UNIX™ SUPPORT FROM BERKELEY

4.3 BSD with NFS

Programmer's
Reference Manual

PRM

UNIX is a trademark of Bell Laboratories

UNIX Programmer’s Reference: Milssitiil -

(PRM)

4.3 Berkeley Software Distribation
Virtual VAX-11 Version-= -

April, 1986

Computer Systems Researglt{Froup:
Computer Science: Division= e
Department of Electrical Engineeringatd’C6mputer Sciengé™
Univessity of California.
Berkeley; California 94720

.

e g v
o i bW

i,

- UNIX Programmer’s Reference Manual
(PRM)

4.3 Berkeley Software Distribution
Virtual VAX-11 Version

April, 1986

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, 1980, 1983, 1986 Regents of the University of
California. Permission to copy these documents or any portion
thereof as necessary for licensed use of the software is granted
to licensees of this software, provided this copyright notice and
statement of permission are included.

Copyright 1979, AT&T Bell Laboratories, Incorporated.
Holders of UNIX™/32V, System III, or System V software
licenses are permitted to copy these documents, or any portion
of them, as necessary for licensed use of the software, provided
this copyright notice and statement of permission are included.

This manual reflects system enhancements made at Berkeley
and sponsored in part by the Defense Advanced Research
Projects Agency (DoD), Arpa Order No. 4871 monitored by
the Naval Electronics Systems Command under contract No.
N00039-84-C-0089. The views and conclusions contained in
these documents are those of the authors and should not be
interpreted as representing official policies, either expressed or
implied, of the Defense Research Projects Agency or of the US
Government.

Those manual pages labeled “Sun Microsystems Rel 3.0" are
Copyright © 1986 Sun Microsystems, Inc. and MT XINU, Inc.,
all rights reserved. Permission to copy is subject to condi-
tions in your license with MT XINU, Inc.

-1-

TABLE OF CONTENTS

2. System Calls

- 4,3BSD

intro e e e e e e s e s e s s s e o introduction to system calls and error numbers
accept e e o o s o s e e e e s e e e e e e e s o acceptaconnectionon asocket
BCCESS < o o o = o o o o o s o s o o o o o oo s oo« determine accessibility of file
BCCL o o o o o o o o o e o e o s s o s s e e oo e+ s+« turnaccountingon or off
adjtime e e« « o s o« o correct the time to allow synchronization of the system clock
bind e e o 6 o s s s e s e s s e e s e e e e e e s oo o bindaname toasocket
brk e e o e o e s e s e e e e s s e s e e e e« changedatasegment size
Chdif v ¢« ¢ ¢ ¢ ¢« e e o e ¢ e o o o s oo o+« changecurrent working directory
chmod e o e o e s o s e s e e e s e s e s e s e e e ee e changemodeof file
ChHOWN ¢ ¢ ¢ e c ¢ « o e o e o e s s o s o s+ o+ changeownerand group of a file
CArOOL ¢ ¢« ¢ ¢ ¢ ¢ e o o ¢ s e o o s o o o s s s s s s o o o o changerootdirectory
ClOSE ¢ o e o o o o e o e oo s o s o s a a oo easeoeso oo deletea descriptor
CONMECL o « o o o o o e o« o o o« o« o o o« o o o+ o » initiate a connection on a socket
CTEAL o o o o o o o o o o o o o a o s o e o o o o oo oo oo+ o createanew file
AUD ¢ ¢ ¢ ¢ ¢ ¢ e e e e o e o o s s e e e e e e e e oo duplicatea descriptor
execve e e o o o e o e s s e e e s e s et s e e s e e e e e e e e o executeafile
€Xit o ¢ e o e e e e e s e e e s o s e e e s e s e e s e e e .« terminatea process
fentl ¢ ¢ ¢ e e e e e e e e e o e e e e e s e s e s e e e e e e e o filecontrol
flock e o o e oo e oo e oo applyorremovean advisory lock on an open file
FOrK ¢ ¢ o ¢ o e e 6 6 e e e o o o e e s s o o 06 e e s o s s o Createa new process
fsync .« ¢ ¢ e e e oo e synchronizea file’s in-core state with that on disk
getdirentries e o e s o o o« getsdirectory entries in a filesystem independent format
getdomainname e e e e o s e s e s s e s e e oo get/set name of current domain
getdtablesize . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o s e 0 o o e e e o o o getdescriptor table size
getgid e e 6 o o s o o s s e s s s s s e s e e e e e e e« o getgroupidentity
GELETOUPS o o o o o o o o o o o o o o s o o o o s o o o « o o o getgroup access list
gethostid ¢ « ¢« ¢ ¢« ¢« ¢ ¢ ¢« ¢ e o ¢ oo . o . get/setunique identifier of current host
gethostname e e e e e e s e e s e e e e s s e e e« o get/set name of current host
getitimer o ¢ v ¢ ¢ ¢ ¢ o e o o e o o s s o o o o« o get/setvalueof interval timer
eLPAZESIZE o ¢ ¢ ¢ o o 4 4 o e 4 o 4 e e e s e s s s e . e . o getsystem pagesize
GELDEEINAME ¢ o « o o « o o s o « o s o o s » o o o « o get name of connected peer
getp_grp e e e e o o o s s 0 o e e s s e e e e e s e s e o o o getprocessgroup
getpid ¢ ¢ ¢ o .t ot et e e s e e e e e e e e e« o getprocess identification
QELPTiOTILY ¢ ¢ ¢ « ¢ o ¢ e o o e o o o o « o « o get/set program scheduling priority
getrlimit« + ... ¢« .. control maximum system resource consumption
QELTUSAZE o o ¢ « o o« o o s o o o » « o » » getinformation about resource utilization
getsockname e o o s e s s s s s e s s e e e s s s e e s e e« getsocket name
etSOCKOPL o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s e o s s o o s+« » getand set options on sockets
gettimeofday 6t e e s e e e e e s e e e e s s e e e e e e get/setdateand time
getuid ¢ o o o ¢ 0 e e e e e e e s e s e e e e e e e e e .« getuseridentity
HOCLL ¢ ¢ 6 e e e e o e e e e o e e e e s e s e e e e e e« o controldevice
Kill ¢« ¢ ¢ ¢ ¢ o o o o ¢ e o o oo 0oeeeseeeeso o sendsignaltoaprocess
Killpg o ¢« ¢« o« ¢« ¢« o o o o o o o o s s o o s o+ o sendsignaltoa process group
LHNK o ¢ e o ¢ ¢ ¢ e o o o e o oo oo eeoeeeeses. . makea hardlinktoafile
listen e o e o o e o s e e e s e e s e e e« listenfor connections on a socket
ISEEK ¢ ¢ o« o o « o 4 o s 2.0 s.0 s e e s s s s e o s s s . moveread/write pointer
MKAIT ¢ ¢ o ¢ o ¢ « ¢ e o o s o o o s s s s s s s « o« « » « o makea directory file
MKNOd « ¢ o e o ¢ ¢ o o s s s s e s s s oo oo oo oo makeaspecialfile
MOUNL + o o o o s o s o s o s e o o 0 o 0 00 s oo oo s« o mountfilesystem
NESSVE 4 ¢ ¢ e ¢ o e e ¢ e o o o s o o s o o e o s oseeeseoso NFSdaemons
OPENl « v « » o o o « o « « « « » opena file for reading or writing, or create a new file
pipe e e e e e s s s s e e s s s s s . Createan interprocess communication channel
Profil ¢ ¢t it s e et e e i e e e e e e e e e e executiontime profile

June 1986

-ii- Table of Contents
PLTace o o o o e o o o o o e o
QUOLA ¢ o o o o o o o s o o o
quotactl . . ¢ e o e s o e o e
read ¢ o o o 0 ¢ o 0 o o o
readlink « ¢ ¢ o o o o o o
eboOt ¢ ¢ ¢ e o o o o o
TECV o o o o o 0 0 s o o @
TeName .« o o o o
rmdir e e o s o

e e e o s o o o s s e e s e e e s s« processtrace
e o s o e oo s s e e s+ o manipulatedisk quotas
e e oo s e e oo e s o« manipulatedisk quotas
e o o o o oo 0 e oo a o e e e e s e s o readinput
e e e e o es e e s readvalueof asymboliclink
- c o e s s e e e e« rebootsystem or halt processor
e o o o e s e e s s« receivea messagefrom asocket
© s o e e e e e s e e e e e e e e changethenameof afile
o 06 e o e a o e e s ce s e o s s s s o Temoveadirectory file

SEleCt o o o o o o o o o o e s e o o o s 0 s s o s oo Synchronousl/O multiplexing
SeNd + ¢ ¢ o o s s s o o o s s s s s e e s s s s+ o sendamessagefrom a socket
SELZTOUPS o o o o o o o o o o s o o s o o o o s s o s o o s o« Setgroup access list

Setpgl'p @ © © o ® o o o o 6 o © o © o © © & °© © o © O o o o o o o Setprocessgl‘oup

SELqUOLZ « « o o o « o o o o o o « o « « « « «» enable/disable quotas on a file system
setregid o ¢ o ¢ o ¢ e o o o o e 0 0o e e e s s o« o setrealand effective groupID
SetreUid o ¢ o ¢ ¢ ¢ ¢ o e s o o o o s o s o s oo oo setrealand effective user ID’s
shutdown < . « « ¢ ¢ ¢ e o s e o « « « o shutdown part of a full-duplex connection
SIgDIOCK ¢ « o o o o o o o o o o o o o o s o oo s e e e e e e+« blocksignals
sigpause . . < . « ¢ « o o o atomically release blocked signals and wait for interrupt
SIGTEtUIN o « c ¢ o « ¢ o o s o o o s s o s « s o« o« s o « o« « o o returnfrom signal
SigSEtmasK ¢ o ¢ o ¢ o ¢ ¢ o o 0 o o o s o s o e s o e« o o Setcurrentsignal mask
SIgStaCk o ¢ o ¢ ¢ o ¢ o o o e o o e s e e o o o o setand/or getsignal stack context
sigvec © e o e o s e e s e e e e e e e e e e o o Softwaresignal facilities
SOCKEL ¢ ¢ o ¢ ¢ o e o o ¢ o o o o o o o o« o » createan endpoint for communication
socketpair © e o e e o e e o e e e e s s s e e o Createa pairof connected sockets
stat © o o e o o s s 00 e e e s s s e e o0 s eo s e oo« getfilestatus
StatfS ¢ ¢ ¢ o ot 6 et o e e o 0 s 0 e s e e e o s o« getfilesystem statistics
SWAPON o « « « « « « « » « « « - add aswap device for interleaved paging/swapping
SYymlink « ¢ ¢ ¢ ¢« e« o o o o ¢ o o s e o o s o« o o o« o » makesymboliclink to a file
sync © o s o 6 o s e o e s s s o s s e e o e o e s s e o« Uupdatesuper-block
Syscall ¢ ¢ttt i e i e e e e s e e e e e e e e e o s o Iindirectsystem call
ITUNCALE o o c o « o o« o o o« o o o s o o o« o o « o truncatea file to a specified length
UMASK ¢ o o o o ¢ o o o o o o o e o o s oo oo o« o o setfilecreation mode mask
unlink © e © o e o s s s e e s e s e e e e e s e e« o Tremovedirectory entry
UNMOUNL ¢ ¢ o o o o « o « « o o o o 0 c s s.o o « o o o« s« « o Temove a filesystem
utimes © e o o 0 e s e o s e e s 00 e s s e e s e o e e e e o setfiletimes
vfork¢.¢.. ...« Spawnnew processin a virtual memory efficient way
vhangup « ¢« ¢ ¢« e ¢ ¢ o ¢+ o o « o virtually “hangup” the current control terminal
wait

e o o s o o e s e s e s s e s e e e e o oo o« o wWaitfor processto terminate

WTItE ¢ o o o o e o o o o o o o o o o s o s o o o 0 o s e o o o o Writeoutput

3. C Library Subroutines

INtT0 e« ¢ ¢ o o o o o
abort . ¢ ¢ e o o o @
absS ¢ ¢ e ¢ 0 0 0 o e
alarm . ¢ e e 4 0 o o

e o e s o e e e 0 e e s o o Iintroduction to C library functions
e e e o e o o s s s s e s e o s e e e e« e+ generateafault
© e s s s s e e e s e e e e s e e o« integerabsolute value
e e e e o e s e e o« sSchedulesignal after specified time
« e o s e o s e e e e e e« o Iinversehyperbolic functions
assert e o o o s e s 0 e o s e o e e o s e s e s e e e+ program verification
atof © e e e e s e s sie e e e s e e s s eeess s convert ASCII to numbers
bstring e o e s o oo s e e s s e s e e e e o s e« o bitandbytestring operations

byteorder e e e e e s e e s o o convertvalues between host and network byte order
CTYPL ¢ o o o o o o o o s o e o o e o e o s o« s o o o o o o s s « o DESencryption
ctime

s 6 s e s s e s s s e s s s e s s s s s s+ convertdateand timeto ASCII
CLYPE o o o o o e e o o o s s o s s o o s o o« o s « » character classification macros

CUISES ¢ o « o o o« « o s « o = « » « « screen functions with “optimal” cursor motion
dbm e o o o e o s s o s s e s e s s s s e s e e e e s o databasesubroutines
June 1986

4.3BSD

Table of Contents - iii -

dir€CLOTY « o « o o e % e o e o o o s o s o o o s o e« s o o« directoryoperations
€CVE o o o o o o s o s o o s s o s s s s s s e s s e e s s e e s oOUtputconversion
end e o o o s o o e s o e s s s s s s s s e e e e s s oo lastlocationsin program
€f 4 e e s e e e s e e s e e e e e e e s e e e e e e e oo errorfunctions
€her « o ¢ o o ¢ e e o ¢ o e o o e o e o s « o o oo monitor traffic on the Ethernet
€XECl 4« s e 4 e e e e e s e s e s e e e e e e e oo« exeuteafile
€Xit o o ¢ ¢ o o ¢ o o o « o » » terminate a process after flushing any pending output
EXP e e o s o e s s s e e s s e s e s e e e e+« exponential, logarithm, power
fclose e o e o e s o s e s s e e e e e e aeeeees e Ccloseorflusha stream
fEITOT @ o o o o o o o o o o o o e o e s s o o s s o o « « « Stream status inquiries
floor «......... absolutevalue, floor, ceiling, and round-to-nearest functions
fopen © o o o o o e s o o o e s e e s e s e s e s e e e s s s s s s Openastream
fread « + ¢ ¢ ¢ o o e o s s s s e s s e s s e s« o bufferedbinary input/output
freXp ¢ ¢ ¢ ¢« ¢ ¢ ¢ c ¢ o e o o e e o e s o o« o splitinto mantissa and exponent
fSEEK ¢ ¢ 4 ¢ c ¢ ¢ s e e o s s e s e s e e e e s e e e e e . o Tepositiona stream
getc e e e s o s e s e e e e e e e e e e oo« getcharacter or word from stream
getdisk e o o e o o s e 0 e s e s e e o e oo s getdisk description by its name
eV ¢ ¢ ¢ ¢ ¢ ¢« ¢ s s o s e e e s s s e s oo oo o Vvaluefor environment name
getfsent . o ¢« ¢ ¢ ¢ e ¢ s e e e e e e o e o oo o getfilesystem descriptor file entry
BELZTENL ¢ « ¢ ¢ o o o o o o o e o o s o o s s oo s s oo o« o« getgroupfileentry
gethostbyname .« o ¢ ¢« ¢« o ¢ ¢« ¢ ¢ ¢ ¢ o ¢« o o o o o s o « o getnetwork host entry
getlogin & & ¢ ¢ 4t e e e et e e e e e e e e e e e e e e s« getloginname
getmntent e s e o o s e s e e e s e oo oo o getfilesystem descriptor file entry
getnetenl o o ¢ ¢ o o o ¢ ¢ o o o o o o s s s s s e e e s e o o getnetworkentry
GEtNEtgrent < o ¢ ¢ ¢ ¢ ¢ o c o ¢ o s s o 0o o o s e o o o o getnetwork group entry
GEOPL ¢ ¢ ¢ ¢ o ¢ o o ¢ o e o s s e e o s s o s e o o getoption letter from argv
GELPASS ¢ ¢ o ¢ ¢ o o s ¢ o s s s o s o s o s 0 e e e s e oo o o Teada password
GELPTOTOENL ¢ « o ¢ e o o o « o o o o o o o o o o o o o« o o o« o o getprotocol entry
BELPW ¢ ¢ ¢ ¢ ¢ o ¢ s o e o s e o o s e s e s e e e e e o+ o getnamefrom uid

" getpwent e o o o o s s o e e s e s e e e e e e e e oo o getpassword fileentry

4.3BSD

GEIIPCENT & & ¢ o ¢ e ¢ o o o o o o o o o o o a o s o s o s o e+ oo getrpcentry
GELTPCPOIT ¢ ¢ ¢ o « o e o o o o o e o o o o o o o o o o o o o get RPC port number
GELS ¢ ¢ ¢ o ¢ s o o s s e e o o e e s e e e s e e e« o getastringfrom astream
GEISETVENL ¢ o o o o o e o o o o o o o o o o o o o o o s s s o+ o getserviceentry
GELLYENt ¢ « o ¢ o ¢ o o o o o o o o o 0 0 0 e 0 o s o o oo o getttysfileentry
getusershell . ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢t e e e o oo e e oo oo getlegal user shells
getwd . . o . . s st et e e e e e« o getcurrent working directory pathname
hypot <« ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ s s o o« o« o Euclidean distance, complex absolute value
je€€ .+ ¢ ¢ 4 s e e e e e e e s e« . s coOpysign, remainder, exponent manipulations
INEt ¢ ¢« ¢ ¢ ¢« ¢ ¢ e e e o e o oo oo s oo o Internet address manipulation routines
infnan signalsinvalid floating-point operations on a VAX (temporary)
INILGTOUPS ¢ ¢ ¢ ¢ ¢ ¢ o ¢ e e o o o e o o s s s o« « o » Iinitialize group access list
insque e e e e e e o e e e e e e e e e e insert/removeelementfrom a queue
JO e e e e e e e e e e e s e s s e s s e 0 s e e e s s e e e oo Dbesselfunctions
lgamma e e o s o s s s o e s e s e s s e e s e e e e s o loggamma function
1ib2648 e s e e e e s e s e s e e« subroutines for the HP 2648 graphics terminal
malloC ¢ ¢ ¢ ¢ ¢ ¢« t s e et e e e e s e s e e s s e e« . memoryallocator
math . .. e e e e eeoeeo oo introductionto mathematical library functions
mKktemp e o e e s s s e s s s s s s e s e s e e s s s s makeaunique file name
monitor e o e o o 4 e s s s a s s e e s e e e e e s e o prepareexecution profile
MOUNt + « o « o« v oo o o « o« « o« « » » Kkeep track of remotely mounted filesystems
IMDP ¢ o o o o o o o0 0e0eeee0se0e0e s o multipleprecision integer arithmetic
ndbm . ¢t i e i e e e e s e e e e e e e oo databasesubroutines
NMICE ¢ ¢ o ¢ e ¢ o o o o s o s o o o o s s s o o o o o o« o« Setprogram priority
nlist e o e o s s s e e e s e s e s e e e e s e e« getentriesfrom name list
ns 6 e e e et e e aeeeeesess XeroxNS(tm) addressconversion routines

June 1986

-jv - Table of Contents

pause e o o o e s o s e s e s s s s s s e s e s e e e s s e s« Stopuntilsignal
PEITOT o« o « o o o o o e o o s e s o o o o o o o s s o o o o« System error messages
plot e o o o o o o s o e s s e e s e e e e e e e e e e e o s o« graphicsinterface
POPEN ¢ « « e o o o e o o o o o o s o s oo oo« o Iinitiate /O to/from a process
Printf ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o e s s o e s e o e e e e« o formatted outputconversion
psignal e o e e e e e s s s e s e o e e e e e s s s e« s Systemsignal messages
putc © o o o e s e 0 e e e e e e e s e e o e o putcharacteror word on a stream
puts 6 ¢ o ¢ e 6 6 0 e e e s e e e e e s e s e e e e putastringonastream
gsort e o o o s c e s e e 0 e e e e 0 e e e s e e e s e s s e s« quickersort
rand e e e o o o e o o s e e e ce s e e e e s s« randomnumber generator
random Dbetter random number generator; routines for changing generators
remd ¢ .« ¢ e e oo o s o o o o routines for returning a stream to a remote command
TEZEX o o o o o o o o o o o o o o o o o o o s o s s s o o regularexpression handler
TESOIVET & ¢ ¢ ¢ o o o o e o o e o o e« s o o s s o e o s o o o « o resolver routines
rexec e o o o e o e s e s e e o e e s s s s e o returnstream toa remote command
TNUSETS « « « « o« o« « « « + « «» » return information about users on remote machines
TQUOLA ¢ o o « e o e e o s o o o s« o o « « « « implement quotas on remote machines
IStAL o o o o o o o o o o o o o o o o o o o getperformance data from remote kernel
rwall . . ¢ o s e e s e e e e e s s s e e s« Writetospecified remote machines
SCANdIT ¢ o o o o o o o ¢ o o o o o o 0 0 s 6000 e e s oo o Scanadirectory
scanf e o o o o o e s o e e s e e e e e e e e s o« formattedinputconversion
setbuf .« ¢ ¢ ¢ o e e e o e e e o s e e e e e .o o assignbufferingtoa stream
SELJMP ¢ o o o o o o o o o o o o o o o s 0 e 0 o0 0 s s s e+« non-localgoto
SEtUid ¢ ¢ ¢ o ¢ e e ¢ o 4 e o o o e e e 0 o e s s e e s s s o SetuserandgrouplD
siginterrupt . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o« o o allow signals to interrupt system calls
signal © e e s 00 e e s s e e ees o simplified software signal facilities
SIN © ¢ ¢ ¢ o ¢ o e o 00 e e e e oo o trigonometricfunctionsand their inverses
SIDh & ¢ o o ¢ ¢ 6 6 e o o ¢ e ¢ o e acoeoseeeseee. o hyperbolicfunctions
Sleep ¢ o ¢ ¢ ¢ ¢ e ¢ s e e e e e e e e e e o suspendexecution for interval
spray e e o o e o e s e s e e e s s e o o Scatter datain order to check the network
sqrt e o o o e e o o o s s s s e 0 e s s e s e s s s e o e« cCuberoot, square root
Stdi0 ¢ o ¢ ¢ o e ¢ e e e e e s oo oo o o standard buffered input/output package
SIPINE « o o o o ¢ o o s o s o 6 o s 0 0 e e s e s s 0 e e e oo Stringoperations
SLLY © « e e e s e e s e e e e e s e es oo setandgetterminal state (defunct)
SWAD ¢ ¢ ¢ ¢ o 6 o e o o 0 o s 6 s 0 6 6 e e s e e o0 o0 e s o Swapbytes
SYSIO ¢ ¢ ¢ ¢ ¢ o e e o 6o s o o s 0 e 6 e e e s e e e s s o controlsystem log
SYSEIM ¢ ¢ ¢ o o o o o o s o o o s o s s e o e e 0o s o o« issueashell command
TEIMCAP « o« o o o ¢ o o o o« o« « « « o « o » terminal independent operation routines
time e e e e t e s o s s s s s e e e s e s e e s e e e e s e« getdateandtime
TIMES ¢ o ¢ ¢ ¢ o ¢ ¢ o o o o e e e o o o o o ¢ s o0 ¢ o s « s o getprocesstimes
TLYNAME « o« o o o ¢ o o o o o ¢ o o s o« s s o s o o o« o« « o findname of a terminal
ualarm ¢ o e ¢ e 4 e e e e e e oo« oo schedulesignal after specified time
UNGELC « o o o o e o o« o o s o o o o o o o o pushcharacter back into input stream
usleep o o e e e e e e s e e e e e e s e suspendexecution for interval
ULIME ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ e o o e o s o o e o s e s o oo oo oo« o setfiletimes
Vallo€ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e o 00 s e o e e oo alignedmemory allocator
VATATES ¢ o o o o o o o o o o o o o« o o o o o o o o o « « « » Vvariable argument list
vlimit e e s e coe e e e s e e« o control maximum system resource consumption
VImMES . . o o s ¢ e e e e e e oo« getinformation about resource utilization
ypclnt e e o o s s e e s o s e s s e e s e s e e s« Yyellow pagesclient interface
yPpasSWd. . ¢ « ¢ ¢ ¢ 4 e s o e s e« .+« o« o updateuser password in yellow pages

3F. Fortran Library

intro © o e e oo e e e s e s e e e introductionto FORTRAN library functions
QDOTL ¢ ¢ ¢« ¢ ¢ ¢ ¢ e o e e e e o e s o o 0 e e e oo o o abnormaltermination
access e e o o o e o s e e o o s s e e e s s s e« determine accessibility of a file

June 1986 4.3BSD

Table of Contents -v-

- alarm e« e e s e s e s s e s e s s e executeasubroutineafter a specified time
bessel e e e e s o s e s s e s e e e e s eeess oftwokindsforinteger orders
Dit « o o ¢ e e o o e e s o« o and,or,xor, not, rshift, Ishift bitwise functions
Chdir & ¢ o o ¢ ¢ e ¢ e e o e ¢ e s s e o e e oo oo changedefaultdirectory
Chmod « ¢ ¢ ¢ ¢ ¢« ¢ ¢ o ¢ e o e o s o o s oeeoesseeo Cchangemodeofafile
€liME & o o o e o ¢ ¢ o o a s o ¢« o o o o o o o o+ o returnelapsed execution time
€Xil o ¢ o o o o o s o e s s s e e s s e s e s s o« terminate process with status
fdate =« « « « ¢ ¢« o o ¢ o e s o o o oo o« o returndateand time in an ASCII string
AmMin ¢ « ¢« ¢ ¢ ¢ ¢t 4 4t e e e e s e e e e e e e s e e s returnextreme values
flush « ¢ o e e ¢ ¢ ¢ e o e e e oo oeoeseeseses flushoutputtoa logical unit
fork e o e o e e s s o s s s s s e s e s e s s s s createacopy of this process
fSEEK ¢« ¢ ¢« o ¢ e ¢ o o o e o e s s e e s e e« o« repositiona file on a logical unit
BELATE < o ¢ o o o e o o o o e s s s s s s o s o o o returncommand line arguments
BBLC ¢ ¢ ¢ o ¢ e o s s o o o s s e s e s e o s« o getacharacter from a logical unit
getcwd ¢ ¢ e ¢ e ¢ e e e e o o o s o o o getpathname of current working directory
GetENV ¢ ¢ ¢ ¢ ¢ e o o s e o e o s s e s oo o o getvalueof environment variables
BELIOg ¢ ¢ ¢ ¢ o e e e e e o e e s s o e e e e e e e e o« getusersloginname
getpid e o o 6 5 o e o o s s e e e e 0 e s e e e e e e e e e e e o getprocessid
getuid e e o o e o s e e e e e es e e getuserorgroup ID of the caller
hostim & ¢ ¢ o ¢ ¢ ¢ o o ¢ ¢ o e o e o o oo oo o 0o getnameof current host
idate e o e e e e e e s e e s e e e o returndateor timein numerical form
index © o o o o o o 6 o o o e s e e e e e e e e s o tell about character objects
JOINIt ¢ ¢ ¢« ¢ o e ¢ o ¢ o e o o o e o ooeeeeso. changef771/0 initialization
Kill o o e o o ¢ o o ¢ e e o e o e oeeeseeessss. sendasignaltoa process
Ink o o ¢ o o ¢ ¢ e ¢ e c o oo cooeseseos o makealink toan existing file
IoC ¢ ¢ ¢ e 6 e o o e e e e e e e e e e e e oo o oo returntheaddressof an object
IoONE ¢ o e e e o 4t e e e e s e e e s e e e e s e s s« Iinteger object conversion
mMalloC ¢ ¢ ¢ o ¢ ¢ e e e 6 e e s o e s s s a0 e eee e oo memoryallocator
perror e e o o s o o s e s e e e e e e e e e e e s e s o getsystem error messages
PIOt ¢« ¢ ¢ ¢t e et e e e e e oo« f£77]library interface to plot (3X) libraries.
PULC ¢ ¢ ¢ o ¢ e o o e o o s ¢ o s« s« o Writeacharacter to a fortran logical unit
gsort @ ¢ o o o o o e o o o 6 o s o e e e s e e s e s e e e e e e e o s Qquicksort
TANA ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o s e s s s 6 e e e e s e s s s o returnrandom values
TandoOm < o o ¢ o o ¢ e o o e o s e o e oo oo o« Dbetter random number generator
TENAME o o o o o o o o o o o o o o o ¢ o s o s o o o o o o oo s o o Tenamea file
signal < . . . 0ttt e et e e e e e e e ..o changetheaction for asignal
Sleep ¢ ¢« ¢ ¢ ¢ ¢ ¢t 4 e e e e s e e e e s oo o suspend execution for an interval

stat © o o e e s e o s s s e s e e e s e e s e e e e e e e s« o getfilestatus
SYStEM ¢ o ¢ ¢ ¢ o ¢ o o o o o o o0 0000000 oo executea UNIX command
time © o 6 6 6 o o s o s s s e s s e e e e e e e e e e e o« returnsystem time
TOPENl e o o o o o o o o o s o o s o e s o o o o s oo oeeoeess f77tapel/O
traper © o o o o o o o o s e e s e e e e e e e e e e s s o traparithmeticerrors

ITAPOV ¢ ¢ o o o o o o o o o o o o o o « » o o trapand repair floating point overflow
trpfPe ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e e e e o o« o o trapand repair floating point faults
ILYNAM ¢ & ¢« ¢ ¢ ¢ o o o ¢ o e o o o s s s o s s o o o findname of a terminal port
unlink & ¢ ¢ ¢ ¢ ¢ o e ¢t c e e e e e e e e e e e ..o .. Tremoveadirectory entry
WAL o ¢ o e e e e e e o e o s s e e s e s e s« o Wwaitfora processtoterminate

4. Special Files

4.3BSD

INtT0 ¢« ¢« « ¢ ¢ ¢ ¢« o ¢« « « « « « o introduction to special files and hardware support
acc e e e o e s s s s e s s e s s e e eeessasess ACCLH/DHIMP interface
ad e o s o e o s e e s s s s s s s s e s s e e oo DataTranslation A/D converter
QTP o o o o o o o o o o o o e s s o e o o o e s+ o+« AddressResolution Protocol
autoconf e eo diagnostics from the autoconfiguration code
bk « e e e e oo linediscipline for machine-machine communication (obsolete)
cons © e o o o o s o e e e o e s s e e e e e s s ess VAX-11 console interface

June 1986

-vi-

Table of Contents

1

crl e e e o e e e s s e e s o s e eoe s e s ee e VAXS8600console RLO2 interface
€SS e o o o e o e e s e s oo eass s e s e+ DECIMP-11ALH/DH IMP interface
€L o o o o o o e o s o o s 0o s s e e s e e o e e e s o+« phototypesetter interface
ddn . ¢ ¢ ¢ e e e o0 e 0 e e oo e oo DDNStandard Mode X.25 IMP interface
de < e coseceasoeecessesess DECDEUNA 10 Mb/s Ethernet interface
dh . ¢.ceeeeeeocoesseoe DH-11/DM-11 communications multiplexer
dhbu . ¢ ¢ ¢ ¢ o s e 000 e s s e e e e oo DHU-11communications multiplexer
dm¢c DECDMC-11/DMR-11 point-to-point communications device
© o e o e o s 0 e s 0 e s es s es e e o s s s DMF-32 terminal multiplexor
e e o o e s e s s e s s e s e e e e e e e e s o DMZ-32terminal multiplexor
e o o s e e s s e o e s a e s e e oo e e s s e DN-11autocall unit interface
ArUmM o o o ¢ ¢ ¢ o o e o o e e o o o o s s 0o o000 e0e e« o pagingdevice
e o e o e o o s e e e esesseeoes e e e e DZ-11 communications multiplexer
e e e o o s s e s e e s e esseseseeees 3Com10Mb/sEthernetinterface
e o s o s o s s e s e s es e e e e s e s Xerox3Mb/sEthernetinterface
e ¢ e o o e s e o e e s s easoseaseeoe e Excelan 10 Mb/s Ethernet interface
e o e o 06 o e s o o o s s s e s e s s e e e s e e e e s consolefloppyinterface
hdh . ¢ ¢ e ¢ e ¢t c o oo e ocsooesseeees ACCIF-11/HDH IMP interface
c oo e e e eeseecesseesses RK6-11/RK0O6 and RKO7 moving head disk
BP o ¢ c c o e e o oo 0oeeceecoeeseseeosss MASSBUSdisk interface
ht e cos oo ecess s TM-03/TE-16,TU-45TU-77 MASSBUS magtape interface
BY ¢ c e ccooeceeoesesosceoeoss NetworkSystemsHyperchannel interface-
icmp e e e o s e o e e oo eseseceee s s o Internet Control Message Protocol
AP ¢ ¢ e ¢ e o ¢t e e e e e o e o e e s e o o o XeroxInternet Datagram Protocol
ik © e o e e e e oo eeeeses oo Ikonasframe buffer, graphics device interface
il c e e o ee oo e e e oo oo Interlan NI1010 10 Mb/s Ethernet interface
IMP ¢ ¢ o ¢ oo o o o 0 0000600 eoeeseescessess 1822network interface
IMP o ¢ ¢ o e c e e 0 e ¢ s s c c s e o e o o e oo« o« IMPraw socketinterface
inet © e o o e o o o s s e o e e e s e e e e e s s oo Internetprotocol family
ID o ¢ e o e e o e o o o oo e s et o000 e ess e e« InternetProtocol
ix e e e e e e e e ee e e e cese s s Interlan Np100 10 Mb/s Ethernet interface
KE ¢ c ¢ e oo oo eeosoeoeeeoeossosesesesss KL-11/DL-11W line clock
lo e e e s e o e o e o e e e e o« o softwareloopback network interface
Ip © © ¢ o o o o o o o s o o o o e e e 0 s e o e e e s e e e e s o o o lineprinter
MEM ¢ o o o o ¢ o o o 0 6 s s c c s s o 6 s c o s o o e s oo o oo MmMainmemory
Mt o e c o oecoeeceeceeceseeses TM78/TU-78 MASSBUS magtape interface
MO ¢ ¢ ¢ ¢ o e ¢ o e o s o o s oo oo osesese0 e UNIXmagtape interface
np e e c o e e e s s e e 0o s e s s e Interlan Np100 10 Mb/s Ethernet interface
DS e ¢ o oo 0eeeeesssseess XeroxNetwork Systems(tm) protocol family
nsip softwarenetwork interface encapsulating ns packets in ip packets.
null e o o o o o e o o o o s s e s e s e e e e e e e e e s s e s e e o datasink
Pl ¢« ¢ ¢t it i it e e e eeeeseee.. DECCSSPCL-11B Network Interface
Ps e« oo e e oo EvansandSutherland Picture System 2 graphics device interface
PLY =~ ¢ ¢ o e e o e e s e o s s o s s s o o o s s o oo o« pseudo terminal driver
€ ¢ e e o e o s e0e 000000 e+ DECDEQNA Q-bus10 Mb/s Ethernet interface
X e ¢ e e s e s s e e s e s s eesee e s o DECRXO02floppy disk interface

PRB8R %EE

=

spp e 6 6 066 0600 0 e e e e « « « « « « Xerox Sequenced Packet Protocol
b ¢ ¢ o e o e c e o cc e oo oo linediscipline for digitizing devices
TCP o o o o o o o o o o o o o o o o o « « « « Internet Transmission Control Protocol

UM ¢ ¢ o o o e oo o6 c0oeeeeeesesesss TM-11/TE-10 magtape interface
tMSCP « = e e o o o e o s s e s aeoeaeassos o DECTMSCP magtape interface
ts © e e o s s e s s e e e e e e e e e e e e e s e s e e« TS-11 magtape interface
17122 e o o o s o « o+ o general terminal interface
12 S, VAX-11/730 and VAX-11/750 TUS8 console cassette interface
Uda . o e e e et e e e e e e e e e oo e e e UDA-50disk controller interface
udp e ¢ e e o o s o e e e e e e e e e e e e« Internet User Datagram Protocol

June 1986 . 4.3BSD

Table of Contents - vii -

up e s e e s e e e s e e e e e« unibusstorage module controller/drives
UL o o o e o s s e s s o o s o o o« » UNIBUSTUA4S tri-density tape drive interface
uu e e o s s s e e e seeeeeses TUS8/DECtape Il UNIBUS cassette interface
VA o o s o o o e o s s s e s s s e e e e e e e e e e s o DBenson-Varian interface
VP e o o o o s o s o 0 s s e s a0 e s e e e e e s e s e s Versate interface
VV e e o e o o s o e o oo e s e e eeee e e ProteonproNET 10 Megabit ring

5. File Formats

4.3BSD

L-deviceS « « ¢ « ¢ o« ¢ o e e e s s o s s e o oo oo UUCPdevice description file
L-dialcodeS . « ¢« ¢ ¢ « « ¢ ¢ e ¢ ¢« e o s oo+ oo« UUCPphonenumber index file
LaliaseS « « « « ¢ ¢ ¢« ¢ ¢ ¢ ¢ o e« o s s oo oo o000+ UUCPhostname alias file
L.cmds e e e e e e eseeeee s ess UUCPremote command permissions file
LSYS ¢ ¢ ¢ ¢ e e o oo eeosoeeoeoesessess UUCPremote host description file
USERFILE . . . ¢ e e ¢ e e e s oo o0 oo UUCPpathname permissions file
QOUL ¢ ¢ o o ¢ ¢ o o e o oo oo e e o e oo assemblerand link editor output
ACCL o o o o o o o s o e o o s o e s o e o oo o oo s oo executionaccounting file
AlidSES .+ ¢ ¢ ¢ ¢ ¢ e o ¢ e e o e o s s e s e e e s s o« o o aliasesfilefor sendmail
BT o e ¢ o o o s o s e s e e s s s e e e e s e aaa. archive(library) file format
COTE o e o ¢ o o o o s s o s s o s e o o s o o o o o+ formatof memoryimage file
AbX ¢ ¢ ¢ ¢ e ¢ ¢ o o o s 000 e 0000000+« dbxsymboltableinformation
dir e o o e o o s e s o o s s s e s e s e e e e e e s s e e o Fformatof directories
disktab ¢ ¢ ¢ o ¢« ¢ o ¢ ¢ o o e o e s e e s s e oo e e oo diskdescription file
dump < c ¢ ¢ e ¢ o o e o e e e oo o000 s e« Iincrementaldump format
€XPOTIS « ¢ o o o e o o s o o s o o o « o o o « « o NFS file systems being exported
£S ¢ o ¢ e o e e e e e e o e e e e e e oo e e« Fformatof filesystem volume
fstab e o e s s o e e e s e e s e s e e o o o staticinformation about filesystems
gettytab s ¢ st e e et e e e o« .« terminal configuration data base
group © o e o s s o e s s e e s s e s e e e e e s e e e s e o groupfile
BOSES ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o o e o o o e o o oo o« o« hostname data base
hoStS.QUIV o ¢ ¢ e ¢ ¢ o« o o o o o e e o o o o s s o s o s o o listof trusted hosts
map3270 databasefor mapping ascii keystrokes into IBM 3270 keys
mtab ¢« ¢ ¢ e o e s o e e e e o 0 e e e e e e oo o« o mountedfilesystem table
NELZTOUD « o o o o o o o o o s o o o o s o o 0 o 0 oo oo o listof network groups
NELWOIKS ¢ ¢ o o ¢ ¢ o ¢ o o o o o e e o o e o o « o« o+« network name data base
PaSSWA ¢ ¢ o ¢ o o o o o o o o o e o 0 0000000000 o passwordfile
phones e e o s s e s e s e e 0o e e s e e« remotehost phonenumber data base
plot e o o o e e s o e e e e e o s e e e e e e s s e s e e« o graphicsinterface
PrINtCAP ¢ ¢ ¢ o ¢ o o o e o o e o s o « o o o« o « « « o printer capability data base
ProtocOlS o« ¢ o ¢ ¢ ¢ o ¢ ¢ s o o o s e s e s s s s oo o o protocol name data base
TEMOLE o o o ¢ o o o o o o o o o o« « o o s = o « « o « o remote host description file
TESOLVET ¢ ¢ o ¢ ¢ ¢ e o e ¢ o o o o o o o s o o o o o o o« resolver configuration file
IMtaD ¢« ¢ ¢« ¢« ¢ ¢ ¢ ¢ ¢ e e e e o e e oo o o o remotely mounted file system table
services o o s e s e s s e s e e e e e e e e e s e e s s s« servicenamedata base
StAD o ¢ o 4 4 et e e e o e e e s s e e e e e e e e e e e o Symboltabletypes
TAT o o o o o o o o o o o s o s o o o s o o o o o o o o o o« tapearchive file format
TEIMCAD « o o o o o o o s o o s o o o« o o o« o o o « « terminal capability data base
TP ¢ ¢ e o st ¢ o o e o e o o e oo 0s e s e e eeeeoe e+ DEC/magtapeformats
TLYS ¢ ¢ o o o o o s e o o s o o s o o o o o s o s s o o terminalinitialization data
194 o/ TR e s e s s s o 2 i e e s o s e+ « o primitive system data types
ULMP o « o ¢ o o o o s o o o o o o o s o s 06000600 0e0ees 000 loginrecords
uuencode .« . ¢ . ¢ s . s e e s s s e e o s« s o formatof anencoded uuencode file
viont¢..... Ffontformatsforthe Benson-Varian or Versatec
vgrindefs ¢ .. ¢ vgrind'slanguage definition data base
ypfiles e s e s e e e oo e+ .. theyellowpages database and directory structure

June 1986

INTRO(2) UNIX Programmer’s Manual , INTRO (2)

NAME .
intro — introduction to system calls and error numbers

SYNOPSIS
#include <sys/errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details. Note that a number of
system calls overload the meanings of these error numbers, and that the meanings must be
interpreted according to the type and circumstances of the call.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable
errno, which is not cleared on successful calls. Thus errno should be tested only after an
error has occurred.

The following is a complete list of the errors and their names as given in <sys/errno.h>.

0 Error O
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary users
to do things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t,
or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process or process group whose number was given does not exist, or any such
process is already dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit) that the user has elected to catch
occurred during a system call. If execution is resumed after processing the signal
and the system call is not restarted, it will appear as if the interrupted system call
returned this error condition.

-5 EIO 1/O error

Some physical I/0 error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/0 on a special file refers to a subdevice that does not exist, or beyond the limits of
the device. It may also occur when, for example, an illegal tape drive unit number
is selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 20480 bytes (or the current limit, NCARGS in
<sys/param.h>) is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file that, although it has the appropriate permissions,
does not start with a valid magic number, (see a.out(5)).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made
to a file that is open only for writing (resp. reading).

4th Berkeley Distribution June 30, 1986 1

INTRO(2) UNIX Programmer’s Manual . - INTRO(2)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

ECHILD No children
Wait and the process has no lwmg or unwaited-for children.

EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any
more processes.

ENOMEM Not enough memory
During an execve or break, a program asks for more core or swap space than the sys-
tem is able to supply, or a process size limit would be exceeded. A lack of swap
space is normally a temporary condition; however, a lack of core is not a temporary
condition; the maximum size of the text, data, and stack segments is a system
parameter. Soft limits may be increased to their corresponding hard limits.

EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g., in mount.

EBUSY Device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, or active text segment). A request was made to an exclusive access
device that was already in use.

EEXIST File exists ,
An existing file was mentioned in an inappropriate context, e.g., link.

EXDEV Cross-device link
A hard link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device, e.g., to read
a write-only device, or the device is not configured by the system.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example, in a path
name or as an argument to chdir.

EISDIR Is a directory
An attempt to write on a directory.

EINVAL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unk-
nown signal in signal, or some other argument inappropriate for the call. Also set
by math functions, (see math(3)).

ENFILE File table overflow _
The system’s table of open files is full, and temporarily no more opens can be
accepted.

EMFILE Too many open files
As released, the limit on the number of open files per process is 64. Getdtablesize(2)
will obtain the current limit. Customary configuration limit on most other UNIX
systems is 20 per process. '

4th Berkeley Distribution June 30, 1986 2

INTRO(2) UNIX Programmer’s Manual INTRO (2)

25

26

27

28

29

30
31
32
33
34
35
36

37

38
39

40

ENOTTY Inappropriate ioctl for device
The file mentioned in an ioct! is not a terminal or one of the devices to which this
call applies.

ETXTBSY Text file busy .
An attempt to execute a pure-procedure program that is currently open for writing.
Also an attempt to open for writing a pure-procedure program that is being exe-
cuted.

EFBIG File too large
The size of a file exceeded the maximum (about

ENOSPC No space left on device
A write to an ordinary file, the creation of a directory or symbolic link, or the crea-
tion of a directory entry failed because no more disk blocks are available on the file
system, or the allocation of an inode for a newly created file failed because no more
inodes are available on the file system.

ESPIPE Illegal seek
An lseek was issued to a socket or pipe. This error may also be issued for other
non-seekable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This con-
dition normally generates a signal: the error is returned if the signal is caught or
ignored.

EDOM Argument too large
The argument of a function in the math package (3M) is out of the domain of the
function.

ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on an object in
non-blocking mode (see fentl(2)).

EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect(2)) was
attempted on a non-blocking object (see fenzl(2)).

EALREADY Operation already in progress
An operation was attempted on a non-blocking object that already had an operation
in progress.

ENOTSOCK Socket operation on non-socket
Self-explanatory.

EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer or some
other network limit.

23! pytes).

4th Berkeley Distribution June 30, 1986 3

INTRO(2) UNIX Programmer’s Manual INTRO(2)

41
42
43
44

45

46
47
438
49

50
51
52
| 33

54
55
56

57

EPROTOTYPE Protocol wrong type for socket
A protocol was specified that does not support the semantics of the socket type

requested. For example, you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

ENOPROTOOPT Option not supported by protocol
A bad option or level was specified in a getsockopt (2) or setsockopt (2) call.

EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation
for it exists.

EAFNOSUPPORT Address f amily not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use NS addresses with ARPA Internet pro-
tocols.

EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

ENETDOWN Network is down
A socket operation encountered a dead network.

ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from a loss of
" the connection on the remote socket due to a timeout or a reboot.

ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space or because a queue was full.

EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination when already connected.

ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not con-
nected and (when sending on a datagram socket) no address was supplied.

4th Berkeley Distribution June 30, 1986 " 4

INTRO(2) UNIX Programmer’s Manual INTRO(2)

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut
down with a previous shutdown (2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect or send request failed because the connected party did not properly
respond after a period of time. (The timeout period is dependent on the communi-
cation protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This

usually results from trying to connect to a service that is inactive on the foreign
host.

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 (MAXNAMELEN) characters, or an
entire path name exceeded 1023 (MAXPATHLEN-1) characters.

64 EHOSTDOWN Host is down
A socket operation failed because the destination host was down.

65 EHOSTUNREACH Host is unreachable
A socket operation was attempted to an unreachable host.

66 ENOTEMPTY Directory not empty
A directory with entries other than “.”
or rename call.

69 EDQUOT Disc quota exceeded -
A write to an ordinary file, the creation of a directory or symbolic link, or the crea-
tion of a directory entry failed because the user’s quota of disk blocks was
exhausted, or the allocation of an inode for a newly created file failed because the
user’s quota of inodes was exhausted.

70 ESTALE Stale NFS file handle
A client referenced a an open file, when the file has been deleted.

.71 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a path which already
has a remotely mounted component.

and “..” was supplied to a remove directory

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a positive integer called a
process ID. The range of this ID is from 0 to 30000.

Parent process ID
A new process is created by a currently active process; (see fork(2)). The parent pro-
cess ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive
integer called the process group ID. This is the process ID of the group leader. This
grouping permits the signaling of related processes (see killpg(2)) and the job control
mechanisms of csh(1).

4th Berkeley Distribution June 30, 1986 5

INTRO(2) UNIX Programmer’s Manual ~ INTRO(2)

Tty Group ID
Each active process can be a member of a terminal group that is identified by a posi-
tive integer called the tty group ID. This grouping is used to arbitrate between multi-
ple jobs contending for the same terminal; (see csi(1) and zzy(4)).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process that created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID
or set-group-ID file (possibly by one its ancestors) (see execve(2)).

The group access list is an additional set of group ID’s used only in determining
resource accessibility. Access checks are performed as described below in “File Access
Permissions™.

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes .
The processes with a process ID’s of 0, 1, and 2 are special. Process O is the scheduler.

Process 1 is the initialization process init, and is the ancestor of every other process in
the system. It is used to control the process structure. Process 2 is the paging daemon.

Descriptor
An integer assigned by the system when a file is referenced by open(2) or dup(2), or
when a socket is created by pipe(2), socket(2) or socketpair(2), which uniquely
identifies an access path to that file or socket from a given process or any of its chil-
dren.

" File Name ' '
Names consisting of up to 255 (MAXNAMELEN) characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding O
(null) and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use #, 2, [or] as part of file names because of the
special meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (/),
followed by zero or more directory names separated by slashes, optionally followed
by a file name. The total length of a path name must be less than 1024 (MAXPATH-
LEN) characters.

If a path name begins with a slash, the path search begins at the root directory. Other-
wise, the search begins from the current working directory. A slash by itself names
the root directory. A null pathname refers to the current directory.

4th Berkeley Distribution June 30, 1986 6

INTRO(2) UNIX Programmer’s Manual INTRO(2)

Directory
A directory is a special type of file that contains entries that are references to other
files. Directory entries are called links. By convention, a directory contains at least
two links, . and .., referred to as dot and dot-dot respectively. Dot refers to the direc-
tory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current workmg
directory for the purpose of resolving path name searches. A process’s root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are
used in determining whether a process may perform a requested operation on the file
(such as opening a file for writing). Access permissions are established at the time a
file is created. They may be changed at some later time through the chmod (2) call.

File access is broken down according to whether a file may be: read, written, or exe- -
cuted. Directory files use the execute permission to control if the dxrectory may be .
searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file’s group, anyone else.
Every file has an independent set of access permissions for each of these classes. When
an access check is made, the system decides if permission should be granted by check-
ing the access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and
either the process’s effective group ID matches the group ID of the file, or the group ID
of the file is in the process’s group access list, and the group permissions allow the
access.

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for
“other users” allow access.

Otherwise, permission is denied.
Sockets and Address Families

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the format used in naming message reci-
pients, etc.

Each instance of the system supports some collection of socket types: consult
socket (2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto-
cols. Each protocol set supports addresses of a certain format. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

4th Berkeley Distribution June 30, 1986 7

INTRO(2) UNIX Programmer’s Manual INTRO(2)

SEE ALSO
intro(3), perror(3)

4th Berkeley Distribution June 30, 1986 8

ACCEPT(2) UNIX Programmer’s Manual ACCEPT(2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr saddr;

int saddrlen;

DESCRIPTION

The argument s is a socket that has been created with socker(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on
the queue, and the socket is not marked as non-blocking, accept blocks the caller until a con-
nection is present. If the socket is marked non-blocking and no pending connections are
present on the queue, accept returns an error as described below. The accepted socket, ns,
may not be used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a value-
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to selecz(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descrip-
tor for the accepted socket.

ERRORS
The accept will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.
[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.
SEE ALSO

bind(2), connect(2), listen(2), select(2), socket(2)

" 4.2 Berkeley Distribution May 22, 1986 1

UNIX Programmer’s Manual

This page intentionally left almost blank.

ACCESS(2) UNIX Programmer’s Manual_ ' ACCESS(2)

NAME
access — determine accessibility of file

SYNOPSIS
#include <sys/file.h>

#define R_OK 4 /+ test for read permission »/

#define W_OK 2 /+ test for write permission s/

#define X_OK 1 /s test for execute (search) permission s/
#define F_OK 0 /= test for presence of file s/

accessible = access(path, mode)
int accessible;
char spath;
int mode;
DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or
of the bits R_OK, W_OK and X_OK. Specifying mode as F_OK (i.e., 0) tests whether the
directories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying
~ permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned; otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

[EACCES] Permission bits of the file mode do not permit the requested access, or search

permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the “owner” read, write, and execute
mode bits, members of the file’s group other than the owner have permission
checked with respect to the “group” mode bits, and all others have permis-
sions checked with respect to the “other”” mode bits.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/0 error occurred while reading from or writing to the file system.
SEE ALSO

chmod(2), stat(2)

4th Berkeley Distribution May 22, 1986 ' 1

ACCT (2) UNIX Programmer’s Manual ' ACCT(2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(file)
char sfile;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it ter-
minates. This call, with a null-terminated string naming an existing file as argument, turns on
accounting; records for each terminating process are appended to file. An argument of 0
causes accounting to be turned off.

The accounting file format is given in acct(5).
This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when space once again becomes available.

RETURN VALUE
On error -1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:
[EPERM] The caller is not the super-user.’
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.
[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix, or the path
name is not a regular file.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] The named file resides on a read-only file system.

[EFAULT] File points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

acct(5), sa(8)

BUGS
No accounting is produced for programs running when a crash occurs. In particular non- -
terminating programs are never accounted for.

4th Berkeley Distribution May 22, 1986 ' 1

ADJTIME(2) UNIX Programmer’s Manual ADJTIME(2)

NAME

adjtime - correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

adjtime(delta, olddelta)
struct timeval sdelta;
struct timeval solddelta;

DESCRIPTION

Adjtime makes small adjustments to the system time, as returned by gertimeofday(2), advanc-
ing or retarding it by the time specified by the timeval delta. If delta is negative, the clock is
slowed down by incrementing it more slowly than normal until the correction is complete. If
delta is positive, a larger increment than normal is used. The skew used to perform the
correction is generally a fraction of one percent. Thus, the time is always a monotonically
increasing function. A time correction from an earlier call to adjtime may not be finished
when adjtime is called again. If olddelta is non-zero, then the structure pointed to will con-
tain, upon return, the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area
network. Such time servers would slow down the clocks of some machines and speed up the
clocks of others to bring them to the average network time. ’

The call adjtime(2) is restricted to the super-user.

RETURN VALUE

A return value of 0 indicates that the call succeeded. A return value of -1 indicates that an
error occurred, and in this case an error code is stored in the global variable errno.

ERRORS

The following error codes may be set in errno:
[EFAULT] An argument points outside the process’s allocated address space.
[EPERM] The process’s effective user ID is not that of the super-user.

SEE ALSO

date(1), gettimeofday(2), timed(8), timedc(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

4.3 Berkeley Distribution May 15, 1986 1

BIND(2) UNIX Programmer’s Manual BIND(2)

NAME

bind - bind a name to a socket
SYNOPSIS

#include <sys/types.h>

#include <sys/socket.h>
bind(s, name, namelen)
int s;

struct sockaddr sname;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socker(2) it exists
in a name space (address family) but has no name assigned. Bind requests that name be
assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted
by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information. ;

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF] S is not a valid descriptor.
[ENOTSOCK] S is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

[EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.

[EACCES] The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] A prefix component.of the path name does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
" [EIO] An [/O error occurred while making the directory entry or allocating the
inode.
[EROFS] The name would reside on a read-only file system.

4.2 Berkeley Distribution May 22, 1986 1

BIND(2) : UNIX Programmer’s Manual BIND(2)

[EISDIR] A null pathname was specified.

SEE ALSO .
connect(2), listen(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22, 1986 2

BRK(2) 4 UNIX Programmer’s Manual BRK(2)

NAME

brk, sbrk -~ change data segment size

SYNOPSIS

#include <sys/types.h>

char »brk(addr)
char saddr;

char ssbrk(incr)
int incr;

DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system’s page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause
a memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment; it will not be possible to set the break beyond the rlim_max value returned
from a call to getrlimit, e.g. “etext + rlp—rlim_max.” (see end(3) for the definition of erext).

RETURN VALUE

Zero is returned if the brk could be set; -1 if the program requests more memory than the
system limit. -Sbrk returns -1 if the break could not be set.

ERRORS

Sbrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded. s

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin-
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimit.

4th Berkeley Distribution ' May 22, 1986 , 1

CHDIR(2) UNIX Programmer’s Manual CHDIR(2)

NAME .
chdir - change current working directory

SYNOPSIS
chdir(path)
char spath;

DESCRIPTION
Path is the pathname of a directory. Chdir causes thls directory to become the current work-
ing directory, the starting point for path names not beginning with *“/”.

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE)
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the fol-
lowing are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters or an entire path name
exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chroot(2)

4th Berkeley Distribution August 26, 1985 1

CHMOD(2) UNIX Programmer’s Manual CHMOD(2)

" NAME
chmod - change mode of file

SYNOPSIS
chmod(path, mode)
char spath;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fd has its mode changed
to mode. Modes are constructed by or’ing together some combination of the following,
defined in <sys/inode.h>:

ISUID 04000 set user ID on execution

ISGID 02000 set group ID on execution

ISVTX 01000 ‘sticky bit’ (see below)

IREAD 00400 read by owner

IWRITE 00200 write by owner

IEXEC. 00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode ISVTX (the ‘sticky
bit’) prevents the system from abandoning the swap-space image of the program-text portion
of the file when its last user terminates. Ability to set this bit on executable files is restricted
to the super-user. :

If mode ISVTX (the ‘sticky bit’) is set on a directory, an unprivileged user may not delete or
rename files of other users in that directory. For more details of the properties of the sticky
bit, see sticky(8).

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits unless
the user is the super-user. This makes the system somewhat more secure by protecting set-
.user-id (set-group-id) files from remaining set-user-id (set-group-id) if they are modified, at the
expense of a degree of compatibility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The effective user ID does not match the owner of the file and the effective

user ID is not the super-user.

4th Berkeley Distribution May 13, 1986 1

CHMOD(2) UNIX Programmer’s Manual CHMOD(2)

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An /O error occurred while reading from or writing to the file system.

Fchmod will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] Fd refers to a socket, not to a file.

[EROFS] The file resides on a read-only file system.

[EIO] An I/O error occurred while reading from or writing to the file system.
SEE ALSO

chmod(1), open(2), chown(2), stat(2), sticky(8)

4th Berkeley Distribution May 13, 1986 ’ 2

CHOWN(2) _ UNIX Programmer’s Manual CHOWN(2)

NAME
chown - change owner and group of a file

'SYNOPSIS
chown(path, owner, group)
char spath;
int owner, group;
fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION .
The file that is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may change the owner of the file, because if users were able to
give files away, they could defeat the file-space accounting procedures. The owner of the file
may change the group to a group of which he is a member.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
flock(2)).
One of the owner or group id’s may be left unchanged by specifying it as -1.

If the final component of path is a symbolic link, the ownership and group of the symbolic
link is changed, not the ownership and group of the file or directory to which it points.

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An /O error occurred while reading from or writing to the file system.
Fchown will fail if:

[EBADF] Fd does not refer to a valid descriptor.

[EINVAL] Fd refers to a socket, not a file.

[EPERM] The effective user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.

4th Berkeley Distribution May 22, 1986 1

CHOWN(2) UNIX Programmer’s Manual CHOWN(2)

[EIO] An /O error occurred while reading from or writing to the file system.

SEE ALSO
chown(8), chgrp(1), chmod(2), flock(2)

‘4th Berkeley Distribution May 22, 1986 2

CHROOT (2) UNIX Programmer’s Manual - CHROOT(2)

NAME
chroot - change root directory
SYNOPSIS

chroot(dirname)
char sdirname;

DESCRIPTION)
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot
causes this directory to become the root directory, the starting point for path names beginning
with “/”,
In order for a directory to become the root directory a process must have execute (search)
access to the directory.
This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[ELOOP] _ Too many symbolic links were encountered in translating the pathname.

[EFAULT] Path points outside the process’s allocated address space.

[EIO] An [/O error occurred while reading from or writing to the file system.
SEE ALSO '

chdir(2)

4.2 Berkeley Distribution August 26, 1985 1

CLOSE(2) UNIX Programmer’s Manual CLOSE(2)

NAME

close - delete a descriptor

SYNOPSIS

close(d)
int d;

DESCRIPTION

The close call deletes a descriptor from the per-process object reference table. If this is the
last reference to the underlying object, then it will be deactivated. For example, on the last
close of a file the current seek pointer associated with the file is lost; on the last close of a
socket(2) associated naming information and queued data are discarded; on the last close of a
file holding an advisory lock the lock is released (see further flock(2)).

A close of all of a process’s descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs that deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can
be rearranged with dup2(2) or deleted with close before the execve is attempted, but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to
be closed if the execve succeeds. For this reason, the call “fentl(d, F_SETFD, 1) is provided,
which arranges that a descriptor will be closed after a successful execve; the call “fcntl(d,
F_SETFD, 0)” restores the default, which is to not close the descriptor.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global integer variable errno is set to indicate the error.

ERRORS

Close will fail if:
[EBADF] D is not an active descriptor.

SEE ALSO

accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2)

4th Berkeley Distribution May 22, 1986 1

CONNECT(2) UNIX Programmer’s Manual CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;

struct sockaddr sname;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call specifies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, then this call attempts to make a connection to another socket. The other
socket is specified by name, which is an address in' the communications space of the socket.
Each communications space interprets the name parameter in its own way. Generally, stream
sockets may successfully connect only once; datagram sockets may use connect multiple times
to change their association. Datagram sockets may dissolve the association by connecting to
. an invalid address, such as a null address.

RETURN VALUE '
If the connection or binding succeeds, then O is returned. Otherwise a -1 is returned, and a
more specific error code is stored in errno.

ERRORS
The call fails if:
[EBADF] S is not a valid descriptor. ‘
[ENOTSOCK] S is a descriptor for a file, not a socket.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this

‘ socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT] Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn’t reachable from this host.

[EADDRINUSE] The address is already in use.

[EFAULT] . The name parameter specifies an area outside the process address space.

[EINPROGRESS] The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting the
socket for writing.

[EALREADY] The socket is non-blocking and a previous connection attempt has not
. yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

4.2 Berkeley Distribution May 22, 1986 1

CONNECT(2) UNIX Programmer’s Manual CONNECT(2)

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named socket does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write access to the named socket is denied.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

accept(2), select(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 22, 1986 2

CREAT(2) UNIX Programmer’s Manual CREAT(2)

NAME

creat - create a new file

SYNOPSIS

creat(name, mode)
char sname;

DESCRIPTION

NOTES

This interface is made obsolete by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the
address of a null-terminated string. If the file did not exist, it is given mode mode, as
modified by the process’s mode mask (see umask(2)). Also see chmod(2) for the construction
of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature has been used in the past
by programs to construct a simple, exclusive locking mechanism. It is replaced by the
O_EXCL open mode, or flock(2) facility.

RETURN VALUE .

The value -1 is returned if an error occurs. Otherwise, the call returns a non-negative
descriptor that only permits writing.

ERRORS

Creat will fail and the file will not be created or truncated if one of the following occur:
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The file does not exist and the directory in which it is to be created is not

writable.
[EACCES] The file exists, but it is unwritable.
[EISDIR] The file is a directory.

[EMFILE] There are already too many files open.
[ENFILE] The system file table is full.

[ENOSPC] The directory in which the entry for the new file is being placed cannot be
extended because there is no space left on the file system containing the
directory.

[ENOSPC] There are no free inodes on the file system on which the file is being created.

[EDQUOT] The directory in which the entry for the new file is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

4th Berkeley Distribution May 22, 1986 i

CREAT(2) UNIX Programmer’s Manual CREAT(2)

[EDQUOT] The user’s quota of inodes on the file system on which the file is being
created has been exhausted.

[EROFS] The named file resides on a read-only file system.

[ENXIO] The file is a character special or block special file, and the associated device
does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EIO] An I/O error occurred while making the directory entry or allocating the
inode.

[EFAULT] Name points outside the process’s allocated address space.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution May 22, 1986 2

DUP(2) UNIX Programmer’s Manual DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd = dup(oldd) -
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative
integer index in the per-process descriptor table. The value must be less than the size of the
table, which is returned by gerdtablesize(2). The new descriptor returned by the call, newd, is
the lowest numbered descriptor that is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using o/dd
and newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and Iseek(2) calls all move a single pointer into the file, and append mode, non-
blocking I/O and asynchronous I/O options are shared between the references. If a separate
pointer into the file is desired, a different object reference to the file must be obtained by issu-
ing an additional open(2) call. The close-on-exec flag on the new file descriptor is unset.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a c/ose(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indi-
cates the cause of the error.

ERRORS
Dup and dup? fail if:
[EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO

accept(2), open(2), close(2), fcntl(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution May 13, 1986 1

EXECVE(2) UNIX Programmer’s Manual EXECVE(2)

NAME

execve — execute a file

SYNOPSIS

execve(name, argy, envp)
char *name, sargv{], senvp(};

DESCRIPTION

Execve transforms the calling process into a new process. The new process is constructed
from an ordinary file called the new process file. This file is either an executable object file, or
a file of data for an interpreter. An executable object file consists of an identifying header,
followed by pages of data representing the initial program (text) and initialized data pages.
Additional pages may be specified by the header to be initialized with zero data. See a.out(5).

An interpreter file begins with a line of the form “#! interpreter”. When an interpreter file is
execve’d, the system execve’s the specified interpreter, giving it the name of the originally
exec’d file as an argument and shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is a null-terminated array of character pointers to null-terminated charac-
ter strings. These strings constitute the argument list to be made available to the new process.
By convention, at least one argument must be present in this array, and the first element of
this array should be the name of the executed program (i.e., the last component of name).

The argument envp is also a null-terminated array of character pointers to null-terminated
strings. These strings pass information to the new process that is not directly an argument to
the command (see environ(7)).

Descriptors open in the calling process remain open in the new process, except for those for
which the close-on-exec flag is set (see close(2)). Descriptors that remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. Blocked signals remain blocked regardless of changes to the signal action.
The signal stack is reset to be undefined (see sigvec(2) for more information).

Each process has real user and group IDs and an effective user and group IDs. The rea/ ID
identifies the person using the system; the effective ID determines his access privileges.
Execve changes the effective user and group ID to the owner of the executed file if the file has
the “set-user-ID” or “set-group-ID” modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID see getpid(2)
parent process ID see getppid (2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)

root directory see chroot (2)
control terminal see (ty(4)
resource usages see getrusage(2)
interval timers see getitimer (2)
resource limits see getrlimit (2)
file mode mask see umask(2)
signal mask see sigvec(2), sigmask(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution ‘ May 22, 1986 1

EXECVE(2) ' UNIX Programmer’s Manual EXECVE(2)

main(argc, argv, envp)

int argc;

char ssargv, *senvp;
where argc is the number of elements in argv (the “arg count™) and argv is the array of char-
acter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the environment of the process. A
pointer to this array is also stored in the global variable “environ”. Each string consists of a
name, an “=", and a null-terminated value. The array of pointers is terminated by a null
pointer. The shell sh(1) passes an environment entry for each global shell variable defined
when the program is called. See environ(7) for some conventionally used names.

RETURN VALUE .
If execve returns to the calling process an error has occurred; the return value will be -1 and
the global variable errno will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The new process file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] Search permission is denied for a component of the path prefix.
[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission, but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the
imposed maximum (getrlimit(2)).

[E2BIG] The number of bytes in the new process’s argument list is larger than the
system-imposed limit. The limit in the system as released is 20480 bytes
(NCARGS in <sys/param.h>.

[EFAULT] The new process file is not as long as indicated by the size values in its
header.
[EFAULT] Path, argv, or envp point to an illegal address.
[EIO] An l/O error occurred while reading from the file system.
CAVEATS

If a program is setuid to a non-super-user, but is executed when the real uid is “root”, then
the program has some of the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

4th Berkeley Distribution May 22, 1986 ‘ 2

EXIT(2) ~ UNIX Programmer’s Manual EXIT(2)

NAME
_exit - terminate a process

SYNOPSIS
_exit(status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed. This may entail delays, for exam-
ple, waiting for output to drain; a process in this state may not be killed, as it is already
dying. .

If the parent process of the calling process is executing a wait or is interested in the
SIGCHLD signal, then it is notified of the calling process’s termination and the low-order
eight bits of status are made available to it; see waiz(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes as
well. Any stopped children are restarted with a hangup signal (SIGHUP).

Most C programs call the library routine exit(3), which performs cleanup actions in the stan-
dard I/O library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork(2), sigvec(2), wait(2), exit(3)

4th Berkeley Distribution May 22, 1986 1

FCNTL(2)

NAME

UNIX Programmer’s Manual FCNTL(2)

fentl - file control

SYNOPSIS

#include <fcntl.h>
res = fentl(fd, cmd, arg)

int res;

int fd, cmd, arg;

DESCRIPTION

Fcntl provides for control over descriptors. The argument fd is a descriptor to be operated on
by ¢cmd as follows:

F_DUPFD

F_GETFD

F_SETFD

F_GETFL
F_SETFL
F_GETOWN

F_SETOWN

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to arg.

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor fd. If the low-
order bit is 0, the file will remain open across exec, otherwise the file will be
closed upon execution of exec. -

Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1
as above).

Get descriptor status flags, as described below.
Set descriptor status flags.

Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG signals; pro-
cess groups are specified by supplying arg as negative, otherwise arg is inter-
preted as a process ID.

The flags for the F_GETFL and F_SETFL flags are as follows:

FNDELAY

FAPPEND

FASYNC

RETURN VALUE

Non-blocking I/O; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

Force each write to append at the end of file; corresponds to the O_APPEND
flag of open(2).

Enable the SIGIO signal to be sent to the process group when I/O is possible,
e.g., upon availability of data to be read.

Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_GETFL

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.

F_GETOWN Value of file descriptor owner.

other

Value other than -1.

4.2 Berkeley Distribution May 22, 1986 1

FCNTL(2) UNIX Programmer’s Manual ' FCNTL(2)

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS .
Fentl will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is F_DUPFD and the maximum allowed number of file descriptors are
currently open.

[EINVAL] Cmd is F_DUPFD and arg is negative or greater than the maximum allow-
able number (see getdtablesize(2)).

[ESRCH] Cmd is F_SETOWN and the process ID given as argument is not in use.
SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

BUGS
The asynchronous I/O facilities of FNDELAY and FASYNC are currently available only for
tty and socket operations. :

4.2 Berkeley Distribution May 22, 1986 ' 2

FLOCK(2) UNIX Programmer’s Manual ’ FLOCK (2)

NAME

flock - apply or remove an advisory lock on an open file

SYNOPSIS

#include <sys/file.h>

#define LOCK_SH
#define LOCK_EX
#define LOCK_NB
#define LOCK_UN

flock(fd, operation)
int fd, operation;

/s shared lock =/

/+ exclusive lock =/

/s don’t block when locking »/
/+ unlock s/

0 &N

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter that is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

" Advisory locks allow cooperating processes to perform consistent operations on files, but do

not guarantee consistency (i.e., processes may still access files without usmg advisory locks -
possibly resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any
time multiple shared locks may be applied to a file, but at no time are multiple exclusive, or
both shared and exclusive, locks allowed sim_ultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object that is already locked normalily causes the caller to be blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap-
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

Zero is returned if the operation was successful; on an error a -1 is returned and an error
code is left in the global location errno.

ERRORS

The flock call fails if:
[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF] The argument fd is an invalid descriptor.
[EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

4.2 Berkeley Distribution May 22, 1986 ' 1

FORK(2) UNIX Programmer’s Manual FORK (2)

NAME
fork — create a new process

SYNOPSIS
pid = fork()
int pid;
DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent
process).

The child process has its own copy of the parent’s descriptors. These descriptors refer-
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that an /seek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is
also used by the shell to establish standard input and output for newly created processes
as well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child. process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit on the total number of processes under execution
would be exceeded. This limit is configuration-dependent.

[EAGAIN] The system-imposed limit MAXUPRC (<sys/param.h>) on the total number
of processes under execution by a single user would be exceeded. '

[ENOMEM] There is insufficient swap space for the new process.

SEE ALSO
execve(2), wait(2)

3rd Berkeley Distribution May 22, 1986 1

FSYNC(2) , UNIX Programmer’s Manual FSYNC(2)

NAME
fsync - synchronize a file’s in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;
DESCRIPTION
- Fsync causes all modified data and attributes of fd to be moved to a permanent storage dev-
ice. This normally results in all in-core modified copies of buffers for the associated file to be
written to a disk.

Fsync should be used by programs that require a file to be in a known state, for example, in
building a simple transaction facility.

RETURN VALUE

A 0 value is returned on success. A -1 value indicates an error.
ERRORS

The fsync fails if:

[EBADF] Fd is not a valid descriptor.

[EINVAL] Fd refers to a socket, not to a file.

[EIO] An I/0 error occurred while reading from or writing to the file system.
SEE ALSO ’

sync(2), sync(8), update(8)

4.2 Berkeley Distribution May 22, 1986 1

GETDIRENTRIES (2) - UNIX Programmer’s Manual GETDIRENTRIES (2)

NAME

getdirentries — gets directory entries in a filesystem independent format

SYNOPSIS

#include <sys/dir.h>

cc = getdirentries(fd, buf, nbytes, basep)
int cc, f£d;
char sbuf;

int nbytes;
long sbasep

DESCRIPTION

Getdirentries attempts to put directory entries from the directory referenced by the file
descriptor fd into the buffer pointed to by duf, in a filesystem independent format. Up to
nbytes of data will be transferred. Nbytes must be greater than or equal to the block size
associated with the file, see stat(2). Sizes less than this may cause errors on certain filesys-
tems.

The data in the buffer is a series of direct structures each containing the following entries:

unsigned long d_fileno;

unsigned short d_reclen;

unsigned short d_namlen;

char d_name[MAXNAMELEN + 1]; /# see below */

The d__fileno entry is a number which is unique for each distinct file in the filesystem. Files
that are linked by hard links (see link(2)) have the same d_ fileno. The d_reclen entry is
the length, in bytes, of the directory record. The d_name entry contains a null terminated
file name. The d_namlen entry specifies the length of the file name. Thus the actual size of
d__name may vary from 2 to MAXNAMELEN + 1.

The structures are not necessarily tightly packed. The d_reclen entry may be used as an
offset from the beginning of a direct structure to the next structure, if any.

Upon return, the actual number of bytes transferred is returned. The current position
pointer associated with fd is set to point to the next block of entries. The pointer is not
necessarily incremented by the number of bytes returned by getdirentries. If the value
returned is zero, the end of the directory has been reached. The current position pointer
may be set and retrieved by lseek(2). Getdirentries writes the position of the block read

_into the location pointed to by basep. It is not safe to set the current position pointer to

any value other than a value previously returned by Iseek(2) or a value previously
returned in the location pointed to by basep or zero.

RETURN VALUE

If successful, the number of bytes actually transferred is returned. Otherwise, a —1 is
returned and the global variable errno is set to indicate the error.

SEE ALSO

open(2), 1seek(2)

ERRORS

Getdirentries will fail if one or more of the following are true:
[EBADF] fd is not a valid file descriptor open for reading.
[EFAULT] Either duf or basep point outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

Sun Microsystems Rel 3.0 19 August 1985 1

GETDIRENTRIES (2) UNIX Programmer’s Manual GETDIRENTRIES (2)

[E1I0] An I/0 error occurred while reading from or writing to the file system.

Sun Microsystems Rel 3.0 19 August 1985 2

GETDOMAINNAME (2) UNIX Programmer’s Manual GETDOMAINNAME (2)

NAME
getdomainname, setdomainname — get/set name of current domain

SYNOPSIS
getdomainname(name, namelen)
char sname;
int namelen;

setdomainname(name, namelen)
char sname;
int namelen;

DESCRIPTION
Getdomainname returns the name of the domain for the current processor, as previously set
by setdomainname. The parameter namelen specifies the size of the name array. The
returned name is null-terminated unless insufficient space is provided.

Setdomainname sets the domain of the host machine to be name, which has length namelen.
This call is restricted to the super-user and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that may have host names in
common to merge. Each network would be distinguished by having a different domain
name. At the current time, only the yellow pages service makes use of domains.

RETURN VALUE _
If the call succeeds a value of O is returned. If the call fails, then a value of —1 is returned
and an error code is placed in the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name parameter gave an invalid address.

[EPERM] The caller was not the super-user. This error only applies to setdomain-
name.

BUGS
Domain names are limited to 255 characters.

Sun Microsystems Rel 3.0 19 August 1985 1

UNIX Programmer’s Manual

This page intentionally left almost blank.

GETDTABLESIZE(2) UNIX Programmer’s Manual GETDTABLESIZE(2)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nfds = getdtablesize()
int nfds;

DESCRIPTION .
Each process has a fixed size descriptor table, which is guaranteed to have at least 20 slots.
The entries in the descriptor table are numbered with small integers starting at 0. The call
getdtablesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2), select(2)

4.2 Berkeley Distribution June 28, 1985 . 1

GETGID(2) UNIX Programmer’s Manual GETGID(2)

NAME
getgid, getegid - get group identity

SYNOPSIS

) #include <sys/types.h>

gid = getgid()
gid_t gid;
egid = getegid() '
gid_t egid;

DESCRIPTION '
Getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a “set-group-ID” process, and it is for such processes that gezgid is most useful.

SEE ALSO
" getuid(2), setregid(2), setgid(3)

4.2 Berkeley Distribution January 7, 1986 1

GETGROUPS(2) i UNIX Programmer’s Manual GETGROUPS(2)

NAME
getgroups - get group access list

SYNOPSIS
#include <sys/param.h>

ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetlen, sgidset;

DESCRIPTION :
Getgroups gets the current group access list of the user process and stores it in the array gid-
set. The parameter gidsetlen indicates the number of entries that may be placed in gidser.
Getgroups returns the actual number of groups returned in gidset. No more than NGROUPS,
as defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A value of -1 indicates that
an error occurred, and the error code is stored in the global variable errno.

ERRORS
The possible errors for getgroup are:

[EINVAL] The argument gidsetlen is smaller than the number of groups in the group set.
[EFAULT] The argument gidset specifies an invalid address.

SEE ALSO
setgroups(2), initgroups(3X)

BUGS
The gidset array should be of type gid_t, but remains integer for compatibility with earlier
systems.

4.2 Berkeley Distribution May 13, 1986 1

GETHOSTID(2) UNIX Programmer’s Manual GETHOSTID(2)

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostid()
long hostid;
sethostid(hostid)
long hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

4.2 Berkeley Distribution ‘November 28, 1985 1

GETHOSTNAME(2) UNIX Programmer’s Manual GETHOSTNAME((2)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char sname;
int namelen;

sethostname(name, namelen)
char sname; -
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned
name is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned
and an error code is placed in the global location errno.

ERRORS
~ The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller tried to set the hostname and was not the super-user.
SEE ALSO

gethostid(2)

BUGS ‘
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters,
currently 64.

4.2 Berkeley Distribution May 22, 1986 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER(2)

NAME
getitimer, setitimer - get/set value of interval timer
SYNOPSIS
#include <sys/time.h> .
#define ITIMER_REAL 0 /+ real time intervals s/
#define ITIMER_VIRTUAL 1 /= virtual time intervals »/
#define ITIMER_PROF 2 /jc user and system virtual time »/

getitimer(which, value)

int which;

struct itimerval svalue;
setitimer(which, value, ovalue)
int which;

struct itimerval cvalue, sovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which in the structure at
value. The setitimer call sets a timer to the specified value (returning the previous value of
the timer if ovalue is nonzero).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /= timer interval »/
struct timeval it_value; /= current value »/
|4
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading it_value when the timer expires. Setting
it_value to 0 disables a timer. Setting iz_interval to 0 causes a timer to be disabled after its
next expiration (assuming iz_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10‘ milliseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when
this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the
process is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is
running on behalf of the process. It is designed to be used by interpreters in statistically
profiling the execution of interpreted programs. Each time the ITIMER_PROF timer expires,
the SIGPROF signal is delivered. Because this signal may interrupt in-progress system calls,
programs using this timer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a
time value to zero, timerisset tests if a time value is non-zero, and timercmp compares two
time values (beware that >= and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the giobal variable errno.

4.2 Berkeley Distribution August 26, 1985 1

GETITIMER (2) UNIX Programmer’s Manual - GETITIMER (2)

ERRORS
The possible errors are:

[EFAULT] The value parameter specified a bad address.
[EINVAL] A value parameter specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4.2 Berkeley Distribution August 26, 1985 2

GETPAGESIZE(2) UNIX Programmer’s Manual _ GETPAGESIZE (2)

NAME
getpagesize — get system page size
SYNOPSIS
pagesize = getpagesize()
int pagesize;
DESCRIPTION
Getpagesize returns the number of bytes in a page. Page granularity is the granularity of
many of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(1)

4.2 Berkeley Distribution May 15, 1985 1

GETPEERNAME(2) " UNIX Programmer’s Manual GETPEERNAME(2)

NAME

getpeername - get name of connected peer
SYNOPSIS

getpeername(s, name, namelen)

int s;

struct sockaddr sname;
int snamelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro-
vided is too small.

DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.
[ENOTCONN] The socket is not connected.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
' accept(2), bind(2), socket(2), getsockname(2)

4.2 Berkeley Distribution May 13, 1986 1

GETPGRP(2) UNIX Programmer’s Manual GETPGRP(2)

NAME
getpgrp - get process group
SYNOPSIS
pgrp = getpgrp(pid)
int pgrp;
int pid;
DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes that have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csi(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in 1y(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4.2 Berkeley Distribution August 26, 1985 _ 1

GETPID(2) UNIX Programmer’s Manual GETPID(2)

NAME

getpid, getppid - get process identification
SYNOPSIS

pid = getpid()

int pid;

ppid = getppid(

int ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used to generate
uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

4th Berkeley Distribution May 13, 1986 1

GETPRIORITY (2) UNIX Programmer’s Manual GETPRIORITY (2)

NAME

getpriority, setpriority — get/set program scheduling priority

SYNOPSIS

#include <sys/resource.h>
prio = getpriority(which, who)
int prio, which, who;
setpriority(which, who, prio)
int which, who, prio;

DESCRIPTION

The scheduling priority of the process, process group, or user, as indicated by which and who

is obtained with the getpriority call and set with the setpriority call. Which is one of

PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a

process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user -
ID for PRIO_USER). A zero value of who denotes the current process, process group, or

user. Prio is a value in the range =20 to 20. The default priority is 0; lower priorities cause

more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to
the specified value. Only the super-user may lower priorities.

RETURN VALUE

Since getpriority can legitimately return the value -1, it is necessary to clear the external vari- -
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti-
mate value. The setpriority call returns O if there is no error, or -1 if there is.

ERRORS

Getpriority and setpriority may return one of the following errors:
[ESRCH] No process was located using the which and who values specified.
[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, setpriority may fail with one of the following errors
returned:

[EPERM] A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.
[EACCES] A non super-user attempted to lower a process priority.
SEE ALSO

nice(1), fork(2), renice(8)

4th Berkeley Distribution May 22, 1986 |

GETRLIMIT(2) _ UNIX Programmer’s Manual GETRLIMIT(2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
int resource;
struct rlimit srlp;

setrlimit(resource, rip)
int resource;
struct rlimit srlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:
RLIMIT_CPU the maximum amount of cpu time (in seconds) to be used by each process.
RLIMIT_FSIZE the largest size, in bytes, of any single file that may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program’s stack segment may be extended. Stack extension is
performed automatically by the system.

RLIMIT_CORE the largest size, in bytes, of a core file that may be created.

RLIMIT_RSS the maximum size, in bytes, to which a process’s resident set size may
grow. This imposes a limit on the amount of physical memory to be given
to a process; if memory is tight, the system will prefer to take memory
from processes that are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The
rlimit structure is used to specify the hard and soft limits on a resource,

struct rlimit (
int rlim_cur; /= current (soft) limit »/
int rlim_max; /+ hard limit »/
)
Only the super-user may raise the maximum limits. Other users may only alter riim_cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An “infinite” value for a limit is defined as RLIM_INFINITY (Ox7ffffffY).

Because this information is stored in the per-process information, this system call must be
executed directly by the shell if it is to affect all future processes created by the shell; /imit is
thus a built-in command to csa(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached. When the stack limit is
reached, the process receives a segmentation fault (SIGSEGV); if this signal is not caught by a
handler using the signal stack, this signal will kill the process.

4th Berkeley Distribution . May 13, 1986 1

GETRLIMIT (2) _ UNIX Programmer’s Manual GETRLIMIT(2)

A file I/O operation that would create a file that is too large will cause a signal SIGXFSZ to
be generated; this normally terminates the process, but may be caught. When the soft cpu
time limit is exceeded, a signal SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit.
A return value of -1 indicates that an error occurred, and an error code is stored in the global
» location errno.
ERRORS
The possible errors are:
[EFAULT] The address specified for rlp is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
csh(1), quota(2), sigvec(2), sigstack(2)

BUGS
There should be /imit and unlimit commands in sa(1) as well as in csh.

4th Berkeley Distribution May 13, 1986 2

GETRUSAGE(2)

NAME

UNIX Programmer’s Manual

GETRUSAGE (2)

getrusage - get information about resource utilization

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1
getrusage(who, rusage)

int who;

struct rusage srusage;

DESCRIPTION

/s calling process s/
/= terminated child processes =/

Getrusage returns information describing the resources utilized by the current process, or all

its terminated child processes.

The who parameter is one of RUSAGE_SELF or

RUSAGE_CHILDREN. The buffer to which rusage points will be filled in with the following

structure:

struct rusage {
struct timeval ru_utime;
struct timeval ru_stime;
int ru_maxrss;
int ru_ixrss;
int ru_idrss;
int ru_isrss;
int ru_minflt;
int ru_majflt;
int ru_nswap;
int ru_inblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;.
int ru_nsignals;
int ru_nvesw;
int ru_nivesw;
J5
The fields are interpreted as follows:
ru_utime

ru_stime
process(es).

ru_maxrss

”

ru_ixrss an “integr.

/# user time used »/
/= system time used »/

/+ integral shared text memory size »/
/» integral unshared data size »/
/+ integral unshared stack size »/
/+ page reclaims +/

/= page faults s/

/% swaps »/

/# block input operations »/

/# block output operations */

/+ messages sent »/

/» messages received »/

/» signals received */

/» voluntary context-switches »/
/+ involuntary context switches »/

the total amount of time spent executing in user mode.
the total amount of time spent in the system executing on behalf of the

the maximum resident set size utilized (in kilobytes).
value indicating the amount of memory used by the text seg-

ment that was also shared among other processes. This value is expressed in
units of kilobytes # seconds-of-execution and is calculated by summing the
number of shared memory pages in use each time the internal system clock
ticks and then averaging over 1 second intervals.

ru_idrss

an integral value of the amount of unshared memory residing in the data seg-

ment of a process (expressed in units of kilobytes » seconds-of-execution).

ru_isrss

an integral value of the amount of unshared memory residing in the stack

segment of a process (expressed in units of kilobytes » seconds-of-execution).

4th Berkeley Distribution

May 13, 1986 1

GETRUSAGE(2) UNIX Programmer’s Manual GETRUSAGE(2)

ru_minflt the number of page faults serviced without any I/O activity; here I/O activity

is avoided by “reclaiming” a page frame from the list of pages awaiting real-
location.

ru_majflt the number of page faults serviced that required I/O activity.

ru_nswap the number of times a process was “swapped” out of main memory.

ru_inblock the number of times the file system had to perform input.

ru_outblock the number of times the file system had to perform output.

ru_msgsnd the number of IPC messages sent.

ru_msgrcv the number of IPC messages received.

ru_nsignals the number of signals delivered.

ru_nvesw the number of times-a context switch resulted due to a process voluntarily
giving up the processor before its time slice was completed (usually to await
availability of a resource).

ru_nivesw the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

NOTES o
The numbers ru_inblock and ru_outblock account only for real I/0; data supplied by the cach-
ing mechanism is charged only to the first process to read or write the data.

ERRORS
The possible errors for getrusage are:

[EINVAL] The who parameter is not a valid value.

[EFAULT] The address specified by the rusage parameter is not in a valid part of the
process address space.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process that has not yet terminated.

4th Berkeley Distribution . May 13, 1986 ’ 2

GETSOCKNAME(2) ' UNIX Programmer’s Manual GETSOCKNAME (2)

NAME
getsockname - get socket name
SYNOPSIS
getsockname(s, name, namelen)
int s;

struct sockaddr sname;
int *namelen;

DESCRIPTION ‘
Getsockname returns the current name for the specified socket. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con-
tains the actual size of the name returned (in bytes).

DIAGNOSTICS .
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS'
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
bind(2), socket(2)

BUGS :
Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

4.2 Berkeley Distribution May 15, 1985 1

GETSOCKOPT(2) UNIX Programmer’s Manual GETSOCKOPT(2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char soptval;

int soptlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;

char soptval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost “socket™ level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the ‘“socket” level, /evel is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, /evel should be set to the protocol number of
TCP; see getprotoent(3N). '

The parameters optval and optlen are used to access option values for setsockopt. For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be
returned. For getsockopt, optlen is a value-result parameter, initially containing the size of the
buffer pointed to by optval, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for ‘“socket”
level options, described below. Options at other protocol levels vary in format and name;
consult the appropriate entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <sys/socket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be exam-
ined with getsockopt and set with setsockopt. :

SO_DEBUG toggle recording of debugging information
SO_REUSEADDR toggle local address reuse

SO_KEEPALIVE tosggle keep connections alive
SO_DONTROUTE toggle routing bypass for outgoing messages
SO_LINGER linger on close if data present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_TYPE get the type of the socket (get only)
SO_ERROR get and clear error on the socket (get only)

4.2 Berkeley Distribution May 23, 1986 1

GETSOCKOPT (2) UNIX Programmer’s Manual GETSOCKOPT(2)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi-
cates that the rules used in validating addresses supplied in a bind(2) call should allow reuse
of local addresses. SO_KEEPALIVE enables the periodic transmission of messages on a con-
nected socket. Should the connected party fail to respond to these messages, the connection
is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facil-
ities. Instead, messages are directed to the appropriate network interface according to the
network portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close(2) is performed. If the socket promises reliable delivery of data and SO_LINGER s set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER is
disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With proto-
cols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band
data be placed in the normal data input queue as received; it will then be accessible with recv
or read calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options to
adjust the normal buffer sizes allocated for output and input buffers, respectively. The buffer
size may be increased for high-volume connections, or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsockopt. SO_TYPE returns the
type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors. :

RETURN VALUE

A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown at the level indicated.

[EFAULT] The address pointed to by optval is not in a valid part of the process
address space. For getsockopt, this error may also be returned if optlen
is not in a valid part of the process address space.

SEE ALSO

BUGS

ioctl(2), socket(2), getprotoent(3N)

Several of the socket options should be handled at lower levels of the system.

4.2 Berkeley Distribution May 23, 1986 2

GETTIMEOFDAY (2) UNIX Programmer’s Manual GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval stp;
struct timezone stzp;

settimeofday(tp, tzp)
struct timeval stp;
struct timezone stzp;

DESCRIPTION
The system’s notion of the current Greenwich time and the current time zone is obtained
with the gettimeofday call, and set with the settimeofday call. The time is expressed in
seconds and microseconds since midnight (0 hour), January 1, 1970. The resolution of the
system clock is hardware dependent, and the time may be updated continuously or in “ticks.”
If tzp is zero, the time zone information will not be returned or set.

The structures pointed to by ¢p and ¢zp are defined in <sys/time.h> as:

struct timeval {
long tv_sec; /# seconds since Jan. 1, 1970 »/
long tv_usec; /» and microseconds »/

b

struct timezone { ‘
int tz_minuteswest; /% of Greenwich »/
int tz_dsttime; /= type of dst correction to apply »/
4 ,
The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

Only the super-user may set the time of day or time zone.

RETURN
A O return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO
date(1), adjtime(2), ctime(3), timed(8)

4th Berkeley Distribution May 14, 1986 1

GETUID(2) UNIX Programmer’s Manual GETUID(2)

NAME
getuid, geteuid - get user identity

SYNOPSIS
#include <sys/types.h>
uid = getuid()
uid_t uid;
euid = geteuid()
uid_t euid;

DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the pro-
cess additional permissions during execution of ‘“set-user-ID”” mode processes, which use
getuid to determine the real-user-id of the process that invoked them.

SEE ALSO
getgid(2), setreuid(2)

4th Berkeley Distribution January 7, 1986 : _ 1

IOCTL(2) UNIX Programmer’s Manual IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
#include <sys/ioctl.h>

ioctl(d, request, argp)
int d;
unsigned long request;
char sargp;
DESCRIPTION
Ioctl performs a variety of functions on open descriptors. In particular, many operating
characteristics of character special files (e.g. terminals) may be controlled with ioct/ requests.
The writeups of various devices in section 4 discuss how ioct/ applies to them.

An ioctl request has encoded in it whether the argument is an “in” parameter or “out”
parameter, and the size of the argument argp in bytes. Macros and defines used in specifying
an ioctl request are located in the file <sys/ioctl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS :
Toctl will fail if one or more of the following are true:

[EBADF] D is not a valid descriptor.
[ENOTTY] D is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object that the descriptor
d references.

[EINVAL] Request or argp is not valid.

SEE ALSO
execve(2), fentl(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution March 4, 1986 1

KILL(2) UNIX Programmer’s Manual KILL(2)

NAME

kill - send signal to a process

SYNOPSIS

kill(pid, sig)
int pid, sig;

DESCRIPTION

Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT, which may always
be sent to any descendant of the current process.

If the process number is 0, the signal is sent to all processes in the sender’s process group; this
is a variant of killpg(2).

If the process number is -1 and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal. If the process number is -1
and the user is not the super-user, the signal is broadcast universally to all processes with the
same uid as the user except the process sending the signal. No error is returned if any process
could be signaled.

For compatibility with System V, if the process number is negative but not -1, the signal is
sent to all processes whose process group ID is equal to the absolute value of the process
number. This is a variant of killpg(2).

Processes may send signals to themselves.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS .

Kill will fail and no signal will be sent if any of the following occur:
[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[ESRCH] The process id was given as 0 but the sending process does not have a process
group.

[EPERM] The sending process is not the super-user and its effective user id does not

match the effective user-id of the receiving process. When signaling a process
group, this error was returned if any members of the group could not be sig-
naled.

SEE ALSO '

getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution ‘ May 14, 1986 \

KILLPG(2) UNIX Programmer’s Manual KILLPG(2)

NAME
killpg - send signal to a process group
SYNOPSIS
killpg(pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
or the sender must be the super-user. As a single special case the continue signal SIGCONT
may be sent to any process that is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

ERRORS ’
Killpg will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found in the process group specified by pgrp.

[ESRCH] The prdcess group was given as 0 but the sending process does not have a .
process group.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)

4th Berkeley Distribution May 14, 1986 1

LINK(2)

NAME

UNIX Programmer’s Manual LINK (2)

link - make a hard link to a file

SYNOPSIS
link(namel, name2)
char snamel, sname2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.

With hard links, both name! and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of either pathname exceeded 255 characters, or entire length of
either path name exceeded 1023 characters.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory with a mode that denies
write permission.

[ELOOP] Too many symbolic links were encountered in translating one of the path-
names.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 does exist.

[EPERM] The file named by namel is a directory and the effective user ID is not
super-user.

[EXDEV] The link named by name2 and the file named by name! are on different file
systems.

[ENOSPC] The directory in which the entry for the new link is being placed cannot be
extended because there is no space left on the file system containing the
directory.

[EDQUOT] The directory in which the entry for the new link is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file system to
make the directory entry.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] One of the pathnames specified is outside the process’s allocated address
space.

SEE ALSO

4th Berkeley Distribution

symlink(2), unlink(2)

August 26, 1985 1

LISTEN(2) UNIX Programmer’s-Manual LISTEN(2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
“int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socker(2), a willingness to accept incom-
ing connections and a queue limit for incoming connections are specified with /isten(2), and
then the connections are accepted with accept(2). The listen call applies only to sockets of
type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client may receive an error
with an indication of ECONNREFUSED, or, if the underlying protocol supports retransmis-
sion, the request may be ignored so that retries may succeed.

RETURN VALUE

A 0 return value indicates success; -1 indicates an error.
ERRORS

The call fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation /isten.
SEE ALSO

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

4.2 Berkeley Distribution - Mayl4, 198_6 1

LSEEK (2) UNIX Programmer’s Manual LSEEK (2)

NAME
Iseek - move read/write pointer

SYNOPSIS
#include <sys/file.h>

#define L_SET 0 /s set the seek pointer s/
#define L_INCR 1 /+ increment the seek pointer s/
#define L_XTND 2 /= extend the file size s/

pos = Iseek(d, offset, whence)
off_t pos;

int d;

off _t offset;

int whence;

DESCRIPTION
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file

pointer of d as follows:
If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offset.
~ If whence is L_XTND, the pointer is set to the size of the file plus offser.

Upon successful completion, the resulting pointer location as measured in bytes from begin-
ning of the file is returned. Some devices are incapable of seeking. The value of the pointer
associated with such a device is undefined.

NOTES . :
Seeking far beyond the end of a file, then writing, creates a gap or ‘hole”, which occupies no

physical space and reads as zeros.

RETURN VALUE
Upon successful completion, the current file pointer value is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:
[EBADF] Fildes is not an open file descripfor.
[ESPIPE] Fildes is associated with a pipe or a socket.
[EINVAL] Whence is not a proper value.

SEE ALSO -

dup(2), open(2)

BUGS
This document’s use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution February 24, 1986 1

MKDIR (2) UNIX Programiner’s Manual MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char =path;
int mode;
DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized

from mode. (The protection part of the mode is modified by the process’s mode mask; see
umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits
set in the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] :
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The path argument contains a byte with the high-order bit set.
[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[ENOSPC] The directory in which the entry for the new directory is being placed cannot
be extended because there is no space left on the file system containing the
directory.

[ENOSPC] The new directory cannot be created because there there is no space left on
the file system that will contain the directory.

[ENOSPC] There are no free inodes on the file system on which the directory is being
created. :

[EDQUOT] The directory in which the entry for the new directory is being placed cannot
be extended because the user’s quota of disk blocks on the file system con-
taining the directory has been exhausted.

[EDQUOT] The new directory cannot be created because the user’s quota of disk blocks
on the file system that will contain the directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the directory is being
created has been exhausted.

4.2 Berkeley Distribution _ August 26, 1985 1

MKDIR (2) UNIX Programmer’s Manual , MKDIR (2)

[EIO] An /O error occurred while making the directory entry or allocating the
inode.
[EIO] An I/O error occurred while reading from or writing to the file system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2), umask(2)

4.2 Berkeley Distribution August 26, 1985 2

MKNOD(2)

NAME

UNIX Programmer’s Manual 'MKNOD(2)

mknod ~ make a special file

SYNOPSIS

mknod(path, mode, dev)
char spath;
int mode, dev;

DESCRIPTION :

Mbknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process’s
mode mask (see umask(2))). The first block pointer of the i-node is initialized from dev and
is used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent
specification of a character or block I/0 device. If mode does not indicate a block special or
character special device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:

4th Berkeley Distribution

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The process’s effective user ID is not super-user.

[EPERM] The pathname contains a character with the high-order bit set.

[EIO] An /O error occurred while making the directory entry or allocating the
inode.

[ENOSPC] The directory in which the entry for the new node is being placed cannot be
extended because there is mo space left on the file system containing the
directory.

[ENOSPC] There are no free inodes on the file system on which the node is being
created.

[EPQUOT] The directory in which the entry for the new node is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

[EDQUOT] . The user’s quota:of inodes on the file system on which the node is being
created has been exhausted.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

May 23, 1986 1

MKNOD(2) UNIX Programmer’s Manual MKNOD(2)

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2), umask(2)

4th Berkeley Distribution May 23, 1986 : 2

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

NAME
mount — mount file system

SYNOPSIS
#include <sys/mount.h>
mount(type, dir, flags, data)
int type;
char =dir;
int flags;
caddr__t data;
DESCRIPTION
mount attaches a file system to a directory. After a successful return, references to direc-
tory dir will refer to the root directory on the newly mounted file system. Dir is a pointer
to a null-terminated string containing a path name. Dir must exist already, and must be a
directory. Its old contents are inaccessible while the file system is mounted.

The flags argument determines whether the file system can be written on, and if set-uid
execution is allowed. Physically write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are updated, whether or not any
explicit write is attempted.

Type indicates the type of the filesystem. It must be one of the types defined in mount.h.
Data is a pointer to a structure which contains the type specific arguments to mount. Below
is a list of the filesystem types supported and the type specific arguments to each:

MOUNT_UFS

struct ufs_args {

} char sfspec; /% Block special file to mount %/
MOUNT_NFS .

#include <nfs/nfs.h>

#include <netinet/in.h>

struct nfs_ args {
struct sockaddr__in #addr; /= file server address #/

fhandle_t =fh; /% File handle to be mounted */
int flags: /% flags #/

int wsize; /* write size in bytes */

int rsize; /* read size in bytes */

int timeo; /#initial timeout in .1 secs ¥/
int retrans; /*times to retry send */

b
RETURN VALUE ,
Mount returns O if the action occurred, and —1 if special is inaccessible or not an appropri-

ate file, if name does not exist, if special is already mounted, if name is in use, or if there
are already too many file systems mounted.

ERRORS
Mount will fail when one of the following occurs:
[EPERM] The caller is not the super-user.
[ENOTBLK] Special is not a block device.
(ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).
[EBUSY] Dir is not a directory, or another process currently holds a reference to it.

Sun Microsystems Rel 3.0 19 August 1985 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)
[EBUSY] No space remains in the mount table.
[EBUSY] The super block for the file system had a bad magic number or an out of
range block size.
[EBUSY] Not enough memory was available to read the cylinder group information
for the file system.
[ENOTDIR] A component of the path prefix in special or name is not a directory.
[EPERM] The pathname of special or name contains a character with the high-order
bit set.
[ENAMETOOLONG]
The pathname of special or name was too long.
[ENOENT] Special or name does not exist.
[EACCES] Search permission is denied for a component of the path prefix of special or
name.
[EFAULT] Special or name points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname of
special or name.
[EIO] An I/0O error occurred while reading from or writing to the file system.
SEE ALSO

unmount(2), mount(8)

BUGS

Too many errors appear to the caller as one value.

Sun Microsystems Rel 3.0 19 August 1985 2

NFSSVC(2) UNIX Programmer’s Manual NFSSVC(2)

NAME
nfssvc, async__daemon — NFS daemons

SYNOPSIS
nfssvc(sock)
int sock;

async__daemon(

DESCRIPTION ’
Nfssve starts an NFS daemon listening on socket sock. The socket must be AF_INET, and
SOCK_DGRAM (protocol UDP/IP). The system call will return only if the process is
killed.

Async_daemon implements the NFS daemon that handles asynchronous I/0 for an NFS
client. The system call never returns.

BUGS
These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(8)

Sun Microsystems Rel 3.0 20 August 1985 1

OPEN(2) UNIX Programmer’s Manual OPEN(2)

NAME

open - open a file for reading or writing, or create a new file

SYNOPSIS

#include <sys/file.h>

open(path, flags, mode)
char spath;
int flags, mode;

DESCRIPTION

Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chimod(2) and modified by the process’ umask value (see
umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or’ing the following values

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing
O_NDELAY do not block on open
O_APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0

O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end.
If O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL
is set with O_CREAT, then if the file already exists, the open returns an error. This can be
used to implement a simple exclusive access locking mechanism. If O_EXCL is set and the
last component of the pathname is a symbolic link, the open will fail even if the symbolic link
points to a non-existent name. If the O_NDELAY flag is specified and the open call would
result in the process being blocked for some reason (e.g. waiting for carrier on a dialup line),
the open returns immediately. The first time the process attempts to perform i/o on the open
file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The
file pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls; see close(2).

The system imposes a limit on the number of file descriptors open simultaneously by one pro-
cess. Getdtablesize(2) returns the current system limit.

ERRORS

The named file is opened unless one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] O_CREAT is not set and the named file does not exist.
[ENOENT] A component of the path name that must exist does not exist.

4th Berkeley Distribution May 14, 1986 1

OPEN(2) UNIX Programmer’s Manual OPEN(2)

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] The required permissions (for reading and/or writing) are denied for the

- named flag.

[EACCES] O_CREAT is specified, the file does not exist, and the directory in which it is
to be created does not permit writing.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EISDIR] The named file is a directory, and the arguments specify it is to be opened for
writting. :

[EROFS] The named file resides on a read-only file system, and the file is to be
modified.

[EMFILE] The system limit for open file descriptors per process has already been
reached.

[ENFILE] The system file table is full.

[ENXIO] The named file is a character special or block special file, and the device asso-
ciated with this special file does not exist.

[ENOSPC] O_CREAT is specified, the file does not exist, and the directory in which the
entry for the new file is being placed cannot be extended because there is no
space left on the file system containing the directory.

[ENOSPC] O_CREAT is specified, the file does not exist, and there are no free modes on
the file system on which the file is being created.

[EDQUOT] O_CREAT is spemﬁed the file does not exist, and the directory in which the
entry for the new fie is being placed cannot be extended because the user’s
quota of disk blocks on the file system containing the directory has been
exhausted.

[EDQUOT] O_CREAT is specified, the file does not exist, and the user’s quota of inodes
on the file system on which the file is being created has been exhausted.

[EIO] An /O error occurred while making the directory entry or allocating the
inode for O_CREAT.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

[EFAULT] Path points outside the process’s allocated address space.

[EEXIST] O_CREAT and O_EXCL were specified and the file exists.

[EOPNOTSUPP]

An attempt was made to open a socket (not currently implemented).
SEE ALSO

chmod(2), close(2), dup(2), getdtablesize(2), Iseek(2), read(2), write(2), umask(2)

4th Berkeley Distribution May 14, 1986 2

PIPE(2) UNIX Programmer’s Manual PIPE(2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
pipe(fildes)
int fildes|2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors returned

can be used in read and write operations. When the pipe is written using the descriptor
fildes[1] up to 4096 bytes of data are buffered before the writing process is suspended. A read
using the descriptor fi/des[0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in

the system.

A signal is generated if a write on a pipe with only one end is attempted.
RETURN VALUE '

The function value zero is returned if the pipe was created; -1 if an error occurred.
"ERRORS

The pipe call will fail if:

[EMFILE] Too many descriptors are active.

[ENFILE] The system file table is full.
[EFAULT] The fildes buffer is in an invalid area of the process’s address space.

SEE ALSO
sh(1), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock
will occur.

4th Berkeley Distribution August 26, 1985 1

UNIX Programmer’s Manual

This page intentionally left almost blank.

PROFIL(2) UNIX Programmer’s Manual - PROFIL(2)

NAME
profil - execution time profile

 SYNOPSIS
profil(buff, bufsiz, offset, scale)
char sbuff;

int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (10 milliseconds); offset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with 16 bits of fraction: 0x10000
gives a 1-1 mapping of pc’s to words in buff; 0x8000 maps each pair of instruction words
together.)

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving.a bufsiz
of 0. Profiling is turned off when an execve is executed, but remains on in child and parent
both after a fork. Profiling is turned off if an update in buff would cause a memory fault.

RETURN VALUE
A 0, indicating success, is always returned.

SEE ALSO
gprof(1), setitimer(2), monitor(3)

4th Berkeley Distribution May 14, 1986 1

PTRACE(2) UNIX Programmer’s Manual ‘ PTRACE(2)

NAME :
ptrace — process trace

SYNOPSIS
#include <sys/signal.h>
#include <sys/ptrace.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

Ptrace provides a means by which a parent process may control the execution of a child pro-
cess, and examine and change its core image. Its primary use is for the implementation of
breakpoint debugging. There are four arguments whose interpretation depends on a request
argument. Generally, pid is the process ID of the traced process, which must be a child (no
more distant descendant) of the tracing process. A process being traced behaves normally
until it encounters some signal whether internally generated like “illegal instruction” or exter-
nally generated like “interrupt”. See sigvec(2) for the list. Then the traced process enters a
stopped state and its parent is notified via waiz(2). When the child is in the stopped state, its
core image can be examined and modified using ptrace. If desired, another ptrace request can
then cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

PT_TRACE_ME
This request is the only one used by the child process; it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if
the parent does not expect to trace the child.

PT_READ_I, PT_READ_D
‘ The word in the child process’s address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-11), request PT_READ_I indicates I space,
PT_READ_D D space. Addr must be even on some machines. The child must be
stopped. The input data is ignored.

PT_READ_U
The word of the system’s per-process data area corresponding to addr is returned. Addr
must be even on some machines and less than 512. This space contains the registers and
other information about the process; its layout corresponds to the user structure in the
system.

PT_WRITE_IL, PT_WRITE_D
The given data is written at the word in the process’s address space corresponding to
addr, which must be even on some machines. No useful value is returned. If [and D
space are separated, request PT_WRITE_I indicates I space, PT_WRITE_D D space.
Attempts to write in pure procedure fail if another process is executing the same file.

PT_WRITE_U
The process’s system data is written, as it is read with request PT_READ_U. Only a few
locations can be written in this way: the general registers, the floating point status and
registers, and certain bits of the processor status word.

PT_CONTINUE
The data argument is taken as a signal number and the child’s execution continues at
location addr as if it had incurred that signal. Normally the signal number will be either
0 to indicate that the signal that caused the stop should be ignored, or that value fetched
out of the process’s image indicating which signal caused the stop. If addr is (int »)1 then
execution continues from where it stopped.

_4th Berkeley Distribution } May 23, 1986 - 1

PTRACE(2) UNIX Programmer’s Manual PTRACE(2)

PT_KILL
The traced process terminates.

PT_STEP
Execution continues as in request PT_CONTINUE; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal number from the
stop is SIGTRAP. (On the VAX-11 the T-bit is used and just one instruction is exe-
cuted.) This is part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request PT_TRACE_ME) can be used only when the sub-
ject process has stopped. The wait call is used to determine when a process stops; in such a
case the “termination” status returned by wait has the value 0177 to indicate stoppage rather
than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse-
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP. '

On a VAX-11, “word” also means a 32-bit integer, but the “even” restriction does not apply.

RETURN VALUE

A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
[EIO] The request code is invalid.
[ESRCH] The specified process does not exist.
[E1IO] The given signal number is invalid.
[EIO] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.
SEE ALSO ‘

BUGS

wait(2), sigvec(2), adb(1)

Ptrace is unique and arcane; it should be replaced with a special file that can be opened and
read and written. The control functions could then be implemented with ioct/(2) calls on this

_ file. This would be simpler to understand and have much higher performance.

The request PT_TRACE_ME call should be able to specify signals that are to be treated nor-
mally and not cause a stop. In this way, for example, programs with simulated floating point
(which use “illegal instruction” signals at a very high rate) could be efficiently debugged.

The error indication, -1, is a legitimate function value; errno, (see intro(2)), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution May 23, 1986 2

QUOTA(2) UNIX Programmer’s Manual QUOTA (2)

NAME
quota — manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
char saddr;
DESCRIPTION .

' N.B:: This call is not implemented in the NFS version of the system. The quota call mani-
pulates disk quotas for file systems that have had quotas enabled with setquota(2). The
cmd parameter indicates a command to be applied to the user ID uid. Arg is a command
specific argument and addr is the address of an optional, command specific, data structure
that is copied in or out of the system. The interpretation of arg and addr is given with each
command below.

Q_SETDLIM)
Set disc quota limits and current usage for the user with ID uid. Arg is a major-
minor device indicating a particular file system. Addr is a pointer to a struct dqblk
structure (defined in <sys/quota.h>). This call is restricted to the super-user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID md The remaining
parameters are as for Q_SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID wid. Arg is a major-minor device indicat-
ing a particular file system. Addr is a pointer to a struct dqusage structure (defined
in <sys/quota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. Arg is a major-minor device indicating
the file system to be sync'ed. If the arg parameter is specified as NODEV, all file
systems that have disc quotas will be sync’ed. The uid and addr parameters are
ignored.

Q_SETUID
Change the calling process’s quota limits to those of the user with ID uid. The arg
and addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID wid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqwarn
structure (defined in <sys/quota.h>). This call is restricted to the super-user.

Q_DOWARN

Warn the user with user ID uid about excessive disc usage. This call causes the sys-
tem to check its current disc usage information and print a message on the terminal
of the caller for each file system on which the user is over quota. If the user is
under quota, his warning count is reset to MAX_=* WARN (defined in
<sys/quota.h>). If the arg parameter is specified as NODEYV, all file systems that
have disc quotas will be checked. Otherwise, arg indicates a specific major-minor
device to be checked. This call is restricted to the super-user.

RETURN VALUE
A successful call returns 0, otherwise the value —1 is returned and the global variable
errno indicates the reason for the failure.

4.2 Berkeley Distribution May 15, 1986 1

QUOTA (2) UNIX Programmer’s Manual QUOTA(2)

ERRORS
A quota call will fail when one of the following occurs:

[EINVAL] The kernel has not been compiled with the QUOTA option.
[EINVAL] Cmd isinvalid.

[ESRCH] No disc quota is found for the indicated user.
[EPERM] The call is priviledged and the caller was not the super-user.
[ENODEV] The arg parameter is being interpreted as a major-minor device and it indi-

cates an unmounted file system.

[EFAULT] An invalid eddr is supplied; the associated structure could not be copied in
or out of the kernel.

[EUSERS] The quota table is full.

SEE ALSO
setquota(2), quotaon(8), quotacheck(8)

BUGS

There should be some way to integrate this call with the resource limit interface provided
by setrlimit(2) and getrlimit (2).

The Australian spelling of disk is used throughout the quota facilities in honor of the
implementors.

4.2 Berkeley Distribution May 15, 1986 2

QUOTACTL (2) UNIX Programmer’s Manual QUOTACTL (2)

NAME
quotactl — manipulate disk quotas

SYNOPSIS
#include <ufs/quota.h>

quotactl(cmd, special, uid, addr)

int cmds

char sspecial;

int uid;

caddr__t addr;
DESCRIPTION

The quotactl call manipulates disk quotas. The cmd parameter indicates a command to be
applied to the user ID uwid. Special is a pointer to a null-terminated string containing the
path name of the block special device for the file system being manipulated. The block spe-
cial device must be mounted. Addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of addr is given with
each command below.

Q_QUOTAON
Turn on quotas for a file system. Addr is a pointer to a null terminated string con-
taining the path name of file containing the quotas for the file system. The quota
file must exist; it is normally created with the quotacheck (8) program. This call is
restricted to the super-user.

Q_QUOTAOFF ,
Turn off quotas for a file system. This call is restricted to the super-user.

Q_GETQUOTA
Get disk quota limits and current usage for user uid. Addr is a pointer to a struct
dqblk structure (defined in <ufs/quota.h>). Only the super-user may get the quo-
tas of a user other than himself.

Q_SETQUOTA
Set disk quota limits and current usage for user uid. Addr is a pointer to a struct
dgblk structure (defined in <ufs/quota.h>). This call is restricted to the super-
user.

Q_SETQLIM
Set disk quota limits for user uid. Addr is a pointer to a struct dqblk structure
(defined in <ufs/quota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disk copy of quota usages. This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

ERRORS
A gquotactl call will fail when one of the following occurs:

[EINVAL] Cmd is invalid.
[EPERM] The call is privileged and the caller was not the super-user.

[EINVAL] The special parameter is not a mounted file system or is a mounted file sys-
tem without quotas enabled.

[ENOTBLK] The special parameter is not a block device.

Sun Microsystems Rel 3.0 20 August 1985 1

QUOTACTL (2) UNIX Programmer’s Manual QUOTACTL (2)

[EFAULT] An invalid addr is supplied; the associated structure could not be copied in
or out of the kernel.

[EINVAL] The addr parameter is being interpreted as the path of a quota file which
exists but is either not a regular file or is not on the file system pointed to
by the special parameter.

[EUSERS] The quota table is full.

SEE ALSO
quotaon(8), quotacheck(8)

BUGS
There should be some way to integrate this call with the resource limit interface provided
by setrlimit(2) and getrlimit(2). Incompatible with Melbourne quotas.

Sun Microsystems Rel 3.0 20 August 1985 2

READ(2) UNIX Programmer’s Manual READ(2)

NAME
read, readv - read input

SYNOPSIS
cc = read(d, buf, nbytes)
int cc, d;
char sbuf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;

struct iovec siov;

int iovent;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf. Readv performs the same action, but scatters the input data into the
iovent buffers specified by the members of the iov array: iov[0], iov[1], ..., iov[iovent—1].

For readv, the iovec structure is defined as

struct iovec {
caddr_tiov_base;
int iov_len;
)5 _
Each iovec entry specifies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated
with d (see [seek(2)). Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such an object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and
placed in the buffer. The system guarantees to read the number of bytes requested if the
descriptor references a normal file that has that many bytes left before the end-of-file, but in
no other case.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS .
Read and readv will fail if one or more of the following are true:

[EBADF] D is not a valid file or socket descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EIO] An /O error occurred while reading from the file system. ,
(EINTR] A read from a slow device was interrupted before any data arrived by the

delivery of a signal.
[EINVAL] The pointer associated with d was negative.

4th Berkeley Distribution May 23, 1986 1

READ(2) UNIX Programmer’s Manual READ(2)

[EWOULDBLOCK]
The file was marked for non-blocking I/O, and no data were ready to be read.

In addition, readv may return one of the following errors:

[EINVAL] Iovent was less than or equal to 0, or greater than 16.
[EINVAL] One of the iov_len values in the iov array was negative.
[EINVAL] The sum of the iov_len values in the iov array overflowed a 32-bit integer.

[EFAULT] Part of the iov points outside the process’s allocated address space.

SEE ALSO
dup(2), fentl(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

4th Berkeley Distribution . May 23, 1986 2

READLINK(2) UNIX Programmei’s Manual READLINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc = readlink(path, buf, bufsiz)
int cc;
char spath, «buf:
int bufsiz;
DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer buf which has size buf
siz. The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a -1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EINVAL] The named file is not a symbolic link.
[EIO] An I/0 error occurred while reading from the file system.
[EFAULT] Buf extends outside the process’s allocated address space.
SEE ALSO :

stat(2), Istat(2), symlink(2)

4.2 Berkeley Distribution ~ August 26, 1985 1

REBOOT (2) UNIX Programmer’s Manual REBOOT (2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include <sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION

Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call inter-
face permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program; the
other flags are used in scripts stored on the console storage media, or used in manual
bootstrap procedures. When none of these options (e.3. RB_AUTOBOOT) is given, the sys-
tem is rebooted from file “vmunix” in the root file system of unit O of a disk chosen in a pro-
cessor specific way. An automatic consistency check of the disks is then normally performed.

The bits of howto are:
RB_HALT

the processor is simply halted; no reboot takes place. RB_HALT should be used with
caution.

RB_ASKNAME '
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file “xx(0,0)vmunix” without
asking.

RB_SINGLE ‘
Normally, the reboot procedure involves an automatic disk consistency check and
then multi-user operations. RB_SINGLE prevents the consistency check, rather sim-
ply booting the system with a single-user shell on the console. RB_SINGLE is inter-
preted by the init(8) program in the newly booted system. This switch is not avail-
able from the system call interface.

Only the super-user may reboot a machine.

RETURN VALUES ,
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable errno.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
crash(8), halt(8), init(8), reboot(8)

BUGS
The notion of “console medium”, among other things, is specific to the VAX.

4th Berkeley Distribution May 9, 1985 1

RECV(2) UNIX Programmer’s Manual RECV(2)

NAME .
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;

char sbuf;

int len, flags;

cc = recvirom(s, buf, len, flags, from, fromlen)
int cc, s;

char sbuf;

int len, flags;

struct sockaddr «from;

int sfromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msgf];
int flags;
DESCRIPTION
Recv, recvfrom, and recvmsg are used to receive messages from a socket.

The recv call is normally used only on a connected socket (see connect(2)), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see socket(2)).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioct/(2)) in which case a cc of -1 is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The flags argument to a recv call is formed by or’ing one or more of the values,

#define MSG_OOB 0Ox1 /= process out-of-band data »/
#define MSG_PEEK 0x2 /« peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied param-
eters. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr (

caddr_t msg_name; /+ optional address »/

int msg_namelen; /* size of address »/

struct . iovec *msg_iov; /= scatter/gather array »/
int msg_iovlen; /= # elements in msg_iov »/
caddr_t msg_accrights; /= access rights sent/received #/
int msg_accrightslen;

B
Here msg_name and msg_namelen specify the destination address if the socket is uncon-

nected; msg_name may be given as a null pointer if no names are desired or required. The
msg_iov and msg_iovien describe the scatter gather locations, as described in read(2). A

4.2 Berkeley Distribution .. May 23,1986 1

RECV(2) UNIX Programmer’s Manual RECV(2)

buffer to receive any access rights sent along with the message is specified in msg_accrights,
which has length msg_accrightslen. Access rights are currently limited to file descriptors,
which each occupy the size of an int. -

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.
ERRORS
The calls fail if:
[EBADF] The argument s is an invalid descriptor.
[ENOTSOCK] The argument s is not a socket.
[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.
[EINTR] The receive was interrupted by delivery of a signal before any data was
available for the receive.
[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.
SEE ALSO

fentl(2), read(2), send(2), select(2), getsockopt(2), socket(2)

4.2 Berkeley Distribution May 23, 1986 2

RENAME(2) UNIX Programmer’s Manual RENAME(2)

NAME

rename - change the name of a file

SYNOPSIS

rename(from, to)
char sfrom, sto;

DESCRIPTION

Rename causes the link named from to be renamed as fo. If to exists, then it is first removed.
Both from and to must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

If the final component of from is a symbolic link, the symbolic link is renamed, not the file or
directory to which it points.

CAVEAT

The system can deadlock if a loop in the file system graph is present. This loop takes the
form of an entry in directory “a”, say “a/foo”, being a hard link to directory “b”, and an
entry in directory “b”, say “‘b/bar”, being a hard link to directory “a”. When such a loop
exists and two separate processes attempt to perform “‘rename a/foo b/bar” and “rename
b/bar a/foo”, respectively, the system may deadlock attempting to lock both directories for
modification. Hard links to directories should be replaced by symbolic links by the system
administrator.

RETURN VALUE

A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errno indicates the reason for the failure.

ERRORS

Rename will fail and neither of the argument files will be affected if any of the following are
true:

[EINVAL] Either pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

[ENOENT] A component of the from path does not exist, or a path prefix of Flto does
not exist.

[EACCES] A component of either path prefix denies search permission.

[EACCES] The requested link requires writing in a directory with a mode that denies
write permission.

[EPERM] The directory containing from is marked sticky, and neither the containing
directory nor from are owned by the effective user ID.

[EPERM] The ¢to file exists, the directory containing ¢o is marked sticky, and neither the
containing directory nor fo are owned by the effective user ID.

[ELOOP] Too many symbolic links were encountered in translating either pathname.
[ENOTDIR] A component of either path prefix is not a directory.

[ENOTDIR] From is a directory, but ¢o is not a directory.

[EISDIR] To is a directory, but from is not a directory.

[EXDEV] The link named by fo and the file named by from are on different logical dev-
ices (file systems). Note that this error code will not be returned if the.

42 rBerkeley Distribution May 22, 1986 1

RENAME(2) UNIX Programmer’s Manual RENAME(2)

implementation permits cross-device links.

[ENOSPC] The directory in which the entry for the new name is being placed cannot be
extended because there is no space left on the file system containing the
directory.

[EDQUOT] The directory in which the entry for the new name is being placed cannot be
extended because the user’s quota of disk blocks on the file system containing
the directory has been exhausted.

[EIO] An /O error occurred while making or updating a directory entry.
[EROFS] The requested link requires writing in a directory on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[EINVAL] From is a parent directory of to, or an attempt is made to rename “.” or “..”.
[ENOTEMPTY]
To is a directory and is not empty.
SEE ALSO
open(2)

4 7 Rerkelev Distribution May 22, 1986 2

RMDIR (2) UNIX Programmer’s Manual . RMDIR(2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char spath;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than “.” and “..”.

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a -1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTDIR] A component of the path is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG] :
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named directory does not exist.
[ELOOP] Too many symbolic links were encountered in translating the pathname.

[ENOTEMPTY] :
The named directory contains files other than “.”” and “..” in it.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be
removed. oo o '
[EPERM] The directory containing the directory to be removed is marked sticky, and

neither the containing directory nor the directory to be removed are owned
by the effective user ID.

[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EIO] An I/O error occurred while deleting the directory entry or deallocating the
inode.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
SEE ALSO

mkdir(2), unlink(2)

4.2 Berkelev Distribution Anonct 74 1088 : 1

SELECT(2) UNIX Programmer’s Manua:l SELECT(2)

NAME

select - synchronous I/O multiplexing
SYNOPSIS

#include <sys/types.h>

#include <sys/time.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;

fd_set sreadfds, swritefds, sexceptfds;

struct timeval stimeout;

FD_SET(fd, &fdset)
FD_CLR(fd, &fdset)
FD_ISSET(fd, &fdset)
FD_ZERO(&fdset)
int fd;
fd_set fdset;

DESCRIPTION
Select examines the I/0 descriptor sets whose addresses are passed in readfds, writefds, and
exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or
have an exceptional condition pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descriptors from O through nfds-1 in the descriptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those descriptors that
are ready for the requested operation. The total number of ready descriptors in all the sets is
returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are pro-
vided for manipulating such descriptor sets: FD_ZERO(&fdset) initializes a descriptor set
fdset to the null set. FD_SET(fd, <&fdset) includes a particular descriptor fd in fdser.
FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is nonzero if fd is a
member of fdset, zero otherwise. The behavior of these macros is undefined if a descriptor
value is less than zero or greater than or equal to FD_SETSIZE, which is normally at least
equal to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
.complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors are of
interest. ’

RETURN VALUE
Select returns the number of ready descriptors that are contained in the descriptor sets, or -1
if an error occurred. If the time limit expires then select returns 0. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

ERRORS
An error return from select indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.
[EINTR] A signal was delivered before the time limit expired and before any of the
' selected events occurred.
[EINVAL] The specified time limit is invalid. One of its components is negative or t0o
large.

4.2 Berkeley Distribution May 15, 1986 1

SELECT(2) UNIX Programmer’s Manual SELECT(2)

SEE ALSO
accept(2), connect(2), read(2), write(2), recv(2), send(2), getdtablesize(2)

BUGS

B Although the provision of getdtablesize(2) was intended to allow user programs to be written
independent of the kernel limit on the number of open files, the dimension of a sufficiently
large bit field for select remains a problem. The default size FD_SETSIZE (currently 256) is
somewhat larger than the current kernel limit to the number of open files. However, in order
to accommodate programs which might potentially use a larger number of open files with
select, it is possible to increase this size within a program by providing a larger definition of
FD_SETSIZE before the inclusion of <sys/types.h>.

Select should probably return the time remaining from the original timeout, if any, by modi-
fying the time value in place. This may be implemented in future versions of the system.
Thus, it is unwise to assume that the timeout value will be unmodified by the select call.

4.2 Berkeley Distribution May 15, 1986 2

SEND(2) : UNIX Programmer’s Manual SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;

char smsg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char smsg;

int len, flags;

struct sockaddr sto;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;

struct msghdr msg(];

int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.

The address of the target is given by to with tolen specifying its size. The length of the mes-
sage is given by /en. If the message is too long to pass atomically through the underlying pro-
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking I/O mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB Ox1 /= process out-of-band data »/

#define MSG_DONTROUTE 0x4 /= bypass routing, use direct interface »/
The flag MSG_OOB is used to send *“‘out-of-band” data on sockets that support this notion
(e.g. SOCK_STREAM); the underlying protocol must also support “out-of-band” data.
MSG_DONTROUTE is usually used only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.
ERRORS
[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a parameter.
[EMSGSIZE] The socket requires that message be sent atomically, and the size of the

message to be sent made this impossible.

4 7 Rerkelev Distribution May 14, 1986 1

SEND(2) » UNIX Programmer’s Manual SEND(2)

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would

block.

[ENOBUFS] The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

[ENOBUFS] The output queue for a network interface was full. This generally indi-

cates that the interface has stopped sending, but may be caused by tran-
sient congestion.

SEE ALSO
fentl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

- 4.2 Berkeley Distribution May 14, 1986 : 2

SETGROUPS(2) ' UNIX Programmer’s Manual SETGROUPS(2)

NAME
setgroups - set group access list

SYNOPSIS
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, sgidset;
DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidser.

The parameter ngroups indicates the number of entries in the array and must be no more
than NGROUPS, as defined in <sys/param.h>.

Only the super-user may set new groups.

RETURN VALUE .

A 0 value is returned on success, —1 on error, with a error code stored in errno.
ERRORS

The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.
SEE ALSO

getgroups(2), initgroups(3X)

BUGS
The gidset array should be of type gid_t, but remains integer for compatibility with earlier
systems.

4 7 Rerkelev Distribution May 13, 1986 1

SETPGRP(2) UNIX Programmer’s Manual SETPGRP(2)

NAME
setpgrp — set process group

SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;
DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request faxled -1 is returned and
the global variable errno indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] ~ The requested process does not exist.
[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(2)

4th Berkeley Distribution May 9, 1985 1

SETQUOTA(2) UNIX Programmer’s Manual SETQUOTA(2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota(special, file)
char sspecial, sfile;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special
device on which a mounted file system exists. If file is nonzero, it specifies a file in that file
system from which to take the quotas. If file is 0, then quotas are disabled on the file system.
The quota file must exist; it is normally created with the quotacheck(8) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(8), quotaon(8)

RETURN VALUE
A 0 return value indicates a successful call. A value of -1 is returned when an error occurs
and errno is set to indicate the reason for failure.

ERRORS
Setquota will fail when one of the following occurs:

[ENOTDIR] A component of either path prefix is not a directory.

[EINVAL] Either pathname. contains a character with the high-order bit set.
[EINVAL] The kernel has not been compiled with the QUOTA option.
[ENAMETOOLONG]

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

[ENODEYV] Special does not exist.
[ENOENT] File does not exist.

[ELOOP] Too many symbolic links were encountered in translating either pathname.

[EPERM] The caller is not the super-user.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EROFS] File resides on a read-only file system.

[EACCES] Search permission is denied for a component of either path prefix.

[EACCES] File resides on a file system different from special.
[EACCES] File is not a plain file.

[EIO] An I/0O error occurred while reading from or writing to the file containing the
quotas.

[EFAULT] Special or path points outside the process’s allocated address space.

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4.2 Berkeley Distribution . August 26, 1985 1

SETREGID(2) ' UNIX Programmer’s Manual SETREGID(2)

NAME
setregid - set real and effective group ID

SYNOPSIS
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION ’
The real and effective group ID’s of the current process are set to the arguments.
Unprivileged users may change the real group ID to the effective group ID and vice-versa;
only the super-user may make other changes.

Supplying a value of -1 for either the real or effective group ID forces the system to substitute
the current ID in place of the -1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing
the effective group-id to the real group-id was specified.
SEE ALSO

getgid(2), setreuid(2), setgid(3)

4.2 Berkeley Distribution May 15, 1985 1

SETREUID(2) UNIX Programmer’s Manual SETREUID(2)

NAME
setreuid - set real and effective user ID’s

SYNOPSIS
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID’s of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Unprivileged users may change
the real user ID to the effective user ID and vice-versa; only the super-user may make other
changes.

RETURN VALUE
‘ Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned

and errno is set to indicate the error.

ERRORS .
[EPERM] The current process is not the super-user and a change other than changing
the effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

~ 4th Berkeley Distribution ‘May 9, 1985 1

"SHUTDOWN(2) UNIX Programmer’s Manual SHUTDOWN(2)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with
s to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then
further sends will be disallowed. If Aow is 2, then further sends and receives will be disal-

lowed.
DIAGNOSTICS

A 0 is returned if the call succeeds, -1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.
[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), sqcket(Z)

4.2 Berkeley Distribution _ May 15, 1985 1

SIGBLOCK (2) UNIX Programmer’s Manual SIGBLOCK (2)

NAME
sigblock - block signals

SYNOPSIS
#include <signal.h>

sigblock(mask);
int mask;

mask = sigmask(signum)

DESCRIPTION
Sigblock causes the signals specified in mask to be added to the set of signals currently being
blocked from delivery. Signals are blocked if the corresponding bit in mask is a 1; the macro
sigmask is provided to construct the mask for a given signum.

It is not possible to block SIGKILL, SIGSTOP, or SIGCONT,; this réstriction is silently
imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigsetmask(2)

4.2 Berkeley Distribution May 14, 1986 : . 1

SIGPAUSE(2) UNIX Programmer’s Manual ’ SIGPAUSE(2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmask is usually 0 to indicate that no signals
are now to be blocked. Sigpause always terminates by being mterrupted returning -1 with
errno set to EINTR.

In normal usage, a signal is blocked using sigblock(2), to begin a critical section, variables
modified on the occurrence of the signal are examined to determine that there is no work to
be done, and the process pauses awaiting work by using sigpause with the mask returned by
sigblock.

SEE ALSO
sigblock(2), sngvec(Z)

4th Berkeley Distribution May 15, 1986 1

SIGRETURN(2) UNIX Programmer’s Manual SIGRETURN(2)

NAME
sigreturn - return from signal

SYNOPSIS
#include <signal.h>

struct sigcontext {
int sc_onstack;

int sc_mask;

int SC_sp;

int sc_fp;

int sc_ap;

int SC_pC;

int SC_ps;

%

sigreturn(scp);

struct sigcontext sscp;
DESCRIPTION

Sigreturn allows users to atomically unmask, switch stacks, and return from a signal context.
The processes signal mask and stack status are restored from the context. The system call
does not return; the users stack pointer, frame pointer, argument pointer, and processor status
longword are restored from the context. Execution resumes at the specified pc. This system
call is used by the trampoline code, and /ongjmp(3) when returning from a signal to the previ-
ously executing program.

NOTES :
This system call is not available in 4.2BSD, hence it should not be used if backward compati-
bility is needed.

RETURN VALUE
If successful, the system call does not return. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

ERRORS
Sigreturn will fail and the process context will remain unchanged if one of the following
occurs.

[EFAULT] Scp points to memory that is not a valid part of the process address space.

[EINVAL] The process status longword is invalid or would improperly raise the privilege
level of the process.

SEE ALSO
sigvec(2), setjmp(3)

4.3 Berkeley Distribution June 30, 1985 1

SIGSETMASK (2) UNIX Programmer’s Manual SIGSETMASK(2)

NAME
sigsetmask - set current signal mask

SYNOPSIS
#include <signal.h>

sigsetmask(mask);
int mask;

mask = sigmask(signum)

DESCRIPTION
Sigsetmask sets the current signal mask (those signals that are blocked from delivery). Signals
are blocked if the corresponding bit in mask is a 1; the macro sigmask is provided to con-
struct the mask for a given signum.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2), sigblock(2), sigpause(2)

4.2 Berkeley Distribution May 14, 1986 . 1

SIGSTACK (2) UNIX Programmer’s Manual SIGSTACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include <signal.h>

struct sigstack (
caddr_t ss_sp;
int ss_onstack;
%
sigstack(ss, oss);
struct sigstack sss, s0ss;

DESCRIPTION

Sigstack allows users to define an alternate stack on which signals are to be processed. If ss is
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the pro-
cess is currently executing on that stack. When a signal’s action indicates its handler should
execute on the signal stack (specified with a sigvec(2) call), the system checks to see if the pro-
cess is currently executing on that stack. If the process is not currently executing on the signal
stack, the system arranges a switch to the signal stack for the duration of the signal handler’s
execution. If oss is non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not ‘“‘grown” automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur. :

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs. :

[EFAULT] Either ss or oss points to memory that is not a valid part of the process
address space.

SEE ALSO _
sigvec(2), setjmp(3)

4.2 Berkeley Distribution June 30, 1985 1

SIGVEC(2) UNIX Programmer’s Manual i SIGVEC(2)

NAME
sigvec - software signal facilities

SYNOPSIS
#include <signal.h>

struct sigvec {

int (=sv_handler)();

int sv_mask;

int sv_{flags;
%
sigvec(sig, vec, ovec)
int sig;
struct sigvec svec, sovec;

DESCRIPTION

The system defines a set of signals that may be delivered to a process. Signal delivery resem-
bles the occurence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per-
handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of
signals currently blocked from delivery to a process. The signal mask for a process is initial-
ized from that of its parent (normally 0). It may be changed with a sigblock(2) or sigset-
mask(2) call, or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the
process. When a signal is delivered, the current state of the process is saved, a new signal
mask is calculated (as described below), and the signal handler is invoked. The call to the
handler is arranged so that if the signal handling routine returns normally the process will
resume execution in the context from before the signal’s delivery. If the process wishes to
resume in a different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process’ signal handler (or until a sighlock or sigsetmask call is made). This mask is formed
by taking the current signal mask, adding the signal to be delivered, and or’ing in the signal
mask associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if the SV_ONSTACK bit
is set in sv_flags, the system will deliver the signal to the process on a signal stack, specified
with sigstack(2). If ovec is non-zero, the previous handling information for the signal is
returned to the user.

The following is a list of all signals with names as in the include file <signal h>:
SIGHUP 1 hangup

SIGINT 2 interrupt
SIGQUIT 3« quit
SIGILL 4x illegal instruction

SIGTRAP 5+ trace trap
SIGIOT 6+ IOT instruction
SIGEMT 7+ EMT instructjon

4th Berkeley Distribution ~ January 8, 1986 1

SIGVEC(2) UNIX Programmer’s Manual SIGVEC(2)

SIGFPE 8+ floating point exception

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10+ bus error

SIGSEGV 11+ segmentation violation

SIGSYS 12+ bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGURG 16 urgent condition present on socket
SIGSTOP 171 stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19e continue after stop (cannot be blocked)
SIGCHLD 20e child status has changed

SIGTTIN 211 background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23e i/0 is possible on a descriptor (see fentl(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28e window size change

SIGUSRI1 30 user defined signal 1

SIGUSR2 31 user defined signal 2

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting
sv_handler to SIG_DFL; this default is termination (with a core image for starred signals)
except for signals marked with e or f. Signals marked with e are discarded if the action is
SIG_DFL,; signals marked with } cause the process to stop. If sv_handler is SIG_IGN the sig-
nal is subsequently ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is normally restarted. The call
can be forced to terminate prematurely with an EINTR error return by setting the
SV_INTERRUPT bit in sv_flags. The affected system calls are read(2) or write(2) on a slow
device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, the signal stack, and
the restart/interrupt flags.

Execve(2) resets all caught signals to default action and resets all signals to be caught on the
user stack. Ignored signals remain ignored; the signal mask remains the same; signals that
interrupt system calls continue to do so.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

The SV_INTERRUPT flag is not available in 4.2BSD, hence it should not be used if back-
ward compatibility is needed.

RETURN VALUE

A 0 value indicated that the call succeeded. A -1 return value indicates an error occurred
and errno is set to indicated the reason.

ERRORS

Sigvec will fail and no new signal handler will be installed if one of the following occurs:

4th Berkeley Distribution - January 8, 1986 2

SIGVEC(2) UNIX Programmer’s Manual SIGVEC(2)

[EFAULT] Either vec or ovec points to memory that is not a valid part of the process
address space.
[EINVAL] Sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
[EINVAL] An attempt is made to ignbre SIGCONT (by default SIGCONT is ignored).
- SEE ALSO

kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2), sigstack(2), sigvec(2),

setjmp(3), siginterrupt(3), tty(4)
NOTES (VAX-11)

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext *scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter that is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from
the other SIGILL traps by having PSL_CM set in the psl). Scp is a pointer to the sigcontext
structure (defined in <signal.h>), used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these sym-

bols are defined in <signal.h>:
Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault
Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

BUGS .
This manual page is still confusing.

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

Code

FPE_INTOVF_TRAP
FPE_INTDIV_TRAP
FPE_FLTOVF_TRAP
FPE_FLTDIV_TRAP
FPE_FLTUND_TRAP
FPE_DECOVF_TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF_FAULT
FPE_FLTDIV_FAULT
FPE_FLTUND_FAULT

ILL_RESAD_FAULT
ILL_PRIVIN_FAULT

ILL_RESOP_FAULT

hardware supplied code

January 8, 1986 3

SOCKET(2) UNIX Programmer’s Manual SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will
take place; this selects the protocol family which should be used. The protocol family gen-
erally is the same as the address family for the addresses supplied in later operations on the
socket. These families are defined in the include file <sys/socket.h>. The currently under-
stood . formats are :

PF_UNIX (UNIX internal protocols),
PF_INET (ARPA Internet protocols),
PF_NS (Xerox Network Systems protocols), and

PF_IMPLINK (IMP “host at IMP” link layer).

The socket has the indicated type, which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supported. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed
(typically small) maximum length). A SOCK_SEQPACKET socket may provide a sequenced,
reliable, two-way connection-based data transmission path for datagrams of fixed maximum
length; a consumer may be required to read an entire packet with each read system call. This
facility is protocol specific, and presently implemented only for PF_NS. SOCK_RAW sockets
provide access to internal network protocols and interfaces. The types SOCK_RAW, which is
available only to the super-user, and SOCK_RDM, which is planned, but not yet imple-
mented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type within a given protocol family. However, it
is possible that many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the “communication
domain” in which communication is to take place; see protocois(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connec- -
tion to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a c/ose(2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered

4.2 Berkeley Distribution May 23, 1986 1

SOCKET(2) UNIX Programmer’s Manual SOCKET (2)

broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the specific
code in the global variable errno. The protocols optionally keep sockets “warm” by forcing
transmissions roughly every minute in the absence of other activity. An error is then indi-
cated if no response can be elicited on an otherwise idle connection for a extended period
(e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this
causes naive processes, which do not handle the signal, to exit.

.SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sockeis. The

only difference is that read(2) calls will return only the amount of data requested, and any
remaining in the arriving packet will be discarded.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents
named in send(2) calls. Datagrams are generally received with recvfrom(2), which returns the
next datagram with its return address.

An fcntl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives. It may also enable non-blocking I/O and asynchronous notification
of I/O events via SIGIO.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h>. Setsockopt(2) and getsockopt(2) are used to set and get options,
respectively. ’ - :

RETURN VALUE

A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS

The socket call fails if:

[EPROTONOSUPPORT]
The protocol type or the specified protocol is not supported within this
domain.

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCESS] Permission to create a socket of the specified type and/or protocol is
denied.

[ENOBUFS] Insufficient buffer space is available. The socket cannot be created until
sufficient resources are freed.

SEE ALSO

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)

“An Introductory 4.3BSD Interprocess Communication Tutorial.” (reprinted in UNIX
Programmer’s Supplementary Documents Volume 1, PS1:7) “An Advanced 4.3BSD Interpro-
cess Communication Tutorial.” (reprinted in UNIX Programmer’s Supplementary Documents
Volume 1, PS1:8)

4.2 Berkeley Distribution May 23, 1986 , | 2

SOCKETPAIR(2) UNIX Programmer’s Manual SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d,
of the specified type, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[0] and sv[l]. The two sockets are indistinguish-
able.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT] The address sv does not specify a valid part of the process address
space.

SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

4.2 Berkeley Distribution May 15, 1985 1

STAT(2) UNIX Programmer’s Manual STAT(2)

NAME
stat, Istat, fstat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char spath;
struct stat sbuf;

Istat(path, buf)
char spath;
struct stat sbuf

fstat(fd, buf)
int fd;
struct stat sbuf;

DESCRIPTION
Stat obtains information about the file path. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be
reachable.

Lstat is like stat except in the case where the named file is a symbolic link, in which case szat
returns information about the link, while szat returns information about the file the link refer-
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor,
such as would be obtained by an open call.

Buf is a pointer to a stat structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat (.
dev_t st_dev; /= device inode resides on »/
ino_t st_ino; /= this inode’s number »/
u_short st_mode; /s protection s/
short st_nlink; /+ number or hard links to the file »/
short st_uid; /+ user-id of owner »/
short st_gid; /# group-id of owner */
dev_t st_rdev; /+ the device type, for inode that is device »/
off _t st_size; /= total size of file »/
time_t st_atime; /= file last access time »/
int st_sparel;
time_t st_mtime; /= file last modify time »/
int st_spare2;
time_t st_ctime; /= file last status change time */
int st_spare3;
long st_blksize; /+ optimal blocksize for file system i/0 ops */
long st_blocks; /# actual number of blocks allocated »/
long st_spare4[2];

|
st_atime Time when file data was last read or modified. Changed by the following system
calls: mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency,
st_atime is not set when a directory is searched, although this would be more
logical. '

4th Berkeley Distribution May 12, 1986 1

STAT(2) UNIX Programmer’s Manual STAT(2)

st_mtime Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimes(2),
write(2). |

st_ctime Time when file status was last changed. It is set both both by writing and chang-
ing the i-node. Changed by the following system calls: chmod(2) chown(2),
link(2), mknod(2), rename(2), unlink(2), utimes(2), write(2).

The status information word st_mode has bits:
#define S_IFMT 0170000 /= type of file */
#define S_IFDIR 0040000 /+ directory »/
#define S_IFCHR 0020000 /= character special »/
#define S_IFBLK 0060000 /# block special »/
#define S_IFREG 0100000 /= regular »/
#define S_IFLNK 0120000 /+ symbolic link =/
#define S_IFSOCK 0140000 /+= socket »/

#define S_ISUID 0004000 /# set user id on execution »/

#define S_ISGID 0002000 /# set group id on execution »/

#define S_ISVTX 0001000 /= save swapped text even after use /

#define S_IREAD 0000400 /= read permission, owner */

#define S_IWRITE 0000200 /= write permission, owner */

#define S_IEXEC 0000100 /= execute/search permission, owner =/

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Stat and Istat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters. '

[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EFAULT] Buf or name points to an invalid address.

[EIO] An /O error occurred while reading from or writing to the file system.

Fstat will fail if one or both of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT] Buf points to an invalid address.

(EIO] An I/O error occurred while reading from or writing to the file system.
CAVEAT

The fields in the stat structure currently marked st_sparel, st_spare2, and st_spare3 are
present in preparation for inode time stamps expanding to 64 bits. This, however, can break
certain programs that depend on the time stamps being contiguous-(in calls to utimes(2)).

4th Berkeley Distribution May 12, 1986 2

STAT(2) UNIX Programmer’s Manual STAT(2)

SEE ALSO
chmod(2), chown(2), utimes(2)

BUGS
Applying fstat to a socket (and thus to a pipe) returns a zero’d buffer, except for the blocksize
field, and a unique device and inode number.

_4th Berkeley Distribution May 12, 1986 3

STATFS(2) UNIX Programmer’s Manual | STATFS(2)

NAME
statfs — get file system statistics

SYNOPSIS
#include <sys/vfs.h>

statfs(path, buf)

char #path;

struct statfs shuf;

fstatfs(fd, buf)

int f£d;

struct statfs sbuf;
DESCRIPTION

Statfs returns information about a mounted file system. Path is the pathname of any file
within the mounted filesystem. Buf is a pointer to a statfs structure defined as follows:

typedef struct {
long vall2];
} fsid_t;

struct statfs {
long f__type:
long f__bsize;
long f__blocks;
long f__bfree;
long f__bavail;
long f_files;
long f_ffree;
fsid_t f_fsid;

/% type of info, zero for now */

/* fundamental file system block size */

/% total blocks in file system */

/% free blocks */

/% free blocks available to non-superuser */
/% total file nodes in file system */

/% free file nodes in fs */

/* file system id */

long f_spare[7]; /= spare for later */

|5

Fields that are undefined for a particular file system are set to —1. Fstatfs returns the
same information about an open file referenced by descriptor fd.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, —1 is returned and the
. global variable errno is set to indicate the error.

ERRORS

Statfs fails if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[EPERM] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

The pathname was too long.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
- [EFAULT] Buf or name points to an invalid address. -

[ELOOP] Too many symbolic links were encountered in translating the pathname.
(E10] An I/0 error occurred while reading from or writing to the file system.
Sun Microsystems Rel 3.0 19 August 1985 1

STATFS(2) : UNIX Programmer’s Manual STATFS(2)

Fistatfs fails if one or both of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EFAULT] Buf points to an invalid address.
[E1I0] An I/0 error occurred while reading from or writing to the file system.

Sun Microsystems Rel 3.0 19 August 1985 2

SWAPON(2) UNIX Programmer’s Manual SWAPON(2)

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapon(special)
char sspecial;

DESCRIPTION _
Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Swapon succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters. .

[ENOENT] The named device does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The caller is not the super-user.

[ENOTBLK] Special is not a block device.

[EBUSY] The device specified by special has already been made available for swapping
[EINVAL] The device configured by special was not configured into the system as a swap
» device.
[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).
[EIO] An I/O error occurred while opening the swap device.
[EFAULT] Special points outside the process’s allocated address space.
SEE ALSO
swapon(8), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkeley Distribution March 9, 1986 1

SYMLINK(2)

NAME

UNIX Programmer’s Manual SYMLINK (2)

symlink - make symbolic link to a file
SYNOPSIS
symlink(namel, name2)
char snamel, sname2;

DESCRIPTION
A symbolic link name2 is created to namel (name2 is the name of the file created, namel is

the string used in creating the symbolic link). Either name may be an arbxtrary path name;
the files need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a -1 value is returned.

ERRORS

" The symbolic link is made unless on or more of the following are true:

[ENOTDIR] A component of the name2 prefix is not a directory.

[EINVAL] . Either namel or name2 contains a character with the high-order bit set.

[ENAMETOOLONG]

A component of either pathname exceeded 255 characters, or the entire
length of either path name exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] A component of the name2 path prefix denies search permission.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EEXIST] Name? already exists.

[EIO] An [/O error occurred while making the directory entry for name2, or allocat-
ing the inode for name2, or writing out the link contents of name?2.

[EROFS] The file name2 would reside on a read-only file system.

[ENOSPC] The directory in which the entry for the new symbolic link is being placed
cannot be extended because there is no space left on the file system contain-
ing the directory. v

[ENOSPC] The new symbolic link cannot be created because there there is no space left
on the file system that will contain the symbolic link.

[ENOSPC] There are no free inodes on the file system on which the symbolic link is
being created.

[EDQUOT] The directory in which the entry for the new symbolic link is being placed
cannot be extended because the user’s quota of disk blocks on the file system
containing the directory has been exhausted.

[EDQUOT] The new symbolic link cannot be created because the user’s quota of disk
blocks on the file system that will contain the symbolic link has been
exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the symbolic link is
being created has been exhausted.

(EIO] An I/O error occurred while making the directory entry or allocating the
inode.

[EFAULT] Namel or name2 points outside the process’s allocated address space.

SEE ALSO

4 2 Berkeley Distribution

link(2), In(1), unlink(2)

August 26, 1985 1

SYNC(2) UNIX Programmer’s Manual SYNC(2)

NAME
~ sync - update super-block
SYNOPSIS
sync()
DESCRIPTION

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block I/0.

Sync should be used by programs that examine a file system, for example fsck, df, etc. Sync is
mandatory before a boot. '

SEE ALSO
fsync(2), sync(8), update(8)

- BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution June 30, 1985 1

SYSCALL(2) UNIX Programmer’s Manual SYSCALL(2)

NAME
syscall - indirect system call

SYNOPSIS
#include <syscall.h>

syscall(number, arg, ...) (VAX-11)

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified number,
register arguments 70 and 7/ and further arguments arg. Symbolic constants for system calls
can be found in the header file <syscall h>. ’

The r0 value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system-calls such as pipe(2), which return values in register rl.

‘4th Berkeley Distribution April 16, 1986 _ 1

TRUNCATE(2) UNIX Programmer’s Manual TRUNCATE(2)

NAME

truncate - truncate a file to a specified length

SYNOPSIS

truncate(path, length)
char spath;
off_t length;

ftruncate(fd, length)
int fd;
off_t length;

DESCRIPTION

Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun-
cate, the file must be open for writing.

RETURN VALUES

A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable errno specifies the error. ‘

ERRORS

Truncate succeeds unless: ,
[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
. A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.
[EACCES] The named file is not writable by the user.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EIO] An I/O error occurred updating the inode.

[EFAULT] Path points outside the process’s allocated address space.
Ftruncate succeeds unless:

[EBADF] The fd is not a valid descriptor.

[EINVAL] The fd references a socket, not a file.

[EINVAL] The fd is not open for writing.

SEE ALSO

BUGS

open(2)

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4.2 Berkeley Distribution - March 29, 1986 1

UMASK(2) UNIX Programmer’s Manual : UMASK(2)

NAME
umask - set file creation mode mask

SYNOPSIS
oumask = umask(numask)

int oumask, numask;

DESCRIPTION
Umask sets the process’s file mode creation mask to numask and returns the previous value of

the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child

processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Be;keley Distribution _ May 9, 1985

UNLINK (2) UNIX Programmer’s Manual UNLINK(2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink(path)
char spath;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open, then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error. .

ERRORS
The unlink succeeds unless:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EACCES] Write permission is denied on the directory containing the link to be
removed.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The named file is a directory and the effective user ID of the process is not
the super-user.

[EPERM] The directory containing the file is marked sticky, and neither the containing
directory nor the file to be removed are owned by the effective user ID.

[EBUSY] The entry to be unlinked is the mount point for a mounted file system.

[EIO] An I/O error occurred while deleting the directory entry or deallocating the
inode.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO

close(2), link(2), rmdir(2)

4th Berkeley Distribution May 22, 1985 . 1

UNMOUNT (2) UNIX Programmer’s Manual UNMOUNT (2)

NAME
unmount — remove a file system

SYNOPSIS
unmount(name)
char sname;

DESCRIPTION
Unmount announces to the system that the directory name is no longer to refer to the root
of a mounted file system. The directory name reverts to its ordinary interpretation.

RETURN VALUE .
Unmount returns O if the action occurred; —1 if if the directory is inaccessible or does not
have a mounted file system, or if there are active files in the mounted file system.

ERRORS
Unmount may fail with one of the following errors:

[EPERM] The caller is not the super-user.

[EINVAL] Name is not the root of a mounted file system.

[EBUSY] A process is holding a reference to a file located on the file system.
[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order bit set.
[ENAMETOOLONG]

4 The pathname was too long.
[ENOENT] name does not exist. .
[EACCES] Search permission is denied for a component of the path prefix.
[EFAULT] name points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[E10] An I/0 error occurred while reading from or writing to the file system.
SEE ALSO

mount(2), mount(8), umount(8)

BUGS :
The error codes are in a state of disarray; too many errors appear to the caller as one value.

Sun Microsystems Rel 3.0 19 August 1985 1

UTIMES(2) UNIX Programmer’s Manual UTIMES(2)

NAME
utimes - set file times

SYNOPSIS
#include <sys/time.h>

utimes(file, tvp)
char sfile;
struct timeval tvp(2];
DESCRIPTION _
The utimes call uses the *“accessed” and “updated” times in that order from the ¢tvp vector to
set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The “inode-changed” time of the
file is set to the current time.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
Utime will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name
exceeded 1023 characters.

[ENOENT] The named file does not exist.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EPERM] The process is not super-user and not the owner of the file.
[EACCES] Search permission is denied for a component of the path prefix.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT] File or tvp points outside the process’s allocated address space.
© [EIO] An /O error occurred while reading or writing the affected inode.
SEE ALSO
stat(2)

4th Berkeley Distribution August 26, 1985 : 1

UNIX Programmer's Manual

This page intentionally left almost blank.

VFORK(2) UNIX Programmer’s Manual VFORK (2)

NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

pid = viork()
int pid;

DESCRIPTION

Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur-
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent’s memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns O in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather
than exit if you can’t execve, since exit will flush and close standard I/O channels, and thereby
mess up the parent processes standard I/0 data structures. (Even with fork it is wrong to call
exit since buffered data would then be flushed twice.)

SEE ALSO

fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution June 30, 1985 1

VHANGUP(2) " UNIX Programmer’s Manual VHANGUP(2)

NAME
vhangup - virtually “hangup” the current control terminal

SYNOPSIS
vhangup()

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given “clean’ terminals at login, by revoking access of the previous users’ processes to the
terminal. To effect this, vhangup searches the system tables for references to the control ter-
minal of the invoking process, revoking access permissions on each instance of the terminal
that it finds. Further attempts to access the terminal by the affected processes will yield i/o
errors (EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the con-
trol terminal.

SEE ALSO
init (8)

BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism that takes place on process exit.

4th Berkeley Distribution June 30, 1985 1

WAIT(2) UNIX Programmer’s Manual WAIT(2)

NAME .
wait, wait3 - wait for process to terminate

SYNOPSIS
#include <sys/wait.h>

pid = wait(status)

int pid;

union wait sstatus;

pid = wait(0)

int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;

union wait sstatus;

int options;

struct rusage srusage;

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child processes ter-
minates. If any child has died since the last wait, return is immediate, returning the process
id and exit status of one of the terminated children. If there are no children, return is
immediate with the value -1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains
the low byte of the argument to exit supplied by the child process; the low byte of status con-
tains the termination status of the process. A more precise definition of the status word is
given in <sys/wait.h>.

Wait3 provides an alternate interface for programs that must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes that wish to report status
(WNOHANG), and/or that children of the current process that are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should also have their status reported
(WUNTRACED). If rusage is non-zero, a summary of the resources used by the terminated
process and all its children is returned (this information is currently not available for stopped
processes).

When the WNOHANG option is specified and no processes wish to report status, wait3
returns a pid of 0. The WNOHANG and WUNTRACED options may be combined by or’ing
the two values.

NOTES
See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination.
A special status (0177) is returned for a stopped process that has not terminated and can be
restarted; see prrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process
(process ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting
termination of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of -1 is returned and errno is set to

4th Berkeley Distribution June 30, 1985 1

WAIT(2) - UNIX Programmer’s Manual WAIT(2)

indicate the error.

Wait3 returns -1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULT] The status or rusage arguments point to an illegal address.

SEE ALSO
exit(2)

4th Berkeley Distribution June 30, 1985 2

WRITE(2) ~ UNIX Programmer’s Manual WRITE(2)

NAME
write, writev — write output

SYNOPSIS
cc = write(d, buf, nbytes)
int cc, d;
char sbuf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = writev(d, iov, iovent)
int cc, d;

struct iovec siov;

int iovent;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor 4 from the
buffer pointed to by buf. Writev performs the same action, but gathers the output data from
the iovent buffers specified by the members of the iov array: iov[0], iov[l], ..., iov[iovent - 1].

For writev, the iovec structure is defined as

struct iovec {
caddr_tiov_base;
int iov_len;
b) ‘ ,
Each iovec entry specifies the base address and length of an area in memory from which data
should be written. Writev will always write a complete area before proceeding to the next. -

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see /seek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who “captures” a writable set-user-id file
owned by the super-user.

When using non-blocking I/O on objects such as sockets that are subject to flow control, write
and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible.

RETURN VALUE ,
Upon successful completion the number of bytes actually written is returned. Otherwise a -1
is returned and the global variable errno is set to indicate the error.

ERRORS
Write and writev will fail and the file pointer will remain unchanged if one or more of the fol-
lowing are true:

[EBADF] D is not a valid descriptor open for writing.

[EPIPE] An attempt is made to write to a pipe that is not open for reading by any
process.

[EPIPE] An attempt is made to write to a socket of type SOCK_STREAM that is not

connected to a peer socket.

4th Berkeley Distribution - May 14, 1986 1

WRITE(2) ‘ UNIX Programmer’s Manual WRITE(2)

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit
or the maximum file size.

[EFAULT] Part of iov or data to be written to the file points outside the process’s allo-
cated address space. \

[EINVAL] The pointer associated with d was negative.

[ENOSPC] There is no free space remaining on the file s&stem containing the file.
[EDQUOT] The user’s quota of disk blocks on the file system containing the file has been
exhausted.
[EIO] An I/O error occurred while reading from or writing to the file system.
[EWOULDBLOCK]
The file was marked for non-blocking I/O, and no data could be written
immediately.

In addition, writev may return one of the following errors:
[EINVAL] Tovent was less than or equal to 0, or greater than 16.

[EINVAL] One of the iov_len values in the iov array was negative.
[EINVAL] The sum of the iov_len values in the iov array overflowed a 32-bit integer.
SEE ALSO

fentl(2), Iseek(2), open(2), pipe(2), select(2)

4th Berkeley Distribution May 14, 1986 2

INTRO(3)

NAME

UNIX Programmer’s Manual : INTRO(3)

intro — introduction to C library functions

DESCRIPTION

This section describes functions that may be found in various libraries. The library func-
tions are those other than the functions which directly invoke UNIX system primitives.
described in section 2. Most of these functions are accessible from the C library, libc,
which is automatically loaded by the C compiler cc(1), and the Pascal compiler pc(1). The
link editor 1d(1) searches this library under the ‘—Ic’ option. The C library also includes
all the functions described in section 2.

A subset of these functions are available from Fortran; they are described separately in
intro(3F).

The functions described in this section are grouped into various sections:

(3) The straight 3" functions are the standard C library functions.

(3N) These functions constitute the internet network library.

(3S) These functions constitute the ‘standard I/0 package’, see stdio(3S) for more details.
Declarations for these functions may be obtained from the include file <stdio.h >.

(3C) These routines are included for compatibility with other systems. In particular, a
number of system call interfaces provided in previous releases of 4BSD have been
included for source code compatibility. Use of these routines should, for the most
part, be avoided. The manual page entry for each compatibility routine indicates
the proper interface to use.

(3M) These functions constitute the math library, libm. When functions in the math
library (see math(3M)) are passed values that are undefined or would generate
answers that are out of range, they call the infrnan routine. By default this routine
returns the VAX reserved floating point value which causes the process to get a
floating point exception (see sigvec(2)). Programs that wish to take other action
should define their own version of infrnan (see infnan(3M) for details). The math
library is loaded as needed by the Pascal compiler pc(1). C programs that wish to
use this library need to specify the “—Im™ option.

(3R) These functions constitute the RPC service library, librpcsve. In order to get the
link editor to load this library, use the —Irpcsvc option of cc. Declarations for
these functions may be obtained from various include files <rpcsve/*.h>.

"(3X) These functions constitute minor libraries and other miscellaneous run-time facili-
ties. Most are available only when programming in C. These functions include
libraries that provide device independent plotting functions, terminal independent
screen management routines for two dimensional non-bitmap display terminals, and
functions for managing data bases with inverted indexes. These functions are
located in separate libraries indicated in each manual entry.

FILES

/1ib/libc.a the C library

/usr/lib/libm.a the math library

/usr/lib/libc__p.a the C library compiled for profiling

/usr/lib/libm_ p.a the math library compiled for profiling

SEE ALSO
stdio(3S), math(3M), intro(2), cc(1), 1d(1), nm(1)
LIST OF FUNCTIONS

Name Appears on Page Description

abort abort.3 ‘ generate a fault

4th Berkeley Distribution June 30, 1986 1

INTRO (3) UNIX Programmer’s Manual INTRO (3)

abs abs.3 integer absolute value
acos sin.3m inverse trigonometric function
acosh asinh.3m inverse hyperbolic function
alarm alarm.3c schedule signal after specified time
alloca malloc.3 memory allocator
arc plot.3x graphics interface
asctime ctime.3 convert date and time to ASCII
asin sin.3m inverse trigonometric function
asinh asinh.3m inverse hyperbolic function
assert assert.3x program verification
atan sin.3m inverse trigonometric function
atan2 sin.3m inverse trigonometric function
atanh asinh.3m inverse hyperbolic function
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
bemp bstring.3 bit and byte string operations
becopy bstring.3 bit and byte string operations
bzero bstring.3 bit and byte string operations
cabs hypot.3m complex absolute value
calloc malloc.3 memory allocator
cbrt sqrt.3m cube root
ceil floor.3m integer no less than
circle plot.3x graphics interface
clearerr ferror.3s stream status inquiries
closedir directory.3 directory operations
closelog syslog.3 control system log
closepl plot.3x graphics interface
cont plot.3x graphics interface
copysign ieee.3m copy sign bit
cos sin.3m trigonometric function
cosh sinh.3m hyperbolic function
crypt crypt.3 DES encryption
ctime ctime.3 convert date and time to ASCII
curses curses.3x screen functions with “optimal™ cursor motion
dbminit dbm.3x data base subroutines

- delete dbm.3x data base subroutines
drem ieee.3m remainder
ecvt ecvt.3 output conversion
edata end.3 last locations in program
encrypt crypt.3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry
endhostent gethostbyname.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ execl.3 execute a file
erase plot.3x graphics interface
erf erf.3m error function
erfc erf.3m complementary error function

4th Berkeley Distribution June 30, 1986 2

INTRO(3)

etext
ether
exec
exece
execl
execle
execlp
exect
execv
execvp
exit

exp
expml
fabs
fclose
fevt

feof
ferror
fetch
flush

fis

fgetc
fgets
fileno
firstkey
floor
fopen
fprintf
fputc
fputs
fread
free
frexp
fscanf
fseek
ftell

- ftime
fwrite
gevt

getc
getchar :
getdiskbyname
getenv
getfsent
getfsfile
getfsspec
getfstype
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent.

4th Berkeley Distribution

UNIX Programmer’s Manual
end.3 last locations in program
ether.3r monitor traffic on the Ethernet
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
execl.3 execute a file
exit.3 terminate a process after flushing any pending output
exp.3m exponential
exp.3m exp(x)—1
floor.3m absolute value
fclose.3s close or flush a stream
ecvt.3 output conversion
ferror.3s stream status inquiries
ferror.3s stream status inquiries
dbm.3x data base subroutines
fclose.3s close or flush a stream
bstring.3 bit and byte string operations
getc.3s get character or word from stream
gets.3s get a string from a stream
ferror.3s stream status inquiries
dbm.3x data base subroutines
floor.3m integer no greater than
fopen.3s open a stream
printf.3s formatted output conversion
putc.3s put character or word on a stream
puts.3s put a string on a stream
fread.3s buffered binary input/output
malloc.3 memory allocator
frexp.3 split into mantissa and exponent
scanf.3s formatted input conversion
fseek.3s reposition a stream
fseek.3s reposition a stream
time.3c get date and time
fread.3s buffered binary input/ output
ecvt.3 output conversion
getc.3s get character or word from stream
getc.3s get character or word from stream
getdisk.3x get disk description by its name
getenv.3 value for environment name
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getgrent.3 get group file entry
getgrent.3 get group file entry
getgrent.3 get group file entry
gethostbyname.3n get network host entry

gethostbyname.3n
gethostbyname.3n

get network host entry
get network host-entry

June 30, 1986

INTRO(3)

INTRO(3)

getlogin
getnetbyaddr
getnetbyname
getnetent
getpass
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
getrpcport
gets
getservbyname
getservbyport
getservent
getw

getwd

gmtime

gtty

havedisk
htonl

htons

hypot

index
inet__addr
inet__lnaof"
inet__makeaddr
inet__netof
inet__network
infnan
initgroups
initstate
insque
isalnum

" isalpha

isascii

isatty

iscntrl

isdigit

islower
isprint
fspunct
isspace

lgamma
1lib2648

4th Berkeley Distribution

UNIX Programmer's Manual- INTRO(3)
getlogin.3 get login name
getnetent.3n get network entry
getnetent.3n get network entry
getnetent.3n get network entry
getpass.3 read a password
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getpw.3 get name from uid
getpwent.3 get password file entry
getpwent.3 get password file entry
getpwent.3 get password file entry
getrpcport.3r get RPC port number
gets.3s get a string from a stream

getservent.3n
getservent.3n

get service entry
get service entry

getservent.3n get service entry

getc.3s get character or word from stream

getwd.3 get current working directory pathname

ctime.3 convert date and time to ASCII

stty.3c set and get terminal state (defunct)

rstat.3r determine if remote machine has disk

byteorder.3n convert values between host and network byte orde

byteorder.3n convert values between host and network byte orde

hypot.3m Euclidean distance

string.3 string operations

inet.3n Internet address manipulation routines

inet.3n Internet address manipulation routines

inet.3n Internet address manipulation routines

inet.3n Internet address manipulation routines

inet.3n Internet address manipulation routines

infnan.3m signals exceptions :

initgroups.3x initialize group access list

random.3 better random number generator

insque.3 insert/remove element from a queue

ctype.3 character classification macros

ctype.3 character classification macros

ctype.3 - character classification macros

ttyname.3 find name of a terminal

ctype.3 character classification macros

ctype.3 character classification macros

ctype.3 character classification macros

ctype.3 _character classification macros

ctype.3 character classification macros

ctype.3 character classification macros -

ctype.3 character classification macros

j0.3m bessel function

jO0.3m bessel function

j0.3m bessel function

plot.3x graphics interface

frexp.3 split into mantissa and exponent

lgamma.3m log gamma function; (formerly gamma.3m)

1ib2648.3x subroutines for the HP 2648 graphics terminal
June 30, 1986 4

INTRO(3)

line
linemod
localtime
log

log10
loglp
logb
longjmp
malloc
mktemp
modf
moncontrol
monitor
monstartup
mount
move
nextkey
nice
nlist
ntohl
ntohs
opendir
openlog
openpl
pause
pclose
perror
point
popén
pow
printf
psignal
putc
putchar
puts
putw

" gsort
rand
random
rcmd
re_comp
re__exec
readdir
realloc
remque
rewind
rewinddir
rexec
rindex
rint
rnusers
rquota
rresvport

* 4th Berkeley Distribution

UNIX Programmer’s Manual INTRO(3)
plot.3x graphics interface
plot.3x graphics interface
ctime.3 convert date and time to ASCII
exp.3m natural logarithm
exp.3m logarithm to base 10
exp.3m log(1+x)
ieee.3m exponent extraction
setjmp.3 non-local goto
malloc.3 memory allocator
mktemp.3 make a unique file name
frexp.3 split into mantissa and exponent
monitor.3 prepare execution profile
monitor.3 prepare execution profile
monitor.3 prepare execution profile
mount.3r keep track of remotely mounted filesystems
plot.3x graphics interface
dbm.3x data base subroutines
nice.3c set program priority
nlist.3 get entries from name list
byteorder.3n convert values between host and network byte order
byteorder.3n convert values between host and network byte order
directory.3 directory operations
syslog.3 control system log
plot.3x graphics interface -
pause.3c stop until signal
popen.3 initiate I/0 to/from a process
perror.3 system error messages
plot.3x graphics interface
popen.3 initiate I/0 to/from a process
exp.3m exponential xs*y
printf.3s formatted output conversion
psignal.3 system signal messages
putc.3s put character or word on a stream
putc.3s put character or word on a stream
puts.3s put a string on a stream
putc.3s put character or word on a stream
gsort.3 quicker sort
rand.3c random number generator
random.3 better random number generator
rcemd.3x routines for returning a stream to a remote command
regex.3 regular expression handler
regex.3 . regular expression handler
directory.3 directory operations
malloc.3 memory allocator
insque.3 insert/remove element from a queue
fseek.3s reposition a stream
directory.3 directory operations
rexec.3x return stream to a remote command
string.3 string operations
floor.3m round to nearest integer :
rnusers.3r return number of users on remote machine
rquota.3r implement quotas on remote machines
remd.3x routines for returning a stream to a remote command

June 30, 1986 5

INTRO(3)

rstat
.ruserok
rusers
rwall
scalb
scandir
scanf
seekdir
setbuf
setbuffer
setegid
seteuid
setfsent
setgid
setgrent
sethostent
setjmp
setkey
setlinebuf
setnetent
setprotoent
setpwent
setrgid
setruid
setservent
setstate
setuid
signal
sin
sinh
sleep
space
Spray
sprintf
sqrt
srand

" srandom
sscanf
stdio
store
strcat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
stty
swab
sys__errlist
Sys__nerr
sys__siglist
syslog

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO (3)
rstat.3r get performance data from remote kernel
remd.3x routines for returning a stream to a remote comman
rnusers.3r return information about users on remote machine
rwall.3r write to specified remote machines
ieee.3m exponent adjustment
scandir.3 scan a directory
scanf.3s formatted input conversion
directory.3 directory operations
setbuf.3s assign buffering to a stream
setbuf.3s assign buffering to a stream
setuid.3 set user and group ID
setuid.3 set user and group ID
getfsent.3x get file system descriptor file entry
setuid.3 set user and group ID
getgrent.3 get group file entry
gethostbyname.3n get network host entry
setjmp.3 non-local goto
crypt.3 DES encryption
setbuf.3s assign buffering to a stream
getnetent.3n get network entry
getprotoent.3n get protocol entry
getpwent.3 get password file entry
setuid.3 set user and group ID
setuid:3 set user and group ID
getservent.3n get service entry
random.3 better random number generator
setuid.3 set user and group ID
signal.3 simplified software signal facilities
sin.3m trigonometric function
sinh.3m hyperbolic function
sleep.3 ~ suspend execution for interval
plot.3x graphics interface
spray.3r scatter data in order to check the network

_printf.3s formatted output conversion
sqrt.3m square root
rand.3c random number generator
random.3 better random number generator
scanf.3s formatted input conversion
intro.3s standard buffered input/output package
dbm.3x data base subroutines
string.3 string operations
string.3 string operations
string.3 string operations
string.3 string operations
string.3 string operations
string.3 string operations
string.3 string operations
stty.3c set and get terminal state (defunct)
swab.3 swap bytes
perror.3 system error messages
perror.3 system error messages
psignal.3 system signal messages
syslog.3 control system log

June 30, 1986 6

INTRO (3)

system
tan

tanh
telldir
tgetent
tgetflag
tgetnum
tgetstr
tgoto
time
times
timezone
tputs
ttyname
ttyslot
ungetc
utime
valloc
varargs
vlimit
vtimes
yo

y1

yn
yppasswd

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO(3)

system.3
sin.3m
sinh.3m
directory.3
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
time.3c
times.3c
ctime.3
termcap.3x
ttyname.3
ttyname.3
ungetc.3s
utime.3c
valloc.3
varargs.3
vlimit.3¢c
vtimes.3c
j0.3m
jO.3m
jO.3m
yppasswd.3r

issue a shell command

trigonometric function

hyperbolic function

directory operations

terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
get date and time

get process times

convert date and time to ASCII
terminal independent operation routines
find name of a terminal

find name of a terminal

push character back into input stream
set file times

aligned memory allocator

variable argument list

control maximum system resource consumption
get information about resource utilization
bessel function

bessel function

bessel function

update user password in yellow pages

June 30, 1986 7

ABORT(3) UNIX Programmer’s Manual ABORT(3)

NAME
abort - generate a fault

DESCRIPTION
Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO .
adb(1), sigvec(2), exit(2)

DIAGNOSTICS
Usually “Illegal instruction - core dumped” from the shell.

BUGS
The abort() function does not flush standard I/O buffers. Use fflush(3S).

7th Edition May 27, 1986 i

ABS(3) UNIX Programmer’s Manual ABS(3)

NAME
abs - integer absolute value

SYNOPSIS
abs(i)
int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M) for fabs

BUGS
Applying the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>