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Preface

The OSF DCE Application Development Guide provides information about
how to program the Application Programming Interfaces (APIs) provided
for each OSF™ Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating
system and C language experience who want to develop and write
applications to run on DCE.
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Applicability

This is Revision 1.0 of this document. It applies to the OSF™ DCE Version
1.0 offering and related updates. See your software license for details.

Purpose

The purpose of this guide is to assist programmers in developing
applications using DCE. After reading this guide, you should be able to
program the Application Programming Interfaces provided for each DCE
component.

Document Usage

This guide is organized into the following seven parts:

Xl

For an overview of DCE application development, see "Part 1. Overview
of DCE Application Development."

For information about the DCE Threads Application Programming
Interface, see "Part 2. DCE Threads."

For information about the DCE Remote Procedure Call Application
Programming Interface, see "Part 3. DCE Remote Procedure Call."

For information about the DCE Directory Service Application
Programming Interface, see "Part 4. DCE Directory Service."

For information about the DCE Distributed Time Service Application
Programming Interface, see "Part 5. DCE Distributed Time Service."

For information about the DCE Security Service Application
Programming Interface, see "Part 6. DCE Security Service."

For information about the DCE Distributed File Service Application
Programming Interface, see "Part 7. DCE Distributed File Service."
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Related Documents

For additional information about the Distributed Computing Environment,
refer to the following documents:

e Introduction to OSF DCE

o OSF DCE User’s Guide and Reference

o OSF DCE Application Development Reference

o OSF DCE Administration Guide

e OSF DCE Administration Reference

o OSF DCE Porting and Testing Guide

s Application Environment Specification (AES)/Distributed Computing
e OSF DCE Technical Supplement

OSF DCE Release Notes

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you
must use literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you
must supply.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax
descriptions.
{1} Braces enclose a list from which you must choose an item in

format and syntax descriptions.

I A vertical bar separates items in a list of choices.
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<> Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times.

This document uses the following keying conventions:

<Ctrl-x> or "x

The notation <Ctrl-x> or “x followed by the name of a key
indicates a control character sequence. For example, <Ctrl-c>
means that you hold down the control key while pressing <c>.

<Return> The notation <Return> refers to the key on your terminal or
workstation that is labeled with the word Return or Enter, or
with a left arrow.

Problem Reporting

If you have any problems with the software or documentation, please
contact your software vendor’s customer service department.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this
document, see the OSF DCE Administration Guide and the OSF DCE
Release Notes.
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Chapter 1
DCE Application Development Steps

This chapter, and the two that follow it, make up the first part of the OSF
DCE Application Development Guide. Together, these first three chapters
offer an introduction to the fundamental aspects of DCE application
programming. The reader of this guide is assumed to be an experienced
programmer.

1.1 Introduction to DCE Application Development

The majority of this first chapter consists of a fairly detailed overview of
each of the separate steps that a developer usually has to perform (or have
the application perform) from the beginning of coding to the end of
execution of a successful DCE application. Chapter 3 describes a practical
example of this process: a complete working DCE example application,
timop. Chapter 2 consists of detailed discussions of some of the
fundamental DCE features and services, including use of the name service,
coding an ACL manager, security key management, thread-safe
programming practices, and other topics.

Before you begin a serious study of the contents of any part of this guide, or
indeed of any other book in the DCE documentation set, you should read the
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Introduction to OSF DCE. It contains clear and comprehensive overviews,
with illustrations, of all the DCE components and of the integrated DCE as a
whole; many concepts and details are explained there that are necessary to a
full understanding of what is described here.

If you do not find information about topics you are interested in either in this
guide or in the OSF DCE Application Development Reference, you should
also look in the OSF DCE Administration Guide and the OSF DCE
Administration Reference. For example, the DCE Cell Directory Service is
not accessed directly by applications (except through DCE RPC NSI or
through DCE XDS) so most of the discussion of CDS as a separate
component is found in the administration documentation. Although the DCE
Security Service is documented in the development books, certain aspects of
it important to application developers (for example, adding new principals
to the security registry database) are found only in the administration books.

1.2 Content Overview of Part 1

The following subsections contain additional information about the first
three chapters of this guide.

1.2.1 Topics Covered in Part 1

The following DCE components are described and discussed in some detail
in the first three chapters of this guide:

e DCE Threads Service

* DCE Cell Directory Service (DCE CDS), accessed through the DCE
RPC NSI (Name Service Interface)

¢ DCE Remote Procedure Call (DCE RPC)
* DCE Security Service

Explicit use of all these components is necessary for most DCE
applications; you cannot usually get by without them.

In addition, routines from the DCE Distributed Time Service are used in the
timop example application described in Chapter 3.
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1.2.2 Topics Not Covered in Part 1

The following DCE components are not discussed in these first three
chapters:

¢« DCE Global Directory Service (DCE GDS), including the Global
Directory Agent

» DCE Distributed File System (DCE DFS)

¢ X/Open Directory Service Application Programming Interface (XDS
API) and XOM (Object Management) Interface

DCE GDS is used for looking up names that are held in directories not
located in the local cell. GDS is automatically utilized by the DCE RPC
Name Service Interface (NSI) when a nonlocal name is looked up (unless
the cell uses DNS as its global directory service); thus, normal application
use of GDS is handled implicitly by NSL

Similarly, applications use DCE DFS whenever they access DFS files; the
application routine calls remain the same on this level, and no special
programming techniques are required.

XDS APl is a general interface into the DCE Directory Service as a whole,
both to CDS and GDS. Applications do not require this interface in order to
accomplish client/server rendezvous, since this is taken care of by DCE
RPC NSIL

Although the DCE Directory Service is a very versatile database which can
be used to store and retrieve all kinds of data, the main use of a directory
service for distributed applications is to provide a standard facility by which
servers can advertise their location to clients. NSI works with a greatly
reduced subset of predefined directory entry types that are tailored to this
need. Developers can thus avoid having to contend with functionality they
do not need, and concentrate on the details of client/server rendezvous.

Thus, the XDS interface is for developers who need access to the full
functionality of the DCE Directory Service as a generic directory service.
Some likely uses of XDS may occur in the development of the following:

o Alternative versions of DCE tools, such as the CDS namespace browser
(a utility that allows users to view the contents of CDS directories), or
other administrative utilities and commands
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« Software that needs to access directory services in conformance with the
X.500 protocols, such as:

— FTAM (File Transfer and Management) applications
— X.400 mail system applications
— Applications that use X.500 for routing

There is no restriction against your using XDS in any DCE application if
you wish, but its typical uses fall outside the bounds of the discussion in
these first three chapters. However, XDS does offer a functionality that can
be of more immediate interest to DCE application developers. This involves
the creation and addition of non-NSI attributes to name service entries, thus
allowing - extra application-defined information to be stored in an
application’s namespace entries. A sample program showing how to do this
can be found in Chapter 24 of this guide.

Of course, all of the DCE components are treated in detail in their separate
parts in this guide, even though not all of them are discussed in this
introductory part of the guide.

1.3 DCE Application Development

Most of the effort of developing a DCE application usually lies in the
familiar steps of planning, writing and compiling the necessary C code,
linking the result with the DCE library and other modules, and executing it
(perhaps repeatedly). However, there is an important preliminary task that
must be performed before you write any other code. Before you can
implement the application’s client and server, you must write and compile
an interface definition file in which you define the application’s client/server
interface.

This interface, defined in the DCE Interface Definition Language (IDL),
consists of a set of ‘‘remote call prototypes’’ for the remote procedure calls
your client(s) will be requesting your server(s) to execute. After you have
written this file, you compile it with the DCE IDL compiler. The final output
of IDL compilation is a pair of object files, one for the server module and
one for the client, which you must later link with the compiled output of
your server and client implementation code. These two IDL output files
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contain the server and client stub code, where all the details of remote
execution, data transfer, and so on, are managed.

The IDL compiler also generates a header file for inclusion in the server and
client source files. It contains all the definitions and declarations that result
from the IDL file definitions. Among these are, for example; the interface
specification data structure, which will be used at runtime to describe the
interface being defined here.

Once you have linked the stub files (and the DCE library) to their respective
client and server modules, the IDL-generated stubs make the client and
server seem to communicate directly through the operation signatures you
defined in the original .idl file, although in actuality client/server
communications pass back and forth through layers of stub and runtime
processing, which are necessary to send and receive the data over the
network. Figure 1-1 illustrates how the combination of IDL (by means of the
stubs it generates) with the RPC runtime routines shields both client and
server from the details of network communications.

Figure 1-1. The Combined Effect of IDL and the RPC Runtime

RPC Client Apparent Path RPC Server
Calling = _Ofgaia_ - ﬂ P?oirzgzﬁe
Code < — _dugd %}I’ECL_ - Call
RPC an RPC
Interface Interface
Client Server
Stub Stub
RPC RPC
Runtime Runtime

L Return Data |

Input Arguments
Actual Path of Data

The first sections of Chapter 3 of this guide contain a fuller description of all
the input possibilities to IDL, as well as all the different kinds of output it
can generate.
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Once the work of defining an interface has been completed, the task of
implementing the interface (that is, coding the operations, along with the
rest of the necessary initialization and management routines, in some
programming language) begins. The rest of this chapter consists of detailed
explanations of the DCE application development steps from start to finish.
For a practical example of the result of such a process, refer to the code for
timop, which is described in Chapter 3. For more detailed discussions of
some of the DCE services and techniques for utilizing them, see Chapter 2.

Each of the DCE components (with the exception of CDS, which is accessed
through the RPC-integrated NSI) is discussed in depth in separate parts of
this guide. You should also refer often to the OSF DCE Application
Development Reference, which contains reference pages for all of the DCE
library routines mentioned in the following sections.

1.4 Overview of the DCE Application Development

1-6

Steps

The rest of this chapter consists of a step-by-step checklist of every single
one of the decisions that a programmer must make in developing a typical
DCE application. Each set of decisions or choices is combined into one step.
The combination of all these steps takes you from the initial coding stages
into and through the normal course of execution of the application itself.
The underlying intention of this arrangement is to give you a useful mental
model of the overall code development process.

Figure 1-2 summarizes the organization of the steps.
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Figure 1—2. The DCE Steps: The Five Basic Phases lllustrated
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Figure 1-2 is divided into five basic phases, which are identified by the
letters A through E along the right side of the figure. Each of these larger
phases consists of a series of steps or decisions that normally occur in the
development of a DCE application. The individual steps are indicated by the
bold numbers in brackets; each one is described in detail in the following
text.

Almost all of the steps in B through E consist of very specific choices
regarding how, or whether, various DCE library routines are to be called.
Steps B2 through E2 (phases B through E) can be taken together as a walk-
through of the client-side and server-side code of a typical DCE application.

The first phase, A, represents a series of things that must occur before
anything else in the development process can happen; namely, the IDL file
definition and compilation.

Thus, the 5 basic phases of DCE application development are as follows:

A. CLIENT and SERVER: Define the RPC/IDL interface
[Steps Al to AS]

SERVER: Set up and listen [Steps B1 to B12]
CLIENT: Bind to and invoke the server [Steps C1 to C3]
SERVER: Service request(s) [Steps D1 to D7]
CLIENT: Receive the results [Steps E1 to E2]

Moo
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Following is an overview list of all 29 steps, separated into the 5 main
phases previously described. Each step’s numeral is followed by a / (slash)
and the terms Client and/or Server to indicate whether it applies to the
application’s server or client, or both.

A. CLIENT and SERVER: Define the RPC/IDL interface.
A1/Client and Server: Generate the interface UUID.

A2/Client and Server: Determine the interface version number.
A3/Client and Server: Write the .idl file.
Ad/Client and Server: Write the .acf file (optional).

A5/Client and Server:  Process the files with the IDL compiler.

B. SERVER:

B1/Server:
B2/Server:

B3/Server:

B4/Server:
B5/Server:
Bé6/Server:
B7/Server:
B8/Server:
B9Y/Server:

Set up and listen.
Define the manager Entry Point Vectors (EPVs).

Register the object/type UUID associations with RPC
runtime.

Register the interface, type UUID, and EPV with RPC
runtime.

Specify multithreadedness.

Tell RPC runtime what protocol sequences to use.

Request the bindings from RPC runtime.

Register the authentication information with RPC runtime.
Establish the server principal identity.

Plan what to do when the server terminates.

B10/Server: Register the binding information with the endpoint mapper.

B11/Server: Export the binding information to the namespace (CDS).

B12/Server: Listen for incoming service requests.
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C. CLIENT:

C1/Client:
C2/Client:
C3/Client:

D. SERVER:

D1/Server:
D2/Server:
D3/Server:
D4/Server:
D5/Server:
D6/Server:
D7/Server:

E. CLIENT:
E1/Client:
E2/Client:

Bind to and invoke the server.
Import the binding information from the namespace (CDS).
Annotate the binding handle for security.

Invoke an RPC interface operation.

Service the request.

Wake up in manager routine.

Get the client’s Privilege Attribute Certificate (PAC).
Get the object’s Access Control List (ACL).

Make the authorization decision.

Service the request.

Return the results to the client.

Continue the listen loop.

Receive the results.
Wake up after the RPC call.

Continue.
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1.5 The DCE Application Development Steps

The following subsections describe the 29 DCE application development
steps.

1.5.1 Step Al/Client and Server: Generate the Interface UUID

The first step in developing any DCE application is to define its interface;
these definitions are contained in an .idl file, written by the developer. Part
of the definition of the interface is its UUID, which is a 128-bit Universal
Unique Identifier that identifies it far and wide throughout DCE. Executing
the uuidgen command with the -i option, for example:

uuidgen -i > your_interface_name.idl

will generate a file containing the skeleton of an interface definition and a
newly generated UUID for the interface.

The uuidgen command is a general UUID manufacturing utility. It is used
(among its other uses) to generate blocks of UUIDs for inclusion in data
declarations, and so on. (Refer to the uuidgen(1rpc) reference page in the
OSF DCE Application Development Reference.)

1.5.1.1 The Purpose of UUIDs

UUIDs are used to identify many different things in DCE. These ‘‘things’’
can be broadly distinguished into two categories: interfaces and objects.
UUIDs that identify interfaces are commonly called ‘‘interface UUIDs,”
and those that identify objects (see the beginning of Chapter 2 for more
information about objects) are called, ‘‘object UUIDs.”” However, a UUID
in and of itself is neutral data that can be applied to the identification of
anything; all UUIDs differ in value, but they are all the same type of value.

An interface UUID is the inalienable ‘‘fingerprint’’ that a server affixes to
the array of operations that it offers; any client that wants to remotely
execute any of these operations must present that same interface UUID to
the server, thus ensuring that the client gets what it asks for, and nothing but
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that. This matching of interface UUIDs is done transparently to the
application programmer by the server’s RPC runtime code, which is located
in the server stub. The client’s copy of the interface UUID is located in its
stub code. Clients must always be linked to a server stub module in order to
access that server. The stub modules, as will shortly be discussed, come
from the IDL compiler.

1.5.1.2 Summary

To sum up, interface UUIDs are never manipulated by clients. They do not
appear in bindings or among the remote call parameters. They are, however,
contained in a server’s NSI-exported namespace entries so that NSI can
make sure that clients import bindings only to servers that offer the same
interface that the clients are seeking.

1.5.2 Step A2/Client and Server: Determine the Interface Version
Number

The version attribute of an interface, specified in the .idl file, is used to give
a major and minor version number to the interface.

A ‘“‘version’’ of an interface is the result of compiling and linking some
particular version of implementation source code with IDL-processed
output, producing an executable version of the application. Thus, there can
be more than one existing version of an interface implementation identified
by the same UUID, but distinguished by version numbers. When the RPC
runtime compares the interface in an incoming remote procedure call to that
offered by the server (as described in Step C3, Section 1.5.20), it allows the
call to proceed only if all of the following are true:

¢ The UUIDs identifying the interface assumed by the client and the
interface exported by the server are the same.

o The interface assumed by the client and the interface exported by the
server have the same major version number.
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o The interface assumed by the client has a minor version number less
than or equal to that of the interface exported by the server.

Thus, correct use of the version number attribute allows an application to
have different versions of an interface in existence and yet not have to be
concerned about any resulting client/server interface incompatibilities;
always, that is, provided that the version differences are accurately assessed
by the programmer and expressed in the version numbering. Since the
version attribute value is determined by the programmer, it is the
programmer’s responsibility to make sure that interface versions that seem
to be compatible by version number actually are compatible with respect to
the implemented operations.

For further information on how to use the version attribute, see Chapter 17.

1.5.3 Step A3/Client and Server: Write the .idl File

The .idl file is where the set of remote operations that will constitute the
interface are defined. Although writing the .idl file is listed as a Client and
Server step, there is only one .idl file (per interface). The default output of
its compilation by the IDL compiler will be a pair of stub files, one for the
client and one for the server; a header file is also output by IDL (see Section
3.1 in Chapter 3 of this guide). For a detailed discussion of all aspects of the
.idl file, read Chapter 17 of this guide.

The server implementations of the remote operations are written in C source
code, which is compiled and then linked to the stub code output by IDL. The
interfaces to these operations are defined and characterized in the .idl file, in
IDL language. Thus, an .idl file’s contents are like a set of ‘‘network
prototypes’’ for a set of operations. The IDL definitions determine not only
how the operations ‘‘look’’ to client and server (that is, the operations’ call
signatures, parameter types, and so on), but also what the data looks like
when it is transmitted back and forth between clients and servers in a
distributed application.

The IDL language is declarative, not procedural. Its look is much like C.
Some of the important attributes that it is used to specify are the following:
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¢ For interfaces:

uuid Specifies a string that contains the interface’s UUID. (See
Step Al, Section 1.5.1.)

version Specifies the interface major and minor version number.
(See Step A2, Section 1.5.2.)

endpoint  Specifies well-known endpoints (if any) for the interface.
(See Step BS, Section 1.5.10.)

o For parameters:

in Signifies a parameter whose value is passed from the client
to the server.

out Signifies a parameter whose value is passed from the
server to the client.

« For data types:

handle Specifies a customized binding handle. (See Step A4,
Section 1.5.4.)

context_handle

A context handle is a pointer to state information used by
the server, which is maintained across RPCs; for example,
a file pointer. The client is not supposed to do anything
with this pointer; it merely passes it to subsequent calls as
needed, and it is used internally by the remote calls. This
allows applications to have such things as remote calls that
handle file operations much as local calls would; that is, a
client application can remotely open a file, get back a
handle to it, and then perform various other remote
operations on it, passing the context handle as an argument
to the calls. A context handle can be used across interfaces
(where a single server offers the multiple interfaces), but it
can belong only to the client who caused it to be activated.
A context rundown routine can also be declared. This
installs a routine into the callee’s stub that will
automatically be called to reclaim (run down) the
pointed-to resource in the event of a communications
break between the server and client. For example, in the
case of the ‘‘remote file pointer’’ just mentioned, the
context rundown routine would simply close the file.

OSF DCE Application Development Guide 1-13



Overview of DCE Application Development

transmit_as Allows you to associate specified complex data types with
a set of routines (which you must write) that will be
implicitly called by the stub code to translate the data into
(and back out of) other formats, either to improve the
efficiency of transmission or for other reasons.

Operation attributes include specifiers for execution semantics; that is,
whether the operation can be safely executed more than once, whether a
response is expected, and so on. The default is that operations can be
executed at-most-once. Operations parameters (the arguments supplied by
the client when it makes the remote call) can be specified as input to the
server, output to the client, or both.

For further information on the IDL compiler and the IDL language, see the
IDL chapters in Part 3 of this guide, as well as the idl(1rpe) reference page
in the OSF DCE Application Development Reference.

1.5.4 Step A4/Client and Server: Write the .acf File

The Attribute Configuration File (.acf) is an optional additional input file to
the IDL compiler; if present, it affects IDL’s output in various ways.

The difference between the purpose of the .idl and an .acf file is that while
the .idl file defines how the network communications between the client and
server are handled, the .acf file, if one is present, affects only the interaction
between the stub code modules and the developer code that they support. In
other words, changing the contents of an .acf file has no effect on the
network communications between the client and server.

Nevertheless, some of the features offered by an .acf file are very important,
and they cannot be obtained by any other means. The sample DCE
application, timop, which is described in Chapter 3, has an Attribute
Configuration File in order that two attributes (namely, out_of line
marshalling and comm_status) can be declared. These attributes must be
declared in an .acf file; they cannot be declared in an .idl file. (The
comm_status attribute allows the status code of a communications failure
that occurs in an RPC to be stored as a parameter or returned as a result,
rather than being raised to the caller code as an exception.)
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Another very important function of the .acf file is the specification of a
binding method to be used by remote clients of the application. Three
methods are available:

+ auto_handle
« implicit_handle
« explicit_handle (the default)

Because explicit_handle is the default, it is not declared in timop.acf, even
though timop uses the explicit method. All three binding methods are
briefly described later in Section 1.5.4.2, and definitive descriptions of them
can be found in Chapter 18 of this guide. The binding method you choose
determines how much attention your server’s clients will have to devote to
the upkeep of their binding handles.

1.5.4.1 Binding Handles

A binding handle is simply the data structure that represents the client’s
current relationship with the server.

This relationship is determined by several items of data. Perhaps the most
important is the protocol sequence and network address information
necessary to maintain communications between the client and server;
however, these are not the only contents of a binding handle. It can contain
an object UUID as well. This, if present, is matched (when the client first
tries to establish contact with a server) against the object UUIDs registered
at the destination host by the resident servers. This allows servers to target
their exported bindings unambiguously back to themselves, and not to other
servers that may happen to offer the same interface. For further information
about UUIDs, see Chapter 2. For further information on the use of object
UUIDs, see Steps B2 (Section 1.5.7), B3 (Section 1.5.8), and B10 (Section
1.5.15).

A binding can also contain various kinds of security information. For further
information about this possibility, see Step C2 (Section 1.5.19).

There are two types of binding handle: primitive and customized (the latter
is sometimes referred to as ‘‘generic’’ in the DCE documentation).

o Primitive handles must be used when the automatic binding method is
employed (see Section 1.5.4.2 for more information about binding
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methods); they can be used with the other two binding methods as well.
The timop DCE sample application client (see Chapter 3 of this guide)
uses the explicit binding method with primitive binding handles.

Primitive binding handles contain all the information that is needed by a
client to bind to a server. They are specified with the predefined
handle_t type in the .idl file; in application code they are declared as
rpc_binding_handle_t. This is a predefined type that contains (when
filled) the bound-to object’s network location and, optionally, an object
UUID; it does not contain an interface UUID.

Customized handles are application-specific data types designed to meet
the special needs of the appplication they are to be used by. They are
specified in the .idl file with the handle attribute; you must supply the
type. If your application uses customized handles, you must also supply
routines to do the following things:

— Receive a customized handle, generate its primitive-handle
equivalent, and return the primitive handle. (The name of this routine
is custom_bind(), and it returns an rpc_binding_handle_t.)

This routine is called implicitly by the client stub whenever a remote
call is made by the client with a customized handle.

— Receive a customized handle and its primitive equivalent, and,
typically, free the primitive handle and any unneeded resources
associated with the customized handle. (The name of this routine is
custom_unbind(), and it returns void.)

This routine is implicitly called by the client stub after it receives
the response to an RPC from the server.

In short, these two routines allow the customized handle to seem to have the
same characteristics as a primitive handle in the client code. Note that these
two routines are not defined or otherwise mentioned in the .idl file; they are
part of the application source code.

Note also that using either kind of handle makes no difference to the way
the incoming calls look to the server; this is a matter for the client’s
convenience, one way or the other. Servers always export only primitive
handles.
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1.5.4.2 Binding Methods

Binding methods allow applications (on the client side) to determine how
much responsibility they want to assume for the management of their
bindings. None of these methods make much difference in what the server
has to do, although use of the auto_handle method does require that the
bindings be exported to the namespace (which they usually are anyway,
regardless of the method used).

The following three methods are available. Each is specified by an .acf
attribute.

« If the auto_handle attribute is declared for the interface, the client never
even sees the handle: it does not appear as an argument in remote calls,
and it is automatically imported from the namespace. The operation
definitions coded in the .idl file must not contain the binding handle in
their argument lists. Also, the server must export its bindings into the
namespace; string bindings (see Step B5, Section 1.5.10) will not work.

A client using an automatic handle will be automatically rebound to a
server under some circumstances if a break in communications occurs.

o To use the implicit method, you declare in the .acf file a global variable
with the implicit_handle attribute. The client is responsible for
importing a binding itself, or for getting it some other way. It must then
assign this binding to the implicit_handle global variable. From then on
it can make remote calls without specifying the handle as an argument
or otherwise bothering with it. The stub code passes the handle to the
RPC runtime when remote procedure calls are executed; the handle does
not appear among the call arguments.

An explicitly specified handle in the argument list for an operation
overrides the implicit_handle attribute for that operation.

Use of the auto_handle and implicit_handle methods is mutually
exclusive for the same client.

o The explicit_handle method is illustrated both in the timop code
described in Chapter 3, and in the binding steps that follow in the
present chapter (namely, Steps C1, C2, and C3, Sections 1.5.18, 1.5.19,
1.5.20, respectively). With the explicit method, the binding handle is
passed as an argument explicitly by the client in every remote procedure
call it makes. Using this method allows the client to alter the binding in
various ways if and when it chooses. For example, explicit handles allow
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the client to switch type UUIDs in the handle, in order to reach different
server type managers (assuming that the server implements multiple
type managers). For further information about type UUIDs, which are a
kind of object UUID, see Step B3 (Section 1.5.8).

The timop application demonstrates another reason why a client might
need explicit handles: timop’s client code is multithreaded, and each of
the threads binds to the server on its own. Neither the automatic nor the
implicit binding method would permit such multibinding, since only one
auto_handle or implicit_handle can be used by a single client at a time.

For further information on attribute configuration files, see Chapter 18,
which describes .acf file syntax. For further information on the IDL
compiler, see the idl(1rpc) reference page in the OSF DCE Application
Development Reference.

1.5.5 Step A5/Client and Server: Process the Files with the IDL

Compiler

Section 3.1 describes the IDL compilation process in some detail, and
explains the part this process plays in the production of an executable
distributed application. The present section consists of a summary
description of the IDL compiler’s input and output.

IDL’s input is an xxx.idl and (optionally) an xxx.acf file. Its default output is
a header (xxx.h) file that contains definitions and declarations derived from
the input for general use in the development source code, and two stub files,
one for the client and one for the server, which contain runtime code for
marshalling and unmarshalling, message handling, and all the other details
of managing network communications. The stub files are output as object
code (xxx_cstub.o and xxx_sstub.o) suitable for linking with the developer’s
compiled code. The IDL compiler generates C source code as an
intermediate step in the compilation process, and the output of this step can
also be saved in a pair of files (xxx_cstub.c and xxx_sstub.c).

IDL automatically includes the DCE RPC management interface in the
compiled stub code. This allows all DCE applications to use the
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rpc_mgmt_...() routines, which consist of various operations that allow
callers to learn interesting things about servers, or in some cases to remotely
perform useful operations at servers.

In order for a pair of client and server stubs to interoperate, they should be
generated from the same interface definition (.idl) file, but they do not have
to be generated with the same Attribute Configuration File (.acf). The
compatibility rules for interface version numbers also apply (see Step Al,
Section 1.5.1).

For further information on the IDL compiler, see the idl(1rpc) reference
page in the OSF DCE Application Development Reference.

1.5.6 Step B1/Server: Define the Manager EPVs

““Manager’’ is the DCE term for the part of a server that actually
implements a set of interface operations, as distinguished from the more or
less generic server code that initializes the server as a whole, obtains and
exports its binding information, and so on (see timop_manager.c in Section
3.2.6.8 for an example). Manager Entry Point Vectors (EPVs) are the data
structures in which are recorded the entry addresses of the application
routines that implement the server’s operations, as offered through its
interface. The server’s stub code uses the EPV to dispatch incoming RPCs to
the requested operations. A default manager EPV is generated automatically
by the IDL compiler and defined (that is, correct addresses are filled into it)
in the output header file.

If more than one version of the same interface is to be supported by the
same server, one EPV will be needed for each additional interface version.
Interface version numbers are specified by the version attribute in the .idl
file. The type manager RPC runtime mechanism, properly utilized, allows a
server to declare multiple EPVs under the same interface, and to have the
RPC runtime vector the incoming remote calls to the correct
implementation code. See Step B3 for further information.
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1.5.7 Step B2/Server: Register the Object/Type UUID Associations
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with the RPC Runtime

The server makes the RPC library call
rpc_object_set_type(obj_uuid, type_uuid, &status);

repeatedly to associate whatever objects it expects will appear in incoming
RPCs with a type UUID. The association is made between each of the
expected incoming object UUIDs and the type UUID.

A type UUID is nothing but a special kind of object UUID. *“Type’’ in this
context refers to a group of ordinary object UUIDs that have all been
associated (via a series of calls, as shown here, to rpc_object_set_type())
with another specially generated common object UUID, which can then be
used to identify that group of objects collectively.

The type UUIDs in turn will be associated (in Step B3, Section 1.5.8) with
the entry points of manager modules in the server. An incoming RPC that
contains a ‘‘typed’’ object UUID in its binding will be automatically
vectored by the server’s runtime to the appropriate associated type manager.

The creation of object UUIDs, the determination of what (if anything)
constitutes an object for a server application, and the association of these
objects’ UUIDs into collective types are all application design decisions. If
an application makes use of object UUIDs, it makes them accessible to
clients by exporting them with its bindings; how this is done can be seen in
Step B11 (Section 1.5.16).

1.5.7.1 Object UUIDs

Object UUIDs have a double use in the routing of RPCs, and you may at first
find this a bit confusing. One use, which involves typing into object groups,
was described in Section 1.5.7.

Object UUIDs are also used in the DCE RPC binding mechanism. The
details of RPC binding are explained briefly in Steps B5 (Section 1.5.10)
and B10 (Section 1.5.15), and more thoroughly in Section 2.1.5 of Chapter 2.
It all comes down to this: clients normally import only partial bindings from
the namespace. These will carry them only as far as the RPC daemon on the
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destination server’s host; it is the daemon’s job to complete the binding with
a dynamic endpoint.

This means that some registration of bindings must be done by a server at its
host RPC daemon (rped, also known as an endpoint mapper). Step B10
(Section 1.5.15) describes an example of this. The minimum two items that
have to be registered are interface UUIDs and bindings (the latter of which
contains the server’s dynamically allocated endpoints). With this
information available, the endpoint mapper can inspect the incoming RPCs
interface UUIDs, select one of the endpoints that was registered under them,
and complete the partial bindings. In addition, a server can register its object
UUIDs with its endpoint mapper. This allows lookups of endpoints by object
UUID rather than interface UUID; the advantage is that object UUIDs are
much more specific than interface UUIDs, which may be registered by
multiple servers at the same host.

Thus, the type UUIDs and the type manager vectoring mechanism have
nothing to do with the use of the object UUIDs themselves as lookups for
the host endpoint mapper. The former occurs after the latter happens, at the
server. Note also that the latter typically happens only once in an
uninterrupted client/server session; after the partial binding is completed,
communications proceed directly between the client and server. Type
manager vectoring, on the other hand, occurs again and again, every time an
incoming RPC contains a typed object UUID.

1.5.7.2 Initializing the Mechanisms that Rely on Object UUIDs

The very different nature of the two mechanisms just discussed (type
manager vectoring and endpoint mapping) is somewhat obscured by the
order in which they are initialized in the steps in this chapter. The following
list shows the relevant server steps, with an indication in each instance of
which mechanism they belong to or are related to:

Step B2 Groups of object UUIDs are associated under type UUIDs in
the RPC runtime; related to the type vectoring mechanism.

Step B3 Each type UUID is associated with a manager EPV (in the
RPC runtime); related to the type vectoring mechanism.

Step B10  Object UUIDs and server endpoints are registered with the
server’s endpoint mapper; related to the endpoint mapping
mechanism.
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Step B11  The server bindings (containing the object UUIDs) are
exported into the namespace; related to the endpoint mapping
mechanism.

See Figure 1-4 for a schematic illustration of how object typing is used by
the RPC runtime to vector remote calls to the correct server manager code.

Note that it is not necessary to call rpc_object_set_type() at all if you
intend to register only one interface (see Step B3, Section 1.5.8) and you do
so with a nil mgr_type_uuid.

As mentioned previously, a much more detailed discussion of the use of
object UUIDs in bindings can be found in Section 2.1.8.

1.5.8 Step B3/Server: Register the Interface, Type UUID, and EPV

1-22

with RPC Runtime

The server makes the RPC library call

rpc_server_register_if (if_handle, mgr_type uuid, mgr_epv,
&status) ;

to register the interface specified by if handle with the RPC runtime. By
specifying mgr_type_uuid and mgr_epv, the server can arrange things so
that incoming RPCs whose bindings contain object UUIDs that fall into its
(the server’s) registered type will be vectored by the RPC runtime to the
registered manager.

This option is useful even when only one manager (often called a ‘‘type
manager’’) is implemented. It allows the server (in conjunction with Step
B2) to register categories of object UUIDs with the RPC runtime, and then
to export bindings with those UUIDs into the namespace. Incoming calls
containing partial bindings that have been imported from the namespace
entries that the server exported to will be certain to reach that server, even
though other servers on the same host may have exported the same interface.
For a fuller explanation of binding, see Section 2.1.5.
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1.5.8.1 Type Managers

Generally speaking, type managers are a way of dynamically tailoring
interfaces to the various types of object presented to the server for its
operations. For example, in the print service application that we have been
discussing, the interface could be set up to handle different kinds of printers.
Clients would request the same print operations through the same printer
interface, but these requests would be dispatched by the RPC runtime to
different implementations of the requests, depending on the type of the
printer object UUID that is accompanying the incoming RPC. The different
implementation modules in the server are called type managers; for each
registered type of object there is a different set of routines implementing the
interface. When there is only one type of object (the default case), there is
only one manager in the server; this is how the term ‘‘manager’’ is usually
used.

Normally, this runtime dispatching mechanism is triggered by the object
UUID (if there is one) in the binding the client uses to make the remote call.
The server, when it starts up, makes a series of calls in order to do the
following:

» Associate each of the possible incoming object UUIDs with an object
type

o Register each object and associated manager module with the RPC
runtime

From then on, the dispatching of incoming calls is handled entirely by the
RPC runtime. Where there is more than one type manager registered by the
server, and an incoming call does not contain an object UUID in its binding,
the runtime either chooses a default manager or rejects the call.

Of course, an application can always choose to do its own dispatching of
requests among whatever object type handlers it chooses to implement.
However, the mechanism provided by the DCE RPC runtime is a very
convenient organizational tool and can help keep the interface code clean.

The following subsections describe in outline form the steps that you can
follow in coding a print server application with two type managers: one for
line printers and one for laser printers.
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1.5.8.2 IDL Definitions

The first step is to plan and write the interface definition. First you run the
uuidgen command

uuidgen -i > printer_if.idl
to create a skeletal IDL file with the name printer_if.idl. The file will

contain an interface UUID and version number and nothing else; the rest of
the necessary IDL code must be completed by the developer (namely, you).

1.5.8.3 Printer Interface Definition

It is up to the application developer to both define and implement the printer
interface operations. Here it will be assumed that this has been done, and
that the interface is defined in the file printer_if.idl, and implemented in
two .c files, one for each of the type managers.

The two print manager types will be the following:
L PR The L_PR type manager will manage line printers.
LS PR The LS_PR type manager will manage laser printers.

In order to arrange things for the RPC runtime to dispatch requests between
the two managers, some additional initialization code is required.

When the completed printer_if.idl file is processed by the IDL compiler,
the default output will be a printer_if.h file, as well as client stub and
server stub files, whose default names will be printer_if cstub.c and
printer_if _sstub.c, respectively.

The default behavior of IDL is to generate a manager EPV structure in the
server stub, consisting of one field for each of the operations defined in the
interface definition file. If there is only one server manager type, and if the
names of the routines in the manager code are the same as the operations in
the interface definition file, then declarations in the server stub code
automatically initialize (by name) the EPV structure with the addresses of
the appropriate manager routines.

If there is more than one manager type (as is the case in this example), the
procedure is different. The interface definition file should be processed with
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the -no_mepv option; this prevents the generation of an initialized
management EPV structure in the server stub code. This now becomes the
responsibility of the manager code modules, and is done as follows.

Each manager module must declare its own EPV structure variable. The
declaration of the structure type is automatically generated by IDL in its
header file output and can be found there. In the present example it will be
assumed that the type name is printer_if vl _0_epv_t. Since the
initialization of these structures is done in the manager code, the managers’
implementations of the interface operations can have arbitrary names,
although it is a good idea to maintain some correspondence for the sake of
clarity.

To show how all this works, the following is a skeletal representation of
parts of the two manager code modules. First, the L_PR type manager
module:

#include printer_if.h

static void lpr_opl{ <...args...> )
{ <...code...> };

static void lpr _op2( <...args...> )
{ <...code...> };

static void lpr_op3( <...args...> )
{ <...code...> };

globaldef printer_if_vl_0_epv_t line_printer_vl_0_manager_epv
={lpr_opl, lpr_op2, lpr_op3, <...> };

And for the LS_PR type manager:

#include printer_if.h

static void ls_pr _opl( <...args...> )
{ <...code...> };

static void 1ls pr_op2( <...args...> )
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{ <...code...> };

static void 1s_pr_op3( <...args...> )
{ <...code...> };

globaldef printer_if vl_0_epv_t ls_printer_vl_0_manager_epv =
{ls_pr _opl, ls_pr_op2, ls pr op3, <...> };

Note that the placement of addresses in these vectors is significant; requests
are vectored through the interface to operations in one of the two managers,
so the addresses in the vector should be the same as their corresponding
definition in the .idl file.

1.5.8.4 Server Initialization at Runtime

This subsection lists the routine calls that a server with multitype managers
would normally have to make in order to initialize itself. Most of these calls
will have to be made by any server; they can be seen in context in the
timop_server.c file, part of the source code for the timop DCE sample
application described in Chapter 3. Definitive information on all the calls
can be found in the OSF DCE Application Development Reference. (Note
that authentication and key management is ignored here.)

1. Create a UUID for each object to be exported. This is done only the
first time the server is started. For example:

uuid_create((uuid_t *) printer obj, &status);

2. Create manager type object UUIDs. This is done only the first time the
server is started. These object UUIDs should thereafter be stored in a
local file and read in by the server whenever it is restarted. If the file
cannot be found or read, new UUIDs can be generated. For example:

uuid_create((uuid_t *) line printer type, &status);

uuid_create((uuid_t *) ls_printer_type, &status);
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3. Associate object UUID(s) with type UUID(s). This call will be made
repeatedly, as many times as is necessary to associate all the objects
with their types. For example:

rpc_object_set_ type((uuid_t *) printer_ obj,
(uuid_t *) ls_printer type,
&status) ;

4. Register the interface(s), type UUIDs, and EPVs with the RPC
runtime. This is where type managers, if any, are registered. This call
may be (and probably will be) made more than once. For example:

rpc_server_register_if (printer_if _vl_0_s_ifspec,
(uuid_t *) line printer type,
(rpc_mgr_epv_t) line printer vl_0_
manager._epv, &status) ;

rpc_server_register_ if (printer if vl 0_s_ifspec,
(uuid_t *) ls_printer type,
(rpc_mgr_epv_t) ls_printer vl _0_
manager_epv, &status) ;

5. Request bindings under the specified protocol sequence from the RPC
runtime. For example:

rpc_server_use _protseq( (unsigned char t *) protseq,
max_call_requests,
&status );

6. Get the binding handle(s).

The bindings retrieved with this call are full bindings: they include
endpoint information. However, as explained elsewhere in this
chapter, endpoint information is not exported by the name service into
the namespace with the rest of the Dbinding when
rpc_ns_binding_export() (see step 8) is called. Instead, endpoints
are registered locally with the host’s endpoint mapper, which will
intercept inbound RPCs with partial bindings, insert a registered
endpoint, and send it on to the server. For example:

rpc_server_ing bindings ( (rpc_binding _vector_t *¥*)
binding_vector, &status ) ;
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Register the endpoints with the endpoint mapper. Again, this call will
be repeated for each object the server intends to separately export into
the namespace and register with the RPC runtime. The object’s UUID,
which was generated earlier by a call to uuid_create(), is here
associated with the binding that the server intends to export to the
object’s name entry, and registered with the endpoint mapper.

The purpose of this call is to associate specific endpoints (server
addresses) with specific object UUIDs, so that the host endpoint
mapper will be able to complete partial bindings in incoming RPCs
and send them to the correct destination server. For example:

rpc_ep_register (printer_if vl _0_s_ifspec,
(rpc_binding_vector_t *) binding vector,
(uuid_vector_t *) object_uuid_vector,
(unsigned_char_t *) annotation,

&status );

(Do not confuse this call with the rpc_server_register_if() call
described in step 4, which is used to register interfaces and manager
types with the RPC runtime.)

Export the object’s binding into the namespace. In this example, only
a single (partial) binding, rather than a binding vector, will be
exported for each specific object into that object’s name entry. For
example:

rpc_ns_binding export (entry_name_syntax,
(unsigned char t *) entry_name,
printer_if vl 0_s ifspec,
(rpc_binding_vector_t *) binding_
vector, (uuid_vector_t *) object_
uuid_vector, &status );

Figure 1-3 illustrates how (1) object UUIDs are registered under type
UUIDs with the RPC runtime, and then (2) how interface UUID/type
UUID/EPV combinations are registered separately. The result is that when
(3) the server’s RPC runtime detects an object UUID in an incoming remote
procedure call, it attempts to look up an associated type UUID for that
object. If it finds one, it then looks to see whether that type has been
associated with the incoming interface UUID; if so, the incoming call is
vectored into the EPV associated with that interface/type combination.

OSF DCE Application Development Guide



DCE Application Development Steps

The group of object UUIDs identified by (1) in the figure is the information
that the server registers with the RPC runtime. This can also be interpreted
as the UUID information contained in an RPC incoming from a client. The
areas for the storage of the information identified by numbers (2) and (3) are
maintained by the server’s runtime.

Figure 1-3. Object/Type and Interface/Type/EPV Registration

Interface UUIDs
are registered with
an EPV, or witha

Type UUID/EPV
combination.
Interface UUID Interface UUID | Type UUID EPV
Object UUID Interface UUID |  Type UUID EPV
(optional)
Interface UUID | Type UUID EPV
1 1
! P\ ] I I
) 1 1 I
Object UUIDs that identify @ @ Object UUIDs in incoming
objects managed by the server remote calls can be 'Iooked
are grouped and registered Object UUID(s)| Type UUID |uP (by the RPC runtime) by
under UUIDs that identify type, and the remote call can
each object's type. Object UUID(s)| Type UUID be vectored to the EPV that
was associated with it.
Object UUID(s)| Type UUID
Object UUID(s)| Type UUID
Object UUID(s)| Type UUID
Object UUID(s)| Type UUID

Note that type manager UUID and EPV do not have to be registered if there
is only one EPV, which is the IDL-generated default. NULLs can then be
passed for these arguments instead.

Figure 1-4 illustrates how the server’s RPC runtime dispatches RPCs to the
two different type managers, depending on the object type of the incoming
call’s object UUID.
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Figure 1-4. RPC Server Runtime Dispatching on the Basis of Object Type

1-30

RPC Runtime
Incoming 1. Which object type?
RPC 2. Dispatch the request.

opi

op2 > >

op3

Interface T T

Ipr_opt Is_pr_op1
Ipr_op2 Is_pr_op2
Ipr_op3 Is_pr_op3
L_PR LS_PR
Routines Routines

t f

When a remote call is received by the server’s runtime, the runtime looks for
an object UUID in the call’s argument list. If one is found, the runtime next
determines whether that object UUID has been associated with a type
UUID. If it has been, the runtime vectors the request to the manager code
that has been registered with that type. Thus, in the figure, if op2 was
requested, and the object UUID contained in the argument list for the
incoming call was registered with the Is_printer_type UUID, then the
request is vectored to the Is_pr_op2 routine.

Note that object/type associations have nothing to do with endpoint
registration (see Step B10, Section 1.5.15).
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Note also that the arrows in Figure 1-4 do not necessarily represent
activities that occur across the network.

1.5.9 Step B4/Server: Specify Multithreadedness

The max_calls_exec parameter to the rpc_server_listen() routine specifies
how many incoming requests (from different clients) the server is prepared
to handle concurrently. In effect, max calls exec specifies the upper limit
for the number of RPC threads that will be spawned by the RPC runtime to
handle incoming remote procedure calls. Thus, an important side effect of
rpc_server_listen(), when the specified concurrency is greater than 1, is to
create multiple threads of execution in the server.

The threads are automatically spawned to handle whatever operation is
requested by the client. If the maximum number of manager threads is
already active and more incoming calls arrive, the RPC runtime buffers
them in a call request buffer. In DCE Version 1.0, the capacity of this buffer
is a maximum of eight times the value specified in the max_calls exec
parameter to rpc_server_listen(). As active operations are completed and
threads are terminated, new threads are spawned to handle the buffered
calls. Incoming calls beyond the call request buffer capacity are rejected
(with an error code) by the RPC runtime.

Although the manager threads are automatically spawned and terminated by
the RPC runtime, the developer is responsible for coding the manager
routines according to thread-safe guidelines so that the threads will execute
properly. For further information on thread-safe programming practices, see
Section 2.2.
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1.5.10 Step B5/Server: Tell RPC Runtime What Protocol Sequences
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to Use

The server calls the RPC library routine

rpc_server_use protseq(protseq, max_call_ requests, &status);
or

rpc_server_use _all_protsegs (max _call_requests, &status);

to obtain a set of endpoints on which to receive incoming calls. This routine
only causes the endpoints to be allocated; they are not returned to the server
by this routine (see Step B6, Section 1.5.11, for an explanation of how that
happens).

In this step, the server begins the process of actually setting up the
information that its clients will need in order to bind to it. There are several
ways the server can do this. The usual method is to request from the RPC
runtime a vector of binding handles; the server then distributes these
handles into entries in the namespace, where they can be located and
imported by clients.

However, not everything that was in the handles is exported. To reduce wear
and tear on the replicated namespace, the dynamic part of the binding
information (namely, the host endpoint address) is held back by the RPC
runtime. Next the server must register the same bindings again, this time
with its host’s endpoint mapper (the RPC daemon, rped, resident on every
DCE machine); this time the endpoints are not withheld by the runtime.
Later on, partial bindings incoming from clients will each be intercepted by
the server’s host’s endpoint mapper, filled in with a valid endpoint, and sent
on to the client’s server. Note that the intervention of the endpoint mapper
occurs only on a client’s first call to a server; after the binding has been
filled in with an endpoint, subsequent calls go straight to the server.
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1.5.10.1 Well-Known Endpoints

There are, however, other binding possibilities. Two will be mentioned here.
The first involves well-known endpoints. A server that uses well-known
endpoints does so by declaring them (with the endpoint attribute) in its .idl
file. At the present step it calls the routine

rpc_server_use_all_protseqgs_if (max_call requests,
if_handle, &status);

or

rpc_server_use_protseq if (protseq, max call_ requests,
if handle, &status);

to have a vector of binding handles made up for it; but instead of getting a
‘dynamically allocated set of endpoints in the handles, as would happen with
a call to rpc_server_use_all_protseqs() or rpc_server_use_protseq(), it
receives the endpoint and protocol information that was coded in the
interface specification (or in the argument, if the latter call is chosen). The
server needs these binding handles in order to be able to put something out
in the namespace that clients can import and use to make remote calls with.
It exports the handles as described in Step B11 (Section 1.5.16). The binding
handles are returned to the server in the following step.

1.5.10.2 String Bindings

A server can also use string bindings. Doing this allows an application to
avoid using the namespace and name service altogether. However, in this
case, the server assumes the responsibility for making sure that the binding
is compatible; that is, that its protocol sequence is supported by both the
RPC runtime and the operating system. The rpc_network_inq_protseqs()
routine returns a vector of all the supported protocol sequences, and
rpc_network_is_protseq_valid() tests whether a given sequence is
supported (see Step C1, Section 1.5.18, for further information).
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To convert a binding handle (obtained in Step B6, Section 1.5.11) to a string
binding, the server calls

rpc_binding to_string binding (binding_handle, string binding,
&status);

The resulting string can be sent by any convenient means to the client, or
deposited in some place where the client can pick it up later. Once the client
has possession of the string, it calls

rpc_binding from string binding (str_binding, binding handle,
&status) ;

to transform the string back into a usable handle.

1.5.10.3 Summary

The point of the foregoing discussion is to show that none of the namespace
registration and exporting operations is absolutely indispensable under all
conditions. A client could receive a string binding from user input, construct
a binding handle from it, and initiate RPC operations with its server, all
without any intervention on the part of the name service or endpoint mapper
(assuming that the server uses well-known endpoints).

The binding and name service routines tend to combine functionality in
various ways that can obscure some of the things that actually occur when
they are called. You should not be confused by this.
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1.5.11 Step B6/Server: Request for Bindings from RPC Runtime

The server calls the RPC library routine
rpc_server_ing bindings (binding vector, &status);

in order to obtain the binding handles that the RPC runtime created for it in
the previous step.

1.5.12 Step B7/Server: Register the Authentication Information with
RPC Runtime

The server makes the RPC library call

rpc_server_register_auth_info (server princ_name, authn_svc,
get_key_fn, arg, &status);

to register an authentication service to use for authenticated RPC.

The decision whether or not to use authenticated RPC is something of a
cooperative matter between the client and the server. The server registers its
preferences in the present call, but when the client calls
rpc_binding_set_auth_info(), it registers its preferences about these same
things. The client’s and server’s choices are not required to agree in order
for the client to successfully reach the server. If the client’s authentication
and authorization choices do not agree with what the server expects, it is up
to the server to decide whether or not to go ahead with the operations, and
how far to cooperate with client requests. See Steps C2 (Section 1.5.19) and
D4 (Section 1.5.24) for further details.

This is the essential server-side call to set up authenticated RPC.

OSF DCE Application Development Guide 1-35



Overview of DCE Application Development

1.5.13 Step B8/Server: Establish the Server Principal Identity
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When first invoked, a server process uses the login context of the user who
invoked it, until it assumes its own identity by accessing its secret key,
which is analogous to a user’s password, and using it to get its own login
context. The first in the series of calls it would have to make to perform this
switch-over is the following:

sec_login_setup_identity (princ_name, flags, &login_context,
&status) ;

The server passes its principal name (at this time it is running under the
context of whatever principal invoked it); it receives its own login context
in return, which it will need in order to validate its identity. It then makes
the following call in order to get its secret key (in fact, its password):

sec_key_mgmt_get_key (authn_svc, arg, princ_name, key_vno,
&keydata, &status);

It can now make the following call to validate its own identity; if successful,
the server’s runtime will receive a ticket-granting ticket from the Security
Service’s authentication service. Possession of this ticket is a prerequisite
for getting tickets to any other service, and these tickets are what
authenticated RPC is based on.

sec_login_validate identity(login_context, passwd,
reset_passwd, auth_src, &status);

If all goes well, the next (and final) call will retrieve the server’s own login
context, which it can then use in a call to rpc_binding_set_auth_info().

sec_login_get_current_context (login_context, &status);

At this point the server has everything it needs (assuming that it knows its
principal name) to either register its authentication information with the
RPC runtime prior to receiving authenticated requests from clients, or if it
wishes, to authenticate itself to some other server.

Of course, it is possible for a server simply to continue using its inherited
login context. In that case, all it needs to do is make the last-mentioned call
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in order to explicitly get its login context. If it does not yet know its
principal name, it can first make the following call:

sec_login_get_pwent (login_context, &pwent, &status);

The (inherited) principal name will be found in pwent.pw_name.

When a server has its own identity, it takes on responsibility for the upkeep
of its password, which was returned by sec_key mgmt get key() in the
sequence above. What this involves is described in greater detail in Chapter
2 in Section 2.3.

1.5.14 Step B9/Server: Plan What To Do When the Server
Terminates

From the point of view of the server, the call to rpc_server_listen() blocks
untii one of the server's manager routines calls the
rpc_mgmt_stop _server_listening() routine, or until a client makes a
successful remote rpc_mgmt_stop_server_listening() call to the server.

When either of these things happens, the RPC runtime stops accepting
incoming client requests to the server. When all the currently executing
operations are completed, the call to rpc_server_listen() returns.

Server operations can also be terminated by an exception or signal. DCE
Threads defines all exceptions as ‘‘terminating,’”” which means that
execution must be caught by an exception handler (if one exists) and then be
resumed there, or the process will be terminated. Certain signals are defined
by DCE Threads as exceptions, which means that these signals have the
same general characteristics as exceptions.

For more information on the DCE Threads exception handling interface, see
Chapter 7.
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1.5.14.1 Management Interface

The rpc_mgmt_stop_server_listening() routine is part of the DCE RPC
management interface, a group of routines that allows clients or servers to
find out various facts about the characteristics of a server, and (in some
cases) to alter them. All of the management routines have names beginning
with rpc_mgmt_; details about each of them can be found in the OSF DCE
Application Development Reference.

One of the management routines, rpc_mgmt_set _authorization_fn(),
allows a server to install a monitor routine to intercept clients’ remote calls
to some of the management routines. When a client calls one of these
routines (for example, rpc_mgmt_stop_server_listening()) in order to
perform some task on that server, the server’s installed routine is
automatically called first by the RPC runtime. The routine receives a copy
of the calling client’s binding, and an argument identifying the management
call attempted. The server can now decide what to do with the attempt:
returning TRUE from the monitor routine allows the original call to
proceed, while returning FALSE causes an error to be returned to the calling
client.

1.5.14.2 Server Termination

If (or when) the server terminates execution, it should unregister and
unexport any information it previously caused to be placed in the
namespace or its host’s endpoint mapper. This will prevent future
prospective clients from being misled into attempting to reach the server
when it does not exist, and also will help to conserve resources in the
namespace and the local endpoint database. Note that this namespace
housekeeping should be performed in addition to whatever other
application-specific cleanup may be required before termination. ’

Executing the following series of routines will properly clean up after an
application that exported partial bindings in the normal fashion. The first
call is

rpc_ns_binding unexport (entry_name_syntax, entry_name,
if_handles, obj_uuid_vector, &status);
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This routine removes from the specified namespace entry the server’s
previously exported binding handles.

rpc_ep_unregister (if_handle, binding vector, obj_uuid_wvector,
&status) ;

This routine unregisters the server’s address information from the local
endpoint mapper’s database.

rpc_server_unregister if (if_handle, mgr_type uuid, &status);

This routine unregisters from the RPC runtime the (previously registered)
association between the if handle and the server’s manager EPV. If more
than one manager EPV was registered for the server, this routine can be used
to unregister one or all of them.

1.5.15 Step B10/Server: Register the Binding Information with the
Endpoint Mapper

The server makes the RPC library routine call

rpc_ep_register (if_handle, binding_vector, obj_uuid vector,
annotation, &status);

to register the (dynamically allocated) endpoints that were returned in the
binding handles it just acquired. If the server uses well-known endpoints, it
does not have to call this routine. However, it does no harm to do so, since
prospective clients that happen to possess only a partial binding will not
necessarily be able to reach the server otherwise.
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1.5.15.1 The Purpose of Registering Endpoints

The purpose of registering endpoints together with object UUIDs is to
account for all possible incoming object UUIDs (that is, object UUIDs that
could appear in incoming partial bindings arriving at the endpoint mapper),
and to associate with each of them one of the server’s allocated endpoints.
Then the endpoint mapper can simply look up the object UUID, find an
endpoint, insert it into the binding, and send the RPC on to its destination.

The server has received (in its binding handles) a certain number of
endpoints dynamically allocated on its host machine. However, prospective
clients who import this binding information from the namespace will start
out with partial bindings when they first try to contact their server, and the
partial binding will get them only as far as the server’s host’s endpoint
mapper daemon, rped. The purpose of rpc_ep_register() is to let the
endpoint mapper know what endpoints belong to the server so that it can fill
in the partial bindings as they arrive and route the incoming remote calls on
their proper ways. Subsequent remote calls executed with the same bindings
will go straight to the server, since the bindings are now complete.

An incoming RPC always has an interface UUID associated with it;
therefore, if a server registers all of its endpoints with the interface it is
offering, this will usually be sufficient for the endpoint mapper to send the
incoming requests to one of the servers that offer the desired interface, even
if there is more than one such server active on the machine. However, if the
application is designed in such a way that the binding operation should not
be generalized to the interface but must be made more specific (in other
words, this server’s clients should always bind to this server and no other,
even if some other server happens to offer the same interface), then object
UUIDs must be used to accomplish this.

Of course, the server’s interface UUID must also be included in each object
UUID/endpoint mapping, since no RPC will pass the endpoint mapper if it
does not have a matching interface UUID for its destination server.
Therefore, the endpoint mapper takes either two or three types of item to be
registered, namely

* Interface UUID
« Endpoints

or
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o Interface UUID
o Endpoints
¢ Object UUIDs

It then generates a cross-product table of all possible combinations of all
values of the items. This allows it to find a good endpoint for every possible
valid object UUID/interface UUID combination.

1.5.15.2 Summary

The endpoint mapper is the first point of decision for an incoming RPC with
a partial binding. The mapper makes its decision solely on the basis of the
contents of its endpoint map. The object/type and manager EPV
registrations that were done in Steps B2 and B3 have no effect on the
endpoint mapper. Only after a client request arrives at the server does the
server’s runtime routines vector the request among multiple managers, if
type managers have been registered by the server. The endpoint mapper
knows nothing about registered object types. (See Step B35, Section 1.5.10,
for a further explanation of the role of the endpoint mapper in the binding
process.)

Note that the call

rpc_ep_register_no_replace(if_handle, binding_vector,
obj_uuid_vector, annotation,
&status) ;

is used (instead of rpc_ep_register()) if multiple instances of the same
server will be running on the same host. In other words, calling
rpc_ep_register_no_replace() a second time with the same interface
UUID, object UUID, and protocol sequence will not replace the earlier
entries in the endpoint map, but merely add new ones. Obviously, different
binding vectors should be passed in the different calls.
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1.5.16 Step B11/Server: Export the Binding Information to the

Namespace (CDS)

The server makes the RPC library call

rpc_ns_binding_export (entry_name_syntax, entry_ name,
if_handle, binding vector,
obj_uuid_vector, &status);

to export the allocated binding handles to the namespace. In the usual case,
where the server’s endpoints have been dynamically allocated to it, the
endpoint information will not be included in the exported handles. Instead,
this information will be filled in by the host’s endpoint mapper as the
partially bound handles arrive at the host in incoming RPCs (see Step B10,
Section 1.5.15). However, if the endpoints are well-known, they will be
included in the exported binding handles, and clients will thus import fully
bound handles.

It is recommended that only one binding handle/object UUID pair be
exported to each namespace entry, even though it is possible to export more
than one of each per entry. Doing this will ensure that there is a strict
determinable mapping from each name entry to each bound-to object.

A client must have a binding handle in order to reach a server, but it does
not have to get the handle from the name service. See Step B5 (Section
1.5.10) for an explanation of the use of string bindings.

1.5.17 Step B12/Server: Listen for 1nc0ming Service Requests

1-42

The server calls the RPC library routine
rpc_server_listen(max_calls exec, &status);

in order to do the following:

e Specify the maximum number of concurrent remote procedure calls to
execute
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» Begin listening for incoming calls

This call normally begins a ‘‘semi-infinite’’ loop, execution of which is
terminated only by one of the following events:

e One of the server’s manager routines calls
rpc_mgmt_stop_server_listening().

e One of the server's clients makes a remote «call to
rpc_mgmt_stop_server_listening(). (Note that the server can intercept
such a remote call and either allow or prevent it by installing a
rpc_mgmt_set_authorization_fn()).

e A signal or exception.
(See also Step B9, Section 1.5.14.)

1.5.18 Step C1/Client: Import the Binding Information from the
Namespace (CDS)

The first important thing that the client does is to acquire a binding to the
server it wants to request services from. From the client’s point of view,
there are several binding choices to be made.

The first choice is in regard to the binding method to be used; however, this
is determined and implemented in Step A4 (Section 1.5.4) as part of the
development coding process (the .acf file). The binding method chosen has
an effect both on what the client has to do in the present step to acquire
bindings, and subsequently on what it must do to maintain them. In this
step, it will be assumed that either the explicit or implicit method was
chosen. If auto-binding were chosen, there would be no need for a
discussion, since the client would then have nothing to do.
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1.5.18.1 Getting a Handle

The second choice involves how to get a binding handle. Again, this is a
choice that is at least partially dependent on things that have already
occurred. The client can always generate a binding handle for itself; the
problem is where to get the information that belongs in it. There are two
general solutions:

o The client imports from the namespace binding handles that already
contain the necessary information, or

o The client receives the information in string form from user input, from
a file, from another server, or from any other source. It then converts the
string into a binding by calling rpc_binding_from_string_binding().

The normal way for a server to make its location known to clients is to
export its binding information into the namespace. The client can then call
the RPC name service library routines

rpc_ns_binding_import_begin(entry_name syntax, entry name,
if_handle, obj_uuid, &import__
context, &status);

rpc_ns_binding_import_next (import_context, &binding_ handle,
&status) ;

rpc_ns_binding import_done (import_context, &status);

to import one or more bindings from the specified namespace entry. The
name service sees to it that only compatible bindings exported under the
specified interface, with the optionally specified object UUID, will be
returned to the client. (Note that the interface specification is not contained
in the binding, although it is exported to the namespace entry where it is
used by the name service for matching entries to prospective importers.) The
object UUID specified by obj uuid is contained in the binding, if it is
present. This is the object UUID that was (optionally) registered under a
type UUID in Step B2 (Section 1.5.7). Even if obj uuid is not specified in
the import call, it will be returned in the binding handle(s) if it was exported
by the server in Step B11 (Section 1.5.16).
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1.5.18.2 Entry Name

To determine how the client knows the entry name to import from, use the
simplest and most flexible mechanism: have the user type it in on the
command line. This is the method used by the timop client (see
timop_client.c in Section 3.2.6.5).

1.5.18.3 Binding Compatibility

The protocol sequence used must be supported by both the RPC runtime and
the operating system on the client’s machine. However, the RPC runtime
implicitly takes care of binding compatibility when it returns bindings to
importing clients; only compatible bindings are returned.

The routines rpc_network_inq_protseqs() and
rpc_network_is_protseq_valid() can be used to return all supported
protocol sequences and to determine whether a specified protocol is
supported, respectively.

To find what protocol sequence is used in a binding handle, make the
following series of calls:

rpc_binding to_string binding(binding handle, &string binding,
&status) ;

rpc_string binding_parse(string_binding, NULL, &protseq, NULL,
NULL, NULL, &status);

Now all you have to do is compare strings.

Note that in timop the client’s compatible protocol is hardcoded into the
program. The  server  generates its  bindings  with  the
rpc_server_use_all_protseqs() call so that, on its side, there is no need for
any further testing.
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1.5.19 Step C2/Client: Annotate the Binding Handle for Security
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Now that the client has a binding, it is almost ready to begin RPC
operations. One last preliminary task remains; namely, to specify various
security-related parameters to the RPC runtime, which will govern the
(security) conduct of the ensuing client/server relationship. If the client does
not require authentication, it can skip this step completely. The result will
be that no authentication will take place between the client and server. It
will then be up to the server to decide how far to go with an unauthenticated
client (see Step D4, Section 1.5.24).

1.5.19.1 Preparation

What the client usually really wants to do here is call the routine
rpc_binding_set_auth_info() in order to specify all the necessary security
parameters. However, when it does this, it should be able to specify its
server’s principal name so that the server it binds to can be authenticated o
the client. (The server’s principal name is the name by which the server is
known to the Security Service.) The client must also supply a handle to its
own login context when it calls rpc_binding_set_auth_info().

There are several ways to determine the server’s principal name:

o The server’s principal name could be hardcoded in the client. This is not
recommended practice for reasons of robustness and flexibility.

o The client can be handed the name as input from the command line
when it is invoked.

» The name can be stored in the namespace.

o The principal name can be the same as the name entry (binding
information) name.

o The client can query the server’s principal name by calling
rpc_mgmt_inq_princ_name(). It can then check group membership by
calling sec_rgy_pgo_is_member().

The reason for checking group membership has to do with authorization-
related decisions that the client may need to consider. It is not necessarily
enough to know that a server has a certain identity; it may also be necessary
that it belong to a certain group in order for it to be fully authorized, from
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the client’s point of view, to receive the data that the client will send. In
other words, the client may need to make a decision about the server similar
in nature to that which the server makes about the client in Step D4 (Section
1.5.24), when it checks the client’s authorization, via ACLs, to do the things
it wants to do. Security can be just as important for the client as for the
server; this is the justification for having to make the extra calls described
here.

Getting the client’s login context is done with the following Security
Service library routine:

sec_login_get_current_context (login_context, &status):

, However, this is not usually necessary. The client can, by passing a NULL
value to rpc_binding_set_auth_info() (see Section 1.5.19.2), simply use its
default login context.

In any case, note that this login context already exists; the client merely
retrieves it. (The client inherited its login context from the user principal
who executed it.) The client can now set up for authenticated RPC.

1.5.19.2 Setting Up for Authenticated RPC

The client makes the following call in order to set up the security
characteristics of the communications it is about to enter into with the
server:

rpc_binding set_auth_info (binding handle, server princ_name,
protect_level, authn_svc,
login_context, authz_svc, &status);

The security parameters specified here include protect level for level of
protection performed (for éxample, authenticate only at the beginning of
each RPC, or authenticate everything received by the server), authn_svc for
the authentication service (no authentication at all can be specified here),
and authz_svc for the type of client authorization information that will be
supplied to the server (see Steps D2 to D4, Sections 1.5.22 to 1.5.24 for
more details).
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The usual practice is to pass NULL for login_context here, and thus use the
default context.

Note that it is the client who chooses whether or not to use authenticated
RPC, as well as the level of authentication, and how much authorization
information about itself to send. It is then up to the server to accept this
arrangement or reject it, or to allow some limited operation with the client,
or whatever else it might decide. The server decides which authentication to
use (in Step B7, Section 1.5.12). The client also specifies an authentication
service (in authn_svc), but if this differs from what the server specified, the
call to rpc_binding_set_auth_info() will fail and an error will be returned
to the client.

There is an important difference between the rationales of authentication
and authorization. Authentication is performed by the RPC runtime and is
only indirectly felt by client and server; authorization, however, is for the
most part implemented explicitly in the server code if it is implemented at
all. This difference is the reason for the larger number of authentication-
related arguments that have to be specified in this step. More about this
subject can be found in Steps D2 to D4 (Sections 1.5.22 to 1.5.24), where the
transactions are seen from the server’s point of view.

For further information about authenticated RPC, see Chapters 13 and 42.
Chapter 2 contains sections on server key management, which is part of the
authenticated RPC mechanism, and on the practical details involved in
writing an ACL manager.

1.5.20 Step C3/Client: Invoke an RPC Interface Operation
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This step is the culmination of all the foregoing steps; here the client makes
its first remote call to the server. This call, which will obviously be
application specific (its definition was specified in the application’s .idl file
in Step A3 (Section 1.5.3), and possibly modified by the .acf file written in
Step A4 (Section 1.5.4)), will look something like the following:

my_rpc_op (binding handle, argl, arg2, arg3);
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Note that the presence of the binding handle as a parameter means that
explicit binding handles are being used (again, a Step A4 decision).

Note also that after all the preceding talk about interfaces, no interface
handle appears in the parameter list. The RPC runtime takes care internally
of making sure that the interface offered by the server exactly matches what
the client expects. The my_rpc_op() routine was (or should have been)
defined as part of the application’s interface back in Step A3. When the
client calls my_rpec_op() in the present step, the client stub code (which,
was generated during the IDL compilation step) will include the correct
UUID for the interface the routine is associated with in the data sent out on
the network. The RPC runtime uses the interface specification included with
each RPC as a “‘fingerprint’’ to ensure that the operation being requested of
a server is in fact implemented by that server. This ensures that interface
compatibility is never dependent on the vagaries of application code.

1.5.20.1 The Possibility of Binding Failure

Perhaps the most important thing to mention about this step is that it may
not at first succeed. Remember that the client imported a partial binding to
the server. Completion of the binding, and therefore of the remote call,
depends on the endpoint mapper’s being able to successfully complete the
incoming binding with a good endpoint for either the specified server (if one
is specified) or for one of its own choosing. This in turn depends on the up-
to-dateness of the host’s endpoint database, and that depends on such things
as other servers’ being conscientious about unregistering themselves when
terminating, and so on. Even the target host specified may not be valid when
the call is made because of any one of the various network problems that
can occur.

In other words, the client should regard an unused binding not as a firm
promise that comes directly from the server, but rather as a well-meant
expression of intent passed on by the name service and based on
circumstances not entirely under anyone’s control. This is the reason for the
series of binding import calls described in Step C1 (Section 1.5.18).
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The prudent thing for a client to do after importing a binding is, therefore, to
assume that it will have to perform one or more times a series of steps
something like the contents of the following loop:

1. Annotate the binding handle for security.
2. Try it out: attempt a remote call with it.

3. Ifthe call succeeds, discard the binding import context and proceed to
step 5 in this loop.

4. Otherwise, if the call fails, import the next binding and return to step
1 in this loop.

5. Proceed with remote operations until finished.

If all imported bindings happen to fail, this could be because the client’s
cache of bindings has become stale. The client could then try calling
rpc_ns_mgmt_handle_set_exp_age() with a low time-out value, and then
retry the above loop. A last resort could be to allow the user to type in a
string binding.

Note that if you are using the auto-binding method and the binding becomes
unusable for some reason, the RPC runtime will rebind under most
conditions.

1.5.20.2 The Result of Successful Binding

If my_rpc_op() or its equivalent does succeed, the binding will as a result
be complete (even if it was partial before), and the information in it can be
regarded with much more assurance from then on. Subsequent remote
procedure calls by the client to the same server will go straight to the
bound-to server.
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1.5.21 Step D1/Server: Wake Up in Manager Routine

As explained in Step B4 (Section 1.5.9), server threads are automatically
spawned by the RPC runtime in the server manager to handle incoming
remote procedure calls from clients. The number of calls that can be
concurrently handled depends on the value of the max_calls_exec parameter
specified in the call to rpc_server_listen() (see Step B4, Section 1.5.9). The
thread is created by the RPC runtime and begins execution in the operation
requested. When the operation is completed, the thread is automatically
terminated (by the RPC runtime).

For further details on server multithreading, see Step B4 and Section 2.2.
See also Part 2 of this guide and the OSF DCE Application Development
Reference for a comprehensive discussion of DCE Threads.

1.5.22 Step D2/Server: Get the Client’s PAC

As mentioned in the previous step, authentication, if it was specified by the
client, has already occurred if the client’s request is received by the server
manager. If the client fails to authenticate itself to the server runtime, its
remote procedure call fails.

Authentication, if specified by the client and offered by the server, is
performed by the RPC runtime; it is not a responsibility of the application
code. However, it is up to the application to formulate its own security
policy with regard to the client, based on the following:

e The level at which the client has been authenticated.

e The client’s authorization; that is, whether the client should be allowed
to access resources it may request.

In order to find out the client’s authentication and authorization information,
the server calls the following RPC library routine:

rpc_binding_ing auth_client (binding handle, privileges,
server_princ_name, protect_level,
authn_svc, authz_svc, &status);
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The parameters in this call are analogous to the similarly named parameters
in the registration routines called in Step C2 (Section 1.5.19). The server can
learn what level of authentication, what authentication service, and what
server principal name the client specified. Of most interest, however, are the
privileges and authz_svc parameters.

The privileges parameter is a pointer to whatever information the client is
willing to let the server know about its privilege attributes; authz_svc tells
what this information is. It could be any one of the following:

o The client’s Privilege Attribute Certificate (PAC), containing the client’s
principal and group UUIDs. These can be used to look up the client’s
privilege attributes in Access Control Lists, whose entries are keyed by
principal and group UUID.

o The client’s principal name (a string). This also can be used to look
through Access Control Lists, provided that the lists have been
annotated with such name strings.

o Nothing. The client chooses not to provide any authorization
information.

From now on, it is the server’s decision, as implemented by the developer,
how to respond to the client’s requests for services and resources, depending
on the security information the server has learned about it. A non-ACL-
based strategy may be implemented using the client’s principal name string
for lookups. The ACL-based strategy, which is supported by a DCE
interface, is described further in the next step.

1.5.23 Step D3/Server: Get the Object’s ACL
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This step is reached if the client requests access to any object, resource, or
service that is managed by the server, to which ACLs are attached. As
previously mentioned, the application must implement its own ACL
manager if it wants to use ACLs to control access to its resources. For
further details on how to go about creating an ACL manager, see Section
24.

In order to allow applications to as easily as possible offer an ACL interface
that is uniform with that used by the DCE components themselves, the
remote ACL interface has been built into the DCE library, and client
applications can perform operations on ACLs through another interface, also
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part of the DCE library, which calls through the remote interface to the
appropriate manager. The remote interface, consisting of rdael_...() calls,
must be implemented by the server application; clients execute the local
sec_acl_...() routines, which are linked to every DCE application as part of
libdce.

For the client, all that is necessary is to possess a binding to the object
whose ACL is to be operated on. As long as the application exposes the
resources it manages as accessible objects (via the namespace), then the
DCE ACL interface provides for a client’s being able to bind to the object
by calling sec_acl_bind(). (In fact, this kind of object-oriented binding
model can be very useful, and is discussed in further detail in Chapter 2.)
Note that the sec_acl_...() routines use an ‘‘ACL handle’’ to specify the
object whose ACL is to be accessed, so sec_acl_bind() must always be
called to obtain this handle, even if the client is already bound to the
object’s server.

There is also a user interface into the ACL operations, embodied in the
acl_edit command. At the server level, definitions for a local internal
management interface, consisting of sec_acl_mgr_...() calls, are given in
the Security Service section of the OSF DCE Application Development
Reference, which also contains reference pages for the other two ACL
interfaces. This suggested interface is based on one used internally by the
Security Service itself. (See the OSF DCE User’s Guide and Reference for
further information on acl_edit.)

1.5.24 Step D4/Server: Make the Authorization Decision

In this step, the server’s ACL manager inspects the ACL of the resource or
object under question, determines whether the client is authorized for the
requested access, and takes the appropriate action. The algorithm used to do
all this is application dependent.

The application may choose to implement more than one type of ACL
(reflecting the different kinds of objects and resources to be protected), thus
resulting in several ‘‘type managers.”” For more information on this
possibility, see Section 2.4 in Chapter 2.
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Although it is up to the application to implement its own ACL storage,
testing algorithms and manager types, there are certain DCE-wide design
conventions that should be kept in mind and departed from only for good
reason. Among these are the following:

o Standard DCE ACL entry types: the kinds of entry that can occur in an
Access Control List (for example, user, group, and so on).

o Standard privilege attributes: the kinds of access that a principal can
have to a protected object (for example, read, write, and so on).

o Standard inheritance rules: these rules govern the default characteristics
of ACLs created for newly created objects.

« Standard access algorithm: the order in which the contents of a Privilege
Attribute Certificate are matched against the various possible entry

types.
Information about these topics for application developers designing their

own ACL model can be found in the OSF DCE User’s Guide and Reference,
where all the DCE authorization conventions are described in detail.

1.5.25 Step D5/Server: Service the Request
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If the client’s request is determined to be properly authorized, then the
requested operation can proceed.

Note that this step and Steps D3 and D4 are somewhat intertwined.
Something like the following could occur:

1. The server wakes up in some routine defined in its manager code. For
example, if the client executed the call my_rpc_op() (see Step C3,
Section 1.5.20), then the server will wake up in the routine that
implements this remote call.

2. Execution of the my_rpc_op() routine requires the insert privilege
for the application’s database my_database. So my_rpc_op() begins
by checking the client’s relevant privilege attribute by making an
internal call to the application’s ACL manager.
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3. If the client is found to have the requisite privilege, my_rpc_op()
proceeds.

Obviously, other dispatching schemes are possible.

The remote procedure executed in this step is written by the application
developer.

1.5.26 Step D6/Server: Return the Results to the Client

At the completion of the operation, the RPC thread that was automatically
spawned to execute it is terminated by the RPC runtime. As far as the server
is concerned, it is still blocking on the call to rpc_server_listen() which
was made back in Step B4 (Section 1.5.9). If max_calls_exec was specified
to be greater than 1 in that call, other threads may still be executing at this
time in response to other requests that have been received from other
clients. In any case, the call to rpc_server_listen() will not return until one
of the server’s own management routines, or a client, makes a successful
call to rpc_mgmt_stop_server_listening(). If this happens, the RPC
runtime will stop accepting incoming client requests to the server. When all
the currently executing operations have been completed, the call to
rpc_server_listen() will return.

The other way that execution can be thrown out of the rpc_server_listen()
call is as a result of a signal or exception. For more about this possibility,
see Step B9 (Section 1.5.14).

1.5.27 Step D7/Server: Continue the Listen Loop

From the server’s point of view, the result of completing the remotely called
routine is that it reenters the ‘‘listen’’ loop it entered in Step B12 (Section
1.5.17), waiting for further remote calls. The server’s runtime handles all the
communications details of actually sending any requested data to the client.
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1.5.28 Step E1/Client: Wake Up After the RPC Call

From the client’s point of view, the server’s return at the end of its remotely
called routine results in the client’s returning from a seemingly locally
executed routine.

1.5.29 Step E2/Client: Continue
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The client now goes on about its business, which may include performing
other remote procedure calls.

Note that there is no housekeeping burden placed on the client with regard
to the termination of the relationship with a server. However, a long-lived
client might want to make use of the rpc_binding free() or
rpc_binding_vector_free() routines to free memory that was allocated for
no-longer-used handles. The client could also call
rpc_ns_binding_import_done() to clean up the resources used by the NSI
routines. If another binding handle will be needed later on, then
rpe_ns_binding_import_begin() will be recalled.
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Chapter 2

Guidelines for Server Writers

This chapter consists of detailed discussions of some of the fundamental
DCE services. Use of a DCE service or facility usually has two aspects,
depending on whether you consider it from the point of view of a server or
of a client. The server-side details are usually more numerous and more
complex, and sometimes the client-side aspect disappears entirely.
However, there are client-side implications in all of the discussions in this
chapter.

2.1 Using the Name Service Interface

Correct use of the DCE RPC Name Service Interface (NSI) is essential to
the operation of a distributed application, since NSI is the medium through
which the application’s distributed parts must find each other. NSI works
with named database entries which are hierarchically organized into
subdirectories and referenced by the familiar pathname convention.
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2.1.1 Introduction to Using NSI

It is important to remember that names and objects are separate things in
DCE. Consider, for example, these two DCE names:

/.../tinseltown.org/dce/printers/macmillan
/.../tinseltown.org/dce/employees/goethe

These strings are not filenames or file directory names; if you attempt to
execute the Is command on them, you will only get an error message. They
are pathnames that identify entries in the DCE Directory Service, which is
DCE’s database for storing distributed information. This database is often
informally referred to as ‘‘the namespace.”’

The most important type of distributed information stored in the namespace
is information that enables RPC clients to rendezvous with RPC servers; it
is called ‘‘binding information.”” The Directory Service can be used to hold
other kinds of data too, but the main subject of the following discussions
will be its use as a binding repository.

The set of binding name entries is like a huge data structure of pointers from
object names to object locations, and the Directory Service is used mostly as
a public DCE locational database, enabling servers to advertise themselves
and the objects and resources that they manage, and clients in turn to find
and access them. You should never confuse objects with their names; the
two are separate things. In particular, the directory service data associated
with a name is held in one place (namely, the directory server’s database),
while the data associated with the object named is held in other place
(namely, the object server’s database).

How then, you may ask, are filenames represented in DCE? Here are two
examples of remote filenames:

[.../tinseltown.org/fs/doc/jones/app.gd/chap2.ps
/.../tinseltown.org/fs/doc/tolstoy/movels/war_and_peace/chap2.ps
As you may have guessed, these too are namespace entries, but the entries in

this case refer to remote files, and the entry name as a whole is the remote
filename.
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What makes these names different from the other two names given earlier is
their third element

fs/

which identifies a ‘‘junction’” from the DCE Directory Service’s namespace
into the DCE Distributed File Service’s own, separately maintained,
namespace. How junctions work is explained in Section 2.1.3. However, the
essence of the matter is that /../tinseltown.org/fs is the DFS file server’s
DCE namespace entry, and any attempt by a file service client to access a
file object whose name begins with /.../tinseltown.org/fs will implicitly bind
to this server, which will then be responsible for finding, in its own
namespace, the file object referred to by doc/jones/app.gd/chap2.ps or
doc/tolstoy/novels/war_and_peace/chap2.ps, and performing the requested
operations on it.

2.1.1.1 The UUID

Thus, it is a mistake to suppose that a name is identical to an object. The
name merely points in the direction of the object it names. Objects do,
however, have identifiers. These are the 128-bit Universal Unique Identifier
(UUID) data structures, which are the identities that the DCE components
recognize. They are not usually seen by users, although they play a part in
the object-finding process.

UUIDs are used within DCE to identify all sorts of things. From the
standpoint of the application programmer, they have two main uses: to
identify objects and to identify interfaces.

2.1.1.2 Object UUIDs

Although ‘‘object’” is necessarily a rather vague term, a reasonable
definition would be the following: an object is any DCE entity that can be
accessed by a client, and which can be represented by a namespace entry
and identified therein by a UUID. This category can include servers,
devices, and other resources. UUIDs that are used in this way are called
“‘object UUIDs”’ in order to distinguish them from the other main use of

OSF DCE Application Development Guide 2-3



Overview of DCE Application Development

UUIDs, namely to identify interfaces (‘‘interface UUIDs’’). The difference
between these two uses consists only in the way the UUIDs are interpreted
by the name service and RPC runtime. Note that it follows from this
discussion that an interface is usually #ot an object. Clients do not normally
access an interface as such; the interface is rather a description of the rules
of access.

As far as the DCE RPC and name service mechanisms are concerned, it is
enough if a client is brought into contact with some server, as long as that
server offers the service the client is looking for; in other words, as long as
the server offers the interface the client wants to use. To accomplish this
rendezvous, interface UUIDs are sufficient. They are also mandatory. There
cannot be a client/server relationship without an interface, and the entire
RPC runtime mechanism is dependent on the concept of interfaces.

Object UUIDs are different. The RPC runtime usually does not care if they
are present or not. But if they are present, they activate various runtime
mechanisms that allow clients and servers to be much more specific (always
within the bounds of a given interface) about what servers are bound to,
and/or what resources the servers will use to fulfill the clients’ requests.
How this works is explained later in this chapter.

2.1.1.3 Interface UUIDs

Every IDL-compiled interface specification has its own UUID associated
with it, and the IDL-generated stub routines include this interface UUID
with every operation request or return sent over the network by clients and
servers. In this way receiving stubs ensure that they and the sending stubs
are sharing exactly the same interface. If the interface UUIDs are different,
or are not present, then the remote call will not be completed. But interface
UUIDs, although they are required, play only a secondary role in a client’s
finding the interface (that is, finding a server that offers the interface); the
main tool for this is NSI, which makes use of the DCE Directory Service, as
explained later on in this part of the chapter.
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2.1.1.4 Summary: Names and UUIDs

Both names and UUIDs identify objects. But names are separable from the
objects they identify, and are only as trustworthy as the binding information
their entries contain. UUIDs, on the other hand, are inalienable identifiers.
Once the desired binding information for an interface or an interface/object
combination has been found and used, the name that was used to retrieve it
can be forgotten; it is of no further use. This is not true of either interface or
object UUIDs.

Note that names become completely unnecessary only if clients have some
other means of obtaining valid binding information for the desired service,
such as string bindings. (See Step B3, Section 1.5.10 in Chapter 1, for more
information.)

Figure 2-1 illustrates how the information a client finds through a name is
turned into network contact with the object named.

Figure 2-1. How a Name Turns into an Object
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2.1.2 Binding to an Object

The difference between, for example, reading a local file on a single
machine and performing the same read on a remote file in DCE is like the
difference between reading information from a phone book yourself and
dialing an operator for the same information. The remote operation requires
the addition of another active entity that can be requested to perform it,
since you cannot. Associated with every piece of remote data available on a
network is a remote server to manage that data and make it available. The
user may not see the server; even the client may be unaware of it, but it is
there.

The DCE documentation often speaks of ‘‘binding to an object.”’ In reality,
clients can bind only to servers, which then may be requested to perform
operations on objects that are under their management. However, it is
possible for a server to put bindings into namespace entries that are named
for the objects that it manages. Furthermore, these exported bindings can be
tagged with object UUIDs in such a way that incoming remote calls from
clients can be applied by the server to the object whose name entry the
binding was read from (the details of this technique are described later in
this chapter). When an application uses this kind of binding model, it is
reasonable to say that the client is logically bound to the object, although it
is physically always bound to the server that manages the object.

2.1.3 Junctions

Namespace junctions are another example of the ‘‘hidden server’ effect.
The following remote filename was discussed earlier:

[../tinseltown.org/fs/doc/jones/app.gd/chap2.ps
and there it was explained that
doc/joneslapp.gd/chapZ.ps

is an entry in DCE DFS’s own namespace, while

/../tinseltown.org/fs
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is a DCE namespace entry. Suppose a user enters the following:
Is -1 /.../tinseltown.org/fs/doc/jones/app.gd

The clerk agent program (called as a result of the user’s entering Is) will
bind to the remote file server via its /.../tinseltown.org/fs DCE namespace
entry, and pass to it the residual DFS entry name doc/jones/app.gd, along
with other parameters. The Is command behaves this way because the
underlying (VFS+ layer) system calls are coded that way. The DFS server
then performs the request (note that the details of interaction within DFS are
somewhat more complex than implied by this description). The user only
types the command line; the rest is done by DCE, and a directory listing
appears on the user’s screen.

Because the VFS+ system routines, which are used by all possible clients of
DFS services (for example, commands like Is and rm, library routines like
fopen() and fclose()), know about the remote file server at
/.../tinseltown.org/fs and bind to it correctly, the transition from the DCE to
the DFS namespace is completely transparent to users. And this is how
junctions work. As long as all possible clients behave correctly with a name
that includes a junction, the junction will not be perceptible to the clients’
users.

2.1.3.1 A Junction Example

Figure 2-2 illustrates the principle of junctions. A junction server, which is
reached normally through binding information in the DCE namespace,
maintains its own namespace of named objects. The junction server’s clients
allow users to refer to these objects by actually concatenating the server’s
entry name and an object’s ‘‘internal’’ name. The client then in effect
breaks this string apart by contacting the server named in the first part of the
string, and passing to it the second part, which is a valid name within the
server’s namespace. The client’s user seems to access the object directly.
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Figure 2-2. A Namespace Junction
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The dashed lines in Figure 2-2 show the progress of the Client’s efforts to
get access to the desired Object, which involves acquiring a binding to the
Junction Server, making contact with it, and passing to it the Object’s
Name. The solid line shows the apparent direct access to the Object that the
Client’s user seems to enjoy. The dotted lines show other possible paths of
access to the other Objects that the Server manages.

Junction protocol is generally a private matter between an application’s
clients and servers. However, the acl_edit command uses a generalized
protocol.

2.1.3.2 Junctions and the ACL Editor

The binding routines that acl_edit uses are discriminating enough to detect
a junction anywhere in an entry name that is passed to it. This allows a
distributed application to have its own namespace for objects with ACLs on
them, rather than burdening the DCE namespace by separately exporting
binding information for every one of these objects. The separate objects
have to be made publicly accessible somehow because entities should be
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able to access ACLs directly, regardless of whether they happen to already
be in contact with the server that manages the ACL’ed object, and indeed
regardless of whether or not they happen to be a client of the particular
server to which the objects belong.

Suppose, for example, a user enters
acl_edit /.../tinseltown.org/dce/dce_print/cotta

in order to interactively edit the ACL for the printer object cotta, where
/.../tinseltown.org/dce/dce_print is the namespace entry for a print server,
and there is no /../tinseltown.org/dce/dce_print/cotta entry in the DCE
namespace. The binding routine, sec_acl_bind(), which is called internally
by acl_edit, receives an error when it tries to bind to the object cotta.
However, the DCE Directory Service also tells it how much of the name it
passed is valid. The sec_acl_bind() routine then retries the binding
operation, this time through  the valid  entry name
(/.../tinseltown.org/dce/dce_print), and passes the residual part of the name
(cotta) as a parameter. Now it is up to the application ACL manager to
interpret the residual name correctly and find the requested ACL.

2.1.4 Name Service Terminology

As was mentioned at the beginning of Chapter 1, DCE RPC NSI is an RPC-
based interface that uses the DCE Cell Directory Service (CDS) as its
database. The NSI routines do not constitute a general interface into CDS as
such; they are a set of specialized routines whose purpose is simply to
provide ways for RPC servers to advertise themselves to RPC clients, and
for clients to find and bind to them.

In fact there is no public general API (Application Programming Interface)
to CDS. There is a general CDS interface that is used internally by the DCE
components, but applications normally access CDS through NSI.
Applications can get full access to CDS, if necessary, by using the XDS
interface. For further information on this possibility, see Section 2.1.4.2
later in this chapter, and Parts 4A and 4B of this guide. See also the
discussion of Directory Service interfaces in Chapter 3 of the Introduction
to OSF DCE.
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2.1.4.1 CDS Entries

NSI uses a subset of the many possible kinds of CDS entry in order to
accomplish its tasks. CDS entries are characterized by the CDS attributes
they have; each entry can have one or more such attributes. Each separate
attribute defines that entry’s ability to contain one or more items of a
particular kind of simple or complex information. Section 2.1.4.2 discusses
CDS attributes in more detail.

The name service creates and uses CDS entries that use only the following

four attributes:

¢ binding

¢ object

e group

e profile

The entry has a field that can contain one or more sets of
binding information. When the field is read, a binding
handle that contains the necessary information from one of
these sets is returned, in no particular order.

The entry has a field that can contain one or more object
UUIDs. When the field is read, one of the UUIDs is
returned, in no particular order.

The entry has a field that can contain a pool of one or more
references to other (independently existing) NSI entries;
each time the field is read, one of these entries is returned.
Different entries are returned on successive reads, but the
order of return is undefined. Note that the ‘‘other NSI
entries’’ referred to in the group can themselves be server or
group entries. As a result, the act of reading from a group
attribute can, depending on the actual API routine called,
lead to a series of nested operations. Any nesting is
transparent to the client application, however, which seems
to perform a simple read and to receive the contents of a
single entry in return.

The entry has a field that can contain one or more
prioritized elements, each of which consists of a reference
to another (independently existing) NSI entry. When the
field is read, the elements are read in a specified order. The
entry referred to in the element may itself be a server or a
group or a profile. As a result, any element may in fact,
depending on the actual API routine called, resolve on
access to a nested path of referred-to entries. As with group
entries, this is transparent to the client application.
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Although a single entry could contain both group and profile attributes (and
for that matter, binding and object attributes as well), it is not a good idea to
mix attributes in this way because the results of importing (reading) from
such an entry are too indeterminate.

The typical name service entries are as follows:

e server entry Contains a binding and an object attribute, making it
suitable for containing the necessary binding
information for a single server.

e group entry Contains a group attribute.
e profile entry Contains a profile attribute.

There are no official names for hybrid entries that contain other
combinations of attributes, which is perhaps another reason for not creating
such entries.

The general name for entries that contain any of these attributes is ‘‘NSI
entries,”’ since they are a by-product and tool of the NSI DCE RPC library
routines.

2.1.4.2 CDS Entry Attributes

Within the DCE Directory Service, entry attributes such as the four
previously described attributes are identified by Object Identifiers (OIDs).
This is an exception to the general rule that things in DCE are identified by
UUID.

OIDs are not seen by applications that restrict themselves to using only the
name service routines (rpc_ns_...()), but these identifiers are important for
applications that use the X/Open Directory Services (XDS) interface to
create new attributes for use with namespace entries.

As was seen in the immediately preceding sections, the name service makes
use of only four different entry attributes in various application-specified or
administrator-specified combinations. CDS, however, contains definitions
for many more than these, and attributes from this supply of already existing
ones can be added by applications to NSI entries through the XDS interface.
Attributes that already exist are already properly identified, so applications
that use these attributes do not have to concern themselves with the OIDs,
except to the extent of making sure that they handle them properly.
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A further possibility is that an application requires new attributes for use
with namespace entries. Such attributes can be created using the XDS
interface. When it creates new attributes, the application is responsible for
tagging them with new, properly allocated OIDs.

Unlike UUIDs, OIDs are not generated by command or function call. They
originate from the International Standards Organization (ISO), which
allocates them in hierarchically organized blocks to recipients. Each
recipient (typically an organization of some kind) is then responsible for
ensuring that the OIDs it received are used uniquely.

For example, the OID
1.3.22.1.1.4

identifies the NSI profile entry attribute. This number was assigned by the
Open Software Foundation out of a block of numbers, beginning with the
digits 1.3 .22, which was allocated to it by ISO, and OSF is responsible for
making sure that 1.3.22.1.1.4 is not used to identify any other attribute.

When applications have occasion to handle OIDs, they do so directly, since
the numbers do not change and should not be reused. However, for users’
convenience, CDS also maintains a file (called
lopt/dcelocal/etc/cds_attributes) that lists string equivalents for all the
OIDs in use in a cell, in entries like the following one:

1.3.22.1.1.4 RPC_Profile byte

This allows users to see RPC_Profile in output, rather than the mysterious
1.3.22.1.1.4. Further details about the cds_attributes file and OIDs can
be found in the OSF DCE Administration Guide.

Broadly speaking, the procedure you should follow to create new attributes
on CDS entries consists therefore of three steps:

1. Request and receive, from your locally designated authority, OIDs for
the attributes you intend to create.

2. Update the cds_attributes file with the new attributes’ OIDs and
labels; that is, if you want your application to be able to use string
name representations for OIDs in output.

3. Using XDS, write the routines to create, add, and access the attributes.
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Non-NSI attributes on NSI entries can be very useful, even though you
cannot access the extra attributes through the name service routines but
must use XDS instead.

2.1.5 Binding

In order to highlight the essentials of name lookup and storage and the
management of binding information, many details of DCE RPC operation
are either greatly simplified in the following descriptions or omitted
altogether. Refer to Part 3 of this guide for the definitive explanations of the
mechanics of binding.

A binding is a package of information that describes how a client can
contact and communicate with a particular server. Although the underlying
protocol that implements the communication can be connectionless or
connection-oriented, the relationship itself is still expressed as a binding.

2.1.5.1 Importing and Exporting Bindings

The name service exists to store server binding information into the cell
namespace, and to retrieve that information for clients. Using NSI, servers
export their binding information to be stored under meaningful names, and
clients import these bindings by looking up those names. Thus, the
locations of the servers can change, but clients can continue to use the same
names to get bindings to the servers. Figure 2-3 shows how client and server
use the name service.
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Figure 2-3. Client and Server Use of the Name Service
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When a prospective client attempts to import binding information from a
namespace entry that it looks up by name, the binding is checked by NSI for
compatibility with the client. This is done by comparing interface UUIDs.
The client presents an interface UUID when it begins the binding import
operation; the UUID of the interface being offered is exported to the name
entry, but not in the binding handle itself, by the server. If these interface
UUIDs match, then the binding handle contained in the entry is considered
compatible by the RPC runtime and is returned to the client. If more than
one handle is contained in the entry (this is often the case), they are returned
one by one on successive imports. NSI also checks for protocol
compatibility.

The import routines will return only client-compatible bindings, but a client
can sift through the returned bindings and make its own choice as to which
ones to use, based on its own criteria. The technique by which this is done
consists of converting the bindings into string bindings, and then inspecting
(or comparing) the strings. (See Step C1, Section 1.5.18 in this guide.)

Note that binding handles do not include an interface UUID. Binding
handles do contain a host address, an endpoint, and an optional object
UUID, among other things. The interface UUID is associated with the
interface’s stub code, which inserts it into outgoing RPCs and checks it in
incoming ones, thus guaranteeing client/server operational compatibility.
This allows binding handles to be used very flexibly: once a client has
successfully bound to a server, it can utilize any of the interfaces that server
offers, simply by making the desired remote call.

OSF DCE Application Development Guide



Guidelines for Server Writers

2.1.5.2 Summary

The mapping from name to server that occurs when bindings are imported
from the namespace is indirect because binding is a two-step process: first
the binding handle is obtained by lookup from a named entry, and then the
handle is used to reach a server. The crucial point is that the imported
handle will not usually contain a complete binding to a specific server
(namely, the one that happened to export it). Completion of the partial
binding occurs later, when the client makes its first remote procedure call;
the RPC runtime uses UUIDs, not names, to determine how it should
complete a binding.

2.1.6 Partial Binding and the Endpoint Mapper

Binding handles imported by clients from the namespace normally contain
only partial binding information. The exported binding information is
sufficient to locate the RPC daemon on the server’s host (the machine the
server resides on), but it does not yet include a specific endpoint (UDP or
TCP port number) for the desired service on that host.

The reason for omitting dynamic endpoint information in exported binding
handles is to avoid unnecessary multiplication of accesses to the namespace.
Since dynamically generated endpoints are necessarily reassigned every
time a server starts up, entering them into the namespace (and thus forcing
CDS to propagate the new information throughout the various directory
replicas) would greatly increase namespace housekeeping chores.

Thus, the last step in the binding process is obtaining an endpoint. The step
is performed transparently as far as the client is concerned. It is
accomplished by the DCE RPC endpoint mapper daemon, rped, when the
client makes its first call to the partially bound-to server. The rpcd daemon
manages its own private database of server endpoints for the host on which
it is located. The endpoints are registered by the servers as part of their
startup routine.

The binding information that accompanies a prospective client’s first remote
procedure call takes that call to the well-known endpoint of rpcd on the
exporting server’s host machine. The endpoint mapper now takes over. It
looks up a valid endpoint for the requested service, copies it into the binding
handle, and transfers the call to that endpoint. Subsequent calls from the
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Figure 2-4.
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client, which now has a binding with one of the server’s endpoints, will
bypass the endpoint mapper.

The endpoint mapper picks an appropriate endpoint for an incoming partial
binding by matching interface UUIDs by default. Any endpoint that has
been registered under an interface UUID that matches the incoming
interface UUID, which identifies the interface requested by the prospective
client, is eligible for selection. This mapping process is called
“forwarding”” when it occurs with connectionless protocols, and
“‘mapping’’ when it occurs with connection-oriented protocols.

Figure 2-4 shows the endpoint mapper completing a binding.

The Endpoint Mapper Completes a Binding

Client’s Machine Server’s Machine
Client Server
RPC RPC
Runtime Subsequent Calls Runtime
\ Endpoint
First Call ] Mapper
(rped)

There is an exception to this scheme. Some servers are designed to occupy
well-known addresses. The endpoint mapper itself, rped, is reached in this
way, making its accessibility independent of whether or not the namespace
is accessible. The endpoint(s) of a well-known address do not change; they
are usually specified in the application’s interface specification (contained
in its .idl file; see Step A3 in Chapter 1, Section 1.5.3, of this guide).
Bindings to servers that use well-known endpoints are already complete at
the time of import; the endpoint mapper never sees these bindings.
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2.1.7 Interface Ambiguity and Partial Bindings

The interface UUID, which was generated by the IDL compiler, uniquely
identifies the set of operations that the client will access through that
interface. In short, it identifies the interface. An interface UUID may also
happen to identify a server which offers that interface. But if more than one
server on the same host offers the same interface (which could easily be the
case), the interface UUID alone will not be sufficient to identify a specific
server. The result is that if a remote call comes in with such an ambiguous
interface and a partial binding, the endpoint mapper will have to randomly
choose any one of its eligible registered endpoints, complete the binding
with it, and send the call on to that server.

Imagine several print servers residing on the same machine (see Figure 2-5).
Each server manages a group of printers that share a common physical
location. All the printers in room ‘‘A’’ are managed by the ‘A’ print
server, all the printers in room ‘‘B’’ by the ‘‘B’’ print server, and so on. Now
suppose each of these servers has a separate entry in the namespace. (See
Figure 2-5 for the sequence of events that occurs.)
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Figure 2-5. Print Server Entries in Namespace
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The following steps describe the sequence of events shown in Figure 2-5:

1. The Client imports a partial binding to the Printer interface from the
entry ‘A’ in the Namespace.

2. The Client makes its first call with the binding it imported from ‘‘A.”

The Endpoint Mapper at Print Server A’s host, when it receives the
call from the Client, has no way of knowing which of the four Print
Servers it should map the call to, since all four servers have registered
their endpoints under the same interface. It therefore picks one at
random to complete the binding.

The entry names are different, but the partial binding information contained
in the entries is identical, since the servers’ host machine is the same. The
interface UUID included in the call is no help, since that same interface is
offered by all the servers. A client seeking a print server may not care to
which server (and thus to which printer) its request goes, but then again, it
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may care. If it does, there is a way it can specify a server so that the
endpoint mapper can select an appropriate endpoint to complete the partial
binding.

2.1.8 Using Object UUIDs to Avoid Binding Ambiguity

Binding handles can contain, besides host address and endpoint information,
an object UUID as well. The endpoint mapper will try to match an object
UUID contained in a binding handle with one of the object UUIDs
associated with its map of registered endpoints. This allows even a partial
binding to specify a target more precisely than just by host machine. Since
object UUIDs are generated by the uuid_create() function call (see the
OSF DCE Application Development Reference), servers can create as many
of them as they need. Steps B2 (Section 1.5.7) and B3 (Section 1.5.8) in
Chapter 1 of this guide show how the server sets up the object UUID-
mapping mechanism.

For the print server example discussed in the previous section, the
namespace entries for the servers could be set up as shown in Figure 2-6.
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Figure 2-6. Print Server Name Entries with Object UUIDs
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The following steps describe the sequence of events shown in the preceding
figure:

1.

The Client imports a partial binding to the Printer interface from the
entry ‘‘A’’ in the Namespace.

The Client makes its first call with the binding it imported from ‘‘A.”’

This time the Endpoint Mapper at Print Server A’s host is able to
match the call with A’s registered endpoints, because the endpoints
have been registered with both the Printer interface and Print Server
A’s Object UUID, and the incoming call’s partial binding also
contains Print Server A’s Object UUID.
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Each server has exported a set of partial bindings that differs from all other
servers’ by its object UUID (which thus becomes, in effect, a server ID). If,
for example, Server A has properly registered its endpoints with the same
object UUID as the one it exported its bindings with, the Endpoint Mapper
will make sure that a partial binding exported from Server A’s name entry
will result in a full binding to Server A.

Now suppose that each print server sets up a separate namespace entry for
each printer it manages. The printers themselves would, in effect, be
identified by their own object UUIDs (see Figure 2-7).
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Figure 2—-7. Separate Printer Name Entries
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Now a client will be able to access a specific printer by importing a binding
handle from that printer’s name entry. The endpoint mapper at the target
host would compare the object UUID in the partial binding with the object
UUIDs registered by the print servers, and select an appropriate server. The
server in turn would also use the object UUID to select the correct printer
for the request, if it managed more than one printer. A namespace set up in
this way with a separate entry that contains a unique object UUID for each
accessible service resource is called an ‘‘object-oriented’’ namespace.
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2.1.9 An Object-Oriented Namespace

“‘Object-specific entries’’ are namespace entries that each contain binding
information only for one specific object or resource, as demonstrated in the
last printer service shown in Figure 2-7. ‘‘Object’’ can mean any of several
things, depending on what kind of service the application’s servers are
offering. Table 2-1 shows some examples of objects.

Table 2-1. Some Examples of Objects

Service Object(s)

Printing A specific printer

Process Server | A specific server

Queue Service | The print queue,the kill
queue, the backup queue

Thus, for a client that wants to have a file printed, it is natural to allow it to
specify a printer as a destination. Therefore, the client would bind to the
print server through a name entry that specifies a printer. To send something
to a different printer, the client would import a binding from the name entry
for that other printer. The server may (or may not) be identical, but the
object UUID in the binding handle returned would uniquely specify the one
printer represented by that entry.

On the other hand, consider an application that returns statistics about the
processes currently active on a group of machines. In this case it would be
reasonable to regard the server as the object. In the namespace entries for
such an application, each entry would uniquely represent one server. A
client would import a binding from the name entry for the server it wanted
to work with.

In other words, ‘‘object’’ is a handy way of saying ‘‘the thing that clients
will want to access’’ in order to accomplish the task set for the application.
If the namespace is organized correctly, clients will be able to import
bindings from these objects’ entries.
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2.1.10 Setting Up an Object-Oriented Namespace

2-24

Once you have distinguished the objects your application uses, you must
decide on an appropriate set of names for the entries themselves. The entries
can be created either by the application (server), if it has the necessary
privileges, or by a system administrator using the rpccp command interface.
(See Section 2.5.1.3 for further information on this step.)

After the entries have been created, each server must do the following:

1. Create an object UUID for each object managed by the server under
an interface, insert it into the binding handle(s) for that object, and
export the handle(s) for each object to a separate entry in the
namespace.

Note that the object UUID should be generated and exported in
general only once per created namespace entry, and not each time the
server starts up (see the example that follows of how to do this). When
a newly restarted server exports its partial bindings, nothing actually
happens in the namespace because the partial binding information
remains the same (unless the server has moved to a different
machine). However, if the object UUIDs are regenerated, then the
change in exported information will force needless update activity in
CDS, which is where the entries exist.

2. Register with the endpoint mapper the full bindings (including
endpoints) obtained for the interface; rpc_ep_register() performs
this operation.

One way of avoiding unnecessary regeneration of object UUIDs would be to
have a restarted server check the namespace for the presence of its
previously exported object UUIDs, as demonstrated in the following code
fragment. Refer to the OSF DCE Application Development Reference for
further information on the function calls.

have_object = false;

/* Create an inquiry context for inspecting the object */

/* UUIDs exported to "my entry name"... */
rpc_ns_entry_object_ing begin(my_entry name syntax, my_entry name,

&context, &st);

/* If we successfully created context, look at */
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/* object UUIDs... */
if (st == rpc_s_ok)
{

/* Try to get one object UUID from the entry... */

rpc_ns_entry object_ing next (context, &obj, &st):

/* If an object UUID is there already, we don’'t */
/* need to generate another one... */
have_object = (st == rpc_s_ok)

/* Delete the inquiry context... */
rpc_ns_entry object_ing done(&context, &st);
}
/* If there were no object UUIDs in the entry, */
/* generate one now. .. */
if (! have object)
{
uuid_create(&obj, &st);
/* Put it in an object UUID vector... */
objvec.count = 1;
objvec.id[0] = &uuid;
}
/* Export bindings. If an object UUID was generated, */
/* export it too... */

rpc_ns_binding_export ( my_entry_name syntax, my_entry_name,
my_interface_spec, my_bindings,
have_object ? NULL : &objvec, &st);

Whenever you want to offer more than one instance of the same interface on
the same host, you must distinguish by object UUID the binding information
in the name entries exported by the servers, if it is important to distinguish
among the servers when binding to them. Otherwise, the endpoint mapper’s
selection of an endpoint with which to complete the binding from among all
the servers on that host that offer the appropriate interface will be random.

Figure 2-8 illustrates what such an object-oriented namespace should look
like.
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Figure 2-8. Object-Oriented Namespace Organization
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Each entry has a name denoting the object represented, although the names
are not shown in this figure. (See Section 2.5.1.3 for further discussion on
this topic.)

Under this model, clients bind to servers via named objects in the
namespace, each of which contains enough specific information in its partial
binding to allow the endpoint mapper at the destination host to choose an
appropriate endpoint for the incoming RPC.

By setting a namespace up this way, however, you do not necessarily restrict
yourself to this one model for accessing binding information. Through the
use of two other types of entry, groups and profiles, which can be
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superimposed on the simple object model, you can set up models where
clients bind to abstractions such as services, or directly to the servers
themselves. These techniques are described in the next section.

Nevertheless, at this point you have enough information to set up a
namespace that consists of an entirely ‘‘flat’’ expanse of separate resource
entries. Bindings can be imported by clients by looking up specific names.
If the client has no specific name to look up, or if the lookup on the name(s)
it has fails, it has no alternative way of binding to a server.

2.1.11 Groups and Profiles

Name lookups can be made more flexible with two other types of entry;
namely, groups and profiles.

2.1.11.1 Group Entries

A group entry consists essentially of multiple independent other entries
whose names are also associated under the group name. These ‘‘other”
entries can be simple (single-name) entries, or they may themselves be
group entries. Doing an import from the group entry will return the contents
(the binding handles) of its included entries (which are called ‘‘members’’),
but the selection is made by the DCE RPC runtime, and from the client’s
point of view is undefined and implementation dependent.

In practice, the way this works with the usual binding import operations is
as follows. Clients normally import bindings by first calling
rpc_ns_binding_import_begin() to set up an import context. Once this is
done, successive calls to rpc_ns_binding_import_next() will return
binding handles from namespace entries until the handles have all been
returned or the client decides to stop; the client decides which handle(s) to
use based on its own criteria. When it is finished importing, it calls
rpc_ns_binding_import_done() to free the context. (Several examples of
this technique are illustrated later on in this chapter; the client code for
timop, the DCE sample application described in Chapter 3 of this guide,
also contains an example.)
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The kind of entry the information is returned from is usually unknown to the
client, which needs to know only a name to look up and the interface UUID
by which it wants to bind. If the name is that of a simple server entry, then
the bindings contained in that entry only will be returned. If the name is of a
group entry, then bindings will be returned from members (single entries) of
the group, selected (by the RPC runtime) in an undefined order. If one or
more members of the group are themselves groups, then the same thing
happens recursively whenever these lower-level groups are accessed.

Note that the group entry and its members are separate things. The group
entry can be deleted, but its former members will continue to exist as
independent entries, unless they too are explicitly deleted. Thus, you can
implement a namespace organization where the same bindings can be
imported through individual simple entries or through group entries,
depending on how the client is coded. (See Chapter 15 for more details on
group entries.)

2.1.11.2 Profiles

A profile entry specifies a search path or hierarchy of search paths to be
followed through the namespace in order to obtain a binding to a server that
offers a specified interface.

When a client imports from an entry that happens to be a profile, successive
imports (accomplished by calling rpc_ns_binding_import_next()) return
the contents of entries that are read as a result of following the specified
path through the namespace. All this is transparent to the client, which sees
only the bindings returned. Profiles can be used to set up default paths and
groups of paths for users. The RPC_DEFAULT_ENTRY_NAME
environment variable, which is the default entry name used by the name
service in import operations, usually contains the name of a profile.

As with groups, the entries contained in profiles, which are called
“‘elements,”’ exist independently of the profile entry itself.

A very important property of profiles is that they allow clients to know little
or nothing about the organization of the namespace itself. Using the default
case as an example, consider the following: if the profile at
RPC_DEFAULT_ENTRY_NAME has been set up with elements
containing entries for all possible active servers for a particular application,
then clients can simply import from this name and trust the profile
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mechanism to walk through the various compatible possibilities and return
binding handles via successive calls to rpe_ns_binding_import_next().
(Note that a profile entry is not limited to containing entries for just one
interface; thus, RPC_DEFAULT _ENTRY_NAME could be set up to
contain all the defaults for a cell.) (See Chapter 15 for a detailed discussion
of profiles.)

2.1.11.3 Summary of Namespace Entry Types

Clients access binding information in the namespace by looking up (by
name) one of three different kinds of entry:

» A server entry

+ A group entry, which contains other entries whose contents are returned
to the caller when it reads the group entry

o A profile entry, which specifies a path of entries to be searched whose
contents are returned to the caller when it reads the profile entry

Lookups behave differently depending on the kind of entry read. If an entry
is a simple server entry, then the search begins and ends right there, whether
successful or not. If the entry is a group, then the lookup is more
complicated. A binding will be returned from among those that are found to
be compatible by the name service, but within that category the selection is
undefined. If the entry is a profile, then a specified path of entries is
searched. The entries in this path may themselves be other profiles, or
groups, or simple entries. The search continues until either a compatible
binding is found, or the entire path has been unsuccessfully traversed.

2.1.12 Three Models for Accessing Binding Information

By adding groups and profiles to the object-specific namespace organization
originally described, you can implement any or all of the following three
basic models for accessing binding information:

¢ Clients bind to services

¢ Clients bind to servers
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¢ Clients bind to resources or objects

Each of the three models is described in the following sections.

2.1.12.1 Access By Services

Servers have separate namespace entries; each server distinguishes the
bindings it exports with its own identifier; that is, an object UUID that it
generates for itself the first time it starts up. These separate server entries
are also members of group namespace entries, which represent services. The
criteria for membership in a service group is that all the servers in it export
the interface that identifies that service. (They may happen to export other
interfaces as well.)

Clients, in effect, bind to services by importing their binding handles from
the group entries. Note, however, that the server-specific entries still exist
independently and are accessible to lookup.

This model is appropriate for applications where clients do not care which
server they happen to bind to or where that server is located as long as it
offers the desired service. The eligible servers are pooled into a group entry
from which bindings to one of them are selected in an undefined order and
returned whenever a client performs an import operation from the group
entry.

2.1.12.2 Access By Servers

In this model, distinct servers have separate and distinct name entries, and
clients import bindings directly from the server entries. Hence, an
application using this kind of binding model will ‘‘own’’ just as many
simple entries in the namespace as there are active servers.

Since the client in this model is looking for a specific server, imports will be
done directly from the server entries. The only exception to this rule would
be where two or more instances of a server were active on the same host,
and it was indifferent to the client as to which one it is bound to. The entries
for the multiple same-host servers then could be put into a group entry, and
binding imports done from the group.
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2.1.12.3 Access By Objects

Servers operate on or manage multiple objects. Clients use these objects
(via the servers) as resources. For each such resource, the server creates a
separate namespace entry and exports its binding information there,
distinguishing each object entry with its (the object’s) own object UUID.

An example of this model is the printer service that was previously
described. Clients will import directly from the name entry of the resource
they want to use. For this kind of application, there will generally be more
namespace entries than active servers, since each server presumably
manages more than one object. If the name entries have been set up
correctly and the servers have properly registered the object UUIDs they
created, there will be no difficulty in routing any partial binding to the
correct server (namely, the server that manages the object or resource
specified).

2.1.12.4 Summary of Binding Models

Although the name service allows other approaches, we recommend that
whenever possible you use the object-oriented scheme to organize your
namespace entries. There are at least two good reasons for doing so. First, it
is easy to administer; at the simple entry level, things really are simple.
Second, this is the most flexible foundation for building other more
complicated access models using group entries and profiles.

The separate name entries in your namespace should contain bindings that
will unambiguously resolve to specific server instances. Since interface
UUIDs are often offered by more than one server, more information than
just an interface UUID is needed in order to give an RPC with a partial
binding the required specificity. Object UUIDs provide this extra
information. When using object UUIDs to distinguish bindings in this way,
servers must take care to preserve their uniqueness across name entries.

Finally, profile entries allow clients to walk through a specified search path
of namespace entries and yet be completely ignorant of the actual names
themselves. While name independence may not be desirable for an object-
based or resource-based distributed application, it can be a powerful
mechanism when used with other models.
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As you are setting up the namespace organization for your application,
remember that there is not a direct exact mapping from names to bound
servers. Different names, once imported from, may resolve to identical
bindings if the partial bindings were exported on the same interface, from
the same host, and not otherwise distinguished from each other by object
UUIDs. It is the application developer’s responsibility to tailor an
application’s export and import procedures so that this mapping behaves as
intended.

2.1.13 Models Based on Non-CDS Databases

2-32

The three models previously described are not mutually exclusive; if the
namespace is set up correctly, all three can coexist at the same time. All
three of the models are implemented through the functionality of the DCE
RPC name service.

Although the emphasis in this discussion has been placed on the storage and
retrieval of binding information, the namespace entries can be used to store
additional states for objects. In order to do this, an application would have to
create additional attributes on the CDS entries it intended to use because the
name service recognizes only the four NSI attributes: binding, object, group,
and profile.

Such additional entry attributes would be created and accessed through
XDS. However, whenever you find yourself contemplating extending the
name service in this manner, you should carefully consider whether the
name service (and, consequently, CDS) is the best mechanism for doing
what you want to do. For some further discussion of what is involved in
adding attributes to CDS entries, see Section 2.1.4.2, earlier in this chapter.

In the preceding example, where an object-oriented namespace containing
separate entries for individual printers was described, only the identifier for
the printer (the object UUID) and the binding for the server that managed it
were stored in the CDS entry. Other information, such as what jobs are
currently queued for the printer, who owns the jobs, and so on, was
maintained by the server. This data could be stored in CDS only by creating
new attributes to put it in, but it would be changing too quickly for CDS to
efficiently keep up with it anyway. The performance of both the application
and CDS would suffer from such an arrangement.
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It is possible to imagine distributed applications whose resources (the
objects they are managing) are of such a nature that they could be more
efficiently managed through a private application-implemented database.
Suppose the number of managed objects is very large, or that the state of the
objects is volatile. It would certainly be a bad idea to try to use CDS to
store this kind of information, which would be changing much more rapidly
than CDS’s ability to propagate the updates.

2.1.13.1 Example of a Privately Managed Database

As an example of such a privately managed database, consider a print
service where jobs are submitted not to individual printers, but rather to a
generic printer service. The client, lpr, binds (probably through a group
entry) to some certain print server, and sends the job to be printed to that
server, which then, after some thought, sends the job to one of the printers
that it manages.

Consider, for example, what happens if a user invokes the client cancel
sometime later to stop a job. If, for example, the original command was

Ipr War_and_Peace.ps
and the subsequent request to cancel is
cancel War_and_Peace.ps

then how does the server that cancel binds to find the right job to delete?
There is no guarantee that cancel will bind to the same server that happened
to receive the original print request, so having each print server keep track
of its own jobs would not be the answer.

One way to keep track of jobs queued would be to have a dedicated ‘‘job
location server’’ as part of the application. Each time a print server queued a
job to a printer it would record the fact (with all the pertinent details) with
the location server. Whenever a job completed, the server would again
notify the location server to remove its record of that job from its database.
A client cancel then binds first to the location service, where it receives the
name of the print server associated with the job it wants to cancel. It then
looks up that name, binds to the right print server, and sends the cancel
request. In effect, the location server has become a name service for cancel.
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This method of organizing activity results in a split-model database. The
print servers’ binding information is managed through CDS, as usual, and
the location server manages other more volatile information associated with
those same servers.

Another way a server could maintain its own database of named objects
would be by implementing a junction. (See Section 2.1.3 earlier in this
chapter.)

2.1.13.2 Combining Models

In designing a binding access model for an application, consider also
whether it may be appropriate to combine some of the models previously
discussed. In the print service application, it may be desirable for servers to
also offer a management interface to specific servers rather than to specific
objects; for example, lpr, Ipq, and Iprm are generic application clients, so it
is appropriate for them to bind to printer objects, but if Ipr_mgmt is
supposed to manage characteristics of a whole service, then it should bind to
Servers.

2.1.14 An Object-Oriented Model with Grouped Binding
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Information

The following variation on the object-oriented binding model shows how
the group attribute can be used in object entries. In this model, each of the
object entries contains, as before, an object UUID that will uniquely
identify (either to the endpoint mapper on the exporting server’s machine,
and/or to the server itself) the object referred to by that entry. However, the
object entries do not contain any binding information. Instead, a group
attribute in each object entry refers clients’ import operations back to the
server’s own separate entry, which contains the binding information for that
Server.

The namespace ingredients of this model are the following:

¢ A single namespace entry for the server, which contains a binding
attribute and, possibly, an object attribute. Thus, this entry contains all
the binding information that is exported to the namespace by the server.
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e One namespace entry for each object that the server offers. Each entry
contains an object attribute that contains that object’s UUID, and a
group attribute that refers back to the exporting server’s namespace
entry.

Note that the object entries consist of a combination of attributes not
encountered before (object and group). Although unorthodox combinations
of attributes are not generally recommended, they can sometimes be useful,
as in this example.

The advantage of this scheme is that it greatly reduces the amount of
server-provoked export activity into the namespace. When the server is first
activated it creates all the namespace entries, exports the objects’ UUIDs
into the object entries, and initializes the group attributes to refer to the
server entry. It exports its binding information into the server entry only.
From then on, whenever it is restarted, all the server needs to do is re-export
its binding information into the single server entry. Everything else remains
the same; that is, the objects’ UUIDs have not changed, nor has the name of
the server entry to which the object entries’ group attributes refer. Thus,
instead of exporting bindings to every one of its object entries on subsequent
startups, the server exports to only one entry.

Of course, if the system were restarted or the namespace reinitialized, then
the original start-up process would have to be repeated.

The slight disadvantage of this scheme occurs on the client side, where the
import process becomes somewhat more complicated than it would be if all
necessary information (both binding and object UUID) could be read in
from the same entry.

2.1.15 Server and Client Steps

The following subsections describe in detail, from both the server’s and the
client’s side, how this model works.
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2.1.15.1 Server Export

This section lists the steps that the server must perform to set up and
initialize its namespace. Each step consists of the NSI function that must be
called to perform the operation.

1.

uuid_create()

To create an object UUID for each object that the server intends to
export.

rpc_server_register_if()

To register interface(s) and EPVs with the RPC runtime. (This is also
where manager types, if any, are registered.)

rpc_server_use_all_protseqs()

To request bindings from the RPC runtime for each object.
rpc_server_ing_bindings()

To get the binding handles for each object.
rpc_ns_binding_export()

To export the binding information of the objects’ common server to its
own separate name entry. This step is performed only once for each
collection of objects managed by the same server.

The final three steps set up the grouped collection of service objects:

6.

rpc_ns_binding_export()

To export each object’s object UUID to its own simple name entry. A
NULL is passed as the binding vec parameter to specify that only an
object UUID, and no bindings are being exported.

Note that each object UUID must be exported to both the object name
entry and the server entry; therefore, this call will be made twice.

rpc_ns_group_mbr_add()

To add the server’s name entry (created in the first step) as the sole
member of an NSI group attribute in each of the separate objects’ name
entries created in the second step.
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8. rpc_ep_register()

To register each object’s UUID with the server’s host machine’s endpoint
mapper.

Unlike the object-oriented model originally discussed, where there was a
set of binding handles in each object entry, and where each object’s set
of handles was registered with that object’s UUID in this step, there is
only one set of binding handles in the grouped model. Therefore, when
registering object UUIDs with the endpoint mapper, an application that
uses the grouped model should reregister the same set of handles with
each object UUID. The point of this step is to make sure that, when
presented with an object UUID in an incoming RPC, the endpoint
mapper can look that UUID up in its database and find an endpoint that
has been registered with it. Registering the server’s bindings (that is,
endpoints) with all object UUIDs will accomplish this.

Step 6 is made necessary by the way the ACL editor’s binding mechanism
works. (Applications gain access to the ACLs that an application maintains
on its objects through the client agent acl_edit, which uses a standard
DCE-wide interface for ACL operations.) The acl_edit mechanism contains
code that allows it to bind to the server that implements the ACL manager
responsible for the object whose ACL is desired. However, these
generalized binding routines necessarily conform to certain fixed ways of
doing things. If the acl_edit binding mechanism obtains an exported
object’s object UUID from the object entry, it will use that object UUID in
its subsequent import through the group attribute.

Thus, the object UUID will be contained in the handle structure that the
client presents to the rpc_ns_binding_import_next() call, expecting it to
be filled in with binding information. However, the RPC runtime always
tries to match such an input object UUID with a UUID contained in the
entry that the caller is trying to import from. If no matching object UUID is
found, no binding information will be returned. Thus, all the single object
UUIDs separately exported to the object entries must be exported to the
server entry as well, if the exported objects are to have ACLs accessible
through the acl_edit mechanism.

Figure 2-9 illustrates the resulting namespace arrangement.
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Figure 2-9. The Export Operation in a Model with Grouped Bindings
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This generic server manages four objects, called simply ‘‘A,”” ““B,”” “‘C,”
and ‘‘D.”” One entry is created for each of these objects, and a separate entry

is created for the server itself, where the binding information is held.

The result of all this is that there is now one more namespace entry for a
given service instance than there would have been with the object-oriented
model discussed earlier. The group attribute in each entry is a level of
indirection that allows the server to dispense with exporting many copies of

the same thing.

If a directory with the proper permissions has been set up for it in the
namespace by the system administrator, a server should be able to create the

object entries simply by making the calls described here.

OSF DCE Application Development Guide




Guidelines for Server Writers

2.1.15.2 Client Import

To bind to an object managed by the server as previously described, a client
performs the following series of library calls:

1. rpc_ns_entry_object_inq_begin()
To set up an object inquiry context.
2. rpc_ns_entry_object_inq_next()
To return the object UUID that the server exported to the object’s entry.

This UUID will allow the server host’s endpoint mapper to accurately
map the incoming remote procedure call to the server that exported this
entry. The UUID may also be used by the server itself to determine
which object the client wants to access. Note that although this set of
library routines is designed to accommodate schemes in which multiple
object UUIDs have been exported to the same entry, the model described
here requires that only one object UUID (the unique identifier of the
object to bind to) be exported.

3. rpc_ns_entry_object_inq_done()
To delete the object inquiry context.

4. rpc_ns_binding_import_begin()
To set up a binding import context.

An alternative to using the binding import routines would be to use the
group member inquiry (rpe_ns_group_mbr_ing_...()) routines to learn
the name of the entry referred to in the group attribute, and then to do a
direct import from that entry.

The reason for using the rpc_ns_group _mbr_inq_...() routines, rather
than the normal import functions (rpc_ns_binding_...()), would be to
make sure that the group (and not some other) attribute in the entry is
read. The rpc_ns_binding_import_next() routine is defined to
successively exhaust the contents of an entry’s

 binding attribute
e group attribute

« profile attribute
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Since the model described here employs object entries with only group
attributes and no binding or profile attributes, using the normal import
routine should work fine.

. rpe_ns_binding_import_next()

To read the entry’s group attribute.

The name service’s access to (and return of the binding handle from) the
entry’s group attribute is transparent and unerring because there is only
one set of binding information associated with a given entry in this
scheme, and that information is found only in the group attribute. Note
that if there had been more than one member in the group, which in fact
is generally the case when group attributes are used, then the order of
return would be random. Or if there had been binding information
associated with both attributes, then here also the order in which binding
handles would be returned would be random; that is, the caller may get a
handle from the simple name attribute first, and then the handles
exported to the group members, or it may get one or more of the group’s
member’s handles, then one or more of the simple entry’s handles, and so
on,

. rpc_ns_binding_import_done()

To delete the binding import context.

. rpc_binding_set_object()

To insert the object’s object UUID into the imported binding handle.

Figure 2-10 illustrates this activity.
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Figure 2-10. Importing from a Model That Uses Grouped Bindings
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The client shown in the figure imports a binding for object ‘‘A.”’ This
becomes (through the group attribute) a referral back to the server’s entry
where the bindings are held, and a binding is indirectly imported from the
server entry. The object UUID for ‘A’ is read, in a separate operation,
directly from the object’s entry. With this information in its binding handle,
the client makes its first remote call through the server’s interface. The call
finds its way to the endpoint mapper via the partial binding information, and
the endpoint mapper completes the binding by looking up the object UUID,
which was registered there by the server.
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2.1.16 Global Organization of the Namespace
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Since DCE is designed to support very large namespaces, it uses a
hierarchical service for binding. The global scale is separated into cells
whose boundaries are administratively defined. For example, a company
using DCE may have a cell containing its employees and local services. The
cell namespace administrator could decide to put all the service entries in a
single directory if the cell were small.

Both the import and export name service operations support default values
derived from environment variables; for example,
RPC_DEFAULT_ENTRY_NAME. The environment variables can be set
by start-up files to the name of a well-known directory within the cell. The
only remaining decision then will be how to name the actual entries within
the directory. One easy method is to use mnemonic names, or names of
interfaces such as binop, spm_library, and so on. If these entries are only
being accessed by clients through profiles, their names will not be directly
visible to the client anyway.

But now imagine a larger organization. The administrator will want to
define some naming hierarchy based on geography, organization, or other
criteria. Somewhere within this hierarchy some writable directories (or
parent directories) would be created, which could contain server entries,
profiles, and so on. If clients are using only profiles to access bindings, then
this organization will still be transparent to them. If clients want to bind to
specific servers or objects, then more attention must be paid to the names
given the servers’ or objects’ entries. The names should in some way reflect
the organization, geography, or other relevant aspects of the server or
object.

In summary, the important points to keep in mind are the following:

e The model should be appropriate for the organization and permit
efficient administration of the namespace.

o There should be simple guidelines for naming objects and services so
that users have a good chance of guessing the right answer.
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2.2 Thread-Safe Programming

The following subsections describe thread-safe programming.

2.2.1 Introduction to Thread-Safe Programming

DCE contains a user-space threads package both for use in client
applications and in order to allow concurrent request handling in servers.
The DCE Threads functionality is made available through a pthreads
interface. If the underlying operating system has its own (kernel) threads
package, the DCE pthreads interface becomes an interface into the native
threads implementation.

It is possible to write DCE applications without explicit multithreading,
although RPC always employs multithreading on its own. However, it is
worth your while to use DCE Threads, particularly in server applications.
When developing a new multithreaded application or converting a single-
threaded application into a multithreaded application, you must employ
some special coding practices to ensure that the concurrent threads do not
interfere with each other in various ways during execution. There are two
kinds of code to which this principle applies:

o The multithreaded code itself, which must be made safe.
o The code in libraries used by threaded applications.

The second case further subdivides into two scenarios. If you are developing
a multithreaded application that uses nonthreaded libraries, you must access
the routines in such libraries in a thread-safe way. On the other hand, if you
are writing a library, you should bear in mind that thread-safeness is
desirable even if the library routines themselves are not intended to be
multithreaded, since the routines may be called by multithreaded
applications. The following subsection offers some guidelines on how to
ensure thread-safeness in your code.

One important feature of DCE Threads, namely the exception handling
interface, is not discussed in this section. In general, only topics that relate
directly to thread-safe programming are discussed in this section. For a
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comprehensive discussion of DCE Threads, including an example program,
refer to Part 2 of this guide, and to Chapter 1 of the OSF DCE Application
Development Reference.

2.2.2 What Thread-Safe Means
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The only resources private to a thread, as opposed to a process, are the
following:

* A program counter value; that is, the address of the instruction the
thread is about to execute.

« A stack pointer value; that is, a certain amount of memory allocated to
the thread at its creation, in which its local variables are stored.

Thread-safeness is mostly a measure of the integrity of memory, both local
and global, when code is executed by more than one thread. Suppose that
the stacksize allocated for a group of threads is adequate; in other words,
there is enough space on the stack to accommodate all the local variables
created as the result of the deepest possible nesting of subroutine calls
during the threads’ lives. Making the code thread-safe then becomes a
matter mainly of making sure that all operations by threads on global data
are atomic; that is, not interrupted by other operations on the same global
data (or other instantiations of the same operations) being executed by other
threads that are executing the same code. The local variables are taken care
of by the threads’ local storage allocated to them at their creation. Consider
a subroutine called navigate in which the following statement appears:

longitude = longitude + 1;

where longitude is a global variable. An application cannot just spawn a
group of threads and release them on this statement. The unrestricted
execution of the multiple threads of the machine instructions compiled from
this ‘‘simple’’ statement on the same (because it is global) variable, all
interfering with each other in a completely indeterminate way, will result in
longitude containing a useless value when the threads have finished with it.
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2.2.2.1 Locks

The remedy for this difficulty is to make sure, by means of special coding
practices, that only one thread has access to the global variable for the
duration of its operation(s) on the variable. The data structures associated
with these coding practices are usually called ‘‘locks,”” but you should not
be mislead by this term; there are no ‘‘built-in’’ barriers to access to any
data. All locking mechanisms depend for their efficacy on certain routines
being explicitly called at the right times, both before and after access to the
sensitive data. In the remainder of this section, the terms ‘‘lock’ and
“‘unlock’ will occasionally be used as handy abbreviations for the two
halves of this process, which is described in more detail in Section 2.2.6.

Locks can also be used to regulate threads’ access to executable code. This
is the ‘‘brute-force’” way to make a section of code thread-safe, at the cost
of temporarily losing most of the benefits of multiple threading. For
example, consider the following code fragment from an imaginary threaded
application:

latitude = current_latitude();
date = get_datel();
speed = current_speed( ) ;

where the routine get date() belongs to an unthreaded library. The call to
get_date() can be made thread-safe simply by surrounding it with a global
lock:

latitude = current_latitude();

/* acquire global lock before calling unthreaded routine */
pthread lock global _np();

date = get_datel();

/* unlock access for other thread(s) */
pthread_unlock_global_np();

speed = current_speed();
The result is that access to the routine get_date() is serialized; that is, it can

be called and executed by only one thread at a time. Further discussion of
global locking can be found later in this chapter.
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Note that there is nothing intrinsically unsafe in the statement
longitude = longitude + 1;

as long as longitude is a local variable.

2.2.2.2 Summary

In summary, code can be thread-safe in either of two basic ways:

e By being thread reentrant; in other words, the code uses only local
storage, and can be safely executed by multiple threads of execution as
is. Thread-reentrant code actually uses threads, but does so safely.

¢ By being made accessible to only one thread at a time; that is, each
currently executing thread locks the code from access by any other
threads, which wait in turn for their chance to lock and execute the code.
This is the ‘‘brute-force’’ approach, which results in safe execution at
the cost of the advantages that would be derived from multithreading. In
other words, the code is made thread-safe by not using threads.

Note: ‘“‘Code’” is used in this context to mean both executable
statements and data storage space.

The two approaches are not mutually exclusive within an application.
Thread-reentrant code will often have to make use of locking mechanisms
in order to serialize access to global data or other critical sections of code.

Threads are a sort of trick played on the operating system; that is, they
allow a process to temporarily multiply itself over a certain section of
iterated code and thus execute the totality of the iterations faster. However,
none of the operating system’s housekeeping mechanisms are aware that the
original process has suddenly become several threads of execution. So it is
up to the process itself to provide the protection for its address space that
would otherwise (if the separate threads were separate processes) have been
provided by the operating system.
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2.2.3 Making Code Thread-Safe

The following two subsections describe how to make sure that
multithreaded code will execute safely and correctly, and how you can
safely use nonthreaded code with a multithreaded application.

2.2.3.1 Thread—Reentrant Code

Truly threaded (as opposed to merely thread-safe) code is thread reentrant,
which means that the code can be safely subjected to execution by multiple
threads. Locking mechanisms are used to access global variables (and any
unthreaded code), but for the most part the threads execute concurrently,
subject to the scheduling and priority policy, until they are terminated.

Following is a list of the guidelines you should follow in order to produce
thread-reentrant code:

Use the proper locking mechanisms to access global variables.
Use the global locking mechanism to access unthreaded code.

Make sure that the threads’ stacksize attribute is adequate to
accommodate the deepest possible nesting of subroutine calls that can
occur during the threads’ lives.

If for some reason it is awkward or not possible to use the stack for local
storage, use the pthread_keycreate() mechanism to set up a private
static storage space for the separate threads.

Make sure that your compiler generates thread-reentrant code.

Document the code as being thread reentrant.
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2.2.3.2 Using Nonthreaded Code As Is

If your threaded application calls routines from libraries that you either
know or suspect to be nonthreaded, you will have to surround all ‘‘unsafe’’
library calls with the global locking mechanism. This is the only way to
ensure that only one thread of execution is active in the library at a time.

There is only one global lock. It is acquired by a successful call to
pthread_lock_global_np(), and released by calling
pthread_unlock_global_np(). From within your application code, you can
make calls to nonthreaded library routines safe in the following way:

/* Since my own routines are presumably correctly coded for */
/*  threading, no other precautions are necessary... *x/
my_own_routine (num) ;

/* However, only one thread at a time can be allowed to */
/* access the code in the next call, since it’s in a */
/* nonthreaded library... */

pthread_lock global np();
nonthreaded_routine( ) ;
pthread_unlock _global np();

/* Back in my own --presumably thread-safe-- code, I can */
/* now continue as before... */
another_of_my_routines();

As with any threaded routine, you should imagine this code being executed
simultaneously by several threads at runtime; each of them is at some
indeterminate point in the code, using its own separate copies of local
variables, but only one copy for each global variable. However, at the call to
pthread_lock_global_np() each one must pause (if another thread already
holds the lock), queue up, and execute nonthreaded_routine() separately,
one at a time.

If you have access to the unsafe code, you can position the lock operations
on the other side of the subroutine calls at the beginnings and ends of the
subroutines themselves.

Note that it is essential to use the one global lock to serialize all of an
application’s accesses to unthreaded libraries, even though it may appear
from the application code that the accesses can be safely synchronized with
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multiple local locks. The reason for this is that you cannot be sure what is
going on inside these libraries, where there could be various unsafe
interactions that would escape any local locking scheme.

2.2.4 How Code Becomes Multithreaded

Multithreading occurs in a DCE application in either of two ways.

The first is by explicit calls to pthread_create(). The application code
passes to pthread_create(), among other things, the address of a routine
that the thread, once created, will execute. The thread lasts until it either
returns from this routine or is explicitly terminated by a call to
pthread_cancel(), pthread_detach(), or pthread_exit(). Calls to other
routines can occur before this happens. Note that this is the usual way
threads are created and terminated.

Multithreading can also occur implicitly in DCE server applications, when
the server begins listening for incoming client requests by calling the
routine rpc_server_listen(). If the max_call _requests parameter, which
specifies the maximum number of incoming calls the server is willing to
concurrently handle, is greater than 1, then the RPC runtime will spawn up
to that number of threads for the server’s manager routine as the calls come
in. Note that implicit multithreading in the server is the server side of the
RPC thread concept. This means that you should follow thread-safe
programming practices in coding server manager routines, even though you
are not explicitly creating the threads.

2.2.5 Memory Management in Threads

You can adjust the stacksize attribute for server manager threads, before
they are created, by calling the rpc_mgmt set server_stack size()
routine. There are also DCE RPC routines that allow you to perform
memory management specially tailored for the requirements of manager
threads. These routines are part of the RPC “‘stub support’ interface, so
called because these routines are also used in the IDL-generated stub code
to perform various memory management tasks. All of the routines have
names beginning with rpc_ss , and can be looked up in the OSF DCE
Application Development Reference.
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You should refer to the memory management information in Chapter 17 of
this guide for further information about the use of the stub support routines
in the server manager. However, one important detail will be mentioned
here. When extra memory has to be dynamically allocated within some
server manager thread for the purpose of performing a client-requested
operation, it is very important that this memory be deallocated when the
server-side operation completes execution. This ensures that the server will
not continue to accumulate dead memory from operation to operation,
growing bigger and bigger until catastrophe occurs. The amount of memory
occupied by a server should remain constant across RPC operations.

If you use the rpc_ss_allocate() routine to allocate extra memory required
within a manager thread, the memory will be automatically deallocated,
along with any memory that was allocated within the server stub (for
marshalling, unmarshalling, and so on), by the RPC runtime when the
server-side operation completes execution. To use this mechanism within
threads that you explicitly spawn from a manager thread, you should first
call the rpc_ss_get_thread_handle() routine in order to get the handle of
the manager thread. You should then pass this handle to the threads that
were newly created by pthread_create(). If any of these threads call
rpc_ss_allocate(), they must first call rpc_ss_set_thread_handle() in
order to associate the manager’s thread handle with any allocation requests
made by calling rpc_ss_allocate() in this thread.

The details of this technique are described in the reference page for
rpc_ss_get_thread_handle() in the OSF DCE Application Development
Reference, and in Chapter 17 of this guide.

2.2.6 Mutexes
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As seen in the previous section, there are times when you must restrict
access to some data or area of code to only one thread at a time. DCE
Threads provides several mechanisms for accomplishing this. The global
lock, which was demonstrated in Section 2.2.3.2, is one of these. The global
lock, however, is an extreme measure that is not usually necessary. The
more usual locking mechanism is the ‘‘mutex’’ (murual exclusion object).

Mutexes, in contrast to the global lock, are embodied in data structures that
you declare and optionally initialize. There can be any number of mutexes
in an application; the idea is that each mutex is dedicated to serializing
thread access to one particular data structure or block of code. However,
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their use is similar to that of the global lock. A «call to
pthread_mutex_lock() or pthread_mutex trylock() is placed before the
statements that access the sensitive code. The first statement executed after
completion of the  sensitive  statements is a call to
pthread_mutex_unlock().

Any thread that approaches code locked by a mutex has to execute the call
to pthread_mutex_lock() or pthread_mutex_trylock() first. If no other
thread is currently holding the mutex, the result of either call is that the
calling thread acquires the mutex and continues on through the following
code. While this is going on, access is blocked to any other thread (or
threads) that tries to do the same thing; that is, with pthread_mutex_lock()
the thread will simply block on the «call, while with
pthread_mutex_trylock() a value is returned (without blocking),
indicating that the mutex was not acquired.

At the end of the stretch of protected code, the first thread encounters the
call to pthread_mutex_unlock(); once this call is executed, the mutex is
released and can be acquired either by a waiting thread or by the next thread
that happens to reach the mutex acquisition routine. Suppose the acquisition
routine is pthread_mutex_lock(), which means that the second thread has
so far been blocking on the call. This call in the second thread now returns
with that thread holding the mutex; the thread now proceeds to execute the
subsequent code.

Note again that the only thing that prevents the threads from *‘barging’’ into
the locked code is the «call to pthread_mutex lock() or
pthread_mutex_trylock() that precedes it.

There are three kinds of mutexes: fast, recursive, and nonrecursive. The
advantage of the second type is that it can be locked more than once by the
same thread without having been unlocked first. Doing this with a fast
mutex will result in a deadlock, a condition where the thread will never
return from the second attempt to acquire the mutex. Nonrecursive mutexes
cannot be relocked like this; however, they cause an error to be returned if it
is attempted, rather than deadlocking. Once a mutex has been declared, you
can initialize it as the kind you want by associating a properly filled-in
attribute’s object with it in a call to pthread_mutex_init(). The global lock
is a recursive mutex.

A typical use for mutexes is to serialize multithreaded access to an
application’s global variables (where a different mutex is associated with
each variable), or to other shared data or code that is known to be accessed
only within the application. On the other hand, the global lock is called for
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in situations where you do not know what the ramifications of certain
accesses (typically into other libraries) are, and thus you cannot be sure that
what look like separate accesses into different libraries do not actually clash
because of hidden interdependencies between the two. In such cases, the
only safe procedure is to serialize accesses to all of the libraries with the
same lock.

2.2.6.1 When Signaling a Condition Variable Results in Its

Deletion

Consider the following code fragment executed by a ‘‘releasing’’ thread:

pthread mutex_lock (m);

<eo.>

/* Change shared variables to allow some other thread to proceed */

pthread_mutex_unlock (m);

<---- Point A

pthread_cond_signal (cv); <---- Statement 1

Now consider the following code fragment executed by a ‘‘potentially
blocking’’ thread:

pthread mutex_lock (m);
while (!predicate ...

pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);

Note that it is possible for a potentially blocking thread to execute at Point
A, find the predicate TRUE, and therefore not be blocked on the condition
variable. In general, this does not cause a problem, but there is one
exceptional set of circumstances. This arises when the released thread is the
owner of the condition variable and is free to delete it without any further
synchronization with the releasing thread. The released thread may thus
delete the condition variable at Point A before the pthread_cond_signal()
is executed by the releasing thread. This will result in an attempt to signal a
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nonexistant condition variable. The error is only optionally detected in
POSIX or in the DCE Threads architecture.

The situation described can occur when the releasing thread is a
‘‘dependent’’ thread and the waiting thread is the ‘‘master’’ thread; and in a
code sequence such as the one just illustrated, the last dependent thread tells
the master that it is safe to deallocate the variables shared by master and
dependent.

In situations where the very act of signaling a condition variable may cause
the condition variable to become deleted, it is best to signal or broadcast
with the mutex held. For example:

pthread_mutex_lock (m);
<o..>
/* Change shared variables to allow some other thread to proceed */

pthread_cond_signal (cv); <---- Statement 1
pthread mutex unlock (m);

Of course, there are many ways to code races with threads, but the situation
described above is a particularly important one to beware of.

2.2.6.2 Using pthread_cancel() to Terminate a Thread

The pthread_cancel() routine allows a thread to cancel itself or another
thread. The routine is fully described in the OSF DCE Application
Development Reference and in Part 2 of this guide. Its use is
straightforward, but if you use it to cancel a thread that makes use of
mutexes or condition variables, you should keep in mind the following
aspect of its operation.

The canceled thread receives the cancel in the form of an exception. If the
thread has not disabled its cancelability by a call to pthread_setcancel(),
its effect is to immediately terminate the thread. However, if the thread
happens to have acquired a mutex (including the global lock) when it is
canceled, the mutex will remain in its locked state and no other thread will
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be able to acquire it. Moreover, the data that was protected by the mutex
may be in an inconsistent state as a result of the thread’s having been
canceled in the middle of its operation on the data.

The easiest way to prevent this is simply to disable cancels before entering
code for which access has been restricted by a mutex. If this is undesirable,
you can explicitly handle a cancel by coding an exception-handling block.
The DCE Threads exception handling interface is described in Chapter 7 of
this guide.

This same possibility exists with condition variables, since the variable is
protected by a mutex. An example of handling a cancel (or any other
exception) while using a condition variable follows. It is substantially the
same example that appears in Part 2 of this guide.

#include <pthread exc.h>

<..

>

/* First, lock the mutex that protects the condition variable */

/*

and the predicate... */

pthread_mutex_lock (some object.mutex) ;

/* AAd this thread to the total number of threads waiting for */

/*

the condition... */

some_object.num waiters = some_object.num waiters + 1;

/* Enter the exception handling block... */

TRY

/* Test the predicate condition... */
while (! some_object.data_available)

/* If the desired condition is not yet true, wait for */
/* it to become true. This next call also auto- */
/* matically releases the mutex... */
pthread_cond _wait (some_object.condition, some_object.mutex) ;

/* Code to access data_available goes here */

<..

o>
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/* If a "cancel" exception occurs during the call to */
/* pthread_cond.wait (), the thread will resume execution */
/* in the FINALLY block following... */
FINALLY
/* Remove this thread from the total number of threads */
/* waiting for the conditiom... */

some_object.num waiters = some object.num waiters - 1;

/* Release the mutex; and then continue with the : */
/* exception --i.e., cancel... */
pthread mutex_unlock (some_object.mutex) ;

ENDTRY

Note that in order to handle the cancel as an exception, yQu must #include
the pthread_exc.h header file rather than pthread.h; this allows you to use
the DCE Threads exception interface.

Further information on mutexes can be found in Part 2 of this guide, and in
the OSF DCE Application Development Reference.

2.2.7 Methods for Synchronizing T hreads

There are a couple of ways that cooperation among the threads can be
synchronized at critical points in the code: by using condition variables or
by calling the pthread_join() routine.

2.2.7.1 Condition Variables

A condition variable causes threads to wait at a certain point in the code
until a specified condition attains a specified state. The mechanism actually
requires three objects:

e A global variable, called the ‘‘predicate,”” which contains the present
state of the condition

« The condition variable, which DCE Threads uses to maintain a queue of
all the threads currently waiting on the condition
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e A mutex, which regulates access both to the predicate and to the
condition variable

Using the condition variable mechanism is a multistep process. First, the
thread acquires the mutex, then it reads the predicate. If the condition is
already satisfied by the current state of the predicate, the thread does not
have to wait; it releases the mutex and continues on. If the predicate is not
yet in the desired state, then instead of releasing the mutex the thread calls
the pthread_cond_wait() routine with the condition variable and the mutex
as parameters. The thread blocks on this call, and at the same time the
mutex is automatically unlocked so that

o The predicate can be read by other threads
¢ Other threads can be queued on to the condition variable
o The predicate itself can be updated

Meanwhile, another thread elsewhere should be either monitoring or
performing some activity whose progress will eventually require the
predicate to be updated to the waited-for state. When that happens, this
second thread will

1. Acquire the condition variable’s mutex
2. Update the contents of the predicate

3. Signal one of the waiting threads to wake up by calling
pthread_cond_signal(), or signal all of the waiting threads to wake
up by calling pthread_cond_broadcast()

4, Release the mutex

The thread was able to quickly acquire the mutex because, as each of the
waiting threads acquired it and then called pthread_cond_wait(), the
mutex was automatically released again. Each of the waiting threads went
to sleep thinking that it possessed the mutex, although in fact none of the
threads did so at that time.

When the waiting thread(s) called pthread_cond_wait(), they did so in a
while loop whose continuation condition depended on the state of the global
predicate variable. When a thread wakes up, it returns from the wait call and
automatically reacquires the condition variable mutex. This time, the
predicate’s new state drops the thread out of the while loop; the mutex is
explicitly released, and the thread continues on through the code. (Putting
the wait call in a loop guards against spurious wakeups: if the predicate has
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not changed when the thread is awakened, the thread will stay in the loop
and recall pthread_cond_wait().)

If pthread_cond_timedwait() is used instead of pthread_cond_wait(), the
waiting thread will wait only a specified amount of time for the specified
condition to change to the desired state. At the expiration of this interval,
the thread will wake up (return from the call) just as if it had been signaled
to do so. This type of wait should be combined with a compound condition
in order to specify different subsequent actions for the thread, depending on
why it woke up.

2.2.7.2 Explicitly Joining Threads

Another way to synchronize thread activity is by using the pthread_join()
routine. The calling thread passes the identifier of the thread it wants to
“‘join’’ with; the result is that the calling thread blocks until the specified
thread terminates.

Further information on both of these techniques, together with an example
program, can be found in Part 2 of this guide, and in the OSF DCE
Application Development Reference.

2.2.8 Thread-Specific Storage

As was mentioned at the beginning of this section, threads depend for their
local storage on a certain amount of memory allocated to them from the
stack when they are created. Once a thread has been created, this
“‘stacksize’” attribute cannot be altered.

Since most compilers do not check for stack overflow, you should ensure
that your thread stack is big enough to accommodate the deepest possible
nesting of calls that could occur in the thread. DCE Threads has a routine
(pthread_attr_getstacksize()) that allows you to check the stacksize. You
can also change the stacksize attribute of a thread before creating the
thread, by calling

1. The pthread_attr_create() routine to create the attribute object
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2. 'The pthread_attr_setstacksize() routine to set the desired stacksize

3. The pthread_create() routine, passing the attribute object as a

parameter to create the thread

For situations where, for whatever reason, it is not feasible to use the stack
for local storage, DCE Threads provides a mechanism for allocating
thread-specific static storage. The following steps should be performed:

1.

Call the pthread_keycreate() routine to generate a key that will be
used by the threads to reference the static storage. Note that this step
should be performed before the threads are created, and it should be
performed only once; there is only one key, which is shared by the
threads.

Create the threads.

Within the threads, if static storage is required, allocate the memory,
and then associate the memory with the key by calling
pthread_setspecific().

At any time thereafter, call pthread_getspecific() to retrieve the
address of the thread’s static storage.

This technique is handy for avoiding having to pass data explicitly down
through many layers of function calls within a thread.

Further information about all of these topics can be found both in Part 2 of
this guide, and in the OSF DCE Application Development Reference.

2.2.9 Other Programming Considerations

The following subsections describe various other safety-related aspects of
multithread programming.
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2.2.9.1 Forking in a Threaded Application

The fork() system call causes the creation of an exact clone of the caller’s
address space, resulting in the execution by two address spaces of the same
code. In order to avoid the problems that would arise in a threaded
environment when one thread, possibly without the others’ knowledge,
executes a fork(), the POSIX model defines fork() to result in the
propagation only of the calling thread. Any other active threads are
immediately terminated without notice.

The abrupt destruction of the other threads means that any mutexes they
may have been holding at the time of the fork() will persist in the locked
(and therefore unacquirable) state. On the other hand, assuming that the call
to fork() is followed by a call to exec(), then the outstanding mutexes will
remain so only until exec() is called, when the new process space will be
reinitialized.

Thus, ‘‘out-of-state’” mutexes are a problem for the forked thread only in the
interval between the fork() and the exec(). Even so, as long as no calls
occur here to routines outside the application, you can determine whether
the thread is going to encounter any mutexes that could have been locked by
the destroyed threads. However, it is impossible to be sure of this if calls
into other libraries, which may have hidden interdependencies, occur in this
interval.

Aside from these considerations, there is also the question of what happens
when exec() completes and execution returns to the original forking (and
now lone) thread, which is left with an address space that may contain out-
of-state mutexes (as well as an inconsistent state in the data protected by the
mutexes) as a result of the fork().

For cases where forking in the presence of threads is felt to be necessary,
DCE Threads provides a mechanism, the atfork() call, which allows you to
install ‘‘fork handler’’ routines for an application or a library. These
routines will be automatically run as follows:

¢ A routine that will be run just prior to the fork in the parent process; that
is, just before all of the other threads are terminated

A routine that will be run in the child process just after the fork occurs;
that is, just after all the other threads are terminated

» A routine that will be run in the parent process just after the fork occurs;
that is, just before the parent (forking) thread resumes execution
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Further information about atfork() can be found in Part 2 of this guide, and
in the OSF DCE Application Development Reference.

2.2.9.2 Restrictions on Software Interrupts and Exceptions

From a portable point of view, it is unspecified in which thread (on which
stack) a software interrupt handler will run. It is also unspecified what
happens if an exception propagates out of a software interrupt handler.

As a consequence, a software interrupt handler must not allow an exception
to propagate out of it. The reason is that the exception could be caught by
some random exception handler in some thread and result in strange
behavior.

Thus, it is best to avoid complicated coding in a software interrupt routine.
If you must write a software interrupt handler, ideally you should just
release a waiting thread using the previously mentioned signal or enqueue
functions. Note that this has the advantage of minimizing the code in the
software interrupt, which benefits the application by reducing the latency
and increasing the throughput for such interrupts.

2.2.10 DCE Threads and DCE RPC

2-60

DCE RPC internally uses a vendor-provided threading facility, POSIX
pthreads. There is wide variation in the completeness and/or transparency
of the various pthread implementations provided by vendors. The
limitations of a given pthread implementation are inherited by any
application that uses DCE RPC, including applications that unknowingly
use libraries that internally happen to use DCE RPC.

The DCE RPC runtime has internal threads that need to run in a timely
fashion; correct operation of the runtime depends on this. Typically, this
means that the application or pthreads implementation must neither perform
nor allow operations that block the entire process.

Refer to the platform’s or vendor’s pthread release notes to determine what
limitations the implementation has. If you are developing a library that uses
RPC, you should instruct users of this library to refer to the pthreads release
notes. Limitations may include, but are not limited to, the necessity of using
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thread-safe libraries, and compliance with POSIX nonprocess-blocking call
behavior for system and library calls.

2.3 Managing the Server’s Authentication Key

The following subsections describe how you manage the server’s
authentication key.

2.3.1 Introduction to Authentication

The essence of authenticated RPC is that a client attempting to access a
server must present a ‘‘ticket’’ to that server in order to prove its identity at
each remote procedure call before the call can proceed any further. This
server-specific ticket was previously acquired by the client’s RPC runtime
from the authentication service; it encrypted the client’s Privilege Attribute
Certificate (PAC) using a secret key known only to the server and the
authentication service, and then it sent this ticket back to the client’s
runtime for presentation to the server’s runtime. The PAC contains the
client’s UUID. If the server’s runtime can decrypt the ticket using the server
key, that means that this client (identified by its UUID in the PAC inside the
ticket) got a validly encrypted ticket to this server (whose key was used to
encrypt the ticket) from the authentication service, which is the only entity
aside from the server that has access to the server key. This constitutes the
‘‘authentication’’ of the client. The authentication service was satisfied with
the client’s representation of itself, and the ticket the client presents is the
proof of this. The server can now use the client’s PAC to determine the
client’s authorization.

Note that all this back-and-forth ticket manipulation is performed by the
RPC runtime; it is not the responsibility of applications. The runtime is also
not responsible for the keys used to encrypt and decrypt the tickets; these
must be supplied by the entities that intend to use them.

The server’s key has a second use. If the server has to perform remote
procedure calls to some other server (in other words, needs to become a
client itself), the server’s key is used as the basis of a login-like
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authentication process that produces a privilege ticket-granting ticket that
the server’s runtime can use to get tickets to servers.

In fact the ‘‘server key’’ is the server’s encrypted password. The server sees
a plaintext string that is exactly analogous to a user’s (human principal’s)
password. From this a key appropriate to the designated enciphering
mechanism is generated, as needed, by the authentication service or the
server’s runtime. Server key management arises from the need to provide
servers with the means to remember, change, and manipulate their keys as
human users are able to do.

Figure 2-11 illustrates the client/server authentication process, and also
includes some details about server key management that are discussed later
in this section.

Figure 2-11. Authenticated RPC and the Server Key
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The process by which the client convinces the authentication service of its
identity is not illustrated here. Nor does this figure show all the separate
steps required for the client’s runtime to get the ticket from the
authentication service, then present the ticket to the server, and so forth.
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This figure is intended to illustrate only the concept of ticket encryption and
decryption as the basis of authenticated RPC.

There are numerous details of the authentication process that are not
pertinent here and therefore ignored; a lengthy description of authentication
can be found in Chapter 40. The rest of this section is a short discussion of
the server’s secret key, explaining how it is generated and stored, and how
(and why) it is managed.

Note: The term ‘‘key’’ is used loosely throughout this section.
Although it properly means only the key derived from the
password, it is often used to describe the plaintext string as
well.

2.3.2 Server Key Storage and Retrieval

The current server key is actually stored in two places:
o Inalocal key data file, by the server

A default local file is created by the Security Service when the server
key itself is first created by a system administrator running the rgy_edit
command. This file is owned by root, and in order to access it with the
key management routines, the server itself must also be running as root.
However, the server can also specify its own local file as an argument to
any of the key management routines.

This copy is used by the server runtime routines to decrypt incoming
client tickets, and is also used when the server needs to acquire a login
context.

o In the Security Service registry, by the Security Service

This copy is used by the authentication service to encrypt tickets, for
clients, to the server.

The key itself, which is in plaintext, is sent over the network as infrequently
as possible.

The key management routines mainly affect the server’s local copy, but
some of the routines have an indirect effect on the registry copy in that they
provide for updating of the registry copy when the local copy is changed.
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Server key files are often referred to as ‘‘keytab’ files elsewhere in the
documentation.

2.3.3 Setting Up the Server Key File
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In order to possess a password, a server must be a principal; that is, it must
have an account in the Security Service registry. There are two ways this
can be accomplished.

First, the server may simply inherit the login context, including the
principal identity, of the user who invoked it. In this case there is no need
for server key management as such because the key is derived from the
human user’s password, and the user is responsible for that management.
The sample DCE application timop (described in Chapter 3) operates this
way.

The second way a server can become a principal is by getting its own
registry account. This is done by a system administrator running the
rgy_edit command with the ktadd subcommand. This process, which
consists of two separate steps (first, adding the account; then, creating the
server’s key) is described in detail both in the OSF DCE Administration
Guide and in the OSF DCE Adminstration Reference. When this command
is executed, a key data file is created for the server that contains its key. The
default local file created by the system administrator as root is
/krb5/v5srvtab on the local machine, where rgy_edit is run. The file can be
created elsewhere by specifying a pathname relative to the current working
directory:

rgy_edit => ktadd -p my_server_account -f /krb5/mysrvtab

When first invoked, a server process uses the login context (that is, a handle
to the principal identity and secret key) of the user who invoked it until it
can access its own secret key. This initial login context must have access to
the file or device that stores the key. The procedure that is followed is
described in Section 2.3.4. (See also Step B12, Section 1.5.17 in Chapter 1
of this guide.)
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2.3.4 Acquiring a Login Context

As previously mentioned, a server when first invoked inherits the login
context of the principal that invoked it. This identity may be sufficient for
the application’s purposes; however, if it needs to assume its own identity,
which is what key management is all about, then it has to call the following
routines in order to accomplish the switchover:

1. sec_login_setup_identity()

The server passes its own principal name to this routine, and it receives
a login context (sec_login_handle_t structure), which is one of the
things it will need to validate its new (true) identity.

2. sec_key mgmt_get key()
The server retrieves its password (key) in a sec_passwd_rec_t structure.
3. sec_login_validate_identity()

This call establishes the server’s network credentials (the principal’s
ticket-granting ticket received from the authentication service).

4. sec_login_get current_context()

Retrieves the server’s login context.

(X3 9

If all has gone well, the server has successfully switched to its ‘‘own
identity, and can use its login context to receive authenticated requests from
clients or to authenticate itself to other servers. See Steps B7 (Section
1.5.12) and B8 (Section 1.5.13) in Chapter 1 of this guide for the former
case, and Step C2 (Section 1.5.19) for the latter case.

2.3.5 Using the Key

For the server the central authentication routine, which must be called
before clients can conduct authenticated RPC operations with it, is

rpc_server_register auth_info(server_princ name, authn_svc,
get_key_fn, arg, status);

which among other things tells the RPC runtime where the server wants its
local key to be read from when tickets incoming from authenticated clients
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are decrypted. Thus, if a server wants to use its own (nondefault) local key
file, it should create the file before making this call if it does not already

exist.

A server can create a local key file by calling the key management routine

sec_key_mgmt_change key (authn_service, arg, principal_name,

key_vno, keydata,
garbage_collect_time, status);

where, if the arg parameter is non-NULL, it is interpreted to specify the
server’s local key file. The server supplies the key in keydata. If a file is
specified, it is created (if it does not already exist) with read/write
protection for the owner. To use the default file, the server must be running
as root, since this file is created and owned by root. The specified key file
should always be local, not accessed across a remote DFS mount point;
otherwise, file accesses will result in the key contents being transmitted

across the network.

The other important parameters to rpc_server_register_auth_info() are

authn_service

princ_name

key vno

keydata

Specifies which authentication service is used for
the rpc_server_register_auth_info() call.

The server’s principal name (a string).

When a server’s key is changed, the former key is
not automatically deleted from the local storage.
Instead, each version of a key is tagged with a
version number. Clients with tickets encrypted (by
the authentication service) with an earlier version
key can still be authenticated by the server runtime,
as long as those earlier versions are retained in the
local storage. In order to find out what the next
eligible key version number is,
sec_key_mgmt_get next_kvno() can be called, or
0 (zero) can be passed to specify the next
appropriate version number.

A pointer to a sec_passwd_rec_t structure that
contains either the server’s new plaintext password
or a pre-encrypted (in some arbitrary manner by the
server) buffer.
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garbage_collect_time This is an output parameter; it informs the server
when it will have to call
sec_key mgmt_garbage collect() to get rid of
obsoleted keys.

get_key fn When this parameter is non-NULL, it specifies the
address of a server-supplied key retrieval function.

See also the reference pages for the key management routines in the OSF
DCE Application Development Reference for information about other key
parameters.

The server may wish to generate and store its key in some other hardware-
specific way. The authentication mechanism provides for this by allowing a
server-supplied key retrieval routine to be specified in the
rpc_server_register_auth_info() call. This now becomes the routine that
the RPC runtime will call to get the server key for decrypting incoming
tickets. However, doing this means also that the sec_key_mgmt ...()
routines can no longer be used to manage that server’s key storage.

A server that installs its own key retrieval routine becomes completely
responsible for the generation and maintenance of its key, as well as its
synchronization with the registry copy of the key. It must provide its own
functionality and mechanisms for all these things. When it changes its local
key copy, it will have to call a routine like sec_rgy acct_passwd() to
update the registry copy. Maintaining earlier key versions, garbage
collection of outdated keys, and so on, must all be implemented by the
server.

The server-supplied routine is expected to be called by the runtime in the
following form:

get_key_fn(arg, princ_name, key_type, key_ver, key, status);

where get key fn() is the name of the server-supplied function. Its
parameters are

arg Pathname to the server-maintained local key storage.
princ_name Server’s principal name.
key type A pointer to a sec_passwd_type t indicating the

encipherment system with which the key is to be used.

key ver Indicates the key version number. This is contained in
the sec_passwd_rec_t structure.
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key Returned by the routine; this is a pointer to an array of
sec_passwd_rec_t.

status Returned by the routine; this is a pointer to a status
code.

2.3.6 Typical Tasks in Managing the Key
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The following subsections describe how the key management routines can
be used and combined to perform useful tasks.

2.3.6.1 Updating a Key in Response to Cell Password Expiration

Policy

Passwords do not usually last forever. Password expiration policy is set by
the cell system administrator, and it affects the validity of server keys just
as it does that of user passwords. Once a password’s lifetime expires, it can
no longer be used either to acquire a login context or as a key to encrypt or
decrypt authentication tickets. (Note that this has nothing directly to do
with ticket lifetimes; see Section 2.3.6.3 for information about maintaining
previous version keys.)

If a server’s password expires between invocations so that it does not have a
valid login context for its principal name, then a context is created using the
latest key available in the server’s key file. If no such key is available, then
the sec_key_mgmt_e_key unavailable error is returned by the key
management routines, meaning that the server process was unable to
authenticate itself to the authentication service. A new password will then
have to be created by the system administrator.

A more likely and potentially more troublesome problem is the expiration
of a server’s password, and hence the key derived from it, during a session.
If this happens, the result will be not only that the server will not be able to
acquire a login context and authenticate itself to other servers, but also that
any outstanding tickets held by the server’s clients w111 suddenly become
invalid, and authenticated RPC will stop.

The sec_key_mgmt_manage key() routine will prevent this. The intention
of this routine is to relieve server writers of the responsibility of
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determining when a server’s key should be changed in response to the
registry’s password expiration policy.

This routine should be invoked from a server thread dedicated to this
purpose. Once called, it will run indefinitely; it will never return during
normal operation. The sec_key_mgmt_manage_key() routine queries the
registry for the expiration policy for the principal named in the call. It then
idles until a short time before the server’s current key is due to expire, when
it calls sec_key mgmt generate key() to produce a new random key
before the old one can expire. If necessary, it also calls
sec_key mgmt garbage collect().

Note again that a server providing its own key retrieval routine, specified in
rpc_server_register_auth_info(), is responsible for monitoring password
expiration policy and taking appropriate action itself; it cannot use
sec_key_mgmt_manage_key() to do this.

2.3.6.2 Changing the Key

There is more than one way a server can change its key. The variations
depend on the following:

o Whether the registry’s copy is changed at the same time as the server’s
local copy or some time later

o Whether the server supplies its own new key value or requests the
Security Service to generate a random value for it

» What is done about previous version keys in the server’s local storage

The option of (temporarily) not changing the registry’s server key copy
while changing the local copy is useful for propagating a key change among
slave replicas of a server.

It is up to the application to set its own key version maintenance policy, but
there should be no reason for retaining outdated keys in the local storage;
the sec_key mgmt_garbage collect() routine should be used to delete
them.

There is also the possibility that a server’s key could be changed by a
system administrator in response to some perceived security compromise.
The server should be aware of this possibility with regard to any
assumptions it makes about its current key value or key version number.
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2.3.6.3 Maintaining Previous Version Keys

What happens if a server key is changed while clients still hold unused
tickets to that server? Tickets have lifetimes, just as passwords do, and
when clients’ unused tickets are renewed automatically by the system, the
renewals are issued against the current key. In order not to inconvenience
clients holding unused unexpired tickets, the Security Service maintains
key version numbers. Each server key has a version number, and tickets
issued against that key also bear that key’s version number. When a key is
changed, the previous version is not automatically deleted. Thus, when
outdated tickets are presented, the runtime applies the correct version key to
them, if it still exists.

However, there is no reason to retain old version keys indefinitely. The
sec_key _mgmt_garbage collect() routine will, when called, delete all
keys in the local storage that are older than the maximum ticket lifetime in
effect.

Tickets presented by clients with key version numbers that no longer exist
in the server’s key file are not honored. A server can always delete either
the current or an earlier version key from its storage. The
sec_key_mgmt_delete_key() routine allows the caller to specify a key
version number, and sec_key_mgmt_get nth_key() can be used to scan
the local storage for all existing key versions.

2.3.7 Key Management Routines
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The following is a list of all the specific operations a server can perform on
its key with the default key management interface; it is arranged by
functionality. For complete information on each routine, refer to the OSF
DCE Application Development Reference.
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o Change to a new key:
— Change both the local and registry copies:

The sec_key_mgmt_change_key() routine changes a key to a
specified value.

The sec_key mgmt gen rand_key() routine followed by
sec_key _mgmt_change_key() changes a key to a system-generated
value.

— Change the local copy:

The sec_key_mgmt_set_key() routine changes a key to a specified
value.

The sec_key_mgmt_gen_rand_key() routine followed by
sec_key mgmt_set_key() changes a key to a system-generated
value.

 Retrieve a key from local storage:
— Current key: sec_key_mgmt get_key()
— Specific key: sec_key_mgmt_get_nth_key()

Delete a key from local storage:
— Current key: sec_key_mgmt_delete_key()
— Current type key: sec_key_mgmt_delete_key_type()

Conform to cell password expiration policy:

— sec_key_mgmt_manage key()

Miscellaneous operations:
— sec_key_mgmt_free_key()
— sec_key_mgmt_garbage_collect()

— sec_key_mgmt_get next kvno()
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2.4 Writing an ACL Manager

The following subsections contain some general information about how to
write an ACL manager.

24.1 Introduction to Writing an ACL. Manager
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This text is intended to give some practical helpful hints on the most
important things you must know in order to write your own ACL manager
for a DCE application. For design and other information you should refer to
Part 6 of this Guide and to the Security sections of the following books:

e OSF DCE Application Development Reference

Contains reference pages for the ACL interface routines discussed later
in this section.

o OSF DCE User’s Guide and Reference

Contains detailed discussions of ACL format and usage as well as
reference pages for the acl_edit command.

Although several of the DCE components have their own ACL managers,
these can be used to create and maintain ACLs only for those components’
own objects. For example, if you add an entry to the namespace, then CDS
will automatically attach an ACL to that entry, which CDS’s ACL manager
will be responsible for maintaining. The same thing is true when you add a
principal to the registry, or when you create a DFS file or directory. All
DCE components tie into the ACL interface described in the OSF DCE
Application Development Reference. This interface is made up of all the
sec_acl_...() calls (more information about this appears later in this
section). This means that any application can use these calls on any of the
DCE components’ ACLs, provided that the application is properly bound to
the desired server.

However, applications that define their own objects must provide their own
ACL manager for those objects, if ACLs are desired. Consider the print
service described earlier in this chapter. If each printer is given its own
entry in the namespace, as recommended, then CDS will maintain ACLs for
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those entries; but the ACLs will pertain to the entries, not to the printer
objects themselves. If it is desirable for the service to maintain ACLs on the
printers, then the service must provide its own ACL manager to do so.

2.4.2 Design Guidelines

When designing an ACL manager, you should conform to the following
guidelines:

e The DCE ACL guidelines as defined in the OSF DCE User’s Guide and
Reference.

o The standard DCE ACL interface as defined in the OSF DCE
Application Development Reference. This interface is defined by the set
of rdacl_...() calls. The application’s ACL manager must support this
interface.

2.4.3 How ACL Interfaces Work in the Registry Server

The DCE Security Service, for its part, provides the sec_acl_...() calls as
entry points in the DCE library (libdce). A remote client linked to this
library (as all DCE applications should be) can now bind to and access this
application’s ACLs via the sec_acl_...() calls. The acl_edit command is a
command-line interface to these same sec_acl ..() calls. The
sec_acl_mgr_...() set is a third group of ACL-related calls described in the
OSF DCE Application Development Reference. These are routines used
locally within the server. The following subsections provide more
information on the routines themselves, as well as the terminology used in
regard to DCE ACLs.
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2.4.3.1 ACL Interface Routines

Figure 2-12 illustrates how the sec_acl ..(), rdacl_..(), and
sec_acl_mgr_...() ACL interfaces interact in the DCE registry server.

Figure 2-12. ACL Interfaces in the Registry Server
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Lower-Level ACL Routines
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The Client application in the figure could be the acl_edit command, or it
could be any other client that wants to access a registry ACL. The DCE
library, libdce, contains (among many other things) the sec_acl_...() entry
points and the rdacl_...() client stub code, which is used by the sec_acl...()
calls. A client linked to libdce.a simply executes the sec_acl_...() calls as
it would any local function.

These in turn call the remote rdacl_...() routines, which are implemented in
the registry server. In other words, the ACL routine calls made by the client
pass through two interfaces: a local explicit one (the sec_acl_...() calls),
and the remote one (the rdacl ...() calls), which is utilized by the
sec_acl_...() routines. Applications never call the rdacl_...() routines; they
call the sec_acl_..() routines. This arrangement relieves the client
application of some of the details of managing server bindings and so on.

Within the server, the sec_acl_mgr_...() routines are a local interface into
the ACL routines used by the server itself and by the rdacl_...() routines as
necessary. In other words, there are two avenues into the direct ACL-
manipulation routines: one via the sec_acl_...() calls for remote clients, and
the other via the local sec_acl_mgr_...() calls for the server itself.
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The lowest-level ACL routines, where the ACL storage is actually
manipulated, do not constitute a formal interface and are not visible to any
but the rdacl_...() and sec_acl_mgr_...() routines.

All three of these formal interfaces (sec_acl _...(), rdacl_...(), and
sec_acl_mgr ..()) are documented in the OSF DCE Application
Development Reference. The intended use of these three sets of reference
pages is as follows:

sec_acl_...() When developing client application code, refer to these
reference pages to learn how to make the necessary
calls to access and manipulate ACLs.

rdacl_...() When developing server application code, refer to
these reference pages to learn what ACL-manipulation
routines you must implement, what their behavior and
call signatures should be, and so forth.

sec_acl mgr ..() When developing server application code, refer to
these reference pages as a guide and example of the
repertory of ACL-management calls a server should
implement locally for its own use.

The organization of an application-specific ACL manager should be similar
to this scheme. The sec_acl_...() calls executed by a client would still come
from libdce, only now a different set of rdacl ...() routines would be
remotely executed, namely the specific application’s (assuming, of course,
that the client is bound to this server). Implementing the rdacl_...()
interface makes the application’s ACLs accessible via the acl_edit
command. It would be up to the application developer to decide whether to
implement the sec_acl mgr_...() interface for the server’s use; doing so
would help to organize the manager’s internal functionality.

2.4.3.2 An Important Note on Terminology

DCE has proven to be in some respects more extensive than the English
language. A result is that in a few cases terminology is shared by
functionality that is not in fact similar in behavior.

The term ‘‘type manager’” is used in the DCE RPC documentation to
describe a way of allowing a server to offer multiple implementations of the
same interface to its clients. Incoming remote calls from various clients, all
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of whom are calling through the same interface, are switched by the RPC
runtime to the appropriate interface implementation in the server on the
basis of object UUIDs in the incoming calls. For more information on how
this works, see Step B2 (Section 1.5.7) in Chapter 1 of this guide. An object
UUID of a given type (the typing is done by the server as part of its setup)
will vector its RPC to the server’s appropriate manager code; hence the
term ‘‘type manager.”’

On the other hand, ACL managers often implement more than one type of
ACL. The differences among these types are characterized by the different
sets of possible privileges that are appropriate for the object that is to be
protected. Thus, one can quite naturally speak of ‘‘ACL type managers,”’
which contain within a server’s ACL manager the code that implements the
different ACL formats. However, these ACL submanagers do not use the
RPC vector-typing mechanism, and the two types of manager should not be
confused because they are quite different.

To simplify this concept, ACL managers typically handle everything
themselves. If ACLs in various formats are supported, then the ACL
manager itself is responsible on receipt of an incoming client request for
calling the correct subroutine to perform the request. The sec_acl_...()
routines expect a manager type parameter, by which the client can
explicitly specify the ACL type desired.

Furthermore, the manager_type parameter should not be confused with the
sec_acl_type parameter, which is used to distinguish among certain basic
kinds of ACL that apply to all of the ACL manager types. The following list
will perhaps make the distinctions clearer:

manager_type Specifies a particular ACL type among several that
may be implemented by an ACL manager. For
example, a print server might implement ACLs both on
individual printers and on groups of printers; the two
types of ACL would have different sets of privileges,
and would be implemented by different routines within
the manager.

sec_acl_type Specifies one of three basic kinds of ACLs that are
common to all the manager types:

» The Object ACL controls access to an object.

o The Initial Container Creation ACL serves as a
default template for ACLs on newly created objects
that can contain other objects.
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o The Initial Object Creation ACL serves as a default
template for ACLs on noncontainer objects.

When ACLs are created, they are always created as a side effect of creating
an instance of the object they are associated with. Thus, there must be a set
of default templates at hand for an ACL manager to use when objects are
created; the sec_acl_type parameter is the specifier for the desired template
in a sec_acl_...() call.

2.4.4 IDL Definitions

If you are developing an ACL manager that is intended to use the standard
ACL interface, making it accessible both to users via the acl_edit command
and to applications via the sec_acl_...() routines, there is no need to write
an .idl file. All you need to do is compile (with IDL) the rdaclif.idl file
supplied with DCE, which is located at

dce-root-dir/install/machine_namelopt/dcen.n/share/include/dce

and link the server stub output with your server code. The client-side stubs
are part of libdce and so are automatically linked to any client application.
For more information on the IDL process, see Steps Al to A5 (Sections
1.5.1 to 1.5.5) in Chapter 1, and also Chapter 3 of this guide. In addition,
Part 3 of this guide contains chapters on using IDL.

Under no circumstances should you generate a new UUID for this interface.
One of the things that make the standard DCE ACL interface work is that
all implementations of the interface are identified by the same interface
UUID, and all ACL clients bind through it. If you were to generate your
“own’’ interface UUID and build an .idl file around it that you then
compiled and linked to your server application, clients would never be able
to bind to your manager (at least not using the standard ACL library
routines) because the standard ACL interface UUID that the client-side
libdce code would be seeking to bind through would not be the one
exported by your server.
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However, you do have to code your own implementations of the ACL
interface. In doing so, you should refer to the reference pages for the
rdacl_...() routines in the OSF DCE Application Development Reference.
These routines describe the operations you must implement, namely

e rdacl_lookup()

e rdacl_replace()

« rdacl_get _access()

» rdacl_test_access()

e rdacl_test_access_on_behalf()
» rdacl_get_manager_types()

e rdacl_get_printstring()

« rdacl_get_referral()

2.4.5 Representation of Objects with ACLs in the Namespace
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The binding requirements for an ACLed object are summed up in the
reference page for sec_acl_bind(), which is the routine that user
applications call to obtain a binding to such an object. The ACL editor
command acl_edit uses this same routine. An ACLed object must be
bindable by name, which means that clients must be able to obtain an
unambiguous binding to the object (actually, to the server that manages that
object) by importing from that object’s entry in the namespace.

Thus, there are three general rules that must be observed by applications
that maintain ACLs on objects:

o If the object’s ACL is to be generally accessible through the DCE user
interface (the sec_acl_...() calls and the acl_edit command), then the
object must have an entry in the namespace; sec_acl_bind() looks up
and imports through an entry name, nothing else. (See the note at the
end of this section on using namespace junctions.)

* Moreover, the binding(s) exported to the object’s entry must contain an
object UUID that is registered by the server and that uniquely identifies
the object so that the sec_acl_bind() mechanism can unambiguously
reach the object through its server.
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« Finally, all object UUIDs for objects with ACLs must be registered with
the ACL interface UUID at the endpoint mapper by using
rpc_ep_register(). (See Step B10 (Section 1.5.15) in Chapter 1 of this
guide for an example of how this is done.)

The sec_acl_bind() routine specifies the NULL interface when it performs
its import. This allows applications that offer the ACL interface to not
export it via rpc_ns_binding_export(), which would greatly increase the
size of the namespace. Of course, the interface UUID is used in the actual
ACL operations, and is checked in incoming stubs by clients’ and servers’
respective runtimes. This is why the server registers the interface using
rpc_ep_register(), although it does not export it (with
rpc_ns_binding_export()).

The result of all this is that the object-oriented namespace organization
illustrated in Figure 2-8 and described in Section 2.1.10 would work fine
with an ACL manager implemented in the application server. The ACL
interface is not exported into the namespace; all that is necessary is to make
sure that each object’s entry is unambiguously identified by its own object
UUID in the exported partial bindings.

Note: Objects with ACLs can also be made available to users and
clients through a namespace junction, which is a way of
implementing a server-private namespace. This can relieve
CDS of the burden of having to maintain separate entries for
many objects. For more information on junctions, see Section
2.1.3.

2.5 Additional Guidelines

DCE gives you a set of tools and services that compartmentalizes the huge
number of interrelated tasks involved in designing and implementing a
distributed application into a manageable set of integrated services, which
you can combine to build powerful distributed applications. Ideally, the
applications that you build with DCE should similarly, where possible,
consist of reusable, combinable, and robust functionality that will be easy
to use and maintain.

One of the most powerful of the DCE tools is the RPC Interface Definition
Language (IDL), which allows you to design services and service
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characteristics with this principle of modularity in mind. Good interface
design in the IDL sense means organizing things so that the set of calls
processed by a single server consists of related calls. In this way, the
service can be used by as many clients as possible (who, it must be
remembered, could themselves also be servers). If the interfaces are
generalized enough, you can reuse them among other servers and combine
them so that you get new functionality and the same kind of synergy that
you have with the traditional UNIX tools.

To do this, server writers should keep the following in mind:
¢ Server code should be ‘‘production quality.”” That is, it should
— Be multithreaded to increase efficiency.

— Make use of security resources, including ACLs and authenticated
RPC.

« Servers, once installed, should be locatable under (as nearly as possible)
all circumstances.

The following subsections discuss some of the specific DCE topics related
to accomplishing these things.

2.5.1 Initialization and Configuration

The following subsections contain discussions of various aspects of starting
a server process, whether for the first time or after it has already been active
for some time and perhaps accumulated stored state information.

2.5.1.1 Storage of Configuration Information

Configuration information such as
e The cell the server is in
o The server’s principal name
o The server’s group

e Database filename(s)
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should be held externally in local files to minimize dependence on the
network, and be read in by servers at startup. This allows the information
and the application to be dynamically configurable.

A server should not rely on any particular namespace structure. The names
for server entries, object or resource entries, and so on, should either be read
in from some local external storage or prompted for from the user who is
installing the application.

If a server is to run under its own principal identity, an entry will have to be
created for it in the Security Registry. This is done with the rgy edit
command. For further information, see the OSF DCE Administration
Reference. See also Section 2.3 of this chapter.

2.5.1.2 Registering Binding Information

There should always be bindings for only one server per entry in the
namespace. Moreover, the entry should always contain enough information
to ensure that a client can bind to the specific intended server, or instance of
service, represented by that entry. This usually means including an object
UUID in the handle as well. Since the ACL editor does not use
rpc_ep_resolve_binding(), the binding handle received from an import
operation mmust contain an object UUID.

In order to support the ACL editor, all object UUIDs for objects with ACLs
must be registered with the ACL interface at the endpoint mapper.

2.5.1.3 Choosing a Directory Name

The names that a distributed application depends on to store and retrieve
server location information (bindings) should, as far as possible, be indirect;
in other words, you should rely on the name service group and profile entry
mechanisms to find entry names of servers. This makes it easy to
reconfigure the application. Rather than changing some part of the server or
client code, you change the group or profile entry with cdscp. It also puts
less strain on the namespace by keeping as much ‘‘hard”’ location
information as possible out in the open in the namespace itself where it can
be maintained.
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An obvious alternative to hardcoding would be to use system-level
environment variables. But this too should be avoided because it increases
management overhead. Names and paths will change, and applications
should not deal directly with hardcoded names at all.

Try to keep entry names intuitive and clear. This applies to groups and
profiles, as well as to the simple server entries. On the other hand, if you are
using one or more levels of entry indirection, keep the names appropriately
indirect as well. For example, it would not make sense to call a group
printer entry floor_3 printers if the entry was intended to contain printers
from any location.

From this basic principle the following guidelines are derived:

» Is a service always associated with a host (as, for example, a process
server)? If so, then put it in the host directory. If not, put it somewhere
else more appropriate. Do not use misleading names.

o Names of entries should never be encoded directly in programs because
hardcoded names are not configurable and are not easily changeable. If
the application is moved, it will probably have to be recompiled.
Instead, the entry name should be extracted from some external place,
such as a local file or an environment variable.

» You should not create names in specific locations in the namespace. In
other words, names should not be hardcoded into specific paths in the
namespace hierarchy. Hardcoded names will unnecessarily constrain
the namespace and make it hard to maintain.

» Every name in a profile or group should be global so that the entry will
work no matter what cell it happens to be installed in.

Names are often assigned by applications in response to user input of
various kinds. The following guidelines apply to such assignments:

o If a name or name service entry is to represent an RPC server, the user
should be allowed to determine what name to assign by using normal
RPC binding mechanisms to locate the server.

« If the name or name service entry will represent a directory, a non-RPC
server, or an entry other than a server, applications should be able to use
configuration profiles to locate the assigned name of the resource.
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2.5.1.4 Namespace Usage Guidelines

Following are some basic guidelines that a new user of DCE can use when
setting up the DCE namespace.

1. To place the server principal in the security namespace, assuming
that your server is called my_server, you could start by putting it at

/.:/hosts/hostname/my_server
Then, after testing it, you could move it to
/.:/subsys/my_company/my_server
or to some other well-known place, such as
{.:/applications/my_server

2. To place the server binding information in the cell namespace,
assuming you call your server my_server, you could export the
bindings to
/.:/subsys/my_company/my_server
This would be  good  especially if you  used

/.:/subsys/my_company/my_server (see step 1). You could then use
the same name for the binding entry and the server principal name,

The entries for principal and for binding would be distinct (the former
being located physically in the security space, the latter under the
CDS namespace cell root), even though the names were the same.
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3. To place the files your application uses (for example, mail message
files for a mail application, posting files for a bulletin board
application, and so forth), if access to the files is only through the
server, then you want the files to be somewhere in dcelocal (not in
dceshared). If the files are to be operated on directly by users, they
could go in

/.:/fslopt/my_company/my_application/

The default path prefix for dcelocal is set to lopt/dcelocal during the
DCE configuration process. Note that this is a pathname in the
machine’s file system, not a CDS pathname. For a discussion of the
differences between the two, see Section 2.1.1.

For further information about the structure of dcelocal and the DCE
namespace in general, see the OSF DCE Administration Guide.

2.5.1.5 Changing a Server’s Location

Consider whether it is likely that the server will ever be moved, either to a
different location within the same cell or to a different cell. If the server
depends on locally held databases that also will have to be moved, then
provision will have to be made to move the files in a machine-independent
way. For example, a ‘‘transfer server’’ could be brought up on the new host
to receive the files sent to it by the old host, which it would then store
locally. The data would have been automatically converted to the
appropriate machine format by the server stubs.

One of the most important consequences of moving a server involves
security. Authenticated RPC depends on a database (the Security Service
Registry, which contains a principal entry for the server, if the server runs
under its own identity) and a local file (the server’s key data file). Moving
the server to a different cell may make its registry entry unfindable, unless
its principal name is expressed as a global name. Moving the server within
the same cell may likewise cause it to lose its key data file. You can guard
against this by expressing the name in cell-global form, or by designing
your key management module so that it can create a new key data file if
necessary. For details on the server’s key data file, see Section 2.3.
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2.5.1.6 Robustness

Ensuring that a server comes up smoothly with all its resources, or that it at
least comes up (if at all possible), is a part of designing robust server code.
The ability of a server to struggle to activate itself even under adverse
circumstances may be defined as the complement of graceful degradation.

For example, if a resource or service that a server depends on is not
available, the server should create a thread that will wait and try to access
the resource or service again later. In any case where it is possible that
access could be delayed because of the vagaries of network performance,
access should be retried for a reasonable amount of time before giving up
and failing. On the other hand, if access is denied, for example, for security
reasons, then it is appropriate to fail the operation with an informative error
message.

Or suppose two servers that are supposed to establish contact with each
other are unable immediately to do so. Here again, it is a good idea to wait
a while and then try again. A consequence of proceeding this way is that
clients may fail in the meantime, but this is far preferable to having the
servers fail instead, which would probably require the intervention of a
system administrator to recover from.

If contact cannot be established with the name service, binding alternatives
should be provided. This can work for both clients and servers. Clients can
prompt the user for a hostname, and then combine this with a partial string
binding to try to complete the call. If all else fails, a client should try (or
allow the user to try) binding to a local instance of the server.

The CDS entry /.:/hosts/hostnamelself (where /.:/ is the DCE notation for
the local cell name and hostname is the valid name of a host machine) is
defined to always contain binding information that will allow clients of any
service running on the specified host to import a binding handle for use in
operations on servers running at that host. Importing from this entry should
always allow a client to bind to a local version of the server.

Similarly, servers should always try to access a local version of a database
when they cannot make contact with the remote version.
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2.5.2 Availability and Performance of Services
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The following subsections deal with aspects of server operation that depend
on the presence or performance of various DCE or other network services.

2.5.2.1 Coping with Inconsistent Binding Data

Because the DCE Directory Service is a partially replicated database, data
received from it may not be consistent throughout the replicas. As a result,
applications must be prepared to encounter out-of-date data and deal with it
in a reasonable way.

To give an internal DCE example: When a DFS (Distributed File Service)
client looks up a DFS mount point, the name service returns the address of
the server providing access to that mount point. However, this address
could be out of date. This will be true, for example, if the mount point has
changed but the change has not yet been propagated to the replica being
used by the client. As a result, the attempted connection will fail. The DFS
client is prepared to recover from this situation gracefully, and application
clients should behave similarly in analogous circumstances.

It should always be remembered that an imported binding is not guaranteed
to work. Servers can suddenly become inactive or unavailable for various
reasons, leaving stale exported bindings behind in the namespace. Clients
should always be prepared to retry failed bindings or import another when
the one just imported has failed to work.

2.5.2.2 Slow Name Service Response

Applications should expect that name service requests will sometimes take
a long time to complete.

Most simple name (server entry) or attribute (group or profile) lookups will
respond quickly. However, some interactions can take considerably longer,
such as a lookup on a branch of the namespace that is physically distant and
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has not been recently accessed (and is therefore not cached), or a search
operation. Applications that are not prepared to accept arbitrary delays in
completing a request should either

» Bound the time permitted for the request, or

e Be prepared to abandon the request (after warning the user, if
appropriate) if it takes longer than desired to complete.

2.5.3 Management

The following two subsections discuss some management aspects of server
design.

2.5.3.1 Binding with the Management Interface

The DCE RPC management interface consists of the rpc_mgmt _...() calls,
which allow clients to perform various operations on, and find out various
things about servers. All servers automatically offer the management
interface; the IDL compiler sees to this.

3

However, as a result of this universal availability, the same ‘‘ambiguous
call”” problem that was discussed earlier in this chapter occurs when a
client makes a management call (for example,
rpc_mgmt_binding_is server_listening()) with a partial binding. Since
all the servers on any target host presumably export the management
interface, the endpoint mapper at that host has no way to select a particular
server that does so.

The solution is for the client to use the the rpc_ep_resolve_ binding() call,
which takes a (typically partial) binding and an interface, and contacts the
endpoint mapper on the remote host to find a server that offers that
interface; the call then returns with a completed binding.

Suppose a client, having just imported a partial binding to print server A,
wanted to make a management call to that server. The client would call
rpc_ep_resolve_binding(), passing the partial binding it just imported; if
successful, the call would return a full binding to print server “A.”’
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The client could now use this completed binding handle to perform any
management operation on print server ‘‘A’’; the binding would get the call
to the server, and the management interface UUID would select the desired
interface among those offered by the server.

For more information on the management interface itself, see Step B9
(Section 1.5.14) in Chapter 1 of this guide, and the OSF DCE Application
Development Reference.

2.5.3.2 Shutdown Considerations

If a server is going down, it should unexport its entries and unregister its
endpoints. A filled-up or somewhat-overwritten namespace will cause
robust clients to take longer; nonrobust clients will fail.
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Chapter 3

A Sample DCE Application

This chapter consists of an introduction to the commented client and server
source code for timop, a sample DCE application. The source files
themselves are located at dce-root-dir/src/test/sample. The chapter begins
with a discussion of IDL (Interface Definition Language) and the interface
definition process.

3.1 Developing a DCE Application

As was explained at the beginning of Chapter 1, the first step in coding a
DCE application is to define one or more interfaces through which the
application’s clients and servers will communicate. Interfaces are defined in
a declarative C-like Interface Definition Language and then compiled by the
IDL compiler.

Interfaces, like most other objects and entities in DCE, are identified by the
system by associating each one with a 128-bit Universal Unique Identifier
(UUID). Generating a UUID for your application’s interface is the very first
step in the IDL process.
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Executing the uuidgen command with the -i option, as follows:

uuidgen -i > pandaemonium.idl

will cause a skeleton .idl file to be generated; containing a new UUID and
very little else; it is your task to add the rest.

Thus, the development cycle for a DCE application is as follows:

1.

2
3.
4

6.

Write and compile the .idl file.
Write and compile the server implementation code.
Write and compile the client implementation code.

Link the server object code with the server stub code and the DCE
library.

Link the client object code with the client stub code and the DCE
library.

Try running the compiled application.

Some of the steps may have to be executed repeatedly.

Figure 3-1 illustrates this process as it might be followed for both the server
and the client modules of timop.
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Figure 3-1. How an Executable DCE Application is Produced
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Both the server and the client compilation phases are illustrated. As noted in
the figure, these can occur on different machines. Note that the interface
UUID is generated only once.
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3-4

The circled numbers in boldface in the figure indicate the order of
development steps, as follows:

1. Run uuidgen to get a skeleton .idl file containing a newly generated
UUID. Complete the file with your interface operation definitions.

2. Compile the completed interface definition file with the IDL
compiler.

3. Write the source code implementation of the interface operations in
various .c and .h files, and compile them with the header file output by
the IDL compiler.

4. Link the output of the previous step with the stub module produced by
the IDL compiler, and the DCE library, libdce.

Of the server files shown in the figure, the application developer is
responsible for writing the following:

timop.idl A skeleton is generated by uuidgen

timop.acf An optional file that affects interaction between the
stub and code module

timop_manager.c Implementation of interface operations
timop_server.c Server setup and related routines
timop_refmon.c  Server reference monitor
timop_server.h  Server data declarations

Of the client files shown in the figure, the developer is responsible for
writing (besides timop.idl and timop.acf, which are the same source files as
were used for the server compilation) timop_client.h, timop_client.c, and
finally a timop_aux.h auxiliary header file, which in timop is the same for
both the server and the client.

An attribute configuration file (timop.acf in the figure) is usually optional; it
contains input to the IDL compiler that alters the IDL output in various
ways. Also optional are the auxiliary files (aux), which contain support
routines for the client or server stub modules.

There is one other important option. The IDL compiler actually operates by
first creating C source modules, and then invoking the C compiler to
produce its object file output form the C source. Normally the C source files
are then deleted. You can specify that the C source be kept, in which case
the stub and auxiliary source files will appear as output too. This possibility
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is shown in dotted lines in the figure. Note that the IDL compiler’s use of the
C compiler is not shown in the figure.

A server can implement more than one interface. The interfaces would be
defined in separate .idl files and compiled separately by the IDL compiler.
The implemented interface operations in various source code files would
then be linked with the IDL output.

3.1.1 The Purpose of Stub Files

The client and server stub files that are the output of the IDL compiler
consist of RPC routines that handle all the mechanical details of packaging
and unpackaging data into messages to be sent over the network, as well as
the actual sending and receiving. All this is done in accordance with the
specifications you made in the .idl and .acf input files. The .idl file
specifications determine how the client/server interaction will occur over
the network (the network protocol). The specifications in the .acf file, if the
file exists, affect only the way the client’s and/or server’s application code
interacts with what goes on in their respective stubs.

3.1.2 IDL Output Default Filenames

If the input .idl file to the IDL compiler is named thorndyke.idl, then the
output files will have the following default names:

 Stub Files
thorndyke_cstub.o and thorndyke_cstub.c for the client
thorndyke_sstub.o and thorndyke_sstub.c for the server
¢ Header File
thorndyke.h
o Auxiliary Files
thorndyke_caux.o and thorndyke_caux.c for the client

thorndyke_saux.o and thorndyke_saux.c for the server
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It is usually a good idea to give the .idl files a name of the form xxx_if.idl
(where the if signifies ‘‘interface file’’), since the default name
transformation in the IDL output can obscure the files’ origin. That way you
will always know that a file named xyz_if.h was generated from an .idl file.

3.2 A Complete Sample Application: timop

The timop program is a tutorial DCE application sample. It exercises the
basic DCE technologies: Threads, RPC, Directory, Time, and Security. It is
not intended to be a model of application techniques in general. A
production application would probably feature such things as better fault
management, the use of getopt(), a Motif interface, internationalization,
performance optimization, and so on; none of which are really important for
this tutorial. The timop sample just tries to perform in a straightforward
illustrative way, insofar as that is possible given the complexity of the
technologies involved.

It is assumed that you have a DCE cell up and running. This means that your
system must support thread-safe system interfaces (for example, for
printf()). You must also be registered as a DCE principal, or at least know
the password of a principal in your cell, in order to do authenticated RPC;
and you must be authorized to use certain of the cell’s facilities (for
example, to execute rgy_edit and place objects in the namespace).

3.2.1 What timop Does

3-6

The timop program has two parts, a client and a server, which are
implemented by the timop_client and timop_server processes,
respectively.

The server offers just one remote operation: clients can learn the span of
time it takes the server to calculate the factorial of a random number
specified by the client. The client spawns a number of threads, each of
which makes parallel remote calls of this operation to designated servers.
The client then prints out the name, invocation order, and time spans
reported by the servers, and the random numbers it asked the servers to take
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3.2.2 The

the factorial of; it also prints out a total time span that encompasses all the
job events at the servers and the sum of the random numbers.

The program uses only UDP (User Datagram Protocol) as a least common
denominator transport provider. Authentication and integrity-secure RPC
are used to make sure the communicated data is correct, and a small degree
of authorization (named-based, not ACLs) is used as well. The Directory
Service is used to identify the servers and to mediate the RPC binding
between client and servers.

All time calculations are done in UTC with TDF = 0 (the Z (Zulu) or UTC
reference time zone, corresponding to and generally equivalent to the
classical UT GMT time zone), not local civil time, because the client(s) and
server(s) may be in different time zones. Note that the server and client
clocks are all different physical clocks, but they are all commensurable with
one another because they are synchronized by DTS.

timop Program and Security

Since timop uses the Security Service, the timop clients and servers must
run as security principals. But in accordance with the tutorial goals of this
example, only a minimal usage is made of security. With the code as
supplied, timop_client is run as a principal named /.../mycell/tclient, and
timop_server is run as a principal named /.../mycell/tserver. These names
should be changed to suit your environment by modifying timop_aux.h (for
example, both tclient and tserver could be the person executing the
program).

The default login contexts used are tclient and tserver. In other words,
when you execute timop_client or timop_server, you must dce_login as
the principal tclient or tserver, respectively, to run the client or server. We
run timop_server with the key of tserver; you therefore need to install the
key of tserver into the key file /tmp/tkeyfile, for example, which you
should have exclusive read/write permission to. (See the comments in
timop_server.h in Section 3.2.8.6 for instructions on how to do this.)

Note that only a simple form of authorization is used, based on principal
names, not ACLs; it is the programmer’s responsibility to implement an
ACL manager and use ACL-based authorization. Default source code for
ACL management is supplied with DCE, but to have used it in this example
would have made the code much too unwieldy.
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3.2.3 Source Files

The timop program is built from the following source files:
¢ Makefile.timop
The makefile
o timop.idl
The IDL file
o timop.acf
The ACF file
e timop_aux.h
The auxiliary header file
 timop_client.h
The client header file
o timop_client.c
The client program
« timop_server.h
The server header file
« timop_server.c
The server program
¢ timop_manager.c
The manager routines
e timop_refmon.c
The server reference monitor
These files are located at dce-root-dir/src/test/sample.

‘“Manager’’ is generic RPC terminology for the part of the server that
actually handles the remote operation(s). In the usual practice, as illustrated
here, server.c contains the nonapplication-specific routines that start up and
initialize the server, and manager.c contains the application-specific
routines that (among other things) implement the remote operations offered.
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3.2.4 Building timop

To build timop, change the contents of Makefile.timop to suit your
environment, then issue the following command:

make -f Makefile.timop

You will have to do this separately for every machine architecture you want
to use.

3.2.5 Running timop

To run timop, install timop_client and timop_server on the machines you
want to use, and issue commands something like the following, using names
chosen to suit your environment.

On one machine, enter:
timop_server /.:/foo
where /.:/foo is the name in the namespace you want this server to have.

You should do this either in the background (&), or on another terminal, or
in another window.

Wait until you get the message:
Server /.:/foo ready.

then enter:

timop_client /.:/foo

This will print out results continuously.

On multiple machines in the same cell, enter:

timop_server /.:/foo # on machine A
timop_server /.:/bar # on machine B
timop_server /.:/zot # on machine C
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timop_client /.:/foo /.:/bar /.:/zot # on machine D
timop_client /.:/zot /.:/bar /.:/foo # on machine E

Note however that if the machines are nof in the same cell, you must use
fully qualified names beginning with /..., not beginning with /.: as in the
example.

3.2.6 Stopping timop

You must kill clients and servers by hand, either by using the interrupt key
or with a combination of the ps and kill commands. This will leave server
binding information in the endpoint map and namespace, which is normal
for persistent servers. The information can always be removed by hand later
on with the cdscp and rpecp system administration commands, if necessary.

3.2.7 Further Exercises

After getting timop running, it would be a good exercise for you to figure
out how it all works by modifying the code in various ways. In the process
of doing this you can start to write your own applications. Some suggestions
(other than the improved error-checking procedures, and so on, that were
previously mentioned) are offered as follows:

¢ Get timop running over some transports other than UDP.

e Intentionally introduce some threads race conditions in order to
experiment with the meaning of reentrancy. You can also fix the
asctime() bug that was intentionally left in the code.

o Parallelize the client in a different way, perhaps by using
pthread_exit() and pthread_join() instead of pthread_cond_signal()
and pthread_cond_wait().

» Receive just one reply from one server, canceling the other outstanding
jobs when the first reply arrives.

e Handle server returns from within the listen loop. Doing this means you
will have to clean the server binding information from the endpoint map
and namespace. You may want to experiment with the
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pthread_signal to_cancel np() library routine and the exception
handling interface (the TRY, FINALLY, and ENDTRY constructs). For
more information, see Chapter 7 of this guide.

» Create a namespace service group, instead of a collection of individually
named server instances.

e Create Version 1.1 of timop to contain an additional operation
consisting of an additive version of the multiplicative factorial operation
(n +=iinstead of n *=1i).

o Use context handles and some DTS primitives to return per-client
cumulative job times.

» Create a server that supports two managers, each offering a separate
implementation of the factorial operation: one implementation remains
the same as in the present version, while the new one (accessed by a
different object UUID) computes the factorial in decreasing order.

o Working with some other users, make the clients and servers run under
several principal identities. An even better way of doing this would be to
have your security administrator create some extra identities for you to
experiment with. (These extra identities would also be useful in the
following exercise.)

o Implement an ACL manager for the timop service, add ACL entries for
several principals and groups, and test the ACL manager by running the
clients under various principal identities.

o Replace the no-op factorial operation with some operation or operations
that would be really useful in your environment. This is the first step in
creating your own DCE application.

3.2.8 The timop Program: A Sample DCE Application

The following subsections present the source code for timop.
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3.2.8.1 The timop.idl Source File

Following are the IDL specifications for timop, contained in timop.idl:

/*

** timop.idl

*%

*% IDL: interface specification for remote time operations.
*/

/* We need explicit handles in timop because our client has multiple
(actually, multi-threaded) RPCs bound to multiple explicitly-specified
servers. */

[uuid (0cf616d8-b858-11c9-8078-02608c0ad3a7),
version(1.0)]
interface timop

{
/* DTS timestamps are already in a universal format,
so are opaque to (the presentation layer of) the RPC
(16 = sizeof(utc_t)). */
const small SIZEOF_TIMESTAMP = 16;
typedef byte timestamp_t [SIZEOF_TIMESTAMP] ;
/* Failure value for remote status indications. */
const long TIMOP_ERR = -1;
/* Get the time span to do a job (random factorial). */
[idempotent]
void timop_getspan (
[in] handle t handle,
[in] long rand,
[out] timestamp_t timestamp,
[out] long *status_p,
[in,out] error_status_t *remote_status p):;
3
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3.2.8.2 The timop.acf Source File

Following are the attribute configuration specifications for timop, contained
in timop.acf:

/*

** timop.acft

* x

** Attribute configuration file for timop interface.
*/

/* Do all marshalling out-of-line. */
[out_of_line]
interface timop

{
/* Declare remote_status p to be a comm status and
fault_status parameter. */
timop_getspan (
[comm_status, fault_status] remote_status_p);
}
3.2.8.3 The timop_aux.h Source File
Following is the auxiliary information for timop, contained in timop_aux.h:
/ *
** timop_aux.h
* %
** Auxiliary info for timop example.
*x There are other ways to do these things, but we’re just
** illustrating the basics here.
*/

/* Principal names for this sample application.

Change them to suit your environment. */
#define CLIENT_ PRINC_NAME (unsigned_char_t *)"/.../mycell/tclient"
#define SERVER_PRINC_NAME (unsigned_char_t *)"/.../mycell/tserver"
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/* Well-known object uuid for this sample application. */
#define OBJ_UUID (unsigned_char_ t *)"2541af56-43a2-11ca-a9f5-02608c0ffedo"

3.2.8.4 The timop_client.h Source File

Following are the contents of timop’s client header file, timop_client.h:

/*

*x timop_client.h

* %

** Client header file for timop interface.
*/

#define MAX_SERVERS 10 /*

#define CLIENT NUM -1 /*

#define MAX_RANDOM (10*1000*1000) /*

#define DO_WORK_OK 0 /* pass */
#define DO_WORK_ERR 1 /* fail */

single-digit server_num’s, 0..
not equal to any server_num */

.9 */

big, to observe threads in action */

/* Package up do_work() args in a struct, because
pthreads start routines take only one argument. */

typedef struct work_arg {
int
unsigned_char_t
rpc_binding_handle_ t
idl_long_int
int

} work_arg t;

/* Prototypes for client. */

int main(int _1, char *_2[1]);
void do_work(work_arg_t *_1);

server_num; /*
*server_name; /*

bind _handle; /*
rand; /*
status; /*

void print_report (unsigned _char_t *_1, int _2,

as ordered in arg list */
as named in arg list */
binding handle to server */
input to the rpc call */
returned from do_work() */

utc_t * 3, long _4);
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3.2.8.5 The timop_client.c Source File

Following is the source code for the timop client application, contained in
timop_client.c:

/ *

* % timop_client.c

* %

*x Client program for timop interface.
*/

#include <errno.h>
#include <stdio.h>
#include <dce/rpc.h>
#include <pthread.h>
#include <time.h>
#include <dce/utc.h>
#include "timop.h"
#include "timop_aux.h"
#include "timop client.h"

long Rand; /* sum of random numbers */
int Workers; /* number of active worker threads */
pthread mutex_t Work_mutex; /* guard access to Workers, Rand */
pthread_cond t Work_cond; /* condition variable for Workers==0 */
/ *
* main()
*
* Get started, and main loop.
*/
int
main(
int argc,
char *argv([])
{
int server_num, nservers, ret;
work_arg t work_arg[MAX_ SERVERS] ;
unsigned_char_t *server_name [MAX_SERVERS],
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*string binding, *protseq;

rpc_binding_handle_t bind_handle [MAX_SERVERS] ;
unsigned32 status;

utc_t start_utc, stop utce, span_utc;
struct tm time_tm;

uuid t obj_uuid;

rpc_ns_handle_t import_context;

pthread_t thread id[MAX_SERVERS] ;

/* Check usage and initialize. */

if (argc < 2 || (nservers = argc-1) > MAX SERVERS) {
fprintf (stderr, .
"Usage: %s server_name ...(up to %d server_name’s)...\n",
argv[0], MAX_ SERVERS) ;
exit (1)
}

. for (server num = 0; server_num < nservers; server_num += 1) {

server_name[server_num] = (unsigned char_t *)argv([l+server_num];

/* Initialize object uuid. */
uuid from_string (OBJ_UUID, &obj_uuid, &status);

if (status != uuid s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE , LINE_);
exit(l);

/* Import binding info from namespace. */
for (server num = 0; server num < nservers; server_num += 1} {
/* Begin the binding import loop. */
rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,
server_name|[server_num}, timop_vl_0_c_ifspec,
&obj_uuid, &import_context, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE _, __LINE );
exit (1);
}
/* Import bindings one at a time. */
while (1) {
rpc_ns_binding_import_next (import_context,
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&bind handle[server_num], &status);
if (status != rpc_s_ok) {

fprintf (stderr, "FAULT: %s:%d\n", FILE ,
__LINE );
exit(1);

}
/* Select, say, the first binding over UDP. */
rpc_binding_to_string_binding(bind_handle[server_num],
&string_binding, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE ,
__LINE_);
exit(1);
}
rpc_string_binding parse(string binding, NULL,
&protseq, NULL, NULL, NULL, &status);
if (status != rpc_s ok) {
fprintf (stderr, "FAULT: %s:%d\n",
_LINE_);
exit (1) ;

FILE _,

}
rpc_string_free(&string_binding, &status);
ret = strcmp(protseq, "ncadg_ip_udp");
rpc_string_free (&protseq, &status);
if (ret == 0) {

break;

}
/* End the binding import loop. */
rpc_ns_binding_import_done (&import_context, &status);
if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n",
exit(1);

FILE _, LINE_ ) ;

/* Annotate binding handles for security. */
for (server num = (; server_num < nservers; server_num += 1) {
rpc _binding_set auth_info(bind handle[server_num],
SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,
rpc_c_authn_dce_secret, NULL /*default login context*/,
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rpc_c_authz_name, &status):;
if (status != rpc_s_ok) {
fprintf(stderr, "FAULT: %s:%d\n", _FILE , _ LINE_);
exit(1);

/* Initialize mutex and condition variable. */
ret = pthread mutex_init (&Work_mutex, pthread_mutexattr_default);
if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n"
exit(1);

FILE

[ J— —

LINE_ ):

}
ret = pthread_cond_init (&Work_cond, pthread_ condattr_default) ;
if (ret == -1) { '
fprintf (stderr, "FAULT: %s:%d\n", FILE , __LINE );
exit(1);

/* Initialize random number generator. */
srandom (time (NULL) ) ;

/* Initialize work args that are constant throughout main loop. */

for (sefver_num = 0; server num < nservers; server_num += 1) '{
work_arglserver_num].server_num = Server_num;
work_arg[server_num].server_name = server_name[server_num];
work_arg[servér_num] .bind_handle = bind_handle[server_num] ;

/* Print out the year and date, just once. */
ret = utc_gettime (&start_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE__, _ LINE );
exit (1);

}

ret = utc _gmtime (&time_tm, NULL, NULL, NULL, &start_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", FILE , LINE_);
exit(1);

} .

fprintf(stdout, "\n%24.24s UTC (Z time zone)\n\n", asctime(&time_tm));
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/* Main loop -- never exits -- interrupt to quit. */
while (1) {
/* Per-loop initialization. We’re single-threaded here, so
locks and reentrant random number generator unnecessary. */
Rand = 0;
Workers = nservers;
for (server_num = 0; server_num < nservers; server_num += 1) {
work_arg[server_num] .rand = random( ) $MAX_RANDOM;

/* Get client’s start timestamp. */

ret = utc_gettime(&start_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE_ , _ LINE );
exit(1);

/* Spawn a worker thread for each server. */
for (server_num = 0; server num < nservers; server _num += 1) {
ret = pthread create(&thread_id[server num],
pthread_attr default, (void *)do_work,
(void *)&work_arg[server_numj) ;
if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE_ ,
_LINE );
exit(1);

/* Reap the worker threads; pthread_cond wait() semantics
requires it to be coded this way. */
ret = pthread _mutex lock (&Work mutex) ;
if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE , __LINE__);
exit(1);

}
while (Workers != 0) {
ret = pthread_cond_wait (&Work_cond, &Work mutex) ;

if (ret == -1) {
fprintf(stderr, "FAULT: %s:%d\n", _ FILE_ _,
__LINE_);
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exit (1) ;
}
}
ret = pthread mutex_unlock (&Work_mutex) ;
if (ret == -1) {
fprintf (stderr, "FAULT: %$s:%d\n", __FILE_, _ LINE_ );
exit (1) ;

}

/* Reclaim storage. */

for (server_num = 0; server_num < nservers; server _num += 1) {
ret = pthread_detach(&thread_id[server_num]) ;

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE ,
__LINE__);
exit(l);
}

/* Any failures? */
for (server_num = 0; server num < nservers; server_num += 1) {
if (work_arg(server_num].status != DO_WORK_OK) {
exit(1l);

/* Get client’s stop timestamp. */
ret = utc_gettime(&stop_utc);

if (ret == -1) {
fprintf(stderr, "FAULT: %s:%d\n", _ FILE__, _ LINE );
exit(1);

}

/* Calculate the span of client’s start and stop timestamps. */
ret = utc_spantime(&span_utc, &start_utc, &stop_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE_, _ LINE );
exit(l);

}

/* Print total results. */
print_report ( (unsigned_char_t *)"(client)", CLIENT NUM,
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&span_utc, Rand);

/* Not reached. */
}
/*
* do_work ()
*
* Do the work. This is done in parallel threads, so we want it
* (and the subroutine print_report() it calls) to be reentrant.
*/
void
do_work (
work _arg_t *work_arg_p)
{

int
unsigned_char_t
rpc_binding handle t

*status_p, ret;
*server_name;
bind_handle;

server_num,
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rand, status;
remote_status =

idl_long_int
error_status_t IrpcC_s_ok;

timestamp_t timestamp;

/* Unpackage the args into local variables. */
server_num = work_arg_p->server_num;
server_name = work_arg_p->Server_name;

bind handle = work_arg p->bind _handle;

rand = work arg_p->rand;

status_p = &work_arg p->status;

/* Do the RPC! */

timop_getspan (bind_handle, rand, timestamp, &status, &remote_ status);

if (remote status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE );
*status_p = DO_WORK_ERR;
pthread_exit (NULL) ;
/* Not reached. */
}
if (status != rand) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE );
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*status_p = DO_WORK_ERR;
pthread_exit (NULL) ;
/* Not reached. */

/* Print report. Not a critical section here because print_report ()
is supposed to be implemented to be reentrant. */
print_report (server name, server_num, (utc_t *)timestamp, rand);

/* Update Rand and decrement Workers. As implemented, it is a
critical section, so must be locked. */
ret = pthread mutex_lock (&Work mutex) ;

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE_ );
exit(1);
}
Workers -= 1;
if (Workers == 0) {
/* Last worker signals main thread. */
ret = pthread cond_signal (&Work_cond) ;
if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE_, ___LINE );
exit(1);
}
}
Rand += rand;
ret = pthread mutex_unlock (&Work_mutex) ;
if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", FILE_, _ LINE_ );
exit(1l);
}
/* Done. */

*status_p = DO_WORK_OK;
pthread_exit (NULL) ;
/* Not reached. */

print_report ()

Print DTS timestamp interval, to millisecond granularity.
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*  * ¥

*/

void

Implemented this way so it is reentrent (assuming all the underlying
0S subroutines it calls are reentrant).

This kind of timestamp manipulation is always messy -- see the
manual for the formats of structures and print-strings we use.

print_report (

{

#define
#define
#define
#define
#define
#define

unsigned_char_t *server_name,
int server_num,
utc_t *utc_p,

long rand)
LINE_LEN 78

COL1 0

COL2 44

COL3a 47

COL3b 60

COL4 70

char asctime buf[26], ascinacc_buf[26],

time ns_buf[10], inacc ns_buf[10],
report [LINE_LEN+3] ;

int inacc_sec, ret;
long time ns, inacc_ns;
struct tm time tm, inacc_tm;

/* Print server_name into report. Pad or truncate as necessary. */
sprintf (report+COL1, "%*.*s ", COL2-2, COL2-2, (char *)server_name);

/* Print server num into report. */
if (server num != CLIENT NUM) {

sprintf (report+COL2, "%$1.1d ", server_num);
} else {

sprintf (report+COL2, "%1l.1s ", "*");

/* Format utc_p and print it into report. */
ret = utc_gmtime(&time tm, &time_ns, &inacc_tm, &inacc_ns, utc_p);
if (ret == -1) {

fprintf (stderr, "FAULT: %s:%d\n", __FILE__, __ LINE_ );
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exit(1);
}
memcpy (asctime_buf, asctime(&time tm), 26); /* reentrancy bug! */
memcpy (ascinacc_buf, asctime(&inacc_tm), 26); /* reentrancy bug! */
sprintf (time_ns_buf, "%9.9d", time ns);
sprintf (inacc_ns_buf, "%9.9d", inacc_ns);
inacc_sec = inacc_tm.tm yday*24*60*60 + inacc_tm.tm hour*60*60 +
inacc_tm.tm min*60 + inacc_tm.tm sec;
sprintf (report+COL3a, "%8.8s.%3.3sI", asctime_buf+l1,
time _ns buf);

if (inacc_tm.tm year != -1) {
sprintf (report+COL3b, "%4.4d.%3.3s ", inacc_sec,
inacc_ns_buf) ;
} else {
sprintf (report+COL3b, "%8.8s ", "infinity");
}

/* Print rand into report. */
if (server_num != CLIENT NUM) {
sprintf (report+COL4, "%8d\n", rand);
} else {
sprintf (report+COL4, "%8d\n\n", rand);

/* Output report. */
fprintf (stdout, "%s", report);

return;
}
3.2.8.6 The timop_server.h Source File
Following are the contents of the timop server’s header file,
timop_server.h:
/*
o timop_server.h
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hid Server header file for timop interface.

*/

#define NUM_OBJS 1 /* num of objs supported */
#define MAX CONC_CALLS PROTSEQ 5 /* max conc calls per protseq */
#define MAX_CONC_CALLS_TOTAL 10 /* max conc calls total */

/* Success/failure for remote procedures. */
#define GETSPAN_OK 0 /* pass */
#define GETSPAN_ERR 1 /* fail */

/* Defines for access control. */

#define GETSPAN_OP 1 /* requested operation */
#define GRANT_ACCESS 0 /* reference monitor success */
#define DENY_ACCESS 1 /* reference monitor failure */
#define IS_AUTHORIZED 0 /* authorization success */
#define NOT_ AUTHORIZED 1 /* authorization failure */

/* Server key table for this example. Change name of keyfile to suit your
environment, and populate it with "rgy_edit ktadd tserver /tmp/tkeyfile". */

#define KEYFILE "/tmp/tkeyfile"

#define KEYTAB "FILE:" ## KEYFILE

/* Prototypes for server. */

int main(int _1, char *_2[1);

void getspan_ep (rpc_binding handle t _1, idl_long_int _2, timestamp t _3,
idl_long int *_4, error_status_t *_5);

int do_getspan(idl_long_int _1, timestamp t _2);

int ref_mon(rpc_binding handle_t _1, int _2);

int is_authorized(unsigned char_t *_1, int _2);

3.2.8.7 The timop_server.c Source File

Following is the timop server application setup source code, contained in
timop_server.c:

/ *
*% timop_server.c
*%
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* %

*/

#include
#include
#include
#include
#include

Server program for timop interface.

<stdio.h>
<dce/rpc.h>
"timop.h"
"timop_aux.h"
"timop_server.h"

/* Declare manager EPV. This EPV could be bulk-initialized here,
but we do prefer to do it one operation at a time in main(). */
timop vl _0_epv_t

manager._epv;

/ *
* main()
*
* Get started -- set up server the way we want it, and call listen loop.
*/
int
main (
int argc,
char *argv(])
{
unsigned_char_t *gerver_name;
rpc_binding_vector_t *bind_vector_p;
unsigned32 _ status;
int i;
uuid_t type_uuid, obj_uuid;
struct {
unsigned32 count;
uuid t *uuid [NUM_OBJS] ;
} obj_uuid _vec = {NUM _OBJS, {&obj_uuid}};
/* Check usage and initialize. */
if (arge !'= 2) {
fprintf (stderr, "Usage: %s namespace_server_name\n", argvi0]);
exit(1l);
}
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server_name = (unsigned_char_t *)argv[1];

/* Initialize manager EPV (just one entry point in this example). */ -
manager_epv.timop_getspan = getspan_ep;

/* Initialize object uuid (just one in this example). */
uuid_from string(OBJ_UUID, &obj_uuid, &status);

if (status != uuid s _ok) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE , LINE__);
exit(1);

}

/* Initialize type uuid (just one in this example). */

uuid create(&type uuid, &status);

if (status != uuid_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE );
exit(1);

}

/* Register object/type uuid associations with rpc runtime. */
rpc_object_set_type(&obj_uuid, &type_uuid, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n",
exit(l);

FILE__, __LINE_);

/* Register interface/type_uuid/epv associations with rpc runtime. */
rpc_server_register_ if (timop_vl_0_s_ifspec, &type_uuid,
(rpc_mgr_epv_t)&manager_epv, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", FILE ,

exit(1);

LINE__);

/* Tell rpc runtime we want to use all supported protocol sequences. */
rpc_server_use_all_protseqgs (MAX_CONC_CALLS PROTSEQ, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE );
exit(1l);
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/* Ask the runtime which binding handle(s) it’s going to let us use. */
rpc_server_ing bindings (&bind vector_p, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE_ );
exit(1);

/* Register authentication info with rpc runtime. */
rpc_server_register_auth info (SERVER_PRINC_NAME,
rpc_c_authn_dce secret, NULL /*default key retrieval function*/,
KEYTAB /*server key table for this example*/, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE
exit(1);

, __LINE );

/* Establish server’s login context(s), if necessary.
In this example we just use the default login context,
so we do NOTHING here. */

/* Decide what to do upon server termination. It would be prudent
to handle signals and decide what to do if the listen loop returns
(e.g., clean exported info out of endpoint map and namespace,
something that is not usually done for a persistent server),
but since this is just an example we don’t do those things here. */

/* Register binding info with endpoint map. */
rpc_ep_register (timop_vl_0_s_ifspec, bind_vector_p,
(uuid_vector_t *)&obj_uuid_vec,
(unsigned _char_t *)"timop server, version 1.0", &status);
if (status != rpc_s ok) {
fprintf (stderr, "FAULT: %s:%d\n", __ FILE , _ LINE );
exit(1);

/* Export binding info to the namespace. */
rpc_ns_binding_export (rpc_c_ns syntax_dce, server_name,
timop_vl_0_s_ifspec, bind vector_p,
(uuid _vector_t *)&obj_uuid_vec, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", FILE__, _ LINE_);
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exit(1);
}

/* Listen for service requests (semi-infinite ldop). */
fprintf (stdout, "Server %s ready.\n", server_name);
rpc_server_listen(MAX CONC_CALLS_TOTAL, &status);
if (status != rpc_s_ok) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE , __LINE );
exit (1) ;

/* Returned from listen loop. We haven’t arranged for this. */
fprintf (stderr, "FAULT: %s:%d\n", FILE , LINE__);
exit (1) ;

3.2.8.8 The timop_manager.c Source File

*/

#include
#include
#include
#include
#include

/*

Following is the timop server application-specific source code, contained in
timop_manager.c:

timop_manager.c

Manager routines for timop interface.
<stdio.h>

<dce/utc.h>

"timop.h"

"timop_aux.h"
"timop_server.h"

getspan_ep()

Entry point for timop getspan() operation.
Note it is reentrant, so we can have a multi-threaded server.
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x/
void
getspan_ep (
rpc_binding_handle_t bind handle,
idl_long_int rand,
timestamp_t timestamp,
idl_long_int *status_p,
error_status_t *remote_status_p)
{
int ret;
/* Call reference monitor, to make authorization decision. */
ret = ref_mon(bind_handle, GETSPAN_OP);
if (ret == DENY_ACCESS) {
*status_p = TIMOP_ERR;
return;
}
/* Service the request, i.e., do the actual remote procedure. */
ret = do_getspan(rand, timestamp);
if (ret == GETSPAN_ERR) ({
*status_p = TIMOP_ERR;
return;
}
/* Return the input random number as a status value (!= TIMOP_ERR). */
*status_p = rand;
/* Return all results to client, and resume listen loop. */
return;
}
/*
* do_getspan( )
*
* Do the actual remote procedure.
*/
int
do_getspan (
idl_long_int rand,
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timestamp_t timestamp)
{

long i;

volatile long n;

int ret;

utc_t start_utc, stop_utc;

/* Get server'’s start timestamp. */

ret = utc_gettime(&start_utc);

if (ret == -1) {
fprint f (stderr, "FAULT: %$s:%d\n", _ FILE_, _ LINE );
return (GETSPAN_ERR) ;

}

/* Do service (here a random factorial, but could be anything). */

for n=1=1; i <=rand; i += 1) {
n *= i; /* Burn cpu —— use your imagination. */

}

/* Get server’s stop timestamp. */

ret = utc_gettime (&stop_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", FILE , __LINE );
return (GETSPAN_ERR) ;

}

/* Calculate the span of server’s start and stop timestamps. */

ret = utc_spantime((utc_t *)timestamp, &start_utc, &stop_utc);

if (ret == -1) {
fprintf (stderr, "FAULT: %s:%d\n", __FILE , _ LINE_ );
return (GETSPAN_ERR) ;

}

/* Success. */

return (GETSPAN_OK) ;

}
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3.2.8.9 The timop_refmon.c Source Files

Following is the timop server application reference monitor source code,
contained in timop_refmon.c:

/*

*k timop_refmon.c

**

* % Reference monitor for timop example.
*/

#include <stdio.h>
#include "timop_aux.h"
#include "timop.h"
#include "timop_ server.h"

/ *
* ref_mon()
*
* Reference monitor for timop.
* It checks generalities, then calls is_authorized() to check specifics.
*/
int
ref_mon (
rpc_binding _handle_t bind_handle,
int requested_op)
{
int ret;
rpc_authz_handle t privs;
unsigned_char_t *client_princ_name, *server_princ_name;
unsigned32 protect_level, authn_svc, authz sve,
status;

/* Get client auth info. */

rpc_binding_ing auth_client (bind handle, &privs, &server_princ_name,
&protect_level, &authn_svc, &authz svc, &status);

if (status != rpc_s ok) {

fprintf (stderr, "FAULT: %s:%d\n" FILE__,

[ J—

LINE_ );
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return (DENY_ACCESS) ;

/* Check if selected authn service is acceptable to us. */
if (authn_svc != rpc_c_authn_dce secret) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE
return (DENY_ACCESS) ;

LINE__);

/* Check if selected protection level is acceptable to us. */

if (protect_level != rpc_c_protect_level pkt_ integ

&& protect_level != rpc_c_protect_level pkt_privacy) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE_ );
return (DENY_ACCESS) ;

/* Check if selected authz service is acceptable to us. */
if (authz_svc != rpc_c_authz_name) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE , _ LINE_);
return (DENY_ACCESS) ;
}
/* If rpc_c_authz_dce were being used instead of rpc_c_authz name,
privs would be a PAC (sec_id_pac_t *), not a name as it is here. */
client_princ_name = (unsigned char_t *)privs;

/* Check if selected server principal name is supported. */

if (strcmp(server_princ_name, SERVER_PRINC NAME) != 0) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE__, _ LINE_ );
return (DENY_ACCESS) ;

/* Now that things seem generally OK, check the specifics. */
ret = is_authorized(client_princ name, requested_op);
if (ret == NOT_AUTHORIZED) {
fprintf (stderr, "FAULT: %s:%d\n", _ FILE__, _ LINE );
return (DENY_ACCESS) ;

/* Cleared all the authorization hurdles -- grant access. */
return (GRANT ACCESS) ;
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/*
* is_authorized()
*
* Check authorization of client to the requested service.
* This could be arbitrarily application-specific, but we keep it simple.
* A normal application (i.e., one using PACs & ACLs) would be using
* sec_acl_mgr_is_authorized() instead of this function.
*/
int
is_authorized(
unsigned char_t *client_princ_name,
int requested_op)
{
/* Check if we want to let this client do this operation. */
if (strcmp(client_princ_name, CLIENT PRINC _NAME) == 0
&& requested_op == GETSPAN_OP) {
/* OK, we’ll let this access happen. */
return (IS_AUTHORIZED) ;
}
/* Sorry, Charlie. */
return (NOT_AUTHORIZED) ;
}
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Chapter 4

Introduction to Multithreaded
Programming

DCE Threads is a user-level (nonkernel) threads package based on the
pthreads interface specified by POSIX in 1003.4a, Draft 4. This chapter
introduces multithreaded programming, which is the division of a program
into multiple threads (parts) that execute concurrently. In addition, this
chapter describes four software models that improve multithreaded
programming performance.

A thread is a single sequential flow of control within a program. It is the
active execution of a designated routine, including any nested routine
invocations. Within a single thread, there is a single point of execution.
Most traditional programs consist of a single thread.

Threads are lightweight processes that share a single address space. Each
thread shares all the resources of the originating process, including signal
handlers and descriptors. Each thread has its own thread identifier,
scheduling policy and priority, errno value, thread-specific data bindings,
and the required system resources to support a flow of control.
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4.1 Advantages of Using Threads

With a threads package, a programmer can create several threads within a
process. Threads execute concurrently, and within a multithreaded process,
there are at any time multiple points of execution. Threads execute within a
single address space. Multithreaded programming offers the following
advantages:

e Performance

Threads improve the performance (throughput, computational speed,
responsiveness, or some combination of these) of a program. Multiple
threads are useful in a multiprocessor system where threads run
concurrently on separate processors. In addition, multiple threads also
improve program performance on single processor systems by permitting
the overlap of input and output or other slow operations with
computational operations.

You can think of threads as executing simultaneously, regardless of the
number of processors present. You cannot make any assumptions about
the start or finish times of threads or the sequence in which they execute,
unless explicitly synchronized.

Shared Resources

An advantage of using multiple threads over using separate processes is
that the former share a single address space, all open files, and other
resources.

Potential Simplicity

Multiple threads can reduce the complexity of some applications that
are inherently suited for threads.
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4.2 Software Models for Multithreaded Programming

The . following subsections describe four software models for which
multithreaded programming is especially well suited:

e Boss/worker model
¢ Work crew model
« Pipelining model

¢ Combinations of models

4.2.1 Boss/Worker Model

In a boss/worker model of program design, one thread functions as the boss
because it assigns tasks to worker threads. Each worker performs a different
type of task until it is finished, at which point the worker interrupts the boss
to indicate that it is ready to receive another task. Alternatively, the boss
polls workers periodically to see whether or not each worker is ready to
receive another task.

A variation of the boss/worker model is the work queue model. The boss
places tasks in a queue, and workers check the queue and take tasks to
perform. An example of the work queue model in an office environment is a
secretarial typing pool. The office manager puts documents to be typed in a
basket, and typists take documents from the basket to work on.

4.2.2 Work Crew Model

In the work crew model, multiple threads work together on a single task.
The task is divided into pieces that are performed in parallel, and each
thread performs one piece. An example of a work crew is a group of people
cleaning a house. Each person cleans certain rooms or performs certain
types of work (washing floors, polishing furniture, and so forth), and each
works independently.
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Figure 4-1 shows a task performed by three threads in a work crew model.

Figure 4-1. Work Crew Model

Task
Thread A

Setup Thread B Cleanup

Thread C

(Time)

4.2.3 Pipelining Model

In the pipelining model, a task is divided into steps. The steps must be
performed in sequence to produce a single instance of the desired output,
and the work done in each step (except for the first and last) is based on the
preceding step and is a prerequisite for the work in the next step. However,
the program is designed to produce multiple instances of the desired output,
and the steps are designed to operate in a parallel time frame so that each
step is kept busy.

An example of the pipelining model is an automobile assembly line. Each
step or stage in the assembly line is continually busy receiving the product
of the previous stage’s work, performing its assigned work, and passing the
product along to the next stage. A car needs a body before it can be painted,
but at any one time numerous cars are receiving bodies, and then numerous
cars are being painted.

In a multithreaded program using the pipelining model, each thread
represents a step in the task. Figure 4-2 shows a task performed by three
threads in a pipelining model.
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Figure 4-2. Pipelining Model

Task

Thread A Thread B Thread C

(Time)

4.2.4 Combinations of Models

You may find it appropriate to combine the software models in a single
program if your task is complex. For example, a program could be designed
using the pipelining model, but one or more steps could be handled by a
work crew. In addition, tasks could be assigned to a work crew by taking a
task from a work queue and deciding (based on the task characteristics)
which threads are needed for the work crew.

4.3 Potential Disadvantages with Multithreaded
Programming

When you design and code a multithreaded program, consider the following
problems and accommodate or eliminate each problem as appropriate:

o Potential Complexity

The level of expertise required for designing, coding, and maintaining
multithreaded programs may be higher than for most single-threaded
programs because multithreaded programs may need shared access to
resources, mutexes, and condition variables. Weigh the potential benefits
against the complexity and its associated risks.
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Nonreentrant Software

If a thread calls a routine or library that is not reentrant, use the global
locking mechanism to prevent the nonreentrant routines from modifying
a variable that another thread modifies. Section 6.4 discusses
nonreentrant software in more detail.

Note: A multithreaded program must be reentrant; that is, it must
allow multiple threads to execute at the same time.
Therefore, be sure that your compiler generates reentrant
code before you do any design or coding work for
multithreading. (Many C, Ada, Pascal, and BLISS
compilers generate reentrant code by default.)

If your program is nonreentrant, any thread
synchronization techniques that you use are not
guaranteed to be effective.

Priority Inversion

Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads. Section 6.5
discusses priority inversion in more detail.

Race Conditions

A type of programming error called a ‘‘race condition’’ causes
unpredictable and erroneous program behavior. Section 6.6.1 discusses
race conditions in more detail.

Deadlocks

A type of programming error called a ‘‘deadlock’ causes two or more
threads to be blocked from executing. Section 6.6.2 discusses deadlocks
in more detail.

Blocking Calls

Certain system or library calls may cause an entire process to block
while waiting for the call to complete, thus causing all other threads to
stop executing. Section 6.1.2 discusses blocking in more detail.
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Chapter 5
Thread Concepts and Operations

This chapter discusses concepts and techniques related to DCE Threads.
The following topics are covered:

¢ Thread operations

» Attributes objects

Synchronization objects

One-time initialization code

Thread-specific data
Thread cancellation

o Thread scheduling

For detailed information on the multithreading routines referred to in this
chapter, see the reference page for that routine in the OSF DCE Application
Development Reference.
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5.1 Thread Operations

Figure 5-1.

A thread changes states as it runs, waits to synchronize, or is ready to be run.
A thread is in one of the following states:

o Waiting

The thread is not eligible to execute because it is synchronizing with
another thread or with an external event.

e Ready
The thread is eligible to be executed by a processor.
* Running
The thread is currently being executed by a processor.
e Terminated
The thread has completed all of its work.
Figure 5-1 shows the transitions between states for a typical thread

implementation.

Thread State Transitions

L Waiting |—->| . Ready |<—>| Running |—>I Terminated |

The operations that you can perform include starting, waiting for,
terminating, and deleting threads.

5.1.1 Starting a Thread

5-2

To start a thread, create it using the pthread_create() routine. This routine
creates the thread, assigns specified or default attributes, and starts
execution of the function you specified as the thread’s start routine. A
unique identifier (handle) for that thread is returned from the
pthread_create() routine.
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5.1.2 Terminating a Thread

A thread exists until it terminates and the pthread_detach() routine is
called for the thread. The pthread_detach() routine can be called for a
thread before or after it terminates. If the thread terminates before
pthread_detach() is called for it, then the thread continues to exist and can
be synchronized (joined) until it is detached. Thus, the object (thread) can
be detached by any thread that has access to a handle to the object.

Note that pthread_detach() must be called to release the memory allocated
for the thread objects so that this storage does not build up and cause the
process to run out of memory. For example, after a thread returns from a
call to join, it detaches the joined-to thread if no other threads join with it.
Similarly, if a thread has no other threads joining with it, it detaches itself so
that its thread object is deallocated as soon as it terminates.

A thread terminates for any of the following reasons:
e The thread returns from its start routine; this is the usual case.
o The thread calls the pthread_exit() routine.

The pthread_exit() routine terminates the calling thread and returns a
status value, indicating the thread’s exit status to any potential joiners.

 The thread is canceled by a call to the pthread_cancel() routine.

The pthread_cancel() routine requests termination of a specified thread
if cancellation is permitted. (See Section 5.6 for more information on
canceling threads and controlling whether or not cancellation is
permitted.)

¢ An error occurs in the thread.

5.1.3 Waiting for a Thread to Terminate

A thread waits for the termination of another thread by calling the
pthread_join() routine. Execution in the current thread is suspended until
the specified thread terminates. If multiple threads call this routine and
specify the same thread, all threads resume execution when the specified
thread terminates.
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If you specify the current thread with the pthread_join() routine, a
deadlock results. (See Section 6.6.2 for more information.)

Do not confuse pthread_join() with other routines that cause waits and that
are related to the use of a particular multithreading feature. For example,
use pthread_cond_wait() or pthread_cond_timedwait() to wait for a
condition variable to be signaled or broadcast (see Section 5.3.2 for
information about condition variables).

5.1.4 Deleting a Thread

A thread is automatically deleted after it terminates; that is, no explicit
deletion operation is required. Use pthread_detach() to free the storage of
a terminated thread. Use pthread_cancel() to request that a running thread
terminate itself.

If the thread has not yet terminated, the pthread_detach() routine marks
the thread for deletion, and its storage is reclaimed immediately when the
thread terminates. A thread cannot be joined or canceled after the
pthread_detach() routine is called for the thread, even if the thread has not
yet terminated.

If a thread that is not detached terminates, its storage remains so that other
threads can join with it. Storage is reclaimed when the thread is eventually
detached.

For more information, see Section 5.1.2.

5.2 Attributes Objects
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An attributes object is used to describe the behavior of threads, mutexes,
and condition variables. This description consists of the individual attribute
values that are used to create an attributes object. Whether an attribute is
valid depends on whether it describes threads, mutexes, or condition
variables.

When you create an object, you can accept the default attributes for that
object, or you can specify an attributes object that contains individual
attributes that you have set. For a thread, you can also change one or more
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attributes  after thread execution starts; for example, calling the
pthread_setprio() routine to change the priority that you specified with the
pthread_attr_setprio() routine.

The following subsections describe how to create and delete attributes
objects and describe the individual attributes that you can specify for
different objects. v

5.2.1 Creating an Attributes Object

To create an attributes object, use one of the following routines, depending
on the type of object to which the attributes apply:

« The pthread_attr_create() routine for thread attributes objects

o The pthread_condattr_create() routine for condition variable
attributes objects

 The pthread_mutexattr_create() routine for mutex attributes objects

These routines create an attributes object containing default values for the
individual attributes. To modify any attribute values in an attributes object,
use one of the set routines described in the following subsections.

Creating an attributes object or changing the values in an attributes object
does not affect the attributes of objects previously created.

5.2.2 Deleting an Attributes Object

To delete an attributes object, use one of the following routines:
o The pthread_attr_delete() routine for thread attributes objects

» The pthread_condattr_delete() routine for condition variable attributes
objects

o The pthread_mutexattr_delete() routine for mutex attributes objects

Deleting an attributes object does not affect the attributes of objects
previously created.

OSF DCE Application Development Guide 5-5



DCE Threads

5.2.3 Thread Attributes

A thread attributes object allows you to specify values for thread attributes
other than the defaults when you create a thread with the pthread_create()
routine. To use a thread attributes object, perform the following steps:

1. Create a thread attributes object by calling the
pthread_attr_create() routine.

2. Call the routines discussed in the following subsections to set the
individual attributes of the thread attributes object.

3. Create a new thread by calling the pthread_create() routine and
specifying the identifier of the thread attributes object.

You have control over the following attributes of a new thread:
e Scheduling policy attribute
o Scheduling priority attribute
o Inherit scheduling attribute

o Stacksize attribute

5.2.3.1 Scheduling Policy Attribute

The scheduling policy attribute describes the overall scheduling policy of
the threads in your application. A thread has one of the following scheduling
policies:

+ SCHED_FIFO (First In, First Out)

The highest-priority thread runs until it blocks. If there is more than one
thread with the same priority, and that priority is the highest among
other threads, the first thread to begin running continues until it blocks.

o SCHED_RR (Round Robin)

The highest-priority thread runs until it blocks; however, threads of
equal priority, if that priority is the highest among other threads, are
timesliced. (Timeslicing is a mechanism that ensures that every thread is
allowed time to execute by preempting running threads at fixed
intervals.)
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« SCHED_OTHER, SCHED FG NP (Default)

All threads are timesliced. SCHED OTHER and SCHED_FG_NP do
the same thing; however, SCHED_FG_NP is simply more precise
terminology. The FG stands for foreground and the NP stands for
nonportable. All threads running under the SCHED OTHER and
SCHED_FG_NP policy, regardless of priority, receive some
scheduling. Therefore, no thread is completely denied execution time.
However, SCHED_OTHER and SCHED_FG_NP threads can be
denied execution time by SCHED_FIFO or SCHED_RR threads.

Routines implemented by DCE Threads that are not specified by Draft 4
of the POSIX 1003.4a standard are indicated by an _np suffix on the
name. These routines are not portable.

o SCHED_BG_NP (Background)

Like SCHED_OTHER and SCHED FG_NP, SCHED BG_NP
ensures that all threads, regardless of priority, receive some scheduling.
However, SCHED_BG NP can be denied execution by the
SCHED_FIFO or SCHED _RR policies. The BG stands for
background and the NP stands for nonportable.

The following two methods are used to set the scheduling policy attribute:

o Set the scheduling policy attribute in the attributes object, which
establishes the scheduling policy of a new thread when it is created. To
do this, call the pthread_attr_setsched() routine.

o Change the scheduling policy of an existing thread (and at the same
time, the scheduling priority) by calling the pthread_setscheduler()
routine.

Section 5.7 describes and shows the effect of scheduling policy on thread
scheduling.

5.2.3.2 Scheduling Priority Attribute

The scheduling priority attribute specifies the execution of a thread. This
attribute is expressed relative to other threads on a continuum of minimum
to maximum for each scheduling policy.
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A thread’s priority falls within one of the following ranges, which are
implementation defined:

« PRI_FIFO_MIN to PRI_FIFO_MAX
« PRI_RR_MIN to PRI_RR_MAX

« PRI_OTHER_MIN to PRI_OTHER_MAX
« PRI FG_MIN_NP to PRI FG_MAX_NP

« PRI_BG_MIN_NP to PRI_BG_MAX_NP

Section 5.7 describes how to specify priorities between the minimum and
maximum values, and it also discusses how priority affects thread
scheduling.

The following two methods are used to set the scheduling priority attribute:

o Set the scheduling priority attribute in the attributes object, which
establishes the execution priority of a new thread when it is created. To
do this, call the pthread_attr_setprio() routine.

¢ Change the scheduling priority attribute of an existing thread by calling
the pthread_setprio() routine. (Call the pthread_setscheduler()
routine to change both the scheduling priority and scheduling policy of
;in existing thread.)

5.2.3.3 Inherit Scheduling Attribute

The inherit scheduling attribute specifies whether a newly created thread
inherits the scheduling attributes (scheduling priority and policy) of the
creating thread (the default), or uses the scheduling attributes stored in the
attributes object. Set this attribute by calling the
pthread_attr_setinheritsched() routine.
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5.2.3.4 Stacksize Attribute

The stacksize attribute is the minimum size (in bytes) of the memory
required for a thread’s stack. The default value is machine dependent. Set
this attribute by calling the pthread_attr_setstacksize() routine.

5.2.4 Mutex Attributes -

A mutex attributes object allows you to specify values for mutex attributes
other than the defaults when you create a mutex with the
pthread_mutex_init() routine.

The mutex type attribute specifies whether a mutex is fast, recursive, or
nonrecursive. (See Section 5.3.1 for definitions.) Set the mutex type
attribute by calling the pthread_mutexattr_setkind_np() routine. (Any
routine with the _np suffix is nonportable.) If you do not use a mutex
attributes object to select a mutex type, calling the pthread_mutex_init()
routine creates a fast mutex by default.

5.2.5 Condition Variable Attributes

Currently, attributes affecting condition variables are not defined. You
cannot change any attributes in the condition variable attributes object.

Section 5.3.2 describes the purpose and uses of condition variables.

5.3 Synchronization Objects

In a multithreaded program, you must use synchronization objects whenever
there is a possibility of corruption of shared data or conflicting scheduling of
threads that have mutual scheduling dependencies. The following
subsections discuss two kinds of synchronization objects: mutexes and
condition variables.
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5.3.1 Mutexes

Figure 5-2.

A mutex (mutual exclusion) is an object that multiple threads use to ensure
the integrity of a shared resource that they access, most commonly shared
data. A mutex has two states: locked and unlocked. For each piece of
shared data, all threads accessing that data must use the same mutex; each
thread locks the mutex before it accesses the shared data and unlocks the
mutex when it is finished accessing that data. If the mutex is locked by
another thread, the thread requesting the lock is blocked when it tries to lock
the mutex if you call pthread_mutex_lock() (see Figure 5-2). The blocked
thread continues and is not blocked if you call pthread_mutex_trylock().

Only One Thread Can Lock a Mutex

access
lock @ | block

Thread A Thread B

Each mutex must be initialized. (To initialize mutexes as part of the
program’s one-time initialization code, see Section 5.4.) To initialize a
mutex, use the pthread_mutex_init() routine. This routine allows you to
specify an attributes object, which allows you to specify the mutex type.
The following are types of mutexes:

o A fast mutex (the default) is locked only once by a thread. If the thread
tries to lock the mutex again without first unlocking it, the thread waits
for itself to release the first lock and deadlocks on itself.

This type of mutex is called ‘‘fast’’ because it can be locked and
unlocked more rapidly than a recursive mutex. It is the most efficient
form of mutex.

o A recursive mutex can be locked more than once by a given thread
without causing a deadlock. The thread must call the
pthread_mutex_ualock() routine the same number of times that it
called the pthread_mutex_lock() routine before another thread can
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lock the mutex. Recursive mutexes have the notion of a mutex owner.
When a thread successfully locks a recursive mutex, it owns that mutex
and the lock count is set to 1. Any other thread attempting to lock the
mutex blocks until the mutex becomes unlocked. If the owner of the
mutex attempts to lock the mutex again, the lock count is incremented,
and the thread continues running. When an owner unlocks a recursive
mutex, the lock count is decremented. The mutex remains locked and
owned until the count reaches 0 (zero). It is an error for any thread other
than the owner to attempt to unlock the mutex.

A recursive mutex is useful if a thread needs exclusive access to a piece
of data, and it needs to call another routine (or itself) that needs
exclusive access to the data. A recursive mutex allows nested attempts
to lock the mutex to succeed rather than deadlock.

This type of mutex requires more careful programming. Never use a
recursive mutex with condition variables because the implicit unlock
performed for a pthread_cond_wait() or pthread_cond_timedwait()
may not actually release the mutex. In that case, no other thread can
satisfy the condition of the predicate.

+ A nonrecursive mutex is locked only once by a thread, like a fast mutex.
If the thread tries to lock the mutex again without first unlocking it, the
thread receives an error. Thus, nonrecursive mutexes are more
informative than fast mutexes because fast mutexes block in such a case,
leaving it up to you to determine why the thread no longer executes.
Also, if someone other than the owner tries to unlock a nonrecursive
mutex, an error is returned.

To lock a mutex, use one of the following routines, depending on what you
want to happen if the mutex is locked:

o The pthread_mutex_lock() routine

If the mutex is locked, the thread waits for the mutex to become
available.

o The pthread_mutex_trylock() routine

If the mutex is locked, the thread continues without waiting for the
mutex to become available. The thread immediately checks the return
status to see if the lock was successful, and then takes whatever action is
appropriate if it was not.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the pthread mutex_unlock() routine.
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If another thread is waiting on the mutex, its execution is unblocked. If more
than one thread is waiting on the mutex, the scheduling policy (for more
information, see Section 5.2.3.1) and the thread scheduling priority (for
more information, see Section 5.2.3.2) determine which thread acquires the
mutex.

You can delete a mutex and reclaim its storage by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex is
no longer needed by any thread. Mutexes are automatically deleted when
the program terminates.

5.3.2 Condition Variables

A condition variable allows a thread to block its own execution until some
shared data reaches a particular state. Cooperating threads check the shared
data and wait on the condition variable. For example, one thread in a
program produces work-to-do packets and another thread consumes these
packets (does the work). If the work queue is empty when the consumer
thread checks it, that thread waits on a work-to-do condition variable. When
the producer thread puts a packet on the queue, it signals the work-to-do
condition variable.

A condition variable is used to wait for a shared resource to assume some
specific state (a predicate). A mutex, on the other hand, is used to reserve
some shared resource while the resource is being manipulated. For
example, a thread A may need to wait for a thread B to finish a task X before
thread A proceeds to execute a task Y. Thread B can tell thread A that it has
finished task X by using a variable they both have access to, a condition
variable. When thread A is ready to execute task Y, it looks at the condition
variable to see if thread B is finished (see Figure 5-3).
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Figure 5-3. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds

unlock
mutex_ready

(lock)
wait

(unlock)

fock
I—V mutex_ready

Thread A

First, thread A locks the mutex named mutex_ready that is associated with
the condition variable. Then it reads the predicate associated with the
condition variable named ready. If the predicate indicates that thread B has
finished task X, then thread A can unlock the mutex and proceed with task
Y. If the condition variable predicate indicated that thread B has not yet
finished task X, however, then thread A waits for the condition variable to
change. Thread A calls the wait primitive. Waiting on the condition
variable automatically unlocks the mutex, allowing thread B to lock the
mutex when it has finished task X (see Figure 5-4).
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Figure 5-4. Thread B Signals Condition Ready
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Thread B updates the predicate named ready associated with the condition
variable to the state thread A is waiting for. It also executes a signal on the
condition variable while holding the mutex mutex_ready. Thread A wakes
up, verifies that the condition variable is in the correct state, and proceeds to
execute task Y (see Figure 5-3).

Note that although the condition variable is wused for explicit
communications among threads, the communications are anonymous.
Thread B does not necessarily know that thread A is waiting on the
condition variable that thread B signals. And thread A does not know that it
was thread B that woke it up from its wait on the condition variable.

Use the pthread_cond_init() routine to create a condition variable. To
create condition variables as part of the program’s one-time initialization
code, see Section 5.4.

Use the pthread_cond_wait() routine to cause a thread to wait until the
condition is signaled or broadcast. This routine specifies a condition
variable and a mutex that you have locked. (If you have not locked the
mutex, the results of pthread_cond_wait() are unpredictable.) This routine
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unlocks the mutex and causes the calling thread to wait on the condition
variable until another thread calls one of the following routines:

o The pthread_cond_signal() routine to wake one thread that is waiting
on the condition variable

» The pthread_cond_broadcast() routine to wake all threads that are
waiting on a condition variable

If you want to limit the time that a thread waits for a condition to be
signaled or broadcast, use the pthread_cond_timedwait() routine. This
routine specifies the condition variable, mutex, and absolute time at which
the wait should expire if the condition variable is not signaled or broadcast.

You can delete a condition variable and reclaim its storage by calling the
pthread_cond_destroy() routine. Use this routine only after the condition
variable is no longer needed by any thread. Condition variables are
automatically deleted when the program terminates.

5.3.3 Other Synchronization Methods

There is another synchronization method that is not anonymous: the join
primitive. This allows a thread to wait for another specific thread to
complete its execution. When the second thread is finished, the first thread
unblocks and continues its execution. Unlike mutexes and condition
variables, the join primitive is not associated with any particular shared
data.

5.4 One-Time Initialization Routines

You probably have one or more routines that must be executed before any
thread executes code in your application, but must be executed only once
regardless of the sequence in which threads start executing. For example,
you may want to create mutexes and condition variables (each of which
must be created only once) in an initialization routine. Multiple threads can
call the pthread_once() routine, or the pthread_once() routine can be
called multiple times in the same thread, resulting in only one call to the
specified routine.
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Use the pthread_once() routine to ensure that your application
initialization routine is executed only a single time; that is, by the first
thread that tries to initialize the application. This routine is the only way to
guarantee that one-time initialization is performed in a multithreaded
environment on a given platform. The pthread_once() routine is of
particular use for runtime libraries, which are often called for the first time
after multiple threads are created.

5.5 Thread-Specific Data

The thread-specific data interfaces allow each thread to associate an
arbitrary value with a shared key value created by the program.

Thread-specific data is like a global variable in which each thread can keep
its own value, but is accessible to the thread anywhere in the program.

Use the following routines to create and access thread-specific data:
e The pthread_keycreate() routine to create a unique key value
» The pthread_setspecific() routine to associate data with a key

« The pthread_getspecific() routine to obtain the data associated with a
key

The pthread_keycreate() routine generates a unique key value that is
shared by all threads in the process. This key is the identifier of a piece of
thread-specific data. Each thread uses the same key value to assign or
retrieve a thread-specific value. This keeps your data separate from other
thread-specific data. One call to the pthread_keycreate() routine creates a
cell in all threads. Call this routine to specify a routine to be called to
destroy the context value associated with this key when the thread
terminates.

The pthread_setspecific() routine associates the address of some data with
a specific key. Multiple threads associate different data (by specifying
different addresses) with the same key. For example, each thread points to a
different block of dynamically allocated memory that it has reserved.

The pthread_getspecific() routine obtains the address of the thread-specific
data value associated with a specified key. Use this routine to locate the data
associated with the current thread’s context.
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5.6 Thread Cancellation

Canceling is a mechanism by which one thread terminates another thread
(or itself). When you request that a thread be canceled, you are requesting
that it terminate as soon as possible. However, the target thread can control
how quickly it terminates by controlling its general cancelability and its
asynchronous cancelability.

The following is a list of the pthread calls that are cancellation points:
o The pthread_setasynccancel() routine
o The pthread_testcancel() routine
o The pthread_delay_np() routine
¢ The pthread_join() routine
 The pthread_cond_wait() routine
o The pthread_cond_timedwait() routine

General cancelability is enabled by default. A thread is canceled only at
specific places in the program; for example, when a call to the
pthread_cond_wait() routine is made. If general cancelability is enabled,
request the delivery of any pending cancel request by using the
pthread_testcancel() routine. This routine allows you to permit
cancellation to occur at places where it may not otherwise be permitted
under general cancelability, and it is especially useful within very long
loops to ensure that cancel requests are noticed within a reasonable time.

If you disable general cancelability, the thread cannot be terminated by any
cancel request. Disabling general cancelability means that a thread could
wait indefinitely if it does not come to a normal conclusion; therefore, be
careful about disabling general cancelability.

Asynchronous cancelability, when it is enabled, allows cancels to be
delivered to the enabling thread at any time, not only at those times that are
permitted when just general cancelability is enabled. Thus, use
asynchronous cancellation primarily during long processes that do not have
specific places for cancel requests. Asynchronous cancelability is disabled
by default. Disable asynchronous cancelability when calling threads
routines or any other runtime library routines that are not explicitly
documented as cancel-safe.
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Note: If general cancelability is disabled, the thread cannot be
canceled, regardless of whether asynchronous cancelability is
enabled or disabled. The setting of asynchronous cancelability
is relevant only when general cancelability is enabled.

Use the following routines to control the canceling of threads:

» The pthread_setcancel() routine to enable and disable general
cancelability

The pthread_testcancel() routine to request delivery of a pending
cancel to the current thread

The pthread_setasynccancel() routine to enable and disable
asynchronous cancelability

The pthread_cancel() routine to request that a thread be canceled

5.7 Thread Scheduling

5-18

Threads are scheduled according to their scheduling priority and how the
scheduling policy treats those priorities. To understand the discussion in this
section, you must understand the concepts in the following sections of this
chapter:

o The ‘‘Scheduling Policy Attribute’’ section (5.2.3.1) discusses
scheduling policies, including how each policy handles thread
scheduling priority.

e The ‘‘Scheduling Priority Attribute’’ section (5.2.3.2) discusses thread
scheduling priorities.

e The “‘Inherit Scheduling Attribute’” section (5.2.3.3) discusses
inheritance of scheduling attributes by created threads.

To specify the minimum or maximum priority, use the appropriate symbol;
for example, PRI_OTHER_MIN or PRI_OTHER_MAX. To specify a
value between the minimum and maximum priority, use an appropriate
arithmetic expression. For example, to specify a priority midway between
the minimum and maximum for the default scheduling policy, specify the
following concept using your programming language’s syntax:

pri_other mid = (PRI_OTHER MIN + PRT_OTHER_MAX) /2
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Figure 5-5.

If your expression results in a value outside the range of minimum to
maximum, an error results when you use it. Priority values are integers.

To show results of the different scheduling policies, consider the following
example: a program has four threads, called threads A, B, C, and D. For
each scheduling policy, three scheduling priorities have been defined:
minimum, middle, and maximum. The threads have the priorities shown in
the following table:

Thread | Priority
A Minimum
B Middle
C Middle
D Maximum

Figures 5-5 through 5-7 show execution flows, depending on whether the
threads use the SCHED_FIFO, SCHED RR, or SCHED OTHER
(default) scheduling policy. Assume that all waiting threads are ready to
execute when the current thread waits or terminates and that no higher
priority thread is awakened while a thread is executing (during the flow
shown in each figure).

Figure 5-5 shows a flow with SCHED _FIFO (First In, First Out)
scheduling.

Flow with SCHED_FIFO Scheduling

D—B—>C—/>A—>

All four threads are timesliced. Threads with higher priority are generally
scheduled when more than one thread is ready to run; however, to ensure
fairness, all threads are given some time. The effective priority of threads
may be modified over time by the scheduler, depending on the use of
processor resources.
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Figure 5-6.

Figure 5-7.
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Figure 5-6 shows a flow with SCHED_RR (Round Robin) scheduling.

Flow with SCHED_RR Scheduling

D—»B—>»C—>»B—>C—>A—>

Thread D executes until it waits or terminates; then threads B and C are
timesliced because they both have middle priority; then thread A executes.

Figure 5-7 shows a flow with SCHED_OTHER (default) scheduling.

Flow with SCHED_OTHER Scheduling

D—>»B—>»C—>A—>B—>C—>» , ., .

Thread D executes until it waits or terminates; then threads B, C, and A are
timesliced, even though thread A has a lower priority than the other two.
Thread A receives less execution time than thread B or C if either is ready
to execute as often as thread A is. However, the default scheduling policy
protects thread A against being blocked from executing indefinitely.

Because low-priority threads eventually run, the default scheduling policy
protects against the problem of priority inversion discussed in Section 6.5.
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Chapter 6

Programming with Threads

This chapter discusses issues you face when writing a multithreaded
program and how to deal with those issues.

The topics discussed in this chapter are as follows:
o Calling UNIX services
Using signals

Nonthreaded libraries

Avoiding nonreentrant software

Avoiding priority inversion
« Using synchronization objects

» Signaling a condition variable
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6.1 Calling UNIX Services

On a UNIX system that does not have kernel support for threads, making
system and library calls from within a multithreaded program raises the
following issues:

o System calls may not be thread-reentrant.

o If a system call blocks, it blocks the entire process instead of blocking
the calling thread only.

6.1.1 Jacket Routines

To resolve the previous two issues, DCE Threads provides jacket routines
for a number of UNIX system calls. Threads call the jacket routine instead
of the UNIX system service; this allows DCE Threads to take action on
behalf of the thread before or after calling the system service. For example,
the jacket routines ensure that only one thread calls any particular service at
a time to avoid problems with system calls that are not thread-reentrant.

Jacket routines are provided for UNIX input and output system calls
(documented in the UNIX Programmer’s Manual) and the fork() and
sigaction() system calls. Jackets are not provided for any other UNIX
system calls or for any of the C runtime library services (documented in the
UNIX Programmer’s Manual). See /usr/include/dce/cma_ux.h for the full
list of jacket routines.

6.1.1.1 Input and Output Jacket Routines

Jacket routines are provided for routines that perform input and output
operations. Examples of these operations are as follows:

¢ Open or create files, pipe symbols, and sockets
» Send and receive messages on sockets

o Read and write files and pipe symbols
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Jacket routines are provided for Input/Output services so that DCE Threads
can determine when to issue or block the service call based on the results of
the select() system call. For these UNIX services, DCE Threads can
determine whether issuing the system call causes the process to block. If the
system call causes the process to block, DCE Threads blocks only the
calling thread and schedules another thread to run in its place.

Periodically, DCE Threads checks whether the original calling thread can
issue its operation without blocking the process. When the thread runs
without blocking the process, that thread is placed back into the queue of
ready threads, and at its turn, the thread resumes execution and issues the
system call. Therefore, the jacket routines provide thread-synchronous 1/O
operations where otherwise the system calls block the entire process.

6.1.1.2 The fork() Jacket Routine

Jackets are provided for the fork() system call. A specific thread
environment must exist in the forked process when it resumes (begins)
execution. These jacket routines allow code to be executed in the context of
the new process before the user code resumes execution in it.

6.1.1.3 The atfork() Routine

The atfork() routine allows an application or library to ensure predicted
behavior when the fork() routine is used in a multithreaded environment.
Using the fork() routine from a threaded application or from an application
that uses threaded libraries can result in unpredictable behavior. For
example, one thread has a mutex locked, and the state covered by that mutex
is inconsistent while another thread calls the fork() routine. In the child
process, the mutex will be in the locked state, and it cannot be unlocked
because only the forking thread exists in the child process. Having the child
reinitialize the mutex is unsatisfactory because this approach does not
resolve the question of how to correct the inconsistent state in the child.
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The atfork() routine provides a way for threaded applications or libraries to
protect themselves when a fork() occurs. The atfork() routine allows you
to set up routines that will run at the following times:

» Prior to the fork() in the parent process
o After the fork() in the child process
o After the fork() in the parent process

Within these routines you can ensure that all mutexes are locked prior to the
fork() and that they are unlocked after the fork(), thereby protecting any
data or resources associated with the mutexes. You can register any number
of sets of atfork() routines; that is, any number of libraries or user programs
can set up atfork() routines and they will all execute at fork() time.

Note: Using the atfork() routine can potentially cause a deadlock if
two applications or libraries call into one another using calls
that require locking. Specifically, when these component’s
routines use the atfork() routine to run prior to the fork in the
parent process, a deadlock may occur when these routines are
executing.

6.1.1.4 Using the Jacketed System Calls

You do not have to rename your system calls to take advantage of the jacket
routines. Macros put the jacket routines into place when you compile your
program; these macros rename the jacketed system calls to the name of the
DCE Threads jacket routine. Thus, a reference to the DCE Threads jacket
routine is compiled into your code instead of a reference to the system call.
When the code is executed, it calls the jacket routine, which then calls the
system on your code’s behalf.

If you do not wish to use any of the jacket routines, you can add the
following line to your program before any of the thread header files:
#define _CMA NOWRAPPERS_. By adding this definition, you prevent the
jacket routines from being substituted for the real routines.

If you wish to use most of the jackets but do not wish to use a specific
jacket, you can undefine a specific jacket by adding the following directive
after the thread header files: #undef <routine_name>. For example, to
not use the fork jacket, you can add: #undef fork.
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6.1.2 Blocking System Calls

DCE Threads provides jacket routines that make certain system calls
thread-synchronous. If calling one of these jacketed system calls would
normally block the process, the jacket routine ensures that only the calling
thread is blocked and that the process remains available to execute other
threads. Examples of jacketed system calls include read(), write(),
open(), socket( ), send(), and recv().

If a thread makes a call to any of the other nonjacketed blocking system
calls (or if it calls one of the jacketed system calls without going through
the jacket), then when the system call blocks the thread, it blocks the whole
process, preventing any other threads in the process from executing.
Examples of nonjacketed system calls include wait(), sigpause(),
msgsnd(), msgrev(), and semop().

Some care must be used when calling nonjacketed blocking system calls
from a multithreaded program. Other threads in the program may not be
able to tolerate not running for an extended period of time while the process
blocks for the system call. If your program must make use of such system
calls, the calling thread should specify a nonblocking or polling option to
the system call. If the call is not successful, then the calling thread should
retry; however, to prevent the retry code from becoming a hot loop, a yield
or delay function call should be inserted into the path. This gives other
threads in the program a chance to run between poll attempts.

6.1.3 Calling fork() in a Multithreaded Environment

The fork() system call creates an exact duplicate of the address space from
which it is called, resulting in two address spaces executing the same code.
Problems can occur if the forking address space has multiple threads
executing at the time of the fork(). When multithreading is a result of
library invocation, threads are not necessarily aware of each other’s
presence, purpose, actions, and so on. Suppose that one of the other threads
(any thread other than the one doing the fork()) has the job of deducting
money from your checking account. Clearly, you do not want this to happen
twice as a result of some other thread’s decision to call fork().

Because of these types of problems, which in general are problems of
threads modifying persistent state, POSIX defined the behavior of fork() in
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the presence of threads to propagate only the forking thread. This solves the
problem of improper changes being made to persistent state. However, it
causes other problems, as discussed in the next paragraph.

In the POSIX model, only the forking thread is propagated. All the other
threads are eliminated without any form of notice; no cancels are sent and
no handlers are run. However, all the other portions of the address space are
cloned, including all the mutex state. If the other thread has a mutex
locked, the mutex will be locked in the child process, but the lock owner
will not exist to unlock it. Therefore, the resource protected by the lock will
be permanently unavailable.

The fact that there may be mutexes outstanding only becomes a problem if
your code attempts to lock a mutex that could be locked by another thread at
the time of the fork(). This means that you cannot call outside of your own
code between the call to fork() and the call to exec(). Note that a call to
malloc(), for example, is a call outside of the currently executing
application program and may have a mutex outstanding. The following code
obeys these guidelines and is therefore safe:

fork ();
a = 1+2; /* some inline processing */
exec () ;

Similarly, if your code calls some of your own code that does not make any
calls outside of your code and does not lock any mutexes that could possibly
be locked in another thread, then your code is safe.

One solution to the problem of calling fork() in a multithreaded
environment exists. (Note that this method will not work for server
application code or any other application code that is invoked by a callback
from a library.) Before an application performs a fork() followed by
something other than exec(), it must cancel all of the other threads. After it
joins the canceled threads, it can safely fork() because it is the only thread
in existence. This means that libraries that create threads must establish
cancel handlers that propagate the cancel to the created threads and join
them. The application should save enough state so that the threads can be
recreated and restarted after the fork() processing completes.
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6.2 Using Signals

The following subsections cover three topics: types of signals, DCE Threads
signal handling, and alternatives to using signals.

6.2.1 Types of Signals

Signals are delivered as a result of some event. UNIX signals are grouped
into the following four categories of pairs that are orthogonal to each other:

¢ Terminating and synchronous

o Terminating and asynchronous

« Nonterminating and synchronous
» Nonterminating and asynchronous

The action that DCE Threads takes when a particular signal is delivered
depends on the characteristics of that signal.

6.2.1.1 Terminating Signals

Terminating signals result in the termination of the process by default.
Whether a particular signal is terminating or not is independent of whether
it is synchronously or asynchronously delivered.

6.2.1.2 Nonterminating Signals

Nonterminating signals do not result in the termination of the process by
default.

Nonterminating signals represent events that can be either internal or
external to the process. The process may require notification or ignore these
events. When a nonterminating asynchronous signal is delivered to the
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process, DCE Threads awakens any threads that are waiting for the signal.
This is the only action that DCE Threads takes because, by default, the
signal has no effect.

6.2.1.3 Synchronous Signals

Synchronous signals are the result of an event that occurs inside a process
and are delivered synchronously with respect to that event. For example, if a
floating-point calculation results in an overflow, then a SIGFPE (floating-
point exception signal) is delivered to the process immediately following
the instruction that resulted in the overflow.

Synchronous, terminating signals represent an error that has occurred in the
currently executing thread. '

6.2.1.4 Asynchronous Signals

Asynchronous signals are the result of an event that is external to the
process and are delivered at any point in a thread’s execution when such an
event occurs. For example, when a user running a program types the
interrupt character at the terminal (generally <Ctrl-c>), a SIGINT
(interrupt signal) is delivered to the process.

Asynchronous, terminating signals represent an occurrence of an event that
is external to the process, and if unhandled, results in the termination of the
process. When an asynchronous terminating signal is delivered, DCE
Threads catches it and checks to see if any threads are waiting for it. If
threads are waiting, they are awakened, and the signal is considered handled
and is dismissed. If there are no waiting threads, then DCE Threads causes
the process to be terminated as if the signal had not been handled.
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6.2.2 DCE Threads Signal Handling

DCE Threads provides the POSIX sigwait() service to allow threads to
perform activities similar to signal handling without having to deal with
signals directly. It also provides a jacket for sigaction() that allows each
thread to have its own handler for synchronous signals. ‘

In order to provide these mechanisms, DCE Threads installs signal handlers
for most of the UNIX signals during initialization.

DCE Threads do not provide handlers for several UNIX signals. Those
signals and a reason why handlers are not provided are listed in the
following table.

Signal Reason Handler Is Not Provided
SIGKILL and SIGSTOP | These signals cannot be caught
by user mode code.

SIGTRAP Catching this signal interferes
with debugging.

SIGTSTP and SIGQUIT | These signals are caught only
while a thread has issued a
sigwait() call because their
default actions are otherwise
valuable.

6.2.2.1 The POSIX sigwait() Service

The DCE Threads implementation of the POSIX sigwait() service allows
any thread to block until one of a specified set of signals is delivered. A
thread waits for any of the asynchronous signals, except for SIGKILL and
SIGSTOP.

A thread cannot wait for a synchronous signal. This is because synchronous
signals are the result of an error during the execution of a thread, and if the
thread is waiting for a signal, then it is not executing. Therefore, a
synchronous signal cannot occur for a particular thread while it is waiting,
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and so the thread waits forever. POSIX stipulates that the thread must block
the signals (using the UNIX system service sigprocmask()) it waits for
before calling sigwait().

6.2.2.2 The POSIX sigaction() Service

The DCE Threads implementation of the POSIX sigaction() service allows
for per-thread handlers to be installed for catching synchronous signals. The
sigaction() routine only modifies behavior for individual threads and only
works for synchronous signals. Setting the signal action to SIG_DFL for a
specific signal will restore the thread’s default behavior for that signal.
Attempting to set a signal action for an asynchronous signal is an error.

6.2.2.3 The itimer VTALARM

DCE Threads installs a handler for the itimer VIALARM. Therefore,
VTALARM is unavailable for use by other applications.

6.2.3 Alternatives to Using Signals

Avoid using UNIX signals in multithreaded programs. DCE Threads
provides alternatives to signal handling. These alternatives are discussed in
more detail in Sections 6.6 and 6.7.

Note: In order to implement these alternatives, DCE Threads must
install its own signal handlers. These are installed when DCE
Threads initializes itself, typically on the first thread-function
call. At this time, any existing signal handlers are replaced.

Following are several reasons for avoiding signals:
¢ They cannot be used in a modular way in a multithreaded program.

e They are unnecessary when used as an asynchronous programming
technique in a multithreaded program.
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e There are almost no threads services available at signal level.
o There is no reliable, portable way to modify predicates.

o The signal-handler interface is unsuitable for use with threads. (For
example, there is one signal action per signal per process, there is one
signal mask per process, and sigpause() blocks the whole process.)

In a multithreaded program, signals cannot be used in a modular way
because, on most current UNIX implementations, signals are inherently a
process construct. There is only one instantiation of each signal and of each
signal handler routine for all of the threads in an application. If one thread
handles a particular signal in one way, and a different thread handles the
same signal in a different way, then the thread that installs its signal handler
last handles the signal. This applies only to asynchronously generated
signals; synchronous signals can be handled on a per-thread basis using the
DCE Threads sigaction() jacket.

Do not use asynchronous programming techniques in conjunction with
threads, particularly those that increase parallelism such as using timer
signals and I/O signals. These techniques can be complicated. They are also
unnecessary because threads provide a mechanism for parallel execution
that is simpler and less prone to error where concurrence can be of value.
Furthermore, most of the threads routines are not supported for use in
interrupt routines (such as signal handlers), and portions of runtime libraries
cannot be used reliably inside a signal handler.

6.3 Nonthreaded Libraries

As programming with threads becomes common practice, you need to
ensure that threaded code and nonthreaded code (code that is not designed
to work with threads) work properly together in the same application. For
example, you may write a new application that uses threads (for example,
an RPC server), and link it with a library that does not use threads (and is
thus not thread-safe). In such a situation you can do one of the following:

o Work with the nonthreaded software.

¢ Change the nonthreaded software to be thread-safe.
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6.3.1 Working with Nonthreaded Software

Thread-safe code is code that works properly in a threaded environment. To
work with nonthread-safe code, associate the global lock with all calls to
such code.

You can implement the lock on the side of the routine user or the routine
provider. For example, you can implement the lock on the side of the
routine user if you write a new application like an RPC server that uses
threads, and you link it with a library that does not. Or, if you have access to
the nonthreaded code, the locks can be placed on the side of the routine
provider, within the actual routine. Implement the locks as follows:

1. Associate one lock, a global lock, with execution of such code.

2. Require all of your threads to lock prior to execution of nonthreaded
code.

3. Perform an unlock when execution is complete.

By using the global lock you ensure that only one thread executes in outside
libraries, which may call each other, and in unknown code. Using a single
global lock is safer than using multiple local locks because it is difficult to
be aware of everything a library may be doing or of the interactions that
library can have with other libraries.

6.3.2 Changing Nonthreaded Code to be Thread-Reentrant

6-12

Thread-reentrant code is code that works properly while multiple threads
execute it concurrently. Thread-reentrant code is thread-safe, but thread-
safe code may not be thread-reentrant. Document your code as being
thread-safe or thread-reentrant.

More work is involved in making code thread-reentrant than in making code
thread-safe. To make code thread-reentrant, do the following:

1. Use proper locking protocols to access global or static variables.

2. Use proper locking protocols when you use code that is not thread-
safe.

3. Store thread-specific data on the stack or heap.
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4. Ensure that the compiler produces thread-reentrant code.

5. Document your code as being thread-reentrant.

6.4 Avoiding Nonreentrant Software

The following subsections discuss two methods to help you avoid the
pitfalls of nonreentrant software. These methods are as follows:

 Global lock
¢ Thread-specific storage

6.4.1 Global Lock

Use a global lock, which has the characteristics of a recursive mutex,
instead of a regular mutex when calling routines that you think are
nonreentrant. (When in doubt, assume the code is nonreentrant.)

The pthread_lock_global_np() routine is a locking protocol that is used to
call nonreentrant routines, often found in existing library packages that
were not designed to run in a multithreaded environment.

The way to call a library function that is not reentrant from a multithreaded
program is to protect the function with a mutex. If every function that calls
a library locks a particular mutex before the call and releases the mutex
after the call, then the function completes without interference. However,
this is difficult to do successfully because the function may be called by
many libraries. A global lock solves this problem by providing a universal
lock. Any code that calls any nonreentrant function uses the same lock.

To lock a global lock, call the pthread_global_lock np() routine. To
unlock a global lock, call the pthread_global_unlock_np() routine.

Note: Many COBOL and FORTRAN compilers generate inherently
nonreentrant code. Many C, Ada, Pascal, and BLISS
compilers generate reentrant code by default. It is possible to
write nonreentrant code in the reentrant languages by not
following a locking protocol.
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6.4.2 Thread-Specific Storage

To avoid nonreentrancy when writing new software, avoid using global
variables to store data that is thread-specific data. (See Section 5.5 for
more information.)

Alternatively, allocate thread-specific data on the stack or heap and
explicitly pass its address to called routines.

6.5 Avoiding Priority Inversion

Priority inversion occurs when interaction among three or more threads
blocks the highest-priority thread from executing. For example, a high-
priority thread waits for a resource locked by a low-priority thread, and the
low-priority thread waits while a middle-priority thread executes. The
high-priority thread is made to wait while a thread of lower priority (the
middle-priority thread) executes.

To avoid priority inversion, associate a priority with each resource and
force any thread using that object to first raise its priority to that associated
with the object. This method of avoiding priority inversion is not a
complete solution because all threads will then block at the same ceiling
priority and be unblocked in FIFO order rather than by their actual priority.

The SCHED_OTHER (default) scheduling policy prevents priority
inversion from causing a complete blockage of the high-priority thread
because the low-priority thread is permitted to execute and release the
resource. The SCHED _FIFO and SCHED_RR policies, however, do not
force resumption of the low-priority thread if the middle-priority thread
executes indefinitely.
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6.6 Using Synchronization Objects

The following subsections discuss the use of mutexes to prevent two
potential problems: race conditions and deadlocks. Also discussed is why
you should signal a condition variable with the associated mutex locked.

6.6.1 Race Conditions

A race condition occurs when two or more threads perform an operation,
and the result of the operation depends on unpredictable timing factors;
specifically, when each thread executes and waits and when each thread
completes the operation.

An example of a race condition is as follows:
1. Both A and B are executing (X=X + 1).
2. A reads the value of X (for example, X = 5).

3. B comes in and reads the value of X and increments it (making X =

6).

4. A gets rescheduled and now increments X. Based on its earlier read
operation, A thinks (X+1 = 5+1 = 6). X is now 6. It should be 7
because it was incremented once by A and once by B.

To avoid race conditions, ensure that any variable modified by more than
one thread has only one mutex associated with it. Do not assume that a
simple add operation can be completed without allowing another thread to
execute. Such operations are generally not portable, especially to
multiprocessor systems. If it is possible for two threads to share a data
point, use a mutex.
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6.6.2 Deadlocks

A deadlock occurs when one or more threads are permanently blocked from
executing because each thread waits on a resource held by another thread in
the deadlock. A thread can also deadlock on itself.

The following is one technique for avoiding deadlocks:
1. Associate a sequence number with each mutex.
2. Lock mutexes in sequence.

3. Do not attempt to lock a mutex with a sequence number lower than
that of a mutex the thread already holds.

Another technique, which is useful when a thread needs to lock the same
mutex more than once before unlocking it, is to use a recursive mutex. This
technique prevents a thread from deadlocking on itself.

6.7 Signaling a Condition Variable
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When you are signaling a condition variable and that signal may cause the
condition variable to be deleted, it is recommended that you signal or
broadcast with the mutex locked.

The recommended coding for signaling a condition variable appears at the
end of this chapter. The following two C code fragments show coding that
is not recommended. The following C code fragment is executed by a
releasing thread:

pthread_mutex_lock (m);

/* Change shared variables to allow */

/* another thread to proceed */
pthread_mutex_unlock (m); <-—-- PointA
pthread_cond_signal (cv); <———- Statement 1
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The following C code fragment is executed by a potentially blocking
thread:

pthread_mutex_lock (m);
while (!predicate ...
pthread_cond_wait (cv, m);

pthread mutex unlock (m);

Note: It is possible for a potentially blocking thread to be running at
Point A while another thread is interrupted. The potentially
blocking thread can then see the predicate true and therefore
not become blocked on the condition variable.

Signaling a condition variable without first locking a mutex is not a
problem. However, if the released thread deletes the condition variable
without any further synchronization at Point A, then the releasing thread
will fail when it attempts to execute Statement I because the condition
variable no longer exists.

This problem occurs when the releasing thread is a worker thread and the
waiting thread is the boss thread, and the last worker thread tells the boss
thread to delete the variables that are being shared by boss and worker.

The following C code fragment shows the recommended coding for
signaling a condition variable while the mutex is locked:

pthread mutex lock (m);
/* Change shared variables to allow */
/* some other thread to proceed */

pthread_cond_signal (cv); <———— Statement 1
pthread mutex_unlock (m);
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Chapter 7

Using the DCE Threads Exception-
Returning Interface

DCE Threads provides the following two ways to obtain information about
the status of a threads routine:

e The routine returns a status value to the thread.
o The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the
preceding two methods of receiving status. These two methods cannot be
used together in the same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be
reported to the thread by setting the external variable errno to an error code
and returning a function value of -1. The threads reference pages document
this status-value-returning interface (see the OSF DCE Application
Development Reference). However, an alternative to status values is
provided by DCE Threads in the exception-returning interface.

This chapter introduces and provides conventions for the modular use of the
exception-returning interface to DCE Threads.
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7.1 Syntax for C

Access to exceptions from the C language is defined by the macros in the
exc_handlingh file. The exc_handlingh header file is included
automatically when you include pthread_exc.h (see Section 7.2).

The following example shows the syntax for handling exceptions:

TRY
txry_block
[CATCH (exception_name)
handler block]...
[CATCH_ALL
handler_block]
ENDTRY

A try_block or a handler_block is a sequence of statements, the first of
which may be declarations, as in a normal block. If an exception is raised in
the try_block, the catch clauses are evaluated in order to see if any one
matches the current exception.

The CATCH or CATCH_ALL clauses absorb an exception; that is, they
catch an exception propagating out of the try_block, and direct execution
into the associated handler_block. Propagation of the exception, by
default, then ends. Within the lexical scope of a handler, it is possible to
explicitly cause propagation of the same exception to resume (this is called
‘‘reraising’’ the exception), or it is possible to raise some new exception.

The RERAISE statement is allowed in any handler statements and causes
the current exception to be reraised. Propagation of the caught exception
resumes.

The RAISE (exception_name) statement is allowed anywhere and causes a
particular exception to start propagating. For example:

TRY

sort(); /* Call a function that may raise an exception.
" * An exception is accomplished by longjumping
* out of some nested routine back to the TRY
* clause. Any output parameters or return values
* of the called routine are therefore indeterminate.
*/
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CATCH (pthread_cancel_e)
printf ("Alerted while sorting\n"); RERAISE;

CATCH_ALL
printf ("Some other exception while sorting\n"); RERAISE;

ENDTRY

In the preceding example, if the pthread_cancel e exception propagates
out of the function call, the first printf is executed. If any other exception
propagates out of sort, the second printf is executed. In either situation,
propagation of the exception resumes because of the RERAISE statement.
(If the code is unable to fully recover from the error, or does not understand
the error, it needs to do what it did in the previous example and further
propagate the error to its callers.)

The following shows the syntax for an epilogue:

TRY try_block
[FINALLY final block]
ENDTRY

The final_block is executed whether the try_block executes to completion
without raising an exception, or if an exception is raised in the try_block. If
an exception is raised in the try_block, propagation of the exception is
resumed after executing the final_block.

Note that a CATCH_ALL handler and RERAISE could be used to do this,
but the epilogue code would then have to be duplicated in two places, as
follows:

TRY
try_block
CATCH_ALL
final_ block
RERATSE;
ENDTRY
{ final_block }

A FINALLY statement has exactly this meaning, but avoids code
duplication.
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Note: The behavior of FINALLY along with the CATCH or
CATCH_ALL clauses is undefined. Do not combine them for
the same try_block.

Another example of the FINALLY statement is as follows:

pthread  mutex lock (some object.mutex);
some_object .num waiters = some_object.num waiters + 1;
TRY

while (! some_object.data_available)

pthread_cond_wait (some_object.condition);

/* The code to act on the data_available goes here */
FINALLY

some_object.num waiters = some_object.num waiters - 1;

pthread_mutex_unlock (some_object.mutex);
ENDTRY

In the preceding example, the call to pthread_cond_wait() could raise the
pthread_cancel_e exception. The final_block ensures that the shared data

associated with the lock is correct for the next thread that acquires the
mutex.

7.2 Invoking the Exception-Returning Interface

To use the exception-returning interface, replace
#include <pthread.h>
with the following include statement:

#include <pthread exc.h>
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7.3 Operations on Exceptions

An exception is an object that describes an error condition. Operations on
exception objects allow errors to be reported and handled. If an exception is
handled properly, the program can recover from errors. For example, if an
exception is raised from a parity error while reading a tape, the recovery
action may be to retry 100 times before giving up.

The DCE Threads Exception-Returning Interface allows you to perform the
following operations on exceptions:

o Declare and initialize an exception object

¢ Raise an exception

» Define a region of code over which exceptions are caught

o Catch a particular exception or all exceptions

» Define epilogue actions for a block

» Import a system-defined error status into the program as an exception

These operations are discussed in the following subsections.

7.3.1 Declaring and Initializing an Exception Object

Declaring and initializing an exception object documents that a program
reports or handles a particular error. Having the error expressed as an
exception object provides future extensibility as well as portability.
Following is an example of declaring and initializing an exception object:

EXCEPTION parity_error; /* Declare it */
EXCEPTION_INIT (parity error); /* Initialize it */
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7.3.2 Raising an Exception

Raising an exception reports an error, not by returning a value, but by
propagating an exception. Propagation involves searching all active scopes
for code written to handle the error or code written to perform scope-
completion actions in case of any error, and then causing that code to
execute. If a scope does not define a handler or epilogue block, then the
scope is simply torn down as the exception propagates through the stack.
This is sometimes referred to as ‘‘unwinding the stack.”” DCE Threads
exceptions are terminating; there is no option to make execution resume at
the point of the error. (Execution resumes at the point where the exception
was caught.)

If the exception is unhandled, the thread is terminated. This provides
increased manageability by confining an error to a well-defined portion of a
program. An example of raising an exception is as follows:

RAISE (parity_error);

7.3.3 Defining a Region of Code Over Which Exceptions Are Caught

Defining a region of code over which exceptions are caught allows you to
call functions that can raise an exception and specify the recovery action.

Following is an example of defining an exception-handling region (without
indicating any recovery actions):

TRY {
read_tape ();

}
ENDTRY ;
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7.3.4 Catching a Particular Exception or All Exceptions

It is possible to discriminate among errors and perform different actions for
each error.

Following is an example of catching a particular exception and specifying
the recovery action (in this case, a message). The exception is reraised
(passed to its callers) after catching the exception and executing the
recovery action:

TRY {
read_tape ();
}
CATCH (parity_error) {
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERAISE;
}
ENDTRY

7.3.5 Defining Epilogue Actions for a Block

A FINALLY mechanism is provided so that multithreaded programs can
restore invariants as certain scopes are unwound; for example, restoring
shared data to a correct state and releasing locks. This is often the ideal
way to define, in one place, the cleanup activities for normal or abnormal
exit from a block that has changed some invariant.

Following is an example of specifying an invariant action whether or not
there is an error:

lock_tape drive (t);

TRY

TRY
read_tape ();
CATCH (parity_error)
printf ("Oops, parity error, program terminating\n");
printf ("Try cleaning the heads!\n");
RERATSE;
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ENDTRY

/* Control gets here only if no exception is raised */

/* ... Now we can use the data off the tape */
FINALLY

/* Control gets here normally, or if any exception is raised */
unlock_tape_drive (t);
ENDTRY

7.3.6 Importing a System-Defined Error Status into the Program as
an Exception

Most systems define error messages by integer-sized status values. Each
status value corresponds to some error message text that should be
expressed in the user’s own language. The capability to import a status
value as an exception permits the DCE Threads Exception-Returning
Interface to raise or handle system-defined errors as well as programmer-
defined exceptions.

An example of importing an error status into an exception is as follows:
exc_set_status (&parity_error, EPARITY);

The parity_error exception can then be raised and handled like any other
exception.

7.4 Rules and Conventions for Modular Use of
Exceptions

The following rules ensure that exceptions are used in a modular way so
that independent software components can be written without requiring
knowledge of each other:

« Use unique names for exceptions.

A naming convention makes sure that the names for exceptions that are
declared EXTERN from different modules do not clash.
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The following convention is recommended:
<facility-prefix>_ <error_name>_ e

For example, pthread_cancel_e.
e Avoid putting code in a TRY routine that belongs before it.

The TRY only guards statements for which the statements in the
FINALLY, CATCH, or CATCH_ALL clauses are always valid.

A common misuse of TRY is to put code in the try_block that needs to
be placed before TRY. An example of this misuse is as follows:

TRY

handle = open_file (file_name);

/* Statements that may raise an exception here */
FINALLY

close (handle);
ENDTRY

The preceding FINALLY code assumes that no exception is raised by
open_file. This is because the code accesses an invalid identifier in the
FINALLY part if open_file is modified to raise an exception. The
preceding example needs to be rewritten as follows:

handle = open_file (file name);
TRY

{
/* Statements that may raise an exception here */

}
FINALLY

close (handle);
ENDTRY

The code that opens the file belongs prior to TRY, and the code that
closes the file belongs in the FINALLY statement. (If open_file raises
exceptions, it may need a separate try_block.)

« Raise exceptions to their proper scope.

Write functions that propagate exceptions to their callers so that the
function does not modify any persistent process state before raising the
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exception. A call to the matching close call is required only if the
open_file operation is successful in the current scope.

If open_file raises an exception, the identifier will not be written, so
open_file must not require that close be called when open_file raises an
exception; that is, open_file should not be part of the TRY clause
because that means close is called if open_file fails, and you cannot
close an unopened file.

Do not place a RETURN or nonlocal GOTO between TRY and
ENDTRY.

It is invalid to use RETURN or GOTO, or to leave by any other means,
a TRY, CATCH, CATCH_ALL, or FINALLY block. Special code is
generated by the ENDTRY macro, and it must be executed.

Use the ANSI C volatile attribute.

Variables that are read or written by exception-handling code must be
declared with the ANSI C volatile attribute. Run your tests with the
optimize compiler option to ensure that the compiler thoroughly tests
your exception-handling code.

Reraise exceptions that are not fully handled.

You need to reraise any exception that you catch, unless your handler
performs the complete recovery action for the error. This rule permits an

~unhandled exception to propagate to some final default handler that

prints an error message to terminate the offending thread. (An unhandled
exception is an exception for which recovery is incomplete.)

A corollary of this rule is that CATCH_ALL handlers must reraise the
exception because they may catch any exception, and usually cannot do
recovery actions that are proper for every exception.

Following this convention is important so that you also do not absorb a
cancel or thread-exit request. These are mapped into exceptions so that
exception handling has the full power to handle all exceptional
conditions from access violations to thread exit. (In some applications, it
is important to be able to catch these to work around an erroneously
written library package, for example, or to provide a fully fault-tolerant
thread.)

Declare only static exceptions.

For compatibility with C++, you need to only declare static exceptions.

OSF DCE Application Development Guide



Using the DCE Threads Exception-Returning Interface

7.5 DCE Threads Exceptions and Definitions

Table 7-1 lists the DCE Threads exceptions and briefly explains the
meaning of each exception. Exception names beginning with pthread_ are
raised as the result of something happening internal to the DCE Threads
facility and are not meant to be raised by your code. Exceptions beginning
with exc_ are generic and belong to the exception facility, the underlying
system, or both. The pthread-specific extensions are listed followed by the
generic extensions, each in alphabetical order.

Table 7-1. DCE Threads Exceptions

Exception Definition

pthread_badparam_e An improper parameter was used.

pthread_cancel_e A thread cancellation is in progress.

pthread_defer_q_full_e No space is currently available to process an
interrupt request.

pthread_existence_e The object referenced does not exist.

pthread_in_use_e The object referenced is already in use.

pthread_nostackmem_e | No space is currently available to create a new
stack.

pthread_stackovf_e An attempted stack overflow was detected.

pthread_unimp_e This is an unimplemented feature.

pthread_use_error_e The requested operation is improperly invoked.

exc_decovf e An unhandled decimal overflow trap exception
occurred.

exc_exquota_e The operation failed due to an insufficient
quota.

exc_fltdiv_e An unhandled floating-point division by zero
trap exception occurred.

exc_fltovf e An unhandled floating-point overflow trap
exception occurred.

exc_fltund e An unhandled floating-point underflow trap
exception occurred.

exc_illaddr_e The data or object could not be referenced.
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Exception

Definition

exc_insfmem_e
exc_intdiv_e
exc_intovf_e
exc_noptriv_e
exc_privinst_e
exc_resaddr_e
exc_resoper_e
exc_SIGBUS e
exc_SIGEMT e

exc_SIGFPE_e

exc_SIGILL_e
exc_SIGIOT e
exc_SIGPIPE_e

exc_SIGSEGV_e

exc_SIGSYS e
exc_SIGTRAP_e

exc_SIGXCPU_e

exc_SIGXFSZ_e
exc_subrng_e

exc_uninitexc_e

There is insufficient virtual memory for the
requested operation.

An unhandled integer divide by zero trap
exception occurred.

An unhandled integer overflow trap exception
occurred. »

There is insufficient privilege for the requested
operation.

An unhandled privileged instruction fault
exception occurred.

An unhandled reserved addressing fault
exception occurred.

An unhandled reserved operand fault exception
occurred.

An unhandled bus error signal occurred.

An unhandled EMT trap signal occurred.

An unhandled floating-point exception signal
occurred.

An unhandled illegal instruction signal occurred.
An unhandled IOT trap signal occurred.

An unhandled broken pipe signal occurred.

An unhandled segmentation violation signal
occurred.

An unhandled bad system call signal occurred.
An unhandled trace or breakpoint trap signal
occurred.

An unhandled CPU time limit exceeded signal
occurred.

An unhandled file-size limit exceeded signal
occurred.

An unhandled subscript out-of-range trap
exception occurred.

An uninitialized exception was raised.
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DCE Threads Example

The example in this chapter shows the use of DCE Threads in a C program
that performs a prime number search. The program finds a specified number
of prime numbers, then sorts and displays these numbers. Several threads
participate in the search: each thread takes a number (the next one to be
checked), sees if it is a prime, records it if it is prime, and then takes another
number, and so on.

This program shows the work crew model of programming (see Section
4.2.2). The workers (threads) increment a number (current_num) to get
their next work assignment, which in this case is the same task as before, but
with a different number to check for a prime. As a whole, the worker threads
are responsible for finding a specified number of prime numbers, at which
point their work is completed.
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8.1 Details of Program Logic and Implementation

The number of workers to be used and the requested number of prime
numbers to be found are defined constants. A macro is used to check for bad
status (bad status returns a value of 1), and to print a given string and the
associated error value upon bad status. Data to be accessed by all threads
(mutexes, condition variables, and so forth) are declared as global items.

Worker threads execute the prime search routine, which begins by
synchronizing with the boss (or parent) thread using a predicate and a
condition variable. Always enclose a condition wait in a predicate loop to
prevent a thread from continuing if it receives a spurious wakeup. The lock
associated with the condition variable must be held by the thread when the
condition wait call is made. The lock is implicitly released within the
condition wait call and acquired again when the thread resumes. The same
mutex must be used for all operations performed on a specific condition
variable.

After the parent sets the predicate and broadcasts, the workers begin finding
prime numbers until canceled by a fellow worker who has found the last
requested prime number. Upon each iteration the workers increment the
current number to be worked on and take the new value as their work item.
A mutex is locked and unlocked around getting the next work item. The
purpose of the mutex is to ensure the atomicity of this operation and the
visibility of the new value across all threads. This type of locking protocol
needs to be performed on all global data to ensure its visibility and protect
its integrity.

Each worker thread then determines if its current work item (a number) is
prime by trying to divide numbers into it. If the number proves to be
nondivisible, it is put on the list of primes. Cancels are explicitly turned off
while working with the list of primes in order to better control any cancels
that do occur. The list and its current count are protected by locks, which
also protect the cancellation process of all other worker threads upon finding
the last requested prime. While still under the prime list lock, the current
worker checks to see if it has found the last requested prime, and if so unsets
a predicate and cancels all other worker threads. Cancels are then reenabled.
The canceling thread falls out of the work loop as a result of the predicate
that it unsets.
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The parent thread’s flow of execution is as follows: set up the environment,
create worker threads, broadcast to them that they can start, join each thread
as it finishes, and sort and print the list of primes.

Setting up of the environment requires initializing mutexes and the one
condition variable used in the example.

Creation of worker threads is straightforward and utilizes the default
attributes (pthread_attr_default). Note again that locking is performed
around the predicate on which the condition variable wait loops. In this
case, the locking is simply done for visibility and is not related to the
broadcast function.

As the parent joins each of the returning worker threads, it receives an
exit value from them that indicates whether a thread exited normally or
not. In this case the exit values on all but one of the worker threads are
-1, indicating that they were canceled.

The list is then sorted to ensure that the prime numbers are in order from
lowest to highest.

The following pthread routines are used in this example:

pthread_cancel()
pthread_cond_broadcast()
pthread_cond_init()
pthread_cond_wait()
pthread_create()
pthread_detach()
pthread_exit()
pthread_join()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_unlock()
pthread_setcancel()
pthread_testcancel()
pthread yield()

OSF DCE Application Development Guide 8-3



DCE Threads

The following is the DCE Threads example:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*

* Constants used by the example.

*/

#define workers 5 /* Threads to perform prime check */
#define request 110 /* Number of primes to find */

/* ‘

* Macros

*/

#define check(status, string) if (status == -1) perror (string)

/*

* Global data

*/
pthread_mutex t prime list; /* Mutex for use in accessing the prime */
pthread mutex t current_mutex; /* Mutex associated with current number */
pthread_mutex_t cond mutex; /* Mutex used for ensuring CV integrity */
read_cond_t cond_var; /* Condition variable for thread start */
int current_num= -1;/* Next number to be checked, start odd */
int thread hold= 1; /* Number associated with condition state  */
int count=0; /* Count of prime numbers - index to primes */
int primes|[request];/* Store prime numbers - synchronize access */
pthread_t threads [workersl;/* Array of worker threads */
/*

* Worker thread routine.

*

* Worker threads start with this routine, which begins with a condition
* walt designed to synchronize the workers and the parent. Each worker
* thread then takes a turn taking a number for which it will determine

* whether or not it is prime.
*

*/

void

prime_search (pthread addr_t arg)
{

div_t div_results; /* DIV results: quot and rem */
int numerator; /* Used for determing primeness */
int denominator; /* Used for determing primeness */
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int
int
int
int
int
int

cut_off; /* Number being checked div 2
notifiee; /* Used during a cancellation
prime; /* Flag used to indicate primeness
my_number; /* Worker thread identifier
status; /* Hold status from pthread calls
not_done=1; /* Work loop predicate

my_number = (int)arg;

/*

*/
*/
*/
*/
*/
*/

* Synchronize threads and the parent using a condition variable, for
* which the predicate (thread _hold) will be set by the parent.

*/

status = pthread mutex lock (&cond mutex);
check(status, "1:Mutex lock bad status\n");

while (thread hold) {

status = pthread cond_wait (&cond _var, &cond_mutex) ;
check (status, "3:Cond_wait bad status\n");
}

status = pthread mutex unlock (&cond mutex);
check (status, "4:Mutex_unlock bad status\n");

/*

* Perform checks on ever larger integers until the requested
* number of primes is found.

*/

while (not_done) {

/* cancellation point */

pthread_testcancel ();

/* Get next integer to be checked */
status = pthread mutex_lock (&current_mutex) ;
check (status, "6:Mutex_lock bad status\n");

current_num = current_num + 2;
numerator = current num;

status = pthread mutex unlock (&current_mutex) ;
check (status, "S:Mutex unlock bad status\n");

/* Only need to divide in half of number to verify not prime */
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cut_off = numerator/2 + 1;

prime = 1;

/* Check for prime; exit if something evenly divides */
for (denominator = 2; ({denominator < cut_off) && (prime));

denominator++) {
prime = numerator % denominator;

}
if (prime != 0) {

/* Explicitly turn off all cancels */
pthread_setcancel (CANCEL_OFF) ;

/*
* Lock a mutex and add this prime number to the list. Also,
* if this fulfills the request, cancel all other threads.
*/

status = pthread_mutex_lock (&prime_list);

check (status, "10:Mutex lock bad status\n");

if (count < request) {
primes[count] = numerator;
count++;
}
else if (count == request) {
not_done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {
if (notifiee != my_number) {
status = pthread_cancel ( threads[notifiee] );
check (status, "12:Cancel bad status\n");
}

status = pthread_mutex_unlock (&prime_list);
check (status, "13:Mutex_unlock bad status\n");

/* Reenable cancels */

pthread_setcancel (CANCEL_ON) ;
}
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pthread testcancel ();

}

pthread_exit (my_number);
}

main()
{
int worker_num; /* Counter used when indexing workers */
int exit_value; /* Individual worker’s return status */
int list; /* Used to print list of found primes  */
int status; /* Hold status from pthread calls */
int index1; /* Used in sorting prime numbers */
int index2; /* Used in sorting prime numbers */
int temp; /* Used in a swap; part of sort */
int not_done; /* Indicates swap made in sort */

* Create mutexes

*/
status = pthread mutex init (&prime list, pthread _mutexattr default);
check (status, "15:Mutex init bad status\n");
status = pthread mutex init (&cond mutex, pthread mutexattr_default) ;
check (status, "16:Mutex_init bad status\n");
status = pthread mutex init (&current_mutex, pthread mutexattr_default);
check (status, "17:Mutex_init bad status\n");

/*

* Create conditon variable

*/
status = pthread cond_init (&cond_var, pthread condattr_default);
check(status, "45:Cond_init bad status\n");

/*
* Create the worker threads.
*/
for (worker num = 0; worker num < workers; worker_num++) {
status = pthread _create (
&threads [worker_num],
pthread_attr default,
prime_search,
(pthread_addr_t)worker_num) ;
check (status, "19:Pthread_create bad status\n");
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/*

* Set the predicate thread hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.

*/

status = pthread mutex_lock (&cond _mutex) ;

check (status, "20:Mutex_lock bad status\n");

thread hold = 0;

status = pthread cond broadcast (&cond var);
check(status, "20.5:cond_broadcast bad status0);

status = pthread_mutex_unlock (&cond_mutex);
check (status, "21:Mutex_unlock bad status\n");
/*
* Join each of the worker threads inorder to obtain their
* summation totals, and to ensure each has completed
* gsuccessfully.

* Mark thread storage free to be reclaimed upon termination by
* detaching it.

*/

for (worker_num = 0; worker_num < workers; worker num++) {

status = pthread_join (
threads [worker_num],
&exit_value );
check(status, "23:Pthread_join bad status\n");

if (exit_value == worker_num) printf("thread terminated normally\n");

status = pthread _detach ( &threads[worker_num] );
check (status, "25:Pthread_detach bad status\n");
}

* Take the list of prime numbers found by the worker threads and

* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers

* will be found in order. Therefore, a sort is performed.

*/
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not_done = 1;
for (indexl = 1; ((indexl < request) && (not_done)); indexl++) {
for (index2 = 0; index2 < indexl; index2++) {
if (primes[indexl] < primes[index2]) {
temp = primes|[index2];
primes[index2] = primes[index1];

primes[indexl] = temp;

not_done = 0;

}

}
}

/*
* Print out the list of prime numbers that the worker threads
* found.
*/

printf ("The list of %d primes follows:\n", request);
printf ("%d",primes[0]) ;

for (list = 1; list < request; list++) {
printf (",%d", primes[list]);

}

printf ("\n");
}

OSF DCE Application Development Guide 8-9






Part 3

DCE Remote Procédure Call






Part 3A

Using Remote Procedure Call

Part 3A describes the Remote Procedure Call (RPC) model and the basic
concepts of DCE RPC. It contains a brief tutorial on how to develop RPC
applications. This part also discusses the basic DCE RPC operations, the
impact of remoteness on RPC applications, the use of the directory service
interface, advanced RPC topics, and the use of exception handling.






Chapter 9

Introduction to Remote Procedure
Calls

The Remote Procedure Call (RPC) model is a well-tested, industry-wide
framework for distributing applications. An RPC executes a procedure
located in a separate address space from the calling code. This is a remote
procedure.

Applications that use remote procedure calls (RPC applications) look and
behave much like local applications. However, an RPC application is
divided into two parts: an RPC server, which offers one or more sets of
remote procedures, and an RPC client, which makes remote procedure calls
to RPC servers. A server and its clients generally reside on separate systems
and communicate over a network. RPC applications depend on the RPC
runtime. Any RPC runtime controls network communications for RPC
applications. The DCE RPC runtime supports additional tasks, such as
finding servers for clients and managing servers.

An RPC application uses dispersed computing resources such as CPUs,
databases, devices, and services. The following are examples of RPC
applications:

e A calendar-management application that allows authorized users to
access the personal calendars of other users.

¢ A graphics application that processes data on central CPUs and displays
the results on workstations.
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* A manufacturing application that shares changing information about
assembly components among design, inventory, scheduling, and
accounting programs located on different computers.

9.1 General Requirements for Distributing an

9-2

Application

RPC technology meets the basic requirements of a distributed application.
These requirements include the following:

o Clients finding the appropriate servers
» Data conversion for operating in a heterogeneous environment
¢ Network communications

Distributing an application involves performing tasks such as managing
communications, finding servers, providing security, and so forth. Without a
convenient mechanism for these distributed computing tasks, writing
distributed applications is difficult, expensive, and error-prone. A standalone
distributed application needs to perform all of these tasks itself. RPC
software performs distributed computing tasks for RPC applications, which
can focus on issuing remote procedure calls, executing called procedures,
and handling exceptions.

RPC software provides flexible code fragments that perform a full range of
distributed computing tasks. RPC code fragments resemble code fragments
of any high-level language and can be linked with client and server
application code to form an RPC application.

Figure 9-1 shows the basic tasks that are necessary for distributing an
application.
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Figure 9—1. Tasks for Distributing an Application

Client Tasks Server Tasks
Select the network protocols.

Advertise RPC interfaces and objects in
a name service database.

3 | Listen for calls.

o Call the remote procedure.

B Find a compatible server that offers the
called procedure. .

a Establish a relationship with the server.

Convert arguments to network data representation
and assemble data into network data packets.

a Transmit the input arguments.

»1 9 | Receive the call.

m Disassemble the network data packets and convert the
input arguments into local data representation.

m Create the server context (if needed for multiple calls).

m Invoke the called procedure.

(13) Execute the remote procedure.

m Convert the results (output arguments and/or return value,or exeption) to
network data representation and assemble data into network data packets.

15 | Transmit the results.

B Receive the results.

Disassemble network data packets and convert the

results into local data representation or handle errors.
Legend:
(18] Pass the results to the calling code. —
O = Traditional application tasks.

(19) Handle the exceptions. O = Distributed application tasks.
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9.2 The RPC Model

The RPC model is derived from the programming model of local procedure
calls and takes advantage of the fact that every procedure contains a
procedure declaration. The procedure declaration defines the interface
between the calling code and the called procedure. All calls to a procedure
must conform to the procedure declaration.

The procedure declaration defines the call syntax and parameters of the
procedure; for example, consider the function get_sum written here in the C
language:

long get_sum(long first, long second) @

{
/* Add two input numbers and return their sum. */ @
long sum;

sum = first + second;
return (sum) ;

The preceding example shows the following:
1. Procedure declaration

2. Operations

9.2.1 RPC Interfaces

9-4

Traditionally, calling code and called procedures share the same address
space and are linked. In an RPC application, the calling code and the called
remote procedures are not linked; rather, they communicate indirectly
through an RPC interface. An RPC interface is a logical grouping of
operations, data types, and constants that serves as a unique network
contract for a set of remote procedures. DCE RPC interfaces are compiled
from formal interface definitions written by application developers using the
DCE Interface Definition Language (IDL). Each RPC interface contains a
Universal Unique Identifier (UUID), which is a hexadecimal number that
can identify an entity. A UUID that identifies an RPC interface is known as
an interface UUID. The interface UUID ensures that the interface can be
uniquely identified across all possible network configurations.
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In addition to an interface UUID, each RPC interface contains major and
minor version numbers. Together, the interface UUID and version numbers
form an interface identifier that identifies an instance of an RPC interface
across systems and through time.

The following example shows the use of IDL in a simple interface definition
for a math application.

(uuid (A01D0280-2D27-11C9-9FD3—~08002B0ECEF1) ] ®

interface math

{
const long ARRAY_SIZE = 10; @

typedef long a