NORD-100
Input/Output System

NOTICE

The information in this document is subject to change without notice. Norsk Data
A.S assumes no responsibility for any errors that may appear in this document.
Norsk Data A.S assumes no responsibility for the use or reliability of its software
on equipment that is not furnished or supported by Norsk Data A.S.

The information described in this document is protected by copyright. It may not
be photocopied, reproduced or translated without the prior consent of Norsk Data
A.S.

Copyright @ 1980 by Norsk Data A.S.

ND-06.016.01

This manual is in loose-leaf form for ease of updating. Old pages may be
removed and new pages easily inserted if the manual is revised.

The loose-leaf form also allows you to place the manual in a ring binder (A)
for greater protection and convenience of use. Ring binders with 4 rings
corresponding to the holes in the manual may be ordered in two widths, 30
mm and 40 mm. Use the order form below.

The manual may also be placed in a plastic cover (B). This cover is more
suitable for manuals of less than 100 pages than for large manuals. Plastic
covers may also be ordered below.

A: Ring Binder B: Plastic Cover

Please send your order to the local ND office or (in Norway) to:
Norsk Data A.S

Graphic Center

P.O. Box 25, Bogerud
0621 Oslo 6, Norway

ORDER FORM

| would like to order

..... Ring Binders, 30 mm, at nkr 20,- per binder

...... Ring Binders, 40 mm, at nkr 25,- per binder

...... Plastic Covers at nkr 10,- per cover

N NI e e
COMIPANY oo e et
Address

PRINTING RECORD

Printing Notes

12/80 Qriginal Printing — Version - 01

NORD-100 INPUT/OUTPUT SYSTEM
Publiication No. ND-06.016.01

4
m»: 90

¢ 90 Norsk Data A.S
t] 000 Graphic Center
P.0.Box 25, Bogerud

NOI’Sk Data 0621 Oslo 6, Norway

iv

Manuals can be updated in two ways, new versions and revisions. New versions
consist of a complete new manual which replaces the old manual. New versions
incorporate all revisions since the previous version. Revisions consist of one
or more single pages to be merged into the manual by the user, each revised
page being listed on the new printing record sent out with the revision. The
old printing record should be replaced by the new one.

New versions and revisions are announced in the Customer Support Information
(CSl) and can be ordered as described below.

The reader's comments form at the back of this manual can be used both to
report errors in the manual and to give an evaluation of the manual. Both
detailed and general comments are welcome.

These forms and comments should be sent to:

Documentation Department
Norsk Data A.S

P.O. Box 25, Bogerud

0621 Oslo 6, Norway

Requests for documentation should be sent to the local ND office or {in Norway)
to:

Graphic Center
Norsk Data A.S
P.O. Box 25, Bogerud
0621 Oslo 6, Norway

PREFACE

TO THE READER

This manual describes the NORD-100 Input/Output system architecture and
principles from a hardware standpoint.

The description is general, not aimed at any particular device controller. Hence,
this book is not a maintenance "trouble shooting’’ manual.

The main intention of this manual is to describe the parts of the 1/O system that
are common to all device controllers. That is, to give the needed background to
understand the fundamental design concepts in the NORD-100 Input/Output

system.

In the manuals covering specific device controllers, a knowledge of these concepts
is assumed.

Since this is a hardware manual, it should be of interest to:
— all technical and maintenance personnel who wish to gain a good under-
standing of the connection of 1/0 interfaces to the NORD-100 computer

system.

— system software personnel who program |/O interfaces. They should read
Section |.

PREREQUISITE KNOWLEDGE

It is assumed that the reader of this manual is familiar with the NORD-100 CPU at
the level described in the manual ’"NORD-100 Functional Description”’.

It is also assumed that the reader has some knowledge at the NORD-100 instruc-
tion set and assembly programming.

ND-06.016.01

vi

THE MANUAL

This manual is meant to be read from the beginning to the end since some sections
assume knowledge of the previous sections.

Section | describes the NORD-100 /O system in general terms as seen by a
programmer. This part does not require particular knowledge of the involved

hardware.

Sections Il to V deal with the hardware implementation of the |/O system
functions programmed in Part {.

Section |l describes the functions of the system bus (the NORD-100 bus).

Section Il describes using the NORD-100 bus in programmed information
exchanged.

Section |V describes the separation of interrupting |/0 interfaces.

Section V covers how information is exchanged directly between the NORD-100
memory system and |/O interfaces.

Section VI covers the NORD-100 bus extender.

Related manuals containing relevant information about the NORD-100
Input/Output system are:

— NORD-100 Functional Description

— Different specially dedicated device controller manuals, available on request

ND-06.016.01

vii

GENERAL

NORD-100 is a 16 bit general purpose computer suitable for most computer
applications.

Requirements to a computer system changes from one application to another.
Therefore, flexibility has been one of the key words in the design of the NORD-100
computer system.

The basic difference from one installation to another is found in the memory size,
the software configuration and in the input/output system, i.e., the selection of

peripheral equipment.

Therefore, a flexible and modular design of the above mentioned modules is
specially important in order to configure a system after a customer’s wishes.

ND-06.016.01

Section:

1.1
1.1.1

1.2.1
.2.1.1

1.2.2
.2.2.1
1.2.2.2
1.2.2.2.1
.2.2.2.2

1.2.3
1.2.4

1.3.1
1.3.2
1.3.3
1.3.3.1

1.3.4
1.3.4.1
1.3.4.2

1.3.4.3
1.3.4.4

1.3.5
1.3.5.1

1.3.5.2
1.3.5.3

TABLE OF CONTENTS

+ o+ o+

Page:
NORD-100 INPUT/OUTPUT SYSTEM
OVERVIEW
INTRODUCTION [—1-—1
Definitionof Terms I—1-1
NORD-100 ARCHITECTUREc...... [—2—1
NORD-100 Bus Structure — The NORD-100Bus |—2—1
Physical Arrangement of the NORD-100Bus —2-2
Functions of the NORD-100Bus I—2-3
General 1—2-3
NORD-100 Busand the I/O System 1—-2-3
General —2-3
I/0 System Information Exchange and NORD-100 Bus
Usage I—2—4
Organization of NORD-100 Modules |—-2-56
NORD-100 Configuration Examples —2—-7

PROGRAMMING OF I/0 DEVICE CONTROLLERS
(INTERFACES) — THE INPUT/OUTPUT INSTRUCTIONS

IOX/IOXT o 1—3—1
General —3-1
Introduction to IOX/IOXT [—3—-1
Format and Functions of the I0X and IOXT Instructions I—3-2
Definition of IOX/IOXT Transfer Direction I-3—3
Calculation of the IOX/IOXT Device Register Address .. |—3—6
The Device Register Address Range I-3—-6
Specification of an 1/0 Device Register Address for Norsk

Data Designed Interfaces I—3—9
Device Selection — the Hardware Device Number —3—10
Device Register Selection onan 1/0 Interface I—3—11

Format of the Control and Status Registers for Norsk Data

Designed PIO and DMA Interfaces 1—-3-17
General 1—3—-17
Format and Functions of the Status Register —-3—-17
Format and Function of the Control Register 1-3—20

ND-06.016.01

Section: Page:
1.3.6 Programmingofa PlOInterface [—3-23
1.3.6.1 General ... e e —3—23
1.3.6.2 Programmed Input from a PIO Interface 1—-3—23
1.3.6.3 Programmed Output to a PIO Interface |I—3—26
1.3.7 Programming of DMA Controllers |—3—28
1.3.7.1 DMA Controller Operationccouiuuernens |1—3-—-28
1.4 THE I/O SYSTEM AND THE INTERRUPT SYSTEM ... |—-4-1
1.4.1 General e 1—4-1
1.4.2 NORD-100 Interrupt System General Description 1—4-—-2
1.4.3 NORD-100 Interrupt System Level Assignment under

SINTRAN b e 1—4—-6
1.4.4 NORD-100 Input/Qutput Device Controllers Level Usage 1—4—7
1.4.5 Identification of an Interrupting |/O Device Controller I—4—-9
1.4.5.1 General ... e |—4-9
1.4.5.2 TheldentCodeo iinnnns I—4-—-9
1.4.5.3 Theldentlnstruction, 1—4—-10
1.4.5.4 The Ident Search Mechanism I—4—11
1.4.5.5 input/Output Interrupt Programming —4—12
1.4.5.5.1 Initialization of the Interrupt System —4—12
1.4.56.56.2 1/0 Interface Interrupt Generation I—4—-12
1.4.5.6.3 Handling of I/0 Interface Interrupts |—4—16
[THE NORD-100 BUS
1.1 GENERAL ..ottt e e e e H—1-—1
1.2 THE NORD-100 BUS — BUS REQUESTORS H—2-1
1.3 A NORD-100 BUS CYCLE — GENERAL DESCRIPTION H—-3-1
1.4 FUNCTIONS OF THE BUS CONTROL LOGIC (BCU) .. lI—4-—1
1.4.1 Allocation of the NORD-100Bus i—4-—1
11.4.1.1 The Allocation Requestso N—4-1
1.4.1.1.1 NORD-100 CPU AllocationRequest N—4-2
11.4.1.1.2 DMA AllocationRequest H—4-3
11.4.1.1.3 Memory Refresh Allocation Request i1—4—3
11.4.1.2 The Bus Control Unit (BCU) Allocation Priority Rules .. lI—4—4
11.4.2 The Bus Control Unit {BCU) and Termination of Bus

CVCleS .o e —4—6

ND-06.016.01

Section:

1.5

i1.5.1
11.5.1.1
11.6.1.2

.1

.2

i.2.1
.2.2
1.2.3
.2.4
l.2.5
.2.6
m.2.7

V.1

V.2

vV.2.1
v.2.2
IvV.2.3
v.2.4

xi

Page:

DATA TRANSFER ON THE NORD-100 BUS — GENERAL

DESCRIPTION i I—5—1
Organization of a NORD-100Bus Cycle i—5—1
TheAddressCycle, H—5—-2
TheDataCycle 0., H—5—-2

PROGRAMMED INFORMATION EXCHANGE
BETWEEN I/O INTERFACES AND NORD-100
CPU — EXECUTION OF THE IOX/IOXT

INSTRUCTIONS

INTRODUCTION i H—1-1
IOX/IOXT INSTRUCTION EXECUTION M—2-1
General Hl—2-—-1
IOX/IOXT Instruction Entry Point Generation —-2-1
IOX/IOXT Microprogram Qperation H—-2—4
I0X/10XT Execution and the NORD-100Bus n—-2-7
IOX/IOXT Execution and the I/O Interfaces —-2—11
P10 Interface Module Organization N—-2-12
Hardware Implementation of the Device Identification

LogiC ..o IH—2—15

IDENTIFICATION OF INTERRUPTING I/0
INTERFACES — EXECUTION OF THE IDENT
PLxx INSTRUCTION

INTRODUCTION i V—1-1
EXECUTIONOFIDENTPLXXot V—-2—-1
Ident Microprogram Operation V—-2—1
Ident PLxx Execution and the NORD-100Bus V—2-4
Ident PLxx Execution and the I/0 Interfaces V—-2-8
Hardware Implementation of the Ident Control Logic on

PlIOand DMA Interfaces V—2—-9

ND-06.016.01

Section:

\

VA

V.2

V.3

V.4

V.5

VI
VI
V1.2

VI1.2.1
VI1.2.2

VI.3
VI.3.1
V1.3.2
VI1.3.3
VI1.3.4
VI.4

V1.5

Xii

Page:
DIRECT MEMORY ACCESS (DMA) INFORMA-
TION EXCHANGE VIA THE NORD-100 BUS
GENERAL s V—1-1
THE DMA REQUEST GENERATION V—2-1
DMA REQUESTS AND THE BUS CONTROL UNIT — THE
BUS ALLOCATION ACKNOWLEDGE MECHANISM .. V—-3-1
A DMA TRANSFER AND THENORD-100BUS V—4-1
DMA TRANSFERS AND THE DMA CONTROLLERS .. V-—5-—1
NORD-100 BUS EXTENDER (BEX)
GENERAL e VI—1-1
FUNCTIONAL DESCRIPTION VI—2—1
Definitionof Terms, VI—2-1
Organization of Modules in a Bus Extended System VI—-2-2

"CONTROL OF THE BUS EXTENDER (BEX) MODULES VI—3—-1

Introduction e VI—3-1
The Memory Address Routing Mechanism Vi—3-—-2
Hardware Switch Setting VI—3—4
Bus Extender (BEX) Programming Specifications VI—3-—-8
CONFIGURATION EXAMPLES VIi—4—1

BEX INTERCONNECTION — PHYSICAL CABLE
ARRANGEMENTo i VI—-5—-1

ND-06.016.01

Appendix:

A

B.1
B.2

B.2.1

B.2.2

B.3

B.4

C.1
C.1.1
C1.2

C2

C.21
C.22
C.23

C.3
Ca
C5

C.6
C.7

E.1
E.2
E.3
E.4

Xiii

Page:
STANDARD NORD-100 DEVICE REGISTER ADDRESSES
ANDIDENTCODES A-1
INTERNAL REGISTERS B—1
Programming Specifications for TerminalNo. 1 B—3
NORD-100 4 or 8 Asynchronous Serial Interface Program-
ming Specifications B—5
NORD-100 4 or 8 Asynchronous Current Loop Program-
ming Specifications B-—5
NORD-100 Asynchronous V24 Programming Specifica-
HONS ... e B—12
Specification of Line Printer Interface for CDC 9380 for
NORD-10/100 it i B—18
NORD-100 Disk Programming Specifications B—20
SWITCH SETTINGS FOR THE DIFFERENT NORD-100
MODULES e Cc-—1
Switchesonthe CPUModule Cc-1
ALD — Automatic Load Descriptor c-2
Console: Speed setting for console terminal Cc-2
Switches on Floppy and 4 Terminals Module (3010) C—3
TFloppy Disk System C-3
2Terminal Groupo i e C-4
3Initial Baud Rate for Terminals Cc-4
Switches on Memory Modules (3005) C—6
Switches on the 10MB Disk Module (3004) c-7
Switch Setting on the Pertec Magnetic Tape Module
(3008) e c-8
Switch Setting on NORD-100 Bus Adapter (3008) c-8
Switch Settingon Local I/OBus c-9
NORD-100 PLUG PANEL FOR EXTERNAL DEVICE
CONNECTION i e D-1
ORGANIZATION OF NORD-100 MODULES E—1
Location of Integrated Circuits (Card Coordinates) E—1
Arrangement Drawings Examples E-3
Notation of Signals to and from NORD-100 Modules ... E—8
Cable List for External Device Connection E-9

ND-06.016.01

Appendix:

F.1

G.1
G.2
G.3
G4
G.5

Xiv

Page
NORD-100 BUS BACKPLANE SIGNALS F—1
Representation of Signals in Timing Diagrams F—7
SCHEMATICS .. . i i s G-—1
NORD-100CPU i i i e G—-2
4 Terminals and Floppy Disk G—7
8Terminalst G—12
10MB Disk Controller, G—17
DynamicRam ... G-—19

ND-06.016.01

1.1.1

1-1-1

NORD-100 INPUT/OUTPUT SYSTEM OVERVIEW

INTRODUCTION

The purpose of the input/output system (I/O system) is to perform the physical
communication between connected peripheral equipment and the NORD-100
computer system.

The user normally does not interact directly with the 1/0O system, only indirectly via
the operating system.

Thus, all I/0 operations are normally invisable to the user.
However, privileged users may access the 1/0 system directly and users with

special real-time requirements (running direct tasks) may bypass the 1/0 system
for direct access to specific devices.

DEFINITION OF TERMS

As shown in Figure 1.1, the I/0 system is part hardware and part software.

DEVICE
DATA BUFFER

|
|
l
|
l

PROCESS |- SINTRAN DEVICE DEVICE
{user " DRIVER | | |CONTROL- € sterial
program) OP, <—»{ LER Device
SYSTEM / |
L DEVICE DATA |
T~ T FiEwD I
DEVICE REFERENCE
TABLES (DATA FIEL!|)S)
SOFTWARE ll HARDWARE
{

Figure I.1: Fundamental Elements of the I/ O System
Figure 1.1 shows some of the important elements of the |/O system. The picture is

not complete, but it illustrates the chain of linkages that are basic to the /O
system.

ND-06.016.01

I—1-2

A device controller, as shown in Figure 1.1, is the hardware 1/0 interface. The
functions of the device controllers is to:

— synchronize the speed between a peripheral and the NORD-100
— formating of data to and from the peripheral

Depending on the particular controllers, the device controller may drive only one
peripheral (such as a terminal) or may be capable of driving several peripherals
(such as disk units).

For each device controller there is an entry in a device data field table. A device
data field defines a device and is used by a device driver, the program that
accesses and controls a peripheral.

For each device there is a device data buffer where information between the
operating system and the 1/0 system is exchanged.

This manual is intended to give a functional description of the hardware involved in
the I/0 system.

ND-06.016.01

1.2.1

1-2-1

NORD-100 ARCHITECTURE

NORD-100 BUS STRUCTURE — THE NORD-100 BUS

In the NORD-100 computer system all hardware modules are connected together
via a common bus, the NORD-100 bus {see Figure 1.2.1).

NORD- 100 0us
P ol C rAIIl(_m e
|
VEANROR
CPU MODULE CACHE ICHECK &
MEMORY lconnec
DEVICE lvion
T POWER T T REALTIME oo INTERFACE o | e
FAIL DETEC[CLOCK MEMORY MODULE
MANAGEMENT MEMORY MODULE
——————————— MODULE
TELETYPE AUTOMATIC
INTERFACE \RESTART
|
l A I l A I AJ

.

1 OPTIONAL : L

! ooiseuay II
PANEL

Figure 1.2.1: NORD- 100 Bus Structure

DEVICES

All communication between NORD-100 modules is provided by this bus, except
CPU, MMS and Cache communication. Therefore, the NORD-100 bus is general
purpose, to allow all classes of NORD-100 modules simply to be “plugged” into

the system.

ND-06.016.01

1.2.1.1

{—2-2

Physical Arrangement of the NORD-100 Bus and Card Crate

Physically, the NORD-100 bus is available as a printed backplane. The backplane is
available in two versions containing either 12 or 21 positions for module connec-
tion. Besides the different numbers of positions, there is no difference between the

two versions as far as the connection of hardware modules is concerned.

However, the difference between a 12 or 21 position system is easily visualized by
the organization of the card crates and the size of the cabinets.

In the 12 position version, the required power is supplied by a power supply
located within the card crate (refer to Figure 1.2.2). This approach leads to a very

compact system.

AN

L

VIO TTT IO T T TS TTE LT 5

420mm

POWER

SUPPLY

Ll L L LT T L Ll L L L

LI A

-—

L

T

j—————

510mm —_—

Figure 1.2.2: 12 Position NORD-100 Crate Layout (Top View)

ND-06.016.01

SLIDES FOR

CONNECTION
OF MODULE

DEPENDENT
CABLES

NORD-100 BUS
BACKPLANE

1-2-3

In the 21 position version, the power supply is removed from the card crate and
located in the upper part of the cabinet (refer to Figures 1.2.3 and 1.2.4). Thus, the
cabinet must be bigger that the cabinet for a 12 position crate.

WP

CONNECTION
OF MODULE
) DEPENDENT
CABLES
420mm
T T T AT T T T 7T T T T T T T2 TN
L4
NORD-100
| BUS BACKPLANE
1T
P 7SI s

510mm

Figure 1.2.3: 21 Position NORD- 100 Crate Layout (Front View)

ND-06.016.01

1-2—-4

POWER SUPPLY

NORD-100
MODULE
REMOVED

N R T Y, —

/

™\ 21 POSITION
NORD-100 CRATE

® 89 & &8 &% o8

Figure 1.2.4: Cabinet Layout for a 21 Position NORD- 100 Backplane System.

The NORD-100 bus backplane of either 12 or 21 positions is, therefore, firstly
selected from the number of modules required in an actual system.

On the other hand, physical dimensions in the cabinet and possible needs for
future extension could also be taken into account.

ND-06.016.01

1-2-5

in some cases, a configuration may require space for even more than 21 modules.
In such cases, NORD-100 card crates are linked together by Bus Expander
modules. The number of crates to be linked is set to a theoretical maximum of 8
crates.

The properties of the Bus Expander module are explained in Section VI.

Each NORD-100 bus backplane position contains a total of 96 lines (power and
ground lines included).

All positions in the backplane contain the same information, i.e., they are equal.
This allows flexible configuration or reconfiguration of hardware.

The actual placement of different modules follow various rules which are described
later.

ND-06.016.01

1.2.2

1.2.2.1

1.2.2.2

1.2.2.2.1

1-2—6

FUNCTIONS OF THE NORD-100 BUS

General

As already mentioned, the NORD-100 bus serves as a general purpose highway for
data and addresses in the NORD-100 computer system.

The actual function and use of the bus depends on what kind of transfer is being
performed.

NORD-100 Bus and the /0O System

General

As illustrated in Figure 1.2.1, NORD-100 I/0O device controllers are connected
directly to the NORD-100 bus. This includes some important advantages:

— The 1/0 device controllers are connected to the same printed backplane as
the CPU and the memory system;

— no external wiring
— increased realiability

— only one bus to connect between source and destination of a transfer makes
a fast system.

— 1/0 device controllers and siot number in the NORD-100 bus is not
predefined:

— easy to expand
— easy to reconfigure

ND-06.016.01

1-2-7

[.2.2.2.2 1/0 System Information Exchange and NORD-100 Bus Usage

External devices may be classified as:
1. Slow character/word oriented devices (for example, terminals)

2. High speed block oriented mass storaged devices (for example, disks, mag.
tape)

Data exchange between these classes of peripherals and NORD-100 falls into one
of two categories.

Programmed Input/Qutput (PIO)

The first class is completely controlled by program. This is called Programmed
Input/Output (PIO).

In programmed data transfers, each word or byte to be exchanged has to be
programmed between the selected 1/0 device controller (interface) and the CPU A
register.

This is illustrated in Figure 1.2.3.

NORD-100 BUS

AN SO NONNASANSNSISIS AN AN SO SSSSSNSN \
A P : r v\&]? r :
A REG. o MMS DMA PIO MEMORY
CPU CACHE CONTROLLER] CONTROLLER MODULES

Figure 1.2.3: PIO Data Exchange and Bus Usage

The CPU is busy for every word/byte to exchange. The NORD-100 bus is allocated
to carry data being exchanged.

Direct Memory Access (DMA)

High speed block oriented peripherals exchange data directly with the NORD-100
memory system. This is called Direct Memory Access (DMA).

The 1/0 interface which controls the transfer, is activated by a driver program in
SINTRAN Ili. The activation includes telling the /0 interface where to place/find
data in memory, where to find/place data on the external device and the number
of words to exchange.

ND-06.016.01

1.2.3

1-2-8

The number of words specified is then transferred automatically without program
(CPU) interaction.

DMA data exchange and bus usage is illustrated in Figure |.2.4.

NORD-100 BUS OMA DATA
Vs S 777,
_ DMA PIO MEMORY
CPU MMS CACHE CONTROL.(S) CONTROL.(S) MODULE(S)

Figure 1.2.4: DMA Data Exchange and Bus Usage
The CPU may run any activity not waiting for the DMA transfer to be completed.

The NORD-100 bus is allocated for a DMA transfer when a word is ready to be
exchanged. The connection between a DMA controller and the memory system is
referred to as a "DMA channel”’. More than one DMA controller (interface) may
be activated at the same time, thus sharing the DMA channels total band width.

ORGANIZATION OF NORD-100 MODULES

All NORD-100 modules are made to a common standard. Every module has at
least one connector used for connection to the NORD-100 bus. In addition, a
NORD-100 module may have one or two extra connectors carrying a total of 128
lines (64 lines in each connector).

128 lines with
nondefined use NORD-100 bus connection
—A A\
7 \ 7 \
L | 1 J L]
A B C T
Component side 280 mm

A

The plugs are assigned an identification letter as illustrated. The plug used for
connection to the NORD-100 bus is assigned the letter C. This plug contains 96
pins; each of them defined in accordance to the NORD-100 backplane (bus)
standard.

¢——— 366.8 mm —_—

ND-06.016.01

1-2-9

The plugs A and B each carry 64 lines with nondefined use. In the design of 1/0
device controllers these plugs are used for connection to the external devices.

In Figure 1.2.5 the organization of an |/ O device controller is shown.

128 lines for device NORD-100 bus
connector connection
AL A
r N N
T T T T T T Iy
A B Cc
* ¥ *
One or more device controllers Standard
NORD-100 bus

receivers/transmitters

280 mm

COMPONENT SIDE

L 366.8 mm :

Figure [.2.5: Organization of an I/ 0 Device Controller Module

* The standard part includes bus handshake control logic. This part is standarized
for:

— all PIO device controllers
-— all medium speed DMA controllers (10 Mb disk, mag. tape}

** The device dependent part may handle up to four different PIO devices or one
DMA controller. A DMA controller may handle up to four units.

Example — one module:
— four terminals and floppy disk
— 8terminals

— one 10Mb disk controller (up to 4 units)
— one mag. tape controller (up to 4 units)

ND-06.016.01

1.2.4

1-2-10

NORD-100 CONFIGURATION EXAMPLES

Figure 1.2.6 shows a typical medium sized NORD-100 single processor system.

|
WCS i OPTION! WRITEABLE CONTROL STORE

{
i
]
NORD-100 BUS
cPU CONSOLE
. RTC TERMINAL
“ CTTY
4 OPERATOR
P PANEL
OPTIONAL
MMS + DISPLAY 1
______ —d
CACHE
up to 4 10M byte disk units
10M byte
DISK
r——® CONTROLLER

VDU 1 4 Visual Display Units

-
. .

DATA
ENTRY
—— CONTROLLER

//Vou4

O Floppy Disk

2 MEMORY
MODULES

128Kw

Figure 1.2.6: NORD- 700 Single Pracessor System

ND-06.016.01

1—-2-11

Physical layout in the card crate of the configuration shown in Figure 1.2.6 is given
in Figure 1.2.7.

NORD-100 CPU MODULE
MMS & CACHE

10MB DISK CONTROLLER

DATA ENTRY MEMORY MODULES
CONTROLLER

B VL Ll Ll Ll L
' FReE l
< POS!TIONS_-‘I
!

AT 77777 T

POWER
SUPPLY

Figure 1.2.7: Configuration Example — Physical Layout in Card Crate

ND-06.016.01

1.3.1

1.3.2

1-3-1

PROGRAMMING OF 1/0 DEVICE CONTROLLERS
(INTERFACES) — THE INPUT/OUTPUT INSTRUC-
TIONS 10X/10XT

GENERAL

Neither a PIO interface nor a DMA controller starts an 1/0 transfer of their own.
They have to be activated. The activation is done by the relevant device driver
program when a transfer is requested (either from user program or from an 1/0
device controller through a hardware interrupt).

The control of an 1/0 device interface includes programmed access to physical

hardware registers on the interfaces. Two special machine instructions are
implemented for this purpose.

INTRODUCTION TO I0X/IOXT

In the NORD-100 instruction set there are two instructions usable for information
exchange between the hardware device controllers and the CPU.

The mnemonics of the instructions are 10X and I0OXT recognized by the MAC
assembler.

NOTE: I0X and IOXT are privileged instructions. That is, under a running system
{SINTRAN Il running) only privileged users may use IOX/IOXT. This is
normally the device driver programs belonging to SINTRAN 111 itself.

Nonprivileged use is detected and error message given.

If SINTRAN Il is not running and paging is off, IOX and IOXT is available as other
nonprivileged instructions.

Programs containing I0X/IOXT may then be entered in executable format either

via the Microprogramed Operators Communication {(MOPC) or from a mass
storage device as floppy disk.

ND-06.016.01

1.3.3

1-3-2

FORMAT AND FUNCTIONS OF THE 10X AND IOXT INSTRUC-
TIONS

In the NORD-100 instruction set, 10X and IOXT are the only instructions useable in
information exchange between CPU and /0 device controllers.

Neither the 10X nor the I0XT instruction perform any predefined functions on the
I/0 device controllers.

Their only purpose is to carry information between the CPU A register and a
specified |/0 device register.

The actual function of the I0X/IOXT instructions depend on the selected 1/0
device register.

All 170 device controllers are assigned a group of registers, each of them having a
special meaning on the interfaces. Therefore, the programmer, by specifying an
appropriate register on a device, assigns the exchanged information a special
function.

Thus, all classes of information may be exchanged:

— data (byte or word) to or from PlO interface data registers {(not DMA inter-
faces)

— transfer control information to PIO and DMA interfaces control registers

— transfer status information from PIO and DMA interface status registers.
Instruction Formats

All 1/0 device registers are assigned an address referred to as "‘device register
address”. That is, both the 10X and IOXT instructions access an 1/O device
register by its address.

10X Instruction Format

In the 10X instruction, the address of the 1/0 device register to access is specified
in the 11 lower bits of the instruction itself.

IOX <device register address>

1514 13 12 1N 1098 7 6 5 4 3 2 10

111 0 1 X X X X X X X X X X xOctaIcode1640008

N A -
Y Y
Operation code Device register address
for micro program specified by programmer

ND-06.016.01

1.3.3.1

1-3-3

10XT Instruction Format

In the IOXT instruction, the device register address should be loaded into the T
register prior to executing I0XT.

LDT <device register address>

|IOXT
15 14 13 12 1 0
X X X X e x x | T register
~ J

N
Device register address specified
by programmer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

t 1 0 1 00 0100 O0OT1YT1 0 1 Octal code 150 415¢

e y
Y

Operation code for
micror program

Definition of IOX/IOXT Transfer Direction

The 10X and I0XT instructions handle both input and output transfers. An input
transfer in this context means input to the CPU A register from a specified 1/0
device register. An output transfer means output from the CPU A register to a
specified /0 device register.

The actual transfer direction of the 10X and IOXT instructions is decoded from the
device register address based on the following convention:

— The transfer direction is input if the device register address is even. That is,
bit 0 of the address is 0"

— The transfer direction is output if the device register is odd. That is, bit 0 of
the addressis 1",

The programmer is not affected by this convention. All 1/0 device registers which
should be loaded from the CPU A register (output transfer) are assigned an odd
device register address.

All 1/0 device registers which should be read into the CPU A register (input
transfer) are assigned an even device register address.

How hardware uses bit 0 in the device register address to select the transfer
direction is described in later sections.

ND-06.016.01

1-3—4

10X /IOXT Transfer Direction lllustrations

input Transfer:

An 1/0 device register specified with an even device register address is loaded into

the A register.

Ilustration:
10X Input:
!
; |
|
!
A REGISTER {
|
|
5 1110 9 1 0 !
10X b 3 SIS .x 0 i L)
b Y g I
even device register | specified 1/0 device register
address (bit Q= “0") |
|
CPU i 1/0 SYSTEM
|
[OXT Input:
|
cPU | 1/Q SYSTEM
T
: |
A REGISTER 1
I
15 10 |
X X x 0 !
T register: even device register address } Specified |/0O device register
|
10XT I
Instruction register |
CPU ll 1/O SYSTEM

ND-06.016.01

I-3-5

Output Transfer:

The CPU A register is written to an |/O device register specified by an odd device
register address.

[llustrations:

10X Output:

A REGISTER ®

15 1110 9 10

10X | D x 1

Odd device register address Specified |/0 device register

|
|
|
|
|
|
!
|
l
|

CPU 1/0 SYSTEM
{OXT Output:
I
|
1
; |
A REGISTER |
15 14 1.0 i A
D xxx1 : >
|
Odd device register address in T register : Specified 1/0O device register
10XT !
instruction l
CPU | 1/OSYSTEM

As indicated, the 10X and IOXT instructions are general purpose 1/ O instructions.
The actual register on a device to access is specified in ""device register address”’.

The information to exchange and the transfer direction (input or output) is givern im-
plicitly through the selected device register address.

ND-06.016.01

1-3-6

1.3.4 CALCULATION OF THE IOX/IOXT DEVICE REGISTER ADDRESS

In order to form the device register address, a basic understanding of the organi-
zation of the device registers is needed.

Logically, the collection of all I/O device registers may be thought of as a
contiguous register file.

Physically, each 1/O device controller is assigned a group of registers. Thus, the
registers are located and accessed on the modules where they are relevant.

1.3.4.1 The Device Register Address Range

By using the IOX instruction a total of 2K registers may be specified, i.e.,
addresses from 0 - 3777,.

The 10XT instructions, which use the 16 bits T register to hold the device register
address, may hence theoretically address up to 64K registers (addresses from 0O -

177777,).

However, the coliection of all device registers implemented on interfaces designed
at Norsk Data only cover the address area 0 - 1777,, i.e., 1K register.

The remaining addresses, which may be specified by the 10X or IOXT instructions,
are defined as described below.

The 10X Instruction Address Range

The address range covered by the 10X instruction is organized as illustrated below

{(Figure 1.3.1).
Device register address
A
~ ™~
15 1110 9 0
1
10X C o IXRXX .ot X X
1
- ~" — ADDRESS
ADDRESSES -DEFINED 0
- BY NORSK DATA
c="0" r DESIGNED INTERFACES
1777
20008
ADDRESSES LEFT OPEN
. FOR CUSTOMER
c="1" > DESIGNED INTERFACES
Figure 1.3.1: 10X Instruction Address Range 3777g

ND-06.016.01

1-3-7

As indicated, bit 10 in the |0X device register address, equal to 0", defines an
address defined by Norsk Data’s equipment. tf bit 10 is "'1"”’, the specified address
has to be defined by some customer designed equipment.

The IOXT Device Register Address Range

As already mentioned, the T register should be initiated with a relevant device
register address prior to the exeuction of IOXT.

The address range covered by the IOXT instruction is organized as shown below

{Figure 1.3.2).

Device register address in Tregister

A
r B
1514 1312 11 10 O 8.0\ or v 0
]] : i ;] {
: : I |) C: PXXX X
L1 : ! ! ! Addresses
00 00 0 0 x > > | NORskDATA
INTERFACES)
\ 17774
20004
CUSTOMER
0 00 0 1T x > =‘1 INTERFACES
3777
s 8
060 00 1 0 x 4000g
] 1
) a5 .
. e ") 1 ILLEGAL |
0 11T 1 1 x ! V97777
\ 8
J SYSTEM 100000g
> CONTROL
1 00 0 0 O >
REGISTERS
100777
,
1 0 00 0 1 101000g
: . RESERVED
1 R 1 1077774
! 01 0 0 0 110000
: NORSK DATA 8
1 11 1 1 7 INTERFACES
1777774

Figure 1.3.2: Instruction IOXT Address Range

As indicated, if the bits 11-15 are all zero, the device register address of the IOXT
instruction overlap in the 10X instruction’s address range.

If one of the bits 11-14is /1" and bit 15is 0", the address is illegal.

H bit 156 is set (""1”), registers not accessible by the 10X instruction may be
specified.

ND-06.016.01

1-3-8

Addresses from 100000, - 100777, are used to specify system control registers
which have to be accessed via the NORD-100 bus. An example is the Error
Correction Control Register (ECCR), physically located on the memory modules.

ECCR is loaded by the TRR instruction. However, since ECCR is accessed via the
NORD-100 bus, the micro program converts the TRR instruction to an IOXT
instruction.

The ""device register address’ is generated by the micro program in the area
100000, - 100777, {TRR ECCR is converted to IOXT 100115;).

The registers in this address area is not relevant to the 1/0 system and are there-
fore not discussed any further in this manual.

Addresses from 101000, - 107777, are reserved by Norsk Data for future needs.

Addresses from 110000, - 177777, are reserved by Norsk Data for future extention
of the 1/0 device register address range.

Since all present 1/0 device controllers designed at Norsk Data may be specified in
the address area 0 - 1777,, only this area is supposed to be accessible in the
following sections.

Further, since the addresses 0 - 1777, may be specified by both the I0X and the
IOXT instructions which both have the same functions, 10X is the instruction
which most often is referred to. However, convertion from 10X to IOXT is given in
some programming examples.

ND-06.016.01

1.3.4.2

1-3-9

Specification of an 1/0 Device Register Address for Norsk Data
Designed Interfaces

As already mentioned, each 1/0O device controller is assigned a group of registers
with concecutive device register addresses. The total number of registers assigned
one |/0 interface may be from 4 to 16 depending on the control functions needed
on a device.

Therefore, the device register address may be divided up into two parts:

— device selection address (hardware device number — dev. no.)

— register selection address to select a register within the selected device (reg-
ister number - reg. no. — in selected device)

The I0X/I0XT device register address is then calculated by the formula:

<dev. reg. addr.> = dev. no. + reg. no.

Device Number Reg. No.
7 > Registers 0
assigned
one .
Yo} '
1 .
interface
10X
g 38 to 17
p A P~
15 111079 v d
1QX 0 DEV.NO. REG.NO.* The field REG. NO. may be from
2 to 4 bits depending on the
; h : numbers of registers assigned
or IOXT :) { the specified device.
] ! 1
i i !
| 1]
]
1514131211 10 9 | o
00 0 0 0 O DEV. NO. REG.NO.”

Figure 1.3.3: Device Register Address Calculation — lllustration

For Norsk Data produced device controllers, both the device number and the
register number have been standarized. The hardware device numbers (dev. no.)
are available in a table. The numbers assigned the various registers on an |/O
interface are given in the specifications following each 1/0 interface.

How to use these tools in calculation of the device register address is given in the
following sections.

ND-06.016.01

1.3.4.3

1-3-10

Device Selection — the Hardware Device Number (Dev. No.)

As indicated in Figure 1.3.3.

The start {least) address of the block of registers on a device is referred to as the
device's hardware device number (dev. no.).

The device number for Norsk Data produced interfaces are standarized and put in
table form (in Appendix A). In Appendix A, the device register address range for
the most common 1/0 interfaces is included.

NORD-100 Standard Device Numbers (Appendix A}:

Device Register

Addressrange Device
3005-307go Terminal 1
)

device number {dev. no. = 300,)

300; - 307, is the device register address range (8 registers are assigned terminal 1).
A

There is always a unique correspondence between a peripheral, the I/0 interface
controlling the peripheral and a device number.

The device number corresponding to an |/0 interface is selectable by a thumb-
wheel on the module. This is done to allow equal hardware modules to cover all

possible device numbers assigned one class of peripherals.

Note that there is no relationship between a module device number and its slot
number in the NORD-100 bus.

ND-06.016.01

1.3.4.4

1I-3-11

Device Register (reg. no.) Selection on an 1/0 Interface

Each register implemented on an 1/0 interface is assigned a unique number in the
interface (register number — reg. no.).

Each register is related to a special function on the interfaces. That is, when both
the device number and a register number is specified, the information exchanged
by IOX/IOXT has a defined meaning, given by the funciton of the selected device
register.

Each I/O device controller is described in a specification referred to as the
programming specification’’. In the programming specification of an interface, the
functions and the associated numbers of each register is described. (Programming

specifications of some |/0 interfaces is given in Appendix B.)

In order to understand the programming speicfications of an interface, the
organization and register assignment of Norsk Data produced interfaces is needed.

1/0 interface channels and registers:

An 1/0 interface is said to have two channels if it can handle both input and output
transfers simultaneously. A one channel interface may handle either input or
output transfers.

Examples:

One channel devices:

— line printer interface (output only)
— card reader interface (input only)

Two channel devices:

— terminal interface (output to terminal and input from keyboard)
— communication controllers (output to line and input from line)

Bidirectional (one channel) Device Controllers:

— disk interfaces (may handle both input and ouput but not simultaneously)
— mag. tape interface (same as for disk)

ND-06.016.01

1-3-12

PIO INTERFACE REGISTERS ACCESSIBLE BY IOX/IOXT:

On a PIO interface designed at Norsk Data, each channel is assigned at least three
registers:

— acontrol register

— astatus register

— adataregister

The Control Register

The control register is a "“write only”’ register (I0X/IOXT output). Commands
(start/stop transfer, mode of operation) from a device driver program to an 1/0

interface channel is given through this register.

LDA <command> % initiate A register
JOX <dev. reg. addr.> % write content of A reg. to specified control reg.

The Status Register

The status register is a “read only” register {IOX/IOXT input). By reading this
register, the status of an /O interface channel (ready for transfer, busy, errors,
etc.) may be investigated.

LDT <dev. reg. addr.> % initiate T reg. with dev. reg. addr. of the status reg. to

% access
IOXT % specified status reg. — A reg.

The Data Register

The data registers is ""write only’’ if it belongs to an output channel or “read only”
if it belongs to an input channel.

Output Data:

LDA <data> % initiate A reg. with data to output
I0X <dev. reg. addr.> % dev. reg. addr. of data reg. to access

Input Data:

IOX <dev. reg. addr.> % dev. reg. addr. of data reg. to access
% i.e., data — A register

ND-06.016.01

1-3-13

EXAMPLES OF DEVICE REGISTER ADDRESS CALCULATION FOR PIO
DEVICES

Example 1: Line Printer Interface
The line printer interface has only one channel — the output channel.

The registers assigned the interface follows Norsk Data’s standard and is defined
in the line printer programming specification (Appendix B).

Register: Register No.:

Output channel control register
Output channel status register
Output channel data register
Input data register for*

O =N W

* 17

off line”” loop back of data (for test purposes only)

Problem 1:

What is the IOX/IOXT device register address of the data register on line
printer no. 1.

Solution:
The dev. reg. addr. is calculated form:
dev. reg. addr = dev. no. + reg. no.

The device number (dev. no.) should select line printer no. 1. In Appendix A that is
found to be 430;.

The register number should point out the data register on the line printer interface.
The register number of the data register is found in the programming specifications
of line printer interface (Appendix B) and is equal to 1.

That is:

dev. reg. addr. = dev. no. + reg. no.
= 4304 + 15 = 431,

Assumed that line printer no. 1 is ready to accept data, the following program will
write the location CHAR to the line printer data register.

LDA CHAR % initiate A reg. with char. to output
10X 431 % write content of A reg. (CHAR) to
% line printer no. 1 data reg.
CHAR, 101 % 101is ASCIlI value of A

or by using IOXT;

ND-06.016.01

1-3-14

LDT DEVNO % initiate T register with dev. reg. addr.
LDA CHAR % initiate A reg. with char. to output
I0XT % write content of A reg. (CHAR) to

line printer no. 1 data reg.

CHAR, 101
DEVNO, 431
Problem 2:

Write 74 to the control register of line printer no. 2.
Solution:

Dev. reg. addr. = Dev. No. (L-P no. 2) + Reg. No.

= 4348 + 38
= 4378
Program:
SAA 7 % A: =17,
10X 437 % Areg. —> dev. reg. 437,
or
LDT ADDR % initiate T reg. with <dev. reg.
% addr.>
SAA 7 % A:=T7,4
IOXT % Areg. —levelreg. 437
ADDR, 437
Example 2: Terminal Interface
A terminal interface has two channels — input from keyboard and output to

terminal display. Each channel is controlled independently and contains its own set
of control, status and data registers.

Input channel:

Register: Register No.:
Input control register* 3
Input status register** 2
Input data register 0

ND-06.016.01

1-3—-15

Output channel:

Register: Register No.:
Output control register* 7
Output status register** 6
Output data register 5
Common Register: Register No.:
Speed selection {baud rate) register 1

* Note that the control register is always a write only register independent of
which channel it is assigned

** Note that the status register is always a read only register independent of
input/output channel

Problem 1:

What is the 10X/10XT device register address for the output channel status
register on terminal no. 1.

Solution:

. From Appendix A, terminal no. 1 is found to have device number (dev. no.)
equal to 300,.

In Appendix B, programming specifications for a terminal interface, the
register number (reg.no.) for output channel status register is 6.

Using the formula

Dev. reg. addr. = dev. no. + reg. no.
= 3003 + 68 = 3068

That is, by executing,
10X 306
or

LDT (306
I0XT

the status register for the output channel on terminal 1 is read into the CPU
A register.

ND-06.016.01

I-3-16

Problem 2:

Assume that terminal 1 have a data character available to be read and that terminal
2 is ready to accept a character.

Read the character on terminal 1, store it in a location called BUFF and write it
back to terminal 2.

Solution:

The data character available on terminal 1 is located in the terminals input channel
data register. The device register address of this register is (using Appendix A and
B).

Dev. reg. addr. = dev. no. {terminal 1) + reg. no. (input data)
= 3003 + 08 = 3008

The character stored in BUFF should be loaded to the output channel data register
on terminal 2. The device register address of this register is (using Appendix A and
B).

Dev. reg. addr. = Dev. no. (terminal 2) + reg. no. {output data)
310, + By = 315,

Correct Program Using 10X (Convert to IOXT privately}:

INPUT, 10X 300 % read input data form terminal 1
STA BUFF % store A reg. in BUFF
OUTPUT, LDA BUFF % initiate A reg.
I0X 315 % write data to terminal 2
BUFF, 0

DMA INTERFACE REGISTERS ACCESSIBLE BY IOX/IOXT:

A DMA controller usually contains from 8 to 16 registers accessible by 10X/I0XT
instrucitons.

The 10X/1I0XT device register address is just as for PIO interfaces, calculated for
device number and register number found in the device number table {Appendix
A) and the relevant programming specification respectively.

Discussion of different registers on a DMA controller is left for later sections
{(programming of DMA controliers). However, the important difference from PIO
interfaces is noted:

- DMA controllers have no data register accessible by 10X/IOXT. The data

register is exchanged directly between controller and memory without
program interaction.

ND-06.016.01

1.3.6

1.3.5.1

1.3.5.2

1-3-17

FORMAT OF THE CONTROL AND STATUS REGISTERS FOR
NORSK DATA DESIGNED PIO AND DMA INTERFACES

General

All information exchange, i.e., control, status and data, between PIO devices and
NORD-100 CPU is programmed via the A register by means of I0X/IOXT instruc-
tions.

On DMA controllers, control and status are programmed while data is exchanged
directly to memory.

Before programming, the format and functions of the different 1/O interface
registers must be known. This information is found in the programming
specifications for an interface. {Some examples are given in Appendix B.)

The format of the control and status registers are device dependent and may be
assigned by the designer of each device controller. However, on Norsk Data
designed interfaces, both the functions and the formats of these registers have

been standarized.

The format of the data register follows the format accepted by the external device
(for example, ASCII to and from terminals).

Format and Functions of the Status Register

The information available in an /0 interface channels status register is set by the
interface itself.

The register is read into CPU A register (IOX read status register) when the state of
an interface channel is to be investigated.

The status register is read by

I0X <dev. reg. addr.> % dev. reg. addr. of status reg. to access

The format of the status register has been standarized for all Norsk Data produced
interfaces and is equal both for the input and output channel of a device.

Format of the status register (format of the A register after 10X read status
register).

ND-06.016.01

1-3-18

1514 13 12 11 10 9 8 7 6 5 43 2 1 O

V . — J
Device dependent, format Standarized for ND produced
found in device’s P10 and DMA devices

programming: specifications

Status Register:

Bit0 Ready for transfer, interrupt enabled
Bit 1 Error interrupt enabled
Bit2 Device active

Bit3 Device ready for transfer
Bit4 Inclusive OR of errors

Bitb Error indicator

Bit6 Error indicator

Bit7 Error indicator

Bit 8 Error indicator

Bit9 Selected unit

Bit 10 Selected unit

Bit 11 Operational mode of device
Bit12 Operational mode of device
Bit 13 Operational mode of device
Bit 14 Operational mode of device
BIt 15 Operational mode of device
Bit0-2:

The status register bits 0 - 2 are direct feedback of the corresponding bits in the
control register of the same |/0 interface channel (see control register format).

Bit 3 — Device Ready for Transfer

Status register bit 3 set or not set tells whether an 1/0 interface channel is
ready to operate or not. What is meant by "‘ready for transfer’”” (bit 3 '"1’'}
differs from the input to the output channel.

PIO Device Input Channel:

Bit 3equal to 1:

Input data register contains valid information ready to be read.

Bit 3 equal to O:
Input data register does not contain valid information

ND-06.016.01

I—-3-19

PIO Device Output Channel:
Bit 3 equal to 1:

Output data register is empty and may accept the next output data
character.

Bit 3 equal to O:

Output data register is not empty, i.e., the data register should not be
loaded.

DMA Controllers:
Bit3equalto '1":
DMA transfer completed.
Bit 3 equal to "0"":
DMA transfer is going on.
Bit 4 — Inclusive OR of Errors
Bit 4 set to one: an error has occurred in the 1/0 interface channel investi-
gated. More about the error is given in status register bits 5-15 (actual bits
are described in the programming specifications).

Bit5 - 156 — Nondefined

Status register bits 5 - 15 are assigned by the |/0 interface designer and
given in the I/0 interface’'s programming specifications.

ND-06.016.01

1.3.5.3

1-3-20

Format and Function of the Control Register

The information written into the control register of an /0 interface channel is
always taken by the interface as a command. The command may be start/stop of
transfer, mode of operation, etc.

The control register of an |/0 interface channel is loaded by:

LDA <command> % initiate A register
IOX <dev. reg. addr.> % dev. reg. addr. of /0 interface
control reg.

The format of the control register has been standarized for all Norsk Data
produced interfaces and is equal both for the input and output channel of a device.

Format of the Control Register (Format of A Register before 10X Load Control
Register)

15 14 13 12 11103 8 7 6 5 4 3 2 1 0

< - VIV ny y
Device dependent, format Standarized on ND
found in device’s produced P10~ and
programming specifications DMA interfaces

Bit0 Enable interrupt on device ready for transfer

Bit 1 Enable interrupt on errors

Bit 2 Activate device

Bit3 Test mode

Bit 4 Device clear

Bit5 Not used

Bit 6 Not used

Bit7 Not assigned

Bit 8 Not assigned

Bit9 Unit} Multiple unit control interfaces

Bit 10 Unit’ (floppy disk)

Bit 11 Device operation

Bit 12 Device operation

Bit 13 Device operation

Bit 14 Device operation

Bit 15 Device operation

ND-06.016.01

1-3-21

Bit 0 — Enable Interrupt on Device Ready for Transfer
Bit 0 set to "1”" in an 1/0 interface channel enables for interrupt on device
ready for transfer, i.e., if status bit3 = 1",

Control register
15 0

7/ T

Status register o INTERRUPT

15 3 0 AMD

/ / ‘ // !
Ready for” Transfer __T Status register

Bit 1 — Enable Interrupt of Errors

Bit 1 set to 1" in an 1/0 interface channel enables for interrupt on errors in
the channel.

Control register

T

INTERRUPT

Ey/any/anl

ERROR Status register .

Bit 2 — Activate Device
The control register bit 2 set to "1 on an interface will:

— in the input channel, enable reception of incoming data from external
devices

— in the output channel, start output of the content in output channel
data register

— start a DMA transfer {DMA controllers)

ND-06.016.01

I-3-22

This bit is not always specified in a device programming specification. In such
cases the activation is not needed.

The activate bit is normally static, i.e., it will remain on until Master Clear, Device
Clear (control register bit 4) or a loading of the control register with bit 2 = 0" is
done. Other reasons for resetting are given in the programming specifications.

Bit 3 — Test Mode

This bit set to "1 will loop output data back as input data in "‘off line”
testing of an interface.

Bit4 — Device Clear
The control register loaded with bit 4 = ""1", generates a reset pulse on the
accessed 1/0 interface. The reset pulse will clear all bits set in both the
control and the status registers.
The device clear bit is usually implemented only in the input channel control
register of a device. However, the bit resets both channels on a two channel
device.

Bit5- 15 — Nondefined

Bits 5 - 15 in the control word are left for free use by the interface designer
and is specified in the interface’s programming specifications.

ND-06.016.01

1.3.6

1.3.6.1

1.3.6.2

1-3-23

PROGRAMMING OF A PIO INTERFACE

General

Reading or writing data to a PIO interface has no meaning unless the interface is
ready for transfer (RFT), i.e., status bit3 = 1",

As indicated in the description of the control and status registers, RFT and control
register bitQ = '"1"’ gives interrupt.

That is, there are two methods useable to check whether an interface is ready or
not.

1. Polling for status register bit3 = 1"

2. Enable for interrupt and wait (or do other useful things) until interrupt
occurs

SINTRAN il {of course!) uses method 2. However, in the following description

and programming examples method 1 will be used. Use and programming

examples with interrupt is given in the section “The I/0 System and the Interrupt
System”’.

Programmed Input from a PIO Interface

Reading a byte or word from a PIO interface may be divided up into three steps:

1. Enable the input channel for reception of incoming data

2. Check whether the input data register contains valid data ready to be read.
If YES:

3. Read the input data register.

Due to standarization of both functions and formats of the status and control
registers, this sequence is applicable on all Norsk Data produced PIO interfaces.
The sequence is illustrated in the flow chart below.

ND-06.016.01

|--3--24

INITIATE TRANSFER
—SETBIT2INICR
ICR: Input channel control register
K
READ INPUT CHANNEL STATUS ISR: Input channel status register
REGISTER
— ISR -~ A REGISTER IDR: Input channel data register

INPUT DATA
READY
= ISRBIT3="1"?

READ INPUT CHANNEL DATA REG.

@ — IDR - A REGISTER

ND-06.016.01

1-3-25

The flow chart is implemented by the following program:

DEVNO, <Device number> %
ICR = DEVNO + <ICR no.> %
ISR = DEVNO + <ISR no.> %
IDR = DEVNO + <IDR no.> %
INPUT, SAA 4
10X ICR
LOOP, I0OX ISR
BSKP ONE 30 DA
JMP LOOP
READ, 10X IDR
Example:

Input from Terminal no. 1.

DEVNO, 300 %
ICR = DEVNO + 3 %
%
ISR = DEVNO + 2 %
%
IDR = DEVNO + 0 %
%

INPUT, SAA 4 %
10X ICR %
LOOP, 10X ISR %
BSKP ONE 30 DA %
JMP LOOP %
READ, I0X IDR %
STA BUFF %
JMP INPUT %
BUFF, 0

Device no. to interface to access

Dev. reg. addr. =Dev. no. +ICR no.
Dev. reg. addr. = Dev. no. + ISR no.
Dev. reg. addr. = Dev. no. + IDR no.

device no. terminal no. 1

dev. reg. addr. for input control reg.
(303)

dev. reg. addr. for input status reg.
(302)

dev. reg. addr. for input data reg.
(300)

setbit2in A reg.

Areg. = ICR

ISR —> Areg.

Is ISR bit 3 set?

No. i.e., not ready

Yes, i.e., ready. read data
store data in BUFF

return

If the program above should be entered for execution via MOPC, it may be written

as shown below.

executable:
20/ SAA4 20/170404
10X 303 164303
10X 302 164302
BSKP ONE 30 DA 175235
JMP* 2 124376
10X 300 164300
STA + 3 004003
JMPI* +1 125001
20 20
BUFF, 0 0

ND-06.016.01

1.3.6.3

1—3-26

Programmed Output to a PIO Interface

As for input, writing a byte or word of data to a P10 interface may be divided up
into three steps:

1. Check whether the output data register is empty and may accept data.
If YES:
2. Write data to output for the output data register.

3. Initiate the output transfer by activating the output channel.

This sequence, applicable for output to all Norsk Data produced PIO interfaces, is
illustrated in the flow chart below.

. i

READ OUTPUT CH. STATUS REGISTER

— OSR - A REGISTER

OUTPUT DATA
REGISTER READY?
—OSRBIT3="1"

NO

OSR: QUTPUT CHANNEL
STATUS REGISTER

ODR:OUTPUT CHANNEL
OUTPUT DATA DATA REGISTER

—~ A REGISTER ~ ODR OCR:OUTPUT CHANNEL
CONTROL REGISTER

ACTIVATE OUTPUT TRANSFER

—~SETBIT2INOCR

ND-06.016.01

1-3-27

The flow chart is implemented by the following program:

DEVNO, <device number> % device no. of I/0 interface to access
OSR = DEVNO + <0OSRno.> % address of OSR
ODR = DEVNO + <ODR no.> % address of ODR
OCR = DEVNO + <OCR no.> % address of OCR
OUTPUT, I0X OSR % read status
BSKP ONE 30 DA % Ready?
JMP * -2 % NO
LDA BUFF % Yes, initiate A register
IOX ODR % Areg. > ODR
SAA 4 % Initiate A reg. control
IOX OCR % A — OCR
JMP OUTPUT % Jump return

ND-06.016.01

1.3.7

1.3.7.1

1-3-28

PROGRAMMING OF DMA CONTROLLERS

DMA Controller Operation

A DMA transfer may be divided into three steps:

— Initialization

— Transfer

— Termination and status check

Refer to the following descriptions and illustrations.

Initialization

A DMA controller has to be initialized before a transfer can be started. The
initialization is done by a device driver program activated by the operating system
when a transfer is needed.

The driver program accesses the DMA controller by means of 10X instructions.
Through different transfer parameters, the driver tells the DMA interface what to
do. The transfer parameters are written into physical device registers located on
the controllers.

Typical transfer parameters and registers are:

-— Memory Address Register (MAR) holds the first memory address to read
from (DMA output) or write into (DMA input).

- Biock Address Register (BAR) holds the first address to read (DMA input)
from or write (DMA output) to on the physical device.

— Word Count Register holds the number of words to be transferred.

— Control register gives device function (read, write, etc.}) and start (bit 2:
activate device).

In addition, a status register, the MAR and the BAR, may be read for status check
and test purposes.

The format of the registers and their associated register numbers are given in the
hardware programming specifications.

ND-06.016.01

1-3-29

Transfer

After initialization and start is given, the data transfer takes place. Data is
exchanged between the DMA controller and memory at the speed determined by
the device. CPU may run any activity not waiting for the DMA transfer to be
completed.

Termination and Status Check

The DMA transfer is completed when the word counter is zero. On the DMA
controller, status register bit 3 (ready for transfer) is turned on. If the interrupt
system is on (ION) and interrupt is enabled on the controller, this causes interrupt
on level 11. If the interrupt system is not on, a complete transfer is found by

polling (continuous reading) on status register bit 3.

More about DMA controller operation is given in Section V.

ND-06.016.01

1-3-30

DMA TRANSFER INITIALIZATION:

A - MAR % Memory Address Register
A -~ BAR % Block address register
A > WC % Word count register
STEP 1
A->CW % Control word register
=
DMA TRANSFER
(\1 READ DEVICE:
B Device data — interface = Memory
WRITE DEVICE: Memory {MAR) — |nterface —Device
MAR T 1~ MAR
] WC — 1 »WC
STEP 2
NO
\—
- YES
(-"
DMA TR ANSFER QUALITY CHECK
FINISHED
STATUS REGISTER —~ A
STEP3 MAR _—A
- OK?
MAR end ~ MARstart =wC start
. YH

Figure 1.3.1: DMA Transfer in Three Steps

ND-06.016.01

Initiate next transfer

1-3-31

IN COMPUTER MEMORY

/

EXTERNAL IN DMA CONTROLLER

10X MAR

i

MEMORY ADDRESS

IO@AR

DISK ADDRESS

N

MEMORY AREA

TO BE
EXCHANGED
10X WC
DISK NO. OF WORDS
I0X CR

VY

CONTROL REGISTER

U — ——

i} _».START TRANSF.
SELECT UNIT

IN DISK SYSTEM

MODE OF OPERATION
— READ
- WRITE

|
I
|
!
I
|
|
|
I
I
I
|
|
|
I
|
I
!
|
I
|
|
I
I
|
I
|
!

Figure 1.3.2: DMA Initialization lllustration (Disk)

ND-06.016.01

1-3-32

NO:. OF WORDS

NO. OF WORDS TO EXCHANGE IS
DECREASED BY ONE WHEN ONE
WORD HAS BEEN EXCHANGED

|
EXTERNAL : IN DMA CONTROLLER I IN COMPUTER MEMORY
| |
| I
| MEMORY ADDRESS IS INCREASED BY ONE |
| WHEN A WORD HAS BEEN EXCHANGED |
I +
|)\ I
| I
| MEMORY ADDRESS RRESS
|
| |
| [
[DATA DIRECT |
| DATA FIFO DATA TO MEMORY | MEMORY
| EXCHANGED
I
I
!
I
I
[
|
I
I
I

Figure 1.3.3: DMA Transfer lllustration { Disk)

ND-06.016.01

1-3-33

MARgyp — MARgTART = NO. OF WORDS \—‘\

MEMORY AREA
THAT HAS
BEEN
EXCHANGED

MEMORY ADDRESS

TN

NO. OF WORDS = ZERO

CONTROL REGISTER INT.
{EN.
DISK AND [——F—P-INTERRUPT CPU
> : TO LEVEL 11
i |
STATUS REGISTER __IRFT |
A

PHYSICAL CONDITIONS |
|
|
wcz |
|
|

WCZ = WORD COUNTER ZERO |
RFT = READY FOR TRANSFER|

—— —— — — — —— ——— — — —— — —— —————— —— ———— ———

Figure 1.3.4: DMA Transfer Completed [Disk)

ND-06.016.01

1.4.1

THE /O SYSTEM AND THE INTERRUPT SYSTEM

GENERAL

Under a running system (SINTRAN ll), all I/0 devices connected to NORD-100
will be prepared for operation and then allowed to operate asynchronously with
respect to the CPU. That means that the |/O controllers activate themselves
through an interrupt to the CPU if a status change occurs.
Possible status changes in the I/0 system that may cause interrupt are:
1. End of operation interrupt

and

2. Errorinterrupt

Which of the two status changes that actually caused an interrupt is found by
reading the status register of the interrupting channel on the interrupting device.

1. End of operation interrupt occurs if a device is ready for transfer (status bit 3
= ""1"") and control register bit0 = ""1"".

This means for a PO interface in the:
— output channel
data has been transmitted, next character to output may be loaded to

the output data register

— input channel
input data is available

or for a DMA controller:

— DMA transfer is completed, i.e., word counter is zero.

2. Error interrupt occurs if an interface’s status bit 4 = ""1"" (device error) and

control register bit 1 = ""1".,

Further details about the error is found in status register bit 5 - 15 (see
programming specifications).

ND-06.016.01

1.4.2

NORD-100 INTERRUPT SYSTEM GENERAL DESCRIPTION

The NORD-100 interrupt system consists of 16 program levels. The program levels
are numbered from 0 - 15 with increasing priority; program level 15 has highest
priority, program level O lowest.

At any time, the highest active level is running. This level is referred to as "current
program level” (PL).

Interrupt occurs, if a level with higher priority than the one currently running is
activated or if the current program level gives up its priority. The level change is a
micro programmed procedure which purpose is to establish the interrupting level
as the new currently running (PL), while the previous PL is put into a waiting state.

To ensure fast level changing (context switching), each of the 16 program levels
have their own set of registers and status indicators located in a high speed
register file.

The control of the NORD-100 priority interrupt system is based on two registers:

— the Priority Interrupt Enable register (PIE)
— the Priority Interrupt Detect register (PiD)

ND-06.016.01

1-4-3

|aAa) welbord

jo abueyd 10) B

wesbosdorny 8
0} sa1uoy <+—H

1031607 1oAa Aw”:il@llli

9a1 AHHH/\THl
d

NOI

aedwo)

Yo 4

1ap0oV]
Alsosy

{9na7 weiboid snoinaiy
jane weiboiyd

8po) Alioud

siqeu] 1dnuaiug Aluon g
10818 1dnualu] Aol g4
8AOY WBISAG 1dnuBlu}
sng eleq |eusslu|

42193 uononNNsy|

s1dnysatuy

A
d
Md
:31d
:aid
INOI
‘gal

1yo194

asemprey

Figure 1.4.1: External Interrupt System

ND-06.016.01

1-4—-4

Both the PIE and PID are 16 bit registers where each bit corresponds to a program
level (for example, PIE and PID register bit 10 corresponds to program level 10).

The PIE register is used as a static mask register; the PID register is dynamically
set/reset depending on the activity on enabled program levels.

The PIE register is loaded by the TRR PIE instruction. A bit set in the PIE register,
enables for interrupt on the program level corresponding to the bit’s position in
PIE.

Example 1:

LDA (76033 % 76033 — A
TRR PIE % A—PIE

15 14* 13 42 11 10 9 8 7 6 5 4 3 2 1 0

g1t ¢t 1 1t 1 0 0 0 O O 1 1 0O 1 73 PIE

Interrupt is enabled on the levels 0, 1, 3, 4, 10, 11, 12, 13, 14*. All other levels are
disabled.

* Level 14 requires speical attention, refer to the following description.
Each bit position set in the PID register corresponds to an active program level.

The current running level is given by the highest corresponding bits set both in PIE
and PID.

Example 2:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o1 1 1+ 1t 1 0 0 O 0 O 1t 1 0 1 1Y PIE

> P =12

\ and
15 14 13 12 11 10 9 8 7 6 5 4 3 2 10

6 o 0 1 1 1 0 O 0 0 O O t 0 O 1}PD

in this example, level 12 will be the one currently running, while levels 11, 10, 3
and 0 are waiting for service.

ND-06.016.01

1-4-5

The microprogrammed level change routine activated when an interrupt occurs
does the following things.

1. The interrupt system is temporarily blocked to prevent false interrupts.

2. The program counter (CP) is copied to the saved program counter (SP) on
the current level.

3. The PL (program level) register is copied into the PVL (previous program
level) register.

4, The PK (new level priority code) register is copied into the PL (program level)
register. (The CPU has, at this moment, changed level.)

5. The SP (saved program counter) on the new level is copied to the CP
(current program counter).

6. A fetch is issued, i.e., the first machince instruction on the new level is
asked for.

ND-06.016.01

1.4.3

1-4-6

NORD-100 INTERRUPT SYSTEM LEVEL ASSIGNMENT UNDER
SINTRAN Il

The interrupt priority level assigned for the differnt activities under SINTRAN il is
given in Figure 1.4.2.

15 Extremely fast user interrupts
14 Internal mterrupts
13 Real-time clock
12 Input devices
11 Mass storage devices
10 Output devices
9 pamo
8 o
7 _Direct tasks
6 .
5 .
4 1/0 Monitor calls
3 SINTRAN 1 Monitor
2 Direct Task
! Resl-time and Background
Q lile Loow
Figure 1.4.2

Seen from a hardware point of view, all levels may be used by appropriate setting
of the PIE and PID registers.

The actual levels used by SINTRAN lil are 0, 1, 3, 4 and 10 to 14.

The program levels from 0 to 9 are completely controlled by software, i.e.,
interrupt on these levels has to be programmed by means of TRR PID/MST PID
instructions.

Interrupt on the levels 10 to 15 may be set gither by program or by hardware.

Each of the levels 10 - 13 and 15 are assigned a unique interrupt line in the
NORD-100 bus which may be activated from any slot position.

Level 15 is not used by Norsk Data equipment but may be used by users requiring
immediate access to the CPU. The levels 10-13 are used by Norsk Data produced
input/output device controllers.

Level 14 is used for interrupts on internal CPU trap conditions. Level 14 is
associated with an Internal Interrupt Enable (IIE) register and Internal Interrupt
Detect (IID) register.

The |IE register may enable/disable interrupt generation on interrupt requests
detected by ID (more information about the Internal Interrupt system is given in
the manua! “NORD-100 Functional Description™).

ND-06.016.01

1.4.4

1-4—7

NORD-100 INPUT/OUTPUT DEVICE CONTROLLERS LEVEL
USAGE

As already mentioned, interrupt levels 10-13 and 15 may be activated by hardware
through physical lines available in the NORD-100 bus. These lines go directly to the
interrupt detect controller (PID register) in the CPU.

For Norsk Data produced equipment, the use of these lines have been standarized:
- Level 10 is used by the output channel of all P10 interfaces

— Level 11 is used by all DMA controllers

— Level 12 is used by the input channel of all P10 interfaces

— Level 13 is used by the real-time clock(s) and PIO devices which need special
attention

— Level 15 is not used by Norsk Data produced hardware or software, but is
available for special purposes needing immediate access. Note that level 15

has even higher priority than power failure (level 14).

This is illustrated in Figure 1.4.3.

ND-06.016.01

|-4-8

PID
- OPTION
g *
— — 15 INTERNAL
' INTERRUPT
L~ -
> 14 14 REAL TIME CLOCK.
— 13 13 INPUT DEVICE
— 12 ; 12 |] MASS STORAGE
i
‘ 4
— ; 11 OUTPUT DEVICE
’ 10 } 10 ’
\] 1) ¥ |
N | ! \
A-REG. 1 | | | |
E 1‘ | t A
' ! |
' % | | A-REG.
(mo_l 1 . |
|
: } P Enabled Lavei Detection
] ¥ (4 [&
select level with the
PRIORITY ENCODER highest prior ity
a | | o -
| . ‘ ; - P Lavel with.Jighest priority
l r" y x 3
CURRENT LEVEL
‘COMPARE ! | |]
£
\ v v Y V
| Vs
DIFF = INTERRUPT Register select bits (PLD-3)

v

* Internal interrupt LEVEL 14 NO CONNECT error, IOX —timegut is one source.

Figure 1.4.3: NORD- 100 External Interrupt Handling

ND-06.016.01

EXTERNAL

- INTERRUPTS

1.4.5

1.4.5.1

1.4.5.2

1—4-9

IDENTIFICATION OF AN INTERRUPTING 1/O DEVICE
CONTROLLER

General

As indicated, more than one device may use the same interrupt line.

That is, when an interrupt on one of the levels 10 - 13 is detected by the CPU, the
only known thing is that some kind of status change, in the 1/0 system, has
occurred. In order to find the reason for the interrupt, the status register of the
interrupting device has to be read {IOX) and investigated. But since each of the
interrupt lines 10 - 13 are shared between all devices, the 1/0 interface causing the
interrupt is unknown. That is, the device number is unknown and the 10X device
register address is not possible to define.

Therefore, a device interrupt identification is needed.

The ldent Code

Each 1/0 device controller is assigned an interrupt vector referred to as "ident
code” (id code). The ident code related to Norsk Data produced interfaces has
been standarized and is given in Appendix A.

There is a unique correspondence between an external device, the device number
and the ident code.

On the interfaces, the ident code (as the device number) is selectable by a

thumbwheel to allow equal hardware modules to cover all ident codes related to
one class of peripherals.

ND-06.016.01

1.4.5.3

1—-4-10

The Ident Instruction

The ident instruction is a privileged machine instruction used in device interrupt
identification.

The ident instruction, when executed, searches for interfaces with interrupt
condition set, and returns the interfaces’ ident code to the A register.

To maintain the interrupt priority the ident instruction searches only for interrupts
on a specified level. The level to search on is specified in the ident instruction
format.

Ident Instruction Format

IDENT PL xx % 10<xx<13

15 65 0

IDENT PL

v

Specified by programmer

Example:

The instruction IDENT PL 12 will only search for interfaces driving interrupt line
level 12 (BINT12). A possible existing interrupt on level 10 or 11 is ignored and
handled later by IDENT PL 10 and IDENT PL 11 respectively.

The ident code, which is unique for each device, is used to via an ident code table,
to enter the interrupting device’s data field. The data field contains an address
pointer to the device's driver program which is started. The device driver program
accesses the interrupting interface by means of 10X instructions which device
register addresses are found in the device data field.

The driver program resets the interrupt condition on the interface, initiate next
exchange and returns control to the program interrupted by the 1/0 interface.

ND-06.016.01

1.4.5.4

1-4-11

The ldent Search Mechanism

The search for interrupt performed by the ident instruction may be divided up into
three steps.

First, all 1/0 device controllers are presented the level on which the searching is
going to be performed. The interfaces which have interrupt set on the specified
level turns on a ""flag” to signify this. The others do nothing.

Second, the CPU generates a search signal {INIDENT). The search signal is daisy
chained via the module nearest to the CPU over to the next and so on. When the

search signal finds the "flag” (interrupt on specified level) set, the search is
stopped.

Third, the ident code from the interface which stopped the search is returned to
the A register.

NOTE: In step three the interrupt is removed from interface by resetting of the
interrupt enable bit, i.e., bit 0 or 1 in the channel’s control register. That

is, an interface channel should be reenabled after being served by the
ident instruction.

The search mechanism used by the ident instruction includes some important
notes.

Note 1: There should never be empty positions in the NORD-100 bus between the
CPU and any 1/0 device controller. An empty position will stop the search
signal and never release interrupts on modules in higher slot position
numbers than the empty one.

Note 2: Between interfaces generating interrupt on the same level, the interface

nearest the CPU has highest priority within the level (for slow devices
such as terminals this has no practical effect).

ND-06.016.01

1.4.5.5

1.4.5.5.1

1.4.5.6.2

1-4-12

Input/Output Interrupt Programming

Initialization of the Interrupt System

As indicated in the previous discussion, an interrupt is generated on /0 interfaces
which are "'ready for transfer’”” (RFT - status bit3 = ""1"'}.

However, these interrupts are not noticed by the CPU unless the interrupt system
is initialized and turned "‘on’’ (by the ION instruction).

After power up, PID, PIE and PL will be zero. The registers on level zero will be in
use. The interrupt initialization must include the following:

— Enabling of the desired program levels by proper mask setting in PIE (Priority
Interrupt Enable).

— Enabling of the desired internal interrupt sources by proper mask setting in
IIE (Internal Interrupt Enable register).

— The SP, saved program counters, on the levels to be used must be initial-
ized, i.e., they must all point to the program to be executed on the different
levels.

— If the Z (error}) indicator is enabled for interrupt {IIE bit number b), care
should be taken that this indicator is cleared in the status register (bit
number 3) for all levels being initialized.

— The IIC (Internal Interrupt Code) register, the PES (Parity Error Status)
register and the PEA (Parity Error Address) register might be blocked after

power up.

— By performing a TRA instruction for lIC and PES, all three registers will be
unblocked and ready for use.

— The interrupt system is turned ON.

I/0 Interface Interrupt Generation

After the initialization of the interrupt system, the |/0 interfaces should be enabled
for interrupt generation. This is done by setting bit 0 {and 1) in the interfaces’
control registers.

The following illustrations show how enabled interfaces generate interrupts on the
levels 10, 11 and 12.

ND-06.016.01

1-4--13

Interrupt Generation Level 10

NORD-100 BUS

BINT10

INTEN

1

Output character control register

0

RET ' g‘_'.l'_BEMLI_ Qutput Data Reg.

AND

IN INTERFACE

T

output

TBEMT: cutput data reg. is empty

RPT: ready for transfer {bit 3 in
status register)

status register

INTEN: interrupt enable (bit O
in control register}

PIE

Bit 10 ="1"

DO NOTHING

DO NOTHING

INITIATE
MICRO PROG.
LEVEL
CHANGE

SAVE INTERR.

REQUEST &
WAIT UNTIL

PL <10

IN CPU

PID REGISTER

WARE

ND-06.016.01

> DECODED BY HARD-

I—-4-14

Interrupt Generation Level 171

NORD-100 BUS INTEN
| | —1 o
| L senl
| | —
| |
| I
l I CONTROL REGISTER
| | 0
l I BINT11 1
2
l - i BRET 1 3t WC2Z WORD COUNTER
| I
I I AND ::::
| !
! |
| | STATUS REGISTER
I
| I
} . i WCZ: word counter is zero
| l RFT: ready for transfar (bit 3 in status
I l register)
I | IN INTERFACE
I |
I I
| I
1 \ 4 J
A 4

IN CPU

PO NOTHING

DO NOTHING

HARDWARE
DECODED

INITIATE
LEVEL
CHANGE

SAVE INT.REQ.
& WAIT UNTIL
PL 11

ND-06.016.01

1-4-15

Interrupt Generation Level 12

PID

| DO NOTHING

1S

PIE.BIT 12=""1"

DO NOTHING

START LEVEL
CHANGE

SAVE THE INTER-
RUPT UNTIL
pL <12

ND-06.016.01

/

I NORD-100 BTIS INTEN i Input Control Register
| | o=
I | 0
o
I I
I I
l I BINT12 RFT
l < i <_QA— INPUT DATA
| I ! REGISTER
I AND g
| | Y
' |
= | DA : Data Availabie
I I RFT . Ready for transfer bit 3 in status register
I | INTEN : Internai enable
l l Pl :Currant running level
l { BINT12 :interrupt request level 12
l IN INTERFACE
! I
| |
I I
| I
| I' I

v

12 e e — . IN CPU

&DECODED BY HARDWARE

I-4—-16

1.4.5.5.3 Handling of I/0 Interface Interrupts

When an |/0 interrupt has occurred and the CPU has entered the interrupting level
the flow chart below should be followed.

Execute IDENT <pL >
to identifly the interrupt source

Use IDENT

code for <

saparate 1/0

drivers y ¥
Use iDENT COOE in A register
to separate device drivers

-
17Q DRIVER 1
Check INTERRUPT REASON
by reading STATUS-REG.
'ﬁ
NO
) v
£S JUMP
ERROR
READ DATA or QUTPUT DATA HOYTIN
Enabia and Activate device for
next transfer
(N

~ >
] 1

| /O DRIVER 2 |

ND-06.016.01

1-4-17

20188
|eu1aIx3

soejialug

o/

aiempieH
I13A37
1dNYHILNI
NdJ 0L
IVNY3ILX3

XOt

weabolg
J8ALQ

Ndd Ni

pisy e1ep saoiaap bundnisarug

ajqelr apod yuap)

L 8 60L1LLZLEL ¥I Gi

1151621 _

3Q09 LN3at

XXTd LN3AL XXATT

XX [3A3] 131UJ

aid

1111

ND-06.016.01

1-4-18

A simplified implementation of the flow chart is given in the following program.

LEV xx, IDENT PL xx % read ident code
RADD SA DP % modify program counter
JMP ERROR % with the ident code
JMP DRIVER 1

JMP DRIVER 2

JMP DRIVER n

ERROR, ... % report the error
DRIVER 1, IOX RSTAT % read status register
BSKP ZRO 40 DA % isinterrupt reason error?
JMP ERROR % Yes, bit4 {dev. error) = 1"
% No, serve the ready
. for transfer condition
JMP FINISH % jump to routine for giving up
priority
DRIVER n,
JMP FINISH
FINISH, WAIT % give up priority
JMP LEV xx % entry point to LEVxx after
WAIT

More about the hardware involved in the 1/0 interrupt system is described in Part
V.

ND-06.016.01

1.1

H-1-1

THE NORD-100 BUS

GENERAL

As already stated in Part 1, the NORD-100 bus efficiently organizes the inter-
connections and transactions between the hardware modules in the NORD-100
computer system.

NORD-100 BUS

4
4 L L
NORD-100 MEMORY 1/0 DEVICE MEMORY
CENTRAL » MANAGEMENT CONTROLLER MODULES
PROCESSOR CACHE 64 Kw/module

Figure 11.1: The NORD- 100 Bus

The NORD-100 CPU uses the bus for memory transfers to and from the memory
system, and for I/O transfers to and from its connected peripherals.

In addition, some NORD-100 bus peripherals (DMA controllers) can initiate trans-
fers directly to and from the memory system.

ND-06.016.01

1.2

H-2-1

THE NORD-100 BUS — BUS REQUESTORS

As indicated introductionally, the NORD-100 bus may be thought of as a common
resource, shared between:

— the NORD-100 CPU
and
— DMA controllers

in addition, refresh of the NORD-100 memory system requires access to the
NORD-100 bus.

As a common resource, the NORD-100 bus has to be allocated before it may be
used. Once allocated, the bus is busy to other activities, while the granted bus
user may transfer one word. As the transfer is completed the NORD-100 bus
should be released for next eventually requesting bus user.

ND-06.016.01

1.3

n-3-1

A NORD-100 BUS CYCLE — GENERAL DESCRIPTION

Before going into details, it could be convenient to look at some of the fundamen-
tal concepts behind the organization of the NORD-100 bus activities.

The basic activity is, not to forget, to exchange information between a source and
a destination.

The event of exchanging one word is referred to as one bus cycle. In case of
refresh, one bus cycle is an address and dataless memory refresh cycle.

A NORD-100 bus cycle is always preceded by an allocation and terminated with
what here is called release.

» TIME

TRANSFER

ALLOCATION RELEASE
-

v
ONE BUSCYCLE

Figure 11.3.1: A NORD-100 Bus Cycle

Refer to the illustration (Figure 11.3.1).

A NORD-100 bus cycle consists of three main events:
— allocation of a requesting bus user

— transfer one word

— termination and release of the bus

The allocation is handled by a Bus Control Unit {BCU) physically implemented on
the CPU module.

That is, the BCU decides which of the three possible bus users that should be
given the next bus cycle.

The transfer and termination of a bus cycle is organized as a handshake between
the selected bus user (CPU, DMA or refresh) and it's accessed device (/O

interface or memory).

The concept allows completely asynchronously operation within a bus cycle.

ND-06.016.01

1.4

11.4.1

11.4.1.1

1H—-4-1

FUNCTIONS OF THE BUS CONTROL LOGIC (BCU)

ALLOCATION OF THE NORD-100 BUS

As a common system source the NORD-100 bus has to be allocated before it can
be used. The three possible bus users that may ask for access to the bus is:

— the NORD-100 CPU
— DMA controllers
— memory refresh

Access to the NORD-100 bus has to be asked for at the Bus Control Unit (BCU)
through a bus allocation request.

The above mentioned bus users are operating completely asynchronously. That is,
the bus allocation requests may be passed to the BCU completely asynchronously,
even simultaneously causing competition.

Conflicts are avoided by the BCU through a priority allocation arbiter. Based on a
priority allocation algorithm and the present active bus ailocation requests, one
requestor is selected for the next bus cycle while possible other active requests
must wait.

The Allocation Requests

Each of the three possible bus requestors have their own unique request line input
to the allocation arbiter in the BCU. A request is issued by activation of the request
lines.

ND-06.016.01

11.4.1.1.1

H—-4-2

NORD-100 CPU Aliocation Request

The NORD-100 CPU may request access to the system bus for one of six reasons:

- instruction fetch

— operand read memory

— indirect address read access

— operand store

— programmed access to the I/0 system
I/0 system access

— programmed access to external system control
system control registers*® registers

* Control registers not located on the CPU or MMS module (for example, Error
Correction Control Register on the memory modules — TRR ECCR).

If any of the six above mentioned operations are in progress, the CPU micro-
program activates the signal BUSRQ (CPU bus request) input to the CPU alloca-

tion arbiter.

In addition to the signal BUSRQ passed to the BCU, the microprogram informs the
CPU bus-handshake-logic which transfer that is to be performed.

The bus-handshake-logic is then ready to start the transfer when it, from the BCU,
receives acknowledge on the allocation request.

ND-06.016.01

1H-4-3

[1.4.1.1.2 DMA Allocation Request

11.4.1.1.3

A DMA controller requests allocation of the NORD-100 bus to get direct access to
the NORD-100 memory system.

When a DMA controller needs more data to output or have a word ready to be
written to computer memory, it generates a bus allocation request to the BCU.

Then the controller has to wait for the BCU to acknowledge the request before the
exchange may be performed.

When there are several DMA controllers, each controller’s request signal is "'wired
or'’ (connected) to one bus allocation request line input to the BCU.

This signal is named BREQ (Bus REQuest) and may be driven from any slot
position in the NORD-100 bus.

In order to select only one DMA controller as granted bus user at the time, the
DMA request acknowledge signal is daisy chained in the NORD-100 bus
backplane. The daisy chain then establishes a sequential priority scheme between

DMA controllers.

Physical implementation of the daisy chain is described in later sections.

Memory Refresh Allocation Request

Refresh is a periodical operation needed by the dynamic MOS memory circuits
used in the NORD-100 main memory. By allocating the NORD-100 bus during the
refresh period two problems are solved in a simple and efficient way.

— The refresh cycle is synchronized to other bus activities.

— The memory system is unaccessible since the system bus is allocated, i.e.,
blocked.

The refersh allocation request is initiated every 15 u s by an oscillator on the CPU
module activating the signal RFREQ (refresh request) input to the BCU.

ND-06.016.01

11.4.1.2

1-4-4

The Bus Control Unit (BCU) Allocation Priority Rules

From the above discussion of the potential bus allocation request signals, Figure
[1.4.7 shows what is the request inputs to the BCU allocation logic.

Vee]
NORD—100 BUS puLLUP |
CPU BUSRQ PRIORITY [{] RESISTOR | BREQ — DMA REQUEST
————————{ ALLOCATION < ' 5
ARBITER | ?
| WIRED OR
] |
I
RFREQ || NORD—100 BUS
I
REFRESH |
OSCILLATOR |
|

NORD-100 CPU MODULE

Figure 11.4. 1: NORD-100 Priority Allocation Arbiter and the Bus Requests

The BCU priority arbiter controls the access to the NORD-100 bus based on the
following rules:

— Already allocated bus is not interruptable.
— Thebus cycle going on is aborted if it exceeds a time limitof 8 u s.

If the bus is idle and an allocation request appears alone, the rule is:
- first come, first served.

Since all the request signals appear asynchronously, conflicts between simul-
taneous requests may happen. In such cases, the following priority rules are used:

- RFREQ and BREQ are both handled as DMA requests but RFREQ is given
highest priority.

— If both DMA requests (RFREQ and BREQ) and CPU request {(BUSRQ) are

present, priority is given to the one not having the previous cycle {toggled
priority).

ND-06.016.01

RFREQ -———C $ 320 ns 5

11—-4-5

The bus control priority arbiter and the bus allocation is illustrated in the foliowing
examples.

In the examples a simplified presentation of the request lines and the bus usage is
used.

Example:

suska M +——
© © ©® O

1 CPU does not try to allocate the NORD-100 bus

2 CPU tries to allocate the bus but has to wait for another bus activity
3 The bus is allocated to the CPU

4 CPU has finished its bus cycle and releases the bus.

Example 1:

CPU requests the NORD-100 bus first, after previous allocation is released.

f————— =15 pus

* 6 us (10mb disk) PE—

————— l [T ss0ns £

T 14— depends on———!
- 1
CPU activity 1

—————— ——fow s ([e ——

previous atlocation released

ND-06.016.01

11.4.2

11—-4—-6

Example 2:

All requests appear simultaneously but CPU had the previous cycle.

1.4 us (37.5 - 288 mb disk) —4

svea ——— I 6500 F———{

Ny

susra ___ —{[[][I{[{1[{]] 200-320ns }

Example 3:

CPU bus request and DMA request appears simultaneously (DMA cycle steai) but
previous cycle was for DMA (RFREQ).

- 1
RFREQ |

BREQ LT s50ms

8USRQ } 200-320 nSL

THE BUS CONTROL UNIT (BCU) AND TERMINATION OF BUS
CYCLES

The NORD-100 bus is allocated and released on one cycle basis, i.e., for every
word to exchange or for one memory refresh cycle.

One bus cycle should not last for more than 8 u s. This is monitored by the BCU.
At the time of allocation, the BCU starts a timer. This timer is reset by a handshake
mechanism between granted bus user and its accessed device signifying transfer
completed. The transfer completion signal is named BDRY (Bus Data ReadY) and
will be explained in proper context later.

If the NORD-100 bus is not released it causes system hang-up. To prevent such a
situation, a bus cycle that exceeds 8 u s is aborted by the BCU timeout timer,

The faulty cycle is reported to the CPU as an internal interrupt (level 14). Refer to
Figure 11.4.2 for illustration.

ND-06.016.01

—-4-7

e e e e e e e e -
NORD 100 CPU |
REFRESH ‘
OSCILLATOR ‘
RFREQ I
!
™ SIGNAL IN NORD-100 BUS
NORD-100
CPU BUSRQ | BREQ — DMA REQUEST
Bus Priority |
Arbiter ‘
NORD-100 bus |
allocated !
START TIMER |
l
! |
BUS CYCLE I
RESET TIMER" TIMER RESET TIMER: BDRY — bus cycle completed from
| memory or 1/0 system
* Reference to cache 8 us |
or shadow memory l
TIMEQUT | ____________

vee] |
ABORT CYCLE

RELEASE BUS

YES MEMORY

ACCESS?

l
|
|
|
|
|
|
q‘ED

? HARDWARE DECO
1) MOR — Memory out of range
2) 10X —1/0 execute error. No

response from accessed /0
device controller.

YES

UNPREDICTABLE
NOISE?

1) \

}
POW | MOR|{ PTY [IOX /ﬁ/A

INTERNAL INTERRUPT DETECT REGISTER {LEVEL 14)

|
l
l
I
|
|
|
I
|
I
|

Figure 11.4.2: NORD-100 Bus Termination Circuitry

ND-06.016.01

I1.5

11.5.1

1H-5-1

DATA TRANSFER ON THE NORD-100 BUS — GENERAL
DESCRIPTION

When a requesting bus user receives the allocation acknowledge signal from the
BCU, the requesting bus user is granted and given access to the NORD-100 bus.
The granted user may then initiate a transfer.

As previously mentioned, the BCU is not involved in the control of data exchange
on the NORD-100 bus. The data exchange is completely controlled by the granted
bus user in handshake with its accessed device. This allows asynchronous oper-
ation independent of the CPU speed and clock frequencies.

Although the granted bus user may either be the CPU, a DMA controller or
memory refresh, only CPU and DMA cycles include any data exchange. Therefore,

granted bus user when talking about data transfers is either the CPU or a DMA
controller.

ORGANIZATION OF A NORD-100 BUS CYCLE

Due to the multiplexing of addresses and data on the same physical bus lines, one
NORD-100 bus cycle may be divided up into two subcycles.

— First, an address cycle
— Second, a data cycle

See Figure 11.5.1 for illustration.

NORD'1OO BUST——< addrESS)___.__—C data >__T

i e o _

& address cycle —————Pre+—— data cycle

4————— one bus cycle >
atlocation ralease

Figure 11.5.1: NORD-100 Bus Cycle Illlustration
Independent of the transfer (CPU or DMA transfer) actually going on, the

sequence is always as given in the illustration. The Address cycle precedes the
data cycle.

ND-06.016.01

11.5.1.1

11.5.1.2

i1-5-2

The Address Cycle

When combined with the address strobe BAPR, (Bus Address PResent) the
multiplexed address/data line BD0-23 carry addresses.

In the address cycle, of a transfer, the granted bus user presents an address to the
device that is to be accessed. That is, physical memory address to the memory
system or a device register address to the 1/0 interfaces. In addition, which of the
interrupt levels 10, 11, 12 or 13 that are to be investigated by the IDENT PLxx
instruction is specified in the address cycle.

The Data Cycle

in the data cycle, data is exchanged between the 1/0 register or memory location
specified in the address cycle.

By contrast of the address cycle, the data cycle includes an asynchronous
handshake between granted bus user and accessed device.

The handshake is initiated by the granted bus user issuing a control signal
indicating 'start of data cycle’’. Termination and release of the bus cycle is done
by the accessed device activating a signal indicating ""transfer completed”’.

Depending upon the transfer direction, the signals "'start of data cycle’’ and
"transfer completed’’ are also used as data strobes.

To get a better understanding of this handshake, the following sections provide a

detailed description of both I0X/IOXT, IDENT PLxx and DMA controller usage of
the NORD-100 bus.

ND-06.016.01

1.1

H-1-1

PROGRAMMED INFORMATION EXCHANGE BETWEEN
I/O INTERFACES AND NORD-100 CPU — EXECUTION
OF THE IOX/IOXT INSTRUCTIONS

INTRODUCTION

The only useable instructions in the NORD-100 instruction repertoire for informa-
tion exchange between 1/0 interfaces and NORD-100 CPU are the 10X and I10XT
instructions.

Both these instructions exchange information between the CPU A register and a
specified |/0 interface register.

Other sections in this manual have covered how and when to use the 10X/I0OXT
instructions in programmed control of PIO and DMA interfaces.

Thus, this section is intended to give a description of how these instruction are
executed. That is, how they are handled by the CPU and how they appear to the
NORD-100 bus and 1/0 interfaces.

ND-06.016.01

1.2

.2.1

11.2.2

H-2-1

IOX/IOXT INSTRUCTION EXECUTION

GENERAL

All instructions in the NORD-100 instruction repertoire are carried out by micro-
programmed routines. Each instruction has its own special routine which is
entered based on the instruction’s operation code. Thus, execution of the 10X or
IOXT instruction appears to the CPU as an execution of a routine in the
microprogram.

in this section, the 10X and 10XT instructions are described as they appear to the
CPU. That is, how the microprogrammed routines for these instructions are
entered and executed.

10X/IOXT INSTRUCTION ENTRY POINT GENERATION

The microprogrammed routine for an instruction to be executed is entered based
on the instruction’s operation code. The operation code is used as a "'look up”
address in a map table where the microprogram address to the routine relevant to
the actual instruction is found.

The basic theory behind the address generation to the microprogram is covered by
the manual "NORD-100 Function Description’’ and is not repeated here. However,
some remarks relevant to the IOX and I0XT, as privileged instructions, are given.

I0OX and {OXT are privileged instructions. If MMS is on, privileged instructions may
only be executed by programs executing with a ring — priority greater or equal to
two (RING 2 2).

That is, I0X/IOXT and other privileged instructions are protected from unauthori-
zed use.

A program’s ring priority is known by the MMS through the used Paging Control
Register (PCR). Thus, it is the MMS that informs the CPU whether a program is
authorized to execute a privileged instruction or not.

The CPU uses this information to modify the address input to the microaddress
map. That is, illegal (nonprivileged) use of a privileged instruction gives another
address to the map than legal use of the same instruction. The map location
pointed to by the illegal address points to a microprogram ERROR routine.

That is, 10X/I0XT and other privileged instruction are not started in the micro-
program unless the use of the instructions is legal.

ND-06.016.01

ni-2-2

Legal use is decoded by the MMS and presented to the CPU as described below
(Figure 111.2.1).

PRIV, INSTR
T 1 ISLEGAL
> Bcl14
EPRIV,= 1"
PRIV. INSTR
NOT LEGAL Beld
EPRIV,= "0”

EPRIV: Enable privileged instruction
Bc14: B connector line carrying EPRIV from MMS (Memory Manage-

ment System) to CPU

Figure lll.2.1:

ND-06.016.01

1-2-3

The CPU handling of EPRIV, equal 0 or 1 is illustrated in Figure 111.2.2.

JHOVO WOH4
SNOJLONY1SNI

AHOWIW NIV WOH4
SNOILONYLSNI

SN8 00L—AHON

uoneIAUSL) JUIOG AUF UONINIISU 00 -THON Z 2 Il 94nbi4

ail— H"318193Y 133130
1dNYHILINI TYNYI LN

o

Pla
9

"H1SNI "Atdd

Tv937 LON
‘H1SNI "Aldd

| Y 1915189y UOIIEDIUNWWOD NdD O} uswabeuey Alowaiy
W
W 101s1Bay Jayng eieq
1a1s1B6ay Buipjoy asoding [elausn
> \
4 51-0 8al
a
\
a pandaxa
3Q 01 UOKINAISU dd9]
SPIoY Hd9 _
0 Gt |
WVYHYO0Hd OHDIW _
dVI SSIHAAV—OHOIN “
i |
T T T — _
NOILONH LSNI \\ T~ |
aoFUAINdL $$34AAQY 1 - |
31N03X3 |¢- OUOIW \\ _
¥3IONIND3IS _
WYHO0Hd _
~0HOIW / |
!
N - {
| goyd3 o |
- Les "
0 £9

‘HAW

‘d4ada

‘Hd9

ND-06.016.01

11.2.3

i-2-4

10X/10XT MICROPROGRAM OPERATION

The 10X and I0XT instructions have different operation codes. That is, although
they have the same function, they will enter different routines in the micro-
program. However, as shown below, they soon enter a common routine.

I0XT
———
PLACE IOXT DEV. REG. ADDR. IN
A CPU SCRATCH REGISTER —
T —» R1
10X -
-—-——-—"

PLACE IOX DEV. REG. ADDR. IN A
CPU SCRATCH REGISTER
GPR (0-10) —®R1

IOXXT
—~ COMMON ROUTINE FOR
EXECUTION OF 10X / 1OXT

The functions of the common routine (IOXXT) is, of course, to exchange infor-
mation between CPU A register and a specified 1/0 interface register.

The 1/0 register to be used, specified in the device register address, normally has
to be accessed via the NORD-100 bus.

The only exceptions are access to terminal number 1 and the Reali-Time Clock
(RTC) which both are implemented on the CPU module.

That is, the microprogram has to seperate the handling of terminal no. 1 and the
RTC from other |/0O interfaces.

ND-06.016.01

1-2-5

IOXXT

RTC

DEV.NO:10g ENTER ROUTINE TO

HANDLE RTC NO. 1

IS THIS
YES ENTER ROUTINE
TO HANDLE
TERM no. 1

ACCESS TO TERM no.1
DEV.no. 3008?

BUS TRANSFER
~INITIATE TRANSFER TO
{/0 INTERFACE VIA
NORD-100 BUS

In this section it is assumed that the transfer is performed via the NORD-100 bus,
i.e., IOX/I0OXT device number unequal to 3005 and 10,.

A CPU bus transfer is controlled by the microprogram. However, the asynchro-
nous handshake mechanism through various control signals included in a
NORD-100 bus cycle is handled by a CPU Bus Handshake Logic (BHL). Figure
111.2.3 illustrates the interaction between the CPU microprogram and CPU bus
handshake logic during IOX/I0OXT execution.

When a NORD-100 bus cycle is needed, the microprogram requests allocation of
the NORD-100 bus. In addition, the microprogram informs the CPU bus
handshake logic which cycle (10X, IDENT or memory reference) it should handle.

In case of 10X, the device register address to be used in the 10X address cycle is
enabled onto the internal CPU bus {IDB).

Refer to Figure 111.2.3 and note how the microprogram execution is synchronized
to the bus activities by the bus handshake logic through the “WAIT" and
"RELEASE WAIT" mechanism.

When the address cycle is completed, the microprogram continues by enabling the
CPU A register onto IDB. Note that this is done independent of the actual transfer

direction.

At the completion of the data cycle, the microprogram loads the content of DBR
into the CPU A register.

'ND-06.016.01

IH-2-6

As indicated, the microprogram performs one output operation and one input
operation. This is done to make the microprogram independent of the transfer

direction.

The actual transfer direction is handled ’'privately” between the CPU bus
handshake logic and accessed 1/O device. How this is done is described in the

next section.

BUS TR ANSFER

l

REQUEST BUSRQ
ALLOCATION OF >
NORD-100 BUS

—INFORM CPU BUS

— ! Y —
HANDSHAKE LociG oxeveLe
—PASS DEV. REG. ADDR. =]

TO ID8

BUS CONTROL
UNIT
—BCU

j START CYCLE |

ADDRESS CYCLE

CPUALLOCATION
ACKNOWLEGDE — IACT

!
|
I
I
!

BAPR
-
RELEASE WAIT -ADDRESS
CYCLE |
COMPLETED |
IS
ADDRESS CYCLE WAIT |
FINISHED l
DATA CYCLE |
BIOXE
—QUTPUT OR g
INPUT HAND BINPUT
A - REGISTER TO 1DB SHAKE BINACK
RELEASE WAIT — DATACYCLE |BDRY
COMPLETED e
|
DATA l
CYCLE COMPLETED WAIT [
" |
CPU BUS |
HANDSHAKE |
LOGIC
CONTENT OF DBR INono—wo
TO A ~REGISTER | sUs HAND
| SHAKE
| SIGNAL
y
INITITIATE
NEXT INSTRUCTION
W 8D 0-23 o
y D o
A
)
D I
R

Figure 111.2.3: I0OX/IOXT Microprogram and CPU Bus Handshake Logic Interaction

ND-06.016.01

111.2.4

n-2-7

10X/IOXT EXECUTION AND THE NORD-100 BUS

This section is intended to give a description of how execution of the 10X/I0XT
instructions appear to the NORD-100 bus. This includes the operation of the CPU
bus handshake logic and the control signals involved during I0X/IOXT executions.

The background for signal responses from the accessed PIO or DMA controller is
described in a later section.

As indicated in the previous section it is the microprogram that “knows’’ that an
access to the NORD-100 bus is needed, and thus indicates the bus cycle.

The microprogram generates a bus allocation request to the BCU, informs the bus
handshake logic that an I0X cycle is in progress and enables the device register
address into IDB.

The bus control logic is then ready to operate when it receives the bus allocation
signal from the BCU.

As other bus cycles, the IOX/IOXT cycle is handled by the bus handshake logic as
an address cycle and a data cycle.

In the address cycle, all 1/0 interfaces, simultaneously, are presented the device
register address. Based on this address, one I/0 device register is selected to
communicate with the CPU during the data cycle.

As indicated in the previous section, the microprogram is independent of the
IOX/IOXT transfer direction. This is also the case for the I0OX/IOXT address cycle.
However, the data cycle of course is direction dependent.

Therefore, the following text and illustrations cover an output transfer and an input
transfer as case 1 and 2 respectively.

Case 1: I0X/I0OXT Output Transfer

After initialization by the microprogram, the bus control logic is waiting for the
allocation acknowledge signal to start the bus cycle. The device register address
resides in the Write Data Address (WDA) buffer.

Refer to Figure 111.2.4.

NOTE: The convention for representation of the bus signals in timing diagrams is
given in Appendix F.3.

ND-06.016.01

1-2-8

ACCESSED 1/O INTERFACE

D
B
R
W
B
L Y o D | 80023 __DEV.REG. ADDR./\;
A ‘ Ll I
| I i
—————————————— | | | |
ADDRESS CYCLE | | ! |
| BAPR | | | 4
DEV. ADDR. -+ IDB -+ WDA +BD | ’ ‘ [: i
DATACYCLE ; | : !
I
A —1DB —» WDA —»BD } BIOXE, } | : (
!
DATACYCLE COMPLETED : | I i
| BDRY, | ! | I
o [
WDA —» DBR —» A l | : ;
l | '
| | '
T
| ADDRESS VALID | OUTPUT | | OUTPUT DATA
l DATA VALID 1S ACCEPTED BY

Figure 111.2.4: 10X/10XT Qutput Operation via the NORD-100 Bus

Upon receiving the allocation acknowledge signal, the handshake logic enables
WDA onto the NORD-100 bus BD lines combined with the address strobe BAPR,,.

The CPU bus handshake logic holds the addresses about 50 ns after leading edge
of BAPR, before it continues with the data cycle.

The microprogram now moves the A register, via 1DB, to WDA. The bus hand-
shake logic passes WDA to the BD lines.

When the data (the A register) is valid on the BD lines, the handshake logic
activates the signal BIOXE,.

Upon receiving BIOXE active, all 1/0 interfaces “look’” at the device register
address presented in the address cycle to see if it is equal with their own address.

The interface that finds equal address strobes the content of the BD lines (the A

register) into the specified device register. The interface then activates the signal
BDRY, to signify "data accepted’’. In other words, the transfer is completed.

ND-06.016.01

1-2-9

The handshake logic uses the leading edge of BDRY, to strobe the content of the
BD lines (still the A register) into DBR and restarts the microprogram. The
microprogram terminates the I0X/IOXT execution by moving DBR to the A
register. That is, the A register is left unchanged after an IOX/IOXT output
transfer.

As indicated in Figure 111.2.4, the handshake logic turns BIOXE off upon reception
of BDRY. BIOXE off implies that the accessed 1/0 interface turns BDRY,, off. That
is, the NORD-100 bus is released and ready for the next bus cycle.

Case 2: IOX/IOXT Input Transfer

Refer to Figure 111.2.5.

The IOX/IOXT address cycle is independent of the transfer direction, i.e., it
follows the same scheme both for input and output transfers.

The data cycle also starts equal since neither the microprogram nor the CPU bus
handshake logic knows what the direction actually is.

The I0X/10XT transfer direction is selected by the 1/0 interface that finds ""equal”’
after the reception of BIOXE.

If the accessed interface finds that the specified |/0 register to be exchanged is an
input register, the interface activates the signal BINPUT,,.

The bus handshake logic reacts on the active BINPUT, signal by closing the output
from the WDA buffer and then activating the signal BINACK.

The signal BINACK (BINput ACKnowledge) is a direct feedback to the interface
that generated BINPUT. BINACK means theat the BD lines are free to accept data
from the interface. Thus, at the reception of BINACK, active, the interface enables
the accessed input register onto the BD lines. When the content of the input
register is valid on the NORD-100 bus, the interface generates the BDRY , signal.

As for output, the bus handshake logic uses the leading edge of BDRY to strobe
the content of the BD lines into DBR and restarts the microprogram.

The microprogram moves DBR, which now contains a specified 1/0 register, to
the A register.

ND-06.016.01

111—2-10

QIIVA VLVG LNdNI

0314300V 39 AVIN

v1iva LnNdNi

sng 001 -4 ON 3y} e uonesadp induf 1 X0I/X01 *S Tl anbl4

arvA ssS3yaay

» ‘auqg

sl

~< “yovNIg

a O

- 1NdNig

b
-

‘HAav ‘934 'A3d

°3x01

€20 Q8

GETERFORERRLSR AR (¢

ERRYSSRARL¢

F1OAD SS3HAaY

V- Hea<*+ VIVJ LNdNI

V1VO 404 3344 IV SANIT-08

1NdNI S! 43151934 G35S300V

09 «— VOM < g0l <=V

a8 <« VYOAM - 80! <« "'Haav 'A3d

Y

o

adi

ND-06.016.01

I.2.5

-2-11

10X/I0XT EXECUTION AND THEI/O INTERFACES

All 1/0 interfaces, both PIO and DMA, are controlled by program, i.e., accessed
by IOX/IOXT instructions.

Thus, each 1/0 interface has a bus control logic specially dedicated to handle
I0X/I0OXT access to the interface.

The bus control logic is designed independent of the peripheral connected to the
interface. This implies that all peripherals appear equal to the NORD-100 bus and
could be handled equally by the CPU bus handshake logic.

On a P10 interface module, the bus control logic is standarized to handle up to four
different devices accessed to the NORD-100 bus.

Refer to Figure 111.2.6.

EXTERNAL NORD—100

CABLING TO DEVICE BUS COMMUNICATION
- A e

LA B L L

DEVICE A <}::>

BUS CONTRQL

DEVICE B <,‘::(> LOGIC

DEVICE C <}::{>

DEVICE D <}:;>

Figure 111.2.6: PIO Interface Organization

ND-06.016.01

111.2.6

1-2-12

PIO INTERFACE MODULE ORGANIZATION

The actual number of devices controlled by one interface module is limited to the
physical space required for the peripheral device dependent control logic.

A DMA controller requires at least one module. Thus, it has no meaning talking
about a standard part controlling several DMA controllers.

However, a DMA controller, of course, has an I0X/IOXT bus control logic with
the same functions as for PIO interfaces.

The description of an I/0 interface bus control logic is therefore applicable to both
P10 and DMA interfaces.

The main function of the 1/0 interface’s bus control logic is to handle the hand-
shake with the CPU bus handshake logic during |0X/IOXT execution.

The address and data flow and the associated control signals invovled in this
handshake have already been described in timing diagrams. Thus, the functions

and the sequence in which the different control signals appear should be known.

The following text and illustration (Figure [11.2.7) is based on this knowledge and is
meant as an introduction to the |/0 interface’s bus control logic.

ND-06.016.01

CPU

I0X/I0X DEVICE

-2-13

PIO AND DMA INTERFACES

[

—

IOX CONTROL

REGISTER ADDRESS DEV. ADDR. ON BD LoaGic
i
6> Ve
{— T aporessvaLio BAPR DEV. REG. ADDR. BUFFER
| ON BD
1
| ' | Y ___
i
| | | WAIT FORBIOXE !
| —DATA VALID ON ‘ - ——
| 8D i BIOXE
, _START COMPARE !
| DO
| 1 DEVICE EQUAL? OTHING
l |
| CPU — BUS | YES — START IOX CYCLE
| HANDS HAKE |
| LOGIC DECODE/SELECT
I DEVICE REGISTER
} l
| ! BINPUTY vgg TNPUT NO
I f ! REGISTER
| |
' BINPUT : Yy ___
| ACKNOW— l 'WATT FOR !
| LEDGE {BINACK i
l | |
| | -‘ y
| | BINACK| [INPUT REG. 8D TO
I | TOBD - “: OUTPUT REG.
| DATA [DATA
TRANSFER | i
BORY. ACCEPTED
| COMPLETED |) VALD
| —-RELEASE BUS] |
_________ | |
|
SELECTED | SELECTED
A - REGISTER INPUT REG. OUTPUT REG
ZAN DATAONEBD -~ &4 _4p

Figure I1l.2.7: CPU Bus Handshake Logic and 1/0 Interface Bus Control Logic

Interaction

ND-06.016.01

b

-2-14

The first information presented on the NORD-100 bus during I0X/IOXT execution
is the device register address combined with the address strobe BAPR,.

This information is available to all modules connected to the bus simultaneously.

On all I/0 modules, the leading edge of BAPR, is used as a strobe to buffer up the
address presented on the BD lines. Note that the 1/0 modules at this stage do not
know if the address is meant for memory or an 1/0 interface. Thus, the /0 inter-
faces have to wait for more information to proceed.

The BIOXE, signal active is what the 1/0 interfaces are waiting for.

At the leading edge of BIOXE,, each 1/0 interface compares the device number
part of the buffered address with its own device number.

The 1/0 interface that finds ""device equal” starts an 10X cycle on the interface.
Other interfaces do nothing.

The ""device equal’’ interface starts the I0X cycle by decoding the register number
bits in the device register address. This decoding selects one of the registers on
the interface to be accessed.

If the device register to be accessed is an output register, the content of the BD
lines, i.e., the A register, is written into the register. BDRY/ is activated to signify
""data accepted’’.

in cases where the accessed device register is an input register, the interface
requests the BD lines for input of data. This is done by activating the BINPUT,

signal.

Upon receiving BINACK,, the interface enables the selected input register onto the
BD lines.

BDRY, is now generated to signify the presence of valid data on the BD lines.

In the next section we will look at how the device identification logic is implemen-
ted in hardware.

ND-06.016.01

1.2.7

I11-2-15

HARDWARE IMPLEMENTATION OF THE DEVICE IDENTIFICA-
TION LOGIC

The block diagrams given in Figure 111.2.9 and 111.2.10 illustrate how the device
identification logic is implemented in hardware. As seen, both figures are very
similar. Figure 111.2.9 shows how the hardware is organized on a module control-
ling one peripheral type {DMA controller) while Figure 111.2.10 shows the organiza-
tion on a module controlling several peripheral types (P10 interfaces).

The device identification logic is based on a compare circuit.

The device register address issued during 10X execution, is in this circuit compared
with the 1/0 interfaces’ device numbers.

Device numbers relevant to the different 1/0 interfaces resides in ""device number
PROM's” (Programmable Read Only Memories).

There is one PROM for each class of peripherals controlied by equal hardware. The
actual device number selected on an interface depends on the selected PROM
location.

A PROM location is selected by a PROM address which is set by a thumbwheel.
Thus, the device number of an interface is easily changed by turning the thumb-
wheel.

On /0 modules controlling more than one peripheral type with different device
numbers, one seperate PROM, thumbwheel and comparator is available for each
peripheral.

In order to make it easier to understand the device identification logic, it could be
convenient to see how the hardware ‘looks” at the presented device register
address.

On a two channel interface (i.e., three register number bits) the hardware is
designed to handle the device register address format given in Figure 111.2.8.

EXTENDED C | DEVICE NO . REG.NO.

\ e NS ;__J
REGISTER NC. IN

SELECTED DEVICE e
NOT USED TO FIND DEVICE EQUAL

DEVICE NO. USED TO FIND
DEVICE EQUAL

L__ ¢ sHouLD 8E 2ERO

l__ EXTENDED DEVICE ADDR. (IOXTISHOULD BE ZERO FOR
CURENT EXSISTING DEVICES - ALL ZERQs —»0OK

Figure 111.2.8: I0X/IOXT Device Register Address Format as it Appears to
Hardware

ND-06.016.01

I-2-16

As indicated in the block diagram (Figure 111.2.9) the extended address bits (bit
11-15) is passed through an "all zero'’ test.

If this test turns out in "ok’ (all zero) and BIOXE goes active, the I0OX device
number is compared with interface’s device numbers.

One and only one interface should now find ""device equal”’. Device equal on an
interface enables decoding of the register number field of the device register
address. As indicated in the figures 1i1.2.9 and 111.2.10, this decoding may be
performed either ""sentralized’’ or in the device dependent part on single peripheral
or multiperipheral controllers respectively.

The decoding is performed physically by a 3 to 8 line decoder. A given bit
combination input to the decoder gives one output line active.

That is, the number specified in the register number field gives one line active
which points out the register that is to be accessed.

The output from the decoder is used to clock the content of the BD lines into a
device output register.

if an input register is specified, the active output from the decoder and BINACK
true, enables the device input register onto the BD lines.

ND-06.016.01

Hi-2-17

NORD—100 BUS

77’ DEV.REG.ADDR. o7 { A 4f/ ///////////A
[i/‘ #3
[v #2
o9
DDRESS / DATA IN INTERFACE #£1
TRANCEIVER
%
ALL 11-15
ZERO
DETECT Ay, 'NTERNAL DEVIGE
2 ADDRESS/DATA 8US
/
oo oo 0
DEVICE REG. ADDRESS BAPR.
[0] <4 R _—"——Jﬂ————————
DEVICE NUMBER T ReG. NO.
2 V1
’
q
oK U / CGISTER | === | CLOCK/ENABLE
2 4 NUMBER | —= | SIGNALTO
% 4227—%7 DECODER : SELECTED
. REGISTER
4 >
2 | I
4
V]
? I0X DEV. NO.
ra M> COMPARE
FOR
EQUAL
DEVICE >
NUMBER DEVICE EQUAL
THUMBWH. DEVICE — ENABLE DECODING
FOR NUMBER
U NG PROM OF REG. NO.
DEV. NO. PROM INTERF.
SELECTION ADDR. DEV .NO.
OK ——pf
ENABLE
BIOXE COMPARE
AND

Figure I11.2.9: Device Identification Logic on a Single Device 1/0 Interface (DMA
Controllers)

ND-06.016.01

11--2-18

‘ON'O3H 'ON"A30

‘HAQAV 934 'A34

_

_

_

_ B ol Hdve
| 2

|

_

193134
SNG 3DIAIA TYNHIAUNI % OMMM
7 EULAANAANANEAARALANEN A RARANNUNARANUN NN RAR N AR NN ANNNAR NN AR TR

ND-06.016.01

gie3'g’'v 1Hvd _ _ ANJFAN343ANL
| 1N3AN343IAl 3DIAIC | Aale _ 301A30
any
| JHVINO0D S0
_ | 379VN3 A
! "ON "A3Q $$3HAAY
_ | ERNERETRN O WOHd ‘ONAIC
Arll 193139
_ 191A90 VNI NO | HIBWON T3IHM
_ 310400/ 1uvis | H3INNN 321734 BWNHL
_ IvnD3 3D1A30 T 301A30
IvNo3
| _ o4 by N
_ THVINOD K ‘ - LIl el LEIELL
| ON"A3Q XOl
{
_ |
_ 7
_ \
| 9
_ 43151934 _ 7
@E10373S 01 : H3Q003da AN\\\ 777777 222777 707277277 277777277277 7707 NO
_ STVYNDIS . "ONj ‘ON H31S1934 301A3Q %
| 318VN3/0019 H31S193Y % »

\

mmm‘rm_me 3IDOIAIA WOHH/0L VIVA

NI 379VYN3 «

H3IAIFONVHL
$S3Haav/viva

!

A_ 100 379VYN3

€2-:008 SNY 001—dHON

Figure 111.2.10: Device Identification Logic on Multi Device /0 Interfaces (PO

Interfaces)

V.1

v-1-1

IDENTIFICATION OF INTERRUPTING 1/O INTERFACES
— EXECUTION OF THE IDENT PLxx INSTRUCTION

INTRODUCTION

The event causing the IDENT PLxx instruction to be executed is an interrupt on
one of the levels 10, 11, 12 or 13.

The background for interrupt generation on the 1/0 interfaces should be known
from other parts of this manual.

The need for and the function of the IDENT PLxx instruction has also been
described:

— its purpose is to search for an existing interrupt on a specified level {PLxx) and
return the ident code from the first found device with interrupt on specified
level to the CPU A register.

This section is intended to give a more detailed description of how the IDENT PLxx

instruction is executed. That is, how it appears to the NORD-100 CPU, the
NORD-100 bus and the |/ O interfaces.

ND-06.016.01

V.2

IV.2.1

IV-2-1

EXECUTION OF IDENT PLxx

The format of the IDENT PLxx instruction entered for execution should be as
shown below.

15 65 0

IDENT PL

AN -

v

Specified by programmer

Since the IDENT PLxx is a privileged instruction the entry point generation in the
microprogram is restricted in the same way as for I0X/IOXT execution. Non-
privileged use is detected and error message is given.

This section is intended to give a functional description of the microprogrammed
routine after the IDENT PLxx instruction is successfully entered.

IDENT MICROPROGRAM OPERATION

The search for interrupts that is performed during IDENT PLxx execution is
normally done in the NORD-100 bus.

However, as for the IOX/IOXT instruction, there are exceptions.
Terminal number 1 {device no. = 300;) is physically implemented on the CPU
module. Thus, interrupts {level 10 or 12) from this terminal are not detected by

searching in the NORD-100 bus.

The real-time clock (interrupt level 13) is also designed as an integrated part of the
CPU.

That is, if interrupts are detected on the levels 10, 12 or 13 it might be that the
search should not go via the NORD-100 bus.

This has to be investigated by the micropgoram and it is done as illustrated in
Figure IV.2.1.

ND-06.016.01

Iv-2-2

IDENT PLXX

7] PLACE PLXX

OF IDENT IN

A CPU SCHRATCH
REGISTER

CPU NO
RTC ?
YES
NO HANDLE CPU
RTC

TERM NO.
1.2

y YES

NO HANDLE
TERM NO 1

TERM NO.
1

HANDLE
NO TERM NO. 1

gt
A J

IDX —
INITIATE SEARCH
FOR INTERRUPT
IN NORD—-100 BUS

Figure IV.2.1: Microprogram Separation of Internal (CPU) or External Interrupts on
Level 10, 12 0r 13

In the following description of the IDENT PLxx instruction it is assumed that the
search for interrupt has to be performed in the NORD-100 bus.

The microroutine designed to handle the IDENT PLxx search on the NORD-100
bus is principally equal to the I0X/IOXT Bus Transfer routine. The only difference
is that in IDENT execution, the microprogram tells the CPU bus handshake control
logic to perform an interrupt search instead of an 10X/IOXT information ex-
change.

Thus, the interaction between the microprogram and CPU bus control logic, with
some minor adjustments, follows the same scheme as for IOX/10XT execution.

Refer to Figure IV.2.2 for information relevant to IDENT PLxx execution.

ND-06.016.01

Vv-2-3

DX
REQUEST BUSRQ BUS CONTROL
ALLOCATION OF > UNIT
NORD-100 BUS —BCU
y A
START CYCLE
—INFORM CPU BUS » [DENTPLXX] [J |
CONTROL LOGIC > CYCLEIN — I
—PASS PLXX [PROGRESS e |
INFORM. TO IDB ADDRESS CYCLE | BAPR.
A
RELEASE WAIT —ADDRESS CYCLE [
COMPLETED !
7S 1
ADDRESS CYCLE WAIT |
FINISHED I
DATACYCLE | BOUTIDENT
~WAIT FOR ——
y BDRV. |
A — REGISTER TO —BDRY. RECEIVED |
DB ie. IDENT
e CODE FROM |
LEASE WAIT INTERRUPTING 8DRY
DEVICE IS z
SATACYOL VALID ON BD |
~BD — DBR
COMPLETED WAIT |
}
|
|
CONTENT OF !
D8R TO A—REG. |
|
ADDR.CYCLE : PLXX — IDB 0-15 g’ BD 0-23
DATA CYCLE : IDENTCODE « 4 A
D
B .
R

Figure IV.2.2: IDENT Micro Routine and CPU — Bus Handshake Logic Interaction

ND-06.016.01

IvV.2.2

Iv—2-4

Figure IV.2 2: IDENT Micro Routine and CPU — Bus Handshake Logic Interaction

As indicated in Figure 1V.2.2, the microprogram generates a bus allocation request
(BUSRQ) to the BCU. In addition, the CPU bus handshake logic is informed that
the cycle in progress is an IDENT cycle. The level specification (PLxx) is enabled
onto IDB, ready to be used in the address cycle.

The IDENT PLxx exeuction is terminated at the reception of BDRY, from the first
interface found with interrupt on specified level.

BDRY is, by the CPU bus handshake logic, used to clock the content of the BD
lines (the interrupting interface’s ident code) into the DBR register.

The microprogram moves DBR to the CPU A register and initiates the next
machine instruction.

IDENT PLxx EXECUTION AND THE NORD-100 BUS

This section is intended tc give a description of how the IDENT PLxx instruction
appears to the NORD-100 bus. This includes the operation of the CPU bus control
logic and the control signals involved during IDENT execution.

Background for signal responses from the /O interfaces is given in the next
section.

As other NORD-100 bus cycles, an IDENT bus cycle is started by an address cycle
and terminated with a data cycle. Refer to Figure IV.2.3.

in the IDENT address cycle, the level on which the interrupt search is to be
performed, is presented on the BD lines, combined with BAPR,.

All 1/0 interfaces having interrupt on the specified level turns on a "flag”’ to signify
this.

ND-06.016.01

iv-2-5

AaNNo4 SI 13A37
JNWVS NO JOV4HILNI

ag NO QITVA |
30092 IN3ai |

_
oayas T v« 801 « HEQ « (8

| oAH(d8 40
NOILdI3D3H IHL LY

01N3AILNOY

_
< °lN3ging I
|

ND-06.016.01

!
| |
I |
" " AINVA XX1d _ 31AD HOYV3IS/IT0AD VLV
[" “ % oudve AllllL_ 08 « VOM « 80l « XX1d
“ _ | “ 31040 $$34AAV
_ P e e e
! _ !
_ [
1 v
§— Gamrmany - -
0 a
| €eoas " 51-0 8ql
|
[
[
|
i u
| 1l 9
‘_ a]
llllllllll 55 -—l
55 | T\ xxinig | b
HO AIHIM S |
|
A e~
g

Figure IV.2.3: IDENT PLxx Interrupt Search via the NORD-100 Bus

IV-2—-6

Aithough several I/0 interfaces, at the same time, may have interrupts waiting for
service on the specified level, only one may be handled at a time.

This potential problem is solved by the CPU bus handshake logic issuing an
interrupt search signal (BINIDENT)* which is daisy chained in the NORD-100 bus.
That is, the search signal is passed form one NORD-100 bus slot position {n) to the
next {n + 1) via the module placed in position n. This is illustrated in Fi