
1M41-0001
SOFlWARE INSTRUCTION MANUAL
BASC-12 GENERAL ASSEMBLER

NUCLEAR DATA, INC.
Post ()ffice Box 451
Palatine, Illinois 60067

January, 1971

Copyright 1971, by Nuclear Data, Inc.
Printed in U. S.A.

TABLE OF CONTENTS

Section Title Page

INTR()DUCTION. • • • • • • • • • • • 1-1

A. Program Summary 0 • • • • • • • • • • • • • •• 1- 1
B. Program Area ••••••••••••••••• 1- 1
C. Starti ng Address. " • • • • • • • • • • • • • •• 1- 1
D. Equipment Confi guration. • • • • • • • • • • • •• 1- 1
E. Definitions • • • • • • • • • • • • • • • • •• 1-1

2 PROG,RAM DESCRIPTION • • • • ••• • • • • • • • • 2-1

3 OPERATOR OR USER CONTROt • • • • • • • • • • • • 3-1

4 OPERATIC)NAL PROCEDURE • • • • • • • • • • • • • 4-1

5 ERROR DIAGNOSTICS. • • • • • • • • • • • • • • • 5-1

Appendices

A INSTRUCTIONS IN MN"EMONIC SEQUENCE • • • • • • • A-1

B I NSTRUCTIONS IN OCTAL SEQUENCE • • • • • • • • • B-1

c ASCII CHARACTER SET • • • • • • • • • • • • • • • C-1

iii

1. INTRODUCTION

A. PROGRAM SUMMARY

BASC-12 is a 2-Pclss Assembler (optional 3rd pass) for the ND812 Central Processor.
BASC-12 translates symbolic mnemonics (source) into machine instructions (object),
executable by the Central Processor hardware. The BASC-12 Language is structured to
give the programmer compl ete control over the mach ine language instructions to be
executed by the processor, while allowing easily remembered and understood symbols
(letters, numbers, and special characters) to specify the desired instructions. BASC-12
is designed to run in a 4K Processor equipped with paper tape and/or magnetic tape
cassette peripheralls.

B. PROGRAM ABEA

00008 through 53038 with locations 3053
8

through 41768 used as the Input Buffer.

c. STARTING ADDRESS

020°8·

D. EQUIPMENT CONFIGURATION

Minimum requirements are a 4K ND812 Central Processor equippeOd with an ASR33 Teletype
(Io~ speed punch/reader). Optional peripherals include the high speed punch or reader
and/or a Magnetic: Tape Cassette Unit.

E. DEFINITIONS

1. Source

The Symbolic Program irs written by the programmer in the symbols allowed in BASC-12
language. The program source (usually punched on tape) is the input to the .Assembler
which then "assembles" or "translates" it into a machine language or "binary" version of

1-1

of the program. The Symbol ic Text Editor (ND41-0002) is usually employed to prepare
a "Source" tape.

2. Binary

The output from an assembler is often referred to as the "Object Program". If the Object
Program is not produced in directly executclble form by the Assembler, it must either be
assembled further, or else must be loaded and executed with a run-time monitor which
interprets the object coding and performs the required operations. The output from the
BASC-12 Assembler mClY be loaded without modification as it is in absolute binary form,
so that, once in core, it is executed directly by the processor without the need for a
run-time monitor. To distinguish this type of object program, it will be referred to as the
Binary Output or simply "Binary". Therefore, a binary file is a one-to-one copy of
core which may be loaded and executed directly.

3. Listing

This consists of a hard-copy symbolic listin!~ of the program with the octal equivalents of
the assembled insf'ructions and their octal locations in memory. It represents the documen
tation of the program, including the actual instructions assembled, and their execution
locations. The fCirmat used is:

2345 6740 SYMBOLIC LINE OF C()DING,

where "2345" and "6740" are octa I numbers representi ng a memory address and the contents
of that address respectively. The balance of the line consists of a repetition of the Program
Source which was assembled to yield the m(lchine instruction "6740 11

•

4. Numbers

All absoluJe numbers eIre interpreted by the: BASC-12 Assembler as four-digit octal
numbers. The hi~,h order digits of longer numbers will be ignored. The decimal digits
"8" and "9" wi II be interpreted as non-numeric ,characters.

5. Characters

A single letter, number, etc. When referred to paper tape, a character occupies one frame.

6. Symbols

A symbol consists of any collection of lette:rs, numbers, or other characters appearing
anywhere on a I ine, not in a comment, and followed by a term inator.

N()TE

Spaces ane terminators.

1-2

•

A legal symbol should be no more than 6 characters long and must begin with an alphabetic
character. Longer symbols are allowed bU1' will be truncated to 6 characters with the
excess being ignored. Thus, the symbol IISTARTS II , "STARTSAII, and "STARTSAB II will
be interpreted as the same symbol by the Assembler, namely IISTARTII.

7. Non-Printing Characters

The following symbols are used to represent non-printing symbols:

Horizontal Tab = ~
Vertical Tabe = if

Carriage Return = ;>
Line-Feed = ~

These characters, although non-printing, may be typed by the user on the keyboard and
may appear in a Program Source. They generally initiate some action in the printing
device (such as a carriage return) or cause a special response from a program (such as a
tab) •

A space is repres€!nted by the symbol II A " even though it is a printing character in the
sense that it causc~s the carriage to move one column to the right. It is, however, often
important to know how many spaces appear in a line of text, so that it is convenient to
have a symbol to repr€!sent it in the documEmtation •. None of these special symbols are
never printed, but are used whenever necessary to clarify the contents of a I ine of text
in the examples and discussions which follows. -

8. User Entry

User entry is alwclYs underscored. All other characters are prin'ted by the program.

9. Ignored Charolcters

A character lIignored" by the BASC-12 Ass,embler is reproduced in the listing, but does not
affect assembly of the program. Ignored characters will terminate a symbol, but otherwise
initiate no special action. The "Space ll is an example of an ignored character. If spaces
intervene between a symbol and another sp,ecial character, the assembler interprets the
resulting coding os though the spaces were not present. Spaces between symbols serve
only to separate the symbols.

10. Term i nators

The following charracters have special meaning to the Assembler and will also terminate
a symbol: Comma (,), Slash V), Asterisk (*), Plus (+), Minus (-), Equal (=), ,'-lumber (#),
Left Bracket ([), At (@), Horizontal Tab (~), Vertical Tabe (f), Form-Feed, Up
Arrow (t), Carriageo-Return (.;», and Dollar ($). B lank tape, rubouts, and line-feeds
are not stored in the Assemb I er buffer. Twenty-four consecutive Rubouts are interpreted
as an out-of-tape condi ti on •

1-3

Space (a)

Comma (,)

Slash (/)

Asteri sk (*)

Plus (+)

Minus (-)

Equal (=)

Selves only to terminate a symbol. Spaces are
otherwi se ignored.

Indicates that the symbol preceding it (ignoring
spoces) should be interpreted as a tag for that
I ocati on. The symbol is set equal to the Program
Location Counter (PLC). A symbol may not be
used as the tag for two different program locations.
Command mnemonics may not be used as tags.

The slash indicates the beginning of a comment.
All characters, including the terminators, following

""il1c; slash will be ignored by the assembler until
the next carriage-return. The Number sign (#)
wi II be flqgged as an illegal character. Comments,
including the Slash, are ignored and are reproduced
only in the Pass 3 Li sting.

The asterisk is an instruction to the assembler to
reset the program location counter (PLC) to the

vallue of the symbol (s) following the asterisk.
If the asterisk is followed by several symbols, they
wiH be assembled according to the rules of assembly
applying to a single location and the PLC will
be set equal to the resul t. Numbers are, as usual,
interpreted literally. Octal numbers larger than
four digits are truncated from the high-order end.
If c::my one of the symbols appearing after the "*"
have not been previously defined, the expression
will be ignored and the undefined origin (UO)
dicJgnostic printed.

CClUses the symbol following the plus sign to be
added to the symbol preceding the sign. An
undefined symbol at the time of evaluation is
ignored.

Couses the symbol following the minus sign to be
sylbtracted from the symbol precedi ng the minus sign.

Co!uses the symbol preceding the sign to be set
equal to the symbol or symbols following the sign.
If the symbol following the equal sign is undefined,
the Assemb I er reacts di fferently dependi ng on the
current pass number and the type and ki nd of symbols

1-4

Number (#)

Left Brack ([)

At Symbol:: (@)

Horizontal Tab (~)

Vertical Tab (if)

Form-Feed

Up Arrow (t)

involved. The treatment of statements containing
an equal sign is discussed under "equivalence
Stntements" •

Denotes an illegal character. A character other
thCln blanks, line-feeds, or rubouts, and with
oc1'al code less than 0240 or greater than 0337
is stored in the inputbufferasa 11#". When this
character is encountered by the Assembler
dud ng processi ng of i ts buffer, the message IIIC
AT XXXX" is generated where" XXXX" represents
the current value of the PLC. If the character
"#11 appears in the user1s source, it will be inter
pre'ted as an illegal character during assembly.

Indicates that the symbol following the" II is
to be taken as an Assembl er Directive; that is,
an instruction to the assembler to interrupt
pro1cessing and perform some other task indirectly
related or not related to processing the source
program. The secti on on Assemb I er Directives
describes the various directives included in the
assembler and the procedure necessary to create
user directives.

Indicates an indirect address for a memory reference
instruction. The "@" symbol should appear immed
iately after the instruction mnemonic without
separating spaces (i. e. "JMP@").

Equivalent to a space. When creating the Pass 3
Listing, the assembler will generate the proper
number of spaces on the teletype or other output
device. The output device need not have mechanical
tabb i ng ab iii ty •

Terminates a line and advances the paper to the
top of the next page.

Int,erpreted by the Assembler as a vertical tab.

Automatically generates a two word I/O where
the symbol foil owi ng the up arrow is taken as the
second word of the I/O. The octal code 0740
is cmtomatically generated in the first location of

1-5

Carri age Return ;>

Dollar ($)

Period or Dot (.)

the! two word i nstructi on. Th i s symbol's acti on
is an exception to the one location per line rule
in t'hat it gen'erates two locations for one I ine of
coding. It does not, however, restrict the
prclgrammer's fl exib iI i ty of control over the
finol binary program since use of () is optional.
The! up arrow need appear only once on a line.
Succeeding up arrows on the same line are ignored.
Symbols precedi ng the up arrow on a line are
ignored.

Carriage Return (~) terminates a line of coding.
A location is not assigned to lines containing an
(=) or (*) or b lank lines contai n i ng no codi ng or
a comment only. Extra carriage-returns in the
source, though they generate extra lines in the
program listing, do not affect the length of the
machine language program and may be used to
format the listing for better legibility. It is
recommended that b lank I ines be used to separate
lo~~ical blocks of the Source and to separate the
constants and variables from instructions.

The Dollar ($) indicates the end of the Source.
The dollar sign will initiate termination of the
current pass and so should be the last symbol in
a Program Source. If a dollar sign is not read by
the! Assembler before it runs out of input tape, the
assembler waits for teletype input to supply the
"$", indicating the end of the pass, or any other

ch()racter indicating that the input device was
reloaded and the assembly should continue with
the additional source. The "$" should not be used
anywhere in the body of the source except as the
last line.

Is equival ent to a symbol representing the current
value of the Program Location Counter (PLC).
The period or dot does not serve as a terminator
and must be used in all respects I ike any other
symbol.

1-6

2. PROGRAM DESCRIPTION

When using the BASC-12 Assembler it is imperative that the user have a solid knowledge
of the source language. (See Appendix A Clnd B for a bri ef Ii sti ng of these.) The source
program consists of ASCII coded binary words that represent symbols, special characters
and terminators written in a format acceptable by the BASC-12 Assembler. The following
example illustrates the statement format which can be interpreted by the BASC-12 Assem.bler:

LABEL ()PERATION ADDRESS ICOMMENT

READ, JMP ENID II NPUT ONE CHARACTER

Fields of each instruction line are not rigidly defined. They are separated from one
another by any of the terminators except the + and - characters. Plus (+) and Minus
(-) are used to connect multiple symbols to form a single field. The + and - signs are
evaluated from left to right before a field is connected with another. Parentheses are
not perm i tted •

The commend field must begin with a slash (/). A comment may start anywhere on the
line and o'lways continues to the end of the line. -

It is suggested, in the interest of neatness cmd legibility of final output, that the OPERATION
field begin in the ninth column (first tab), that the ADDRESS begin in the fourteenth
column (automatic provision for inserting an extra space after 3-letter instructions is
made in the Editor), and the comment begin in the 25th column (4th tab position; one tab
after most instruclrions). On lines which contain no instructions or definitions, the comment
may start anywhere on the line and is generally left-justified. A line containing a
comment only is left-justified in Pass 3 output of the Assembler.

A. LABEL FIELD

The label field ll1(lY consist of one symbol followed by a comma. Plus (+) and Minus (-)
signs are not permitted in the Label Field. The symbol may not have been previously
defined by appeadngin an equivalence s'tcltement or by having been used as a tag. There

2-1

may be more than one tag on a line, but eClch may consist of only one symbol and each
must be followed by a comma. All tags on the same line will reference the same location
in the assembled program.

An attempt to use a symbol as a tag which has already appeared in an equivalence state
ment, or was used as Oi tag, will result in the duplicate tag error diagnostic IIDT AAAAAA
AT XXXX" where the location counter at the time the error was detected.

The label field does not affect the contents of the current location.

B. OPERATION AND ADDRESS FIELDS

If, after assembling an element other than () label element, the result is between 2400a
- 7737a, the next· field will be treated as the address field of a Single-Word Memory
Reference Instrucf'ion. In this case, no field, except a comment, may follow on the same
line. Each symbQiI beyond the Address field of a Single-Word Memory Reference Instruction
will generate the Double Address Diagnostic ,IIDT AAAAAA AT XXXX II

, where "AAAAAAIJ
is the symbol and IIXXXX" is the value of the location counter at the line where the double
address was detected.

Since Single-Word Memory Reference Instructions are recognized by their octal coding,
it is possible for the user to devise his own mnemonics for special applications. In
addition, the assembler will always recogniize error conditions involving Single-Word
Memory Reference Ins1Tuctions no matter how the octal code is 'created. This parallels
the fact that the processor also recognizes ~nstructions by their octal codes and errors
made in the Sourc:e wi \I be carried through to run-time.

It should be noted that the Assembler does not check for the absence of the Address field.
If a Single-Word Memory Reference is assembled into a location and no address field is
provided, reference to location OOOOa will be assembled by default.

In any case, proper assembly of a Single-Vlord Memory Reference Instruction demands
that it appear in i"he first non-label field on the line. Although not essential for proper
assembly, the same rule should be applied to all instructions to minimize the possibility
of error and to mClke the Source Li sti ng easi est to read.

Fields evaluated to a number less than 2400a or greater than 7377 a are combined with an
inclusive logical 1I0RIt. This allows micro-programming of the Operate and I/O instructions.

C. EQUIVALENCE STATEMENT

An Equivalence Statement consists of an 1I()bject Symbol II followed by an equal sign (=)
followed by an e>~pression consisting of symbols, plus signs (+), minus signs (-), and spaces
(to separate symbols in the absence of a plus or minus sign). The expression is assembled
according to the ctlgorithm for the assembly of an instruction and the symbol appearing
to the I,eft of the equal sign is set equal to the result.

2-2

D. DEFINITION STATEMENT

A Definition Statement is the special case of an Equivalence Statement in which all of
the symbols appeclring to the right of the equal sign are defined when the statement is
encountered. Ultimately, it is the purpose of all Equivalence Statements to assign an
octal value to the object symbol or to set the object symbol equal to another symbol which
has been assigned an octal value. In other words, it is the purpose of the Assembly to
change all Equivcdence Statements into Definition Statements. "RD XXXXXX AT NNNN"
indicates an attempt to assign a second value to the same symbol. The error diagnostic
"DT XXXXXX AT NNNNII is generated if a symbol appearing as the object of an Equi
valence Statement also appears as a Progralll Tag (Where II XXXXXX" is the symbol and
"NNNN" is the current value of the Locaf'ion Counter).

Equivalence Statements are closely related to the use of symbols as Program Tags. Use
of a symbol as a Program Tag sets it equal f'o the Memory Address assigned to the instruction
or constant it tags. Since a symbol may have only one octal value, any attempt to also
use the symbol as the object of an Equivalence Statement will generate the error diagnostic
"RD XXXXXX AT NNNN" and the prior vCllue of the symbol will not be affected.

Similarly, any atl:empt to use a symbol two or more times as the object of an Equivalence
Statement will generate the same error message: "RD XXXXXX AT NNNN" where "XXXXXX"
is the symbol andIlNl'~NN" is the current value of the .Location Counters.

The Assembly of CI Definition Statement is straight-forward if all of the symbols on the
right-hand side of the equ~1 sign are defined. The Assembler will assemble the right
hand symbols according to the algorithm used for instruction locations and set the left
hand symbol equal to the resul t. For exampl e, the statements:

DBSKIP == JMP .+3
CSLCT == 7466

would cause "DBSKIP" to be set equal to 6003 and "CSLCT" to be set equal to 7466
in the Pass 1 symbol table. Thereafter, the octal number 6003 would be substituted for
"DBSKlp lI whenever the symbol occurred.

A statement of thc~ form:

READ == JPS INPUT

is a definition (and is handled as described above) only if both "JPSIJ and "INPUT II were
defined or used as a tClg prior to the appearance of the above statement. If "I NPUT II is
used as a tag or appears in an equival ence statement after the above statement, then
assembly of the above statement must be deJerred to a later pass at which time "I NPUT"
will be presumably defined. In this case, "READII will not appear in the Pass 1 Symbol
Table. On the second or subsequent passes, "READ" will be properly defined and listed
normally in the PC)SS 3 Symbol Table. The user should be aware, however, that IIREADII

2-3

remains undefined until it is encountered during processing of Pass 2 or 3 and will generate
an Undefined Symbol error diagnostic during Pass 2 or 3 if used prior to the appearance
of the statement which defines "INPUT".

If "INPUT" is not defined anywhere in the program, the error diagnostic "UE XXXXXX
YYYYYY AT NNNN'I (Undefined Equivalence) will be generated during Pass 2 and 3
where II XXXXXX" is the I eft-hand symbol (lnd "yyyyyY" is the undefi ned ri ght-hand
symbol. The diaSlnosti'c wi II be generated os many times as an undefined right-hand
symbol appears. In any case, "READ" will remain undefined and will appear in the
Pass 3 Symbol Tab I e as

READ == **

One special circumstance arises if a symbol appears in both a Pass 1 Redefinition or
Duplicate Tag error and a Pass 2 or 3 Undefined Equivalence error. For example suppose
the following coding were assembl ed:

READ = JPS RD

*0200

READ, 0

$

Note that "RDII is never defined and that "READ IJ appears as the left-hand portion of an
equival ence statement and as a program ta~J.

During Pass 1, th.e error diagnosti c:

DT READ AT 0200

would be generated and "READ" would not be listed in the Pass 1 Symbol Table.

During Pass 2 or ~~, the error di agnosti c:

U E REA D R D AT 01 00

would be generated but "READ" would remain undefined only until the "READ, 0"
statement was encountered. Inasmuch as "READ" is still undefined, the assembler will
define it as a tag (giving it the value "0200") and it would appear in the Pass 3 Symbol
Table as

READ == 0200

2-4

A statement of the form:

READ = INPUT = 'GT = JPS RD

will cause the foillowing entries in the Pass 1 Symbol Table (assuming "RD" is undefined
when the above statement appears):

GET = **

INPUT =GET

READ = INPUT

During Pass 2 or 3, "GET" will be defined, and be listed i-n the Symbol Table with the
appropriate octal number to replace the double asterisk. In any case, "READ" and "INPUT"
will be treated by the assembler exactly as though the symbol "GET" were being used.
If "G ET" is never defi ned, "READ" and "I NPUT" will also remain undefined.

Finally, there may be only one complex expression or previously defined symbol on a line
and it must be terminated with a carriage-return. Thus, the following statement is illegal:

READ = JPS RD = JPS INPUT

No error diagnostic will be immediately produced, but "RD" will be listed in the Pass 1
Symbol Table as HRD" will be listed in the Pass 1 Symbol Table as "RD = **" and any
subsequent attempts to define it or use it as, a tag will generate the Redefinition or Duplicate
Tag error messages.

During Pass 2 or 3:, the Undefined Equivalence message will be produced and then "RD"
will be defined with a somewhat arbitrary value. Additional error diagnostics may be
produced depending on the current value of the Location Counter and the current definition
status of the rest of thc~ symbols on the line.

Coding of the foillowing forms:

READ, 0

INPUT = READ = GET = FIND

are also illegal and will generate the Redefinition error message.

2-5

3. OPERATOR OR USER CONTROL

The BASC-12 General Assembler is a 2 Pass Assembler that examines the source program
and creates a table of symbol address on Pass 1, outputs the assembled binary translation
of the source program on Pass 2. An optional third pass is possible during which a symbolic
listing (in ASCII Code) is created. Passes 2 and 3 are combined on BASC-12 for DISC
systems. Switch Register settings specify which pass the assembler is to undertake and what
input and output devices are to be utilized., The following is a detailed description of
the Switch Reg i st€~r bit assi gnments:

Bits 0 and 1 indicbte which Pass the assembler is to undertake. Pass 0 is illegal

Pass 1
Pass 2
Pass 3

Bit 2 is unassigned.

Bit 0
o
1
1

Bit 1
1
o
1

Bit 3 set to Ill" CCluses the assemb I er to generate the symbol tab I e at the end of Pass 1.

Bit 4 is unassigned.

Bit 5 set to "1" suppresses page formatting.

Bits 6 and 7 select the input device.

Low Speed ReOider (TTy)
High Speed Reader
None
Cassette

Bit 6
o
o
1
1

3-1

Bit 7
o
1
o
1

Bits 8 and 9 select the output device for PCISS 1 and 3. When the non-existent output
device is selected, the symbolic listing is destroyed but the error messages are printed.
This is of value to a user assembling a rough program and anticipating many errors.

Low Speed Punch (TTy)
High Speed Punch
Non-existent Device
Non-exi stent Devi ce

Bit 8
o
o
1
1

Bit 9
o
1
o
1

Bits 10 and 11 select the output device for Pass 2. When the non-existent output device
is selected, the binary is destroyed but the error messages are printed.

Low Speed Punch (TTY)
High Speed Punch
Non-exi si'ent Devi ce

Bit 10
o
o
1

Bit 11
o
1
o

An important "control" the user must not overlook, is the understanding of Instruction Codes,
formatting acceptable to the assembler, terminators, directives and special characters.
This knowledge ccm be attained by reading the REFERENCE MANUAL, the DEFINITIONS
and PROGRAM DESCRIPTION Sections of this manual.

3-2

4. OPERATIONAL PROCEDURE

1) Load the BASC-12 General Assembler program tape with the
Binary Loader (Refer to the Binary Loader ND41-003 for a detai led
description) •

2) Set the Switch Register to 02008 and depress LOAD AR.

3) Turn on all input and output devices that are intended for use
during this assembly.

4) Place i-he paper tape or the cassette storing a source program
in the appropriate input device.

5) Set the pass number (Bits 0 and 11), input device (Bits 6 and 7),
pass 2 output device (Bits 10 and 11), and pass 1 and 3 output
device (Bits 8 and 9) into the Switch Register. Refer to the
OPERATOR or USER CONTROL Section for a detailed descrip
tion of this operation.

6) Depress START.

7) The source program will now be read and the assembled binary
or symbolic translation written Cln the specified device.

NC>TE

The storage buffer of BASC-12 General Assembler is 1024 characters
long, exclluding line feeds, blank tape and rub-outs. If a source
program i So contained on paper tape and exceeds the I im its of the

. storage buffer, it wi II be necessary to rei oad the sou rce program for each
pass of the assemb I er (return to Step 4 and 5 above and depress
CONTINUE in place of START in Step 6).

4-1

The Magnetic Tape Cassette Unit incorporates circuitry which automatically rewinds the
cassette at the end of tape, allowing the assembler to reload the source program via
software control.

4-2

5. ERROR DIAGNOSTICS

The error messages generated by the BASC-12 Assembler refer to syntactic errors appearing
in the source. A syntactic error will cause a zero to be assembled for the statement in
which the error occurs. (This is equivalent to a STOP instruction and will cause the
processor to STOP on encountering the incorrectly written instruction when the object
program is execut,ed). Numbers in parentheses indicate the pass during which the error
diagnostic may occur.

A. IC AT NNNN (ILLEGAL CHARACTER) (1,2,3)

An illegal character was detected during input. The character will appear in the Pass 3
Symbolic Text as "#". The illegal character (or 11#") is counted as a blank during assembly.
Illegal character messages'are not counted among the syntactical errors which follow.

B. RD XXXXXX AT NNNN (REDEFINITION) (1)

The symbol" XXXXXX" was encountered as the left-hand portion of an Equivalence
Statement for the second time or was previously used as a program tag. The Equivalence
is ignored.

C. DT XXXXXX AT (\INNN (DUPLICATE TAG) (1)

A symbol IIXXXXXX" followed by a comma was encountered and had already been used
as a program tag or as the left-hand portion of an equivalence statement. The symbol
and comma are ignored.

D. UO XXXXXX AT NNNN (UNDEFINED ORIGIN) (1,2,3)

The symbol" XXXXXX II was used in a statement preceeded by a "*" without having been
previously defined. An origin specification may consists of any complex expression, but
all of the symbols used in the expression must be defined in order for the assembler to
reset its Program Location Counter (PLC) to the proper value. It is not possibl e to defer
the definition of c:m origin since it is required for Pass 1 as well 'as 2 and 3.

5-1

E. US XXXXXX AT NNNN (UNDEFINED SYMBOL) (2,3)

The symbol II XXXXXX Il was used in the program without ever having appeared in a legal
Equivalence statement or having been used as a program tag. The symbol will also appear
in the Pass 3 Symbol Table followed by the double asterisk (**)0 The symbol is ignored.

F. IR MMMM XXXXXX AT NNNN (ILLEGAL REFERENCE) (2,3)

The Symbol IIXXXXXX Il (with a definition of IIMMMMII) was used as the address of a
Single-Word Memory Reference Instruction and the difference between the Program
Location Counter (PLC) and IIMMMMIl is greater than 6310(778) placing IIXXXXXXIl out
of range of the Single-Word MRI. This diagnostic is also produced if the address of an
IJANDF II instructk)n is less than the PLC (Reverse Reference), if the absolute octal portion
of a literal instruction is greater than 778, negative or zero or if any Single-Word instruc
tion attempts to reference itself (MMMM=NNNN=(LC)).

G. DA XXXXXX AT NNNN (DOUBLE ADDRESS) (2,3)

The address of a Single-Word Instruction may consist of only one symbol not connected by
plus or minus sign:5. For example, the statE~ment: JPS A+B is legal; JPS A B is not and
wi II generate the error message II DA B AT NNNN II. The second and succeeding symbols
are ignored.

H. UE YYYYYY XXXXXX AT NNNN (UNDEFINED EQUIVALE~CE) (2,3)

The symbol II XXXXXX Il appears in the right-hand portion of an Equivalence Statement
attempti ng to defi ne YYYYYY and XXXXXX is undefined. lIyyyyyylI wi II not be defi ned,
regardless of the_status of other symbols in the right-hand portion of the Equivalence
Statement. The diagnostic is generated for every undefi ned symbol whi ch appears in
the right-hand portion of the statement.

I. UN XXXXXX AT NNNN (UNDEFINED DIRECTIVE) (1,2,3)

An Assembler Directive was encountered which is not defined at all, or is a user defined
directive which appears in the program before the appearance of the IIENABLEII Directive.
It is ignored.

J. ST OV XXXXXX AT NNNN (SYMBOL TABLE OVER-FLOW) (1,2,3)

No room could be found in the Symbol Table for the symbol IIXXXXXXII. The current
pass is automaticodly terminated. The Symbol Table may be extended by 128 symbols
with use of the II EXT EN D II di rective. Th i S,r however, ri sks destructi on of the Binary
Loader. If the IIEXTENDII directive has altready been used in the source, it will be
necessary to alter the program to use fewer symbols.

5-2

K. SYMBOL TABLE DIAGNOSTICS·

Except for the double asterisk, no diagnostics are produced in either symbol table. The
double asterisk is used to flag "Undefined Symbols", which, after pass 3, consists of all
those symbols for which no definition could be assembled. The message liSE MMMM"
which appears on the first line of the Symbol Table (Pass 1 or 3) indicates the first Memory
Address not used for Symbol Table storage. Programs previously loaded into memory which
use no locations less than MMMM are ther€~fore not impaired in any way. The number
also allows the user to determine how much room is left for additional symbols. (Each
symbol requires 4 memory locations for storoge). Maximum Capacity of the symbol table is
as follows:

Normal Length (Endi ng at 67768) = 355 10
Extended Length (Endi ng at 77768) ::: 48310

These include the Permanent Symbol Table, which contains 8910 symbols. The message
itER XXXX" is generated as the last line of the Symbol Table where "XXXX II is the octal
number of syntactical errors occurring in the program during the current Pass. This
message appears only ot the end of Pass 1 or Pass 3. Illegal characters do not affect
this count.

Finally, it should be noted that the Assembl er does not check for the absence of the
Address element. If a Single-Word Memory Reference is assembled into a location and
no address element is provided, reference to location 00008 will be assembled by default.

In any case, propierassembly of a Single-Word Memory Reference Instruction demands
that the instruction appears in the first non,-Iabel element on the line. Although not
essential for proper assembly, the same rulE~ should be applied to all instructions to
minimize the possibility of error and to make the Source Listing easiest to read.

Elements evaluated to a number less than 24008 or greater than 73778 are combined with
an inclusive 10gic.aIIOR". This allows micro-programming of the Operate and I/O
Instructions.

5-3

OP OCTAl

ADDL 22XX
ADJ 4400
ADR J 1122
ADR K 1222
ADSJ 1124
ADS K 1224
AJK J 1120
AJK K 1220
AJK JK 1320
ANDF 20XX
ANDJ 1100
AND K 1200
ANDJK 1300
ANDL 21XX
CCLF 0141
CHSF 0101
CHSR 0121
CLR 1410
CLR J 1510
CLR K 1610
CLR JK 1710
CLR 0 1450
CMP 1420
CMPJ 1520
CMPK 1620
CMP JK 1720
CMPO 1460
CRDT 0144
CSBT 0130
CSET 0110
CSFM 0104

APPENDIX A
INSTRUCTION MNEMONICS IN
ALPHABETICAL ORDER

DESCRIPTION TIMING

Add Literal to J 1 cy
Add to J 2 cy
R + J ·to J 1 cy
R + K to K 1 cy
S + J to J 1 cy
S + K to K 1 cy

J + K to J 1 cy
J + K to K 1 cy
J 7" K to J, K 1 cy
AND wi th J, ForwGrd 2 cy
AND J, K into J 1 cy
AND J, K into K 1 cy
AND K, J into K, J 1 cy
AN D Uteral with J 1 cy
C I ear all Cassette FI ags (TWIO) 5 J.1S

High Speed Forward to EOT (TWIO) 5 J.1S

High Speed Reverse to BOT (TWIO) 5 J.1S

Clear Flag Register 1 cy
Clear J 1 cy
Clear K 1 cy
Clear J, K 1 cy
Clear Overflow Register 1 cy
Compl ement Flag Regi ster 1 cy
Complement J 1 cy
Complement K 1 cy
Complement J, K 1 cy
Complement Overflow Register 1 cy
Read Cassette Tape to J (TWIO) 5 J.1S

Skip if Cassette at BOT (TWIO) 5 J.1S

Skip if Cassette at EOT (TWIO) 5 J.1S

Skip if Cassette Read Fi I e Mark (TWIO) 5 J.1S

A-l

OP OCT .AIL DESCRIPTION TIMING ---
CSLCT 1 7601 Place Cassette 1 On-Li ne 1 cy
CSLCT2 7602 Place Cassette 2 On-Line 1 cy
CSLCT3 7604 Place Cassette 3 O'n-Line 1 cy
CSNE 0122 Skip if No- Error Cassette (TWIO) 5 JJs
CSPF 0102 Space Cassette Forward to Fi I e Mark (TWIO) 5 JJs
CSRR 0142 Skip if Cassette Read Ready (TWIO) 5 JJs
CSTR 0124 Skip if On-Line Cossette Ready (TWIO) 5 JJs
CSWR 0152 Skip if Cassette Write Ready (TWIO) 5 JJs
CWFM 0151 Cassette Write File Mark (TWIO) 5 JJs
CWRT 0154 Cassette Write Transfer (TWIO) 5 JJs
DIV 1001 Divide J and K by R 11 JJs
DSZ 3000 Decrement Memory and Skip 2 cy
EXJR 1103 Exchange J and R 1 cy
EXJKRS 1303 Exchange J I K with R, S 1 cy
EXKS 1203 Exchange K and S 1 cy
HIF 7421 H S Reader Fetch 3 JJs
HIR 7422 CLR Flag; Read HS Buffer 3 JJs
HIS 7424 Skip if H S Reader Reader 3 JJs
HLP 7433 H S Punch Load and Punch 3 JJS
HRF 7423 H S Reader Read-Fetch 3 JJS
HOP 7431 HS Punch On 3 JJS
HOS 7434 Skip if HS Punch Ready 3 JJs
INC J 1504 Increment J 1 cy
INC K 1604 Increment K 1 cy

·INC JK 1704 Increment J, K 1 cy
IOFF 1003 Disable all Interrupt Levels 1 cy
IONA 1005 Enab I e Interrupt L1evel s H & A 1 cy
IONB 1006 Enable Interrupt Levels H & B 1 cy
IONH 1004 Enable Interrupt Level H Only· 1 cy
IONL 1007 Enable All Interrupt Levels 1 cy
ISZ 3400 Increment Memory and Skip 2 cy
JMP 6000 Unconditional Jump 1 cy
JPS 6400 Jump Subroutine 2 cy
LDJ 5000 Load J 2 cy
LDJK 7721 Load JPS Reg to J/INT reg to K 1 cy
LDREG 7720 Load JPS Reg From J, INT reg to K 1 cy
LJIPB 7722 Set JPS and INT Status Bits 1 cy
LJ KFRS 1302 Load J I K from R/' S 1 cy
LJST 1011 Load J from Status Regi ster 1 cy
LJSW 1010 Load J from Switches 1 cy
LKFJ 1204 Load K from J 1 cy
LJFR 1102 Load J from R 1 cy
LKFS 1202 Load K from S 1 cy
LRFJ 1101 Load R from J 1 cy

·A-2

OP OCT ,L~L DESCRIPTION TIMING ---
LRSFJK 1301 Load R, S from J, K 1 cy
LSFK· 1201 Load S from K 1 cy
MPY 1000 Multiply J by K 10.75 l-'s
NADR J 1132 -(R + J)' to J '1 cy
NADR K 1232 -(R + K) to K 1 cy
NADSJ 1134 -(S + J) to J lcy
NADS K 1234 -(S+ K) to K 1 cy
NAJK J 1130 -(J + K) to J 1 cy
NAJK K 1230 -(J + K) to K 1 cy
NAJK JK 1330 -(J + K) to J, K 1 cy
NEG J 1524 Negate J 1 cy
NEG K 1624 Negate K 1 cy
NEG JK 1724 Negate J, K 1 cy
NSBR J 1133 J-R to J 1 cy
NSBR K 1233 K-R to K 1 cy
NSBS J 1135 J-S to J 1 cy
NSBS K 1235 K-S to K 1 cy
NSJK J 1131 K-J to J 1 cy
NSJK K 1231 K-J to K 1 cy
PIOF 1600 Powerfai I system off 1 cy
PION 1500 Powerfai I system on 1 cy
RFOV 1002 Read Flag and Overflow Bits from J 1 cy
ROTC> J 1160 Rotate J Left N 1 cy +
ROTD K 1260 . Rotate K Left N 1 cy +
ROTD JK 1360 Rotate J, K Left N 1 cy +
SBJ 4000 Subtract J 2 cy
SBR J 1123 R-J to J 1 cy
SBR K 1223 R-K to K 1 cy
SBS J 1125 S-J to J 1 cy
SBS K 1225 S-K to K 1 cy
SET 1430 Set Flag Register 1 cy
SET J 1530 Set J to -1 1 cy
SET K 1630 Set K to -1 1 cy
SET JK 1730 Set J, K to -1 1 cy
SET 0 1470 Set Overflow Register 1 cy
SFTZ J 1140 Shift J Left N 1 cy +
SFTZ K 1240 Shift K Left N 1 cy +
SFTZ JK 1340 Shift J, K Left N 1 cy
SIN J 1506 Skip if J Negative 1 cy
SIN K' 1606 Skip if K NegativE~ 1 cy
SIN JK 1706 Skip if J, K Negative 1 cy
SIP J 1502 Skip if J Positive 1 cy
SIP K 1602 Skip if K Positive 1 cy
SIP JK 1702 Skip if J, K Positive 1 cy

A-3

OP OCTAL DESCRIPTION TIMING ---
SIZ 1405 Skip if Flag Zero 1 cy
SIZ J 1505 Skip if J = 0 1 cy
SIZ K 1605 Skip if K = 0 1 cy
SIZ JK 1705 Skip if J, K = 0 1 cy
SIZ 0 1445 Skip if Overflow Register = 0 1 cy
SJK J 1121 J-K to J 1 cy
SJK K 1221 J-K to K 1 cy
SKIP 6002 Unconditional Skip (Jump) 1 cy
SKPL 1440 Skip if Power Low 1 cy
SMJ 2400 Skip if Memory Not Equal J 2 cy
SNZ 1401 Skip if Flag One 1 cy
SNZ J 1501 Skip if J Not Equcd Zero 1 cy
SNZ K 1601 Skip if KNot EquClI Zero 1 cy
SIZ'JK 1701 Skip if J, K Not Equal Zero 1 cy
SNZ 0 1441 Skip if Overflow Register = One 1 cy
STJ 5400 Store J 1 cy
STOP OOXX Stop Execution 1 cy
SUBL 23XX Subtract Li tera I from J 1 cy
TCP 7413 Clear TTY Flag, Print-Punch 3 J.lS
TIF 7401 TTY Keyboard-ReCider Fetch 3 J.ls
TIR 7402 TTY Load Keyboard into J 3 J.lS
TIS 7404 Skip if TTY Keyboard Ready 3 J.ls
TOC 7411 TTY Clear Flag 3 J.lS
TOP 7412 TTY Clear flag; Print-Punch 3 J.lS
'TOS 7414 TTY Skip if Printer-Punch Ready 3 J.ls
TWADJ 0400 Two Word Add J 3 cy
TWADK 0450 Two Word Add K 3 cy
TWDSZ 0300 Two Word Decrement Memory and Skip 3 cy
TWISZ 0340 Two Word Increment Memory and Skip 3 cy
TWJMP 0600 Two Word Uncondi'tional Jump 2 cy
TWJPS 0640 Two Word Jump Subroutine 3 cy
TWLDJ 0500 Two Word Load J 3 cy
TWLDK 0510 Two Word Load K 3 cy
TWSBJ 0400 Two Word Subtraci" J 3 cy
TWSBK 0410 Two Word Subtraci" K 3 cy
TWSMJ 0240 Two Work Skip if J\t\emory Not Equal J 3 cy
TWSMK 0250 Two Work Skip if ,J\t\emory Not Equal K 3 cy
TWSTJ 0540 Two VYord Store J 3 cy
TWSTK 0550 Two Word Store K 3 cy
XCT 7000 Execute Displaced Instruction 3 cy

II@II t::ldds one cycle to any memory reference instruction.

OCTAL SYMB,OL

OOXX STOP
0101 CHSF
0102 CSPF
0104 CSFM
0110 CSET
0121 CHSR
0122 CSNE
0124 CSTR
0130 CSBT
0141 CCLF
0142 CSRR
0144 CRDT
0151 CWFN\
0152 . CSWR
0154 CWRT
0240 TWSMJ
0250 TWSfv\K
0300 TWDSZ
0340 TWISZ
0400 TWSBJ
0410 TWSBK
0440 TWADJ
0450 TWADK
0500 TWLDJ
0510 TWLDK
0540 TWSTJ
0550 TWSTK
0600 TWJ!v1P
0640 TWJPS
1000 MPY

APPENDIX B
INSTRUCTIONS IN OCTAL
SEQUENCE

DESCRIPTION TIMING

Stop Execution 1 cy
Cassette High-Speed Forward EOT (TWIO) 5 ~s
Cassette Space Forward to File Mark (TWIO) 5 ~s
Cassette Skip on File Mark (TWIO) 5 ~s
Cassette Skip if EC)T (TWIO) 5 ~s
Cassette High-Speed Reverse BOT (TWIO) 5 ~s
Cassette Skip No-Error (TWI 0). 5 ~s
Cassette Skip if On-Line Tape Ready (TWIO) 5 ~s
Cassette Skip if BC)T (TWIO) 5 ~s
Cassette Clear All Flags (TWIO) 5 ~s
Cassette Skip if Read Ready (TWIO) 5 ~s
Cass ette Read to J (TWIO) 5 ~s
Cassette Write File Mark (TWIO) 5 ~s
Cassette Skip if Write Ready (TWIO) 5 ~s
Cassette Write Transfer (TWIO) 5 ~s
Two Word Skip if i\~emory Not Equal J 3 cy
Two Word Skip if i\~emory Not Equal K 3 cy
Two Word Decrement and Skip 3 cy
Two Word Increment and Skip 3 cy
Two Word Subtract J 3 cy
Two Word Subtract K 3 cy
Two Word Add J 3 cy
Two Word Add K 3 cy
Two Word Load J 3 cy
Two Word Load K 3 cy
Two Word Store J 3 cy
Two Word Store K 3 cy
Two Word Unconditional Jump 2 cy
Two Word Jump Subroutine 2 cy
Multiply J by K 10.75~s

1~-1

OCTAL SYMB<)L DESCRIPTION TIMING

1001 DIV Divide J and K by R 11 tJs
1002 RFOV Read Flag, Overflow from J 1 cy
1003 IOFF Disable All Interrupt Levels 1 cy
1004 IONH Enable Level H On Iy 1 cy
1005 IONA, Enable Interrupt Levels H & A 1 cy
1006 IONB Enable Interrupt Levels H & B 1 cy
1007 IONL Enable All Interrup'r Levels 1 cy
1010 LJSW Load J from Swi tches 1 cy
1011 LJST Load J from Status Register 1 cy
1100 ANDJ And J, K into J 1 cy
1101 LRFJ Load R from J 1 cy
1102 LJFR Load J from R 1 cy
1103 EXJR Exchange J and R 1 cy
1120 AJK J J + K to J 1 cy
1121 SJK J J - K to J 1 cy
1122 ADR JI R + J to J 1 cy
1123 SBR J R ... J to J 1 cy
1124 ADSJ S + J to J 1 cy
1125 SBS J S - J to J 1 cy
1130 NAJKJ -(J + K) to J 1 cy
1131 NSJK J K - J to J 1 cy
1132 NADR J -(R + J) to J 1 cy
1133 NSBR J J - R to J 1 cy
1134 NADSJ -(5 + J) to J 1 cy
1135 NSBS J J - S to J 1 cy
1140 SFTZ .J Shift J Left N
1160 ROTD J Rotate J Left N
1200 AND K AND J, K into K 1 cy
1201 LSFK Load S from K 1 cy
1202 LKFS Load K from S 1 cy
1203 EXKS Exchange K and S 1 cy
1204 LKFJ Load K from J 1 cy
1220 AJK K J + K to K 1 cy
1221 SJK K J - K to K 1 cy
1222 ADR K R + K to K 1 cy
1223 SBR K R - K to K 1 cy
1224 ADS K S + K to K 1 cy
1225 SBS K S - K to K 1 cy
1230 NAJK K -(J + K) to K 1 cy
1231 NSJK K K - J to K 1 cy
1232 MADR L -(R + K) to K ,1 cy
1233 NSBR K K - R to K 1 cy
1234 NADSK -(S + K) to K 1 cy
1235 NSBS K K - S to K 1 cy

1~-2

OCTAL SYMBOL DESCRIPTION TIMING ----
1240 SFTZ K Shift K Left N
1260 ROTD K Rotate K Left N
1300 ANDJI< AND J, K into K,-' 1 cy
1301 LRSFJK Load R, S from J, K 1 cy
1302 LJ KFRS Load J, K from R, S 1 cy
1303 EXJKRS Exchange J, K wi th R, S 1 cy
1320 AJ K .J K J + K to J, K 1 cy
1330 NAJK JK -(J + K) to J, K .1 cy
1340 SFTZ JK Shift J, K Left N
1360 ROTC> JK Rotate J, K Left N
1401 SNZ Skip if Flag Register One 1 cy
1405 SIZ Skip if Flag Register Zero 1 cy
1410 CLR Clear Flag Register 1 cy
1420 CMP Compl ement Flag Regi ster 1 cy
1430 SET Set Flag Register to One 1 cy
1440 SKPL Skip on Power Low 1 cy
1441 SNZ 0 Skip if Overflow Register One 1 cy
1445 SIZ c) Skip if Overflow Register Zero 1 cy
1450 CLR () Clear Overflow Register 1 cy
1460 CMPO Complement Overflow Register 1 cy
1470 SET C) Set Overflow Register to One 1 cy
1500 PION Powerfai I System ()n 1 cy
1501 . SNZ .J Skip if J Not Equal Zero 1 cy
1502 SIP J Skip if J Positive 1 cy
.1504 INC .J Increment J 1 cy
1505 SIZ J Skip if J = 0 1 cy
1506 SIN JI Skip if J Negative 1 cy
1510 CLR .J Clear J 1 cy
1520 CMPJ Complement J 1 cy
1524 NEG J Negate J 1 cy
1530 SET J Set J to -1 1 cy
1600 PIOF Powerfai I System ()ff 1 cy
1601 SNZ K Skip if KNot Equo:1 Zero 1 cy
1602 SIP K Skip if K Positive 1 cy
1604 INC K Increment K 1 cy
1605 SIZ K Skip if K = 0 1 cy
1606 SIN K Skip if K Negativ~ 1 cy
1610 CLR K Clear K 1 cy
1620 CMPK Complement K 1 cy
1624 NEG K Negate K 1 cy
1630 SET I< Set K to -1 1 cy
1701 SNZ JK Skip if J, K Not Equal Zero 1 cy
1702 SIP JK Skip if J, K Positive 1 cy
1704 INC .JK Increment J, K 1 cy

B-3

OCTAL SYMBOL DESCRIPTION TIMING ---
1705 SIZ JK Skip if J, K = 0 1 cy
1706 SIN JK Skip if J, K Negative 1 cy
1710 CLR .JK Clear J, K 1 cy
1720 CMP JK Complement J, K 1 cy
1724 NEG JK Negate J, K 1 cy
1730 SET JIK Set J, K to -1 1 cy
20XX ANDF AND with J, Forword 1 cy
21XX ANDL. AND J Literal 2 cy
22XX AD.DL. ADD J Literal 1 cy
23XX SUBL SUB TRACT J Li tera I 1 cy
2400 SMJ Skip if J not Equal Memory 1 cy
3000 DSZ Decrement Memory and Skip 1 cy
3400 ISZ Increment Memory and Skip 2 cy
4000 SBJ Subtract from J 2 cy
4400 ADJ Add to J 2 cy
5000 LDJ Load J 2 cy
5400 STJ Store J 2 cy
6000 JMP Unconditional Jump 2 cy
6002 SKIP Unconditional Skip 1 cy
6400 JPS Jump Subroutine 1 cy
7000 XCT Execute Di splaced Instruction 1 +n
7401 TIF TTY Keyboard-Reader Fetch 3 ~s
7402 TIR r(Y Keyboard Into J 3 ~s
7404 TIS TTY Skip if KeyboClrd Ready 3 ~s
7411 TOC TTY Clear Flag 3 ~s
7412 TOP TTY Clear Flag, Print-Punch 3 ~s
7413 TCP TTY C lear Flag, Print-Punch 3 ~s
7414 TOS TTY Skip if Printer-Punch Reader 3 ~s
7421 HIF H S Reader - Fetch 3 ~s
7422 HIR H S Reader - CLR Flag, Read Buffer 3 ~s
7431 HOP H S Punch - Punch On 3 ~s
7432 HOL :HS Punch - CLR Flag, Load Buffer 3 ~s
7433 HLP H S Punch - Load and Punch 3 ~s
7434 HOS H S Punch - Skip if punch ready 3 ~s '

·7601 CSLClrl Cassette - Unit 1 C)n-Line 3 ~s
7602 CSLCT2 Cassette - Unit 2 C)n-Line 3 ~s
7604 CSLCT3 Cassette - Unit 3 ()n-Line 3 ~s
7720 LDREC; Load JPS Reg from J, INT Reg from K 1 cy
7721 LDJK Load JPS Reg to J, INT Reg to K 1 cy
7722 LJIPB Set JP S and I NT Sl'atus Bits 1 cy

"@" odds one cycle to any memory reference instruction.

B-4

APPENDIX C
ASCII CHARACTER SET

CHARACTER ASCII CODE CHARACTER ASCII CODE

A 301 0 260
B 302 1 261
C ~303 2 262
D 304 3 263
E 305 4 264
F 306 5 265
G 307 6 266
H 310 7 267
I 311 8 270
J 312 ' 9 271
K 313 $ 244
L 314 * 252
M 315 + 253
N 316 ! 254
0 317 255
P 320 . 256
Q 321 / 257
R 322 273
S 323 = 275
T 324 Space 240
U 325 Tab 211
V 326 Line Feed 212
W 327 Form Feed 214
X 330 Carriage Return 215
y 331 Rubout 377
Z 332

!C-l

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	4-01
	4-02
	5-01
	5-02
	5-03
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01

