTEND" after the
productions is executed after the parse is complete. Each semantic
routine in this program just outputs its own name when called.
Figure 12 shows a sample run of the compiler in Figure 11. The
inputs are the indented lines and the others are the outputs of the
semantic routines. Thus, Figure 12 in conjunction with Figure 11
illustrates how the parse proceeds by showing when each semantic

routine is called.

OUTSTART
BREGIN A = 10

VARR
INTEG
OUTAS

COMMENT THIS IS A COMMENT
' THIS 1S A STRING

STRI
RODY

UARR
VARR
OUTAS
RODY
PROG
QUTEND

Figure 12. A sample run of the compiler of Figure 11.
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B. Operators in a Postfix Notation

As discussed in Chapter II Section C the author has been unable
to produce an operator precedence grammar in which left recursive
rules define operators in a postfix notation. The term postfix means
the operators appear after the operand or operands. For example,
the operator '+'"'in "A + B" is in infix and in "AB +'' is in postfix
notation.

The problem developed in Chapter Il was a programming
language in which each statement was followed by a dollar sign.

Here the operand is a program statement and the operator is the dollar
sign. A right recursive scheme was presented like that of Figure 13a
where "PSTATE' of production 4 represents the program statements.
In Figure 13b each terminal is assigned an integer code and Figure

13c is the precedence matrix defined by the productions. Figure 15

is a parse of the sample source program of Figure 14. Notice in
Figure 15 the form "N $" (N means nonterminal) repeats for each
program statement causing the stack to proliferate. When the last
statement and dollar sign are encountered the stack size can finally
decrease as the prime phrase ''N $'" is reduced using production 3 of
Figurc 13a. Then the rest of the dollar signs are reduced in the prime
phrases of the form "N $ N'' using production 2. This stack prolifera-

tion and order of reduction is what one would expect from the right



recursive production 2 in Figurc 13a.

* SYNTAX POSTFIX DOLLAE SIGNS
RULES(5) TERMINALS(S) ROUTINES(3)
FRROR(FRRORSR) ’
«REFORF
(1> PROGRAM = 'REGIN' ROLY 'FND' .,
(2) PODY = STATEMENT '$' BODY ..,
(3) BODY = STATFMENT '$' .,
(4> STATEMENT = 'PSTATE' .»

«END
(a)

000 BRFGIN

001 FND

002 %

003 PSTATE
(b)

000 001 002 003

000 = < <
001
002 > < <
003 >

(c

Figure 13. Program and precedence matrix for a language with "'$"
in postfix notation.

BEGIN

PSTATE
PSTATE
PSTATE

A

PSTATE
PSTATE

¥ &

END

Figure 14. Source program for compiler of Figure 13.



32

Prime Matching

Stack Relation Window Phrase Production
- < BEGIN
l-BEGIN < PSTATE
-BEGIN PSTATE > $ PSTATE 4
-BEGIN N < $
-BEGIN N $ < PSTATE
-BEGIN N $ PSTATE > $ PSTATE 4
-BEGIN N $ N < $
FBEGIN N $ N _ < PSTATE
-BEGIN N $ N $ PSTATE > $ PSTATE 4
IBEGINN$NS$..$ N $ N < $
IBEGINN$NS$...$ NSNS > END N $ 3
IBEGINN$NS$...$NSN > END N$N 2
FBEGINN $ N $...$ N > END N $ N 2
F-BEGIN N $ N > END N$ N 2
-BEGIN N = END
FBEGIN N END > -/  BEGIN N END 1
|

Figure 15. Parse of program in Figure 14.

The order in which the productions are used in a parse can be
seen by generating a program from the start symbol "PROGRAM'"'.
The order is reversed for the parse or reduction of the program.
One can also simulate the parse by hand as shown in Figure 15. Notice
the stack becomes very large because of the precedence relation
"$ <$". Ordinarily one would change the grammar to a left recursive
form to keep the stack small but this produces the precedence conflicts
shown in Figure 8.

In this example the postfix operator parsing problem can be
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solved by the user writing the "BEFORE'" semantic routine of Figure
13 (executed before the parse starts) to change "$<$'" to ""$ >$'".

This can be done by calling the primitive subroutine "'STCREREL"".
Figure 16 shows how the parse would procede using the amended
precedence matrix. Notice the nonterminals are just place
holders on the stack and production 2 of Figure 13a is then used to
reduce the prime phrases of the form "N $ N'' keeping the stack small.
Notice also, the prime phrases and matching productions occur in a
different order than that of Figure 15. Since there are no semantic
routine calls with productions 2 and 3 of Figure 13a it does not matter
that the changed relation (''$ >$'"") causes the changed order.of the
matching productions. Even if there were routine calls with these
productions the routines could be written to take the proper semantic
action on the basis of how the amended parse of Figure 16 proceeds.
This method of changing the matrix and amending the semantic rou-
tines (if necessary) solves the problem for this example and could
easily be incorporated into the compiler of Appendix G. However, it
departs from the present operator precedence theory. This is not a
general solution and could become awkward in other postfix operator

applications.



34

: Prime Matching

Stack Relation Window Phrase Production
|- < BEGIN
- BEGIN < PSTATE
-BEGIN PSTATE > $ PSTATE 4
FBEGIN N < $
-BEGIN N $ < PSTATE
_BEGIN N $ PSTATE > $ PSTATE 1
-BEGIN N $ N > $ N $ N 2
-BEGIN N < $
-BEGIN N $ < PSTATE
-BEGIN N $ PSTATE > $ PSTATE 4
-BEGIN N $ N > $ N §$ N 2
"BEGIN N < $
"BEGIN N $ PSTATE > $ PSTATE 4
-BEGIN N $ N > $ N§$ N 2
-BEGIN N < $
|-BEGIN N $ > END N $ 3
-BEGIN N = END
-BEGIN N END > -| BEGIN N END 1
N STOP

Figure 16. Parse of program in Figure 14 using an amended preced-
ence matrix.

C. COMCOM System Disadvantages

Whenever a theoretical concept is implemented certain restric-
tions and modifications are usually necessary. A compiler-compiler
should not be biased toward any traits of a particular language.
COMCOM departs from the ideal in some instances, for example,
most terminals are restricted to eight characters. An end of file or
end of data is required at the end of each source program. This

could have been avoided by a declaration method where the user
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declares what terminates his source program similar to the way one
can declare what begins and ends a comment or string in COMCOM.
The concept of end of line (.EOL) as a terminal is implemented in a
limited fashion. When declared it is supplied at the end of every
source record which may cause problems.

As discussed earlier ambiguity problems may arise when
productions have right parts of the same form requiring context checks
to resolve them. However, this is an inadequacy of the theory not of

COMCOM's implementation.

D. COMCOM System Advantages

This section gives some of the general advantages of COMCOM
over other systems.

COMCOM uses a bottom-up precedence parsing method which
avoids backup and is very fast. The metalanguage resembles BNF
making it easy to learn. COMCOM readily accepts left and right
recursive productions and requires no factoring. Most top-down
schemes do not allow left recursive productions and require
factoring of right parts. There is a wide class of languages which
can be generated by operator precedence grammars and the user can
supply the error recovery technique most suitable to his particular

language-
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The terminal class features may be turned on or off and make
implementation of translators much simpler. Also, the grammatical
productions may be inputb in any order. The supplied semantic routines
and primitives reduce the number of routines the user must write,
perform the more common tasks required to generate object programs,
and relieve the user of many details. The routines also give the user
access to the parser's internal features. For example, as discussed
in Section B of this chapter, the user could even change the precedence
matrix. Comments in the source program may be implemented by
declaring the terminals which begin and end each comment.

The most important advantage of COMCOM is its extreme
flexibility, owing to the fact the user can supply his own semantic
routines. Thus, the system semantic features are readily expandable
by the user in that he can write his semantic routines in the COMPASS
and FORTRAN languages. For example, a symbol table feature could
be added and since the user would write it himself it would fit his
exact needs. COMCOM could be used to implement the first pass of a
multiple pass compiler and even the later passes if the intermediate
output's structure could be expressed in an operator precedence gram-
mar. COMCOM can also be used to implement other types of
translators such as an interpreter. The difference between compilers

and interpreters is that a compiler produces an object program



equivalent to the source program, whereas an interpreter executes

the source program.

37
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IV. THE META/OS-3 SYSTEM

A. Brief Description of META/OS-3

The following is an extremely sketchy description of
META/OS-3 [2] which only outlines the main characteristics so it can
be compared to COMCOM.

META/OS-3 is a very good special-purpose, syntax-directed
compiler writing system. It uses a single pass, top-down parsing
method with no backup, and includes provisions for using the *SAM
assembler. The metalanguage resembles BNF with two additional
syntactic features. One is the use of parentheses for grouping and for
factoring to avoid backup and left recursion which causes endless
loops in top-down methods. The other is a ''repeat’’ feature which
causes the next item (or group of items) to be iterated replacing left
recursion. See Appendix H for a sample program. The metalanguage
productions, or rules, in META/OS-3 are each converted into a sub-
routine which returns a true status if the source input matches one of
its ordered alternatives and false otherwise. Starting with the main
rule each nonterminal encountered calls another rule in a recursive
descent scheme. The system's semantic routine calls are embedded
in the syntax rules and are executed as the rule recognizes the
source langage. When the descent procedure completes the main rule

the parse is complete.
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B. Comparison of COMCOM to META/OS-3

META/OS-3 and COMCOM are both syntax-directed compiler -
compilers which run under the OS-3 operating system, but their
parsing techniques differ sharply. COMCOM is bottom-up and
META/OS-3 is top-down. Bottom-up parsing is usually publicized as
faster [11]. Since META/OS-3 does not allow backup these two
implementations are competitive in their use of computer time.
Appendix H shows a time comparison of the parsing algorithms of
COMCOM and META/OS-3. 1In this trial the constructed compilers
required almost an identical amount of time to parse the same source
program. The META/OS-3 parsing algorithm becomes less efficient
when it must try many incorrect alternatives in rules and descend
extensively. This corresponds to building the syntax tree from the
top down and having many choices for a node name each of which has
many possible node names below it and so on. In cases such as this
COMCOM would most likely be faster.

The differing parsing methods also have an effect on the meta-
languages. META/OS-3 users must factor and carefully order the
alternatives in their rules avoiding backup and left recursion.
COMCOM never backs up and uses left recursion as a key feature.

In META/OS-3 the semantic routine calls and parameter strings are

embedded in the syntax specification whereas in COMCOM they follow
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the syntactic portion of each rule.

Some of the supplied semantic routines and terminal classes of
COMCOM resemble those of META/CS-3. Classes which COMCOM
has but META/OS-3 does not are .DIGIT, .LETTER, and
.SPECIALC. The end of line (. EQL) terminal class more closely
resembles an actual terminal in COMCOM making possible compilers
for which the end of a source line separates statements.

Both systems include *SAM as an optional feature. However,
META/OS-3 is a closed system in which it is often rather awkward to
write the semantic processing and code generation aspects of a com-
piler. This is because the semantic routine calls and parameters are
embedded in the rules and the semantic routines lack certain features.
For example, there is no provision for doing arithmetic at compile-
time (other than incremeﬁting and decrementing a temporary storage
counter) for such purposes as computing the storage needed for a
multi-dimensional array. COMCOM users have the arithmetic plus
other COMPASS and FORTRAN features available for compile-time
sermantic routines since they can write the routines in these languages.
This expandable feature can make COMCOM harder to use, however
the flexibility gained appears to be well worth the effort.

One of the major limitations of META/OS-3 is its lack of a
symbol-table facility. This means one can not record the attributes

of an identifier and therefore one can not efficiently generate code
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whose form depends on the types of variables involved. However,
COMCOM users can implement a symbol-table feature to fit his exact
needs since he will supply it himself. The only limitation in adding
these extra features is the user's COMPASS and FORTRAN program-
ming abilities.

META/OS-3 can be used to implement compilers for a wider
class of languages than COMCOM. However, COMCOM can be used
to implement interpreters whereas META/OS-3 is not designed for

this purpose.
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V. SUMMARY AND CONCLUSIONS

This thesis has presented a potentially useful syntax-directed
compiler -compiler called COMCOM. The theory and terminology of
the parsing method and c.ompiler-compilers in general were briefly
discussed. COMCOM uses Floyd's operator precedence bottom-up
parsing technique which avoids backup and is very efficient. The
syntactic metalanguage is similar to BNF. The source language
semantics may be composed using a library of supplied routines or
the user can expand the semantic capabilities by writing semantic
routines in COMPASS or FORTRAN. The user may supply an error
recovery routine applying the methods most suited to his source
language. Optional features such as terminal classes, a source
language comment facility, and the *SAM assembler also aid in
implementing translators. Many implementation techniques were not
discussed because of their detailed nature.

A comparison of COMCOM to META/OS-3 revealed that
META/OS-3 may be able to implement compilers for a wider class of
languages and is probably easier to use. However, COMCOM users
can expand the system’s semantic features, hence it is a more
flexible system. Also, COCMCCM can be used to implement interpre-
ters whereas META/QS—S was not designed for this purpose.

Possible additions to this system or others built like it could
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include a more flexible scanner. A ''scanner-compiler'' could be used
in conjunction with the compiler -compiler. Its input could be declara-
tions of characters to serve as delimiters, digits, special characters,
and parts of identifiers. One could also declare characters he wanted
completely ignored by the constructed scanner or declare other char -
acter uses. Another modification which would save storage and
increase parsing speed is to reduce the precedence matrix to two
arrays when possible and use the entire matrix only when the reduc-
tion algorithm fails. COMCOM is expandable by the user in
COMPASS and FORTRAN but could be made expandable in other
assembly language compatible langauges such as PL/1.

In order for TWS's to be more practical there must be an ade-
quate formalization of metalanguages for syntax and semantics.
There has been much progress in the syntax but very little in
semantics. There is a need for more developments in formal lan-
guage theory. In particular, as brought out in Chapter II Section C,
can an operator precedence grammar left recursively generate a
language which has operators in postfix notation? Every context free
language has an operator grammar [1], but does every context free
language have an operator precedence grammar ? In general, the
properties and limitations of a class of languages generated from a

particular type of grammars requires more research.
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APPENDIX A

COMCOM System Flowchart

The diagram on the next page is a COMCOM system flowchart.
Inputs and outputs are signified by ""——'' and time flow is signified
by ”:j/”. The programs on the left are user supplied and the files
and programs on the right are system supplied.

The constructor accepts the syntactic metalanguage productions
and builds the precedence matrix, tables, and semantic routine link.
The overlay writer writes out an absolute copy of memory or overlay
of the constructed translator. When the overlay writer gets control
the semantic routine link has been loaded forming a jump table linking
the parser to the user's and system's semantic routines. The parser
is the controlling program of the constructed translator. When the
translator overlay is copied back into memory and run its output could
be a compiler's object program. This program would be loaded and
run with its own inputs and outputs but is not shown in the flowchart

on the next page.
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APPENDIX B

Constructor Algorithm

This appendix contains a simplified version of the constructor
algorithm. The constructor accepts the syntactic metalanguage pro-
ductions and builds the precedence matrix and other tables. It
stores the productions by assigning an integer code to each termi-
nal and nonterminal. Semantic routine names appearing with a
production are also coded and stored with the rule. If a semantic
routine has a parameter string, the string is not assigned codes by
the constructor, but it is stored character for character including its
ending parenthesis in BCD codes. When the parser calls a semantic
routine the parameters, if any, are supplied in the BCD codes in
COMMON (PARA in semantic routine listings in Appendix G).

The constructor orders the terminal table so that if two
terminals match character for character from the left the longest is

1N

first. For example, say "' ig used for the power operator and

"k is used for multiplicatibn, " will appear first in the terminal
table. This is done so that when the scanner is searching the termi-

nal table for a match to a source string, the longest match is found

first.
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Constructor Algorithm

1. Read source records until get "".SYNTAX"'.

2. Process the declarations of the number of rules, terminals,
semantic routines, and put the name of the user's error routine
in the semantic routine name table. Process the declaration of
the terminal classes if any. Process the declaration of the
beginning and ending of the comment and string if they are to be
implemented.

3. If there are any semantic routine calls before the syntax rules
put the names in the semantic routine name table and store the
parameters if any.

4. Read a syntax rule (terminated by '".,").

5. Place the terminals of the rule in the terminal table and non-
terminals in the nonterminal table (if not already present).

6. If the production is of the form U, —>T;x or U —>U,Tx

(where T1 is a terminal, U1 and U2 are nonterminals, and

x is a string of terminals or nonterminals, or both, or empty),
enter T1 as a leftmost terminal character of the derivatives of

) and each LTCD of U, as a LTCD of U..

1 2 1

U, (LTCD of U1

7. If the production is of the form U, —> XT1 or U, —> XTIU

1 1 2

enter T1 as a rightmost terminal character of the derivatives

of U1 (RTCD of Ul) and each RTCD of U2 as a RTCD of Ul.
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If the production contains terminals Tl . T, in the form

2

Ul —> XTszy or Ul —> XTIUZTZY enter Tl = TZ. in the
precedence matrix. If the two terminals already have a relation
different from Tl =t TZ’ then there is a precedence relation
conflict and the grammar is not an operator precedence grammar.
Print the conflicting relations and terminals, set an error flag,
and go to 4.

If the rule has two adjacent nonterminals set an error flag and go
to 4 (not an operator precedence grammar).

Store the rule (in coded form) in the rule table. If there are any
semantic routine calls with the rule, place the names in the
semantic routine name table (if not already there), store each
call and parameter string with the rule in the rule table.

If the rule is of the form Ul -> U2 and it has semantic routine
calls, set an error flag and go to 4 (a right part consisting of a
single nonterminal U2 will never become the prime phrase by
definition).

If the next item is not a semantic routine call or ".END" go to 4.
Done inputing productions. If there are any semantic routine
calls after the productions put the names in the table (if not
alrcady there) and store the calls and parameter strings (if any).
Read the ".END'" record. Complete the LTCD and RTCD tables

as follows.
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Go through the stored syntax rules from the last to the first
(algo'rithm usually converges faster this way). If a rule is of the
form U1 —> UZX enter each 1.LTCD of UZ as a LTCD of Ul.
Repeat 15 until the process converges.
Go through the stored syntax rules from the last to the first. If
a rule is of the form Ul —> XUZ enter each RTCD of UZ as a
RTCD of Ul.
Repeat 17 until process converges.
Go through the stored rules once. For every occurrence of TU
in a right part (where T is a terminal and U is a nonterminal)
enter T ''<'" each LTCD of U into the precedence matrix. For
every occurrence of UT enter each RTCD of U as '">'"T into
the precedence matrix. When each new relation is being stored
if the old relation is not the ''no relation'' and is different from
the new relation then there is a precedence conflict. Print the
conflicting terminals and relations, set an error flag and continue.
Print precedence matrix if requested.
If any errors occurred print errors and STOP.
Order the terminal table so that if two terminals match character
for character (from the left) the longest is first.
Produce a jump table from the semantic routine name table and
call *SAM to assemble it into a binary deck. This deck is called

the link and is used by the parser to convert the semantic routine
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name's code (in the rule table) into the address of the semantic
routine to jump to.

Write out the tables required by the parser (terminal table,
precedence matrix, coded rules, and others) and the link binary
deck.

If no errors print "NO COMCOM DIAGNOSTICS' and STOP.
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APPENDIX C

Parser Algorithm

This appendix contains a simplified version of the parser
algorithm used by COMCOM. The parser is the controlling program
of the constructed translator. It calls the scanner to read and
classify the source characters as particular terminals. When the
parser detects a prime phrase it uses the semantic routine link to call
the appropriate semantic routine. When it detects errors in the source
program it calls the user's error routine. When the parse is complete

it terminates the run.

Parser Algorithm

1. Call user semantic routines which are to be executed before parse
starts, if any.

2. Call scanner to get first terminal; if end of file print error and
STOP.

3. Push terminal onto top of stack.

4. Call scanner to get next terminal (the window); if end of file go
to 7.

5. If top stack terminal '"">'" window go to 7; if no relation call the
user's error routine and go to 4.

6. Push terminal onto stack; go to 4.
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Look down in stack until find ""<'"' between two terminals or find
bottom of stack.
Prime phrase is now the terminals and nonterminals above the
"'<''relation on the stack. Match the phrase's form to the produc-
tion right parts. If find a match call associated semantic
routines passing parameter characters if any. If no match call

user's error routine (illegal stack configuration) and go to 4.

9. Pop prime phrase off stack and place a nonterminal on top. If

10.

I1.

window is end of file go to 10 else go to 5.

Window is end of file. If there is a single nonterminal on stack

the parse is done, else go to 7.

Call user semantic routines which are to be executed after parse,

if any. STOP.
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APPENDIX D

Scanner Algorithm

This appendix contains a simplified version of the scanner
algorithm. The scanner is called as a subroutine by the parser. The
scanner reads the source records into an input buffer eighty charac-
ters long. The input pointer, denoted "I'"' in the algorithm, keeps
track of the current scanner position in the buffer. The scanner
classifies strings of characters as a particular terminal in the termi-
nal table and returns the terminal's integer code. When the scanner
classifies a string as a declared terminal class it copies the actual
characters into a block of storage and passes the parser the terminal
class code and a pointer to the block. The terminal classes . DIGIT
and . INTEGER can not be declared at the same time. An end of file

is required at the end of each source program.

Scanner Algorithm

I. If input pointer (I) is less than 80 go to 3. If 80 <1< 100 (i.e.,
first time have end of line) and . EQL is a declared class set I to
120 and RETURN with terminal class .ECL. FElse, read a source

record and set I to zero.

2. If record is end of file RETURN with end of file.
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Increase inputf pointer to first nonblank character (if record all
blanks go to 1 with I = 80). If first character is a special charac-
ter go to 4; if a letter go to 15; if a digit go to 24; else have a
system error.
First character is a special character. If it is a period followed
by a digit and . NUMBER is declared RETURN with the period and
digits as the terminal class . NUMBER.
Match the first character to each first character of the terminals
in the terminal table. If found go to 6. If .SPECIALC is a
declared class set input pointer to secopd character and RETURN
with the first as the terminal class .SPECIALC. Else. call the
user's error routine (illegal character), set input pointer to sec-
ond character and go to 1.
The terminal table is ordered so that the first match will be the
longest match (see constructor explanation Appendix B). Match
the terminals character by character. If the entire terminal in
the table matches the source input this is the correct terminal,
go to 7. Else, the table item is longer or they do not match, go
to 5 and resume the first character search.
If terminal is the comment beginning terminal go to 10.
If terminal is the . STRING class beginning terminal go to 12.

RETURN with terminal.
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Have a comment. If comment ending terminal is . EOL (end of
line) terminal class read a source record and set input point to
zero; else go to 11. If record is end of file RETURN with end of
file. If record not end of file go to 1 to get a new terminal
(ignoring the comment).
Scan to end of comment terminal and go to 1 to get a new terminal.
Have a string. If string ending terminal is . EOL terminal class
copy rest of source line into a block of storage, set input pointer
to eighty, and go to 14.

Copy string and end of string terminal into a block of storage.

RETURN with terminal class .STRING (and a pointer to block).

First character is a letter. Scan to end of consecutive letters
and digits and se/arch‘ the terminal table for a matching terminal.
If found go to 16. If not found return input pointer to first letter
and go to 19.

If terminal is the comment beginning terminal go to 10.

If terminal is the .STRING class beginning terminal go to 12.

RETURN with the terminal.

String not found in the terminal table. If the .ID class is not
declared go to 23. If .ID is declared but .LETTER is not declared
go to 21 to make the terminal an . ID.

Both .ID and .LETTER arie declared terminal classes. If there

are one or more consecutive letters or digits after the first letter
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go to 21 else go to 22.
Copy the consecutive letters and digits into a block of storage
(skipping remaining if more than eight), and RETURN with . ID
terminal class.
Copy first letter into a block of storage. Set input pointer to
character after letter, and RETURN with . LETTER terminal
class.
If .LETTER is a declared class go to 22. Since the terminal is
not in the terminal table and . LETTER and .ID are not declared
it is an illegal character. Call user's error routine, skip letter,
and go to 1.
The first character is a digit. If digits have an associated period
go to 30.
It .INTEGER is declared copy digits and RETURN with terminal
class .INTEGER (note that . INTEGER and . DIGIT can not be
declared at the same time).
If .NUMBER and . DIGIT are both declared but there is more than
one digit, copy consécutive digits to a block of storage supplying
a decimal point at the end and RETURN with . NUMBER terminal
class.
.INTEGER is not a declared class. If .DIGIT is declared‘set
input pointer to next character and RETURN with terminal class

. DIGIT.
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INTEGER, -DIGIT, and . NUMBER are not declared. Match the
first digit to the first characters of the terminals in the terminal
table. If found go to 29. If not, call user's error routine (illegal
character), set input pointer to second character, and go to 1.
Match the terminals character by character. If the entire termi-
nal in the table matches the source input this is the correct
terminal; go to 7. Else, the table item is longer or they do not
match. Go to 28 and resume the first character search. (Note
that the terminal table is ordered so the first match is the longest
and so on.)
There is a period adjacent to digits. If .NUMBER is declared
scan to end of number and RETURN with . NUMBER terminal
class.
If .INTEGER is declared set input pointer to period and RETURN
with the digits before the period as the terminal class . INTEGER
(.INTEGER and . DIGIT can not be declared at the same time).

If .DIGIT is declared set input pointer to second character and

RETURN with the first as the terminal class . DIGIT; else go to

28 to try the terminal table.
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APPENDIX E

Terminal Classes

This appendix lists the terminal classes and briefly describes
the strings which can be each class. When the scanner classifies a
string as a class it copies the characters into a block of storage (see
scanner, Appendix D).

The classes .DIGIT and .INTEGER can not be declared at the
same time. If .DIGIT and . NUMBER are declared and there is no
decimal point associated with a string of digits they will be classified
as - NUMBER if more than one digit in string or as . DIGIT if the string
is just one digit. If . NUMBER and .INTEGER are both declared, a
string of digits will be classified as a . NUMBER if there is a decimal
point associated with the digits and . INTEGER if there is no decimal
point. If .LETTER and .ID are declared at the same time a string
will be classified as . LETTER if the string is only one letter long and
as .ID if longer.

The following is a list of the terminal classes and a brief
description of the properties of the strings which can be classified as
that class.

. DIGIT - a single digit.
-EOL ' - a special terminal class. When declared it is supplied

by the scanner at the end of each source record.
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.ID - a string of le\tte‘rs or digits or both, beginning with a
letter. 1If the string which is classified as an . ID is

longer than eight letters and digits the remaining char-

acters are ignored.

INTEGER - a string of digits.
-LETTER - a single letter.
. NUMBER - a string of digits. If the scanner classifies a string as

-NUMBER and there is no decimal point in the string
one will be supplied in the storage block to which the
string is copied.

-SPECIALC - a single special character.

-STRING - a string of characters beginning and ending with the
declared beginning and ending - STRING terminals.
The string is copied into the block including the ending

terminal.
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APPENDIX F

Semantic and Primitive Routines

This appendix contains information about the semantic and
primitive routines supplied to the user. Table 1 lists the semantic
and primitive routines and shows what they are usually used for.

The routines can either be called by including them in a syntax pro-
duction or by calling them from a user supplied semantic routine. As
illustrated by Table 1, those which can be called in a production are
semantic routines, those called in a user routine are primitives, and
those which can be called from either serve as both semantic and
primitive routines.

The items on the parser's syntax stack and in the window are
coded. Thus, primitives are required to code and uncode the termi-
nals for context checks and error recovery. Some of the routines
work with an output buffer eighty characters in length. If *SAM is
called it assembles the COMPASS code in the buffer, and blank fills
the buffer. The user has direct access to the output buffer, and to the
parser's window, input buffer, and input buffer pointer in COMMON.
When the user includes a semantic routine call with parameters in a
production, the parameters are supplied character for character in

BCD codes in COMMON (PARA in listings of Appendix G).



Table 1. Semantic and primitive routines.
Can be Called in
Routine Syntax User Semantic Usual Routine
Name Specification or Routine Use
OUTSAM X Call *SAM
TERMINAL X Context check
COPYSTK X Context check
STACK X X User operand stack
UNSTACK X User operand stack
TPLUS x X Temporary storage
generation
TMINUS X x Temporary storage
generation
TBUF X Temporary storage
generation
RESET X X Temporary storage
generation
XLPLUS X X Label generation
XLMINUS X X Label generation
XLBUF x Label generation
PUT x X Generate strings in
output buffer
ouT X X Generate strings in
output buffer and
call *SAM
STOREREL X Change precedence
matrix
READ X Read source records
and error recovery
POP X Error recovery
SCAN x Error recovery
PUSH X Error recovery
STOREWIN x Error recovery
GETWIN X X Error recovery
ICODE X Error recovery
IGETREL x Error recovery
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The routines are listed in the following pages in alphabetic order
and include a brief explanation of the action each performs. Primi-
tives are listed with formal parameters if they are required. Most
of the routines are FORTRAN subroutines except IGETREL,
TERMINAL, and ICODE which are FORTRAN functions. OUT and
PUT do not have formal parameters but operate on BCD character
strings put in PARA in COMMON. The primitives can be called

from a FORTRAN or COMPASS subroutine.

Semantic and Primitive Routines

COPYSTK (IPOS, CHARAD) - copy the terminal (in BCD character
codes) at stack posi.tion IPOS (where IPOS = 1 is top. IPOS = 2
is next to top, etc.) placing the first character at the character
address CHARAD.

GETWIN - gets the next terminal in the source string and stores it in
the window; updates the input pointer.

ICODE (TERM,IFCI.ASS) - FORTRAN integer function returns the
integer code of the terminal TERM (BCD codes) in ICODE.
Returns IFCLASS = | if TERM 1is a terminal class.

IGETREL (ICODE!,ICODE2) - FORTRAN integer function returns
the precedence relation between the two terminals whose codes
are ICCDE! and ICODE2. IGETREL = 0 if no relation, 1 if

greater than, 2 if less than, and 3 if equal.



65
OUT(...) - sets up strings in the outpuf buffer at the current output
buffer pointer character position. The output pointer is initially
equal to ten.
Parameters: .OP - sets output pointer to one.
-LABEL - sets output pointer to ten.
-5XX - copies terminal at stack position XX to
current pointer position in outplit buffer
(XX =1 is top, XX = 2 is next to top, etc).
'----'" - the string in the quotes is copied to
current pointer position in output buffer.
/ - call *SAM with current output buffer
configuration.
The parameters are executed left to right and *SAM is called
when done. *SAM blanks output buffer and sets output buffer
pointer to ten before returning.
OUTSAM (INUM) - calls *SAM where INUM is the maximum number
of nonblank words in the output buffer (four characters per word).
POP(I) - pop I items off the syntax stack.
PUSH(X) - pushes the coded item X onto the syntax stack.
PUT(---) - puts items into the output buffer at the current output

pointer position the same as OUT, but it does not call *SAM.

The parameter ''/'" is not allowed.
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READ(I) - reads one source record and sets the input pointer to I. If
the record is end of file or end of data I is returned greater than
200, else I is returned as zero.

RESET - empties the user operand stack and sets the temporary
storage location counter to zero.

SCAN(I, X) - scans input buffer starting at position I (positions are
numbered 0-79 for this subroutine) and classifies the first
terminal encountered. If want .EOL set 80 <1< 100. If want
first item on next source record set 100 < I < 200. Returns
with terminal coded in X ready to be put on stack or in window
and I is character position after terminal. If item was end of
file or end of data then I > 200. (Note. If wantI to be new
scanner input pointer position, user must set I equal to the
input pointer in COMMON. )

STACK - pushes contents of output buffer onto user operand stack
and blank fills the output buffer. Resets output pointer to ten.

STOREREL (ICODE1, ICODEZ, IREL) - stores the precedence relation
IREL (where IREL = BCD codes NR, GT, LT, or EQ) between
the two terminals whose integer codes are ICODEI and ICODEZ.

STOREWIN(X) - stores the coded terminal in the window.

TBUF(CHARAD) - stores the string T.XX at the character address
CHARAD where XX is the current decimal value of the

temporary storage location counter.
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TERMINAL(I) - FORTRAN real function searches the terminal table
and returns the BCD codes of the terminal whose integer code
is I. 1If terminal is a class the first chara‘cter will be a period.

TMINUS - decreases the temporary storage location counter one.

TPLUS - increases the temporary storage location counter one.

UNSTACK(CHARAD) - pops the user operand stack and copies the
string at the character address CHARAD.

XLBUF(CHARAD) - copies the characters L.XXX at the character
address CHARAD Where XXX is the current decimal value of the
label generation counter.

XLMINUS - decreases the label generation counter one.

XLPLUS - increases the label generation counter one.
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APPENDIX G

Complete Simple Compiler

This appendix contains a complete listing of a compiler built
using COMCOM. The COMCOM program is shown on the next page.
A source progfam accepted by this compiler begins with "BEGIN',
the program name, and a "., ", followed by a body of statements
separated by ""$', and ended with "END'. The statements can be
labeled or unlabeled assignment, go to, read, write, if then, or if
then else statements. Table 2 shows the terminals and their integer
codes and Table 3 is the precedence matrix. The constructed
compiler produces assembly language code and uses ¥SAM to
assemble one line at a time. Input and output of floating point num-
bers is done using "FIN', "FOUT'", and "ENDOUT' routines from

the ®SYSLIB library under the OS-3 operating system.

Table 2. Terminals and their codes.

000 « 10 Jis )
001 e NUMBLR 01« Gu
J02 END J1is TO
333 .y Uto READ
00k BEGLIN ji7 ’
305 3 Jis WRITE
336 . J13 ELSC
307 = 4 cd THE N
308 + 321 =T
294 - dde 42
10 * ues zd
J11 / 024 NE
g1e ( 02o IF
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e YNTAX CUMPILER

ROUTINLSA{25) RULES(53) TexkMINALS(3%)

ERRUN{eRR)

SAUGKAM = oJUY1 £LND# «OUT (ERT Y ENDOUTZ/2SBUP2/20EF%/
2B3S 2#/#ENC STARTZ) o,

= BLG o ,I BOOY L3S}

r3Eolhiz oI «OUT(2IDLNT # JS1/#ENTRY START#/
#EXT FIN,FOUT, ENOOUTZ/
+LABEL #STARKT# +OP £#NOF 00% ) ey

300Y 1
326 =

3UdY = 30UY 2387 LSTATL e
J00Y = CSTA Tz )
LSTATL LdScl #e2 STATEMINT oy
LoTAT. STATOMLNT «y
CABEL = o1y )
STATZALENT = ASCLIGN o,
STAT eMENT = GOTO .,
STATeMEnNT = REALT oy
STATEALNT = WRITL oy
STRTEACNT = IFTHLENELSE o
I

W

"~
(i

ASSIGH = JI0 #=2 EXPR JASSIGN 4y
~XPR IXFR ¢ TERM o PLUS oy
wXPR n E=% ThExM o« XMINUS .,
ZXPR [ERM .,

ToRM TERM #%¢ 0P o XMULT 4y
TurRM Ter" £/7¢ QP «DIVIDE o
TeRM
)7 = 41D o« XIOENTF oy

B = o« NUMBE X o« XNUM (3]

JE = £{g £XPR #) % .y

sUTO t6Ut 2702 W1y ; CUUT(2UUP £ 4S1) oy
’\CAL) f-RI’_AU: LlST oy

LIST LIST 1’1 «1J e READKWT oy

IST o100 .y

WrIT o ERWRITE# WLIST o,

ALIST WLIST 2,2 o1 oy

ALLST oIJ oy

WJINIFS T ASSICN .y

AUNIFL T LOTO o,

VUNIFST e AD .y

WNONIFST = WRITL o,

[FTHoMeLSE = IFTAHEN #elboz NONIFST «ELSLE o
IFTHedelSe = LFTHEN

[FTH=N = 1FCL #THENZ NUNILIFST « THEN o)

iFCu BedT #2LT2 EXPR e XLTSR oy

LFCL ~LST 2GLE EXPR e GESK 4y

iFCu REST #EC% EXFR QSR 4,y

iFdu KResT #NEzx EXPR o XNLSK oy

e ST EIFz EXPR XIFEXP oy

QC.ND
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.
Pod
x
P
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Table 3. Precedence matrix.

030 001 GO2 003 004 005 006 007 006 GO9 010 911 012 013 014 C15 016 017 G618 019 020 021 022 023 024 025

010 > > > > = > > > > > > > > > > > >
021 > > > > > > > > > > > > >
§32

U3 < > < < < < < < < < < < < <
034 = '

HIBE) < > > < < < < < < < < <
03)6 < > > . < < < < < < < < <
037 < < > > < < < < < >

093 < < > > > > < < < > > > > > > >
731y < < > > > > < < < > > > > > > >
12 < < > > > > > > < > > > > > > >
011 < < > > > > > > < > > > > > > >
012 < < < < < < < =

013 > > > > > > > > > > > > >
014 =

01% =

01& < > > < >

317 =

018 < > > < >

014 < > > < < <

523 < > > < < < >

321 < < < < < < < >

022 < < < < < < < >

023 < < < < < < < >

n24 < < < < < < < >

25 < < < < < < < > > > >

oL
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The following is a sample source program for the compiler and
a run's inputs and outputs. The next page is the assembly language
code (COMPASS) of this program which was produced by the con-
structed compiler. This code was put in the output buffer and passed
to the *SAM assembler one line at a time avoiding intermediate output.
The code '"DEF'" and '"BSS 2'' appearing just before "END START"
causes *SAM to allocate storage and define all previously undefined
identifiers as using two words of storage.

Thus, this constructed compiler using the *SAM assembler
reads in a source program and writes out the equivalent binary object

deck.

BEGIN FIRST «»

RFAD AR ¢

WHRITE A,R ¢

IF Ao FO R THEN WRITF A &
C =06 4+ 2.0 x R &

WHITF C

N

INPUT IS

€e N 5.0

NUTPUT IS

£.000000000 5.000000000 1€£.00000000



START

LcCUl

LOENT FLIRST

ENTRY START

wXT FIN,ZFOUT,ENJOUT
NUP 06

RTJ FIN

STAQ A
“TJ FIN

STAQ d
LDAQ A
xTJ FGUT
LOAQ 3
<TJ FUUT

L 0AQ A
XOA,S -{

X0Q,5 =0

FAD 3
AZJ,NE Leulil
L0AQ A
=TJ FuuT

ZQU *

LOAQ =202.0
FMU B
STAQ T.01
LDAQ A
FAD T.01
STAQ TW.02
LO6Q Telc
STAQ C
LOAQ c
RTJ FOUT

RTJ ERDOUT

SBUF

DEF

88§ ¢

“NO START

72
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The following seven pages are FORTRAN semantic routines
supplied by the user. The first is the error recovery routine. In
case of a parsing error. this simple compiler outputs the value of
the current input buffer scanner position, outputs the nature of the
error, and stops. The remaining six pages are the other FORTRAN
semantic routines. When the parser detects a prinie phrase, the
phrase's form is matched to the production right hand sides. The
semantic routine associated with the matching production is called.
Each FORTRAN subroutine may contain several semantic routines.
These inner routines begin with "ENTRY'' followed by the routine
name, and are ended with "RETURN''. Some of the following

semantic routines call other subroutines which are also listed.



SURKEOUTINF FRR
PARSING FLEEOW  SURROUTINE

INTEGFR NUTBRUF, PAKA
COMMON IDNNMC23), NUTRUF(20),XDUM(E450), WINDOW
COMMON INPOINT,PARA(S0)

FORMATC' INPUT POINTRE = '» 14D
WRITF(E1,100) INPOINT

I = PARAC 1 D

GO TO ¢ 1, 2, 3, 4, 5 ) » 1

FORMAT(' LOOKFD DNWN STACK AND NO < RFLATION')
WRITF (€1,101)
GO TO €

FORMAT(® TWO NONTFRNMINALS TOGETHFE ON STACK')
WRITE(61,5,102)
GO TO 6

FORMATC(' NO RULF MATCHFS PKRIME PHRASE')
WRITFC(EL1,103)
GO TO 6

FORMAT(' ILLEGAL CHAKACTER IN SOURCE PROGRAM')
WRITF(61,104)
B0 TO €

FORMAT(' NO KFLATION RFTWEFN TOP STACK AND WINDOW®)

WRITEC(EL,105)
G0 TO 6

FORMAT(' COVMPTLATION TERMINATED®)
WRITFC(EL1,106)

STOP

FND

74
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SUBROUT LKL ASSIGN
INTEGER CUTBUF,4PAKA

75

COMMON 10UM(23),0UTBUF(20), XDUM(B8450) yWINDOW

CUMMON IMPOINT,PAKA(SQ)

cAUIVALLKLE (X yXCHAKAD) ) (XREAD,IREAD)y (XBCOD,IBCD)

cQUEVALLNCE (XWKIicyIWRITE)

OIMONSION IReAD(2) ,IWRITE(2),IBCD(2),IFERIOD(2)

CHARACTER ©GrUS1,0F05219XCHARLU,CPOSS
COUIVALELGE (OUTBUF(6),000)
cUUivhkLeneE (006,CPOS21)

CAUIVALeNCe (QUTBUF,CPOS1)
cQUIVALINCE (QUT3UF(2),XXX)
CQULVALeNCE (XXX,0r0S55)

EQUIVALEIKCE (XPERLUD,IPERIOD)

CUTBUF(3)=4H LDA
UUTBUF (4) =4HQ

Chate UNSTACK(LCPOSZ1)
CALL OUTSAM(LU)
QUTBUF{3) = &4H SiA
SUTIUF (4) = %HQ

CALL COPYSTKI(3,CPUS21)
CALL UUTSAM{1LD)

CALL RaSET
Re TURN

ENTRY PLUS
L0Fz=4H FETD
cale COMLOFR)
KETURN

ENTRY XMINUS
IuF=4H FLB
CALL CuM(IuP
R TURN

cNiRY XHULT
LOF=4H Fwmiy
CaLl CuM(IoP)
<e TURN

CNTRY OIViIDL
I07=4H FDV
CALL COMUIOoP)
RE TURN



ENTRY XIUENTF

v TuP OF STACK IS «iDy IS NeXT ITEM DOWN A KEAD OR WRITE

IFUIFLAG ocGe 173) GU TO 40
o FIXST TIMe XLOLNTF IS CALLED

IFLLG = 178

X’,.l“\:j:“.}o a2

IPerRIva(l) = oH,

IPLRIOCO() = +H
e Ad (1) = 4HKEARD
IRLAV(2) = 4H
IWRLTO (1) = SHAWKIT

IWARLTL(2)Y = 4HE
40 X = TERMINAL{WINDUW)
IF(X o0 XPERIUD)Y GU TU 84
w XCHARAKBD IS ¢ QUIVALENT TO X
GALL CUOPYLTK{Z2 g XUHARAD)
IF (X et XRUAUG) w070 71
IF X oulGe XWRITE) GOTO 81
qUST 82 IN AN EXPRESSIUN
vhaLle LOPYSTKI{L1,0POST)
ChaLi Svalk
RiTURN
71 CAaLe KEAusSUS
Ko TURN
31 CAalLi WRITE
<L TURH
o HEVE A LAB:L
B4 CALL UOFYSTK{1,CPUL1)
OUTSUF(3) = 41 £Qu
CUT3UF (s = 4 #
CAaboe DUTSAY(L1D)
e TURN

[

C

eNIRY ROADWT

o rAVE FURM T NT 2,2 .15 ON 5TACK, IS T=READ OK WRITE

Chalu COPYSTK(W,XU“ARAD)
iF U X «LGe XKZAO ) GOTO 31
IF ( X +tQ¢ XWRITE ) GOTO 32
SoravEd A DYSTIM ERROR
130 FUMAT (2 RO WT ERKORZ)
WRiTZlol,180)

STUr
o R._AD STATLMENT
31 CAaLL RzAULSUY
KEZTURN
o WxITe STATomENT
ie CALL WRITE

Ke TURN
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Cs

32

SNTRY XNUM

CUTBUF (1)= 4H =20
CALL COPYSTK(1,4CPUSH)
CALL STACK

RETURN

ENTRY Cods

CALL XLPLUS

CALL XC3UF (Crusl)
QUTBUF (3) = &4H EQU
QUTBUF{4) = 414 *

CALL OQUTSAML(L10)

Re TURN

ENTRY THEN

THERE A ELOL TO THe IF STATEMENT
I8C0(1)= tHoLSE

I3C0(2) = 4H

X = TERMINAL{WINDGW)

iF( XBCD «Nee X) GO TO 82

Hive ELSE

CaliL XuPLus

OUTBUF (3) = «H UJF
CALL XLBUF(CPUSZ)
CALL XLMINUS

CALL OUTSAM{iD)
SALL XiBUF(CPO31)
QUT3UF(3) = 4H &QU
OUTBUF (%7 = uH *
CALL QUTSAM(10)
RETURN

ENTRY XLTSR

CALe GOMPARE
QUTBUF(4) = 4H,G6E
Uakit XLPLUS

VALL XLBUF(CPUS21)
CALL UUTSAM{10)
RETURN

ENTRY GZER

Cali COUMFARE
OUTBUF (4) = 4HHLT
CALL XLPLUS

Cale XL3UF {CPOSZ21)
GALL UUTSAM(10)

K TURN
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£ENTRY EQSKR

CALL CUMPARE
SUTBUF (4) = 4H,NE
CALL XLPLUS

CALL XLBUF(CPU321)
CALL OUTSAM(10)
RETURN

LA TRY XNESR

CALL CUMFARE
OUTBUF (4) = &H,EQ
CALL XLPLUS

CAlu XueBUF (CPUsCL)
CALL OUTSAM(10)
RETURN

LNTRY XIF2xP
UGUTBUF (3) = 4H LDA
QUTBUF (4) = 4HQ

CALL UNSTACK(CPOS21)

GALL UUTSAM(10)
RETUKH
END
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SUSKUUT LNE CUMLLIOP)

INTeGL® CGUTRUF,PAKA

COUMMUN TUUM(23) ,GUIBUF(20) 4 XDUM(B450) y WINDOW
CUMMUN INPOINT,PAKA(S5()

“UQUIVALCHNCE (XyXUHARAD) y (XREADyIREAD) y (XWRITE,
DIMENSTUN IRCAJ(2)yIWRITE(2)

CHARKACTLRK CPUS1,0F0S21yXCHARAD

CQULVALUENCE (QUTBUF(6),0DD)

EQUIVALLNGE (DDD,CPUS2Y)

LQUIVALENGE (QUTBUF,LFUST)

UIMenSI0ON ITEMP(LE)

OUTBUF(3)=10P
CALL UNSTAUK(CPG321)
DO & I=1,10

b ITeMPOL)=0UT3UF (L)
00 ©b I=1,10

05 OUTI3UF (1) =4n

OUTBUF (3)=4H LDA
UUTBUF (+)=1HQ
CALL UNSTACK(CPOS21)
CALL OUTSAM(10)
J0 b6 I=1,10

b OUTBUF(I)=ITeMP (L)
CALL OUTSAM(10)
CUTBUF(3) = 4H ST
OUTBUF (+) = 4HQ
GAcL TPLUS
CALL TBUF(CPOS2L)
CALL OUTSAM(20)

G STACK THE TeMP
CALe TBUF(CRUSL)
CALL STALK
RETURN
ENU
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SUBRUUTINL CuMPARE

INTEGLR OUTBUF,FAKA

COMMON 1DUM(23) ,JUTBUF(20) ,XDUM(8450) y WINDOW

CUMMON INPOLINTyPARA(S0)

cQUIVALENGE (XyXCHARAD) y (XREAD,IREAD) » (XWRITE, INRITE)
JIMNSION IREAD(2) yiWRITE(2)

CHARACTER CPOS1,CFUS21,XCHARAD

EQUIVALZNC S (0UT3UF(6),000)

SQUIVALENGE (D00,6P0OS21)

“QUIVALZNCC (QUTBUF,CFOS1)

JUTBUF (3) = 4 XUA
VUT3UF (%) = 4H,S -
OUTBUF(2) = 4Hy

CALL UJTSAMI(10)

JUTBUF(3) = &4H x0Q
OUT3UF (%) = 4H,S -
JUTBUF (DY) = 4Hy

CALL QUTSAaM(1Q)
UUTBUF(3) = &H FAD
CALL UNSTACK(CPUSZ1)
CALL OUTSAM(L0)
OUTBUFI(3) = 4H AZJ
ReETURN

cNTRY RERUSUB

HAVvE A READ S TATEMENT
UUTBUF (3} =4H RTJ
JUTBUF(4) = &4H FIN
CALL oUTLaM10)
QUTBUF(3) = 4H STA
DUTBUF{4) = 4HQ
CALL CUPYSTK(1,(CP0S21)
CALL QUTSAM(10)
XETURN

SMTRY HRITE

HAive A WKITE STATEMeNT
OQUTBUF(3) = 4H LDA
JUTBUF(4) = 4HQ
CALL CUPYSTK(1,CP0OSZ1)
CALL OQUTSAM(20)
CUTBUF(3) = 4H RTJ
JUTBUF (5) = 4HFGUT
CALL 0UTSAM(10)
RELTURN
EMND
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APPENDIX H

META/OS-3 and COMCOM Parsing Time Comparison

This appendix contains a parsing time comparison of
META/OS-3 to COMCOM. The following page is the syntax specifi-
cation for two translators. The first is a COMCOM program, and
the second a META/OS-3 program. The constructed translators
accept the same source language except COMCOM requires an end of
file after the source program. The only semantic processing the
translators perform is to print out "DONE'" when the parse is com-

plete.




THE FOLLOWING IS A COMCUM PROGRAM

eSYMTAX LUMPARE
SLASSES{el g, s NUMBER)

ToRMIGALS(20) RUUTINES(4) ERROR(ERR) RULES(15)
«OQUT( #DONEZ ) .,

PROGRAM = 23EGIN? BUOY zENDZ
300Y = B800Y #3z STATZMENT ),
100Y = STATZMENT .,

STAT <ieNT = ASSIGN o,

ASSIGH = 10 #=7 oXPR 4,

=XPR = EXFR #£=7 TERM .,
LXPRO= TERM o,

TuRM = TERM 2%z OF ,
TurM = TERM 2/ OF o,
TERM = OFP .,

P = L ID L)

P = o NUMBER [

UP = (2 LXPR 2)% .,
Q;ND

{dz FOLLOWING I35 A4 MITA PROGRAM

«2YHTAX PrOGRAM

PROGRAM = 2BEGIWE STATEMENT $( #3837 STATEMENT )

s OUT(
PMoNT = ASEIGN .y
= L 1UHEz2 EXPR 4,
TE~M 30 247 ToEM / 2~2 TERM
JpP { #¥% cP 7 ¥/ (UF ) ° 9
o LU /7 WNUMEER / #(7 EXFR 2)2

fvid

LIRS B

PO
kP SRV I ]

AR T OB

-t

W A i~y

[
-

-
.
=
<

¥OCNC#® )

*

#END2
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The following is the sample source program used in this parsing
time comparison. Table 4 on the next page is the results of the
sample run. The two sets of programs were run consecutively under
the OS-3 operating system. This operating system is a time sharing
system, thus the cost and time figures are not extremely reliable.
However, the programs were run several times and the figures appear
to be representative. The important comparison is the parsing times
since this indicates the efficiency of the constructed translator's
recognizer. One must keep in mind that these are two specific
implementations run on one specific set of inputs and that no real con-

clusions other than estimates can be drawn from this trial.

1.6

HUB = 5426 + HFGFG =(HG - 452 ) %
4 = { 8870 + E,3 % 4) /7 (1) + C %

SES = ¢ 4+ 3 * FLiR ¢+ HeB I

IFOC = JHL ¥ (UF+DFZ* FGB ) 3
45 = 45+ HG = JH = HGFV =HGFY*GVC = (FDD*GY) /YT %
WASF = KJO*JH + ( JH *( KH®*( KJGB*( KJ+KG)/KGB) )) 3

JFOF Z= DFF* (OF* (UFCT* (DF+SF) /RG)) $

SOEF =542.45 +ASW *(DF+65%78,52+SLE* (OF+SX)) $
W= 3+ $

LHOK Jod = JHG*®( H«6 ) = GGF 3

JF = NGGB * [EOFR+ HG) i
oUJ=  UFSDFG ¢+ KJH={S$0=JH )
=MD



Table 4. Time comparison results.

COMCOM META/OS-3

Cost Time Cost Time

($) (sec) ($) (sec)

Co.mpde—complle 17 1.3 12 1.3

time

Load and write 20 5.4 .09 1.1
overlay ’

Parse time .10 .8 .10 .7

Total .47 4.5 .31 3.1




