
DISCOVERING OPENSTEP:
A DEVELOPER TUTORIAL

Object-Oriented Software

DISCOVERING OPENSTEP:
A Developer Tutorial

Release 4.0 for Mach

f·

NeXT Software, Inc.
900 Chesapeake Drive
Redwood City, CA 94063
U.S.A.

We at NeXT have tried to make the information contained in this publication as accurate and reliable as
possible. Nevertheless, NeXT disclaims any warranty of any kind, whether express or implied, as to any
matter whatsoever relating to this publication, including without limitation the merchantability or fitness
for any particular purpose. NeXT will from time to time revise the software described in this publication
and reserves the right to make such changes without the obligation to notify the purchaser. In no event
shall NeXT be liable for any indirect, special, incidental, or consequential damages arising out of purchase
or use of this publication or the information contained herein.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ij) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 (or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86).

Copyright 1993-1996 NeXT Software, Inc. All Rights Reserved.
[6863.00]

NeXT, the NeXT logo, NEXTSTEp, Netlnfo, and Objective-C are registered trademarks of NeXT Software,
Inc. The NEXTSTEP logo, Application Kit, Enterprise Object, Enterprise Objects Framework, Interface
Builder, OPENSTEp, the OPENSTEP logo, PDO, Portable Distributed Objects, WebObjects, and
Workspace Manager are trademarks of NeXT Software, Inc. Use in commerce other than as "fair use" is
prohibited by law except by express license from NeXT Software, Inc.

PostScript is a registered trademark of Adobe Systems, Incorporated. Unix is a registered trademark of
UNIX Systems Laboratories, Inc. All other trademarks mentioned belong to their respective owners.

U.S. and foreign patents are pending on NeXT products.
Netlnfo: U.S. Patent No. 5,410,691
NEXTSTEP: U.S. Patent Nos. 5,184,124; 5,355,483; 5,388,201; 5,423,039; 5,432,937.
Cryptography: U.S. Patent Nos. 5,159,632; 5,271,061.

Address inquiries concerning usage of NeXT trademarks, designs, or patents to General Counsel, NeXT
Software, Inc., 900 Chesapeake Drive, Redwood City, CA 94063 USA.}

Written by: Terry Donoghue
Tutorial applications by: Terry Donoghue
Art and Production management: Terri FitzMaurice
Book design: Karin Stroud
Publications management: Ron Hayden
With help from: Trey Matteson, Ron Hayden, Jean Ostrem, Lynn Cox, Derek Clegg, and Kelly Toshach
Cover design: CKS Partners, San Francisco, California

Table of Contents

1 Introduction 111 To Do Tutorial

6 What is OPENSTEP? 117 The Design of To Do

8 Power Programming with OPEN STEP Developer 121 Setting up the To Do Project

10 The Advantage of Objects 122 Creating the Model Class (ToDoltem)

11 The Advantage of OPENSTEP 128 Subclass Example: Adding Data and Behavior
(CalendarMatrix)

13 Currency Converter Tutorial
Why NSMatrix? 128

139 The Basics of a Multi-Document Application
19 Creating the Currency Converter Project 150 Managing Documents Through Delegation
21 Creating the Currency Converter Interface 153 Managing the Data and Coordinating its Display
34 Designing the Currency Converter Application (ToDoDoc)

37 Defining the Classes of Currency Converter 160 Subclass Example: Overriding Behavior
Connecting ConverterControlier to the Interface 42 (SelectionNotifMatrix)

46 Implementing the Classes of Currency Converter 164 Creating and Managing an Inspector (ToDolnspector)

51 Building the Currency Converter Project 181 Subclass Example: Overriding and Adding Behavior

56 Run Currency Converter
(ToDoCell)

187 Setting Up Timers for Notification Messages

57 Travel Advisor Tutorial 190 Build, Run, and Extend the Application
Optional Exercises 191

62 Creating the Travel Advisor Interface World Wide Web 197

73 The Design of Travel Advisor
Model Objects 73 193 Where To Go From Here
Controller 74

76 Defining the Classes of Travel Advisor 198 Programming Tools and Resources

82 Implementing the Country Class 201 Information

90 Implementing the TAController Class 203 Professional Services

Data Mediation 92 205 Ordering NeXT Products and Services

Getting the Table View to Work 95

Adding and Deleting Records 100

Field Formatting and Validation 102

Application Management 105

109 Building and Running Travel Advisor

Table of Contents

209 Appendix A: Object-Oriented
Programming

214 Objects
Encapsulation 214

Messages 215

An Object-Oriented Program 216

Polymorphism and Dynamic Binding 217.

219 Classes
Object Creation 219

Inheritance 220

Defining a Class 222

224 Categories and Protocols

Concepts

13 Currency Converter Tutorial 88 Object Ownership, Retention, and Disposal

20 Project Indexing 91 Turbo Coding With Project Builder

22 A Window in OpenStep 94 Finding Information Within Your Project

28 Aligning on a Grid 97 Getting in on the Action: Delegation and Notification

32 An OpenStep Application - What You Get "For Free" 101 Abstract Classes and Class Clusters

33 An OpenStep Application - The Possibilities 103 Behind "Click Here": Controls, Cells, and Formatters

34 Why an Object is Like a Jelly Donut 106 Flattening the Object Network: Coding and Archiving

36 The Model-View-Controller Paradigm 108 Using the Graphical Debugger

37 Class Versus Object 109 lips for Eliminating Deallocation Bugs

40 Paths for Object Communication: Outlets, Targets, and
Actions 111 To Do Tutorial

50 Objective-C Quick Reference 116 Starting Up - What Happens in NSApplicationMainO
52 What Happens When You Build an Application 118 Only When Needed: Dynamically Loading Resources and
54 Where To Go For Help Code

134 Dates and limes in OpenStep

57 Travel Advisor Tutorial 141 The Structure of Multi-Document Applications

63 Varieties of Buttons 143 Coordinate Systems in OpenStep

64 More About Forms 148 The Application Quartet: NSResponder, NSApplication,
NSWindow, and NSView

66 More About Table Views
162 Events and the Event Cycle

74 The Collection Classes
178 A Short Guide to Drawing and Compositing

79 Checking Connections in Outline Mode
180 Making a Custom View

80 File's Owner
181 Why Chose NSButtonCell as Superclass?

81 Just Add a Smock: Compiled and Dynamic Palettes
189 lick Tock Brrrring: Run Loops and limer

82 NSString: A String for All Countries

84 The Foundation Framework: Capabilities, Concepts, and
Paradigms

iii

Table of Contents

iv

tjciono Projects :b;1j

Delete

ry

Jill
~24-Hour

05,.:,5.2,; ,~~tJ

~

Sections

What is OPENSTEP?

Power Programming With
OPENSTEP Developer

The Advantage of Objects

The Advantage of OPENSTEP

Chapter 1

Introduction

3

Introduction

4

When you begin any enterprise, you must find a starting
point. You set out from that starting point and acquire a basic
vocabulary, a notion of boundaries and techniques, a sense
of how things fit together and what is possible. For those
who want to learn how to create OPENSTEP applications,
this book provides a starting point.

With this book you become familiar with OPENSTEP
application development not merely by reading but by
doing. The book guides you through the creation of three
applications of increasing complexity. Along the way it
explains related concepts and issues. The techniques and
concepts you learn in one tutorial lay the foundation for the
more advanced techniques and concepts in the next
tutorial.

The final chapter of the book tells you where to go for
further information and where and how to find things, such
as tools and documentation. It also tells you how to get
NeXT products and services.

This book covers a lot of ground, although sometimes at
only a summary level. Finishing this book makes you much
better prepared to take on serious application development
with OPENSTEP in general and the Enterprise Object
Framework in particular.

Although the aim is primarily to educate, this book is also
intended-for those interested in programming-to be fun.

Some of you might be new to OPENSTEP. To learn more
about OPENSTEp, the standard on which it's based, and
OPENSTEP Developer, turn the page.

5

Chapter 1

6

Introduction to OPENSTEP

OPENSTEP is NeXT Software's graphical, object-oriented user
and development environment. It is based on the OpenStep
standard and available on a variety of platforms. OPENSTEP is
earning a growing reputation in the corporate world as the
premier environmentfor developing and deploying mission
critical custom applications.

The two core components ofthe product are OPENSTEP User and
OPENSTEP Developer.

OPENSTEP User is a user environment
acclaimed for its intuitively navigable desktop

0IifHSfBi and file manager. On it you can easily deploy
your own OPENSTEP applications as well as those

supplied by NeXT and third-party vendors. Intelligent networking,
particularly Netlnfo, makes it possible to install and upgrade
OPENSTEP in a fraction of the time it takes other systems.

OPENSTEP Developer, NeXT's software
development environment, provides
seamlessly integrated set of tools for building

0IifHSfBi complex applications that can be deployed on
heterogeneous client/server networks running not only
OPENSTEP, but Portable Distributed Objects, Enterprise Objects
Framework, and OpenStep-based software developed by other
vendors.

Whats in a Name?

OpenStep

OpenStep is the software industry's first open standard for object
oriented software development. It is an application programming
interface (API) based on the fundamental NEXTSTEP object layer:
the Application Kit, the Foundation Kit, and Display PostScript.

Application Kit

Display
Postscript

Foundation
Kit

OpenStep

. Applications

The OpenStep object layer allows corporate customers to create, evolve
and deploy multi-tier; client/server business applications in a fraction of
time it takes other methods.

• Application Kit: APls for user-interface objects and for essential
application behavior, such as event handling

• Foundation Kit APls that define basic object behavior, that support
object persistence and distribution, and that "objectify" collections,
Unicode strings, and many other programmatic entities

• Display PostScript: APls for PostScript drawing

"0PENSTEP" refers to the software product. "0penStep" refers to the standard or specification on which the product is based, and by extension to the
concepts expressed by the specification.

The OpenStep specification is available via anonymous ftp at ftp. next. com.

The OPENSTEP user
environment includes File
!newer (a file-system browser),
Mail, Preferences, Edit, and
other applications in/NextApps.

Other Products from NeXT

• With WebObjects you can easily create dynamic websites.
WebObjects applications provide a smart, interactive
connection between corporate databases and customers on
"The Web."

• Enterprise Objects Framework enables you to construct
applications that use (and reuse) enterprise business objects,
storing them in relational databases such as those from Oracle
and Sybase.

• Portable Distributed Objects (PDO) allow objects in a single

OPENSTEP- Platforms and Interoperability

application to be distributed among a heterogeneous network
of OpenStep clients and a broad range of servers.

• D'OLE brings the PD~ object model to the Windows platform,
giving Windows application developers the a bility to make use
of distributed-object technology.

In addition to software products, NeXT provides developer
support and professional services, in particular the Object
Experts program, an innovative on-site support and training
program.

Supported Platforms Intel-based PCs, Sun SPARC workstations, NeXT's Motorola 68040-based computers.

CORBA NeXT has licensed SunSoft's implementation of the CORBA standard (from the Object Management
Group) and is committed to CORBA interoperability.

7

Chapter 1 Introduction to OPENSTEP

8

;: <,' ,,/,:.'}:J)" ,.';.:;. ..J; '. .,:.

;\rOwer~r~gramming~ith OPEI\I~-r~PDeveloperHjt;' : <:'/' ;'
,,.,,,,_·'c ~ __ ",~>~;.;,,~., ~' ,_,_ >4>"~~,;:::<""_.;.,._'.>'h....,....,.,'''''~;;.,,«,;.,~ __ '' __ ..,.,~,,\,;,.,. "<>'.1_."",,, .. ';"'~"~' v.,o'.<,c,,,,,,_',",L,,,,,,~~ _,~..,.....,.v.~"",m. .• ,"" *,,*<.&&.,~~ ~,,,,,, """ci""~_"<.".".=_, ,,,,.,,,,,,,,,.,,.: .. ,, "'.".,N>"'M""'''..,.;:...,:."", ... <''' ~~.~.,,_v~''''>.i.'''',._·_·~,

OPENSTEP Developer 4.0 is a programming environment ideally
suited for the rapid development of custom object-oriented
applications deployable on a variety of computer architectures. It
comprises an integrated set of development software, libraries,
header files, tools, documentation, and other resources.

::::::'::-I1!IiIL~ Project Builder is an application that manages
software-development projects, and that
orchestrates and streamlines the development
process. It integrates a project browser, a full

featured code editor, language-savvy symbol recognition,
sophisticated project search capabilities, header file and
documentation access, build and debugging support, and a host
of other features.

Interface Builder makes it easy to create application
interfaces by dragging objects from palettes.
Standard palettes hold an assortment of Application
Kit objects. Custom palettes can include third-party

objects as well as the developer's own objects. Interface Builder
archives and restores elements of a user interface as objects-it
doesn't "hardwire" them into the interface. Interface Builder
helps to connect objects for messaging, and it assists in the
definition of custom classes.

The main window of Project Builder
combines a project browser with a
code editor.

iii SimlllePiayer - lIIextDeveloper/ExampleslllEXTIME Ll . ~~

Iconic buttons above the browser
let you access the application's
Build, Project Find, and Loaded Rles
panels, as well as the project
inspector and the graphical
debugger.

When projects are indexed, Project
Builder caches all symbols in
memory and makes them instantly
available upon request.

#import .. Controller. h"
#import .. Document. h"
#import .. SimpleP layer _Globals . h"

static NSString *curDirectory = nil; 1* Directory for open panel *1

@implementation Controller

• OpenStep Class Libraries. Includes NeXT's implementation of
the Application Kit, the Foundation Kit, and Display PostScript,
with some extensions.

• Objective-C. An object-oriented programming language that is
an extension of standard ANSI C, Dbjective-C is a simple and
powerful language. It is easy to learn, yet elegant in its
application to the problem domain. OPENSTEP projects can
include Objective-C, C, and C++ source code.

In addition, OPENSTEP Developer 4.0 offers a new version of the
GNU C compiler, enhancements to C++ compilation, and GNU
make technology.

, .

Interface Builder lets you craft user
interfaces from palettes of ready
made objects, then store the
interface in a file.

A palettes window contains
assortments of standard
Application Kit and (if installed)
Enterprise Objects Framework
objects as well as custom objects
that you or third-party developers
create.

A nib file window enables the initial
definition of custom classes and
facilitates the connection of these
classes to objects on the interface.
It also catalogs the image and
sound resources used in the
interface.

• Compiler and Library Technology. Two important features of
OPENSTEP Developer 4.0 for Mach are dynamic shared
libraries and frameworks. Programs linked with a dynamic
shared library share one copy ofthat library's routines, and are
linked with only those modules they currently need.
Frameworks assemble all library components in one place:
executable code, header files, resources, and documentation.
The executable code is in the form of a dynamic shared library.
The Application Kit, Foundation, and Display PostScript are
installed as frameworks.

9

Chapter 1 Introduction to OPENSTEP

10

Objects are the software equivalent of the Industrial Revolution.
In the same way that modern factories assemble products out of
prefabricated components ratherthan manufacture every
product from scratch, object-orientation allows programmers to
build complex software by reusing software components called
objects. Specifically, objects lead to several measurable
advantages:

Greater reliability. By breaking complex software projects into
small, self-contained, and modular objects, object-orientation
ensures that changes to one part of a software project will not
adversely affect other portions ofthe software. Being small, each
ofthese objects is a well-tested module of code, and so the
overall reliability of the software increases.

--+- Messages

Greater maintainability. Since objects are modular and usually
small (in terms of the overall code size of a project), bugs in code
are easier to locate. Developers can also change the
implementation of an object without causing havoc to other parts
of an application.

Greater productivity through reuse. One of the principal benefits
of object-orientation is reuse. Objects can be integrated into
many applications. And through subclassing you can create
specialized objects merely by adding the code unique to the new
object. Objects of the new subclass inherit functionality from the
superclass, reducing coding and promoting greater reliability.

An Example

Object-oriented programming delivers its greatest benefits to
large and complex programs. But its advantages can also be
demonstrated with a simple data structure such as might be used
in any application.

count dataPointer

With procedural programming techniques, the application is
directly responsible for data manipulation. One problem with this
is illustrated in the picture above: It shows a data structure
consisting of a' count variable and a data pointer. Since the
application directly manipulates the data, it has the opportunity to
introduce inconsistencies. Here, it has added an item to the data,
but has forgotten to incrementthe count;the count variable says
there are still only two data elements when in factthere are three.
The structure has become inconsistent and unreliable.

Another problem is that all parts of the application must have
intimate knowledge about the structure of the data. If the
allocation of data elements were changed from a statically
allocated array to a dynamically allocated linked list, it would
affect every part of the application that accesses, adds, or
deletes elements from the list.

With an object-oriented programming paradigm, the application
as a whole wouldn't directly manipulate the data structure;
rather, thattask is entrusted to a particular object. Since the
application doesn't directly access the data, it can't introduce
inconsistencies. Note also that it's possible to change the
implementation of the object without breaking other parts of the
application. For example, the data storage method could be
changedto optimize performance. So long asthe object responds
to the same messages, other parts of the application are
unaffected by internal implementation details.

The Advantage of OPEN STEP

Proven Technology. NeXT Software's technology has been
evolving through 10 years and four major releases. During that
time, it has been rigorously tested and iteratively refined. NeXT
has an established track record in object technology, while it will
be years before its major competitors can offer comparable
technology of comparable maturity.

True Objects. OPENSTEP objects are truly objects-modular,
autonomous, persistent, and distributable. They are not static
entities, but can be bound dynamically atrun time. When you drag an
object from an Interface Builder palette, you're getting a real object
and not an area painted on the screen with some code attached.

Portability. OPENSTEP is designed to foster both hardware
portability and operating-system portability.

Simplified Client/Server Development. OPENSTEP Developer's
integrated tool-set simplifies the complex process of building
distributed client/server applications.

Substantial Business Benefits. OPENSTEP's object-orientation
helps managers to accelerate the introduction of new products
and services that depend on new software. With OPENSTEP
programmers can modify software quickly and assuredly to take
advantage of evolving business opportunities. Through reusable
object libraries, systems integrators can quickly customize a
generic productto produce an individualized software solution for
each client.

In three years, Nicholas-Applegate
Capital Management reengineered
its business systems, enabling the
company to manage its business
growth from $4 billion to $14 billion
in assets. Using object technology
from NeXT, Nicholas-Applegate
was able to develop an investment
and trading environment that was
flexible and able to expand as the
company grew.

Don't Take Our Word For It

Here are a few comments on OPENSTEP and its predecessor,
NEXTSTEP:

• Booz Allen & Hamilton's study of OPENSTEP development
suggests that experienced developers could increase their
productivity five to ten times.

• "Information is our business. That's why OPENSTEP succeeds
here. The most important product we have is the quality of the
service we provide: our timeliness, the effectiveness of our
analysis and planning."

Director, Software Engineering
Fannie Mae

• "We would never have be able to do what we did on time or on
budget if we had chosen any other solution but NeXT."

Manager, IS Branch Automation
Chrysler Financial Corporation

• "The greatthing about object-oriented programming is thatthe
longer you're at the game, the more benefits you derive. You
can reuse objects you've created or add to objects to make
them more robust. And NEXTSTEP is the best integrated
computer platform on the market."

MIS Manager,
UBS Securities

11

Chapter 1 Introduction to OPENSTEP

12

Rle Vievn~r

:dona Projects I ntro f···J S P ra!~ ra ... Pu~)sDev

r;y Converter

ToDo
Exchange R ate per $1: 3.45~

aunt in C)ther Currency: CurrencyConverter.a.pp

Convert (.J'l

Sections

Creating the Currency
Converter Project

Creating the Currency
Converter Interface

Designing the Currency
Converter Application

Defining the Classes of
Currency Converter

Implementing the Classes of
Currency Converter

Building the Currency
Converter Project

Run Currency Converter

Concepts

Project Indexing

A Window in OpenStep

Chapter 2

Currency Converter Tutorial

An OpenStep Application - What You Get For Free

An OpenStep Application - the Possibilities

Why an Object is like a Jelly Donut

The Model-View-Controller Paradigm

Class Versus Object

Paths for Object Communication: Outlets, Targets, and Actions

What Happens When You Build an Application

Where to Go For Help

15

Currency Converter Tutorial

16

You can find the
CurrencyConverter project in the
AppKit subdirectory of
/NextDeveloper/Examples.

The application that you are going to create in this tutorial is called Currency
Converter. It is a simple application, yet it exemplifies much of what software
development with OpenStep is about. As you'll discover, Currency Converter is
amazingly easy to create, but it's equally amazing how many features you get
"for free" - as with all OpenStep applications.

Currency Converter converts a dollar amount to an amount in another currency,
given the rate of that currency relative to the dollar. Here's what it looks like:

CUrrency Converter ; r:J

Exchange R ate per $1 :I.~.~~_. ".~ .. ~ ... #.:

Dollars to Convert: I;;~~=",-=,.)i

Am ount in Other Currency: t~P.8:~:;:;;;;:~.~;~;.:;~;.~:;;:.H

Enter an exchange rate and a dollar amount

When you click the Convert button, the
converted amount appears in the Amount in
Other Currency field.

Instead of clicking the button, you can also press the Return key. You can
double-click the converted amount, copy it (with the Edit menu's Copy
command) and paste it in another application that takes text. You can tab
between the first two fields. You can do many other things common to OpenStep
applications.

In this tutorial you 'Illearn the basic things you must do to create a OpenStep
application. You will discover how to:

• Create a project.
• Create an interface.
• Create a custom subclass.
• Connect an instance of the custom subclass to the interface.
• Design an application using a common object-oriented design paradigm.

17

Chapter 2

18

Currency Converter Tutorial

By following the steps of this chapter, you will become more familiar with the
two most important OpenStep applications for program development: Interface
Builder and Project Builder. You will also learn the typical work flow of
OpenStep application development:

1.
Designing the
Application

Note: Although this chapter.
discusses the design of the
application midway through the
tutorial, application design can take
place anytime in the early stages of
a project, and in fact is often
recommended as the first stage.

Creating the Currency Converter Project

Creating the Currency Converter Proiect

Launch Project Builder.

In File Viewer navigate to the
/NextDeveloper/Apps directory.

Select ProjectBuilder.app and
double-click its icon (at right).

2 Make a new project.

Choose New from the Project
menu (Project ~ New).

In the New Project panel,
select the project location.

Enter "CurrencyConverter" as the
project name.

Click OK to create the project.

Every OpenStep application starts out as aproject. A project is a repository for all
the elements that go into the application, such as source code files, makefiles,
frameworks, libraries, the application's user interface, sounds, and images. You
use the Project Builder application to create and manage projects.

When Project Builder starts up, only its main menu appears on the screen. You
must create or open a project to get Project Builder's main window. The New
Project panel allows you to specify a new project's name and location.

[-- -- - ---- - ------ - - - ------- -- - --- --- -- ---------

Often projects are kept in a common
directory.

The name specified here becomes the
name of the project directory and the
default name of the application itself.

~~~~,___ Make sure Application is the project 

ProjectType: . Application -.- .. ~ : :::::<;5'1 type. 

Project Builder creates a project directory named after the project-in this case 
CurrencyConverter-and populates this directory with an assortment of ready
made files and directories. It then displays its main window. 

Note: Here's a variation on project creation: Create a project directory using File 
Viewer and then, in the New Project panel, navigate to that directory, type 
"PB.project" in the Name field, and click OK. 

19 



Chapter 2 

A makefile specifies file 
dependency relations and 
compiler and linker instructions 
for building the project. See 
OPENSTEP Development: Tips 
and Techniques for common 
changes to Makefile.preamble and 
Makefile.postamble. 

20 

Currency Converter Tutorial 

Classes 
Headers 
Other Sources 
Interfaces· 
Images J~ 
Other Resource f' 

SUbprOjects 
Context Help. r;; 
Supporting FUe t; 
Frameworks f~ 
Li braries f'. 

Command panel: Build, 
Rnd, Loaded Rles, Project 
Inspector, Launcher/ 
Graphical Debugger. 

~-..o._-..o.-..o.~ ___ Project browser. Each 
"suitcase" is a project 
resource category. 

----:-t--- Code editor 

Go ahead and click an item in the left column of the project browser (a grouping 
of project resources sometimes called a "suitcase"); see what some of these 
suitcases contain already: 

• Other Sources: This suitcase contains CurrencyConvertecmain.m, the mainO routine 
that loads the initial set of resources and runs the application. (Do not modify 
this file!) 

• Interfaces: This suitcase contains CurrencyConverter.nib, the file that contains the 
application's user interface. More on this file in the next step. 

• Supporting Files: This suitcase contains the project's default makefiles and 
template source-code files. You can modify the preamble and postamble 
makefiles, but you must leave Makefile unchanged. 

Project Indexing 

When you create or open a project, after 
some seconds you may notice triangular 
"branch" buttons appearing after source 
code files in the browser. Project Builder has 
indexed these files. 

During indexing Project Builder stores all 
symbols of the project (classes, methods, 
globals, etc.) in virtual memory. This allows 
Project Builder to access project-wide 
information quickly. Indexing is 
indispensable to such features as name 
completion and Project Find. (More on these 
features later.) 

Usually indexing happens automatically 
when you create or open a project. You can 
turn off this option if you wish. Choose 
Preferences from the Info menu and then 
choose the Indexing display. Turn off the 
"Index when project is opened" switch. 

You can also index a project at any time by 
choosing Index Source Code from the 
Project menu. If you want to do without 
indexing (maybe you have memory 
constraints), choose Purge Indices from the 
Project menu. 



Creating the Currency Converter Interface 

Creating the Currency Converter Interface 

Open the main nib file. 

Locate CurrencyConverter.nib in 
the project browser. 

Double-click to open. 

A nib file contains user-interface 
objects, definitions of custom 
classes, the connections between 
objects, and sounds and images 
that are used in the interface. 
Besides the main nib file, you can 
have nib files that you can load 
whenever you need them. These 
auxiliary nib files, and the 
techniques related to using them, 
are described in the "To Do 
Tutorial," page 118. See 
OPENSTEP Developmem: Tools 
and Techniques for an overview of 
nib files. 

When you create an application project, Project Builder puts the maillllib jile in 
the Interfaces suitcase. A nib file is primarily a description of a user interface (or 
part of a user interface). The main nib file contains the main menu and any 
windows and panels you want to appear when your application starts up; at start
up time, each application loads the main nib file. 

At the beginning of a project, the main nib file is like a blank canvas, ready for 
you to craft the interface. Look in the Interfaces suitcase for nib files. 

To open, double-click the nib file name 

Nib file window 

...or double-click the icon Palette window 

When you first open the application's main nib file, 
Interface Builder displays a blank window. 

By default, the window entitled "My Window" will appear when the application 
is launched. 

Note: The Interface Builder application is located in/NextDeveloper/Apps. The icon 
for the application is this: 

21 



Chapter 2 

22 

Currency Converter Tutorial 

A window in Open Step looks very similarto windows in other user 
environments such as Windows or Macintosh. It is a rectangular 
area on the screen in which an application displays controls, 
fields, text, and graphics. Windows can be moved around the 
screen and stacked on top of each other.like pieces of paper. A 
typical OpenStep window has a title bar, a content area, and 
several control objects. 

Miniaturize and close 
buttons 

resize bar 

Many user-interface objects other than the standard window 
depicted above are windows. Menus, pop-up lists, and pull-down 
lists are primarilywind9ws, as are all varieties of panels: attention 
panels, inspectors, and tool palettes, to name a few. In fact, 
anything drawn on the screen must appear in a window. 

NSWindow and the Window Server 

Two interacting systems create and manage OpenStep windows. 
On the one hand, a window is created by the Window Server. The 
Window Server is a process integrating the NeXT Window 
System and Display Postscript. The Window Server draws, 
resizes, hides, and moves windows using Postscript primitives. 
The Window Server also detects user events (such as mouse 
clicks) and forwards them to applications. 

The window that the Window Server creates is paired with an 
object supplied by the Application Kit: an instance of the 
NSWindow class. Each physical window in an object-oriented 
program is managed by an instance of NSWindow (or subclass). 

When you create an NSWindow object, the Window Server 
creates the physical window that the NSWindow object will 
manage. The Window Server references the window by its 
window number, the NSWindow by its own identifier. 

Application, Window, View 

In a running OpenStep application, NSWindow objects occupy a 
middle position between an instance of NSApplication and the 
views of the application. (A view is an object that can draw itself 
and detect user events.) The NSApplication object keeps a list of 

its windows and tracks the current status of each. Each window, 
on the other hand, manages a hierarchy of views in addition to its 
PostScript window. 

At the "top" of this hierarchy is the content view, which fits just 
within the window's content rectangle. The content view 
encloses all other view (its subviews), which come below itinthe 
hierarchy. The NSWindow distributes events to views in the 
hierarchy and regulates coordinate transformations among them. 

Another rectangle, the frame rectangle, defines the outer 
boundary of the window and includes the title bar and the 
window's controls. The lower-left corner of the frame rectangle 
defines the window's location relative to the screen's coordinate 
system and establishes the base coordinate system for the views 
of the window. Views draw themselves in coordinate systems 
transformed from (and relative to) this base coordinate system. 

See page 149 for more on the view hierarchy. 

Key and Main Windows 

Windows have numerous characteristics. They can be on-screen 
or off-screen. On-screen windows are "Iayered" on the screen in 
tiers managed by the Window Server. On-screen windows also 
can carry a status: keyor main. 

Key windows respond to key presses for an application and are 
the primary recipient of action messages from menus and panels. 
Usually a window is made key when the user clicks it Key 
windows have black title bars. Each application can have only 
one key window. 

An application has one main window, which can often have key 
status as well. The main window is the principal focus of user 
actions for an application. Often user actions in a modal key 
window (typically a panel such as the Font panel or an inspector) 
have a direct effect on the main window. In this case, the title bar 
of the main window (when it is not key) is a dark gray. 



2 Resize the window. 

3 Set the window's title and 
attributes. 

Click the window to select it. 

Choose Tools ~ Inspector. 

Selectthe Attributes display from 
the pop-up list. 

Enter the window title. 

Turn off the resize option. 

Creating the Currency Converter Interface 

Make the window smaller by 
dragging an edge of the window 
inward from a resize handle. 

Between the two resize handles 
is the resize bar, which permits 
only vertical resizing. 

Most objects on an interface have attributes that you can set in the Inspector 
panel's Attributes display. 

[] 

Backlng - C Controls -
C Nonretained Miniaturize.:kl 

C Retained Close .:J 

C Buffered R~e~si~ze~b~a~lf=lt::tt ___ -
'""" ,c" w' " "" 

" 'w ,w Options, 

Release when closedD 
11 Hide on daactivatel.:J 
Ii Visible at launchtim~21 
Ii Deferredl21 

One shot',:J " 
Dynamic depth limif.:J 

Wants to be color.:J 

The title of the major window in 
an application is often the 
application name. 

When this option is turned off, 
the windows's resize bar 
disappears. 

23 



Chapter 2 

4 Put a text field on the interface 
and resize and initialize it. 

Select the Views palette. 

Drag a text field from the palette 
onto the window. 

To initialize the text field, double
click "Text" and press Delete. 

Lengthen the text field. 

24 

Currency Converter Tutorial 

Put palette objects on the window using the "drag and drop" technique. 

Click this icon to select the Views 
palette. This palette contains an 
assortment of commonly used objects. 

Drag a text field and drop it (that is, 
release the mouse button) over the 
''surface'' of the window. 

You must get rid of the word "Text" in this field; otherwise, that's what the field 
will show when the nib file is loaded. 

The text field should be longer so it can hold more digits (you're dealing with 
millions here): 

Drag a resize handle in the direction 
you want the object to grow. 

Currency Converter needs two more text fields, both the same size as the first. 
You have two options: you can drag another object from the palette and make it 
the same size; or you can duplicate the first object 



5 Duplicate an object. 

Select the text field. 

Choose Edit ~ Copy. 

Choose Edit ~ Paste. 

6 Make objects the same size. 

Drag a text field onto the window. 

Delete "Text" from the text field. 

Select the first text field. 

Shift-click to select the new text 
field. 

Choose Format ~ Size ~ Same 
Size 

7 Change the attributes of a text 
field. 

Select the third text field. 

Choose Tools ~ Colors. 

Selectthe grayscale palette of 
the Color panel. 

Select the gray color that is the 
same as the window background. 

Choose Tools ~ Inspector. 

Selectthe Inspector panel's 
Attributes display. 

Drag the gray colorfromthe Color 
panel into the Background Color 
well. 

Turn off the Editable and 
Scrollable options. 

Creating the Currency Converter Interface 

.. 
II 

.Q 

The new text field appears slightly offset 
from the original field. Reposition it under the 
first text field. 

Get the third field from the palette and make it the same size as the first field. 

The first object you select should have the 
dimensions you want the other objects in the 
selection to take. 

Ii Shift-click multiple objects to include them in r"~\lI=-----L--
--;-;11

7

- !2 the same selection. 

You're not done yet with these text fields. The bottom text field displays the 
result of the computation. It should not be editable and therefore should, by 
convention, have a gray background. 

• ,~. 1·;~. !II 

Drag the gray color into this well to set 
the background color. 

Click to get the color that blends the text 
field into the window background. 

With the Editable attribute turned off, 
+--+----~--- users cannot alter the contents of the 

text field. 

Keep Selectable as an option so the user 
can select copy, and paste the result to 
other applications. 

The Views palette provides a "Title" object that you can easily adapt to be a 
text-field label. (The title object is actually a text field, set to have a gray 
background and no border, and to be non-editable and non-selectable.) Text in 

25 



Chapter 2 

8 Assign labels to the fields. 

Drag a title object onto the 
window. 

Double-click to select the text 
"Title". 

Choose Format ~ Text ~ Align 
Right to align the text from the 
right. 

Make sure the object's text is 
selected. 

Choose Format ~ Font ~ Font 
Panel. 

Setthe label text to 16 points. 

Make two copies of the label. 

Position all labels to the left of 
their text fields. 

Type the text of each label. 

26 

Currency Converter Tutorial 

the title object is centered by default, but labels are usually aligned from the 
right. 

The text is highlighted when it is selected. 

The size of the text is rather large for a label, so change it. You set font family, 
typeface, and size with the standard Open Step Font panel. 

The font of this object is 18 point Helvetica. 
Click here and then click the Set button to set 
the font size to 16 points. 

When you cut and paste objects that contain text, like these labels, the object 
should be selected and not the text the object contains; if the text is selected, 
de-select it by clicking outside the text, then click the object again to select it. 

Double-click to select title, then type the text 
of the label in place of the selection. 



9 Add a button to the interface and 
initialize it. 

Drag the button object from the 
Views palette and put it on the 
lower-right corner ofthe window. 

Make the button the same size as 
a text field. 

Change the title ofthe button to 
"Convert". 

Selectthe Images display ofthe 
nib file window. 

Drag the NSReturnSign image to 
the main window and drop it over 
the button. 

Creating the Currency Converter Interface 

Exchange Rate per$1 :1--:-----: 
Dollars to Convert: L ________ I 

Amount in Other Currency: t.,;. You can resize buttons the same way you resize 
text fields or any other object on a window. 

Double-click the title of the button to select it. 

You can easily give the button the capacity for responding to carriage returns in 
addition to mouse clicks. 

Select a display of the nib file window 
by clicking a tab. Exchange Rate per$1: '.--;-;;~.=c;-.-;;-;;=<.c;-d; 

Dollars to Convert: 
!~~=~~" 

After you drop the image 
over the button, the image 
appears (by default) to the 
right of the button title. 

If you check the attributes of the button in the Inspector panel, you'll notice two 
things have been added: NSReturnSign is now listed as the button's icon, and the 
Key field contains the escape sequence for a carriage return (\r). 

You've probably noticed that the final interface for Currency Converter (shown 
on the first page of this chapter) has a decorative line between the text fields and 
the button. This line is easy to make. 

27 



Chapter 2 

10 Create a horizontal decorative 
line. 

Drag a box object from the Views 
palette onto the interface. 

Bring up the Attributes display for 
the box (Command-l), select No 
Title, and setthe Vertical Offsetto 
zero. 

Drag the bottom-middle resize 
handle of the box upward until the 
horizontal lines meet. 

Position the line above the button. 

Drag the end points of the line 
until the line extends across the 
window. 

28 

Currency Converter Tutorial 

Qlrrency Converter ,.. ; X 

Exchan g~. Rate, pe r,$i1 ~ .';;';;;!~i'C;;!w;;;;;''';;''''''''''''''';;'';'';;;;;';;;'''}' 
Dollars toC onve.~t: !c~==~,,-==.!;. 

Drag upward until lines merge into one line. 

For a black line (instead of white) click here. 

As you might have noticed, the Currency Converter has a main menu that holds, 
by default, the commands Info, Hide, and Quit, and the Edit, Services, and 
Windows menus. The menus contain ready-made sets of commands. The Edit 
menu includes commands for cutting, copying, and pasting text. The Windows 
menu lists the titles of open windows as well as common window commands. 
The Services menu allows your application to communicate with other 
applications, often with no work on the part of your application. For example, if 
your application handles text, you can use the Services menu to transfer 
information to other applications that accept text. 

Aligning on a Grid 

You can align objects on a window by 
imposing a grid on the window. When you 
move objects in this grid, they "snap" to the 

nearest grid intersection like nails to a 
magnet. You set the edges of alignment and 
the spacing of the grid (in pixels) in the 
Alignment panel. Choose Format ~Align ~ 
Alignment to display this panel. 

Be sure the grid is turned on before you move 
objects (Format ~Align ~ Turn Grid On). 

You can move selected user-interface 
objects in Interface Builder by pressing an 
arrow key. When the grid is turned onthe unit 
of movement is whatever the grid is set to (in 
pixels). When the grid is turned off, the unit of 
movement is one pixel. 



11 Align the text fields and labels in 
rows and columns. 

Select the three text fields and 
choose Format ~ Align ~ Make 
Column. 

Select the first text field and its 
label and choose Format ~ 
Align ~ Make Row. 

Repeat the last step for the 
second and third text fields and 
their labels. 

The nextKeyView variable is an 
outlet. An outlet is the identifier of 
an object that another object 
stores as an instance variable. 
Outlets enable communication 
between objects. See page 40 for 
more information on outlets. 

Creating the Currency Converter Interface 

Currency Converter's interface is almost complete. One finishing touch might 
be to align the text fields and labels in neat rows and columns. Interface Builder 
gives you several ways to align selected objects on a window. 

• Dragging objects with the mouse 
• Pressing arrow keys (with the grid off, the selected objects move one pixel) 
• Using a reference object to put selected objects in rows and columns 
• Specifying origin points in the Size display of the Inspector panel 
• Using a grid (see preceding side bar) 

For Currency Converter, use the columns-and-rows technique. 

COLUMNS 

First select the object whose vertical position 
the other objects should adopt (the reference 
object). 

Amount in Other Currency: ~ --:...;-.--- Shift-click the other objects to include them in 

Convert 

Dollars to Convert: 

tl U :r-~ 
:Amount in Ot~er CurrencY:Ql ':"~;;; u ::::: 

the selection. 

Making a column evens the spacing between 
objects in the selection. 

ROWS 

When you make a row, the selected objects 
rest on a common horizontal baseline. 

The final step in composing the Currency Converter interface has more to do 
with behavior than appearance. You want the user to be able to tab from the first 
editable field to the second, and back again to the first. Many objects on 
Interface Builder's palettes have an instance variable named nextKeyView. This 
variable identifies the next object to receive keyboard events when the user 
presses the Tab key (or the previous object if Shift-Tab is pressed). If you want 
inter-field tabbing you must connect fields through the nextKeyView variable. 

29 



Chapter2 

12 Enable tabbing between text 
fields. 

Selectthe first text field. 

Control-drag a connection line 
from itto the second text field. 

In the Inspector panel 
(Connections display) select 
nextKeyView and click Connect. 

Repeat the same procedu"re, 
going from the second to the first 
field. 

30 

Currency Converter Tutorial 

When you press Control and drag the mouse 
from an object a connection line is drawn. 

When a line encloses the destination object 
release the mouse button. 

When you make a visual connection such as this, Interface Builder brings up the 
Connections display of the Inspector panel: 

The nextKeyView outltet identifies the next object to 
respond to events after the Tab key is pressed. 

Be sure to click the Connect button to confirm the 
connection (the button title then changes to Disconnect). 

Don't connect the nextKeyView outlet of the "Amount in Other Currency" field; 
this field is not supposed to be editable. 



13 Testthe interface. 

Choose Document ~ Save to 
save the interface to the nib file. 

Choose Document ~ Test 
Interface. 

Try various operations in the 
interface (see suggestions on the 
following pagel. 

When finished, choose Quit from 
the main menu. 

Creating the Currency Converter Interface 

The CurrencyConverter interface is now complete. Interface Builder lets you 
test an interface without having to write one line of code. 

Note: You can also exit from test mode by double-clicking the Interface Buildfer 
icon, which changes to the following image to represent test mode: 

31 



Chapter 2 Currency Converter Tutorial 

32 

The simplest OpenStep application, even one without a line of 
code added to it, includes a wealth of features that you get "for 
free": You do not have to program these features yourself. You can 
see this when you test an interface in Interface Builder. 

To enter test mode, choose Test Interface from the Document 
menu. Interface Builder simulates how your application (in this 
case, Currency Converter) would run, minus the behavior added 
by custom classes. Go ahead and try things out: move your 
windows, type in fields, click buttons. 

Application and Window Behavior 

In test mode Currency Converter behaves almost like any other 
application on the screen. Click elsewhere on the screen, and 
Currency Converter is deactivated, becoming totally or partially 
obscured by the windows of other applications. 

Reactivate Currency Converter by clicking on its window or by 
double-clicking its icon (the defaultterminal icon) in the 
workspace. Move the window around by its title bar. 

Here's some other tests you can make: 

• Click the Edit submenu in Currency Converter's main menu. It 
expands and contracts as in any application. 

• Click the miniaturize button or choose the Hide command. 
Double-click the document icon to getthe window back. 

• Click the close box and the Currency Converter window 
disappears. (Choose Quit from the main menu and re-entertest 
mode to get the window back.) 

If we had configured Currency Converter's window in Interface 
Builder to retain the resize bar, we could also resize it now. We 

could also have setthe auto-resizing attributes of the window and 
its views so thatthe window's objects would resize proportionally 
to the resized window or would retain their initial size (see 
OPENSTEP Programming: Tools and Techniques for details on 
auto-resizing). 

Controls and Text 

The buttons and textfields of Currency Converter come with many 
built-in behaviors. Click the Convert button. Notice how the button 
is highlighted momentarily. 

If you had buttons of a different style, such as radio buttons, they 
would also respond in characteristic ways to mouse clicks. 

Now click in one of the text fields. See how the cursor blinks in 
place. Type some text and select it. Use the commands in the Edit 
menu to copy it and paste it in the other text field. 

Do you recall the nextKeyView connections we made between 
Currency Converter's text fields? While a cursor is in a text field, 
press the Tab key and watch the cursor jump from field to field. 

When You Add Menu Commands 

An application you design in Interface Builder can acquire extra 
functionality with the simple addition of a menu command or 
submenu. You've already seen what you getwith the Services and 
Windows menu, both included by default. You can add other 
commands and submenus to the main menu for "free" 
functionality without compilation. For example: 

• The Font submenu adds behavior for applying fonts to text in 
NSText objects, such as the one in the scroll view object in the 
DataViews palette. Your application gets the Font panel and a 
font-manager object "for free." 

• The Text submenu allows you to align text anywhere there is 
editable text, and to display a ruler in the NSText object for 
tabbing, indentation, and alignment. 

Many objects that display text or images can print their contents 
as PostScript data. Later you'll learn how to add the Print menu 
command and have it invoke this capability. 



Creating the Currency Converter Interface 

An OpenStep Application - The Possibilities 

An OpenStep application can do an impressive range of things 
without a formidable programming effort on your part. 

Doc·ument Management 

Many applications create and manage semi-autonomous objects 
called documents. Documents contain discrete sets of 
information and support the entry and maintenance of that 
information. A word-processing document is a typical example. 
The application coordinates with the user and communicates 
with its documents to create, open, save, close and otherwise 
manage them. 

The final tutorial in this book describes how to create an 
application based on a multi-document architecture. 

File and Account Management 

An application can use the Open panel of the Application Kit to 
help the user locate files in the file system and open them. It can 
also make the Save panel available for saving information in files. 
NeXT's version of OpenStep also provides classes for managing 
files in the file system (creating, comparing, copying, moving, and 
so forth) and for managing system-account information and user 
defaults. 

Communicating With Other Applications 

OpenStep gives an application several ways of communicating 
information to and from other applications: 

• Pasteboard: The pasteboard is a global facility for sharing 
information among applications. Applications can use the 
pasteboard to hold data that the user has cut or copied and 
may paste into another application. 

• Services: Any application can avail itself ofthe services 
provided by another application, based on the type of the 
selected data (such as text). An application can also provide 
services to other applications such as encryption, language 
translation, or record-fetching. 

• Drag-and-drop: If your application implements the proper 
protocol, users can drag objects to and from the interfaces of 
other applications. 

Editing Support 

You can get several panels (and associated functionality) when 
you add a submenu to your application's main menu in Interface 
Builder. These "add-ons" includes the Font panel (and font 

management), the Color panel (and color management), and, 
although it's not a panel, the text ruler and the tabbing and 
indentation capabilities it provides. 

Formatter classes enable your application to format numbers, 
dates, and other types of field values. Support for validating the 
contents of fields is also available. 

Printing and Faxing 

With just a simple Interface Builder procedure, OpenStep 
automates simple printing and faxing of views that contain text or 
graphics. When a user clicks the control, an appropriate panel 
helps to configure the print or fax process. The output is 
WYSIWYG. 

Several Application Kit classes give you greater control over the 
printing of documents and forms, including features such as 
pagination and page orientation. 

Help 

You can create a help system for your application using Interface 
Builder, Project Builder, and an RTF text editor (such as Edit). The 
Application Kit includes an class for context-sensitive help. If the 
user clicks an object on the application's interface while pressing 
a Help key, a small window is displayed containing concise 
information on the object. 

Custom Drawing and Animation 

OpenStep lets you create your own custom views that draw their 
own content and respond to user actions. To assist you in this, 
OpenStep provides image-compositing and event-handling API 
as well as PostScript operators, operator functions, and client 
library functions. 

Plug and Play 

You can design some applications so that users can incorporate 
new modules later on. For example, a drawing program could 
have a tools palette: pencil, brush, eraser, and so on. You could 
create a new tool and have users install it. When the application 
is next started, this tool appears in the palette. 

33 



Chapter 2 Currency Converter Tutorial 

Designing the Currency Converter Application 

34 

An object-oriented application should be based on a design that identifies the 
objects of the application and clearly defines their roles and responsibilities. You 
normally work on a design before you write a line of code. You don't need any 
fancy tools for designing many applications; a pencil and a pad of paper will do. 

Currency Converter is an extremely simple application, but there's still a design 
behind it. This design is based upon the Model-View-Controller paradigm, a 
model behind many designs for object-oriented programs (see "The Model
View-Controller Paradigm" on page 36). This design paradigm aids in the 
development of maintainable, extensible, and understandable systems. But 
first, you might want to read the sidebar below to understand the symbol used 
in the design diagram. 

Note: This design for Currency Converter is intended to illustrate a few points, 
and so is perhaps overly designed for something so simple. It is quite possible to 
have the application's controller class, ConverterController, do the computation 
and do without the Converter class. 

Why an Object is Like a Jelly Donut 

This book depicts objects as filled and segmented "donuts." Why 
this unlikely shape? 

This symbol illustrates data encapsulation, the essential 
characteristic of objects. An object consists of both data and 
procedures for manipulating that data. Other objects or external 
code cannot access that data directly, but must send messages 
to the object requesting its data. 

An object's procedures (called methods) respond to the message 

and may return data to the requesting object. As the symbol 
suggests, an object's methods do the encapsulating, in effect 
mediating access to the object's data. An object's methods are 
also its interface, articulating the ways in which the object 
communicates with the world outside it. 

The donut symbol also helps to convey the modularity of objects. 
Because an object encapsulates a defined set of data and logic, 
you can easily assign it to particular duties within a program. 
Conceptually, it is like a functional unit-for instance, "Customer 
Record"-thatyou can move around on a design board; you can 
then plot communication paths to and from other objects based 
on their interfaces. 

See the appendix "Object Oriented Programming," for a fuller 
description of data encapsulation, messages, methods, and other 
properties of objects. 



Designing the Currency Converter Application 

You can divide responsibility within Currency Converter among two custom 
objects and the user interface, taken as a collection of ready-made Application 
Kit objects. The Converter object is responsible for computing a currency 
amount and returning that value. Between the user interface'and the Converter 
object is a cOlltrol/erobject, ConverterController. ConverterControl1er coordinates 
the activity between the Converter object and the ur objects. 

Exchange R ate per $1 :1,45 

Dollars to Convert: '~ooR, 

Am ount In Other Currency: ,"-90-.9---

----------.-.---.--, -~I "" ~ 

tn\ ConverierConlrolier 

/.:::sJ 
·~dnve;i" 
I/'''''-·~''''''''' " 

r y 
\ I Converter 

The ConverterController class assumes a central role. Like all controller objects, 
it communicates with the interface and with model objects, and it handles tasks 
specific to the application, such as managing the cursor. ConverterController 
gets the values users enter into fields, passes these values to the Converter 
object, gets the result back from Converter, and puts this result in a field in the 
interface. 

The Converter class merely computes a value from two arguments passed into 
it and returns the result. As with any model object, it could also hold data as well 
as provide computational services. Thus, objects that represent customer 
records (for example) are akin to Converter. By insulating the Converter class 
from application-specific details, the design for Currency Converter makes it 
more reusable, as you'll see in the Travel Advisor tutorial. 

35 



Chapter 2 Currency Converter Tutorial 

36 

A common and useful paradigm for object-oriented applications, 
particularly business applications, is Model-View-Controller 
(MVC). Derived from Smalltalk-80, MVC proposes three types of 
objects in an application, separated by abstract boundaries and 
communicating with each other across those boundaries. 

Model Objects 

This type of object represents special knowledge and expertise. 
Model objects hold a company's data and define the logic 
that manipulates that data. For example, a Customer object, 
common in business applications, is a Model object. It holds data 
describing the salient facts of a customer and has access to 
algorithms that access and calculate new data from those facts. 
A more specialized Model class might be one in a meteorological 
system called Front; objects of this class would contain the data 
and intelligence to represent weather fronts. Model objects are 
not displayable. They often are reusable, distributed, persistent, 
and portable to a variety of platforms. 

View Objects 

A View object in the paradigam represents something visible on 
the user interface (a window, for example, or a button). A View 
object is "ignorant" of the data it displays. The Application Kit 
usually provides all the View objects you need: windows, text 
fields, scroll views, buttons, browsers, and so on. But you might 
wantto create your own View objects to show or represent your 
data in a novel way (for example, a graph view). You can also 
group View objects within a window in novel ways specific to an 
application. View objects, especially those in kits, tend to be very 
reusable and so provide consistency between applications. 

Controller Object 

Acting as a mediator between Model objects and View objects in 

an application is a Controller object. There is usually one per 

application or window. A Controller object communicates data 

back and forth between the Model objects and the View objects. 
It also performs all the application-specific chores, such as 

loading nib files and acting as window and application delegate. 

Since what a Controller does is very specific to an application, it 

is generally not reusable even though it often comprises much of 

an application's code. (This last statement does not mean, 
however, that Controller objects cannotbe reused; with a good 

design, they can.) 

Because of the Controller's central, mediating role, Model 

objects need not know about the state and events of the user 

interface, and View objects need not know aboutthe 

programmatic interfaces of the Model objects. You can make your 

View and Model objects available to others from a palette in 

Interface Builder. 

Hybrid Models 

MVC, strictly observed, is not advisable in all circumstances. 

Sometimes its bestto combine roles. For instance, in a graphics
intensive application, such as an arcade game, you might have 

several View objects that merge the roles of View and Model. 

In some applications, especially simple ones, you can combine 

the roles of Controller and Model; these objects join the special 

data structures and logic of Model objects with the Controller's 

hooks to the interface. 

A Note on Terminology 

The Application Kit and Enterprise Objects Framework reserve 

special meanings for "vew object" and "model." A view object in 

the Application Kit denotes a user-interface object that inherits 

from NSView. In the Enterprise Objects Framework, a model 
establishes and maintains a correspondence between an 

enterprise object class and data stored in a relational database. 

This book uses "model object" only within the context ofthe 

ModelNiew-Controlier paradigm. 



Defining the Classes of Currency Converter 

Defining the Classes of Currency Converter 

Interface Builder is a versatile tool for application developers. It enables you not 
only to compose the application's graphical user interface, but it gives you a way 
to define much of the programmatic interface of the application's classes and to 
connect the objects eventually created from those classes. 

You must go to the Classes display of the nib file window to define a class. Once 
there, the first thing you must do is select the superclass, the class your new 
subclass will inherit from. Let's start with the ConverterController class. 

Specify a subclass. 

Go to the Classes display ofthe 
nib file window. 

Select NSObject, the superclass 
of your custom classes. 

Choose Subclass from the pull
down Operations menu. 

Click to select the Classes display. 

NSObject the root class, is the class that 
ConverterController will inherit from. 

The Subclass command in this pull-down 
menu generates a new subclass. 

After you choose the Subclass command, "MyNSObject" appears under 
"NSObject" highlighted. 

Class Versus Object 

To newcomers to the subject, explanations of object-oriented 
programming might seem to use the terms "object" and "class" 
interchangeably. Are an object and a class the same thing? And if 
not, how are they different? How are they related? 

An object and a class are both programmatic units. They are 
closely related, but serve quite different purposes in a program. 

First, classes provide a taxonomy of objects, a useful way of 
categorizing them. Just as you can say a particular tree is a pine 
tree, you can identify a particular object by its class. You can 
thereby know its purpose and what messages you can send it. In 
other words, a class describes the type of an object. 

Second, you use classes to generate instances-or objects. 
Classes define the data structures and behavior of their 
instances, and at run time create and initialize these instances. 
In a sense, a class is like a factory, stamping out instances of itself 
when requested. 

What especially differentiates a class from its instance is data. A 
instance has its own unique set of data but its class, strictly 
speaking, does not. The class defines the structure of the data its 
instances will have, but only instances can hold data. 

A class, on the other hand, implements the behavior of all of its 
instances in a running program. The donut symbol used to 
represent objects is a bit misleading here, because it suggests 
that each object contains its own copy of code. This is fortunately 
not the case; instead of being duplicated, this code is shared 
among all current instances in the program. 

Implicit in the notion of a taxonomy is inheritance, a key property 
of classes. Classes exist in a hierarchical relationship to one 
another, with a subclass inheriting behavior and data structures 
from its superclass, which in turn inherits from its superclass. 

See the appendix, "Object-Oriented Programming," for more on 
these and other aspects of classes. 

37 



Chapter 2 

Enter the name of the subclass: 
"ConverterController:" 

Press Return. 

See Paths for Object 
Commullicatioll: Out/ets, Targets, 
alld Actions on page 40. for a more 
detailed description of outlets 
and actions. See page 103 for 
more on control objects and their 
relation to cells and formatters. 

38 

Currency Converter Tutorial 

After you name the class, it appears 
indented under its superclass in 
alphabetical order. 

To see subclasses of a class, click a filled 
button (if the button is unfilled, there are no 
subclasses). 

NSCell, for example, has several levels of 
subclasses; each level is indicated by 
indentation. 

Now your class is established in the hierarchy of classes within the nib file. Next, 
specify the paths for messages travelling between the ConverterController 
object and other objects. In Interface Builder you specify these paths as outlets 
and actions. 

Before You Go On --------------------

Here's some basic terminology: 

Outlet An object held as an instance variable and typed as id. Objects in 
applications often hold outlets as part of their data so they can send messages to 
the objects referenced by the outlets. An outlet lets you keep track of or 
manipulate something in the interface. 

id The generic (or dynamic) type of objects (technically the address of an 
object). 

Action Refers both to a message sent to an object when the user clicks a button 
or manipulates some other control object and to the method that is invoked. 

Control object A user-interface object (a device) with which users can interact to 
affect events in the application. Control objects include buttons, text fields, 
forms, sliders, and browsers. All control objects inherit from NSControl. 



2 Define your class's outlets. 

In the nib file window, click the 
electrical-outlet icon to the right 
ofthe class. 

Choose Add Outlet from the 
Operations pull-down menu 

Type the name of the outlet over 
the highlighted "myOutlet." Name 
the first outlet rateField. 

Press Return. 

Repeat the last three steps to 
define two other outlets: 

doliarField 
totalField 

3 Define your class's actions. 

In the Classes display of the nib 
file window, click the crosshairs 
icon. 

Choose the Add Action command 
from the Operations pull-down 
menu. 

Type the name of the action 
method, convert:. 

Press Return. 

Defining the Classes of Currency Converter 

-~~~~~~:"""'lT~~~~ ---- Click here to begin specifying outlets. 

"Outlets" appears indented underneath, 
highlighted (not shown). 

Instead of choosing Add Outlets from the 
Operations menu, you can press Return 
when "Outlets" is highlighted to add an 
outlet. 

ConverterController has one action method, convert:. When the user clicks the 
Convert button, a convert: message is sent to the target object, an instance of 
ConverterController. 

The crosshairs suggest the "target" in the 
target/action paradigm. 

After you chose Add Action "myAction" 
appears indented under "Actions. " 

You only need to type convert here
Interface Builder adds the colon. 

Be/ore You Go On --------------------

Add an outlet: ConverterController needs to access the text fields of the interface, 
so you've just provided outlets for that purpose. But ConverterController must 
also communicate with the Converter class (yet to be defined). To enable this 
communication, add an outlet named converter to ConverterController. 

39 



Chapter 2 Currency Converter Tutorial 

40 

Outlets 

An outlet is an instance variable that identifies an object. 

You can communicate with other objects in an application by 
sending messages to outlets. 

An outlet can reference any object in an application: user
interface objects such as text fields and buttons, windows and 
panels, instances of custom classes, and even the application 
object itself. 

Outlets are declared as: 

id anObjecti 

You can use id as the type for any object; objects with id as their 
type are dynamically typed, meaning thatthe class ofthe object is 
determined at run time. You can statically type an object as a 
pointer to a class name; you can declare these objects as 
instance variables, butthey are not outlets. What distinguishes 
outlets is their relationship to Interface Builder. 

Interface Builder can "recognize" outlets in code by their 
declarations, and it can initialize outlets. You usually set an 
outlet's value in Interface Builder by drawing connection lines 
between objects. There are ways other than outlets to reference 
objects in an application, but outlets and Interface Builder's 
facility for initializing them are a great convenience. 

When You Make a Connection in Interface Builder 

As with any instance variable, outlets must be initialized at run 
timeto some reasonable value-in this case, an object's identifier 
(id value). Because of Interface Builder, an application can 
initialize outlets when it loads a nib file. 

When you make a connection in Interface Builder, a special 
connector object holds information on the source and destination 
objects of the connection. (The source object is the object with 
the outlet.) This connector object is then stored in the nib file. 
When a nib file is loaded, the application uses the connector 
object to set the source object's outlet to the identifier of the 
destination object. 

It might help to understand connections by imagining an electrical 
outlet (as used in the Classes display of the nib file window) 
embedded in the destination object. Also picture an electrical 
cord extending from the outlet in the source object Before the 
connection is made the cord is unplugged and the value of 
destination is undefined; afterthe connection is made (the cord is 
plugged in), the id value ofthe de~tination object is assigned to 
the destination outlet 

source destination 



Defining the Classes of Currency Converter 

Target/Action in Interface Builder-What's Going On 

As you'll soon find out, you can view (and complete) target/action 
connections in Interface Builder's Connections inspector. This 
inspector is easy to use, but the relation of target and action in it 
might not be apparent First, target is an outlet of a cell objectthat 
identifies the recipient of an action message. Well (you say) 
what's a cell object and what does it have to do with a button?
that's what I'm making the connection from. 

One or more cell objects are always associated with a control 
object (that is, an object inheriting from NSControl, such as a 
button). Control objects "drive" the invocation of action methods, 
but they get the target and action from a cell. NSActionCell 
defines the target and action outlets, and most kinds of cells in the 
Application Kit inherit these outlets. 

.MiOg. 

I 

i 
I 

_________ .J, 
", .... ,.--_ .... ,. ............. ". .. ,. ............... -.. - .. ".-... .. NSActionCell 

ConnecUons 

1
' ......•. 1.... II I ............ ",. .................................... .11 

Ir'" ·Rcvc,t .. ·r··lr···conneci··~~····-

For example, when a user clicks the Convert button of Currency 
Converter, the button gets the required information from its cell 
and sends the message convert to the target outlet, which is an 
instance of your custom class ConverterController. 

In the Actions column of the Connections inspector are all action 
methods defined by the class of the target object and known by 
Interface Builder. Interface Builder identifies action methods 
because their declarations follow the syntax: 

- (void)doThis: (id) sender; 

It looks in particular for the argument sender. 

Which Direction to Connect? 

Usually the outlets and actions that you connect belong to a 
custom subclass of NSObject Forthese occasions, you need only 
follow a couple simple rules to know which way to draw a 
connection line in Interface Builder. 

• To make an action connection, draw a line to the custom 
instance from a control object in the user interface, such as a 
button or a text field. 

• To make an outlet connection, draw a line from the custom 
instance to another object in the application. 

Another way to clarify connections is to consider who needs to 
find whom. With outlets, the custom object needs to find some 
other object, so the connection is from the custom objectto the 
other object With actions, the control object needs to find the 
custom object, so the connection is from the control object 

These are only rules of thumb for the common case, and do not 
apply in all circumstances. For instance, many OpenStep objects 
have a delegate outlet; to connect these, you draw a connection 
line from the OpenStep object to your custom object 

action r.::'~------

.. : I Convert ~ ¢!ll 
/ . ---

myController 

41 



Chapter 2 

Generate an instance of the 
class. 

In the Classes display, select the 
ConverterControlier class. 

Choose the Instantiate command 
from the Operations pull-down 
menu. 

42 

Currency Converter Tutorial 

Connecting ConverterController to the Interface 
As the final step of defining a class in Interface Builder, you create an instance 
of your class and connect its outlets and actions. 

r:~~~*i~~~~L===~~fr:~~t--- Click the class name to col/apse outlets and n- actions. If they are already collapsed, make 
sure your subclass is selected. 

~~~~~~!~!!!~~~~~~--- Choose this command to generate an 

instance of your custom class.

Note: The Instantiate command does not generate a true instance of
ConverterController, but creates a stand-in object used for establishing
connections. When the nib file's contents are unarchived, Interface Builder will
create true instances of these classes and use the proxy objects to establish the
outlet and action connections.

When you instantiate a class (that is, create an instance of it), Interface Builder
switches to the Instances display and highlights the new instance, which is
named after the class.

Now you can connect this ConverterController object to the user interface. By
connecting it to specific objects in the interface, you initialize your outlets.
ConverterController will use these outlets to get and set values in the interface.

5 Connect the custom class to the
interface via its outlets.

In the Instances display ofthe nib
file window, Control-drag a
connection line from the
ConverterControlier instance to
the first text field.

Whenthefield is outlined in black,
release the mouse button.

In the Connections display, select
the outlet that corresponds to the
first field (rateFieldl.

Click the Connect button.

Following the same steps,
connect ConverterControlier's
dollarField and totalField outlets
to the appropriate text fields.

Defining the Classes of Currency Converter

Control-drag from an object with defined
outlets)often an instance of a custom
class).

E xch an 9 e Rate per $1 : 1F==t==:=+-~--- When a black line encloses an object it will
be selected as the destination object of the
connection if you release the mouse
button.

Amount in Other Currency:

Convet1 'PI

Interface Builder brings up the Connections display of the Inspector panel. This
display shows the outlets you have defined for ConverterController.

CUstllm Object Inspectllr I X

Connections

Outlets of the destination object appear
under this column of the Connections
display.

I~~~~~~~~~~~~~l--- When you click Connect the connection
appears here, including the class of the
destination object.

To receive action messages from the user interface-to be notified, for example,
when users click a button-you must connect the control objects that emit those
messages to CurrencyConverter. The procedure for connecting actions is similar
to that for outlets, but with one major difference. When you connect an action,
always start the connection line from a control object (such as a button, text field,

43

Chapter 2

6 Connect the interface's controls
to the custom class via its
actions.

Control-drag a connection line
from the Convert button to the
ConverterControlier instance in
the nib file window.

When the instance is outlned in
black, release the mouse button ..

In the Connections display, make
sure target in the Outlets column
is selected.

Select convert: in the Actions
column.

Click the Connect button.

Save the CurrencyConverter nib
file !Document ~ Savel.

44

Currency Converter Tutorial

or form) that sends an action message; you usually end the connection at an
instance of your custom class. That instance is the target outlet of the control
object.

The source object of an action connection
must be a control object

When a black line encloses an object, it will
be selected as the destination object of the
connection if you release the mouse
button.

The Connections display of the Inspector panel shows the action methods you
have specified for ConverterController.

-1---- /fyou had defined other actions for
ConverterController, they would have
appeared in this column.

Interface Builder allows you to set these
outlets directly for buttons.

Make sure that you click here to establish
the connection.

You've finished defining the classes of Currency Converter-almost.

Defining the Classes of Currency Converter

Before You Go On ---------------------

Define the Converter Class: While connecting ConverterController's outlets, you
probably noticed that one outlet remains unconnected: converter. This outlet
identifies the instance of the Converter class in the Currency Converter
application, which doesn't exist yet.

Define the Converter class. This should be pretty easy because Converter, as
you might recall, is a model class within the lVlodel-View-Controller paradigm.
Since instances of this type of class don't communicate directly with the
interface, there is no need for outlets or actions. Here are the steps to be
completed:

1. In the Classes display, make Converter a subclass of NSObject.
2. Instantiate the Converter class.
3. lVlake an outlet connection between ConverterController and Converter.

When you are finished, save CurrencyConverter.nib.

Optional Exercise ----------------------

Text fields and action messages: The NSReturnsign image that you embedded earlier in
the Convert button indicates that users can activate this button by pressing the
Return key. In Currency Converter this key event occurs when the cursor is in
a text field. Text fields are control objects just as buttons are; when the user
presses the Return key and the cursor is in a text field, an action message is sent
to a target object if the action is defined and the proper connection is made.

Connect the second text field (that is, the one with the "Dollars to Convert"
label) to the convert: action method of ConverterController. You won't be
disconnecting the prior action connection because multiple control objects in an
interface can invoke the same action method.

45

Chapter 2 Currency Converter Tutorial

Implementing the Classes of Currency Converter

In Interface Builder, generate
header and implementation files.

Go to the Classes display ofthe
nib file window.

Select the ConverterControlier
class.

Choose Create Files from the
Operations pull-down menu.

When a Create Files panel is
displayed, click Yes.

A second Create Files panel is
displayed; click Yes again.

Repeat for the Converter class.

Save the nib file.

46

Interface Builder generates source code files from the (partial) class definitions
you've made. These files are "skeletal," in the sense that they contain little
more than essential Objective-C directives and the class-definition information.
You'll usually need to supplement these files with your own code.

Click here to bring up the Classes display.

Make sure your class is selected before
choosing Create Files.

Interface Builder then displays two attention panels, one after the other:

Create
INeVseaporVhomes/delawareMonolProjects/Currenc
yConverterfConverterController,Ihm]? '

> d <' . , ~; "

Click Yes to confirm that you want the
header and implementation files for the
class created. Interface Builder files have
an extension of.h and implementation files
an extension of.m.

Click Yes to confirm that you want the
source code files added to the project in
Project Builder. If, for example, you wanted
to add the files to another project you
would click No.

Now we leave Interface Builder for this application. You'll compl~te the
application using Project Builder.

2 Examine an interface (header)
file in Project Builder.

Hide Interface Builder and
activate Project Builder.

Click Headers in the project
browser.

Select ConverterController.h.

3 Add a method declaration.

Select Converter.h in the project
browser.

Insert a declaration for
convertAmount:byRate:.

Implementing the Classes of Currency Converter

eintertoce ConverterController : NSObject
(

Project Builder imports the
Application Kit header files,
which import the Foundation
header files.

(#import includes files only if
they haven't already been
included.)

Interface definitions begin
with @interface and the class
name. The superclass appears
after the colon.

1d converter;
1d dollerF1eld;
1d reteF1eld;
1d totelF1eld;

1---------------;.;;4__ Instance variables (here the
outlets defined in Interface
Builder) go between the
braces.

}
_ (vo1d)convert:(1d)=xler; ---------------""t-- Method declarations follow the
@end second brace. The declaration

of the action method you
specified in Interface Builder is
inserted. The definition ends
with@end.

You can add instance variables or method declarations to a header file generated
by Interface Builder. This is commonly done, but it isn't necessary in
ConverterController's case. But we do need to add a method to the Converter
class that the ConverterController object can invoke to get the result of the
computation. Let's start with by declaring the method in Converter.h.

#import <AppKit/AppKit.h>
#import <Foundation/Foundation.h>

@interface Converter:NSObject

- (float)convertAmount: (float)rate byRate: (float)amti

@end

This declaration states that convertAmount:byRate: takes two arguments of type float,
and returns a float value. When parts of a method name have colons, such as
convertAmount: and byRate:, they are keywords which introduce arguments. (These
are keywords in a sense different from keywords in the C language.) Most
method declarations begin with a dash (-), followed by a space.

Now you need to update both implementation files. First examine Converter.m.

47

Chapter 2

4 Examine an implementation file.

Click Classes in the project
browser.

Select Converter.m.

5 Implement the classes.

Type the code at right between
@implementation and @end in
Converter.m.

Select ConverterController.m in
the project browser.

Update the convert: method as
shown by the example.

Import Converter.h.

48

Currency Converter Tutorial

m OJrrencyCOnverter - -/Projects 1:3 !:~

I 'iii Converter,m· ~

For this class, implement the method declared in Converter.h. Between
@implementation Converter and @end add the following code:

- (float)convertAmount: (float)amt byRate: (float) rate

return (amt * rate);

The method simply multiplies the two arguments and returns the result. Simple
enough. Next update the "empty" implementation of the convert: method that
Interface Builder generated.

- (void) convert: (id) sender

float rate, amt, totali

amt = [dollarField floatValueli
rate = [rateField floatValueli

/* 1 */

total = [converter convertAmount:amt byRate:rateli /* 2 */

[totalField setFloatValue:totall; /* 3 */

[rateField selectText:selfli /* 4 */

The convert: method does the following:

1. Gets the floating-point values typed into the rate and dollar-amount fields

6 Implement the awakeFromNib
method.

Type the code shown at right.

Implementing the Classes of Currency Converter

2. Invokes the convertAmount:byRate: method and gets the returned value.

3. Uses setFloatValue: to write the returned value in the Amount in Other
Currency text field (totaIField).

4. Sends selectText: to the rate field; this puts the cursor in the rate field so the
user begin another calculation.

Be sure to #import "Converter.h" -ConverterController invokes a method defined
in the Converter class, so it needs to be aware of the method's declaration.

Before You Go On ---------------------

Each line of the convert: method shown above, excluding the declaration offloats,
is a message. The "word" on the left side of a message expression identifies the
object receiving the message (called the "receiver"). These objects are
identified by the outlets you defined and connected. After the receiver comes
the name of the method that the sending object (called the "sender") wants to

invoke. Messages often result in values being returned; in the above example,
the local variables rate, amt, and total hold these values.

Before you build the project, add a small bit of code to ConverterController.m that
will make life a little easier for your users. When the application starts up, you
want Currency Converter's window to be selected and the cursor to be in the
Exchange Rate per $1 field. We can do this only after the nib file is unarchived,
which establishes the connection to the text field rateField. To enable set-up
operations like this, awakeFromNib is sent to all objects when unarchiving
concludes. Implement this method to take appropriate action.

- (void)awakeFrornNib

[rateField selectText:self]; /* 1 */

[[rateField window] makeKeyAndOrderFront:self]; /* 2 */

1. You've seen the selectText: message before, in the convert: implementation; it
selects the text in the text field that receives the message, inserting the cursor
if there is no text.

2. The makeKeyAndOrderFront: message does as it says: It makes the receiving
window the key window and puts it before all other windows on the screen.
This message also nests another message; [rateField window] returns the window
to which the text field belongs, and the makeKeyAndOrderFront: method is then
sent to this returned object.

49

Chapter 2

50

Currency Converter Tutorial

The Objective-C language is a superset of ANSI C with special
syntax and run-time extensions that make object-oriented
programming possibie. Objective-C syntax is uncomplicated, but
powerful in its simplicity. You can mix standard C and even C++
code with Objective-C code.

The following summarizes some of the more basic aspects of the
language. See Object-Oriented Programming and the Objective-C
Language for complete details. Also, see "Object-Oriented
Programming" in the appendix for explanations of terms that are
italicized.

Declarations

• Dynamically type objects by declaring them as id:

id myObjecti

Since the class of dynamically typed objects is resolved at run
time, you can refer to them in your code without knowing
beforehand what class they belong to. Type outlets in this way
as well as objects that are likely to be involved in polymorphism
and dynamic binding.

• Statically type objects as a pointer to a class:

NSString *mystringi

You statically type objects to obtain better compile-time type
checking and to make code easierto understand.

• Declarations of instance methods begin with a minus sign H
and, for class methods, with a plus sign (+):

- (NSString *)countryNamei
+ (NSDate *)calendarDatei

• Put the type of value returned by a method in parentheses
between the minus sign (or plus sign) and the beginning ofthe
method name. (See above example.) Methods returning no
explicit type are assumed to return id.

• Method argument types are in parentheses and go between
the argument's keyword and the argument itself:

- initWithName: (NSString *)name
andType: (int)typei

Be sure to terminate all declarations with a semicolon.

• By default, the scope of an instance variable is protected,
making that variable directly accessible only to objects of the
class that declares it or of a subclass of that class. To make an
instance variable private (accessible only within the declaring
class), insert the @private directive before the declaration.

Messages and Method Implementations

• Methods are procedures implemented by a class for its objects
(or, in the case of class methods, to provide functionality not
tied to a particular instance). Methods can be public or private;
public methods are declared in the class's header file (see
above). Messages are invocations of an object's method that
identify the method by name.

• Message expressions consist of a variable identifying the
receiving objectfollowed by the name ofthe method you want
to invoke; enclose the expression in brackets.

[anObject doSomethingWithArg:this]i

receiver method to invoke

As in standard C, terminate statements with a semicolon.

• Messages often get values returned from the invoked method;
you must have a variable of the proper type to receive this
value on the left side of an assignment.

int result = [anObj calcTotalJi

• You can nest message expressions inside other message
expressions. This example gets the window of a form object
and makes it the receiving object of another message.

[[form window] makeKeyAndOrderFront:selfJi

• A method is structured like a function: After the full declaration
of the method comes the body of the implementing code
enclosed by braces.

• Use nil to specify a null object; this is analogous to a null
pointer. Note that some OpenStep methods do not accept nil
objects as arguments.

• A method can usefully refer to two implicit identifiers: self and
super. Both identify the object receiving a message, but they
affect differently how the method implementation is located:
self starts the search in the receiver's class whereas super
starts the search in the receiver's superclass. Thus

[super init] i

causes the init method of the superclass to be invoked.

• In methods you can directly access the instance variables of
your class's instances. However, accessor methods are
recommended instead of direct access, except in cases where
performance is of paramount importance. Chapter 4, "Travel
Advisor Tutorial," describes accessor methods in greater
detail.

Building the Currency Converter Project

Building the Currency Converter Proiect

Build the project.

Save source code files and any
changes to the project.

Click the Build button on the main
window /icon at right).

Click the Build button on the
Project Build panel (same icon).

You don't have to maintain
makefiles in Project Builder. It
updates Makefile according to the
variables specified through its
user interface. You can customize
the build process by modifying
the Makefile.preamble and
Makefile.postamble files. For
more information on customizing
these files, see OPENSTEP
Developmellt: Tools aJld Techlliqlles

The Build process in Project Builder compiles and links the application guided
by the information stored in the project's makefiles. You must begin builds from
the Project Build panel.

When you click the Build button on the main window, the Project Build panel
is displayed.

QlrrencyConverter - Project Build C X

Target app
Status: QlmmcyC0nv8ffer.app - &l1Id suCCf!l6ded

II
-------------~.;j .. II.I+-- Build, Clean, and Build

I Options buttons.

---~-- Build error browser.

Jdynamlc':-obYms8IVculTencyConverter_main.o
Iblnlcc -9 ·Wall-plpe -0 -dynamic .fno-coMmon·llProJectHeader ---H+-- Detailed build results.
-lJdel1vscUrc -arch m6sk -ObJC -$ectcreafe _ICON _header
CurrencyConver1erJconheader-segpro1_ICON t r ·sectcreate ...:-,ICON app
applicatlon,t!1f-o JCurrencyConverler.applCurrencyConverter.m68k. r" Jdynamlc_obyms8IVConverter.o Jdynamlc_obyms8k!Convertercontroller.o

t JdynamIC_obYmS8!rJCurrencyConvertecmaln.o ·framewott AppKlt
I -framewort Foundation
;. Iblnlln JCurrencyconvsrter.appICurrencyConverle':MSSk
1: CurrencyConverter.appICurrenClICOnYsrter
;y

When you click the Build button on the Project Build panel, the build process
begins; Project Builder logs the build's progress in the lower split view. When
Project Builder finishes-and encounters no errors along the way-it displays
"Build succeeded."

Of course, rare is the project that is flawless from the start. Project Builder is
likely to catch some errors when you first build your project. To see the error
checking features of Project Builder, introduce a mistake into the code.

51

Chapter2

52

Currency Converter Tutorial

WhafHappensWhen You Buil "an
: { ,,<,' '/ . . > " • ,<: .~ ~

By clicking the Build button in Project Builder,
you run the build tool. By default, the build tool is
gnumake, but it can be any build utility that you
specify as a project default in Project Builder.
The build tool coordinates the compilation and
linking process that results in an executable file.
It also performs other tasks needed to build an
application.

The build tool manages and updates files based
on the dependencies and other information
specified in the project's makefiles. Every
application project has three makefiles:
Makefile, Makefile.preamble, and
Makefile.postamble. Makefile is maintained by
Project Builder-don't edit it directly-but you
can modify the other two to customize your
build.

The build tool invokes the compiler tool cc,
passing it the source code files of the project.
Compilation ofthese files (Objective-C, C++, and
standard C) produces machine-readable object
files forthe architecture (or architectures)
specified for the build. It puts these files in an
architecture-specific subdirectory of
dynamic_obi·

In the linking phase ofthe build, the build tool
executes the link editor Id (via cc), passing itthe
libraries and frameworks to link against the
object files. Frameworks and libraries contain
precompiled code that can be used by any
application. Linking integrates the code in
libraries, frameworks, and object files to
produce the application executable file.lf there
are multiple architecture-specific object files,
linking also combines these into a single "fat"
executable.

The build tool also copies nib files, sound,
images, and other resources from the projectto
the appropriate localized or non-localized
locations in the application wrapper.

~
~

c.c

libraries

frameworks

application wrapper
(".app" extension)

application
executable

Resources

English.lproj

An application wrapper is a file package with an extension of
".app". A file package is a directorythatthe Workspace
Manager presents to users as a simple file; in other words, it
hides the contents of the directory. The ".app" extension tells

the Workspace Managerthatthe application wrapper
contains an executable that can be run ("Iaunched") by
double-clicking.

2 Build the project after correcting
errors,

Delete a s'emicolon in the code,
creating an error.

Click the Build button on the
Project Build panel.

Click the error-notification line
that appears in the build error
browser (upper split view).

Fix the error in the code.

Re-build.

Building the Currency Converter Project

Cpnyerterm

To navigate to an
error in a code file,
click the line
describing the error.

... Illegal statement missing ';' aIIer ?~_' ________ _

Ii) CUrreflcyCOnverter - -/Projects C X

, ~-::' ... ~m
COnverter.m --

•• Making Cu
Exportlnghea
... 1or Currency
Done exporttn
Iblnlcc -9-w
-IJderlved_src
Jdynamlc_ob ~ISut)prollecls

Converter.m:8: !!~~~~~~~~~~~~!!!!!!!!!!!!!!!!! gnumalte(I): ••
gnumaka:'" (

:1

1111lport. "Converter .h"
illegal statement: missing ';' after ')'

(l1mplcmentot1al ~verter

i (tloot)convertAmcult:(tloot)o!llt byRote:(tloot)rote I
~~::!2m' m::I(i!.!!o~t~!Jr]]ilte~?I:! ================::1,/

~ Project Builder highlights thslins that I
contains the error.

(lend

53

Chapter 2 Currency Converter Tutorial

Context-Sensitive Application Help

Project Builder and Interface Builder provide context-sensitive
help on the details of their use. To activate context-sensitive help,

Help-c~cka contro~field,menu command,or other areas of the I~~~~~~~~~~~~~~~~~~~~~~~~~~~ app~cation. A small window appears that briefly describes the
selected object.

The Help key varies by computer architecture. Consult user
documentation for the Help key on your machine.

54

Digital Librarian

Digital Librarian is an application that quickly searches for a word
(or other lexical unit) in an on-line manual (or other target) and
lists the documents that contain the word. You c~ck a ~sted item
and the document is displayed at the point where the word
occurs. The contents of documents are indexed, making
searching very fast.

OpenStep includes NextDeveloper.bshlf, a Digital Librarian
bookshelf for developers in /NextLibrary/Bookshelves. This
bookshelf contains most of the targets you are likely to want, and
includes (as the topmosttarget) instructions on creating your own
bookshelf and customizing it to your needs. When you choose
Help from Project Builder or Interface Builder, a Digital Librarian
bookshelf is opened that contains the on-line version of
OPENSTEP Development: Tools and Techniques.

You can find Digital Librarian as Librarian.app in /NextApps.

II CompHerTools.rtf

W'''''/'' __ ~''':';.'"'_~':'''_':«WW,*W''''~''''_'~'W'''''''_~'''W=''_V_''»''''_.~. >7""»»>_"""*'«<!~'/''''''»'

~'!r~4'~ '!!Zii:, .:. .' ... :
~ ... ~•.

NextDeveloper
Examples

Building the Currency Converter Project

~~
~~l Project Builder

Project Builder gives you several ways to get the information you
need when developing an application.

Project Find: The Project Find panel allows you to search for
definitions of, and references to, classes, methods, functions,
constants, and other symbols in your project. Since it is based on
project indexing, searching is quick and thorough and leads
directly to the relevant code. See OPENSTEP Development: Tools
and Techniques for a complete description of Project Find.

Reference Documentation Lookup: If the results of a search using
Project Find includes OpenStep symbols, you can easily get
related reference documentation that describes that symbol. See
"Finding Information Within Your Project" on page 94 for
instructions on the use of this feature.

Frameworks: Under Frameworks in the project browser, you can
browse the header files related to OpenStep frameworks within
Project Builder. The Application Kit and Foundation frameworks
always are included by default for application projects. See
chapter 5, "Where to Go From Here," for a fuller description

NeXT's Technical Documentation

Most OpenStep programming documentation is located on-line in
NeXTLibrary/Documentation/NextDev. The document files are in
RTF format, so you can open them in Project Builder, Edit, or in
most word processors. NeXT includes the following manuals
under the /NextDev directory:

Reference

• API Reference Documentation (specifications of classes,
protocols, functions, types, and constants). This
documentation is divided among, and located in, the
frameworks NeXT provides, except for information that is
common to all frameworks (/Reference).

• Development Tools Reference covering the compiler, the
debugger, and other tools (Reference DevTools).

• NeXT Assembler Manual

Tasks and Concepts

• Discovering OPENSTEP: A Developer Tutorial (this manual)

• Object-Oriented Programming and the Objective-C Language

• Topics in OPENSTEP Programming (concepts and
programming procedures)

• OPENSTEP Development: Tools and Techniques (a task
oriented approach to using the development tools)

• OPENSTEP Conversion Guide (step-by-step instructions for
converting 3.x NEXTSTEP applications to run on OPENSTEP 4.0.

The /NextDev directory also includes release notes. It also
contains documentation on the following products, if they're
installed: Enterprise Objects Framework, Distributed Objects
(DO), Portable Distributed Objects (PDO).

See chapter 5, "Where to Go From Here," for more information on
NeXT's technical publications.

55

Chapter 2 Currency Converter Tutorial

Run Currency Converter

You can use Project Builder's
graphical debugger or gdb to track
bugs down. See "Using the
Graphical Debugger" on page
104 for an overview of the
graphical debugger.

56

Congratulations. You've just created your first OpenStep application. Find
CurrencyConverter.app in the Workspace, launch it, and try it out. Enter some rates
and dollar amounts and click Convert. Also, select the text in a field and choose
the Services menu; this menu now lists the other applications that can do
something with the selected text.

Of course, the more complex an application is, the more thoroughly you will
need to test it. You might discover errors or shortcomings that necessitate a
change in overall design, in the interface, in a custom class definition, or in the
implementation of methods and functions.

Although it's a simple application, Currency Converter still introduced you to
many of the concepts, tools, and skills you'll need to develop OpenStep
applications. Let's review what you've learned:

• Composing a graphical user interface (GUI) with Interface Builder
• Testing the interface
• Designing an application using the Model-View-Controller paradigm
• Specifying a class's outlets and actions
• Connecting the class instance to the interface via its outlets and actions
• Class implementation basics
• Building an application and error resolution

Optional Exercise ---------------------

Nesting Messages:You can nest message expressions; in other words, you can use
the value returned by a message as the receiver of another message or as a
message argument. It is thus possible to rewrite the first three messages of the
ConverterController's convert: method as one statement:

total = [converter convertAmount: [dollarsField floatValue]
byRate: [rateField floatValue]];

It is possible to go even further. Try to incorporate the fourth message ([totaIField

setFloatValue:total]) of the convert: method into the above statement.

y: ~.ustralia

'alia
::e

. ~'.~)~ " .. ", , "." " .. " "

'ld Itinerary fot' Australia

25/95 11 :35 SFO Quantas
ydney 6/274: 14 A~/1
ing John Crollen, Sr. VP,
of ~.ustralial 4th Floor, 2 P~1
presentation slides

,-------..,----- logistics -------:--1

.6. i rp 0 rts: S ~_qtJ.~~.lt}J.~EQ?!iQQ§l:1 _ ... _ ... ,_ ..

~.irlines:

Transportation: !axi $~5 e.~~~_~~,.~.~~:~~!Q~!J .. §y'£~!,!.~.I{_,
H ote Is: ~.Y.9Q ~.~'.!jqilt~t~J?~ .. e.,~.~{E!! RQL .. ". __

,-----..,---..,---..,----..,---- Other -----:-----1

I _. roo '"

C u rre n C 1:/ : I~~.~.~~_l? g.I.I.~~ 1 Rate: ,,~_: ?.~.~., J

L an!~ u aft e s: E_.~,gl.i s h , .. , ,," ,q" __ '" " " , •••••

zj Englistl \-videl~' spoken

~---:--:----:--:--~ Conversions -----:--1

Dollars: 17.=;;;;-:;;;1 Local: J.3576.50

Celsius: Farenheit: ro----
Add ·1 Delete I

Sections

Creating the Travel Advisor
Interface

The Design of Travel Advisor

Defining the Classes of Travel
Advisor

Implementing the Country
Class

Implementing the TAControlier
Class

Data Mediation

Implementing the Table View

Adding and Deleting Records

Field Formatting and
Validation

Application Management

Building and Running Travel
Advisor

Concepts

Varieties of Buttons

More About Forms

More About Table Views

The Collection Classes

Files Owner

Static and Dynamic Palettes

NSString: A String for all Countries

Chapter 3

Travel Advisor Tutorial

The Foundation Framework: Capabilities, Concepts, and Paradigms

Object Ownership, Retention, and Disposal

Turbo Coding With Project Builder

Finding Information Within Your Project

Getting in on the Action: Delegation and Notification

Behind "Click Here": Controls, Cells, and Formatters

Using the Graphical Debugger

59

Travel Advisor Tutorial

60

Collection objects allow you to
store, organize, and access data in
different ways. For more
information, see "The Collection
Classes" on page 74.

String objects represent textual
strings in various encodings. See
page 82 for more information.

You can find the TravelAdvisor
project in the AppKit subdirectory
of /NextDeveloper!Examples.

In this chapter you create Travel Advisor, an application that is considerably
more complex than the Currency Converter application you built in the first
tutorial. Travel Advisor is a forms-based application used for entering, viewing,
and maintaining records on countries that the user travels to. Users enter a
country name and information associated with that country. When they click
Add, the country appears in the table below the country name. They can select
countries in the table, and the information on that country appears in the forms.
The application also performs temperature and currency conversions.

Country: 1.tI~str<l:li<l:

I·.··· Australia

I France
1 Germa.ny

Notes and Itinerary for Australia

Lv 6/26/95 11:36 SFO Quantas
I:,. Arr Sydney 6/274: 14 AM
I.' Meeting John Crotten, Sr. VP,
I:' Bank of Australia, 4th Floor, 2 PM
I": Bring presentation slides

I:
Ib;
I:

lii'j\
I~;:'
11~~

.-------Logistics ----:-:---:--,--'-"-:"

Airp orts: I.~. Y~~? yl~tern<ltig~<ll
Airlines: 19~<l~t<l~

Tra.nsp o rtati on : 1!<P<:ig~,II,~~~9\':1~t9\':1~§Y~~~Y
Molels: 1.~.~~n~Y}'ilt9~$76~~S{QLqDt .~.w~,

,-----,----- Other -,-------,--.....,

'currencY:I~Q~l Rate:~! per$1

Languages:I~~.~I}i~M'c, .. ,' '. "'U '"

ij English widely spok.en
..

,....-----:------ Conversions -------,

Doliars; t~~gg:gg"J; Local: t~~~J)'SO; .' ~ !: C~nv~rt I
Celsius: 13·0~1 Farenhelt:/ ~ ;; .• !k~~v~rtl

This chapter presents a lot of information on OpenStep programming. Among
other things, you '11 learn how to:

• Use several new objects on Interface Builder's palettes.
• Assign an icon to an application.
• Print the contents of a view.
• Use collection objects (NSArray and NSDictionary).
• Use string objects (NSString).
• Archive and unarchive object data.
• Format and validate field contents.
• Manage events through delegation.
• Quickly find information related to your project.
• Use Project Builder's graphical debugger.

Perhaps most interestingly, you will reuse the Converter class you implemented
in the previous tutorial.

61

Chapter 3 Travel Advisor Tutorial

Creating the Travel Advisor Interface

Create the application project.

Start Project Builder.

Choose New from the Project
menu.

Name the application
"TraveIAdvisor."

2 Open the application's nib file.

Click Interfaces in the project
browser, select
TraveIAdvisor.nib, and double
click its icon.

3 Customize the application's
window.

Resize the window, using the
example at right as a guide.

In the Attributes display ofthe
Inspector panel, entitle the
window "Travel Advisor."

Turn off the resize bar.

62

You should be familiar with many of the objects on the Travel Advisor interface
because you've encountered them in the Currency Converter tutorial. The
following illustration points out the objects that are new to you in this tutorial.

Scrol/view
(containing an
NSText object)

Table view Image view Switch (button) Groups
(Boxes)

The following pages describe the purpose of each new object found on
Interface Builder's palettes and explain how to set these objects up for Travel
Advisor. Before getting to these new objects, start with the familiar ones:
buttons and text fields.

4 Put the text fields, labels, and
buttons on the window.

Position, re-size, and initialize the
objects as shown.

Set up the switch.

Creating the Travel Advisor Interface

Country: I

,.----------------------1--- Be sure this label

Notes and Itlnerary for

contains enough
"padding" for the
longest country
name.

currency:I_~ ____ Rate:C=- per$1

Languages:1

English widely spoken

"'----------t--- Drag the Switch
Dollars: 1 r --- LOCal:~ 'convert I object from the

Views palette and
Celsius: Le: FaJenheil: r 'Convert I drop here.

Add

You might think the "English widely spoken" object is a new kind of object.
It's actually a button, a special style of button called a switch.

-+-___ Double-click to select text, then type new label.

Click to set the initial state of this toggled button (no checkmark).

Varieties of Buttons

If in Interface Builder you select the "English
widely spoken" switch and bring up the
Attributes inspector, you can see that the
switch is a button set up in a special way.

Buttons are two-state control objects. They
are either off or on, and this state can be set by
the user or programmatically (setState:). For
certain types of buttons (especially standard
buttons like Currency Converter's Convert
button), when the state is switched, the button
sends an action message to a target object.
Toggle-type buttons-such as switches and
radio buttons- visually reflecttheir state.
Applications can learn ofthis state with the
state message. You can make your own
buttons, associating icons and titles with a
button's off and on states, and positioning title
and icon relative to each other.

Titl e: IE~ gli~~",i~~lysp()~~~
AIL Title:1
~======~ !con:li'i?~"'it~~_'_m_ .. _ .. ______ ,~ __ ,_

AIL leo n: 1f\J?J::ii g~lig~~~~?""itch

63

Chapter 3

5 Place a form on the interface and
prepare it.

Drag the form object from the
Views palette.

Increase the size ofthe form's
fields by dragging the middle
resize handle sideways.

Create two more form fields by
Alternate-dragging the bottom
middle resize handle downward.

Rename the field labels.

64

Travel Advisor Tutorial

Construct the "Logistics" section of the interface using a form object.

----~. Drag to lengthen the fields.

As you Alternate-drag, new form fields
appear underneath the cursor.

Double-click to select label text.

11Field: I;:'

Type the new label text and click outside
the form to set the text.

More About Forms

Forms are labelled fields bound vertically in a
matrix. The fields are the same size and each
label is to the left of its field. Forms are ideal
objects for applications that display and
capture multiple rows of data, as do many
corporate client-server applications.

The editable fields in a form are actually cells
that you programmatically identify through
zero-based indexing; the first cell is at index
o ofthe matrix, the second cell at index 1, and
so on. NSForm defines the behavior of forms;
individual cells are instances of NSFormCe11.
Access these cells with NSForm's
cellAtlndex: method.

Form Attributes

In addition to the obvious controls in the
Forms inspector, there's the "Cell tags =
positions" attribute. Switching this on
assigns tags to each NSFormCeli that
correspond to the cells' indices. (A tag is a
number assigned to an object that is used to
idenitfy and access that object. You'll use
tags extensively in the next tutorial.)

The Scrollable option, turned on by default,
enables the userto type long entries in fields,
scrolling contents to the left as characters
are entered.

6 Group the objects on the
interface.

Selectthe two Convert buttons
and the Dollars, Local, Celsius,
Fahrenheit labels and text fields.

Choose Format ~ Group ~ Group
in Box.

Double-click "Tltle" to select it.

Choose Format ~ Font ~ Bold to
make the title bold face.

Rename "Tltle" to "Conversions."

Repeat for the next two groups:
"Logistics" and "Other."

Creating the Travel Advisor Interface

To make titled sections of the fields, forms, and buttons on the Travel Advisor
interface, group selected objects. By grouping them, you put them in a box.

To select the objects as a group, drag
a selection rectangle around them or
Shift-click each object. (To make a
selection rectangle, start dragging from
an empty spot on the window.)

After you choose the Group in Box
command, the objects are enclosed by
a titled box.

Boxes are a useful way to organize and name sections of an interface. In
Interface Builder you can move, copy, paste, and do other operations with the
box as a unit. For Travel Advisor, you don't need to change the default box
attributes.

Before You Go On ---------------------

Programmatically, the box is the superview of all of its grouped objects. (A view,
simply put, is any object visible on a window.) A superview encloses its subviews
and is the next in line to respond to user actions if none of its subviews cannot
handle them.

The scroll view on the Data Views palette encloses a text object (an instance of
NSText). This object allows users to enter, edit, and format text with minimal
programmatic involvement on your part.

65

Chapter 3

7 Put the scroll view on the
window and resize it.

Drag the scroll view from the
DataViews palette and drop it on
the lower-left corner of the
window.

Resize the scroll view ..

Travel Advisor Tutorial

You don't need to change any of the default attributes of the scroll view (but you
might want to look at the attributes you can set, if you're curious).

66

Next, add a table view for displaying the list of countries.

More About Table Views

A table view is an objectfor displaying and editing tabular data.
Often that data consists of a set of related records, with rows for
individual records and columns for the common fields (attributes)
ofthose records, Table views are ideal for applications that have
a database component, such as Enterprise Objects Framework
applications.

The table view on Interface Builder's TabulationViews palette is
actually several objects, bound together in a scroll view. Inside
the scroll view is an instance of NSTableView in which data is
displayed and edited. At the top of the table view is an
NSTableHeaderView object, which contains one or more column
headers (instance of NSTableColumn).

Serol/view {
(NSSeroI/View)

• iiif- NSTableColumn

~~- NSTableView

Later in this tutorial you will learn some basic techniques for
accessing and managing the data in a table view. Here's a quick
preview of the essential pieces:

• Data source. The data source is any object in your application
that supplies the NSTableView with data. The elements of data
(usually records) must be identifiable through zero-based
indexing. The data source must implement some or all of the
methods of the NSTableDataSources informal protocol.

• Column identifier. Each column (NSTableColumn) of a table
view has an identifier associated with it, which can be either
an NSString or a number. You use the identifier as a key to
obtain the value of a record field .

• Delegate methods. NSTableView sends several messagesto
its delegate, giving itthe opportunity to control the appearance
and accessibility of individual cells, and to validate or deny
editing in fields.

8 Place and configure the table
view.

Drag the table view object from
the TabulationViews palette.

Resize the table view.

Set the title of the first column to
"Countries."

Make the table header only one
column.

Creating the Tra"~1 Advisor Interface

..,------- Conversions ----:;--"-:;--"---;

Dollars: 1_. ~J Local:j 2: :;:" '/ /co'nv~rt'l
Farenheit:C ;\coC:n\;e~n '

Click to
select the
Tabulation
Views
palette .

•. ~87=~~~~~+-- Double-click column twice (first to select the column,
1;,'<1 <"0',";,.,;,.":,"';"');'),;<;".,,,;.; second to insert the cursor), Type "Countries" then click

anywhere outside the column.

When this cursor appears over the line separating
columns, drag the line so that it's flush with the right
edge.

The other object on the Tabulation Views palette is a browser. It is just as suitable
for the Travel Advisor application as a table view. Browsers are ideal for
displaying hierarchically structured information (such as is found in the UNIX
file system) as well as single-level views of data such as the list of countries in
Travel Advisor. A table view can also handle single-column rows of data easily;
it is used instead because it is designed for displaying and editing records from
relational databases, something that Enterprise Objects Framework (EOF)
programmers find very useful.

To configure the table view, you must set attributes of two component objects:
the NSTabie View object and the NSTableColumn object.

67

Chapter 3

Select the NSTableView by
double-clicking the interior ofthe
table view.

Set the attributes as shown at
right.

Select the column by double
clicking once Of this inserts the
cursor, click outside the column,
then click the column once).

Setthe NSTableColumn attributes
as shown at right.

68

Travel Advisor Tutorial

""'---+---- Since this is a single-column view and country names are
of limited length, you need only the verticle scroller, in case
there's no more countries that can be shown at once.

F~=,Optlons'-~~~~""-t--- Whether to show the grid is a matter of personal
preference, but turn off resizing and reordering. The user
shouldn't be able to affect the contents of the column
directly.

The Attributes display for NSTableView is the same as that for NSScrollView.

The Travel Advisor window is nearly complete. For a decorative touch, you're
next going to add an image to the interface.

9 Add an image to the interface.

Drag the image view onto the
window, as shown at right.

In Project Builder:

Double-click Images in the
project browser.

In the Open panel, select the file
Airline.eps from the
/AppKit/TraveIAdvisor
subdirectory of
/NextDeveloper/Examples

In the Attributes inspector for the
image view, type the name ofthe
image and set the NSlmageView
attributes.

Make the image view (and the
enclosed image) small enough to
fit between the title bar and the
Logistics group.

Add a "velocity" line behind the
airplane.

Creating the Travel Advisor Interface

Click here to get the Data Views palette.

r-T-ra-n-sp-::-:-;~:-:~.-!:-·-·_~: __ ~LD:_~;'.~;~C;-~~ .. ---~~ __ ~_ .. __ = ___ ... =_ _= .. __ ._~ __ ~J~ .. ll~11 ~Ic"",=
Hotels:

Before You Go On ----------------------

Sometimes buttons are the preferred objects for holding images-for instance
when you want a different image for either state of a button. But when buttons
are disabled, any image they display is dimmed. So for decorative images, use
image views (NSImageView) instead of buttons.

When you drop a sound or image over a button or image view, it is added to the
nib file. When you add an image or a sound to a nib file, Interface Builder asks
if you also want to add the resource to the project. Nib files are localized and
their resources are only accessible when the nib file has been loaded. Resources
that are associated with a project can be localized and are always accessible.

Enter the name of the image file, minus the extension.
The image can be in TIFF of EPS format and must be
part of the project.

You can also add an image by dragging it from the
Images display of the nib file window and dropping it
over the image view.

~~.t;....d"'"4-:----:r---- The border of the image should not be visible.

~~~:-:-----ll---- Since the image is larger than the image view, have it 
scale proportionally. 

Uncheck if you don't want users to affect the image in 
anyway. 

69 



Chapter 3 

10 Add commands to the main menu. 

Select the Menus palette. 

Drag the Item command and drop 
it between Edit and Services. 

Change "Item" to "Print Notes ... ". 

Drag the Submenu item and drop 
it between Info and Edit. 

Double-click Submenu to select 
the item text; change the name to 
"Records". 

Add three Items to the Records 
submenu (making four 
altogether). 

Change the command names to 
those shown at right. 

Add key equivalents to the right of 
the last two commands. 

70 

Travel Advisor Tutorial 

Tip: To make the "velocity" line behind the airplane, make a title-less black box 
with a vertical offset of zero, and run the top and bottom lines together. 

Travel Advisor's main menu has a submenu and a command that do not come 
ready-made on the Menus palette. You use the Submenu and the Item cells to 
create customized submenus and menu commands, respectively. 

Double-click the area to the right of the command and type a letter. 
This letter is the Command key equivalent to teh menu command 
(Command-r here because Command-p is often reserved for a print 
command). 

Three dots after a menu command indicates that the command opens a panel: 
"Print Notes ... " means that clicking this command displays the Print panel. 

You can now connect many of the objects on the Travel Advisor interface 
through outlets and actions defined by the Application Kit. As you might recall, 
text fields have a nextKeyView outlet that you connect so that users can tab from 
field to field. Forms also have a nextKeyView outlet for tabbing. (The fields within 
a form are already interconnected, so you don't need to connect them.) 



11 Connect Application Kit outlets 
for inter-field tabbing and 
printing. 

In top-to-bottom sequence, 
connect the fields and the form 
through their nextKeyView 
outlets. 

When you reach the Languages 
field, connect it with the Country 
field, making a loop. 

Connect the Print Notes menu 
command to the text object in the 
scroll view. 

Selectthe print: action method in 
the Connections display of the 
Inspector panel. 

Click the Connect button in the 
Inspector's Connection display. 

Creating the Travel Advisor Interface 

I 

.-
;: 

Itinerary for 
i' 

...1 .L1 
"" .. 

a»'~ -
L,9.!li,~tlcs 

Airports:! 

Airlines:! -- ------- - ---
Transportation: I 

Hotels:! 

'" 
---t::.l .~ ,~;.n 
~.O_ ... ....J 

°t is selected. When a gray line borders the form, I 

Release the mouse button and set the nextkeyview 
outlet connection. 

The Application Kit also has "pre-set" actions that you can connect your 
application to. The NSText object in the scroll view can print its contents as can 
all objects that inherit from NSView. To take advantage of this capability, "hook 
up" the menu command with the NSText action method for printing. 

Make sure the text 
object (the white 
rectangle) is 
selected and not the 
scroll view that 
encloses it. 

The final step in crafting the Travel Advisor interface has nothing to do with the 
main window, but with what users see of your application when they encounter 
it in the File Manager: the application's icon. ' 

71 



Chapter 3 

12 Add the application icon. 

In Project Builder: 

Open the Project Inspector. 

Go to the Project Attributes 
display of the inspector. 

Click in the Application Icon field. 

In File Manager 

Locate TravelAdvisor.tiff in the 
/AppKit/TraveIAdvisor 
subdirectory of 
/NextDeveloper/Examples. 

Drag TravelAdvisor.tiff into the 
icon well in the Project Attributes 
display. 

13 Test the interface. 

72 

Travel Advisor Tutorial 

)JJ~lrlUilL~~~~ed.4-- Make sure the cursor is in 
this field before dragging. 

After you drag the image 
into the well, the icon is 
displayed in the well and 
the image file is 
automatically added to the 
project. 

You're finished with the Travel Advisor interface. Test it by choosing Test 
Interface from Interface Builder's Document menu.Try the following: 

• Press the Tab key repeatedly. Notice how the cursor jumps between the 
fields of the form, and how it loops from the Languages field to the Country 
field. Press Shift-Tab to make the cursor go in the reverse direction .. 

• Enter some text in the scroll view, then click the Print Notes menu item. The 
print panel is displayed. Print the text object's contents. 

• Also in the scroll view, press the Return key repeatedly until a slider appears 
in the scroBer. 



The Design of Travel Advisor 

The Design of Travel Advisor 

Travel Advisor is much like Currency Converter in its basic design. Like 
Currency Converter, it's based on the Model-View-Controller paradigm. A 
controller object (TAController) manages a user interface comprised of 
Application Kit objects. Also as before, the controller sends a message to the 
Converter object to get the result of a computation. In other words, the 
Converter object is reused. 

Converter 

Key 

Value 

Country NSDictionary 
~------------------------------~ 

Country Country 

Travel Advisor's view objects, in terms of Model-View-Controller, are all off-the
palette Application Kit objects, so the following discussion concentrates on 
those parts of the design distinctive to Travel Advisor. 

Model Obiects 
Travel Advisor's design is more interesting and dynamic than Currency 
Converter's because it must display a unique set of data depending on the 
country the user selects. To make this possible, the data for each country is 
stored in a Country object. These objects encapsulate data on a country (in a 
sense, they're like records in a relational database). The application can manage 
potentially hundreds of these objects, tracking each without recourse to a 
"hardwired" connection. 

Another model object in the application is the instance of the Converter class. 
This instance does not hold any data, but does provide some specialized 
behavior. 

73 



Chapter 3 

74 

Travel Advisor Tutorial 

The Collection Classes 

Controller 
The controller object for the application is TAController. Like all controller 
objects, TAController is responsible for mediating the flow of data between the 
user interface (the View part of the paradigm) and the model objects that 
encapsulate that data: the Country objects. Based on user choices in the 
interface, TAController can find and display the requested Country object; it 
can also save changes made by users to the appropriate Country'object. 

What makes this possible is an NSDictionary object (called a dictionary from 
here on). A dictionary is a container that stores objects and permits their retrieval 
through key-value associations. The key is some identifier paired with an object 
in the dictionary (the object often holds the identifier as one of its instance 
variables). To get the object, you send a message to the dictionary using the key 
as an argument (objectForKey:). 

NSColor *aColor = [aDictionary objectForKey:@IBackgroundColor"]i 

A Country object holds the name of a country as an instance variable; this 
country name also functions as the dictionary key. When you store a Country 
object in the dictionary, you also store the country name (in the form of an 
NSString) as the object's key. Later you retrieve the object by sending the 
dictionary the message objectForKey: with the country name as argument. 

Several classes in OpenStep's Foundation Framework create 
objects whose purpose is to hold other objects. These col.lection 
classes are very useful. Instances of them can store and locate 
their contents through a number of mechanisms. 

created (see "Abstract Classes and Class Clusters" on page 101). 

Collection objects also provide a valuable way to store data. 
When you store (or archive) a collection object in the file system, 
its constituent objects are also stored. 

• Arrays (NSArray) store and retrieve objects in an ordered 
fashion through zero-based indexing. 

• Dictionaries (NSDictionary) store and quickly retrieve objects 
using key/value pairs. For example, the key "red" might be 
associated with an NSCoior object representing red. 

• Sets (NSSet) are unordered collections of distinct elements. 
Counted sets (NSCountedSet) are sets that can contain 
duplicate (non-distinct) elements; these duplicates are tracked 
through a counter. Use sets when the speed of membership
testing is important. 

The mutable versions of these classes allow you to add and 
remove objects programmatically after the collection object is 

NSArray 

I 

NSObject 

I 
NSDictionary NSSet 

I 
NSMutableArray NSMutableSet 

NSMutableDictionary 

NSCountedSet 



See "Implementing the 
TAController Class" on page 90 
for a diagram that depicts the data 
relationships ofTAController as 
data source. See page 66 for more 
on NSTableView's data source. 

See "Getting in on the Action: 
Delegation and Notification" on 
page 97 for more on delegation. 

The Design of Travel Advisor 

Storing Data Source Information 
TAController also manages the data source for the table view on the interface. 
It stores the keys of the dictionary in an array object (NSArray), sorted 
alphabetically. When the table view requests data, the TAController "feeds" it 
the objects in the array. 

Creation of Country Objects 
Another important point of design is the manner in which the Country objects 
are created. Instead of Interface Builder creating them, the TAController object 
creates Country objects in response to users clicking the Add button. 

Delegation and Notification 
An essential aspect of design not evident from the diagram are the roles 
de/egatioll and notification play. The TAController object is the delegate of the 
application object and thereby receives messages that enable it to manage the 
application, which includes tracking the edited status of Country objects, 
initiating object archival upon application termination, and setting up the 
application at launch time. 

75 



Chapter 3 Travel Advisor Tutorial 

Defining the Classes of Travel Advisor 

Specify the Country and 
TAController classes. 

In Interface Builder, bring up the 
Classes display of the nib file 
window. 

For each class, select NSObject 
as the superclass. 

Choose Subclass from the 
Operations menu. 

Type the class name. 

2 Specify TAController's outlets. 

Add the outlets shown in the nib 
file window at right. 

76 

Travel Advisor has three classes: Country, Converter, and TAController. Only 
TAController has outlets and actions. And, rather than defining the Converter 
class, you are simply going to add it to the project from the CurrencyConverter 
project and reuse it. 

'iCO 

: >country~jeld; t;i!l 
> curr~mcypolla:r$Fleld 

currencyLocalFleld 
currencyNameFielcl 
ClJrr~~cYRateFj13Ic1~> 
eY!9 lis,hSpokenSwitcp 
fahrenheit > ,; 

l~ri)9uagesFjeld > 

,logistic 

Through this outlet, the TAController 
object establishes a connection with 
the instance of the Converter class. 
You will reuse this class later in this 
section. 



3 Specify TAControlier's actions. 

Define the action methods shown 
in the nib file window at right. 

4 Reuse the Converter class. 

In Interface Builder: 

Open CurrencyConverter.nib in 
the English.lproj subdirectory of 
the CurrencyConverter project 
directory. 

In the Classes display of the nib 
file window, select the Converter 
class. 

Choose Edit ~ Copy. 

Select the nib file window for 
TraveIAdvisor.nib. 

In the Classes display, select the 
superclass (NSObject). 

Choose Edit ~ Paste. 

In Project Builder: 

Launch Project Builder. 

Select Classes in the project 
browser. 

Choose Project ~ Add Files. 

In the Add Classes panel, 
navigate to the 
CurrencyConverter project 
directory and select Converter.m. 

When asked if you want to 
include the header file, click OK. 

. Defining the Classes of Travel Advisor 

." __ .... '" ......... ,!y;!Lq!tf."L.: .... " ........ ~_.".~,.'" __ ...... _ .... _""'" 
. ..-___ ... _ •.. _ .•.. §.9.~,B,e.g.g!q.:.-•..•• _"_ ........ _ ...... ·'m'"'' 

blankFlelds; 
. convettCelsius: 
.. convertCurrency: 
, deleteRecord: 
haridleTVClick: 

In OpenStep there are many ways to reuse objects through their classes. For 
example, subclassing an existing class to obtain slightly different behavior is one 
way to reuse the functionality of the superclass. Another way is to integrate an 
existing class-like the Converter class-into your project. 

n£J~~E[=======r.::;~3E+-- Make sure to select the 
superclass before pasting. 

Headers 

~ g~~s __ ~_~ CCmonwV9rert;ea~h~~~~========~~========~-
Headers t> 
OtT,erSOllfces"',;:' 
Interfaces r-
Images , .. 
Other Resource r-

When you add a 
class to a project 
Project BuNder 
adds the 
associated header 
file too. 

It copies both files 
from the source 
location. 

77 



Chapter3 

5 Generate instances of the 
TAControlier and Converter 
classes. 

6 Connect the TAControlier 
instance to its outlets. 

78 

Travel Advisor Tutorial 

" NSDictionary 
NSFontManager 

(j NSlmage 
" NSRespondef 

NSTableCoJumn 

Instantiate 

'Edit Cla~s 

Read File 

, Create Files 

You don't need to instantiate the Country class in the nib file because it is not 
involved in any outlet or action connections. TAController interacts behind the 
scenes with users as they manipulate the application's interface. It therefore 
needs access to interface objects and to be made the target of action messages. 

Outlet 

celsius 

commentsLa bel 

commentsField 

converter 

countryField 

currencyDoliarsField 

currencyLocalField 

currencyNameField 

currencyRateField 

englishSpokenSwitch 

fahrenheit 

languagesField 

logisticsForm 

tableView 

Make Connection To 

Text field labelled "Celsius" 

Label that reads "Notes and Itinerary for" 

Text object within scroll view 

Instance of Converter class (cube in Instances display) 

Text field labelled "Country" 

Text field labelled "Dollars" 

Text field labelled "Local" 

Text field labelled "Currency" 

Text field labelled "Rate" 

Switch (button) labelled "English widely spoken" 

Text field labelled "Fahrenheit" 

Text field labelled "Languages" 

Form in group (box) labelled "Logistics"; the form is selected when a 
gray line borders it. 

The area underneath the "Countries" column 



Connect the TAControlier 
instance to the interface via its 
actions. 

You can assign delegates 
programmatically or by using 
Interface Builder. For more 
information, see "Getting in on 
the Action: Delegation and 
Notification" on page 97. 

Defining the Classes of Travel Advisor 

Action Make Connection From 

addRecord: "Add" button 

blankFields: "Clear" button 

convertCelsius: "Convert" button to the right of the "Fahrenheit" field 

convertCurrency: "Convert" button to the right of the "Local" field 

deleteRecord: "Delete" button 

handleTVClick: The table view(the area beneath the "Countries" column header) 

nextRecord: The "Next Record" menu command on the Records submenu 

prevRecord: The "Prior Record" menu command on the Records submenu 

switchChecked: The "English widely spoken" switch 

Before You Go On -----------------------

You're next going to connect objects through an outlet defined by several 
OpenStep classes. The value of this outlet, named delegate, is the id of a custom 
object. As the delegate ofNSApp (the NSApplication object), TAControllerwill 
receive messages from it as certain events happen. 

Checking Connections in Outline Mode 

The nib file window of Interface Builder gives you two modes in 
which to view the objects in a nib file and to make connections 
between those objects. So far you've been working in the icon 
mode of the Instances display, which pictorially represents 
objects such as windows and custom objects. 

Click here for icon mode. 

Click here for outline --+-~I 
mode. 

Outline mode, as the phrase suggests, represents objects in a 
hierarchical list: an outline. The advantages of outline mode are 
that it represents all objects and graphically indicates the 
connections between them. You can connect objects through 
their outlets and actions in outline mode, as well as disconnect 
them by Control-clicking a connection line. 

,...-+-- Click a right-pointing triangle to see connections 
out; click a left-pointing triangle to see 
connections into the object. 

Connect objects in outline 
mode just as you do in icon ...;,..-----+----+-- Move the vertical line left or right to see details 

mode: Control-drag a 
connection line between 
objects. 

(this is a vertical split view). 

l~~~~~~~~~~~;;;~;~~rr-- A connection is identified by name and icon for type (electrical outlet for outlet, cross-hairs for 
action) 

79 



Chapter 3 Travel Advisor Tutorial 

80 

8 Connect the delegate outlet. 

Drag a connection line from File's 
Owner to the TAController object. 

In the Connections display of the 
Inspector panel select delegate 
and click OK. 

9 Generate source code files for 
the TAController and Country 
classes. 

Save TraveIAdvisor.nib. 

Select the class in the Classes 
display ofthe nib file window. 

Choose Create Files from the 
Operations pull-down menu. 

Every application has a global NSApplication object (called NSApp) that 
coordinates events specific to the application. Among many other messages, 
NSApp sends a message to its delegate notifying it that the application is about 
to terminate. Later, you will implement TAController so that, when it receives 
this message, it archives (saves) the dictionary containing the Country objects. 

TravelAdlllsor 

Notice that the direction of the 
connection is from the File's 
Owner object (which is the 
application object) to the 
TAController object. 

When you generate the header and implementation files for all classes of 
Currency Converter, you are finished with the Interface Builder portion of 
development. Be sure you save the nib file before you switch over to Project 
Builder. 

File's Owner 

Every nib file has one owner, represented by 
the File's Owner icon in a nib file window. The 
owner is an object, external to the nib file, 
that relays messages between the objects 
unarchived from the nib file and the other 
objects in your application. 

You can specify a file's owner in Interface 
Builder or programmatically, with 
NSBundle's loadNibNamed:owner:. The 
File's Owner icon for the main nib file always 
represents NSApp, the global NSApplication 
constant. The main nib file is automatically 
created when you create an application 
project; it is loaded in main() when an 
application is launched. 

Nib files other than the main nib file
auxiliary nib files-contain objects and 
resources that an application may load only 
when it needs them (for example, an Info 
panel). You must specify the owner of 
auxiliary nib files. 

You can determine or set the class of the 
current nib file's owner in Interface Builder 
by selecting the File's Owner icon in the nib 
file window and then displaying the Custom 
Class inspector view. You'll get to practice 
this technique when you learn howto create 
multi-document applications in the next 
tutorial. 



Defining the Classes of Travel Advisor 

Just Add a Smock: Compiled and Dynamic Palettes 

A palette is a display on the Palettes window that holds one or 
more reusable objects. You can add these objects to your 
application's interface using the drag-and-drop technique. There 
are two types of palettes: dynamic and compiled (also called 
"static palettes"). To the user, they seem identical, butthe 
differences are many. 

Static palettes are built as a project and have code defining their 
objects; dynamic palettes include no special code-they're 
unique configurations of objects found on static palettes. 
Consequently, static palettes must be compiled, but you can 
create dynamic palettes on the fly, without writing and compiling 
code. Objects on static palettes can have inspectors and editors, 
which dynamic-palette objects cannot. 

You usually create a static palette as a way to distribute your 
objects-and the logic informing these objects' behavior-to 
potential users. Many developers of commercial OpenStep 
objects make use of static palettes as a distribution media. 
Creating static palettes (and their inspectors and editors) is a 
more complex process than creating dynamic palettes, but the 
resulting product has more value added to it. 

Using Dynamic Palettes 

Dynamic palettes are a big convenience. You can save groups of 
objects, with or withouttheir interconnections, to a dynamic 
palette at anytime. You can save dynamic palettes and store them 
in the file system, just as you do with the traditional compiled 
palette. You can remove the palette from the Palette viewer and, 
when you need it again, load it back into Interface Builder. 

To store objects on a dynamic palette: 

• Choose Tools" Palettes" New to create a blank palette. 

• Select objects singly or in groups on the interface or in the nib 
file window (either icon or outline mode) 

• Alternate-drag these objects and drop them on the blank 
palette. 

You can use dynamic palettes to: 

Alternate-drag to 
move objects 
onto palettes, to 
move objects 
around palettes, 
and to remove 
objects from 
palettes. 

• Store collections of often-used View objects configured with 
specific sizes and other attributes. For instance, you could 
have a "standard" text field of a certain length, font, and 
background color stored on a dynamic palete. 

• Hold windows and panels that are replicated in your projects 
(such as Info panels). 

• Store versions of interfaces. 

• Keep interconnected objects as a template that you can later 
use as-is or modify for particular circumstances. For instance, 
you could store a group oftextfields and their delegate, or a set 
of controls and their connections to a controller object 

• Assist in prototyping and group work. For example, you could 
mail a palette file containing an interface to interested parties. 

81 



Chapter 3 Travel Advisor Tutorial 

82 

Implementing the Country Class 

Although it has no outlets, the Country class defines a number of instance 
variables that correspond to the fields of Travel Advisor. 

Declare instance variables. @interface Country : NSObject <NSCoding> /* 1 */ 

In Project Builder, click Headers 
in the project browser, then select 
Country.h. 

Add the declarations shown 
between the braces at right. 

NSString 
NSString 
NSString 
NSString 
NSString 
NSString 
BOOL 
NSString 
float 
NSString 

*namei /* 2 */ 

*airportsi 
*airlinesi 
*transportationi 
*hotelsi 
*languagesi 
englishSpokeni 
*currencyNamei 
currencyRatei /* 3 */ 
*commentsj 

When a class adopts a protocol, it 
asserts that it implements the 
methods the protocol declares. 
Classes that archive or serialize 
their data must adopt the 
NSCoding protocol. See Object
Oriellted Prograllllllillg and the 
Objective-C Language for more on 
protocols. 

1. Declares that the Country class adopts the NSCoding protocol 

2. Explicitly types the instance variable as "a pointer to class NSString" -or a 
NSString object. See below for more about the NSString class. 

3. Declare non-object instance variables the same way you declare them in C 
programs. In this case, currencyRate is of type float. 

NSString: A String for All Countries 

NSString objects represent character strings. They're behind 
almost all text in an application, from labels to spreadsheet entries 
to word-processing documents. NSStrings (or string objects) 
supplant that familiar C programming data type, char *, 

"But why?" you might be saying. "Why not stick with the tried and 
true?" By representing strings as objects, you confer on them all 
the advantages that belong to objects, such as persistency and 
distributability. Moreover, thanks to data encapsulation, string 
objects can use whatever encoding is needed and can choose the 
most efficient storage for themselves. 

The most important rationale for string objects is the role they play 
in internationalization. String objects contain Unicode characters 
rather than the narrow range of characters afforded by the ASCII 

character set. Hence they can represent words in Chinese, 
Japanese, Arabic,and many other languages, 

The N'SString and NSMutableString classes provide APlto create 
static and dynamic strings, respectively, and to perform string 
operations such as substring searching, string comparison, and 
concatenation. 

None of this prevents you from using char * strings, and there are 
occasions where for performance or other reasons you should. 
However, the public interfaces of OpenStep classes now use 
string objects almost exclusively. A number of NSString methods 
enable you to convert string objects to char * strings and back 
again. 



2 Declare methods. 

After the instance variables, add 
the declarations listed here. 

Implementing the Country Class 

Country.h also declares a dozen or more methods. Most of these are accessor 
methods. Accessor methods fetch and set the values of instance variables. They 
are a critical part of an object's interface. 

/* initializtion and de-allocation */ 

- (id)init; 
- (void)dealloc; 
/* archiving and unarchiving */ 
- (void)encodeWithCoder: (NSCoder *)coder; 
- (id)initWithCoder: (NSCoder *)coder; 
/* accessor methods */ 
- (NSString *)name; 
- (void)setName: (NSString *)str; 
- (NSString *)airports; 
- (void)setAirports: (NSString *)stri 

- (NSString *)airlines; 
- (void)setAirlines: (NSString *)stri 

/* 1 */ 

/* 2 */ 

/* 3 */ 

/* ... other accessor method declarations follow ... */ 

1. Object initialization and deallocation. In OpenStep you usually create an object by 
allocating it (alloc) and then initializing it (init or init... variant): 

Country *aCountry = [[Country alloc] init]; 

When Country's init method is invoked, it initializes its instance variables to 
known values and completes other start-up tasks. Similarly, when an object 
is deallocated, its dealloc method is invoked, giving it the opportunity to 
release objects it's created, free malloc'd memory, and so on. You'll learn more 
about init and dealloc shortly. 

2. Object archiving and unarchiving. The encodeWithCoder: declaration indicates that 
objects of this class are to be archived. Archiving encodes an object's class and 
state (typically instance variables) in a file that is often stored within the 
application wrapper (that is, the "hidden" application directory). 
U narchiving, through initWithCoder:, reads the encoded class and state data and 
restores the object to its previous state. There's more on this topic in the 
following pages. 

3. Accessor methods. The declaration for accessor methods that return val ues is, by 
convention, the name of the instance variable preceded by the type of the 
returned value in parentheses. Accessor methods that set the value of instance 
variables begin with "set" prepended to the name of the instance variable 
(initial letter capitalized). The "set" method's argument takes the type of the 
instance variable and the method itself returns void. 

83 



Chapter 3 Travel Advisor Tutorial 

84 

he Foundatio~ Framework: Ca'pabhitie~,;Concepts, '~'it:\ 
~_=>_,~"~ ,>_,~, >:~i~~-.~m,,~l>~~~~,r :~ ':~ \'~>~,i~~% ,~_~:.<~~l:: c::' ::;~ ;f;<~ ffi_~,~.~L',~~~,.~~,~,.~"i~,~~.,*":»l ~"~, ~~~>~W"~_H ~~~~~i; " _~£, _"~~'N,~,~'::>l::li.~,~~,~li~,i~,u_~~'-"~'~~~~~~_'<M .. ~~~i 

The Foundation Framework consists of a base layer of classes 
that specify fundamental object behavior plus a number of utility 
classes. It also introduces several paradigms that define 
functionality not covered by the Objective-C language. Notably, 
the Foundation Framework: 

• Makes software development easier by introducing consistent 
conventions for things such as object deallocation 

• Supports Unicode strings, object persistence, and object 
distribution 

• Provides a level of operating-system independence, 
enhancing application portability 

Root Class 

NSObject, the principal root class, provides the fundamental 
behavior and interface for objects. It includes methods for 
creating, initializing, deallocating, copying, comparing, and 
querying objects. Almost all OpenStep objects inherit ultimately 
from NSObject. 

Deallocation of Objects 

The Foundation Framework introduces a mechanism for ensuring 
that objects are properly deallocated when they're no longer 
needed. This mechanism, which depends on general 
conformance to a policy of object ownership, automatically 
tracks objects that are marked for release within a loop and 
deallocates them atthe close ofthe loop. See "Object Ownership, 
Retention, and Disposal" on page 88 for more information. 

Data Storage and Access 

The Foundation Framework provides object-oriented storage for 

• Arrays of raw bytes (NSData) and characters (NSString) 

• Simple C data values (NSValue and NSNumber) 

• Objective-C objects of any class (NSArray, NSDictionary, 
NSSet, and NSPPL) 

NSArray, NSDictionary, and NSSet (and related mutable classes) 
are collection classes that also allow you to organize and access 
objects in certain ways (see "The Collection Classes" on page 74). 

Text and Internationalization 

NSString internally represents text in various encodings, most 
importantly Unicode, making applications inherently capable of 
expressing a variety of written languages. NSString also provides 

methods for searching, combining, and comparing strings. 
NSCharacterSet represents various groupings of characters 
which are used by NSString. An NSScanner object scans 
numbers and words from an NSString object. For more 
information, see "NSString: A String for All Countries" on page 82. 

You use NSBundle objects to load code and localized resources 
dynamically (see "Only When Needed: Dynamically Loading 
Resources and Code" on page 118). The NSUserDefaults class 
enables you to store and access default values based on locale. 

Object Persistence and Distribution 

NSSerializer makes it possible to representthe data that an object 
contains in an architecture-dependent way. NSCoder and its 
subclasses take this process a step further by storing class 
information along with the data, thereby enabling archiving and 
distribution. Archiving (NSArchiver) stores encoded objects and 
other data in files. Distribution denotes the transmission of 
encoded object data between different processes and threads 
(NSPortCoder, NSConnection, NSDistantObject, and others). 

Other Functionality 

Date and time. The NSDate, NSCalendarDate, and NSlimeZone 
classes generate objects that represent dates and times. They 
offer methods for calculating temporal differences, for displaying 
dates and times in any desired format, and for adjusting times and 
dates based on location in the world. 

Application coordination. NSNotification, NSNotificationCenter, 
and NSNotificationQueue implement a system for broadcasting 
notifications of changes within an application. Any object can 
specify and post a notification, and any other object can register 
itself as an observer of that notification. You can use an NSlimer 
object to send a message to another object at specific intervals. 

Operating system services. Many Foundation classes help to 
insulate your code from the peculiarities of disparate operating 
systems. 

• NSFileManager provides a consistent interface for file-system 
operations such as creating files and directories, enumerating 
directory contents, and moving, copying, and deleting files. 

• NSThread and NSProcesslnfo let you create multi-threaded 
applications and query the environment in which an 
application runs. 

• NSUserDefaults allows applications to query, update, and 
manipulate a user's default settings across several domains: 
globally, per application, and per language. 



3 Implement the accessor 
methods. 

Select Country.m in the project 
browser. 

Write the code that obtains and 
sets the values of instance 
variables. 

In many situations you can send 
retain instead of copy to keep an 
object around. But for "value" 
type objects, such as Country's 
instance variables, copy is better. 
For the reason why, and for more 
on autorelease, retain, copy, and 
related messages for object 
disposal and object retention, see 
"Object Ownership, Retention, 
and Disposal" on page 88. 

Implementing the Country Class 

Before You Go On ----------------------

If you don't want to allow an instance variable's value to be changed by anyone outside of your 

class, dOll 't provide a set method for the instance variable. If you do provide a set method, make 

sure objects of your own class use it when specifying a value for the instance variables. This has 

important implications for subclasses of your class. 

Exercise: The previous example shows the declarations for only a few accessor 
methods. Every instance variable of the Country class should have an accessor 
method that returns a value and one that sets a value. Complete the remaining 
declarations. 

Now that you've declared the Country class's accessor methods, implement 
them. 

- (NSString *)name 

return name; 

- (void)setName: (NSString *)str 

[name autorelease]; 
name = [str copy]; 

/* 1 */ 

/* 2 */ 

/* more accessor method implementations follow */ 

1. For "get" accessor methods (at least when the instance variables, like Travel 
Advisor's, hold immutable objects) simply return the instance variable. 

2. For accessor methods that set objec/values, first send autorelease to the current 
instance variable, then copy (or retain) the passed-in value to the variable. The 
autorelease message causes the previously assigned object to be released at the 
end of the current event loop, keeping current references to the object valid 
until then. 

If the instance variable has a non-object value (such as an integer or float 
value), you don't need to autorelease and copy; just assign the new value. 

Before You Go On ----------------------

Exercise: The example above shows the implementation of the accessor methods 
for the name instance variable. Implement the remaining accessor methods. 

85 



Chapter 3 

4 Write the object-initialization 
and object-deallocation code. 

Implement the init method, as 
shown here. 

Implement the dealloc method, 
following the suggestions in the 
Required Exercise, below. 

Don't substitute nil when empty 
objects are expected, and vice 
versa.The Objective-C keyword 
nil represents an "object" with an 
id (value) ofzero. An empty 
object (such as @'''') is a true 
object; it just has no content of its 
given type. To learn more about 
Objective-C keywords, see 
Object-OrieJlted ProgrammiJlg aJld 
the Objective-C Lallguage. 

Note that release itself doesn't 
deallocate objects, but it leads to 
their deallocation. For more on 
release and autorelease, see 
"Object Ownership, Retention, 
and Disposal" on page 88. 

86 

Travel Advisor Tutorial 

- (id)init 

[super initl; 

name = @""; 
airports = @""; 
airlines = @""; 
transportation = @""; 
hotels = @""; 
languages = @""; 
currencyName = @""; 
comments = @""; 

return self; 

/* 1 */ 

/* 2 */ 

/* 3 */ 

1. Invokes super's (the supe~lass's) init method to have inherited instance 
variables initialized. Always do this first in an init method. 

2. Initializes an NSString instance variable to an empty string. @"" is a compiler
supported construction that creates an immutable NSString object from the 
text enclosed by the quotes. You could have just as well typed: 

name = @"Howdy Doody"; 

But that wouldn't have been practical as an initial value. You don't need to 
initialize instance variables to null values because the run-time system does 
it for you; it assigns nil to objects, zeroes to integers and floats, and NULL to 

char *'s if they're not explicitly initialized. However, you should initialize 
instance variables that take other starting values. 

3. By returning self you're returning a true instance of your object; up until this 
point, the instance is considered undefined. 

Before You Go On ----------------------

Implement the dealloc method. In this method you release (that is, send release 
or autorelease to) objects that you've created, copied, or retained (which don't 
have an impending autorelease). For the Country class, release all objects held as 
instance variables. If you had other retained objects, you would release them, 
and if you had dynamically allocated data, you would free it. 'Vhen this method 
completes, the Country object is deallocated. The dealloc method should send 
dealloc to super as the last thing it does, so that the Country object isn't released 
by its superclass before it's had the chance to release all objects it owns. 



5 Implement the methods that 
archive and unarchive the object. 

Implement the 
encodeWithCoder: method, as 
shown at right. 

Implement the initWithCoder: 
method, as shown at right. 

The NSCoder class provides a 
number of methods for encoding 
and decoding objects and data of 
standard C types. Sec the 
specification of the NSCoder 
class in the Foundation 
framework reference 
documentation. 

Implementing the Country Class 

You want the Country objects created by the Travel Advisor application to be 
persistellt. That is, you want them to "remember" their state between sessions. 
Archiving lets you do this by encoding the state of application objects in a file 
along with their class membership. The NSCoding protocol defines two 
methods that enable archiving for a class: encodeWithCoder: and initWithCoder:. 

- (void)encodeWithCoder: (NSCoder *)coder 

[coder encodeObject:name]i 

[coder encodeObject:airports]i 

[coder encodeObject:airlines]; 

[coder encodeObject:transportation]; 

[coder encodeObject:hotels] i 

[coder encodeObject:languages]i 

/* 1 */ 

[coder encodeValueOfObjCType: l s" at:&englishSpoken]i /* 2 */ 

[coder encodeObject:currencyName]i 

[coder encodeValueOfObjCType: l f" at:&currencyRate]i 

[coder encodeObject:comments]i 

1. The encodeObject: method encodes a single object in the archival file. 

2. For both object and non-object types, you can use encodeValueOfObjCType:at:. 

- (id)initWithCoder: (NSCoder *)coder 

name = [[coder decodeObject] COPY]i 

airports = [[coder decodeObject] COPY]i 
airlines = [[coder decodeObject] COPY]i 

transportation = [[coder decodeObject] COPY]i 
hotels = [[coder decodeObject] COPY]i 

languages = [[coder decodeObject] copy]; 

[coder decodeValueOfObjCType: l s" at:&englishSpoken]i 

currencyName = [[coder decodeObject] COPY]i 
[coder decodeValueOfObjCType: l f" at:&currencyRate]i 

comments = [[coder decodeObject] COPY]i 

/* 1 */ 

return selfi /* 2 */ 

1. The order of decoding should be the same as the order of encoding; since 
name is encoded first it should be decoded first. Use copy when you assign 
value-type objects to instance variables (see "Object Ownership, Retention, 
and Disposal" on page 88 ). NSCoder defines decode ... methods that 
correspond the encode ... methods, which you should use. 

2. As in any init... method, end by returning self-an initialized instance. 

87 



Chapter 3 Travel Advisor Tutorial 

Object ~~nershipl Retenti~~~"andDispos~d!t 1:03: 
~:.J.""",~~_._.,_ .. "",,,,,_ .. ,,,,~w.,,-"::;:-',,,, .. .w,~ .... ,,,,_~,,,,,,~v,,,,,,,,,>~;:..l,M~,,,,;,~~~,,,,,,,~~~~_~_'""",. .... ,'-'.,.,;.,."''''....".,. __ ~''''''''_~,~>".''',.,><'''.'"''<"'' ... ,..,.-~~_''''_~'''''~''"'~v"""""'''''' ... ''''''',.....,.,.,->;:»»-*.::", ~A.<»",,,",,,,,_,,,,,,,,,,md,,~J:l:,,\_,>~,,,,,~ .... ,>,,,..,.,,, "'_""~~"'''''-''''''''<--__ ''»''''>''»»-''''<_ 

88 

The problem of object ownership and disposal is a natural 
concern in object-oriented programming. When an object is 
created and passed around various "consumer' objects in an 
application, which object is responsible for disposing of it? And 
when? If the object is not deallocated, memory leaks. If the object 
is deallocated too soon, problems may occur in other objects that 
assume its existence, and the application may crash. 

The Foundation Framework introduces a mechanism and a policy 
that helps to ensure that objects are deallocated when-and only 
when-they are no longer needed. 

Who Owns Which Object? 

The policy is quite simple: You are responsible for disposing of all 
objects that you own. You own objects that you create, either by 

How Autorelease 
Pools Work: 
An Example 

A. myObj creates an object: 

myObj 

retention count 

anObj = [[MyClass alloe] init]; 

B. myObj returns the object to yourObj, autoreleased: 

return [anObj autorelease]; 

allocating or copying them. You also own (or share ownership in) 
objects that you retain, since retain increments an object's 
reference count (see facing page). The flip side of this rule is: If 
you don't own an object, you need not worry about releasing it. 

OK, but now another question arises. If the owner of an object 
must release the object within its programmatic scope, how can 
it give that object to other objects? The short answer is: the 
autorelease method, which marks the receiver for later release, 
enabling it to live beyond the scope of the owning object so that 
other objects can use it. 

The autorelease method must be understood in a larger context 
ofthe autorelease mechanism for object deallocation. Through 
this programmatic mechanism, you implementthe policy of object 
ownership and disposal. 

yourObj 

yourObj 

r--

.J 

Autorelease 
pool 

Autorelease pool 

2 
The object is "put" in the autorelease pool; that is, the autorelease 
pool starts tracking the object. 

C. yourObj retains the object: 

[anObj retain]; 

If the object wasn't retained itwould be deallocated atthe end ofthe 
current event cycle. 

D. Atthe end ofthe event cycle, the autorelease pool sends release to 
all of its objects, thereby decrementing their reference counts. Now 
with a reference count of 1, anObj stays in the autorelease pool. 

E. yourObj sends autorelease to the object. At the end of the event 
cycle, the autorelease pool sends release to its objects; since 
anObi's reference count is now zero, it's deallocated. 

For a fuller description of object ownership and disposal, see the 
introduction to the Foundation Framework reference documentation. 

yourObj 

yourObj 

o 
Autorelease pool 

1 

Autorelease pool 

o 



Implementing the Country Class 

Reference Counts, Autorelease Pools, and Deallocation 

Each object in the Foundation Framework has an associated 
reference count. When you allocate or copy an object, its 
reference count is set at 1. You send release to an object to 
decrement its reference count. When the reference count 
reaches zero, NSObject invokes the object's dealloc method, and 
the object is destroyed. However, successive consumers of the 
object can delay its destruction by sending it retain, which 
increments the reference count. You retain objects to ensure that 
they won't be deallocated until you're done with them. 

Each application has an autorelease pool. An autorelease pool 
tracks objects marked for eventual release and releases them at 
the appropriate time. You put an object in the pool by sending the 
object an autorelease message. When your code finishes 
executing and control returns to the application object (typically 
atthe end ofthe event cycle), the application object sends 
release to the autorelease pool, and the pool releases each 
object it contains. If afterwards the reference count of an object 
in the pool is zero, the object is deallocated. 

Putting the Policy Into Practice 

When an object is used solely within the scope of the method that 
creates it, you can deallocate it immediately by sending it release. 
Otherwise, send autorelease to all created objects that you no 
longer need but will return or pass to other objects. 

You shouldn't release objects that you receive from other objects 
(unless you precede the release or autorelease with a retain). You 
don't own these objects, and can assume that their owner has 
seen to their eventual deallocation. You can also assume that 
(with some exceptions, described below) a received object 
remains valid within the method it was received in. That method 
can also safely return the object to its invoker. 

You should send release or autorelease to an object only as many 
times as are allowed by its creation (one) plus the number of 
retain messages you have sent it. You should never send free to a 
OpenStep object. 

Implications of Retained Objects 

When you retain an object you're sharing it with its owner and 
other objects that have retained it. While this might be what you 
want, it can lead to some undesirable consequences. Ifthe owner 
is released, any object you received from it and retained is usually 
invalid. If you had retained an instance variable of the owning 
object, and that instance variable is reassigned, your reference 
would also become invalid. 

copy Versus retain 

When deciding whether to retain or copy objects, it helps to 
categorize them as value objects or entity objects. Value objects 
are objects such as NSNumbers or NSStrings that encapsulate a 
discrete, limited set of data. Entity objects, such as NSViews and 
NSWindows, tend to be larger objects that manage and 
coordinate subordinate objects. Forvalue objects, use copy when 
you want your own "snapshot" ofthe object; use retain when you 
intend to share it. Always retain entity objects. 

In accessor methods that set value-object instance variables, you 
usually (but not always) wantto make your own copy ofthe object 
and not share it. (Otherwise it might change without your 
knowing.) Send autorelease to the old object and then send 
copy-not retain-to the new one: 

- (void)setTitle: (NSString *)newTitle 

[title autorelease]i 

title = [newTitle copy]; 

OpenStep framework classes can, for reasons of efficiency, 
return objects cast as immutable when to the owner (the 
framework class) they are mutable. Thus there is no guarantee 
that a vended framework object won't change, even if it is of an 
immutable type. The precaution you should take is evident: copy 
objects obtained from framework classes if it's important the 
object shouldn't change from under you. 

89 



Chapter 3 Travel Advisor Tutorial 

Implementing the TAController Class 

90 

The TAController class plays a central role in the Travel Advisor application. As 
the application's controller object, it transfers data from the model objects 
(Country instances) to the fields ofthe interface and, when users enter or modify 
data, back to the correct Country object. The TAController must also coordinate 
the data displayed in the table view with the current object, and it must do the 
right thing when users select an item in the table view or click the Add or Delete 
button. All custom code specific to the user interface resides in TAController. 

The mechanics of this activity require an array (NSMutableArray) and a 
dictionary (NSMutableDictionary) for storing and accessing Country data. The 
following diagram illustrates the relationship among interface components, 
TAController, and the sources of data. 

o _~~fJl~~9 ___ _ 
1 France --_ .. ---_ .. _--
2 _G~!~~!)y __ _ 
3 
4 

Key Value 

I 

----------~----------5'---___ ---' 

Array TAControlier Dictionary 

The dictionary contains Country objects (values) that are identified by the 
names of countries (keys). The dictionary is the source of data for the fields of 
Travel Advisor. The array derives from the dictionary and is sorted. It is the 
source of data for the table view. 

After describing what other instance variables you must add to TAController, 
this section covers the following implementation tasks: 

• Getting the data from Country objects to the interface and back 
• Getting the table view to work, including updating Country records 
• Adding and deleting "records" (Country objects) 
• Formatting and validating field values 
• "Housekeeping" tasks (application management) 



Update TAController.h. 

Import Country.h. 

Add the instance-variable 
declarations shown at right. 

Implementing the TAControlier Class 

NSMutableDictionary *countryDict; 
NSMutableArray *countryKeys; 
BOOL recordNeedssaving; 

The variables countryDict and countryKevs identify the array and the dictionary 
discussed on the previous page. The boolean recordNeedsSaving flags that record 
if the user modifies the information in any field. 

Add the enum declaration shown 
at right between the last#import 
directive and the @interface 
directive. 

enum LogisticsFormTags 
LGairports=O, 
LGairlines, 
LGtransportation, 
LGhotels 

} ; 

This declaration is not essential, but the enum constants provide a clear and 
convenient way to identify the cells in the Logistics form. Methods such as 
cellAtlndex: identify the editable cells in a form through zero-based indexing. 
This declaration gives each cell in the Logistics form a meaningful designation. 

Turbo Coding With Project Builder 

When you write code with Project Builder you have a set of 
"workbench" tools at your disposal, among them: 

Indentation 

In Preferences you can set the characters at which indentation 
automatically occurs, the number of spaces per indentation, and 
other global indentation characteristics. The Edit menu includes 
the Indentation submenu, which allows you to indent lines or 
blocks of code on a case-by-case basis. 

Brace and Bracket Checking 

Double-click a brace (left or right, it doesn't matter) to locate the 
matching brace;the code in-between the braces is highlighted. In 
an identical fashion, double-click a square bracket in a message 
expression to locate the matching bracket. 

Name completion 

Name completion is a facility that, given a partial name, 
completes itfrom all symbols known by the project. You activate it 

by pressing Escape (or Tab, ifthat key is bound in Preferences). 
You can use name completion in the code editor andin all panels 
where you are finding information or searching for files to open. 

As an example: you know there's a certain constant to use with 
fonts, but you cannot remember it. In your code, type NSFont. 
Then press the Escape key several times. These symbols appear 
in succession (the found portion is underlined): 

NSFontldentityMatrix 
NSFontManager 
NSFontPanel 

Emacs Bindings 

You can issue the most common Emacs commands in Project 
Builder's code editor. (Emacs is a popular editor for writing code.) 
For example, there are the commands page-forward (Control-v), 
word-forward (Meta-f), delete-word (Meta-d), kill-forward 
(Control-k), and yank from kill ring (Control-y). You can also 
perform an incremental search by pressing Control-s; this 
command displays a small search panel and takes you to the next 
occurrence of whatever you type. 

91 



Chapter 3 

2 Implement the methods that 
transfer data to and from the 
application's fields. 

Implement the populateFields: 
method as shown at right. 

92 

Travel Advisor Tutorial 

Data Mediation 
TAController acts as the mediator of data exchanged between a source of data 
and the display of that data. Data mediation involves taking data from fields, 
storing it somewhere, and putting it back into the fields later. TAController has 
two methods related to data mediation: populateFields: puts Country instance data 
into the fields of Travel Advisor and extractFields: updates a Country object with 
the information in the fields. 

- (void)populateFields: (Country *)aRec 

[countryField setStringValue: [aRec name]]; /* 1 */ 

[[logisticsForm cellAtIndex:LGairports] setStringValue: 
[aRec airports]]; /* 2 */ 

[[logisticsForm cellAtIndex:LGairlines] setStringValue: 
[aRec airlines]]; 

[[logisticsForm cellAtIndex:LGtransportation] setStringValue: 
[aRec transportation]]; 

[[logisticsForm cellAtIndex:LGhotels] setStringValue: 
[aRec hotels]]; 

[currencyNameField setStringValue: [aRec currencyName]]; 
[currencyRateField setFloatValue: [aRec currencyRate]]; 
[languagesField setStringValue: [aRec languages]]; 
[englishSpokenSwitch setState: [aRec englishSpoken]]; 

[commentsField setString: [aRec comments]]; 

[countryField selectText:self]i /* 3 */ 

1. Causes the Country field to display the value of the name instance variable of 
the Country record (aRec) passed into the method. Since [aRec name] is nested, 
the object it returns is used as the argument of setStringValue:, which sets the 
textual content of the receiver (in this case, an NSTextFieldCell). 

2. The cellAtlndex: message is sent to the form and returns the cell identified by 
the enum constant LGairports. 

3. Selects the text in the Country field or, if there is no text, inserts the cursor. 

Although it doesn't do anything with data, the blankFields: method is similar in 
structure to populateFields:. The blankFields: method clears whatever appears in 
Travel Advisor's fields by inserting empty string objects and zeros. 



Implement the blankFields: 
method as shown at right. 

Implementing the TAController Class 

- (void)blankFields: (id) sender 

[countryField setStringValue:@III1]; 

[[logisticsForm cellAtlndex:LGairports] setStringValue:@III1]; 
[[logisticsForm cellAtlndex:LGairlines] setStringValue:@III1]; 
[[logisticsForm cellAtlndex:LGtransportation] setStringValue:@" 
[[logisticsForm cellAtlndex:LGhotels] setStringValue:@III1]; 

[currencyNameField setStringValue:@III1]; 
[currencyRateField setFloatValue:O.OOO]; 
[languagesField setStringValue:@"I]; 
[englishSpokenSwitch setState:NO]; 

[currencyDollarsField setFloatValue:O.OO]; 
[currencyLocalField setFloatValue:O.OO]; 
[celsius setlntValue:O]; 

[commentsField setString:@"" ]; 
[countryField selectText:self]; 

/* 1 */ 

/* 2 */ 

1. The setState: message affects the appearance of two-state toggled controls, 
such as a switch button. With an argument of YES, the checkmark appears; 
with an argument of NO, the checkmark is removed. 

2. The setString: message sets the textual contents ofNSText objects (such as the 
one enclosed by the scroll view). 

Before You Go On ----------------------

Exercise: Implement the extractFields: method. In this method set the values of the 
passed-in Country record's instance variables with the contents of the associated 
fields. 

Tip: Use the stringValue method to get field contents and use Country's accessor 
methods to set the values of instance variables. 

93 



Chapter 3 Travel Advisor Tutorial 

94 

The Project Find Panel 

The Project Find panel lets you find any symbol defined or referenced in your project. It 
also allows you to look up related reference documentation, search for text project
wide using regular expressions, and replace symbols or strings of text. To use the full 
power of Project Find, your project must be indexed; once it is, you have access to all 
symbols that the project references, including symbols defined in the frameworks and 
libraries linked into the project. 

Lists the targets of recent 
find operations; selecting one 
re-displays the results in the 
browser. 

Click a book icon to see thp--++-4I 
related reference 
documentation. 

Symbol Definition Search Syntax 

You can narrow your search for definitions of symbols by 
indicating type in the Find field ofthe Project Find panel along with 
the symbol name. Once the symbol items are listed in the browser, 
you can click an item to navigate to the definition in the header 
file, or click a book icon to display the relevant reference 
documentation. 

The following table lists examples of searching for symbol 
definitions by type: 

Example 

@NSArray 

<NSCoding> 

-objectAtl ndex: 

+stringWithFormat: 

[NSBox controlView] 

NSRunAlertPanelO 

NSApp 

Finds Definition For 

NSArray class 

NSCoding protocol 

Instance method 

Class method 

Method specific to class 

Function 

Type or constant 

.,.-------- Search for: symbol definition, 
symbol reference, textual 
strings (with or without 
regular expressions) 

Cun'e1'ltofiMoo~-- Find and replace buttons. 

Other Ways of Finding Information 

Search results. 

Click an item to display 
the relevant code 

Project Builder includes other facilities for finding information: 

• Incremental search:Control-s brings up the incremental
search panel for the currently edited file. As you type, the 
cursor advances to the next sequence of characters in the file 
that match what you type. Click Next (or press Control-s) to go 
to the next occurrence; click Prev (or press Control-r) to go to 
the previous occurrence. 

• Man pages: Choose Edit ~ Find ~ Man Page to bring up the 
"Show man page" panel. Enter the name of a tool in the panel 
to getthe man page on thattool. 

• Librarian via Services: Select a symbol or any word (for 
example, "fonts") in Project Builder, then choose Services ~ 
Librarian ~ Search to have Digital Librarian find related 
documentation. 

• Help: Project Builder and Interface Builder also feature 
context-sensitive help and task-related help. See "Where to 
Go For Help" in chapter 2, JJCurre~ncy Converter Tutorial" for 
details. 



3 Implement the behavior of the 
table view's data source. 

In TAControlier's awakeFromNib 
method, create and sort the array 
of country names. 

In the same method, designate 
self as the data source. 

If users are supposed to edit the 
cells of the table view, you would 
also make TAController the 
delegate of the table view at this 
point (with setDelegate:).The 
delegate receives messages 
relating to the editing and 
validation of cell contents. For 
details, see the specification on 
NSTableView in the Application 
Kit reference documentation. 

Implementing the TAControlier Class 

Getting the Table View to Work 
Table views are objects that display data as records (rows) with attributes 
(columns). The table view in Travel Advisor displays the simplest kind of 
record, with each record having only one attribute: a country name. 

Table views get the data they display from a data source. A data source is an 
object that implements the informal NSTableDataSource protocol to respond to 
NSTableView requests for data. Since the NSTableView organizes records by 
zero-based indexing, it is essential that the data source organizes the data it 
provides to the NSTabie View similarly: in an array. 

- (void)awakeFromNib 

NSArray *tmpArray = [[eountryDiet allKeys] /* 1 */ 
sortedArrayUsingSeleetor:@seleetor(eompare:)]i 

eountryKeys = [[NSMutableArray alloe] initWithArray:tmpArraY]i 

[tableView setDataSouree:self]i 
[[[tableView tableColumns] objeetAtlndex:O] 

setldentifier:@"Countries"]i 
[tableView sizeLastColumnToFit]i 

/* 2 */ 

/* 3 */ 

1. The [countryDictaIlKeys] message returns an array of keys (country names) from 
the unarchived dictionary that contains Country objects as values. The 
sortedArrayUsingSelector: message sorts the items in this "raw" array using the 
compare: method defined by the class of the objects in the array, in this case 
NSString (this is an example of polymorphism and dynamic binding). The 
sorted names go into a temporary NSArray-since that is the type of the 
returned value-and this temporary array is used to create a mutable array, 
which is then assigned to countryKeys. A mutable array is necessary because 
users may add or delete countries from the application. 

2. The [tableView setDataSource:self] message identifies the TAController object as 
the table view's data source. The table view will commence sending 
NSTableDataSource messages to TAController. (You can effect the same 
thing by setting the NSTableView's dataSource outlet in Interface Builder.) 

3. Every column has an identifier to associate it with a column, which is itself 
usually associated with an attribute. By default, the identifier is a number: the 
first column is 0, the second column is 1, and so on. This compound message 
makes the identifier a string object and thus binds it semantically to the 
attribute. The tableColumns method returns all NSTableColumns in a array; in 
this case, only the single column of this table view. The setldentifier: message 
sets the value. 

95 



Chapter 3 

Implementtwo methods of the 
NSTableDataSource informal 
protocol: 

- numberOfRowslnTableView: 
- tableView: 

96 

objectValueForTableColumn: 
row: 

Travel Advisor Tutorial 

To fulfill its role as data source, TAController must implement two methods of 
the NSTableDataSource informal protocol. 

- (int)numberOfRowslnTableview: (NSTableView *)theTableView 
/* 1 */ 

return [countryKeys count]; 

- (id)tableView: (NSTableView *)theTableView /* 2 * / 
objectValueForTableColumn: (NSTableColumn *)theColumn 

row: (int)rowlndex 

if ([[theColumn identifier] isEqualToString:@"Countries"]) 
return [countryKeys objectAtlndex:rowlndex]; 

else 
return nil; 

1. Returns the number of country names in the countryKeys array. 

If you had an application with multiple table views, each would invoke this 
NSTableView delegation method (as well as the others). By evaluating the 
theTableView argument, you could distinguish which table view was involved. 

2. This method first evaluates the column identifier to determine if it's the right 
column (it should always return "Countries"). If it is, the method returns the 
country name from the countryKeys array that is associated with rowlndex. This 
name is then displayed at rowlndex of the column. (Remember, the array and 
the cells of the column are synchronized in terms of their indexing.) 

The NSTableDataSource informal protocol has a another method, 
tableView:setObjectValue:forTableColumn:row~ that you won't implement in this 
tutorial. This method allows the data source to extract data entered by users into 
table-view cells; since Travel Advisor's table view is read-only, there is no need 
to implement it. 



Implementing the TAControlier Class 

in on the Action: Delegation and Notification 

A lot goes on in a running application: events are being 
interpreted, files are being read, views are being drawn. Because 
your custom objects might be interested in any ofthese activities, 
OpenStep offer two mechanisms through which your objects can 
participate or be kept informed of events going on in the 
application: delegation and notification. 

Delegation 

Many OpenStep framework objects hold a delegate as an 
instance variable. A delegate is a object that receives messages 
from the framework object when specific events occur. 
Delegation messages are of several types, depending on the 
expected role of the delegate: 

• Some messages are purely informational, occurring after an 
event has happened. They allow a delegate to coordinate its 
actions with the other object. 

• Some messages are sent before an action will occur, allowing 
the delegate to veto or permitthe action. 

• Other delegation messages assign a specific task to a 
delegate, like filling a browser with cells. 

You can set your custom objectto be the delegate of a framework 
object programmatically or in Interface Builder. Your custom 
classes can also define their own delegate variables and 
delegation protocols for client objects. 

Notification 

A notification is a message that is broadcast to all objects in an 
application that are interested in the event the notification 
represents. As does the informational delegation message, the 
notification informs these observers that this event took place. It 
can also pass along relevant data about the event. 

notification center 

oddBall 

A 

posts 

OddBallDidActSillyNotification 

Here's the way the notification process works: 

c 

• Objects who are interested in an event that happens 
elsewhere in the application - say the addition of a record to 
a database - register themselves with a notification center 
(an instance of NSNotificationCenter) as observers of that 
event. Delegates of an objectthat posts notifications are 
automatically registered as observers of those notifications. 

• The object that adds the objectto the database (or some such 
event) posts a notification (an instance of NSNotification) to a 
notification center. The notification contains a tag identifying 
the notification, the id ofthe associated object, and, optionally, 
a dictionary of supplemental data. 

• The notification center then sends a message to each 
observer, invoking the method specified by each, and passing 
in the notification. 

Notifications hold some advantages over delegation messages as 
a means of inter-application communication. They allow an object 
to synchronize its behavior and state with multiple objects in an 
application, and without having to know the identity of those 
objects. With notification queues, it is also possible to post 
notifications asynchronously and coalesce similar notifications. 

97 



Chapter 3 

4 Update records. 

Implement the method that 
responds to user selections in the 
table view. 

98 

Travel Advisor Tutorial 

The final thing you need to do to get the table view working is to respond to 
mouse clicks in it. As you recall, you defined in Interface Builder the 
handleTVClick: action for this purpose. This method must do a number of things: 

• Save the current Country object or create a new one. 
• If there's a new record, re-sort the array providing data to the table view. 
• Display the selected record. 

- (void)handleTVClick: (id) sender 

Country *aRec, *newRec, *newerRecj 
int index; 

/* does current obj need to be saved? */ 
if (recordNeedsSaving) { 

/* is current object already in dictionary? */ 
/* 1 */ 

if (aRec=[eountryDict objectForKey: [countryField stringValue]]) 

/* remove if it's been changed */ 
if (aRec) { 

NSString *country = [aRee name]; 
[eountryDict removeObjectForKey:countrY]i 
[countryKeys removeObject:countrY]i 

/* Create Country obj, add to dict, add name to keys array */ 
newRec = [[Country alloe] init]; 
[self extractFields:newRee]i 
[countryDictsetObject:newReeforKey: [countryFieldstringValue]]j 
[countryKeys addObject: [countryField stringValue]]j 

/* sort array here */ 
[countryKeys sortUsingSelector:@selector(compare:)]; 
[tableView tile]; 

index = [sender selectedRow]j 
if (index >= 0 && index < [eountryKeys count]) 

newerRec = [countryDict objectForKey: 
[countryKeys objeetAtIndex:index]]; 

[self populateFields:newerRec]; 

/* 2 */ 

[commentsLabel setStringValue: [NSString stringWithFormat: 
@"Notes and Itinerary for %@", [countryField stringValue]]]j 

recordNeedsSaving=NOj 

This method has two major sections, each introduced by an if statement. 



Implementing the TAControlier Class 

1. When any Country-object data is added or altered, Travel Advisor sets the 
recordNeedsSaving flag to YES (you'll learn how to do this on later on). If 
recordNeedsSaving is YES, first delete any existing Country record for that 
country from the dictionary and also remove the country name from the table 
view's array. (Upon removal, the objects are automatically released by the 
array.) Then create a new Country instance and initialize it with the values 
currently on the screen; add the instance to the dictionary, add the country 
name to the table view's array, sort the array, and reset the recordNeedsSaving 
flag. At the end, invoke thetile method, which (among other things) causes 
the table view to request data from its data source. 

2. The selectedRow message queries the table view for the row index of the cell 
that was clicked. If this index is within expected bounds, use it to get the 
country name from the array, and then use the country name as the key to get 
the associated Country instance. Write the instance-variable values of this 
instance to the fields of the application, update the "Notes and Itinerary for" 
label. 

Optional Exercise ----------------------

Application developers often like to have key alternatives to mouse actions such 
as clicking a table view. One way of acquiring a key alternative is to add a menu 
cell in Interface Builder, specify a key as an attribute of the cell, define an action 
method that will be invoked, and then implement that method. 

The methods nextRecord: and prevRecord: should be invoked when users chose 
N..ext Record and Prev Record or type the key equivalents Command-n and 
Command-r. In TAController.m, implement these methods, keeping the following 
hints in mind: 

1. Get the index of the selected row (selectedRow). 

2. Increment or decrement this index, according to which key is pressed (or 
which command is clicked). 

3. If the start or end of the table view is encountered, "wrap" the selection. 
(Hint: Use the index of the last object in the countryKeys array.) 

4. Using the index, select the new row, but don't extend the selection. 

5. Simulate a mouse click on the new row by sending handleTVClick: to self. 

99 



Chapter 3 

5 Implement the method that adds 
a Country object to the 
NSDictionary "database." 

100 

Travel Advisor Tutorial 

Adding and Deleting Records 
When users click Add Record to enter a Country "record," the addRecord: 

method is invoked. You want this method to do a few things besides adding a 
Country object to the application's dictionary: 

• Ensure that a country name has been entered. 
• Make the table view reflect the new record. 
• If the record already exists, update it (but only if it's been modified). 

- (void)addRecord: (id) sender 

Country *aCountry; 
NSString *countryName = [countryField stringValue]; 

/* 1 */ 

if (countryName && (! [countryName isEqualToString:@"I])) 
aCountry = [countryDict objectForKey:countryName]i 
if (aCountry && recordNeedsSaving) { 

/* 2 */ 

/* 3 */ 

/* 4 */ 

/* remove old Country object from dictionary */ 
[countryDict removeObjectForKey:countryName]; 
[countryKeys removeObject:countryName]; 
aCountry = nil; 

if (!aCountry) /* record is new or has been removed */ 
aCountry = [[Country alloc] init]; 

else /* record already exists and hasn't changed */ 
return; 

[self extractFields:aCountry]; 
[countryDict setObject:aCountry forKey: [aCountry name]]; 
[countryKeys addObject: [aCountry name]]; 

·[countryKeys sortUsingSelector:@selector(compare:)]; 

recordNeedsSaving=NO;. 
[commentsLabel setStringValue: [NSString stringWithFormat: 

@"Notes and Itinerary for %@", [countryField stringValue] 
[countryField selectText:self]; 

[tableView tile]; 
[tableView selectRow: [countryKeys indexOfObject: 

[aCountry name]].byExtendingSelection:NO]; 

1. This section of code verifies that a country name has been entered and sees 
if there is a Country object in the dictionary. If there's no object for the key, 
objectForKey: returns nil. If the object exists and it's flagged as modified, the 
code removes it from the dictionary and removes the country name from the 



Implementing the TAControlier Class 

countryKeys array. Note that removing an object from a dictionary or array also 
releases it, so the code sets aCountry to nil. It then tests aCountry and, if it's nil, 

creates a new object; otherwise it just returns, because an object already exists 
for this country and it hasn't been modified. 

2. After updating the new Country object with the information on the 
application's fields (extractFields:), this code adds the Country object to the 
dictionary and the country name to the countryKeys array. 

3. This section of code performs some things that have to be done, such as 
resetting the recordNeedsSaving flag and updating the label over the scroll view 
to reflect the just-added country. 

4. The tile message forces the table view to update its contents. The 
selectRow:byExtendingSelection: message highlights the new record in the table 
VIew. 

Before You Go On --------------------

Exercise: Implement the deleteRecord: method. Although similar in structure to 
addRecord: this method is much simpler, because you don't need to worry about 
whether a Country record has been modified. Once you've deleted the record, 
remember to update the table view and clear the fields of the application. 

Abstract Classes and Class Clusters 

Many of the classes in the Foundation 
Framework fall into functional constellations 
of public and private classes called class 
clusters. Class clusters simplify the 
programming interface and permit more 
efficient storage of data. 

An abstract class (such as NSArray) defines 
the public interface for objects vended from 
class clusters. Abstract classes declare 
methods common to private, concrete 
subclasses, but do not declare any instance 
variables to hold data-that's done by the 
private classes. When you send an object
creation message to an abstract class, it 
instantiates and returns an instance of the 

appropriate private subclass. What's 
appropriate depends on the creation 
method, which indicates the type of storage 
required. The class membership of the 
returned object is hidden, but its interface, as 
declared by the abstract superclass, is 
public. 

Many OpenStep class clusters have two or 
more abstract classes. Usually one class 
provides the interface for obtaining 
immutable objects (for example, NSArray) 
and another class, which inherits from the 
mutable class, vends mutable versions of the 
same type of object (NSMutableArray). 

101 



Chapter 3 

6 Format and validate numeric 
fields. 

Set the entry type and floating
pointformat of some TAControlier 
fields in the awakeFromNib 
method. 

In awakeFromNib, make 
TAControlier a delegate of the 
field to be validated. 

Implementthe 
control:isValidObject: method to 
validate the value of the field. 

102 

Travel Advisor Tutorial 

Field Formatting and Validation 
Travel Advisor has several numeric fields. Some display temperatures while 
others display currency amounts. In this stage, you'll enable these fields to 

format their contents by using a formatting API defined in the Application Kit. 

- (void)awakeFromNib 

[[currencyRateField cell] setEntryType:NSFloatType]; 
[[currencyRateField cell] setFloatingPointFormat:YES 

left:2 right:l]; 
[[currencyDollarsField cell] setEntryType:NSFloatType]; 
[[currencyDollarsField cell] setFloatingPointFormat:YES left:5 

right:2]; 
[[currencyLocaIField cell] setEntryType:NSFloatType]; 
[[currencyLocaIField cell] setFloatingPointFormat:YES left:5 

right:2]; 
[[celsius cell] setEntryType:NSFloatType]; 
[[celsius cell] setFloatingPointFormat:YES left:2 right:l]; 

The NSCell class provides methods for specifying how cell values are 
formatted. In this instance, setEntryType: sets the type of value as a float and 
setFloatingPointFormat:left:right: specifies the number of digits on each side of the 
decimal point. 

The NSControrclass gives you an API for validating the contents of cells. 
Validation verifies that the values of cells fall within certain limits or meet 
certain criteria. In Travel Advisor, we want to make sure that the user does not 
enter a negative value in the Rate field. 

The request for validation is a message-control:isValidObject:-that a control 
sends to its delegate. The control, in this case, is the Rate field. 

[currencyRateField setDelegate:self]; 

- (BOOL) control: (NSControl *)control isValidObject: (id)obj 

if (control == currencyRateField) { 
if ([obj floatValue] < 0.0) { 

NSRunAlertPanel(@"Travel Advisor", 

/* 1 */ 

/* 2 */ 

@"Rate cannot be negative.", nil, nil, nil); 
return NO; 

return YES; 



Implementing the TAControlier Class 

Behind "Click Here": Controls, Cells, and Formatters 

Controls and cells lie behind the appearance and behavior of 
most user-interface objects in OpenStep, including buttons, text 
fields, sliders, and browsers. Although they are quite different 
types of objects-controls inherit from NSControl while cells 
inherit from NSCell-they interact closely. 

Controls enable users to signal their intentions to an application, 
and thus to contra/what is happening. By interpreting mouse and 
keyboard events and asking another objectto respond to them, 
controls implement the target/action paradigm described in 
"Paths for Object Communication: Outlets, Targets, and Actions" 
on page 38. Controls themselves can hold targets and actions as 
instance variables, but usually they getthis data from the affected 
cell (which must inherit from NSActionCell). 

Cells are rectangular areas "embedded" within a control. A 
control can hold multiple cells as a way to partition its surface into 
active areas. Cells can draw their own contents either as text or 
image (and sometimes as both), and they can respond individually 
to user actions. Since cells are typically more frugal consumers of 
memory than controls, they help applications be more efficient. 

cell 
(NSButtonCel/) 

control 
(NSMatrix) 

------ control 
(NSTextField) cell 

(NSTextFieldCel/} 

Controls act as managers of their cells, telling them when and 
where to draw, and notifying them when a user event (mouse 
clicks, keystrokes) occurs in their areas. This division of labor, 
given the relative "weight" of cells and controls, provides a great 
boost to application performance. 

tracking messages 

Cell 

drawing messages 

A control does not have to have a cell associated with it, but most 
user-interface objects available on Interface Builder's standard 
palettes are cell-control combinations. Even a simple button
from Interface Builder or programmatically created-is a control 
(an NSButton instance) associated with an NSButtonCel1. The 
cells in a control such as a matrix must be the same size, butthey 
can be of different classes. More complex controls, such as table 
views and browsers, can incorporate various types of cells. 

Cells and Formatters 

When one thinks of the contents of cells, it's natural to consider 
onlytext(NSString) and images (NSlmage). The contentseemsto 
be whatever is displayed. However, cells can hold other kinds of 
objects, such as dates (NSDate), numbers (NSNumber), and 
custom objects (say, phone-number objects). 

Formatter objects handle the textual representation ofthe objects 
associated with cells and translate what is typed into a cell into 
the underlying object. Using NSCel\'s setFormatter:, you must 
programmatically associate a formatter with a cell to getthis 
behavior. 

... andvice 
versa 

The Foundation Framework provides the NSDateFormatter class 
to generate date formatters and will release other specialized 
formatter classes in the future. You can make a custom subclass 
of NSFormatter to derive your own formatters. 

1 
" 1 

103 



Chapter 3 

For more information on 
NSRunAlertPanel(), see the 
"Functions" section of the 
Application Kit (framework) 
reference documentation. 

104 

Travel Advisor Tutorial 

1. Because you might have more than one field's value to validate, this example 
first determines which field is sending the message. It then checks the field's 
value (passed in as the second object); if it is negative, it displays an attention 
panel and returns NO, blocking the entry of the value. Otherwise, it returns 
YES and the field accepts the value. 

2. The NSRunAlertPanelO function allows you to display a modal attention panel 
from any point in your code. The above example calls this function simply to 
inform the user why the value cannot be accepted. 

Rate cannotbenegatlve. 

Although Travel Advisor doesn't evaluate it, the NSRunAlertPanelO function 
returns a constant indicating which button the user clicks on the panel. The 
logic of your code could therefore branch according to user input. In 
addition, the function allows you to insert variable information (using printfO
style conversion specifiers) into the body of the message. 



7 Archive the application's objects 
when it terminates. 

Implement the delegate method 
applicationShouldTerminate:, as 
shown at right. 

Implementing the TAControlier Class 

Application Management 
By now you've finished the major coding tasks for Travel Advisor. All that 
remains to implement are a half dozen or so methods. Some of these methods 
perform tasks that every application should do. Others provide bits of 
functionality that Travel Advisor requires. In this section you'll: 

• Archive and unarchive the TAController object. 
• Implement TAController's init and dealloc methods. 
• Save data when the application terminates. 
• Mark the current record when users make a change. 
• Obtain and display converted currency values. 

The data that users enter into Travel Advisor should be saved in the file system, 
or archived. The best time to initiate archiving in Travel Advisor is when the 
application is about to terminate. Earlier you made TAController the delegate 
of the application object (NSApp). Now respond to the delegate message 
applicationShouldTerminate:, which is sent just before the application terminates. 

- (BOOL)applicationShouldTerminate: (id) sender 
/* 1 */ 

NSString *storePath = [[[NSBundle mainBundle] bundlePath] 
stringByAppendingPathComponent:@"TravelData"]j 

/* save current record if it is new or changed */ 

[self addRecord:self]j 
/* 2 */ 

if (countryDict && [countryDict count]) 
[NSArchiver archiveRootObject:countryDict toFile:storePath] 

return YESj 

1. Constructs a pathname to the application wrapper in which to store the 
archive file "TravelData." The application wrapper-the "hidden" directory 
holding the application executable and required resources-is a bundle, so 
NSBundle methods are used to get the bundle path. 

2. If the countryDict dictionary holds Country objects, TAController archives it 
with the NSArchiver class method archiveRootObject:toFile:. Since the dictionary 
is designated as the root object for archiving, all objects that the dictionary 
references (that is, the Country objects it contains) will be archived too. 

105 



Chapter 3 Travel Advisor Tutorial 

8 Implement TAControlier's 
methods for initializing and 
deallocating itself. 

Implementthe init method, as 
shown at right. 

106 

Implement the dealloc method to 
release object instance variables. 

- (id)init 
{ 

/* 1 */ 

NSString *storePath = [[NSBundle mainBundle] 
pathForResouree:@ITravelData" ofType:nilli 

[super init]; 
/* 2 */ 

eountryDiet = [NSUnarehiver unarehiveObjeetWithFile:storePath]; 
/* 3 */ 

if (!eountryDiet) 
eountryDiet 
eountryKeys 

else 
eountryDiet 

[[NSMutableDietionaryalloe] init]; 
[[NSMutableArrayalloe] initWithCapaeity:l0]; 

[eountryDiet retain]; 
reeordNeedsSaving=NOj 

return self; 

1. Using NSBundle methods, locates the archive file "TraveIData" in the applicati l 

wrapper and returns the path to it. 

2. The unarchiveObjectWithFile: message unarchives (that is, restores) the object whos( 
attributes are encoded in the specified file. The object that is unarchived and 
returned is the NSDictionary of Country objects (countryDict). 

3. If no NSDictionary is unarchived, the countryDict instance variable remains nil. If tl 
is the case, TAController creates an empty countryDict dictionary and an empty 
countryKeys array. Otherwise, it retains the instance variable. 

Flattening the Object Network: Coding and Archiving 

Coding, as implemented by NSCoder, takes 
a network of objects such as exist in an 
application and serializes that data, 
capturing the state, structure, relationships, 
and class memberships ofthe objects. As a 
subclass of NSCoder, NSArchiver extends 
this behavior by storing the serialized data 
in a file. 

When you archive a root object, you archive 
not only that object but all other objects the 
root object references, all objects those 
second-level objects reference, and so on. 
To be archived, however, objects must 
conform to the NSCoding protocol. This 
conformance requires that they implement 

the encodeWithCoder: and initWithCoder: 
methods. 

Thus sending archiveRootObject:toFile: to 
NSArchiver leads to the invocation of 
encodeWithCoder: in the root object and in 
all referenced objects that implement it. 
Similarly, sending unarchiveObjectWithFile: 
to NSUnarchiver results in initWithCoder: 
being invoked in those objects referenced in 
the archive file. These objects reconstitute 
themselves from the instance data in the file. 
In this way, the network of objects, three
dimensional in abstraction, is converted to 
a two-dimensional stream of data and 
back again. 



9 Write the code that marks 
records as modified. 

In the awakeFromNib method, 
make TAControlier an observer of 
NSControlTextDidChangeNotification. 

Implement textDidChange: to set 
the recordNeedsSaving flag. 

You post notifications and add 
objects as observers of 
notifications with methods 
defined in the 
NSNotificationCenter class. 
NSNotification defines methods 
for creating notification objects 
and for accessing their attributes. 
See the specifications of these 
classes in the Foundation 
Framework reference 
documentation. 

10 Implement the method that 
responds to a request for a 
currency conversion. 

Implementing the TAControlier Class 

When users modify data in fields of Travel Advisor, you want to mark the current 
record as modified so later you'll know to save it. The Application Kit broadcasts 
a notification whenever text in the application is altered. To receive this 
notification, add TAController to the list of the notification's observers. 

[[NSNotificationCenter defaultCenter] addObserver:self 

selector:@selector(textDidChange:) 

name:NSControlTextDidChangeNotification object:nil]; 

Next, implement the method that you indicated would respond to the 
notification; this method sets a flag, thereby marking the record as changed. 

- (void)textDidChange: (NSNotification *)notification 

if ([notification object] 

[notification object] 

recordNeedsSaving=YES; 

currencyDollarsField I I 
celsius) return; 

Two of the editable fields of Travel Advisor hold temporary values used in 
conversions and so are not saved. This statement checks if these fields are the 
ones originating the notification and, if they are, returns without setting the flag. 
(The object message obtains the object associated with the notification.) 

The final method to implement is almost identical to the one you wrote for 
Currency Converter to display the results of a currency conversion when the 
user clicks the Convert button for currency conversion. 

- (void)convertCurrency: (id) sender 

[currencyLocalField setFloatValue: 

[converter convertAmount: [currencyDollarsField floatValue] 

byRate: [currencyRateField floatValue]]]; 

Optional Exercise -----------------------

Convert Celsius to Fahrenheit: Implement the convertCelsius: method. You've already 
specified and connected the necessary outlets (celsius, fahrenheit) and action 
(convertCelsius:), so all that remains is the method implementation. The formula 
you'll need is: 

107 



Chapter 3 Travel Advisor Tutorial 

108 

Using the Graphical Debugger' 

fI------------------~--

LIiI TravelAdvisor - INetJseaportJJlrojects/Pubs Staff ,lJostremlDev Env ~ 
Project Builder's graphical debugger provides an 
easy-to-use, intuitive user interface to gdb, the 
GNU debugger. 

~iiiiiijji:=:..J-_-- Launch program; run debugger; inspect 
task (breakpoints, stack, etc.) 

~mf"ll:Ei'l'Srnr-t---- Run the application being debugged; 
interrupt and continue the application. 

Print value, print referenced value, print 
object description (select variable first). 

ibrary,/Fn3me\IOr~;s/~'oul'lIti(Kit. fr'amework/Vlers:Lom~'io!!II!MIoOM-~--~ Step over, step into statement. 

ile~~IitIOIi __________ ~_ Launch options (see below) 

(sel f=Elx14848c , 

1I~~g~§§§§§§§EEEEEEEEEE§~~~r You can also issue gdb commands on the 
t command line. 

- (BOOl) applicationShouldTerminate : (id) sender 
{ 

NSString *storePath = [[ [NSBundle mainBundle] bundlePath] 
stringByAppendingPathComponent:@"TravelData"]; 

Launch options affect both 
launched and debugged programs. 
The inspector displays allow you to 
set target executables, 
environment variables, and source 
directories. 



Building and Running Travel Advisor 

Building and Running Travel Advisor 

When Travel Advisor is built, start it up by double-clicking the icon in the File 
lVianager. Then put the application through the following tests: 

• Enter a few records. lViake up geographical information if you have to
you're not trusting your future travels to this application. Not yet, anyway. 

• Click the items in the table view and notice how the selected records are 
displayed. Press Command-n and Command-r and observe what happens. 

• Enter values in the conversion fields to see how they're automatically 
formatted. Try to enter a negative value in the Rate field. 

• Quit the application and then start it up again. Notice how the application 
displays the same records that you entered. 

Tips for Eliminating Deallocation Bugs 

Problems in object deallocation are not unusual in OpenStep 
applications under development. You might release an objecttoo 
many times or you might not release an object as many times as 
is needed to deallocate it. Both situations lead to nasty problems 
-in the first case, to run-time errors when your code references 
non-existent objects; the second case leads to memory leaks. 

If you're releasing an object too many times, you'll get run-time 
error messages telling you that a message was sent to a freed 
object. To find which methods were releasing the object, in gdb or 
the graphical debugger:: 

Send enableFreedObjectCheck: to NSAutoreleasePool with 
an argument of YES. 

2 Set a breakpoint on _NSAutoreleaseFreedObject. 

3 Run the program under the debugger. 

4 When the program hits the breakpoint, do a backtrace and 
check the stack to find the method releasing the object. 

Other tools help you track down problems related to release and 
autorelease: 

• The oh command records allocation and deallocation events 
related to a specific process. It produces a report showing the 
stack frame for an object each time the object is allocated, 
copied, retained or released. 

• The AnalyzeAllocation tool compiles statistics on memory 
allocation during the time a program executes. 

See the man pages on these tools for more information. 

Avoiding Deallocation Errors 

Here's a fewthings to remember that might help you avoid 
deallocation bugs in OpenStep code: 

• Make sure there's an alloc, copy, mutableCopy, or retain 
message sent to an object for each release or autorelease 
sentto it. 

• When you release a collection object (such as an NSArray), 
you release all objects stored in it as well. When you request 
an object stored in a collection object, it's returned to you 
autoreleased. 

• Superviews retain subviews as you add them to the view 
hierarchy and release subviews as you release them. If you 
want to keep swapped-out views, you should retain them. 
Similarly, when you replace a window's or box's content view, 
the old view is released and the new view is retained. 

• To avoid retain cycles, objects should not retain their 
delegates. Objects also should not retain their outlets, since 
they do not own them. 

109 



Chapter 3 Travel Advisor Tutorial 

110 



(Juliets 

calenciaJ 

da~,,'Label 

ite rn t',,1 atri;:.~ 

lielions 

February 1996 

To Do on Tue February' 13 1996 

--> 1 

If~~;~~i~~Ef~~~c~i~!~~l~~~~l_-..-.t1 ~-----~-

_~l.""""o""","O""o",oOO"OO" 





4 
Sections 

The design of To Do 

Setting up the project 

Creating the model class 

Subclass example: adding 
data and behavior 

The basics of a multi
document application 

Managing documents through 
delegation 

Managing the data and 
coordinating its display 

Subclass example: overriding 
behavior 

Creating and managing an 
inspector 

Subclass example: overriding 
and adding behavior 

Setting up timers for 
notification messages 

Build, run, and extend the 
application 

Concepts 

Starting up - what happens in NSApplicationMainO 

Dynamically loading resources and code 

Dates and times in OpenStep 

The structure of multi-document applications 

Chapter 4 

To Do Tutorial 

The application quartet: NSResponder, NSApplication, NSWindow, and NSView 

Coordinate systems in OpenStep 

Events and the event cycle 

A short guide to drawing and compositing 

Making a custom NSView 

Run loops and timers 

113 



To Do Tutorial 

114 



Niany kinds of applications-word processors and spreadsheets, to name a 
couple-are designed with the notion of a document in mind. A document is a 
body of information, usually contained by a window, that is self-contained and 
repeatable. Users can create, modify, store, and access a document as a discrete 
unit. Multi-document applications (as these programs are called) can generate 
an almost unlimited number of documents. 

The To Do application presented in this chapter is a multi-document 
application. It is a fairly simple personal information manager (PIN!). Each To 
Do document captures the daily "must-do" items for a particular purpose. For 
instance, one could have a To Do list for work and another one for home. To Do 
allows users to: 

• Enter appointments or actions that they must complete on particular days. 
• Specify the times those items are due. 
• Receive notifications at a specified interval before the due time. 
• Associate notes with to-do items. ' 
• Nlark items as complete or deferred. 

II II Work Schedule.td - -/Misc ILl I x 

January 1996 
Sun Mon Tue Wed Thu Fri Ss.! 

~L:J~...:J~~ 
.-J~ 9 ~~_~=-L~:J 
~~16 17~~~ 
~-==-J 23 iJ~ 27 

~iJ~~ 

C>tal.U.:,,o,uuc To Do on Tue Januarj 30 1886 

X 10:00AM II board meeting 

12:30At'y'111Iunc~.with SenatorF. 

..,; •• > II phonetvl°m 
____ ~I~I ----------------
__ -,II 
----~II~--------------
__ -,II 

Inspector [ X 

Dat.e: Tue, Jan 30 1996 

Item: board meeting 

Notification ... 1 

Time: 11O~i l!l._ (" AI\·1 r Ptvl 

----:-- When to Notify -
..JDO not notify 
.d15 minutes before 
..J 1 hour before 

..J 1 day before 

..JOther ~ hours 

As with Travel Advisor, you're going to cover a lot of OpenStep territory by 
completing this tutorial. It explores two major areas: 

• Multi-document architecture: The design of applications that can create 
multiple documents, save and restore those documents, and do the right 
thing on certain events, such as application termination. 

115 



Chapter 4 To Do Tutorial 

• Strategies for subclassing: Reuse of existing classes by adding behavior and 
data, by overriding existing behavior, or by doing both things. 

You will also learn about other aspects of OpenStep programming: 

• Opening and saving files 
• Loading nib files (and other bundles) programmatically 
• Creating and managing inspectors 
• Programmatic creation and manipulation of user-interface objects 
• Time and date manipulation 
• Declaring informal protocols 
• Using timers 

And you'll be introduced to these important OpenStep concepts: 

• Event handling 
• The core program framework 
• Drawing and image composition 

When you complete this tutorial, you should be ready to tackle OpenStep 
programming on your own. 

Starting Up - What Happens in NSApplicationMainO 

Every OpenStep application project created through Project 
Builder has the same mainO function (in the file 
ApplicationName_main.m). When users double-click an 
application or document icon in the File Viewer, mainO (the entry 
point) is called first; mainO, in turn, calls NSApplicationMain()
and that's all it does. 

The NSApplicationMainO function does what's necessary to get 
an OpenStep application up and running-responding to events, 
coordinating the activity of its objects, and so on. The function 
starts the network of objects in the application sending messages 
to each other. Specifically, NSApplicationMainO: 

116 

Gets the application's attributes, which are stored in the 
application wrapper as a property list. From this property list, 
it gets the names ofthe main nib file and the principal class (for 
applications, this is NSApplication or a custom subclass of 
NSApplication). 

2 Gets the Class object for NSApplication and invokes its 
sharedApplication class method, creating an instance of 
NSApplication, which is stored in the global variable, NSApp. 
Creating the NSApplication object connects the application to 
the window system and the Display PostScript server, and 
initializes its PostScript environment. 

3 Loads the main nib file, specifying NSApp as the owner. 
Loading unarchives and re-creates application objects and 
restores the connections between objects. 

4 Runs the application by starting the main event loop. Each time 
through the loop, the application object gets the next available 
event from the Window Server and dispatches it to the most 
appropriate object in the application. The loop continues until 
the application object receives a stop: or terminate: message, 
after which the application is released and the program exits. 

You can add your own code tomainO to customize application 
start-up or termination behavior. 



The Design of To Do 

The ToDoInspector instance in 
the above diagram is an offshoot 
of the application controller, 
ToDoController. By breaking 
down a problem domain into 
distinct areas of responsibility, 
and assigning cenain types of 
objects to each area, you increase 
the modularity and reusability of 
the object, and make 
maintenance and trouble
shooting easier. See "Object
Oriented Programming" in the 
appendix for more on this. 

The Design of To Do 

The To Do application vaults past Travel Advisor in terms of complexity. 
Instead of Travel Advisor's one nib file, To Do has three nib files. Instead of 
three custom classes, To Do has seven. This diagram shows the 
interrelationships among instances of some of those classes and the nib files that 
they load: 

~=-_.a ToDolnspector.nib 

---II~~ Creates 

q ToDo.nib 

ToDoDoc.nib 

ToDoltem 
(Model) 

Some of the objects in this diagram are familiar, fitting as they do into the 
Model-View-Controller paradigm. The ToOoltem class provides the model 
objects for the application; instances of this class encapsulate the data associated 
with the items appearing in documents. They also offer functions for computing 
subsets of that data. And then there's the controller object ... actually, there is 
more than one controller object. 

To Do's Multi-Document Design 
Two types of controller objects are at the heart of multi-document application 
design. They claim different areas of responsibility within an application. 
ToOoController is the application cOlltroller, it manages events that affect the 
application as a whole. Each ToOoDoc object is a document cOlltroller, and 
manages a single document, including all the ToOoItems that belong to the 
document. Naturally, it's essential that the application controller be able to 
communicate with its (potentially) numerous document controllers, and they 
with it. 

117 



Chapter 4 To Do Tutorial 

118 

Netaded: Dynamically Loading Res~ui'ces an~ 

As any developer knows well, performance is a key consideration 
in program design. One factor is the timing of resource allocation. 
If an application loads all code and resources that it might use 
when it starts up, it will probably be a sluggish, bloated 
application-and one that takes awhile to launch. 

You can strategically store the resources of an application 
(including user-interface objects) in several nib files. You can also 
put code that might be used among one or more loadable bundles. 
When the application needs a resource or piece of code, it loads 
the nib file or loadable bundle that contains it. This technique of 
deferred allocation benefits an application greatly. By conserving 
memory, it improves program efficiency.ltalso speeds upthetime 
it takes to launch the application. 

Auxiliary Nib Files 

When more sophisticated applications start up, they load only a 
minimum of resources in the main nib file-the main menu and 
perhaps a window. They display other windows (and load other 
nib files) only when users request it or when conditions warrant it. 

Nib files other than an application's main nib file are sometimes 
called auxiliary nib files. There are two general types of auxiliary 
nib files: special-use and document. 

Special-use nib files contain objects (and other resources) 
that might be used in the normal operation ofthe application. 
Examples of special-use nib files are those containing inspector 
panels and Info panels. 

Document nib files contain objects that represent some 
repeatable entity, such as a word-processor document. A 
document nib file is a template for documents: it contains the UI 
objects and other resources needed to make a document. 

The Owner of an Auxiliary Nib File 

The object that loads a nib file is usually the object that owns 
it. A nib file's owner must be external to the file. Objects 
unarchived from the nib file communicate with other objects in 
the application only through the owner. 

In Interface Builder, the File's Owner icon represents this external 
object. The File's Owner is typically the application controller for 
special-use nib files, and the document controller for document 

nib files. The File's Owner object is not really appearing twice; it's 
created in one file and referenced in the other. 

The File's Owner object dynamically loads a nib file and makes 
itself the owner of that file by sending loadNibNamed:owner: to 
NSBundle, specifying self as the second argument. 

NSBundle and Bundles 

A bundle is a location in the file system that stores code and the 
resources that go with that code, including images, sounds, and 
archived objects. A bundle is also identified with an instance of 
NSBundle, which makes the contents of the bundle available to 
other objects that request it. 

The generic notion of bundles is pervasive throughout OpenStep. 
Applications are bundles, as are frameworks and palettes. Every 
application has at least one bundle-its main bundle-which is 
the ".app" directory (or application wrappen where its 
executable file is located. This file is loaded into memory when 
the application is launched. 

Loadable Bundles 

You can organize an application into any number of other bundles 
in addition to the main bundle and the bundles of linked-in 
frameworks. Although these loadable bundles usually reside 
inside the application wrapper, they can be anywhere in the file 
system. Project Builder allows you to build Loadable Bundle 
projects. 

Loadable bundles differ from nib files in thatthey don't require you 
to use Interface Builderto build them. Instead of containing 
mostly archived objects, they usually contain mostly code. 
Loadable bundles are especially useful for incorporating extra 
behavior into an application upon demand. An economic-forecast 
application, for example, might load a bundle containing the code 
defining an economic model, but only when users request that 
model. You could also use loadable bundlesto integrate "plug and 
play" components into an existing framework. 

Loadable bundles usually have an extension of ".bundle" 
(although that's a convention, not a requirement). Each loadable 
bundle must have a principal class that mediates between bundle 
objects and external objects. 



The rationale behind, and 
process of, constructing 
multi-document applications is 
discussed in "The Structure of 
Multi-Document Applications" 
on page 141. 

The Design of To Do 

As multi-document applications typically do, To Do includes the Document 
menu found on Interface Builder's Menus palette. When users choose New 
from the Document menu, the application controller allocates and initializes an 
instance of the ToDoDoc class. When the ToDoDoc instance initializes itself, it 
loads the ToDoDoc.nib file. When the user has finished entering items into the 
document, and chooses Save from the Document menu, a Save panel appears 
and the user saves the document in the file system under an assigned name. 
Later, the user can open the document using the Open menu command, which 
causes the Open panel to be displayed. 

The controller objects of To Do respond to a variety of delegation messages sent 
when certain events occur-primarily from windows and NSApp-in order to 
save and store object state. One example of such an event is when the user 
closes a document window; another is when data is entered into a document. 
Often when these events happen, one controller sends a message to the other 
controller to keep it informed. 

How To Do Stores and Accesses its Data 
The data elements of a To Do document (ToDoDoc) are ToDoltems. When a 
user enters an item in a document's list, the ToDoDoc creates a ToDoItem and 
inserts that object in a mutable array (NSMutableArray); the ToDoItem 
occupies the same position in the array as the item in the matrix's text field. This 
positional correspondence of objects in the array and items in the matrix is an 
essential part of the design. For instance, when users delete the first entry in the 
document's list, the document removes the corresponding ToDoItem (at index 
0) from the array. 

iii Work Sehedule.W - -/Mise II:l : :: 
... February 1996 ... 

Sun Mon Tue Wed Thu Frl 

ToDo/tern (*itern one*) 

ToDo/tern (*itern one*) 

ToDo/tern (*itern one*) 

119 



Chapter 4 

120 

To Do Tutorial 

The array of ToDoItems is associated with a particular day. Thus the data for a 
document consists of a (mutable) dictionary with arrays of To Do Items for values 
and dates for keys. 

NSMutableDictionary 

15 Nov 1996 16 Nov 1996 17 Nov 1996 
Key 

ToDoltem ToDoltem ToDoltem 

ToDoltem ToDoltem 

ToDoltem ToDoltem ToDoltem 
Value ToDoltem 

ToDoltem 

When users select a day in the calendar, the application computes the date, 
which it then uses as the key to locate an array of ToDoltems in the dictionary. 

To Do's Custom Views 
The discussion so far has touched on model objects and controller objects, but 
has said nothing about the second member of the Model-View-Controller triad: 
view objects. Unlike Travel Advisor, which uses only "off-the-shelf' views, To 
Do's interface features objects from three custom Application Kit subclasses. 

CalendarMatrix: a 
subclass of NSMatrix, 
this is a dynamic 
calendar that notifies 
the delegate about 
selected dates. 

II Work Schedule.td - -IMisc ,I:l I x 

January 1996 

SelectionNotifMatrix: 
__ -+ ___ modifies NSMatrix to 

ToDoCell: a subclass of 
NSButtonCell, this is a tri-
state control with --+--~':""':""':""--:-:i:::====':':""::============; I 

notify observers when a 
selection in a text field 
occurs. 

different images for each 
state. It also displays 
times items are due. 

You'll learn much more about these custom subclasses in the pages that follow. 



Setting up the To Do Project 

Setling Up the 10 Do IProject 

Create the application project. 

Start Project Builder. 

Choose New from the Project 
menu. 

Name the application "ToDo." 

2 Add the application icon. 

The ToDo icon (ToDo.tiffl is 
located in the ToDo project in the 
AppKit subdirectory of 
/NextDeveloper/Examples. 

3 Specify the To Do document type. 

Click Add. 

Double-click the new cell under 
the Extension column. 

Type the extension of To Do 
documents: "td". 

Drag into the image well the file 
calendar.tiff from the ToDo 
project in 
/NextDeveloper/Examples/ 
AppKit. 

Create the To Do project almost in the same way you created the Travel Advisor 
application. There are a few differences; each, of course, has a different name 
and icon. But the most important difference is that To Do has its own document 
type. 

Project Name:, !_o~q ______ u 

Langua.ge: L~_~g~~~ __ _ 
A P pile ali 0 n C las s: r.;;, N;;'; __ S-__ ~;;';P;:;;;P 1;:;;;_iC;';'~';';'_ig;';';;_~_;';' __ ";;;:;';;;;";;;;';;";;;;" 

Main Nib Fjle:l!~.~_~ ____ _ 

lIUt"'t:N~It:t' for ~1acti 

Ii Help File 

I . . td I caiendar.tiIT I 

I! 
. '" IV ·,,1 
".,. .. -"' 

You can have different icons and other project 
attributes for Open Step for Mach and 
OpenStep for Windows. 

Instead of dragging the image-file icon into 
the well, you can add the image file to the 
project and then just type the name of the 
image here. 

Document types specify the kinds of files the 
application can open and "understand." They 
appear in the workspace with the assigned icon 
and may be opened by double-clicking. 

As with the application icon, when you drag 
the document icon into the image well, the image 
file is added to the project. 

Before Project Builder accepts the document icon, 
you must assign the extension (if the type is new) 
and select the row. 

If the document type is well-known (for example, 
".c"), just drag a document of that type into the well. 

121 



Chapter 4 To Do Tutorial 

Creating the Model Class (ToDoltem) 

Add the ToDoltem class to the 
project. 

Select Classes in the project 
browser. 

Choose New In Project from the 
File menu. 

In the New File In ToDo panel, 
type "ToDoltem" in the Name 
field. 

Make sure the "Create header" 
switch is checked. 

Click the OK button. 

2 Declare ToDoltem's instance 
variables and methods. 

Type the instance variables as 
shown at right. 

Indicate the protocols adopted by 
this class. 

122 

The ToDoItem class provides the model objects for the To Do application. Its 
instance variables hold the data that defines tasks that should be done or 
appointments that have to be kept. Its methods allow access to this data. In 
addition, it provides functions that perform helpful calculations with that data. 
ToDoItem thus encapsulates both data andbehavior that goes beyond accessing 
data. 

Since ToDoItem is a model class, it has no user-interface duties and so the 
expedient course is to create the class without using Interface Builder. We first 
add the class to the project; Project Builder helps out by generating template 
source-code files. 

Other Supporting 
Source File Help Header Class 

Name: II~7~~I,!,~I!l",-~,-~,",,-w"--"'~'0m7"-""w:,-"--;:"' 
'11 Create header ca~~'~t 'II OK 

As you've done before with Travel Advisor, start by declaring instance variables 
and methods in the header file, ToDoltem.h. 

@interface ToDoItern:NSObject<NSCoding, NSCopying> 

NSCalendarDate *daYi 

NSString *iternNarnei 

NSString *notes; 

NSTirner *iternTirneri 

long secsUntilDuei 

long secsUntilNotif; 

ToDoIternStatus itemStatusi 

You are adopting the NSCopying protocol in addition to the NSCoding protocol 
because you are going to implement a method that makes "snapshot" copies of 
ToDoItem instances. 



3 Define enum constants for use in 
ToDoltem's methods. 

Definethese constants before the 
@interface directive. 

4 Declare two time-conversion 
functions. 

Creating the Model Class (ToDoltem) 

Instance Variable What it Holds 

day The day (a date resolved to 12:00 AM) ofthe to-do item 

itemName The name of the to-do item (the content's of a document text field) 

notes The contents of the inspector's Notes display; this could be any 
information related to the to-do item, such as an agenda to discuss at 
a meeting. 

itemlimer 

secsUntilDue 

secsUntilNotif 

itemStatus 

A timer for notification messages. 

The seconds after day at which the item comes due 

The seconds after day at which a notification is sent (before 
secsUntilDue) 

Either "incomplete," "complete," or "deferToNextDay" 

typedef enum _ToDoltemStatus 

incomplete=O, 

complete, 

deferToNextDay 

ToDoltemStatusj 

enum { 

} i 

minlnSecs = 60, 

hrlnSecs = (minlnSecs * 60), 

daylnSecs = (hrlnSecs * 24), 
weeklnSecs = (daylnSecs * 7) 

The first set of constants are values for the itemStatus instance variable. The 
second set of constants are for convenience and clarity in the methods that deal 
with temporal values. 

BOOL ConvertSecondsToTime(long sees, int *hour, int *minute); 

long ConvertTimeToSeconds(int hr, int min, BOOL flag); 

These functions provide computational services to clients of this class, 
converting time in seconds to hours and minutes (as required by the user 
interface), and back again to seconds (as stored by ToDoItem). 

123 



Chapter 4 

Type the method declarations 
shown at right. 

5 Implement accessor methods. 

Open ToDoltem.m in the code 
editor. 

Implement methods that get and 
setthe values of ToDoltem's 
instance variables. 

Implement the setltemTimer: 
method as shown at right. 

Timers (instances of NSTImer) 
are always associated with a run 
loop (an instance of 
NSRunLoop). See "Tick Tock 
Brrrring: Run Loops and Timer" 
on page 190 for more on timers 
and run loops. 

124 

To Do Tutorial 

- (id)initWithName: (NSString *)name andDate: (NSCalendarDate *)date; 

- (void)dealloc; 

- (BOOL)isEqual: (id)anObjecti 

- (id)copyWithZone: (NSZone *)zone; 
- (id)initWithCoder: (NSCoder *)coder; 

- (void)encodeWithCoder: (NSCoder *)coderi 

- (void)setDay: (NSCalendarDate *)newDaYi 

- (NSCalendarDate *)daYi 

- (void)setltemName: (NSString *)newNamei 

- (NSString *)itemNamei 
- (void)setNotes: (NSString *)notesi 

- (NSString *)notesi 

- (void)setltemTimer: (NSTimer *)aTimeri 

- (NSTimer *)itemTimeri 

- (void)setSecsUntilDue:(long)secs; 
- (long)secsUntilDue; 

- (void)setSecsuntilNotif: (long)secsi 

- (long)secsUntilNotif; 

- (void)setltemStatus: (ToDoltemStatus)newStatus; 

- (ToDoltemStatus)itemStatus; 

Most of these declarations are for accessor methods. You know what to do. 

- (void)setltemTimer: (NSTimer *)aTimer 

if (itemTimer) 
[itemTimer invalidate]; 

[itemTimer autorelease]i 

itemTimer = [aTimer retain]; 

The setltemTimer: method is slightly different from the other "set" accessor 
methods. It sends invalidate to itemTimer to disable the timer before it autoreleases 
it. 

In this application, you want client objects to be able to copy your ToDoltem 
objects and test them for equality. You must define this behavior yourself. 



6 Implement the isEqual: method. 

7 Implement the copyWithZone: 
method. 

Copies of objects can be either 
deep or shallow. In deep copies 
(like ToDoltem's) every copied 
instance variable is an 
independent replicate, including 
the values referenced by 
pointers. In shallow copies, 
pointers are copied but the 
referenced objects are the same. 
F or more on this topic, see the 
description of the NSCopying 
protocol in the Foundation 
reference documentation. 

Creating the Model Class (ToDoltem) 

- (BOOL)isEqual: (id)anObj 

if ([anObj isKindOfClass:[ToDoltem class]] && 
[itemName isEqualToString: [anObj itemName]] && 
[day isEqualToDate: [anObj day]]) 

return YES; 

else 

return NO; 

The default implementation of isEqual: (in NSObject) is based on pointer 
equality. However, ToDoItem has a different basis for equality; any two 
ToDoItem objects for the same calendar day and having the same item name are 
considered equal. The implementation of isEqual: overrides NSObject to make 
these tests. (Note that it invokes NSString's and NSDate's own isEqual... 
methods for the specific tests.) 

Before You Go On ----------------------

There is a specific as well as a general need for the isEqual: override. In the To 
Do application, an NSArray contains a day's ToDoItems. To access them, other 
objects in the application invoke several NSArray methods that, in turn, invoke 
the isEqual: method of each object in the array. 

- (id)copyWithZone: (NSZone *)zone 

ToDoltem *newobj = [[ToDoltem alloc] initWithName:itemName 
andDate:day]; 

[newobj setNotes:notes); 

[newobj setltemStatus:itemStatus]i 

[newobj setSecsUntilDue:secsUntilDue]i 

[newobj setSecsUntilNotif:secsUntilNotif]i 

return newobji 

This implementation of the copyWithZone: protocol method makes a copy of a 
. ToDoItem instance that is an independent replicate of the original (self). It does 
this by allocating a new ToDoItem object and initializing it with the essential 
instance variables held by self. Copying is often implemented for value objects
objects that represent attributes such as numbers, dates, and to-do items. 

The next method you'll implement-description-assists you and other 
developers in debugging the To Do application with gdb. When you enter the po 
(print object) command in gdb with a ToDoItem as the argument, this description 
me~hod is invoked and essential debugging information is printed. 

125 



Chapter 4 

8 Implement the description 
method. 

9 ImplementToDoltem's initializing 
and deallocation methods. 

10 Implement ToDoltem's archiving 
and unarchiving methods. 

126 

To Do Tutorial 

- (NSString *)description 

NSString *desc = [NSString stringWithFormat:@"%@\n\tName: %@\n\tDate: 
%@\n\tNotes: %@\n\tCompleted: %@\n\tSecs until Due: %d\n\tSecs Until 
Notif: %d", 

[super description], 
[self itemName], 

[self day], 

[self notes] I 

·(([self itemStatus]==complete)?@IYes l :@INo"), 

[self secsUntilDue], 

[self secsUntilNotif]]i 

return (desc) i 

Here are some things to remember as you implement initWithName:andDate: and 
dealloc: 

• If the first argument of initWithName:andDate: (the item name) is not a valid 
string, return nil. If the second argument (the date) is nil, set the related 
instance variable to some reasonable value (such as today's date). Also, be sure 
to invoke super's init method. 

• The instance variables to initialize are day, itemName, notes, and itemStatus (to 
"incomplete"). 

• In dealloc, release those object instance variables initialized in 
initWithName:andDate: plus any object instance variables that were initialized 
later. Also invalidate any timer before you release it. 

When you implement encodeWithCoder: and initWithCoder:, keep the following in 
mind: 

• Encode and decode instance variables in the same order. 

• Copy the object instance variables after you decode them. 

• You don't need to archive the itemTimer instance variable since timers are re
set when a document is opened. 

The final step in creating the ToDoltem class is to implement the functions that 
furnish "value-added" behavior. 



11 Implement ToDoltem's time
conversion functions. 

Creating the Model Class (ToDoltem) 

long ConvertTimeToSeeonds(int hr, int min, BaaL flag) 
{ 

if (flag) { /* PM * / 
if (hr >= 1 && hr < 12) 

hr += 12; 
else 

if (hr 12) 
hr = 0; 

return «hr * hrlnSees) + (min * minlnSees)); 

BaaL ConvertSeeondsToTime(long sees, int *hour, int *minute) 
{ 

int hr=O; 
BaaL pm=NO; 

if (sees) { 

hr = sees / hrlnSees; 
if (hr > 12) { 

*hour = (hr -= 12); 
pm YES; 

else 
pm NO; 

if (hr == 0) 
hr = 12; 

*hour = hr; 

*minute «sees%hrlnSees) / minlnSees); 

return pm; 

/* 1 */ 

/* 2 */ 

1. This expression, as well as others in these two methods, uses the enum constants 
for time-values-as seconds that you defined earlier. 

2. The ConvertSecondsToTimeO function uses indirection as a means for returning 
multiple values and directly returns a Boolean to indicate AM or PM. 

127 



Chapter 4 To Do Tutorial 

Subclass Example: Adding Data and Behavior (CalendarMatrix) 

128 

The calendar on To Do's interface is an instance of a custom subclass of 
NSMatrix. CalendarMatrix dynamically updates itself as users select new 
months, notifies a delegate when users select a day, and reflects the current day 
(today) and the current selection by setting button attributes. 

Creating a subclass of a class that is farther down the inheritance tree poses more 
of a challenge for a developer than a simple sublcass of NSObject. A class such 
as NSMatrix is more specialized than NSObject and carries with it more 
baggage: It inherits from NSResponder, NSView, and NSControl, all fairly 
complex Application Kit classes. And since CalendarMatrix inherits from 
NSView, it appears on the user interface; it is an example of a view object in the 
Model-View-Controller paradigm, and as such it is highly reusable. 

Why NSMatrix? 
When you select a specialized superclass as the basis for your subclass, it is 
important to consider what your requirements are and to understand what the 
superclass has to offer. To Do's dynamic calendar should: 

• Arrange numbers (days) sequentially in rows and columns. 
• Respond to and communicate selections of days. 
• Understand dates. 
• Enable navigation between months. 

If you then started to peruse the reference documentation on Application Kit 
classes, and looked at the section on NSMatrix, you'd read this: 

NSMatrix is a class used for creating groups of NSCells that work together in various 
ways. It includes methods for arranging NSCells in rows and columns .... An 
NSMatrix adds to NSControl's targetlaction paradigm by allowing a separate target 
and action for each of its NSCells in addition to its own target and action. 



Define the CalendarMatrix class 
in Interface Builder. 

From Project Builder, open 
ToDo.nib. 

In Interface Builder, choose 
Document ~ New Module ~ 
New Empty to create a new nib 
file. 

Save the nib file as ToDoDoc.nib. 

In the Classes display ofthe nib 
file window, select NSMatrix. 

Choose Subclass from the pull
down list. 

Name the new class 
"CalendarMatrix". 

Select the new class. 

Add the outlets and actions 
shown in the example at right. 

Subclass Example: Adding Data and Behavior (CalendarMatrix) 

So NSMatrix has an inherent capability for the first of the requirements listed 
above, and part of the second (responding to selections). Our CalendarMatrix 
subclass thus does not need to alter anything in its superclass. It just needs to 
supplement NSMatrix with additional data and behavior so it can understand 
dates (and update itself appropriately), navigate between months, and notify a 
delegate that a selection was made. 

o NSVieVl 
t::) NSBo;-.:: 
o NSControl 

t::) NSBrow'ser 

fJ NSButton 

choseDay: 
monthChang e d: 
fax: 

16 
26 
26 
26 
36 
26 

10W 
2W 
2W 

Locate NSMatrix several levels down in the 
class hierarchy. 

Outlets and actions already defined by the 
superclass (or its superclasses) appear in 
gray text. Add the outlets and actions shown 
in black text. 

When you created subclasses ofNSObject in the previous two tutorials, the next 
step was to instantiate the subclass. Because CalendarMatrix is a view (that is, it 
inherits from NSView), the procedure for generating an instance for making 
connections is different. 

129 



Chapter 4 

2 Put a custom NSView object 
(CalendarMatrix) on the user 
interface. 

Drag a window from the Windows 
palette. 

Resize the window, using the 
example at right as a guide. 

Turn off the window's resize 
handle. 

Drag a CustomView from the 
Views palette onto the window. 

Resize and position the 
Custom View, using the example 
at right as a guide. 

In the Attributes display of the 
inspector, select CalendarMatrix 
from the list of available classes. 

130 

To Do Tutorial 

.,-+---- The Custom View object is a "proxy" object, 
representing any custom NSView object on 
the interface. 

Assign a class to the Custom View by 
selecting a class here. Custom classes 
must be defined in the nib file. 

The selection of the class for the Custom View creates an instance of it that you 
can connect to other objects in the nib file. Now put the controls and fields 
associated with CalendarMatrix on the window. 



3 Put the objects related to 
CalendarMatrix on the window. 

Drag a label object for the month
year from the Views palette and 
put it over the CalendarMatrix. 

Make seven small labels for each 
day ofthe week. 

Drag a button onto the interface 
and set its attributes to 
unbordered and image only. 

Drag lefCarrow.tiff from 
/NextDeveloper/Examples 
/AppKit/ToDo and drop it overthe 
button. 

To the attention panel that asks 
"Insert image left_arrow in 
project?" click Yes. 

Repeat the same button 
procedure for righcarrow.tiff. 

4 Connect CalendarMatrix to its 
outlet and to the controls sending 
action messages. 

5 Finish up in Interface Builder. 

Save ToDoDoc.nib. 

Select CalendarMatrix and in the 
Classes display and choose 
Create Files from the Operations 
pull-down menu. 

Confirm that you wantthe source
code files added to the project. 

Subclass Example: Adding Data and Behavior ICalendarMatrix) 

,.-,---,-----:-----,-".,--...,...-,--:---:-:----:--:--..,..-~=;:=;:=i'--- This label contains the month and year:. Initialize by 
typing "September 9999" (the longest possible string). 
set text to Helvetica 18, center it, then delete it. 

::1--+--- Type the days of the week as individual labels, arrangE 
as a row, then distribute the fields evenly over columm 
(this may take some trial and error). 

~--II--- To make the button enclose the image as tightly as 
possible, select the button and choose 
Format pSize pSize To Fit. 

Next connect CalendarMatrix to its satellite objects. 

Name Connection Type 

monthName From CalendarMatrix to the label field above it outlet 

leftButton From CalendarMatrix to the left-pointing arrow outlet 

rightButton From CalendarMatrix to the right-pointing arrow outlet 

monthChanged: From both arrows to CalendarMatrix action 

You might have noticed that there's an action message left unconnected: 
choseDay:. Because it is impossible in Interface Builder to connect an object with 
itself, you will make this connection programmatically. 

131 



Chapter 4 

6 Add declarations to the header 
file CalendarMatrix.h. 

(Existing declarations are 
indicted by ellipsis.) 

132 

To Do Tutorial 

@interface CalendarMatrix NSMatrix 

/* ... * / 

NSCalendarDate *selectedDaYi 
short startOffsetj 

/ * ... * / 
- (void)refreshCalendar; 

- (id)initWithFrame: (NSRect)frameRecti 
- (void)dealloc; 

- (void)setSelectedDay: (NSCalendarDate *)newDaYi 
- (NSCalendarDate *)selectedDaYi 
@end 

@interface NSObject(CalendarMatrixDelegate) 
- (void)calendarMatrix: (CalendarMatrix *)obj 

didChangeToDate: (NSDate *)datei 

- (void)calendarMatrix: (CalendarMatrix *)obj 
didChangeToMonth: (int)mo year: (int)yr; 

@end 

/* 1 */ 

/* 2 */ 

There are a couple of interesting things to note about these declarations: 

1. The cells in CalendarMatrix are sequentially ordered by tag number, left to right, 
going downward. startOffset marks the cell (by its tag) on which the first day of the 
month falls. 

2. CalendarMatrixDelegate is a category on NSObject that declares the 
methods to be implemented by the delegate. This technique creates what is 
called an informal protocol, which is commonly used for delegation methods. 



7 Implement CalendarMatrix's 
initialization methods. 

Select CalendarMatrix.m in the 
project browser. 

Write the implementation of 
initWithFrame: (at right). 

Implement dealloc. 

Subclass Example: Adding Data and Behavior /CalendarMatrix) 

- (id)initWithFrame: (NSRect)frameRect 

int i, j, cnt=Oi 

id cell = [[NSButtonCell alloc] initTextCell:@""]; 

NSCalendarDate *now = [NSCalendarDate date] i 

[super initWithFrame:frarneRect 

mode:NSRadioModeMatrix 

prototype:cell 

numberOfRows:6 
numberOfColumns:7] i 

II set cell tags 

for (i=Oi i<6i i++) { 

for (j=Oi j<7i j++) 

[[self cellAtRow:i column:j] setTag:cnt++]; 

[cell release]; 

/* 1 *1 

1* 2 *1 

1* 3 *1 

selectedDay = [[NSCalendarDate dateWithYear: [now yearOfCommonEra] 

month: [now monthOfYear] 1* 4 *1 
day: [now dayOfMonth] 

hour:O minute:O second:O 
timeZone: [NSTimeZone locaITimeZone]] copy]; 

return self; 

The initWithFrame: method is an initializer of NSMatrix, NSControl and NSView. 

1. This invocation of date, a class method declared by NSDate, returns the current 
date ("today") as an NSCalendarDate. (NSCalendarDate is a subclass ofNSDate.) 

2. This message to super (NSMatrix) sets the physical and cell dimensions of the 
matrix, identifies the type of cell using a prototype (an NSButtonCell), and 
specifies the general behavior of the matrix: radio mode, which means that 
only one button can be selected at any time. 

3. Set the tag number of each cell sequentially left to right and down. Tags are 
the mechanism by which CalendarMatrix sets and retrieves the day numbers 
of cells. 

4. This NSCalendarDate class method initializes the selectedDay instance 
variable to midnight of the current day, using the year, month, and day 
elements of the current date. The localTimeZone message obtains an 
NSTimeZone object with an suitable offset from Greenwich Mean Time. 

133 



Chapter 4 To Do Tutorial 

Implement awakeFromNib as 
shown at right. 

- (void)awakeFromNib 

134 

[monthName setAlignment:NSCenterTextAlignmentli 

[self setTarget:selfli 
[self setAction:@selector(choseDay:)li 
[self setAutosizesCells:YES]i 

[self refre~hCalendar]; 

The awakeFromNib method performs additional initializations (some of which 
could just have easily been done in initWithFrame:). Most importantly, it sets self as 
its own target object and specifies an action method for this target, choseOay:, 
something that couldn't be done in Interface Builder. Other methods to note: 

• setAutosizesCells: causes the matrix to resize its cells on every redraw. 
• refreshCalendar (which you'll write next) updates the calendar. 

The refreshCalendar method is fairly long and complex-it is the workhorse of the 
class-so you'll approach it in sections. 

Dates and limes in OpenStep 

In Open Step you represent dates and times as objects that inherit 
from NSDate. The major advantage of dates and times as objects 
is common to all objects that represent basic values: they yield 
functionality that, although commonly found in most operating 
systems, is not tied to the internals of any particular operating
system. 

NSDates hold dates and times as values of type NSlimelnterval 
and express these values as seconds. The NSlimelnterval type 
makes possible a wide and fine-grained range of date and time 
values, giving accuracy within milliseconds for dates 10,000 years 
apart. 

NSDate and its subclasses compute time as seconds relative to 
an absolute reference date (the first instant of January 1, 2001). 
NSDate converts all date and time representations to and from 
NSlimelnterval values that are relative to this reference date. 

NSDate provides methods for obtaining NSDate objects 
(including date, which returns the current date and time as an 
NSDate), for comparing dates, for computing relative time values, 
and for representing dates as strings. 

The NSCalendarDate class, which inherits from NSDate, 
generates objects that represent dates conforming to western 
calendrical systems. NSCalendarDate objects also adjust the 
representations of dates to reflect their associated time zones. 
Because of this, you can track an NSCalendarDate object across 
differenttime zones. You can also present date information from 
time-zone viewpoints other than the one for the current locale. 

Each NSCalendarDate object also has a calendar format string 
bound to it. This format string contains date-conversion specifiers 
that are very similar to those used in the standard C library 
function strftimeO. NSCalendarDate can interpret user-entered 
dates that conform to this format string. 

NSCalendar has methods for creating NSCalendarDate objects 
from formatted strings and from component time values (such as 
minutes, hours, day of week, and year). It also supplements 
NSDate with methods for accessing componenttime values and 
for representing dates in various formats, locales, and time zones. 



8 Implement the code that updates 
the calendar. 

Initialize the MonthDays[] array 
and write the isLeapO macro. 

Determine the day of the week at 
the start of the month and the 
number of days in the month. 

Subclass Example: Adding Data and Behavior ICalendarMatrix) 

static short MonthDays[] = 

{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }i 

#define isLeap (year) (( ( ((year) % 4) == 0 && (( (year) % 100) ! = 0)) 

II ((year) % 400) == 0)) 

- (void)refreshCalendar 

NSCalendarDate *firstOfMonth, *selDate = [self selectedDay], 
*now = [NSCalendarDate date] i 

int i, j, currentMonth = [selDate monthOfYear] i 

unsigned int currentYear = [selDate yearOfCommonEra] i 

short dayslnMonthi 

id celli 

firstOfMonth [NSCalendarDate dateWithYear:currentYear 

month:currentMonth 
day:1 hour:O minute:O second:O 

timeZone: [NSTimeZone locaITimeZone]]i 
[monthName setStringValue: [firstOfMonth 

descriptionWithCalendarFormat:@"%B %Y"]] i 

dayslnMonth = MonthDays[currentMonth-1]+li 
/* correct Feb for leap year */ 

/* 1 */ 

/* 2 */ 

/* 3 */ 

if ((currentMonth == 2) && (isLeap(currentYear))) dayslnMonth++i 

startOffset = [firstOfMonth dayOfWeek]i /* 4 */ 

Before it can start writing day numbers to the calendar for a given month, 
CalendarMatrix must know what cell to start with and how many cells to fill with 
numbers. The refreshCalendar method begins by calculating these values. 

1. Creates an NSCalendarDate for the first day of the currently selected month and 
year (computed from the selectedDay instance variable). 

2. Writes the month and year (for example, "February 1997") to the label above 
the calendar. 

3. Gets from the MonthDays static array the number of days for that month; if the 
month is February and it is a leap year, this number is adjusted. 

4. Gets the day of the week for the first day of the month and stores this in the 
startOffset instance variable. 

135 



Chapter 4 

Write the refreshCalendar code 
that writes day numbers to the 
cells and sets cell attributes. 

Complete the refreshCalendar 
method implementation by 
resetting the "today" cell 
attribute. 

136 

To Do Tutorial 

for (i=Oi i<startOffseti i++) 

cell = [self cellWithTag:i]i 

[cell setBordered:NO] i 

[cell setEnabled:NO] i 

[cell setTitle:@""]; 
[cell setCellAttribute:NSCellHighlighted to:NO); 

for (j=l; j < dayslnMonth; i++, j++) 

cell = [self cellWithTag:i]i 
[cell setBordered:YES] i 

[cell setEnabled:YES] i 

[cell setFont: [NSFont systernFontOfSize:12]]; 
[cell setTitle: [NSString stringWithForrnat:@"%d", j]]i 
[cell setCellAttribute:NSCellHighlighted to:NO)i 

for (ii<42ii++) { 
cell = [self cellWithTag:i] i 

[cell setBordered:NO] i 

[cell setEnabled:NO] i 

[cell setTitle:@""]i 
[cell setCellAttribute:NSCellHighlighted to:NOJi 

The first and third for-loops in this section of code clear the leading and trailing 
cells that aren't part of the month's days. Because the current day is indicated by 
highlighting, they also turn off the highlighted attribute. The second for-loop 
writes the day numbers of the month, starting at startOffset and continuing until 
dayslnMonth, and resets the font (since the selected day is in bold face) and other 
cell attributes. 

if ((currentYear == [now yearOfCornrnonEra]) 

&& (currentMonth == [now rnonthOfYear]» 

[[self cellWithTag: ([now dayOfMonth]+startOffset)-l] 
setCellAttribute:NSCellHighlighted to:YES]i 

[[self cellWithTag: ([now dayOfMonth]+startOffset)-l] 

setHighlightsBy:NSMornentaryChangeButton]; 
} 

This final section of refreshCalendar determines if the newly selected month and 
year are the same as today's, and if so highlights the cell corresponding to today. 



9 Implement the monthChanged: 
action method. 

Subclass Example: Adding Data and Behavior (CalendarMatrix) 

- (void)monthChanged:sender 

NSCalendarDate *thisDate = [self selectedDay] i 

int currentYear = [thisDate yearOfCommonEra] i 

unsigned int currentMonth = [thisDate monthOfYear]i 

if (sender == rightButton) { 
if (currentMonth == 12) { 

currentMonth = 1i 
currentYear++i 

/* 1 */ 

else { 
currentMonth++i 

else 
if (currentMonth == 1) 

currentMonth 12i 
currentYear--i 

else { 

currentMonth--i 

/* 2 */ 

[self setSelectedDay: [NSCalendarDate dateWithYear:currentYear 

month:currentMonth 
day:1 hour:O minute:O second:O 

timeZone: [NSTimeZone localTimeZone]]]i 
[self refreshCalendar]i 
[[self delegate] calendarMatrix:self /* 3 */ 

didChangeToMonth:currentMonth year:currentYear]i 

The arrow buttons above CalendarMatrix send it the monthChanged: message 
when they are clicked. This method causes the calendar to go forward or 
backward a month. 

1. Determines which button is sending the message, then increments or decrements 
the month accordingly. If it goes past the end or beginning of the year, it 
increments or decrements the year and adjusts the month. 

2. Resets the selectedDay instance variable with the new month (and perhaps 
year) numbers and invokes refreshCalendar to display the new month. 

3. Sends the calendarMatrix:didChangeToMonth:year: message to its delegate (which 
in this application, as you'll soon see, is a ToDoDoc controller object). 

137 



Chapter 4 

10 Implement the choseDay: action 
method. 

11 Implement accessor methods for 
the selectedDay instance 
variable. 

138 

To Do Tutorial 

- (void)choseDay:sender 

NSCalendarDate *selDate, *thisDate = [self selectedDaY]i 
/* 1 */ 

unsigned int selDay = [[self selectedCell] tag]-startOffset+l; 
/* 2 */ 

selDate = [NSCalendarDate dateWithYear: [thisDate yearOfCommonEra] 

month: [thisDate monthOfYear] 

day:selDay 

hour:O 
minute:O 

second:O 

timeZone: [NSTimeZone localTimeZone]]i 

/* 3 */ 

[[self cellWithTag: [thisDate dayOfMonth]+startOffset-l] 

~etFont: [NSFont systemFontOfSize:12]]; 
[[self cellWithTag:selDay+startOffset-l] setFont: 

[NSFont boldSystemFontOfSize:12]]i 

/* 4 */ 

[self setSelectedDay:selDate]i 
[[self delegate] calendarMatrix:self didChangeToDate:selDate]; 

This method is invoked when users click a day of the calendar. 

1. Gets the tag number of the selected cell and subtracts the offset from it (plus one 
to adjust for zero-based indexing) to find the number of the selected day. 

2. Derives an NSCalendarDate that represents the selected date. 

3. Sets the font of the previously selected cell to the normal system font 
(removing the bold attribute) and puts the number of the currently selected 
cell in bold face. 

4. Sets the selectedDay instance variable to the new date and sends the 
calendarMatrix:didChangeToDate: message to the delegate. 

You are finished with CalendarMatrix. If you loaded ToDoDoc.nib right now, the 
calendar would work, up to a point. If you clicked the arrow buttons, 
CalendarMatrix would display the next or previous months. The days of the 
month would be properly set out on the window, and the current day would be 
highlighted. 

But not much else would happen. That's because CalendarMatrix has not yet 
been hooked up to its delegate. 



The Basics of a Multi-Document Application 

The Basics of a Multi-Document Application 

Customize the application's main 
menu. 

Open ToDo.nib in Interface 
Builder. 

Drag the Document item from the 
Menus palette and drop it 
between the Info and the Edit 
submenus. 

, Drag the Item item from the 
Menus palette and drop it 
between the Edit and Windows 
menus. 

Change the title of "Item" to 
"Inspector." 

2 Define the application-controller 
class. 

Create ToDoControlier as a 
subclass of NSObject. 

Add the outlet and actions (listed 
at right) to the class. 

Make the action connections 
from the appropriate Document 
menu commands. 

A multi-document application, as described on page 141, has at least one 
application controller and a document controller for each document opened. 
The application controller also responds to user commands relating to 
documents and either creates, opens, closes, or saves a document. 

Customize the Document submenu by deleting 
the Save As, Save To, Save AI/, and Revert To 
Saved commands. 

'------- Append an ellipsis (three dots) to the command 
name to indicate that the command displays a 
panel. Also enter "i" as the key equivalent. 

Note: The Info submenu, which you get by default, includes the Info Panel, 
Preferences, and Help commands. Although this tutorial does not cover 
implementing Info and Preferences panels specifically, it does give you enough 
information (which it will supplement with tips) so that you can try to 
implement these panels on your own. You may delete the Help command from 
the Info submenu if you wish; if you leave it in and users click it, they get a 
message informing them that Help is not available. 

o To Do Controller 
OUtlets 

inspector 

openDoc: 
saveDoc: 

. showlnfo: 
showlnspector; 
showPreferences: 

Now that you've defined the application-controller class, define the document
controller class, ToDoDoc. Remember, since the ToDoDoc controller must own 
the nib file containing the document, it must be external to it; although it is 
defined in the main nib file (ToDo.nib) and in ToDoDoc.nib, it's instantiated before 
its nib file is loaded. 

139 



Chapter 4 

3 Define the document-controller 
class. 

Create ToDoDoc as a subclass of 
NSObject. 

Add to the class the outlets and 
action listed at right. 

Instantiate ToDoControlier and 
ToDoDoc. 

Save ToDo.nib. 

4 Complete the document 
interface. 

5 

Open ToDoDoc.nib. 

Add the matrices oftext fields. 

Add the labels above the 
matrices. 

Make the labels 14 points in the 
user's application font. 

Make the item text 12 points in the 
user's application font. 

Save ToDoDoc.nib. 

Connect the outlets and actions 
of ToDoDoc. 

Select File's Owner in the 
Instances display of 
ToDoDoc.nib. 

Choose ToDoDoc from the list of 
classes in the Attributes display 
of the inspector. 

Make the connections described 
in the table at right. 

140 

To Do Tutorial 

Now add the remaining objects to the document interface. 

Set the text color of this 
label to dark gray. 

Add padding to this label, 
extending it acrss the 
column. 

To assist alignment, these 
cells are text fields of the 
same size as the cells of the 
other matrix. However, you 
will at run time substitute 
your own custom cell 
(ToDoCell). 

';ill!~:::::~~~~~~r Remember, create a matrix II by Alternate-dragging a 

Name 

calendar 

dayLabel 

itemMatrix 

markMatrix 

itemChecked: 

Connection 

From File's Owner to the CalendarMatrix object 

From File's Owner to label "To Do on" 

handle of a suitable object. 
Before Alternate-dragging, 
make the initial text field 
scrollable. 

Type 

outlet 

outlet 

From File's Owner 1T0DoDoc) to matrix of long text fields outlet 

From File's Owner to matrix of short text fields outlet 

From matrix of short text fields to File's Owner action 



The Basics of a Multi-Document Application 

The Structure of Multi-Document Applications 

From a user's perspective, a document is a unique body of 
information usually contained by its own window. Users can 
create an unlimited number of documents and save each to a file. 
Common documents are word-processing documents and 
spreadsheets. 

From a programming perspective, a document comprises the 
objects and resources unarchived from an auxiliary nib file and 
the controller object that loads and manages these things. This 
document controller is the owner ofthe auxiliary nib file 
containing the document interface and related resources.To 
manage a document, the document controller makes itselfthe 
delegate of its window and its "content" objects. Ittracks edited 
status, handles window-close events, and responds to other 
conditions. 

When users choose the New (or equivalent) command, a method 
is invoked in the application's controller object. In this method, the 
application controller creates a document-controller object, 
which loads the document nib file in the course of initializing itself. 
A documentthus remains independent of the application's" core" 
objects, storing state data in the document controller. If the 
application needs information about a document's state, it can 
query the document controller. 

When users chose the Save command, the application displays a 
Save panel and enables users to save the document in the file 
system. When users chose the Open command, the application 
displays an Open panel, allowing users to select a document file 
and open it. 

Document Management Techniques 

When you make the application controller and the document 

Document Creation Sequence 

Sav,fAS':, 
C!ose~ AppController 

creates 

controller delegates ofthe application (NSApp) and the document 
window, they can receive messages sent at critical moments of a 
running application. These moments include the closure of 
windows (windowShouldClose:), window selection 
(windowDidResignMain:), application start-up 
(applicationWiIIFinishLaunching:) and application termination 
(applicationShouldTerminate:). In the methods handling these 
messages, the controllers can then do the appropriate thing, such 
as saving a document's data or displaying an empty document. 

Several NSViews also have delegation messages that facilitate 
document management, particularly text fields, forms, and other 
controls with editable text (controIText ... ) and NSText objects 
(text ... ). One important such message is textDidChange: (or 
controITextDidChange:), which signals that the document's 
textual content was modified. In responding to this message, 
controllers can setthe window's close button to have a "broken" 
X with the setDocumentEdited: message; later, they can 
determine whether the document needs to be saved by sending 
isDocumentEdited to the window. 

Document controllers often need to communicate with the 
application controller or other objects in the application. One way 
to do this is by posting notifications. Another way is to use the key 
relationships within the core program framework (see page 149) 
to find the other object (assuming it's a delegate of an Application 
Kit object). For example, the application controller can send the 
following message to locate the current document controller: 

[[NSApp mainWindow] delegate] 

The document controller can find the application controller with: 

[NSApp delegate] 

loads 

DocController Doc.nib 

141 



Chapter 4 

Connect ToDoDoc and 
ToDoControlier to other objects 
as their delegates. 

6 Create source-code files for 
ToDoDoc and ToDoControlier. 

In Project Builder: 

7 Add declarations of methods and 
instance variables to the 
ToDoDoc class. 

. SelectToDoDoc.h in the project 
browser. 

Add the declarations at right. 

(Ellipses indicate existing 
declarations.) 

142 

To Do Tutorial 

Text fields in a matrix, just like a form's cells, are connected for inter-field 
tabbing when you create the matrix. But you must also connect ToDoDoc and 
ToDoController to the delegate outlets of other objects in the application-this 
step is critical to the multi-document design. 

Name Connection 

textDelegate From the CalendarMatrix object to File's Owner (ToDoDoc) 

delegate From the document window's title bar to File's Owner (ToDoDoc) 

delegate In ToDo.nib, from File's Owner (NSApp) to the ToDoController instance 

The ToDoDoc class needs supplemental data and behavior to get the multi
document mechanism working right. 

@interface ToDoDoc:NSObject 

/* ... * / 
NSMutableDictionary *activeDays; 

NSMutableArray *currentltemsi 

/* ... * / 
- (NSMutableArray *)currentltems; 
- (void)setCurrentltems: {NSMutableArray *)newltems; 

{NSMatrix *)itemMatrix; 

- (NSMatrix *)markMatrixi 

- (NSMutableDictionary *)activeDaYSi 

- (void)saveDoCi 
- (id)initwithFile: (NSString *)aFilei 

- (void)dealloc; 

- (void)activateDoCi 
- (void)selectltem: (int) item; 
@end 

The active Days and currentltems instance variables hold the collection objects that 
store and organize the data of the application. (You'll deal with these instance 
variables much more in the next section of this tutorial.) Many of the methods 
declared are accessor methods that set or return these instance variables or one 
of the matrices of the document. 

You'11 be ~witching between ToDoDoc.m and ToDoController.m in the next few tasks. 
The intent is not to confuse, but to show the close interaction between these 
two clas~es. 



8 Write the code that creates 
documents. 

Select ToDoController.m in the 
project browser. 

The Basics of a Multi-Document Application 

- (void)newDoc: (id) sender 

id currentDoc = [[ToDoDoc alloc] initWithFile:nil] i 

[currentDoc activateDoc]i 

Implement ToDoControlier's 
newDoc: method. 

The newDoc: method is invoked when the user chooses New from the 
Document menu. The method allocates and initializes an instance of the 
document controller, ToDoDoc, thereby creating a document. (See the 
implementation of initWithFile: on the following page to see what happens in this 
process.) It then updates the document interface by invoking activateDoc .. 

Coordinate Systems in OpenStep 

The screen's coordinate system is the basis for all other 
coordinate systems used for positioning, sizing, drawing, and 
event handling. You can think of the entire screen as occupying 
the upper-right quadrant of a two-dimensional coordinate grid. 
The other three quadrants, which are invisible to users, take 
negative values along their x-axis, their y-axis, or both axes. The 
screen's quadrant has its origin in the lower left corner; the 
positive x-axis extends horizontally to the right and the positive y
axis extends vertically upward. A unit along either axis is 
expressed as a pixel. 

The screen coordinate system has just one function: to position 
windows on the screen. When your application creates a new 
window, it must specify the window's initial size and location in 
screen coordinates.You can "hide" windows by specifying their 
origin points well within one of the invisible quadrants. This 
technique is often used in off-screen rendering in buffered 
windows. 

The reference coordinate system for a window is known as the 
base coordinate system. It differs from the screen coordinate 
system in only two ways: 

• It applies only to a particular window, each window has its own 
base coordinate system. 

• Its origin is at the lower left corner of the window, rather than 
the lower left comer of the screen. If the window moves, the 
origin and the entire coordinate system move with it 

For drawing, each NSView uses a coordinate system transformed 
from the base coordinate system or from the coordinate system of 
its superview. This coordinate system also has itorigin pointatthe 
lower-left corner of the NSView, making it more convenient for 
drawing operations. NSView has several methods for converting 
between base and local coordinate systems. When you draw, 
coordinates are expressed in the application's currentcoordinate 
system, the system reflecting the last coordinate transformations 
to have taken place within the current window. 

.~ ..... .& ....... &a ... &aa."'''.''A'' •• ''' •• ''&'''''''.''''''.&A''--:. 

= .~ ;: .. ~ ': 
• ~ ·c ;. · . : :: 

A view's location is specified 
relative to the coordinate 
system of its window or 
superview. The coordinate 
origin for drawing begins at 
this point. · . • • : ,: 

= :: • • · . 
= : · . • x-axis • 

ll(~·o. ! 
; -200.0) : 

• """........,.."...y ............... ..,."..... ............................................. ~ 

The location of the window is 
expressed relative to the 
screen's origin, and its coord
inate system begins here too. 

The origins and dimensions of '" 
windows and panels are based 
on the screen origin. 

0,0 

143 



Chapter 4 

Select ToDoDoc.m in the project 
browser. 

Implement ToDoDoc's 
initWithFile: method. 

144 

To Do Tutorial 

- initWithFile: (NSString *)aFile 

NSEnumerator *dayenum; 

NSDate *itemDate; 

[super init]; 
if (aFile) { /* 1 */ 

activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile]; 
if (activeDays) 

activeDays = [activeDays retain]; 
else 

NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@", 
nil, nil, nil, aFile); 

else /* 2 */ 
activeDays = [[NSMutableDictionary alloc] init]; 
[self setCurrentltems:nil]; 

if (! [NSBundle loadNibNamed:@"ToDoDoc.nib" owner:self] ) 

return nil; 

if (aFile) 

/* 3 */ 

/* 4 */ 

[[itemMatrix window] setTitleWithRepresentedFilename:aFile]; 
else 

[[itemMatrix window] setTitle:@"UNTITLED"]; 
[[itemMatrix window] makeKeyAndOrderFront:self]; 

return self; 

This method, which initializes and loads the document, has the following steps: 

1. Restores the document's archived objects if the aFile argument is the pathname of 
a file containing the archived objects (that is, the document is opened). If objects 
are unarchived, it retains the activeDays dictionary; otherwise it displays an 
attention panel. 

2. Initializes the activeDays and currentltems instance variables. A aFile argument 
with a nil value indicates that the user is requesting a new document. 

3. Loads the nib file containing the document interface, specifying self as owner. 

4. Sets the title of the window; this is either the file name on the left of the title 
bar and the pathname on the right, or "UNTITLED" if the document is new. 

Be/ore You Go On ---------------------

Note the [itemMatrix window] message nested in the last message. Every object 
that inherits from NSView "knows" its window and will return that NSWindow 
object if you send it a window message. 



9 Implement the document
opening method. 

Select ToDoController.m in the 
project browser. 

Write the code for open Doc:. 

The Basics of a Multi-Document Application 

- (void)openDoc: (id) sender 

int result; 

NSString *selected, *startDir; 

NSArray *fileTypes = [NSArray arrayWithObject:@"td"]; 

NSOpenPanel *oPanel = [NSOpenPanel openPanel]; 

[oPanel setAllowsMultipleSelection:YES]i 

/* 1 */ 

if ([[[NSApp keyWindow] delegate] isKindOfClass: [ToDoDoc class]]) 

startDir = [[[NSApp keyWindow] representedFilename] 
stringByDeletingLastPathComponent]; 

/* 2 */ 

else 

startDir = NSHomeDirectory(); 
resul t = [,oPanel runModalForDirectory: startDir file: nil 

types:fileTypes] ; 

if (result == NSOKButton) { 

NSArray *filesToOpen = [oPanel filenames]; 

int i, count = [filesToOpen count]; 

/* 3 */ 

for (i=O; i<count; i++) { /* 4 */ 

NSString *aFile = [filesToOpen objectAtIndex:i]; 

id currentDoc = [[ToDoDoc alloc] initWithFile:aFile]; 

[currentDoc activateDoc]; 

The open Doc: method displays the modal Open panel, gets the user's response 
(which can be multiple selections) and opens the file (or files) selected. 

1. Creates or gets the NSOpenPanel instance (an instance shared among objects of 
an application). The previous message specifies the file types (that is, the 
extensions) of the files that will appear in the Open panel browser. The next 
message enables selection of multiple file in the panel's browser. 

2. Sets the directory at which the NSOpenPanel starts displaying files either to 
the directory of any document window currently key or , if there is none, to 
the user's home directory. 

3. Runs the NSOpenPanel and obtains the key clicked. 

4. If the key is NSOKButton, cycles through the selected files and, for each, 
creates a document by allocating and initializing a ToDoDoc instance, 
passing in a file name. 

The methods invoked by the Document menu's Close and Save commands 
both simply send a message to another object. How they locate these objects 
exemplify important techniques using the core program framework. 

145 



Chapter 4 

10 Write the code that closes 
documents. 

In ToDoController.m, implement 
the closeDoc: method. 

11 Write the code that saves 
documents. 

In ToDoController.m, implement 
the saveDoc: method. 

146 

To Do Tutorial 

- (void)closeDoc: (id) sender 

[[NSApp mainWindow] performClose:self]; 

NSApp, the global NSApplication instance, keeps track of the application's 
windows, including their status. Because only one window can have main status, 
the mainWindow message returns that NSWindow object- which is, of course, 
the one the user chose the Close command for. The closeDoc: method sends 
performClose: to that window to simulate a mouse click in the window's close 
button. (See the following section, "Managing Documents Through 
Delegation," to learn how the document handles this user event.) 

- (void)saveDoc: (id) sender 

id currentDoc = [[NSApp mainWindow] delegate]; 

if (currentDoc) 

[currentDoc saveDoc]; 

As did closeDoc:, this method sends mainWindow to NSApp to get the main 
window, but then it sends delegate to the returned window to get its delegate, the 
ToDoDoc instance that is managing the document. It then sends the ToDoDoc
defined message saveDoc to this instance. 

Note: You could implement closeDoc: and saveDoc: in the ToDoDoc class, but the 
ToDoController approach was chosen to make the division of responsibility 
clearer. 



Select ToDoDoc.m in the project 
browser. 

Implement the saveDoc: method. 

12 Implementthe accessor methods 
for ToDoController and ToDoDoc. 

The Basics of a Multi-Document Application 

- (void)saveDoc 

NSString *fn; 

if (! [[[itemMatrix window] title] hasPrefix:@"UNTITLED"]) 
fn = [[itemMatrix window] representedFilename]; 

else { 

int result; 
NSSavePanel *sPanel = [NSSavePanel savePanel]; 
[sPanel setRequiredFileType:@"td"]; 

/* 1 */ 

/* 2 */ 

result = [sPanel runModalForDirectory:NSHomeDirectory() file:nil]; 

if (result == NSOKButton) { 
fn = [sPanel filename]; 
[[itemMatrix window] setTitleWithRepresentedFilename:fn]; 

else 
return; 

if (! [NSArchiver archiveRootObject:activeDays toFile:fn]) /* 3 */ 

NSRunAlertPanel(@"To Do", @"Couldn't archive file %@", 
nil, nil, nil, fn); 

else 
[[itemMatrix window] setDocumentEdited:NO]; 

ToDoDoc's saveDoc method complements ToDoController's openDoc: method in 
that it runs the modal Save panel for users. 

1. The title method returns the text that appears in the window's title bar. If the title 
doesn't begin with "UNTITLED" (what new document windows are initialized 
with), then a file name and directory location has already been chosen, and is 
stored as the represented Filename. 

2. If the window title begins with "UNTITLED" then the document needs to 
be saved under a user-specified file name and directory location. This part of 
the code creates or gets the shared NSSavePanel instance and sets the file 
type, which is the extension that's automatically appended. Then it runs the 
Save panel, specifying the user's home directory as the starting location. 

3. Archives the document under the chosen directory path and file name and, 
with the setDocumentEdited: message, changes the window's close button to an 
"unbroken X" image (more on this in the next section). 

Don't implement setCurrentltems: yet. This method does something special for 
the application that will be covered in "Managing the Data and Coordinating its 
Display (ToDoDoc)" on page 154. 

147 



Chapter 4 To Do Tutorial 

148 

SAP~lic,ati~n~~~\Nin~~YI'; an~ .~;S,Vie"!i;'.~1 
t.--h"""''''''~_'' _. ~~_._. _' ' • ..,..."" ... ~_,,<,",._. _.,..,,,~,J:,~,,,,,."»,,,,J..._,,,~~-.~/-:'~,. __ ,,,,,,,;.;;L~~,~: ~ •. ~ __ _ 

Many classes ofthe Application Kit stand out in terms of relative 
importance. NSControl, for example, is the superclass of all user
interface devices, NSText underlies all text operations, and 
NSMenu has obvious significance. But four classes are at the 
core of a running application: NSResponder, NSApplication, 
NSWindow, and NSView. Each of these classes plays a critical 
role in the two primary activities of an application: drawing the 
user interface and responding to events. The structure of their 
interaction is sometimes called the core program framework. 

NSWindow 

An NSWindow object manages each physical window (that is, 
each window created by the Window Server) on the screen. It 
draws the title bar and window frame and responds to user 
actions that close, move, resize, and otherwise manipulate the 
window. 

The main purpose of an NSWindow is to display an application's 
user interface (or part of it) in its content area: that space below 
the title bar and within the window frame. A window's content is 
the NSViews it encloses, and at the root of this view hierarchy is 
the content view, which fills the content area. Based on the 
location of a user event, NSWindows assigns an NSView in its 
content area to act as first responder. 

An NSWindow allows you to assign a custom object as its 
delegate and so participate in its activities. 

The NSEvent class is also 
involved in event processing. For 
more about NSEvent and the 
event cycle, see "Events and the 
Event Cycle" on page 163. 

I 
NSWindow 

NSObject 

NSResponder 

NSApplication 

NSResponder 

NSResponder is an abstract class, but it enables event handling 
in all classes that inherit from it. It defines the set of messages 
invoked when different mouse and keyboard events occur. It also 
defines the mechanics of event processing among objects in an 
application, especially the passing of events up the responder 
chain to each next responder until the event is handled. See the 
"Events and the Event Cycle" on page 163 for more on the 
responder chain and a description of first responder. 

NSApplication 

Every application must have one NSApplication object to act as 
its interface with the Window Server and to supervise and 
coordinate the overall behavior of the application. This object 
receives events from the Window Server and dispatches them to 
the appropriate NSWindows (which, in turn, distribute them to 
their NSViews). The NSApplication object manages its windows 
and detects and handles changes in their status as well as in its 
own status: hidden and unhidden, active and inactive. The 
NSApplication object is represented in each application by the 
global variable NSApp. To coordinate your own code with NSApp, 
you can assign your own custom object as its delegate. 

NSView 

Any object you see in a window's content area is an NSView. 
(Actually, since NSView is an abstract class, these objects are 
instances of NSView subclasses.) NSView objects are 
responsible for drawing and for responding to mouse and 
keyboard events Each NSView owns a rectangular region 
associated with a particular window; it produces images within 
this region and responds to events occurring within the rectangle. 

NSViews in a window are logically arranged in a view hierarchy, 
with t~e content viewatthe top of the hierarchy (see facing page 
for more information). An NSView references its window, its 
superview, and its subviews. It can be the first responder for 
events orthe next responder in the responder chain. An NSView's 
frame and bounds are rectangles that define its location on the 
screen, its dimension, and its coordinate system for drawing. 

NSView 



The Basics of a Multi-Document Application 

The View Hierarchy 

Just inside each window's content area-the area enclosed by 
the title bar and the other three sides of the frame-lies the 
content view. The content view is the root (or top) NSView in the 
window's view hierarchy. Conceptually like a tree, one or more 
NSViews may branch from the content view, one one or more 
other NSViews may branch from these subordinate NSViews, and 
so on. Except for the content view, each NSView has one (and 
only one) NSView above it in the hierarchy. An NSView's 
subordinate views are called its subviews; its superior view is 
known as the superview. 

On the screen enclosure determines the relationship between 
superview and subview: a superview encloses its subviews. This 
relationship has several implications for drawing: 

• It permits construction of a superview simply by arrangement 
of subviews. (An NSBrowser is an instance of a compound 
NSView.) 

• Subviews are positioned in the coordinates of their superview, 
so when you move an NSView or transform its coordinate 
system, all subviews are moved and transformed in concert. 

• Because an NSView has its own coordinate system for 
drawing, its drawing instructions remain constant regardless 
of any change in position in itself or of its superview. 

NSApp 

NSApplication 

windows .. 
NSWindow ~ 

~ 

delegate .... 

contentView 
delegate ... .. 

-. NSWindow 

conte ntVi ew 
delegate 

Fitting Your Application In 

The core program framework provides ways for your application 
to access the participating objects and so to enter into the action. 

• The global variable NSApp identifies the NSApplication object. 
By sending the appropriate message to NSApp, you can obtain 
the application's NSWindow objects (windows), the key and 
main windows (keyWindow and mainWindow), the current 
event (currentEvent), the main menu (mainMenu), and the 
application's delegate (delegate). 

• Once you've identified an NSWindow object, you can get its 
contentview(bysending itcontentView) and from that you can 
get all subviews of the window. By sending messages to the 
NSWindow object you can also get the current event 
(currentEvent), the current first responder (firstResponder), 
and the delegate (delegate). 

• You can obtain from an NSView most objects it references. You 
can discover its window, its superview, and its subviews. 
Some NSView subclasses can also have delegates, which you 
can access with delegate. 

By making your custom objects delegates ofthe NSApplication 
object, your application's NSWindows, and NSViews that have 
delegates, you can integrate your application into the core 
program framework and participate in what's going on. 

r+ NSView(B) 

window .. NSView(A) ~ superview po ... 

window 
subviews 

superview (nil) 
subviews 

L..-+ NSView.(C) 

window 

~ 
A superview 

subviews 

C 

149 



Chapter 4 To Do Tutorial 

Managing Documents Through Delegation 

Mark a document as edited. 

Open ToDoDoc.m. 

Implement the 
controlTextDidChange: method 
to mark the document. 

150 

At certain points while an application is running you want to ensure that a 
document's data is preserved or that a document's edited status is tracked. 
These events occur when users: 

• Edit a document. 
• Close a window. 
• Quit the application. 
• Hide the application. 
• Switch to another application or window. 

Several classes of the Application Kit send messages to their delegates when 
these events occur, givi~g the delegate the opportunity to do the appropriate 
thing, whether that be saving a document to the file system or marking a 
document as edited. 

- (void)controlTextDidChange: (NSNotification *)notif 

[[itemMatrix window] setDocumentEdited:YES]; 

When a control that contains editable text-such as a text field or a matrix of text 
fields-detects editing in a field, it posts the controlTextDidChange: notification 
which, like all notifications, is sent to the control's delegate as well as to all 
observers. The setDocumentEdited: message causes the document's window to 
change the image in its close button to a broken X. 

~ [window setDocumentEdited:NO] i 

~ [window setDocumentEdited:YES]; 

Note: The ToDo object that, by notification, invokes the controlTextDidChange: 
method is itemMatrix, the matrix of to-do items (text fields). You will 
programmatically set ToDoDoc to be the delegate of this object later in this 
tutorial. 



2 Save edited documents when 
windows are closed. 

Implementthe delegation method 
windowShouldClose:. 

Managing Documents Through Delegation 

- (BOOL)windowShouldClose: (id) sender 

int result; 
/* 1 */ 

if (! [[itemMatrix windowl isDocumentEditedl) return YES; 
/* 2 */ 

[[itemMatrix windowl makeFirstResponder: [itemMatrix windowll; 
result = NSRunAlertPanel(@"Close", @"Document has been edited. 

Save changes before closing?", @"Save", @"Don't Save", 
@"Cancel") ; 

/* 3 */ 

switch(result) { 

case NSAlertDefaultReturn: 
[self saveDocltemsl; 

[self saveDocli 
return YES; 

case NSAlertAlternateReturn: 

return YES; 

case NSAlertOtherReturn: 

return NO; 

return NO; 

When users click a window's close button, the window sends windowShouldClose: 
to its delegate. It expects a response directing it either to close the window or 
leave it open. 

1. Returns YES (meaning: go ahead, close the window) if the document hasn't been 
edited. 

2. Makes the window its own first responder. This has the effect of forcing the 
validation of cells, flushing currently entered text to the method that handles 
it (more on this in the next section). 

3. Identifies the clicked button by evaluating the constant returned from 
NSRunAlertPanelO and returns the appropriate boolean value; If the user clicks 
the Save button, this method also updates internal storage with the currently 
displayed items (saveDocltems) and then sends saveDoc to itself to archive 
application data to a file. (saveDocltems is described in the following section.) 

Note: Do you recall the performClose: method that ToDoController sends the 
document window when the user chooses the Close command? This method 

151 



Chapter 4 

3 Save edited documents when the 
user quits the application. 

In ToDoController.m, implement 
the delegation method 
applicationShouldTerminate:. 

152 

To Do Tutorial 

simulates a mouse click on the window's close button, causing windowShouldClose: 
to be invoked. 

- (BOOL)applicationShouldTerminate: (id) sender 

while ([NSApp keyWindow]) { 

int result; 

id doc = [[NSApp keyWindow] delegate]; 

if (! [[NSApp keyWindow] isDocumentEdited]) 

[[NSApp keyWindow] close]; 
if (doc) [doc autorelease]; 

continue; 

if ([doc isKindOfClass: [ToDoDoc class]]) { 
NSString *repfile = [[NSApp keyWindow] representedFilename]; 

result = NSRunAlertPanel(@"To Do", @"Save %@?", @"Save", 

@"Don't Save", @"Cancel", 

else 

( [repfi Ie isEqual ToString: @" " ] ?@"UNTITLED" : repfile) ) ; 

switch(result) { 
case NSAlertDefaultReturn: 

[doc saveDocItems]; 

(doc saveDoc]; 

break; 

case NSAlertAlternateReturn: 
[[NSApp keyWindow] close]; 

break; 

case NSAlertOtherReturn: 

return NO; 

if (doc) [doc autorelease]; 

[[NSApp keyWindow] close]; 

return YES; 

NSApplication sends several message to its delegate. One of these messages
applicationShouldTerminate:-notifies the delegate that the application is about to 

terminate. The implementation of this method is similar to that for 
windowShouldClose:. What's different is that this method cycles through all 
windows of the application and, if the window is managed by To Do Doc, puts 
up an attention panel and responds according to the user's choice. 



Managing the Data and Coordinating its Display (ToDoDoc) 

Managing the Data and Coordinating its Display (ToDoDoc) 

If you recall the discussion on To Do's design earlier in this chapter ("How To 
Do Stores and Accesses its Data" on page 119), you'll remember that the 
application's real data consists of instances of the model class, ToDoItem. To Do 
stores these objects in arrays and stores the arrays in a dictionary; it uses dates as 
the keys for accessing specific arrays. (Both the dictionary and its arrays are 
mutable, of course.) You might also recall that this design depends on a 
positional correspondence between the text fields of the document interface 
and the "slots" of the arrays. 

To lend clarity to this design's implementation, this section follows the process 
from start to finish through which the ToDoDoc class handles entered data, and 
organizes, displays, and stores it. It also shows how the display and manipulation 
of data is driven by the selections made in the CalendarMatrix object. 

Start by revisiting a portion of code you wrote earlier for ToDoDoc's initWithFile: 
method. 

- initWithFile: {NSString *)aFile 

/ * ... * / 
if (aFile) 

activeDays = [NSUnarchiver unarchiveObjectWithFile:aFilel i 

if (activeDays) 
activeDays = [activeDays retainJ; 

else 
NSRunAlertPanel{@"To Do", @IICouldn't unarchive file %@", 

nil, nil, nil, aFile)i 
else 

activeDays = [[NSMutableDictionary allocl initJi 
[self setCurrentItems:nilJi 

/ * * / 

Assume the user has chosen the New command from the Document menu. 
Since there is no archive file (aFile is nil), the active Days dictionary is created but 
is left empty. Then initWithFile: invokes its own setCurrentltems: method, passing in 
nil. 

153 



Chapter 4 

Set the current items or, if 
necessary, create and prepare 
the array that holds them. 

Implement setCurrentltems:. 

154 

To Do Tutorial 

- (void)setCurrentItems: (NSMutableArray *)newItems 

if (currentItems) [currentItems autorelease]i 

if (newItems) 
currentItems = [newItems mutableCopy] i 

else { 

int numRows = [[itemMatrix cells] count]i 

currentltems = [[NSMutableArray alloc] 
initWithCapacity:numRows] i 

while (--numRows >= 0) 
[currentItems addObject:@""]i 

This "set" accessor method is like other such methods, except in how it handles 
a nil argument. In this case, nil signifies that the array does not exist, and so it 
must be created. Not only does setCurrentltems: create the array, but it "initializes" 
it with empty s.tring objects. It does this because NSMutableArray's methods 
cannot tolerate nil objects within the bounds of the array. 

So there's now a currentltems array ready to accept ToDoItems. Imagine yourself 
using the application. What are the user events that cause a ToDoItem to be 
added to the currentltems array? To Do allows entry of items "on the fly," and thus 
does not require the user to click a button to add a ToDoItem to the array. 
Specifically,items are added when users type something and then: 

• Press the Tab key. 
• Press the Enter key. 
• Click outside the text field. 

The controlTextDidEndEditing: delegation method makes these scenarios possible. 
The matrix of editable text fields (itemMatrix) invokes this method when the 
cursor leaves a text field that has been edited. 



2 As items are entered in the 
interface, add ToDoltems to 
internal storage, delete them, or 
modify them, as appropriate. 

Implement 
controITextDidEndEditing:. 

Managing the Data and Coordinating its Display (ToDoDocl 

- (void)controITextDidEndEditing: (NSNotification *)notif 

id curltem, newltem; 
int row = [itemMatrix selectedRow]; 
NSString *selName = [[itemMatrix selectedCell] stringValue]; 

/* 1 */ 

if (! [[itemMatrix window] isDocumentEdited] I I 
(row>= [currentltems count])) return; 

if (!currentltems) 
[self setCurrentltems:nil]; 

/* 2 */ 

if ([seIName isEquaIToString:@""] && 

/* 3 */ 

([[currentltems objectAtlndex:row] isKindOfClass: 
[ToDoltem class]]) && 

(! [[[currentltems objectAtlndex:row] itemName] 
isEquaIToString:@""])) 

[currentltems replaceObjectAtlndex:row withObject:@""]; 

else if ([[currentltems objectAtlndex:row] isKindOfClass: 
[ToDoltem class]] && 

/* 4 */ 

(! [[[currentltems objectAtlndex:row] itemName] 
isEquaIToString:seIName]) ) 

[[currentltems objectAtlndex:row] setltemName:seIName]; 

else if (! [selName isEqualToString:@""]) { 
newltem = [[ToDoltem alloc] initWithName:selName 

andDate: [calendar selectedDay]]; 

[currentltems replaceObjectAtlndex:row withObject:newltem] ; 
[newltem release] ; 

/* 5 */ 

[self updateMatrix] ; 

A control sends controlTextDidEndEditing: to its delegate when the cursor leaves a text 
field. In addition to creating new ToDoItems, this implementation of 
controlTextDidEndEditing: removes ToDoltems from arrays and modifies item text. 
What it does is appropriate to what the user does. 

1. If the document hasn't been edited (see controITextDidChange:) or if the selected row 
exceeds the array bounds, it returns because there's no reason to proceed. It 
initializes a currentltems array if one doesn't exist. 

2. If the user deletes the text of an existing item, it removes the ToDoltem that 
positionally corresponds to the row of that deleted text. 

3. It changes the name of an item if the text entered in a field doesn't match the 
name of the corresponding item in the currentltems array. 

155 



Chapter 4 

3 Update the document interface 
with the current items. 

Implement updateMatrix:. 

156 

To Do Tutorial 

4. If either of the two previous conditions don't apply, and text has been 
entered, it creates a new ToDoltem and inserts it in the currentltems array. 

5. Updates the list of items in the document interface. 

int it cnt = [currentltems count], rows 
ToDoltem *thisltem; 

[[itemMatrix cells] count]; 

for (i=Oi i<cnt, i<rows; i++) { 
NSDate *due; 
thisltem = [currentltems objectAtlndex:i]; 
if ([thisltem isKindOfClass: [ToDoltem class]]) 

if ( [thisltem secsUntilDue] ) 

else 

due [[thisltem day] addTimelnterval: 

[thisltem secsUntilDue]]; 

due nil; 

[[itemMatrix cellAtRow:i column:O] setStringValue: 
[thisltem itemName]]; 

£ [markMatrix cellAtRow:i column:O] setTimeDue:due] i 

[[markMatrix cellAtRow:i column:O] setTriState: 

[thisltem itemStatus]]i 

/* 1 */ 

else /* 2 */ 
[[itemMatrix cellAtRow:i column:O] setStringValue:@IIII]i 
[[markMatrix cellAtRow:i column:O] setTitle:@"I)i 

[[markMatrix cellAtRow:i column:O] setlmage:nil); 

The update Matrix method writes the names of the items (ToDoItems) in the 
currentltems array to the text fields of itemMatrix. It also updates the visual 
appearance of the cells in the matrix (markMatrix) next to itemMatrix. These cells 
are instances of a custom subclass of NSButtonCell that you will create later in 
this tutorial. For now, just type all the code above; later, when you create the cell 
class, ToDoCell, you can refer back to this example to see what is happening. 

Basically, this method cycles through the array of items, doing the following: 

1. If an object in the array is a ToDoltem, it writes the item name to the text field 
corresponding to the array slot and updates the button cell next to the field. 

2. If an object isn't a ToDoltem, it blanks the corresponding text field and cell. 



4 Respond to user actions in the 
calendar. 

Implement CalendarMatrix's 
delegation methods. 

Managing the Data and Coordinating its Display (ToDoDoc) 

- {void)calendarMatrix: {CalendarMatrix *)matrix 

didChangeToDate: {NSDate *)date 

/* 1 */ 

[[itemMatrix window] makeFirstResponder: [itemMatrix window]] i 

[self saveDocltems]i 

[self setCurrentltems: [activeDays objectForKey:date]]i 

[dayLabel setStringValue: [date descriptionWithCalendarFormat: 

@"To Do on %a %B %d %Y" timeZone: [NSTimeZone defaultTimeZone] 

locale:nil]]i 
[self updateMatrix]i 

- {void)calendarMatrix: {CalendarMatrix *)matrix 

didChangeToMonth: {int)mo year: {int)yr 

[self saveDocltems]i 

[self setCurrentltems:nil]i 

[self updateMatrix]i 

/* 2 */ 

As you recall, CalendarMatrix declared two methods to allow delegates to "hook 
into" its behavior. Its delegate for this application is ToDoDoc. 

1. The calendar sends calendarMatrix:didChangeToOate: when users click a new day of 
the month. This implementation saves the current items to the activeOays 

dictionary. It then sets the current items to be those corresponding to the selected 
date (if there are no items for that date, the objectForKey: message returns nil and the 
currentltems array is initialized with empty strings). Finally it updates the matrix 
with the new data. 

2. The calendar sends calendarMatrix:didChangeToMonth:year:when users go to a new 
month and (possibly) a new year. This implementation responds by saving 
the current items to internal storage and presenting a blank list of items. 

157 



Chapter 4 

5 Save the data to internal storage. 

Implement saveDocltems:. 

6 Archive and unarchive the 
document's data. 

Implement encodeWithCoder: 
and initWithCoder:to archive and 
unarchive the dictionary holding 
the arrays of ToDoltems. 

158 

To Do Tutorial 

- (void)saveDocltems 

ToDoltem *anltemj 

int i, cnt = [currentltems count] j 

II save day's current items (array) to document dictionary 
for (i=Oi i<cntj i++) { 

if ( (anltem = [currentltems objectAtlndex:i]) && 
([anltem isKindOfClass: [ToDoltem class]]) ) { 

[activeDays setObject:currentltems forKey: 

[anltem day]]j 
break; 

This method inspects the currentltems array and, if it contains at least one 
ToDoltem, puts the array in the activeDays dictionary with a key corresponding 
to the date. 

Now that you've completed the methods for saving and archiving the collection 
objects holding ToDoltems, assume that the user has saved his document and 
then opens it. 



7 Perform set-up tasks when the 
document's nib file is unarchived. 

Implement awakeFromNib as 
shown at right. 

8 Set up the document once it's 
created or opened. 

ImplementactivateDoc as shown 
at right. 

Managing the Data and Coordinating its Display lToDoDocl 

- (void)awakeFromNib 

int i; 
NSDate *date; 

date = [calendar selectedDay]; 
[self setCurrentltems: [activeDays objectForKey:date]]; 
/* set up self as delegates */ 

[[itemMatrix window] setDelegate:self]; 
[itemMatrix setDelegate:self]; 

[[itemMatrix window] makeKeyAndOrderFront:self]; 

When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It 
sets the current items for today, sets a couple of delegates, and puts the 
document window in front of all other windows. 

Note: This method sets some delegates programmatically, which is redundant 
since you set these delegates in Interface Builder. However, this code 
demonstrates the programmatic route-and no harm done. 

- (void)activateDoc 

if ([currentltems count]) [self updateMatrix]; 

[dayLabel setStringValue:[[calendar selectedDay] 

descriptionWithCalendarFormat:@"To Do on %a %B %d %Y" 
timeZone: [NSTimeZone defaultTimeZone] locale:nil]]; 

The activateDoc method is invoked right after a ToOo document is created or 
opened. It starts the ball rolling by updating the list matrices of the document 
and writing the current date to the "To Do on <dote>" label. 

159 



Chapter 4 To Do Tutorial 

Subclass Example: Overriding Behavior (Selection Notif Matrix) 

Create template source-code 
files and add to the project. 

Choose File ~ New In Project. 

In the New File In ToDo panel, 
selectthe Class suitcase, turn on 
the Create header switch, and 
type "SelectionNotifMatrix" after 
Name. 

2 Add declarations to the header 

You can often achieve significant gains in object behavior by making a subclass 
that adds only a small amount of code to its superclass. Such is the case with the 
subclass you'll create in this section: SelectionNotifMatrix. 

The need for this class is this: An instance of NSMatrix is a control and thus can 
send action messages to its cell's targets; but when it contains 
NSTextFieldCells, action messages are sent only when users press the Return 
key in a cell. You want the inspector to synchronize its displays when the user 
selects a new item by clicking a text field. To do this, you will override the 
method in NSMatrix that is invoked when users click the matrix; in your 
implcmc~tation, you'll invoke the superclass method, detect the selected row, 
and then post a notification to interested observers. 

#import <AppKit/AppKit.h> 

extern NSString *SelectionlnMatrixNotification 
@ISe l ec tionlnMatrixNotification"; 

@interface SelectionNotifMatrix : NSMatrix 

- (void)mouseDown: (NSEvent *)theEvent; /* 2 */ 

/* 1 */ 

file. @end 

3 Override mouseDown: 

In SelectionNotifMatrix.m, 
implement mouseD own: as 
shown here. 

160 

1. Declares a string constant identifying the notification that will be posted. 

2. Declares mouseDown:, the method implemented by the superclass that 
SelectionN otifMatrix overrides. 

- (void)mouseDown: (NSEvent *)theEvent 

int row; 
[super mouseDown:theEvent]; 

row = [self selectedRow]; 
if (row ! = -1) { 

/* 1 */ 

/* 2 */ 

[[NSNotificationCenter defaultCenter] 
postNotificationName:@"SelectionlnMatrixNotification" 

object:self userlnfo: [NSDictionary dictionaryWithObjectsAndKeys: 
[NSNumber numberWithlnt:row], @"Itemlndex", nil]]; 



4 Replace the class of the matrix 
object. 

In Interface Builder: 

Open ToDoDoc.nib. 

Select the matrix of editable text 
cells. 

Open the inspector and choose 
Custom Class from the pop-up 
menu. 

Select SelectionNotifMatrix in 
the browser of compatible 
classes. 

Subclass Example: Overriding Behavior (SelectionNotifMatrix) 

This override of mouseDown: does the following: 

1. Invokes NSMatrix's implementation of mouseDown: to allow the normal 
processing of this event. 

2. Gets the row of the cell clicked and, if it's a valid row, creates a userlnfo 
dictionary containing the clicked row, and posts the 
SelectionInMatrixN otification. 

Now that you've created the SelectionNotifMatrix class, you must re-assign the 
class membership of the object in the interface. You can do this easily in 
Interface Builder. 

SelectionUotifMatrix Inspector X 

CalendarMatrix 
t:l§M~ri(L~ __ ,_~ __ 3t 

~~~I ~S!i9D!'l.9!~~_~t!i~. ,-.~--,~---~J; 

The Custom Classes browser lists the original
class of the selected object and all compatible
custom subclasses.

161

Chapter 4 To Do Tutorial

162

Events and the Event Cycle;

You can depictthe interaction between a user and an OpenStep
application as a cyclical process, with the Window Server playing
an intermediary role (see illustration below). This cycle-the
event cycle-usually starts at launch time when the application
(which includes all the OpenStep frameworks it's linked to) sends
a stream of PostScript code to the Window Server to have it draw
the application interface.

Then the application begins its main event loop and begins
accepting inputfrom the user (see facing page). When users click
or drag the mouse or type on the keyboard, the Window Server
detects these actions and processes them, passing them to the
application as events. Often the application, in response to these
events, returns another stream of PostScript code to the Window
Server to have it redraw the interface.

In addition to events, applications can respond to other kinds of
input, particularly timers, data received at a port, and data waiting
at a file descriptor. But events are the most important kind of input.

Events

The Window Server treats each user action as an event; it
associates the event with a window and reports it to the
application that created the window. Events are objects:
instances of NSEvent composed from information derived from
the user action.

All event methods defined in NSResponder (such as mouseD own:
and keyDown:) take an NSEvent as their argument. You can query
an NSEvent to discover its window, the location of the event
within the window, and the time the event occurred (relative to
system start-up). You can also find out which (if any) modifier keys
were pressed (such as Command, Alternate, and Controll, the

User

Window
Server

Events

codes identifying characters and keys, and various other kinds of
information.

An NSEvent also divulges the type of event it represents. There
are many event types (NSEventType); theyfall into five categories:

• Keyboard events Generated when a key is pressed down, a
pressed key is released, or a modifier key changes. Of these,
key-down events are the most useful. When you handle a key
down event, you often determine the character or characters
associated with the event by sending the NSEvent a
characters message.

• Mouse events Mouse events are generated by changes in
the state of the mouse buttons (that is, down and up) for both
left and right mouse buttons and during mouse dragging.
Events are also generated when the mouse simply moves,
without any button pressed.

• Tracking-rectangle events If the application has asked the
window system to set a tracking rectangle in a window, the
window system creates mouse-entered and mouse-exit
events when the cursor enters the rectangle or leaves it.

• Periodic events A periodic event notifies an application that
a certain time interval has elapsed. An application can request
that periodic events be placed in its event queue at a certain
frequency. They are usually used during a tracking loop. (These
events aren't passed to an NSWindow.)

• Cursor-update events An cursor-update event is generated
when the cursor has crossed the boundary of a predefined
rectangular area.

Other
Applications

Monitored Port
or File

PostScript
Code

Entries

Subclass Example: Overriding Behavior (SelectionNotifMatrixl

The Event Queue and Event Dispatching

When an application starts up, the NSApplication object (NSAppl
starts the main event loop and begins receiving events from the
Window Server (see page 1161. As NSEvents arrive, they're put in
the event queue in the order they're received. On each cycle of
the loop, NSApp gets the topmost event, analyzes it, and sends an
event message to the appropriate object. (Event messages are
defined by NSResponder and correspond to particular events.l
When NSApp finishes processing the event, it gets the next event,
and repeats the process again and again until the application
terminates.

The objectthat is "appropriate" for an event depends on the type
of event. NSApp sends most event messages to the NSWindow in
which the user action occurred. If the event is a keyboard or
mouse event, the NSWindow forwards the message to one ofthe
objects in its view hierarchy: the NSView within which the mouse
was clicked or the key was pressed. If the NSView can respond
to the event-that is, it accepts first responder status and defines
an NSResponder method corresponding to the event message
it handles the event.

Ifthe NSView cannot handle an event, itforwards the message to
the next responder in the responder chain (see belowl. It travels
up the responder chain until an object handles it.

NSWindow handles some events itself, and doesn'tforward them
to an NSView, such as window-moved, window-resized, and
window-exposed events. (Since these are handled by NSWindow
itself, they are not defined in NSResponder.l NSApp also
processes a few kinds of events itself; these include cursor
update, and application-activate and -deactivate events.

First Responder and the Responder Chain

Each NSWindow in an application keeps track ofthe object in its
view hierarchy that has first responderstatus. This is the NSView
that currently receives keyboard events for the window. By
default, an NSWindow is its own first responder, but any NSView
within the window can become first responder when the user
clicks it with the mouse.

You can also set the first responder programmatically with the
NSWindow's makeFirstResponder: method. Moreover, the first
responder object can be a target of an action message sent by an
NSControl, such as a button or a matrix. Programmatically, you do
this by sending setTarget: to the NSControl (or its cellI with an
argument of nil. You can do the same thing in Interface Builder by
making a target/action connection between the NSControl and
the First Responder icon in the Instances display of the nib file
window.

Recall that all NSViews of the application, as well as all
NSWindows and the application object itself, inheritfrom
NSResponder, which defines the default message-handling
behavior: events are passed up the responder chain. Many
Application Kit objects, of course, override this behavior, so
events are passed up the chain until they reach an objectthat
does respond.

The series of next responders in the responder chain is
determined by the interrelationships between the application's
NSView, NSWindow, and NSApplication objects (see page 1491.
For an NSView, the next responder is usually its superview; the
content view's next responder is the NSWindow. From there, the
event is passed to the NSApplication object.

For action messages sent to the first responder, the trail back
through possible respondents is even more detailed. The
messages are first passed up the responder chain to the
NSWindow and then to the NSWindow's delegate. Then, if the
previous sequence occurred in the key window the same path is
followed for the main window. Then the NSApplication object
tries to respond, and failing that, it goes to NSApp's delegate.

163

Chapter 4 To Do Tutorial

Creating and Managing an Inspector (ToDolnspector)

In Interface Builder

Create a new nib file named
ToDolnspector.nib and add it to
the ToDD project.

2 Create the inspector panel.

Drag a panel object from the
Windows palette.

Make the title ofthe panel
"Inspector."

Resize the panel, using the
example at right as a guide.

Put labels and fields on the panel
and set their attributes (as
shown).

Put a pop-up button on the panel
and set cell titles (as shown).

Assign tags to the pop-up button
cells.

Create a separator line just below
the pop-up button.

Put an empty box object in the
lower part of the panel.

164

An inspector is a panel of fields and controls that enable users to examine and
set an object's attributes. Because objects often have many attributes and
because you want to make it easy for users to set those attributes, inspectors
usually have more than one display; users typically access these multiple
displays using a pop-up list.

The ToDo application has an inspector panel that allows users to inspect and set
the attributes of the currently selected ToDoItem. The inspector panel has its
own controller: ToDolnspector. While showing you how to create the inspector
panel and ToDolnspector, this section focuses on four things:

• Managing displays according to user selections
• Getting the current ToDoItem
• Updating the currently selected display
• Updating the current ToDoltem as users make changes to it

~-:"-"'-!+-- The text fields after the labels should have a light
gray background and should not be editable. The
lower of these fields should be large enough to

1~~ti~~i~i~- hold the text of an item.

fI Double-click to display the three default cel/s
(Item 1, Item2, and Item3). Then, for each cel/,
double-click its title to select it and type the new
title. Assign tags (0 to 2) to the cells.

Turn off the title attribute and resize the box object
so it fits just inside the lower part of the panel.
To provide a guide for resizing, this example
shows the box having a border; turn the border
off after resizing.

BeforeyouGoOn---

You might be wondering about the empty box object in the lower part of the
panel. This box by itself may not seem a promising thing for displaying object
attributes, but it is critical to the workings of the inspector panel. A box that you
drag from the Views palette contains one subview, called the content view.
NSBox's content view fits entirely within the bounds of the box. NSBox
provides methods for obtaining and changing the content view of boxes. You'll
use these methods to change what the inspector panel displays.

3 Create an off-screen panel
holding the inspector's displays.

Drag a panel object from the
Windows palette.

Resize the panel, using the
example at right as a guide.

Put the labels, text fields, scroll
view, and switch and radio-button
matrices on the panel shown in
the example at right.

Make the When to Reschedule
and When to Notify groupings
(boxes).

Make three other groupings for
the three displays: Notes,
Reschedule, and Notification.

Resize the resulting boxes to the
same dimensions as the
"dummy" view in the inspector
panel.

Creating and Managing an Inspector (ToDolnspector)

JDTas~ Completed

. - When to Reschedule -.-
; 1£1 Don' reschedule
IU Next day
!t:J Week from now
fljMonlh from now
:t]speCifiC date

L __ .. ____ . ___ :. mmlyy/dd

•

•
Time: cr=:i r'AM GPM

'--.::.--_ When to Notify ~
. \£1 Do notnotlfy

:B 15 minutes before
ItJ 1 hour before
1.:.1 1 day before
IIJolher ~f hours

•
Turn off the border attributes of each outer box.

Before You Go On ---------------------

You probably now see where the inspector panel gets its displays and how it puts
them in place. \Vhen the inspector panel is first opened (and ToDolnspector.nib is
loaded) the inspector controller, ToDolnspector, replaces the content view of
the inspector's empty box (dummyView) with the content view of the Notification
box in the off-screen panel. Thereafter, every time the user chooses a new pop
up button in the inspector panel, ToDolnspector replaces the currently
displayed content view with the content view of the associated off-screen box.

L~~~~t:::d--f-- When users choose a new display,
ToDolnspector replaces the current
content view of dummyView with
the appropriate view on the off
screen window of inspector views.

dummyView --!--

165

•

Chapter 4

4 Define the ToDolnspector class.

Create a subclass of NSObject
and name it "ToDolnspector."

Add the outlets and actions in the
tables at right to the new class.

Instantiate ToDolnspector.

Connect the ToDolnspector
object to its outlets and as the
target of action messages (see
tables at right).

Connect ToDolnspector and the
inspector panel via the panel's
delegate outlet.

Close both panels.

Save ToDolnspector.nib.

Create source-code files for
ToDolnspector and add them to
the project.

166

To Do Tutorial

Outlet

dummyView

inspectorViews

notesView

notiNiew

reschedView

inspPopUp

inspDate

inspltem

inspNotifHour

inspNotifMinute

inspNotifAMPM

inspNotifOtherHours

inspNotifSwitchMatrix

inspSchedComplete

inspSchedDate

inspSchedMatrix

inspNotes

Action

newlnspectorView:

switchChecked:

Connection From ToDolnspector To ...

The empty box object in the inspector panel

The title bar ofthe off-screen panel

The box in the off-screen panel containing the scroll view

The box in the off-screen panel containing the fields and controls
related to notification of impending items

The box in the off-screen panel containing the fields and controls
related to rescheduling items

The pop-up button on the inspector panel

The uneditable text field next to the "Date" label

The uneditable text field next to the "Item" label

The first field after the "lime" label

The second field after the "lime" label

The matrix holding the "AM" and "PM" radio buttons

The text field in the "When to Notify" box

The matrix of switches in the "When to Notify" box

The "Task Completed" switch

The text field in the "When to Reschedule" box

The matrix of switches in the "When to Reschedule" box

The text object inside the scroll view

Connection To ToDolnspector From ...

The pop-up button on the inspector panel

The matrix of switches inthe "When to Notify" box, the AM-PM matrix,
the "Task Completed" switch, and the matrix of switches in the "When
to Reschedule" switches.

In Project Builder

5 Add declarations to
ToDolnspector.h.

Open ToDolnspector.h.

Type the declarations shown at
right (ellipses indicate existing
declarations).

Import ToDoltem.h and
ToDoDoc.h.

Open ToDolnspector.m.

Forward-declare
clearButtonMatrixO at the
beginning of the file.

Define enum constants for the
pop-up button tags.

6 Implement the accessor methods
for the class.

Implement currentltem to return
the instance variables it names.

Implement setCurrentltem: as
shown at right.

Creating and Managing an Inspector (ToDolnspector)

@interface ToDolnspector : NSObject

ToDoltem *currentltem;

/ * * /

/* */

- (void)setCurrentltem: (ToDoltem *)newltem;
- (ToDoltem *)currentltem;
- (void)updatelnspector: (ToDoItem *)item;
@end

The ToDoInspector class has a utility function for clearing switches set in a
matrix and defines constants for the tags assigned to the pop-up buttons.

static void clearButtonMatrix(id matrix) ;
enum { notifTag = 0, reschedTag, notesTag };

Using tags to identify cells rather than cell titles is a better localization strategy.

ToDoInspector has two accessor methods, one that gives out the current item
and one that sets the current item.

- (void)setCurrentltem: (ToDoltem *)newltem

if (currentltem) [currentItem autorelease] ;
if (newltem)

currentltem [newltem retain];

else
currentltem nil;

[self updatelnspector:currentltem];

/* 1 */

/* 2 */

This implementation of a "set" accessor method probably seems familiar to

you-except for a couple of things:

1. Instead of copying the new value, this implementation retains it. By retaining, it
shares the current ToDoltem with the document controller (ToDoDoc) that has
sent the setCurrentltem: message, enabling both objects to update the same
ToDoltem simultaneously.

Note: Later in this section, you'll invoke ToDoInspector's setCurrentltem:

method in various places in ToDoDoc.m.

2. Updates the current display of the inspector with the appropriate values of
the new ToDoltem.

167

Chapter 4

7 Switch inspector displays based
on user selections.

Implement newlnspectorView:.

168

To Do Tutorial

- (void)newlnspectorView: (id) sender

NSBox *newview=nil;
NSView *cView = [[inspPopUp window] contentView];
int selected = [[inspPopUp selectedltem] tag];
switch(selected) {

case notifTag:
newView = notifView;
break;

case reschedTag:
newView = reschedView;

break;
case notesTag:

newView = notesView;

/* 1 */

/* 2 */

if ([[cView subviews] containsObject:newView]) return; /* 3 */

[dummyView setContentView:newView]; /* 4 */

if (newView == notifView) [inspNotifHour selectText:self];

if (newView == notesView) [inspNotes
setSelectedRange:NSMakeRange(O,O)];

[self updatelnspector:currentltem] ;
[cView display] ;

/* 5 */

This method switches the current inspector display according to the pop-up
button users select; it does this switching by replacing the dummyView's content
view. Toward this end, the method:

1. Gets the panel's content view and the tag of the selected pop-up button.

2. Assigns to the newView local variable the off-screen box object corresponding
to the tag of the selected pop-up button.

3. Returns if the selected display is already on the inspector panel. The subviews
message returns an array of all su bviews of the inspector panel's control view,
and the containsObject: message determines if the chosen display is among
these subviews.

4. Replaces the content view of the inspector panel's dummyView. In awakeFromNib
(which you'll soon implement) you'll retain each original content view. The
setContentView: method replaces the new view and releases the old one;
because it's been retained, the replaced view doesn't disappear.

5. Updates the inspector with the current item; this item hasn't changed, but the
display is new and so the set of instance variables to be displayed is different.
The display message forces a re-draw of the inspector panel's views.

8 Update the current inspector
display with the new ToDoltem.

Write the first part of the
update Inspector: method shown
at right.

Creating and Managing an Inspector (ToDolnspector)

- (void)updatelnspector: (ToDoltem *)newltem

int minute=O, hour=O, selected=O;
selected = [[inspPopUp selectedltem] tag];
[[inspPopUp window] orderFront:self];
if (newltem && [newltem isKindOfClass: [ToDoltem class]])

[inspltem setStringValue: [newltem itemName]];
[inspDate setStringValue: [[newltem day]

descriptionWithCalendarFormat:@"%a, %b %d %Y"
timeZone: [NSTimeZone localTimeZone] locale:nil]];

switch(selected) {
case notifTag: {

/* 1 */

/* 2 */

/* 3 */

long notifSecs, dueSecs = [newltem secsUntilDue] ;
BaaL ampm = ConvertSecondsToTime(dueSecs, &hour, &minute);

[[inspNotifAMPM cellAtRow:O column:O] setState: lampm];
[[inspNotifAMPM cellAtRow:O column:1] setState:ampm];
[inspNotifHour setlntValue:hour];

[inspNotifMinute setlntValue:minute];
notifSecs = dueSecs - [newltem secsUntilNotif];

if (notifSecs == dueSecs) notifSecs = 0;
clearButtonMatrix(inspNotifSwitchMatrix);
switch(notifSecs) {

case 0:
[[inspNotifSwitchMatrix cellAtRow:O column: 0]

setState:YES];

break;
case (hrlnSecs/4):

/* 4 */

[[inspNotifSwitchMatrix cellAtRow:1 column:O]
setState:YES];

break;
case (hrlnSecs):

[[inspNotifSwitchMatrix cellAtRow:2 column:O]
setState:YES];

break;
case (daylnSecs):

[[inspNotifSwitchMatrix cellAtRow:3 column:O]
setState:YES];

break;
default: /* Other */

[[inspNotifSwitchMatrix cellAtRow:4 column:O]

setState:YES];
[inspNotifOtherHours setlntValue:

((dueSecs-notifSecs)/hrlnSecs)];

break;

break;

case reschedTag:
break;

169

T

Chapter 4

170

To Do Tutorial

The updatelnspector: method is a long one, so we'll approach it in stages. This first part updat(
the common data elements (item name and date) and, if the selected display is for notification
updates that display.

1. Gets the tag assigned to the selected pop-up button.

2. Tests the argument newltem to see if it is a ToDoItem. This test is important
because if the argument is nil, the method clears the display of existing data
(next example).

If newltem is a ToDoltem, updatelnspector: first updates the Item and Date
fields.

3. If the tag of the selected pop-up button is notifTag, updates the associated
inspector display. This task starts by converting the due time from seconds to
hour, minute, and PM boolean values and then setting the appropriate fields
and button matrix with these values.

4. Sets the appropriate switch in the "When to Notify" matrix. It starts with the
difference (in seconds) between the time the item is due and the time the
item notification is sent. It calls clearButtonMatrixO to turn all switches off and
then, in a switch statement, sets the switch corresponding to the difference in
value between seconds from midnight before due and before notification.

Before You Go On --------------------

Update the Notes display: Add code to update the inspector's Notes display from the
information in the ToDoltem passed into updatelnspector:. (Check the
documentation on NSText to see what method is suitable for this.) The selected
pop-up button must have notesTag assigned to it. Also put the cursor at the start
of the text object by selecting a "null" range.

Note that tutorial omits the rescheduling logic of the ToDo application,
including the code in this method that would update the "Reschedule" display.
Rescheduling of ToDoltems is reserved as an optional exercise for you at the
end of this tutorial.

Finish the implementation of
update Inspector: by resetting all
displays if the argument is nil.

Implementthe
clearButtonMatrixO utility
function.

Creating and Managing an Inspector IToDolnspector)

else if (!newltem) { /* newltem is nil */

[inspltem setStringValue:@""];
[inspDate setStringValue:@""];
[inspNotifHour setStringValue:@""];
[inspNotifMinute setStringValue:@""];
[[inspNotifAMPM cellAtRow:O column:O] setState:YES];

[[inspNotifAMPM cellAtRow:O column:1] setState:NO];
clearButtonMatrix(inspNotifSwitchMatrix);
[[inspNotifSwitchMatrix cellAtRow:O column:O]

setState:YES];
[inspNotifOtherHours setStringValue:@""];
[inspNotes setString:@""];

As you've most likely noticed, the updatelnspector: method calls the function
clearButtonMatrixO, which resets the states of all button cells in a switch matrix to
NO. This function has a counterpart, indexOfSetCellO, that returns the index of the
currently selected switch.

void clearButtonMatrix(id matrix)

int i, cnt=[[matrix cells] count];
for(i=O; i<cnt; i++)

[[matrix cellAtRow:i column: 0] setState:NO];

The cells message returns the cells of the matrix as an array; the count message
determines the number of cells.

171

Chapter 4 To Do Tutorial

9 Update the current item with new
values entered in the inspector.

- (void)switchChecked: (id) sender

172

Implement switchChecked: to
apply changes made through
switches and other controls.

long tmpSecs=O;
int idx= 0;
id doc = [[NSApp mainWindow) delegate);
if (sender == inspNotifAMPM) {

if ([inspNotifHour intValue)) {
1* 1 *1

tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue),
[inspNotifMinute intValue),
[[sender cellAtRow:O column:1] state]);

[currentltem setSecsUntilDue:tmpSecs);
[[NSApp'mainWindow] setDocumentEdited:YES];
[doc updateMatrix];

else if (sender == inspNotifSwitchMatrix)
idx = [inspNotifswitchMatrix selectedRow);
tmpSecs = [currentltem secsUntilDue]i
switch (idx) {

case 0:
[currentltem setSecsUntilNotif:O);
break;

case 1:

1* 2 *1

[currentltem setSecsUntilNotif:tmpSecs-(hrlnSecs/4)];
break;

case 2:
[currentltem setSecsUntilNotif:tmpSecs-hrlnSecs] ;
break;

case 3:
[currentltem setSecsUntilNotif:tmpSecs-daylnSecs);
break;

case 4: II Other
[currentltem setSecsUntilNotif: ([inspNotifOtherHours intValu

* hrlnSecs)];
break;

default:
NSLog(@"Error in selectedRow");
break;

[[NSApp mainWindow] setDocumentEdited:YES];
else if (sender == inspSchedComplete) {

[currentltem setltemStatus:complete];
[[NSApp mainWindow] setDocumentEdited:YES];
[doc updateMatrix];

else if (sender== inspSchedMatrix)

1* 3 *1

1* 4 *1

Creating and Managing an Inspector (ToDolnspector)

When users click a switch button on any inspector display, or when they click
one of the AM-PM radio buttons, the switchChecked: method is invoked. This
method works by evaluating the sender argument: the sending object.

1. If sender is the radio-button matrix (AM-PM), gets the new time due by calling the
utility function ConvertTimeToSeconds(j, sets the current item to have this new value,
marks the document as edited, and then sends updateMatrix to the document
controller to have it display this new time.

2. If sender is the "When to Notify" matrix, gets the index of the selected cell
and the seconds until the item is due. It evaluates the first value in a switch
statement and uses the second value to set the current item's new secsUntilNotif

value. It also sets the window to indicate an edited document.

3. If sender is the "Task Completed" switch, sets the status of the current item
to "complete," sets the window to indicate an edited document, and has the
document controller update its matrices.

4. As before, implementation of this rescheduling block is left as a final exercise.

Since text fields are controls that send target/action messages, you could also
have switchChecked: respond when data is entered in the fields. However, users
might not press Return in a text field so you can't assume the action message will
be sent. Therefore, it's better to rely upon delegation messages.

173

Chapter 4 To Do Tutorial

174

Update the current item if
changes are made to the
contents of text fields or the text
object ofthe inspector panel.

- (void)textDidEndEditing: (NSNotification *)notif

if ([notif object] == inspNotes)
[currentltem setNotes: [inspNotes string]];
[[NSApp mainWindow] setDocumentEdited:YES];

- (void)controlTextDidEndEditing: (NSNotification *)notif

long tmpSecs=O;
if ([notif object] == inspNotifHour I I

[notif object] == inspNotifMinute)

/* 1 */

/* 2 */

tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],
[inspNotifMinute intValue],
[[inspNotifAMPM cellAtRow:O column: 1] state]);

[currentltem setSecsUntilDue:tmpSecs];
[[[NSApp mainWindow] delegate] updateMatrix];
[[NSApp mainWindow] setDocumentEdited:YES];

else if ([notif object] == inspNotifOtherHours)
if ([inspNotifSwitchMatrix selectedRow] == 4)

/* 3 */

[currentltem setSecsUntilNotif: ([inspNotifOtherHours
intValue] * hrlnSecs)];

[[NSApp mainWindow] setDocumentEdited:YES];

else if ([notif object] == inspSchedDate) { /* 4 */

The textDidEndEditing: and controlTextDidEndEditing: notification messages are sent to
the delegate (and all other observers) when the cursor leaves a text object or text
field (respectively) after editing has occurred.

1. After editing takes place in the "Notes" text object, this method is invoked, and it
responds by resetting the notes instance variable of the ToDoItem with the
contents of the text object.

2. If the object behind the notification is the hour or minute field of the
"Notifications" display, controlTextDidEndEditing: computes the new due time,
sets the current item to have this new value, and then sends update Matrix to the
document controller to have it display this new time. (This code is almost the
same as that for the AM-PM matrix in the switch Checked: method.)

10 Synchronize the items displayed
in the document with the
inspector.

Open ToDoDoc.m.

Import ToDolnspector.h.

Add the code at rightto the end of
the controlTextDidEndEditing:
method.

Post identical notifications in the
otherToDoDoc methods listed in
the table below.

In ToDoDoc.h declare as extern
the string constant
ToDoltemChangedNotification.

In ToDoDoc.m, declare and
initialize the same constant.

Creating and Managing an Inspector lToDolnspectorl

3. If the object behind the notification is the "Other ... hours" text field in the
"When to Notify" box, the method verifies that the "Other" switch is
checked and, if it is, sets the ToDoltem with the new value.

4. Here is another empty rescheduling block of code that you can fill out in a
later exercise.

Now it's time to address two related problems in synchronizing displays of data.
The first is the requirement for the inspector to display the ToDoItem currently
selected in the document. In ToDoDoc.m write code that communicates this object
to ToDoInspector through notification.

id curltem;

/* * /
if (curltem = [currentltems objectAtlndex:row])
if (! [curltem isKindOfClass: [ToDoltem class]])

curltem = nil;
[[NSNotificationCenter defaultCenter] postNotificationName:

ToDoltemChangedNotification object:curltem
userlnfo:nil] ;

The controlTextDidEndEditing: method is where ToDoItems are added, removed, or
modified, so it's especially important here to let ToDoInspector know when
there's a change in the current ToDoltem. The fragment of code above gets the
current item (row holds the index of the selected row); if the returned object isn't
a ToDoltem, curltem is set to nil. Then the code posts a
ToDoltemChangedNotification, passing in curltem as the object related to the
notification.

Post an identical notification in other ToDoDoc methods that select a
ToDoItem or that require the removal of the currently displayed ToDoltem
from the inspector's display. In methods of this second type, there is no need to
get the current item because the object argument of the notification should
always be nil. This argument is eventually passed to ToDoInspector's
updatelnspector:, to which nil means "clear the display."

Other Methods Posting Notifications to ToDolnspector object: Argument

calendarMatrix:didChangeToDate: nil

calendarMatrix:didChangeToMonth:year: nil

windowShouldClose: Ifor both "Save" and "Close"l nil

selectionlnMatrix: current item or nil

175

Chapter 4

11 Open the inspector panel when
users choose the Inspector
command.

Implement ToDoController's
showlnspector: method to load
ToDolnspector.nib and make the
inspector panel the key window.

12 Update the document and
inspector to display initial
values.

In ToDoDoc.m, implement
selectltem:.

Invoke this method at the
appropriate places (see below).

The use of notifications to

communicate changes in one
object to another object in an
application is a good design
strategy because it removes the
need for the objects to have
specific knowledge of each other.
It also makes the application
more extensible, because any
number of objects can also
become observers of the changes.
However, there is a way for
ToDoDoc to locate
ToDolnspector reliably using the
various relationships established
within the program framework.
See page 189 to see how this is
done.

176

To Do Tutorial

The second data-synchronization problem involves the selection and display of
initial values in the document and the inspector when the user:

• Opens the inspector
• Opens a document
• Selects a new day from the calendar

You must return to ToDoDoc.m to write code that implements this behavior.

- (void)selectltem: (int) item

id thisltem = [currentltems objectAtlndex:iteml i

[itemMatrix selectCellAtRow:item column:Oli
if (thisltem) {

if (! [thisltem isKindOfClass: [ToDoltem classll) thisltem nil;
[[NSNotificationCenter defaultCenterl

postNotificationName:ToDoltemChangedNotification
object:thisltem

userlnfo:nill;

The selectltem: method selects the text field identified in the argument and posts
a notification to the inspector with the associated ToDoltem as argument (or nil
if the text field is empty). Next, invoke selectltem: in these methods:

Method Comment

calendarMatrix:didChangeToDate: Make it the final message, with an argument of 0 (ToDoDoc.m).

open Doc:

showl nspector:

Invoke after opening a document, with an argument of 0
(ToDoController.m)

Invoke afer opening the inspector panel, passing in the index of the
selected row in the document. (ToDoController.m). Hint: Get the
current document by querying for the delegate of the main window,
then obtain the selected row from this object.

Before You Go On --------------------

Make ToDolnspector respond to the notification. Declare a notification method
named currentltemChanged: and implement it to set the current item with the object

value of the notification. Then, in init or awakeFromNib, add ToDolnspector as an
observer of the ToDoltemChangedNotification, identifying currentltemChanged:

as the method to be invoked.

13 Format and validate the contents
of inspector text fields.

In ToOo/nspector.m:

Implement awakeFromNib as
shown at right.

Implement control:isValidObject:
to ensure that users can only
enter the proper range of
numbers in the hour and minute
text fields.

Creating and Managing an Inspector (ToDolnspector)

- (void)awakeFromNib

NSDateFormatter *dateFmt;

[[inspNotifHour cell] setEntryType:NSPositivelntType]; /* 1 */
[[inspNotifMinute cell] setEntryType:NSPositivelntType];
dateFmt = [[NSDateFormatter alloc] /* 2 */

initWithDateFormat:@"%m/%d/%y" allowNaturalLanguage:YES] i

[[inspSchedDate cell] setFormatter:dateFmt];
[dateFmt release];
[inspPopUp selectltemAtlndex:O];
[inspNotes setDelegate:self];

[[notifView contentView] removeFromSuperview];
notifView = [[notifView contentView] retain];
[[reschedView contentView] removeFromSuperview];
reschedView = [[reschedView contentView] retain];
[[notesView contentView] removeFromSuperview]i
notesView = [[notesView contentView] retain);
[inspectorViews release);
[self newlnspectorView:self];

/* 3 */

/* 4 */

ToDolnspector's awakeFromNib method sets up formatters for the inspector's
hour, minute, and date fields. It also performs some necessary "housekeeping"
tasks.

1. Sets the hour and minute fields to accept only positive integer values.

2. Creates a date formatter (an instance of NSDateFormatter) that accepts and
formats dates as (for example) "12/25/96." After associating the formatter with
the date text-field cell, it releases it (setFormatter: retains the formatter).

3. Makes the Notification display the start-up default, using the index of the
"Notification" cell rather than its title to improve localization. Then it sets self
to be the delegate of the text object.

4. Each of the three inspector displays in the off-screen panel (inspectorViews) is
the content view of an NSBox. This section of code extracts and retains each
of those content views, reassigning each to its original NSBox instance
variable in the process. This explicit retaining is necessary because, in
newlnspectorView:, each currrent content view is released when it's swapped
out. Once all content views are retained, the code releases the off-screen
window and invokes newlnspectorView: to put up the default display.

177

Chapter 4 To Do Tutorial

178

Drawirlo and Compositing

Besides responding to events, all objects that inherit from
NSView can render themselves on the screen. They do this
rendering through image composition and PostScript drawing.

NSViews draw themselves as an indirect result of receiving the
display message (or a variant of display); this message is sent
explicitly or through conditions that cause automatic display. The
display message leads to the invocation of an NSView's
drawRect: method and the drawRect: methods of all subviews of
that NSView. The drawRect: method should contain all code
needed to redraw the NSView completely.

An NSView can be automatically displayed when:

• Users scroll it (assuming it supports scrolling).

• Users resize or expose the NSView's window.

• The window receives a display message or is automatically
updated.

• For some Application Kit objects, when an attribute changes.

An NSView represents a context within which PostScript drawing
can take place. This context has three components:

• A rectangular frame within a window to which drawing is
clipped.

• A coordinate system

• The current PostScript graphics state

Frame and Bounds

An NSView's frame specifies the location and dimensions of the
NSView in terms of the coordinate system of the NSView's
superview. It is a rectangle that encloses the NSView. You can

~t:::.:/<··';:·:::·:::·:::·:::·:::·:::·:::··';:·:::·-':'··

Frame ,:otated within its l~ .. ·····

'""'~"W <: .. ~~:::li., , .. ,. , ... ::::::::>
Flipped coordinate
system 1: ~....... 0.0, 0,0

Location of frame
within its superview
(200,300)

:1
~ 1
h Bounds origin
~I (0.0, 0,0)
~ .. ::' .. ':":' .. ':":' .. ':":' .. ':':' .. ':':' .. ':":' .. ::' .. ::' .. ::' .. "::' .. ':":' .. ::' .. ':":'

programmatically move, scale, and rotate the NSView by
reference to its frame (setFrameOrigin:, setFrameSize:, and so
on).

To draw efficiently, the NSView must have its frame rectangle
translated into its own coordinate system. This translated
rectangle, suitable for drawing, is called the bounds. The bounds
rectangle usually specifies exactly the same area as the frame
rectangle, but it specifies that area in a different coordinate
system. In the default coordinate system, an NSView's bounds is
the same as its frame, except that the point locating the frame
becomes the origin of the bounds (x = 0.0, y = 0.0). The x- and y
axes of the default coordinate system run parallel to the sides of
the frame so, for example, if you rotate the frame the default
coordinate system rotates with it.

This relationship between frame and bounds has several
implications important in drawing and compositing.

• Each NSView's coordinate system is a transformation of its
superview's.

• Drawing instructions don't have to account for an NSView's
location on the screen or its orientation.

• Changes in a superview's coordinate system are propagated to
its subviews.

NSView allows you to flip coordinate systems (so the positive y
axis runs downward) and to otherwise alter coordinate systems.

Focusing

Before an NSView can draw it must lock focus to ensure that it
draws in the correct window, place, and coordinate system. It
locks focus by invoking NSView's lockFocus method. Focusing
modifies the PostScript graphics state by:

• Making the NSView's window the current device

• Creating a clipping path around the NSView's frame

• Making the PostScript coordinate system match the NSView's
coordinate system

After drawing, the NSView should unlock focus (unlockFocus).

Creating and Managing an Inspector !ToDolnspector)

PostScript Drawing

In OpenStep, NSViews draw themselves by sending binary
encoded PostScript code to the Window Server. The Application
Kit and the Display PostScript frameworks provide a number of C
language functions that send PostScript code to perform common
drawing tasks. You can use these functions in combinations to
accomplish fairly elaborate drawing.

The Application Kit has functions and constants, declared in
NSGraphics.h, for (among other things):

• Drawing, filling, highlighting, clipping and erasing rectangles

• Drawing buttons, bezels, and bitmaps

• Computing window depth and related display information

You also call OpenStep-compliant drawing routines defined in
dpsOpenStep.h. These routines (such as DPSDoUserPath()) draw
a specified path. In addition, you can call the functions declared
in psops.h. These functions correspond to single PostScript
operators, such as PSsetgrayO and PSfilIO.

You can also write and send your own custom PostScript code.
pswrap is a program (in /usrlbin) that converts PostScript code
into C-Ianguage functions that you can call within your
applications. It is an efficient way to send PostScript code to the
Window Server. The following pswrap function draws grid lines:

defineps DrawGrid(float width, height, every)
5 6 div setgray
o every width {

o move to 0 height rlineto stroke
} for
o every height {

o exch move to width 0 rlineto stroke
} for

endps

Compose the function in a file with a .psw extension and add itto
the Other Source project "suitcase" in Project Builder. When you
next build your project, Project Builder runs the pswrap program,
generating an object file and a header file (matching the file name
of the .psw) file, and links these into the application. To use the
code, import the header file and call the function when you want
to do the drawing:

DrawGrid(5.0, 5.0, 1.0);

Compositing Images

The other technique NSViews use to render their appearance is
image compositing. By compositing (with the SOVER operator)

NSViews can simply display an image within their frame. You
usually composite an image using NSlmage's
compositeToPoint:operation: (or a related method).

NSlmage allows you to copy images into your user interface. It
uses various subclasses of NSlmageRep to store the multiple
representations of the same image-color, grayscale, TIFF, EPS,
and so on-and chosing the representation appropriate for a
given type or display. NSlmage can read image data from a
bundle (including the application's main bundle), from the
pasteboard, or from an NSData object.

Compositing allows you to do more than simply copy images.
Compositing builds a new image by overlaying images that were
previously drawn. It's like a photographer printing a picture from
two negatives, one placed on top of the other. Various
compositing operators (NSCompositingOperation, defined in
dpsOpenStep.h) determine how the source and destination
images merge.

Source Image Destination Image

00
Operation Destination After

Copy 0 Source image overlays

O Source image wherever
Source it is opaque, and
Over destination image

elsewhere.

O
Destination image

D l' r wherever it is opaque but
es Ina Ion source image is

Out transparent, and
transparent elsewhere.

You can achieve interesting effects with compositing when the
initial images are drawn with partially transparent paint.
(Transparency is specified by coverage, a PostScript indicator of
paint opacity.lln a typical compositing operation, paint that's
partiallytransparentwon'tcompletely coverthe image it's placed
on top of; some of the other image will show through. The more
transparent the paint is, the more of the other image you'll see.

179

Chapter 4

180

To Do Tutorial

If you want an object that draws itself differently than any other
Application Kit object, or responds to events in a special way, you
should make a custom subclass of NSView. Your custom subclass
should complete at least the steps outlined below.

Note: If you make a custom subclass of any class that inherits from
NSView, and you wantto do custom drawing or event handling,
the basic procedure presented here still applies.

Interface Builder

Define a subclass of NSView in Interface Builder. Then
generate header and implementation files.

2 Drag a CustomView object from the Views palette onto a
window and resize it. Then, with the CustomView object still
selected, choose the Custom Class display ofthe Inspector
panel and select the custom class. Connect any outlets and
actions.

Initializing Instances

3 Override the designated initializer, initWithFrame: to return an
initialized instance of self. The argument of this method is the
frame rectangle of the NSView, usually as set in Interface
Builder (see step 2). You mightwantto display the custom view
at this point.

Handling Events

In the next section, you'll make a subclass of NSButtonCell that
uniquely responds to mouse clicks. The way custom NSViews
handle events is different. If you intend your custom NSView to
respond to user actions you must do a couple of things:

4 Override acceptsFirstResponderto return YES ifthe NSView is
to handle selections. (The default NSView behavior is to return
NO.)

5 Override the desired NSResponder event methods
(mouseDown:, mouseD ragged:, keyDown:, etc.)

- (void)mouseDown: (NSEvent *)event

if (([event modifierFlags] &
NSControlKeyMask){

doSomething();

You can query the NSEvent argument for the location of the user
action in the window, modifier keys pressed, character and key
codes, and other information.

Drawing

When you send display to an NSView, its drawRect: method and
each of its subview's drawRect: are invoked. This method is .
where an NSView renders its appearance.

6 Override drawRect:. The argument is usually the frame
rectangle in which drawing is to occur. This tells the Window
Server where the NSView's coordinate system is located. To
draw the NSView, you can do one or more of the following:

• Composite an NSlmage.

• Call Application Kit functions such as NSRectFiIIO and
NSFrameRect () (NSGraphics.h).

• Call C functions that correspond to single PostScript
operations, such as PSsetgrayO and PSfilIO.

• Call custom drawing functions created with pswrap.

See "A Short Guide to Drawing and Compositing" on page 179 for
more information on drawing techniques and requirements.

Subclass Example: Overriding and Adding Behavior (ToDoCell)

Subclass Example: Overriding and Adding Behavior (ToDoCell)

Buttons in the Application Kit are two-state controls. They have two-and only
two--states: 1 and 0 (often expressed as Boolean YES and NO, or ON and
OFF). For the To Do application, a three-state button is preferable. You want
the button to indicate, with an image, three possible states: notOone (no image),
done (an "X"), and deferred (a check mark). These states correspond to the
possible statues of a ToOoItem.

The ToOoCell class, which you will implement in this section, generates cells
that behave as three-state buttons. These buttons also display the time an item
is due.

Item status. --I~ 05:45 PM}-- Time item is due.

The superclass of ToOoCell is NSButtonCel1. In creating ToOoCell you will
add data and behavior to NSButtonCell, and you will override some existing
behavior.

Why Chose NSButtonCell as Superclass?

ToDoCeWs superclass is NSButtonCel1. This
choice prompts two questions:

• Why a button cell and notthe button itself?

• Why this particular superclass?

NSCell defines state as an instance variable,
and thus all cells inherit it Cells instead of
controls hold state information for reasons of
efficiency-one control (a matrix) can
manage a collection of cells, each cell with
its own state setting. NSButton does provide
methods for getting and setting state values,
but it accesses the state value of the cell
(usually NSButtonCell) that it contains.

NSButtonCell is ToDoCeWs superclass
because button cells already have much of
the behavior you want By virtue of
inheritance from NSActionCell, button cells
can hold target and action information.
Button cells also have the unique capability
to display an image and text simultaneously.
These are all aspects of behavior needed for
ToDoCe11.

When you think that you need a specialized
subclass of an OpenStep class, you should
first spend some time examining the header
files and referen'ce documentation on not
only that class, but its superclasses and any
"sibling" classes.

181

Chapter 4

Add header and implementation
files to the project.

Chose New in Project from the
File menu.

In the New File In ToDo panel,
select the Class suitcase, click
Create header, type "ToDoCeil"
after Name, and click OK.

2 Complete ToDoCell.h.

Make the superclass
NSButtonCel1.

Add the instance-variable and
method declarations shown at
right.

Add the enum constants for state
values (as shown).

3 Initialize the allocated ToDoCell
instance (and deallocate it).

Select ToDoCell.m in the project
browser.

Implement init as shown at right.

Implement dealloc.

182

To Do Tutorial

enum _ToDoButtonState {notDone=O, done, deferred} ToDoButtonState;

@interfaee ToDoCe11 NSButtonCel1

ToDoButtonState triState;
NSlmage *doneImage, *deferredImage;
NSDate *timeDue;

- (void)setTriState: (ToDoButtonState)newState;

- (ToDoButtonState) triState;
- (void)setTimeDue: (NSDate *)newTime;
- (NSDate *)timeDue;
@end

The triState instance variable will be assigned ToDoButtonState constants as
values. The NSlmage variables hold the "X" and check mark images that
represent statuses of completed and deferred (that is, rescheduled for the next
day). The timeDue instance variable carries the time the item is due as an
NSDate; for display, this object will be converted to a string.

- (id)init

Nsstring *path;
[super initTextCell:@""];

triState = notDone;
[self setType:NSToggleButton];
[self setImagePosition:NSImageLeft];
[self setBezeled:YES];
[self setFont: [NSFont userFontOfSize:12]];
[self setAlignment:NSRightTextAlignment];

/* 1 */

/* 2 * /
path = [[NSBundle mainBundle] pathForImageResouree:@"X.tiff"];
done Image = [[NSImage alloe] initByRefereneingFile:path];
path = [[NSBundle mainBundle]

pathForImageResouree:@"eheekMark.tiff"] ;
deferredImage = [[NSImage alloe] initByRefereneingFile:path];

return self;

1. Sets some superc1ass (NSButtonCell) attributes, such as button type, image and
text position, font of text, and border.

2. Through NSBundle's pathForlmageResource:, gets the path name for the cell
images and creates and stores the images using the pathname.

4 Implementthe accessor methods
related to state.

Write the methods that get and
set the triState instance variable.

Override the superclass methods
that get and set state.

Subclass Example: Overriding and Adding Behavior (ToDoeelll

- (void)setTriState: (ToDoButtonState)newState

if (newState == deferred+l)
triState notDone;

else
triState newState;

[self _setlmage:triState] i

- (ToDoButtonState)triState {return triState;}

- (void)setState: (int)val

- (int)state

if (triState == deferred)
return (int)done;

else
return (int)triState;

/* 1 */

/* 2 */

/* 3 */

Accessing state information is a dual-path task in ToDoCell. It involves not only
setting and getting the new state instance variable, triState, but properly handling
the inherited instance variable by overriding the superclass accessor methods for
state.

1. If the new value for triState is one greater than the limit (deferred), reset it to zero
(notDone); otherwise, assign the value. The reason behind this logic is that (as
you'll soon learn) when users click a ToDoCell, setTriState: is invoked with an
argument one more than the current value. This way users can cycle through the
three states of ToDoCell.

2. Overrides setState: to be a null method. The reason for this override is that
NSCell intervenes when a button is clicked, resetting state to zero (NO).
This override nullifies that effect.

3. Overrides state to return a reasonable value to client objects that invoke this
accessor method.

183

Chapter 4

5 Set the cell image.

Declare the private method
_setlmage:.

Implement the _setlmage:
method.

184

To Do Tutorial

@interface ToDoCell (PrivateMethods)

- (void)_setlmage: (ToDoButtonState)aState;

@end

/* ... * /
- (void)_setlmage: (ToDoButtonState) as tate

switch(aState) {

case notDone:
[self setlmage:nil];

break;

case done:

[self setlmage:donelmage]i

break;

case deferred:

[self setlmage:deferredlmage];

break;

[(NSControl *) [self controlView] updateCell:self];

/* 1 */

/* 2 */

/* 3 */

This portion of code handles the display of the cell's image by doing the
following:

1. In a category of ToDoCell in ToDoCell.m, it declares the private method _setlmage:.
Private methods, which by convention begin with an underscore, are methods that
you don't want clients of your object to invoke. In this case, you don't want the
image to be set independently from the cell's triState value.

2. In a switch statement, evaluates the tri-state argument and sets the cell's
image appropriately (setlmage: is an NSButtonCell method).

3. Sends updateCell: to the control view of the cell's control (a matrix) to force a
re-draw of the cell.

6 Track mouse clicks on a
ToDoCell and reset state.

Override two NSCell mouse
tracking methods as shown in this
example.

7 Get and set the time due,
displaying the time in the
process.

ImplementsetlimeDue: as shown
in this example.

Implement timeDue to return the
NSDate.

Subclass Example: Overriding and Adding Behavior IloDoCell1

- (BOOL)startTrackingAt: (NSPoint)startPoint inView:

(NSView *)controlView

return YES;

- (void)stopTracking: (NSPoint)lastPoint at: (NSPoint)stopPoint

inView: (NSView *)controlView mouselsUp: (BOOL) flag

if (flag == YES) {
[self setTriState: ([self triState] +1)] ;

When you create your own cell subclass, you might want to override some
methods that are intrinsic to the behavior of the cell. Mouse-tracking methods,
inherited from NSCell, are among these. You can override these methods to
incorporate specialized behavior when the mouse clicks the cell or drags over it.
ToDoCell overrides these methods to increment the value of triState.

• Overrides startTrackingAt:inView: to return YES, thus signalling to the control
that the ToDoCell will track the mouse.

• Overrides stopTracking:at:inView:mouselsUp: to evaluate flag and, if it's YES, to
increment the triState instance variable. (The setTriState: method "wraps" the
incremented value to zero (notDone) if it is greater than 2 (deferred».

- (void)setTimeDue: (NSDate *)newTime

if (timeDue)

[timeDue autorelease];
if (newTime)

else

timeDue = [newTime copy];

[self setTitle: [timeDue descriptionWithCalendarFormat:
@"%I:%M %p" timeZone: [NSTimeZone localTimeZone]

locale:nil]];

timeDue = nil;
[self setTitle:@"-->"];

The setlimeDue: method is similar to other "set" accessor methods, except that it
handles interpretation and display of the NSDate instance variable it stores. If
newlime is a valid object, it uses NSDate's
descriptionWithCalendarFormat:timeZone:locale: method to interpret and format the

185

Chapter 4

8 At launch time, create and install
your custom cells in the matrix.

SelectToDoDoc.m in the project
browser.

Insert the code at right in
awakeFromNib.

9 Respond to mouse clicks on the
matrix of ToDoCe"'s.

In ToDoDoc.m, implement
item Checked:.

186

To Do Tutorial

date object, then displays the result with setTitle:. If newTime is nil, no due time has
been specified, and so the method sets the title to "-->".

You've now completed all code required for ToDoCell. However, you must now
"install" instances of this class in the To Do interface.

- (void)awakeFromNib

int i;

/ * ... * I
i = [[markMatrix cells] count];

while (i--) {

ToDoCe11 *aCell = [[ToDoCell alloc] init];

[aCell setTarget:self];
[aCell setAction:@selector(itemChecked:)];

[markMatrix putCell:aCell atRow:i column:O]i

[aCell release];

This block of code substitutes a ToDoCell for each cell in the left matrix
(markMatrix) you created for the To Do interface. It creates a ToDoCell, sets its
target and action message, then inserts it into the markMatrix by invoking
NSMatrix's putCe":atRow:column: method.

Finally, you must implement the action message sent when the matrix of
ToDoCells is clicked. (This response to mouse-down is for objects external to
To DoC ell, while the mouse-tracking response sets state internally.)

- (void)itemChecked:sender

int row = [sender selectedRow];

ToDoCe11 *cell = [sender cellAtRow:row column:Ol;
if (cell && [currentltems countl) {

id item = [currentltems objectAtlndex:row];

if (item && [item isKindOfClass: [ToDoltem class]])

[item setltemStatus: [cell triState]];

[[sender window] setDocumentEdited:YES];

This method gets the ToDoCell that was clicked and the object in the
corresponding text field. If that object is a ToDoltem, the method updates its
status to reflect the state of the ToDoCell. It then marks the window as
containing an edited document.

Setting Up limers for Notification Messages

Setting Up nmers for Notification Messages

Add the timer as an instance
variable to ToDoltem.

Open ToDoltem.h.

Add the instance variable
itemTimer of class NSlimer.

Write accessor methods to get
and set this instance variable.

2 Create and set the timer, or
invalidate it.

Open ToDoDoc.m.

Implement the setlimerForltem:
method, which is shown at right.

The To Do application includes as a feature the capability for notifying users of
items with impending due times. Users can specify various intervals before the
due time for these notifications, which take the form of a message in an attention
panel. In this section you will implement the notification feature of To Do. In
the process you'll learn the basics of creating, setting, and responding to timers.

Here's how it works: Each ToDoltem with a "When to Notify" switch (other
than "Do not notify") selected in the inspector panel-and hence has a positive
secsUntilNotif value-has a timer set for it. If a user cancels a notification by
selecting "Do not notify," the document controller invalidates the timer. When
a timer fires, it invokes a method that displays the attention panel, selects the
"Do not notify" switch, and sets secsUntilNotif to zero.

Implementing the timer feature takes place entirely in Project Builder, but
extends across several classes.

- (void)setTimerForItem: (ToDoItem *)anItem

NSDate *notifDatei
NSTimer *aTimer;
if ([anItem secsUntilNotif)) /* 1 */

notifDate = [[anItem day] addTimeInterval: [anItem

secsUntilNotif))i
aTimer = [NSTimer scheduledTimerWithTimeInterval: /* 2 */

[notifDate timeIntervalSinceNow]
target:self

selector:@selector(itemTimerFired:)
userInfo:anItem

repeats:NO];

[anItem setItemTimer:aTimer]i
else

[[anItem itemTimer] invalidate]; /* 3 */

This method sets or invalidates a timer, depending on whether the ToDoltem
passed in has a positive secsUntilNotif value.

1. Tests the ToDoltem to see if it has a positive secsUntilNotif value and, if it has,
composes the time the notification should be sent.

2. Creates a timer and schedules it to fire at the notification time, and instructs
it to invoke itemTimerFired: when it fires. It also sets the ~imer in the ToDoltem.

3. If the secsUntilNotif variable is zero, invalidates the item's timer.

187

Chapter 4

3 Respond to timers firing.

Implement itemTimerFired: as
shown at right.

188

To Do Tutorial

- (void)itemTimerFired:(id)timer

id anltem = [timer userlnfo];
ToDolnspector *inspController

inspector) delegate];
[[[NSApp delegate)

NSDate *dueDate = [[anltem day) addTimelnterval:
[anltem secsUntilDue]):

NSBeep():

/* 1 */

/* 2 */

NSRunAlertPanel(@"To Do", @"%@ on %@", nil, nil, nil,

[anltem itemName], [dueDate
descriptionWithCalendarFormat:@"%b %d, %Y at %I:%M %p"
timeZone: [NSTimeZone defaultTimeZone] locale:nil));

[anltem setSecsUntilNotif:O];
[inspController resetNotifSwitch]:

When a ToDoItem's timer goes off, it invokes the itemTimerFired: method
(remember, you designated this method when you scheduled the timer).

1. This method communicates with ToDolnspector in a more direct manner than
notification. It gets the ToDolnspector object through this chain of association: the
delegate of the application object is ToDoController, which holds the idof the
inspector panel as an instance variable, and the delegate of the inspector panel is
ToDolnspector.

2. Composes the notification time (as an NSDate), beeps, and displays an
attention panel specifying the name of a ToDoItem and the time it is due. It
then sets the ToDoItem's secsUntiiNotif instance variable to zero, and sends
resetNotifSwitch to ToDoInspector to have it reset the "When to Notify"
switches to "Do not Notify."

Before You Go On --------------------

Implement resetNotifSwitch: You haven't written ToDoInspector's resetNotifSwitch
method yet, so do it now as an exercise. It should select the "Do not Notify"
switch after turning off all switches in the matrix, and then force a redisplay of
the switch matrix~

Next you must send setTim~rForltem: at the right place and time, which is
ToDoInspector, when the user alters a "When to Notify" value.

4 Send the message that sets the
timer at the right times

Open ToDolnspector.m.

In switch Checked:, insertthe
setTimerForltem: message at
right afterthe switch statement
evaluating which "When to
Notify" switch was checked.

In controITextDidEndEditing:,
insert the same message atthe
end of the block related to the
inspNotifOtherHours variable.

5 When the application is
launched, reset item timers.

Add the code at right, below, to
ToDoDoc's initWithFile: method.

Setting Up Timers for Notification Messages

[[[NSApp mainWindow] delegate] setTimerForltem:currentltem];

Instead of archiving an item's NSTimer, To Do re-creates and resets it when the
application is launched.

if ([self activeDays])
dayenum = [[self activeDays] keyEnumerator];
while (itemDate = [dayenum nextObject])

NSEnumerator *itemenum;
ToDoltem *anltem=nil;
NSArray *itemArray = [[self activeDays]

objectForKey:itemDate] ;
itemenum = [itemArray objectEnumerator];
while ((anltem = [itemenum nextObject]) &&

[anltem isKindOfClass: [ToDoltem class]] &&
[anltem secsUntilNotif]) {

[self setTimerForltem:anltem];

This block of code traverses the activeDays dictionary, evaluating each ToOoItem
within the dictionary. If the ToOoItem has a positive secsUntilNotif value, it
invokes setTimerForltem: to have a timer set for it.

lick Tock Brrrring: Run Loops and Timer

A run loop-an instance of NSRunLoop
manages and processes sources of input.
These sources include mouse and keyboard
events from the window system, file
descriptor, inter-thread connections
(NSConnection), and timers (NSTimer).

Applications typically won't need to either
create or explicitly manage NSRunLoop
objects. When a thread is created, an
NSRunLoop object is automatically created
for it. The NSApplication object creates a

. default thread and therefore creates a
default run loop.

NSTimer creates timer objects. A timer
object waits until a certain time interval has

elapsed and then fires, sending a specified
message to a specified object. For example,
you could create an NSTimer that
periodically sends messages to an object,
asking it to respond if an attribute changes.

NSTimer objects work in conjunction with
NSRunLoop objects. NSRunLoops control
loops that wait for input, and they use
NSTimers to help determine the maximum
amount of time they should wait. When the
NSTimer's time limit has elapsed, the
NSRunLoop fires the NSTimer (causing its
message to be sent), then checks for new
input.

189

Chapter 4 To Do Tutorial

Build, Run, and Extend the Application

190

Although you probably have been building the ToDo project frequently now, as
it's been taking shape, build it one more time and check out what you have
wrought. Go through the following sequence and observe To Do's behavior.

1. When you choose New from the Document menu, the application creates a new
To Do document and selects the current day.

2. Enter a few items. Click a new day on the calendar and enter a few more
items. Click the previous day and notice how the items you entered reappear.

3. Choose Inspector from the main menu. When the inspector appears, click an
item and notice how the name and date of the item appears in the top part of
the inspector. Enter due times for a couple items, and some associated notes.
Note how the times, as you enter them, appear in the Status/Due column of
the To Do document. Click among a few items again and note how the
Notifications and Notes displays change.

4. Click a Status/Due button; the image toggles among the three states. Then,
with an item that has a due time, select a notification time- that has already
passed. The application immediately displays an attention panel with a
notification message. When you dismiss this panel, To Do sets the
notification option to "Do not notify."

s. Click the document window and respond to the attention panel by clicking
Save. In the Save panel, give the document a location and name. When the
window has closed, chose Open from the Document menu and open the
same document. Observe how the items you entered are redisplayed.

Optional Exercises
You should be able now to supplement the To Do application with other
features and behaviors. Try some of the following suggestions.

Make Your Own Info Panel
Make your own Info panel. Define a method that responds to a click on the Info
panel button by loading a nib file containing the panel. The owner of the panel
can be the application controller. You can customize this panel however you
wish. For instance, put the application icon in a toggled button (the main image)
and make the alternate image a photo (yourself, your significant other, your
dog). When users click the button, the image changes between the two.

Build, Run, and Extend the Application

Implement Application Preferences
Make a Preferences panel for the application, with a new controller object (or
the application controller) as the owner of the nib file containing the panel.
Follow what you've done for ToDoInspector, especially if the panel has
multiple displays. Some ideas for Preferences: how long to keep expired
ToDoItems before logging and purging them (see below); the default document
to open upon launch; the default rescheduling interval (see below). Store and
retrieve specified preferences as user defaults; for more information, see the
NSUserDefaults specification.

Implement Rescheduling
ToDo's Inspector pane has a Rescheduling display that does almost nothing
now. Implement the capability for rescheduling items by the period specified.

Implement Logging and Purging
After certain period (set via Preferences), append expired ToDoItems (as
formatted text) to a log, and expunge the ToDoItems from the application.

191

Chapter 4 To Do Tutorial

192

~,:,"' .. ,"',',"'.' .. ',:,",'"
ll",,~
'." ..
,'I, II'"

Sections

World Wide Web

Programming Tools and
Resources

Information

Professional Services

Ordering NeXT Products and
Services

Chapter 5

Where To Go From Here

195

Where To Go From Here

196

If you've completed the tutorials in this book, you're no longer a novice in
OpenStep development. You should be able to attempt an OpenStep
application on your own, and should expect to carry it off successfully. However,
there is much more for you to learn (or to learn in greater detail). There will
probably be times when you'll need information or help. You might want to
pursue a training course, you might want to order a NeXT product, or you might
have questions you'll need answered, or problems you'll need resolved.

This section points you toward these sources of information and help. It also
includes descriptions of tools, resources, and documentation frequently used in
application development.

World Wide Web
NeXT's corporate home page is at: http://www.next.com.

From there you can navigate to summaries of products, such asWebObjects®,
Enterprise Objects Framework®, and D'OLE®-and order the products on
line. You can learn about NeXT programs in education, consulting and technical
support. You can also use the NeXTanswers document retrieval system. For
WebObjects, you can download versions of the product, try out demonstration
WebObjects applications, and access related documentation.

197

Chapter 5 Where To Go From Here

Programming Tools and Resources

198

Other Development Applications
OPENSTEP Developer for Mach includes applications other than Project
Builder and Interface Builder. Except where noted, these applications are
installed in /NextDeveloper/Apps.

Name

FileMerge

MallocDebug

Icon Builder

Yap

Sampler

Description

Visually compares the contents of two files or two directories. You can use
FileMerge, for example, to determine the differences between versions of the
same source code file or between two project directories. You can also use it
to merge changes.

Measures the dynamic-memory usage of applications, finds memory leaks,
analyzes all allocated memory in an application, and measures the memory
allocated since a given time.

A simple graphics program for creating application and document icons.

A utility for editing and previewing PostScript code.

Analyzes performance problems with your application by sampling the call
stack of your program over a period. (In /NextDeveloper/Demos)

Other Installed Frameworks
A framework contains a dynamic shared library, related header files, and
resources (including nib files, images, sounds, documentation, and localized
strings) used by the library. All frameworks are installed in/NextLibrary/Frameworks.
OPENSTEP Developer for Mach provides these other frameworks in addition
to the Application Kit and the Foundation frameworks:

Name Description

System Operating-system and low-level Objective-C runtime APls

SoundKit Sound recording, playback, and editing capabilities.

InterfaceBuilder Creation of custom static (compiled) palletes for use in Interface Builder

NEXTIME Real-time video imaging

NIAccess Netlnfo's access layer

Nllnterface Netlnfo's interface layer

Programming Tools and Resources

Useful Command-Line Tools
NeXT has created or modified several tools for compilation, debugging,
performance analysis, and so on. The following table lists some of the more
useful of these tools. You can get further information using the man pages
system.

Name

cc

gdb

gnumake

as

defaults

pswrap

nibTool

libtool

otool

nm

oh

AnalyzeAliocation

fixPrecomps

strip

lipo

Description Location

Compiles C, Objective-C, CH, and Objective-CH /bin
source code files.

Source-level symbolic debugger for C, extended by /bin
NeXT to support Objective-C, CH, Mach, Windows NT,
and (by late 1996) Windows 95.

Utility for making programming projects. /bin

Assembler; translates assembly code into object code. /bin

Reads, writes, searches, and deletes user defaults. /usr/bin
The defaults system records user preferences that
persist when the application isn't running. When users
specify defaults in an application's Preferences panel,
NSUserDefaults methods are used to write the defaults.

Creates C functions that "wrap" PostScript code and /usr/bin
send it to the Window Server for interpretation.

Reads the contents of an Interface Builder nib file. /usr/bin
Prints classes, the hierarchy, objects, connections, and
localizable strings.

Creates static or dynamic libraries from specified
object bin files for one or multiple architectures.

Displays specified parts of object files or libraries.

Displays the symbol table, in whole or in part, of the
specified object file or files.

Records allocation and deallocation events.

Analyzes program memory allocation.

/bin

/bin

/usr/bin

/usr/bin

Creates a precompiled header file for each of the major /usr/bin
frameworks.

Removes or modifies the symbol table attached to
assembled and linked output.

Creates, lists, and manipulates multi-architecure
object files

/bin

/bin

199

ChapterS

200

Where To Go From Here

Converting NEXTSTEP Code to OPENSTEPp
You can take advantage of an automated conversion process to convert
NEXTSTEP® Release 3.x code to OPENSTEP Release 4.0. By completing
this process you'll make your application an OpenStep application (that is, an
application conforming to the OpenStep specification). An OpenStep
application-one without any specific operation-system dependencies
should run on any OpenStep system.

The TOPS scripts you run to perform the conversion process, along with 3.3
header files and intermediate frameworks, are located at
/NextDeveloper/OpenStepConversion. The OPENSTEP Conversion Guide provides
instructions on using the scripts as well as summaries of API changes and
conversion tips.

Other Programming Resources
You can find programming resources-such as fonts, sounds, and palettes-in
various subdirectories of /NextLibrary.

Name

System Resources

Colors

Fonts

PS2Resources

Rulebooks

Sounds

Comments

Character-set information and location of headers for automatic
precompilation (fixPrecomps)

Bundles containing the default set of color binaries for the Colors panel

Default set of system fonts"including AFM, bitmap, and outline versions

PostScriptfiles containing calibrated color space and color rendering, printing
halftones, and gray-shading patterns

Glyph generators for various string encodings

Default sound files (".snd") such as Cricket, Ping, and Rooster

Information

For more information on Digital
Librarian and on other means for
accessing documentation, see
"\Vhere To Go For Help" on
page 54.

For details of using the Project
Find panel, see "Finding
Information Within Your Project"
on page 94.

Information

NeXT publishes documentation for users, developers, and system
administrators. It also, through its Professional Services, offers customers access
to NeXTanswers, an automated document retrieval system.

To order documentation, call 1-800-TRY-NEXT.

Accessing Documentation
On OPENSTEP for Mach, several tools help you access documentation:

• Digital Librarian's NextDeveloper bookshelf includes most of the documents
described in "Developer Documentation" below, as search targets. This
bookshelf, which located at /NextLibrary/Bookshelves, also includes instructions
for creating your own custom bookshelf.

• In Project Builder, you can use the Project Find panel to display reference
documentation on classes, protocols, methods, functions, and other types.

• In Project Builder or in a Terminal window, you can issue commands to
UNIX's man pages system to display information on command-line tools.

Developer Documentation
The core set of documentation for OPENSTEP is the reference specifications
describing OpenStep classes, protocols, methods, functions, types, and
constants.The reference documentation for the two major OpenStep
frameworks is stored within the frameworks:

/NextLibrary/Frameworks/AppKit.framework!Resources/English.1proj/Documentation
/NextLibrary/Frameworks/Foundation.framework/Resources/English.lproj/Documentation

Several documents-some printed but most only in on-line form-supplement
this core set of documentation. The following table describes these materials
directly related to OPENSTEP for Mach; all documents are located at
/NextLibrary/Documentation/NextDeu

201

Chapter 5

NeXT's Professional Services
also distributes OpenStep
programming information
through NeXT answers, an
automated document retrieval
system. See page 204 for details.

202

Where To Go From Here

Book/Document Description

Object-Oriented Title says it all
Programming and the
Objective-C Language

OPENSTEP Development: Using Project Builder, Interface Builder, and other
Tools and Techniques tools in program development

/NexDev Directory

TasksAndConcepts
(as ObjectiveC)

TasksAndConcepts
(as DevEnvGuide)

Programming Topics Contains conceptual background and step-by-step TasksAndConcepts

General Reference

Release Notes

instructions for common programming tasks.
(Note: the numbered of covered topics will grow in
the months following release 4.0.)

Display PostScript reference documentation plus Reference
information pertinent to all OpenStep frameworks

Current release notes on frameworks, development ReleaseNotes
applications, and tools

Other Developer Documentation
If you've installed Enterprise Objects Framework or Portable Distributed
Objects documentation for these products will also be installed in
/NextLibrary/Documentation/NextDeu This includes the API reference and Developer's
Guide for Enterprise Objects Framework.

You will also find third-party documentation installed in
/NextLibrary/Documentation, including reference documentation for the GNU
libg++ (C++) library. .

System Administration Documentation
Documentation for system administrators of OPENSTEP for Mach networks
can find a helpful manual in /NextLibrary/Documentation/NextAdmin. This manual
describes planning and setting up networks, as well as the creation of user
accounts. It also explains details ofNFS, discusses administrative tasks such as
backups and security, and provides troubleshooting guidelines.

In /NextLibrary/Documentation, you'll also find back issues of the magazine for
system administrators, NEXTSTEP In Focus.

Professional Services

Professional Services

NeXT provides training, consulting, and technical support for its customers. For
more information on the programs described below, call1-800-955-NEXT
(U.S.), +1415-780-2922 (elsewhere in North America), +44 181-565-0005
(Europe). You can also visit the Professional Services section of the NeXT
website at http://www.next.com/Services for up-to-date information on current
programs in technical education, consulting, and support.

Education
Courses offered by NeXT's Training department give developers of all
backgrounds a strong foundation in the fundamentals of OpenStep application
development. This background is critical to the successful implementation of
OpenStep programs by development teams.

Customers can choose from three training formats:

• Open enrollment classes, held at NeXT's training facilities in Redwood City,
Washington, D.C., and Chicago

• On-site classes at the customer's location

• On-site Object Learning Solutions, which over periods of several weeks
provide customers with training and tailored development of skills.

Obiect Expert Consulting
The Object Expert program assigns an expert in OpenStep development 'to
assist customers in their projects on a full-time basis. The committment can be
from two months to as many months as necessary. The Object Expert can help
with developing a prototype (including project planning, requirements,
integration, and testing) or can provide analysis, design, planning, programming,
integration, and testing expertise for full-fledged application-development
projects.

Software Maintenance and Technical Support
With the Software Maintenance program customers can get one copy of each
covered release of software and documentation as well as major and minor
software upgrades. They can select from four levels of technical support and
software maintenance offered by NeXT.

Support includes a range of offerings, from installation assistance to
NeXT answers. Developers receive debugging assistance and problem

203

Chapter 5

204

Where To Go From Here

investigation, memory management and performance tuning, portability advice,
and help with converting NEXTSTEP code to OpenStep. System
administrators can obtain help with problems related to network connectivity,
NetInfo domain requirements analysis and implementation, hardware selection
and configuration questions, and other areas.

NeXT answers
NeXT answers is an automated retrieval system that gives customers access to
the latest product information, technical documents, drivers, and other software.
You can access NeXT answers through NeXT's website (http://www.next.com) and
by:

• Electronic mail: Send requests to nextanswers@next.com with a subject line of
HELP to receive instructions on how to proceed.

• Fax: Call 415-780-3990 from a touch-tone phone and follow instructions
(you'll need to know the ID numbers of the files you want).

• Anonymous FTP: Connect to FTP.NEXT.COM and read
pub/NeXTanswers/README for further instructions.

• BBS: Call 415-780-Z965, log in as "guest", and go to the Files section. From
there you can download NeXT answer documents.

Requests sent to NeXT answers are answered electronically, and are not read or
handled by a person. It does not answer your questions or forward your requests.

Ordering NeXT Products and Services

Ordering NeXT Products and Services

To order NeXT products and services, you can:

1. Call1-800-TRY-NEXT (U.S. only); a sales representative will assist you.

2. Send electronic mail to trynext@next.com.

3. Fill out the on-line form on the World Wide Web at
http://www.next.com/AboutNext/Feedback.htmland a sales representative will
promptly contact you.

4. Contact one of the sales offices below, which can also furnish you with
product brochures, data sheets, and other information.

Worldwide Headquarters
900 Chesapeake Drive
Redwood City, CA 94063
Tel: (415) 366-0900
Fax: (415) 780-3714

North American Field Sales OHices
Washington DC Office
1650 Tysons Boulevard, Suite 650
McLean, VA 22102
Tel: (703) 938-6398
Fax: (703) 506-3990

New York Office
One Park Avenue, Sixth Floor
New York, NY 10016
Tel: (212) 503-4750
Fax: (212) 503-4751

New Jersey Office
90 Washington Valley Road
Bedminister, NJ 07921
Tel: (908) 719-8905
Fax: (908) 719-8903

205

Chapter 5

206

Where To Go From Here

Chicago Office
311 South Wacker Drive, 22nd Floor
Suite 2250
Chicago, IL 60606
Tel: (312) 697-4500
Fax: (312) 697-4501

Canadian Office
4370 Dominion Street
Suite 400
Burnaby, British Columbia
Canada V5G - 4L7
Tel: (604) 451-1877
Fax: (604) 451-1819

Mexico (MeXT)
Tel: 011 525-530-7278

European and Asian Sales OHices
NeXT Computer UK Limited
Technology House
Meadow Bank
Furlong Road·
Bourne End
Bucks
SL85A]
Tel:+ 44(0) 1628535222
Fax:+44(0) 1628535200

NeXT Computer Paris, France
TourCBC
8rue Felix Pyat
F -92800 Puteaux la Defense
Tel: (+33) 146932782
Fax: (+33) 1 46932928

NeXT Software K.K. (Asia Pacific)
Tennoz Central Tower 7F
2-2-24 Higashi-Shinagawa
Shinagawa-ku, Tokyo

Ordering NeXT Products and Services

140 Japan
Tel: +81-3-5461-7161
Fax: +81-3-5461-7170

NeXT Software Deutschland GmbH

Gruenwalder Weg 13a
D-82008 Unterhaching
Germany
Tel: +49896145290
Fax: +4989614529 12

207

Chapter 5 Where To Go From Here

208

Objects

Classes

Categories and Protocols

Appendix A

Obiect-Oriented Programming

211

Object-Oriented Programming

212

"Object-oriented programming" has become one of the premier buzzwords in
the computer industry. To understand why, it's important to cut through the
hype and focus on the problem that engendered the object-oriented approach.

In classic procedural programmil1g (used with COBOL, Fortran, C, and other
languages), programs are made of two fundamental components: data and code.
The data represents what the user needs to manipulate, while the code does the
manipulation. To improve project management and maintenance, procedural
programs compartmentalize code into procedures. However, much of the data is
global, and each procedure may manipulate any part of that global data directly.

procedure' data

data

data

data

data

data

With the procedural approach, the network of interaction between procedures
and data becomes increasingly complex as an application grows. Inevitably, the
interrelationships become a hard-to-maintain tangle-spaghetti code. A simple
change in a data structure can affect many procedures, many lines of code-a
nightmare for those who must maintain and enhance applications. Procedural
programming also leads to nasty, hard-to-find bugs in which one function
inadvertently changes data that another function relies on.

Objects change all that.

213

Appendix A

Obiects

214

Object-Oriented Programming

An object is a self-contained programmatic unit that combines data and the
procedures that operate on that data. In the Objective-C language, an object's
data comprises its instance variables, and its procedures, the functions that affect
or make use of the data, are known as methods.

Like objects in the physical world, objects in a program have identifying
characteristics and behavior. Often programmatic objects are modelled on real
objects. For example, an object such as a button has an analog in the buttons on
control devices, such stereo equipment and telephones. A button object
includes the data and code to generate an appearance on the screen that
simulates a "real" button and to respond in a familiar way to user actions.

Encapsulation

A button object highlights its on-screen representation
when the user clicks it.

Just as procedures compartmentalize code, objects compartmentalize both code
and data. This results in data encapsulation, effectively surrounding data with the
procedures for manipulating that data.

Typically, an object is regarded as a "black box," meaning that a program never
directly accesses an object's variables. Indeed, a program shouldn't even need to
know what variables an object has in order to perform its functions. Instead, the
program accesses the object only through its methods. In a sense, the methods
surround the data, not only shielding an object's instance variables but
mediating access to them:

Objects are the basic building blocks of Objective-C applications. By
representing a responsibility in the problem domain, each object encapsulates a
particular area of functionality that the program needs. The object's methods
provide the interface to this functionality. For example, an object representing
a database record both stores data and provides well-defined ways to access that
data.

Using this modularity, object-oriented programs can be divided into distinct
objects for specific data and specific tasks. Programming teams can easily parcel
out areas of responsibility among them, agreeing on interfaces to the distinct
objects while implementing data structures and code in the most efficient way
for their specific area of functionality.

Messages
To invoke one of the object's methods you send it a message. A message requests
an object to perform some functionality or to return a value. In Objective-C, a
message expression is enclosed in square brackets, like this:

celsius = [converter convertTemp:fahrenheit]
• '----v---' '---------v---- ' -----..,----'

returned value receiver method name argument

In this example converter is the object that receives the message, the receiver.
Everything to the right of this term is the message itself; it consists of a method
name and any arguments the method requires. The message received by
converter tells it to convert a temperature in Fahrenheit to Celsius and return that
value .

. In Objective-C, every message argument is identified with a label. Arguments
follow colon-terminated keywords, which are considered part of the method
name. One argument per keyword is allowed. If a method has more than one
argument-as NSString's rangeOfString:options: method does, for example
the name is broken apart to accept the arguments:

range = [string rangeOfString:@"OPENSTEP" options:NSLiteralSearch];

Often, but not always, messages return values to the sender of the message.
Returned values must be received in a variable of an appropriate type. In the
above example, the variable range must be of type NSRange. Messages that
return values can be nested, especially if those returned values are objects. By
enclosing one message expression within another, you can use a returned value
as an argument or as a receiver without having to declare a variable for it.

newString = [stringOne stringByAppendingString:
[substringFromRange:
[stringTwo rangeOfString:@"OPENSTEP" at:NSAnchoredSearch]]];

The above message nests two other messages, each of which returns a value
used as an argument. The inmost message expressions is resolved first, then the
next nested message expression is resolved, then the third message is sent and
a value is returned to newString.

215

Appendix A

216

Object-Oriented Programming

An Obiect-Oriented Program
Object-oriented programming is more than just another way of organizing data
and functions. It permits application programmers to conceive and construct
solutions to complex programs using a model that resembles-much more so
than traditional programs-the way we organize the world around us. The
object-oriented model for program structure simplifies problem resolution by
clarifying roles and relationships.

You can think of an object-oriented program as a network of objects with well
defined behavior and characteristics, objects that interact through messages.

-+- Messages

Different objects in the network play different roles. Some correspond to
graphical elements in the user interface. The elements that you can drag from
an Interface Builder palette are all objects. In an application, each window is
represented by a separate object, as is each button, menu item, or display of text.

Applications also assign to objects functionality that isn't directly apparent in the
interface, giving each object a different area of responsibility. Some of these
objects might perform very specific computational tasks while others might
manage the display and transfer of data, mediating the interaction between
user-interface objects and computational objects.

Once you've defined your objects, creating a program is largely a matter of
"hooking up" these objects: creating the connections that objects will use to
communicate with each other.

The example of display highlights
the role of inheritance in
polymorphism: a subclass often
implements an identically named
method (that is, overrides the
method) of its superclass to achieve
more specialized behavior. See the
following section, "Classes," for
details.

Polymorphism and Dynamic Binding
Although the purpose of a message is to invoke a method, a message isn't the
same as a function call. An object "knows about" only those methods that were
defined for it or that it inherits. It can't confuse its methods with another object's
methods, even if the methods are identically named.

Each object is a self-contained unit, with its own name space (an name space
being an area of the program where it is uniquely recognized by name). Just as
local variables within a C function are isolated from other parts of a program, so
too are the variables and methods of an object. Thus if two different kinds of
objects have the same names for their methods, both objects could receive the
same message, but each would respond to it differently. The ability of one
message to cause different behavior in different receivers is referred to as
polymorphism.

Polymorphism

The advantage polymorphism brings to application developers is significant. It
helps improve program flexibility while maintaining code simplicity. You can
write code that might have an effect on a variety of objects without having to
know at the time you write the code what objects they might be. For example,
most user-interface objects respond to the message display; you can send display
to any of these objects in your interface and it ~ill draw itself, in its own way.

Dynamic binding is perhaps even more useful than polymorphism. It means both
the object receiving a message and the message that an object receives can be
set within your program as it runs. This is particularly important in a graphical,
user-driven environment, where one user command-say Copy or Paste-may
apply to any number of user-interface objects.

217

Appendix A

218

Object-Oriented Programming

Dynamic Binding

~"" , , :, < _________ :1 ..

In dynamic binding, a run-time process finds the method implementation
appropriate for the receiver of the message; it then invokes (or calls, in a sense)
this implementation and passes it the receiver's data structure. This mechanism
makes it easier to structure programs that respond to selections and actions
chosen by users at run time. For example, either or both parts of a message
expression-the receiver and the method name-can be variables whose values
are determined by user actions. A simple message expression can deliver a Cut,
Copy, or Paste menu command to whatever object controls the current
selection.

Dynamic binding even enables applications to deal with new kinds of objects,
ones that were not envisioned when the application itself was built. For
example, it lets Interface Builder send messages to objects such as EOModeler
when it is loaded into the application by means of custom palettes.

Polymorphism and dynamic binding depend on two other features: dynamic
typing and introspection. The Objective-C language allows you to identify objects
generically with the data type of id. This type defines a pointer to an object and
its data structure (that is, instance variables) which, by inheritance from the root
class NSObject, include a pointer to the object's class. What this means is that
you don't have to type objects strictly by class in your code: the class for the
object can be determined at run time through introspection.

Introspection means that an object, even one typed as id, can reveal its class and
divulge other characteristics at run time. Several introspection methods allow
you to ascertain the inheritance relationships of an object, the methods it
responds to, and the protocols that it conforms to.

Classes

You can create objects in your code
with the alloc and init methods
described here. But when you
define a class in Interface Builder,
that class definition is stored in a
nib file. When an application loads .
that nib file, Interface Builder
causes an instance of that class to
be created.

Some of the objects networked together in an applications are of different kinds,
and some might be of the same kind. Objects of the same kind belong to the
same class. A class is a programmatic entity that creates instances of itself
objects. A class defines the structure and interface of its instances and specifies
their behavior.

When you want a new kind of object, you define a new class. You can think of a
class definition as a type definition for a kind of object. It specifies the data
structure that all objects belonging to the class will have and the methods they
will use to respond to messages. Any number of objects can be created from a
single class definition. In this sense, a class is like a factory for a particular kind
of object.

In terms of lines of code, an object-oriented program consists mainly of class
definitions. The objects the program will use to do its work are created at run
time from class definitions (or, if pre-built with Interface Builder, are loaded at
run time from the files where they are stored).

A class is more than just an object "factory," however. It can be assigned
methods and receive messages just as an object can. As such it acts as a class
object.

Obiect Creation
One of the primary functions of a class is to create new objects of the type the
class defines. For example, the NSButton class creates new NSButton objects
and the NSArray class creates new NSArrays. Objects are created at run time in
a two-step process that first allocates memory for the instance variables of the
new object and then initializes those variables. The following code creates a
new Country object:

id newCountry = [[Country alloe] init];

The receiver for the alIoc message is the Country class (from the Travel Advistor
application in the next tutorial). The alIoc method dynamically allocates
memory for a new instance of the receiving class and returns the new object.
The receiver for the init message is the new Country object that was
dynamically allocated by alIoc. Once allocated and initialized, this new record is
assigned to the variable new Country.

After being allocated and initialized, a new object is a fully functional member
of its class with its own set of variables. The newCountry object has all the
behavior of any Country object, so it can receive messages, store values in its

219

Appendix A

220

Object-Oriented Programming

instance variables, and do all the other things a Country object does. If you need
other Country objects, you create them in the same way from the same class
definition.

Objects can be typed as id, as in the above example, or can be more restrictively
typed, based on their class. Here, newCountry is typed as a Country object:

country *newCountry = [[Country alloc] init];

The more restrictive typing by class enables the compiler to perform type
checking in assignment statements.

Inheritance
Inheritance is one of the most powerful aspects of object-oriented programming.
Just as people inherit traits from their forbearers, instances of a class inherit
attributes and behavior from that class's "ancestors." An object's total
complement of instance variables and methods derives not only from the class
that creates it, but from all the classes that class inherits from.

Because of inheritance, an Objective-C class definition doesn't have to specify
every method and variable. If there's a class that does almost everything you
want, but you need some additional features, you can define a new class that
inherits from the existing class. The new class is called a subclass of the original
class; the class it inherits from is its superclass.

Inheritance .. New
.. Inherited

-------- Instance of superclass

,.----- Instance of subclass

Creating a new class is often a matter of specialization. Since the new class
inherits all its superclass's behavior, you don't need to reimplement the things
that work as you want them to. The subclass merely extends the inherited
behavior by adding new methods and any variables needed to support the
additional methods. All the methods and variables defined for-or inherited
by-the superclass are inherited by the subclass. A subclass can also alter

Other root classes are possible. In
fact, OPENSlEP's Distributed
Objects makes use of another root
class, NSProxy.

superclass behavior by overriding an inherited method, reimplementing the
method to achieve a behavior different from the superclass's implementation.
(The technique for doing this is discussed later.)

The Class Hierarchy and the Root Class
A class can have any number of subclasses, but only one superclass. This means
that classes are arranged in a branching hierarchy, with one class at the top-the
root class-that has no superclass:

NSArray

NSWindow

NSTextField

NSString

Part of the OpenStep class
hierarchy.

NSApplication

NSButton

NSObject is the root class of this hierarchy, as it is of most Objective-C class
hierarchies. From NSObject, other classes inherit the basic functionality that
makes messaging work, enables objects to work together, and otherwise invests
objects with the ability to behave as objects. Among other things, the root class
creates a framework for the creation, initialization, de allocation, introspection,
and storage of objects.

As noted earlier, you often create a subclass of another class because that
superclass provides most, but not all, the behavior you require. But a subclass
can have its own unique purpose that does not build on the role of an existing
class. To define a new class that doesn't need to inherit any special behavior
other than the default behavior of objects, you make it a subclass of the
NSObject class. Subclasses of NSObject, because of their general-purpose
nature as objects, are very common in OpenStep applications. They often
perform computational or application-specific functions.

221

Appendix A

222

Object-Oriented Programming

Advantages of Inheritance
Inheritance makes it easy to bundle functionality common to a group of classes
into a single class definition. For example, every object that draws on the
screen-whether it draws an image of a button, a slider, a text display, or a graph
of points-must keep track of which window it draws in and where in the
window it draws. It must also know when it's appropriate to draw and when to
respond to a user action. The code that handles all these details is part of a single
class definition (the NSView class in the Application Kit). The specific work of
drawing a button, a slider, or a text display can then be entrusted to a subclass.

This bundling of functionality both simplifies the organization of the code that
needs to be written for an application and makes it easier to define objects that
do complicated things. Each subclass need only implement the things it does
differently from its superclass; there's no need to reimplement anything that's
already been done.

What's more, hierarchical design assures more robust code. By building on a
widely used, well-tested class such as NSView, a subclass inherits a proven
foundation of functionality. Because the new code for a subclass is limited to

implementing unique behavior, it's easier to test and debug that code.

Any class can be the superclass for a new subclass. Thus inheritance makes
every class easily extensible-those provided by OpenStep, those you create,
and those offered by third party vendors.

Defining a Class
You define classes in two parts: One part declares the instance variables and the
interface, principally the methods that can be invoked by messages sent to
objects belonging to the class, and the other part actually implements those
methods. The interface is public. The implementation is private, and can
change without affecting the interface or the way the class is used.

The basic procedure for defining a class (using Interface Builder) is covered in
the Currency Converter tutorial. However, here is a supplemental list of
conventions and other points to remember when you define a class:

• The public interface for a class is usually declared in a header file (.h
extension), the name of which is the name of the class. This header file can
be imported into any program that makes use of the class.

• The code implementing a class is usually in a file taking the name of the class
and having an extension of .m. This code must be present-in the form of a
framework, dynamic shared library, static library, or the implementation file
itself-when the project containing the class is compiled.

• ~lethod declarations and implementations must begin with and - sign or a +
sign. The dash indicates that these methods are used by instances of the class;
a + sign precedes methods that the class object itself uses.

• ~lethod definitions are much like function definitions. Note that methods not
only respond to messages, they often initiate messages of their own-just as
one function might call another.

• In a method implementation you can refer directly to an object's instance
variables, as long as that object belongs to the class the method is defined in.
There's no extra syntax for accessing variables or passing the object's data
structure. The language keeps all that hidden.

• A method can also refer to the receiving object as self. This variable makes it
possible for an object, in its method definitions, to send messages to itself.

Overriding a Method
A subclass can not only add new methods to the ones it inherits, it can also
replace an inherited method with a new implementation. No special syntax is
required; all you do is reimplement the method.

Overriding methods doesn't alter the set of messages that an object can receive;
it alters the method implementations that will be used to respond to those
messages. As mentioned earlier, this ability of each class to implement its own
version of a method is referred to as polymorphism.

It's also possible to extend an inherited method, rather than replace it outright.
To do this you override the method but invoke the superclass's same method in
the new implementation. This invocation occurs with a message to super, which
is a special receiver in the Objective-C language. The term super indicates that
an inherited method should be performed, rather than one defined in the
current class.

223

Appendix A Object-Oriented Programming

Categories and Protocols

224

In addition to subclassing, you can expand an object and make it fit with other
classes using two Objective-C mechanisms: categories and protocols.

Categories provide a way to extend classes defined by other implementors-for
example, you can add methods to the classes defined in the OPENSTEP
frameworks. The added methods are inherited by subclasses and are
indistinguishable at run-time from the original methods of the class. Categories
can also be used as a way to distribute the implementation of a class into groups
of related methods and to simplify the management of large classes where more
than one developer is responsible for components of the code.

Protocols provide a way to declare groups of methods independent of a specific
class-methods which any class, and perhaps many classes, might implement.
Protocols declare interfaces to objects, leaving the programmer free to choose
the implementation most appropriate to a specific class. Protocols free method
declarations from dependency on the class hierarchy, so they can be used in
ways that subclasses and categories cannot. They allow objects of any class to
communicate with each other for a specific purpose.

OpenStep provides a number of protocols. For example, the spell-checking
protocols and the object-dragging protocols enable other developers to
seamlessly integrate their spell-checking and object-dragging implementations
into an existing system.

Index

Index

A

abstract class 95

acceptsFirstResponder 172

,accessing

data 78

information SO-51

accessor method 46, 77, 79, 175

implementing 116

retaining object 159

action 34, 73,92, 123, 164

connecting 40

defining 35, 36

implementing 130

setting programmatically 126

action message, See action

action method, See action

adding

action 35

application icon 66

menu item 64

outlet 35

submenu 64

addObject: 146

addTimelnterval: 148

alignment 25

of text 22

Alignment command 24

alloc 103, 207

AnalyzeAllocation command 103, 189

animation 29

ANSIC 7

application 144

attributes 66, 108

behavior 28

creating 15

design 32, 168

icon 66

multi-document 107, 131, 133

NSApplication 154

possibilities 29

resources 11 0, 133

standard features 28

start-up routine 108

226

application controller 109,110,131, 133,
182, See also controller object

Application Kit 4,7,67,142,155,170,
172

application wrapper 48, 99, 108, 110

applicationShouldTerminate: 99, 144

architecture 48

multi-document 107

archiveRootObject:toFile: 99, 139

archiving 68, 74, 77, 99, 100, 118, 139

argument 203

array 145

arrayWithObject: 137

ASCII 76

assembler 189

assigning the class 153

attention panel 180

attribute, setting 156

Attributes display 21

autorelease

mechanism 82

pool 82,83

autorelease 79,80,82,83, 103

auxiliary nib file 17, 110, 133

awakeFromNib 45,96, 126, 151

B

background color 21

base coordinate system 18, 135

bounds 170

box object 24, 59, 156

breakpoint

setting 102

browser 61

Build panel 47

building a project 47,48

and errors 49

bundle 99, 110

accessing resources 174

load able 110

main 110

button 23, 87

and images 63, 123

custom 173

state 173

c

switch 57, 162

types 57

C 48

C++ 7,48,192

calendar format 126

category 124,212

cc 48,189

cell 37,97

enabling and disabling 128

highlighing 128

installing 178

prototype 125

setting state 176.

setting title 128

cellAtIndex: 85, 86

cellAtRow:column: 162

cellWithTag: 130

class 33

abstract 95

adding to project 174

and object creation 207

assigning in Interface Builder 153

cluster 95

creating 208,209

definition 121,207,210

principal 108

relation to object 33

reusing 71, 108

specifying 33, 70

testing membership in 117, 147

class hierarchy 209

class method 46

class object 207

client/server 4, 9

Close command 138

closing a document 138

cluster, class 95

coding 100

collection classes 68

color 190

Color panel 21

column identifier 60

columns, of objects 25

compare: 89

compiler 48

GNUC 7

compositeToPoint:operation: 171

compositing images 170, 171, 172

connecting objects 39

direction of 37

Connections display 26, 39

consulting 193

containsObject: 160

content area 140, 141

content view 18, 140, 141, 160

box 156, 157

replacing 160

contentView 141, 169

context-sensitive Help 50

control object 34,37,97

control:isValidObject~ 96, 169

controller object 31,32,32,68, 109

application 109

document 109

controlTextDidChange: 142

controlTextDidEndEditing: 146-148,
166, 167

converting code,to OpenStep 190

coordinate system 18, 135, 141, 170

flipping 170

copy 79, 83, 103

copying objects 21, 117

and reference count 83

copyWithZone: 117

CORBA5

core program framework 140-141, 168

coverage 171

creating

class 33

custom view object 172

document 135

form 58

object 207

panel 156

currentEvent 141

custom palette 206

custom view 112

and Interface Builder 122

customizing menus 64

Custom View object 172

o
. D'OLE 5, 187

documentation 192

data

at port 154

mediating 86

serializing 100

storage 78

synchronizing displays of 167, 168

data encapsulation 30, 202

data source 60, 69, 84, 89

Data Views palette 60

date 125

date and time 126, 130

creating object 127

formatting 127

date With Year:month:day:hour:minute:
second:timeZone: 130

day of the week 127

dealloc 80,83, 100, 118

deallocation 77, 78, 80, 82-83, 100, 103,
118,209

debugger 102, 103

debugging 117

declaration 46, 134

method 43, 116

deep copy 117

defaults 189

delegate 37, 73, 74, 91, 99, 129, 133, 140,
141, 149, 155

method implemented by 60, 111, 142,
165

delegate 141

delegation 69,91, 144

delimiter checking 85

description 117, 118

description WithCalendarF ormat:
timeZone:locale: 149

design

hierarchical 210

hybrid 32

of application 32

determining class membership 206

Index

dictionary 68, 99

Digital Librarian application 50,88, 191

display 160, 170, 172

Display PostScript 4, 7, 18, 108, 171

documentation 192

displays

synchronizing 168

distributed computing 4

document 107, 133

and nib file 133

closing 138

creating 135

icon 113

initial values 168

management 29

marking as edited 139, 142

opening 137

saving 138, 143, 144

setting type of 113

document controller 109, 110, 131, 132,
133, See also controller object

Document menu 131

Interface Builder 111

document type 113

documentation 50, 51, 88, 191

accessing 191

reference 51, 191

system administration 192

drag-and-drop 20, 29

drawing 29,140,141,170-172

functions 171

drawRect: 170,172

duplicating object 21

dynamic binding 46, 89, 205-206

dynamic loading 110

dynamic shared libraries 7

dynamic typing 36, 46, 206

E

Editmenu 24

editable text 21

Emacs key bindings 85

enableDoubleReleaseCheck: 103

encapsulation 30, 202

encodeObject: 81

227

Index

encodeValueOfObjCType:at: 81

encodeWithCoder: 77, 81, 100, 118

Enterprise Objects Framework 4, 5, 60,
187

documentation 192

entity object 83

enum constant 85

EOModeler 206

event 18, 154-155, 181

and custom NSView 172

dispatching 140, 155

handling 140, 172

keyboard 155

message 140

event cycle 154-155

event queue 155

extensibility 210

extension, file 113

F

fat files 48

faxing 29

field, formatting 96, 169

file

extension 113

management 29

opening 137

saving 138-139

type 137

file descriptor 154, 181

file package 48

File's Owner 74, 110

FileMerge application 188

finding information 50, 51

first responder 140, 155

firstResponder 141

focusing 170

font 190

setting 130

Font panel 22

Font submenu 28

form 58

formatter 29, 97

setting 169

formatting, of fields 96

228

Foundation framework 4, 7, 78

frame 170

framework 7,48, 110, 188

documentation 191

Foundation 78

function 119

G

gdb 52, 102, 103, 117, 189

generating

instances 72

source-code files 42, 74

generating code files 114

"get" method 77, 79

gnumake 48,189

graphical debugger 102

grid, aligning on 24

grouping

objects 59

grouping methods 212

H

header file 42, 43, 210

Help 29,50,88, 131

hierarchical data 61

hierarchy

of classes 209

icon

application 66

document 113

icon mode (Interface Builder) 73

lconBuilder application 188

id 34,206

identifier 89

column 60

image

adding to button 123

adding to interface 63

compositing 171

image view 63

implementation file 42,44,210

importing header files 45

incremental search 88

indentation 85

Info panel 131, 182

informal protocol 89, 124, 129

inheritance 8, 33, 208, 209

advantage of 210

init 80, 100, 118,207

initialization 77,80, 100, 118, 125,209

default 80

initializing text 20

initWithCoder: 77,81, 100, 118

initWithFrame: 125, 172

input source 181

inspector panel 19, 156

creating 156

display of 157

managing 156

instance 33, 207

generating 38

instance method 46

instance variable 91, 114,202,207,211

declaring 76, 114,210

inheriting 208

scope 46

setting 83

Instantiate command 38, 72
interface 17

creating with Interface Builder 17-27

testing 27, 28, 66

Interface Builder 6, 17,97,207

and custom NSView 172

inspector 19

palettes 7, 20

interface file 210

Objective-C 43

internationalization 76

interoperability 5

introspection 206, 209

invalidate 116, 179

isDocumentEdited: 143, 147

isEqual: 117

isEqualToString: 147

isKindOfClass: 117,147

K

key 68,69,145

key equivalent 93

key window 18, 155

keyboard event 154, 155

keyWindow 141

keyword 46, 80, 203

l

label 21,22

ld 48

libg++ 192

library 48

dynamic 7

line on interface

creating 24

link editor 48

linking 48

lipo command 189

loadNibNamed: 136

localization, and nib files 63

localTimeZone 125

locating project symbols 88

M

main bundle 110

main menu 131

main nib file 17, 108

main window 18, 138, 155

mainO 16, 108

mainMenu 141

mainWindow 138,141

make 7

make, See also gnumake 7

Makefile 16

makefile 47,48

Makefile.postamble 16

Makefile.preamble 16

makeFirstResponder: 143, 149, 155

makeKeyAndOrderFront: 45

making a connection 40

MallocDebug application 188

man pages 88

matrix 125

and tabbing 134

menu 18,64

and Interface Builder 24

customizing 131

default 24

Document 111

Menus palette 64, 111

message 45, 46, 203, 211

action

nesting 45, 46, 52, 203

,method 30, 46, 114, 202

accessor 46, 77, 79

class 46

declaring 43, 77, 116,210

delegation 73,111,129, 142, 146,149,
165

difference from function 205

extending 211

inheriting 208

instance 46

invoking the superclass 153

overriding 152, 175, 208, 211

private 176

syntax 211

model object 31,32,67, 109, 145

Model-View-Controller paradigm 30, 32,
67,109,120

modifier key 154

modularity 8, 30, 109, 203

mouse click, simulating 138

mouse event 154

mouseDown: 152, 172

multi-document application 107, 131

design 133

multi-document architecture 107

mutableCopy 103

N

name completion 85

nesting messages 45

Netlnfo 4, 188

network management 192

New command 133, 135

NeXT

ordering products 195

publications 51, 191

website 187

next responder 140, 155

NeXTanswers 187, 194

NextDeveloper bookshelf 191

NEXTIME 188

nextKeyView 25, 28, 64

nib file 16, 182,207

and localization 63

auxiliary 74, 110, 133

creating 156

definition 17

document 110

loading 108, 136

main 17,108

sound and images 63

nibTool189

nil 46, 80, 146

nm command 189

notification 69, 91, 167, 168, 179

adding an observer 101

advantages 168

identifying 152

posting 153

notification center 91

notification queue 91

NSActionCell 97

Index

NSApp 74, ro8, 138, 141, 155

NSApplication 18, 108, 140, 141, 155

NSApplicationMainO 108

NSArchiver 99, 100

NSArray 68, 78, 89, 95, 117

NSBox 156,169

NSBrowser 141

NSBundle 99, 100, 110, 174

NSButtonCell 125,148,173,174

NSCalendarDate 125

NSCell 97

NSCoder 81, 100

NSCoding protocol 100, 114

NSCompositingOperation 171

NSConnection 181

NSControl 96,97, 120, 125, 155

NSCopying protocol 114, 117

NSCountedSet 68

NSData 78, 171

NSDate 97, 125, 174, 180

229

Index

NSDateFormatter 97, 169

NSDictionary 68, 78, 99, 100

inserting objects 150

NSEvent 154

NSEventType 154

NSFormatter 97

NSHomeDirectoryO 139

NSlmage 171,174

NSlmageRep 171

NSlmageView 63

NSMatrix 120,121,125

NSMutableArray 84,95, 111

NSMutableDictionary 84

NSMutableString 76

NSNotification 91, 101, 167

NSNotificationCenter 91, 101, 167

NSNumber 78, 97

NSObject 33, 78, 83, 124, 209

NSOpenPanel 137

NSProcesslnfo 78

NSResponder 120, 140, 154, 155

NSRunAlertPanelO 98, 143

NSRunLoop 116, 181

NSSavePanel 139

NSSet 68

NSString 76, 78, 89

NSTableColumn 60, 89

NSTableDataSource 89

NSTableView 60, 89

NSText 87

NSTextFieldCell 86

NSThread 78

NSTimeInterval

NSTimer 116, 179, 181

NSTimeZone 125

NSUnarchiver 100

NSValue 78

NSView 120, 125, 135, 140, 141, 155,
170,210

custom 172

focusing 170

NSWindow 18, 138, 140, 141, 154, 155

numberofRowslnTableView: 90

230

o
object 8, 9, 33

aligning 24, 25

allocation 78

analog to 202

and dynamic binding 206

and name space 205

archiving 77, 139, 150

array 111

attribute 156

box 24,59, 156, 160

button 23

class membership 206

communication 180

comparison 117

connecting 36,39,40

controller 31,32,68,84, 109

copying 21, 117

creation 207

deallocation 77, 78, 80, 103, 118

definition 202

dictionary 68

disposal 82, 83

duplicating 21

dynamic typing 34

entity 83

form 58

formatter 169

initialization 77,80, 100, 118

initializing text 20

inspector 156

interface 30, 203

introspection 206

matrix 111, 125, 134

model 31,32,67,109

modularity 109

ownership policy 78, 82, 83

placing 20

pop-up list 162

putting in NSDictionary 150

relation to class 33

resizing 20

retaining 82, 169

retention 83

reusing 109

scroll view 60

sizing 20

text 59, 166

text field 165, 166

unarchiving 136

value 83

view 32, 112, 120

objectAtIndex: 137, 147

objectForKey: 68, 151

94

. Objective-C 7,48,202,203,206,208,
211, 212

documentation 192

header file 43

summary 46

object-oriented program 204

design 30

object-oriented programming 201

documenation 192

objects

connecting 37, 73

grouping 59, 157

making same size 21

sharing 159

observer 91

oh command 103,189

Open command 133, 137

Open panel 111, 133, 137

opening a document 137

openPanel 137

OPENSTEP 4

application 28, 29

development applications 188

OpenStep 7

converting code to 190

specification 4, 190

OPENSTEP Developer 4, 6

OPENSTEP User 4

ordering products 195

origin point 135

outlet 25,34, 70, 72, 123

connecting 39

defining 35, 36

outline mode 73

overriding a method 152, 173, 175,
208,211

invoking superclass 153

ownership, of objects 82

p

palette 20, 110, 190

panel 18

creating 156

inspector 157

off-screen 157

pasteboard 29

pathForImageResource: 174

PDO, See Portable Distributed Objects

performClose: 138

periodic event 154

persistence 81

placing objects 20

platforms, supported 5

plug-and-play 29

po command 117

polymorphism 46,89, 205, 211

pop-up list 18

Portable Distributed Objects 4, 5

documentation 192

posting, a notification 91

PostScript 154, 170

and drawing 171

Preferences panel 131, 183

principal class 108

print: 65

printing 29,65

procedural programming 201

procedures 201

professional services 5

program development

command-line tools 189

resources 190

work flow 14

program, object-oriented 204

programming

procedural 201

work flow 14

project 15

adding class to 114

building 47

directory 15

project browser 16

Project Builder 6, 110

checking delimiters 85

indentation 85

launching 15

searching 88

Project Find panel 51,88, 191

project symbols 88

protocol 212

adopting 76, 114

informal 124

pswrap 171, 172, 189

putCell:atRow:column: 178

R

radio mode 125

receiver 45, 203

reference documentation 51,88

release 80, 83, 103

release notes 192

reliability 8

removeFromSuperView 169

replaceObjectAtlndex:withObject: 147

representedFilename 137

resizing

view object 20

window 19

resource

for programming 190

resources

application 174

responder chain 140, 155

retain 79, 83, 103, 159

and content view 160

retaining object

implications of 83

reusability 109

reuse 8,108

reusing object 71

root class 209

root object 78, 99, 100 .

rows, of objects 25

runModalF orDirectory:fiIe:types: 137

S

sales offices 195

Same Size command 21

Sampler application 188

Save command 133, 138

Save panel 111, 133, 139

savePancl 139

saving a document 138, 143

screen, coordinate system 135

scroll view 60

scrolling 170

searching code 88

selectable text 21

selectedCell 130

selected Row 93

selectText: 45,86

self 46,211

sender 45

services 29

Services menu 24

"set" method 77, 79

setAutosizesCells: 126

setContentView: 160

setDataSource: 89

setDocumentEdited: 139, 142

setEntryType: 96

Index

setFloatingPointF ormat:left:right: 96

setFormatter: 97, 169

setFrameOrigin: 170

setFrameSize: 170

setIdentifier: 89

setlmage: 148

setObject:forKey: 150

setState: 57,87

setString : 87

setStringValue: 86

setTarget: 155

setting the font 22, 130

setTitle: 136, 148

setTi tie WithRepresentedFilen<J.me:
136

shallow copy 117

sharedApplication 108

sizing objects 21

231

Index

sortedArray U singSelector: 89

sound 190

Sound Kit 188

source-code files

generating 42, 74, 114

specialization 209

standard window 18

startTrackingAt:in View: 177

state 57

static typing 46

stopTracking:at:in View:mouseIsUp: 177

string object

and character strings 76

empty 80

stringValue 87

strip command 189

subclass 8, 33, 208, 209

creating 33, 152, 173, 209

custom view 172

making 108

Subclass command 70

subclassing 108

subview 59, 141, 160

suitcase 16

Sun Solaris 4

super46,80, 125,211

superclass 33, 70, 121, 152,208,209

accessor method 175

superview 59, 141, 155

support, technical 193

switch 57, 87, 162

symbols, definitions and references 88

system administration 192

T

tabbing, between fields 26

table view 60, 69, 89

configuring 61

identifier 89

tableView:
objectValueForTableColumn: row:
90

table View:setObjectValue:
forTableColumn:row: 90

Tabulation Views palette 60

232

tag 124, 125, 128, 160, 162

tag 130

target 36, 40

setting programmatically 126

target/action paradigm 37, 155, 165

techncial documentation 51

technical support 193

testing an interface 27, 66

text

aligning 22

background color 21

editable 21

selectable 21

text color 21

text field 165, 166

attributes 21

font 22

formatting 169

placing and resizing 20

tabbing between 26

validation 169

text object 59, 166

Text submenu 28

textDidChange: 101

textDidEndEditing: 166

thread 181

tile 93

time zone 126

time, See date and time

timer 116, 154, 179, 181

firing 180

scheduling 179

Title object 22

tools, command-line 189

TOPS 190

tracking-rectangle event 154

training 193

transparency 171

typing, static and dynamic 208

U

unarchiveObjectWithFile: 100, 136

unarchiving 77, 118, 136

Unicode 76

userInfo dictionary 153

V

validation, of fields 96, 169

value object 68,83

view hierarchy 18, 140, 141

view object 18,32, 120

custom 112, 172

printing 65

removing from superview 169

Views palette 20, 172

W

WebObjects 5, 136, 187

window 18, 154

attributes 19

behavior 28

closing 143

depth 171

events 155

key 18

locating 136

main 18

making first responder 143

positioning 135

resizing 19

setting title 136

status 138

Window Server 18, 108, 140, 154

Windows. menu 24

Windows operating system 4

Windows palette 157

windowShouldClose: 143

World Wide Web 187, 195

y

Yap application 188

Prillted 011 recycled paper
6863.00

