U M/{\D
/

4
50
"%
i
7
.-‘/
i
7

4

MPC7

T
¥

, ui.,. ;.
B @———-——

AR R

s M

4

750
User

ICrOpProcessor

e g g . llill.lltlil
nnffrrﬂgiliik

RISC M

MPC750UM/AD
8/97

MPC750

RISC Microprocessor User’s Manual

ewerpPC @ MOTOROLA

Motorola Inc, 1997. All ri hts es rvi
ortions hereof&?lnternatl nal usalness Machines Corp. 1991-1997. All rights reserved.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do
vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The PowerPC name, PowerPC logotype, PowerPC 601, PowerPC 603, PowerPC 603e, PowerPC 604, PowerPC 604e, and PowerPC 620 are
trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.

Overview

MPC750 Processor Programming Model
L1 Instruction and Data Cache Operation
Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

Glossary of Terms and Abbreviations

Index

—

—k —

GLO

IND

Overview

MPC750 Processor Programming Model
L1 Instruction and Data Cache Operation
Exceptions

Memory Management

Instruction Timing

Signal Descriptions

System Interface Operation

L2 Cache Interface Operation

Power and Thermal Management

—h

—

Performance Monitor

PowerPC Instruction Set Listings

Instructions Not Implemented

€IN0F Glossary of Terms and Abbreviations

INIDB [ndex

CONTENTS

Paragraph - Page

Numgerp Title Numb%r
AUGIEINICE ...t XXix
OrZaNIZAtION.ecueviniiiiiiciiiee s XXix
Suggested Reading......cceevueeueriiiinierieicnecteie ettt XXX
Conventions XXXiii
Acronyms and AbDIeviationsccccccciiiiiiiiciiiiinii e XXXV
Terminology CONVENTIONScc.evuieiuerrierierieieerenie ettt esrente e ebenaees XXXVii

Chapter 1
Overview

1.1 MPC750 MicCroprocessor OVETVIEWccceeeveieieieientereniesisseresessessessesesennns

1.2 MPC750 Microprocessor Featuresccccoovveeceuinicnnnne.

1.2.1 Overview of the MPC750 Microprocessor Features

1.2.2 Instruction FIOWcc.cocieniniiiiniieecieceeceececes

1.2.2.1 Instruction Queue and Dispatch Unitccceeeeeeieneennenes

1.2.2.2 Branch Processing Unit (BPU)........cccceceveviiinenninineene.

1.2.2.3 Completion Uitcoeeeeeirienieenenenencneneeeeeeteeeenes

1224 Independent Execution Units.......c.coccoveciuecneeencrinecennnne

1.2.24.1 Integer Units (JUS)..cc.covvereeniniereriecicceneneenieeeenee

1.2.2.4.2 Floating-Point Unit (FPU)cccccciiiiinniiiiiiiiiiccccceeees

1.2.2.4.3 Load/Store Unit (LSU)cooiiiiiieieieeieeee ettt

1.22.44 System Register Unit (SRU).......iccoererieiirinnineenneeececnieeeeneenaene

1.2.3 Memory Management Units (MMUSs)

124 On-Chip Instruction and Data Caches

1.2.5 L2 Cache Implementation (Not Supported in the MPC740) 1-14

1.2.6 System Interface/Bus Interface Unit (BIU) ...t 1-15

1.2.7 Signals

1.2.8 Signal Configuration.........co.ivueveerieieienieieriirinieteeeee s erseneens 1-17

1.2.9 CIOCKING ... eutieteieeieeie ettt sete e et e st e te st e s e sae s e ssere s s e sesne e enes 1-19

1.3 MPC750 Microprocessor: Implementation.........c..ceceruereereioeninieneenecneennennne 1-19

14 PowerPC Registers and Programming Modelcc.ccoovinniinininnnn 1-21

1.5 INSLIUCHON SEL ...ttt ettt et es e n b er e ene s 1-26

1.5.1 PowerPC INStruction Sef..........cceceueueereuieiiniiiineieiieeisieie e 1-27

152 MPC750 Microprocessor Instruction Setccccveivinieieincnicinncnieninnn 1-28

Contents iii

CONTENTS

Paragraph .
Numf'oerp Title
1.6 On-Chip Cache Implementation...........oeeeverereerererceierieneneereeseeessessessessessens
1.6.1 PowerPC Cache Model..........ccccueuiireininieeniniecirceeccetcee e
1.6.2 MPC750 Microprocessor Cache Implementationcccccceeviecicvcnecnnne
1.7 EXCeption MOdEL......c.coeriemiinieniiiiiniinienieneneceentcceeci ettt et
1.7.1 PowerPC Exception Modelccccouiiiininiiiiiiiiiiicceceeceieeeeeeeeene
1.7.2 MPC750 Microprocessor Exception Implementation....
1.8 Memory Management..........c.eeueeeeeeeenenenenseeseeeeeeneennens
1.8.1 PowerPC Memory Management Model..........c.ccoeeveerineneneennnrecnenenennenens
1.8.2 MPC750 Microprocessor Memory Management Implementation................. 1-33
1.9 Instruction TImMINgcccovvviiiiiiiniiiiiiiii e 1-34
1.10 Power Managementc.ccoeuiiiiiiiiiniiicincicicie et 1-36
1.11 Thermal Management..........cceeeeeeeeeererierierieieteseetenseseeseesesessesessessessassessanns 1-37
1.12 Performance MONITOT.........c..coueeiririeeriinieeeeneteneceree ettt eaes e seesens 1-38
Chapter 2

MPC750 Processor Programming Model
2.1 The MPC750 Processor RegiSter Set........ccvererererieneneneneinieereeieeeeeeeneneas
2.1.1 REGISIET SEL....uviiiieierieetrtcrieeee ettt sttt et s
2.1.2 MPC750-Specific REZISIELSccuciiuiiioiiiiiiiiiiiiciciceeeee e
2.1.2.1 Instruction Address Breakpoint Register (IABR)
2.122 Hardware Implementation-Dependent Register O
2.123 Hardware Implementation-Dependent Register 1
2.1.2.4 Performance Monitor Registers.........cccceoveveeeereruennnne
2.1.24.1 Monitor Mode Control Register 0 (MMCRO).....cc.ccceveeriivenieniniienienns
2.1.242 User Monitor Mode Control Register 0 (UMMCRO)cccccveveurnnnne. 2-15
21243 Monitor Mode Control Register 1 (MMCRI)......coccieveeniincieieieinene 2-16
21244 User Monitor Mode Control Register 1 (UMMCRI)cccoceevercreenene 2-16
2.1.2.4.5 Performance Monitor Counter Registers (PMC1-PMC4)............c........ 2-16
2.12.4.6 User Performance Monitor Counter Registers (UPMC1-UPMCA4)....... 2-20
2.1.24.7 Sampled Instruction Address Register (SIA)ccceevivveiiinieeniencniieniens 2-20
2.124.8 User Sampled Instruction Address Register (USIA)......cccoevvevierennenne. 2-20
2.124.9 Sampled Data Address Register (SDA) and User Sampled Data Address

RegiSter (USDA) ...ttt
2.13 Instruction Cache Throttling Control Register (ICTC)
2.14 Thermal Management Registers (THRM1-THRM3)...........
2.15 L2 Cache Control Register (L2CR).....ccccoevvrevenenenennnane.
2.1.6 ReSEt SEHNEScveuiieiieiiieicinccecereceeeree e
22 Operand CONVENTIONSc.cevtruireirreriententertenienteeeetesresseeseesesresteseeseesesseseesteseessenes
2.2.1 Floating-Point Execution Models—UISAcccccceinniniiiniccecneens
222 Data Organization in Memory and Data Transfersc.coccoeiciiuiiinenneee
223 Alignment and Misaligned ACCESSES........c.coeruviruirerininuerieieniereieeereeenesenesenes

iv MPC750 RISC Microprocessor User’s Manual

CONTENTS

Paragraph . Page
Num%er Title Numb%r
224 Floating-Point Operand...........c.cccouiiiiiiiiiciniiiiiccciieenc et 2-29
2.3 Instruction Set SUMMATY ...c..cceverieeririeieirenenererteeeteere sttt sneene 2-31
2.3.1 Classes Of INSIIUCHIONS.ccueveurrverirreritiieeereereniecreeestneenesrere st st seeseses e ebe e senees 2-32
2.3.1.1 Definition of Boundedly Undefinedccccecevvemeneniennnnnnenencnnreenene, 2-33
2.3.1.2 Defined Instruction Class

23.1.3 Ilegal Instruction Classcocceeeueciriereenirinenenecnereneeneenes

23.14 Reserved InStruction Class.......cccvereeerenieeenenenieneseenenstsesseserseesresseeennes 2-34
2.32 Addressing MOdes.......coueueuerivereeneninenieeneeireeeseesesseesseseseesenenene

2.3.2.1 Memory Addressing

2322 MemOry OPErands..........coeceevveercrririenreeerenresressenseteseeseesesesressessseseesesseene
2323 Effective Address CalCulationccccceeverreeerrenerernreneneeneeeereecnensencnnene
2324 SYNCRIONIZALIONccviiiiiii ittt
2.3.24.1 Context SYNChIONMIZatioN.cocvverveevererenenteneenreriereeeeeeer e seeesenes
2.3.242 Execution Synchronizationc.eeeeeveveenenienienenensennncneeseeeseneenseneens
23243 Instruction-Related Exceptions

233 Instruction Set OVEIrVIEW.......c.ccueceeeveririeenrenerereereneseneereennes

234 PowerPC UISA INStrUCLIONSeveeeverecreererinteeiererenieseeeneeeenenees

2.34.1 Integer INSrUCHIONSccceueevemeeeeenreeieneenrenieneereenreseessete st eseenees

234.1.1 Integer Arithmetic Instructions

23412 Integer Compare INStructions.........ccceveevericncnicnenicivennnnne,

2.34.13 Integer Logical INStruCtionsScc.coveveeveciueneenueneeniencnenencreseniennees

2.34.14 Integer Rotate and Shift Instructions

2342 Floating-Point INStrUCLIONSeeeveveereeienieniereeietereeeeseneereeseseenenes

23421 Floating-Point Arithmetic Instructions

23422 Floating-Point Multiply-Add InStructionsc.cceceevevviceerercenenienneennns 2-42
23423 Floating-Point Rounding and Conversion Instructions..........ccc.cccvuee. 2-43
23424 Floating-Point Compare InStructions..........cccoceceevinivinicininnncncnieinnas 2-43
23425 Floating-Point Status and Control Register Instructionsceeeeueene 2-44
2.3.4.2.6 Floating-Point Move INStruCtionscccecerervevverecerenenernreininenenennencenes 2-44
2343 Load and Store INSLIUCHIONSccccvevuerrireriisiinrennensiieesiesiessscsenssnenes 2-45
23431 Self-Modifying Codecccoeeiiiiniciniiiiiiiicciiciicireeeseaenaas 2-45
23432 Integer Load and Store Address Generation.............cceevvurieiiecncnennnnas 2-46
23433 Register Indirect Integer Load Instructionsceceecveeveereeenenennencnnee 2-46
23434 Integer Store INSIIUCHONS .. .coveirererrereereresrenenteneestestesesaesesaesaesseeeeens 2-47
23435 Integer Store Gathering.......c.ccceieererineienenrenenrinrieeeeeienne e 2-48
23436 Integer Load and Store with Byte-Reverse Instructions..............ceeueuue. 2-49
2.3.4.3.7 Integer Load and Store Multiple Instructionscoceccccvviiurvinneinns 2-49
2.3.4.3.8 Integer Load and Store String Instructionsccccvviinennnnicnininnes 2-50
23439 Floating-Point Load and Store Address Generationcccceuveucrnene. 2-51
2.3.4.3.10 Floating-Point Store INStructionscccoeiviiiieniiicniinniseiiencenes 2-51

Contents v

CONTENTS

Paragraph . Page
Number Title Number
2344 Branch and Flow Control InStructionscc.ceeeveeeverievercrinercnenierencnnnnes 2-53
2344.1 Branch Instruction Address Calculation.........cc.ceeveereeveeerereenerenrenennen 2-53
23442 Branch INStrUCONScoevvevverienircreririneiee ettt 2-54
2.3.44.3 Condition Register Logical InStructionsiccivevivinenieniiininiiinns 2-54
23444 Trap INSIUCHIONSouveieiiieieieieesee et sttt b e b sea e eses 2-55
2345 System Linkage Instruction—UISAcccocevniiinnniniininieend 2-55
2.3.4.6 Processor Control Instructions—UISAcccoveevirerenneiienninieiieenenee 2-56
2.3.4.6.1 Move to/from Condition Register InStructionsce.cecevevveereeereennennee 2-56
2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA) 2-56
2.34.7 Memory Synchronization Instructions—UISA........ccocovnininincvincienn. 2-59
235 PowerPC VEA INStIUCHONS . .cuveeeureuirreeteeneererieniienirereseeresteeeesreneseeesesnesnene 2-60
2351 Processor Control Instructions—VEAcccccocmiivninininiincininiieceene 2-60
2352 Memory Synchronization Instructions—VEAccccocoiciienniniiinccnns 2-61
2353 Memory Control Instructions—VEA............
2.3.5.3.1 User-Level Cache Instructions—VEA
2354 Optional External Control INStructionsc..eccveeeievevenreneeveerenrenseseeeenens
2.3.6 PowerPC OEA Instructions.........ccoceeevereenennene
23.6.1 System Linkage Instructions—OEA
2.3.6.2 Processor Control Instructions—OEAccccoeerimeeinncneeiienineneenene
2.3.6.3 Memory Control Instructions—OEAcccooivevininnienenereneeeeceereneenees
2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA) 2-66
23.6.3.2 Segment Register Manipulation Instructions (OEA)ccccecevevuennnnen. 2-67
2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)........ 2-67
2.3.7 Recommended Simplified MNemonicscccovevviiiniiiniiniiiininiiinns 2-68
Chapter 3

L1 Instruction and Data Cache Operation
3.1 Data Cache Organization.........c..ceceeeeerineeniernienueninrireeesieseesreesesseseessessseeneessenas
32 Instruction Cache Organization...........ccoceeciiviiiininiiiniiinniinieenns
33 Memory and Cache Coherencycoeceeeveeveenenererencncnneienn
3.3.1 Memory/Cache Access Attributes (WIMG Bits)
332 MEIL PrOtOCO]vovieeniriiriieirentieeieeeneeetesiee e st tecterestesaeeesesesiennens
3.3.2.1 MEI Hardware Considerations..........o.ceceeeuereeriermrireenieneeiiesrensesessesreenenes
333 Coherency Precautions in Single Processor Systems.........cccocevvrerrerrereerennens 3-10
334 Coherency Precautions in Multiprocessor SYStemscoeeeccineniiinncnnnns 3-10
335 MPC750-Initiated Load/Store Operations..........c.coceceeureertreeceneueeresvecnreneenes 3-10
3351 Performed Loads and StOres........coevuerverreveninienenenienieenrencseeneeseeseensessenees 3-11
3352 Sequential Consistency of Memory ACCESSES......eouvvrvuerrereererreererrereerensens 3-11
3353 Atomic Memory Referencescocvevererenieinenieneniennencneneeseeeenesnenes 3-11
vi MPC750 RISC Microprocessor User’s Manual

CONTENTS

Paragraph . Page

Numger Title Numbger
34 CaChe CONLTOL.....euiiiiriiiriieieteite sttt ettt ettt e stesaere e besareseessnesnens 3-13
34.1 Cache Control Parameters in HIDO.........cccccovurieninvininneeecceeeseeeeeeeenens 3-13
34.1.1 Data Cache Flash Invalidationcceccoveevineneninnieerieneeeieneeeeeseeniees 3-13
3412 Data Cache Enabling/Disabling..........cccccociiiniiiiiiniiniiiniincsiieicns 3-13
34.1.3 Data Cache LOCKINGcootrvieiiriiiiiiiienireeestntere ettt enesaees 3-14
34.1.4 Instruction Cache Flash Invalidationcccccccvevieveeinenneceesneeeceeeenen. 3-14
34.1.5 Instruction Cache Enabling/Disablingc..cocceveervervrererrressenseseensssnsns 3-14
34.1.6 Instruction Cache LOCKINGcccecerueriirirenienieininieieeeteeeeseseseeesseeeens 3-15
3.4.2 Cache Control INStrUCIONS........eeievieereeieeeieectietee e eseeereeereaeeeeseesssesesansnns 3-15
3.4.2.1 Data Cache Block Touch (dcbt) and

Data Cache Block Touch for Store (debtst)ccoeeeeevercieneensienennnnn. 3-15
3422 Data Cache Block Zero (dCBZ)oooovveeieeieeiiieeieeceeceecese e esnaesennes 3-16
3.4.23 Data Cache Block Store (debst)cocveevieeieereniicieieienesieeeee e 3-16
3424 Data Cache Block Flush (debf)c.ooovvieieiiieicececeeecreeeee e, 3-17
3.4.2.5 Data Cache Block Invalidate (dcbi)......cccceeeevieeiieenciiereeieeieeeccnreeeeineeenns 3-17
34.2.6 Instruction Cache Block Invalidate (ichi)........ccoceeereenenenienieniennienieen. 3-17
35 CaChe OPEIAtIONSovveevieeieererieeiireerere sttt et e s te st st esese st see e esenens 3-18
35.1 Cache Block Replacement/Castout Operationsceevevveienneenicinnnienes 3-18
352 Cache Flush Operationsc.cccceeeeerenrerenenenieineienneneneeneesnesesaesecssensenes 3-21
353 Data Cache-Block-Fill Operations...........ccccccviiivininininninenniinenecnenneeneeneen 3-21
354 Instruction Cache-Block-Fill Operationsccceeveeeeeecreeevnrenerenrerseeneenees 3-21
355 Data Cache-Block-Push Operationccccoeevererrerenienencierennnuesvenennennessennees 3-22
3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation............cccceeinuns 3-22
3.6 L1 Caches and 60x Bus TranSactionsceceeeeeesrereereneerseesniesseeenueseseseenes 3-22
3.6.1 Read Operations and the MEI Protocolccccceevvceiicnnninenninnicnennnnne, 3-23
3.6.2 Bus Operations Caused by Cache Control Instructions............cceeeveveviiunnene. 3-24
3.6.3 STOOPING ..ttt sttt e et et et sesae et se et sans s s ssnesaesnes 3-25
3.6.4 Snoop Response to 60X Bus Transactionsceeeeceeereeresreeeereeseeseesnennens 3-26
3.6.5 TranSfer AUTIDULES ...cc.ceerverrerieriiieietet ettt eseetere st e see e e st e et e saenes 3-28
3.7 BUS INEEITACE ...eeeieieiieiieeeeeee ettt sttt e et s et st e e e smeeeas 3-30
3.8 MEI State TranSACtIONSc.eeverveerienrerieerieerseeitesiesseessessessessesssesssesssessseessessessane 3-32
Chapter 4
Exceptions

4.1 MPC750 Microprocessor EXCEPLions..........ceeeeeververernieneeneenenniieenisesseesseseens 4-2
4.2 Exception Recognition and Priorities
4.3 EXCeption PrOCESSING ...cvoueevervenierririenieitinieniescieeeniesecseeesesee et s ssesnesnesaes
4.3.1 Enabling and Disabling EXCEPLONScceevevuereiierineenenierireiciecvcnnesesnennes 4-10
4.3.2 Steps for Exception Processing
433 Setting MSR[RI] ...ccooonireinieneniecneneie reteereete et ettt et et et sa et saens
434 Returning from an Exception Handlercccccoeceeviivinnnnnininncnincnne. 4-11
Contents vii

CONTENTS

Paragraph . Page
Numst’>erp Title Number
44 Process SWItChINGccevieviiiiiieierieteireeent ettt ettt sa s sens 4-12
4.5 Exception DEefinitionscueouvievereeirieenieneeneenieneneeteseeeeesseeestesessesseseesesens 4-12
45.1 System Reset Exception (0X00100).........cceociviiiiiniiniiiiicccnen, 4-13
452 Machine Check Exception (0X00200)ccceoeevererurireerennerereercrenererseneenens 4-14
452.1 Machine Check Exception Enabled (MSRIME] = 1) ...cccccceevnineninnnnennns 4-16
4522 Checkstop State (MSRIME] = 0)cccocevueimeirmiiericereeenrecreeesreeneeenees 4-16
453 DSI Exception (0X00300).......cccecteirveeerenienienrenienientenieieessenteseesessenseseessensens 4-17
454 IST Exception (0X00400)covevirervereeenienieneenrenieteneeeeesresteeesessesseeesseeens 4-17
4.5.5 External Interrupt Exception (0X00500).........cccccveiniiiiiiiniiiiniiniiciccnens 4-17
4.5.6 Alignment Exception (0x00600)
4.5.7 Program Exception (0X00700)ccccviiiiiininiiiiiiiniicincctceceecnenene
4.5.8 Floating-Point Unavailable Exception (0X00800)........cccceeerireererenreneenvennens 4-19
459 Decrementer Exception (0x00900)
4.5.10 System Call Exception (0x00C00)
4.5.11 Trace Exception (0X00DO00)cocceririieriieieeienieeieteiesececeiee st
45.12 Floating-Point Assist Exception (0x00E00)
4.5.13 Performance Monitor Interrupt (0XO0F00)...........ccccovviviniinniininiiciniccnnenene
4.5.14 Instruction Address Breakpoint Exception (0X01300)cccoceevevverirrerenrennene. 4-21
4.5.15 System Management Interrupt (0X01400).......cccocvinrirveninennerrereeresenrennas 4-22
4.5.16 Thermal Management Interrupt Exception (0X01700).......cccoeevminnerenuennns 4-24
Chapter 5

Memory Management
5.1 MMU OVEIVIEWcviniiiiinierieionieenteressesestsseseeseeseeesessesessesesessonescsssseseeneseenen
5.1.1 Memory AdAreSsingcocvevviiirveniiieinieinienincieretre et et seeesenes
5.12 MMU Organizationc.cooevveirieiiieinieineiiciieie it enesesneseenes
5.13 Address Translation MeChaniSms........c.cecueeeruecerenivrecreerererernneeeseeseesenesseneenes
5.14 Memory Protection Facilitiesceceeveruervererreneerunnnene.
5.15 Page History INfOrmationccevueeeeieenienienienienieneeeeieniee et seesiee e saeens
5.1.6 General Flow of MMU Address Translation
5.1.6.1 Real Addressing Mode and Block Address Translation Selection............. 5-12
5.1.6.2 Page Address Translation Selection...........ccccceeiniiiniiccniccnniccnncncnnenn.
5.1.7 MMU EXCeptions SUMMATYc.coueveruereruererreenierereererseensereresecsessssesessesensenens
5.1.8 MMU Instructions and Register SUmmary..........coccceecniccinnennrenercnneienenens
52 Real Addressing MOdEevverienierieieiineneeieieeeestesesee st essessessesessessassansans
53 Block Address Translationc.ccecceveeeereuirueeeueetnnencnreinrecnrerereenesesesseesseseonene
54 Memory Segment Model..........ccccvveiniiniiiniiniiniinicnrecceeeere et
541 Page History Recording..........ccceceviiiniiiniiiininiiiiiiccineccicccnecceeeees
54.1.1 Referenced Bit.......c.cocceinienirininieceieceieneeteseeee sttt sre et
54.12 Changed Bilt.......cccoeuevieueinineinierresctee et
54.13 Scenarios for Referenced and Changed Bit Recording
viii MPC750 RISC Microprocessor User’s Manual

Paragraph
Number

542
543
5.4.3.1
5432
54.4
5.4.5
5.4.6
5.4.7

6.1

6.2

6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.24
6.3.3
6.3.3.1
6.3.3.2
6.4
6.4.1
6.4.1.1
6.4.1.2
6.4.1.3
6.4.1.3.1
6.4.1.3.2
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.5
6.5.1
6.5.2

CONTENTS

. Page
Title Number
Page Memory Protection........cccceeuevecnurenuececerencccncncrunnes
TLB DeSCIiptiOon......ccceveuierreeruerienereneneererereereesesseessereessens
TLB Organizationccceceeeeveenieveenreneeneessensesueseeresenne
TLB Invalidation........cccccevveveeerieueeenrerencncnneeescseneenenenene
Page Address Translation Summary
Page Table Search Operation............coceueveccreererereencrcncnnne
Page Table Updates..........coecreeeiniriecnnnennicenenserereescneenne
Segment Register UPAAtescceveveeeereeneneerenineeeninreneneeeresessessesceseseenenns
Chapter 6
Instruction Timing
Terminology and CONVENtIONSceevveruerierertreirieenintesesseesteserssessensesessesassersens 6-1
Instruction Timing Overview
Timing Considerations..........ceueveeereeeeervereerervennennes
General Instruction FIOw.........ccccoccvvenerevennennne
Instruction Fetch Timing........ccocevveierierenientinieneeieresiseseesseneseeessvessesseseessenes
Cache Arbitration..........cccovvieiiiiicciniiiniinici e enas
Cache Hit........ccocevevinininieeeniciiecceerecccenennes
Cache Miss
L2 Cache Access Timing Considerations (MPC750 Only).........cccovecennene. 6-15
Instruction Dispatch and Completion Considerations..........c.coeeveecevrureccnnaes 6-16
Rename Register OPerationcocvceeverveerevenienienenesensenereseessessessessessens 6-17
Instruction SerialiZationcceueveecriiiiecininmincneiinnneereeesssereessenene 6-17
Execution Unit TIMINESccccevererienreruerienreneniereesseniesesessessessessssessessoseessesesssane 6-18
Branch Processing Unit Execution Timing..........ccceeveeueerneeneeereenrencreneenens 6-18
Branch Folding and Removal of Fall-Through Branch Instructions 6-18
Branch Instructions and COmpletion...........ccocvverurmeeecrinieinicceneesisessennenes
Branch Prediction and Resolution.............
Static Branch Predictioncc.ccceveeneenereenenne.
Predicted Branch Timing Examples
Integer Unit Execution Timingc..ccccevueeinireeecreneeeninieeenenecrensseeseeesenes
Floating-Point Unit Execution Timing.........cccceeverervenveueceererenrsereereeesessenuenees
Effect of Floating-Point Exceptions on Performancecccceceereerenenuenne. 6-25
Load/Store Unit Execution Timing........ccceeeeiueveenenirnenscnnenesneeecseeeeseeneennens 6-25
Effect of Operand Placement on Performance............cccceeeeceeccveerncruencnncene. 6-25
Integer Store Gathering...........covvcvicvvinivicieeniicnricnincteecviesercsreesiesnens 6-26
System Register Unit Execution Timing............cceceeeververerverernereseeseeneneennens 6-27
Memory Performance Considerations............eeevevcevereereerereseerersesereesesessessens 6-27
Caching and Memory COREIENCY ...t cnscseenesies 6-27
Effect Of TLB MISS ...cccoeereriieierereeteeseeeneeensesesseteseesseseesssesssesesssssasassses 6-28

Contents

CONTENTS

Paragraph . Page
Num%er Title Number
6.6 Instruction Scheduling GUIidelines............ceeeeeeverirniircrescenninreneeeeeeeeene e 6-29
6.6.1 Branch, Dispatch, and Completion Unit Resource Requirements 6-29
6.6.1.1 Branch Resolution Resource Requirements.............veceeveecvererneeneeneennenneand 6-30
6.6.1.2 Dispatch Unit Resource Requirements...........cocovvinciivneinniiinnniincns 6-30
6.6.1.3 Completion Unit Resource Requirements............cccocvvcicniiniiinininiinn 6-30
6:7 Instruction Latency Summaryccoceeeveeveereenenne. ettt r e saens 6-31
- Chapter 7

Signal Descriptions
7.1 Signal ConfigUration..........ccvicuerieveereieeieinreeetetetete et sae s esenn s
7.2 SigNal DESCTIPLIONS . ..cevrueriiiereieieteecteteretet ettt sae st ens
7.21 Address Bus Arbitration Signals
7.2.1.1 Bus Request (BR)—OULPULvvurvrrerrerisesieenssessessssessssssesssssssssssenses
7.2.1.2 Bus Grant (ﬁ)—lnput ..
7.2.1.3 Address Bus Busy (ABB)........co.oueverruerieieeesieeriesieneas whvessueseessassantanssenees
7.2.1.3.1 Address Bus Busy (ABB)—OUPUL..........cooerervnrirreseesessessnessesseesenes 7-5
7.2.1.3.2 Address Bus Busy (ABB)—INPULvurivrerinreeeeeeeescinesseseeeseeecseees 7-5
722 Address Transfer Start Signalsccoccecevverciininiiiiiiini e 7-6
7.22.1 TranSfer STArt (TS).....ucvuuerermereemrereererissreeneseasseessassceseseessssssesseseessesessennes 7-6
7.22.1.1 Transfer Start (TS)—OULPUL..........veveevrriererrerrensessiesersessessssessessesssesseses 7-6
7.2.2.12 Transfer Start (TS)—INPULc..evvererrrerrreerieesisesseessssesseessesssssssessesssesees 7-6
7.2.3 Address Transfer Signals...........ccccceviiiniiiiiiiniiiii e 7-6
7.23.1 Address Bus (AL0=31]) ..eoceererieneeieneenieetieteieereseeesresre e sseeneeseeeseessnesaeens 7-7
7.2.3.1.1 Address Bus (A[0-31])—Outputcccccocvrverviirinrinininiiiiniiienie e 7-7
7.23.1.2 Address Bus (A[0-31])—Input......ccccocevverreneiiininineniieiencncinecnes 7-7
7.2.3.2 Address Bus Parity (AP[O=3])...c..ccctvveririnirirniniininieeencnnnneeeeenes 7-7
7.2.3.2.1 Address Bus Parity (AP[0—3])—Outputccccceeeeverereenrecreeerereerenvnenis 1=7
7.23.2.2 Address Bus Parity (AP[0-3])—Input.......cccccoeemveneeineneneereirceenenneenes 7-8
7.2.4 Address Transfer Attribute Signals...................
7.24.1 Transfer Type (TT[0—4]) ccocevverereriiniincnene
7.24.1.1 Transfer Type (TT[0—4])—Output
7.24.1.2 Transfer Type (TT[0—4])—Input......c.cccoveeeeviniiininiiiice
7.242 Transfer Size (TSIZ[0-2])—OUtPUL....c.cccceverrererreririeinenreeeeeeeereerennens
7.24.3 Transfer Burst (TBST).....ccccevivieirieinieietctetcente et
7.243.1 Transfer Burst (TBST)—OUtputceevevivereriieesienenirneneeneneeeneeneen
7.24.3.2 Transfer Burst (TBST)—Input
7.24.4 Cache Inhibit (ﬁ)—Output ..
7.24.5 Write-Through (WT)—Output............ccociveereererrrserreneens
7.24.6 Global (GBL)....cccovieririeineneeteectreneteiere e
7.2.4.6.1 Global (GBL)—OULPULoovveereeererneernieeensesessesesssesesseessseeesesssensseees
7.2.4.6.2 G10baAl (GBL)—INPULvoeereeeeeeeieeeeeeeeeees e essaes s sssesssnae e
X MPC750 RISC Microprocessor User’s Manual

CONTENTS

Paragraph . Page
Numsl’)erp Title Numbger
7.2.5 Address Transfer Termination Signals........cccociiivniiiiiiinin, 7-13
7.2.5.1 Address Acknowledge (AACK)—INPULcoecvrirreeierenierieineneeeenieeeneene 7-14
7252 Address Retry (ARTRY) .oouovuiiieiieniceieneiesee ettt 7-14
7.25.2.1 Address Retry (ARTRY)—Outputccccceeviveeviieneenenieincnreseeenes 7-14
72522 Address Retry (ARTRY)—INput....c.coceeerevueneeeeneneniniieieseeneneneeeens 7-15
7.2.6 Data Bus Arbitration Signalsccoeoiiiiniiiinniiie 7-15
7.2.6.1 Data Bus Grant (DBG)—Input......c..cccoeeeereveneenineenneeiniereeierenecseneenens 7-15
7.2.6.2 Data Bus Write Only (DBWO)—Input........cceceerienreernnenecerenenineneenienens 7-16
7.2.6.3 Data Bus BUSY (DBB)c.ovvivivirererereseeesessssssssssssssessssssssssessesssssenes 7-16
7.2.6.3.1 Data Bus Busy (DBB)—OUtPUL..........cccorrerrerrererreerieesiessessesaesaessenans 7-16
7.2.6.3.2 Data Bus Busy (DBB)—TINpUL.........cc.oevurrverreriereseerssensssessessssessesssnssns 7-16
7.2.7 Data Transfer Signals..........cccccoviiiiinciiii e 7-17
7.27.1 Data Bus (DH[0-31], DLI0-31])c.cocccereeeererirreeeerenereierenieeerenseneseeenenes 7-17
7.2.7.1.1 Data Bus (DH[0-31], DL[0-31])—O0utput.......ccecsererueereeererrereecruencs 7-17
7.27.1.2 Data Bus (DH[0-31], DL[0-31])—Inputccoceeveeciviimiiiincnicnnnns 7-18
7272 Data Bus Parity (DP[0—7]) ...ccceeririreriirieniiiiniici et 7-18
7.2.7.2.1 Data Bus Parity (DP[0=7])—Output.......cccoeriruereeeereeiereenieereneenennes 7-18
7.2.7.2.2 Data Bus Parity (DP[0—7])—InpULccecerrevirenreriniiirnicieeneneeanen 7-18
7273 Data Bus Disable (DBDIS)—INputcccceceeuereneernenenneeeeniencrinnnennens 7-19
7.2.8 Data Transfer Termination Signals ..o, 7-19
7.2.8.1 Transfer Acknowledge (TA)—INPULc..ceevveveerrereererresrenesesessessenaesessnes 7-19
7.2.8.2 Data Retry (DRTRY)—INPUL....ccuireririinienieneiienieecnenenereeieseeeeeennenne 7-20
7.2.8.3 Transfer Error Acknowledge (TEA)—INPUL ...c.oovvrvvriereenrenniseeesnnsesenns 7-20
7.2.9 System Status SIgNALSccccecerveerireeirriecieeneerce e
7.29.1 Interrupt (INT)—Input

7.29.2 System Management Interrupt (SMI)—INpUL............covvverermrereeereeereseens 7-21
7.293 Machine Check Interrupt (MCP)—INpuEc.eveverreererenreereereesessensernnas 7-21
7294 Checkstop Input (CKSTP_IN)—Input.....c.c.cccoevevermererecnrererenennecnnnneennnne 7-22
7.29.5 Checkstop Output (CKSTP_OUT)—O0utputcccccevurerninreiiiciieniiennens 7-22
7.2.9.6 RESEE SIZNALS ..cviuienienieieieiee ettt e 7-23
7.2.9.6.1 Hard Reset (HRESET)—Inputc.ccccevevereremercnenenieenreereeeenicneneenns 7-23
7.2.9.6.2 Soft Reset (SRESET)—Input........coccceeinreeiiinienincnicciinnescnsesseinns 7-23
7.29.7 Processor Status Signals.........cocecevvererierenienenerene st seeesenens 7-23
7.29.7.1 Quiescent Request (QREQ)—OUtput......c.ccceeeeverenreneenmeineeneneneeeenens 7-24
7.29.7.2 Quiescent Acknowledge (QACK)—INputc.ceveireenencnnccreneennnee 7-24
72973 Reservation (RSRV)—Outputc.coceeverrerivnnnieennneceinineiieenennens
7.29.7.4 Time Base Enable (TBEN)—Input
7.29.7.5 TLBI Sync (TLBISYNC)—Input.........cccouruevnneee ereeeesteiseereereeenenesaenene
7.29.7.6 L2 Cache INterfacec.ocoevueruirircreniecenee e
7.29.8 L2 Address (LZADDR[16-0])—Output........cccccorumverivininniiiinisieeenennes 7-25
7.29.9 L2 Data (L2DATALO=63]) cceveuirreeeeneecnieenieeereneeeeenereneeenneesetesessessesnenes 7-25
7.29.9.1 L2 Data (L2DATA[0-63])—Output......cccccvevruererercivienrnriircniesieniinens 7-25
7.29.9.2 L2 Data (L2DATA[0-63])—INputccoeveeemmerieirieiiriiniiiiniiiicicieneas 7-26
Contents xi

CONTENTS

Paragraph . Page

Num?)erp Title Numbger

7.2.9.10 L2 Data Parity (L2DP[0=T7])....cccecereereereerrerernereereneereneereseseeseseeesesesesenens 7-26
7.2.9.10.1 L2 Data Parity (L2DP[0—7])—OUtputccceeveveerurruererserreneenreseseseeraens 7-26
7.2.9.10.2 L2 Data Parity (L2DP[0=7])—Input........ccceoertrerurerererrenernneeerenecncnennns 7-26
7.2.9.11 L2 Chip Enable (L2CE)—OULPULccceceruererrereerererrennrresensesenseseseseesensenens 7-26
7.2.9.12 L2 Write Enable (L2ZWE)—OutpUL......c.cececvererrrerieereereniereesenrensesessseeasses 7-27
7.29.13 L2 Clock Out A (L2CLK_OUTA)—OUtput.......c.cececeevererrererervenermenerrerennen 7-27
7.2.9.14 L2 Clock Out B (L2CLK_OUTB)—Outputc.cecccuerererrererereenerereneerennen 7-27
7.2.9.15 L2 Sync Out (L2SYNC_OUT)—OUPULcecovevrirrerenrenrenneineesenresesansenne 7-27
7.2.9.16 L2 Sync In (L2SYNC_IN)—INput.......cccevverveenrerinerinerireeneereneseesesaerennns 7-28
7.2.9.17 - L2 Low-Power Mode Enable (L2ZZ)—O0utputcccceceveverrerrerenrerennenne 7-28
7.2.10 IEEE 1149.1a-1993 Interface Descriptioncccoeveveererueieeeienenverenissesensenes 7-28
7.2.11 ClLOCK SINALS......ciiiiirieriieeieireeetr ettt ettt s e e sae s s e ss 7-29
7.2.11.1 System Clock (SYSCLK)—INputc.ccceeeveverrisinererisenrencsireeenerenereneeenns 7-29
7.2.11.2 Clock Out (CLK_OUT)—OUtPULcoeurvererirereremenieeriereecireesieeeeesesensees 7-29
7.2.11.3 PLL Configuration (PLL_CFG[0-3])—Input.......cccccceceeermirererrerereerencns 7-30
7.2.12 Power and Ground Signalscocceeeeriererenenenenienieneenteneeeeeseestesessessennas 7-30

Chapter 8
System Interface Operation

8.1 MPC750 System Interface OVEIVIEWccccoeeeeueruentrmeeneesenresensesesessesessensssesessones 8-1
8.1.1 Operation of the Instruction and Data L1 Cachescccccceveveeerecrecccnrnennene. 8-2
8.1.2 Operation of the L2 Cacheccceceveeueiiiecinernecnieieeecneneses s eseeeeseennene 8-4
8.1.3 Operation of the System Interface............cococeeeveeueenreieererenerere e 8-4
8.14 DITECE-StOTE ACCESSES......ucvruerervrrererereieterereseaiseeresenttsseseseatsessesesssssensasssseseseneas 8-5
8.2 Memory Access Protocol..........ccoeniiiniiiniiiniiiniiiiincincsnescsreceesssecnenes 8-6
8.2.1 ArDitration Signals..........cceeceeeiciiieriniinesienesieneseseseeseesse e ste st sesae e essasrens 8-8
8.2.2 Address Pipelining and Split-Bus Transactionsc.cecceceveveereruenrereresenenne 8-9
83 Address Bus TenUIE.........c.cccoviiiieinince ettt a et se et v sees 8-10
8.3.1 Address Bus Arbitration..........cooeceevernienieieninenneneeietneetsee e eesesieeseenes 8-10
8.3.2 Adress TIANSTETcoeeveririiririnieerteeiererteeeesteeesee s ee st eesassessassesesssnsssons 8-12
83.2.1 Address Bus Parityccoveeivinereiniernniecniececeieeseetcsnceseesesesenesenes 8-13
8.3.2.2 Address Transfer Attribute Signalsccccvvievcniciriiennincnnnecccecneen 8-13
8.3.22.1 Transfer Type (TT[0—4]) Signalsccccoceirererreneneneneeereeeeenene 8-13
8.3.2.2.2 Transfer Size (TSIZ[0-2]) Signals........cccceoeveeerimververierieniennreeresessenenneas 8-13
83.223 Write-Through (WT) Signal.........ccceeeverereriniinseneresernssessssessessnssenns 8-14
8.3.224 Cache Inhibit (CI) Signalcccccovurmmeieninuneecnineeerenereneet e 8-14
83.23 Burst Ordering During Data Transfers..........cccoceceevecrnenenienncccniecniecnuene 8-15
83.24 Effect of Alignment in Data Transfers...........cccoccceeveneenencnncnneeeeeeenens 8-15
8.3.24.1 Alignment of External Control InStructions............ceceeceveueveruerererrerenennes 8-17
833 Address Transfer Termination.........c.coceevevreeeieneenienneneeeseeteeseseeseseseeneene 8-17
Xii MPC750 RISC Microprocessor User’s Manual

Paragraph
Number

8.4
8.4.1
8.4.1.1
8.4.2
8.4.3
8.4.4
8.4.4.1
8.44.2
8.4.5
8.5
8.6
8.6.1
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.9
8.9.1
8.10

9.1
9.1.1
9.12
9.13
9.14
9.1.5
9.15.1
9.15.2
9.1.6
9.1.7
9.1.7.1
9.1.7.2
9.1.7.3

CONTENTS

Title

Page
Number

Using the DBB Signal
Data Bus WIIte ONlYcoeoverieiiinirinieiieiceieenietereeeeee e seessesressessesssennes
Data TranSTer.....cc.cevevieeiirierriieiesiestesee et et ere e e s e s esae s esaesasesa e e essessersennens

Normal Single-Beat Termination..........cc.ccceeeeevererereeerersesesencseeseesennens
Data Transfer Termination Due to a Bus Error
Memory Coherency—MEI Protocol...........ccccceevevieeceueercncnnnnenne
Timing EXaMPIEScceeviriieiniriiiiiereieeeeet et
Optional Bus Configurationcececeeceeeveeeerenreniesreeessereesesesniennas
NO-DRTRY MOGE......cueirerrereeirieieieieieeetrtntseeieesaetsseseseesessesassssesens
Interrupt, Checkstop, and Reset Signals.........cccocoeueeieeneeeneenennnrenenenne
External INTEITUPLS......cccveiiiiieiiiicieieirc et
ChECKSEOPS ...ttt
ReESEE INPULS ...ttt ettt sre s eresaas
System Quiesce Control Signals.......ccccceeveevereereeresesreeresreneseiesnesseneens
Processor State Signals.........ceccevieererierierinerieneeeeeeseseessesseseseneenns
Support for the Iwarx/stwex. Instruction Paircoceeeveeeenaes
TLBISYNC INPUL....coveiriiieiieesieeeereeieeeseesevesae e seeesse e e ssssnens
IEEE 1149.1a-1993 Compliant Interface.........cccoceceeveuevrvececnuennnes
JTAG/COP INLEITACEccveeuieuiieiirrenieteet ettt e s eesaesae s ssesaeeaees

Chapter 9
L2 Cache Interface Operation

L2 Cache INterface OVEIVIEWcocouceueuereinrencrerieeeieeneeseeseseesesesesseesseseesessenenses 9-1
L2 Cache OPErationccccceeerueenieeireerieireeeieseesseesseesaesseesusetessaessesssessesssesns 9-2
L2 Cache Control Register (L2CR)cccoucevireenrenrenieneieiieenseeneesneesnenenne 9-4
L2 Cache Initialization

L2CR Support for L2 Cache TeStingceccerereerreererreereerereeneenenseeneenees 9-7
L2 Cache TeStNGcceiiieieeiriiiieiee ettt eeeneseenessesessenens

L2 Clock Configurationcceceeueveeniniininicineneneeninreenseesivesnesnenens

L2 Cache SRAM Timing Examples
Flow-Through Burst SRAMccccccooviivineirerenerereseseseneens
Pipelined Burst SRAM......cc.cocevirnirinenieniiineneeneeneeeresresneseereneeseenens
Late-Write SRAMccoeoiniiiniinieeriereereieieieente e eses et sssesessesesessesesene

Contents

Xiii

CONTENTS

Paragraph . Page
Num%er Title Number
Chapter 10
Power and Thermal Management
10.1 Dynamic Power Management
10.2 Programmable Power Modes...............
10.2.1 Power Management Modes
10.2.1.1 Full-Power Mode with DPM Disabled.........cccccoverienienieneereneneneneseneennns 10-2
10.2.1.2 Full-Power Mode with DPM Enabled...........cccccecereneninnenenenenreneenreenne 10-2
10.2.1.3 DOZE MOE ...ttt sae et 10-3
10.2.1.4 NAP MOME ...ttt ettt st sttt sae s esssenas 10-3
10.2.1.5 SIEEP MOE......eeniiieiiereeiet ettt ettt ettt eve ettt ebnaens 10-4
10.2.2 Power Management Software Considerations..........cocecevveeruereereereereneeerennns 10-5
10.3 Thermal ASSISt UBt.....c.ecuerierieniirienieiniirieecenesietetece s e s ssessa st essesaesassans 10-6
10.3.1 Thermal Assist Unit OVEIVIEWc.ccoeveeuiveeerinreiinirerieeiseseeeseese e sseseenens 10-6
10.3.2 Thermal Assist Unit Operation...........ccceueerereereruereneerenierenienesieereereneeeneseenens 10-8
10.3.2.1 TAU Single Threshold Mode...........cccevueireenieiinririeireesceee e 10-8
10.3.2.2 TAU Dual-Threshold Modecocoeuereininninieienieeninceeeeeeeesieseseeesnraenns 10-9
10.3.2.3 MPC750 Junction Temperature Determinationcecceceeeveevereeeenvnnnes 10-10
10.3.24 Power Saving Modes and TAU Operation...........ceceeeeeereeveneneereeseereeenns 10-10
10.4 Instruction Cache Throttling.........ccccecvverieeriirienieinenineeeseseteresessessesseseeseens 10-10
Chapter 11
Performance Monitor
11.1 Performance Monitor INtEITupt...........oecvrvveerireerreseeseseeeereeeeseerssseesesseseeesens 11-2
11.2 Special-Purpose Registers Used by Performance Monitor.............ccevevrveveurnnnae 11-3
11.2.1 Performance Monitor REgISters.........covvevieirenrenieieieeieieeeeeese e sseeeee s 11-3
11.2.1.1 Monitor Mode Control Register 0 (MMCRO)........ccccoveeueineennenincnanns 11-3
11.2.1.2 User Monitor Mode Control Register 0 (UMMCRO)c.ccooecveeeerienennene 11-5
11.2.1.3 Monitor Mode Control Register 1 (MMCRI1).....ccocevvevcenineecerieneeeeenrenens 11-5
11.2.14 User Monitor Mode Control Register 1 (UMMCRI)coccecvvevierveienennene 11-6
11.2.1.5 Performance Monitor Counter Registers (PMC1-PMC4)c.ccceevuvurenne 11-6
11.2.1.6 User Performance Monitor Counter Registers (UPMC1-UPMC4)......... 11-10
11.2.1.7 Sampled Instruction Address Register (STA)ccocevvevrvevererenerienrecnenenns 11-10
11.2.1.8 User Sampled Instruction Address Register (USIA).......ccccoevivvecnieenne. 11-10
11.3 Event Countingcccouvviuiiiiniiiiiininiiicccicinee s e saaens 11-11
114 EVENt SEIECHION ...ttt ettt st se s snesabesenes 11-12
11.5 WAITHNES. ...ttt sttt ettt s st et ae s ese b e sa e s e e e ssesaesenanes 11-12

xiv MPC750 RISC Microprocessor User’s Manual

Paragraph
Number

Al
A2
A3
A4
AS

CONTENTS

Title

Page
Number

Appendix A
PowerPC Instruction Set Listings

Instructions Sorted by Mnemonic
Instructions Sorted by Opcode...................... e
Instructions Grouped by Functional Categorles
Instructions Sorted by FOrm......ccoecevivevenenenenininerenieene

Instruction Set Legendcoccvvieviiincreneneniineneneneesretee et

Appendix B
Instructions Not Implemented

Glossary of Terms and Abbreviations

Contents

XV

Xvi MPC750 RISC Microprocessor User’s Manual

Figure
Number

2-5

2-7
2-8
2-9
2-10
2-11
2-12
3-1
3-2
3-3
3-4
3-5
3-6
3-7
4-1
4-2
4-3
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

ILLUSTRATIONS

. Page
Title Number
MPC750 Microprocessor BIock Diagramcccccecerveceeiereenieneenesneessenseseensennes 1-3
Cache OrganizZation............ceeieiiieceieieiieieereeeeieestesresaesseessessassesssesseessessessnens 1-13
SyStem INTErfaCe.......cveeviiiieireiere ettt se e aes 1-16
MPC750 Microprocessor Signal GrOUPSceveeveerreriereereesserenreneessesesensensons 1-18
MPC750 Microprocessor Programming Model—Registers...........c.cccceveueneucne 1-23
Pipeline DIiagramcccceciverierieniniiineeteteiercei ettt ettt 1-34
Programming Model—MPC750 Microprocessor Registers........c.cvevererververanen 2-2
Instruction Address Breakpoint RegiSterocoucvervcriviriecninincieiiiecnnnieiccrenes 2-9
Hardware Implementation-Dependent Register O (HIDO)........ccceeveveererervenienne. 29
Hardware Implementation-Dependent Register 1 (HID1).......ccccoecevvevenenunucnnene 2-13
Monitor Mode Control Register 0 (MMCRO)coceeeeirenenrenieneneeeeieeeeene 2-14
Monitor Mode Control Register 1 (MMOCRI)ccoevivivinininiccenineeeeenene 2-16
Performance Monitor Counter Registers (PMC1-PMC4)........cccovevererrrrereenenee 2-16
Sampled instruction Address Registers (SIA)ccoeverieerrvnenieneeneerccnne 2-20
Instruction Cache Throttling Control Register (ICTC)......cccocevveererrervirrerennenn 2-21
Thermal Management Registers 1-2 (THRM1-THRM2)c.cccooevueivuninnene 2-22
Thermal Management Register 3 (THRM3).....c.occecevivininineneninieseeenenees 2-23
L2 Cache Control Register (L2CR)ccccouevireeveriineniniereesieseniteseeseesesseeseseens 2-24
Cache INEEEIatioNcccueiririeiirierienenterecterteteee sttt s sttt e 3-2
Data Cache Organizationc.eceeveveereenierieeseeseeenensessessessesissessessesessessessesses 3-4
Instruction Cache Organizationeceevecereereereercrieneseneeresereseseeseesesseessenes 3-5
MEI Cache Coherency Protocol—State Diagram (WIM = 001)........ccccevvevennenne. 3-8
PLRU Replacement Algorithm.........c.cccccivuiiviicnrininiiicniiinreinccseeeecreeneenees 3-19
Double-Word Address Ordering—Critical Double Word First.............cccc... 3-23
Bus Interface Address BUffers..........cccoeeeveeinnecnecrnernieneeicenccneetneceeeenens

Machine Status Save/Restore Register 0 (SRRO)
Machine Status Save/Restore Register 1 (SRR1)

Machine State Register (MSR)ccccoiiiivniiiniinniiicesccenens

MMU Conceptual Block Diagram—32-Bit Implementations..............cccccveuvenee. 5-6
MPC750 Microprocessor IMMU Block Diagramcecceveeeevierereenvenenvecrensenne 5-7
MPC750 Microprocessor DMMU Block Diagram...........cccccceeiieinenincnnineeennns 5-8
Address Translation TYPESccccccueevreiiiieciniiineniiincsenei s 5-10
General Flow of Address Translation (Real Addressing Mode and Block) 5-13
General Flow of Page and Direct-Store Interface Address Translation 5-15
Segment Register and DTLB Organizationccc.coeeeeeerercneeerenceseneerenreneene 5-26
Page Address Translation Flow—TLB Hit.......c.cccccceevivcnenvenrennenenirenenennes 5-29

lilustrations

Xvii

Figure
Number
59
5-10
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8

ILLUSTRATIONS

. Page

Title Number
Primary Page Table Search.........ccoeievennieieniniininiiieicececieicecccccnne 5-32
Secondary Page Table Search FIOW..........cccocvvieiiviiiiiininininiieec 5-33
Pipelined EXecution Unit.........occeeviereereninienienietenesiesneneseseeeseseesesseseesaesesees 6-4
Superscalar/Pipeline Diagram..........coceeeverieneenienienienenineneneresenreeeseecreeenens 6-5
MPC750 Microprocessor Pipeline Stagesccccoeveviviiinininininineeinicens 6-7
Instruction Flow Diagramc.cccceviiiniiniiiniiiiiicccee s 6-10
Instruction Timing—Cache Hitc.cecvueerirenieineineinncnenceeeenee 6-12
Instruction Timing—Cache MisS.......ccccecuerrirniiriinnienirienicceceentree e 6-15
Branch FOIAINg.......coveerireniiiinieieireieeeectestesiesese ettt sees e 6-19
Removal of Fall-Through Branch Instruction...........cccecccevveriiveenniecennceninnnenne. 6-19
Branch COmPIEtioNce.ceveeerririerieireerceeeie sttt ettt esie e snesesneneen
Branch Instruction Timing
MPCT750 SigNal GrOUPSceevvevereereiriririereteteeesteeteatsaeeeesseressessssesesne e ssenasnas
MPC750 Microprocessor Block Diagramcccoeeirivuencniineniinneciiiecnne. 8-3
Timing Diagram Legend...........cccocccimiiiiiiiinininiinecennnne 8-6
Overlapping Tenures on the MPC750 Bus for a Single-Beat Transfer 8-7
Address Bus Arbitrationccccoeeeveinineiininiiniicniiis s 8-10
Address Bus Arbitration Showing Bus Parking...........cccccccvvueecniniicinnincccnnnns 8-11
Address Bus Transfer.......c.coecevernenenenenieieieeceicestneesesesieiesseesssenens 8-13
Snooped Address Cycle With ARTRYoveorureeeeereeeeeereesesemmssessesessessessssaes 8-19
Data Bus Arbitrationccveoeeereeieueuiniineeieireseereieeeeie e esssese et ssenanens 8-20
Normal Single-Beat Read Terminationceceeveeveereeneeneenuenreneeseeneeseerereenuenees 8-23
Normal Single-Beat Write Termination..........cecceceeereeeeveenreneenueneeneerensenreneennens 8-23
Normal Burst Transaction..........c.ceeeueeereerneeenneneeneeniinecresienreseessessesnesenesnsnes 8-24
Termination with DRTRY ..o 8-25
Read Burst with TA Wait States and DRTRYcccccceveeuereerivenuesensensnsennsesenns 8-25
MEI Cache Coherency Protocol—State Diagram (WIM = 001)....c..c.ccevveunene. 8-27
Fastest Single-Beat Reads.........cccoovveeeeriirinienieneieneicrcsieecneeeeeeereseesveseeneenens 8-28
Fastest Single-Beat WIScccvivieeerierineneneeenieteeeteteveseereseeaeneeneenen 8-29
Single-Beat Reads Showing Data-Delay Controlsccoceeverveeeiiveeniiincennens 8-30
Single-Beat Writes Showing Data Delay Controls............cccocovvininiiniccinnnn 8-31
Burst Transfers with Data Delay Controls............eeeecereeercneninecnnencneneceeens 8-32
Use of Transfer Error Acknowledge (TEA)cevevueveeereereeeeesssensesseseesennnsans 8-33
IEEE 1149.1a-1993 Compliant Boundary Scan Interface...........c.cccccccunieunnene. 8-37
Data Bus Write Only TranSaction...........cececveeiereeniierienieneenceee e ereseeeenneenes 8-38
Typical 1-Mbyte L2 Cache Configuration..........cccceeveererererenervenreserueenseenense 9-2
Burst Read-Write-Read L2 Cache Access (Flow-Through)...........ccccccvininnnne, 9-10
Burst Read-Modify-Write L2 Cache Access (Flow-Through).........ccccceeveunenee. 9-10
Burst Read-Write-Write L2 Cache Access (Flow-Through).......ccccccecveeenvenene. 9-11
Burst Read-Write-Read L2 Cache Access (Pipelined)..........ccccocvvevcvcinccnnnee 9-11
Burst Read-Modify-Write L2 Cache Access (Pipelined)ccccocevveverenencnnennee 9-12
Burst Read-Write-Write L2 Cache Access (Pipelined)cocceevvevenviinnenennne 9-12
Burst Read-Write-Read L2 Cache Access (Late-Write SRAM)ccoveeneeennen. 9-13

xviii

MPC750 RISC Microprocessor User’s Manual

ILLUSTRATIONS

Figure . Page

Number Title Number
9-9 Burst Read-Modify-Write L2 Cache Access (Late-Write SRAM).................... 9-13
9-10 Burst Read-Write-Write L2 Cache Access (Late-Write SRAM)ccocuueee. 9-14
10-1 Thermal Assist Unit Block Diagram...........cccceeeeeniicinccieniienennenencineennas 10-6
11-1 Monitor Mode Control Register 0 (MMCRO)cc.cocevieeninineninineneeeeiniee 11-4
11-2 Monitor Mode Control Register 1 (MMCRI)cocoeivininininieeireeeeieeen 11-5
11-3 Performance Monitor Counter Registers (PMCI-PMC4).........ccccoceveverenunenen. 11-6
11-4 Sampled instruction Address Registers (SIA) ...coceovvevvcivennininniineeinieeeneenn 11-10

lllustrations Xix

XX

MPC750 RISC Microprocessor User’s Manual

TABLES

Table . Page
Number Title Numb%r
i Acronyms and Abbreviated Terms..........ccccceeveriniecreinercnniincnreee e XXXiV
it Terminology CONVENLIONSc.cetrtririrreririeiericrieieietst s etes et sese e s ns XXXVii
il Instruction Field CONVENtionscccoetvuereiniiinienineiiceneetereeieeeseeneeenennas XxXxviii
1-1 Architecture-Defined Registers on the MPC750 (Excluding SPRs) 1-24
1-2 Architecture-Defined SPRs Implemented by the MPC750ccccevvennnene. 1-25
1-3 MPCT750-Specific REGISLELS....c.crveveerruiriiieteieeinieerteitecsre e teniee et eee st 1-26
1-4 MPC750 Microprocessor Exception Classificationscoccoeeveernrecrcneennn 1-31
1-5 Exceptions and CONAItIONSeeoverererieereeinieneeenieieteeseeseeseneeseeseneesessensene 1-31
2-1 Additional MSR BitScccovviiiiiiieiierieinciectcceene ettt st 2-4
2-2 Additional SRR BILS ..c.ceeiriuiiiiiriniriereinieierireneeeeest ettt st eseensenenens 2-6
2-3 Instruction Address Breakpoint Register Bit SEttingscccoceeeveveeevnrerecrnnee 2-9
2-4 HIDO Bit FUNCHONS......ccviiiiiiiiiiniieicieicieeiiceeecteett v essrese e eseseeras s e 2-9
2-5 HIDO[BCLK] and HIDO[ECLK] CLK_OUT Configurationc..cececeeueneee. 2-13
2-6 HID1T Bit FUNCHONS ..ottt sttt sttt ness e a st eesaesaens 2-13
2-7 MMCRO Bit SEtHNES ...c.vevveeveereieieiieieeieeieseeseete e este st e e eeesessseeseeesseseeseas 2-14
2-8 MMCRI Bit SELHNES ...cvevveveniireereeeriereieetrieetsie ettt sesaebeneae 2-16
2-9 PMCN Bit SEHHIESvvveiriieiiiiieiieeicitieeeenet et et seesenense ettt esenene 2-17
2-10 PMC1 Events—MMCRO[19-25] Select Encodingsc..cocveveeeereinenrennnne 2-17
2-11 PMC?2 Events—MMCRO[26-31] Select Encodingscoccoeeveererrecerrenennnne 2-18
2-12 PMC3 Events—MMCR1[0-4] Select Encodingsccceveeveineernncneerueennens 2-18
2-13 PMC4 Events—MMCRI1[5-9] Select Encodingsccocecevvivereeeeeererieenuenne 2-19
2-14 ICTC Bit SELtNES....ocvevveminiririeeieireetctrieiettere et st e essestesaene 2-21
2-15 THRMI1-THRM2 Bit SEttNgS.....c.cceerrrereriririeieiriereieietrineesereesesecseseevesessenenens 2-22
2-16 Valid THRMI/THRM2 SEatesc.covevruivirieriniririeeienieiereiesieeiesreneseseeneenene 2-23
2-17 THRM3 Bit SEHNES ..coueevivieierieriieiiientieesiesteseessesieseeseessessesesasseesesssessessessenns 2-24
2-18 L2CR Bit SEUINES ...vevvevenieieiieiririerenieeeeestersseesreeeressesessesasassesenensessesasessesessens 2-25
2-19 Settings Caused by Hard Reset (Used at Power-On).........cocccvevveeeeveeneennennnnne. 2-27
2-20 Floating-Point Operand Data Type Behavior........c.cocoecienneccivcccncnneennen 2-30
2-21 Floating-Point Result Data Type Behavior..........c.ccccccevvieiivinninnccccniinenns 2-31
2-22 Integer Arithmetic INStIUCHIONSccvevevuirieirerieirctreere e 2-38
2-23 Integer Compare INStrUCIONS.ccccveuivirieirieieieeeenieee e 2-39
2-24 Integer Logical INStrUCHONSc..ccciveiruiiieiiiiiieeeiciree e 2-40
2-25 Integer Rotate INStIUCIONScccoueiiieuieririeinicieee et 2-41
2-26 Integer Shift INStIUCHIONS.ccoiimiiiiiiiieiricieinee e 2-41
2-27 Floating-Point Arithmetic INStruCtionscocecevvevrerieveniereneeneeeereneeeseeeeienees 2-42
2-28 Floating-Point Multiply-Add INStructionsceceeerverierueniesierieneenieneeneneees 2-42

Tables XXi

TABLES

Table . Page
Number Title Numbger
2-29 Floating-Point Rounding and Conversion Instructions............cc.eceveeceriennnnns 2-43
2-30 Floating-Point Compare Instructions
2-31 Floating-Point Status and Control Register Instructionscccocceveviniiinnns 2-44
2-32 Floating-Point Move INStrucCtionsc.cceeveeveenrenienieniniecnnineneriniceesiennenene 2-44
2-33 Integer Load INSIUCHIONScouiiviviriiiiiiciciiiciicere e 2-47
2-34 Integer Store INSIIUCHONSc..ecverreiereiieieieteteteicrce st 2-48
2-35 Integer Load and Store with Byte-Reverse Instructions...........c.ccceeevvcveucnnne. 2-49
2-36 Integer Load and Store Multiple Instructions
2-37 Integer Load and Store String INStrUCtionSccoeviviiiiiiniieniiiiiiiiiins
2-38 Floating-Point Load Instructions
2-39 Floating-Point Store Instructions
2-40 Store Floating-Point Single Behavior ..o,
2-41 Store Floating-Point Double Behavior............ccccvueinicivncniinineniiiiccniecenene,
2-42 Branch Instructions
2-43 Condition Register Logical INStructionsc.ceeeceueivereeririnnenscinnecivennenenns
2-44 Trap INSTIUCHIONSeviviieieieiiiciei e
2-45 System Linkage Instruction—UISAcccoeviiininiiiiicns
2-46 Move to/from Condition Register InStructions............ccocceveivieinininininiinininns 2-56
2-47 Move to/from Special-Purpose Register Instructions (UISA).........ccecevinienne 2-56
2-48 PowerPC Encodings........c.cocoveiiiiiiiniiiiniiinicinnicnessicssnessssesssessnesesssnene 2-56
2-49 SPR Encodings for MPC750-Defined Registers (mfspr) 2-58
2-50 Memory Synchronization Instructions—UISAcccccoveviniininniiininiiinns 2-59
2-51 Move from Time Base INStruction............ccveeeeiviiinininiiininninecciieinns 2-60
2-52 Memory Synchronization Instructions—VEAcc.cccoceevninvvninnnnniiine, 2-62
2-53 User-Level Cache InStructions.........cc.coveevveineineniinnininiinenssenenns 2-63
2-54 External Control INStruCtions...........cocvieieiiminiiininiiininiie e 2-64
2-55 System Linkage Instructions—OEA...........c.ccocovniiinininiiiienne 2-65
2-56 Move to/from Machine State Register InStructionscooeveveerveresieveesenenne 2-65
2-57 Move to/from Special-Purpose Register Instructions (OEA)..........cccooeeueuinin. 2-66
2-58 Supervisor-Level Cache Management Instruction...........ccceoveveviviniiinninnncne, 2-66
2-59 Segment Register Manipulation InsStructions.............cccovcviiniiicninniicinnnicnnnn. 2-67
2-60 Translation Lookaside Buffer Management Instruction............cccevevevievinnncnnns 2-67
3-1 MET State Definitionscocceverereerinininnincciecenccnreese s 3-7
3-2 PLRU Bit Update RUIEs........cceccviirimmiiniriiiciiiiciiiiiniiciis s 3-20
3-3 PLRU Replacement Block Selection...........coeucvuveniiiniiiniiinniiieiniiercnennen 3-20
3-4 Bus Operations Caused by Cache Control Instructions (WIM = 001) 3-24
3-5 Response to Snooped Bus Transactionsc..coeeeeeeiicuiiininnnninninnnniiinens 3-26
3-6 Address/Transfer Attribute SUMMArY..........cccoevniiiiinnniiiiiies 3-29
3-7 MET State Transitionsc.cecceveeverveeereeienieinieeeeeiet et essesnens 3-32
4-1 MPC750 Microprocessor Exception Classificationscoceeeveeniiiereniininns 4-2
4-2 Exceptions and COonditionscceceiireiniiiiiiniiineniciees e 4-3
4-3 MPC750 EXCeption PriOTitiesccceeiueeeerueereeinieieeieteniieieeessss e 4-6
4-4 MSR Bit SELHIES c.voveevierrreirieierereeertesteienieesteaeteststeeeseseseseseesessestssestesesseneosenes 4-8
XXii MPC750 RISC Microprocessor User’s Manual

Table
Number

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
7-1
7-2
7-3
7-4
7-5
7-6
8-1
8-2
8-3
8-4
9-1
10-1
10-2
10-3
10-4
10-5
11-1

TABLES

. Page

Title Number
IEEE Floating-Point Exception Mode Bits.........ccccocveverieninenvnnenienene e 4-10
MBSR Setting Due to EXCEPHON......cccevevveriirererinirieeneeeececesrese e e 4-12
System Reset Exception—Register Settingscccocveivieinincciininiiineens 4-13
HIDO Machine Check Enable Bits.......cc.coceeverevieiiniincieeniniinercneceee e, 4-15
Machine Check Exception—Register Settings..........cccoceeeviininiciiccninicnnens 4-16
Trace Exception—SRR1 Settings........ccoevvevienienineniininineeneecnecne e 4-20
Performance Monitor Interrupt Exception—Register Settings...........ccccrveuenne. 4-21
Instruction Address Breakpoint Exception—Register Settings.............ccoeuuee. 4-22
System Management Interrupt Exception—Register Settingscoccveueuce. 4-23
Thermal Management Interrupt Exception—Register Settings...........ccceuuee. 4-24
MMU Feature SUIMMATYcoeeveeerereererenreneesueeeueseessesassessessereesessessessnssesseene 5-3
Access Protection Options for Pagescccoccvveeeeenieveneineennenccnnenineeenenenees 5-11
Translation Exception CONditions.........ccceveveereereenienieneeneeneeeesreneseeseseeessenennes 5-17
Other MMU Exception Conditions for the MPC750 Processorccou.u..... 5-18
MPC750 Microprocessor Instruction Summary—Control MMUs 5-19
MPC750 Microprocessor MMU RegIStersccoeeiviviiimniiinininiinieinnn, 5-20
Table Search Operations to Update History Bits—TLB Hit Case 5-22
Model for Guaranteed R and C Bit Settingsccoceeveevererenrerrrerieneereeeesennenne 5-24
Performance Effects of Memory Operand Placementcccoveveveevieeeennenenne. 6-26
TLB Miss Latencies
Branch INSIUCHONSeoveuirieiriricieeieiiniirecetere ettt
System Register INStrUCtIONS........c.ceceveerverrereneninrinieeneeeeeeieeee e 6-31
Condition Register Logical INStructionscocecevverereereererererinenrennenencrsnnneneane 6-32
Integer Instructions
Floating-Point Instructions......
Load and Store Instructions
Transfer Type Encodings for MPC750 Bus MaStercocccueeveeveneeneneeneerennene 7-9
MPC750 Snoop Hit RESPONSEcevveurevireiriniriieieieneceereerecieereereeere e 7-10
Data Transfer SizZe.........cocoevieiniiiiiininiiiinncieci s 7-11
Data Bus Lane ASSIZNMENLScccceevirerirerieneeriieniienieneenienneeesnesneessesnesensensens 7-17
DP[0-7] Signal ASSIZNMENLS.......c.ceererrererrerereneererreeeriseereseentsesnsresnesesseessneseone 7-18
IEEE Interface Pin DeSCriptionsceecueeierieniinieniesreneesrenenierieeseneesesseesseneenes 7-28
Transfer Size Signal ENcodingscocevveienienienienieneninenenrenneieeeeeeeeresnenns 8-14
BUrst OFETINGcoeeuieieieieieerteiericteeet ettt e eeresse et ssressens 8-15
Aligned Data TTansfers.......ccoceeeireriererinnierccreseeseeeteres e 8-15
Misaligned Data Transfers (Four-Byte EXamples)occccveeeenieeniereninnuiinnnns 8-17
L2 Cache Control REISter.......cccoveeevireenienieieeiinteseeseereseeeseeere e seessenane 9-5
MPC750 Microprocessor Programmable Power Modescocceevveeeveinnenne 10-2
THRM1 and THRM?2 Bit Field Settings.......c..cceeveriiimeiniiiiininiinieniiienns 10-7
THRM3 Bit Field Settingsccccoveevveeirierienieenieneeeiereeeeieetnne e ennsessesnees 10-7
Valid THRM1 and THRM2 Bit SEttings.........ccccceevevvemreniniininiinnnneniesennnens 10-9
ICTC Bit Field Settings

Performance Monitor SPRs

Tables

xXiii

TABLES

Table . Page

Number Title Numbger
11-2 MMCRO Bit SELHNEScveneeeirieieiiieirie ettt et 114
11-3 MMCRI Bit SELHNESecvevevirienieiiienenieieerreesteee sttt rese e sesaeeenen 11-6
11-4 PMCD Bit SELHIES .euvevenrenieiieieierieeieriesree sttt et s ebeeas 11-6
11-5 PMC1 Events—MMCRO[19-25] Select Encodingscccceeeevereeereeveeennnnne. 11-7
11-6 PMC2 Events—MMCRO[26-31] Select Encodingscceoceeuerveereeereeneneenne 11-7
11-7 PMC3 Events—MMCRI1[0-4] Select Encodingscccceveeverirvecerenenennenne. 11-8
11-8 PMC4 Events—MMCRI1[5-9] Select Encodingscccceoeveveereeeneeeeneeecnne. 11-9
A-1 Complete Instruction List Sorted by MNemonic...........coceveerveneerseeneeneerenneenne A-1
A-2 Complete Instruction List Sorted by Opcode.........ocueververenervineneneneneeenennnn A-9
A-3 Integer Arithmetic INStIUCHIONSecuveeveruieriiriereere et A-17
A-4 Integer Compare INStIUCHONS........c.ocivierinueiiieinierecrecieecnese et A-18
A-5 Integer Logical INStIUCHONScovevverrerrinieeinierereiteeieeeeeie ettt A-18
A-6 Integer Rotate INStIUCHONS .. .eveveriertirtenteeeeteeteereteeteeere et et eresbesbe s e ereeeennens A-19
A-7 Integer Shift INSIrUCHONS.c.coveoveuerererreiieiteenteee et seeseene A-19
A-8 Floating-Point Arithmetic INStrUCtioNSc.cceeeviriererriereereeeeeseeeeeseeaean A-20
A-9 Floating-Point Multiply-Add INStructionscoeeeevereevereriieneenenenieesieneennens A-20
A-10 Floating-Point Rounding and Conversion Instructions............cccocecrueeveeruencnn A-21
A-11 Floating-Point Compare InStructions.............ccocoeeiiiiiieinicniicnnnieseee A-21
A-12 Floating-Point Status and Control Register InStructionsccocceceervervenrenne A-21
A-13 Integer Load INStrUCHONSccceeviriiiiiiienieeie ettt A-22
A-14 Integer Store INStIUCHIONS ..c..coveeeveieieieieiertereteteeee ettt es et e e e saesaenne A-23
A-15 Integer Load and Store with Byte Reverse Instructionsc.co.ccceveeveeeuccnnene A-23
A-16 Integer Load and Store Multiple INStructionsc.cccceeveevicinnvicineneccenennen. A-23
A-17 Integer Load and Store String INStructions ..o A-24
A-18 Memory Synchronization INStruCHONS..........c..cccvveevirieviniiiciineiiicineeecenene A-24
A-19 Floating-Point Load INStruCtionsceeeveeenireenencnteieeeeres e A-24
A-20 Floating-Point Store INStrUCLIONSccvevververievenirieeririenieneeniesteeeseeeeeeseeseeneens A-25
A-21 Floating-Point Move INStrUCHONSc.cceereerierinrieriereirieeencreceeereeerenenens A-25
A-22 Branch INSrUCIONS ...c..covevuerieruirireninieeeeeeni ettt ettt eeene A-25
A-23 Condition Register Logical INStructionscceeeevevivmeenieinreiinierescnneennenens A-26
A-24 System Linkage INStrUCtiONSccoververviveririeriirieteieeecrest ettt s siene A-26
A-25 Trap INSHUCHONScutrveieteteirie ettt ettt ettt be s eseseebe et er e A-26
A-26 Processor Control INSTrUCHONSc.c..eevrveueirreresieneeteeereereereneereneeetseeeeereseerennes A-27
A-27 Cache Management INSIIUCHIONSco.evivereruiiriecriinreineeieict e eesaeneenes A-27
A-28 Segment Register Manipulation InStructions.ccceceeveveerenreenensienseenneene A-28
A-29 Lookaside Buffer Management INnStructions...........cocccceveevieenrecniencnnennecnnnnens A-28
A-30 External Control INStruCtiONSc..evveevereeierierienieeeieeesteeee et A-28
A-31 TFFOIML ettt et ettt sttt n et et A-29
A-32 BrFOIMiiciccccc ettt ettt A-29
A-33 SCrFOIMeniiiiiciiiceeecteieeteeete ettt ettt ettt ettt A-29
A-34 DEFOIMciiiiiiccirire ettt ettt ettt A-29
A-35 DS FOIM ettt ettt et sttt sttt A-31
A-36 X FOIMuciiiieiceieice ettt sttt ettt A-31

XXiv MPC750 RISC Microprocessor User’s Manual

TABLES

Table . Page

Number Title Numbger
A-37 XL-FOIM oottt A-36
A-38 XEX-FOIM... ittt ettt s s A-36
A-39 KEL-FOIM .ttt ettt ettt tsae e sese st se s A-37
A-40 KS-FOIMM .ttt eae s s nsaan A-37
A-41 XO-FOIMN ..ottt e A-37
A-42 ACFOIMN ittt ettt s s s A-38
A-43 MEAFOITN ottt s s A-39
A-44 MD-FOTIM ..ttt e s s s A-39
A-45 MDS-FOIM ...ttt esresree et e ssee st st e s se e erebe st s e s s esaesaesnesns A-40
A-46 PowerPC Instruction Set Legend ..o A-41
B-1 32-Bit Instructions Not Implemented by the MPC750 Processor B-1
B-2 64-Bit Instructions Not Implemented by the MPC750 Processorc........ B-1

Tables XXV

XXVi MPC750 RISC Microprocessor User’s Manual

About This Book

The primary objective of this user’s manual is to define the functionality of the MPC750
and MPC740 microprocessors for use by software and hardware developers. Although the
emphasis of this manual is upon the MPC750, unless otherwise noted, all information here
applies to MPC740. This book is intended as a companion to the PowerPC™
Microprocessor Family: The Programming Environments (referred to as The Programming
Environments Manual).

About the Companion Programming Environments Manual

The MPC750 RISC Microprocessor User’s Manual, which
describes MPC750 features not defined by the architecture, is
to be used with the PowerPC Microprocessor Family: The
Programming Environments, Rev. 1, referred to as The
Programming Environments Manual.

Because the PowerPC architecture is designed to be flexible to
support a broad range of processors, The Programming
Environments Manual provides a general description of
features that are common to PowerPC processors and indicates
those features that are optional or that may be implemented
differently in the design of each processor.

Note that The Programming Environments Manual exists in
two versions. PowerPC Microprocessor Family: The
Programming Environments, Rev. 1 describes features of the
PowerPC architecture for both 64- and 32-bit implementations.
This version may be more useful if migration to 64-bit
processors is critical to the reader. PowerPC Microprocessor
Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1 describes features of the PowerPC
architecture only for 32-bit implementations. Because it
describes only those features that support 32-bit processors,
this manual may be more practical if the reader is concerned
primarily with the MPC750 processor.

Contact your sales representative for a copy of The
Programming Environments Manual.

About This Book XXVii

This document and The Programming Environments Manual distinguish between the three
levels, or programming environments, of the PowerPC architecture, which are as follows:

¢ PowerPC user instruction set architecture (UISA)—The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

¢ PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory and defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an environment in which other processors and other devices can access external
memory.

Implementations that conform to the PowerPC VEA also conform to the PowerPC
UISA, but may not necessarily adhere to the OEA.

¢ PowerPC operating environment architecture (OEA)—The OEA defines supervisor-
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that cause a floating-
point exception are defined by the UISA, while the exception mechanism itself is defined
by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, the arrangement of topics in this book follows that of The
Programming Environments Manual. Topics build upon one another, beginning with a
description and complete summary of MPC750-specific registers and instructions and
progressing to more specialized topics such as MPC750-specific details regarding the
cache, exception, and memory management models. As such, chapters may include
information from multiple levels of the architecture. (For example, the discussion of the
cache model uses information from both the VEA and the OEA.)

Xxviii MPC750 RISC Microprocessor User's Manual

The PowerPC Architecture: A Specification for a New Family of RISC Processors defines
the architecture from the perspective of the three programming environments and remains
the defining document for the PowerPC architecture. For information about ordering
PowerPC documentation, see “Suggested Reading,” on page xxx.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers’ responsibility to be sure they are using the most recent version of the
documentation.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.com/powerpc.

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the MPC750. It is assumed that the reader
understands operating systems, microprocessor system design, basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

* Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the MPC750. This
chapter describes the flexible nature of the PowerPC architecture definition, and
provides an overview of how the PowerPC architecture defines the register set,
operand conventions, addressing modes, instruction set, cache model, exception
model, and memory management model.

e Chapter 2, “MPC750 Processor Programming Model,”is useful for software
engineers who need to understand the MPC750-specific registers, operand
conventions, and details regarding how PowerPC instructions are implemented on
the MPC750. Instructions are organized by function.

» Chapter 3, “L1 Instruction and Data Cache Operation,” discusses the cache and
memory model as implemented on the MPC750.

¢ Chapter 4, “Exceptions,” describes the exception model defined in the PowerPC
OEA and the specific exception model implemented on the MPC750.

e Chapter 5, “Memory Management,” describes the MPC750’s implementation of the
memory management unit specifications provided by the PowerPC OEA for
PowerPC processors.

* Chapter 6, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditions to help make programming more efficient.
This chapter is of special interest to software engineers and system designers.

About This Book XXiX

Chapter 7, “Signal Descriptions,” provides descriptions of individual signals of the
MPC750.

Chapter 8, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the MPC750.

Chapter 9, “L2 Cache Interface Operation,” describes the implementation and use
of the MPC750 L2 cache and cache controller. Note that this feature is not
supported on the MPC740.

Chapter 10, “Power and Thermal Management,” provides information about power
saving and thermal management modes for the MPC750.

Chapter 11, “Performance Monitor,” describes the operation of the performance
monitor diagnostic tool incorporated in the MPC750.

Appendix A, “PowerPC Instruction Set Listings,” lists all the PowerPC instructions
while indicating those instructions that are not implemented by the MPC750; it also
includes the instructions that are specific to the MPC750. Instructions are grouped
according to mnemonic, opcode, function, and form. Also included is a quick
reference table that contains general information, such as the architecture level,
privilege level, and form, and indicates if the instruction is 64-bit and optional.

Appendix B, “Instructions Not Implemented,” provides a list of the 32-bit and 64-
bit PowerPC instructions that are not implemented in the MPC750.

This manual also includes a glossary and an index.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.),
(415) 392-2665 (International); internet address: mkp @mkp.com.

— The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

XXX

MPC750 RISC Microprocessor User's Manual

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

» Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

* PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation

The PowerPC documentation is available from the sources listed on the back cover of this
manual; the document order numbers are included in parentheses for ease in ordering:

» User’s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual: MPC601UM/AD
(Motorola order #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
PowerPC 603 Microprocessor:
MPC603EUM/AD (Motorola order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #)

¢ Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorola order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1: MPCFPE32B/AD (Motorola order #)

» Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.motorola.com/PowerPC/.

* Addenda/errata to user’s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to PowerPC 603e RISC Microprocessor User’s Manual: PowerPC
603e Microprocessor Supplement and User’s Manual Errata:
MPC603EUMAD/AD (Motorola order #)

About This Book XXXi

— Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorola order #)

Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603¢ Hardware
Specifications:
MPC603EEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order #)

— PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware
Specifications:
MPC603E7TEC/D (Motorola order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications: '
MPC604E9VEC/D (Motorola order #

Technical Summaries—Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 603, 603e, 604, and 604e as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #)

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order #) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

XXXii

MPC750 RISC Microprocessor User's Manual

e PowerPC Microprocessor Family: The Programmer’s Reference Guide:
MPCPRG/D (Motorola order #) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction

set.

» PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
MPCPRGREF/D (Motorola order #)
This foldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

» Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC

processors.

¢ Documentation for support chips—These include the following:

— MPCI05 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorola order #)

— MPCI106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorola order #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.motorola.com/PowerPC/.

Conventions

This document uses the following notational conventions:

mnemonics

italics

0x0

0b0

rA, rB

rD

frA, frB, frC
frD
REGIFIELD]

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don’t
care.

Used to express an undefined numerical value

About This Book

Xxxiii

-

NOT logical operator
AND logical operator
OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits

may be written to as either
Z€eros.

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

ones or zeros, they are always read as

Table i. Acronyms and Abbreviated Terms

Term Meaning
BAT Block address translation
BIST Built-in self test
BHT Branch history table
BIU Bus interface unit
BPU Branch processing unit
BTIC Branch target instruction cache
BSDL Boundary-scan description language
BUID Bus unit ID
CMOS Complementary metal-oxide semiconductor
COP Common on-chip processor
CR Condition register
cQ Completion queue
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DCMP Data TLB compare
DEC Decrementer register
DLL Delay-locked loop
DMISS Data TLB miss address
DMMU Data MMU
DPM Dynamic power management
DSISR Register used for determining the source of a DSI exception
DTLB Data translation lookaside buffer
XXXV MPC750 RISC Microprocessor User's Manual

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
EA Effective address
EAR External access register
ECC Error checking and correction
FIFO First-in-first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDn Hardware implementation-dependent register
IABR Instruction address breakpoint register
IBAT Instruction BAT
ICTC Instruction cache throttling control register
|EEE Institute for Electrical and Electronics Engineers
IMMU Instruction MMU
1Q Instruction queue
ITLB Instruction translation lookaside buffer
U Integer unit
JTAG Joint Test Action Group
L2 Secondary cache (Level 2 cache)
L2CR L2 cache control register
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
LsuU Load/store unit
MEI Modified/exclusive/invalid
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control registers
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit

About This Book

XXXV

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PLRU Pseudo least recently used
PMCn Performance monitor counter registers
POR Power-on reset
POWER Performance Optimized with Enhanced RISC architecture
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computing
RTL Register transfer language
RWITM Read with intent to modify
RWNITM Read with no intent to modify
SDA Sampled data address register
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SIA Sampled instruction address register
SPR Special-purpose register
SRn Segment register
SRU System register unit
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
SRU System register unit
TAU Thermal management assist unit
B Time base facility
TBL Time base lower register
TBU Time base upper register
THRMn Thermal management registers
XXXVi MPC750 RISC Microprocessor User's Manual

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UIMM Unsigned immediate value
UISA User instruction set architecture
UMMCRn User monitor mode control registers
UPMCn User performance monitor counter registers
USIA User sampled instruction address register
VEA Virtual environment architecture
WAR Write-after-read
WAW Write-after-write
WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions

Table ii describes terminology conventions used in this manual and the equivalent
terminology used in the PowerPC architecture specification.

Table ii. Terminology Conventions

The Architecture Specification This Manual
Data storage interrupt (DSI) DSI exception
Extended mnemonics Simplified mnemonics
Fixed-point unit (FXU) Integer unit (1U)
Instruction storage interrupt (I1SI) ISI exception
Interrupt Exception
Privileged mode (or privileged state) Supervisor-level privilege
Problem mode (or problem state) User-level privilege
Real address Physical address
Relocation Translation
Storage (locations) Memory
Storage (the act of) Access
Store in Write back
Store through Write through

About This Book XXXVii

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:
BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)
D d
DS ds
FLM FM
FRA, FRB, FRC, FRT, FRS frA, frB, frC, D, frS (respectively)
FXM CRM
RA, RB, RT, RS rA, B, rD, rS (respectively)
Sl SIMM
u IMM
Ul UIMM
N/ 0...0 (shaded)

XXXViii MPC750 RISC Microprocessor User's Manual

Chapter 1
Overview

This chapter provides an overview of the MPC750 microprocessor features, including a
block diagram showing the major functional components. It provides information about
how the MPC750 implementation complies with the PowerPC™ architecture definition.

1.1 MPC750 Microprocessor Overview

This section describes the features and general operation of the MPC750 and provides a
block diagram showing major functional units. The MPC750 is an implementation of the
PowerPC microprocessor family of reduced instruction set computer (RISC)
microprocessors. The MPC750 implements the 32-bit portion of the PowerPC architecture,
which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and
floating-point data types of 32 and 64 bits. The MPC750 is a superscalar processor that can
complete two instructions simultaneously. It incorporates the following six execution units:

» Floating-point unit (FPU)

* Branch processing unit (BPU)
e System register unit (SRU)

¢ Load/store unit (LSU)

* Two integer units (IUs): IU1 executes all integer instructions. IU2 executes all
integer instructions except multiply and divide instructions.

The ability to execute several instructions in parallel and the use of simple instructions with
rapid execution times yield high efficiency and throughput for MPC750-based systems.
Most integer instructions execute in one clock cycle. The FPU is pipelined, the tasks it
performs are broken into subtasks, implemented as three successive stages. Typically, a
floating-point instruction can occupy only one of the three stages at a time, freeing the
previous stage to work on the next floating-point instruction. Thus, three single-precision
floating-point instructions can be in the FPU execute stage at a time. Double-precision add
instructions have a three-cycle latency; double-precision multiply and' multiply-add
instructions have a four-cycle latency.

Chapter 1. Overview 1-1

Figure 1-1 shows the parallel organization of the execution units (shaded in the diagram).
The instruction unit fetches, dispatches, and predicts branch instructions. Note that this is
a conceptual model that shows basic features rather than attempting to show how features
are implemented physically.

The MPC750 has independent on-chip, 32-Kbyte, eight-way set-associative, physically
addressed caches for instructions and data and independent instruction and data memory
management units (MMUs). Each MMU has a 128-entry, two-way set-associative
translation lookaside buffer (DTLB and ITLB) that saves recently used page address
translations. Block address translation is done through the four-entry instruction and data
block address translation (IBAT and DBAT) arrays, defined by the PowerPC architecture.
During block translation, effective addresses are compared simultaneously with all four
BAT entries. For information about the L1 cache, see Chapter 3, “L1 Instruction and Data
Cache Operation.”

The L2 cache is implemented with an on-chip, two-way, set-associative tag memory, and
with external, synchronous SRAMs for data storage. The external SRAMs are accessed
through a dedicated L2 cache port that supports a single bank of up to 1 Mbyte of
synchronous SRAMs. The L2 cache interface is not implemented in the MPC740. For
information about the L2 cache implementation, see Chapter 9, “L2 Cache Interface
Operation.”

The MPC750 has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for
system resources through a central external arbiter. The MPC750’s three-state cache-
coherency protocol (MEI) supports the exclusive, modified, and invalid states, a compatible
subset of the MESI (modified/exclusive/shared/invalid) four-state protocol, and it operates
coherently in systems with four-state caches. The MPC750 supports single-beat and burst
data transfers for memory accesses and memory-mapped I/O operations. The system
interface is described in Chapter 7, “Signal Descriptions,” and Chapter 8, “System
Interface Operation.”

The MPC750 has four software-controllable power-saving modes. Three static modes,
doze, nap, and sleep, progressively reduce power dissipation. When functional units are
idle, a dynamic power management mode causes those units to enter a low-power mode
automatically without affecting operational performance, software execution, or external
hardware. The MPC750 also provides a thermal assist unit (TAU) and a way to reduce the
instruction fetch rate for limiting power dissipation. Power management is described in
Chapter 10, “Power and Thermal Management.”

The MPC750 uses an advanced CMOS process technology and is fully compatible with
TTL devices.

1-2 MPC750 RISC Microprocessor User’s Manual

MIIAIBAQ | Jaydey)

Instruction Unit 128-Bit
‘,_Fetcher Branch Srcl)tcessing Y (4 Instructions)
n
Additional Features BTIC Instruction MMU

+ Time Base Counter/Decrementer Instruction Queue 64 Entry SRs
« Clock Multiplier (6 Word) - (Shadow)| | gt 32-Kbyte
« JTAG/COP Interface BHT Aray | | Tags | Gache
+ Thermal/Power Management ITLB
« Performance Monitor :! [

2 Instructions !:I .
: ; 64-Bit
Dispaich Unit (2 Instructions)

weabeiq oo|g 10ss8204d0uI 0S2DdIN *L-| 84nbBi4

ol

. Y i
| Reservation Station | | Reservation Station ILReservation Station | GPRFi Reser&a&gzﬁtaﬁom FPR Fis Reservation Station l
y y . Rename Buffers * Henam(g)Buffers Y
. , System Register 32-Bit | Load/Store Unit | 64-Bit 64-Bit | Floating-Point
Integer Unit 1 Integer Unit 2 » Unit E < - E > Unit
' B == I (EA Caloulaion)
+ + >
L Store Queue FPSCR
T 32-Bit 32-Bit —
1 |
PA EA Vv _______—___ .
i i 60x Bus Interface Unit i A/ I
Completion Unit <
P Data MMU 64-Bit Instruction Fetch Queve | | | L2 Bus Interface :
Re?édéarr“%ﬂer = SRs Y Y L1 Castout Quete |e Unit :
(Original)| | pgaT Ko || L2 Castout Queue ¢ \
Array » Tags | p bac¥1§ Data Load Queue ! % L2 Controller | !
DTLB I y | \ L2CR |
I I
B 32-Bit Address Bus Y - L2 Tags |
< EeBtDaaBs) e NotintheMPCT40 !
e L 17-Bit L2 Address Bus Y .
| < 64-Bit L2 Data Bus >

1.2 MPC750 Microprocessor Features

This section lists features of the MPC750. The interrelationship of these features is shown
in Figure 1-1.

1.2.1 Overview of the MPC750 Microprocessor Features
Major features of the MPC750 are as follows:

» High-performance, superscalar microprocessor

— As many as four instructions can be fetched from the instruction cache per clock
cycle

— As many as two instructions can be dispatched per clock

— As many as six instructions can execute per clock (including two integer
instructions)

— Single-clock-cycle execution for most instructions

+ Six independent execution units and two register files

— BPU featuring both static and dynamic branch prediction

64-entry (16-set, four-way set-associative) branch target instruction cache
(BTIC), a cache of branch instructions that have been encountered in

branch/loop code sequences. If a target instruction is in the BTIC, it is fetched

into the instruction queue a cycle sooner than it can be made available from
the instruction cache. Typically, if a fetch access hits the BTIC, it provides the
first two instructions in the target stream.

512-entry branch history table (BHT) with two bits per entry for four levels of
prediction—not-taken, strongly not-taken, taken, strongly taken

Branch instructions that do not update the count register (CTR) or link register
(LR) are removed from the instruction stream.

— Two integer units (IUs) that share thirty-two GPRs for integer operands

IU1 can execute any integer instruction.

IU2 can execute all integer instructions except multiply and divide
instructions (multiply, divide, shift, rotate, arithmetic, and logical
instructions). Most instructions that execute in the IU2 take one cycle to
execute. The IU2 has a single-entry reservation station.

— Three-stage FPU

Fully IEEE 754-1985-compliant FPU for both single- and double-precision
operations

Supports non-IEEE mode for time-critical operations

Hardware support for denormalized numbers

Single-entry reservation station

Thirty-two 64-bit FPRs for single- or double-precision operands

MPC750 RISC Microprocessor User’s Manual

— Two-stage LSU
— Two-entry reservation station

— Single-cycle, pipelined cache access
— Dedicated adder performs EA calculations
— Performs alignment and precision conversion for floating-point data
— Performs alignment and sign extension for integer data
— Three-entry store queue
— Supports both big- and little-endian modes
— SRU handles miscellaneous instructions

— Executes CR logical and Move to/Move from SPR instructions (mtspr and
mfspr)

— Single-entry reservation station
* Rename buffers
— Six GPR rename buffers
— Six FPR rename buffers
— Condition register buffering supports two CR writes per clock
* Completion unit

— The completion unit retires an instruction from the six-entry reorder buffer
(completion queue) when all instructions ahead of it have been completed, the
instruction has finished execution, and no exceptions are pending.

— Guarantees sequential programming model (precise exception model)
— Monitors all dispatched instructions and retires them in order

— Tracks unresolved branches and flushes instructions from the mispredicted
branch

— Retires as many as two instructions per clock

e Separate on-chip instruction and data caches (Harvard architecture)
— 32-Kbyte, eight-way set-associative instruction and data caches
— Pseudo least-recently-used (PLRU) replacement algorithm
— 32-byte (eight-word) cache block

— Physically indexed/physical tags. (Note that the PowerPC architecture refers to
physical address space as real address space.)

— Cache write-back or write-through operation programmable on a per-page or
per-block basis

— Instruction cache can provide four instructions per clock; data cache can provide
two words per clock

— Caches can be disabled in software

Chapter 1. Overview 1-5

— Caches can be locked in software
— Data cache coherency (MEI) maintained in hardware

— The critical double word is made available to the requesting unit when it is burst
into the line-fill buffer. The cache is nonblocking, so it can be accessed during
this operation.

Level 2 (L2) cache interface (The L2 cache interface is not supported in the
MPC740.)

— On-chip two-way set-associative L2 cache controller and tags

— External data SRAMs

— Support for 256-Kbyte, 512-Kbyte, and 1-Mbyte L2 caches

— 64-byte (256-Kbyte/512-Kbyte) and 128-byte (1 Mbyte) sectored line size

— Supports flow-through (register-buffer), pipelined (register-register), and
pipelined late-write (register-register) synchronous burst SRAMs

Separate memory management units (MMUSs) for instructions and data
— 52-bit virtual address; 32-bit physical address

— Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte
segments

— Memory programmable as write-back/write-through, cacheable/noncacheable,
and coherency enforced/coherency not enforced on a page or block basis

— Separate IBATs and DBAT's (four each) also defined as SPRs
— Separate instruction and data translation lookaside buffers (TLBs)

— Both TLBs are 128-entry, two-way set associative, and use LRU replacement
algorithm

— TLBs are hardware-reloadable (that is, the page table search is performed in
hardware)

Separate bus interface units for system memory and for the L2 cache
— Bus interface features include the following:

— Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5% ...
8x. (2x to 8x, all half-clock multipliers in-between)

— A 64-bit, split-transaction external data bus with burst transfers

— Support for adciress pipelining and limited out-of-order bus transactions
— Single-entry load queue

— Single-entry instruction fetch queue

— Two-entry L1 cache castout queue

— No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant.
This allows the forwarding of data during load operations to the internal core
one bus cycle sooner than if the use of DRTRY is enabled.

MPC750 RISC Microprocessor User’s Manual

— L2 cache interface features (which are not implemented on the MPC740) include
the following:

— Core-to-L2 frequency divisors of 1, 1.5, 2, 2.5, and 3
— Four-entry L2 cache castout queue in L2 cache BIU
— 17-bit address bus
— 64-bit data bus
* Multiprocessing support features include the following:
— Hardware-enforced, three-state cache coherency protocol (MEI) for data cache.

— Load/store with reservation instruction pair for atomic memory references,
semaphores, and other multiprocessor operations

¢ Power and thermal management

— Three static modes, doze, nap, and sleep, progressively reduce power
dissipation:
— Doze—All the functional units are disabled except for the time
base/decrementer registers and the bus snooping logic.

— Nap—The nap mode further reduces power consumption by disabling bus
snooping, leaving only the time base register and the PLL in a powered state.

— Sleep—All internal functional units are disabled, after which external system
logic may disable the PLL and SYSCLK.

— Thermal management facility provides software-controllable thermal
management. Thermal management is performed through the use of three
supervisor-level registers and an MPC750-specific thermal management
exception.

— Instruction cache throttling provides control of instruction fetching to limit
power consumption.

¢ Performance monitor can be used to help debug system designs and improve
software efficiency.

¢ In-system testability and debugging features through JTAG boundary-scan
capability

1.2.2 Instruction Flow

As shown in Figure 1-1, the MPC750 instruction unit provides centralized control of
instruction flow to the execution units. The instruction unit contains a sequential fetcher,
six-entry instruction queue (IQ), dispatch unit, and BPU. It determines the address of the
next instruction to be fetched based on information from the sequential fetcher and from
the BPU.

See Chapter 6, “Instruction Timing,” for a detailed discussion of instruction timing.

Chapter 1. Overview 1-7

The sequential fetcher loads instructions from the instruction cache into the instruction
queue. The BPU extracts branch instructions from the sequential fetcher. Branch
instructions that cannot be resolved immediately are predicted using either the MPC750-
specific dynamic branch prediction or the architecture-defined static branch prediction.

Branch instructions that do not affect the LR or CTR are removed from the instruction
stream. The BPU folds branch instructions when a branch is taken (or predicted as taken);
branch instructions that are not taken, or predicted as not taken, are removed from the
instruction stream through the dispatch mechanism.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If branch
prediction is incorrect, the instruction unit flushes all predicted path instructions, and
instructions are fetched from the correct path.

1.2.2.1 Instruction Queue and Dispatch Unit

The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and
loads up to four instructions from the instruction cache during a single processor clock
cycle. The instruction fetcher continuously attempts to load as many instructions as there
were vacancies in the IQ in the previous clock cycle. All instructions except branch
instructions are dispatched to their respective execution units from the bottom two positions
in the instruction queue (IQO and IQ1) at a maximum rate of two instructions per cycle.
Reservation stations are provided for the IU1, IU2, FPU, LSU, and SRU. The dispatch unit
checks for source and destination register dependencies, determines whether a position is
available in the completion queue, and inhibits subsequent instruction dispatching as
required.

Branch instructions can be detected, decoded, and predicted from anywhere in the
instruction queue. For a more detailed discussion of instruction dispatch, see Section 6.3.3,
“Instruction Dispatch and Completion Considerations.”

1.2.2.2 Branch Processing Unit (BPU)

The BPU receives branch instructions from the sequential fetcher and performs CR
lookahead operations on conditional branches to resolve them early, achieving the effect of
a zero-cycle branch in many cases.

Unconditional branch instructions and conditional branch instructions in which the
condition is known can be resolved immediately. For unresolved conditional branch
instructions, the branch path is predicted using either the architecture-defined static branch
prediction or the MPC750-specific dynamic branch prediction. Dynamic branch prediction
is enabled if HIDO[BHT] = 1.

1-8 MPC750 RISC Microprocessor User’s Manual

When a prediction is made, instruction fetching, dispatching, and execution continue from
the predicted path, but instructions cannot complete and write back results to architected
registers until the prediction is determined to be correct (resolved). When a prediction is
incorrect, the instructions from the incorrect path are flushed from the processor and
processing begins from the correct path. The MPC750 allows a second branch instruction
to be predicted; instructions from the second predicted instruction stream can be fetched
but cannot be dispatched.

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache
that provides two bits per entry that together indicate four levels of prediction for a branch
instruction—not-taken, strongly not-taken, taken, strongly taken. When dynamic branch
prediction is disabled, the BPU uses a bit in the instruction encoding to predict the direction
of the conditional branch. Therefore, when an unresolved conditional branch instruction is
encountered, the MPC750 executes instructions from the predicted target stream although
the results are not committed to architected registers until the conditional branch is
resolved. This execution can continue until a second unresolved branch instruction is
encountered.

When a branch is taken (or predicted as taken), the instructions from the untaken path must
be flushed and the target instruction stream must be fetched into the I1Q. The BTIC is a 64-
entry cache that contains the most recently used branch target instructions, typically in
pairs. When an instruction fetch hits in the BTIC, the instructions atrive in the instruction
queue in the next clock cycle, a clock cycle sooner than they would arrive from the
instruction cache. Additional instructions arrive from the instruction cache in the next clock
cycle. The BTIC reduces the number of missed opportunities to dispatch instructions and
gives the processor a one-cycle head start on processing the target stream.

The BPU contains an adder to compute branch target addresses and three user-control
registers—the link register (LR), the count register (CTR), and the CR. The BPU calculates
the return pointer for subroutine calls and saves it into the LR for certain types of branch
instructions. The LR also contains the branch target address for the Branch Conditional to
Link Register (belrx) instruction. The CTR contains the branch target address for the
Branch Conditional to Count Register (bcetrx) instruction. Because the LR and CTR are
SPRs, their contents can be copied to or from any GPR. Because the BPU uses dedicated
registers rather than GPRs or FPRs, execution of branch instructions is largely 1ndependent
from execution of integer and floating-point instructions.

1.2.2.3 Completion Unit

The completion unit operates closely with the instruction unit. Instructions are fetched and
dispatched in program order. At the point of dispatch, the program order is maintained by
assigning each dispatched instruction a successive entry in the six-entry completion queue.
The completion unit tracks instructions from dispatch through execution and retires them
in program order from the two bottom entries in the completion queue (CQO and CQ1).

Chapter 1. Overview 1-9

Instructions cannot be dispatched to an execution unit unless there is a vacancy in the
completion queue. Branch instructions that do not update the CTR or LR are removed from
the instruction stream and do not take an entry in the completion queue. Instructions that
update the CTR and LR follow the same dispatch and completion procedures as non-branch
instructions, except that they are not issued to an execution unit.

Completing an instruction commits execution results to architected registers (GPRs, FPRs,
LR, and CTR). In-order completion ensures the correct architectural state when the
MPC750 must recover from a mispredicted branch or any exception. Retiring an instruction
removes it from the completion queue.

For a more detailed discussion of instruction completion, see Section 6.3.3, “Instruction
Dispatch and Completion Considerations.”

1.2.2.4 Independent Execution Units

In addition to the BPU, the MPC750 provides the five execution units described in the
following sections.

1.2.2.4.1 Integer Units (IUs)

The integer units IU1 and IU2 are shown in Figure 1-1. The IU1 can execute any integer
instruction; the IU2 can execute any integer instruction except multiplication and division
instructions. Each IU has a single-entry reservation station that can receive instructions
from the dispatch unit and operands from the GPRs or the rename buffers.

Each IU consists of three single-cycle subunits—a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The IU1 has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units
of the IU2. The multiplier supports early exit for operations that do not require full 32- x
32-bit multiplication.

Each IU has a dedicated result bus (not shown in Figure 1-1) that connects to rename
buffers.

1.2.2.4.2 Floating-Point Unit (FPU)

The FPU, shown in Figure 1-1, is designed such that single-precision operations require
only a single pass, with a latency of three cycles. As instructions are dispatched to the FPU’s
reservation station, source operand data can be accessed from the FPRs or from the FPR
rename buffers. Results in turn are written to the rename buffers and are made available to
subsequent instructions. Instructions pass through the reservation station in dispatch order.

1-10 MPC750 RISC Microprocessor User’s Manual

The FPU contains a single-precision multiply-add array and the floating-point status and
control register (FPSCR). The multiply-add array allows the MPC750 to efficiently
implement multiply and multiply-add operations. The FPU is pipelined so that one single-
or double-precision instruction can be issued per clock cycle. Thirty-two 64-bit floating-
point registers are provided to support floating-point operations. Stalls due to contention for
FPRs are minimized by automatic allocation of the six floating-point rename registers. The
MPC750 writes the contents of the rename registers to the appropriate FPR when floating-
point instructions are retired by the completion unit.

The MPC750 supports all IEEE 754 floating-point data types (normalized, denormalized,
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software
exception routines. (Note that exception is also referred to as interrupt in the architecture
specification.)

1.2.2.4.3 Load/Store Unit (LSU)

The LSU executes all load and store instructions and provides the data transfer interface
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective
addresses, performs data alignment, and provides sequencing for load/store string and
multiple instructions.

Load and store instructions are issued and translated in program order; however, some
memory accesses can occur out of order. Synchronizing instructions can be used to enforce
strict ordering. When there are no data dependencies and the guarded bit for the page or
block is cleared, a maximum of one out-of-order cacheable load operation can execute per
cycle, with a two-cycle total latency on a cache hit. Data returned from the cache is held in
a rename register until the completion logic commits the value to a GPR or FPR. Stores
cannot be executed out of order and are held in the store queue until the completion logic
signals that the store operation is to be completed to memory. The MPC750 executes store

instructions with a maximum throughput of one per cycle and a three-cycle total latency to

the data cache. The time required to perform the actual load or store operation depends on
the processor/bus clock ratio and whether the operation involves the on-chip cache, the L2
cache, system memory, or an I/O device.

1.2.2.4.4 System Register Unit (SRU)

The SRU executes various system-level instructions, as well as condition register logical
operations and move to/from special-purpose register instructions. To maintain system
state, most instructions executed by the SRU are execution-serialized; that is, the
instruction is held for execution in the SRU until all previously issued instructions have
executed. Results from execution-serialized instructions executed by the SRU are not
available or forwarded for subsequent instructions until the instruction completes.

Chapter 1. Overview 1-11

1.2.3 Memory Management Units (MMUs)

The MPC750’s MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes
(232) of physical memory for instructions and data. The MMUs also control access
privileges for these spaces on block and page granularities. Referenced and changed status
is maintained by the processor for each page to support demand-paged virtual memory
systems.

The LSU calculates effective addresses for data loads and stores; the instruction unit
calculates effective addresses for instruction fetching. The MMU translates the effective
address to determine the correct physical address for the memory access.

The MPC750 supports the following types of memory translation:

e Real addressing mode—1In this mode, translation is disabled by clearing bits in the
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for
data accesses. When address translation is disabled, the physical address is identical
to the effective address.

¢ Page address translation—translates the page frame address for a 4-Kbyte page size

¢ Block address translation—translates the base address for blocks (128 Kbytes to 256
Mbytes)

If translation is enabled, the appropriate MMU translates the higher-order bits of the
effective address into physical address bits. The lower-order address bits (that are
untranslated and therefore, considered both logical and physical) are directed to the on-chip
caches where they form the index into the eight-way set-associative tag array. After
translating the address, the MMU passes the higher-order physical address bits to the cache
and the cache lookup completes. For caching-inhibited accesses or accesses that miss in the
cache, the untranslated lower-order address bits are concatenated with the translated
higher-order address bits; the resulting 32-bit physical address is used by the memory unit
and the system interface, which accesses external memory.

The TLBs store page address translations for recent memory accesses. For each access, an
effective address is presented for page and block translation simultaneously. If a translation
is found in both the TLB and the BAT array, the block address translation in the BAT array
is used. Usually the translation is in a TLB and the physical address is readily available to
the on-chip cache. When a page address translation is not in a TLB, hardware searches for
one in the page table following the model defined by the PowerPC architecture.

Instruction and data TLBs provide address translation in parallel with the on-chip cache
access, incurring no additional time penalty in the event of a TLB hit. The MPC750’s TLBs
are 128-entry, two-way set-associative caches that contain instruction and data address
translations. The MPC750 automatically generates a TLB search on a TLB miss.

1-12 MPC750 RISC Microprocessor User’s Manual

1.2.4 On-Chip Instruction and Data Caches

The MPC750 implements separate instruction and data caches. Each cache is 32-Kbyte and
eight-way set associative. As defined by the PowerPC architecture, they are physically
indexed. Each cache block contains eight contiguous words from memory that are loaded
from an 8-word boundary (that is, bits EA[27-31] are zeros); thus, a cache block never
crosses a page boundary. An entire cache block can be updated by a four-beat burst load.
Misaligned accesses across a page boundary can incur a performance penalty. Caches are
nonblocking, write-back caches with hardware support for reloading on cache misses. The
critical double word is transferred on the first beat and is simultaneously written to the
cache and forwarded to the requesting unit, minimizing stalls due to load delays. The cache
being loaded is not blocked to internal accesses while the load completes.

The MPC750 cache organization is shown in Figure 1-2.

T T [T T [I

128 Sets ° . . A . . .

Ld I I LI 1 T T I

L] °
[[I
I l T T T T T T T J
Block 0 AddressTag0 | || State Words [0-7] ||

1 |] 1 Il 1 |
T T T T I T T

Block 1 AddressTag1 || = State Words [0-7] L]
!] |l | | 1 |
1 T T 1 I T T

Block 2 Address Tag2 || | State Words [0-7] L
| Il | Il | 1 1
T li I T I 1 T

Block 3 Address Tag3 || [State Words [0-7] L]
L !]] 1 Il 1
1 T]]] 1 T

Block 4 Address Tag 4 || |1 State Words [0-7]]
1 1 Il 1 | Il 1
I I 1 1 I T I

Block 5 Address Tag5 | | |— State Words [0-7] |
! ! { Il | Il |
I I l 1 I I I

Block 6 Address Tag6 ||| State Words [0-7] L
| | | | | |]
I 1 I 1 I I T

Block 7 Address Tag 7 | State Words [0-7] B
L 1 1 L] 1] 1

|<———8 Words/BIock4>|

Figure 1-2. Cache Organization

Within one cycle, the data cache provides double-word access to the LSU. Like the
instruction cache, the data cache can be invalidated all at once or on a per-cache-block
basis. The data cache can be disabled and invalidated by clearing HIDO[DCE] and setting
HIDO[DCFI]. The data cache can be locked by setting HIDO[DLOCK]. To ensure cache
coherency, the data cache supports the three-state MEI protocol. The data cache tags are
single-ported, so a simultaneous load or store and a snoop access represent a resource
collision. If a snoop hit occurs, the LSU is blocked internally for one cycle to allow the
eight-word block of data to be copied to the write-back buffer.

Chapter 1. Overview 1-13

Within one cycle, the instruction cache provides up to four instructions to the instruction
queue. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled and invalidated by clearing HIDO[ICE] and setting
HIDO[ICFI]. The instruction cache can be locked by setting HIDO[ILOCK]. The instruction
cache supports only the valid/invalid states.

The MPC750 also implements a 64-entry (16-set, four-way set-associative) branch target
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is
fetched into the instruction queue a cycle sooner than it can be made available from the
instruction cache. Typically the BTIC contains the first two instructions in the target stream.
The BTIC can be disabled and invalidated through software.

For more information and timing examples showing cache hit and cache miss latencies, see
Section 6.3.2, “Instruction Fetch Timing.”

1.2.5 L2 Cache Implementation (Not Supported in the MPC740)

The L2 cache is a unified cache that receives memory requests from both the L1 instruction
and data caches independently. The L2 cache is implemented with an on-chip, two-way,
set-associative tag memory, and with external, synchronous SRAMs for data storage. The
external SRAMs are accessed through a dedicated L2 cache port that supports a single bank
of up to 1 Mbyte of synchronous SRAMs. The L2 cache normally operates in write-back
mode and supports system cache coherency through snooping.

Depending on its size, the L2 cache is organized into 64- or 128-byte lines, which in turn
are subdivided into 32-byte sectors (blocks), the unit at which cache coherency is
maintained.

The L2 cache controller contains the L2 cache control register (L2CR), which includes bits
for enabling parity checking, setting the L2-to-processor clock ratio, and identifying the
type of RAM used for the L2 cache implementation. The L2 cache controller also manages
the L2 cache tag array, two-way set-associative with 4K tags per way. Each sector (32-byte
cache block) has its own valid and modified status bits.

Requests from the L1 cache generally result from instruction misses, data load or store
misses, write-through operations, or cache management instructions. Requests from the L1
cache are looked up in the L2 tags and serviced by the L2 cache if they hit; they are
forwarded to the bus interface if they miss.

The L2 cache can accept multiple, simultaneous accesses. The L1 instruction cache can
request an instruction at the same time that the L1 data cache is requesting one load and two
store operations. The L2 cache also services snoop requests from the bus. If there are
multiple pending requests to the L2 cache, snoop requests have highest priority. The next
priority consists of load and store requests from the L1 data cache. The next priority
consists of instruction fetch requests from the L1 instruction cache.

1-14 MPC750 RISC Microprocessor User’s Manual

For more information, see Chapter 9, “L2 Cache Interface Operation.”

1.2.6 System Interface/Bus Interface Unit (BIU)

The address and data buses operate independently; address and data tenures of a memory
access are decoupled to provide a more flexible control of memory traffic. The primary
activity of the system interface is transferring data and instructions between the processor
and system memory. There are two types of memory accesses:

¢ Single-beat transfers—These memory accesses allow transfer sizes of 8, 16, 24, 32,
or 64 bits in one bus clock cycle. Single-beat transactions are caused by uncacheable
read and write operations that access memory directly (that is, when caching is
disabled), cache-inhibited accesses, and stores in write-through mode.

* Four-beat burst (32 bytes) data transfers—Burst transactions, which always transfer
an entire cache block (32 bytes), are initiated when an entire cache block is
transferred. Because the first-level caches on the MPC750 are write-back caches,
burst-read memory, burst operations are the most common memory accesses,
followed by burst-write memory operations, and single-beat (noncacheable or write-
through) memory read and write operations.

The MPC750 also supports address-only operations, variants of the burst and single-beat
operations, (for example, atomic memory operations and global memory operations that are
snooped), and address retry activity (for example, when a snooped read access hits a
modified block in the cache). The broadcast of some address-only operations is controlled
through HIDO[ABE]. I/O accesses use the same protocol as memory accesses.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the MPC750 to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing data coherency. The
MPC750 allows read operations to go ahead of store operations (except when a dependency
exists, or in cases where a noncacheable access is performed), and provides support for a
write operation to go ahead of a previously queued read data tenure (for example, letting a
snoop push be enveloped between address and data tenures of a read operation). Because
the MPC750 can dynamically optimize run-time ordering of load/store traffic, overall
performance is improved.

The system interface is specific for each PowerPC microprocessor implementation.

The MPC750 signals are grouped as shown in Figure 1-3. Signals are provided for clocking
and control of the L2 caches, as well as separate L2 address and data buses. Test and control
signals provide diagnostics for selected internal circuits.

Chapter 1. Overview 1-15

Address Arbitration <€———>| «———> Data Arbitration
Address Start <——— «——> Data Transfer
Address Transfer <«——] |<«—> Data Termination

Transfer Attribute <—— MPC750 l«—> L2 Cache Clock/Control'

Address Termination <«—— l«———> |2 Cache Address/Data’
Clocks <——» l«—> Processor Status/Control
System Status <€———1 |«——> Test and Control

Vpp Vpp (FO) ' Not supported in the MPC740

Figure 1-3. System Interface

The system interface supports address pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the MPC750 supports split-bus
transactions for systems with multiple potential bus masters—one device can have
mastership of the address bus while another has mastership of the data bus. Allowing
multiple bus transactions to occur simultaneously increases the available bus bandwidth for
other activity.

The MPC750’s clocking structure supports a wide range processor-to-bus clock ratios.

1.2.7 Signals
The MPC750’s signals are grouped as follows:

L

Address arbitration signals—The MPC750 uses these signals to arbitrate for address
bus mastership.

Address start signals—These signals indicate that a bus master has begun a
transaction on the address bus.

Address transfer signals—These signals include the address bus and address parity
signals. They are used to transfer the address and to ensure the integrity of the
transfer.

Transfer attribute signals—These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write-
through, or caching-inhibited.

Address termination signals—These signals are used to acknowledge the end of the
address phase of the transaction. They also indicate whether a condition exists that
requires the address phase to be repeated.

Data arbitration signals—The MPC750 uses these signals to arbitrate for data bus
mastership.

Data transfer signals—These signals, which consist of the data bus and data parity
signals, are used to transfer the data and to ensure the integrity of the transfer.

MPC750 RISC Microprocessor User’s Manual

* Data termination signals—Data termination signals are required after each data beat
in a data transfer. In a single-beat transaction, a data termination signal also indicates
the end of the tenure; in burst accesses, data termination signals apply to individual
beats and indicate the end of the tenure only after the final data beat. They also
indicate whether a condition exists that requires the data phase to be repeated.

* L2 cache clock/control signals—These signals provide clocking and control for the
L2 cache. (Not supported in the MPC740.)

e L2 cache address/data—The MPC750 has separate address and data buses for
accessing the L2 cache. (Not supported in the MPC740.)

e Interrupt signals—These signals include the interrupt signal, checkstop signals, and
both soft reset and hard reset signals. These signals are used to generate interrupt
exceptions and, under various conditions, to reset the processor.

e Processor status/control signals—These signals are used to set the reservation
coherency bit, enable the time base, and other functions.

* Miscellaneous signals—These signals are used in conjunction with such resources
as secondary caches and the time base facility.

* JTAG/COP interface signals—The common on-chip processor (COP) unit provides
a serial interface to the system for performing board-level boundary scan
interconnect tests.

* Clock signals—These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

NOTE

A bar over a signal name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they are low and negated when they are high. Signals that
are not active low, such as AP[0-3] (address bus parity signals)
and TT[0-4] (transfer type signals) are referred to as asserted
when they are high and negated when they are low.

1.2.8 Signal Configuration

Figure 1-4 shows the MPC750's logical pin configuration. The signals are grouped by
function.

Chapter 1. Overview 1-17

4 L2Vpp
L2AVpp Not supported
in the MPC740
— - BR] 17 |___LRADDR[16-0] _ —
D BG LODATAO-63] L2 Cache
Argg?;ﬁg: —BE > ! 64— —>[] Address/
ABB |, 8 L L2DP[0-7) Data
Address | TS 1 1 L2CE > |
Start | 1 L2WE -~
5 L2CLK_OUT[A-B] - L2 Cache
_ AJ0-31] 1 L2SYNC_OUT - Clock/
Addr;ﬁ: AP0-3] 32 . |«_L2SYNC_IN Control
B B E—— ~
— L277
_ -
~ - L) B 8 -
ST |, 1 feINL .
D TS1Z[0-2] 1 leSML
Transfer - oL 3 i |_MCP
Attributes <—WT_> 1 | SRESET Interrupts/
< T 1 1 e HARESET Resets
L - 1 MPC750 1 TRSTP N
v _ . |__CRsTPOUT
Address [oK 1 s
Termination | <—ﬂ> 1 . ASRV -
— + l<_TBEN
— DB 1 ol TLBISYNC Processor
Data DBWO | TR Status/
Arbitration ER ! 1 QREQ > Control
[: R o l_OACK
pata | D0-63] [¢y ¢ |le_SYsCLK —
a DP[0-7] D ¢
Transfer - >3 4 |« PLLCFG[0-3] lock
DBDIS |) CLK OUT N Control
— LY 5 |<_JTAGICOP T
Data DRTRY Factory Test
- —> o factoryTest
Termination =z : 8 _| Interface

Voo Vop (0) AVpp
Figure 1-4. MPC750 Microprocessor Signal Groups

Signal functionality is described in detail in Chapter 7, “Signal Descriptions,” and
Chapter 8, “System Interface Operation.”

1-18 MPC750 RISC Microprocessor User’s Manual

1.2.9 Clocking

The MPC750 requires a single system clock input, SYSCLK, that represents the bus
interface frequency. Internally, the processor uses a phase-locked loop (PLL) circuit to
generate a master core clock that is frequency-multiplied and phase-locked to the SYSCLK
input. This core frequency is used to operate the internal circuitry.

The PLL is configured by the PLL_CFGJ[0-3] signals, which select the multiplier that the
PLL uses to multiply the SYSCLK frequency up to the internal core frequency. The
feedback in the PLL guarantees that the processor clock is phase locked to the bus clock,
regardless of process variations, temperature changes, or parasitic capacitances. The PLL
also ensures a 50% duty cycle for the processor clock.

The MPC750 supports various processor-to-bus clock frequency ratios, although not all
ratios are available for all frequencies. Configuration of the processor/bus clock ratios is
displayed through a MPC750-specific register, HID1. For information about supported
clock frequencies, see the MPC750 hardware specifications.

1.3 MPC750 Microprocessor: Implementation

The PowerPC architecture is derived from the POWER architecture (Performance
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the
benefits of the POWER architecture optimized for single-chip implementations. The
PowerPC architecture design facilitates parallel instruction execution and is scalable to take
advantage of future technological gains.

This section describes the PowerPC architecture in general, and specific details about the
implementation of the MPC750 as a low-power, 32-bit member of the PowerPC processor
family. The structure of this section follows the organization of the user’s manual; each
subsection provides an overview of each chapter.

* Registers and programming model—Section 1.4, “PowerPC Registers and
Programming Model,” describes the registers for the operating environment
architecture common among PowerPC processors and describes the programming
model. It also describes the registers that are unique to the MPC750. The
information in this section is described more fully in Chapter 2, “MPC750 Processor
Programming Model.”

* Instruction set and addressing modes—Section 1.5, “Instruction Set,” describes the
PowerPC instruction set and addressing modes for the PowerPC operating
environment architecture, and defines and describes the PowerPC instructions
implemented in the MPC750. The information in this section is described more fully
in Chapter 2, “MPC750 Processor Programming Model.”

Chapter 1. Overview 1-19

¢ Cache implementation—Section 1.6, “On-Chip Cache Implementation,” describes
the cache model that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about the MPC750 cache
implementation. The information in this section is described more fully in
Chapter 3, “L1 Instruction and Data Cache Operation.”

* Exception model—Section 1.7, “Exception Model,” describes the exception model
of the PowerPC operating environment architecture and the differences in the
MPC750 exception model. The information in this section is described more fully
in Chapter 4, “Exceptions.”

* Memory management—Section 1.8, “Memory Management,” describes generally
the conventions for memory management among the PowerPC processors. This
section also describes the MPC750’s implementation of the 32-bit PowerPC
memory management specification. The information in this section is described
more fully in Chapter 5, “Memory Management

* Instruction timing—Section 1.9, “Instruction Timing,” provides a general
description of the instruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture and the MPC750. The information in this
section is described more fully in Chapter 6, “Instruction Timing,”

* Power management—Section 1.10, “Power Management,” describes how the power
management can be used to reduce power consumption when the processor, or
portions of it, are idle. The information in this section is described more fully in
Chapter 10, “Power and Thermal Management.”

* Thermal management—Section 1.11, “Thermal Management,” describes how the
thermal management unit and its associated registers (THRM1-THRM3) and
exception can be used to manage system activity in a way that prevents exceeding
system and junction temperature thresholds. This is particularly useful in high-
performance portable systems, which cannot use the same cooling mechanisms
(such as fans) that control overheating in desktop systems. The information in this
section is described more fully in Chapter 10, “Power and Thermal Management.”

¢ Performance monitor—Section 1.12, “Performance Monitor,” describes the
performance monitor facility, which system designers can use to help bring up,
debug, and optimize software performance. The information in this section is
described more fully in Chapter 10, “Power and Thermal Management.”

The following sections summarize the features of the MPC750, distinguishing those that
are defined by the architecture and from those that are unique to the MPC750
implementation.

1-20 MPC750 RISC Microprocessor User’s Manual

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be described in terms of which of the following levels of the architecture
is implemented:

¢ PowerPC user instruction set architecture (UISA)—Defines the base user-level
instruction set, user-level registers, data types, floating-point exception model,
memory models for a uniprocessor environment, and programming model for a
uniprocessor environment.

¢ PowerPC virtual environment architecture (VEA)—Describes the memory model
for a multiprocessor environment, defines cache control instructions, and describes
other aspects of virtual environments. Implementations that conform to the VEA
also adhere to the UISA, but may not necessarily adhere to the OEA.

* . PowerPC operating environment architecture (OEA)—Defines the memory
management model, supervisor-level registers, synchronization requirements, and
the exception model. Implementations that conform to the OEA also adhere to the
UISA and the VEA.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations. The MPC750 implementations support the three levels
of the architecture described above. For more information about the PowerPC architecture,
see PowerPC Microprocessor Family: The Programming Environments.

Specific features of the MPC750 are listed in Section 1.2, “MPC750 Microprocessor
Features.”

1.4 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating system) and user mode of operation (used by the application
software). The programming models incorporate 32 GPRs, 32 FPRs, special-purpose
registers (SPRs), and several miscellaneous registers. Each PowerPC microprocessor also
has its own unique set of hardware implementation-dependent (HID) registers.

Having access to privileged instructions, registers, and other resources allows the operating
system to control the application environment (providing virtual memory and protecting
operating-system and critical machine resources). Instructions that control the state of the
processor, the address translation mechanism, and supervisor registers can be executed only
when the processor is operating in supervisor mode.

Chapter 1. Overview 1-21

Figure 1-5 shows all the MPC750 registers available at the user and supervisor level. The
numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

For more information, see Chapter 2, “MPC750 Processor Programming Model.”

1-22 MPC750 RISC Microprocessor User’'s Manual

[SUPERVISOR MODEL—OEA \

/ \ Configuration Registers
USER MODEL—VEA Hardware Processor
Implementation Version Machine State
Time Base Facility (For Reading) Registers’ Register Register

TBL |TBR268 TBU |TBR269 HIDO | SPR 1008 PVR | SPR2g7

HID1 SPR 1009

/ USER MODEL—UISA \ Memory Management Registers

Count General-Purpose Instruction BAT Data BAT Segment
Register Registers Registers Registers Registers
CTR |SPRY GPRO IBATOU | SPR528 DBATOU | SPR536 SRO

YER GPR1 IBATOL | SPR529 DBATOL | SPR537 SRi

R lsPRi . IBATIU | SPR530 DBATIU | SPR538 .

: - . IBATIL | SPR531 DBATIL |SPR539 .
Link Register GPR3! IBAT2U | SPR532 DBAT2U | SPR540 SR15

sPAs IBAT2L | SPR533 DBATZL | SPR541

Floating-Point

Performance Registers IBAT3U SPR 534 DBAT3U | SPR542 SDR1

Monitor Registers FPRO IBATSL | SPR535 DBATSL |SPR543 SPR25
(For Reading)) -)

Performance Counters ' FPRI Exception Handling Registers
UPMC! | SPR937 . SPRGs Data Address Save and Restore
. Register Registers
SPRGO |SPR272 oo giste
UPNC2 _ | SPR 98 FPRA1 SPRGT |sPR27a DAR |SPR19 SRRO |SPR26
UPMC3 | SPR 941
Condition SPRG2 |SPR274 DSISR SRR1 |SPR27

UPMC4 [SPR942 i
Register SPRG3 |SPR275 DSISR SPR 18

Sampled Instruction _CR
Address’ Miscellaneous Registers

USIA | SPR939 Floating-Point External Access Time Base Decrementer

Status and Register For Writin
Monitor Control ! Control Register 9 ¢ 9) DEC |SPR22
EAR SPR 282 TBL SPR 284
UMMCRO | SPR 936 FPSCR
TaU|sPR 2t
UMMCR1 | SPR940
\ J Data Address L2 Control Instruction Address
K / Breakpoint Register Register":2 Breakpoint Register !

[DABR JsPR1013 LR |sPR10t7 [1ABR_|SPRi0t0

Power/Thermal Management Registers

Performance Monitor Registers

Performance Sampled
Counters' Instruction Thermal Assist Instruction Cache
Address Unit Registers Throttling Control
PMC1 SPR 953 Re isler?
oz |sPross SPR 955 THRM{ | SPR 1020 9
THRM SPR 1021 ICTC SPR 1019
PMC3 | SPR957 Monitor Control ! 2 02
PMC4 |SPR95B MMCRO | SPR 952 THRM3 | SPR 1022

MMCR1 | SPR 956
-)

! These registers are MPC750-specific registers. They may not be supported by other PowerPC processors.
2 Not supported by the MPC740.

Figure 1-5. MPC750 Microprocessor Programming Model—Registers

Chapter 1. Overview 1-23

The following tables summarize the PowerPC registers implemented in the MPC750;
Table 1-1 describes registers (excluding SPRs) defined by the architecture.

Table 1-1. Architecture-Defined Registers on the MPC750 (Excluding SPRs)

Register | Level Function

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain
operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provide a mechanism for testing and branching.

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for floating-
point instructions. These 64-bit registers can hold either single- or double-precision floating-
point values. '

FPSCR |User The floating-point status and control register (FPSCR) contains the floating-point exception

signal bits, exception summary bits, exception enable bits, and rounding control bits needed
for compliance with the IEEE-754 standard.

GPRs User The 32 GPRs serve as the data source or destination for integer instructions.

MSR Supervisor | The machine state register (MSR) defines the processor state. Its contents are saved when
an exception is taken and restored when exception handling completes. The MPC750
implements MSR[POW], (defined by the architecture as optional), which is used to enable the
power management feature. The MPC750-specific MSR[PM] bit is used to mark a process for
the performance monitor.

SRO- Supervisor | The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte
SR15 segments. The MPC750 implements segment registers as two arrays—a main array for data
accesses and a shadow array for instruction accesses; see Figure 1-1. Loading a segment
entry with the Move to Segment Register (mtsr) instruction loads both arrays. The mfsr
instruction reads the master register, shown as part of the data MMU in Figure 1-1.

The OEA defines numerous special-purpose registers that serve a variety of functions, such
as providing controls, indicating status, configuring the processor, and performing special
operations. During normal execution, a program can access the registers, shown in
Figure 1-5, depending on the program’s access privilege (supervisor or user, determined by
the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through operands
that are part of the instructions. Access to registers can be explicit (that is, through the use
of specific instructions for that purpose such as Move to Special-Purpose Register (mtspr)
and Move from Special-Purpose Register (mfspr) instructions) or implicit, as the part of
the execution of an instruction. Some registers can be accessed both explicitly and
implicitly.

In the MPC750, all SPRs are 32 bits wide. Table 1-2 describes the architecture-defined
SPRs implemented by the MPC750. The Programming Environments Manual describes
these registers in detail, including bit descriptions. Section 2.1.1, “Register Set,” describes
how these registers are implemented in the MPC750. In particular, this section describes

which features the PowerPC architecture defines as optional are implemented on the
MPC750.

1-24 MPC750 RISC Microprocessor User’s Manual

Table 1-2. Architecture-Defined SPRs Implemented by the MPC750

Register Level Function

LR User The link register (LR) can be used to provide the branch target address and to hold the
return address after branch and link instructions.

BATs Supervisor | The architecture defines 16 block address translation registers (BATs), which operate in
pairs. There are four pairs of data BATs (DBATSs) and four pairs of instruction BATs
(IBATs). BATs are used to define and configure blocks of memory.

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions.

DABR Supervisor | The optional data address breakpoint register (DABR) supports the data address
breakpoint facility.

DAR User The data address register (DAR) holds the address of an access after an alignment or DSI
exception.

DEC Supervisor | The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to
schedule decrementer exceptions.

DSISR User The DSISR defines the cause of data access and alignment exceptions.

EAR Supervisor | The external access register (EAR) controls access to the external access facility through
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed
(ecowx) instructions.

PVR Supervisor | The processor version register (PVR) is a read-only register that identifies the processor.

SDR1 Supervisor | SDR1 specifies the page table format used in virtual-to-physical page address translation.

SRRO Supervisor | The machine status save/restore register 0 (SRR0) saves the address used for restarting
an interrupted program when a Return from Interrupt (rfi) instruction executes.

SRR1 Supervisor | The machine status save/restore register 1 (SRR1) is used to save machine status on
exceptions and to restore machine status when an rfi instruction is executed.

SPRGO- | Supervisor | SPRG0-SPRGS3 are provided for operating system use.

SPRG3

B User:read | The time base register (TB) is a 64-bit register that maintains the time of day and operates

Supervisor: | interval timers. The TB consists of two 32-bit fields—time base upper (TBU) and time base
read/write | lower (TBL).

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field
specifying the number of bytes to be transferred by a Load String Word Indexed (Iswx) or
Store String Word Indexed (stswx) instruction.

Table 1-3 describes the supervisor-level SPRs in the MPC750 that are not defined by the
PowerPC architecture. Section 2.1.2, “MPC750-Specific Registers,” gives detailed
descriptions of these registers, including bit descriptions.

Chapter 1

. Overview

1-25

Table 1-3. MPC750-Specific Registers

Register Level Function

HIDO Supervisor | The hardware implementation-dependent register 0 (HIDO) provides checkstop enables
and other functions.

HID1 Supervisor | The hardware implementation-dependent register 1 (HID1) allows software to read the
configuration of the PLL configuration signals.

IABR Supervisor | The instruction address breakpoint register (IABR) supports instruction address
breakpoint exceptions. It can hold an address to compare with instruction addresses in
the 1Q. An address match causes an instruction address breakpoint exception.

ICTC Supervisor | The instruction cache-throttling control register (ICTC) has bits for controlling the interval
at which instructions are fetched into the instruction buffer in the instruction unit. This
helps control the MPC750's overall junction temperature.

L2CR Supervisor | The L2 cache control register (L2CR) is used to configure and operate the L2 cache. It
has bits for enabling parity checking, setting the L2-to-processor clock ratio, and
identifying the type of RAM used for the L2 cache implementation. (The L2 cache feature
is not supported in the MPC740.)

MMCRO- Supervisor | The monitor mode control registers (MMCR0-MMCR1) are used to enable various

MMCR1 performance monitoring interrupt functions. UMMCRO-UMMCR1 provide user-level read
access to MMCRO-MMCR1.

PMC1- Supervisor | The performance monitor counter registers (PMC1-PMC4) are used to count specified

PMC4 events. UPMC1-UPMC4 provide user-level read access to these registers.

SIA Supervisor | The sampled instruction address register (SIA) holds the EA of an instruction executing
at or around the time the processor signals the performance monitor interrupt condition.
The USIA register provides user-level read access to the SIA.

THRMt, Supervisor | THRM1 and THRM2 provide a way to compare the junction temperature against two

THRM2 user-provided thresholds. The thermal assist unit (TAU) can be operated so that the
thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2.

THRM3 Supervisor | THRM3 is used to enable the TAU and to control the output sample time.

UMMCRO- | User The user monitor mode control registers (UMMCRO-UMMCR1) provide user-level read

UMMCRH1 access to MMCRO-MMCR1. »)

UPMC1- User The user performance monitor counter registers (UPMC1-UPMC4) provide user-level

UPMC4 read access to PMC1-PMC4.

USIA User The user sampled instruction address register (USIA) provides user-level read access to

the SIA register.

1.5 Instruction Set

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

For more information, see Chapter 2, “MPC750 Processor Programming Model.”

1-26

MPC750 RISC Microprocessor User’s Manual

1.5.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

Integer instructions—These include computational and logical instructions.
— Integer arithmetic instructions

— Integer compare instructions

— Integer logical instructions

— Integer rotate and shift instructions

Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the FPSCR.

— Floating-point arithmetic instructions

— Floating-point multiply/add instructions

— Floating-point rounding and conversion instructions
— Floating-point compare instructions

— Floating-point status and control instructions

Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions
— Integer load and store multiple instructions
— Floating-point load and store

— Primitives used to construct atomic memory operations (Iwarx and stwex.
instructions)

Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBs, and the segment registers.

— Move to/from SPR instructions
— Move to/from MSR

— Synchronize

— Instruction synchronize

— Order loads and stores

Chapter 1. Overview 1-27

* Memory control instructions—These instructions provide control of caches, TLBs,
and SRs.

— Supervisor-level cache management instructions

— User-level cache instructions

— Segment register manipulation instructions

— Translation lookaside buffer management instructions

This grouping does not indicate the execution unit that executes a particular instruction or
group of instructions.

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and
stores between memory and a set of 32 GPRs. It also provides for word and double-word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations.

1.5.2 MPC750 Microprocessor Instruction Set
The MPC750 instruction set is defined as follows:
* The MPC750 provides hardware support for all 32-bit PowerPC instructions.

* The MPC750 implements the following instructions optional to the PowerPC
architecture:

— External Control In Word Indexed (eciwx)

— External Control Out Word Indexed (ecowx)

— Floating Select (fsel)

— Floating Reciprocal Estimate Single-Precision (fres)
— Floating Reciprocal Square Root Estimate (frsqrte)
— Store Floating-Point as Integer Word (stfiwx)

1-28 MPC750 RISC Microprocessor User’s Manual

1.6 On-Chip Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the MPC750-specific implementation, respectively. A detailed description of
the MPC750 cache implementation is provided in Chapter 3, “L1 Instruction and Data
Cache Operation.”

1.6.1 PowerPC Cache Model

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, PowerPC processors can have unified caches, separate instruction and data caches
(Harvard architecture), or no cache at all. PowerPC microprocessors control the following
memory access modes on a page or block basis:

* Write-back/write-through mode
¢ Caching-inhibited mode
* Memory coherency

The caches are physically addressed, and the data cache can operate in either write-back or
write-through mode as specified by the PowerPC architecture.

The PowerPC architecture defines the term ‘cache block’ as the cacheable unit. The VEA
and OEA define cache management instructions a programmer can use to affect cache
contents.

1.6.2 MPC750 Microprocessor Cache Implementation

The MPC750 cache implementation is described in Section 1.2.4, “On-Chip Instruction
and Data Caches,” and Section 1.2.5, “L2 Cache Implementation (Not Supported in the
MPC740).” The BPU also contains a 64-entry BTIC that provides immediate access to
cached target instructions. For more information, see Section 1.2.2.2, “Branch Processing
Unit (BPU).”

1.7 Exception Model

The following sections describe the PowerPC exception model and the MPC750
implementation. A detailed description of the MPC750 exception model is provided in
Chapter 4, “Exceptions.”

1.7.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to interrupt the instruction flow
to handle certain situations caused by external signals, errors, or unusual conditions arising
from the instruction execution. When exceptions occur, information about the state of the
processor is saved to certain registers and the processor begins execution at an address
(exception vector) predetermined for each exception. Exception processing occurs in
supervisor mode.

Chapter 1. Overview 1-29

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the FPSCR. Additionally, some exception
conditions can be enabled or disabled explicitly by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore;
although a particular implementation may recognize exception conditions out of order, they
are handled in order. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that are
undispatched, are required to complete before the exception is taken, and any exceptions
those instructions cause must also be handled first. Likewise, asynchronous, precise
exceptions are recognized when they occur, but are not handled until the instructions
currently in the completion queue successfully retire or generate an exception, and the
completion queue is emptied.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. For example, if one instruction encounters multiple
exception conditions, those conditions are handled sequentially. After the exception handler
handles an exception, the instruction processing continues until the next exception
condition is encountered. Recognizing and handling exception conditions sequentially
guarantees that exceptions are recoverable.

When an exception is taken, information about the processor state before the exception was
taken is saved in SRRO and SRR1. Exception handlers should save the information stored
in SRRO and SRR1 early to prevent the program state from being lost due to a system reset
and machine check exception or to an instruction-caused exception in the exception
handler, and before enabling external interrupts. A

The PowerPC architecture supports four types of exceptions:

* Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored. This means that (excluding the trap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructions in the code stream will complete execution before the exception is
taken. Once the exception is processed, execution resumes at the address of the
faulting instruction (or at an alternate address provided by the exception handler).
When an exception is taken due to a trap or system call instruction, execution
resumes at an address provided by the handler.

* Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
MPC750 provides a means to enable the imprecise modes, it implements these
modes identically to the precise mode (that is, enabled floating-point exceptions are
always precise). ' ’

1-30 MPC750 RISC Microprocessor User’s Manual

* Asynchronous, maskable—The PowerPC architecture defines external and J
decrementer interrupts as maskable, asynchronous exceptions. When these
exceptions occur, their handling is postponed until the next instruction, and any
exceptions associated with that instruction, completes execution. If no instructions
are in the execution units, the exception is taken immediately upon determination of
the correct restart address (for loading SRR0). As shown in Table 1-4, the MPC750
implements additional asynchronous, maskable exceptions.

* Asynchronous, nonmaskable—There are two nonmaskable asynchronous
exceptions: system reset and the machine check exception. These exceptions may
not be recoverable, or may provide a limited degree of recoverability. Exceptions
report recoverability through the MSR[RI] bit.

1.7.2 MPC750 Microprocessor Exception Implementation
The MPC750 exception classes described above are shown in Table 1-4.

Table 1-4. MPC750 Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/lmprecise Exception Type
Asynchronous, nonmaskable | Imprecise Machine check, system reset
Asynchronous, maskable Precise External, decrementer, system management, performance

monitor, and thermal management interrupts

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics, such as priority and recoverability,
Table 1-4 describes categories of exceptions the MPC750 handles uniquely. Table 1-4
includes no synchronous imprecise exceptions; although the PowerPC architecture
supports imprecise handling of floating-point exceptions, the MPC750 implements these
exception modes precisely. Table 1-5 lists MPC750 exceptions and conditions that cause
them. Exceptions specific to the MPC750 are indicated.

Table 1-5. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions
(hex)

Reserved 00000 —

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an |
address, data, or L2 bus parity error. MSR[ME] must be set. .

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or ‘
cache operations, a DSI exception occurs if a page fault occurs.

1SI 00400 As defined by the PowerPC architecture. ‘

External interrupt 00500 MSRIEE] = 1 and INT is asserted. ‘

Chapter 1. Overview 1-31

Table 1-5. Exceptions and Conditions (Continued)

Exception Type Vector Offset Causing Conditions
(hex)
Alignment 00600 « A floating-point load/store, stmw, stwex, Imw, Iwarx, eciwx or ecowx
instruction operand is not word-aligned.
» A multiple/string load/store operation is attempted in little-endian mode.
* The operand of dcbz is in memory that is write-through-required or
caching-inhibited or the cache is disabled

Program 00700 As defined by the PowerPC architecture.

Floating-point 00800 As defined by the PowerPC architecture.

unavailable

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1.

Reserved 00A00-00BFF | —

System call 00C00 Execution of the System Call (s¢) instruction.

Trace 00D00 MSRI[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the
architecture definition, isync does not cause a trace exception |

Reserved 00E00 The MPC750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved 00E10-00EFF | —

Performance monitor' | 00F00 The limit specified in a PMC register is reached and MMCRO[ENINT] = 1

Instruction address 01300 IABR[0-29] matches EA[0-29] of the next instruction to complete, IABR[TE]

breakpoint’ matches MSR[IR], and IABR[BE] = 1.

System management |01400 MSRIEE] = 1 and SMI is asserted.

interrupt’

Reserved 01500-016FF |—

Thermal management |01700 Thermal management is enabled, the junction temperature exceeds the

interrupt! threshold specified in THRM1 or THRM2, and MSR[EE] = 1.

Reserved 01800-02FFF |—

Note:

TMPC750-specific

1.8 Memory Management

The following subsections describe the memory management features of the PowerPC
architecture, and the MPC750 implementation, respectively. A detailed description of the
MPC750 MMU implementation is provided in Chapter 5, “Memory Management.”

1-32

MPC750 RISC Microprocessor User’s Manual

1.8.1 PowerPC Memory Management Model

The primary functions of the MMU are to translate logical (effective) addresses to physical
addresses for memory accesses and to provide access protection on blocks and pages of
memory. There are two types of accesses generated by the MPC750 that require address
translation—instruction accesses, and data accesses to memory generated by load, store,
and cache control instructions.

The PowerPC architecture defines different resources for 32- and 64-bit processors; the
MPC750 implements the 32-bit memory management model. The memory-management
model provides 4 Gbytes of logical address space accessible to supervisor and user
programs with a 4-Kbyte page size and 256-Mbyte segment size. BAT block sizes range
from 128 Kbyte to 256 Mbyte and are software selectable. In addition, it defines an interim
52-bit virtual address and hashed page tables for generating 32-bit physical addresses.

The architecture also provides independent four-entry BAT arrays for instructions and data
that maintain address translations for blocks of memory. These entries define blocks that
can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system
software.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size. The page table contains a number of page table
entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight bytes
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table
search operations.

Setting MSR[IR] enables instruction address translations and MSR[DR] enables data
address translations. If the bit is cleared, the respective effective address is the same as the
physical address.

1.8.2 MPC750 Microprocessor Memory Management implementation

The MPC750 implements separate MMUES for instructions and data. It implements a copy
of the segment registers in the instruction MMU, however, read and write accesses (mfsr
and mtsr) are handled through the segment registers implemented as part of the data MMU.
The MPC750 MMU is described in Section 1.2.3, “Memory Management Units (MMUs).”

The R (referenced) bit is updated in the PTE in memory (if necessary) during a table search
due to a TLB miss. Updates to the C (changed) bit are treated like TLB misses. A complete
table search is performed and the entire TLB entry is rewritten to update the C bit.

Chapter 1. Overview 1-33

1.9 Instruction Timing

The MPC750 is a pipelined, superscalar processor. A pipelined processor is one in which
instruction processing is divided into discrete stages, allowing work to be done on different
instructions in each stage. For example, after an instruction completes one stage, it can pass
on to the next stage leaving the previous stage available to the subsequent instruction. This
improves overall instruction throughput.

A superscalar processor is one that issues multiple independent instructions into separate
execution units, allowing instructions to execute in parallel. The MPC750 has six
independent execution units, two for integer instructions, and one each for floating-point
instructions, branch instructions, load/store instructions, and system register instructions.
Having separate GPRs and FPRs allows integer, floating-point calculations, and load and
store operations to occur simultaneously without interference. Additionally, rename buffers
are provided to allow operations to post execution results for use by subsequent instructions
without committing them to the architected FPRs and GPRs.

As shown in Figure 1-6, the common pipeline of the MPC750 has four stages through
which all instructions must pass—fetch, decode/dispatch, execute, and complete/write
back. Some instructions occupy multiple stages simultaneously and some individual
execution units have additional stages. For example, the floating-point pipeline consists of
three stages through which all floating-point instructions must pass.

Fetch] Maximum four-instruction fetch
eld per clock cycle
BPU
\
Disoatch I Maximum three-instruction dispatch
| Ispaic per clock cycle (includes one branch
instruction)
e y T Execute Stage |
I
: I -
l |
! FPU1 !
I I
1 [}
: FPU2 v v LSU1 :
| l SRU | FPU3 [11 | | U2 | LsU2 !
| v ! ! ¥ |
I Y /
[[
|
e o e = m e
Y Maxi two-instructi
) aximum two-instruction
I Complete (Write-Back) J completion per clock cycle

Figure 1-6. Pipeline Diagram

Note that Figure 1-6 does not show features, such as reservation stations and rename buffers
that reduce stalls and improve instruction throughput.

1-34 MPC750 RISC Microprocessor User’s Manual

The instruction pipeline in the MPC750 has four major pipeline stages, described as
follows:

The fetch pipeline stage primarily involves retrieving instructions from the memory
system and determining the location of the next instruction fetch. The BPU decodes
branches during the fetch stage and removes those that do not update CTR or LR
from the instruction stream.

The dispatch stage is responsible for decoding the instructions supplied by the
instruction fetch stage and determining which instructions can be dispatched in the
current cycle. If source operands for the instruction are available, they are read from
the appropriate register file or rename register to the execute pipeline stage. If a
source operand is not available, dispatch provides a tag that indicates which rename
register will supply the operand when it becomes available. At the end of the
dispatch stage, the dispatched instructions and their operands are latched by the
appropriate execution unit.

Instructions executed by the IUs, FPU, SRU, and LSU are dispatched from the
bottom two positions in the instruction queue. In a single clock cycle, a maximum
of two instructions can be dispatched to these execution units in any combination.
When an instruction is dispatched, it is assigned a position in the six-entry
completion queue. A branch instruction can be issued on the same clock cycle for a
maximum three-instruction dispatch.

During the execute pipeline stage, each execution unit that has an executable
instruction executes the selected instruction (perhaps over multiple cycles), writes
the instruction's result into the appropriate rename register, and notifies the
completion stage that the instruction has finished execution. In the case of an internal
exception, the execution unit reports the exception to the completion pipeline stage
and (except for the FPU) discontinues instruction execution until the exception is
handled. The exception is not signaled until that instruction is the next to be
completed. Execution of most floating-point instructions is pipelined within the FPU
allowing up to three instructions to be executing in the FPU concurrently. The FPU
stages are multiply, add, and round-convert. Execution of most load/store
instructions is also pipelined. The load/store unit has two pipeline stages. The first
stage is for effective address calculation and MMU translation and the second stage
is for accessing the data in the cache.

The complete pipeline stage maintains the correct architectural machine state and
transfers execution results from the rename registers to the GPRs and FPRs (and
CTR and LR, for some instructions) as instructions are retired. As with dispatching
instructions from the instruction queue, instructions are retired from the two bottom
positions in the completion queue. If completion logic detects an instruction causing
an exception, all following instructions are cancelled, their execution results in
rename registers are discarded, and instructions are fetched from the appropriate
exception vector.

Chapter 1. Overview 1-35

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing varies among PowerPC processors.

For a detailed discussion of instruction timing with examples and a table of latencies for
each execution unit, see Chapter 6, “Instruction Timing.”

1.10 Power Management

The MPC750 provides four power modes, selectable by setting the appropriate control bits
in the MSR and HIDO registers. The four power modes are as follows:

Full-power—This is the default power state of the MPC750. The MPC750 is fully
powered and the internal functional units are operating at the full processor clock
speed. If the dynamic power management mode is enabled, functional units that are
idle will automatically enter a low-power state without affecting performance,
software execution, or external hardware.

Doze—All the functional units of the MPC750 are disabled except for the time
base/decrementer registers and the bus snooping logic. When the processor is in
doze mode, an external asynchronous interrupt, a system management interrupt, a
decrementer exception, a hard or soft reset, or machine check brings the MPC750
into the full-power state. The MPC750 in doze mode maintains the PLL in a fully
powered state and locked to the system external clock input (SYSCLK) so a
transition to the full-power state takes only a few processor clock cycles.

Nap—The nap mode further reduces power consumption by disabling bus snooping,
leaving only the time base register and the PLL in a powered state. The MPC750
returns to the full-power state upon receipt of an external asynchronous interrupt, a
system management interrupt, a decrementer exception, a hard or soft reset, or a
machine check input (MCP). A return to full-power state from a nap state takes only
a few processor clock cycles. When the processor is in nap mode, if QACK is
negated, the processor is put in doze mode to support snooping.

Sleep—Sleep mode minimizes power consumption by disabling all internal
functional units, after which external system logic may disable the PLL and
SYSCLK. Returning the MPC750 to the full-power state requires the enabling of the
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt,
a system management interrupt, a hard or soft reset, or a machine check input (MCP)
signal after the time required to relock the PLL.

Chapter 10, “Power and Thermal Management,” provides information about power saving
and thermal management modes for the MPC750.

1-36

MPC750 RISC Microprocessor User’s Manual

1.11 Thermal Management

The MPC750’s thermal assist unit (TAU) provides a way to control heat dissipation. This
ability is particularly useful in portable computers, which, due to power consumption and
size limitations, cannot use desktop cooling solutions such as fans. Therefore, better heat
sink designs coupled with intelligent thermal management is of critical importance for high
performance portable systems.

Primarily, the thermal management system monitors and regulates the system’s operating
temperature. For example, if the temperature is about to exceed a set limit, the system can
be made to slow down or even suspend operations temporarily in order to lower the
temperature.

The thermal management facility also ensures that the processor’s junction temperature
does not exceed the operating specification. To avoid the inaccuracies that arise from
measuring junction temperature with an external thermal sensor, the MPC750’s on-chip
thermal sensor and logic tightly couples the thermal management implementation.

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control
logic, and the dedicated SPRs described in Section 1.4, “PowerPC Registers and
Programming Model.” The TAU does the following:

¢ Compares the junction temperature against user-programmable thresholds
* Generates a thermal management interrupt if the temperature crosses the threshold

¢ Enables the user to estimate the junction temperature by way of a software
successive approximation routine

The TAU is controlled through the privileged mtspr/mfspr instructions to the three SPRs
provided for configuring and controlling the sensor control logic, which function as
follows:

o THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. Having dual thresholds gives the thermal
management software finer control of the junction temperature. In single threshold
mode, the thermal sensor output is compared to only one threshold in either THRM 1
or THRM?2.

e THRM3 is used to enable the TAU and to control the comparator output sample
time. The thermal management logic manages the thermal management interrupt
generation and time multiplexed comparisons in the dual threshold mode as well as
other control functions.

Instruction cache throttling provides control of the MPC750’s overall junction temperature
by determining the interval at which instructions are fetched. This feature is accessed
through the ICTC register.

Chapter 10, “Power and Thermal Management,” provides information about power saving
and thermal management modes for the MPC750.

Chapter 1. Overview 1-37

1.12 Performance Monitor

The MPC750 incorporates a performance monitor facility that system designers can use to
help bring up, debug, and optimize software performance. The performance monitor counts
events during execution of code, relating to dispatch, execution, completion, and memory
accesses.

The performance monitor incorporates several registers that can be read and written to by
supervisor-level software. User-level versions of these registers provide read-only access
for user-level applications. These registers are described in Section 1.4, “PowerPC
Registers and Programming Model.” Performance monitor control registers, MMCRO or
MMCRI, can be used to specify which events are to be counted and the conditions for
which a performance monitoring interrupt is taken. Additionally, the sampled instruction
address register, SIA (USIA), holds the address of the first instruction to complete after the
counter overflowed.

Attempting to write to a user-read-only performance monitor register causes a program
exception, regardless of the MSR[PR] setting.

When a performance monitoring interrupt occurs, program execution continues from
vector offset 0x00FO0O.

Chapter 11, “Performance Monitor,” describes the operation of the performance monitor
diagnostic tool incorporated in the MPC750.

1-38 MPC750 RISC Microprocessor User’s Manual

Chapter 2
MPC750 Processor Programming Model

This chapter describes the MPC750 programming model, emphasizing those features
specific to the MPC750 processor and summarizing those that are common to PowerPC
processors. It consists of three major sections, which describe the following:

* Registers implemented in the MPC750
* Operand conventions
* The MPC750 instruction set

For detailed information about architecture-defined features, see The Programming
Environments Manual.

2.1 The MPC750 Processor Register Set

This section describes the registers implemented in the MPC750. It includes an overview
of registers defined by the PowerPC architecture, highlighting differences in how these
registers are implemented in the MPC750, and a detailed description of MPC750-specific
registers. Full descriptions of the architecture-defined register set are provided in Chapter 2,
“PowerPC Register Set,” in The Programming Environments Manual.

Registers are defined at all three levels of the PowerPC architecture—user instruction set
architecture (UISA), virtual environment architecture (VEA), and operating environment
architecture (OEA). The PowerPC architecture defines register-to-register operations for all
computational instructions. Source data for these instructions are accessed from the on-chip
registers or are provided as immediate values embedded in the opcode. The three-register
instruction format allows specification of a target register distinct from the two source
registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory
and registers with explicit load and store instructions only.

2.1.1 Register Set

The registers implemented on the MPC750 are shown in Figure 2-1. The number to the
right of the special-purpose registers (SPRs) indicates the number that is used in the syntax
of the instruction operands to access the register (for example, the number used to access
the integer exception register (XER) is SPR 1). These registers can be accessed using the
mtspr and mfspr instructions.

Chapter 2. MPC750 Processor Programming Model 2-1

4 SUPERVISOR MODEL—OEA I
\ Configuration Registers
k USER MODEL—VEA Hardware Processor
Implementation Version Machine State
Time Base Facility (For Reading) Registers’ Register Register
[18L |TBRoss | TBU |TBR269 HIDO | SPR 1008 PVR |SPR287 MSR
HID1 SPR 1009
/ USER MODEL—UISA \ Memory Management Registers
Count General-Purpose Instruction BAT Data BAT Segment
Register Registers Registers Registers Registers
CTR SPR9 GPRO IBATOU SPR 528 DBATOU | SPR536 SRO
XER GPR1 IBATOL | SPR529 DBATOL | SPR537 SR1
YER SPR 1 : IBAT1U SPR 530 DBAT1U SPR 538 .
- - . IBAT1L SPR 531 DBATIL | SPR539 *
Link Register GPR31 IBAT2U | SPR 532 DBAT2U | SPR540 SR15

SPR8 IBATZL | SPR533 DBAT2L | SPR 541

Floating-Point

Performance Registers IBAT3U | SPR534 DBAT3U |SPR542 SDR1
Monitor Registers FPRO IBATSL |SPR535 DBAT3L |SPR543 SDR1 |SPR25
(For Reading)
Petformance Counters ! il Exception Handling Registers
UPMC SPR 937 M SPRGs Data Address Save and Restore
. Register Registers
Shvice | spr s SPRGO |sPR2rz oY o
9 FPR31 sPReT lsPRa3 DAR |SPR19 SRRO |SPR26
UPMC3 | SPR 941 SRl IR
Pncr | spRo Condition SPRG2 |SPR274 DSISR
Register SPRG3 |SPR275 DSISR | SPR 18

‘Sampled Instruction -CR
1 . .
Address Miscellaneous Registers

USIA | SPR939 Floating-Point External Address Time Base Decrementer
Status and

Register (For Writing)

Monitor Control! Control Register DEC SPR 22
EAR SPR 282 TBL SPR 284
UMMCRO | SPR 936 FPSCR
TBU SPR 285
UMMCR? | SPR 940
Data Address L2 Control Instruction Address
\ J Breakpoint Register Register’>2 Breakpoint Register !

[oaeR_ Jspriots | L2cR sPRio17 [IABR |sPR1010

Power/Thermal Management Registers

Performance Monitor Registers

Performance Sampled
Counters ' Instrucllgn Thermal Assisg Instruction Cache
Address Unit Registers Throttling Control
PMCI |SPR953 9 : ?

Register

SIA SPR 955 THRM1 | SPR 1020
PMC2 | SPR954
ICTC ~ |SPR1019
PMC3 | SPR957 Monitor Control ' THRM2 | SPR 1021
PMC4 | SPR 958 MMCRO | SPR 952 THRM3 | SPR 1022

k) MMCR1 | SPR 956 j

' These registers are MPC750-specific registers. They may not be supported by other PowerPC processors.
2 May not be supported by the MPC740.

Figure 2-1. Programming Model—MPC750 Microprocessor Registers

2-2 MPC750 RISC Microprocessor User's Manual

The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and
floating-point registers (FPRs) are accessed through instruction operands. Access to
registers can be explicit (by using instructions for that purpose such as Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr)
instructions) or implicit as part of the execution of an instruction. Some registers are
accessed both explicitly and implicitly.

Implementation Note—The MPC750 fully decodes the SPR field of the instruction. If the
SPR specified is undefined, the illegal instruction program exception occurs. The
PowerPC’s user-level registers are described as follows:

* User-level registers (UISA)—The user-level registers can be accessed by all
software with either user or supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two GPRs (GPRO-GPR31) serve
as data source or destination registers for integer instructions and provide data
for generating addresses. See “General Purpose Registers (GPRs),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual for more
information.

— Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as
the data source or destination for all floating-point instructions. See
“Floating-Point Registers (FPRs),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO—CR?7,
that reflect results of certain arithmetic operations and provide a mechanism for
testing and branching. See “Condition Register (CR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

— Floating-point status and control register (FPSCR). The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. See “Floating-Point Status and Control Register (FPSCR),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual.

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

— Integer exception register (XER). The XER indicates overflow and carries for
integer operations. See “XER Register (XER),” in Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual for more information.

Implementation Note—To allow emulation of the Iscbx instruction defined by
the POWER architecture, XER[16-23] is implemented so that they can be read
with mfspr[XER] and written with mtxer[XER] instructions.

Chapter 2. MPC750 Processor Programming Model 2-3

— Link register (LR). The LR provides the branch target address for the Branch
Conditional to Link Register (belrx) instruction, and can be used to hold the
logical address of the instruction that follows a branch and link instruction,
typically used for linking to subroutines. See “Link Register (LR),” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

— Count register (CTR). The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bectrx) instruction. See “Count Register (CTR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.

User-level registers (VEA)—The PowerPC VEA defines the time base facility
(TB), which consists of two 32-bit registers—time base upper (TBU) and time base
lower (TBL). The time base registers can be written to only by supervisor-level
instructions but can be read by both user- and supervisor-level software. For more
information, see “PowerPC VEA Register Set—Time Base,” in Chapter 2,
“PowerPC Register Set,” of The Programming Environments Manual.

Supervisor-level registers (OEA)—The OEA defines the registers an operating
system uses for memory management, configuration, exception handling, and other
operating system functions. The OEA defines the following supervisor-level
registers for 32-bit implementations:

— Configuration registers

— Machine state register (MSR). The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
System Call (sc), and Return from Exception (rfi) instructions. It can be read
by the Move from Machine State Register (mfmsr) instruction. When an
exception is taken, the contents of the MSR are saved to the machine status
save/restore register 1 (SRR1), which is described below. See “Machine State
Register (MSR),” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.

Implementation Note—Table 2-1 describes MSR bits the MPC750
implements that are not required by the PowerPC architecture.

Table 2-1. Additional MSR Bits

Bit

Name Description

POW Power management enable. Optional to the PowerPC architecture.

0 Power management is disabled.

1 Power management is enabled. The processor can enter a power-saving mode when additional
conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in
the hardware implementation-dependent register 0 (HID0), described in Table 2-4.

29 | PM Performance monitor marked mode. This bit is specific to the MPC750, and is defined as reserved
by the PowerPC architecture. See Chapter 11, “Performance Monitor.”
0 Process is not a marked process.
1 Process is a marked process.
2-4 MPC750 RISC Microprocessor User's Manual

Note that setting MSR[EE] masks not only the architecture-defined external
interrupt and decrementer exceptions but also the MPC750-specific system
management, performance monitor, and thermal management exceptions.

— Processor version register (PVR). This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.
For more information, see “Processor Version Register (PVR),” in Chapter 2, |
“PowerPC Register Set,” of The Programming Environments Manual.

Implementation Note—The processor version number is 0x0008 for the
MPC750. The processor revision level starts at 0x0100 and is updated for each
silicon revision.

— Memory management registers

— Block-address translation (BAT) registers. The PowerPC OEA includes an
array of block address translation registers that can be used to specify four
blocks of instruction space and four blocks of data space. The BAT registers
are implemented in pairs—four pairs of instruction BATs (IBATOU-IBAT3U
and IBATOL-IBAT3L) and four pairs of data BATs (DBATOU-DBAT3U and
DBATOL-DBAT3L). Figure 2-1 lists the SPR numbers for the BAT registers.
For more information, see “BAT Registers,” in Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual. Because BAT upper and
lower words are loaded separately, software must ensure that BAT translations
are correct during the time that both BAT entries are being loaded.

The MPC750 implements the G bit in the IBAT registers; however, attempting
to execute code from an IBAT area with G =1 causes an ISI exception. This
complies with the revision of the architecture described in The Programming
Environments Manual.

— SDRI1. The SDR1 register specifies the page table base address used in
virtual-to-physical address translation. See “SDR1,” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.”

— Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See “Segment Registers,” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

Note that the MPC750 implements separate memory management units
(MMUs) for instruction and data. It associates the architecture-defined SRs
with the data MMU (DMMU). It reflects the values of the SRs in separate,
so-called ‘shadow’ segment registers in the instruction MMU (IMMU).

Chapter 2. MPC750 Processor Programming Model 2-5

— Exception-handling registers

Data address register (DAR). After a DSI or an alignment exception, DAR is
set to the effective address (EA) generated by the faulting instruction. See
“Data Address Register (DAR),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating
system use. See “SPRGO-SPRG3,” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

DSISR. The DSISR register defines the cause of DSI and alignment
exceptions. See “DSISR,” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

Machine status save/restore register 0 (SRR0). The SRRO register is used to
save the address of the instruction at which execution continues when rfi
executes at the end of an exception handler routine. See “Machine Status
Save/Restore Register 0 (SRR0),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Machine status save/restore register 1 (SRR1). The SRR1 register is used to
save machine status on exceptions and to restore machine status when rfi
executes. See “Machine Status Save/Restore Register 1 (SRR1),” in
Chapter 2, “PowerPC Register Set,” of The Programming Environments
Manual for more information.

Implementation Note—When a machine check exception occurs, the
MPC750 sets one or more error bits in SRR1. Table 2-2 describes SRR1 bits
the MPC750 implements that are not required by the PowerPC architecture.

Table 2-2. Additional SRR1 Bits

Bit Name Description

11 |L2DP Set by a data parity error on the L2 bus. The MPC740 does not implement the L2 cache interface.

12 [MCPIN |Set by the assertion of MCP

13 |TEA Set by a TEA assertion on the 60x bus

14 |DP Set by a data parity error on the 60x bus

15 |AP Set by an address parity error on the 60x bus

— Miscellaneous registers
— Time base (TB). The TB is a 64-bit structure provided for maintaining the
time of day and operating interval timers. The TB consists of two 32-bit
registers—time base upper (TBU) and time base lower (TBL). The time base
registers can be written to only by supervisor-level software, but can be read
by both user- and supervisor-level software. See “Time Base Facility
(TB)—OEA,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for more information.
2-6 MPC750 RISC Microprocessor User's Manual

— Decrementer register (DEC). This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See “Decrementer Register (DEC),” in Chapter 2, “PowerPC Register Set,” of
The Programming Environments Manual for more information.

Implementation Note—In the MPC750, the decrementer register is
decremented at a speed that is one-fourth the speed of the bus clock.

— Data address breakpoint register (DABR)—This optional register is used to
cause a breakpoint exception if a specified data address is encountered. See
“Data Address Breakpoint Register (DABR),” in Chapter 2, “PowerPC
Register Set,” of The Programming Environments Manual.”’

— External access register (EAR). This optional register is used in conjunction
with eciwx and ecowx. Note that the EAR register and the eciwx and ecowx
instructions are optional in the PowerPC architecture and may not be
supported in all PowerPC processors that implement the OEA. See “External
Access Register (EAR),” in Chapter 2, “PowerPC Register Set,” of The
Programming Environments Manual for more information.

* MPC750-specific registers—The PowerPC architecture allows implementation-
specific SPRs. Those incorporated in the MPC750 are described as follows. Note
that in the MPC750, these registers are all supervisor-level registers.

— Instruction address breakpoint register (IABR)—This register can be used to
cause a breakpoint exception if a specified instruction address is encountered.

— Hardware implementation-dependent register 0 (HIDO)—This register controls
various functions, such as enabling checkstop conditions, and locking, enabling,
and invalidating the instruction and data caches.

— Hardware implementation-dependent register 1 (HID1)—This register reflects
the state of PLL_CFG[0-3] clock signals.

— The L2 cache control register (L2CR) is used to configure and operate the L2
cache. It includes bits for enabling parity checking, setting the L.2-to-processor
clock ratio, and identifying the type of RAM used for the L2 cache
implementation. (Not supported in the MPC740.)

— Performance monitor registers. The following registers are used to define and
count events for use by the performance monitor: \

— The performance monitor counter registers (PMC1-PMC4) are used to record (
the number of times a certain event has occurred. UPMC1-UPMC4 provide
user-level read access to these registers. ‘

— The monitor mode control registers (MMCRO-MMCR1) are used to enable !
various performance monitor interrupt functions. UMMCRO-UMMCR1
provide user-level read access to these registers.

Chapter 2. MPC750 Processor Programming Model 2-7 |

- — The sampled instruction address register (SIA) contains the effective address
of an instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. USIA provides user-level read
access to the SIA.

— The MPC750 does not implement the sampled data address register (SDA) or
the user-level, read-only USDA registers. However, for compatibility with
processors that do, those registers can be written to by boot code without
causing an exception. SDA is SPR 959; USDA is SPR 943.

— The instruction cache throttling control register (ICTC) has bits for enabling the
instruction cache throttling feature and for controlling the interval at which
instructions are forwarded to the instruction buffer in the fetch unit. This
provides control over the processor’s overall junction temperature.

— Thermal management registers (THRM1, THRM?2, and THRM3). Used to
enable and set thresholds for the thermal management facility.

— THRM1 and THRM2 provide the ability to compare the junction temperature
against two user-provided thresholds. The dual thresholds allow the thermal
management software differing degrees of action in lowering the junction
temperature. The TAU can be also operated in a single threshold mode in
which the thermal sensor output is compared to only one threshold in either
THRM1 or THRM2.

— THRM3 is used to enable the thermal management assist unit (TAU) and to
control the comparator output sample time.

Note that while it is not guaranteed that the implementation of MPC750-specific registers
is consistent among PowerPC processors, other processors may implement similar or
identical registers.

2.1.2 MPC750-Specific Registers

This section describes registers that are defined for the MPC750 but are not included in the
PowerPC architecture.

2.1.2.1 Instruction Address Breakpoint Register (IABR)

The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction
address breakpoint exception. When this exception is enabled, instruction fetch addresses
are compared with an effective address stored in the IABR. If the word specified in the
IABR is fetched, the instruction breakpoint handler is invoked. The instruction that triggers
the breakpoint does not execute before the handler is invoked. For more information, see
Section 4.5.14, “Instruction Address Breakpoint Exception (0x01300).” The IABR can be
accessed with mtspr and mfspr using the SPR1010.

2-8 MPC750 RISC Microprocessor User's Manual

Address | BEl TE|
0 29 30 3

Figure 2-2. Instruction Address Breakpoint Register
The IABR bits are described in Table 2-3.

Table 2-3. Instruction Address Breakpoint Register Bit Settings

Bits | Name Description

0-29 | Address | Word address to be compared

30 |BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

31 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].

2.1.2.2 Hardware Implementation-Dependent Register 0

The hardware implementation-dependent register O (HIDO) controls the state of several
functions within the MPC750. The HIDO register is shown in Figure 2-3.

DLOCK [] Reserved
EMCP BCLK ECLK DOZE SLEEP ILOCK NOOPTI

| |
[,DBP‘EBA{EB# [0(‘Pﬁr ‘NA# (DPN* 00 0 ‘NHF* ICE‘DC% 1 ‘ICFI‘BCF‘SPD’FEN{SGE{DCF}?BHC’ 0 {ABE’BH'# 0’ l

12 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-3. Hardware Implementation-Dependent Register 0 (HIDO)
The HIDO bits are described in Table 2-4.
Table 2-4. HIDO Bit Functions

Bit Name Function

0 EMCP | Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions

caused by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.
1 Asserting MCP causes checkstop if MSR[ME] = 0 or a machine check exception if ME = 1.

1 DBP Enable/disable 60x bus address and data parity generation.

0 If the system does not use address or data parity and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, require no pull-up
resistors, and thus should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA Enable/disable 60x bus address parity checking

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check
exception if MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

Chapter 2. MPC750 Processor Programming Model 2-9

Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function
3 EBD Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

4 BCLK CLK_OUT output enable and clock type selection. Used in conjunction with HIDO[ECLK] and the

HRESET signal to configure CLK_OUT. See Table 2-5.

5 —_ Not used. Defined as EICE on some earlier processors.
6 ECLK CLK_OUT output enable and clock type selection. Used in conjunction with HIDO[BCLK] and the

HRESET signal to configure CLK_OUT. See Table 2-5.

7 PAR Disable precharge of ARTRY.

0 Precharge of ARTRY enabled

1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated)
state. If this is done, the system must restore the signals to the high state.

8 DOZE |Doze mode enable. Operates in conjunction with MSR[POW].

0 Doze mode disabled.

1 Doze mode enabled. Doze mode is invoked by setting MSR[POW)] while this bit is set. In doze
mode, the PLL, time base, and snooping remain active.

9 NAP Nap mode enable. Operates in conjunction with MSR[POW].

0 Nap mode disabled.

1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap
mode, the PLL and the time base remain active.

10 SLEEP | Sleep mode enable. Operates in conjunction with MSR[POW].

0 Sleep mode disabled.

1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is
asserted to indicate that the processor is ready to enter sleep mode. If the system logic
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK,
is asserted back to the processor. Once QACK assertion is detected, the processor enters
sleep mode after several processor clocks. At this point, the system logic may turn off the PLL
by first configuring PLL_CFG[0-3] to PLL bypass mode, then disabling SYSCLK.

11 DPM Dynamic power management enable.

0 Dynamic power management is disabled.

1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect
operational performance and is transparent to software or any external hardware.

12-14 | — Not used
15 NHR Not hard reset (software-use only)—Helps software distinguish a hard reset from a soft reset.

0 A hard reset occurred if software had previously set this bit.

1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs
and this bit remains set, software can tell it was a soft reset.

16 ICE Instruction cache enable

0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. ICE is zero at power-up.

1 The instruction cache is enabled

2-10 MPC750 RISC Microprocessor User's Manual

Table 2-4. HIDO Bit Functions (Continued)

Bit

Name

Function

DCE

Data cache enable

0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1X). Potential cache accesses from the bus (snoop and cache
operations) are ignored. In the disabled state for the L1 caches, the cache tag state bits are
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For
those transactions, however, Cl reflects the original state determined by address translation
regardless of cache disabled status. DCE is zero at power-up.

1 The data cache is enabled.

ILOCK

Instruction cache lock

0 Normal operation

1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status.

To prevent locking during a cache access, an isyne instruction must precede the setting of ILOCK.

19

DLOCK

Data cache lock.

0 Normal operation

1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a
cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is
single-beat, however, CI still reflects the original state as determined by address translation
independent of cache locked or disabled status. A snoop hit to a locked L1 data cache performs
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the
cache is unlocked.

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK.

20

ICFI

Instruction cache flash invalidate

0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation
begins (usually the next cycle after the write operation to the register). The instruction cache
must be enabled for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each instruction cache block as invalid
without writing back modified cache blocks to memory. Cache access is blocked during this
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once
the L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets
these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on the MPC750.

21

DCFI

Data cache flash invalidate

0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins
(usually the next cycle after the write operation to the register). The data cache must be enabled
for the invalidation to occur.

1 Aninvalidate operation is issued that marks the state of each data cache block as invalid without
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI
clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the
L1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these
bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO).

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set.

Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits

was to set them and clear them in two consecutive mtspr operations. Software that already has this

sequence of operations does not need to be changed to run on the MPC750.

Chapter 2. MPC750 Processor Programming Model 2-11

Table 2-4. HIDO Bit Functions (Continued)

Bit Name Function
22 SPD Speculative cache access disable
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data
caches is enabled
1 Speculative bus accesses to nonguarded space in both caches is disabled
23 IFEM Enable M bit on bus for instruction fetches.
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus
1 Instruction fetches reflect the M bit from the WIM settings.
24 SGE Store gathering enable
0 Store gathering is disabled
1 Integer store gathering is performed for write-through to nonguarded space or for
cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. The LSU combines
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores
are gathered only if successive, eligible stores, are queued and pending. Store gathering is
performed regardless of address order or endian mode.
25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.)
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence
defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.
26 BTIC BTIC disable—used to disable use of the 64-entry branch instruction cache.
0 The BTIC is enabled and new entries can be added.
1 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New entries
cannot be added until the BTIC is enabled.
27 — Not used. Defined as FBIOB on earlier 603-type processors.
28 ABE Address broadcast enable—controls whether certain address-only operations (such as cache
operations, eieio, and sync) are broadcast on the 60x bus.
0 Address-only operations affect only local L1 and L2 caches and are not broadcast.
1 Address-only operations are broadcast on the 60x bus.Affected instructions are eieio, sync,
dcbi, dcbf, and dcbst. A sync instruction completes only after a successful broadcast.
Execution of eieio causes a broadcast that may be used to prevent any external devices, such
as a bus bridge chip, from store gathering.
Note that dcbz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of
the setting of this bit. An icbi is never broadcast. No cache operations, except debz, are snooped
by the MPC750 regardless of whether the ABE is set. Bus activity caused by these instructions
results directly from performing the operation on the MPC750 cache.
29 BHT Branch history table enable
0 BHT disabled. The MPC750 uses static branch prediction as defined by the PowerPC
architecture (UISA) for those branch instructions the BHT would have otherwise used to predict
(that is, those that use the CR as the only mechanism to determine direction). For more
information on static branch prediction, see “Conditional Branch Control,”in Chapter 4 of The
Programming Environments Manual.
1 Allows the use of the 512-entry branch history table (BHT).
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken.
30 — Not used
31 NOOPTI | No-op the data cache touch instructions.
0 The dcbt and dcbtst instructions are enabled.
1 The dcbt and debtst instructions are no-oped globally.
2-12 MPC750 RISC Microprocessor User's Manual

Table 2-5 shows how HIDO[BCLK], HIDO[ECLK], and HRESET are used to configure
CLK_OUT. See Section7.2.11.2, “Clock Out (CLK_OUT)—Output,” for more
information.

Table 2-5. HIDO[BCLK] and HIDO[ECLK] CLK_OUT Configuration
HRESET | HIDO[ECLK] HIDO[BCLK] CLK_OUT 1
Asserted X X Bus
Negated 0 0 High impedance
Negated 0 1 Bus/ 2
Negated 1 0 Core
Negated 1 1 Bus

HIDO can be accessed with mtspr and mfspr using SPR1008.

2.1.2.3 Hardware Implementation-Dependent Register 1

The hardware implementation-dependent register 1 (HID1) reflects the state of the
PLL_CFG[0-3] signals. The HID1 bits are shown in Figure 2-4.

D Reserved
IPCO‘PC1|P02\PCS} 0o 0090000000 O0O0OOO0OO0OO0O0O0O0CO0CO0 000000 0 |
01 2 3 4 i 31

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1)

The HID1 bits are described in Table 2-6.
Table 2-6. HID1 Bit Functions

Bit(s) Name Description
0 PCO PLL configuration bit 0 (read-only)
1 PC1 PLL configuration bit 1 (read-only)
2 PC2 PLL configuration bit 2 (read-only)
3 PC3 PLL configuration bit 3 (read-only)
4-31 — Reserved ‘

Note: The clock configuration bits reflect the state of the PLL_CFG[0-3] signals.

HID1 can be accessed with mtspr and mfspr using SPR 1009.

Chapter 2. MPC750 Processor Programming Model 2-13

2.1.2.4 Performance Monitor Registers

This section describes the registers used by the performance monitor, which is described in
Chapter 11, “Performance Monitor.”

2.1.2.4.1 Monitor Mode Control Register 0 (MMCRO)

The monitor mode control register 0 (MMCRO), shown in Figure 2-5, is a 32-bit SPR
provided to specify events to be counted and recorded. The MMCRO can be accessed only
in supervisor mode. User-level software can read the contents of MMCRO by issuing an
mfspr instruction to UMMCRO, described in Section 2.1.2.4.2, “User Monitor Mode
Control Register 0 (UMMCRO).”

INTONBITTRANS
RTCSELECT
DISCOUNT —— PMC2INTCONTROL ——
ENINT -PMC1INTCONTROL PMCTRIGGER
IES ‘ DP‘DUlDM#DMF* i ‘ ‘ l THRESHOLD ‘ ‘ | ‘ PMC1SELECT I PMC2SELECT
0.1 2 3 4 5 6 7 8 9 10 15 16 17 18 19 25 26 31

Figure 2-5. Monitor Mode Control Register 0 (MMCRO)

This register must be cleared at power up. Reading this register does not change its
contents. The bits of the MMCRO register are described in Table 2-7.

Table 2-7. MMCRO Bit Settings

Bit Name

Description

0 DIS

Disables counting unconditionally
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

Disables counting while in supervisor mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not
changed by hardware.

Disables counting while in user mode

0 The PMCn counters can be changed by hardware.

1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not
changed by hardware.

3 DMS

Disables counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PM] is set, the PMCn counters are not changed by hardware.

4 DMR

Disables counting while MSR(PM) is zero.
0 The PMCn counters can be changed by hardware.
1 1f MSR[PM] is cleared, the PMCn counters are not changed by hardware.

2-14

MPC750 RISC Microprocessor User's Manual

Table 2-7. MMCRO Bit Settings (Continued)

Bit

Name

Description

ENINT

Enables performance monitor interrupt signaling.

0 Interrupt signaling is disabled.

1 Interrupt signaling is enabled.

Cleared by hardware when a performance monitor interrupt is signaled. To reenable
these interrupt signals, software must set this bit after handling the performance
monitor interrupt. The IPL ROM code clears this bit before passing control to the
operating system.

DISCOUNT

Disables counting of PMCn when a performance monitor interrupt is signaled (that is,

((PMCnINTCONTROL = 1) & (PMCn[0] = 1) & (ENINT = 1)) or the occurrence of an

enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)).

0 Signaling a performance monitor interrupt does not affect counting status of PMCn.

1 The signaling of a performance monitor interrupt prevents changing of PMC1
counter. The PMCn counter do not change if PMC2COUNTCTL = 0.

Because a time base signal could have occurred along with an enabled counter

overflow condition, software should always reset INTONBITTRANS to zero, if the value

in INTONBITTRANS was a one.

7-8

RTCSELECT

64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

INTONBITTRANS

Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on
0 Do not allow interrupt signal if chosen bit transitions.

1 Signal interrupt if chosen bit transitions.

Software is responsible for setting and clearing INTONBITTRANS.

10-15

THRESHOLD

Threshold value. The MPC750 supports all 6 bits, allowing threshold values from 0-63.
The intent of the THRESHOLD support is to characterize L1 data cache misses.

16

PMC1INTCONTROL

Enables interrupt signaling due to PMC1 counter overflow.
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow

17

PMCINTCONTROL

Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the
setting of DISCOUNT.

0 Disable PMC2—-PMC4 interrupt signaling due to PMC2—-PMC4 counter overflow.
1 Enable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow.

18

PMCTRIGGER

Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a

performance monitor interrupt is signaled.

0 Enable PMC2-PMC4 counting.

1 Disable PMC2-PMC4 counting until either PMC1[0] = 1 or a performance monitor
interrupt is signaled.

19-25

PMC1SELECT

PMCH1 input selector, 128 events selectable. See Table 2-10.

26-31

PMC2SELECT

PMC2 input selector, 64 events selectable. See Table 2-11.

MMCRO can be accessed with mtspr and mfspr using SPR 952.

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCRO)

The contents of MMCRO are reflected to UMMCRO, which can be read by user-level
software. MMCRO can be accessed with mfspr using SPR 936.

Chapter 2. MPC750 Processor Programming Model

2-15

2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1)

The monitor mode control register 1 (MMCRI1) functions as an event selector for
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCRI register
is shown in Figure 2-6.

| |Reserved

| PMC3SELECT PMC4SELECT |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 5 9 10 31

Figure 2-6. Monitor Mode Control Register 1 (MMCR1)

Bit settings for MMCRI1 are shown in Table 2-8. The corresponding events are described
in Section 2.1.2.4.5, “Performance Monitor Counter Registers (PMCI1-PMC4).”

Table 2-8. MMCR1 Bit Settings

Bits Name Description
04 PMC3SELECT | PMC3 input selector. 32 events selectable. See Table 2-12 for defined selections.
5-9 PMC4SELECT | PMC4 input selector. 32 events selectable. See Table 2-13 for defined selections.
10-31 — Reserved

MMCRI can be accessed with mtspr and mfspr using SPR 956. User-level software can
read the contents of MMCRI1 by issuing an mfspr instruction to UMMCRI, described in
Section 2.1.2.4.4, “User Monitor Mode Control Register 1 (UMMCR1).”

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1)

The contents of MMCR1 are reflected to UMMCRI, which can be read by user—level
software. MMCRI1 can be accessed with mfspr using SPR 940.

2.1.2.4.5 Performance Monitor Counter Registers (PMC1-PMC4)

PMC1-PMC4, shown in Figure 2-7, are 32-bit counters that can be programmed to
generate interrupt signals when they overflow.

| OV] Counter Value J
0 1 31

Figure 2-7. Performance Monitor Counter Registers (PMC1-PMC4)

The bits contained in the PMCn registers are described in Table 2-9.

2-16 MPC750 RISC Microprocessor User's Manual

Table 2-9. PMCn Bit Settings

Bits Name Description

0 ov Overflow. When this bit is set it indicates that this counter has reached its maximum value.

1-31 | Counter value | Indicates the number of occurrences of the specified event.

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that
is, they reach the value 2147483648 (0x8000_0000). However, an interrupt is not signaled
unless both PMCr[INTCONTROL] and MMCRO[ENINT] are also set.

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition
may occur with MSR[EE] cleared, but the exception is not taken until EE is set. Setting
MMCRO[DISCOUNT!] forces counters to stop counting when a counter interrupt occurs.

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software
sets an overflow value, an erroneous exception may occur. For example, if both
PMCnr[INTCONTROL] and MMCRO[ENINT] are set and mtspr loads an overflow value,
an interrupt signal may be generated without any event counting having taken place.

The event to be monitored can be chosen by setting MMCRO[0-9]. The selected events are
counted beginning when MMCRO is set until either MMCRO is reset or a performance
monitor interrupt is generated. Table 2-10 lists the selectable events and their encodings.

Table 2-10. PMC1 Events—MMCRO0[19-25] Select Encodings

Encoding Description

000 0000 | Register holds current value.

000 0001 | Number of processor cycles

000 0010 | Number of completed instructions. Does not include folded branches.

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRCO0[7-8]). 00 = 15, 01 = 19, 10 =23, 11 = 31

0000100 Number of instructions dispatched—0, 1, or 2 instructions per cycle

0000101 Number of eieio instructions completed

0000110 Number of cycles spent performing table search operations for the ITLB

0000111 Number of accesses that hit the L2

0001000 Number of valid instruction EAs delivered to the memory subsystem

0001001 Number of times the address of an instruction being completed matches the address in the IABR

0001010 Number of loads that miss the L1 with latencies that exceeded the threshold value

0001011 Number of branches that are unresolved when processed

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others | Reserved. May be used in a later revision.

Chapter 2. MPC750 Processor Programming Model 2-17

Bits MMCRO[26-31] specify events associated with PMC2, as shown in Table 2-11.

Table 2-11. PMC2 Events—MMCRO0[26-31] Select Encodings

Encoding Description

00 0000 Register holds current value.

00 0001 Number of processor cycles

000010 Number of completed instructions. Does not include folded branches.

000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 00 = 15, 01 = 19, 10 =23, 11 = 31.

00 0100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle

00 0101 Number of eieio instructions completed

000110 Number of cycles spent performing table search operations for the ITLB

00 0111 Number of accesses that hit the L2

00 1000 Number of valid instruction EAs delivered to the memory subsystem

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR

00 1010 Number of loads that miss the L1 and have latencies that exceeded the threshold value

00 1011 Number of branches that are unresolved when processed

00 1100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream

All others | Reserved. May be used in a later revision.

Bits MMCR1[0-4] specify events associated with PMC3, as shown in Table 2-12.

Table 2-12. PMC3 Events—MMCR1[0-4] Select Encodings

Encoding Description

0 0000 Register holds current value.

0 0001 Number of processor cycles

00010 Number of completed instructions, not including folded branches.

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 = 51,2 = 55, 3 = 63. ‘

00100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L1 data cache misses

00110 Number of DTLB misses

00111 Number of L2 data misses

0 1000 Number of taken branches, including predicted branches.

0 1001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in user mode.

01010 Number of store conditional instructions completed

2-18 MPC750 RISC Microprocessor User's Manual

Table 2-12. PMC3 Events—MMCR1[0-4] Select Encodings (Continued)

Encoding Description

01011 Number of instructions completed from the FPU

01100 Number of L2 castouts caused by snoops to modified lines

01101 Number of cache operations that hit in the L2 cache

01110 Reserved

01111 Number of cycles generated by L1 load misses

10000 Number of branches in the second speculative stream that resolve correctly
10001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies
All others Reserved. May be used in a later revision.

Bits MMCRI1[5-9] specify events associated with PMC4, as shown in Table 2-13.
Table 2-13. PMC4 Events—MNCR1[5-9] Select Encodings

Encoding Comments

00000 Register holds current value

00001 Number of processor cycles

00010 Number of completed instructions, not including folded branches

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified
through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63.

00100 Number of instructions dispatched. 0, 1, or 2 per cycle.

00101 Number of L2 castouts

00110 Number of cycles spent performing tables searches for DTLB accesses

00111 Reserved. May be used in a later revision.

01000 Number of mispredicted branches

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the
number of MSR[PM] toggles while the processor is in supervisor mode.

01010 Number of store conditional instructions completed with reservation intact

01011 Number of completed sync instructions

01100 Number of snoop request retries

01101 Number of completed integer operations

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches

All others | Reserved. May be used in a later revision.

Chapter 2. MPC750 Processor Programming Model 2-19

The PMC registers can be accessed with mtspr and mfspr using following SPR numbers:

* PMC1 is SPR 953
* PMC2 is SPR 954
* PMC3 is SPR 957
e PMC4is SPR 958

2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1-UPMC4)
The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by
user-level software. The UPMC registers can be read with mfspr using the following SPR
numbers:

¢ UPMCI1 is SPR 937

» UPMC2 is SPR 938

* UPMC3is SPR 941

* UPMC4 is SPR 942

2.1.2.4.7 Sampled Instruction Address Register (SIA)

The sampled instruction address register (SIA) is a supervisor-level register that contains
the effective address of an instruction executing at or around the time that the processor
signals the performance monitor interrupt condition. The SIA is shown in Figure 2-8.

Instruction Address

Figure 2-8. Sampled instruction Address Registers (SIA)

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the
exact instruction (called the sampled instruction) that caused the counter to overflow.

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. SIA can be
accessed with the mtspr and mfspr instructions using SPR 955.

2.1.2.4.8 User Sampled Instruction Address Register (USIA)

The contents of SIA are reflected to USIA, which can be read by user-level software. USIA
can be accessed with the mfspr instructions using SPR 939.

2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data
Address Register (USDA)

The MPC750 does not implement the sampled data address register (SDA) or the

user-level, read-only USDA registers. However, for compatibility with processors that do,

those registers can be written to by boot code without causing an exception. SDA is
SPR 959; USDA is SPR 943.

2-20 MPC750 RISC Microprocessor User's Manual

2.1.3 Instruction Cache Throttling Control Register (ICTC)

Reducing the rate of instruction fetching can control junction temperature without the
complexity and overhead of dynamic clock control. System software can control
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level
register shown in Figure 2-9. The overall junction temperature reduction comes from the
dynamic power management of each functional unit when the MPC750 is idle in between
instruction fetches. PLL (phase-locked loop) and DLL (delay-locked loop) configurations
are unchanged.

D Reserved
[0 0 00O0OOOOOOOO0OTO0COTO0OO0OO0OCO0O0OO0OTOUO ‘ Fl l E |
0 22 23 30 31

Figure 2-9. Instruction Cache Throttling Control Register (ICTC)

Table 2-14 describes the bit fields for the ICTC register.
Table 2-14. ICTC Bit Settings

Bits Name Description
0-22 — Reserved
23-30 | FI Instruction forwarding interval expressed in processor clocks.

0x00 0 clock cycle.
0x01 1 clock cycle

OxFF 255 clock cycles

31 E Cache throttling enable
0 Disable instruction cache throttling.
1 Enable instruction cache throttling.

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction
forwarding interval into ICTC[FI]. Enabling, disabling, and changing the instruction
forwarding interval affect instruction forwarding immediately.

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019.

2.1.4 Thermal Management Registers (THRM1-THRM3)

The on-chip thermal management assist unit provides the following functions:
 Compares the junction temperature against user programmed thresholds
¢ Generates a thermal management interrupt if the temperature crosses the threshold

* Provides a way for a successive approximation routine to estimate junction
temperature

Chapter 2. MPC750 Processor Programming Model 2-21

Control and access to the thermal management assist unit is through the privileged
mtspr/mfspr instructions to the three THRM registers. THRM1 and THRM2, shown in
Figure 2-10, provide the ability to compare the junction temperature against two
user-provided thresholds. Having dual thresholds allows thermal management software
differing degrees of action in reducing junction temperature. Thermal management can use
a single-threshold mode in which the thermal sensor output is compared to only one
threshold in either THRM1 or THRM2.

E] Reserved
|TIN‘TIV’ THRESHOLD E 9 0 0 000 0 300 00 000000 0momE vl
01 2 8 9 28 20 30 31

Figure 2-10. Thermal Management Registers 1-2 (THRM1-THRM2)
The bits in THRM1 and THRM?2 are described in Table 2-15.
Table 2-15. THRM1-THRM2 Bit Settings

Bits Field Description

0 TIN Thermal management interrupt bit. Read-only. This bit is set if the thermal sensor output crosses
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of
TIN is controlled by TID. See Table 2-16.

1 TV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to
indicate that the thermal management interrupt (TIN) state is valid. See Table 2-16.

2-8 | Threshold | Threshold that the thermal sensor output is compared to. The range is 0°—127° C, and each bit
represents 1° C. Note that this is not the resolution of the thermal sensor.

9-28 | — Reserved. System software should clear these bits when writing to the THRMn SPRs.

29 |TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to
set TIN and to assert a thermal management interrupt if TIE is set. If TID is cleared, TIN is set and
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16.

30 |TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the
MSRIEE] bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction
temperature vs. threshold comparison without causing an exception. This lets system software
successively approximate the junction temperature. See Table 2-16.

31 \ SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls

bits. THRM1/2[V] = 1 and THRM3[E] = 1 enables the thermal sensor operation. See Table 2-16.

If an mtspr affects a THRM register that contains operating parameters for an ongoing
comparison during operation of the thermal assist unit, the respective TIV bits are cleared
and the comparison is restarted. Changing THRM3 forces the TIV bits of both THRM1 and
THRM?2 to 0, and restarts the comparison if THRM3[E] is set.

2-22 MPC750 RISC Microprocessor User's Manual

Examples of valid THRM1/THRM?2 bit settings are shown in Table 2-16.
Table 2-16. Valid THRM1/THRM2 States

TN' [TV [TID|TIE| V Description

X X X X 0 | Invalid entry. The threshold in the SPR is not used for comparison.

X X X 0 1 | Disable thermal management interrupt assertion.

X X 0 X 1 | SetTIN and assert thermal management interrupt if TIE = 1 and the junction
temperature exceeds the threshold.

X X 1 X 1 | SetTIN and assert thermal management interrupt if TIE = 1 and the junction
temperature is less than the threshold.

X 0 X X 1 | The state of the TIN bit is not valid.

0 1 0 X 1 | The junction temperature is less than the threshold and as a result the thermal

management interrupt is not generated for TIE = 1.

1 1 0 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

0 1 1 X 1 | The junction temperature is greater than the threshold and as a result the thermal
management interrupt is not generated for TIE = 1.

1 1 1 X 1 | The junction temperature is less than the threshold and as a result the thermal
management interrupt is generated if TIE = 1.

Note:
TTIN and TIV are read-only status bits.

The THRM3 register, shown in Figure 2-11, is used to enable the thermal assist unit and to
control the comparator output sample time. The thermal assist logic manages the thermal
management interrupt generation and time-multiplexed comparisons in dual-threshold
mode as well as other control functions.

|:| Reserved
¢ 0000900505000 O0 0 000 00 Sampled Interval Timer Value l E |
0 17 18 30 31

Figure 2-11. Thermal Management Register 3 (THRM3)

Chapter 2. MPC750 Processor Programming Model 2-23

The bits in THRM3 are described in Table 2-17.
Table 2-17. THRM3 Bit Settings

Bits Name Description

0-17 — Reserved for future use. System software should clear these bits when writing to the THRM3.

18-30 | SITV | Sample interval timer value. Number of elapsed processor clock cycles before a junction
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator
settling time being greater than the processor cycle time. The value should be configured to allow
a sampling interval of 20 microseconds.

31 E Enables the thermal sensor compare operation if either THRM1[V] or THRM2[V] is set.

The THRM registers can be accessed with the mtspr and mfspr instructions using the
following SPR numbers:

* THRMI is SPR 1020

« THRM2 is SPR 1021

 THRM3 is SPR 1022

2.1.5 L2 Cache Control Register (L2CR)

The L2 cache control register, shown in Figure2-12, is a supervisor-level,
implementation-specific SPR used to configure and operate the L2 cache. It is cleared by a
hard reset or power-on reset.

LowT L2DF [] Reserved
L2PE LZDR LZCTL L2TS L2SL LZBYP L2iP

ILZT ‘ LZSIZ‘ LoCLK }LzRAM FiT I L2OH J ’ Iak 000 090 0000000
6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 3

Figure 2-12. L2 Cache Control Register (L2CR)

The L2 cache interface is described in Chapter 9, “L2 Cache Interface Operation.” The
L2CR bits are described in Table 2-18.

2-24 MPC750 RISC Microprocessor User's Manual

Table 2-18. L2CR Bit Settings

Bit

Name

Function

L2E

L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2
cache unit receives. Before enabling the L2 cache, the L2 clock must be configured through
L2CR[2CLK], and the L2 DLL must stabilize (see the hardware specifications). All other L2CR bits
must be set appropriately. The L2 cache may need to be invalidated globally.

L2PE

L2 data parity generation and checking enable. Enables parity generation and checking for the L2
data RAM interface. When disabled, generated parity is always zeros.

2-3

La2sIz

L2 size—Should be set according to the size of the L2 data RAMs used. A 256-Kbyte L2 cache
requires a data RAM configuration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache requires a
configuration of 64 Kbyte x 64 bits; a 1-Mbyte L2 cache requires a configuration of 128K x 64 bits.
00 Reserved

01 256 Kbyte

10 512 Kbyte

11 1 Mbyte

4-6

L2CLK

L2 clock ratio (core-to-L2 frequency divider). Specifies the clock divider ratio based from the core
clock frequency that the L2 data RAM interface is to operate at. When these bits are cleared, the L2
clock is stopped and the on-chip DLL for the L2 interface is disabled. For nonzero values, the
processor generates the L2 clock and the on-chip DLL is enabled. After the L2 clock ratio is chosen,
the DLL must stabilize before the L2 interface can be enabled. (See the hardware specifications). The
resulting L2 clock frequency cannot be slower than the clock frequency of the 60x bus interface.
000 L2 clock and DLL disabled

001 +1

010 +1.5

011 Reserved

100 <2

101 <25

110 =3

111 Reserved

7-8

L2RAM

L2 RAM type—Configures the L2 RAM interface for the type of synchronous SRAMs used:

+ Flow-through (register-buffer) synchronous burst SRAMs that clock addresses in and flow data out

« Pipelined (register-register) synchronous burst SRAMs that clock addresses in and clock data out

« Late-write synchronous SRAMs, for which the MPC750 requires a pipelined (register-register)
configuration. Late-write RAMSs require write data to be valid on the cycle after WE is asserted,
rather than on the same cycle as the write enable as with traditional burst RAMs.

For burst RAM selections, the MPC750 does not burst data into the L2 cache, it generates an address

for each access. Pipelined SRAMs may be used for all L2 clock modes. Note that flow-through

SRAMs can be used only for L2 clock modes divide-by-2 or slower (divide-by-1 and divide-by-1.5 not

allowed).

00 Flow-through (register-buffer) synchronous burst SRAM

01 Reserved

10 Pipelined (register-register) synchronous burst SRAM

11 Pipelined (register-register) synchronous late-write SRAM

L2DO

L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only
transactions from the L1 data cache can be cached in the L2 cache, which treats all transactions from
the L1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is
provided for L2 testing only.

10

L2l

L2 global invalidate. Setting L2 invalidates the L2 cache globally by clearing the L2 bits including
status bits. This bit must not be set while the L2 cache is enabled.

Chapter 2. MPC750 Processor Programming Model 2-25

Table 2-18. L2CR Bit Settings (Continued)

Bit

Name

Function

L2CTL

L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ (low-power
mode) signal for cache RAMs that support the ZZ function. While L2CTL is asserted, L2ZZ asserts
automatically when the MPC750 enters nap or sleep mode and negates automatically when the
MPC750 exits nap or sleep mode. This bit should not be set when the MPC750 is in nap mode and
snooping is to be performed through deassertion of QACK.

L2WT

L2 write-through. Setting L2ZWT selects write-through mode (rather than the default write-back mode)
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as
clean during normal operation.

L2TS

L2 test support. Setting L2TS causes cache block pushes from the L1 data cache that result from
dcbf and dcbst instructions to be written only into the L2 cache and marked valid, rather than being
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a
dcbz/dcbf instruction sequence to be used with the L1 cache enabled to easily initialize the L2 cache
with any address and data information. This bit also keeps dcbz instructions from being broadcast on
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus.

14-15

L20OH

L2 output hold. These bits configure output hold time for address, data, and control signals driven by
the MPC750 to the L2 data RAMs. They should generally be set according to the SRAM’s input hold
time requirements, for which late-write SRAMs usually differ from flow-through or burst SRAMs.

00 05nS

01 1.0nS

1x Reserved

L2SL

L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended to
increase the delay through the DLL to accommodate slower L2 RAM bus frequencies. Generally,
L2SL should be set if the L2 RAM interface is operated below 100 MHz.

L2DF

L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B clock is
driven as the logical complement of the A clock. This mode supports the differential clock
requirements of late-write SRAMs. Generally, this bit should be set when late-write SRAMs are used.

L2BYP

L2 DLL bypass. The DLL unit receives three input clocks:

+ A square-wave clock from the PLL unit to phase adjust and export

* A non-square-wave clock for the internal phase reference

+ Afeedback clock (L2SYNC_IN) for the external phase reference.

Asserting L2BYP causes clock #2 to be used as clocks #1 and #2. (Clock #2 is the actual clock used
by the registers of the L2 interface circuitry.) L2BYP is intended for use when the PLL is being
bypassed, and for engineering evaluation. If the PLL is being bypassed, the DLL must be operated in
divide-by-1 mode, and SYSCLK must be fast enough for the DLL to support.

19-30

Reserved. These bits are implemented but not used; keep at 0 for future compatibility.

31

L2IP

L2 global invalidate in progress (read only)—This read-only bit indicates whether an L2 global
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the
L2 bit to determine when it has completed.

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017.

2-26

MPC750 RISC Microprocessor User's Manual

2.1.6 Reset Settings

Table 2-19 shows the state of the registers and other resources after a hard reset and before
the first instruction is fetched from address OxFFF0O_0100 (the system reset exception

vector).
Table 2-19. Settings Caused by Hard Reset (Used at Power-On)

Resource Setting Resource Setting
BATs Undefined MSR 0x0000_0040 (only IP set)
Caches (L1/L2)* | Invalidated and disabled PMCn Undefined
CR Undefined PVR ROM value
CTR Undefined Reservation address | Undefined
DABR Breakpoint is disabled. Address is undefined. ||Reservation flag Cleared
DAR 0x0000_0000 SDR1 0x0000_0000
DEC OxFFFF_FFFF SIA 0x0000_0000
DSISR 0x0000_0000 SPRG0-SPGR3 0x0000_0000
EAR 0x0000_0000 SRs Undefined
FPR Undefined SRRO 0x0000_0000
FPSCR 0x0000_0000 SRR1 0x0000_0000
GPR Undefined TBU and TBL 0x0000_0000
HIDO 0x0000_0000 THRM1-THRM3 0x0000_0000
HID1 0x0000_0000 TLB Undefined
IABR 0x0000_0000 (Breakpoint is disabled.) UMMCRn 0x0000_0000
ICTC 0x0000_0000 UPMCn 0x0000_0000
L2CR 0x0000_0000 USIA 0x0000_0000
LR 0x0000_0000 XER 0x0000_0000
MMCRn 0x0000_0000

* The processor automatically begins operations by issuing an instruction fetch. Because caching is inhibited at

start-up, this generates a single-beat load operation on the bus.

Chapter 2. MPC750 Processor Programming Model

2-27

2.2 Operand Conventions

This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture—UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models—UISA

The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

The PowerPC UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.

* Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor. :

All PowerPC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

* Underflow during multiplication using a denormalized operand
* Overflow during division using a denormalized divisor

2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a

2-28 MPC750 RISC Microprocessor User's Manual

memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has an alignment boundary
equal to its length. An operand’s address is misaligned if is not a multiple of its width.
Operands for single-register memory access instructions have the characteristics shown in
Table 2-20. Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands.

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

The MPC750 does not provide hardware support for floating-point memory that is not
word-aligned. If a floating-point operand is not aligned, the MPC750 invokes an alignment
exception, and it is left up to software to break up the offending storage access operation
appropriately. In addition, some non-double-word-aligned memory accesses suffer
performance degradation as compared to an aligned access of the same type.

In general, floating-point word accesses should always be word-aligned and floating-point
double-word accesses should always be double-word-aligned. Frequent use of misaligned
accesses is discouraged since they can degrade overall performance.

2.2.4 Floating-Point Operand

The MPC750 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, “Operand
Conventions,” in The Programming Environments Manual.

The MPC750 supports non-IEEE mode whenever FPSCR[29] is set. In this mode,
denormalized numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE
conforming manner. This is accomplished by delivering results that approximate the values
required by the IEEE standard. Table 2-20 summarizes the conditions and mode behavior
for operands.

Chapter 2. MPC750 Processor Programming Model 2-29

Table 2-20. Floating-Point Operand Data Type Behavior

Operand A
Data Type

Operand B
Data Type

Operand C
Data Type

IEEE Mode
(NI =0)

Non-IEEE Mode
(NI=1)

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Single denormalized
Double denormalized

Normalize all three

Zero all three

Single denormalized Single denormalized Normalized or zero Normalize Aand B | Zero Aand B
Double denormalized | Double denormalized
Normalized or zero Single denormalized Single denormalized Normalize Band C | ZeroBand C
Double denormalized | Double denormalized
Single denormalized | Normalized or zero Single denormalized | Normalize AandC | Zero Aand C
Double denormalized Double denormalized
Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized
Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized
Normalized or zero Normalized or zero Single denormalized Normalize C Zero C
Double denormalized
Single QNaN Don't care Don't care QNaN' QNaN'
Single SNaN
Double QNaN
Double SNaN
Don't care Single QNaN Don't care QNaN' QNaN'
Single SNaN
Double QNaN
Double SNaN
Don't care Don't care Single QNaN QNaN’ QNaN'
Single SNaN
Double QNaN
Double SNaN
Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

Double normalized
Double infinity
Double zero

1 Prioritize according to Chapter 3, “Operand Conventions,” in The Programming Environments Manual.

2-30

MPC750 RISC Microprocessor User's Manual

Table 2-21 summarizes the mode behavior for results.

Table 2-21. Floating-Point Result Data Type Behavior

Precision Data Type |IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1)
Single Denormalized Return single-precision denormalized number | Return zero.
with trailing zeros.
Single Normalized, Return the result. Return the result.
infinity, zero
Single QNaN, SNaN Return QNaN. Return QNaN.
Single INT Place integer into low word of FPR. If (Invalid Operation)
then
Place (0x8000) into FPR[32-63]
else
Place integer into FPR[32-63].
Double Denormalized Return double-precision denormalized number. | Return zero.
Double Normalized, Return the result. Return the result.
infinity, zero
Double QNaN, SNaN Return QNaN. Return QNaN.
Double INT Not supported by MPC750 Not supported by MPC750

2.3 Instruction Set Summary

This chapter describes instructions and addressing modes defined for the MPC750. These

instructions are divided into the following functional categories:

* Integer instructions—These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, “Integer Instructions.”

* Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, “Floating-Point Instructions.”

* Load and store instructions—These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, “Load and Store
Instructions.”

» Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, “Branch and Flow
Control Instructions.”

* Processor control instructions—These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, ‘“Processor Control Instructions—UISA,”
Section 2.3.5.1, “Processor Control Instructions—VEA,” and Section 2.3.6.2,
“Processor Control Instructions—OEA.”

Chapter 2. MPC750 Processor Programming Model

2-31

* Memory synchronization instructions—These instructions are used for memory
synchronizing. See Section 2.3.4.7, “Memory Synchronization
Instructions—UISA,” Section 2.3.5.2, “Memory Synchronization
Instructions—VEA,” for more information.

* Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, “Memory Control
Instructions—VEA,” and Section 2.3.6.3, “Memory Control Instructions—OEA.”

e External control instructions—These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, “Optional External
Control Instructions.”

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
for scheduling instructions most effectively, is provided in Chapter 6, “Instruction Timing.”

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
and word operand loads and stores between memory and a set of 32 general-purpose
registers (GPRs). It also provides for word and double-word operand loads and stores
between memory and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual for a complete list of simplified
mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions

The MPC750 instructions belong to one of the following three classes:
* Defined
e Tllegal
¢ Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, PowerPC

2-32 , MPC750 RISC Microprocessor User's Manual

instructions defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the MPC750.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly-undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class

Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, “Instruction Set,” in The
Programming Environments Manual. The MPC750 provides hardware support for all
instructions defined for 32-bit implementations. It does not support the optional fsqrt,
fsqrts, and tlbia instructions.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

A defined instruction can have invalid forms. The MPC750 provides limited support for
instructions represented in an invalid form.

2.3.1.3 lllegal Instruction Class
Illegal instructions can be grouped into the following categories:

* Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

1,4,5,6,9,22, 56,57, 60, 61

Future versions of the PowerPC architecture may define any of these instructions to
perform new functions.

Chapter 2. MPC750 Processor Programming Model 2-33

* Instructions defined in the PowerPC architecture but not implemented in a specific
PowerPC implementation. For example, instructions that can be executed on 64-bit
PowerPC processors are considered illegal by 32-bit processors such as the
MPC750.

The following primary opcodes are defined for 64-bit implementations only and are
illegal on the MPC750:

2,30, 58, 62

* All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, “Instructions Sorted by Opcode,” and
Section 2.3.1.4, “Reserved Instruction Class.” Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17,19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* Aninstruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction erior handler (a program exception). Note that
if only the primary opcode consists of all zeros, the instruction is considered a
reserved instruction, as described in Section 2.3.1.4, “Reserved Instruction Class.”

The MPC750 invokes the system illegal instruction error handler (a program exception)
when it detects any instruction from this class or any instructions defined only for 64-bit
implementations.

See Section 4.5.7, “Program Exception (0x00700),” for additional information about illegal
and invalid instruction exceptions. Except for an instruction consisting of binary zeros,
illegal instructions are available for additions to the PowerPC architecture.

2.3.1.4 Reserved Instruction Class

Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. Attempting to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
“Program Exception (0x00700),” in Chapter 6, “Exceptions,” in The Programming
Environments Manual for information about illegal and invalid instruction exceptions.

The PowerPC architecture defines four types of reserved instructions:

* Instructions in the POWER architecture not part of the PowerPC UISA. For details
on POWER architecture incompatibilities and how they are handled by PowerPC
processors, see Appendix B, “POWER Architecture Cross Reference,” in The
Programming Environments Manual.

* Implementation-specific instructions required for the processor to conform to the
PowerPC architecture (none of these are implemented in the MPC750)

2-34 MPC750 RISC Microprocessor User's Manual

e All other implementation-specific instructions

* Architecturally-allowed extended opcodes

2.3.2 Addressing Modes

This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 32-bit
implementations. For more detailed information, see “Conventions,” in Chapter 4,
“Addressing Modes and Instruction Set Summary,” of The Programming Environments
Manual.

2.3.2.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.
See “Byte Ordering,” in Chapter 3, “Operand Conventions,” of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, “Operand Conventions,” of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address O, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O is ignored.

Chapter 2. MPC750 Processor Programming Model 2-35

Load and store operations have the following modes of effective address generation:

* EA = (rAl0) + offset (including offset = 0) (register indirect with immediate index)
¢ EA = (rAl0) + rB (register indirect with index)

Refer to Section 2.3.4.3.2, “Integer Load and Store Address Generation,” for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

* Immediate
* Link register indirect
* Count register indirect

2.3.2.4 Synchronization

The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

2.3.2.4.1 Context Synchronization

The System Call (sc¢) and Return from Interrupt (rfi) instructions perform context
synchronization by allowing previously issued instructions to complete before performing
a change in context. Execution of one of these instructions ensures the following:

* No higher priority exception exists (sc).
* All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error

exceptions, the results are guaranteed to be determined before this instruction is
executed.

* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

* The instructions following the sc or rfi instruction execute in the context established
by these instructions.

2.3.2.4.2 Execution Synchronization

An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr)
instruction is execution synchronizing. It ensures that all preceding instructions have
completed execution and cannot cause an exception before the instruction executes, but
does not ensure subsequent instructions execute in the newly established environment. For
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the
mtmsr instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2-36 MPC750 RISC Microprocessor User's Manual

2.3.2.4.3 Instruction-Related Exceptions

There are two kinds of exceptions in the MPC750—those caused directly by the execution
of an instruction and those caused by an asynchronous event (or interrupts). Either may
cause components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The MPC750 provides the following
supervisor-level instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rfi, tlbie, and tlbsync. Note that the privilege level of the mfspr and
mtspr instructions depends on the SPR encoding.

* Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes
an illegal type program exception. Likewise, a program exception is taken if
user-level software tries to access a supervisor-level SPR. An mtspr instruction
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying HID1
or PVR (read-only registers) executes as a no-op.

* An attempt to access memory that is not available (page fault) causes the ISI or DSI
exception handler to be invoked.

* The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

* The execution of a trap instruction invokes the program exception trap handler.

* The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

A detailed description of exception conditions is provided in Chapter 4, “Exceptions.”

2.3.3 Instruction Set Overview

This section provides a brief overview of the PowerPC instructions implemented in the
MPC750 and highlights any special information with respect to how the MPC750
implements a particular instruction. Note that the categories used in this section correspond
to those used in Chapter 4, “Addressing Modes and Instruction Set Summary,” in The
Programming Environments Manual. These categorizations are somewhat arbitrary and are
provided for the convenience of the programmer and do not necessarily reflect the PowerPC
architecture specification.

Note that some instructions have the following optional features:

* CR Update—The dot (.) suffix on the mnemonic enables the update of the CR.
* Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

Chapter 2. MPC750 Processor Programming Model 2-37

2.3.4 PowerPC UISA Instructions

The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

* Integer arithmetic instructions

» Integer compare instructions

» Integer logical instructions

* Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register (CR) fields.

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-22 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-22. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add Immediate addi rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add . ‘ add (add. addo addo.) rD,rA,rB
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Subtract from Immediate Carrying subfic rD,rA,SIMM
Add Carrying addc (addc. addco addco.) rD,rA,rB
Subtract from Carrying : subfc (subfc. subfco subfco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA
Negate neg (neg. nego nego.) rD,rA
Multiply Low Immediate mulli rD,rA,SIMM

2-38 MPC750 RISC Microprocessor User's Manual

Table 2-22. Integer Arithmetic Instructions (Continued)

Name Mnemonic Syntax
Multiply Low mullw (mullw. mullwo muliwo.) rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for examples.

The UISA states that an implementation that executes instructions that set the overflow
enable bit (OE) or the carry bit (CA) may either execute these instructions slowly or prevent
execution of the subsequent instruction until the operation completes. Chapter 6,
“Instruction Timing,” describes how the MPC750 handles CR dependencies. The summary
overflow bit (SO) and overflow bit (OV) in the integer exception register are set to reflect
an overflow condition of a 32-bit result. This can happen only when OE = 1.

2.3.4.1.2 Integer Compare Instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-23
summarizes the integer compare instructions.

Table 2-23. Integer Compare Instructions

Name Mnemonic Syntax
Compare Immediate cmpi crfD,L,rA,SIMM
Compare cmp crfD,L,rA,rB
Compare Logical Immediate cmpli crfD,L,rA,UIMM
Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in crfD, using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual.

Chapter 2. MPC750 Processor Programming Model 2-39

2.3.4.1.3 Integer Logical Instructions

The logical instructions shown in Table 2-24 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for

simplified mnemonic examples for integer logical operations.

Table 2-24. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND Immediate andi. rA,rS,UIMM | —

AND Immediate Shifted andis. rA,rS,UIMM [—

OR Immediate ori rA,rS,UIMM | The PowerPC architecture defines ori r0,r0,0 as the
preferred form for the no-op instruction. The dispatcher
discards this instruction (except for pending trace or
breakpoint exceptions).

OR Immediate Shifted oris rA,rS,UIMM | —

XOR Immediate xori rA,rS,UIMM | —

XOR Immediate Shifted xoris rA,rS,UIMM | —

AND and (and.) rA,rS,rB —

OR or (or.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

Equivalent eqv (eqv.) rA,rS,rB —_

AND with Complement andc (andc.) rA,rS,rB —

OR with Complement orc (orc.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) |[rA,rS —

Extend Sign Half Word extsh (extsh.) [rA,rS —

Count Leading Zeros Word | cntlzw (cntlzw.) | rA,rS —

2.3.4.1.4 Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

2-40 MPC750 RISC Microprocessor User's Manual

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

The integer rotate instructions are summarized in Table 2-25.

Table 2-25. Integer Rotate Instructions

Name Mnemonic Syntax
Rotate Left Word Immediate then AND with Mask riwinm (riwinm.) rA,rS,SH,MB,ME
Rotate Left Word then AND with Mask riwnm (rlwnm.) rA,rS,rB,MB,ME
Rotate Left Word Immediate then Mask Insert riwimi (riwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, “Simplified
Mnemonics,” in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, “Multiple-Precision
Shifts,” in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-26.

Table 2-26. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word Srw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

¢ Floating-point arithmetic instructions

* Floating-point multiply-add instructions

* Floating-point rounding and conversion instructions
* Floating-point compare instructions

e Floating-point status and control register instructions
* Floating-point move instructions

Chapter 2. MPC750 Processor Programming Model 2-41

See Section 2.3.4.3, “Load and Store Instructions,” for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
FPSCR[NI].

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-27.

Table 2-27. Floating-Point Arithmetic Instructions

Name Mnemonic Syntax
Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frAfrB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frAfrC
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate ! | frsqrte (frsqrte.) frD,frB
Floating Select ! fsel frD,frA frC,frB

'The fsel instruction is optional in the PowerPC architecture.

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision
operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-28.

Table 2-28. Floating-Point Multiply-Add Instructions

Name Mnemonic Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

2-42 MPC750 RISC Microprocessor User's Manual

Table 2-28. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Syntax
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) | frD,frAfrC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) | frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number. :

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, “Floating-Point Models,” in The Programming Environments Manual.

Table 2-29. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Syntax
Floating Round to Single frsp (frsp.) frD,frB
Floating Convert to Integer Word fetiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round toward Zero | fctiwz (fctiwz.) frD,frB

2.3.4.2.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +0 = —0). The floating-point compare
instructions are summarized in Table 2-30.

Table 2-30. Floating-Point Compare Instructions

Name Mnemonic Syntax
Floating Compare Unordered fempu crfD,frA,frB
Floating Compare Ordered fempo crfD,frA,frB

Chapter 2. MPC750 Processor Programming Model 2-43

The PowerPC architecture allows an fcmpu or fempo instruction with the Re bit set to
produce a boundedly-undefined result, which may include an illegal instruction program
exception. In the MPC750, crfD should be treated as undefined

2.3.4.2.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-31.

Table 2-31. Floating-Point Status and Control Register Instructions

Name Mnemonic Syntax
Move from FPSCR mffs (mffs.) frD
Move to Condition Register from FPSCR | mcrfs crfD,crfS
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) | crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) | crbD

Implementation Note—The PowerPC architecture states that in some implementations,
the Move to FPSCR Fields (mtfsf) instruction may perform more slowly when only some
of the fields are updated as opposed to all of the fields. In the MPC750, there is no
degradation of performance.

2.3.4.2.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CR1. Table 2-32 summarizes the floating-point
move instructions.

Table 2-32. Floating-Point Move Instructions

Name Mnemonic Syntax
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Absolute Value fabs (fabs.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2-44

MPC750 RISC Microprocessor User's Manual

2.3.4.3 Load and Store Instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

¢ Integer load instructions

¢ Integer store instructions

* Integer load and store with byte-reverse instructions
¢ Integer load and store multiple instructions

* Floating-point load instructions

* Floating-point store instructions

* Memory synchronization instructions

Implementation Notes—The following describes how the MPC750 handles
misalignment:

The MPC750 provides hardware support for misaligned memory accesses. It performs
those accesses within a single cycle if the operand lies within a double-word boundary.
Misaligned memory accesses that cross a double-word boundary degrade performance.

For string operations, the hardware makes no attempt to combine register values to reduce
the number of discrete accesses. Combining stores enhances performance if store gathering
is enabled and the accesses meet the criteria described in Section 6.4.7, “Integer Store
Gathering.” Note that the PowerPC architecture requires load/store multiple instruction
accesses to be aligned. At a minimum, additional cache access cycles are required.

Although many unaligned memory accesses are supported in hardware, the frequent use of
them is discouraged since they can compromise the overall performance of the processor.

Accesses that cross a translation boundary may be restarted. That is, a misaligned access
that crosses a page boundary is completely restarted if the second portion of the access
causes a page fault. This may cause the first access to be repeated.

On some processors, such as the 603, a TLB reload would cause an instruction restart. On
the MPC750, TLB reloads are done transparently and only a page fault causes a restart.

2.3.4.3.1 Self-Modifying Code

When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst lupdate memory

sync Iwait for update

icbi Iremove (invalidate) copy in instruction cache
isync Iremove copy in own instruction buffer

Chapter 2. MPC750 Processor Programming Model 2-45

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, “Cache Model
and Memory Coherency,” in The Programming Environments Manual. Because the
MPC750 does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.5.6, “Alignment Exception
(0x00600),” for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions

For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if
rA # 0 and rA # rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand rA = 0 or
rA =rD as invalid forms.

Implementation Notes—The following notes describe the MPC750 implementation of
integer load instructions:

e The PowerPC architecture cautions programmers that some implementations of the
architecture may execute the load half algebraic (lha, lhax) instructions with greater
latency than other types of load instructions. This is not the case for the MPC750;
these instructions operate with the same latency as other load instructions.

e The PowerPC architecture cautions programmers that some implementations of the
architecture may run the load/store byte-reverse (lhbrx, lbrx, sthbrx, stwbrx)
instructions with greater latency than other types of load/store instructions. This is
not the case for the MPC750. These instructions operate with the same latency as the
other load/store instructions.

e The PowerPC architecture describes some preferred instruction forms for load and
store multiple instructions and integer move assist instructions that may perform
better than other forms in some implementations. None of these preferred forms
affect instruction performance on the MPC750.

2-46 MPC750 RISC Microprocessor User's Manual

* The PowerPC architecture defines the Iwarx and stwex. as a way to update memory
atomically. In the MPC750, reservations are made on behalf of aligned 32-byte
sections of the memory address space. Executing Iwarx and stwex. to a page marked
write-through does not cause a DSI exception if the W bit is set, but as with other
memory accesses, DSI exceptions can result for other reasons such as a protection
violations or page faults.

* In general, because stwex. always causes an external bus transaction it has slightly
worse performance characteristics than normal store operations.

Table 2-33 summarizes the integer load instructions.

Table 2-33. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero lbz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed | lhzux rD,rA,rB
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rA,rB
Load Half Word Algebraic with Update lhau rD,d(rA)
Load Half Word Algebraic with Update Indexed | lhaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions

For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

o IfrA #0, the effective address is placed into rA.

» IfrS=rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

Chapter 2. MPC750 Processor Programming Model 2-47

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-34
summarizes the integer store instructions.

Table 2-34. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed | stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

2.3.4.3.5 Integer Store Gathering

The MPC750 performs store gathering for write-through accesses to nonguarded space or
to cache-inhibited stores to nonguarded space if the stores are 4 bytes and they are
word-aligned. These stores are combined in the load/store unit (LSU) to form a double
word and are sent out on the 60x bus as a single-beat operation. However, stores can be
gathered only if the successive stores that meet the criteria are queued and pending. Store
gathering takes place regardless of the address order of the stores. The store gathering
feature is enabled by setting HIDO[SGE]. Store gathering is done for both big- and
little-endian modes.

Store gathering is not done for the following:

* Cacheable stores

» Stores to guarded cache-inhibited or write-through space
* Byte-reverse store

* stwcx. and ecowx accesses

* Floating-point stores

* Store operations attempted during a hardware table search

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

2-48 MPC750 RISC Microprocessor User's Manual

2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions

Table 2-35 describes integer load and store with byte-reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see “Byte Ordering,” in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

Table 2-35. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,IB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,1B

2.3.4.3.7 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes—The following describes the MPC750 implementation of the
load/store multiple instruction:

» For load/store string operations, the hardware does not combine register values to
reduce the number of discrete accesses. However, if store gathering is enabled and
the accesses fall under the criteria for store gathering the stores may be combined to
enhance performance. At a minimum, additional cache access cycles are required.

¢ The MPC750 supports misaligned, single-register load and store accesses in
little-endian mode without causing an alignment exception. However, execution of
misaligned load/store multiple/string operations causes an alignment exception.

The PowerPC architecture defines the load multiple word (Imw) instruction with rA in the
range of registers to be loaded as an invalid form.

Table 2-36. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word | Imw rD,d(rA)
Store Multiple Word | stmw rS,d(rA)

Chapter 2. MPC750 Processor Programming Model 2-49

2.3.4.3.8 Integer Load and Store String Instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 2-37
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction invokes the alignment error handler; see “Byte Ordering,” in The
Programming Environments Manual for more information.

Table 2-37. Integer Load and Store String Instructions

Name Mnemonic Syntax
Load String Word Immediate | Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate | stswi rS,rA,NB
Store String Word Indexed stswx IS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.5.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.
A non-word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Implementation Note—The following describes the MPC750 implementation of
load/store string instructions:

* For load/store string operations, the hardware does not combine register values to
reduce the number of discrete accesses. However, if store gathering is enabled and
the accesses fall under the criteria for store gathering the stores may be combined to
enhance performance. At a minimum, additional cache access cycles are required.

* The MPC750 supports misaligned, single-register load and store accesses in
little-endian mode without causing an alignment exception. However, execution of
misaligned load/store multiple/string operations cause an alighment exception.

2-50 MPC750 RISC Microprocessor User's Manual

2.3.4.3.9 Floating-Point Load and Store Address Generation

Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction—single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading an operand into an FPR.

Implementation Notes—The MPC750 treats exceptions as follows:

¢ The FPU can be run in two different modes—ignore exceptions mode (MSR[FEQ] =
MSRI[FE1] = 0) and precise mode (any other settings for MSR[FEOQ,FE1]). For the
MPC750, ignore exceptions mode allows floating-point instructions to complete
earlier and thus may provide better performance than precise mode.

* The floating-point load and store indexed instructions (Ifsx, Ifsux, lifdx, Ifdux, stfsx,
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the MPC750, executing
one of these invalid instruction forms causes CRO to be set to an undefined value.

The PowerPC architecture defines a load with update instruction with rA = 0 as an invalid
form. Table 2-38 summarizes the floating-point load instructions.

Table 2-38. Floating-Point Load Instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

2.3.4.3.10 Floating-Point Store Instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-39 summarizes the floating-point store instructions.

Chapter 2. MPC750 Processor Programming Model 2-51

Table 2-39. Floating-Point Store Instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS;rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rB
Store Floating-Point as Integer Word Indexed ' stfiwx frS,rB

The stfiwx instruction is optional to the PowerPC architecture.

Some floating-point store instructions require conversions in the LSU. Table 2-40 shows
conversions the LSU makes when executing a Store Floating-Point Single instruction.

Table 2-40. Store Floating-Point Single Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized If(exp < 896)
then Denormalize and Store
else
Store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

MPC750 RISC Microprocessor User's Manual

Table 2-41 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-41. Store Floating-Point Double Behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and Store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the MPC750. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization. The MPC750 supports this
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock
cycles are required to complete the denormalization, depending upon the value to be stored.

Because of how floating-point numbers are implemented in the MPC750, there is also a
case when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction
can require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction. In these cases, shifting the
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These
cycles are incurred during the store.

2.3.4.4 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Chapter 2. MPC750 Processor Programming Model 2-53

Branch instructions compute the EA of the next instruction address using the following
addressing modes:

¢ Branch relative

¢ Branch conditional to relative address
* Branch to absolute address

¢ Branch conditional to absolute address
¢ Branch conditional to link register

¢ Branch conditional to count register

Note that in the MPC750, all branch instructions (b, ba, bl, bla, be, bea, bel, bcla, bclr,
belrl, becetr, beetrl) and condition register logical instructions (crand, cror, crxor,
crnand, crnor, crandc, creqv, crorc, and mcrf) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the MPC750 flush
speculatively executed instructions and restore the machine state to immediately after the
branch. This correction can be done immediately upon resolution of the condition registers
bits.

2.3.4.4.2 Branch Instructions

Table 2-42 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-42. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bc (bca bcl bcla) BO,Bl target_addr
Branch Conditional to Link Register belr (belrl) BO,BI
Branch Conditional to Count Register becetr (bcctrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 2-43, and the Move Condition
Register Field (merf) instruction are also defined as flow control instructions.

Table 2-43. Condition Register Logical Instructions

Name Mnemonic Syntax
Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB

2-54 MPC750 RISC Microprocessor User's Manual

Table 2-43. Condition Register Logical Instructions (Continued)

Name Mnemonic Syntax
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA, crbB
Condition Register AND with Complement crandc crbD,crbA, crbB
Condition Register OR with Complement crorc crbD,crbA, crbB
Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions

The trap instructions shown in Table 2-44 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap type
program exception is taken. For more information, see Section 4.5.7, “Program Exception
(0x00700).” If the tested conditions are not met, instruction execution continues normally.

Table 2-44. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB

See Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction—UISA

The System Call (sc) instruction permits a program to call on the system to perform a
service; see Table 2-45. See also Section 2.3.6.1, “System Linkage Instructions—OEA,”
for additional information.

Table 2-45. System Linkage Instruction—UISA

Name Mnemonic Syntax

scC

System Call

Executing this instruction causes the system call exception handler to be evoked. For more
information, see Section 4.5.10, “System Call Exception (0x00C00).”

Chapter 2. MPC750 Processor Programming Model 2-55

2.3.4.6 Processor Control Instructions—UISA

Processor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5.1, “Processor Control Instructions—VEA,” for the mftb instruction and
Section 2.3.6.2, “Processor Control Instructions—OEA,” for information about the
instructions used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-46 summarizes the instructions for reading from or writing to the condition register.

Table 2-46. Move to/from Condition Register Instructions

Name Mnemonic Syntax
Move to Condition Register Fields mtcrf CRM,rS
Move to Condition Register from XER | merxr crfD
Move from Condition Register mfcr D

Implementation Note—The PowerPC architecture indicates that in some implementations
the Move to Condition Register Fields (mtcrf) instruction may perform more slowly when
only a portion of the fields are updated as opposed to all of the fields. The condition register
access latency for the MPC750 is the same in both cases.

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA)
Table 2-47 lists the mtspr and mfspr instructions.

Table 2-47. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,rS
Move from Special-Purpose Register mfspr rD,SPR

Table 2-48 lists the SPR numbers for both user- and supervisor-level accesses.

Table 2-48. PowerPC Encodings

SPR!
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
CTR 9 00000 01001 User (UISA) Both
DABR 1013 . 11111 10101 Supervisor (OEA) | Both
DAR 19 00000 10011 Supervisor (OEA) | Both
DBATOL 537 10000 11001 Supervisor (OEA) | Both
DBATOU 536 10000 11000 Supervisor (OEA) | Both
DBAT1L 539 10000 11011 Supervisor (OEA) | Both

2-56 MPC750 RISC Microprocessor User's Manual

Table 2-48. PowerPC Encodings (Continued)

SPR!
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

DBAT1U 538 10000 11010 Supervisor (OEA) | Both
DBAT2L 541 10000 11101 Supervisor (OEA) | Both
DBAT2U 540 10000 11100 Supervisor (OEA) | Both
DBAT3L 543 10000 11111 Supervisor (OEA) | Both
DBAT3U 542 10000 11110 Supervisor (OEA) | Both
DEC 22 00000 10110 Supervisor (OEA) | Both
DSISR 18 00000 10010 Supervisor (OEA) [Both
EAR 282 01000 11010 Supervisor (OEA) [Both
IBATOL 529 10000 10001 Supervisor (OEA) | Both
IBATOU 528 10000 10000 Supervisor (OEA) | Both
IBAT1L 531 10000 10011 Supervisor (OEA) | Both
IBAT1U 530 10000 10010 Supervisor (OEA) | Both
IBAT2L 533 10000 10101 Supervisor (OEA) | Both
IBAT2U 532 10000 10100 Supervisor (OEA) { Both
IBAT3L 535 10000 10111 Supervisor (OEA) | Both
IBAT3U 534 10000 10110 Supervisor (OEA) | Both
LR 8 00000 01000 User (UISA) Both
PVR 287 01000 11111 Supervisor (OEA) | mfspr
SDR1 25 00000 11001 Supervisor (OEA) | Both
SPRGO 272 01000 10000 Supervisor (OEA) | Both
SPRG1 273 01000 10001 Supervisor (OEA) | Both
SPRG2 274 01000 10010 Supervisor (OEA) | Both
SPRG3 275 01000 10011 Supervisor (OEA) | Both
SRRO 26 00000 11010 Supervisor (OEA) | Both
SRR1 27 00000 11011 Supervisor (OEA) | Both
TBL?2 268 01000 01100 Supervisor (OEA) | mtspr

284 01000 11100 Supervisor (OEA) | mtspr
TBU 2 269 01000 01101 Supervisor (OEA) | mtspr

285 01000 11101 Supervisor (OEA) mtspr

Chapter 2. MPC750 Processor Programming Model 2-57

Table 2-48. PowerPC Encodings (Continued)

SPR!
Register Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]
XER 1 00000 00001 User (UISA) Both
Notes:

" The order of the two 5-bit halves of the SPR number is reversed compared with actual .
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the instruction. The number
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five
bits appearing in bits 16—20 of the instruction and the low-order five bits in bits 11-15.

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read
in user mode using either the mftb or mtspr instruction and specifying TBR 268 for TBL and
SPR 269 for TBU.

Encodings for the MPC750-specific SPRs are listed in Table 2-49.

Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr)

Register SPR1
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

DABR 1013 11111 10101 User Both
HIDO 1008 11111 10000 Supervisor Both
HID1 1009 11111 10001 Supervisor Both
IABR 1010 11111 10010 Supervisor Both
ICTC 1019 11111 11011 Supervisor Both
L2CR 1017 11111 11001 Supervisor Both
MMCRO 952 11101 11000 Supervisor Both
MMCR1 956 11101 11100 Supervisor Both
PMC1 953 11101 11001 Supervisor Both
PMC2 954 11101 11010 Supervisor Both
PMC3 957 1 11101 11101 Supervisor Both
PMC4 958 11101 11110 Supervisor Both
SIA 955 11101 11011 Supervisor Both
THRM1 1020 11111 11100 Supervisor Both
THRM2 1021 11111 11101 Supervisor Both
THRM3 1022 11111 11110 Supervisor Both
UMMCRO 936 11101 01000 User mfspr
2-58 MPC750 RISC Microprocessor User's Manual

Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr) (Continued)

Register SPR1
Name Access mfspr/mtspr
Decimal spr[5-9] spr[0-4]

UMMCR1 940 11101 01100 User mfspr
UPMC1 937 11101 01001 User mfspr
UPMC2 938 11101 01010 User mfspr
UPMC3 941 11101 01101 User mfspr
UPMC4 942 11101 01110 User mfspr
USIA 939 11101 01011 User mfspr

Note:

"Note that the order of the two 5-bit haives of the SPR number is reversed compared with actual
instruction coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in bits
16-20 of the instruction and the low-order 5 bits in bits 11—15.

2.3.4.7 Memory Synchronization Instructions—UISA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L1 Instruction
and Data Cache Operation,” for additional information about these instructions and about
related aspects of memory synchronization. See Table 2-50 for a summary.

Table 2-50. Memory Synchronization Instructions—UISA

Name Mnemonic | Syntax Implementation Notes

Load Word | lwarx rD,rA,rB | Programmers can use Iwarx with stwex. to emulate common semaphore

and Reserve operations such as test and set, compare and swap, exchange memory, and

Indexed fetch and add. Both instructions must use the same EA. Reservation
granularity is implementation-dependent. The MPC750 makes reservations on

Store Word | stwex. rS,FAYB | behalf of aligned 32-byte sections of the memory address space. If the W bit is

Conditional set, executing Iwarx and stwcx. to a page marked write-through does not

Indexed cause a DSI exception, but DSI exceptions can result for other reasons. If the

location is not word-aligned, an alignment exception occurs.

The stwex. instruction is the only load/store instruction with a valid form if Rcis
set. If Rc is zero, executing stwex. sets CRO to an undefined value. In general,
stwex. always causes a transaction on the external bus and thus operates with
slightly worse performance characteristics than normal store operations.

Chapter 2. MPC750 Processor Programming Model 2-59

Table 2-50. Memory Synchronization Instructions—UISA (Continued)

Name Mnemonic | Syntax Implementation Notes

Synchronize |sync — Because it delays subsequent instructions until all previous instructions
complete to where they cannot cause an exception, sync is a barrier against
store gathering. Additionally, all load/store cache/bus activities initiated by prior
instructions are completed. Touch load operations (dcbt, dcbtst) must
complete address translation, but need not complete on the bus. If HIDO[ABE]
=1, sync completes after a successful broadcast.

The latency of sync depends on the processor state when it is dispatched and
on various system-level situations. Therefore, frequent use of sync may
degrade performance.

System designs with an L2 cache should take special care to recognize the hardware
signaling caused by a SYNC bus operation and perform the appropriate actions to
guarantee that memory references that may be queued internally to the L2 cache have been
performed globally.

See 2.3.5.2, “Memory Synchronization Instructions—VEA,” for details about additional
memory synchronization (eieio and isync) instructions.

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions.
If R is set, the instruction form is invalid for sync and lwarx instructions. If the MPC750
encounters one of these invalid instruction forms, it sets CRO to an undefined value.

2.3.5 PowerPC VEA Instructions

The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions—VEA

In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, “L1 Instruction and Data Cache Operation,” for more information.
Table 2-51 shows the mftb instruction.

Table 2-51. Move from Time Base Instruction

Name Mnemonic . Syntax

Move from Time Base mftb rD, TBR

2-60 MPC750 RISC Microprocessor User's Manual

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, “Simplified Mnemonics,” in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form. Note that the MPC750
ignores the extended opcode differences between mftb and mfspr by ignoring bit 25 and
treating both instructions identically.

Implementation Notes—The following information is useful with respect to using the
time base implementation in the MPC750:

* The MPC750 allows user-mode read access to the time base counter through the use
of the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 32-bit PowerPC implementation, the MPC750 can access TBU
and TBL only separately, whereas 64-bit implementations can access the entire TB
register at once.

* The time base counter is clocked at a frequency that is one-fourth that of the bus
clock. Counting is enabled by assertion of the time base enable (TBE) input signal.

2.3.5.2 Memory Synchronization Instructions—VEA

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, “L1 Instruction
and Data Cache Operation,” for more information about these instructions and about related
aspects of memory synchronization.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

Chapter 2. MPC750 Processor Programming Model 2-61

Table 2-52 describes the memory synchronization instructions defined by the VEA.

Table 2-52. Memory Synchronization Instructions—VEA

Name Mnemonic | Syntax Implementation Notes
Enforce eieio — | The eieio instruction is dispatched to the LSU and executes after all previous
In-Order cache-inhibited or write-through accesses are performed; all subsequent
Execution instructions that generate such accesses execute after eieio. If HIDO[ABE] = 1 an
of /1O EIEIO operation is broadcast on the external bus to enforce ordering in the

external memory system. The eieio operation bypasses the L2 cache and is
forwarded to the bus unit. If HIDO[ABE] = 0, the operation is not broadcast.
Because the MPC750 does not reorder noncacheable accesses, eieio is not
needed to force ordering. However, if store gathering is enabled and an eieio is
detected in a store queue, stores are not gathered. If HIDO[ABE] = 1,
broadcasting eieio prevents external devices, such as a bus bridge chip, from
gathering stores.

Instruction |isync — | The isync instruction is refetch serializing; that is, it causes the MPC750 to purge
Synchronize its instruction queue and wait for all prior instructions to complete before
refetching the next instruction, which is not executed until all previous instructions
complete to the point where they cannot cause an exception. The isync
instruction does not wait for all pending stores in the store queue to complete.
Any instruction after an isync sees all effects of prior instructions.

2.3.5.3 Memory Control Instructions—VEA
Memory control instructions can be classified as follows:

¢ Cache management instructions (user-level and supervisor-level)
* Segment register manipulation instructions (OEA)
» Translation lookaside buffer management instructions (OEA)

This section describes the user-level cache management instructions defined by the VEA.
See Section 2.3.6.3, “Memory Control Instructions—OEA,” for information about
supervisor-level cache, segment register manipulation, and translation lookaside buffer
management instructions.

2.3.5.3.1 User-Level Cache Instructions—VEA

The instructions summarized in this section help user-level programs manage on-chip
caches if they are implemented. See Chapter 3, “L1 Instruction and Data Cache Operation,”
for more information about cache topics. The following sections describe how these
operations are treated with respect to the MPC750’s cache.

As with other memory-related instructions, the effects of cache management instructions
on memory are weakly-ordered. If the programmer must ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed after those instructions.

Note that the MPC750 interprets cache control instructions (icbi, dcbi, dcbf, dcbz, and
dcbst) as if they pertain only to the local L1 and L2 cache. A dcbz (with M set) is always
broadcast on the 60x bus. The dcbi, dcbf, and dcbst operations are broadcast if
HIDO[ABE] is set.

2-62 MPC750 RISC Microprocessor User's Manual

The MPC750 never broadcasts an icbi. Of the broadcast cache operations, the MPC750
snoops only dcbz, regardless of the HIDO[ABE] setting. Any bus activity caused by other
cache instructions results directly from performing the operation on the MPC750 cache. All
cache control instructions to T = 1 space are no-ops. For information how cache control
instructions affect the L2, see Chapter 9, “L2 Cache Interface Operation.”

Table 2-53 summarizes the cache instructions defined by the VEA. Note that these
instructions are accessible to user-level programs.

Table 2-53. User-Level Cache Instructions

Name

Mnemonic

Syntax

Implementation Notes

Touch !

Data Cache Block

dcbt

rA,rB

The VEA defines this instruction to allow for potential system performance
enhancements through the use of software-initiated prefetch hints.
Implementations are not required to take any action based on execution of
this instruction, but they may prefetch the cache block corresponding to
the EA into their cache. When dcbt executes, the MPC750 checks for
protection violations (as for a load instruction). This instruction is treated
as a no-op for the following cases:

« A valid translation is not found either in BAT or TLB

» The access causes a protection violation.

» The page is mapped cache-inhibited, G = 1 (guarded), or T = 1.

+ The cache is locked or disabled

+ HIDO[NOOPTI] = 1

Otherwise, if no data is in the cache location, the MPC750 requests a
cache line fill (with intent to modify). Data brought into the cache is
validated as if it were a load instruction. The memory reference of a dcbt
sets the reference bit.

Touch for Store

Data Cache Block

1

dcbtst

rA,rB

This instruction behaves like dcbt.

Set to Zero

Data Cache Block

dcbz

rA,rB

The EA is computed, translated, and checked for protection violations. For
cache hits, four beats of zeros are written to the cache block and the tag is
marked M. For cache misses with the replacement block marked E, the
zero line fill is performed and the cache block is marked M. However, if the
replacement block is marked M, the contents are written back to memory
first. The instruction executes regardless of whether the cache is locked; if
the cache is disabled, an alignment exception occurs. If M = 1 (coherency
enforced), the address is broadcast to the bus before the zero line fill.
The exception priorities (from highest to lowest) are as follows:

1 Cache disabled—Alignment exception

2 Page marked write-through or cache Inhibited—Alignment exception
3 BAT protection violation—DSI exception

4 TLB protection violation—DSI exception

dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = 0.

Chapter 2. MPC750 Processor Programming Model 2-63

Table 2-53. User-Level Cache Instructions (Continued)

Name Mnemonic | Syntax Implementation Notes
Data Cache Block | dcbst rA,rB | The EA is computed, translated, and checked for protection violations.
Store + For cache hits with the tag marked E, no further action is taken.

« For cache hits with the tag marked M, the cache block is written back
to memory and marked E.

A dcbst is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address translation

and memory protection. It executes regardless of whether the cache is

disabled or locked.

The exception priorities (from highest to lowest) for dcbst are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

Data Cache Block |dcbf rA,rB | The EA is computed, translated, and checked for protection violations.

Flush » For cache hits with the tag marked M, the cache block is written back
to memory and the cache entry is invalidated.

« For cache hits with the tag marked E, the entry is invalidated.

» For cache misses, no further action is taken.

A dcbf is not broadcast unless HIDO[ABE] = 1 regardless of WIMG

settings. The instruction acts like a load with respect to address translation

and memory protection. It executes regardless of whether the cache is

disabled or locked.

The exception priorities (from highest to lowest) for debf are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

Instruction Cache |icbi rA,rB | This instruction performs a virtual lookup into the instruction cache (index
Block Invalidate only). The address is not translated, so it cannot cause an exception. All

ways of a selected set are invalidated regardless of whether the cache is
disabled or locked. The MPC750 never broadcasts icbi onto the 60x bus.

Note:

TA program that uses dcbt and dcbtst instructions improperly performs less efficiently. To improve
performance, HIDO[NOOPTI] may be set, which causes dcbt and dcbtst to be no-oped at the
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default
state of this bit is zero which enables the use of these instructions.

2.3.5.4 Optional External! Control Instructions

The PowerPC architecture defines an optional external control feature that, if implemented,
is supported by the two external control instructions, eciwx and ecowx. These instructions
allow a user-level program to communicate with a special-purpose device. These
instructions are provided and are summarized in Table 2-54.

Table 2-54. External Control Instructions

Name Mnemonic| Syntax Implementation Notes
External eciwx rD,rA,rB | A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are
Control In redefined to specify the Resource ID (RID), copied from bits EAR[28-31]. For
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for

these instructions cause an alignment exception. Addressing a location

External ecowx rSrATB | where SR[T] = 1 causes a DSI exception. If MSR[DR] = 0 a programming
Control Out error occurs and the physical address on the bus is undefined.
Word Indexed Note: These instructions are optional to the PowerPC architecture.

2-64 MPC750 RISC Microprocessor User's Manual

The eciwx/ecowx instructions let a system designer map special devices in an alternative
way. The MMU translation of the EA is not used to select the special device, as it is used
in most instructions such as loads and stores. Rather, it is used as an address operand that
is passed to the device over the address bus. Four other signals (the burst and size signals
on the 60x bus) are used to select the device; these four signals output the 4-bit resource ID
(RID) field located in the EAR. The eciwx instruction also loads a word from the data bus
that is output by the special device. For more information about the relationship between
these instructions and the system interface, refer to Chapter 7, “Signal Descriptions.”

2.3.6 PowerPC OEA Instructions

The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions—OEA

This section describes the system linkage instructions (see Table 2-55). The user-level sc¢
instruction lets a user program call on the system to perform a service and causes the
processor to take a system call exception. The supervisor-level rfi instruction is used for
returning from an exception handler.

Table 2-55. System Linkage Instructions—OEA

Name Mnemonic | Syntax Implementation Notes
System Call | sc — The sc instruction is context-synchronizing.
Return from | rfi — The rfi instruction is context-synchronizing. For the MPC750, this means
Interrupt the rfi instruction works its way to the final stage of the execution pipeline,
updates architected registers, and redirects the instruction flow.

2.3.6.2 Processor Control Instructions—OEA

This section describes the processor control instructions used to access the MSR and the
SPRs. Table 2-56 lists instructions for accessing the MSR.

Table 2-56. Move to/from Machine State Register Instructions

Name Mnemonic Syntax
Move to Machine State Register mtmsr rS
Move from Machine State Register mfmsr D

Chapter 2. MPC750 Processor Programming Model 2-65

The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level
registers. The instructions are listed in Table 2-57.

Table 2-57. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Syntax
Move to Special-Purpose Register mtspr SPR,IS
Move from Special-Purpose Register mfspr rD,SPR

Encodings for the architecture-defined SPRs are listed in Table 2-48. Encodings for
MPC750-specific, supervisor-level SPRs are listed in Table 2-49. Simplified mnemonics
are provided for mtspr and mfspr in Appendix F, “Simplified Mnemonics,” in The
Programming Environments Manual. For a discussion of context synchronization
requirements when altering certain SPRs, refer to Appendix E, “Synchronization
Programming Examples,” in The Programming Environments Manual.

2.3.6.3 Memory Control Instructions—OEA
Memory control instructions include the following:

* Cache management instructions (supervisor-level and user-level)
* Segment register manipulation instructions
* Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 2.3.5.3,
“Memory Control Instructions—VEA,” describes user-level memory control instructions.

2.3.6.3.1 Supervisor-Level Cache Management Instruction—(OEA)
Table 2-58 lists the only supervisor-level cache management instruction.

Table 2-58. Supervisor-Level Cache Management Instruction

Name | Mnemonic | Syntax Implementation Notes
Data dcbi rA,rB | The EA is computed, translated, and checked for protection violations. For cache
Cache hits, the cache block is marked | regardless of whether it was marked E or M. A
Block dcbi is not broadcast unless HIDO[ABE] = 1, regardless of WIMG settings. The
Invalidate instruction acts like a store with respect to address translation and memory

protection. It executes regardless of whether the cache is disabled or locked.
The exception priorities (from highest to lowest) for debi are as follows:

1 BAT protection violation—DSI exception

2 TLB protection violation—DSI exception

See Section 2.3.5.3.1, “User-Level Cache Instructions—VEA,” for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op.

2-66 MPC750 RISC Microprocessor User's Manual

2.3.6.3.2 Segment Register Manipulation Instructions (OEA)

The instructions listed in Table 2-59 provide access to the segment registers for 32-bit
implementations. These instructions operate completely independently of the MSR[IR] and
MSR[DR] bit settings. Refer to “Synchronization Requirements for Special Registers and
for Lookaside Buffers,” in Chapter 2, “PowerPC Register Set,” of The Programming
Environments Manual for serialization requirements and other recommended precautions
to observe when manipulating the segment registers.

Table 2-59. Segment Register Manipulation Instructions

Name Mnemonic | Syntax Implementation Notes
Move to Segment Register mtsr SR,rS |—
Move to Segment Register Indirect | mtsrin rS,rB |—
Move from Segment Register mfsr rD,SR | The shadow SRs in the instruction MMU can be read
by setting HIDO[RISEG] before executing mfsr.
Move from Segment Register Indirect | mfsrin DB |—

2.3.6.3.3 Translation Lookaside Buffer Management Instructions—(OEA)
The address translation mechanism is defined in terms of the segment descriptors and page
table entries (PTEs) PowerPC processors use to locate the logical-to-physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
registers and page tables in memory, respectively.

See Chapter 7, “Memory Management,” for more information about TLB operations.
Table 2-60 summarizes the operation of the TLB instructions in the MPC750.

Table 2-60. Translation Lookaside Buffer Management Instruction

Name Mnemonic | Syntax Implementation Notes
TLB tibie B Invalidates both ways in both instruction and data TLB entries at the index
Invalidate provided by EA[14—19]. It executes regardless of the MSR[DR] and MSR][IR]
Entry settings.To invalidate all entries in both TLBs, the programmer should issue 64
tibie instructions that each successively increment this field.
TLB tibsync — | On the MPC750, the only function tlbsync serves is to wait for the TLBISYNC
Synchronize signal to go inactive.

Implementation Note—The tlbia instruction is optional for an implementation if its
effects can be achieved through some other mechanism. Therefore, it is not implemented
on the MPC750. As described above, tlbie can be used to invalidate a particular index of
the TLB based on EA[14-19]—a sequence of 64 tlbie instructions followed by a tlbsyne
instruction invalidates all the TLB structures (for EA[14-19] = 0, 1, 2,..., 63). Attempting
to execute tlbia causes an illegal instruction program exception.

Chapter 2. MPC750 Processor Programming Model 2-67

The presence and exact semantics of the TLB management instructions are
implementation-dependent. To minimize compatibility problems, system software should
incorporate uses of these instructions into subroutines.

2.3.7 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, “Simplified Mnemonics,” in
The Programming Environments Manual.

2-68 MPC750 RISC Microprocessor User's Manual

Chapter 3
L1 Instruction and Data Cache
Operation

The MPC750 microprocessor contains separate 32-Kbyte, eight-way set associative
instruction and data caches to allow the execution units and registers rapid access to
instructions and data. This chapter describes the organization of the on-chip instruction and
data caches, the MEI cache coherency protocol, cache control instructions, various cache
operations, and the interaction between the caches, the load/store unit (LSU), the
instruction unit, and the bus interface unit (BIU).

Note that in this chapter, the term ‘multiprocessor’ is used in the context of maintaining
cache coherency. These multiprocessor devices could be actual processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.
The MPC750 cache implementation has the following characteristics:
¢ There are two separate 32-Kbyte instruction and data caches (Harvard architecture).
¢ Both instruction and data caches are eight-way set associative.

¢ The caches implement a pseudo least-recently-used (PLRU) replacement algorithm
within each set.

* The cache directories are physically addressed. The physical (real) address tag is
stored in the cache directory.

* Both the instruction and data caches have 32-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

¢ Two coherency state bits for each data cache block allow encoding for three states:’
— Modified (Exclusive) (M)
— Exclusive (Unmodified) (E)
— Invalid (I)

¢ Asingle coherency state bit for each instruction cache block allows encoding for two
possible states:

— Invalid (INV)
— Valid (VAL)

Chapter 3. L1 Instruction and Data Cache Operation 3-1

¢ Each cache can be invalidated or locked by setting the appropriate bits in the
hardware implementation-dependent register 0 (HIDO), a special-purpose register
(SPR) specific to the MPC750.

The MPC750 supports a fully-coherent 4-Gbyte physical memory address space. Bus
snooping is used to drive the MEI three-state cache coherency protocol that ensures the
coherency of global memory with respect to the processor’s data cache. The MEI protocol
is described in Section 3.3.2, “MEI Protocol.”

On a cache miss, the MPC750’s cache blocks are filled in four beats of 64 bits each. The
burst fill is performed as a critical-double-word-first operation; the critical double word is
simultaneously written to the cache and forwarded to the requesting unit, thus minimizing
stalls due to cache fill latency.

The instruction and data caches are integrated into the MPC750 as shown in Figure 3-1.

Load/Store Unit
Instruction Unit (LSu)
J o A
nstructions (0-127) EA (20-26) Data (0-63)
A
< Cache Tags Cache Tags »
I-Cache D-Cache
32-Kbyte ¢ PA (0-19) l i 32-Kbyte
8-Way Set Associative 8-Way Set Associative
< Cache Logic Cache Logic >
A A
Instructions (0-63) PA (0-31) Data (0-63)
______ A . Y

MMU/L2 BIU (MPC750 only)/60x BIU
EA: Effective Address
PA: Physical Address

Figure 3-1. Cache Integration

Both caches are tightly coupled to the MPC750’s bus interface unit to allow efficient access
to the system memory controller and other bus masters. The bus interface unit receives
requests for bus operations from the instruction and data caches, and executes the
operations per the 60x bus protocol. The BIU provides address queues, prioritizing logic,
and bus control logic. The BIU captures snoop addresses for data cache, address queue, and
memory reservation (Iwarx and stwex. instruction) operations.

3-2 MPC750 RISC Microprocessor User’s Manual

The data cache provides buffers for load and store bus operations. All the data for the
corresponding address queues (load and store data queues) is located in the data cache. The
data queues are considered temporary storage for the cache and not part of the BIU. The
data cache also provides storage for the cache tags required for memory coherency and
performs the cache block replacement PLRU function.

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. The
MPC750’s LSU is directly coupled to the data cache to allow efficient movement of data to
and from the general-purpose and floating-point registers. The load/store unit provides all
logic required to calculate effective addresses, handles data alignment to and from the data
cache, and provides sequencing for load and store string and multiple operations. Write
operations to the data cache can be performed on a byte, half-word, word, or double-word
basis.

The instruction cache provides a 128-bit interface to the instruction unit, so four
instructions can be made available to the instruction unit in a single clock cycle. The
instruction unit accesses the instruction cache frequently in order to sustain the high
throughput provided by the six-entry instruction queue.

3.1 Data Cache Organization

The data cache is organized as 128 sets of eight blocks as shown in Figure 3-2. Each block
consists of 32 bytes, two state bits, and an address tag. Note that in the PowerPC
architecture, the term ‘cache block,” or simply ‘block,” when used in the context of cache
implementations, refers to the unit of memory at which coherency is maintained. For the
MPC750, this is the eight-word cache line. This value may be different for other PowerPC
implementations.

Each cache block contains eight contiguous words from memory that are loaded from an
eight-word boundary (that is, bits A[27-31] of the logical (effective) addresses are zero); as
a result, cache blocks are aligned with page boundaries. Note that address bits A[20-26]
provide the index to select a cache set. Bits A[27-31] select a byte within a block. The two
state bits implement a three-state MEI (modified/exclusive/invalid) protocol, a coherent
subset of the standard four-state MESI (modified/exclusive/shared/invalid) protocol. The
MEI protocol is described in Section 3.3.2, “MEI Protocol.” The tags consist of bits
PA[0-19]. Address translation occurs in parallel with set selection (from A[20-26]), and the
higher-order address bits (the tag bits in the cache) are physical.

The MPC750’s on-chip data cache tags are single-ported, and load or store operations must
be arbitrated with snoop accesses to the data cache tags. Load or store operations can be
performed to the cache on the clock cycle immediately following a snoop access if the
snoop misses; snoop hits may block the data cache for two or more cycles, depending on
whether a copy-back to main memory is required.

Chapter 3. L1 Instruction and Data Cache Operation 3-3

T T T
128 Sets . . i
I I L4l
L] []
[—— [

I . I T T T T T T

Block 0 Address Tag 0 State Words [0-7]
] 1 1 1 Il 1
T I I 1 T I

Block 1 Address Tag 1 State Words [0-7]
1 | | 1 1 Il
1 T 1 I 1 I

Block 2 Address Tag 2 State Words [0-7]
| 1 | |] |
I 1 I 1 T I

Block 3 Address Tag 3 State Words [0-7]
1 L Il 1 1 |
1 T 1 1 T]

Block 4 Address Tag 4 State Words [0-7]
| l 1 |] 1
I 1 1 I T I

Block 5 Address Tag 5 State Words [0-7]
! 1 | 1 | |
T 1 1 1 I I

Block 6 Address Tag 6 State Words [0-7]
F—— I I I

Block 7 Address Tag 7 State Words [0-7]
1 Il 1] 1

f«——————————8 Words/Biock

Figure 3-2. Data Cache Organization

3.2 Instruction Cache Organization

The instruction cache also consists of 128 sets of eight blocks, as shown in Figure 3-3. Each
block consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each
instruction cache block contains eight contiguous words from memory that are loaded from
an eight-word boundary (that is, bits A[27-31] of the logical (effective) addresses are zero);
as a result, cache blocks are aligned with page boundaries. Also, address bits A[20-26]
provide the index to select a set, and bits A[27-29] select a word within a block.

The tags consist of bits PA[0-19]. Address translation occurs in parallel with set selection
(from A[20-26]), and the higher order address bits (the tag bits in the cache) are physical.

The instruction cache differs from the data cache in that it does not implement MEI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. The instruction cache is not snooped, so if a processor
modifies a memory location that may be contained in the instruction cache, software must
ensure that such memory updates are visible to the instruction fetching mechanism. This
can be achieved with the following instruction sequence:

dcbst # update memory

sync # wait for update

icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

3-4 MPC750 RISC Microprocessor User’s Manual

These operations are necessary because the processor does not maintain instruction
memory coherent with data memory. Software is responsible for enforcing coherency of
instruction caches and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

T [T I I [[

128 Sets ° ! I | ® ! I))

L T i Ldl T I T I

° []
[! [I !

T T T T T 1 T

Block 0 Address Tag0 ||| Valid Words [0-7]]
f f I f f f f

Block1| AddressTag1 | [Valid Viords [0-7] Ay
Il] 1 | | | Il
I T I T T T T

Block 2 Address Tag2 || | Valid Words [0-7] L]
i f F—rt I f f

Block 3 Address Tag3 | [|——{ Valid Words [0-7] o
| [l Il 1 1 1 1
T T 1) 1 I I

Block 4 Address Tag4 || | Valid Words [0-7] L[]
f i T f f f f

Block 5 Address Tag5 | | | Valid Words [0-7]]
| | Il | ! | |
I T 1 I l I I

Block 6 Address Tag6 ||]| Valid Words [0-7] |
| | | 1 | | |
I T T T T T T

Block 7 Address Tag7 | I~ Valid Words [0-7] e
] 1 1 L]] L

|«——————————8 Words/Block

Figure 3-3. Instruction Cache Organization

3.3 Memory and Cache Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization and cooperative
use of shared resources. Otherwise, multiple copies of a memory location, some containing
stale values, could exist in a system resulting in errors when the stale values are used. Each
potential bus master must follow rules for managing the state of its cache. This section
describes the coherency mechanisms of the PowerPC architecture and the three-state cache
coherency protocol of the MPC750 data cache.

Note that unless specifically noted, the discussion of coherency in this section applies to the
MPC750’s data cache only. The instruction cache is not snooped. Instruction cache
coherency must be maintained by software. However, the MPC750 does support a fast
instruction cache invalidate capability as described in Section 3.4.1.4, “Instruction Cache
Flash Invalidation.”

Chapter 3. L1 Instruction and Data Cache Operation 3-5

3.3.1 Memory/Cache Access Attributes (WIMG Bits)

Some memory characteristics can be set on either a block or page basis by using the WIMG
bits in the BAT registers or page table entry (PTE), respectively. The WIMG attributes
control the following functionality:

* Write-through (W bit)

* Caching-inhibited (I bit)

e Memory coherency (M bit)
* Guarded memory (G bit)

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous
system-level performance optimizations.

The WIMG attributes are programmed by the operating system for each page and block.
The W and I attributes control how the processor performing an access uses its own cache.
The M attribute ensures that coherency is maintained for all copies of the addressed
memory location. The G attribute prevents out-of-order loading and prefetching from the
addressed memory location.

The WIMG attributes occupy four bits in the BAT registers for block address translation
and in the PTEs for page address translation. The WIMG bits are programmed as follows:

* The operating system uses the mtspr instruction to program the WIMG bits in the
BAT registers for block address translation. The IBAT register pairs do not have a
G bit and all accesses that use the IBAT register pairs are considered not guarded.

» The operating system writes the WIMG bits for each page into the PTEs in system
memory as it sets up the page tables.

When an access requires coherency, the processor performing the access must inform the
coherency mechanisms throughout the system that the access requires memory coherency.
The M attribute determines the kind of access performed on the bus (global or local).

Software must exercise care with respect to the use of these bits if coherent memory support
is desired. Careless specification of these bits may create situations that present coherency
paradoxes to the processor. In particular, this can happen when the state of these bits is
changed without appropriate precautions (such as flushing the pages that correspond to the
changed bits from the caches of all processors in the system) or when the address
translations of aliased real addresses specify different values for any of the WIMG bits.
These coherency paradoxes can occur within a single processor or across several
processors. It is important to note that in the presence of a paradox, the operating system
software is responsible for correctness.

For real addressing mode (that is, for accesses performed with address translation
disabled—MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the
WIMG bits are automatically generated as 0b0011 (the data is write-back, caching is
enabled, memory coherency is enforced, and memory is guarded).

3-6 MPC750 RISC Microprocessor User’s Manual

3.3.2 MEI Protocol

The MPC750 data cache coherency protocol is a coherent subset of the standard MESI
four-state cache protocol that omits the shared state. The MPC750’s data cache
characterizes each 32-byte block it contains as being in one of three MEI states. Addresses
presented to the cache are indexed into the cache directory with bits A[20-26], and the
upper-order 20 bits from the physical address translation (PA[0-19]) are compared against
the indexed cache directory tags. If neither of the indexed tags matches, the result is a cache
miss. If a tag matches, a cache hit occurred and the directory indicates the state of the cache
block through two state bits kept with the tag. The three possible states for a cache block in
the cache are the modified state (M), the exclusive state (E), and the invalid state (I). The
three MEI states are defined in Table 3-1.

Table 3-1. MEI State Definitions

MEI State Definition

Modified (M) | The addressed cache block is present in the cache, and is modified with respect to system
memory—that is, the modified data in the cache block has not been written back to memory. The
cache block may be present in the MPC750’s L2 cache, but it is not present in any other coherent
cache.

Exclusive (E) | The addressed cache block is present in the cache, and this cache has exclusive ownership of the
addressed block. The addressed block may be present in the MPC750’s L2 cache, but it is not
present in any other processor’s cache. The data in this cache block is consistent with system
memory.

Invalid (1) This state indicates that the address block does not contain valid data or that the addressed cache
block is not resident in the cache.

The MPC750 provides dedicated hardware to provide memory coherency by snooping bus
transactions. Figure 3-4 shows the MEI cache coherency protocol, as enforced by the
MPC750. Figure 3-4 assumes that the WIM bits for the page or block are set to 001; that is,
write-back, caching-not-inhibited, and memory coherency enforced.

Chapter 3. L1 Instruction and Data Cache Operation 3-7

SH/CRW SH/CRW

- . Ekclusivé . RH

SH/CIR
Bus Transactions
SH = Snoop Hit = Snoop Push
RH = Read Hit @
RM = Read Miss
WH = Write Hit @ = Cache Block Fil
WM = Write Miss

SH/CRW = Snoop Hit, Cacheable Read/Write
SH/CIR = Snoop Hit, Caching-Inhibited Read

Figure 3-4. MEI Cache Coherency Protocol—State Diagram (WIM = 001)

Since data cannot be shared, the MPC750 signals all cache block fills as if they were write
misses (read-with-intent-to-modify), which flushes the corresponding copies of the data in
all caches external to the MPC750 prior to the cache-block-fill operation. Following the
cache block load, the MPC750 is the exclusive owner of the data and may write to it without
a bus broadcast transaction.

To maintain the three-state coherency, all global reads observed on the bus by the MPC750
are snooped as if they were writes, causing the MPC750 to flush the cache block (write the
cache block back to memory and invalidate the cache block if it is modified, or simply
invalidate the cache block if it is unmodified). The exception to this rule occurs when a
snooped transaction is a caching-inhibited read (either burst or single-beat, where TT[0—4]
= X1010; see Table 7-1 for clarification), in which case the MPC750 does not invalidate the
snooped cache block. If the cache block is modified, the block is written back to memory,
and the cache block is marked exclusive. If the cache block is marked exclusive, no bus

3-8 MPC750 RISC Microprocessor User’s Manual

action is taken, and the cache block remains in the exclusive state. This treatment of
caching-inhibited reads decreases the possibility of data thrashing by allowing noncaching
devices to read data without invalidating the entry from the MPC750’s data cache.

Section 3.8, “MEI State Transactions,” provides a detailed list of MEI transitions for
various operations and WIM bit settings.

3.3.2.1 MEI Hardware Considerations

While the MPC750 provides the hardware required to monitor bus traffic for coherency, the
MPC750 data cache tags are single-ported, and a simultaneous load/store and snoop access
represents a resource conflict. In general, the snoop access has highest priority and is given
first access to the tags. The load or store access will then occur on the clock following the
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag
write (for example, validation after a cache block load). In these situations, the snoop is
retried and must re-arbitrate before the lookup is possible.

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if
the cache is busy with a burst read or write when the snoop operation takes place.

Note that it is possible for a snoop to hit a modified cache block that is already in the process
of being written to the copy-back buffer for replacement purposes. If this happens, the
MPC750 retries the snoop, and raises the priority of the castout operation to allow it to go
to the bus before the cache block fill.

Another consideration is page table aliasing. If a store hits to a modified cache block but
the page table entry is marked write-through (WIMG = 1xxx), then the page has probably
been aliased through another page table entry which is marked write-back (WIMG = 0xxx).
If this occurs, the MPC750 ignores the modified bit in the cache tag. The cache block is
updated during the write-through operation and the block remains in the modified state.

The global (GBL) signal, asserted as part of the address attribute field during a bus
transaction, enables the snooping hardware of the MPC750. Address bus masters assert
GBL to indicate that the current transaction is a global access (that is, an access to memory
shared by more than one device). If GBL is not asserted for the transaction, that transaction
is not snooped by the MPC750. Note that the GBL signal is not asserted for instruction
fetches, and that GBL is asserted for all data read or write operations when using real
addressing mode (that is, address translation is disabled).

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding translation descriptor(s). Care should be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth
decreases as more memory is marked as global.

Chapter 3. L1 Instruction and Data Cache Operation 3-9

The MPC750 snoops a transaction if the transfer start (TS) and GBL signals are asserted
together in the same bus clock (this is a qualified snooping condition). No snoop update to
the MPC750 cache occurs if the snooped transaction is not marked global. Also, because
cache block castouts and snoop pushes do not require snooping, the GBL signal is not
asserted for these operations.

When the MPC750 detects a qualified snoop condition, the address associated with the TS
signal is compared with the cache tags. Snooping finishes if no hit is detected. If, however,
the address hits in the cache, the MPC750 reacts according to the MEI protocol shown in
Figure 3-4.

3.3.3 Coherency Precautions in Single Processor Systems
The following coherency paradoxes can be encountered within a single-processor system:

e Load or store to a caching-inhibited page (WIMG = x1xx) and a cache hit occurs.

The MPC750 ignores any hits to a cache block in a memory space marked
caching-inhibited (WIMG = x1xx). The access is performed on the external bus as
if there were no hit. The data in the cache is not pushed, and the cache block is not
invalidated.

» Store to a page marked write-through (WIMG = 1xxx) and a cache hit occurs to a
modified cache block.

The MPC750 ignores the modified bit in the cache tag. The cache block is updated
during the write-through operation but the block remains in the modified state (M).

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that
the cache contents reflect the new WIM bit settings. For example, if a block or page that
had allowed caching becomes caching-inhibited, software should ensure that the
appropriate cache blocks are flushed to memory and invalidated.

3.3.4 Coherency Precautions in Multiprocessor Systems

The MPC750’s three-state coherency protocol permits no data sharing between the
MPC750 and other caches. All burst reads initiated by the MPC750 are performed as read
with intent to modify. Burst snoops are interpreted as read with intent to modify or read
with no intent to cache. This effectively places all caches in the system into a three-state
coherency scheme. Four-state caches may share data amongst themselves but not with the
MPC750.

3.3.5 MPC750-Initiated Load/Store Operations

Load and store operations are assumed to be weakly ordered on the MPC750. The
load/store unit (LSU) can perform load operations that occur later in the program ahead of
store operations, even when the data cache is disabled (see Section 3.3.5.2, “Sequential
Consistency of Memory Accesses). However, strongly ordered load and store operations
can be enforced through the setting of the I bit (of the page WIMG bits) when address

3-10 MPC750 RISC Microprocessor User’s Manual

translation is enabled. Note that when address translation is disabled (real addressing
mode), the default WIMG bits cause the I bit to be cleared (accesses are assumed to be
cacheable), and thus the accesses are weakly ordered. Refer to Section 5.2, ‘“Real
Addressing Mode,” for a description of the WIMG bits when address translation is disabled.

The MPC750 does not provide support for direct-store segments. Operations attempting to
access a direct-store segment will invoke a DSI exception. For additional information about
DSI exceptions, refer to Section 4.5.3, "DSI Exception (0x00300).”

3.3.5.1 Performed Loads and Stores

The PowerPC architecture defines a performed load operation as one that has the addressed
memory location bound to the target register of the load instruction. The architecture
defines a performed store operation as one where the stored value is the value that any other
processor will receive when executing a load operation (that is of course, until it is changed
again). With respect to the MPC750, caching-allowed (WIMG = x0xx) loads and
caching-allowed, write-back (WIMG = 00xx) stores are performed when they have
arbitrated to address the cache block. Note that in the event of a cache miss, these storage
operations may place a memory request into the processor’s memory queue, but such
operations are considered an extension to the state of the cache with respect to snooping
bus operations. Caching-inhibited (WIMG = x1xx) loads, caching-inhibited (WIMG =
x1xx) stores, and write-through (WIMG = 1xxx) stores are performed when they have been
successfully presented to the external 60x bus.

3.3.5.2 Sequential Consistency of Memory Accesses

The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in program order with respect to exceptions and
data dependencies.

The MPC750 achieves sequential consistency by operating a single pipeline to the
cache/MMU. All memory accesses are presented to the MMU in exact program order and
therefore exceptions are determined in order. Loads are allowed to bypass stores once
exception checking has been performed for the store, but data dependency checking is
handled in the load/store unit so that a load will not bypass a store with an address match.
Note that although memory accesses that miss in the cache are forwarded to the memory
queue for future arbitration for the external bus, all potential synchronous exceptions have
been resolved before the cache. In addition, although subsequent memory accesses can
address the cache, full coherency checking between the cache and the memory queue is
provided to avoid dependency conflicts.

3.3.5.3 Atomic Memory References

The PowerPC architecture defines the Load Word and Reserve Indexed (Iwarx) and the
Store Word Conditional Indexed (stwcex.) instructions to provide an atomic update function
for a single, aligned word of memory. These instructions can be used to develop a rich set
of multiprocessor synchronization primitives. Note that atomic memory references

Chapter 3. L1 Instruction and Data Cache Operation 3-11

constructed using lwarx/stwex. instructions depend on the presence of a coherent memory
system for correct operation. These instructions should not be expected to provide atomic
access to noncoherent memory. For detailed information on these instructions, refer to
Chapter 2, “MPC750 Processor Programming Model,” in this book and Chapter 8,
“Instruction Set,” in The Programming Environments Manual.

The Iwarx instruction performs a load word from memory operation and creates a
reservation for the 32-byte section of memory that contains the accessed word. The
reservation granularity is 32 bytes. The lwarx instruction makes a nonspecific reservation
with respect to the executing processor and a specific reservation with respect to other
masters. This means that any subsequent stwex. executed by the same processor, regardless
of address, will cancel the reservation. Also, any bus write or invalidate operation from
another processor to an address that matches the reservation address will cancel the
reservation.

The stwex. instruction does not check the reservation for a matching address. The stwex.
instruction is only required to determine whether a reservation exists. The stwex.
instruction performs a store word operation only if the reservation exists. If the reservation
has been cancelled for any reason, then the stwex. instruction fails and clears the CRO[EQ]
bit in the condition register. The architectural intent is to follow the Iwarx/stwcx.
instruction pair with a conditional branch which checks to see whether the stwex.
instruction failed.

If the page table entry is marked caching-allowed (WIMG = x0xx), and an lwarx access
misses in the cache, then the MPC750 performs a cache block fill. If the page is marked
caching-inhibited (WIMG = x1xx) or the cache is locked, and the access misses, then the
Iwarx instruction appears on the bus as a single-beat load. All bus operations that are a
direct result of either an Iwarx instruction or an stwex. instruction are placed on the bus
with a special encoding. Note that this does not force all lwarx instructions to generate bus
transactions, but rather provides a means for identifying when an lwarx instruction does
generate a bus transaction. If an implementation requires that all Ilwarx instructions
generate bus transactions, then the associated pages should be marked as caching-inhibited.

The state of the reservation is always presented onto the RSRV output signal. This can be
used to determine when an internal condition has caused a change in the reservation state.

The MPC750’s data cache treats all stwex. operations as write-through independent of the
WIMG settings. However, if the stwcex. operation hits in the MPC750’s L2 cache, then the
operation completes with the reservation intact in the L2 cache. See Chapter 9, “L2 Cache
Interface Operation,” for more information. Otherwise, the stwex. operation continues to
the bus interface unit for completion. When the write-through operation completes
successfully, either in the L2 cache or on the 60x bus, then the data cache entry is updated
(assuming it hits), and CRO[EQ] is modified to reflect the success of the operation. If the
reservation is not intact, the stwex. completes in the bus interface unit without performing
a bus transaction, and without modifying either of the caches.

3-12 MPC750 RISC Microprocessor User’s Manual

3.4 Cache Control

The MPC750’s L1 caches are controlled by programming specific bits in the HIDO
special-purpose register and by issuing dedicated cache control instructions. Section 3.4.1,
“Cache Control Parameters in HIDO,” describes the HIDO cache control bits, and
Section 3.4.2, “Cache Control Instructions,” describes the cache control instructions.

3.4.1 Cache Control Parameters in HIDO

The HIDO special-purpose register contains several bits that invalidate, disable, and lock
the instruction and data caches. The following sections describe these facilities.

3.4.1.1 Data Cache Flash Invalidation

The data cache is automatically invalidated when the MPC750 is powered up and during a
hard reset. However, a soft reset does not automatically invalidate the data cache. Software
must use the HIDO data cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation
is desired after a soft reset. Once HIDO[DCFI] is set through an mtspr operation, the
MPC750 automatically clears this bit in the next clock cycle (provided that the data cache
is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish data cache flash invalidation by
setting and clearing HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the MPC750.

3.4.1.2 Data Cache Enabling/Disabling

The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE].
HIDO[DCE] is cleared on power-up, disabling the data cache.

When the data cache is in the disabled state (HIDO[DCE] = 0), the cache tag state bits are
ignored, and all accesses are propagated to the L2 cache or 60x bus as single-beat
transactions. Note that the CI (cache inhibit) signal always reflects the state of the
caching-inhibited memory/cache access attribute (the I bit) independent of the state of
HIDO[DCE]. Also note that disabling the data cache does not affect the translation logic;
translation for data accesses is controlled by MSR[DR].

The setting of the DCE bit must be preceded by a sync instruction to prevent the cache from
being enabled or disabled in the middle of a data access. In addition, the cache must be
globally flushed before it is disabled to prevent coherency problems when it is re-enabled.

Snooping is not performed when the data cache is disabled.

The dcbz instruction will cause an alignment exception when the data cache is disabled.
The touch load (dcbt and dcbtst) instructions are no-ops when the data cache is disabled.
Other cache operations (caused by the dcbf, debst, and dcbi instructions) are not affected

Chapter 3. L1 Instruction and Data Cache Operation 3-13

by disabling the cache. This can potentially cause coherency errors. For example, a dcbf
instruction that hits a modified cache block in the disabled cache will cause a copyback to
memory of potentially stale data.

3.4.1.3 Data Cache Locking

The contents of the data cache can be locked by setting the data cache lock bit,
HIDO[DLOCK]. A data access that hits in a locked data cache is serviced by the cache.
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x
bus as single-beat transactions. Note that the CI signal always reflects the state of the
caching-inhibited memory/cache access attribute (the I bit) independent of the state of
HIDO[DLOCK].

The MPC750 treats snoop hits to a locked data cache the same as snoop hits to an unlocked
data cache. However, any cache block invalidated by a snoop hit remains invalid until the
cache is unlocked.

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data
cache from being locked during a data access.

3.4.1.4 Instruction Cache Flash Invalidation

The instruction cache is automatically invalidated when the MPC750 is powered up and
during a hard reset. However, a soft reset does not automatically invalidate the instruction
cache. Software must use the HIDO instruction cache flash invalidate bit (HIDO[ICFI]) if
instruction cache invalidation is desired after a soft reset. Once HIDO[ICFI] is set through
an mtspr operation, the MPC750 automatically clears this bit in the next clock cycle
(provided that the instruction cache is enabled in the HIDO register).

Note that some PowerPC microprocessors accomplish instruction cache flash invalidation
by setting and clearing HIDO[ICFI] with two consecutive mtspr instructions (that is, the bit
is not automatically cleared by the microprocessor). Software that has this sequence of
operations does not need to be changed to run on the MPC750.

3.4.1.5 Instruction Cache Enabling/Disabling

The instruction cache may be enabled or disabled through the use of the instruction cache
enable bit, HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache.

When the instruction cache is in the disabled state (HID[ICE] = 0), the cache tag state bits
are ignored, and all instruction fetches are propagated to the L2 cache or 60x bus as
single-beat transactions. Note that the CI signal always reflects the state of the
caching-inhibited memory/cache access attribute (the I bit) independent of the state of
HIDO[ICE]. Also note that disabling the instruction cache does not affect the translation
logic; translation for instruction accesses is controlled by MSR[IR].

3-14 MPC750 RISC Microprocessor User’s Manual

The setting of the ICE bit must be preceded by an isync instruction to prevent the cache
from being enabled or disabled in the middle of an instruction fetch. In addition, the cache
must be globally flushed before it is disabled to prevent coherency problems when it is
re-enabled. The icbi instruction is not affected by disabling the instruction cache.

3.4.1.6 Instruction Cache Locking

The contents of the instruction cache can be locked by setting the instruction cache lock bit,
HIDO[ILOCK]. An instruction fetch that hits in a locked instruction cache is serviced by
the cache. However, all accesses that miss in the locked cache are propagated to the L2
cache or 60x bus as single-beat transactions. Note that the CI signal always reflects the state
of the caching-inhibited memory/cache access attribute (the I bit) independent of the state
of HIDO[ILOCK].

The setting of the ILOCK bit must be preceded by an isync instruction to prevent the
instruction cache from being locked during an instruction fetch.

3.4.2 Cache Control Instructions

The PowerPC architecture defines instructions for controlling both the instruction and data
caches (when they exist). The cache control instructions, dcbt, debtst, dcbz, dcbst, debf,
dcbi, and icbi, are intended for the management of the local L1 and L2 caches. The
MPC750 interprets the cache control instructions as if they pertain only to its own L1 or L2
caches. These instructions are not intended for managing other caches in the system (except
to the extent necessary to maintain coherency).

The MPC750 does not snoop cache control instruction broadcasts, except for dchz when
M = 1. The dcbz instruction is the only cache control instruction that causes a broadcast on
the 60x bus (when M = 1) to maintain coherency. All other data cache control instructions
(dcbi, dcbf, dcbst and dcbz) are not broadcast, unless broadcast is enabled through the
HIDO[ABE] configuration bit. Note that dcbi, dcbf, debst and debz do broadcast to the
MPC750’s L2 cache, regardless of HIDO[ABE]. The icbi instruction is never broadcast.

3.4.2.1 Data Cache Block Touch (dcbt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (debt) and Data Cache Block Touch for Store (dcbtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The MPC750 treats these instructions identically (that is,
a dcbtst instruction behaves exactly the same as a debt instruction on the MPC750). Note
that PowerPC implementations are not required to take any action based on the execution
of these instructions, but they may choose to prefetch the cache block corresponding to the
effective address into their cache.

The MPC750 loads the data into the cache when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a direct-store segment, and
is directed at a cacheable page. Otherwise, the MPC750 treats these instructions as no-ops.
The data brought into the cache as a result of this instruction is validated in the same manner

Chapter 3. L1 Instruction and Data Cache Operation 3-15

that a load instruction would be (that is, it is marked as exclusive). The memory reference
of a dcbt (or dcbtst) instruction causes the reference bit to be set. Note also that the
successful execution of the decbt (or dcbtst) instruction affects the state of the TLB and
cache LRU bits as defined by the PLRU algorithm.

3.4.2.2 Data Cache Block Zero (dcbz)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. The dcbz instruction is treated as a store to the
addressed byte with respect to address translation and protection.

If the block containing the byte addressed by the EA is in the data cache, all bytes are
cleared, and the tag is marked as modified (M). If the block containing the byte addressed
by the EA is not in the data cache and the corresponding page is caching-allowed, the block
is established in the data cache without fetching the block from main memory, and all bytes
of the block are cleared, and the tag is marked as modified (M).

If the contents of the cache block are from a page marked memory coherence required
(M = 1), an address-only bus transaction is run prior to clearing the cache block. The dcbz
instruction is the only cache control instruction that causes a broadcast on the 60x bus
(when M = 1) to maintain coherency. The other cache control instructions are not broadcast
unless broadcasting is specifically enabled through the HIDO[ABE] configuration bit.

The dcbz instruction executes regardless of whether the cache is locked, but if the cache is
disabled, an alignment exception is generated. If the page containing the byte addressed by
the EA is caching-inhibited or write-through, then the system alignment exception handler
is invoked. BAT and TLB protection violations generate DSI exceptions.

3.4.2.3 Data Cache Block Store (dcbst)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache and the cache block is in the exclusive (E) state, no action is
taken. If the address hits in the cache and the cache block is in the modified (M) state, the
modified block is written back to memory and the cache block is placed in the exclusive (E)
state.

The execution of a dcbst instruction does not broadcast on the 60x bus unless broadcast is
enabled through the HIDO[ABE] bit. The function of this instruction is independent of the
WIMG bit settings of the block containing the effective address. The dcbst instruction
executes regardless of whether the cache is disabled or locked; however, a BAT or TLB
protection violation generates a DSI exception.

3-16 MPC750 RISC Microprocessor User’s Manual

3.4.2.4 Data Cache Block Flush (dcbf)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a load with respect to
address translation and memory protection.

If the address hits in the cache, and the block is in the modified (M) state, the modified block
is written back to memory and the cache block is placed in the invalid (I) state. If the address
hits in the cache, and the cache block is in the exclusive (E) state, the cache block is placed
in the invalid (I) state. If the address misses in the cache, no action is taken.

The execution of dcbf does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] bit. The function of this instruction is independent of the WIMG
bit settings of the block containing the effective address. The dcbf instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection
violation generates a DSI exception.

3.4.2.5 Data Cache Block Invalidate (dcbi)

The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. This instruction is treated as a store with respect to
address translation and memory protection.

If the address hits in the cache, the cache block is placed in the invalid (I) state, regardless
of whether the data is modified. Because this instruction may effectively destroy modified
data, it is privileged (that is, dcbi is available to programs at the supervisor privilege level,
MSR[PR] = 0).

The execution of dcbi does not broadcast on the 60x bus unless broadcast is enabled
through the HIDO[ABE] bit. The function of this instruction is independent of the WIMG
bit settings of the block containing the effective address. The dcbi instruction executes
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection
violation generates a DSI exception.

3.4.2.6 Instruction Cache Block Invalidate (icbi)

For the icbi instruction, the effective address is not computed or translated, so it cannot
generate a protection violation or exception. This instruction performs a virtual lookup into
the instruction cache (index only). All ways of the selected instruction cache set are
invalidated.

The icbi instruction is not broadcast on the 60x bus. The icbi instruction invalidates the
cache blocks independent of whether the cache is disabled or locked.

Chapter 3. L1 Instruction and Data Cache Operation 3-17

3.5 Cache Operations

This section describes the MPC750 cache operations.

3.5.1 Cache Block Replacement/Castout Operations

Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement
algorithm when a new block needs to be placed in the cache. When the data to be replaced
is in the modified (M) state, that data is written into a castout buffer while the missed data
is being accessed on the bus. When the load completes, the MPC750 then pushes the
replaced cache block from the castout buffer to the L2 cache (if L2 is enabled) or to main
memory (if L2 is disabled).

The replacement logic first checks to see if there are any invalid blocks in the set and
chooses the lowest-order, invalid block (L[0-7]) as the replacement target. If all eight
blocks in the set are valid, the PLRU algorithm is used to determine which block should be
replaced. The PLRU algorithm is shown in Figure 3-5.

3-18 MPC750 RISC Microprocessor User’s Manual

LO invalid—» A"?_%ate

LO valid
%—— L1 invalid—- A"?ﬁate
L1 valid
&— L2 invalid— A"?_Céate
L2 valid
é)— L3 invalid— AlloLcSate
L3 valid
é)— L4 invalig—s-(Allocate
L4 valid
é)— L5 invalid A"(IJ_CSate
L5 valid
C%)— L6 invalid—» A"?_%ate
L6 valid
<f>— L7 invalid—-(Allocate
L7 valid
Bo =1
B1 i B2=1
3=0 B3=1 = B4 =1 5=0 B5=1 - 36_1

' eEIé\ce ' eEIace ' eEIace eElsace ' eEIace ' eE?ce eEIace

Figure 3-5. PLRU Replacement Algorithm

Chapter 3. L1 Instruction and Data Cache Operation 3-19

Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each
block in the cache, L[0-7]. When all eight blocks in the set are valid, the PLRU algorithm
is used to select the replacement target. There are seven PLRU bits, B[0—6] for each set in
the cache. For every hit in the cache, the PLRU bits are updated using the rules specified in
Table 3-2.

Table 3-2. PLRU Bit Update Rules

If the Then the PLRU bits are Changed to:
Current
A°°Te::s is BO B1 B2 B3 B4 B5 B6
LO 1 1 X 1 X X X
L1 1 1 X 0 X X X
L2 1 0 X X 1 X X
L3 1 0 X X 0 X X
L4 0 X 1 X X 1 X
L5 0 X 1 X X 0 X
L6 0 X 0 X X X 1
L7 0 X 0 X X X 0
x = Does not change |

If all eight blocks are valid, then a block is selected for replacement according to the PLRU
bit encodings shown in Table 3-3.

Table 3-3. PLRU Replacement Block Selection

Then the
Block

If the PLRU Bits Are: Selected for

Replacement
Is:
0 Lo
1 L1
0 L2
1 L3
0 L4
1 L5
0 L6
1 L7

3-20 MPC750 RISC Microprocessor User’s Manual

During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits
cleared to point to block LO of each set. Note that this is also the state of the data or
instruction cache after setting their respective flash invalidate bit (HIDO[DCFI] or
HIDO[ICFI]).

3.5.2 Cache Flush Operations

The instruction cache can be invalidated by executing a series of icbi instructions or by
setting HIDO[ICFI]. The data cache can be invalidated by executing a series of dcbi
instructions or by setting HIDO[DCFI].

Any modified entries in the data cache can be copied back to memory (flushed) by using
the dcbf instruction or by executing a series of 12 uniquely addressed load or dcbz
instructions to each of the 128 sets. The address space should not be shared with any other
process to prevent snoop hit invalidations during the flushing routine. Exceptions should be
disabled during this time so that the PLRU algorithm does not get disturbed.

The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process.
When set, HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid
entries and follow the replacement sequence defined by the PLRU bits. This reduces the
series of uniquely addressed load or dcbz instructions to eight per set. HIDO[DCFA] should
be set just prior to the beginning of the cache flush routine and cleared after the series of
instructions is complete.

3.5.3 Data Cache-Block-Fill Operations

The MPC750’s data cache blocks are filled in four beats of 64 bits each, with the critical
double word loaded first. The data cache is not blocked to internal accesses while the load
(caused by a cache miss) completes. This functionality is sometimes referred to as ‘hits
under misses,” because the cache can service a hit while a cache miss fill is waiting to
complete. The critical-double-word read from memory is simultaneously written to the data
cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill latency.

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs
in the cache. The cache block that corresponds to the missed address is updated by a burst
transfer of the data from the L2 or system memory. Note that if a read miss occurs in a
system with multiple bus masters, and the data is modified in another cache, the modified
data is first written to external memory before the cache fill occurs.

3.5.4 Instruction Cache-Block-Fill Operations

The MPC750’s instruction cache blocks are loaded in four beats of 64 bits each, with the
critical double word loaded first. The instruction cache is not blocked to internal accesses
while the fetch (caused by a cache miss) completes. On a cache miss, the critical and
following double words read from memory are simultaneously written to the instruction
cache and forwarded to the instruction queue, thus minimizing stalls due to cache fill
latency. There is no snooping of the instruction cache.

Chapter 3. L1 Instruction and Data Cache Operation 3-21

3.5.5 Data Cache-Block-Push Operation

When a cache block in the MPC750 is snooped and hit by another bus master and the data
is modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the 60x bus. The MPC750
supports two kinds of push operations—normal push operations and enveloped
high-priority push operations, which are described in Section 3.5.5.1, “Enveloped
High-Priority Cache-Block-Push Operation.”

3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation

In cases where the MPC750 has completed the address tenure of a read operation, and then
detects a snoop hit to a modified cache block by another bus master, the MPC750 provides
a high-priority push operation. If the address snooped is the same as the address of the data
to be returned by the read operation, ARTRY is asserted one or more times until the data
tenure of the read operation is completed. The cache-block-push transaction can be
enveloped within the address and data tenures of a read operation. This feature prevents
deadlocks in system organizations that support multiple memory-mapped buses.

More specifically, the MPC750 internally detects the scenario where a load request is
outstanding and the processor has pipelined a write operation on top of the load. Normally,
when the data bus is granted to the MPC750, the resulting data bus tenure is used for the
load operation. The enveloped high-priority cache block push feature defines a bus signal,
data bus write only (DBWO), which when asserted with a qualified data bus grant indicates
that the resulting data tenure should be used for the store operation instead. This signal is
described in Section 8.10, “Using Data Bus Write Only.” Note that the enveloped
copy-back operation is an internally pipelined bus operation.

3.6 L1 Caches and 60x Bus Transactions

The MPC750 transfers data to and from the cache in single-beat transactions of two words,
or in four-beat transactions of eight words which fill a cache block. Single-beat bus
transactions can transfer from one to eight bytes to or from the MPC750, and can be
misaligned. Single-beat transactions can be caused by cache write-through accesses,
caching-inhibited accesses (WIMG = x1xx), accesses when the cache is disabled
(HIDO[DCE] bit is cleared), or accesses when the cache is locked (HIDO[DLOCK] bit is
cleared).

Burst transactions on the MPC750 always transfer eight words of data at a time, and are
aligned to a double-word boundary. The MPC750 transfer burst (IBST) output signal
indicates to the system whether the current transaction is a single-beat transaction or
four-beat burst transfer. Burst transactions have an assumed address order. For cacheable
read operations, instruction fetches, or cacheable, non-write-through write operations that
miss the cache, the MPC750 presents the double-word-aligned address associated with the
load/store instruction or instruction fetch that initiated the transaction.

3-22 MPC750 RISC Microprocessor User’s Manual

As shown in Figure 3-6, the first quad word contains the address of the load/store or
instruction fetch that missed the cache. This minimizes latency by allowing the critical code
or data to be forwarded to the processor before the rest of the block is filled. For all other
burst operations, however, the entire block is transferred in order (oct-word-aligned).
Critical-double-word-first fetching on a cache miss applies to both the data and instruction
cache.

MPC750 Cache Address
Bits (27... 28)

) o1 10 11
A r B c D]

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and
the four data beats are ordered in the following manner:

Beat
1 2 3

| 2 B | c | D

If the address requested is in double-word C, the address placed on the bus will be that of double-word
C, and the four data beats are ordered in the following manner:

Beat
1 2 3

C D A B

Figure 3-6. Double-Word Address Ordering—Critical Double Word First

3.6.1 Read Operations and the MEI Protocol

The MEI coherency protocol affects how the MPC750 data cache performs read operations
on the 60x bus. All reads (except for caching-inhibited reads) are encoded on the bus as
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from
other caches in the system.

The MEI coherency protocol also affects how the MPC750 snoops read operations on the
60x bus. All reads snooped from the 60x bus (except for caching-inhibited reads) are
interpreted as RWITM to cause flushing from the MPC750’s cache. Single-beat reads
(TBST negated) are interpreted by the MPC750 as caching inhibited.

These actions for read operations allow the MPC750 to operate successfully (coherently)
on the bus with other bus masters that implement either the three-state MEI or a four-state
MESI cache coherency protocol.

Chapter 3. L1 Instruction and Data Cache Operation 3-23

3.6.2 Bus Operations Caused by Cache Control Instructions

The cache control, TLB management, and synchronization instructions supported by the
MPC750 may affect or be affected by the operation of the 60x bus. The operation of the
instructions may also indirectly cause bus transactions to be performed, or their completion
may be linked to the bus.

The dcbz instruction is the only cache control instruction that causes an address-only
broadcast on the 60x bus. All other data cache control instructions (dcbi, dcbf, dcbst, and
dcbz) are not broadcast unless specifically enabled through the HIDO[ABE] configuration
bit. Note that dcbi, dcbf, dcbst, and dcbz do broadcast to the MPC750’s L2 cache,
regardless of HIDO[ABE]. HIDO[ABE] also controls the broadcast of the sync and eieio
instructions. The icbi instruction is never broadcast. No broadcasts by other masters are
snooped by the MPC750 (except for debz kill block transactions). For detailed information
on the cache control instructions, refer to Chapter 2, “MPC750 Processor Programming
Model,” in this book and Chapter 8, “Instruction Set,” in The Programming Environments
Manual.

Table 3-4 provides an overview of the bus operations initiated by cache control instructions.
Note that Table 3-4 assumes that the WIM bits are set to 001; that is, the cache is operating
in write-back mode, caching is permitted and coherency is enforced.

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

. Current .
Instruction Cache State Next Cache State Bus Operation Comment

sync Don't care No change sync Waits for memory queues
(if enabled in to complete bus activity
HIDO[ABE])

tibie — — None —_

tibsync — — None Waits for the negation of

the TLBSYNC input signal
to complete

eieio Don't care No change eieio Address-only bus
(if enabled in operation
HIDO[ABE])

icbi Don't care | None —

dcbi Don’t care | Kill block Address-only bus
(if enabled in operation
HIDO[ABE])

dcbf I,E ! Flush block Address-only bus
(if enabled in operation
HIDO[ABE])

dcbf M | Write with kill Block is pushed

dcbst I,E No change Clean block Address-only bus
(if enabled in operation
HIDO[ABE])

3-24 MPC750 RISC Microprocessor User’s Manual

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Instruction Ca(t::::eslgte Next Cache State Bus Operation Comment

dcbst M E Write with kill Block is pushed

dcbz I M Write with Kill —

dcbz E,M M Kill block Writes over modified data

dcbt | E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache

dcbt E,M No change None —

dcbtst | E Read-with-intent-t | Fetched cache block is
o-modify stored in the cache

dcbtst E.M No change None —

For additional details about the specific bus operations performed by the MPC750, see
Chapter 8, “System Interface Operation.”

3.6.3 Snooping

The MPC750 maintains data cache coherency in hardware by coordinating activity between
the data cache, the bus interface logic, the L2 cache, and the memory system. The MPC750
has a copy-back cache which relies on bus snooping to maintain cache coherency with other
caches in the system. For the MPC750, the coherency size of the bus is the size of a cache
block, 32 bytes. This means that any bus transactions that cross an aligned 32-byte
boundary must present a new address onto the bus at that boundary for proper snoop
operation by the MPC750, or they must operate noncoherently with respect to the MPC750.

As bus operations are performed on the bus by other bus masters, the MPC750 bus
snooping logic monitors the addresses and transfer attributes that are referenced. The
MPC750 snoops the bus transactions during the cycle that TS is asserted for any of the
following qualified snoop conditions:

e The global signal (GBL) is asserted indicating that coherency enforcement is
required.

¢ Areservation is currently active in the MPC750 as the result of an lwarx instruction,
and the transfer type attributes (TT[0-4]) indicate a write or kill operation. These
transactions are snooped regardless of whether GBL is asserted to support
reservations in the MEI cache protocol.

The state of ABB is not sampled to determine a qualified snoop condition. All transactions
snooped by the MPC750 are checked for correct address bus parity. Every assertion of TS
detected by the MPC750 (whether snooped or not) must be followed by an accompanying
assertion of AACK.

Chapter 3. L1 Instruction and Data Cache Operation 3-25

Once a qualified snoop condition is detected on the bus, the snooped address associated
with TS is compared against the data cache tags, memory queues, and/or other storage
elements as appropriate. The L1 data cache tags and L2 cache tags are snooped for standard
data cache coherency support. No snooping is done in the instruction cache for coherency.

The memory queues are snooped for pipeline collisions and memory coherency collisions.
A pipeline collision is detected when another bus master addresses any portion of a line that
this MPC750’s data cache is currently in the process of loading (L1 loading from L2, or
L1/L2 loading from memory). A memory coherency collision occurs when another bus
master addresses any portion of a line that the MPC750 has currently queued to write to
memory from the data cache (castout or copy-back), but has not yet been granted bus access
to perform.

If a snooped transaction results in a cache hit or pipeline collision or memory queue
collision, the MPC750 asserts ARTRY on the 60x bus. The current bus master, detecting
the assertion of the ARTRY signal, should abort the transaction and retry it at a later time,
so that the MPC750 can first perform a write operation back to memory from its cache or
memory queues. The MPC750 may also retry a bus transaction if it is unable to snoop the
transaction on that cycle due to internal resource conflicts. Additional snoop action may be
forwarded to the cache as a result of a snoop hit in some cases (a cache push of modified
data, or a cache block invalidation).

3.6.4 Snoop Response to 60x Bus Transactions

There are several bus transaction types defined for the 60x bus. The transactions in
Table 3-5 correspond to the transfer type signals TT[0-4], which are described in
Section 7.2.4.1, “Transfer Type (TT[0—4]).”

Table 3-5. Response to Snooped Bus Transactions

Snooped Transaction TT[0-4] MPC750 Response

Clean block 00000 No action is taken.

Flush block 00100 No action is taken.

SYNC 01000 No action is taken.

Kill block 01100 The kill block operation is an address-only bus transaction initiated

when a dcbz or dcbi instruction is executed

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (I) state.

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

EIEIO 10000 No action is taken.
External control word 10100 No action is taken.
write

3-26 MPC750 RISC Microprocessor User’s Manual

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] MPC750 Response

TLB invalidate 11000 No action is taken.

External control word 11100 No action is taken.

read

Iwarx reservation set 00001 No action is taken.

Reserved 00101 —

TLBSYNC 01001 No action is taken.

ICBI 01101 No action is taken.

Reserved 1XX01 —

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction
initiated when a caching-inhibited or write-through store instruction is
executed.

- If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (I) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (I) state.

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a

castout, caching-allowed push, or snoop copy -back.

« If the address hits in the cache, the cache block is placed in the
invalid (1) state (killing modified data that may have been in the
block).

« If the address misses in the cache, no action is taken.

Any reservation associated with the address is canceled.

Read 01010 A read operation is used by most single-beat and burst load

transactions on the bus.

For single-beat, caching-inhibited read transaction:

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the exclusive (E)
state.

« If the address misses in the cache, no action is taken.

For burst read transactions:

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

» If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Chapter 3. L1 Instruction and Data Cache Operation 3-27

Table 3-5. Response to Snooped Bus Transactions (Continued)

Snooped Transaction TT[0-4] MPC750 Response
Read-with-intent-to-mo | 01110 A RWITM operation is issued to acquire exclusive use of a memory
dify (RWITM) location for the purpose of modifying it.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (1) state.

« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (1) state.

« If the address misses in the cache, no action is taken.

Write-with-flush-atomic | 10010 Write-with-flush-atomic operations occur after the processor issues

an stwex. instruction.

« If the addressed cache block is in the exclusive (E) state, the cache
block is placed in the invalid (l) state.

+ If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the invalid (I) state.

« If the address misses in the cache, no action is taken.

Any reservation is canceled, regardless of the address.

Reserved 10110 —

Read-atomic 11010 Read atomic operations appear on the bus in response to lwarx
instructions and generate the same snooping responses as read
operations.

Read-with-intent-to-mo | 11110 The RWITM atomic operations appear on the bus in response to

dify-atomic stwex. instructions and generate the same snooping responses as
RWITM operations.

Reserved 00011 —

Reserved 00111 —

Read-with-no-intent-to- | 01011 A RWNITC operation is issued to acquire exclusive use of a memory

cache (RWNITC) location with no intention of modifying the location.

« If the addressed cache block is in the exclusive (E) state, the cache
block remains in the exclusive (E) state.
« If the addressed cache block is in the modified (M) state, the
MPC750 asserts ARTRY and initiates a push of the modified block
out of the cache and the cache block is placed in the exclusive (E)
state.
« If the address misses in the cache, no action is taken.
Reserved 01111 —
Reserved 1XX11 —

3.6.5 Transfer Attributes

In addition to the address and transfer type signals, the MPC750 supports the transfer
attribute signals TBST, TSIZ[0-2], WT, CI, and GBL. The TBST and TSIZ[0-2] signals
indicate the data transfer size for the bus transaction.

The WT signal reflects the write-through status (the complement of the W bit) for the
transaction as determined by the MMU address translation during write operations. WT is
asserted for burst writes due to dcbf (flush) and dcbst (clean) instructions, and for snoop

3-28 MPC750 RISC Microprocessor User’s Manual

pushes; WT is negated for ecowx transactions. Since the write-through status is not
meaningful for reads, the MPC750 uses the WT signal during read transactions to indicate
that the transaction is an instruction fetch (WT negated), or not an instruction fetch (WT
asserted).

The CI signal reflects the caching-inhibited/allowed status (the complement of the I bit) of
the transaction as determined by the MMU address translation even if the L1 caches are
disabled or locked. CI is always asserted for eciwx/ecowx bus transactions independent of
the address translation.

The GBL signal reflects the memory coherency requirements (the complement of the M bit)
of the transaction as determined by the MMU address translation. Castout and snoop
copy-back operations (TT[0-4] = 00110) are generally marked as nonglobal (GBL
negated) and are not snooped (except for reservation monitoring). Other masters, however,
may perform DMA write operations with this encoding but marked global (GBL asserted)
and thus must be snooped.

Table 3-6 summarizes the address and transfer attribute information presented on the bus
by the MPC750 for various master or snoop-related transactions.

Table 3-6. Address/Transfer Attribute Summary

3

Bus Transaction A[0-31] TT[0-4] | TBST | TSIZ[0-2] BL

Instruction fetch operations:

Burst (caching-allowed) PA[0-28] || 0b000 01110 0 010 -M 1 1*

Single-beat read PA[0-28] || 0b000 01010 1 000 -M 1 =1
(caching-inhibited or cache
disabled)

Data cache operations:

Cache block fill (due to load or PA[0-28] || 0b000 A1110 0 010 -M 0 1*
store miss)

Castout CA[0-26] || 0b00000 | 00110 0 010 1 1 1*
(normal replacement)

Push (cache block push due to PA[0-26] || 0b00000 | 00110 0 010 1 0 1*
dcbf/dcbst)

Snoop copyback CA[0-26] || 0b00000 | 00110 0 010 1 0 1*

Data cache bypass operations:

Single-beat read PA[0-31] A1010 1 SSS -M 0 =l
(caching-inhibited or cache
disabled)

Single-beat write PA[0-31] 00010 1 SSS =M -W =1
(caching-inhibited, write-through,
or cache disabled)

Special instructions:

Chapter 3. L1 Instruction and Data Cache Operation 3-29

Table 3-6. Address/Transfer Attribute Summary (Continued)

Bus Transaction A[0-31] TT[0-4] | TBST | TSIZ[0-2] | GBL | WT Cl
dcbz (addr-only) PA[0-28] || 0b000 01100 0 010 0* 0 1*
dcbi (if HIDO[ABE] = 1, PA[0-26] || 0b00000 | 01100 0 010 -M 0 1*
addr-only)
dcbf (if HIDO[ABE] = 1, PA[0-26] || 0b00000 | 00100 0 010 -M 0 ks
addr-only)
dcbst (if HIDO[ABE] = 1, PA[0-26] || 0b00000 | 00000 0 010 -M 0 1*
addr-only)
sync (if HIDO[ABE] = 1, 0x0000_0000 01000 0 010 0 0 0
addr-only)
eieio (if HIDO[ABE] = 1, 0x0000_0000 10000 0 010 0 0 0
addr-only)
stwex. (always single-beat write) ||PA[0-29] || 0b00 10010 1 100 -M -W Bl
eciwx PA[0-29] || 0b0O 11100 EAR[28-31] 1 0 0
ecowx PA[0-29] || 0b00 10100 EAR[28-31] 1 1 0

Notes:

PA = Physical address, CA = Cache address.

W,I,M = WIM state from address translation; = = complement; 0*or 1* = WIM state implied by transaction type in table
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM].

A = Atomic; high if lwarx, low otherwise

S = Transfer size

Special instructions listed may not generate bus transactions depending on cache state.

3.7 Bus Interface

The bus interface buffers bus requests from the instruction and data caches, and executes
the requests per the 60x bus protocol. It includes address register queues, prioritizing logic,
and bus control logic. The bus interface also captures snoop addresses for snooping in the
cache and in the address register queues, snoops for reservations, and holds the touch load
address for the cache. All data storage for the address register buffers (load and store data
buffers) are located in the cache section. The data buffers are considered temporary storage
for the cache and not part of the bus interface.

3-30 MPC750 RISC Microprocessor User’s Manual

The general functions and features of the bus interface are as follows:
» Seven address register buffers that include the following:
— Instruction cache load address buffer
— Data cache load address buffer

— Two data cache castout/store address buffers (associated data block buffers
located in cache)

— Data cache snoop copy-back address buffer (associated data block buffer located
in cache)

— Reservation address buffer for snoop monitoring
» Pipeline collision detection for data cache buffers
* Reservation address snooping for lwarx/stwcx. instructions
* One-level address pipelining
* Load ahead of store capability

A conceptual block diagram of the bus interface is shown in Figure 3-7. The address
register queues in the figure hold transaction requests that the bus interface may issue on
the bus independently of the other requests. The bus interface may have up to two
transactions operating on the bus at any given time through the use of address pipelining.

> |-Cache [
D-Cache |
> |—
¥ ‘ |
Y Y { !
BIU | [-Cache D-Cache D-Cache D-Cache D-Cache
Control [~ LD Addr LD Addr CST/ST Addr0| | CST/ST Addr 1 SNP Addr
A
Y Y Y / Y
L] Snoop
Control Addr Addr) Data Data
Y Y \ /
L2 or System Bus j

Figure 3-7. Bus Interface Address Buffers

For additional information about the MPC750 bus interface and the bus protocols, refer to
Chapter 8, “System Interface Operation.”

Chapter 3. L1 Instruction and Data Cache Operation 3-31

3.8 MEI State Transactions

Table 3-7 shows MEI state transitions for various operations. Bus operations are described

in Table 3-5.
Table 3-7. MEI State Transitions
Current Next
Operation Oc:gtliin sBl::: wWIiM Cache Cache Cache Actions o Erl:ion
P 4 State State P
Load Read No X0x | Same | 1 Castout of modified | Write-with-kill
(T=0) block (as required)
2 Pass four-beat read Read
to memory queue
Load Read No x0x EM Same Read data from cache —
(T=0)
Load (T = 0) Read No x1x | Same | Passsingle-beatreadto | Read
memory queue
Load (T = 0) Read No x1x E 1 CRTRY read —
Load (T = 0) Read No x1x M | CRTRY read (push Write-with-kill
sector to write queue)
Iwarx Read Acts like other reads but bus operation uses special encoding
Store Write No 00x | Same | Cast out of modified Write-with-kill
(T=0) block (if necessary)
Pass RWITM to RWITM
memory queue
Store Write No 00x E.M M Write data to cache —
(T=0)
Store = stwex. | Write No 10x | Same | Pass single-beat write Write-with-flus
(T=0) to memory queue h
Store # stwex. | Write No 10x E Same | Write data to cache —
T=0
() Pass single-beat write Write-with-flus
to memory queue h
Store = stwex. | Write No 10x M Same | CRTRY write —
T=0
() Push block to write Write-with-kill
queue
Store (T = 0) Write No x1x | Same | Pass single-beat write Write-with-flus
or stwex. to memory queue h
(WIM = 10x)
Store (T = 0) Write No x1x E | CRTRY write —_
or stwex.
(WIM = 10x)
3-32 MPC750 RISC Microprocessor User’s Manual

Table 3-7. MEI State Transitions (Continued)

Cache Bus Current Next Bus
Operation Operation | syne WIM Cache Cache Cache Actions Operatio
P 4 State State P n
Store (T = 0) Write No x1x M | CRTRY write —
or stwex. - - -
(WIM = 10x) Push block to write Write-with-kill
queue
stwex. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation
write uses a special encoding.
dcbf Datacache | No XXX LE Same | CRTRY dcbf —
block flush
Pass flush Flush
Same | State change only —
dcbf Datacache | No XXX M | Push block to write Write-with-kill
block flush queue
dcbst Datacache | No XXX LE Same | CRTRY dcbst —
block store
Pass clean Clean
Same Same | No action —
dcbst Datacache | No XXX M E Push block to write Write-with-kill
block store queue
dcbz Datacache | No x1x X X Alignment trap —
block set to
zero
dcbz Datacache | No 10x X X Alignment trap —
block set to
zero
dcbz Datacache | Yes 00x | Same | CRTRY dcbz —
block set to - —
zero Cast out of modified Write-with-kill
block
Pass kill Kill
Same M Clear block —_
dcbz Datacache | No 00x EM M Clear block —
block set to
zero
dcbt Datacache | No x1x | Same | Passsingle-beatreadto | Read
block touch memory queue
dcbt Datacache | No x1x E | CRTRY read —
block touch
dcbt Datacache | No x1x M | CRTRY read —
block touch - —
Push block to write Write-with-kill
queue

Chapter 3. L1 Instruction and Data Cache Operation 3-33

Table 3-7. MEI State Transitions (Continued)

Current Next
Operation Oc:r(::iin :l:; WiM Cache Cache Cache Actions o Erl;?ion
P v State | State P
dcbt Datacache | No X0x | Same | Cast out of modified Write-with-kill
block touch block (as required)
Pass four-beat read to Read
memory queue
dcbt Datacache | No x0x EM Same No action —
block touch
Single-beat Reload No XXX | Same | Forward data_in —
read dump 1
Four-beat read | Reload No XXX | E Write data_in to cache —
(double-word-al | dump
igned)
Four-beat write | Reload No XXX | M Write data_in to cache —
(double-word-al | dump
igned)
E—I Snoop No XXX E | State change only —
write or kill (committed)
M—I Snoop No XXX M | State change only —
kill (committed)
Push Snoop No XXX M | Conditionally push Write-with-Kill
M—I flush
Push Snoop No XXX M E Conditionally push Write-with-kill
M—E clean
tibie TLB No XXX X X CRTRY TLBI —
invalidate
Pass TLBI —
No action —_
sync Synchroni- | No XXX X X CRTRY sync —_
zation
Pass sync —
No action —

Note that single-beat writes are not snooped in the write queue.

3-34

MPC750 RISC Microprocessor User’s Manual

Chapter 4
Exceptions

The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of unusual conditions arising in the execution of instructions and from external
signals, bus errors, or various internal conditions. When exceptions occur, information
about the state of the processor is saved to certain registers and the processor begins
execution at an address (exception vector) predetermined for each exception. Processing of
exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more
specific condition may be determined by examining a register associated with the
exception—for example, the DSISR and the floating-point status and control register
(FPSCR). Also, software can explicitly enable or disable some exception conditions.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction-
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored
in the machine status save/restore registers, SRR0O and SRR1, soon after the exception is
taken to prevent this information from being lost due to another exception being taken.
Because exceptions can occur while an exception handler routine is executing, multiple
exceptions can become nested. It is up to the exception handler to save the necessary state
information if control is to return to the excepting program.

Chapter 4. Exceptions 41

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. Recognizing and handling exception conditions
sequentially guarantees that the machine state is recoverable and processing can resume
without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

Taken An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor
mode (referred to as privileged state in the architecture
specification).

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term ‘interrupt’ is reserved to refer to asynchronous exceptions and sometimes to
the event that causes the exception. Also, the PowerPC architecture uses the word
‘exception’ to refer to IEEE-defined floating-point exception conditions that may cause a
program exception to be taken; see Section 4.5.7, “Program Exception (0x00700).” The
occurrence of these IEEE exceptions may not cause an exception to be taken. IEEE-defined
exceptions are referred to as IEEE floating-point exceptions or floating-point exceptions.

4.1 MPC750 Microprocessor Exceptions

As specified by the PowerPC architecture, exceptions can be either precise or imprecise and
either synchronous or asynchronous. Asynchronous exceptions are caused by events
external to the processor’s execution; synchronous exceptions are caused by instructions.

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the
system management interrupt, thermal management, and performance monitor exception
are defined, at least to some extent, by the PowerPC architecture.

Table 4-1. MPC750 Microprocessor Exception Classifications

Synchronous/Asynchronous | Precise/Imprecise Exception Types
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, system management interrupt,

performance monitor interrupt, thermal management interrupt

Synchronous Precise Instruction-caused exceptions

4-2 MPC750 RISC Microprocessor User’s Manual

These classifications are discussed in greater detail in Section 4.2, “Exception Recognition
and Priorities.” For a better understanding of how the MPC750 implements precise
exceptions, see Chapter 6, “Instruction Timing.” Exceptions implemented in the MPC750,
and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions

Exception Type Vector Offset Causing Conditions
(hex)
Reserved 00000 —
System reset 00100 Assertion of either HRESET or SRESET or at power-on reset
Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an
address, data, or L2 bus parity error. MSR[ME] must be set.
DSl 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or
cache operations, a DSI exception occurs if a page fault occurs.
ISI 00400 As defined by the PowerPC architecture
External interrupt 00500 MSRIEE] = 1 and INT is asserted
Alignment 00600 + A floating-point load/store, stmw, stwex., Imw, lwarx, eciwx, or ecowx
instruction operand is not word-aligned.
« A multiple/string load/store operation is attempted in little-endian mode
< Anoperand of a dcbz instruction is on a page that is write-through or
cache-inhibited for a virtual mode access.
« An attempt to execute a dcbz instruction occurs when the cache is
disabled.
Program 00700 As defined by the PowerPC architecture
Floating-point 00800 As defined by the PowerPC architecture
unavailable
Decrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the
DEC register changes from 0 to 1 and MSR[EE] = 1
Reserved 00AQ0-00BFF | —
System call 00C00 Execution of the System Call (sc) instruction
Trace 00D00 MSRI[SE] =1 or a branch instruction is completing and MSR[BE] =1. The
MPC750 differs from the OEA by not taking this exception on an isync.
Reserved 00EO00 The MPC750 does not generate an exception to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.
Reserved 00E10-00EFF | —
Performance monitor |00F00 The limit specified in PMCn is met and MMCRO[ENINT] = 1 (MPC750-specific)
Instruction address {01300 IABR[0-29] matches EA[0—29] of the next instruction to complete, IABR[TE]
breakpoint matches MSR][IR], and IABR[BE] = 1 (MPC750-specific)
System management | 01400 MSR[EE] = 1 and SMI is asserted (MPC750-specific)

interrupt

Chapter 4. Exceptions

4-3

Table 4-2. Exceptions and Conditions (Continued)

Exception Type Vector Offset Causing Conditions
(hex)
Reserved 01500-016FF |—
Thermal 01700 Thermal management is enabled, junction temperature exceeds the threshold
management interrupt specified in THRM1 or THRM2, and MSR[EE] = 1 (MPC750-specific)
Reserved 01800-02FFF |—

4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows:

1.

Nonmaskable, asynchronous exceptions have priority over all other exceptions—
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed and do not wait for
completion of any precise exception handling.

Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken. Note that the MPC750 does not implement an exception of this type.

Maskable asynchronous exceptions (external, decrementer, thermal management,
system management, performance monitor, and interrupt exceptions) are delayed
until higher priority exceptions are taken.

The following list of exception categories describes how the MPC750 handles exceptions
up to the point of signaling the appropriate interrupt to occur. Note that a recoverable state
is reached if the completed store queue is empty (drained, not canceled) and any instruction
that is next in program order and has been signaled to complete has completed. If
MSRI[RI] = 0, the MPC750 is in a nonrecoverable state. Also, instruction completion is
defined as updating all architectural registers associated with that instruction, and then
removing that instruction from the completion buffer.

Exceptions caused by asynchronous events (interrupts). These exceptions are further
distinguished by whether they are maskable and recoverable.

— Asynchronous, nonmaskable, nonrecoverable
System reset for assertion of HRESET—Has highest priority and is taken

immediately regardless of other pending exceptions or recoverability. (Includes
power-on reset)

MPC750 RISC Microprocessor User’s Manual

— Asynchronous, maskable, nonrecoverable

Machine check exception—Has priority over any other pending exception
except system reset for assertion of HRESET. Taken immediately regardless of
recoverability.

— Asynchronous, nonmaskable, recoverable

System reset for SRESET—Has priority over any other pending exception
except system reset for HRESET (or power-on reset), or machine check. Taken
immediately when a recoverable state is reached.

— Asynchronous, maskable, recoverable

System management, performance monitor, thermal management, external, and
decrementer interrupts—Before handling this type of exception, the next
instruction in program order must complete. If that instruction causes another
type of exception, that exception is taken and the asynchronous, maskable
recoverable exception remains pending, until the instruction completes. Further
instruction completion is halted. The asynchronous, maskable recoverable
exception is taken when a recoverable state is reached.

* Instruction-related exceptions. These exceptions are further organized into the point
in instruction processing in which they generate an exception.

— Instruction fetch

IST exceptions—Once this type of exception is detected, dispatching stops and
the current instruction stream is allowed to drain out of the machine. If
completing any of the instructions in this stream causes an exception, that
exception is taken and the instruction fetch exception is discarded (but may be
encountered again when instruction processing resumes). Otherwise, once all
pending instructions have executed and a recoverable state is reached, the ISI
exception is taken.

— Instruction dispatch/execution

Program, DSI, alignment, floating-point unavailable, system call, and instruction
address breakpoint—This type of exception is determined during dispatch or
execution of an instruction. The exception remains pending until all instructions
before the exception-causing instruction in program order complete. The
exception is then taken without completing the exception-causing instruction. If
completing these previous instructions causes an exception, that exception takes
priority over the pending instruction dispatch/execution exception, which is then
discarded (but may be encountered again when instruction processing resumes).

— Post-instruction execution

Trace—Trace exceptions are generated following execution and completion of
an instruction while trace mode is enabled. If executing the instruction produces
conditions for another type of exception, that exception is taken and the post-
instruction exception is forgotten for that instruction.

Chapter 4. Exceptions 4-5

Note that these exception classifications correspond to how exceptions are prioritized, as
described in Table 4-3.

Table 4-3. MPC750 Exception Priorities

Priority Exception Cause
Asynchronous Exceptions (Interrupts)
0 System reset Power on reset, assertion of HRESET and TRST (hard reset)

Machine check

Any enabled machine check condition (L1 address or data parity error, L2 data
parity error, assertion of TEA or MCP)

2 System reset Assertion of SRESET (soft reset)
3 System management | Assertion of SMI
4 External interrupt Assertion of INT
5 Performance monitor [Any programmer-specified performance monitor condition
6 Decrementer Decrementer passes through zero
7 Thermal management | Any programmer-specified thermal management condition
Instruction Fetch Exceptions
0 ISI Any IS exception condition
Instruction Dispatch/Execution Exceptions
0 Instruction address Any instruction address breakpoint exception condition
breakpoint
1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception
condition. Note that floating-point enabled program exceptions have lower priority.
2 System call System Call (sc) instruction
3 Floating-point Any floating-point unavailable exception condition
unavailable
4 Program A floating-point enabled exception condition (lowest-priority program exception)
5 DSl DSl exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority
DSl exception conditions are shown below.
6 Alignment Any alignment exception condition, prioritized as follows:
1 Floating-point access not word-aligned
2 Imw, stmw, lwarx, stwcx. not word-aligned
3 eciwx or ecowx not word-aligned
4 Multiple or string access with MSR[LE] set
5 dcbz to write-through or cache-inhibited page or cache is disabled
7 DSI BAT page protection violation
8 DSI Any access except cache operations to a segment where SR[T] = 1 (DSISR[5]) or
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5])
9 DSI TLB page protection violation
10 DSI DABR address match
4-6 MPC750 RISC Microprocessor User’s Manual

Table 4-3. MPC750 Exception Priorities (Continued)

Priority Exception Cause

Post-Instruction Execution Exceptions

11 Trace MSR[SE] = 1 (or MSR[BE] = 1 for branches)

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for an interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable. An exception may not
be taken immediately when it is recognized.

4.3 Exception Processing

When an exception is taken, the processor uses SRRO and SRR1 to save the contents of the
MSR for the current context and to identify where instruction execution should resume after
the exception is handled.

When an exception occurs, the address saved in SRRO helps determine where instruction
processing should resume when the exception handler returns control to the interrupted
process. Depending on the exception, this may be the address in SRRO or at the next address
in the program flow. All instructions in the program flow preceding this one will have
completed execution and no subsequent instruction will have begun execution. This may be
the address of the instruction that caused the exception or the next one (as in the case of a
system call, trace, or trap exception). The SRRO register is shown in Figure 4-1.

SRRO (Holds EA for Instruction in Interrupted Program Flow)

Figure 4-1. Machine Status Save/Restore Register 0 (SRR0)

SRRI is used to save machine status (selected MSR bits and possibly other status bits as
well) on exceptions and to restore those values when an rfi instruction is executed. SRR1
is shown in Figure 4-2.

I Exception-Specific Information and MSR Bit Values

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1)

For most exceptions, bits 24 and 10-12 of SRR1 are loaded with exception-specific
information and MSR[5-9, 16-31] are placed into the corresponding bit positions of SRR1.

The MPC750’s MSR is shown in Figure 4-3.

Chapter 4. Exceptions 4-7

[] Reserved

[0 0.0 0 0 0 0 0 0 0 0 0‘OJPOV*0’ILE{EE‘PH’FP’ME’FEO‘SE‘BE,FE1'OlIP‘IR‘DRIO‘PM’RI‘LEl

0

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4-3. Machine State Register (MSR)

The MSR bits are defined in Table 4-4.

Table 4-4. MSR Bit Settings

Bit(s) | Name Description
0 — Reserved. Full function.’
1-4 —_ Reserved. Partial function.’
59 |— Reserved. Full function.’
10-12 [— Reserved. Partial function.’
13 POW | Power management enable

0 Power management disabled (normal operation mode).

1 Power management enabled (reduced power mode).

Power management functions are implementation-dependent. See Chapter 10, “Power and Thermal

Management.”

14 — Reserved. Implementation-specific

15 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to select the
endian mode for the context established by the exception.

16 EE External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

18 FP Floating-point available

0 The processor prevents dispatch of floating-point instructions, including floating-point loads,
stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.

19 ME Machine check enable

0 Machine check exceptions are disabled.

1 Machine check exceptions are enabled.

20 FEO |IEEE floating-point exception mode 0 (see Table 4-5).
21 SE Single-step trace enable

0 The processor executes instructions normally.

1 The processor generates a single-step trace exception upon the successful execution of every
instruction except rfi, isync, and sc. Successful execution means that the instruction caused
no other exception.

4-8 MPC750 RISC Microprocessor User’s Manual

Table 4-4. MSR Bit Settings (Continued)

Bit(s) | Name Description

22 BE Branch trace enable

0 The processor executes branch instructions normally.

1 The processor generates a branch type trace exception when a branch instruction executes
successfully.

23 FE1 |IEEE floating-point exception mode 1 (see Table 4-5).
24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.
25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended

with Fs or 0s. In the following description, nnnnn is the offset of the exception.
0 Exceptions are vectored to the physical address 0x000n_nnnn.
1 Exceptions are vectored to the physical address 0xFFFn_nnnn.

26 IR Instruction address translation

0 Instruction address translation is disabled.

1 Instruction address translation is enabled.

For more information see Chapter 5, “Memory Management.”

27 DR Data address translation

0 Data address translation is disabled.

1 Data address translation is enabled.

For more information see Chapter 5, “Memory Management.”

28 — Reserved. Full function’

29 PM Performance monitor marked mode

0 Process is not a marked process.

1 Process is a marked process.

MPC750-specific; defined as reserved by the PowerPC architecture. For more information about
the performance monitor, see Section 4.5.13, “Performance Monitor Interrupt (0x00F00).”

30 RI Indicates whether system reset or machine check exception is recoverable.

0 Exception is not recoverable.

1 Exception is recoverable.

The Rl bit indicates whether from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the
interrupted process is recoverable.

31 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

Note:
"Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved
bits are not saved.

The IEEE floating-point exception mode bits (FEO and FE1) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at
all. As shown in Table 4-53, if either FEQ or FE1 are set, theMPC750 treats exceptions as
precise. MSR bits are guaranteed to be written to SRR1 when the first instruction of the
exception handler is encountered. For further details, see Chapter 6, “Exceptions,” of The
Programming Environments Manual.

Chapter 4. Exceptions 4-9

Table 4-5. IEEE Floating-Point Exception Mode Bits

FEO |FE1 Mode

0 0 | Floating-point exceptions disabled

0 1 | Imprecise nonrecoverable. For this setting, the MPC750 operates in floating-point precise mode.

1 0 |Imprecise recoverable. For this setting, the MPC750 operates in floating-point precise mode.

1 1 | Floating-point precise mode

4.3.1 Enabling and Disabling Exceptions

When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

» IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSR[FEO] and MSR[FE1] are cleared. If either bit is set, all IEEE
enabled floating-point exceptions are taken and cause a program exception.

* Asynchronous, maskable exceptions (such as the external and decrementer
interrupts) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of
these exception conditions is delayed. MSR[EE] is cleared automatically when an
exception is taken to delay recognition of conditions causing those exceptions.

* A machine check exception can occur only if the machine check enable bit,
MSRI[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 4-8.

* System reset exceptions cannot be masked.

4.3.2 Steps for Exception Processing

After it is determined that the exception can be taken (by confirming that any instruction-
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. SRRO is loaded with an instruction address that depends on the type of exception.
See the individual exception description for details about how this register is used
for specific exceptions.

2. SRR1[1-4, 10-15] are loaded with information specific to the exception type.

3. SRR1[5-9, 16-31] are loaded with a copy of the corresponding MSR bits.
Depending on the implementation, reserved bits may not be copied.

4-10 MPC750 RISC Microprocessor User’s Manual

4. The MSR is set as described in Table 4-4. The new values take effect as the first
instruction of the exception-handler routine is fetched.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address 0x000n_nnnn. If IP is set, exceptions
are vectored to the physical address OxFFFn_nnnn. For a machine check exception
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the
checkstop state is entered (the machine stops executing instructions). See
Section 4.5.2, “Machine Check Exception (0x00200).”

4.3.3 Setting MSR[RI]
An operating system may handle MSR[RI] as follows:

¢ In the machine check and system reset exceptions—If MSRI[RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

* In each exception handler—When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

* Ineach exception handler—Clear MSR[RI], set SRRO and SRR1 appropriately, and
then execute rfi.

* Note that the RI bit being set indicates that, with respect to the processor, enough
processor state data remains valid for the processor to continue, but it does not
guarantee that the interrupted process can resume.

4.3.4 Returning from an Exception Handler

The Return from Interrupt (rfi) instruction performs context synchronization by allowing
previously-issued instructions to complete before returning to the interrupted process. In
general, execution of the rfi instruction ensures the following:

* All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

» Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

¢ The rfi instruction copies SRR1 bits back into the MSR.

 Instructions fetched after this instruction execute in the context established by this
instruction.

¢ Program execution resumes at the instruction indicated by SRRO

Chapter 4. Exceptions 4-11

For a complete description of context synchronization, refer to Chapter 6, “Exceptions,” of
The Programming Environments Manual.

4.4 Process Switching
The following instructions are useful for restoring proper context during process switching:

* The sync instruction orders the effects of instruction execution. All instructions
previously initiated appear to have completed before the sync instruction completes,
and no subsequent instructions appear to be initiated until the sync instruction
completes. For an example showing use of sync, see Chapter 2, “PowerPC Register
Set,” of The Programming Environments Manual.

e The isync instruction waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation, and
protection) established by the previous instructions.

¢ The stwex. instruction clears any outstanding reservations, ensuring that an lwarx
instruction in an old process is not paired with an stwex. instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.3, “Setting
MSRI[RI].”

4.5 Exception Definitions

Table 4-6 shows all the types of exceptions that can occur with the MPC750 and MSR
settings when the processor goes into supervisor mode due to an exception. Depending on
the exception, certain of these bits are stored in SRR1 when an exception is taken.

Table 4-6. MSR Setting Due to Exception

MSR Bit
Exception Type

POW | ILE |EE |PR|FP [ME |FEO|SE | BE |FE1|IP |IR|DR|PM|RI| LE
System reset 0 —|o0]J]oOof|O|—]O 0| O 0O |—|[O]O]| O]|O]|IE
Machine check 0 —Jl0]J]0]O0]O 0 0|0 0O |—|0])JO0O]|]O0]O]IE
DSI 0 —l0]JO]JOf—]| O 0| O 0O |—]O0] O 0 | O0]ILE
ISI 0 — 10 ojo}—| O 0]0 0O |]—]|]0}]O 0| O0]|ILE
External interrupt 0 —l10}J0jO0|—1|O 0]0 O |—}JO0O|O0O]| O}O]}IE
Alignment 0 — 10 ofo|—] O 0] O 0O |—}|O0} O 0]0]|ILE
Program 0 — 10 00| — 0 0 0 o|—|O0]O 0 | 0]ILE
Floating-point unavailable 0 —Jlo}jojo}j—1}| O 0} o0 0 |—]|0|O0}|O0]|O]|IE
Decrementer interrupt 0 —]l0]J]O0}]JO|—]| O o| o0 0O|—|O0OfjO]|O}foO]|IE
System call 0 —]l]0}l0]J]O0O|—] O o]0 O|—}JoO0|O0}|O0]oO]|IE

4-12 MPC750 RISC Microprocessor User’s Manual

Table 4-6. MSR Setting Due to Exception (Continued)

MSR Bit
Exception Type
POW | ILE |EE |PR|FP |ME |FEO (SE | BE |FE1 | IP [IR[DR|PM|RI| LE
Trace exception 0 — |0 0|0 — 0 0 0 O |—f0foO 0 {0{ILE
System management 0 —|lo0Jofo}|—] O 0] o0 0O (—]J]0}fO 0| 0]IE
Performance monitor 0 — |0 ofof|—1] O 0| O 0O |[—]0fO 0] 0|ILE
Thermal management 0 —l0]O0)]Of—}| O (O) 0O |[—]O0fO 0| 0]ILE

0 Bit is cleared.

ILE Bitis copied from the MSRI[ILE].
— Bit is not altered

Reserved bits are read as if written as 0.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address 0x000rn_nnnn (where nnnnn
is the vector offset); if IP is set, exceptions are vectored to physical address 0xFFFn_nnnn.
Table 4-2 shows the exception vector offset of the first instruction of the exception handler
routine for each exception type.

4.5.1 System Reset Exception (0x00100)

The MPC750 implements the system reset exception as defined in the PowerPC
architecture (OEA). The system reset exception is a nonmaskable, asynchronous exception
signaled to the processor through the assertion of system-defined signals. In the MPC750,
the exception is signaled by the assertion of either the SRESET or HRESET inputs,
described more fully in Chapter 7, “Signal Descriptions.”

Table 4-7 lists register settings when a system reset exception is taken.

Table 4-7. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared

5-9 Loaded with equivalent MSR bits

10-15 Cleared

16-31 Loaded with equivalent MSR bits

Note that if the processor state is corrupted to the extent that execution cannot resume reliably,
MSRI[RI] (SRR1[30]) is cleared.

MSR POW 0 FP 0 BE 0 DR 0
ILE — ME — FE1 0 PM 0
EE 0 FEO O P — Rl 0
PR 0 SE 0 IR 0 LE Setto value of ILE

Chapter 4. Exceptions 4-13

If SRESET is asserted, the processor is first put in a recoverable state. To do this, the
MPC750 allows any instruction at the point of completion to either complete or take an
exception, blocks completion of any following instructions and allows the completion
queue to drain. The state before the exception occurred is then saved as specified in the
PowerPC architecture and instruction fetching begins at the system reset interrupt vector
offset, 0x00100. The vector address on a soft reset depends on the setting of MSR[IP]
(either 0x0000_0100 or 0xFFFO_0100). Soft resets are third in priority, after hard reset and
machine check. This exception is recoverable provided attaining a recoverable state does
not generate a machine check.

SRESET is an edge-sensitive signal that can be asserted and deasserted asynchronously,
provided the minimum pulse width specified in the hardware specifications is met.
Asserting SRESET causes the MPC750 to take a system reset exception. This exception
modifies the MSR, SRRO, and SRR1, as described in The Programming Environments
Manual. Unlike hard reset, soft reset does not directly affect the states of output signals.
Attempts to use SRESET during a hard reset sequence or while the JTAG logic is non-idle
cause unpredictable results.

A hard reset is initiated by asserting HRESET. Hard reset is used primarily for power-on
reset (POR) (in which case TRST must also be asserted), but can also be used to restart a
running processor. The HRESET signal must be asserted during power up and must remain
asserted for a period that allows the PLL to achieve lock and the internal logic to be reset.
This period is specified in the hardware specifications. The MPC750 internal state after the
hard reset interval is defined in Table 2-19. If HRESET is asserted for less than this amount
of time, the results are not predictable. If HRESET is asserted during normal operation, all
operations cease and the machine state is lost.

The MPC750 implements HIDO[NHR], which helps software distinguish a hard reset from
a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software can
set this bit after a hard reset and tell whether a subsequent reset is a hard or soft reset by
examining whether this bit is still set. See Section 2.1.2.2, “Hardware Implementation-
Dependent Register 0.”

4.5.2 Machine Check Exception (0x00200)

The MPC750 implements the machine check exception as defined in the PowerPC
architecture (OEA). It conditionally initiates a machine check exception after an address or
data parity error occurred on the bus or in either the L1 or L2 cache, after receiving a
qualified transfer error acknowledge (TEA) indication on the MPC750 bus, or after the
machine check interrupt (MCP) signal had been asserted. As defined in the OEA, the
exception is not taken if MSR[ME] is cleared, in which case the processor enters checkstop
state.

4-14 MPC750 RISC Microprocessor User’s Manual

Certain machine check conditions can be enabled and disabled using HIDO bits, as
described in Table 4-8.

Table 4-8. HIDO Machine Check Enable Bits

Bit | Name Function

0 EMCP | Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused
by assertion of MCP, similar to how MSR[EE] can mask external interrupts.

0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop.

1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1.

1 DBP | Enable/disable 60x bus address and data parity generation.

0 If address or data parity is not used by the system and the respective parity checking is disabled
(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, do not require pull-up
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity
checking should also be disabled and parity signals need not be connected.

1 Parity generation is enabled.

2 EBA |Enable/disable 60x bus address parity checking.

0 Prevents address parity checking.

1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

3 EBD |Enable 60x bus data parity checking

0 Parity checking is disabled.

1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if
MSR[ME] = 1.

EBA and EBD allow the processor to operate with memory subsystems that do not generate parity.

15 |NHR [Not hard reset (software use only)
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, TEA is expected to be used by a memory controller to indicate that a
memory parity error or an uncorrectable memory ECC error has occurred. Note that the
resulting machine check exception is imprecise and unordered with respect to the
instruction that originated the bus operation.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and
handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot
continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0) or through an invalid translation. If a dcbz instruction
introduces a block into the cache associated with a nonexistent physical address, a machine
check exception can be delayed until an attempt is made to store that block to main memory.
Not all PowerPC processors provide the same level of error checking. Checkstop sources
are implementation-dependent.

Chapter 4. Exceptions 4-15

Machine check exceptions are enabled when MSR[ME] = 1; this is described in the
following section, Section 4.5.2.1, “Machine Check Exception Enabled (MSR[ME] = 1).”
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.
Checkstop state is described in Section 4.5.2.2, “Checkstop State (MSR[ME] = 0).”

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1)

Machine check exceptions are enabled when MSR[ME] = 1. When a machine check
exception is taken, registers are updated as shown in Table 4-9.

Table 4-9. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis the MPC750 can set this to an EA of some instruction that was executing or about to
be executing when the machine check condition occurred.

SRR1 0-10 Cleared

11 Set when an L2 data cache parity error is detected, otherwise zero
12 Set when MCP signal is asserted, otherwise zero

13 Set when TEA signal is asserted, otherwise zero

14 Set when a data bus parity error is detected, otherwise zero

15 Set when an address bus parity error is detected, otherwise zero
16-31 MSR[16-31]

MSR POW 0 FP 0 BE © DR 0
ILE — ME O FE1 0 PM 0
EE O FEO O IP — RI 0
PR O SE 0 IR 0 LE Setto value of ILE

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check excep-
tions cause the processor to enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the context that existed before the exception. If the condition that caused the
machine check does not otherwise prevent continued execution, MSR[ME] is set to allow
the processor to continue execution at the machine check exception vector address.
Typically, earlier processes cannot resume; however, operating systems can use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction fetching resumes at offset 0x00200
from the physical base address indicated by MSR[IP].

4.5.2.2 Checkstop State (MSR[ME] = 0)
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state.
When a processor is in checkstop state, instruction processing is suspended and generally

cannot resume without the processor being reset. The contents of all latches are frozen
within two cycles upon entering checkstop state.

4-16 MPC750 RISC Microprocessor User’s Manual

4.5.3 DSI Exception (0x00300)

A DSI exception occurs when no higher priority exception exists and an error condition
related to a data memory access occurs. The DSI exception is implemented as it is defined
in the PowerPC architecture (OEA). In case of a TLB miss for a load, store, or cache
operation, a DSI exception is taken if the resulting hardware table search causes a page
fault.

On the MPC750, a DSI exception is taken when a load or store is attempted to a direct-store
segment (SR[T] = 1). In the MPC750, a floating-point load or store to a direct-store
segment causes a DSI exception rather than an alignment exception, as specified by the
PowerPC architecture.

The MPC750 also implements the data address breakpoint facility, which is defined as
optional in the PowerPC architecture and is supported by the optional data address
breakpoint register (DABR). Although the architecture does not strictly prescribe how this
facility must be implemented, the MPC750 follows the recommendations provided by the
architecture and described in the Chapter 2, “Programming Model,” and Chapter 6
“Exceptions,” in The Programming Environments Manual.

4.5.4 ISI Exception (0x00400)

An IST exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA), and is taken for the following conditions:

* The effective address cannot be translated.

* The fetch access is to a no-execute segment (SR[N] = 1).
o The fetch access is to guarded storage and MSR[IR] = 1.
» The fetch access is to a segment for which SR[T] is set.
* The fetch access violates memory protection.

When an ISI exception is taken, instruction fetching resumes at offset 0x00400 from the
physical base address indicated by MSR[IP].

4.5.5 External Interrupt Exception (0x00500)

An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the MPC750 takes the
external interrupt exception. If INT is negated early, recognition of the interrupt request is
not guaranteed. After the MPC750 begins execution of the external interrupt handler, the
system can safely negate the INT. When the MPC750 detects assertion of INT, it stops
dispatching and waits for all pending instructions to complete. This allows any instructions
in progress that need to take an exception to do so before the external interrupt is taken.
After all instructions have vacated the completion buffer, the MPC750 takes the external
interrupt exception as defined in the PowerPC architecture (OEA).

Chapter 4. Exceptions 4-17

An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is
cleared when the exception occurs. Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When an external interrupt exception is taken, instruction fetching resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

4.5.6 Alignment Exception (0x00600)

The MPC750 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following occurs:

¢ The operand of a floating-point load or store is not word-aligned.

* The operand of Imw, stmw, Iwarx, or stwcx. is not word-aligned.

* The operand of dcbz is in a page that is write-through or cache-inhibited.
* An attempt is made to execute dcbz when the data cache is disabled.

¢ An eciwx or ecowx is not word-aligned

* A multiple or string access is attempted with MSR[LE] set

Note that in the MPC750, a floating-point load or store to a direct-store segment causes a
DSI exception rather than an alignment exception, as specified by the PowerPC
architecture. For more information, see 4.5.3, “DSI Exception (0x00300).”

4.5.7 Program Exception (0x00700)

The MPC750 implements the program exception as it is defined by the PowerPC
architecture (OEA). A program exception occurs when no higher priority exception exists
and one or more of the exception conditions defined in the OEA occur.

The MPC750 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class. The MPC750 fully decodes the SPR field of
the instruction. If an undefined SPR is specified, a program exception is taken.

The UISA defines mtspr and mfspr with the record bit (Rc) set as causing a program
exception or giving a boundedly-undefined result. In the MPC750, the appropriate
condition register (CR) should be treated as undefined. Likewise, the PowerPC architecture
states that the Floating Compared Unordered (fcmpu) or Floating Compared Ordered
(fempo) instruction with the record bit set can either cause a program exception or provide
a boundedly-undefined result. In the MPC750, an the BF field in an instruction encoding
for these cases is considered undefined.

The MPC750 does not support either of the two floating-point imprecise modes supported
by the PowerPC architecture. Unless exceptions are disabled (MSR[FEQ] = MSR[FE1] =
0), all floating-point exceptions are treated as precise.

4-18 MPC750 RISC Microprocessor User’s Manual

When a program exception is taken, instruction fetching resumes at offset 0x00700 from
the physical base address indicated by MSR[IP]. Chapter 6, “Exceptions,” in The
Programming Environments Manual describes register settings for this exception.

4.5.8 Floating-Point Unavailable Exception (0x00800)

The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction fetching resumes at offset
0x00800 from the physical base address indicated by MSR[IP].

4.5.9 Decrementer Exception (0x00900)

The decrementer exception is implemented in the MPC750 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the MPC750, the decrementer register is
decremented at one fourth the bus clock rate. Register settings for this exception are
described in Chapter 6, “Exceptions,” in The Programming Environments Manual.

When a decrementer exception is taken, instruction fetching resumes at offset 0x00900
from the physical base address indicated by MSR[IP].

4.5.10 System Call Exception (0x00C00)

A system call exception occurs when a System Call (sc) instruction is executed. In the
MPC750, the system call exception is implemented as it is defined in the PowerPC
architecture. Register settings for this exception are described in Chapter 6, “Exceptions,”
in The Programming Environments Manual.

When a system call exception is taken, instruction fetching resumes at offset 0x00CO00 from
the physical base address indicated by MSR[IP].

4.5.11 Trace Exception (0x00D00)

The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently
completing instruction is a branch. Each instruction considered during trace mode
completes before a trace exception is taken. When a trace exception is taken, the values
written to SRR1 are implementation-specific; those values for the MPC750 are shown in
Table 4-10.

Chapter 4. Exceptions 4-19

Table 4-10. Trace Exception—SRR1 Settings

Register Setting
SRR1 0-2 010
3 Set for a load instruction, otherwise cleared
4 Set for a store instruction, otherwise cleared
5-9 Cleared

10 Set for Iswx or stswx, otherwise cleared

11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATs, SRs
12 Set for taken branch, otherwise cleared

13-15 Cleared

16-31 MSR[16-31]

Implementation Note—The MPC750 processor diverges from the PowerPC architecture
in that it does not take trace exceptions on the isync instruction.

When a trace exception is taken, instruction fetching resumes as offset 0x00D0O0 from the
base address indicated by MSR[IP].

4.5.12 Floating-Point Assist Exception (0x00EQ00)

The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the MPC750.

4.5.13 Performance Monitor Interrupt (0x00F00)

The MPC750 microprocessor provides a performance monitor facility to monitor and count
predefined events such as processor clocks, misses in either the instruction cache or the data
cache, instructions dispatched to a particular execution unit, mispredicted branches, and
other occurrences. The count of such events can be used to trigger the performance monitor
exception. The performance monitor facility is not defined by the PowerPC architecture.

The performance monitor can be used for the following:

» To increase system performance with efficient software, especially in a
multiprocessing system. Memory hierarchy behavior must be monitored and studied
to develop algorithms that schedule tasks (and perhaps partition them) and that
structure and distribute data optimally.

* To help system developers bring up and debug their systems.

The performance monitor uses the following SPRs:

* The performance monitor counter registers (PMC1-PMC4) are used to record the
number of times a certain event has occurred. UPMC1-UPMCH4 provide user-level
read access to these registers.

¢ The monitor mode control registers (MMCRO-MMCR]1) are used to enable various
performance monitor interrupt functions. UMMCRO-UMMCRI provide user-level
read access to these registers.

4-20 MPC750 RISC Microprocessor User’s Manual

The sampled instruction address register (SIA) contains the effective address of an
instruction executing at or around the time that the processor signals the
performance monitor interrupt condition. The USIA register provides user-level
read access to the SIA.

Table 4-11 lists register settings when a performance monitor interrupt exception is taken.

Table 4-11. Performance Monitor Interrupt Exception—Register Settings

Register Setting Description

SRRO

Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits
MSR POW 0 FP 0 BE 0 DR ©
ILE — ME — FE1 0 PM 0
EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Setto value of ILE

As with other PowerPC exceptions, the performance monitor interrupt follows the normal
PowerPC exception model with a defined exception vector offset (0xO0F00). The priority
of the performance monitor interrupt lies between the external interrupt and the
decrementer interrupt (see Table 4-3). The contents of the SIA are described in
Section 2.1.2.4, “Performance Monitor Registers.” The performance monitor is described
in Chapter 11, “Performance Monitor.”

4.5.14 Instruction Address Breakpoint Exception (0x01300)
An instruction address breakpoint interrupt occurs when the following conditions are met:

L]

The instruction breakpoint address IABR[0-29] matches EA[0-29] of the next
instruction to complete in program order. The instruction that triggers the instruction
address breakpoint exception is not executed before the exception handler is
invoked.

The translation enable bit (IABR[TE]) matches MSR[IR].

The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to
the JTAG/COP block, which may subsequently generate a soft or hard reset. The
instruction tagged with the match does not complete before the breakpoint exception
is taken.

Chapter 4. Exceptions 4-21

Table 4-12 lists register settings when an instruction address breakpoint exception is taken.

Table 4-12. Instruction Address Breakpoint Exception—Register Settings

Register Setting Description

SRR0O Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared

5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE 0 DR 0
ILE — ME — FE1 0 PM 0
EE 0 FEO 0 P — RI 0
PR 0 SE 0 IR 0 LE Setto value of ILE

The MPC750 requires that an mtspr to the IABR be followed by a context-synchronizing
instruction. The MPC750 cannot generate a breakpoint response for that context-
synchronizing instruction if the breakpoint is enabled by the mtspr(IABR) immediately
preceding it. The MPC750 also cannot block a breakpoint response on the context-
synchronizing instruction if the breakpoint was disabled by the mtspr(IABR) instruction
immediately preceding it. The format of the IABR register is shown in Section 2.1.2.1,
“Instruction Address Breakpoint Register (IABR).”

When an instruction address breakpoint exception is taken, instruction fetching resumes as
offset 0x01300 from the base address indicated by MSR[IP].

4.5.15 System Management Interrupt (0x01400)

The MPC750 implements a system management interrupt exception, which is not defined
by the PowerPC architecture. The system management exception is very similar to the
external interrupt exception and is particularly useful in implementing the nap mode. It has
priority over an external interrupt (see Table 4-3), and it uses a different vector in the
exception table (offset 0x01400).

4-22 MPC750 RISC Microprocessor User’s Manual

Table 4-13 lists register settings when a system management interrupt exception is taken.

Table 4-13. System Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
14 Cleared

5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE 0 DR 0O
ILE — ME — FE1 0 PM 0
EE O FEO O IP —_ RI 0
PR 0 SE 0 IR 0 LE Settovalue of ILE

Like the external interrupt, a system management interrupt is signaled to the MPC750 by
the assertion of an input signal. The system management interrupt signal (SMI) is expected
to remain asserted until the interrupt is taken. If SMI is negated early, recognition of the
interrupt request is not guaranteed. After the MPC750 begins execution of the system
management interrupt handler, the system can safely negate SMI. After the assertion of
SMI is detected, the MPC750 stops dispatching instructions and waits for all pending
instructions to complete. This allows any instructions in progress that need to take an
exception to do so before the system management interrupt is taken.

When a system management interrupt exception is taken, instruction fetching resumes as
offset 0x01400 from the base address indicated by MSR[IP].

Chapter 4. Exceptions 4-23

4.5.16 Thermal Management Interrupt Exception (0x01700)

A thermal management interrupt is generated when the junction temperature crosses a
threshold programmed in either THRM1 or THRM2. The exception is enabled by the TIE
bit of either THRM1 or THRM2, and can be masked by setting MSR[EE].

Table 4-14 lists register settings when a thermal management interrupt exception is taken.

Table 4-14. Thermal Management Interrupt Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 0 Loaded with equivalent MSR bits
1-4 Cleared
5-9 Loaded with equivalent MSR bits
10-15 Cleared
16-31 Loaded with equivalent MSR bits

MSR POW 0 FP 0 BE 0 DR 0
ILE — ME — FE1 0 PM 0
EE © FEO O IP — RI 0
PR 0 SE 0 IR 0 LE Set to value of ILE

The thermal management interrupt is similar to the system management and external
interrupts. The MPC750 requires the next instruction in program order to complete or take
an exception, blocks completion of any following instructions, and allows the completed
store queue to drain. Any exceptions encountered in this process are taken first and the
thermal management interrupt exception is delayed until a recoverable halt is achieved, at
which point the MPC750 saves the machine state, as shown in Table 4-14. When a thermal
management interrupt exception is taken, instruction fetching resumes as offset 0x01700
from the base address indicated by MSR[IP].

Chapter 10, “Power and Thermal Management,” gives details about thermal management.

4-24 MPC750 RISC Microprocessor User’s Manual

Chapter 5
Memory Management

This chapter describes the MPC750 microprocessor’s implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses and I/O
accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU
provides access protection on a segment, block, or page basis. This chapter describes the
specific hardware used to implement the MMU model of the OEA in the MPC750. Refer
to Chapter 7, “Memory Management,” in The Programming Environments Manual for a
complete description of the conceptual model. Note that the MPC750 does not implement
the optional direct-store facility and it is not likely to be supported in future devices.

Two general types of memory accesses generated by PowerPC processors require address
translation—instruction accesses and data accesses generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of the
segment descriptors and page tables PowerPC processors use to locate the
effective-to-physical address mapping for memory accesses. The segment information
translates the effective address to an interim virtual address, and the page table information
translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, are stored as
on-chip segment registers on 32-bit implementations (such as the MPC750). In addition,
two translation lookaside buffers (TLBs) are implemented on the MPC750 to keep
recently-used page address translations on-chip. Although the PowerPC OEA describes one
MMU (conceptually), the MPC750 hardware maintains separate TLBs and table search
resources for instruction and data accesses that can be performed independently (and
simultaneously). Therefore, the MPC750 is described as having two MMUSs, one for
instruction accesses (IMMU) and one for data accesses (DMMU).

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the MPC750, they reside in the
instruction and data MMUs, respectively.

Chapter 5. Memory Management 5-1

The MMUs, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, “Exceptions.” Section 4.3, “Exception Processing,” describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview

The MPC750 implements the memory management specification of the PowerPC OEA for
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to
supervisor and user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits)
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the MPC750 MMU implementation defined by the OEA are as follows:

* Support for real addressing mode—Effective-to-physical address translation can be
disabled separately for data and instruction accesses.

¢ Block address translation—Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 32-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

¢ Segmented address translation—The 32-bit effective address is extended to a 52-bit
virtual address by substituting 24 bits of upper address bits from the segment
register, for the 4 upper bits of the EA, which are used as an index into the segment
register file. This 52-bit virtual address space is divided into 4-Kbyte pages, each of
which can be mapped to a physical page.

The MPC750 also provides the following features that are not required by the PowerPC
architecture:

» Separate translation lookaside buffers (TLBs)—The 128-entry, two-way
set-associative ITLBs and DTLBs keep recently-used page address translations
on-chip.

» Table search operations performed in hardware—The 52-bit virtual address is
formed and the MMU attempts to fetch the PTE, which contains the physical
address, from the appropriate TLB on-chip. If the translation is not found in a TLB
(that is, a TLB miss occurs), the hardware performs a table search operation (using
a hashing function) to search for the PTE.

* TLB invalidation—The MPC750 implements the optional TLB Invalidate Entry
(tlbie) and TLB Synchronize (tlbsync) instructions, which can be used to invalidate
TLB entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.3.2, “TLB Invalidation.”

5-2 MPC750 RISC Microprocessor User's Manual

Table 5-1 summarizes the MPC750 MMU features, including those defined by the
PowerPC architecture (OEA) for 32-bit processors and those specific to the MPC750.

Table 5-1. MMU Feature Summary

Feature Category

Architecturally
Defined/
MPC750-Specific

Feature

Address ranges

Architecturally defined

292 pytes of effective address

252 pytes of virtual address

292 pytes of physical address

Page size

Architecturally defined

4 Kbytes

Segment size

Architecturally defined

256 Mbytes

Block address
translation

Architecturally defined

Range of 128 Kbyte—256 Mbyte sizes

Implemented with IBAT and DBAT registers in BAT array

Memory protection

Architecturally defined

Segments selectable as no-execute

Pages selectable as user/supervisor and read-only or guarded

Blocks selectable as user/supervisor and read-only or guarded

Page history

Architecturally defined

Referenced and changed bits defined and maintained

Page address
translation

Architecturally defined

Translations stored as PTEs in hashed page tables in memory

Page table size determined by mask in SDR1 register

TLBs

Architecturally defined

Instructions for maintaining TLBs (tlbie and tlbsync
instructions in MPC750)

MPC750-specific

128-entry, two-way set associative ITLB
128-entry, two-way set associative DTLB
LRU replacement algorithm

Segment descriptors

Architecturally defined

Stored as segment registers on-chip (two identical copies
maintained)

Page table search
support

MPC750-specific

The MPC750 performs the table search operation in hardware.

Chapter 5. Memory Management

5-3

5.1.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, “Memory Management,” in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, “Effective
Address Calculation.”

5.1.2 MMU Organization

Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit
implementation; note that it does not describe the specific hardware used to implement the
memory management function for a particular processor. Processors may optionally
implement on-chip TLBs, hardware support for the automatic search of the page tables for
PTEs, and other hardware features (invisible to the system software) not shown.

The MPC750 maintains two on-chip TLBs with the following characteristics:

* 128 entries, two-way set associative (64 x 2), LRU replacement

» Data TLB supports the DMMU; instruction TLB supports the IMMU

e Hardware TLB update

* Hardware update of referenced (R) and changed (C) bits in the translation table

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of
a translation table search operation.

Figure 5-2 and Figure 5-3 show the conceptual organization of the MPC750 instruction and
data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by
the processor for sequential instruction fetches and addresses that correspond to a change
of program flow. Data addresses shown in Figure 5-3 are generated by load, store, and
cache instructions.

As shown in the figures, after an address is generated, the high-order bits of the effective
address, EA[0-19] (or a smaller set of address bits, EA[O-#], in the cases of blocks), are
translated into physical address bits PA[0-19]. The low-order address bits, A[20-31], are
untranslated and are therefore identical for both effective and physical addresses. After
translating the address, the MMU s pass the resulting 32-bit physical address to the memory
subsystem.

5-4 MPC750 RISC Microprocessor User's Manual

The MMUSs record whether the translation is for an instruction or data access, whether the
processor is in user or supervisor mode and, for data accesses, whether the access is a load
or a store operation. The MMUs use this information to appropriately direct the address
translation and to enforce the protection hierarchy programmed by the operating system.
Section 4.3, “Exception Processing,” describes the MSR, which controls some of the
critical functionality of the MMUs.

The figures show how address bits A[20-26] index into the on-chip instruction and data
caches to select a cache set. The remaining physical address bits are then compared with
the tag fields (comprised of bits PA[0-19]) of the two selected cache blocks to determine if
a cache hit has occurred. In the case of a cache miss on the MPC750, the instruction or data
access is then forwarded to the L2 interface tags to check for an L2 cache hit. In case of a
miss (and in all cases of an on-chip cache miss on the MPC740) the access is forwarded to
the bus interface unit which initiates an external memory access.

Chapter 5. Memory Management 5-5

Data Instruction

Accesses Accesses
EA[0-19] EA[0-19]
A[20-31]
MMu N -
(32-Bit) G‘r - -t
: EA[4-19] EA[15-19]
EA[0-3]
% CitalN e T TR
IBATOL
. Segment Registers . .
. oo lBAT3U
~ : , » IBAT3L
5 EA[15-19] .
: - : '\X)
Upper 24-Bits | ,
of Virtual Address
. i | EAj0-14]
' OnChip ! > ____DBATOU ___
, TBs L DBATOL
, (Optional) . ‘ C)
T
: DBAT3L Hit
: Page Table :
1 Search Logic e
} (Optional) & PA0-14] ,
. ‘ PA[15-19]
[_som__ |spR2s -
: ‘ PA[0-19]
- A[20-31]

r=a

_, Optional PA[0-31]

L

Figure 5-1. MMU Conceptual Block Diagram—32-Bit Implementations

MPC750 RISC Microprocessor User's Manual

Instruction
Unit Al20-31]
BPU
EA[0-19] IMMU
EA[0-3] Y
EA[O—1 9] IBAT Array
0| Segment Registers ~__IBATOU
Select‘ : EA[0*1 4] IBATOL
15 oo IBATU
IBAT3L
EA[4-19]
ITLB
Y. Y | Cache
[[7
0
0 Tag
Select
A[20-26]
127| PA[0-19]
63 [
Page Table 7 Y
Search Logic
0
» Compare
SDR1 SPR25 1

| Cache
Hit/Miss

PA[0-31]

Figure 5-2. MPC750 Microprocessor IMMU Block Diagram |

Chapter 5. Memory Management 5-7

Load/Store A20-31]
Unit

 pumu

DBAT’A:rﬁéy ,
DBATOU

DBATOL

DBAT3U

DBAT3L

Page Table
Search Logic

SDR1 SPR25

PA[0-31]

D Cache
7
0 Tag
Select |
A[20-26]
127| PA[0-19]
7 Y
0
»| Compare
D Cache
Hit/Miss

Figure 5-3. MPC750 Microprocessor DMMU Block Diagram

5-8 MPC750 RISC Microprocessor User's Manual

5.1.3 Address Translation Mechanisms
PowerPC processors support the following three types of address translation:
* Page address translation—translates the page frame address for a 4-Kbyte page size

* Block address translation—translates the block number for blocks that range in size
from 128 Kbytes to 256 Mbytes.

* Real addressing mode address translation—when address translation is disabled, the
physical address is identical to the effective address.

Figure 5-4 shows the three address translation mechanisms provided by the MMUs. The
segment descriptors shown in the figure control the page address translation mechanism.
When an access uses page address translation, the appropriate segment descriptor is
required. In 32-bit implementations, the appropriate segment descriptor is selected from the
16 on-chip segment registers by the four highest-order effective address bits.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store
interface was present in the architecture only for compatibility with existing I/O devices
that used this interface. However, it is being removed from the architecture, and the
MPC750 does not support it. When an access is determined to be to the direct-store
interface space, the MPC750 takes a DSI exception if it is a data access (see
Section 4.5.3, “DSI Exception (0x00300)”), and takes an ISI exception if it is an instruction
access (see Section 4.5.4, “ISI Exception (0x00400)).

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 32-bit physical address used
by the memory subsystem. In most cases, the physical address for the page resides in an
on-chip TLB and is available for quick access. However, if the page address translation
misses in the on-chip TLB, the MMU causes a search of the page tables in memory (using
the virtual address information and a hashing function) to locate the required physical
address. '

Because blocks are larger than pages, there are fewer upper-order effective address bits to
be translated into physical address bits (more low-order address bits (at least 17) are
untranslated to form the offset into a block) for block address translation. Also, instead of
segment descriptors and a TLB, block address translations use the on-chip BAT registers as
a BAT array. If an effective address matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored.

Chapter 5. Memory Management 5-9

0 31
[CEffective Address |-

Address Translation Disabled
(MSR[IR] = 0, or MSR[DR] = 0)

Y Y

Segment Descriptor Match with BAT
Located Registers
(T=1) ‘ﬂ:m |
Page Address Blgg;é\lgzress
Translation ation
(See Section 5.3)
0 51
l Virtual Address]

Direct-Store Interface
Translation

Real Addressing Mode

,533'; ?ﬁbﬁg Effective Address = Physical Address
DSI/ISI Exception (See Section 5.2)

0 \ 31 0 31 0 31
| Physical Address | | Physical Address | | Physical Address

Figure 5-4. Address Translation Types

When the processor generates an access, and the corresponding address translation enable
bit in MSR is cleared, the resulting physical address is identical to the effective address and
all other translation mechanisms are ignored. Instruction address translation and data
address translation are enabled by setting MSR[IR] and MSR[DR], respectively.

5-10 MPC750 RISC Microprocessor User's Manual

5.1.4 Memory Protection Facilities

In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection
options supported by the MMUs for pages.

Table 5-2. Access Protection Options for Pages

User Read Supervisor Read .
Opti User Supervisor
ption Write Write
I-Fetch Data I-Fetch Data
Supervisor-only — — — N N N
Supervisor-only-no-execute — — — — N N
Supervisor-write-only v N — N N J
Supervisor-write-only-no-execute — N — — \ N
Both (user/supervisor) \/ \/ \I \ +
Both (user-/supervisor) no-execute —_ R v — A «j
Both (user-/supervisor) read-only «/ v — N N —
Both (user/supervisor) — v —_ — N _
read-only-no-execute

 Access permitted
— Protection violation

The no-execute option provided in the segment register lets the operating system program
determine whether instructions can be fetched from an area of memory. The remaining
options are enforced based on a combination of information in the segment descriptor and
the page table entry. Thus, the supervisor-only option allows only read and write operations
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to access the
page. User accesses that map into a supervisor-only page cause an exception.

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded,
preventing out-of-order accesses that may cause undesired side effects. For example, areas
of the memory map used to control I/O devices can be marked as guarded so accesses do
not occur unless they are explicitly required by the program.

For more information on memory protection, see “Memory Protection Facilities,” in
Chapter 7, “Memory Management,” in the The Programming Environments Manual.

Chapter 5. Memory Management 5-11

1
|
|

5.1.5 Page History Information

The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. The operating system can use these bits to determine which areas of memory to write
back to disk when new pages must be allocated in main memory. While these bits are
initially programmed by the operating system into the page table, the architecture specifies
that they can be maintained either by the processor hardware (automatically) or by some
software-assist mechanism.

Implementation Note—When loading the TLB, the MPC750 checks the state of the
changed and referenced bits for the matched PTE. If the referenced bit is not set and the
table search operation is initially caused by a load operation or by an instruction fetch, the
MPC750 automatically sets the referenced bit in the translation table. Similarly, if the table
search operation is caused by a store operation and either the referenced bit or the changed
bit is not set, the hardware automatically sets both bits in the translation table. In addition,
when the address translation of a store operation hits in the DTLB, the MPC750 checks the
state of the changed bit. If the bit is not already set, the hardware automatically updates the
DTLB and the translation table in memory to set the changed bit. For more information, see
Section 5.4.1, “Page History Recording.”

5.1.6 General Flow of MMU Address Translation

The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data

translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used

(physical address equals effective address) and the access continues to the memory

subsystem as described in Section 5.2, “Real Addressing Mode.”

Figure 5-5 shows the flow the MMUs use in determining whether to select real addressing
mode, block address translation, or the segment descriptor to select page address
translation.

5-12 MPC750 RISC Microprocessor User's Manual

Instruction
Translation Disabled
(MSRIIR] = 0)

Perform Real
Addressing Mode
Translation

Perform Address
Translation with Segment
Descriptor

(See Figure 5-6)

Effective Address
Generated

I-Access D-Access

Instruction Data
Translation Enabled

Translation Enabled

(MSR[IR] = 1) \T/ (MSR[DR] = 1)

Compare Address with
Instruction or Data BAT Array
(As Appropriate)

BAT Array

Access Faulted

BAT Array
Miss Hit

Access
Protected

Data
Translation Disabled
(MSR[DR] = 0,

Perform Real
Addressing Mode
Translation

(See The Programming
Environments Manual)

Access

Permitted \‘

I Translate Address |

Continue Access
to Memory
Subsystem

Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISI or DSI

exception) is generated.

Chapter 5. Memory Management

5-13

5.1.6.2 Page Address Translation Selection

If address translation is enabled and the effective address information does not match a BAT
array entry, the segment descriptor must be located. When the segment descriptor is located,
the T bit in the segment descriptor selects whether the translation is to a page or to a
direct-store segment as shown in Figure 5-6. For 32-bit implementations, the segment
descriptor for an access is contained in one of 16 on-chip segment registers; effective
address bits EA[0-3] select one of the 16 segment registers.

Note that the MPC750 does not implement the direct-store interface, and accesses to these
segments cause a DSI or ISI exception. In addition, Figure 5-6 also shows the way in which
the no-execute protection is enforced; if the N bit in the segment descriptor is set and the
access is an instruction fetch, the access is faulted as described in Chapter 7, “Memory
Management,” in The Programming Environments Manual. Note that the figure shows the
flow for these cases as described by the PowerPC OEA, and so the TLB references are
shown as optional. Because the MPC750 implements TLBs, these branches are valid and
are described in more detail throughout this chapter.

5-14 MPC750 RISC Microprocessor User's Manual

Address Translation with
Segment Descriptor

Use EA[0-3] to
Select One of 16 On-Chip
Segment Registers

Check T-Bit in
Segment Descriptor

/\ Direct-Store
Page Address S

egment Address
Translation (T=1)
(T=0)

Otherwise

DSI/ISI Exception

I-Fetch with N-Bit Set in
Generate 52-Bit Virtual Address Segment Descriptor
from Segment Descriptor (No-Execute)
, Compare Virtual Address with |
| TLB Entries 1
LB /é Tl
Miss Tl
N 1] —
it ~ - SSee Figure 5-8)
Perform Page Table : ' el -
Search Operation (See Figure 59 Tl
/O\ Access
Access

KPermitted

PTE Found l Translate AddressJ

U Continue Access to
Memory Subsystem

I Load TLB Entry
- — — - Optional to the PowerPC architecture. Implemented in the MPC750.

Access Faulted

a

_______ K *In the case of
instruction accesses,
causes IS| exception

Figure 5-6. General Flow of Page and Direct-Store Interface Address Translation

Chapter 5. Memory Management

5-15

If SR[T] =0, page address translation is selected. The information in the segment descriptor
is then used to generate the 52-bit virtual address. The virtual address is then used to
identify the page address translation information (stored as page table entries (PTEs) in a
page table in memory). For increased performance, the MPC750 has two on-chip TLBs to
cache recently-used translations on-chip.

If an access hits in the appropriate TLB, page translation succeeds and the physical address
bits are forwarded to the memory subsystem. If the required translation is not resident, the
MMU performs a search of the page table. If the required PTE is found, a TLB entry is
allocated and the page translation is attempted again. This time, the TLB is guaranteed to
hit. When the translation is located, the access is qualified with the appropriate protection
bits. If the access causes a protection violation, either an ISI or DSI exception is generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISI or DSI exception occurs so software can handle the page fault.

5.1.7 MMU Exceptions Summary

To complete any memory access, the effective address must be translated to a physical
address. As specified by the architecture, an MMU exception condition occurs if this
translation fails for one of the following reasons:

» Page fault—there is no valid entry in the page table for the page specified by the
effective address (and segment descriptor) and there is no valid BAT translation.

* An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the IST or the DSI exception to be taken as shown in Table 5-3.

The state saved by the processor for each of these exceptions contains information that
identifies the address of the failing instruction. Refer to Chapter 4, “Exceptions,” for a more
detailed description of exception processing.

5-16 MPC750 RISC Microprocessor User's Manual

Table 5-3. Translation Exception Conditions

Condition

Description

Exception

Page fault (no PTE found)

No matching PTE found in page tables (and
no matching BAT array entry)

| access: IS| exception
SRR1[1] = 1

D access: DSI exception
DSISR[1] =1

Block protection violation

Conditions described for block in “Block
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual .

| access: IS| exception
SRR1[4] = 1

D access: DSI exception
DSISR[4] =1

Page protection violation

Conditions described for page in “Page
Memory Protection” in Chapter 7, “Memory
Management,” in The Programming
Environments Manual.

| access: IS| exception
SRR1[4] =1

D access: DSI exception

DSISR[4] =1
No-execute protection violation | Attempt to fetch instruction when SR[N] = 1 I1SI exception

SRR1[3] = 1
Instruction fetch from Attempt to fetch instruction when SR[T] = 1 I1SI exception
direct-store segment SRR1[3] =1

Data access to direct-store

Attempt to perform load or store (including FP

DSl exception

matching BAT entry and PTE[G] = 1

segment (including load or store) when SR[T] = 1 DSISR[5] =1
floating-point accesses)

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] =1 | ISl exception
memory and either matching xBAT[G] = 1, or no SRR1[3] =1

In addition to the translation exceptions, there are other MMU-related conditions (some of
them defined as implementation-specific, and therefore not required by the architecture)
that can cause an exception to occur. These exception conditions map to processor
exceptions as shown in Table 5-4. The only MMU exception conditions that occur when
MSR[DR] = 0 are those that cause an alignment exception for data accesses. For more
detailed information about the conditions that cause an alignment exception (in particular
for string/multiple instructions), see Section 4.5.6, “Alignment Exception (0x00600).”

Note that some exception conditions depend upon whether the memory area is set up as
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in
“Memory/Cache Access Attributes,” in Chapter 5, “Cache Model and Memory Coherency,”
of The Programming Environments Manual. Refer to Chapter 4, “Exceptions,” and to
Chapter 6, “Exceptions,” in The Programming Environments Manual for a complete
description of the SRR1 and DSISR bit settings for these exceptions.

Chapter 5. Memory Management 5-17

Table 5-4. Other MMU Exception Conditions for the MPC750 Processor

Condition Description Exception
dcbz withW=1o0rl=1 dcbz instruction to write-through or Alignment exception (not
cache-inhibited segment or block required by architecture for
this condition)
Iwarx or stwex. with W = 1 Reservation instruction to write-through DSI exception
segment or block DSISR[5] =1
Iwarx, stwex., eciwx, or ecowx Reservation instruction or external control DSI exception
instruction to direct-store segment | instruction when SR[T] =1 DSISR[5] =1
Floating-point load or store to FP memory access when SR[T] =1 See data access to
direct-store segment direct-store segment in
Table 5-3.
Load or store that results in a Does not occur in MPC750 Does not apply
direct-store error
eciwx or ecowx attempted when | eciwx or ecowx attempted with EAR[E] = 0 DSl exception
external control facility disabled DSISR[11] = 1
Imw, stmw, Iswi, Iswx, stswi, or Imw, stmw, Iswi, Iswx, stswi, or stswx Alignment exception
stswx instruction attempted in instruction attempted while MSR[LE] = 1
little-endian mode
Operand misalignment Translation enabled and a floating-point Alignment exception (some
load/store, stmw, stwcex., Imw, lwarx, eciwx, | of these cases are
or ecowx instruction operand is not implementation-specific)
word-aligned

5.1.8 MMU Instructions and Register Summary

The MMU instructions and registers allow the operating system to set up the block address
translation areas and the page tables in memory.

Note that because the implementation of TLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table, the architecture specifies a software protocol for maintaining coherency between
these caches and the tables in memory whenever the tables in memory are modified. When
the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

Note that the MPC750 implements all TLB-related instructions except tlbia, which is
treated as an illegal instruction.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be encapsulated into subroutines
to minimize the impact of migrating across the family of implementations.

5-18 MPC750 RISC Microprocessor User's Manual

Table 5-5 summarizes MPC750 instructions that specifically control the MMU. For more
detailed information about the instructions, refer to Chapter 2, “MPC750 Processor
Programming Model,” in this book and Chapter 8, “Instruction Set,” in The Programming
Environments Manual

Table 5-5. MPC750 Microprocessor Instruction Summary—Control MMUs

Instruction Description

mtsr SR,rS Move to Segment Register
SR[SR#]¢—rS

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[0-3]]<—rS

mfsr rD,SR Move from Segment Register
rD<—SR[SR#]

mfsrin rD,rB Move from Segment Register Indirect
rD<—SR[rB[0-3]]

tibie rB* TLB Invalidate Entry

For effective address specified by rB, TLB[V]<—0

The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to
bits 14—19 of the EA.

In addition, depending on the setting of HIDxx, execution of this instruction causes all entries in
the congruence class corresponding to the EA to be invalidated in the other processors attached
to the same bus.

Software must ensure that instruction fetches or memory references to the virtual pages specified
by the tlbie instruction have been completed prior to executing the tlbie instruction.

tibsync* TLB Synchronize

Synchronizes the execution of all other tlbie instructions in the system. In the MPC750, when the
TLBISYNC signal is negated, instruction execution may continue or resume after the completion
of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after
the completion of a tibsync instruction.

*These instructions are defined by the PowerPC architecture, but are optional.

Table 5-6 summarizes the registers that the operating system uses to program the MPC750
MMUs. These registers are accessible to supervisor-level software only. These registers are
described in Chapter 2, “MPC750 Processor Programming Model.”

Chapter 5. Memory Management 5-19

Table 5-6. MPC750 Microprocessor MMU Registers

Register Description
Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted

differently depending on the value of bit 0. The segment registers are accessed by
the mtsr, mtsrin, mfsr, and mfsrin instructions.

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL—IBAT3L) and four pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined
DBATOU-DBAT3U, and as 32-bit registers in 32-bit implementations. These are special-purpose registers
DBATOL-DBAT3L) that are accessed by the mtspr and mfspr instructions.

SDR1 The SDR1 register specifies the variables used in accessing the page tables in

memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This
special-purpose register is accessed by the mtspr and mfspr instructions.

5.2 Real Addressing Mode

If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, “Memory Management,” in The Programming
Environments Manual.

Note that the default WIMG bits (0b0011) cause data accesses to be considered cacheable
(I=0) and thus load and store accesses are weakly ordered. This is the case even if the data
cache is disabled in the HIDO register (as it is out of hard reset). If I/O devices require load
and store accesses to occur in strict program order (strongly ordered), translation must be
enabled so that the corresponding I bit can be set. Note also, that the G bit must be set to
ensure that the accesses are strongly ordered. For instruction accesses, the default memory
access mode bits (WIMG) are also 0b0011. That is, instruction accesses are considered
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are considered
cacheable even if the instruction cache is disabled in the HIDO register (as it is out of hard
reset). The W and M bits have no effect on the instruction cache.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section2.3.2.4, “Synchronization,” in this manual, and
“Synchronization Requirements for Special Registers and for Lookaside Buffers” in
Chapter 2, “PowerPC Register Set,” in The Programming Environments Manual.

5-20 MPC750 RISC Microprocessor User's Manual

5.3 Block Address Translation

The block address translation (BAT) mechanism in the OEA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the MPC750 is described in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.

Implementation Note—The MPC750 BAT registers are not initialized by the hardware
after the power-up or reset sequence. Consequently, all valid bits in both instruction and
data BAT's must be cleared before setting any BAT for the first time. This is true regardless
of whether address translation is enabled. Also, software must avoid overlapping blocks
while updating a BAT or areas. Even if translation is disabled, multiple BAT hits are treated
as programming errors and can corrupt the BAT registers and produce unpredictable results.

5.4 Memory Segment Model

The MPC750 adheres to the memory segment model as defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual for 32-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (52 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, “Block Address Translation.” If not,
the translation proceeds in the following two steps:

1. from effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. from virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the MPC750.

5.4.1 Page History Recording

Referenced (R) and changed (C) bits in each PTE keep history information about the page.
They are maintained by a combination of the MPC750 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that

Chapter 5. Memory Management 5-21

correspond to direct-store (T = 1) segments. Furthermore, R and C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).
In the MPC750, the referenced and changed bits are updated as follows:

» For TLB hits, the C bit is updated according to Table 5-7.

* For TLB misses, when a table search operation is in progress to locate a PTE. The
R and C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-7. Table Search Operations to Update History Bits—TLB Hit Case

r:‘.ar:‘; (I:E:tllt; Processor Action
00 Combination doesn’t occur
01 Combination doesn’t occur
10 Read: No special action
Write: The MPC750 initiates a table search operation to update C.
11 No special action for read or write

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in
the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

The dcbt and dcbtst instructions can execute if there is a TLB/BAT hit or if the processor
is in real addressing mode. In case of a TLB or BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). If these update accesses hit in the
data cache, they are not seen on the external bus. If they miss in the data cache, they are
performed as typical cache line fill accesses on bus (assuming the data cache is enabled).

5.4.1.1 Referenced Bit

The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the MPC750 sets the R bit
in the page table. The OEA specifies that the referenced bit may be set immediately, or the
setting may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
MPC750 TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the

5-22 MPC750 RISC Microprocessor User's Manual

program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

» Fetching of instructions not subsequently executed

* A memory reference caused by a speculatively executed instruction that is
mispredicted

* Accesses generated by an Iswx or stswx instruction with a zero length

* Accesses generated by an stwex. instruction when no store is performed because a
reservation does not exist

» Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit

The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the MPC750). Whenever a data
store instruction is executed successfully, if the TLB search (for page address translation)
results in a hit, the changed bit in the matching TLB entry is checked. If it is already set, it
is not updated. If the TLB changed bit is 0, the MPC750 initiates the table search operation
to set the C bit in the corresponding PTE in the page table. The MPC750 then reloads the
TLB (with the C bit set).

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

* The execution of an stwex. instruction is allowed by the memory protection
mechanism but a store operation is not performed.

* The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
Zero.

» The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the dcbt and dcbtst instructions may cause the
R bit to be set, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording

This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the MPC750 updates the R and C bits in memory,

Chapter 5. Memory Management 5-23

the accesses are performed as if MSR[DR] = 0 and G = O (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by
store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-8. Model for Guaranteed R and C Bit Settings

Causes Setting of R Bit | Causes Setting of C Bit
Priority Scenario
OEA MPC750 OEA MPC750

1 No-execute protection violation No No No No
2 Page protection violation Maybe Yes No No
3 Out-of-order instruction fetch or load operation Maybe No No No
4 Out-of-order store operation. Would be required Maybe' No No No

by the sequential execution model in the absence

of system-caused or imprecise exceptions, or of

floating-point assist exception for instructions that

would cause no other kind of precise exception.
5 All other out-of-order store operations Maybe! No Maybe' No
6 Zero-length load (Iswx) Maybe No No No
7 Zero-length store (stswx) Maybe! No Maybe' No
8 Store conditional (stwcex.) that does not store Maybe' Yes Maybe' Yes
9 In-order instruction fetch Yes? Yes No No
10 Load instruction or eciwx Yes Yes No No
11 Store instruction, ecowx or debz instruction Yes Yes Yes Yes
12 icbi, debt, or debtst instruction Maybe No No No
13 dcbst or dcbf instruction Maybe Yes No No
14 | dcbi instruction Maybe' Yes Maybe' Yes

Notes:
T1f C is set, R is guaranteed to be set also.
2 Includes the case in which the instruction is fetched out of order and R is not set (does not apply for MPC750).

5-24 MPC750 RISC Microprocessor User's Manual

For more information, see ‘“Page History Recording” in Chapter 7, “Memory
Management,” of The Programming Environments Manual.

5.4.2 Page Memory Protection

The MPC750 implements page memory protection as it is defined in Chapter 7, “Memory
Management,” in The Programming Environments Manual.

5.4.3 TLB Description

The MPC750 implements separate 128-entry data and instruction TLBs to maximize
performance. This section describes the hardware resources provided in the MPC750 to
facilitate page address translation. Note that the hardware implementation of the MMU is
not specified by the architecture, and while this description applies to the MPC750, it does
not necessarily apply to other PowerPC processors.

5.4.3.1 TLB Organization

Because the MPC750 has two MMUs (IMMU and DMMU) that operate in parallel, some
of the MMU resources are shared, and some are actually duplicated (shadowed) in each
MMU to maximize performance. For example, although the architecture defines a single
set of segment registers for the MMU, the MPC750 maintains two identical sets of segment
registers, one for the IMMU and one for the DMMU; when an instruction that updates the
segment register executes, the MPC750 automatically updates both sets.

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address
is being translated, a set of two TLB entries is indexed in parallel with the access to a
segment register. If the address in one of the two TLB entries is valid and matches the 40-bit
virtual page number, that TLB entry contains the translation. If no match is found, a TLB
miss occurs.

Chapter 5. Memory Management 5-25

EA[0-31] Segment Registers

078 31
0
EA[0-3] AR . VSID
5T vsID
EA[4-13]
DTLB
[v[|
ofv]
Line0 | -
-C m .
EA[14-19] Select |+ ® : T pare
63 Line1/Line 0 Hit
RPN

> PA0-19]

Figure 5-7. Segment Register and DTLB Organization

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into the TLB entry selected by the
least-recently-used (LRU) replacement algorithm, and the translation process begins again,
this time with a TLB hit.

To uniquely identify a TLB entry as the required PTE, the PTE also contains four more bits
of the page index, EA[0-13] (in addition to the API bits in of the PTE).

Software cannot access the TLB arrays directly, except to invalidate an entry with the tlbie
instruction.

5-26 MPC750 RISC Microprocessor User's Manual

Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any
time either entry is used, even if the access is speculative. Invalid entries are always the first
to be replaced.

Although both MMUs can be accessed simultaneously (both sets of segment registers and
TLBs can be accessed in the same clock), only one exception condition can be reported at
a time. ITLB miss exceptions are reported when there are no more instructions to be
dispatched or retired (the pipeline is empty), and DTLB miss conditions are reported when
the load or store instruction is ready to be retired. Refer to Chapter 6, “Instruction Timing,”
for more detailed information about the internal pipelines and the reporting of exceptions.

When an instruction or data access occurs, the effective address is routed to the appropriate
MMU. EAO-EA3 select one of the 16 segment registers and the remaining effective address
bits and the VSID field from the segment register is passed to the TLB. EA[14-19] then
select two entries in the TLB; the valid bits are checked and the 40-bit virtual page number
(24-bit VSID and EA4-EA19]) must match the VSID, EAPI, and API fields of the TLB
entries. If one of the entries hits, the PP bits are checked for a protection violation. If these
bits don’t cause an exception, the C bit is checked and a table search operation is initiated
if C must be updated. If C does not require updating, the RPN value is passed to the memory
subsystem and the WIMG bits are then used as attributes for the access.

Although address translation is disabled on a reset condition, the valid bits of TLB entries
are not automatically cleared. Thus, TLB entries must be explicitly cleared by the system
software (with the tlbie instruction) before the valid entries are loaded and address
translation is enabled. Also, note that the segment registers do not have a valid bit, and so
they should also be initialized before translation is enabled.

5.4.3.2 TLB Invalidation

The MPC750 implements the optional tlbie and tlbsync instructions, which are used to
invalidate TLB entries. The execution of the tlbie instruction always invalidates four
entries—both the ITLB and DTLB entries indexed by EA[14-19].

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in
hardware so that other processors also invalidate their resident copies of the matching PTE.
The MPC750 does not signal the TLB invalidation to other processors nor does it perform
any action when a TLB invalidation is performed by another processor.

The tlbsync instruction causes instruction execution to stop if the TLBISYNC signal is
asserted. If TLBISYNC is negated, instruction execution may continue or resume after the
completion of a tlbsync instruction. Section 8.8.2, “TLBISYNC Input,” describes the TLB
synchronization mechanism in further detail.

The tlbia instruction is not implemented on the MPC750 and when its opcode is
encountered, an illegal instruction program exception is generated. To invalidate all entries
of both TLBs, 64 tlbie instructions must be executed, incrementing the value in

Chapter 5. Memory Management 5-27

EA14-EA19 by one each time. See Chapter 8, “Instruction Set,” in The Programming
Environments Manual for detailed information about the tlbie instruction.

Software must ensure that instruction fetches or memory references to the virtual pages
specified by the tlbie have been completed prior to executing the tlbie instruction.

Other than the possible TLB miss on the next instruction prefetch, the tlbie instruction does
not affect the instruction fetch operation—that is, the prefetch buffer is not purged and does
not cause these instructions to be refetched.

5.4.4 Page Address Translation Summary
Figure 5-8 provides the detailed flow for the page address translation mechanism.

The figure includes the checking of the N bit in the segment descriptor and then expands
on the ‘TLB Hit’ branch of Figure 5-6. The detailed flow for the ‘TLB Miss’ branch of
Figure 5-6 is described in Section 5.4.5, “Page Table Search Operation.” Note that as in the
case of block address translation, if an attempt is made to execute a dcbz instruction to a
page marked either write-through or caching-inhibited (W = 1 or I=1), an alignment
exception is generated. The checking of memory protection violation conditions is
described in Chapter 7, “Memory Management,” in The Programming Environments
Manual.

5-28 MPC750 RISC Microprocessor User's Manual

Effective Address
Generated

(See Figure 5-6)

Otherwise

Instruction Fetch with N-Bit
Set in Segment Descriptor

Page Address (No-Execute)
Translation \

Generate 52-Bit Virtual Address
from Segment Descriptor

Compare Virtual Address
with TLB Entries

TLB Hit Case

dcbz Instruction
withWorl=1 Otherwise

Alignment Exception

Check Page Memory
Protection Violation Conditions

(See The Programming
Environments Manual) (See The
Programming
Environments
- - Manual)
Access Permitted Access Prohibited

Store Access with X
PTE[C] =0 Otherwise

Page Memory
Protection Violation

| PA0-31]¢—RPNJA[20-31] |

Page Table
Search Operation

(See Figure 5-9) ‘
Continue Access to Memory Sub-
system with WIMG-Bits from PTE

Figure 5-8. Page Address Translation Flow—TLB Hit

Chapter 5. Memory Management 5-29

5.4.5 Page Table Search Operation

If the translation is not found in the TLBs (a TLB miss), the MPC750 initiates a table search
operation which is described in this section. Formats for the PTE are given in “PTE Format
for 32-Bit Implementations,” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

The following is a summary of the page table search process performed by the MPC750:

1.

The 32-bit physical address of the primary PTEG is generated as described in “Page
Table Addresses” in Chapter 7, “Memory Management,” of The Programming
Environments Manual.

The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads occur
with an implied WIM memory/cache mode control bit setting of 0b001. Therefore,
they are considered cacheable and read (burst) from memory and placed in the
cache.

The PTE in the selected PTEG is tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

— PTE[H] =0

— PTE[V] =1

— PTE[VSID] = VA[0-23]

— PTE[API] = VA[24-29]

If a match is not found, step 3 is repeated for each of the other seven PTEs in the
primary PTEG. If a match is found, the table search process continues as described

in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the address
of the secondary PTEG is generated.

The first PTE (PTEO) in the secondary PTEG is read from memory. Again, because
PTE reads have a WIM bit combination of 0b001, an entire cache line is read into
the on-chip cache.

. The PTE in the selected secondary PTEG is tested for a match with the virtual page

number (VPN) of the access. For a match to occur, the following must be true:
— PTE[H] =1

— PTE[V] =1

— PTE[VSID] = VA[0-23]

— PTE[API] = VA[24-29]

If a match is not found, step 6 is repeated for each of the other seven PTEs in the
secondary PTEG. If it is never found, an exception is taken (step 9).

5-30

MPC750 RISC Microprocessor User's Manual

8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated
in the PTE in memory (if necessary). If there is no memory protection violation, the ‘
C bit is also updated in memory (if the access is a write operation) and the table
search is complete.

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails,
and a page fault exception condition occurs (either an ISI exception or a DSI
exception).

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary
page table search operations, described in The Programming Environments Manual, are
realized in the MPC750.

Figure 5-9 shows the case of a dcbz instruction that is executed with W=1orI =1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

Chapter 5. Memory Management 5-31

Primary Page
Table Search

Generate PA Using Primary Hash Function
PA < Base PA of PTEG

Y

Fetch PTE from PTEG

PA < PA+8 Fetch PTE (64-Bits)
(Fetch Next PTE in PTEG) from PA

Otherwise PTE [VSID, AP, H, V] =
Segment Descriptor [VSID], EA[API], 0, 1

Sitervse Secondary Page Table
Last PTE in PTEG PTE[R] - 1 PTE[R] =0 Search Hit
\1 (From Figure 5-10)
Perform Secondary
Page Table Search PTE[R] < 1
R_Flag <1
Write PTE into
TLB
Otherwise debz Instruction
withWorl=1
i Otherwise
heck Memory Protection _
Violation Conditions R_Flalg =1
PTE[R] «1 (Update
Access Permitted PTE[R] in Memory)

Access Prohibited

- /O/Slore Operation
Oterwise itn PTE[C] = 0 \T\
Otherwise/T/ Otherwise

Alignment Exception

R_Flag =1 TLBIPTE[C]] « 1 R Flag =1
PTE[C] 1
PTE[R] «1 - PTER] 1
(Update PTE[C] in Memory))
‘“;dﬁ“;;fgf)‘“‘ Also Update PTE[R] (Update PTE[R]in
¢ in Memory if R_Flag = 1 Memory)

I

Page Table Memory Protection
Search Complete Violation

Figure 5-9. Primary Page Table Search

Page Table
Search Complete

5-32 MPC750 RISC Microprocessor User's Manual

Secondary Page
Table Search

Generate PA Using Primary Hash Function
PA < Base PA of PTEG

Fetch PTE from PTEG

A

PA « PA+8 Fetch PTE (64-Bits)
(Fetch Next PTE in PTEG) from PA

Otherwise PTE [VSID, API, H, V] =

Segment Descriptor [VSID], EA[API], 1, 1
Otherwise/O/\‘
Secondary Page Table
Search Hit

Last PTE in PTEG
Page Fault (See Figure 5-9)

Instruction Access Data Access
Set SRR1[1] =1
ISI Exception

Figure 5-10. Secondary Page Table Search Flow

Set DSISR[T] = 1

DS Exception

The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so.
Therefore, the MMU does not perform hardware table search due to TLB misses until the
request is required by the program flow. In these out-of-order cases, the MMU does detect
protection violations and whether a dcbz instruction specifies a page marked as
write-through or cache-inhibited. The MMU also detects alignment exceptions caused by
the dcbz instruction and prevents the changed bit in the PTE from being updated
erroneously in these cases.

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU
stalls for one translation cycle to perform that operation. The sequencer serializes
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer
classifies those operations as fetch serializing. After such an instruction is dispatched, the
instruction buffer is flushed and the fetch stalls until the instruction completes. However,
for reading from the IBATS, the operation is classified as execution serializing. As long as
the LSU ensures that all previous instructions can be executed, subsequent instructions can
be fetched and dispatched.

Chapter 5. Memory Management 5-33

5.4.6 Page Table Updates

When TLBs are implemented (as in the MPC750) they are defined as noncoherent caches
of the page tables. TLB entries must be flushed explicitly with the TLB invalidate entry
instruction (tlbie) whenever the corresponding PTE is modified. As the MPC750 is
intended primarily for uniprocessor environments, it does not provide coherency of TLBs
between multiple processors. If the MPC750 is used in a multiprocessor environment
where TLB coherency is required, all synchronization must be implemented in software.

Processors may write referenced and changed bits with unsynchronized, atomic byte store
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore,
extreme care must be taken to use byte writes when updating only one of these bits.

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering
PTEs, or certain system registers, may have the side effect of changing the effective or
physical addresses from which the current instruction stream is being fetched. This kind of
side effect is defined as an implicit branch. Implicit branches are not supported and an
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not be
changed in a manner that causes an implicit branch. Chapter 2, “PowerPC Register Set,” in
The Programming Environments Manual, lists the possible implicit branch conditions that
can occur when system registers and MSR bits are changed.

5.4.7 Segment Register Updates

Synchronization requirements for using the move to segment register instructions are
described in “Synchronization Requirements for Special Registers and for Lookaside
Buffers” in Chapter 2, “PowerPC Register Set,” in The Programming Environments
Manual.

5-34 MPC750 RISC Microprocessor User's Manual

Chapter 6
Instruction Timing

This chapter describes how the MPC750 microprocessor fetches, dispatches, and executes
instructions and how it reports the results of instruction execution. It gives detailed
descriptions of how the MPC750 execution units work, and how those units interact with
other parts of the processor, such as the instruction fetching mechanism, register files, and
caches. It gives examples of instruction sequences, showing potential bottlenecks and how
to minimize their effects. Finally, it includes tables that identify the unit that executes each
instruction implemented on the MPC750, the latency for each instruction, and other
information that is useful for the assembly language programmer.

6.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These
definitions are provided as a review of commonly used terms and as a way to point out
specific ways these terms are used in this chapter.

¢ Branch prediction—The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term ‘predicted’ as it is used here does
not imply that the prediction is correct (successful). The PowerPC architecture
defines a means for static branch prediction as part of the instruction encoding.

* Branch resolution—The determination of whether a branch is taken or not taken. A
branch is said to be resolved when the processor can determine which instruction
path to take. If the branch is resolved as predicted, the instructions following the
predicted branch that may have been speculatively executed can complete (see
completion). If the branch is not resolved as predicted, instructions on the
mispredicted path, and any results of speculative execution, are purged from the
pipeline and fetching continues from the nonpredicted path.

¢ Completion—Completion occurs when an instruction has finished executing,
written back any results, and is removed from the completion queue. When an
instruction completes, it is guaranteed that this instruction and all previous
instructions can cause no exceptions.

Chapter 6. Instruction Timing 6-1

Fall-through (branch fall-through)—A not-taken branch. On the MPC750, fall-
through branch instructions are removed from the instruction stream at dispatch.
That is, these instructions are allowed to fall through the instruction queue via the
dispatch mechanism, without either being passed to an execution unit and or given
a position in the completion queue.

Fetch—The process of bringing instructions from memory (such as a cache or
system memory) into the instruction queue.

Folding (branch folding)—The replacement with target instructions of a branch
instruction and any instructions along the not-taken path when a branch is either
taken or predicted as taken.

Finish—Finishing occurs in the last cycle of execution. In this cycle, the completion
queue entry is updated to indicate that the instruction has finished executing.

Latency— The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction.

Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously—analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

Program order—The order of instructions in an executing program. More
specifically, this term is used to refer to the original order in which program
instructions are fetched into the instruction queue from the cache.

Rename register—Temporary buffers used by instructions that have finished
execution but have not completed.

Reservation station—A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the results of instructions on which the
dispatched instruction may depend are not available.

Retirement—Removal of the completed instruction from the completion queue.

Stage—The term ‘stage’ is used in two different senses, depending on whether the
pipeline is being discussed as a physical entity or a sequence of events. In the latter
case, a stage is an element in the pipeline during which certain actions are
performed, such as decoding the instruction, performing an arithmetic operation, or
writing back the results. A stage is typically described as taking a processor clock
cycle to perform its operation; however, some events (such as dispatch and write-
back) happen instantaneously, and may be thought to occur at the end of the stage.

6-2

MPC750 RISC Microprocessor User's Manual

An instruction can spend multiple cycles in one stage. An integer multiply, for
example, takes multiple cycles in the execute stage. When this occurs, subsequent
instructions may stall.

In some cases, an instruction may also occupy more than one stage simultaneously,
especially in the sense that a stage can be seen as a physical resource—for example,
when instructions are dispatched they are assigned a place in the completion queue
at the same time they are passed to the execute stage. They can be said to occupy
both the complete and execute stages in the same clock cycle.

¢ Stall—An occurrence when an instruction cannot proceed to the next stage.

» Superscalar—A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the execute stage at the same time.

o Throughput—A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle.

e Write-back—Write-back (in the context of instruction handling) occurs when a
result is written into the architectural registers (typically the GPRs and FPRs).
Results are written back at completion time. Results in the write-back buffer cannot
be flushed. If an exception occurs, these buffers must write back before the
exception is taken.

6.2 Instruction Timing Overview

The MPC750 design minimizes average instruction execution latency, the number of clock
cycles it takes to fetch, decode, dispatch, and execute instructions and make the results
available for a subsequent instruction. Some instructions, such as loads and stores, access
memory and require additional clock cycles between the execute phase and the write-back
phase. These latencies vary depending on whether the access is to cacheable or
noncacheable memory, whether it hits in the L1 or L2 cache, whether the cache access
generates a write-back to memory, whether the access causes a snoop hit from another
device that generates additional activity, and other conditions that affect memory accesses.

The MPC750 implements many features to improve throughput, such as pipelining,
superscalar instruction issue, branch folding, removal of fall-through branches, two-level
speculative branch handling, and multiple execution units that operate independently and
in parallel.

As an instruction passes from stage to stage in a pipelined system, the following instruction
can follow through the stages as the former instruction vacates them, allowing several
instructions to be processed simultaneously. While it may take several cycles for an
instruction to pass through all the stages, when the pipeline has been filled, one instruction
can complete its work on every clock cycle.

Chapter 6. Instruction Timing 6-3

Figure 6-1 represents a generic pipelined execution unit.

Stage 2 ! Stage 3 !

| I |
Clock 0 || Instruction A l | | — 1 | — I |
I | |
Clock 1 :I Instruction B —| : I Instruction A l : ' — | :
I |
Clock 2 || Instruction C] | | Instruction B l | ' Instruction A | I
|

|
Clock3 ||
|

I |
|| Instruction C 1 | | Instruction B | |
I

Figure 6-1. Pipelined Execution Unit

The entire path that instructions take through the fetch, decode/dispatch, execute, complete,
and write-back stages is considered the MPC750’s master pipeline, and two of the
MPC750’s execution units (the FPU and LSU) are also multiple-stage pipelines.

The MPC750 contains the following execution units that operate independently and in

parallel:

L]

Branch processing unit (BPU)

Integer unit 1 (IU1)—executes all integer instructions

Integer unit 2 (IU2)—executes all integer instructions except multiplies and divides
64-bit floating-point unit (FPU)

Load/store unit (LSU)

System register unit (SRU)

The MPC750 can retire two instructions on every clock cycle. In general, the MPC750
processes instructions in four stages—fetch, decode/dispatch, execute, and complete as
shown in Figure 6-2. Note that the example of a pipelined execution unit in Figure 6-1 is
similar to the three-stage FPU pipeline in Figure 6-2.

6-4

MPC750 RISC Microprocessor User's Manual

Maximum four-instruction fetch ‘
Fetch |

per clock cycle

\
BPU {
/
Decode/Di h Maximum three-instruction dispatch
ecode/Dispatc J per clock cycle (includes one branch
instruction)
-’"""'"“""'"""‘""""'"""""E@c'utés'taae':
j l '
1 I
' I
1 FPU1) :
| FPU2 J Lsut !
'
: | s | FPU3 | w | | e | Lsu2 :
' [
' ¢ i Y i ¢ |
f [}
[!
Y

| Maximum two -instruction

| Complete (Write-back) completion per clock cycle

Figure 6-2. Superscalar/Pipeline Diagram

The instruction pipeline stages are described as follows:

» The instruction fetch stage includes the clock cycles necessary to request
instructions from the memory system and the time the memory system takes to
respond to the request. Instruction fetch timing depends on many variables, such as
whether the instruction is in the branch target instruction cache, the on-chip
instruction cache, or the L2 cache. Those factors increase when it is necessary to
fetch instructions from system memory, and include the processor-to-bus clock
ratio, the amount of bus traffic, and whether any cache coherency operations are
required.

Because there are so many variables, unless otherwise specified, the instruction
timing examples below assume optimal performance, that the instructions are
available in the instruction queue in the same clock cycle that they are requested. The
fetch stage ends when the instruction is dispatched.

* The decode/dispatch stage consists of the time it takes to fully decode the instruction
and dispatch it from the instruction queue to the appropriate execution unit.
Instruction dispatch requires the following:

— Instructions can be dispatched only from the two lowest instruction queue
entries, [QO0 and IQ1.

— A maximum of two instructions can be dispatched per clock cycle (although an
additional branch instruction can be handled by the BPU).

— Only one instruction can be dispatched to each execution unit per clock cycle.
— There must be a vacancy in the specified execution unit.

Chapter 6. Instruction Timing 6-5

— A rename register must be available for each destination operand specified by the
instruction.

— For an instruction to dispatch, the appropriate execution unit must be available
and there must be an open position in the completion queue. If no entry is
available, the instruction remains in the IQ.

The execute stage consists of the time between dispatch to the execution unit (or
reservation station) and the point at which the instruction vacates the execution unit.

Most integer instructions have a one-cycle latency; results of these instructions can
be used in the clock cycle after an instruction enters the execution unit. However,
integer multiply and divide instructions take multiple clock cycles to complete. The
IU1 can process all integer instructions; the IU2 can process all integer instructions
except multiply and divide instructions.

The LSU and FPU are pipelined (as shown in Figure 6-2).

The complete (complete/write-back) pipeline stage maintains the correct
architectural machine state and commits it to the architectural registers at the proper
time. If the completion logic detects an instruction containing an exception status,
all following instructions are cancelled, their execution results in rename registers
are discarded, and the correct instruction stream is fetched.

The complete stage ends when the instruction is retired. Two instructions can be
retired per cycle. Instructions are retired only from the two lowest completion queue
entries, CQO and CQ1.

The notation conventions used in the instruction timing examples are as follows:

[] Fetch—The fetch stage includes the time between when an instruction is

requested and when it is brought into the instruction queue. This latency can
be very variable, depending upon whether the instruction is in the BTIC, the
on-chip cache, the L2 cache, or system memory (in which case latency can
be affected by bus speed and traffic on the system bus, and address translation
issues). Therefore, in the examples in this chapters, the fetch stage is usually
idealized, that is, an instruction is usually shown to be in the fetch stage when
it is a valid instruction in the instruction queue. The instruction queue has six
entries, IQ0-IQ5.

E——] In dispatch entry (IQ0/IQ1)—Instructions can be dispatched from IQO and

IQ1. Because dispatch is instantaneous, it is perhaps more useful to describe
it as an event that marks the point in time between the last cycle in the fetch
stage and the first cycle in the execute stage.

Execute—The operations specified by an instruction are being performed by
the appropriate execution unit. The black stripe is a reminder that the
instruction occupies an entry in the completion queue, described in
Figure 6-3.

6-6

MPC750 RISC Microprocessor User's Manual

Complete—The instruction is in the completion queue. In the final stage, the
results of the executed instruction are written back and the instruction is
retired. The completion queue has six entries, CQ0-CQ5.

In retirement entry—Completed instructions can be retired from CQO and
CQ1. Like dispatch, retirement is an event that in this case occurs at the end
of the final cycle of the complete stage. ’

Figure 6-3 shows the stages of MPC750 execution units.

U1/IU2/SRU Instructions

Fetch In Dispatch Execute! Complete/Retire
Entry
| ———
LSU Instructions
Execute
Fetch In Dispatch EA Cache Align Complete/Retire

Entry Calculation
| o | ——

FPU Instructions

Execute

Fetch In Dispatch ; Round/ Complete/Retire
Ent?y Multply Add Normalize P

BPU Instructions

Fetch Fetch In Dispatch In Completion Complete/Retire?
Predict Entry Queue?

I [e

1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in
the execute stage.

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue.

Figure 6-3. MPC750 Microprocessor Pipeline Stages

6.3 Timing Considerations

The MPC750 is a superscalar processor; as many as three instructions can be issued to the
execution units (one branch instruction to the branch processing unit, and two instructions
issued from the dispatch queue to the other execution units) during each clock cycle. Only
one instruction can be dispatched to each execution unit.

Although instructions appear to the programmer to execute in program order, the MPC750
improves performance by executing multiple instructions at a time, using hardware to
manage dependencies. When an instruction is dispatched, the register file provides the

Chapter 6. Instruction Timing 6-7

source data to the execution unit. The register files and rename register have sufficient
bandwidth to allow dispatch of two instructions per clock under most conditions.

The MPC750’s BPU decodes and executes branches immediately after they are fetched.
When a conditional branch cannot be resolved due to a CR data dependency, the branch
direction is predicted and execution continues from the predicted path. If the prediction is
incorrect, the following steps are taken:

1. The instruction queue is purged and fetching continues from the correct path.

2. Any instructions ahead of the predicted branch in the completion queue are allowed
to complete.

3. Instructions after the mispredicted branch are purged.
4. Dispatching resumes from the correct path.

After an execution unit finishes executing an instruction, it places resulting data into the
appropriate GPR or FPR rename register. The.results are then stored into the correct GPR
or FPR during the write-back stage. If a subsequent instruction needs the result as a source
operand, it is made available simultaneously to the appropriate execution unit, which allows
a data-dependent instruction to be decoded and dispatched without waiting to read the data
from the register file. Branch instructions that update either the LR or CTR write back their
results in a similar fashion.

The following section describes this process in greater detail.

6.3.1 General Instruction Flow

As many as four instructions can be fetched into the instruction queue (IQ) in a single clock
cycle. Instructions enter the IQ and are issued to the various execution units from the
dispatch queue. The MPC750 tries to keep the IQ full at all times, unless instruction cache
throttling is operating.

The number of instructions requested in a clock cycle is determined by the number of
vacant spaces in the IQ during the previous clock cycle. This is shown in the examples in
this chapter. Although the instruction queue can accept as many as four new instructions in
a single clock cycle, if only one IQ entry is vacant, only one instruction is fetched. Typically
instructions are fetched from the on-chip instruction cache, but they may also be fetched
from the branch target instruction cache (BTIC). If the instruction request hits in the BTIC,
it can usually present the first two instructions of the new instruction stream in the next
clock cycle, giving enough time for the next pair of instructions to be fetched from the
instruction cache with no idle cycles. If instructions are not in the BTIC or the on-chip
instruction cache, they are fetched from the L2 cache or from system memory.

The MPC750’s instruction cache throttling feature, managed through the instruction cache
throttling control (ICTC) register, can lower the processor’s overall junction temperature by
slowing the instruction fetch rate. See Chapter 10, “Power and Thermal Management.”

6-8 MPC750 RISC Microprocessor User's Manual

Branch instructions are identified by the fetcher, and forwarded to the BPU directly,
bypassing the dispatch queue. If the branch is unconditional or if the specified conditions
are already known, the branch can be resolved immediately. That is, the branch direction is
known and instruction fetching can continue from the correct location. Otherwise, the
branch direction must be predicted. The MPC750 offers several resources to aid in quick
resolution of branch instructions and for improving the accuracy of branch predictions.
These include the following:

» Branch target instruction cache—The 64-entry (four-way-associative) branch target
instruction cache (BTIC) holds branch target instructions so when a branch is
encountered in a repeated loop, usually the first two instructions in the target stream
can be fetched into the instruction queue on the next clock cycle. The BTIC can be
disabled and invalidated through bits in HIDO.

* Dynamic branch prediction—The 512-entry branch history table (BHT) is
implemented with two bits per entry for four degrees of prediction—not-taken,
strongly not-taken, taken, strongly taken. Whether a branch instruction is taken or
not-taken can change the strength of the next prediction. This dynamic branch
prediction is not defined by the PowerPC architecture.

To reduce aliasing, only predicted branches update the BHT entries. Dynamic
branch prediction is enabled by setting HIDO[BHT]; otherwise, static branch
prediction is used.

» Static branch prediction—Static branch prediction is defined by the PowerPC
architecture and involves encoding the branch instructions. See Section 6.4.1.3.1,
“Static Branch Prediction.”

Branch instructions that do not update the LR or CTR are removed from the instruction
stream either by branch folding or removal of fall-through branch instructions, as described
in Section 6.4.1.1, “Branch Folding and Removal of Fall-Through Branch Instructions.”
Branch instructions that update the LR or CTR are treated as if they require dispatch (even
through they are not issued to an execution unit in the process). They are assigned a position
in the completion queue to ensure that the CTR and LR are updated sequentially.

All other instructions are issued from the IQ0 and IQ1. The dispatch rate depends upon the
availability of resources such as the execution units, rename registers, and completion
queue entries, and upon the serializing behavior of some instructions. Instructions are
dispatched in program order; an instruction in IQ1 cannot be dispatched ahead of one in

1QO.

Chapter 6. Instruction Timing 6-9

Figure 6-4 shows the paths taken by instructions.

Fetch) .
(Maximum four instructions per clock cycle)

Ll gLl gLl Ll

1105 —-IQ4 —+>1Q3 —+>-1Q2 —+>IQ1 —>IQ0 i

e

Instruction Queue
(In program order)

Branch
Processing Unit

Dispatch
(Maximum 2 instructions per clock cycle; 1 instruction per unit)

Completion Queue
Assignment

Reservation
Stations

r=aA
r—=n
L—a
r—=n
R

Completion Queue

Complete (Retire) (in program orden

Figure 6-4. Instruction Flow Diagram

6-10 MPC750 RISC Microprocessor User's Manual

6.3.2 Instruction Fetch Timing

Instruction fetch latency depends on whether the fetch hits the BTIC, the on-chip
instruction cache, or the L2 cache, if one is implemented. If no cache hit occurs, a memory
transaction is required in which case fetch latency is affected by bus traffic, bus clock speed,
and memory translation. These issues are discussed further in the following sections.

6.3.2.1 Cache Arbitration

When the instruction fetcher requests instructions from the instruction cache, two things
may happen. If the instruction cache is idle and the requested instructions are present, they
are provided on the next clock cycle. However, if the instruction cache is busy due to a
cache-line-reload operation, instructions cannot be fetched until that operation completes.

6.3.2.2 Cache Hit

If the instruction fetch hits the instruction cache, it takes only one clock cycle after the
request for as many as four instructions to enter the instruction queue. Note that the cache
is not blocked to internal accesses during a cache reload completes (hits under misses). The
critical double word is written simultaneously to the cache and forwarded to the requesting
unit, minimizing stalls due to load delays.

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip cache.
This example uses a series of integer add and double-precision floating-point add
instructions to show how the number of instructions to be fetched is determined, how
program order is maintained by the instruction and completion queues, how instructions are
dispatched and retired in pairs (maximum), and how the FPU, IU1, and IU2 pipelines
function. The following instruction sequence is examined:

0 add
1 fadd
2 add
3 fadd
4 br 6
5 fsub
6 fadd
7 fadd
8 add
9 add
10 add
11 add
12 fadd
13 add
14 fadd
15 .

16

17

Chapter 6. Instruction Timing 6-11

Fetch (in 1Q)

In dispatch entry (IQ0/IQ1)
Execute

Complete (In CQ)

In retirement entry (CQ0O/CQ1)

lgagﬂgtlon 12 (18)
11 11 a7
3 5 70| [0 2| [74 | [Gey| [@e)] [8)
3 Z)) 11 3| (5| a5] [(7)
7 3 7 8 8 70 2| [4] [] [(9)
) 3 6 7 7 3 11 13 3| [(5)
Gompletion 2 12 12
0| [11 13
3 6 6 8) 0| [0 2 12
3 3 3 7 8) 3 T 13
i 1 3 5 3 7 8 8 0| 72 | [74
0 0 7 7 3 3 7 7 3 11 13

Figure 6-5. Instruction Timing—Cache Hit

The instruction timing for this example is described cycle-by-cycle as follows:

0. Incycle 0, instructions 0-3 are fetched from the instruction cache. Instructions 0 and
1 are placed in the two entries in the instruction queue from which they can be
dispatched on the next clock cycle.

6-12 MPC750 RISC Microprocessor User's Manual

1. Incycle 1, instructions O and 1 are dispatched to the IU2 and FPU, respectively.

Notice that for instructions to be dispatched they must be assigned positions in the i
completion queue. In this case, since the completion queue was empty, instructions |
0 and 1 take the two lowest entries in the completion queue. Instructions 2 and 3 drop
into the two dispatch positions in the instruction queue. Because there were two
positions available in the instruction queue in clock cycle 0, two instructions (4 and
5) are fetched into the instruction queue. Instruction 4 is a branch unconditional
instruction, which resolves immediately as taken. Because the branch is taken, it can
therefore be folded from the instruction queue.

2. Incycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into
the instruction queue, replacing the folded b instruction (4) and instruction 5.
Instruction O completes, writes back its results and vacates the completion queue by
the end of the clock cycle. Instruction 1 enters the second FPU execute stage,
instruction 2 is dispatched to the IU2, and instruction 3 is dispatched into the first
FPU execute stage. Because the taken branch instruction (4) does not update either
CTR or LR, it does not require a position in the completion queue and can be folded.

3. Incycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in
IQO and IQ1. This replacement on taken branches is called branch folding.
Instruction 1 proceeds through the last of the three FPU execute stages. Instruction
2 has executed but must remain in the completion queue until instruction 1
completes. Instruction 3 replaces instruction 1 in the second stage of the FPU, and
instruction 6 replaces instruction 3 in the first stage. Also, as will be shown in cycle
4, there is a single-cycle stall that occurs when the FPU pipeline is full.

Because there were three vacancies in the instruction queue in the previous clock
cycle, instructions 811 are fetched in this clock cycle.

4. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions
3 and 6 continue through the FPU pipeline. Although instruction 7 is in IQ1, it
cannot be dispatched because the FPU is busy, and because instruction 7 cannot be
dispatched neither can instruction 8. The additional cycle stall allows the instruction
queue to be completely filled. Because there was one opening in the instruction
queue in clock cycle 3, one instruction is fetched (12) and the instruction queue is
full.

5. Incycle 5, instruction 3 completes, allowing instruction 7 to be dispatched to the
FPU, which in turn allows instruction 8 to be dispatched to the IU2. Instructions 9
and 10 drop to the dispatch positions in the instruction queue. No instructions are
fetched in this clock cycle because there were no vacant IQ entries in clock cycle 4.

6. Incycle 6, instruction 6 completes, instruction 7 is in stage 2 of the FPU execute
stage, and although instruction 8 has executed, it must wait for instruction 7 to
complete. The two integer instructions, 9 and 10, are dispatched to the IU2 and IU1,
respectively. Fetching resumes with instructions 13 and 14.

Chapter 6. Instruction Timing 6-13

7. Incycle 7, instruction 7 is in the final FPU execute stage and instructions 8—10 wait
in the completion queue. Instructions 11 and 12 are dispatched to the IU2 and FPU,
respectively. Note that at this point the completion queue is full. Two more
instructions (15 and 16, which are shown only in the instruction queue) are fetched.

8. Incycle 8, instructions 7-11 are through executing. Instructions 7 and 8§ complete,
write back, and vacate the completion queue. Because the completion queue is full,
instructions 13 and 14 cannot be dispatched and must remain in the instruction

- queue. Only the FPU is executing during this cycle (instruction 12). Additional
instructions (instructions 16 and 17, shown only in the instruction queue) are
fetched, filling the instruction queue.

9. In cycle 9, two more instructions (instructions 7 and 8) are retired from the
completion queue allowing instructions 13 and 14 to be dispatched, again filling the
completion queue. No instructions are fetched on this cycle because the instruction
queue was full on the previous clock cycle.

6.3.2.3 Cache Miss

Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cache. A
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used as in
Section 6.3.2.2, “Cache Hit,” however in this example, the branch target instruction is not
in either the L1 or L2 cache. Because the target instruction is not in the L1 cache, it cannot
be in the BTIC.

A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage
shown represents not only the time the instruction spends in the IQ, but the time required
for the instruction to be loaded from system memory, beginning in clock cycle 2.

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the
instruction cache or the L2 cache; therefore, a memory access must occur. During clock
cycle 5, the address of the block of instructions is sent to the system bus. During clock cycle
7, two instructions (64 bits) are returned from memory on the first beat and are forwarded
both to the cache and the instruction fetcher.

6-14 MPC750 RISC Microprocessor User's Manual

| I | I | I
Foasi] [Fea :
I I I ll I
X)
TTadd — : ' | == dispatchentry (loorat) | !
2add ~ ! ! Execute :
| | | ! 1 | |
3 fadd : | I Compeete (nCQ) |
1 [| | . 1
: | : ! ! | | EEIn refirement entry (CQO/CQM) | |
| S Ry L
[[1Address 7 N T T | |
| | | 1 1 T T T | i | 1 |
| |
: | : Data : : ><
| | | | I | T T T
| I [6fadd" | l | I |
| | ! 1 | y 4 !
C w1
I I | 'I | | | | |
* ! | 8add" | | | | l |
I ! I | 1 | 1 1 1
: ! | 9add” | | | ! | !
1 | | | | | I I |
1 I | | | I | | i |
| | | | | 1 | I I | !
I I | ! ! | | | | | |
| 1 I | | 1 | | | I |
| | | | [1 | [1 |12fadd*| ' |
1 | | | | ! | | | T T T 1
I | ! I I : : I I [13fadd " [|
1 | | | | | l} | I I | | |
Instruction
Queue
3 5
2 4
1 3 7 9
0 2 6 7 8
Completion
Queue
3 9
2 3 3 8
1 1 2 2 7 7
0 0 1 1 3 6 6 6

* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency.

Figure 6-6. Instruction Timing—Cache Miss

6.3.2.4 L2 Cache Access Timing Considerations (MPC750 Only)

If an instruction fetch misses both the BTIC and the on-chip instruction cache, the MPC750
next looks in the L2 cache. If the requested instructions are there, they are burst into the

Chapter 6. Instruction Timing 6-15

MPC750 in much the same way as shown in Figure 6-6. The formula for the L2 cache
latency for instruction accesses is as follows:

1 processor clock + 3 L2 clocks + 1 processor clock

Therefore, if the L2 is operating in 2:1 mode, the instruction fetch takes 8 processor clock
cycles. Additional factors can also affect this latency, including the type of memory used to
implement the L2 and whether the processor clock and L2 clocks are aligned immediately.

For more information about the L2 cache implementation, see Chapter 9, “L2 Cache
Interface Operation.”

6.3.3 Instruction Dispatch and Completion Considerations

Several factors affect the MPC750’s ability to dispatch instructions at a peak rate of two per
cycle—the availability of the execution unit, destination rename registers, and completion
queue, as well as the handling of completion-serialized instructions. Several of these
limiting factors are illustrated in the previous instruction timing examples.

To reduce dispatch unit stalls due to instruction data dependencies, the MPC750 provides
a single-entry reservation station for the FPU, SRU, and each IU, and a two-entry
reservation station for the LSU. If a data dependency keeps an instruction from starting
execution, that instruction is dispatched to the reservation station associated with its
execution unit (and the rename registers are assigned), thereby freeing the positions in the
instruction queue so instructions can be dispatched to other execution units. Execution
begins during the same clock cycle that the rename buffer is updated with the data the
instruction is dependent on.

If both instructions in IQO0 and IQ1 require the same execution unit, the instruction in IQ1
cannot be dispatched until the first instruction proceeds through the pipeline and provides
the subsequent instruction with a vacancy in the requested execution unit.

The completion unit maintains program order after instructions are dispatched from the
instruction queue, guaranteeing in-order completion and a precise exception model.
Completing an instruction implies committing execution results to the architected
destination registers. In-order completion ensures the correct architectural state when the
MPC750 must recover from a mispredicted branch or an exception.

Instruction state and all information required for completion is kept in the six-entry, first-
in/first-out completion queue. An completion queue entry is allocated for each instruction
when it is dispatched to an execute unit; if no entry is available, the dispatch unit stalls. A
maximum of two instructions per cycle may be completed and retired from the completion
queue, and the flow of instructions can stall when a longer-latency instruction reaches the
last position in the completion queue. Subsequent instructions cannot be completed and
retired until that longer-latency instruction completes and retires. Examples of this are
shown in Section 6.3.2.2, “Cache Hit,” and Section 6.3.2.3, “Cache Miss.”

6-16 MPC750 RISC Microprocessor User's Manual

The MPC750 can execute instructions out-of-order, but in-order completion by the
completion unit ensures a precise exception mechanism. Program-related exceptions are
signaled when the instruction causing the exception reaches the last position in the
completion queue. Prior instructions are allowed to complete before the exception is taken.

6.3.3.1 Rename Register Operation

To avoid contention for a given register file location in the course of out-of-order execution,
the MPC750 provides rename registers for holding instruction results before the
completion commits them to the architected register. There are six GPR rename registers,
six FPR rename registers, and one each for the CR, LR, and CTR.

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register (or registers) for the results of that instruction. If an instruction is dispatched to a
reservation station associated with an execution unit due to a data dependency, the
dispatcher also provides a tag to the execution unit identifying the rename register that
forwards the required data at completion. When the source data reaches the rename register,
execution can begin.

Instruction results are transferred from the rename registers to the architected registers by
the completion unit when an instruction is retired from the completion queue without
exceptions and after any predicted branch conditions preceding it in the completion queue
have been resolved correctly. If a branch prediction was incorrect, the instructions
following the branch are flushed from the completion queue, and any results of those
instructions are flushed from the rename registers.

6.3.3.2 Instruction Serialization

Although the MPC750 can dispatch and complete two instructions per cycle, so-called
serializing instructions limit dispatch and completion to one instruction per cycle. There are
three types of instruction serialization:

» Execution serialization—Execution-serialized instructions are dispatched, held in
the functional unit and do not execute until all prior instructions have completed. A
functional unit holding an execution-serialized instruction will not accept further
instructions from the dispatcher. For example, execution serialization is used for
instructions that modify nonrenamed resources. Results from these instructions are
generally not available or forwarded to subsequent instructions until the instruction
completes (using mtspr to write to LR or CTR does provide forwarding to branch
instructions).

» Completion serialization (also referred to as post-dispatch or tail serialization)—
Completion-serialized instructions inhibit dispatching of subsequent instructions
until the serialized instruction completes. Completion serialization is used for
instructions that bypass the normal rename mechanism.

e Refetch serialization (flush serialization)—Refetch-serialized instructions inhibit
dispatch of subsequent instructions and force refetching of subsequent instructions
after completion.

Chapter 6. Instruction Timing 6-17

6.4 Execution Unit Timings

The following sections describe instruction timing considerations within each of the
respective execution units in the MPC750.

6.4.1 Branch Processing Unit Execution Timing

Flow control operations (conditional branches, unconditional branches, and traps) are
typically expensive to execute in most machines because they disrupt normal flow in the
instruction stream. When a change in program flow occurs, the IQ must be reloaded with
the target instruction stream. Previously issued instructions will continue to execute while
the new instruction stream makes its way into the I1Q, but depending on whether the target
instruction is in the BTIC, instruction cache, L2 cache, or in system memory, some
opportunities may be missed to execute instructions, as the example in Section 6.3.2.3,
“Cache Miss,” shows.

Performance features such as the branch folding, removal of fall-through branch
instructions, BTIC, dynamic branch prediction (implemented in the BHT), two-level
branch prediction, and the implementation of nonblocking caches minimize the penalties
associated with flow control operations on the MPC750. The timing for branch instruction
execution is determined by many factors including the following:

¢ Whether the branch is taken

¢ Whether instructions in the target stream, typically the first two instructions in the
target stream, are in the branch target instruction cache (BTIC)

¢ Whether the target instruction stream is in the on-chip cache
¢ Whether the branch is predicted
* Whether the prediction is correct

6.4.1.1 Branch Folding and Removal of Fall-Through Branch
Instructions

When a branch instruction is encountered by the fetcher, the BPU immediately begins to

decode it and tries to resolve it. All branch instructions except those that update either the

LR or CTR are removed from the instruction flow before they would take a position in the

completion queue.

Branch folding occurs either when a branch is taken or is predicted as taken (as is the case
with unconditional branches). When the BPU folds the branch instruction out of the
instruction stream, the target instruction stream that is fetched into the instruction queue
overwrites the branch instruction.

Figure 6-7 shows branch folding. Here a br instruction is encountered in a series of add
instructions. The branch is resolved as taken. What happens on the next clock cycle depends
on whether the target instruction stream is in the BTIC, the instruction cache, or if it must
be fetched from the L2 cache or from system memory.

6-18 MPC750 RISC Microprocessor User's Manual

Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss (and
instruction cache hit).

If there is a BTIC hit on the next clock cycle the b instruction is replaced by the target
instruction, and1, that was found in the BTIC; the second and instruction is also fetched
from the BTIC. On the next clock cycle, the next four and instructions from the target
stream are fetched from the instruction cache.

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts
to fetch the first four instructions from the instruction cache (on the next clock cycle). In
the example in Figure 6-7, the first four target instruction are fetched on the next clock.

If it misses in the caches, an L2 cache or memory access is required, the latency of which
is dependent on several factors, such as processor/bus clock ratios. In most cases, new
instructions arrive in the IQ before the execution units become idle.

Branch Folding Branch Folding

(Taken Branch/BTIC Hit) (Taken Branch/BTIC Miss)

Clock0 Clock 1 Clock 2 Clock0 Clock 1 Clock 2
1Q5 [add5 1Q5 [add5
1Q4 [add4 1Q4 |add4
IQ3 [add3 and6 1Q3 [add3 and4
1Q2 b and5 Q2 [b and3
1Q1 [add2 and2 and4 Q1 [add2 and
1Q0 [addi and and3 1Q0 [addf and

Figure 6-7. Branch Folding

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a
branch is not taken or is predicted as not taken.

Branch Fall-Through

(Not-Taken Branch)

Clock0 Clock 1 Clock 2
1Q5 [add5
Q4 [add4
1Q3 [add3 add5 add7 |
1Q2 b add4 add6
Q1 [add2 add3 addb5
1Q0 [addi b a

Figure 6-8. Removal of Fall-Through Branch Instruction

In this case the branch instruction remains in the instruction queue and is removed from the
instruction stream as if it were dispatched. However, it is not dispatched to an execution unit
and is not assigned an entry in the completion queue.

Chapter 6. Instruction Timing 6-19

When a branch instruction is detected before it reaches a dispatch position, and if the branch
is correctly predicted as taken, folding the branch instruction (and any instructions from the
incorrect path) reduces the latency required for flow control to zero; instruction execution
proceeds as though the branch was never there.

The advantage of removing the fall-through branch instructions at dispatch is only
marginally less than that of branch folding. Because the branch is not taken, only the branch
instruction needs to be discarded. The only cost of expelling the branch instruction from
one of the dispatch entries rather than folding it is missing a chance to dispatch an
executable instruction from that position.

6.4.1.2 Branch Instructions and Completion

As described in the previous section, instructions that do not update either the LR or CTR
are removed from the instruction stream before they reach the completion queue, either by
branch folding (in the case of taken branches) or by removing fall-through branch
instructions at dispatch (in the case of non-taken branches). However, branch instructions
that update the architected LR and CTR must do so in program order and therefore must
perform write-back in the completion stage, like the instructions that update the FPRs and
GPRs.

Branch instructions that update the CTR or LR pass through the instruction queue like
nonbranch instructions. At the point of dispatch, however, they are not sent to an execution
unit, but rather are assigned a slot in the completion queue, as shown in Figure 6-9.

Branch Completion
(LR/CTR Write-Back)
Clock0 Clock 1 Clock2 Clock 3

1Q5 {add5
1Q4 [add4
1Q3 |add3 add5 add7 add9
1Q2 [TBc add4| [add6| [adds
1Q1 [add2 add3 add5 add7
1Q0 [addi bc add4 a
CQ5
CcQ4
CcQ3
cQ2
cQi add2 add3 add5
CQo addT’ bc add4

Figure 6-9. Branch Completion

In this example, the bc instruction is encoded to decrement the CTR. It is predicted as not-
taken in clock cycle 0. In clock cycle 2, be and add3 are both dispatched. In clock cycle 3,
the architected CTR is updated and the bc instruction is retired from the completion queue.

6-20 MPC750 RISC Microprocessor User's Manual

6.4.1.3 Branch Prediction and Resolution
The MPC750 supports the following two types of branch prediction:

¢ Static branch prediction—This is defined by the PowerPC architecture as part of the
encoding of branch instructions.

* Dynamic branch prediction—This is a processor-specific mechanism implemented
in hardware (in particular the branch history table, or BHT) that monitors branch
instruction behavior and maintains a record from which the next occurrence of the
branch instruction is predicted.

When a conditional branch cannot be resolved due to a CR data dependency, the BPU
predicts whether it will be taken, and instruction fetching proceeds down the predicted path.
If the branch prediction resolves as incorrect, the instruction queue and all subsequently
executed instructions are purged, instructions executed prior to the predicted branch are
allowed to complete, and instruction fetching resumes down the correct path.

The MPC750 executes through two levels of prediction. Instructions from the first
unresolved branch can execute, but they cannot complete until the branch is resolved. If a
second branch instruction is encountered in the predicted instruction stream, it can be
predicted and instructions can be fetched, but not executed, from the second branch. No
action can be taken for a third branch instruction until at least one of the two previous
branch instructions is resolved.

The number of instructions that can be executed after the issue of a predicted branch
instruction is limited by the fact that no instruction executed after a predicted branch may
actually update the register files or memory until the branch is completed. That is,
instructions may be issued and executed, but cannot reach the write-back stage in the
completion unit. When an instruction following a predicted branch completes execution, it
does not write back its results to the architected registers, instead, it stalls in the completion
queue. Of course, when the completion queue is full, no additional instructions can be
dispatched, even if an execution unit is idle.

In the case of a misprediction, the MPC750 can easily redirect its machine state because the
programming model has not been updated. When a branch is mispredicted, all instructions
that were dispatched after the predicted branch instruction are flushed from the completion
queue and any results are flushed from the rename registers.

The BTIC is a cache of recently used branch target instructions. If the search for the branch
target hits in the cache, the first one or two branch instructions is available in the instruction
queue on the next cycle (shown in Figure 6-5). Two instructions are fetched on a BTIC hit,
unless the branch target is the last instruction in a cache block, in which case one instruction
is fetched.

In some situations, an instruction sequence creates dependencies that keep a branch
instruction from being resolved immediately, thereby delaying execution of the subsequent

Chapter 6. Instruction Timing 6-21

instruction stream based on the predicted outcome of the branch instruction. The instruction
sequences and the resulting action of the branch instruction are described as follows:

* An mtspr(LK) followed by a belr—Fetching stops and the branch waits for the
mtspr to execute.

* An mtspr(CTR) followed by a beetr—Fetching stops and the branch waits for the
mtspr to execute.

* Anmtspr(CTR) followed by a be (CTR decrement)—Fetching stops and the branch
waits for the mtspr to execute.

¢ A third be(based-on-CR) is encountered while there are two unresolved be(based-
on-CR). The third be(based-on-CR) is not executed and fetching stops until one of
the previous be(based-on-CR) is resolved. (Note that branch conditions can be a
function of the CTR and the CR; if the CTR condition is sufficient to resolve the
branch, then a CR-dependency is ignored.)

6.4.1.3.1 Static Branch Prediction

The PowerPC architecture provides a field in branch instructions (the BO field) to allow
software to hint whether a branch is likely to be taken. Rather than delaying instruction
processing until the condition is known, the MPC750 uses the instruction encoding to
predict whether the branch is likely to be taken and begins fetching and executing along that
path. When the branch condition is known, the prediction is evaluated. If the prediction was
correct, program flow continues along that path; otherwise, the processor flushes any
instructions and their results from the mispredicted path, and program flow resumes along
the correct path.

Static branch prediction is used when HIDO[BHT] is cleared. That is, the branch history
table, which is used for dynamic branch prediction, is disabled. For information about static
branch prediction, see “Conditional Branch Control,” in Chapter 4, “Addressing Modes and
Instruction Set Summary,” in The Programming Environments Manual.

6.4.1.3.2 Predicted Branch Timing Examples

Figure 6-10 shows cases where branch instructions are predicted. It shows how both taken
and not-taken branches are handled and how the MPC750 handles both correct and
incorrect predictions. The example shows the timing for the following instruction sequence:

add
1 add
2 bc
3 mulhw
4 bc TO
5 fadd
6 and
add
T7 add
T8 add
T9 add
T10 add
T11l or

6-22 MPC750 RISC Microprocessor User's Manual

[Tor |]

| I 1 |
| | | | I | |
0 20— — : : b] Feten
T ! ! | i
| | | F=——] Indispatch entry (lq0/IQ1)
| I
2bc [| .
. : . . C] Preda
i : |
M \ Execute
4bc ! | | |
! ! ! | I cCompeete (nCQ)
5 fadd | | | I
w : __ In retirement entry (CQO/CQ1)
|] I ! 3 I | I
| | : | |
T2add : : : : :
I I | | 1
T3 add l | | | |
| I | | I
i 1 1 i 1
| | I | I
|] | I |
I | | | |

|
!
|
|
|
|
1
|
t
|
|
I
|
|
|
|
!
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
i
t
|
|
|
1
|
!
I
'

I 1 | | | I
| I I | i |
Instruction 1 | | | 1 |
Queue | | | | | |
| I I | | I
3 5 5 |[15 | THCHE I .' :
2 (bc) 4 T4 4! o ! ! !
7 3 T T3 [T3 | 16 ' : '
0 2 TO T2 T2 5
Completion
Queue
3 T (8) (8) (8)
2 T0 T1 7) (7) (7)
1 1 3 TO 6 6 6 6
0 0 2 3 5 5 5 5

* Instructions 5 and 6 are not in the 1Q in clock cycle 5. Here, the fetch stage shows cache latency. i

Figure 6-10. Branch Instruction Timing

0. During clock cycle 0, instructions 0 and 1 are dispatched to their respective
execution units. Instruction 2 is a branch instruction that updates the CTR. It is
predicted as not taken in clock cycle 0. Instruction 3 is a mulhw instruction on which
instruction 4 depends.

Chapter 6. Instruction Timing 6-23

1. Inclock cycle 1, instructions 2 and 3 enter the dispatch entries in the IQ. Instruction
4 (a second bc instruction) and 5 are fetched. The second be instruction is predicted
as taken. It can be folded, but it cannot be resolved until instruction 3 writes back.

2. Inclock cycle 2, instruction 4 has been folded and instruction 5 has been flushed
from the IQ. The two target instructions, TO and T1, are both in the BTIC, so they
are fetched in this cycle. Note that even though the first be instruction may not have
resolved by this point (we can assume it has), the MPC750 allows fetching from a
second predicted branch stream. However, these instructions could not be
dispatched until the previous branch has resolved.

3. Inclock cycle 3, target instructions T2-T5 are fetched as TO and T1 are dispatched.

4. In clock cycle 4, instruction 3, on which the second branch instruction depended,
writes back and the branch prediction is proven incorrect. Even though T0 is in CQ1,
from which it could be written back, it is not written back because the branch
prediction was incorrect. All target instructions are flushed from their positions in
the pipeline at the end of this clock cycle, as are any results in the rename registers.

After one clock cycle required to refetch the original instruction stream, instruction 5, the
same instruction that was fetched in clock cycle 1, is brought back into the IQ from the
instruction cache, along with three others (not all of which are shown).

6.4.2 Integer Unit Execution Timing

The MPC750 has two integer units. The IU1 can execute all integer instructions; and the
IU2 can execute all integer instructions except multiply and divide instructions. As shown
in Figure 6-2, each integer unit has one execute pipeline stage, thus when a multicycle
integer instruction is being executed, no other integer instructions can begin to execute.
Table 6-6 lists integer instruction latencies.

Most integer instructions have an execution latency of one clock cycle.

6.4.3 Floating-Point Unit Execution Timing

The floating-point unit on the MPC750 executes all floating-point instructions. Execution
of most floating-point instructions is pipelined within the FPU, allowing up to three
instructions to be executing in the FPU concurrently. While most floating-point instructions
execute with three- or four-cycle latency, and one- or two-cycle throughput, three
instructions (fdivs, fdiv, and fres) execute with latencies of 11 to 33 cycles. The fdivs, fdiv,
fres, mtfsb0, mtfsb1, mtfsfi, mffs, and mtfsf instructions block the floating-point unit
pipeline until they complete execution, and thereby inhibit the dispatch of additional
floating-point instructions. See Table 6-7 for floating-point instruction execution timing.

6-24 MPC750 RISC Microprocessor User's Manual

6.4.4 Effect of Floating-Point Exceptions on Performance

For the fastest and most predictable floating-point performance, all exceptions should be
disabled in the FPSCR and MSR.

6.4.5 Load/Store Unit Execution Timing

The execution of most load and store instructions is pipelined. The LSU has two pipeline
stages. The first is for effective address calculation and MMU translation and the second is
for accessing data in the cache. Load and store instructions have a two-cycle latency and
one-cycle throughput.

If operands are misaligned, additional latency may be required either for an alignment
exception to be taken or for additional bus accesses. Load instructions that miss in the cache
block subsequent cache accesses during the cache line refill. Table 6-8 gives load and store
instruction execution latencies.

6.4.6 Effect of Operand Placement on Performance

The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses, and in some cases affect
it significantly. The effects memory operand placement has on performance are shown in
Table 6-1.

The best performance is guaranteed if memory operands are aligned on natural boundaries.
For the best performance across the widest range of implementations, the programmer
should assume the performance model described in Chapter 3, “Operand Conventions,” in
The Programming Environments Manual.

The effect of misalignment on memory access latency is the same for big- and little-endian
addressing modes except for multiple and string operations that cause an alignment
exception in little-endian mode.

Chapter 6. Instruction Timing 6-25

Table 6-1. Performance Effects of Memory Operand Placement

Operand Boundary Crossing
Size Byte Alignment None 8 Byte Cache Block Protection Boundary
Integer
4 byte 4 Optimal’ — — —
<4 Optimal Good Good Good
2 byte 2 Optimal — — .
<2 Optimal Good Good Good
1 byte 1 Optimal — — —
Imw, 4 Good 3 Good Good Good
stmw?
<4 Poor 4 Poor Poor Poor
String 2 - Good Good Good Good
Floating-Point
8 byte 8 Optimal — — ' —
4 - Good Good Good
<4 — Poor Poor Poor
4 byte 4 Optimal — — —
<4 Poor Poor Poor Poor
Notes:

T Optimal means one EA calculation occurs.

2 Not supported in little-endian mode, causes an alignment exception.

3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers.
4 Poor means that an alignment exception occurs.

6.4.7 Integer Store Gathering

The MPC750 performs store gathering for write-through operations to nonguarded space.
It performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores.
These stores are combined in the LSU to form a double word and are sent out on the 60x
bus as a single-beat operation. However, stores are gathered only if the successive stores
meet the criteria and are queued and pending. Store gathering occurs regardless of the
address order of the stores. Store gathering is enabled by setting HIDO[SGE]. Stores can be
gathered in both endian modes.

Store gathering is not done for the following:

¢ Cacheable store operations
» Stores to guarded cache-inhibited or write-through space
* Byte-reverse store operations

6-26 MPC750 RISC Microprocessor User's Manual

* stwex. instructions

* ecowx instructions

* A store that occurs during a table search operation
* Floating-point store operations

If store gathering is enabled and the stores do not fall under the above categories, an eieio
or sync instruction must be used to prevent two stores from being gathered.

6.4.8 System Register Unit Execution Timing

Most instructions executed by the SRU either directly access renamed registers or access or
modify nonrenamed registers. They generally execute in a serial manner. Results from these
instructions are not available to subsequent instructions until the instruction completes and
is retired. See Section 6.3.3.2, “Instruction Serialization,” for more information on
serializing instructions executed by the SRU, and refer to Table 6-4 and Table 6-5 for SRU
instruction execution timings.

6.5 Memory Performance Considerations

Because the MPC750 can have a maximum instruction throughput of three instructions per
clock cycle, lack of memory bandwidth can affect performance. For the MPC750 to
maximize performance, it must be able to read and write data efficiently. If a system has
multiple bus devices, one of them may experience long memory latencies while another bus
master (for example, a direct-memory access controller) is using the external bus.

6.5.1 Caching and Memory Coherency

To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that
are used to configure memory regions as caching-enforced or caching-inhibited. Accesses
to such memory locations never update the on-chip cache. If a cache-inhibited access hits
the on-chip cache, the cache block is invalidated. If the cache block is marked modified, it
is copied back to memory before being invalidated. Where caching is permitted, memory
is configured as either write-back or write-through, which are described as follows:

* Write-back— Configuring a memory region as write-back lets a processor modify
data in the cache without updating system memory. For such locations, memory
updates occur only on modified cache block replacements, cache flushes, or when
one processor needs data that is modified in another’s cache. Therefore, configuring
memory as write-back can help when bus traffic could cause bottlenecks, especially
for multiprocessor systems and for regions in which data, such as local variables, is
used often and is coupled closely to a processor.

If multiple devices use data in a memory region marked write-through, snooping

must be enabled to allow the copy-back and cache invalidation operations necessary
to ensure cache coherency. The MPC750’s snooping hardware keeps other devices
from accessing invalid data. For example, when snooping is enabled, the MPC750
monitors transactions of other bus devices. For example, if another device needs data

Chapter 6. Instruction Timing 6-27

that is modified on the MPC750’s cache, the access is delayed so the MPC750 can
copy the modified data to memory.

Write-through—Store operations to memory marked write-through always update
both system memory and the on-chip cache on cache hits. Because valid cache
contents always match system memory marked write-through, cache hits from other
devices do not cause modified data to be copied back as they do for locations marked
write-back. However, all write operations are passed to the bus, which can limit
performance. Load operations that miss the on-chip cache must wait for the external
store operation.

Write-through configuration is useful when cached data must agree with external
memory (for example, video memory), when shared (global) data may be needed
often, or when it is undesirable to allocate a cache block on a cache miss.

Chapter 3, “L1 Instruction and Data Cache Operation,” describes the caches, memory
configuration, and snooping in detail.

6.5.2 Effect of TLB Miss

If a page address translation is not in a TLB, the MPC750 hardware searches the page tables
and updates the TLB when a translation is found. Table 6-2 shows the estimated latency for
the hardware TLB load for different cache configurations and conditions.

Table 6-2. TLB Miss Latencies

L1 QOndition L2 Condition Processor/!.2 Processor/Systclem Bus | Estimated Latency
(Instruction and Data) Clock Ratio Clock Ratio (Cycles)

100% cache hit — — — 7

100% cache miss 100% cache hit 11 — 13
100% cache miss 100% cache hit 1.5:1 — 18
100% cache miss 100% cache hit 2:1 — 20
100% cache miss 100% cache miss 1:1 2.5:1 (6:3:3:3 memory) 62
100% cache miss 100% cache miss 1:1 4:1 (5:2:2:2 memory) 77

The PTE table search assumes a hit in the first entry of the primary PTEG.

6-28

MPC750 RISC Microprocessor User's Manual

6.6 Instruction Scheduling Guidelines

The performance of the MPC750 can be improved by avoiding resource conflicts and
scheduling instructions to take fullest advantage of the parallel execution units. Instruction
scheduling on the MPC750 can be improved by observing the following guidelines:

* To reduce mispredictions, separate the instruction that sets CR bits from the branch
instruction that evaluates them. Because there can be no more than 12 instructions
in the processor (with the instruction that sets CR in CQO and the dependent branch
instruction in IQ5), there is no advantage to having more than 10 instructions
between them.

¢ Likewise, when branching to a location specified by the CTR or LR, separate the
mtspr instruction that initializes the CTR or LR from the dependent branch
instruction. This ensures the register values are immediately available to the branch
instruction.

¢ Schedule instructions such that two can be dispatched at a time.

¢ Schedule instructions to minimize stalls due to execution units being busy.

* Avoid scheduling high-latency instructions close together. Interspersing single-
cycle latency instructions between longer-latency instructions minimizes the effect
that instructions such as integer divide and multiply can have on throughput.

* Avoid using serializing instructions.

¢ Schedule instructions to avoid dispatch stalls:

— Six instructions can be tracked in the completion queue; therefore, only six
instructions can be in the execute stages at any one time

— There are six GPR rename registers; therefore only six GPRs can be specified as
destination operands at any time. If no rename registers are available,
instructions cannot enter the execute stage and remain in the reservation station
or instruction queue until they become available.

Note that load with update address instructions use two destination registers

— Similarly, there are six FPR rename registers, so only six FPR destination
operands can be in the execute and complete stages at any time.

6.6.1 Branch, Dispatch, and Completion Unit Resource
Requirements

This section describes the specific resources required to avoid stalls during branch
resolution, instruction dispatching, and instruction completion.

Chapter 6. Instruction Timing 6-29

6.6.1.1 Branch Resolution Resource Requirements

The following is a list of branch instructions and the resources required to avoid stalling the
fetch unit in the course of branch resolution:

* The belr instruction requires LR availability.
* The bectr instruction requires CTR availability.
e Branch and link instructions require shadow LR availability.

¢ The “branch conditional on counter decrement and the CR” condition requires CTR
availability or the CR condition must be false, and the MPC750 cannot execute
instructions after an unresolved predicted branch when the BPU encounters a
branch.

e A branch conditional on CR condition cannot be executed following an unresolved
predicted branch instruction.

6.6.1.2 Dispatch Unit Resource Requirements

The following is a list of resources required to avoid stalls in the dispatch unit. IQ[0] and
IQ[1] are the two dispatch entries in the instruction queue:

-

* Requirements for dispatching from IQ[0] are as follows:

— Needed execution unit available

— Needed GPR rename registers available

— Needed FPR rename registers available

— Completion queue is not full.

— A completion-serialized instruction is not being executed.

* Requirements for dispatching from IQ[1] are as follows:
— Instruction in IQ[0] must dispatch.
— Instruction dispatched by IQ[0] is not completion- or refetch-serialized.
— Needed execution unit is available (after dispatch from IQ[0]).
— Needed GPR rename registers are available (after dispatch from IQ[0]).
— Needed FPR rename register is available (after dispatch from IQ[0]).
— Completion queue is not full (after dispatch from IQ[0]).

6.6.1.3 Completion Unit Resource Requirements
The following is a list of resources required to avoid stalls in the completion unit; note that
the two completion entries are described as CQ[0] and CQ[1], where CQ[O0] is the
completion queue located at the end of the completion queue (see Figure 6-4).
* Requirements for completing an instruction from CQ[0] are as follows:

— Instruction in CQ[0] must be finished.

— Instruction in CQ[0] must not follow an unresolved predicted branch.

— Instruction in CQ[0] must not cause an exception.

6-30 MPC750 RISC Microprocessor User's Manual

* Requirements for completing an instruction from CQ[1] are as follows:
— Instruction in CQ[0] must complete in same cycle.
— Instruction in CQ[1] must be finished.
— Instruction in CQ[1] must not follow an unresolved predicted branch.
— Instruction in CQ[1] must not cause an exception.
— Instruction in CQ[1] must be an integer or load instruction.
— Number of CR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of GPR updates from both CQ[0] and CQ[1] must not exceed two.
— Number of FPR updates from both CQ[0] and CQ[1] must not exceed two.

6.7 Instruction Latency Summary

Table 6-3 through Table 6-8 list latencies associated with instructions executed by each
execution unit. Table 6-3 describes branch instruction latencies.

Table 6-3. Branch Instructions

Mnemonic | Primary | Extended Latency

b[l[a] 18 — Unless these instructions update either the CTR or the LR, branch
operations are folded if they are either taken or predicted as taken. They fall

befljfa] 16 - through if they are not taken or predicted as not taken.

becetry]] 19 528

belrl] 19 16

Table 6-4 lists system register instruction latencies.

Table 6-4. System Register Instructions

Mnemonic Primary Extended Unit Cycles Serialization

eieio 31 854 SRU 1 —

isync 19 150 SRU 2 Completion, refetch
mfmsr 31 83 SRU 1 —

mfspr (DBATs) 31 339 SRU 3 Execution

mfspr (IBATs) 31 339 SRU 3 —_

mfspr (not I/DBATS) 31 339 SRU 1 Execution

mfsr 31 595 SRU 3 —

mfsrin 31 659 SRU 3 Execution

mftb 31 371 SRU 1 —

mtmsr 31 146 SRU 1 Execution

mtspr (DBATs) 31 467 SRU 2 Execution

mtspr (IBATs) 31 467 SRU 2 Execution

Chapter 6. Instruction Timing 6-31

Table 6-4. System Register Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
mtspr (not I/DBATSs) 31 467 SRU 2 Execution
mtsr 31 210 SRU 2 Execution
mtsrin 31 242 SRU 2 Execution
mitb) 31 467 SRU 1 Execution
rfi 19 50 SRU 2 Completion, refetch
sc 17 --1 SRU 2 Completion, refetch
syne 31 598 SRU 3! —
tibsync 2 31 566 — —
Notes:

' This assumes no pending stores in the store queue. If there are, the sync completes after they complete to memory.
If broadcast is enabled on the 60x bus, sync completes only after a successful broadcast.

2 {lbsync is dispatched only to the completion buffer (not to any execution unit) and is marked finished as it is
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems TLBISYNC
is always asserted so the instruction is a no-op.

Table 6-5 lists condition register logical instruction latencies.

Table 6-5. Condition Register Logical Instructions

Mnemonic Primary Extended Unit Cycles Serialization
crand 19 257 SRU 1 Execution
crandc 19 129 SRU 1 Execution
creqv 19 289 SRU 1 Execution
crnand 19 225 SRU 1 Execution
crnor 19 33 SRU 1 Execution
cror 19 449 SRU 1 Execution
crorc 19 417 SRU 1 Execution
crxor 19 193 SRU 1 Execution
mcrf 19 0 SRU 1 Execution
merxr 31 512 SRU 1 Execution
mfcr 31 19 SRU 1 Execution
mterf 31 144 SRU 1 Execution

Table 6-6 shows integer instruction latencies. Note that the IUl executes all integer
arithmetic instructions—multiply, divide, shift, rotate, add, subtract, and compare. The TU2
executes all integer instructions except multiply and divide (that is, shift, rotate, add,
subtract, and compare).

6-32 MPC750 RISC Microprocessor User's Manual

Table 6-6. Integer Instructions

Mnemonic Primary Extended Unit Cycles Serialization
addc|o][.] 31 10 U1/1U2 1 —
addefo][.] 31 138 Ut1/1U2 1 Execution
addi 14 —_ Iut1/1U2 1 —
addic 12 — 1u1/1u2 1 —
addic. 13 — U1/1U2 1 —
addis 15 — U112 1 —
addme]o][.] 31 234 Iut1/1u2 1 Execution
addze[o][.] 31 202 1U1/1U2 1 Execution
add|o][.] 31 266 U1/1u2 1 —
andc[.] 31 60 Ui1u2 1 —
andi. 28 — 1U1/1U2 1 —_
andis. 29 — U1/1U2 1 —_
andl.] 31 28 U1/1U2 1 —
cmp 31 0 1U1/1u2 1 —_
cmpi 11 — U1/1U2 1 —
cmpl 31 32 U1/1U2 1 —
cmpli 10 — 1U1/1U2 1 —_
cntlzwl.] 31 26 U1/1U2 1 —
divwu[o][.] 31 459 U1 19 —
divw[o][] 31 491 U1 19 —
eqv[.] 31 284 U1/1U2 1 —_
extsb[.] 31 954 u1/1U2 1 —
extsh[.] 31 922 U1/1U2 1 —
mulhwul.] 31 11 u1/1u2 2,3,4,56 —
mulhw[.] 31 75 U1/1U2 2,345 —
mulli 7 — U1 2,3 —
muli[o][.] 31 235 U1 2,345 —
nand][.] 31 476 U1/1U2 1 —
neg|o][.] 31 104 U1/1U2 1 —
nor(.] 31 124 u1/1U2 1 —
orcl.] 31 412 U1/1U2 1 —
ori 24 — 1u1/1U2 1 —

Chapter 6. Instruction Timing

6-33

Table 6-6. Integer Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
oris 25 — 1U1/1U2 1 —
orl.] 31 444 U1/1U2 1 —
riwimil.] 20 —_ u1/1U2 1 -
riwinml[.] 21 — U102 1 —
riwnm[.] 23 — U1/1U2 1 —
siwl.] 31 24 U1/1U2 1 —
srawil.] 31 824 U1/1U2 1 -
sraw[] 31 792 IU1/1U2 1 —
swl] 31 536 uU1/1U2 1 -
subfc[o][.] 31 8 U1/1U2 1 —
subfe[o][.] 31 136 U1/1u2 1 Execution
subfic 8 — 1U1/1U2 1 —
subfmelo][.] 31 232 U1/1U2 1 Execution
subfze[o][.] 31 200 1U1/1U2 1 Execution
subff.] 31 40 U1/1U2 1 —
tw 31 4 U1/1U2 2 —
twi 3 — U1/1U2 2 —
xori 26 — U1/1U2 1 —
xoris 27 — 1U1/1U2 1 —
xor[.] 31 316 U1/1U2 1 —

Table 6-7 shows latencies for floating-point instructions. Pipelined floating-point
instructions are shown with number of clocks in each pipeline stage separated by dashes.
Floating-point instructions with a single entry in the cycles column are not pipelined; when
the FPU executes these nonpipelined instructions, it remains busy for the full duration of
the instruction execution and is not available for subsequent instructions.

Table 6-7. Floating-Point Instructions

Mnemonic Primary Extended Unit Cycles Serialization
fabsl.] 63 264 FPU 1-1-1 —_
faddsl.] 59 21 FPU 1-1-1 —
fadd[.] 63 21 FPU 1-1-1 —
fcmpo 63 32 FPU 1-1-1 —
fempu 63 0 FPU 1-1-1 —

6-34 MPC750 RISC Microprocessor User's Manual

Table 6-7. Floating-Point Instructions (Continued)

Mnemonic Primary Extended Unit Cycles Serialization
fetiwz|.] 63 15 FPU 1-1-1 —
fetiwl.] 63 14 FPU 1-1-1 —_
fdivsl.] 59 18 FPU 17 —
fdiv].] 63 18 FPU 31 —
fmadds|.] 59 29 FPU 1-1-1 —
fmadd].] 63 29 FPU 2-1-1 —
fmrl.] 63 72 FPU 1-1-1 —
fmsubs.] 59 28 FPU 1-1-1 —
fmsubl.] 63 28 FPU 2-1-1 —
fmulsl[.] 59 25 FPU 1-1-1 —
fmul[.] 63 25 FPU 2-1-1 —
fnabsl.] 63 136 FPU 1-1-1 —
fneg[.] 63 40 FPU 1-1-1 —
fnmadds|.] 59 31 FPU 1-1-1 —
fnmadd[.] 63 31 FPU 2-1-1 —
fnmsubs|.] 59 30 FPU 1-1-1 —
famsubl.] 63 30 FPU 2-1-1 —
fres[.] 59 24 FPU 10 —
frspl.] 63 12 FPU 1-1-1 —
frsqrtel.] 63 26 FPU 1-11 —_
fsell.] 63 23 FPU 1-1-1 —
tsubs.] 59 20 FPU 1-1-1 —
fsub[.] 63 20 FPU 1-1-1 —
mcrfs 63 64 FPU 1-1-1 Execution
mffs[.] 63 583 FPU 1-1-1 Execution
mtfsbO[.] 63 70 FPU 3 —
mtfsb1[.] 63 38 FPU 3 —_
mitfsfi[.] 63 134 FPU 3 —
mitfsf[.] 63 711 FPU 3 —
Chapter 6. Instruction Timing 6-35

Table 6-8 shows load and store instruction latencies. Pipelined load/store instructions are

shown with cycles of total latency and throughput cycles separated by a colon.

Table 6-8. Load and Store Instructions

Mnemonic Primary Extended Unit Cycles Serialization
debf 31 86 Lsu 3:5! Execution
dcbi 31 470 LSuU 3:3! Execution
dcbst 31 54 Lsu 3:5! Execution
dcbt 31 278 LSU 2:1 —
dcbtst 31 246 LSuU 2:1 —
dcbz 31 1014 LSU 36"2 Execution
eciwx 31 310 LSU 2:1 —
ecowx 31 438 LSuU 2:1 —
ichi 31 982 Lsu 3:4 Execution
Ibz 34 - LSU 2:1 —

Ibzu 35 — LSuU 2:1 —
Ibzux 31 119 LSuU 2:1 —
Ibzx 31 87 LSuU 2:1 —
Ifd 50 — LSU 2:1 —_
Ifdu 51 — LSU 2:1 —
Ifdux 31 631 LSU 2:1 —
Ifdx 31 599 LSU 2:1 —
Ifs 48 — LSU 2:1 —
Ifsu 49 — LSU 2:1 —
Ifsux 31 567 LSU 21 —_
Ifsx 31 535 LSU 2:1 —
lha 42