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About This Book 
The primary objective of this user's manual is to define the functionality of the MPC750 
and MPC740 microprocessors for use by software and hardware developers. Although the 
emphasis of this manual is upon the MPC750, unless otherwise noted, all information here 
applies to MPC740. This book is intended as a companion to the PowerPCfM 
Microprocessor Family: The Programming Environments (referred to as The Programming 
Environments Manual). 

About the Companion Programming Environments Manual 

The MPC750 RISC Microprocessor User's Manual, which 
describes MPC750 features not defined by the architecture, is 
to be used with the PowerPC Microprocessor Family: The 
Programming Environments, Rev. 1, referred to as The 
Programming Environments Manual. 

Because the PowerPC architecture is designed to be flexible to 
support a broad range of processors, The Programming 
Environments Manual provides a general description of 
features that are common to PowerPC processors and indicates 
those features that are optional or that may be implemented 
differently in the design of each processor. 

Note that The Programming Environments Manual exists in 
two versions. PowerPC Microprocessor Family: The 
Programming Environments, Rev. 1 describes features of the 
PowerPC architecture for both 64- and 32-bit implementations. 
This version may be more useful if migration to 64-bit 
processors is critical to the reader. PowerPC Microprocessor 
Family: The Programming Environments for 32-Bit 
Microprocessors, Rev. 1 describes features of the PowerPC 
architecture only for 32-bit implementations. Because it 
describes only those features that support 32-bit processors, 
this manual may be more practical if the reader is concerned 
primarily with the MPC750 processor. 

Contact your sales representative for a copy of The 
Programming Environments Manual. 

AboutThis Book xxvii 



This document and The Programming Environments Manual distinguish between the three 
levels, or programming environments, of the PowerPC architecture, which are as follows: 

• PowerPC user instruction set architecture (UISA)-The UISA defines the level of 
the architecture to which user-level software should conform. The UISA defines the 
base user-level instruction set, user-level registers, data types, memory conventions, 
and the memory and programming models seen by application programmers. 

• PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest 
component of the PowerPC architecture, defines additional user-level functionality 
that falls outside typical user-level software requirements. The VEA describes the 
memory model for an environment in which multiple processors or other devices can 
access external memory and defines aspects of the cache model and cache control 
instructions from a user-level perspective. The resources defined by the VEA are 
particularly useful for optimizing memory accesses and for managing resources in 
an environment in which other processors and other devices can access external 
memory. 

Implementations that conform to the PowerPC VEA also conform to the PowerPC 
urSA, but may not necessarily adhere to the OEA. 

• PowerPC operating environment architecture (OEA)-The OEA defines supervisor
level resources typically required by an operating system. The OEA defines the 
PowerPC memory management model, supervisor-level registers, and the exception 
model. 

Implementations that conform to the PowerPC OEA also conform to the PowerPC 
urSA and VEA. 

It is important to note that some resources are defined more generally at one level in the 
architecture and more specifically at another. For example, conditions that cause a floating
point exception are defined by the UISA, while the exception mechanism itself is defined 
by the OEA. 

Because it is important to distinguish between the levels of the architecture in order to 
ensure compatibility across multiple platforms, those distinctions are shown clearly 
throughout this book. 

For ease in reference, the arrangement of topics in this book follows that of The 
Programming Environments Manual. Topics build upon one another, beginning with a 
description and complete summary of MPC750-specific registers and instructions and 
progressing to more specialized topics such as MPC750-specific details regarding the 
cache, exception, and memory management models. As such, chapters may include 
information from multiple levels of the architecture. (For example, the discussion of the 
cache model uses information from both the VEA and the OEA.) 
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The PowerPC Architecture: A Specification for a New Family of RISC Processors defines 
the architecture from the perspective of the three programming environments and remains 
the defining document for the PowerPC architecture. For information about ordering 
PowerPC documentation, see "Suggested Reading," on page xxx. 

The information in this book is subject to change without notice, as described in the 
disclaimers on the title page of this book. As with any technical documentation, it is the 
readers' responsibility to be sure they are using the most recent version of the 
documentation. 

To locate any published errata or updates for this document, refer to the world-wide web at 
http://www.mot.com/powerpc. 

Audience 
This manual is intended for system software and hardware developers and applications 
programmers who want to develop products for the MPC750. It is assumed that the reader 
understands operating systems, microprocessor system design, basic principles of RISC 
processing, and details of the PowerPC architecture. 

Organization 
Following is a summary and a brief description of the major sections of this manual: 

• Chapter 1, "Overview," is useful for readers who want a general understanding of 
the features and functions of the PowerPC architecture and the MPC750. This 
chapter describes the flexible nature of the PowerPC architecture definition, and 
provides an overview of how the PowerPC architecture defines the register set, 
operand conventions, addressing modes, instruction set, cache model, exception 
model, and memory management model. 

• Chapter 2, "MPC750 Processor Programming Model,"is useful for software 
engineers who need to understand the MPC750-specific registers, operand 
conventions, and details regarding how PowerPC instructions are implemented on 
the MPC750. Instructions are organized by function. 

• Chapter 3, "LI Instruction and Data Cache Operation," discusses the cache and 
memory model as implemented on the MPC750. 

• Chapter 4, "Exceptions," describes the exception model defined in the PowerPC 
OEA and the specific exception model implemented on the MPC750. 

• Chapter 5, "Memory Management," describes the MPC750's implementation of the 
memory management unit specifications provided by the PowerPC OEA for 
PowerPC processors. 

• Chapter 6, "Instruction Timing," provides information about latencies, interlocks, 
special situations, and various conditions to help make programming more efficient. 
This chapter is of special interest to software engineers and system designers. 
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• Chapter 7, "Signal Descriptions," provides descriptions of individual signals of the 
MPC750. 

• Chapter 8, "System Interface Operation," describes signal timings for various 
operations. It also provides information for interfacing to the MPC750. 

• Chapter 9, "L2 Cache Interface Operation," describes the implementation and use 
of the MPC750 L2 cache and cache controller. Note that this feature is not 
supported on the MPC740. 

• Chapter 10, "Power and Thermal Management," provides information about power 
saving and thermal management modes for the MPC750. 

• Chapter 11, "Performance Monitor," describes the operation ofthe performance 
monitor diagnostic tool incorporated in the MPC750. 

• Appendix A, "PowerPC Instruction Set Listings," lists all the PowerPC instructions 
while indicating those instructions that are not implemented by the MPC750; it also 
includes the instructions that are specific to the MPC750. Instructions are grouped 
according to mnemonic, opcode, function, and form. Also included is a quick 
reference table that contains general information, such as the architecture level, 
privilege level, and form, and indicates if the instruction is 64-bit and optional. 

• Appendix B, "Instructions Not Implemented," provides a list ofthe 32-bit and 64-
bit PowerPC instructions that are not implemented in the MPC750. 

• This manual also includes a glossary and an index. 

Suggested Reading 
This section lists additional reading that provides background for the information in this 
manual as well as general information about the PowerPC architecture. 

General Information 
The following documentation provides useful information about thePowerPC architecture 
and computer architecture in general: 

xxx 

• The following books are available from the Morgan-Kaufmann Publishers, 340 
Pine Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), 
(415) 392-2665 (International); internet address: rnkp@rnkp.com. 

- The PowerPC Architecture: A Specification for a New Family of RISC 
Processors, Second Edition, by International Business Machines, Inc. 

Updates to the architecture specification are accessible via the world-wide web 
at http://www.austin.ibm.comltechlppc-chg.html. 

- PowerPC Microprocessor Common Hardware Reference Platform: A System 
Architecture, by Apple Computer, Inc., International Business Machines, Inc., 
and Motorola, Inc. 

- Macintosh Technology in the Common Hardware Reference Platform, by Apple 
Computer, Inc. 
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- Computer Architecture: A Quantitative Approach, Second Edition, by 
John L. Hennessy and David A. Patterson 

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing 
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.), 
(800) 637-0029 (Canada), (716) 871-6555 (International). 

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books 
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404; 
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International). 

PowerPC Documentation 
The PowerPC documentation is available from the sources listed on the back cover of this 
manual; the document order numbers are included in parentheses for ease in ordering: 

• User's manuals-These books provide details about individual PowerPC 
implementations and are intended to be used in conjunction with The Programming 
Environments Manual. These include the following: 

- PowerPC 60ITM RISC Microprocessor User's Manual: MPC601UMlAD 
(Motorola order #) 

- PowerPC 603e™ RISC Microprocessor User's Manual with Supplement for 
PowerPC 603 Microprocessor: 
MPC603EUMI AD (Motorola order #) 

- PowerPC 604™ RISC Microprocessor User's Manual: 
MPC604UM/AD (Motorola order #) 

• Programming environments manuals-These books provide information about 
resources defined by the PowerPC architecture that are common to PowerPC 
processors. There are two versions, one that describes the functionality of the 
combined 32- and 64-bit architecture models and one that describes only the 32-bit 
model. 

- PowerPC Microprocessor Family: The Programming Environments, Rev 1: 
MPCFPEI AD (Motorola order #) 

- PowerPC Microprocessor Family: The Programming Environmentsfor 32-Bit 
Microprocessors, Rev. 1: MPCFPE32BI AD (Motorola order #) 

• Implementation Variances Relative to Rev. I of The Programming Environments 
Manual is available via the world-wide web at http://www.motorola.com/PowerPCI. 

• Addenda/errata to user's manuals-Because some processors have follow-on parts 
an addendum is provided that describes the additional features and changes to 
functionality of the follow-on part. These addenda are intended for use with the 
corresponding user's manuals. These include the following: 

- Addendum to PowerPC 603e RISC Microprocessor User's Manual: PowerPC 
603e Microprocessor Supplement and User's Manual Errata: 
MPC603EUMADI AD (Motorola order #) 
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- Addendum to PowerPC 604 RISC Microprocessor User's Manual: PowerPC 
604e™ Microprocessor Supplement and User's Manual Errata: 
MPC604UMAD/AD (Motorola order #) 

• Hardware specifications-Hardware specifications provide specific data regarding 
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as 
other design considerations for each PowerPC implementation. These include the 
following: 

- PowerPC 601 RISC Microprocessor Hardware Specifications: 
MPC60lECID (Motorola order #) 

- PowerPC 603 RISC Microprocessor Hardware Specifications: 
MPC603ECID (Motorola order #) 

- PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware 
Specifications: 
MPC603EECID (Motorola order #) 

- PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware 
Specifications: 
MPC603E7VECID (Motorola order #) 

- PowerPC 603e RISC Microprocessor Family: PID7t-603e Hardware 
Specifications: 
MPC603E7TECID (Motorola order #) 

- PowerPC 604 RISC Microprocessor Hardware Specifications: 
MPC604ECID (Motorola order #) 

- PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware 
Specifications: 
MPC604E9VECID (Motorola order # 

• Technical Summaries-Each PowerPC implementation has a technical summary 
that provides an overview of its features. This document is roughly the equivalent to 
the overview (Chapter 1) of an implementation's user's manuaL Technical 
summaries are available for the 601, 603, 603e, 604, and 604e as well as the 
following: 

- PowerPC 620™ RISC Microprocessor Technical Summary: MPC6201D 
(Motorola order #) 

• PowerPC Microprocessor Family: The Bus Inteiface for 32-Bit Microprocessors: 

xxxii 

MPCBUSIFI AD (Motorola order #) provides a detailed functional description of the 
60x bus interface, as implemented on the 601, 603, and 604 family of Power PC 
microprocessors. This document is intended to help system and chipset developers 
by providing a centralized reference source to identify the bus interface presented by 
the 60x family of PowerPC microprocessors. 
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• PowerPC Microprocessor Family: The Programmer's Reference Guide: 
MPCPRG/D (Motorola order #) is a concise reference that includes the register 
summary, memory control model, exception vectors, and the PowerPC instruction 
set. 

• PowerPC Microprocessor Family: The Programmer's Pocket Reference Guide: 
MPCPRGREFID (Motorola order #) 
This foldout card provides an overview of the PowerPC registers, instructions, and 
exceptions for 32-bit implementations. 

• Application notes-These short documents contain useful information about 
specific design issues useful to programmers and engineers working with PowerPC 
processors. 

• Documentation for support chips-These include the following: 

- MPC105 PCI Bridge/Memory Controller User's Manual: 
MPC I05UMI AD (Motorola order #) 

- MPC106 PCI Bridge/Memory Controller User's Manual: 
MPC106UMlAD (Motorola order #) 

Additional literature on PowerPC implementations is being released as new processors 
become available. For a current list of PowerPC documentation, refer to the world-wide 
web at http://www.motorola.com/PowerPC/. 

Conventions 
This document uses the following notational conventions: 

mnemonics 

italics 

OxO 
ObO 
rA,rB 

rD 

frA, frB, frC 

frD 

REG [FIELD] 

x 

n 

About This Book 

Instruction mnemonics are shown in lowercase bold. 

Italics indicate variable command parameters, for example, bcctrx. 
Book titles in text are set in italics. 

Prefix to denote hexadecimal number 

Prefix to denote binary number 

Instruction syntax used to identify a source GPR 

Instruction syntax used to identify a destination GPR 

Instruction syntax used to identify a source FPR 

Instruction syntax used to identify a destination FPR 

Abbreviations or acronyms for registers are shown in uppercase text. 
Specific bits, fields, or ranges appear in brackets. For example, 
MSR[LE] refers to the little-endian mode enable bit in the machine 
state register. 

In certain contexts, such as a signal encoding, this indicates a don't 
care. 

Used to express an undefined numerical value 
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.., 

& 

0000 • 

NOT logical operator 

AND logical operator 

OR logical operator 

Indicates reserved bits or bit fields in a register. Although these bits 
may be written to as either ones or zeros, they are always read as 
zeros. 

Acronyms and Abbreviations 
Table i contains acronyms and abbreviations that are used in this document. 

Table i. Acronyms and Abbreviated Terms 

Term Meaning 

BAT Block address translation 

BIST Built-in self test 

BHT Branch history table 

BIU Bus interface unit 

BPU Branch processing unit 

BTIC Branch target instruction cache 

BSDL Boundary-scan description language 

BUID Bus unit 10 

CMOS Complementary metal-oxide semiconductor 

COP Common on-chip processor 

CR Condition register 

CO Completion queue 

CTR Count register 

DABR Data address breakpoint register 

DAR Data address register 

DBAT Data BAT 

DCMP Data TLB compare 

DEC Decrementer register 

DLL Delay-locked loop 

DMISS Data TLB miss address 

DMMU Data MMU 

DPM Dynamic power management 

DSISR Register used for determining the source of a DSI exception 

DTLB Data translation lookaside buffer 
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Table i. Acronyms and Abbreviated Terms (Continued) 

Term Meaning 

EA Effective address 

EAR External access register 

EGG Error checking and correction 

FIFO First-in-first-out 

FPR Floating-point register 

FPSGR Floating-point status and control register 

FPU Floating-point unit 

GPR General-purpose register 

HIDn Hardware implementation-dependent register 

IABR Instruction address breakpoint register 

I BAT Instruction BAT 

IGTG Instruction cache throttling control register 

IEEE Institute for Electrical and Electronics Engineers 

IMMU Instruction MMU 

IQ Instruction queue 

ITLB Instruction translation lookaside buffer 

IU Integer unit 

JTAG Joint Test Action Group 

L2 Secondary cache (Level 2 cache) 

L2GR L2 cache control register 

LIFO Last-in-first-out 

LR Link register 

LRU Least recently used 

LSB Least-significant byte 

Isb Least-significant bit 

LSU Load/store unit 

MEl Modified/exclusive/invalid 

MESI Modified/exclusive/shared/invalid-cache coherency protocol 

MMGRn Monitor mode control registers 

MMU Memory management unit 

MSB Most-significant byte 

msb Most-significant bit 
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Table i. Acronyms and Abbreviated Terms (Continued) 

Term Meaning 

MSR Machine state register 

NaN Nota number 

No-op No operation 

OEA Operating environment architecture 

PID Processor identification tag 

PLL Phase-locked loop 

PLRU Pseudo least recently used 

PMCn Performance monitor counter registers 

POR Power-on reset 

POWER Performance Optimized with Enhanced RISC architecture 

PTE Page table entry 

PTEG Page table entry group 

PVR Processor version register 

RAW Read-alter-write 

RISC Reduced instruction set computing 

RTL Register transfer language 

RWITM Read with intent to modify 

RWNITM Read with no intent to modify 

SDA Sampled data address register 

SDR1 Register that specifies the page table base address for virtual-to-physical address translation 

SIA Sampled instruction address register 

SPR Special-purpose register 

SRn Segment register 

SRU System register unit 

SRRO Machine status save/restore register 0 

SRR1 Machine status save/restore register 1 

SRU System register unit 

TAU Thermal management assist unit 

TB Time base facility 

TBL Time base lower register 

TBU Time base upper register 

THRMn Thermal management registers 
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Table i. Acronyms and Abbreviated Terms (Continued) 

Term Meaning 

TLB Translation lookaside buffer 

TIL Transistor-to-transistor logic 

UIMM Unsigned immediate value 

UISA User instruction set architecture 

UMMCRn User monitor mode control registers 

UPMCn User performance monitor counter registers 

USIA User sampled instruction address register 

VEA Virtual environment architecture 

WAR Write-alter-read 

WAW Write-alter-write 

WIMG Write-through/caching-inhibited/memory-coherency enforced/guarded bits 

XATC Extended address transfer code 

XER Register used for indicating conditions such as carries and overflows for integer operations 

Terminology Conventions 
Table ii describes terminology conventions used in this manual and the equivalent 
terminology used in the PowerPC architecture specification. 

Table ii. Terminology Conventions 

The Architecture Specification This Manual 

Data storage interrupt (OSI) OSI exception 

Extended mnemonics Simplified mnemonics 

Fixed-point unit (FXU) Integer unit (IU) 

Instruction storage interrupt (lSI) lSI exception 

Interrupt Exception 

Privileged mode (or privileged state) Supervisor -level privilege 

Problem mode (or problem state) User-level privilege 

Real address Physical address 

Relocation Translation 

Storage (locations) Memory 

Storage (the act of) Access 

Store in Write back 

Store through Write through 
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Table iii describes instruction field notation used in this manual. 

Table iii. Instruction Field Conventions 

The Architecture Specification Equivalent to: 

SA, SS,ST crbA, crbS, crbO (respectively) 

SF, BFA crfO, crfS (respectively) 

0 d 

OS ds 

FLM FM 

FRA, FRS, FRC, FR~FRS frA, frS, frC, frO, frS (respectively) 

FXM CRM 

RA, RB, RT, RS rA, rS, rO, rS (respectively) 

SI SIMM 

U IMM 

UI UIMM 

I, II, III 0 ... 0 (shaded) 
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Chapter 1 
Overview 

This chapter provides an overview of the MPC750 microprocessor features, including a 
block diagram showing the major functional components. It provides information about 
how the MPC750 implementation complies with the PowerPCTM architecture definition. 

1.1 MPC750 Microprocessor Overview 
This section describes the features and general operation of the MPC750 and provides a 
block diagram showing major functional units. The MPC750 is an implementation of the 
PowerPC microprocessor family of reduced instruction set computer (RISC) 
microprocessors. The MPC750 implements the 32-bit portion of the PowerPC architecture, 
which provides 32-bit effective addresses, integer data types of 8, 16, and 32 bits, and 
floating-point data types of 32 and 64 bits. The MPC750 is a superscalar processor that can 
complete two instructions simultaneously. It incorporates the following six execution units: 

• Floating-point unit (FPU) 

• Branch processing unit (BPU) 

System register unit (SRU) 

• Load/store unit (LSU) 

• Two integer units (IUs): lUI executes all integer instructions. IU2 executes all 
integer instructions except multiply and divide instructions. 

The ability to execute several instructions in parallel and the use of simple instructions with 
rapid execution times yield high efficiency and throughput for MPC7S0-based systems. 
Most integer instructions execute in one clock cycle. The FPU is pipelined, the tasks it 
performs are broken into subtasks, implemented as three successive stages. Typically, a 
floating-point instruction can occupy only one of the three stages at a time, freeing the 
previous stage to work on the next floating-point instruction. Thus, three single-precision 
floating-point instructions can be in the FPU execute stage at a time. Double-precision add 
instructions have a three-cycle latency; double-precision multiply and multiply-add 
instructions have a four-cycle latency. 
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Figure 1-1 shows the parallel organization ofthe execution units (shaded in the diagram). 
The instruction unit fetches, dispatches, and predicts branch instructions. Note that this is 
a conceptual model that shows basic features rather than attempting to show how features 
are implemented physically. 

The MPC750 has independent on-chip, 32-Kbyte, eight-way set-associative, physically 
addressed caches for instructions and data and independent instruction and data memory 
management units (MMUs). Each MMU has a 128-entry, two-way set-associative 
translation lookaside buffer (DTLB and ITLB) that saves recently used page address 
translations. Block address translation is done through the four-entry instruction and data 
block address translation (IBAT and DBAT) arrays, defined by the PowerPC architecture. 
During block translation, effective addresses are compared simultaneously with all four 
BAT entries. For information about the Ll cache, see Chapter 3, "Ll Instruction and Data 
Cache Operation." 

The L2 cache is implemented with an on-chip, two-way, set-associative tag memory, and 
with external, synchronous SRAMs for data storage. The external SRAMs are accessed 
through a dedicated L2 cache POlt that supports a single bank of up to 1 Mbyte of 
synchronous SRAMs. The L2 cache interface is not implemented in the MPC740. For 
information about the L2 cache implementation, see Chapter 9, "L2 Cache Interface 
Operation." 

The MPC750 has a 32-bit address bus and a 64-bit data bus. Multiple devices compete for 
system resources through a central external arbiter. The MPC750's three-state cache
coherency protocol (MEl) supports the exclusive, modified, and invalid states, a compatible 
subset of the MESI (modifiedlexclusive/shared/invalid) four-state protocol, and it operates 
coherently in systems with four-state caches. The MPC750 supports single-beat and burst 
data transfers for memory accesses and memory-mapped 1/0 operations. The system 
interface is described in Chapter 7, "Signal Descriptions," and Chapter 8, "System 
Interface Operation." 

The MPC750 has four software-controllable power-saving modes. Three static modes, 
doze, nap, and sleep, progressively reduce power dissipation. When functional units are 
idle, a dynamic power management mode causes those units to enter a low-power mode 
automatically without affecting operational performance, software execution, or external 
hardware. The MPC750 also provides a thermal assist unit (TAU) and a way to reduce the 
instruction fetch rate for limiting power dissipation. Power management is described in 
Chapter 10, "Power and Thermal Management." 

The MPC750 uses an advanced CMOS process technology and is fully compatible with 
TTL devices. 
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1.2 MPC750 Microprocessor Features 
This section lists features of the MPC750. The interrelationship of these features is shown 
in Figure 1-1. 

1.2.1 Overview of the MPC750 Microprocessor Features 
Major features of the MPC750 are as follows: 

1-4 

High-performance, superscalar microprocessor 

- As many as four instructions can be fetched from the instruction cache per clock 
cycle 

- As many as two instructions can be dispatched per clock 

- As many as six instructions can execute per clock (including two integer 
instructions) 

- Single-clock-cycle execution for most instructions 

Six independent execution units and two register files 

- BPU featuring both static and dynamic branch prediction 

- 64-entry (16-set, four-way set-associative) branch target instruction cache 
(BTIC), a cache of branch instructions that have been encountered in 
branch/loop code sequences. If a target instruction is in the BTIC, it is fetched 
into the instruction queue a cycle sooner than it can be made available from 
the instruction cache. Typically, if a fetch access hits the BTlC, it provides the 
first two instructions in the target stream. 

- 512-entry branch history table (BHT) with two bits per entry for four levels of 
prediction-not-taken, strongly not-taken, taken, strongly taken 

- Branch instructions that do not update the count register (CTR) or link register 
(LR) are removed from the instruction stream. 

- Two integer units (IUs) that share thirty-two GPRs for integer operands 

lUI can execute any integer instruction. 

IU2 can execute all integer instructions except multiply and divide 
instructions (multiply, divide, shift, rotate, arithmetic, and logical 
instructions). Most instructions that execute in the IU2 take one cycle to 
execute. The IU2 has a single-entry reservation station. 

- Three-stage FPU 

- Fully IEEE 754-1985-compliant FPU for both single- and double-precision 
operations 

- Supports non-IEEE mode for time-critical operations 

- Hardware support for denormalized numbers 

Single-entry reservation station 

- Thirty-two 64-bit FPRs for single- or double-precision operands 
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- Two-stage LSU 

Two-entry reservation station 

Single-cycle, pipe lined cache access 

Dedicated adder performs EA calculations 

- Performs alignment and precision conversion for floating-point data 

- Performs alignment and sign extension for integer data 

- Three-entry store queue 

- Supports both big- and little-endian modes 

- SRU handles miscellaneous instructions 

- Executes CR logical and Move tolMove from SPR instructions (mtspr and 
mfspr) 

Single-entry reservation station 

Rename buffers 

- Six GPR rename buffers 

- Six FPR rename buffers 

- Condition register buffering supports two CR writes per clock 

Completion unit 

- The completion unit retires an instruction from the six-entry reorder buffer 
(completion queue) when all instructions ahead of it have been completed, the 
instruction has finished execution, and no exceptions are pending. 

- Guarantees sequential programming model (precise exception model) 

- Monitors all dispatched instructions and retires them in order 

- Tracks unresolved branches and flushes instructions from the mispredicted 
branch 

- Retires as many as two instructions per clock 

• Separate on-chip instruction and data caches (Harvard architecture) 

- 32-Kbyte, eight-way set-associative instruction and data caches 

- Pseudo least-recently-used (PLRU) replacement algorithm 

- 32-byte (eight-word) cache block 

- Physically indexed/physical tags. (Note that the PowerPC architecture refers to 
physical address space as real address space.) 

- Cache write-back or write-through operation programmable on a per-page or 
per-block basis 

- Instruction cache can provide four instructions per clock; data cache can provide 
two words per clock 

- Caches can be disabled in software 
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1-6 

- Caches can be locked in software 

- Data cache coherency (MEl) maintained in hardware 

- The critical double word is made available to the requesting unit when it is burst 
into the line-fill buffer. The cache is nonblocking, so it can be accessed during 
this operation. 

• Level 2 (L2) cache interface (The L2 cache interface is not supported in the 
MPC740.) 

- On-chip two-way set-associative L2 cache controller and tags 

- External data SRAMs 

- Support for 256-Kbyte, 512-Kbyte, and I-Mbyte L2 caches 

- 64-byte (256-Kbyte/512-Kbyte) and 128-byte (1 Mbyte) sectored line size 

- Supports flow-through (register-buffer), pipelined (register-register), and 
pipelined late-write (register-register) synchronous burst SRAMs 

• Separate memory management units (MMUs) for instructions and data 

- 52-bit virtual address; 32-bit physical address 

- Address translation for 4-Kbyte pages, variable-sized blocks, and 256-Mbyte 
segments 

- Memory programmable as write-backlwrite-through, cacheable/noncacheable, 
and coherency enforced/coherency not enforced on a page or block basis 

----:- Separate IBATs and DBATs (four each) also defined as SPRs 

- Separate instruction and data translation lookaside buffers (TLBs) 

- Both TLBs are 128-entry, two-way set associative, and use LRU replacement 
algorithm 

- TLBs are hardware-reloadable (that is, the page table search is performed in 
hardware) 

• Separate bus interface units for system memory and for the L2 cache 

- Bus interface features include the following: 

- Selectable bus-to-core clock frequency ratios of 2x, 2.5x, 3x, 3.5x, 4x, 4.5x ... 
8x. (2x to 8x, all half-clock multipliers in-between) 

- A 64-bit, split-~ansaction external data bus with burst transfers 

- Support for address pipelining and limited out-of-order bus transactions 

- Single-entry load queue 

- Single-entry instruction fetch queue 

- Two-entry Ll cache castout queue 
==="" - No-DRTRY mode eliminates the DRTRY signal from the qualified bus grant. 

This allows the forwarding of data during load operations to the internal core 
one bus cycle sooner than if the use of DRTRY is enabled. 
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- L2 cache interface features (which are not implemented on the MPC740) include 
the following: 

- Core-to-L2 frequency divisors of 1, 1.5,2,2.5, and 3 

- Four-entry L2 cache castout queue in L2 cache BIU 

- 17 -bit address bus 

- 64-bit data bus 

• Multiprocessing support features include the following: 

- Hardware-enforced, three-state cache coherency protocol (MEl) for data cache. 

- Load/store with reservation instruction pair for atomic memory references, 
semaphores, and other multiprocessor operations 

• Power and thermal management 

- Three static modes, doze, nap, and sleep, progressively reduce power 
dissipation: 

- Doze-All the functional units are disabled except for the time 
base/decrementer registers and the bus snooping logic. 

- Nap--The nap mode further reduces power consumption by disabling bus 
snooping, leaving only the time base register and the PLL in a powered state. 

- Sleep-All internal functional units are disabled, after which external system 
logic may disable the PLL and SYSCLK. 

- Thermal management facility provides software-controllable thermal 
management. Thermal management is performed through the use of three 
supervisor-level registers and an MPC750-specific thermal management 
exception. 

- Instruction cache throttling provides control of instruction fetching to limit 
power consumption. 

• Performance monitor can be used to help debug system designs and improve 
software efficiency. 

• In-system testability and debugging features through JTAG boundary-scan 
capability 

1.2.2 Instruction Flow 
As shown in Figure 1-1, the MPC750 instruction unit provides centralized control of 
instruction flow to the execution units. The instruction unit contains a sequential fetcher, 
six-entry instruction queue (IQ), dispatch unit, and BPU. It determines the address of the 
next instruction to be fetched based on information from the sequential fetcher and from 
the BPU. 

See Chapter 6, "Instruction Timing," for a detailed discussion of instruction timing. 
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The sequential fetcher loads instructions from the instruction cache into the instruction 
queue. The BPU extracts branch instructions from the sequential fetcher. Branch 
instructions that cannot be resolved immediately are predicted using either the MPC750-
specific dynamic branch prediction or the architecture-defined static branch prediction. 

Branch instructions that do not affect the LR or CTR are removed from the instruction 
stream. The BPU folds branch instructions when a branch is taken (or predicted as taken); 
branch instructions that are not taken, or predicted as not taken, are removed from the 
instruction stream through the dispatch mechanism. 

Instructions issued beyond a predicted branch do not complete execution until the branch 
is resolved, preserving the programming model of sequential execution. If branch 
prediction is incorrect, the instruction unit flushes all predicted path instructions, and 
instructions are fetched from the correct path. 

1.2.2.1 Instruction Queue and Dispatch Unit 
The instruction queue (IQ), shown in Figure 1-1, holds as many as six instructions and 
loads up to four instructions from the instruction cache during a single processor clock 
cycle. The instruction fetcher continuously attempts to load as many instructions as there 
were vacancies in the IQ in the previous clock cycle. All instructions except branch 
instructions are dispatched to their respective execution units from the bottom two positions 
in the instruction queue (IQO and IQ1) at a maximum rate of two instructions per cycle. 
Reservation stations are provided for the IU1, IU2, FPU, LSU, and SRU. The dispatch unit 
checks for source and destination register dependencies, determines whether a position is 
available in the completion queue, and inhibits subsequent instruction dispatching as 
required. 

Branch instructions can be detected, decoded, and predicted from anywhere in the 
instruction queue. For a more detailed discussion of instruction dispatch, see Section 6.3.3, 
"Instruction Dispatch and Completion Considerations." 

1.2.2.2 Branch Processing Unit (BPU) 
The BPU receives branch instructions from the sequential fetcher and performs CR 
lookahead operations on conditional branches to resolve them early, achieving the effect of 
a zero-cycle branch in many cases. 

Unconditional branch instructions and conditional branch instructions in which the 
condition is known can be resolved immediately. For unresolved conditional branch 
instructions, the branch path is predicted using either the architecture-defined static branch 
prediction or the MPC750-specificdynamic branch prediction. Dynamic branch prediction 
is enabled if IDDO[BHT] = 1. 

1-8 MPC750 RISC Microprocessor User's Manual 



When a prediction is made, instruction fetching, dispatching, and execution continue from 
the predicted path, but instructions cannot complete and write back results to architected 
registers until the prediction is determined to be correct (resolved). When a prediction is 
incorrect, the instructions from the incorrect path are flushed from the processor and 
processing begins from the correct path. The MPC750 allows a second branch instruction 
to be predicted; instructions from the second predicted instruction stream can be fetched 
but cannot be dispatched. 

Dynamic prediction is implemented using a 512-entry branch history table (BHT), a cache 
that provides two bits per entry that together indicate four levels of prediction for a branch 
instruction-not-taken, strongly not-taken, taken, strongly taken. When dynamic branch 
prediction is disabled, the BPU uses a bit in the instruction encoding to predict the direction 
of the conditional branch. Therefore, when an unresolved conditional branch instruction is 
encountered, the MPC750 executes instructions from the predicted target stream although 
the results are not committed to architected registers until the conditional branch is 
resolved. This execution can continue until a second unresolved branch instruction is 
encountered. 

When a branch is taken (or predicted as taken), the instructions from the untaken path must 
be flushed and the target instruction stream must be fetched into the IQ. The BTIC is a 64-
entry cache that contains the most recently used branch target instructions, typically in 
pairs. When an instruction fetch hits in the BTIC, the instructions arrive in the instruction 
queue in the next clock cycle, a clock cycle sooner than they would arrive from the 
instruction cache. Additional instructions arrive from the instruction cache in the next clock 
cycle. The BTIC reduces the number of missed opportunities to dispatch instructions and 
gives the processor a one-cycle head start on processing the target stream. 

The BPU contains an adder to compute branch target addresses and three user-control 
registers-the link register (LR), the count register (CTR), and theCR. The BPU calculates 
the return pointer for subroutine calls and saves it into the LR for certain types of branch 
instructions. The LR also contains the branch target address for the Branch Conditional to 
Link Register (bclrx) instruction. The CTR contains the branch target address for the 
Branch Conditional to Count Register (bcctrx) instruction. Because the LR and CTR are 
SPRs, their contents can be copied to or from any GPR. Because the BPU uses dedicated 
registers rather than GPRs or FPRs, execution of branch instructions is largely independent 
from execution of integer and floating-point instructions. 

1.2.2.3 Completion Unit 
The completion unit operates closely with the instruction unit. Instructions are fetched and 
dispatched in program order. At the point of dispatch, the program order is maintained by 
assigning each dispatched instruction a successive entry in the six-entry completion queue. 
The completion unit tracks instructions from dispatch through execution and retires them 
in program order from the two bottom entries in the completion queue (CQO and CQl). 
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Instructions cannot· be dispatched to an execution unit unless there is a vacancy in the 
completion queue. Branch instructions that do not update the CTR or LR are removed from 
the instruction stream and do not take an entry in the completion queue. Instructions that 
update the CTR and LR follow the same dispatch and completion procedures as non-branch 
instructions, except that they are not issued to an execution unit. 

Completing an instruction commits execution results to architected registers (GPRs, FPRs, 
LR, and CTR). In-order completion ensures the correct architectural state when the 
MPC750 must recover from a mispredicted branch or any exception. Retiring an instruction 
removes it from the completion queue. 

For a more detailed discussion of instruction completion, see Section 6.3.3, "Instruction 
Dispatch and Completion Considerations." 

1.2.2.4 Independent Execution Units 
In ~ddition to the BPU, the MPC750 provides the five execution units described in the 
following sections. 

1.2.2.4.1 Integer Units (IUs) 
The integer units lUI and 1U2 are shown in Figure 1-1. The lUI can execute any integer 
instruction; the IU2 can execute any integer instruction except multiplication and division 
instructions. Each IU has a single-entry reservation station that can receive instructions 
from the dispatch unit .and operands from the GPRs or the rename buffers. 

Each IU consists of three single-cycle subunits-a fast adder/comparator, a subunit for 
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero 
operations. These subunits handle all one-cycle arithmetic instructions; only one subunit 
can execute an instruction at a time. 

The lUI has a 32-bit integer multiplier/divider as well as the adder, shift, and logical units 
of the IU2. The multiplier supports early exit for operations that do not require full 32- x 
32-bit multiplication. 

Each IU has a dedicated result bus (not shown in Figure 1-1) that connects to rename 
buffers. 

1.2.2.4.2 Floating-Point Unit (FPU) 
The FPU, shown in Figure 1-1, is designed such that single-precision operations require 
only a single pass, with a latency of three cycles. As instructions are dispatched to the FPU's 
reservation station, source operand data can be accessed from the FPRs or from the FPR 
rename buffers. Results in tum are written to the rename buffers and are made available to 
subsequent instructions. Instructions pass through the reservation station in dispatch order. 
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The FPU contains a single-precision multiply-add array and the floating-point status and 
control register (FPSCR). The multiply-add array allows the MPC750 to efficiently 
implement multiply and multiply-add operations. The FPU is pipelined so that one single
or double-precision instruction can be issued per clock cycle. Thirty-two 64-bit floating
point registers are provided to support floating-point operations. Stalls due to contention for 
FPRs are minimized by automatic allocation of the six floating-point rename registers. The 
MPC750 writes the contents of the rename registers to the appropriate FPR when floating
point instructions are retired by the completion unit. 

The MPC750 supports all IEEE 754 floating-point data types (normalized, denormalized, 
NaN, zero, and infinity) in hardware, eliminating the latency incurred by software 
exception routines. (Note that exception is also referred to as interrupt in the architecture 
specification.) 

1.2.2.4.3 Load/Store Unit (LSU) 
The LSU executes all load and store instructions and provides the data transfer interface 
between the GPRs, FPRs, and the cache/memory subsystem. The LSU calculates effective 
addresses, performs data alignment, and provides sequencing for load/store string and 
multiple instructions. 

Load and store instructions are issued and translated in program order; however, some 
memory accesses can occur out of order. Synchronizing instructions can be used to enforce 
strict ordering. When there are no data dependencies and the guarded bit for the page or 
block is cleared, a maximum of one out-of-order cacheable load operation can execute per 
cycle, with a two-cycle total latency on a cache hit. Data returned from the cache is held in 
a rename register until the completion logic commits the value to a GPR or FPR. Stores 
cannot be executed out of order and are held in the store queue until the completion logic 
signals that the store operation is to be completed to memory. The MPC750 executes store 
instructions with a maximum throughput of one per cycle and a three-cycle total latency to 
the data cache. The time required to perform the actual load or store operation depends on 
the processorlhus clock ratio and whether the operation involves the on-chip cache, the L2 
cache, system memory, or an I/O device. 

1.2.2.4.4 System Register Unit (SRU) 
The SRU executes various system-level instructions, as well as condition register logical 
operations and move to/from special-purpose register instructions. To maintain system 
state, most instructions executed by the SRU are execution-serialized; that is, the 
instruction is held for execution in the SRU until all previously issued instructions have 
executed. Results from execution-serialized instructions executed by the SRU are not 
available or forwarded for subsequent instructions until the instruction completes. 
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1.2.3 Memory Management Units (MMUs) 
The MPC750's MMUs support up to 4 Petabytes (252) of virtual memory and 4 Gigabytes 
(232) of physical memory for instructions and data. The MMUs also control access 
privileges for these spaces on block and page granularities. Referenced and changed status 
is maintained by the processor for each page to support demand-paged virtual memory 
systems. 

The LSU calculates effective addresses for data loads and stores; the instruction unit 
calculates effective addresses for instruction fetching. The MMU translates the effective 
address to determine the correct physical address for the memory access. 

The MPC750 supports the following types of memory translation: 

• Real addressing mode-In this mode, translation is disabled by clearing bits in the 
machine state register (MSR): MSR[IR] for instruction fetching or MSR[DR] for 
data accesses. When address translation is disabled, the physical address is identical 
to the effective address. 

• Page address translation-translates the page frame address for a 4-Kbyte page size 

Block address translation-translates the base address for blocks (128 Kbytes to 256 
Mbytes) 

If translation is enabled, the appropriate MMU translates the higher-order bits of the 
effective address into physical address bits. The lower-order address bits (that are 
untranslated and therefore, considered both logical and physical) are directed to the on-chip 
caches where they form the index into the eight-way set-associative tag array. After 
translating the address, the MMU passes the higher-order physical address bits to the cache 
and the cache lookup completes. For caching-inhibited accesses or accesses that miss in the 
cache, the untranslated lower-order address bits are concatenated with the translated 
higher-order address bits; the resulting 32-bit physical address is used by the memory unit 
and the system interface, which accesses external memory. 

The TLBs store page address translations for recent memory accesses. For each access, an 
effective address is presented for page and block translation simultaneously. If a translation 
is found in both the TLB and the BAT array, the block address translation in the BAT array 
is used. Usually the translation is in a TLB and the physical address is readily available to 
the on-chip cache. When a page address translation is not in a TLB, hardware searches for 
one in the page table following the model defined by the PowerPC architecture. 

Instruction and data TLBs provide address translation in parallel with the on-chip cache 
access, incurring no additional time penalty in the event of a TLB hit. The MPC750's TLBs 
are l28-entry, two-way set-associative caches that contain instruction and data address 
translations. The MPC750 automatically generates a TLB search on a TLB miss. 

1-12 MPC750 RISC Microprocessor User's Manual 



1.2.4 On-Chip Instruction and Data Caches 
The MPC750 implements separate instruction and data caches. Each cache is 32-Kbyte and 
eight-way set associative. As defined by the PowerPC architecture, they are physically 
indexed. Each cache block contains eight contiguous words from memory that are loaded 
from an 8-word boundary (that is, bits EA[27-31] are zeros); thus, a cache block never 
crosses a page boundary. An entire cache block can be updated by a four-beat burst load. 
Misaligned accesses across a page boundary can incur a performance penalty. Caches are 
nonblocking, write-back caches with hardware support for reloading on cache misses. The 
critical double word is transferred on the first beat and is simultaneously written to the 
cache and forwarded to the requesting unit, minimizing stalls due to load delays. The cache 
being loaded is not blocked to internal accesses while the load completes. 

The MPC750 cache organization is shown in Figure 1-2. 

128 Sets I • • 

~ I -• • 
----j -

Block a Address Tag a ;-- State Words [0-7] r----

Block 1 Address Tag 1 !-- State Words [0-7] I---

Block 2 Address Tag 2 - State Words [0-7] I---

Block 3 Address Tag 3 - State Words [0-7] I---

Block 4 Address Tag 4 I--- State Words [0-7] I---

Block 5 Address Tag 5 I--- State Words [0-7] I---

Block 6 Address Tag 6 State Words [0-7] 

Block 7 Address Tag 7 State Words [0-7] 

1 ..... c---------i8 WordsiBlock-----~·1 

Figure 1-2. Cache Organization 

Within one cycle, the data cache provides double-word access to the LSU. Like the 
instruction cache, the data cache can be invalidated all at once or on a per-cache-block 
basis. The data cache can be disabled and invalidated by clearing HIDO[DCE] and setting 
HIDO[DCFI]. The data cache can be locked by setting HIDO[DLOCK]. To ensure cache 
coherency, the data cache supports the three-state MEl protocol. The data cache tags are 
single-ported, so a simultaneous load or store and a snoop access represent a resource 
collision. If a snoop hit occurs, the LSU is blocked internally for one cycle to allow the 
eight-word block of data to be copied to the write-back buffer. 
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Within one cycle, the instruction cache provides up to four instructions to the instruction 
queue. The instruction cache can be invalidated entirely or on a cache-block basis. The 
instruction cache can be disabled and invalidated by clearing HIDO[ICE] and setting 
HIDO[ICFI]. The instruction cache can be locked by setting HIDO[ILOCK]. The instruction 
cache supports only the valid/invalid states. 

The MPC750 also implements a 64-entry (16-set, four-way set-associative) branch target 
instruction cache (BTIC). The BTIC is a cache of branch instructions that have been 
encountered in branch/loop code sequences. If the target instruction is in the BTIC, it is 
fetched into the instruction queue a cycle sooner than it can be made available from the 
instruction cache. Typically the BTIC contains the first two instructions in the target stream. 
The BTIC can be disabled and invalidated through software. 

For more information and timing examples showing cache hit aild cache miss latencies, see 
Section 6.3.2, "Instruction Fetch Timing." 

1.2.5 L2 Cache Implementation (Not Supported in the MPC740) 
The L2 cache is a unified cache that receives memory requests from both the Ll instruction 
and data caches independently. The L2 cache is implemented with an on-chip, two-way, 
set-associative tag memory, and with external, synchronous SRAMs for data storage. The 
external SRAMs are accessed through a dedicated L2 cache port that supports a single bank 
of up to 1 Mbyte of synchronous SRAMs. The L2 cache normally operates in write-back 
mode and supports system cache coherency through snooping. 

Depending on its size, the L2 cache is organized into 64- or 128-byte lines, which in tum 
are subdivided into 32-byte sectors (blocks), the unit at which cache coherency is 
maintained. 

The L2 cache controller contains the L2 cache control register (L2CR), which includes bits 
for enabling parity checking, setting the L2-to-processor clock ratio, and identifying the 
type of RAM used for the L2 cache implementation. The L2 cache controller also manages 
the L2 cache tag array, two-way set-associative with 4K tags per way. Each sector (32-byte 
cache block) has its own valid and modified status bits. 

Requests from the Ll cache generally result from instruction misses, data load or store 
misses, write-through operations, or cache management instructions. Requests from the Ll 
cache are looked up in the L2 tags and serviced by the L2 cache if they hit; they ar~ 
forwarded to the bus interface if they miss. 

The L2 cache can accept multiple, simultaneous accesses. The Ll instruction cache can 
request an instruction at the same time that the Ll data cache is requesting one load and two 
store operations. The L2 cache also services snoop requests from the bus. If there are 
multiple pending requests to the L2 cache, snoop requests have highest priority. The next 
priority consists of load and store requests from the L 1 data cache. The next priority 
consists of instruction fetch requests from the L 1 instruction cache. 
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For more information, see Chapter 9, "L2 Cache Interface Operation." 

1.2.6 System Interface/Bus Interface Unit (BIU) 
The address and data buses operate independently; address and data tenures of a memory 
access are decoupled to provide a more flexible control of memory traffic. The primary 
activity of the system interface is transferring data and instructions between the processor 
and system memory. There are two types of memory accesses: 

Single-beat transfers-These memory accesses allow transfer sizes of 8, 16, 24, 32, 
or 64 bits in one bus clock cycle. Single-beat transactions are caused by uncacheable 
read and write operations that access memory directly (that is, when caching is 
disabled), cache-inhibited accesses, and stores in write-through mode. 

• Four-beat burst (32 bytes) data transfers-Burst transactions, which always transfer 
an entire cache block (32 bytes), are initiated when an entire cache block is 
transferred. Because the first-level caches on the MPC750 are write-back caches, 
burst-read memory, burst operations are the most common memory accesses, 
followed by burst-write memory operations, and single-beat (noncacheable or write
through) memory read and write operations. 

The MPC750 also supports address-only operations, variants of the burst and single-beat 
operations, (for example, atomic memory operations and global memory operations that are 
snooped), and address retry activity (for example, when a snooped read access hits a 
modified block in the cache). The broadcast of some address-only operations is controlled 
through HIDO[ABE]. I/O accesses use the same protocol as memory accesses. 

Access to the system interface is granted through an external arbitration mechanism that 
allows devices to compete for bus mastership. This arbitration mechanism is flexible, 
allowing the MPC750 to be integrated into systems that implement various fairness and bus 
parking procedures to avoid arbitration overhead. 

Typically, memory accesses are weakly ordered-sequences of operations, including 
load/store string and multiple instructions, do not necessarily complete in the order they 
begin-maximizing the efficiency of the bus without sacrificing data coherency. The 
MPC750 allows read operations to go ahead of store operations (except when a dependency 
exists, or in cases where a noncacheable access is performed), and provides support for a 
write operation to go ahead of a previously queued read data tenure (for example, letting a 
snoop push be enveloped between address and data tenures of a read operation). Because 
the MPC750 can dynamically optimize run-time ordering of load/store traffic, overall 
performance is improved. 

The system interface is specific for each PowerPC microprocessor implementation. 

The MPC750 signals are grouped as shown in Figure 1-3. Signals are provided for clocking 
and control of the L2 caches, as well as separate L2 address and data buses. Test and control 
signals provide diagnostics for selected internal circuits. 
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Figure 1-3. System Interface 

The system interface supports address pipelining, which allows the address tenure of one 
transaction to overlap the data tenure of another. The extent of the pipelining depends on 
external arbitration and control circuitry. Similarly, the MPC750 supports split-bus 
transactions for systems with multiple potential bus masters--one device can have 
mastership of the address bus while another has mastership of the data bus. Allowing 
multiple bus transactions to occur simultaneously increases the available bus bandwidth for 
other activity. 

The MPC750's clocking structure supports a wide range processor-to-bus clock ratios. 

1.2.7 Signals 
The MPC750's signals are grouped as follows: 

• Address arbitration signals-The MPC750 uses these signals to arbitrate for address 
bus mastership. 

• Address start signals-These signals indicate that a bus master has begun a 
transaction on the address bus. 

• Address transfer signals-These signals include the address bus and address parity 
signals. They are used to transfer the address and to ensure the integrity of the 
transfer. 

• Transfer attribute signals-These signals provide information about the type of 
transfer, such as the transfer size and whether the transaction is bursted, write
through, or caching-inhibited. 

• Address termination signals-These signals are used to acknowledge the end of the 
address phase of the transaction. They also indicate whether a condition exists that 
requires the address phase to be repeated. 

• Data arbitration signals-The MPC750 uses these signals to arbitrate for data bus 
mastership. 

• Data transfer signals-These signals, which consist of the data bus and data parity 
signals, are used to transfer the data and to ensure the integrity of the transfer. 
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• Data termination signals-Data termination signals are required after each data beat 
in a data transfer. In a single-beat transaction, a data termination signal also indicates 
the end of the tenure; in burst accesses, data termination signals apply to individual 
beats and indicate the end of the tenure only after the final data beat. They also 
indicate whether a condition exists that requires the data phase to be repeated. 

• L2 cache clock/control signals-These signals provide clocking and control for the 
L2 cache. (Not supported in the MPC740.) 

• L2 cache address/data-The MPC750 has separate address and data buses for 
accessing the L2 cache. (Not supported in the MPC740.) 

• Interrupt signals-These signals include the interrupt signal, checkstop signals, and 
both soft reset and hard reset signals. These signals are used to generate interrupt 
exceptions and, under various conditions, to reset the processor. 

• Processor status/control signals-These signals are used to set the reservation 
coherency bit, enable the time base, and other functions. 

• Miscellaneous signals-These signals are used in conjunction with such resources 
as secondary caches and the time base facility. 

• JTAG/COP interface signals-The common on-chip processor (COP) unit provides 
a serial interface to the system for performing board-level boundary scan 
interconnect tests. 

• Clock signals-These signals determine the system clock frequency. These signals 
can also be used to synchronize multiprocessor systems. 

NOTE 

A bar over a signal name indicates that the signal is active 
low-for example, ARTRY (address retry) and TS (transfer 
start). Active-low signals are referred to as asserted (active) 
when they are low and negated when they are high. Signals that 
are not active low, such as AP[0-3] (address bus parity signals) 
and TT[O-4] (transfer type signals) are referred to as asserted 
when they are high and negated when they are low. 

1.2.8 Signal Configuration 
Figure 1-4 shows the MPC750's logical pin configuration. The signals are grouped by 
function. 
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Figure 1-4. MPC750 Microprocessor Signal Groups 

Signal functionality is described in detail in Chapter 7, "Signal Descriptions," and 
Chapter 8, "System Interface Operation." 
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1.2.9 Clocking 
The MPC750 requires a single system clock input, SYSCLK, that represents the bus 
interface frequency. Internally, the processor uses a phase-locked loop (PLL) circuit to 
generate a master core clock that is frequency-multiplied and phase-locked to the SYSCLK 
input. This core frequency is used to operate the internal circuitry. 

The PLL is configured by the PLL_CFG[0-3] signals, which select the multiplier that the 
PLL uses to multiply the SYSCLK frequency up to the internal core frequency. The 
feedback in the PLL guarantees that the processor clock is phase locked to the bus clock, 
regardless of process variations, temperature changes, or parasitic capacitances. The PLL 
also ensures a 50% duty cycle for the processor clock. 

The MPC750 supports various processor-to-bus clock frequency ratios, although not all 
ratios are available for all frequencies. Configuration of the processorlbus clock ratios is 
displayed through a MPC750-specific register, HID1. For information about supported 
clock frequencies, see the MPC750 hardware specifications. 

1.3 MPC750 Microprocessor: Implementation 
The PowerPC architecture is derived from the POWER architecture (Performance 
Optimized with Enhanced RISC architecture). The PowerPC architecture shares the 
benefits of the POWER architecture optimized for single-chip implementations. The 
PowerPC architecture design facilitates parallel instruction execution and is scalable to take 
advantage of future technological gains. 

This section describes the PowerPC architecture in general, and specific details about the 
implementation of the MPC750 as a low-power, 32-bit member of the PowerPC processor 
family. The structure of this section follows the organization of the user's manual; each 
subsection provides an overview of each chapter. 

• Registers and programming model-Section 1.4, "PowerPC Registers and 
Programming Model," describes the registers for the operating environment 
architecture common among PowerPC processors and describes the programming 
model. It also describes the registers that are unique to the MPC750. The 
information in this section is described more fully in Chapter 2, "MPC750 Processor 
Programming Model." 

• Instruction set and addressing modes-Section 1.5, "Instruction Set," describes the 
PowerPC instruction set and addressing modes for the PowerPC operating 
environment architecture, and defines and describes the PowerPC instructions 
implemented in the MPC750. The information in this section is described more fully 
in Chapter 2, "MPC750 Processor Programming Model." 
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• Cache implementation-Section 1.6, "On-Chip Cache Implementation," describes 
the cache model that is defined generally for PowerPC processors by the virtual 
environment architecture. It also provides specific details about the MPC750 cache 
implementation. The information in this section is described more fully in 
Chapter 3, "Ll Instruction and Data Cache Operation." 

• Exception model-Section 1.7, "Exception Model," describes the exception model 
of the PowerPC operating environment architecture and the differences in the 
MPC750 exception model. The information in this section is described more fully 
in Chapter 4, "Exceptions." 

• Memory management-Section 1.8, "Memory Management," describes generally 
the conventions for memory management among the PowerPC processors. This 
section also describes the MPC750's implementation of the 32-bit PowerPC 
memory management specification. The information in this section is described 
more fully in Chapter 5, "Memory Management 

• Instruction timing-Section 1.9, "Instruction Timing," provides a general 
description of the instruction timing provided by the superscalar, parallel execution 
supported by the PowerPC architecture and the MPC750. The information in this 
section is described more fully in Chapter 6, "Instruction Timing," 

• Power management-Section 1.10, "Power Management," describes how the power 
management can be used to reduce power consumption when the processor, or 
portions of it, are idle. The information in this section is described more fully in 
Chapter 10, "Power and Thermal Management." 

• Thermal management-Section 1.11, "Thermal Management," describes how the 
thermal management unit and its associated registers (THRM1-THRM3) and 
exception can be used to manage system activity in a way that prevents exceeding 
system and junction temperature thresholds. This is particularly useful in high
performance portable systems, which cannot use the same cooling mechanisms 
(such as fans) that control overheating in desktop systems. The information in this 
section is described more fully in Chapter 10, "Power and Thermal Management." 

• Performance monitor-Section 1.12, "Performance Monitor," describes the 
performance monitor facility, which system designers can use to help bring up, 
debug, and optimize software performance. The information in this section is 
described more fully in Chapter 1 0, "Power and Thermal Management." 

The following sections summarize the features of the MPC750, distinguishing those that 
are defined by the architecture and from those that are unique to the MPC750 
implementation. 
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The PowerPC architecture consists of the following layers, and adherence to the PowerPC 
architecture can be described in terms of which of the following levels of the architecture 
is implemented: 

• PowerPC user instruction set architecture (UISA)-Defines the base user-level 
instruction set, user-level registers, data types, floating-point exception model, 
memory models for a uniprocessor environment, and programming model for a 
uniprocessor environment. 

• PowerPC virtual environment architecture (VEA)-Describes the memory model 
for a multiprocessor environment, defines cache control instructions, and describes 
other aspects of virtual environments. Implementations that conform to the VEA 
also adhere to the UISA, but may not necessarily adhere to the OEA. 

• . PowerPC operating environment architecture (OEA)-Defines the memory 
management model, supervisor-level registers, synchronization requirements, and 
the exception model. Implementations that conform to the OEA also adhere to the 
UISA and the VEA. 

The PowerPC architecture allows a wide range of designs for such features as cache and 
system interface implementations. The MPC750 implementations support the three levels 
of the architecture described above. For more information about the PowerPC architecture, 
see PowerPC Microprocessor Family: The Programming Environments. 

Specific features of the MPC750 are listed in Section 1.2, "MPC750 Microprocessor 
Features." 

1.4 PowerPC Registers and Programming Model 
The PowerPC architecture defines register-to-register operations for most computational 
instructions. Source operands for these instructions are accessed from the registers or are 
provided as immediate values embedded in the instruction opcode. The three-register 
instruction format allows specification of a target register distinct from the two source 
operands. Load and store instructions transfer data between registers and memory. 

PowerPC processors have two levels of privilege-supervisor mode of operation (typically 
used by the operating system) and user mode of operation (used by the application 
software). The programming models incorporate 32 GPRs, 32 FPRs, special-purpose 
registers (SPRs), and several miscellaneous registers. Each PowerPC microprocessor also 
has its own unique set of hardware implementation-dependent (HID) registers. 

Having access to privileged instructions, registers, and other resources allows the operating 
system to control the application environment (providing virtual memory and protecting 
operating-system and critical machine resources). Instructions that control the state of the 
processor, the address translation mechanism, and supervisor registers can be executed only 
when the processor is operating in supervisor mode. 
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Figure 1-5 shows all the MPC750 registers available at the user and supervisor level. The 
numbers to the right of the SPRs indicate the number that is used in the syntax of the 
instruction operands to access the register. 

For more information, see Chapter 2, "MPC750 Processor Programming Model." 
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Figure 1-5. MPC750 Microprocessor Programming Model-Registers 
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The following tables summarize the PowerPC registers implemented in the MPC750; 
Table 1-1 describes registers (excluding SPRs) defined by the architecture. 

Table 1-1. Architecture-Defined Registers on the MPC750 (Excluding SPRs) 

Register Level Function 

CR User The condition register (CR) consists of eight four-bit fields that reflect the results of certain 
operations, such as move, integer and floating-point compare, arithmetic, and logical 
instructions, and provide a mechanism for testing and branching. 

FPRs User The 32 floating-point registers (FPRs) serve as the data source or destination for floating-
point instructions. These 64-bit registers can hold either single- or double-precision floating-
point values. 

FPSCR User The floating-point status and control register (FPSCR) contains the floating-point exception 
signal bits, exception summary bits, exception enable bits, and rounding control bits needed 
for compliance with the IEEE-754 standard. 

GPRs User The 32 GPRs serve as the data source or destination for integer instructions. 

MSR Supervisor The machine state register (MSR) defines the processor state. Its contents are saved when 
an exception is taken and restored when exception handling completes. The MPC750 
implements MSR[POW), (defined by the architecture as optional), which is used to enable the 
power management feature. The MPC750-specific MSR[PM) bit is used to mark a process for 
the performance monitor. 

SRG- Supervisor The sixteen 32-bit segment registers (SRs) define the 4-Gbyte space as sixteen 256-Mbyte 
SR15 segments. The MPC750 iinplements segment registers as two arrays-a main array for data 

accesses and a shadow array for instruction accesses; see Figure 1-1. Loading a segment 
entry with the Move to Segment Register (mtsr) instruction loads both arrays. The mfsr 
instruction reads the master register, shown as part of the data MMU in Figure 1-1. 

The OEA defines numerous special-purpose registers that serve a variety of functions, such 
as providing controls, indicating status, configuring the processor, and performing special 
operations. During normal execution, a program can access the registers, shown in 
Figure 1-5, depending on the program's access privilege (supervisor or user, determined by 
the privilege-level (PR) bit in the MSR). GPRs and FPRs are accessed through operands 
that are part of the instructions. Access to registers can be explicit (that is, through the use 
of specific instructions for that purpose such as Move to Special-Purpose Register (mtspr) 
and Move from Special-Purpose Register (mfspr) instructions) or implicit, as the part of 
the execution of an instruction. Some registers can be accessed both explicitly and 
implicitly. 

In the MPC750, all SPRs are 32 bits wide. Table 1-2 describes the architecture-defined 
SPRs implemented by the MPC750. The Programming Environments Manual describes 
these registers in detail, including bit descriptions. Section 2.1.1, "Register Set," describes 
how these registers are implemented in the MPC750. In particular, this section describes 
which features the PowerPC architecture defines as optional are implemented on the 
MPC750. 
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Table 1-2. Architecture-Defined SPRs Implemented by the MPC750 

Register Level Function 

LR User The link register (LR) can be used to provide the branch target address and to hold the 
return address after branch and link instructions. 

BATs Supervisor The architecture defines 16 block address translation registers (BATs), which operate in 
pairs. There are four pairs of data BATs (DBATs) and four pairs of instruction BATs 
(IBATs). BATs are used to define and configure blocks of memory. 

CTR User The count register (CTR) is decremented and tested by branch-and-count instructions. 

DABR Supervisor The optional data address breakpoint register (DABR) supports the data address 
breakpoint facility. 

DAR User The data address register (DAR) holds the address of an access after an alignment or DSI 
exception. 

DEC Supervisor The decrementer register (DEC) is a 32-bit decrementing counter that provides a way to 
schedule decrementer exceptions. 

DSISR User The DSISR defines the cause of data access and alignment exceptions. 

EAR Supervisor The external access register (EAR) controls access to the external access facility through 
the External Control In Word Indexed (eciwx) and External Control Out Word Indexed 
(ecowx) instructions. 

PVR Supervisor The processor version register (PVR) is a read-only register that identifies the processor. 

SDR1 Supervisor SDR1 specifies the page table format used in virtual-to-physical page address translation. 

SRRO Supervisor The machine status save/restore register 0 (SRRO) saves the address used for restarting 
an interrupted program when a Return from Interrupt (rfi) instruction executes. 

SRR1 Supervisor The machine status save/restore register 1 (SRR1) is used to save machine status on 
exceptions and to restore machine status when an rfi instruction is executed. 

SPRGO- Supervisor SPRGO-SPRG3 are provided for operating system use. 
SPRG3 

TB User: read The time base register (TB) is a 64-bit register that maintains the time of day and operates 
Supervisor: interval timers. The TB consists of two 32-bit fields-time base upper (TBU) and time base 
read/write lower (TBL). 

XER User The XER contains the summary overflow bit, integer carry bit, overflow bit, and a field 
specifying the number of bytes to be transferred by a Load String Word Indexed (Iswx) or 
Store String Word Indexed (stswx) instruction. 

Table 1-3 describes the supervisor-level SPRs in the MPC750 that are not defined by the 
PowerPC architecture. Section 2.1.2, "MPC750-Specific Registers," gives detailed 
descriptions of these registers, including bit descriptions. 
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Table 1-3. MPC750-Specific Registers 

Register Level Function 

HIDO Supervisor The hardware implementation-dependent register 0 (HIDO) provides checkstop enables 
and other functions. 

HID1 Supervisor The hardware implementation-dependent register 1 (HID1) allows software to read the 
configuration of the PLL configuration signals. 

IABR Supervisor The instruction address breakpoint register (IABR) supports instruction address 
breakpoint exceptions. It can hold an address to compare with instruction addresses in 
the 10. An address match causes an instruction address breakpoint exception. 

ICTC Supervisor The instruction cache-throttling control register (ICTC) has bits for controlling the interval 
at which instructions are fetched into the instruction buffer in the instruction unit. This 
helps control the MPC750's overall junction temperature. 

L2CR Supervisor The L2 cache control register (L2CR) is used to configure and operate the L2 cache. It 
has bits for enabling parity checking, setting the L2-to-processor clock ratio, and 
identifying the type of RAM used for the L2 cache implementation. (The L2 cache feature 
is not supported in the MPC740.) 

MMCRO- Supervisor The monitor mode control registers (MMCRO-MMCR1) are used to enable various 
MMCR1 performance monitoring interrupt functions. UMMCRO-UMMCR1 provide user-level read 

access to MMCRO-MMCR1. 

PMC1- Supervisor The performance monitor counter registers (PMC1-PMC4) are used to count specified 
PMC4 events. UPMC1-UPMC4 provide user-level read access to these registers. 

SIA Supervisor The sampled instruction address register (SIA) holds the EA of an instruction executing 
at or around the time the processor signals the performance monitor interrupt condition. 
The USIA register provides user-level read access to the SIA. 

THRM1, Supervisor THRM1 and THRM2 provide a way tocompare the junction temperature against two 
THRM2 user-provided thresholds. The thermal assist unit (TAU) can be operated so that the 

thermal sensor output is compared to only one threshold, selected in THRM1 or THRM2. 

THRM3 Supervisor THRM3 is used to enable the TAU and to control the output sample time. 

UMMCRO- User The user monitor mode control registers (UMMCRO-UMMCR1) provide user-level read 
UMMCR1 access to MMCRO-MMCR1. 

UPMC1- User The user performance monitor counter registers (UPMC1-UPMC4) provide user-level 
UPMC4 read access to PMC1-PMC4. 

USIA User The user sampled instruction address register (USIA) provides user-level read access to 
the SIA register. 

1.5 Instruction Set 
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats 
are consistent among all instruction types, permitting efficient decoding to occur in parallel 
with operand accesses. This fixed instruction length and consistent format greatly simplifies 
instruction pipelining. 

For more information, see Chapter 2, "MPC750 Processor Programming Model." 
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1.5.1 PowerPC Instruction Set 
The PowerPC instructions are divided into the following categories: 

Integer instructions-These include computational and logical instructions. 

- Integer arithmetic instructions 

- Integer compare instructions 

- Integer logical instructions 

- Integer rotate and shift instructions 

• Floating-point instructions-These include floating-point computational 
instructions, as well as instructions that affect the FPSCR. 

- Floating-point arithmetic instructions 

- Floating-point multiply/add instructions 

- Floating-point rounding and conversion instructions 

- Floating-point compare instructions 

- Floating-point status and control instructions 

• Load/store instructions-These include integer and floating-point load and store 
instructions. 

- Integer load and store instructions 

- Integer load and store multiple instructions 

- Floating-point load and store 

- Primitives used to construct atomic memory operations (lwarx and stwcx. 
instructions) 

• Flow control instructions-These include branching instructions, condition register 
logical instructions, trap instructions, and other instructions that affect the 
instruction flow. 

- Branch and trap instructions 

- Condition register logical instructions 

• Processor control instructions-These instructions are used for synchronizing 
memory accesses and management of caches, TLBs, and the segment registers. 

- Move to/from SPR instructions 

- Move to/from MSR 

- Synchronize 

- Instruction synchronize 

- Order loads and stores 
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• Memory control instructions-These instructions provide control of caches, TLBs, 
and SRs. 

- Supervisor-level cache management instructions 

- User-level cache instructions 

- Segment register manipulation instructions 

- Translation lookaside buffer management instructions 

This grouping does not indicate the execution unit that executes a particular instruction or 
group of instructions. 

Integer instructions operate on byte, half-word, and word operands. Floating-point 
instructions operate on single-precision (one word) and double-precision (one double 
word) floating-point operands. The PowerPC architecture uses instructions that are four 
bytes long and word-aligned. It provides for byte, half-word, and word operand loads and 
stores between memory and a set of 32 GPRs. It also provides for word and double-word 
operand loads and stores between memory and a set of 32 floating-point registers (FPRs). 

Computational instructions do not modify memory. To use a memory operand in a 
computation and then modify the same or another memory location, the memory contents 
must be loaded into a register, modified, and then written back to the target location with 
distinct instructions. 

PowerPC processors follow the program flow when they are in the normal execution state. 
However, the flow of instructions can be interrupted directly by the execution of an 
instruction or by an asynchronous event. Either kind of exception may cause one of several 
components of the system software to be invoked. 

Effective address computations for both data and instruction accesses use 32-bit unsigned 
binary arithmetic. A carry from bit 0 is ignored in 32-bit implementations. 

1.5.2 MPC750 Microprocessor Instruction Set 
The MPC750 instruction set is defined as follows: 
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The MPC750 provides hardware support for all 32-bit PowerPC instructions. 

The MPC750 implements the following instructions optional to the PowerPC 
architecture: 

- External Control In Word Indexed (eciwx) 

- External Control Out Word Indexed (ecowx) 

- Floating Select (fsel) 

- Floating Reciprocal Estimate Single-Precision (fres) 

- Floating Reciprocal Square Root Estimate (frsqrte) 

- Store Floating-Point as Integer Word (stfiwx) 
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1.6 On-Chip Cache Implementation 
The following subsections describe the PowerPC architecture's treatment of cache in 
general, and the MPC750-specific implementation, respectively. A detailed description of 
the MPC750 cache implementation is provided in Chapter 3, "Ll Instruction and Data 
Cache Operation." 

1.6.1 PowerPC Cache Model 
The PowerPC architecture does not define hardware aspects of cache implementations. For 
example, PowerPC processors can have unified caches, separate instruction and data caches 
(Harvard architecture), or no cache at all. PowerPC microprocessors control the following 
memory access modes on a page or block basis: 

Write-backlwrite-through mode 
Caching-inhibited mode 

Memory coherency 

The caches are physically addressed, and the data cache can operate in either write-back or 
write-through mode as specified by the PowerPC architecture. 

The PowerPC architecture defines the term 'cache block' as the cacheable unit. The VEA 
and OEA define cache management instructions a programmer can use to affect cache 
contents. 

1.6.2 MPC750 Microprocessor Cache Implementation 
The MPC750 cache implementation is described in Section 1.2.4, "On-Chip Instruction 
and Data Caches," and Section 1.2.5, "L2 Cache Implementation (Not Supported in the 
MPC740)." The BPU also contains a 64-entry BTIC that provides immediate access to 
cached target instructions. For more information, see Section 1.2.2.2, "Branch Processing 
Unit (BPU)." 

1.7 Exception Model 
The following sections describe the PowerPC exception model and the MPC750 
implementation. A detailed description of the MPC750 exception model is provided in 
Chapter 4, "Exceptions." 

1.7.1 PowerPC Exception Model 
The PowerPC exception mechanism allows the processor to interrupt the instruction flow 
to handle certain situations caused by external signals, errors, or unusual conditions arising 
from the instruction execution. When exceptions occur, information about the state of the 
processor is saved to certain registers and the processor begins execution at an address 
(exception vector) predetermined for each exception. Exception processing occurs in 
supervisor mode. 
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Although mUltiple exception conditions can map to a single exception vector, a more 
specific condition may be determined by examining a register associated with the 
exception-for example, the DSISR and the FPSCR. Additionally, some exception 
conditions can be enabled or disabled explicitly by software. 

The PowerPC architecture requires that exceptions be handled in program order; therefore, 
although a particular implementation may recognize exception conditions out of order, they 
are handled in order. When an instruction-caused exception is recognized, any unexecuted 
instructions that appear earlier in the instruction stream, including any that are 
undispatched, are required to complete before the exception is taken, and any exceptions 
those instructions cause must also be handled first. Likewise, asynchronous, precise 
exceptions are recognized when they occur, but are not handled until the instructions 
currently in the completion queue successfully retire or generate an exception, and the 
completion queue is emptied. 

Unless a catastrophic condition causes a system reset or machine check exception, only one 
exception is handled at a time. For example, if one instruction encounters multiple 
exception conditions, those conditions are handled sequentially. After the exception handler 
handles an exception, the instruction processing continues until the next exception 
condition is encountered. Recognizing and handling exception conditions sequentially 
guarantees that exceptions are recoverable. 

When an exception is taken, information about the processor state before the exception was 
taken is saved in SRRO and SRRI. Exception handlers should save the information stored 
in SRRO and SRRI early to prevent the program state from being lost due to a system reset 
and machine check exception or to an instruction-caused exception in the exception 
handler, and before enabling external interrupts. 

The PowerPC architecture supports four types of exceptions: 
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Synchronous, precise-These are caused by instructions. All instruction-caused 
exceptions are handled precisely; that is, the machine state at the time the exception 
occurs is known and can be completely restored. This means that (excluding the trap 
and system call exceptions) the address of the faulting instruction is provided to the 
exception handler and that neither the faulting instruction nor subsequent 
instructions in the code stream will complete execution before the exception is 
taken. Once the exception is processed, execution resumes at the address of the 
faulting instruction (or at an alternate address provided by the exception handler). 
When an exception is taken due to a trap or system call instruction, execution 
resumes at an address provided by the handler. 

Synchronous, imprecise-The PowerPC architecture defines two imprecise 
floating-point exception modes, recoverable and nonrecoverable. Even though the 
MPC750 provides a means to enable the imprecise modes, it implements these 
modes identically to the precise mode (that is, enabled floating-point exceptions are 
always precise). 
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• Asynchronous, maskable-The PowerPC architecture defines external and 
decrementer interrupts as maskable, asynchronous exceptions. When these 
exceptions occur, their handling is postponed until the next instruction, and any 
exceptions associated with that instruction, completes execution. If no instructions 
are in the execution units, the exception is taken immediately upon determination of 
the correct restart address (for loading SRRO). As shown in Table 1-4, the MPC750 
implements additional asynchronous, maskable exceptions. 

Asynchronous, nonmaskable-There are two nonmaskable asynchronous 
exceptions: system reset and the machine check exception. These exceptions may 
not be recoverable, or may provide a limited degree of recoverability. Exceptions 
report recoverability through the MSR[RI] bit. 

1.7.2 MPC750 Microprocessor Exception Implementation 
The MPC750 exception classes described above are shown in Table 1-4. 

Table 1-4. MPC750 Microprocessor Exception Classifications 

Synchronous/Asynchronous Precise/Imprecise Exception Type 

Asynchronous, nonmaskable Imprecise Machine check, system reset 

Asynchronous, maskable Precise External, decrementer, system management, performance 
monitor, and thermal management interrupts 

Synchronous Precise Instruction-caused exceptions 

Although exceptions have other characteristics, such as priority and recoverability, 
Table 1-4 describes categories of exceptions the MPC750 handles uniquely. Table 1-4 
includes no synchronous imprecise exceptions; although the PowerPC architecture 
supports imprecise handling of floating-point exceptions, the MPC750 implements these 
exception modes precisely. Table 1-5 lists MPC750 exceptions and conditions that cause 
them. Exceptions specific to the MPC750 are indicated. 

Table 1-5. Exceptions and Conditions 

Exception Type 
Vector Offset 

Causing Conditions 
(hex) 

Reserved 00000 -

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset 

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an 
address, data, or L2 bus parity error. MSR[ME] must be set. 

DSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or 
cache operations, a DSI exception occurs if a page fault occurs. 

lSI 00400 As defined by the PowerPC architecture. 

External interrupt 00500 MSR[EE] ; 1 and INT is asserted. 
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Table 1-5. Exceptions and Conditions (Continued) 

Exception Type 
Vector Offset 

Causing Conditions 
(hex) 

Alignment 00600 · A floating-point load/store, stmw, stwcx, Imw, Iwarx, eciwx or ecowx 
instruction operand is not word-aligned. 

· A multiple/string load/store operation is attempted in little-end ian mode. 

· The operand of dcbz is in memory that is write-through-required or 
caching-inhibited or the cache is disabled 

Program 00700 As defined by the PowerPC architecture. 

Floating-point 00800 As defined by the PowerPC architecture. 
unavailable 

Decrementer 00900 As defined by the PowerPC architecture, when the most significant bit of the 
DEC register changes from 0 to 1 and MSR[EE] = 1. 

Reserved OOAOo-OOBFF -
System call OOCOO Execution of the System Call (sc) instruction. 

Trace OODOO MSR[SE] = 1 or a branch instruction completes and MSR[BE] = 1. Unlike the 
architecture definition, isync does not cause a trace exception 

Reserved OOEOO The MPC750 does not generate an exception to this vector. Other PowerPC 
processors may use this vector for floating-point assist exceptions. 

Reserved 00E10-o0EFF -

Performance monitor' OOFOO The limit specified in a PMC register is reached and MMCRO[ENINT] = 1 

Instruction address 01300 IABR[0-29] matches EA[O-29] of the next instruction to complete, IABR[TE] 
breakpoint' matches MSR[IR], and IABR[BE] = 1. 

System management 
interrupt' 

01400 MSR[EE] = 1 and SMI is asserted. 

Reserved 01500-016FF -

Thermal management 01700 Thermal management is enabled, the junction temperature exceeds the 
interrupt' threshold specified in THRM1 or THRM2, and MSR[EE] = 1. 

Reserved 01800-02FFF -

Note: 

, MPC750-specific 

1.8 Memory Management 
The following subsections describe the memory management features of the PowerPC 
architecture, and the MPC750 implementation, respectively. A detailed description of the 
MPC750 MMU implementation is provided in Chapter 5, "Memory Management." 
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1.8.1 PowerPC Memory Management Model 
The primary functions of the MMU are to translate logical (effective) addresses to physical 
addresses for memory accesses and to provide access protection on blocks and pages of 
memory. There are two types of accesses generated by the MPC750 that require address 
translation-instruction accesses, and data accesses to memory generated by load, store, 
and cache control instructions. 

The PowerPC architecture defines different resources for 32- and 64-bit processors; the 
MPC750 implements the 32-bit memory management model. The memory-management 
model provides 4 Gbytes of logical address space accessible to supervisor and user 
programs with a 4-Kbyte page size and 256-Mbyte segment size. BAT block sizes range 
from 128 Kbyte to 256 Mbyte and are software selectable. In addition, it defines an interim 
52-bit virtual address and hashed page tables for generating 32-bit physical addresses. 

The architecture also provides independent four-entry BAT arrays for instructions and data 
that maintain address translations for blocks of memory. These entries define blocks that 
can vary from 128 Kbytes to 256 Mbytes. The BAT arrays are maintained by system 
software. 

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual 
memory management permits execution of programs larger than the size of physical 
memory; demand-paged implies that individual pages are loaded into physical memory 
from system memory only when they are first accessed by an executing program. 

The hashed page table is a variable-sized data structure that defines the mapping between 
virtual page numbers and physical page numbers. The page table size is a power of 2, and 
its starting address is a multiple of its size. The page table contains a number of page table 
entry groups (PTEGs). A PTEG contains eight page table entries (PTEs) of eight bytes 
each; therefore, each PTEG is 64 bytes long. PTEG addresses are entry points for table 
search operations. 

Setting MSR[IR] enables instruction address translations and MSR[DR] enables data 
address translations. If the bit is cleared, the respective effective address is the same as the 
physical address. 

1.8.2 MPC750 Microprocessor Memory Management Implementation 
The MPC750 implements separate MMUs for instructions and data. It implements a copy 
of the segment registers in the instruction MMU, however, read and write accesses (mfsr 
and mtsr) are handled through the segment registers implemented as part of the data MMU. 
The MPC750 MMU is described in Section 1.2.3, "Memory Management Units (MMUs)." 

The R (referenced) bit is updated in the PTE in memory (if necessary) during a table search 
due to a TLB miss. Updates to the C (changed) bit are treated like TLB misses. A complete 
table search is performed and the entire TLB entry is rewritten to update the C bit. 
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1.9 Instruction Timing 
The MPC750 is a pipelined, superscalar processor. A pipelined processor is one in which 
instruction processing is divided into discrete stages, allowing work to be done on different 
instructions in each stage. For example, after an instruction completes one stage, it can pass 
on to the next stage leaving the previous stage available to the subsequent instruction. This 
improves overall instruction throughput. 

A superscalar processor is one that issues mUltiple independent instructions into separate 
execution units, allowing instructions to execute in parallel. The MPC750 has six 
independent execution units, two for integer instructions, and one each for floating-point 
instructions, branch instructions, load/store instructions, and system register instructions. 
Having separate GPRs and FPRs allows integer, floating-point calculations, and load and 
store operations to occur simultaneously without interference. Additionally, rename buffers 
are provided to allow operations to post execution results for use by subsequent instructions 
without committing them to the architected FPRs and GPRs. 

As shown in Figure 1-6, the common pipeline of the MPC750 has four stages through 
which all instructions must pass-fetch, decode/dispatch, execute, and complete/write 
back. Some instructions occupy multiple stages simultaneously and some individual 
execution units have additional stages. For example, the floating-point pipeline consists of 
three stages through which all floating-point instructions must pass. 

I Fetch 

I SPU I 
I Dispatch I 

I 

I 

Maximum four-instruction fetch 
per clock cycle 

Maximum thre e-instruction dispatch 
(includes one branch per clock cycle 

instruction) 

r---------------------- ------------------ Ute-stage -; 1 Exec 
1 1 1 
1 
1 FPUI 
1 
1 FPU2 LSUI 1 
1 

I I I I I 1 SRU FPU3 lUI IU2 LSU2 
1 
1 

+ 1 
1 
1 ______ ---------------- ------------------

Maximum two-i I Complete (Write-Sack) I completion per 

Figure 1-6. Pipeline Diagram 

1 
1 
1 
1 
1 
1 
1 
1 
1 
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1 
1 
1 
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nstruction 
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Note that Figure 1-6 does not show features, such as reservation stations and rename buffers 
that reduce stalls and improve instruction throughput. 
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The instruction pipeline in the MPC750 has four major pipeline stages, described as 
follows: 

• The fetch pipeline stage primarily involves retrieving instructions from the memory 
system and determining the location of the next instruction fetch. The BPU decodes 
branches during the fetch stage and removes those that do not update CTR or LR 
from the instruction stream. 

The dispatch stage is responsible for decoding the instructions supplied by the 
instruction fetch stage and determining which instructions can be dispatched in the 
current cycle. If source operands for the instruction are available, they are read from 
the appropriate register file or rename register to the execute pipeline stage. If a 
source operand is not available, dispatch provides a tag that indicates which rename 
register will supply the operand when it becomes available. At the end of the 
dispatch stage, the dispatched instructions and their operands are latched by the 
appropriate execution unit. 

Instructions executed by the IUs, FPU, SRU, and LSU are dispatched from the 
bottom two positions in the instruction queue. In a single clock cycle, a maximum 
of two instructions can be dispatched to these execution units in any combination. 
When an instruction is dispatched, it is assigned a position in the six-entry 
completion queue. A branch instruction can be issued on the same clock cycle for a 
maximum three-instruction dispatch. 

• During the execute pipeline stage, each execution unit that has an executable 
instruction executes the selected instruction (perhaps over multiple cycles), writes 
the instruction's result into the appropriate rename register, and notifies the 
completion stage that the instruction has finished execution. In the case of an internal 
exception, the execution unit reports the exception to the completion pipeline stage 
and (except for the FPU) discontinues instruction execution until the exception is 
handled. The exception is not signaled until that instruction is the next to be 
completed. Execution of most floating-point instructions is pipelined within the FPU 
allowing up to three instructions to be executing in the FPU concurrently. The FPU 
stages are multiply, add, and round-convert. Execution of most load/store 
instructions is also pipelined. The load/store unit has two pipeline stages. The first 
stage is for effective address calculation and MMU translation and the second stage 
is for accessing the data in the cache. 

• The complete pipeline stage maintains the correct architectural machine state and 
transfers execution results from the rename registers to the GPRs and FPRs (and 
CTR and LR, for some instructions) as instructions are retired. As with dispatching 
instructions from the instruction queue, instructions are retired from the two bottom 
positions in the completion queue. If completion logic detects an instruction causing 
an exception, all following instructions are cancelled, their execution results in 
rename registers are discarded, and instructions are fetched from the appropriate 
exception vector. 

Chapter 1. Overview 1-35 



Because the PowerPC architecture can be applied to such a wide variety of 
implementations, instruction timing varies among PowerPC processors. 

For a detailed discussion of instruction timing with examples and a table of latencies for 
each execution unit, see Chapter 6, "Instruction Timing." 

1.10 Power Management 
The MPC750 provides four power modes, selectable by setting the appropriate control bits 
in ,the MSR and HIDO registers. The four power modes are as follows: 

Full-power-This is the default power state of the MPC750. The MPC750 is fully 
powered and the internal functional units are operating at the full processor clock 
speed. If the dynamic power management mode is enabled, functional units that are 
idle will automatically enter a low-power state without affecting performance, 
software execution, or external hardware. 

Doze-All the functional units of the MPC750 are disabled except for the time 
base/decrementer registers and the bus snooping logic. When the processor is in 
doze mode, an external asynchronous interrupt, a system management interrupt, a 
decrementer exception, a hard or soft reset, or machine check brings the MPC750 
into the full-power state. The MPC750 in doze mode maintains the PLL in a fully 
powered state and locked to the system external clock input (SYSCLK) so a 
transition to the full-power state takes only a few processor clock cycles. 

Nap-The nap mode further reduces power consumption by disabling bus snooping, 
leaving only the time base register and the PLL in a powered state. The MPC750 
returns to the full-power state upon receipt of an external asynchronous interrupt, a 
system management interrupt, a decrementer exception, a hard or soft reset, or a 
machine check input (MCP). A return to full-power state from a nap state takes only 
a few processor clock cycles. When the processor is in nap mode, if QACK is 
negated, the processor is put in doze mode to support snooping. 

Sleep-Sleep mode minimizes power consumption by disabling all internal 
functional units, after which external system logic may disable the PLL and 
SYSCLK. Returning the MPC750 to the full-power state requires the enabling of the 
PLL and SYSCLK, followed by the assertion of an external asynchronous interrupt, 
a system management interrupt, a hard or soft reset, or a machine check input (MCP) 
signal after the time required to relock the PLL. 

Chapter 10, "Power and Thermal Management," provides information about power saving 
and thermal management modes for the MPC750. 
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1.11 Thermal Management 
The MPC750's thermal assist unit (TAU) provides a way to control heat dissipation. This 
ability is particularly useful in portable computers, which, due to power consumption and 
size limitations, cannot use desktop cooling solutions such as fans. Therefore, better heat 
sink designs coupled with intelligent thermal management is of critical importance for high 
performance portable systems. 

Primarily, the thermal management system monitors and regulates the system's operating 
temperature. For example, if the temperature is about to exceed a set limit, the system can 
be made to slow down or even suspend operations temporarily in order to lower the 
temperature. 

The thermal management facility also ensures that the processor's junction temperature 
does not exceed the operating specification. To avoid the inaccuracies that arise from 
measuring junction temperature with an external thermal sensor, the MPC750's on-chip 
thermal sensor and logic tightly couples the thermal management implementation. 

The TAU consists of a thermal sensor, digital-to-analog convertor, comparator, control 
logic, and the dedicated SPRs described in Section 1.4, "PowerPC Registers and 
Programming Model." The TAU does the following: 

• Compares the junction temperature against user-programmable thresholds 

• Generates a thermal management interrupt if the temperature crosses the threshold 

• Enables the user to estimate the junction temperature by way of a software 
successive approximation routine 

The TAU is controlled through the privileged mtspr/mfspr instructions to the three SPRs 
provided for configuring and controlling the sensor control logic, which function as 
follows: 

• THRMI and THRM2 provide the ability to compare the junction temperature 
against two user-provided thresholds. Having dual thresholds gives the thermal 
management software finer control of the junction temperature. In single threshold 
mode, the thermal sensor output is compared to only one threshold in either THRM 1 
orTHRM2. 

• THRM3 is used to enable the TAU and to control the comparator output sample 
time. The thermal management logic manages the thermal management interrupt 
generation and time multiplexed comparisons in the dual threshold mode as well as 
other control functions. 

Instruction cache throttling provides control of the MPC750's overall junction temperature 
by determining the interval at which instructions are fetched. This feature is accessed 
through the ICTC register. 

Chapter 10, "Power and Thermal Management," provides information about power saving 
and thermal management modes for the MPC750. 
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1.12 Performance Monitor 
The MPC750 incorporates a performance monitor facility that system designers can use to 
help bring up, debug, and optimize software performance. The performance monitor counts 
events during execution of code, relating to dispatch, execution, completion, and memory 
accesses. 

The performance monitor incorporates several registers that can be read and written to by 
supervisor-level software. User-level versions of these registers provide read-only access 
for user-level applications. These registers are described in Section 1.4, "PowerPC 
Registers and Programming Model." Performance monitor control registers, MMCRO or 
MMCRl, can be used to specify which events are to be counted and the conditions for 
which a performance monitoring interrupt is taken. Additionally, the sampled instruction 
address register, SIA (USIA), holds the address of the first instruction to complete after the 
counter overflowed. 

Attempting to write to a user-read-only performance monitor register causes a program 
exception, regardless of the MSR[PR] setting. 

When a performance monitoring interrupt occurs, program execution continues from 
vector offset OxOOFOO. 

Chapter 11, "Performance Monitor," describes the operation of the performance monitor 
diagnostic tool incorporated in the MPC750. 
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Chapter 2 
MPC750 Processor Programming Model 
This chapter describes the MPC750 programming model, emphasizing those features 
specific to the MPC750 processor and summarizing those that are common to PowerPC 
processors. It consists of three major sections, which describe the following: 

Registers implemented in the MPC750 

• Operand conventions 
The MPC750 instruction set 

For detailed information about architecture-defined features, see The Programming 
Environments Manual. 

2.1 The MPC750 Processor Register Set 
This section describes the registers implemented in the MPC750. It includes an overview 
of registers defined by the PowerPC architecture, highlighting differences in how these 
registers are implemented in the MPC750, and a detailed description of MPC750-specific 
registers. Full descriptions of the architecture-defined register set are provided in Chapter 2, 
"PowerPC Register Set," in The Programming Environments Manual. 

Registers are defined at all three levels of the PowerPC architecture-user instruction set 
architecture (UISA), virtual environment architecture (VEA), and operating environment 
architecture (OEA). The PowerPC architecture defines register-to-register operations for all 
computational instructions. Source data for these instructions are accessed from the on-chip 
registers or are provided as immediate values embedded in the opcode. The three-register 
instruction format allows specification of a target register distinct from the two source 
registers, thus preserving the original data for use by other instructions and reducing the 
number of instructions required for certain operations. Data is transferred between memory 
and registers with explicit load and store instructions only. 

2.1.1 Register Set 
The registers implemented on the MPC750 are shown in Figure 2-1. The number to the 
right of the special-purpose registers (SPRs) indicates the number that is used in the syntax 
of the instruction operands to access the register (for example, the number used to access 
the integer exception register (XER) is SPR 1). These registers can be accessed using the 
mtspr and mfspr instructions. 
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External Address 
Register 

EAR I SPR 282 

Data Address 
Breakpoint Register 

DABR ISPR 1013 

Time Base 
(For Writing) 

~SPR284 
~SPR285 

Decrementer 

DEC jSPR22 

L2 Control Instruction Address 
Register 1,2 Breakpoint Register 1 

L2CR ISPR 1017 IABR ISPR 1010 

Power/Thermal Management Registers 
Thermal Assist 
Unit Registers 1 

I SPR 955 THRMI SPR 1020 

Instruction Cache 
Throttlin? Control 
Register 

PMC3 SPR 957 Monitor Control 1 THRM2 SPR 1021 
ICTC ISPR 1019 

PMC4 SPR 958 SPR 952 
THRM3 SPR 1022 

SPR 956 

1 These registers are MPC750-specific registers. They may not be supported by other PowerPC processors. 
2 May not be supported by the MPC740. 

Figure 2-1. Programming Model-MPC7S0 Microprocessor Registers 
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The PowerPC UISA registers are user-level. General-purpose registers (GPRs) and 
floating-point registers (FPRs) are accessed through instruction operands. Access to 
registers can be explicit (by using instructions for that purpose such as Move to 
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr) 
instructions) or implicit as part of the execution of an instruction. Some registers are 
accessed both explicitly and implicitly. 

Implementation Note-The MPC750 fully decodes the SPR field of the instruction. If the 
SPR specified is undefined, the illegal instruction program exception occurs. The 
PowerPC's user-level registers are described as follows: 

• User-level registers (UISA)-The user-level registers can be accessed by all 
software with either user or supervisor privileges. They include the following: 

- General-purpose registers (GPRs). The thirty-two GPRs (GPRO-GPR31) serve 
as data source or destination registers for integer instructions and provide data 
for generating addresses. See "General Purpose Registers (GPRs)," in Chapter 2, 
"PowerPC Register Set," of The Programming Environments Manual for more 
information. 

- Floating-point registers (FPRs). The thirty-two FPRs (FPRO-FPR31) serve as 
the data source or destination for all floating-point instructions. See 
"Floating-Point Registers (FPRs )," in Chapter 2, "PowerPC Register Set," of The 
Programming Environments Manual. 

- Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CRO-CR7, 
that reflect results of certain arithmetic operations and provide a mechanism for 
testing and branching. See "Condition Register (CR)," in Chapter 2, "PowerPC 
Register Set," of The Programming Environments Manual. 

- Floating-point status and control register (FPSCR). The FPSCR contains all 
floating-point exception signal bits, exception summary bits, exception enable 
bits, and rounding control bits needed for compliance with the IEEE 754 
standard. See "Floating-Point Status and Control Register (FPSCR)," in 
Chapter 2, "PowerPC Register Set," of The Programming Environments 
Manual. 

The remaining user-level registers are SPRs. Note that the PowerPC architecture 
provides a separate mechanism for accessing SPRs (the mtspr and mfspr 
instructions). These instructions are commonly used to explicitly access certain 
registers, while other SPRs may be more typically accessed as the side effect of 
executing other instructions. 

- Integer exception register (XER). The XER indicates overflow and carries for 
integer operations. See "XER Register (XER)," in Chapter 2, "PowerPC Register 
Set," of The Programming Environments Manual for more information. 

Implementation Note-To allow emulation of the lscbx instruction defined by 
the POWER architecture, XER[16-23] is implemented so that they can be read 
with mfspr[XER] and written with mtxer[XER] instructions. 
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- Link register (LR). The LR provides the branch target address for the Branch 
Conditional to Link Register (bclrx) instruction, and can be used to hold the 
logical address of the instruction that follows a branch and link instruction, 
typically used for linking to subroutines. See "Link Register (LR)," in Chapter 2, 
"PowerPC Register Set," of The Programming Environments Manual. 

- Count register (CTR). The CTR holds a loop count that can be decremented 
during execution of appropriately coded branch instructions. The CTR can also 
provide the branch target address for the Branch Conditional to Count Register 
(bcctrx) instruction. See "Count Register (CTR)," in Chapter 2, "PowerPC 
Register Set," of The Programming Environments Manual. 

User-level registers (VEA)-The PowerPC VEA defines the time base facility 
(TB), which consists of two 32-bit registers-time base upper (TBU) and time base 
lower (TBL). The time base registers can be written to only by supervisor-level 
instructions but can be read by both user- and supervisor-level software. For more 
information, see "PowerPC VEA Register Set-Time Base," in Chapter 2, 
"PowerPC Register Set," of The Programming Environments Manual. 

Supervisor-level registers (OEA)-The OEA defines the registers an operating 
system uses for memory management, configuration, exception handling, and other 
operating system functions. The OEA defines the following supervisor-level 
registers for 32-bit implementations: 

- Configuration registers 

Name 

POW 

PM 

Machine state register (MSR). The MSR defines the state of the processor. 
The MSR can be modified by the Move to Machine State Register (mtmsr), 
System Call (sc), and Return from Exception (rfi) instructions. It can be read 
by the Move from Machine State Register (mfmsr) instruction. When an 
exception is taken, the contents of the MSR are saved to the machine status 
save/restore register 1 (SRRl), which is described below. See "Machine State 
Register (MSR)," in Chapter 2, "PowerPC Register Set," of The Programming 
Environments Manual for more infonnation. 

Implementation Note-Table 2-1 describes MSR bits the MPC750 
implements that are not required by the PowerPC architecture. 

Table 2-1. Additional MSR Bits 

Description 

Power management enable. Optional to the PowerPC architecture. 
0 Power management is disabled. 
1 Power management is enabled. The processor can enter a power-saving mode when additional 

conditions are present. The mode chosen is determined by the DOZE, NAP, and SLEEP bits in 
the hardware implementation-dependent register 0 (HIDO), described in Table 2-4. 

Performance monitor marked mode. This bit is specific to the MPC750, and is defined as reserved 
by the PowerPC architecture. See Chapter 11, "Performance Monitor." 
0 Process is not a marked process. 
1 Process is a marked process. 
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Note that setting MSR[EE] masks not only the architecture-defined external 
interrupt and decrementer exceptions but also the MPC750-specific system 
management, performance monitor, and thermal management exceptions. 

- Processor version register (PVR). This register is a read-only register that 
identifies the version (model) and revision level of the PowerPC processor. 
For more information, see "Processor Version Register (PVR)," in Chapter 2, 
"PowerPC Register Set," of The Programming Environments Manual. 

Implementation Note-The processor version number is Ox0008 for the 
MPC750. The processor revision level starts at OxOlOO and is updated for each 
silicon revision. 

- Memory management registers 

Block-address translation (BAT) registers. The PowerPC OEA includes an 
array of block address translation registers that can be used to specify four 
blocks of instruction space and four blocks of data space. The BAT registers 
are implemented in pairs-four pairs of instruction BATs (IBATOU-IBAT3U 
and IBATOL-IBAT3L) and four pairs of data BATs (DBATOU-DBAT3U and 
DBATOL-DBAT3L). Figure 2-llists the SPR numbers for the BAT registers. 
For more information, see "BAT Registers," in Chapter 2, "PowerPC Register 
Set," of The Programming Environments Manual. Because BAT upper and 
lower words are loaded separately, software must ensure that BAT translations 
are correct during the time that both BAT entries are being loaded. 

The MPC750 implements the G bit in the IBAT registers; however, attempting 
to execute code from an IBAT area with G = 1 causes an lSI exception. This 
complies with the revision of the architecture described in The Programming 
Environments Manual. 

- SDRl. The SDRl register specifies the page table base address used in 
virtual-to-physical address translation. See "SDRl," in Chapter 2, "PowerPC 
Register Set," of The Programming Environments Manual." 

Segment registers (SR). The PowerPC OEA defines sixteen 32-bit segment 
registers (SRO-SRl5). Note that the SRs are implemented on 32-bit 
implementations only. The fields in the segment register are interpreted 
differently depending on the value of bit O. See "Segment Registers," in 
Chapter 2, "PowerPC Register Set," of The Programming Environments 
Manual for more information. 

Note that the MPC750 implements separate memory management units 
(MMUs) for instruction and data. It associates the architecture-defined SRs 
with the data MMU (DMMU). It reflects the values of the SRs in separate, 
so-called 'shadow' segment registers in the instruction MMU (IMMU). 

Chapter 2. MPC750 Processor Programming Model 2-5 



Bit 

11 

12 

13 

14 

15 

2-6 

- Exception-handling registers 

- Data address register (DAR). After a DSI or an alignment exception, DAR is 
set to the effective address (EA) generated by the faulting instruction. See 
"Data Address Register (DAR)," in Chapter 2, "PowerPC Register Set," of 
The Programming Environments Manual for more information. 

SPRGO-SPRG3. The SPRGO-SPRG3 registers are provided for operating 
system use. See "SPRGO-SPRG3," in Chapter 2, "PowerPC Register Set," of 
The Programming Environments Manual for more information. 

DSISR. The DSISR register defines the cause of DSI and alignment 
exceptions. See "DSISR," in Chapter 2, "PowerPC Register Set," of The 
Programming Environments Manual for more information. 

Machine status save/restore register 0 (SRRO). The SRRO register is used to 
save the address of the instruction at which execution continues when rfi 
executes at the end of an exception handler routine. See "Machine Status 
SavelRestore Register 0 (SRRO)," in Chapter 2, "PowerPC Register Set," of 
The Programming Environments Manual for more information. 

- Machine status save/restore register 1 (SRRI). The SRRI register is used to 
save machine status on exceptions and to restore machine status when rfi 
executes. See "Machine Status Save/Restore Register 1 (SRRl)," in 
Chapter 2, "PowerPC Register Set," of The Programming Environments 
Manual for more information. 

Implementation Note-When a machine check exception occurs, the 
MPC750 sets one or more error bits in SRRI. Table 2-2 describes SRRI bits 
the MPC750 implements that are not required by the PowerPC architecture. 

Table 2-2. Additional SRR1 Bits 

Name Description 

L2DP Set by a data parity error on the L2 bus. The MPC740 does not implement the L2 cache interface. 

MCPIN Set by the assertion of MCP 

TEA Set by a TEA assertion on the 60x bus 

DP Set by a data parity error on the 60x bus 

AP Set by an address parity error on the 60x bus 

- Miscellaneous registers 

Time base (TB). The TB is a 64-bit structure provided for maintaining the 
time of day and operating interval timers. The TB consists of two 32-bit 
registers-time base upper (TBU) and time base lower (TBL). The time base 
registers can be written to only by supervisor-level software, but can be read 
by both user- and supervisor-level software. See "Time Base Facility 
(TB)-OEA," in Chapter 2, "PowerPC Register Set," of The Programming 
Environments Manual for more information. 
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- Decrementer register (DEC). This register is a 32-bit decrementing counter 
that provides a mechanism for causing a decrementer exception after a 
programmable delay; the frequency is a subdivision of the processor clock. 
See "Decrementer Register (DEC)," in Chapter 2, "PowerPC Register Set," of 
The Programming Environments Manual for more information. 

Implementation Note-In the MPC750, the decrementer register is 
decremented at a speed that is one-fourth the speed of the bus clock. 

- Data address breakpoint register (DABR)-This optional register is used to 
cause a breakpoint exception if a specified data address is encountered. See 
"Data Address Breakpoint Register (DABR)," in Chapter 2, "PowerPC 
Register Set," of The Programming Environments Manual." 

- External access register (EAR). This optional register is used in conjunction 
with eciwx and ecowx. Note that the EAR register and the eciwx and ecowx 
instructions are optional in the PowerPC architecture and may not be 
supported in all PowerPC processors that implement the OEA. See "External 
Access Register (EAR)," in Chapter 2, "PowerPC Register Set," of The 
Programming Environments Manual for more information. 

MPC750-specific registers-The PowerPC architecture allows implementation
specific SPRs. Those incorporated in the MPC750 are described as follows. Note 
that in the MPC750, these registers are all supervisor-level registers. 

- Instruction address breakpoint register (IABR)-This register can be used to 
cause a breakpoint exception if a specified instruction address is encountered. 

- Hardware implementation-dependent register 0 (HIDO)-This register controls 
various functions, such as enabling checkstop conditions, and locking, enabling, 
and invalidating the instruction and data caches. 

- Hardware implementation-dependent register 1 (HID I)-This register reflects 
the state of PLL_CFG[O-3] clock signals. 

- The L2 cache control register (L2CR) is used to configure and operate the L2 
cache. It includes bits for enabling parity checking, setting the L2-to-processor 
clock ratio, and identifying the type of RAM used for the L2 cache 
implementation. (Not supported in the MPC740.) 

- Performance monitor registers. The following registers are used to define and 
count events for use by the performance monitor: 

The performance monitor counter registers (PMCI-PMC4) are used to record 
the number oftimes a certain event has occurred. UPMCI-UPMC4 provide 
user-level read access to these registers. 

The monitor mode control registers (MMCRO-MMCRl) are used to enable 
various performance monitor interrupt functions. UMMCRO-UMMCRI 
provide user-level read access to these registers. 
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- The sampled instruction address register (SIA) contains the effective address 
of an instruction executing at or around the time that the processor signals the 
performance monitor interrupt condition. USIA provides user-level read 
access to the SIA. 

- The MPC750 does not implement the sampled data address register (SDA) or 
the user-level, read-only USDA registers. However, for compatibility with 
processors that do, those registers can be written to by boot code without 
causing an exception. SDA is SPR 959; USDA is SPR 943. 

- The instruction cache throttling control register (ICTC) has bits for enabling the 
instruction cache throttling feature and for controlling the interval at which 
instructions are forwarded to the instruction buffer in the fetch unit. This 
provides control over the processor's overall junction temperature. 

- Thermal management registers (THRMI, THRM2, and THRM3). Used to 
enable and set thresholds for the thermal management facility. 

- THRM1 and THRM2 provide the ability to compare the junction temperature 
against two user-provided thresholds. The dual thresholds allow the thermal 
management software differing degrees of action in lowering the junction 
temperature. The TAU can be also operated in a single threshold mode in 
which the thermal sensor output is compared to only one threshold in either 
THRM10rTHRM2. 

- THRM3 is used to enable the thermal management assist unit (TAU) and to 
control the comparator output sample time. 

Note that while it is not guaranteed that the implementation of MPC750-specific registers 
is consistent among PowerPC processors, other processors may implement similar or 
identical registers. 

2.1.2 MPC750-Specific Registers 
This section describes registers that are defined for the MPC750 but are not included in the 
PowerPC architecture. 

2.1.2.1 Instruction Address Breakpoint Register (IABR) 
The address breakpoint register (IABR), shown in Figure 2-2, supports the instruction 
address breakpoint exception. When this exception is enabled, instruction fetch addresses 
are compared with an effective address stored in the IABR. If the word specified in the 
IABR is fetched, the instruction breakpoint handler is invoked. The instruction that triggers 
the breakpoint does not execute before the handler is invoked. For more information, see 
Section 4.5.14, "Instruction Address Breakpoint Exception (Ox01300)." The IABR can be 
accessed with mtspr and mfspr using the SPR101O. 
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Address 

29 30 31 

Figure 2-2. Instruction Address Breakpoint Register 

The IABR bits are described in Table 2-3. 

Table 2-3. Instruction Address Breakpoint Register Bit Settings 

Bits Name Description 

0-29 Address Word address to be compared 

30 BE Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done. 

31 TE Translation enabled. An IABR match is signaled il this bit matches MSR[IR]. 

2.1.2.2 Hardware Implementation-Dependent Register 0 
The hardware implementation-dependent register 0 (HIDO) controls the state of several 
functions within the MPC750. The HIDO register is shown in Figure 2-3. 

DLOCK 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 2-3. Hardware Implementation-Dependent Register 0 (HIDO) 

The HIDO bits are described in Table 2-4. 

Table 2-4. HIDO Bit Functions 

Bit Name Function 

0 EMCP Enable MCP. The primary purpose 01 this bit is to mask out lurther machine check exceptions 
caused by assertion 01 MCP, similar to how MSR[EE] can mask external interrupts. 
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop. 
1 Asserting MCP causes checkstop il MSR[ME] ~ 0 or a machine check exception il ME ~ 1. 

1 DBP Enable/disable 60x bus address and data parity generation. 
0 II the system does not use address or data parity and the respective parity checking is disabled 

(HIDO[EBA] or HIDO[EBD] ~ 0), input receivers lor those signals are disabled, require no pull-up 
resistors, and thus should be left unconnected. II all parity generation is disabled, all parity 
checking should also be disabled and parity signals need not be connected. 

1 Parity generation is enabled. 

2 EBA Enable/disable 60x bus address parity checking 
0 Prevents address parity checking. 
1 Allows a address parity error to cause a checkstop il MSR[ME] ~ 0 or a machine check 

exception if MSR[ME] ~ 1. 
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity. 
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Table 2-4. HIDO Bit Functions (Continued) 

Bit Name Function 

3 EBD Enable 60x bus data parity checking 
0 Parity checking is disabled. 
1 Allows a data parity error to cause a checkstop if MSR[ME] ; 0 or a machine check exception if 

MSR[ME]; 1. 
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity. 

4 BClK ClK_OUT output enable and clock type selection. Used in conjunction with HIDO[EClK] and the 
HRESET signal to configure ClK_OUT. See Table 2-5. 

5 - Not used. Defined as EICE on some earlier processors. 

6 EClK ClK_OUT output enable and clock type selection. Used in conjunction with HIDO[BClK] and the 
HRESET signal to configure ClK_OUT. See Table 2-5. 

7 PAR Disable precharge of ARTRY. 
0 Precharge of ARTRY enabled 
1 Alters bus protocol slightly by preventing the processor from driving ARTRY to high (negated) 

state. If this is done, the system must restore the signals to the high state. 

S DOZE Doze mode enable. Operates in conjunction with MSR[POW]. 
0 Doze mode disabled. 
1 Doze mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In doze 

mode, the Pll, time base, and snooping remain active. 

9 NAP Nap mode enable. Operates in conjunction with MSR[POW]. 
0 Nap mode disabled. 
1 Nap mode enabled. Doze mode is invoked by setting MSR[POW] while this bit is set. In nap 

mode, the Pll and the time base remain active. 

10 SLEEP Sleep mode enable. Operates in conjunction with MSR[POW]. 
0 Sleep mode disabled. 
1 Sleep mode enabled. Sleep mode is invoked by setting MSR[POW] while this bit is set. QREQ is 

asserted to indicate that the processor is ready to enter sleep mode. If the system logic 
determines that the processor may enter sleep mode, the quiesce acknowledge signal, QACK, 
is asserted back to the processor. Once QACK assertion is detected, the processor enters 
sleep mode after several processor clocks. At this point, the system logic may turn off the Pll 
by first configuring Pll_CFG[0-3] to Pll bypass mode, then disabling SYSClK. 

11 DPM Dynamic power management enable. 
0 Dynamic power management is disabled. 
1 Functional units enter a low-power mode automatically if the unit is idle. This does not affect 

operational performance and is transparent to software or any external hardware. 

12-14 - Not used 

15 NHR Not hard reset (software-use only)-Helps software distinguish a hard reset from a soft reset. 
0 A hard reset occurred if software had previously set this bit. 
1 A hard reset has not occurred. If software sets this bit after a hard reset, when a reset occurs 

and this bit remains set, software can tell it was a soft reset. 

16 ICE Instruction cache enable 
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were 

marked cache-inhibited (WIM; X1X). Potential cache accesses from the bus (snoop and cache 
operations) are ignored. In the disabled state for the l1 caches, the cache tag state bits are 
ignored and all accesses are propagated to the l2 cache or bus as single-beat transactions. For 
those transactions, however, CT reflects the original state determined by address translation 
regardless of cache disabled status. ICE is zero at power-up. 

1 The instruction cache is enabled 
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Table 2-4. HIDO Bit Functions (Continued) 

Bit Name Function 

17 DCE Data cache enable 
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked 

cache-inhibited (WIM = X1 X). Potential cache accesses from the bus (snoop and cache 
operations) are ignored. In the disabled state for the L 1 caches, the cache tag state bits are 
ignored and all accesses are propagated to the L2 cache or bus as single-beat transactions. For 
those transactions, however, CT reflects the original state determined by address translation 
regardless of cache disabled status. DCE is zero at power-up. 

1 The data cache is enabled. 

18 ILOCK Instruction cache lock 
0 Normal operation 
1 Instruction cache is locked. A locked cache supplies data normally on a hit, but are treated as a 

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is 
single-beat, however, CT still reflects the original state as determined by address translation 
independent of cache locked or disabled status. 

To prevent locking during a cache access, an isync instruction must precede the setting of ILOCK. 

19 DLOCK Data cache lock. 
0 Normal operation 
1 Data cache is locked. A locked cache supplies data normally on a hit but is treated as a 

cache-inhibited transaction on a miss. On a miss, the transaction to the bus or the L2 cache is 
single-beat, however, CT still reflects the original state as determined by address translation 
independent of cache locked or disabled status. A snoop hit to a locked L 1 data cache performs 
as if the cache were not locked. A cache block invalidated by a snoop remains invalid until the 
cache is unlocked. 

To prevent locking during a cache access, a sync instruction must precede the setting of DLOCK. 

20 ICFI Instruction cache flash invalidate 
0 The instruction cache is not invalidated. The bit is cleared when the invalidation operation 

begins (usually the next cycle after the write operation to the register). The instruction cache 
must be enabled for the invalidation to occur. 

1 An invalidate operation is issued that marks the state of each instruction cache block as invalid 
without writing back modified cache blocks to memory. Cache access is blocked during this 
time. Bus accesses to the cache are signaled as a miss during invalidate-all operations. Setting 
ICFI clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once 
the L 1 flash invalidate bits are set through a mtspr operations, hardware automatically resets 
these bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO). 

Note, in the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits 
was to set them and clear them in two consecutive mtspr operations. Software that already has this 
sequence of operations does not need to be changed to run on the MPC750. 

21 DCFI Data cache flash invalidate 
0 The data cache is not invalidated. The bit is cleared when the invalidation operation begins 

(usually the next cycle after the write operation to the register). The data cache must be enabled 
for the invalidation to occur. 

1 An invalidate operation is issued that marks the state of each data cache block as invalid without 
writing back modified cache blocks to memory. Cache access is blocked during this time. Bus 
accesses to the cache are signaled as a miss during invalidate-all operations. Setting DCFI 
clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. Once the 
L 1 flash invalidate bits are set through a mtspr operations, hardware automatically resets these 
bits in the next cycle (provided that the corresponding cache enable bits are set in HIDO). 

Setting this bit clears all the valid bits of the blocks and the PLRU bits to point to way LO of each set. 
Note, In the PowerPC 603 and PowerPC 603e processors, the proper use of the ICFI and DCFI bits 
was to set them and clear them in two consecutive mtspr operations. Software that already has this 
sequence of operations does not need to be changed to run on the MPC750. 
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Table 2-4. HIDO Bit Functions (Continued) 

Bit Name Function 

22 SPD Speculative cache access disable 
0 Speculative bus accesses to nonguarded space (G = 0) from both the instruction and data 

caches is enabled 
1 Speculative bus accesses to nonguarded space in both caches is disabled 

23 IFEM Enable M bit on bus for instruction fetches. 
0 M bit disabled. Instruction fetches are treated as nonglobal on the bus 
1 Instruction fetches reflect the M bit from the WIM settings. 

24 SGE Store gathering enable 
0 Store gathering is disabled 
1 Integer store gathering is performed for write-through to nonguarded space or for 

cache-inhibited stores to nonguarded space for 4-byte. word-aligned stores. The LSU combines 
stores to form a double word that is sent out on the 60x bus as a single-beat operation. Stores 
are gathered only if successive, eligible stores, are queued and pending. Store gathering is 
performed regardless of address order or endian mode. 

25 DCFA Data cache flush assist. (Force data cache to ignore invalid sets on miss replacement selection.) 
0 The data cache flush assist facility is disabled 
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence 

defined by the PLRU bits. This reduces the series of uniquely addressed load or debz 
instructions to eight per set. The bit should be set just before beginning a cache flush routine 
and should be cleared when the series of instructions is complete. 

26 BTIC BTIC disable-used to disable use of the 64-entry branch instruction cache. 
0 The BTIC is enabled and new entries can be added. 
1 The BTIC contents are invalidated and the BTIC behaves as if it were empty. New entries 

cannot be added until the BTIC is enabled. 

27 - Not used. Defined as FBIOB on earlier 603-type processors. 

28 ABE Address broadcast enable-controls whether certain address-only operations (such as cache 
operations, eieio, and sync) are broadcast on the 60x bus. 
0 Address-only operations affect only local L 1 and L2 caches and are not broadcast. 
1 Address-only operations are broadcast on the 60x bus. Affected instructions are eieio, sync, 

debi, debt, and debst. A syne instruction completes only after a successful broadcast. 
Execution of eieio causes a broadcast that may be used to prevent any external devices, such 
as a bus bridge chip, from store gathering. 

Note that debz (with M = 1, coherency required) always broadcasts on the 60x bus regardless of 
the setting of this bit. An iebi is never broadcast. No cache operations, except debz, are snooped 
by the MPC750 regardless of whether the ABE is set. Bus activity caused by these instructions 
results directly from performing the operation on the MPC750 cache. 

29 BHT Branch history table enable 
0 BHT disabled. The MPC750 uses static branch prediction as defined by the PowerPC 

architecture (UISA) for those branch instructions the BHT would have otherwise used to predict 
(that is, those that use the CR as the only mechanism to determine direction). For more 
information on static branch prediction, see "Conditional Branch Control," in Chapter 4 of The 
Programming Environments Manual. 

1 Allows the use of the 512-entry branch history table (BHT). 
The BHT is disabled at power-on reset. All entries are set to weakly, not-taken. 

30 - Not used 

31 NOOPTI No-op the data cache touch instructions. 
0 The debt and debtst instructions are enabled. 
1 The debt and debtst instructions are no-oped globally. 
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Table 2-5 shows how HIDO[BCLK], HIDO[ECLK], and HRESET are used to configure 
CLK_OUT. See Section 7.2.11.2, "Clock Out (CLK_OUT)-Output," for more 
information. 

Table 2-5. HIDO[BClK] and HIDO[EClK] ClK_OUT Configuration 

HRESET HIDO[ECLK] HIDO[BCLK] CLK_OUT 

Asserted x x Bus 

Negated a a High impedance 

Negated a 1 Bus/2 

Negated 1 a Core 

Negated 1 1 Bus 

HIDO can be accessed with mtspr and mfspr using SPR1008. 

2.1.2.3 Hardware Implementation-Dependent Register 1 
The hardware implementation-dependent register 1 (HID1) reflects the state of the 
PLL_CFG[0-3] signals. The HID 1 bits are shown in Figure 2-4. 

D Reserved 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 000 0 0 0 0 

a 1 2 3 4 31 

Figure 2-4. Hardware Implementation-Dependent Register 1 (HID1) 

The HID1 bits are described in Table 2-6. 

Table 2-6. HID1 Bit Functions 

Bit(s) Name Description 

a pca PLL configuration bit a (read-only) 

1 PCl PLL configuration bit 1 (read-only) 

2 PC2 PLL configuration bit 2 (read-only) 

3 PC3 PLL configuration bit 3 (read-only) 

4-31 - Reserved 

Note: The clock configuration bits reflect the state of the PLL_CFG[a-3] signals. 

HID1 can be accessed with mtspr and mfspr using SPR 1009. 
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2.1.2.4 Performance Monitor Registers 
This section describes the registers used by the performance monitor, which is described in 
Chapter 11, "Performance Monitor." 

2.1.2.4.1 . Monitor Mode Control Register 0 (MMCRO) 
The monitor mode control register 0 (MMCRO), shown in Figure 2-5, is a 32-bit SPR 
provided to specify events to be counted and recorded. The MMCRO can be accessed only 
in supervisor mode. User-level software can read the contents of MMCRO by issuing an 
mfspr instruction to UMMCRO, described in Section 2.1.2.4.2, "User Monitor Mode 
Control Register 0 (UMMCRO)." 

INTONBITIRANS ------'----, 

RTCSELECT ---, 

o 1 2 3 4 5 6 7 8 9 10 

PMC21NTCONTROL 

PMC11NTCONTROL 

THRESHOLD 

PMCTRIGGER 

PMC1SELECT 

15 16 17 18 19 25 26 

Figure 2-5. Monitor Mode Control Register 0 (MMCRO) 

PMC2SELECT 

31 

This register must be cleared at power up. Reading this register does not change its 
contents. The bits of the MMCRO register are described in Table 2-7. 

Table 2-7. MMCRO Bit Settings 

Bit Name Description 

0 DIS Disables counting unconditionally 
0 The values of the PMCn counters can be changed by hardware. 
1 The values of the PMCn counters cannot be changed by hardware. 

1 DP Disables counting while in supervisor mode 
0 The PMCn counters can be changed by hardware. 
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not 

changed by hardware. 

2 DU Disables counting while in user mode 
0 The PMCn counters can be changed by hardware. 
1 If the processor is in user mode (MSR[PR] is set), the PMCn counters are not 

changed by hardware. 

3 OMS Disables counting while MSR[PM] is set 
0 The PMCn counters can be changed by hardware. 
1 If MSR[PM] is set, the PMCn counters are not changed by hardware. 

4 DMR Disables counting while MSR(PM) is zero. 
0 The PMCn counters can be changed by hardware. 
1 If MSR[PM] is cleared, the PMCn counters are not changed by hardware. 
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Table 2-7. MMCRO Bit Settings (Continued) 

Bit Name Description 

5 ENINT Enables performance monitor interrupt signaling. 
0 Interrupt signaling is disabled. 
1 Interrupt signaling is enabled. 
Cleared by hardware when a performance monitor interrupt is signaled. To reenable 
these interrupt signals, software must set this bit after handling the performance 
monitor interrupt. The IPL ROM code clears this bit before passing control to the 
operating system. 

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is, 
((PMCnINTCONTROL ~ 1) & (PMCn[O] ~ 1) & (ENINT ~ 1)) or the occurrence of an 
enabled time base transition with ((INTONBITTRANS ~1) & (ENINT ~ 1 )). 
0 Signaling a performance monitor interrupt does not affect counting status of PMCn. 
1 The signaling of a performance monitor interrupt prevents changing of PMC1 

counter. The PMCn counter do not change if PMC2COUNTCTL ~ o. 
Because a time base signal could have occurred along with an enabled counter 
overflow condition, software should always reset INTONBITTRANS to zero, if the value 
in INTONBITTRANS was a one. 

7-8 RTCSELECT 64-bit time base, bit selection enable 
00 Pick bit 63 to count 
01 Pick bit 55 to count 
10 Pick bit 51 to count 
11 Pick bit 47 to count 

9 INTONBITTRANS Cause interrupt signaling on bit transition (identified in RTCSELECT) from off to on 
0 Do not allow interrupt signal if chosen bit transitions. 
1 Signal interrupt if chosen bit transitions. 
Software is responsible for setting and clearing INTONBITTRANS. 

10--15 THRESHOLD Threshold value. The MPC750 supports all 6 bits, allowing threshold values from 0-63. 
The intent of the THRESHOLD support is to characterize L 1 data cache misses. 

16 PMC11NTCONTROL Enables interrupt signaling due to PMC1 counter overflow. 
0 Disable PMC1 interrupt signaling due to PMC1 counter overflow 
1 Enable PMC1 Interrupt signaling due to PMC1 counter overflow 

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the 
setting of DISCOUNT. 
0 Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow. 
1 Enable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow. 

18 PMCTRIGGER Can be used to trigger counting of PMC2-PMC4 after PMC1 has overflowed or after a 
performance monitor interrupt is signaled. 
0 Enable PMC2-PMC4 counting. 
1 Disable PMC2-PMC4 counting until either PMC1 [0] ~ 1 or a performance monitor 

interrupt is signaled. 

19-25 PMC1SELECT PMC1 input selector, 128 events selectable. See Table 2-10. 

26--31 PMC2SELECT PMC2 input selector, 64 events selectable. See Table 2-11. 

MMCRO can be accessed with mtspr and mfspr using SPR 952. 

2.1.2.4.2 User Monitor Mode Control Register 0 (UMMCRO) 
The contents of MMCRO are reflected to UMMCRO, which can be read by user-level 
software. MMCRO can be accessed with mfspr using SPR 936. 
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2.1.2.4.3 Monitor Mode Control Register 1 (MMCR1) 
The monitor mode control register 1 (MMCR1) functions as an event selector for 
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCR1 register 
is shown in Figure 2-6. 

[J Reserved 

PMC3SELECT PMC4SELECT 

4 5 9 10 31 

Figure 2-6. Monitor Mode Control Register 1 (MMCR1) 

Bit settings for MMCR1 are shown in Table 2-8. The corresponding events are described 
in Section 2.1.2.4.5, "Performance Monitor Counter Registers (PMC 1-PMC4 )." 

Table 2-8. MMCR1 Bit Settings 

Bits Name Description 

Cl-4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 2-12 for defined selections. 

5-9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 2-13 for defined selections. 

10--31 - Reserved 

MMCR1 can be accessed withmtspr and mfspr using SPR 956. User-level software can 
read the contents of MMCR1 by issuing an mfspr instruction to UMMCR1, described in 
Section 2.1.2.4.4, "User Monitor Mode Control Register 1 (UMMCRl)." 

2.1.2.4.4 User Monitor Mode Control Register 1 (UMMCR1) 
The contents of MMCR1 are reflected to UMMCR1, which can be read by user-level 
software. MMCR1 can be accessed with mfspr using SPR 940. 

2.1.2.4.5 Performance Monitor Counter Registers (PMC1-PMC4) 
PMC1-PMC4, shown in Figure 2-7, are 32-bit counters that can be programmed to 
generate interrupt signals when they overflow. 

Counter Value 

o 1 31 

Figure 2-7. Performance Monitor Counter Registers (PMC1-PMC4) 

The bits contained in the PMCn registers are described in Table 2-9. 
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Table 2-9. PMCn Bit Settings 

Bits Name Description 

0 OV Overflow. When this bit is set it indicates that this counter has reached its maximum value. 

1-31 Counter value Indicates the number of occurrences of the specified event. 

Counters are considered to overflow when the high-order bit (the sign bit) becomes set; that 
is, they reach the value 2147483648 (Ox8000_0000). However, an interrupt is not signaled 
unless both PMCn[INTCONTROL] and MMCRO[ENINT] are also set. 

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition 
may occur with MSR[EE] cleared, but the exception is not taken until EE is set. Setting 
MMCRO[DISCOUNT] forces counters to stop counting when a counter interrupt occurs. 

Software is expected to use mtspr to set PMC explicitly to nonoverflow values. If software 
sets an overflow value, an erroneous exception may occur. For example, if both 
PMCn[INTCONTROL] and MMCRO[ENINT] are set and mtspr loads an overflow value, 
an interrupt signal may be generated without any event counting having taken place. 

The event to be monitored can be chosen by setting MMCRO[O-9]. The selected events are 
counted beginning when MMCRO is set until either MMCRO is reset or a performance 
monitor interrupt is generated. Table 2-10 lists the selectable events and their encodings. 

Table 2-10. PMC1 Events-MMCRO[19-25] Select Encodings 

Encoding Description 

0000000 Register holds current value. 

0000001 Number of processor cycles 

0000010 Number of completed instructions. Does not include folded branches. 

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified 
through RTCSELECT (MMRCO[7-8]). 00 = 15, 01 = 19, 10 = 23,11 = 31 

0000100 Number of instructions dispatched-O, 1, or 2 instructions per cycle 

0000101 Number of eieio instructions completed 

0000110 Number of cycles spent performing table search operations for the ITLB 

0000111 Number of accesses that hit the L2 

0001000 Number of valid instruction EAs delivered to the memory subsystem 

0001001 Number of times the address of an instruction being completed matches the address in the IABR 

0001010 Number of loads that miss the L 1 with latencies that exceeded the threshold value 

0001011 Number of branches that are unresolved when processed 

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream 

All others Reserved. May be used in a later revision. 
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Bits MMCRO[26-31] specify events associated with PMC2, as shown in Table 2-11. 

Table 2-11. PMC2 Events-MMCRO[26-31] Select Encodings 

Encoding Description 

000000 Register holds current value. 

000001 Number of processor cycles 

000010 Number of completed instructions. Does not include folded branches. 

000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified 
through RTCSELECT (MMRCO[7-8]). 00 ~ 15, 01 ~ 19, 10 ~ 23, 11 ~ 31. 

000100 Number of instructions dispatched. 0, I, or 2 instructions per cycle 

000101 Number of eieio instructions completed 

000110 Number of cycles spent performing table search operations for the ITLB 

000111 Number of accesses that hit the L2 

001000 Number of valid instruction EAs delivered to the memory subsystem 

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR 

00 1010 Number of loads that miss the L 1 and have latencies that exceeded the threshold value 

00 1011 Number of branches that are unresolved when processed 

001 tOO Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream 

All others Reserved. May be used in a later revision. 

Bits MMCRI [0-4] specify events associated with PMC3, as shown in Table 2-12. 

Table 2-12. PMC3 Events-MMCR1[O-4] Select Encodings 

Encoding Description 

00000 Register holds current value. 

00001 Number of processor cycles 

00010 Number of completed instructions, not including folded branches. 

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified 
through RTCSELECT (MMRCO[7-8]). 0 ~ 47, 1 ~ 51, 2 ~ 55, 3 ~ 63. 

00100 Number of instructions dispatched. 0, I, or 2 per cycle. 

00101 Number of L 1 data cache misses 

00110 Number of DTLB misses 

00111 Number of L2 data misses 

01000 Number of taken branches, including predicted branches. 

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the 
number of MSR[PM] toggles while the processor is in user mode. 

01010 Number of store conditional instructions completed 
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Table 2-12. PMC3 Events-MMCR1 [0-4] Select Encodings (Continued) 

Encoding Description 

01011 Number of instructions completed from the FPU 

01100 Number of L2 castouts caused by snoops to modified lines 

01101 Number of cache operations that hit in the L2 cache 

01110 Reserved 

a 1111 Number of cycles generated by L 1 load misses 

10000 Number of branches in the second speculative stream that resolve correctly 

10001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies 

All others Reserved. May be used in a later revision. 

Bits MMCRI [5-9] specify events associated with PMC4, as shown in Table 2-l3. 

Table 2-13. PMC4 Events-MMCR1[5-9] Select Encodings 

Encoding Comments 

00000 Register holds current value 

00001 Number of processor cycles 

00010 Number of completed instructions, not including folded branches 

00011 Number of transitions from 0 to 1 of specified bits in the time base lower register. Bits are specified 
through RTCSELECT (MMRCO[7-8]). a = 47, 1 = 51,2 = 55, 3 = 63. 

00100 Number of instructions dispatched. 0, 1, or 2 per cycle. 

00101 Number of L2 castouts 

00110 Number of cycles spent performing tables searches for DTLB accesses 

00111 Reserved. May be used in a later revision. 

01000 Number of mispredicted branches 

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the 
number of MSR[PM] toggles while the processor is in supervisor mode. 

01010 Number of store conditional instructions completed with reservation intact 

01011 Number of completed sync instructions 

01100 Number of snoop request retries 

01101 Number of completed integer operations 

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches 

All others Reserved. May be used in a later revision. 
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The PMC registers can be accessed with mtspr and mfspr using following SPR numbers: 

• PMCI is SPR 953 
• PMC2 is SPR 954 
• PMC3 is SPR 957 

• PMC4 is SPR 958 

2.1.2.4.6 User Performance Monitor Counter Registers (UPMC1-UPMC4) 
The contents of the PMC1-PMC4 are reflected to UPMC1-UPMC4, which can be read by 
user-level software. The UPMC registers can be read with mfspr using the following SPR 
numbers: 

• UPMCI is SPR 937 

• UPMC2 is SPR 938 
• UPMC3 is SPR 941 
• UPMC4 is SPR 942 

2.1.2.4.7 Sampled Instruction Address Register (SIA) 
The sampled instruction address register (SIA) is a supervisor-level register that contains 
the effective address of an instruction executing at or around the time that the processor 
signals the performance monitor interrupt condition. The SIA is shown in Figure 2-8. 

Instruction Address 

31 

Figure 2-8. Sampled instruction Address Registers (SIA) 

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the 
exact instruction (called the sampled instruction) that caused the counter to overflow. 

If the performance monitor interrupt was caused by something besides a threshold event, 
the SIA contains the address of the last instruction completed during that cycle. SIA can be 
accessed with the mtspr and mfspr instructions using SPR 955. 

2.1.2.4.8 User Sampled Instruction Address Register (USIA) 
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA 
can be accessed with the mfspr instructions using SPR 939. 

2.1.2.4.9 Sampled Data Address Register (SDA) and User Sampled Data 
Address Register (USDA) 

The MPC750 does not implement the sampled data address register (SDA) or the 
user-level, read-only USDA registers. However, for compatibility with processors that do, 
those registers can be written to by boot code without causing an exception. SDA is 
SPR 959; USDA is SPR 943. 
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2.1.3 Instruction Cache Throttling Control Register (ICTC) 
Reducing the rate of instruction fetching can control junction temperature without the 
complexity and overhead of dynamic clock control. System software can control 
instruction forwarding by writing a nonzero value to the ICTC register, a supervisor-level 
register shown in Figure 2-9. The overall junction temperature reduction comes from the 
dynamic power management of each functional unit when the MPC750 is idle in between 
instruction fetches. PLL (phase-locked loop) and DLL (delay-locked loop) configurations 
are unchanged. 

D Reserved 

10000 0 0 0 000 0 000000000 0001 FI 

22 23 30 31 

Figure 2-9. Instruction Cache Throttling Control Register (ICTC) 

Table 2-14 describes the bit fields for the ICTC register. 

Table 2-14. ICTC Bit Settings 

Bits Name Description 

0-22 - Reserved 

23-30 FI Instruction forwarding interval expressed in processor clocks. 
OxOO o clock cycle. 
Ox01 1 clock cycle 

OxFF 255 clock cycles 

31 E Cache throttling enable 
0 Disable instruction cache throttling. 
1 Enable instruction cache throttling. 

Instruction cache throttling is enabled by setting ICTC[E] and writing the instruction 
forwarding interval into ICTC[FI]. Enabling, disabling, and changing the instruction 
forwarding interval affect instruction forwarding immediately. 

The ICTC register can be accessed with the mtspr and mfspr instructions using SPR 1019. 

2.1.4 Thermal Management Registers (THRM1-THRM3) 
The on-chip thermal management assist unit provides the following functions: 

• Compares the junction temperature against user programmed thresholds 

• Generates a thermal management interrupt if the temperature crosses the threshold 

• Provides a way for a successive approximation routine to estimate junction 
temperature 

Chapter 2. MPC750 Processor Programming Model 2-21 



Control and access to the thermal management assist unit is through the privileged 
mtspr/mfspr instructions to the three THRM registers. THRMI and THRM2, shown in 
Figure 2-10, provide the ability to compare the junction temperature against two 
user-provided thresholds. Having dual thresholds allows thermal management software 
differing degrees of action in reducing junction temperature. Thermal management can use 
a single-threshold mode in which the thermal sensor output is compared to only one 
threshold in either THRM1 or THRM2. 

THRESHOLD 

o 1 2 8 9 28 29 30 31 

Figure 2-10. Thermal Management Registers 1-2 (THRM1-THRM2) 

The bits in THRM1 and THRM2 are described in Table 2-15. 

Table 2-15. THRM1-THRM2 Bit Settings 

Bits Field Description 

a TIN Thermal management interrupt bit. Read·only. This bit is set if the thermal sensor output crosses 
the threshold specified in the SPR. The state of TIN is valid only if TIV is set. The interpretation of 
TIN is controlled by TID. See Table 2-16. 

1 TIV Thermal management interrupt valid. Read-only. This bit is set by the thermal assist logic to 
indicate that the thermal management interrupt (TIN) state is valid. See Table 2·16. 

2-6 Threshold Threshold that the thermal sensor output is compared to. The range is 00-12]0 C, and each bit 
represents 10 C. Note that this is not the resolution of the thermal sensor. 

9-26 - Reserved. System software should clear these bits when writing to the THRMn SPRs. 

29 TID Thermal management interrupt direction bit. Selects the result of the temperature comparison to 
setTlN and to assert a thermal management interrupt ifTlE is set.lfTlD is cleared, TIN is set and 
an interrupt occurs if the junction temperature exceeds the threshold. If TID is set, TIN is set and 
an interrupt is indicated if the junction temperature is below the threshold. See Table 2-16. 

30 TIE Thermal management interrupt enable. The thermal management interrupt is maskable by the 
MSR[EE) bit. If TIE is cleared and THRMn is valid, the TIN bit records the status of the junction 
temperature vs. threshold comparison without causing an exception. This lets system software 
successively approximate the junction temperature. See Table 2-16. 

31 V SPR valid bit. Setting this bit indicates the SPR contains a valid threshold, TID and TIE controls 
bits. THRM1/2[V] = 1 and THRM3[E) = 1 enables the thermal sensor operation. See Table 2-16. 

If an mtspr affects a THRM register that contains operating parameters for an ongoing 
comparison during operation of the thermal assist unit, the respective TIV bits are cleared 
and the comparison is restarted. Changing THRM3 forces the TIV bits of both THRM1 and 
THRM2 to 0, and restarts the comparison if THRM3 [E] is set. 

2-22 MPC750 RISC Microprocessor User's Manual 



Examples of valid THRM IITHRM2 bit settings are shown in Table 2-16. 

Table 2-16. Valid THRM1ITHRM2 States 

T1N1 TIVl TID TIE V Description 

x x x x a Invalid entry. The threshold in the SPR is not used for comparison. 

x x x a 1 Disable thermal management interrupt assertion. 

x x a x 1 SetTlN and assert thermal management interrupt ifTlE = 1 and the junction 
temperature exceeds the threshold. 

x x 1 x 1 SetTlN and assert thermal management interrupt ifTlE = 1 and the junction 
temperature is less than the threshold. 

x a x x 1 The state of the TIN bit is not valid. 

a 1 a x 1 The junction temperature is less than the threshold and as a result the thermal 
management interrupt is not generated for TI E = 1. 

1 1 a x 1 The junction temperature is greater than the threshold and as a result the thermal 
management interrupt is generated ifTlE = 1. 

a 1 1 x 1 The junction temperature is greater than the threshold and as a result the thermal 
management interrupt is not generated for TIE = 1. 

1 1 1 x 1 The junction temperature is less than the threshold and as a result the thermal 
management interrupt is generated if TIE = 1. 

Note: 

1 TIN and TIV are read-only status bits. 

The THRM3 register, shown in Figure 2-11, is used to enable the thermal assist unit and to 
control the comparator output sample time. The thermal assist logic manages the thermal 
management interrupt generation and time-multiplexed comparisons in dual-threshold 
mode as well as other control functions. 

D Reserved 

Sampled Interval Timer Value E 

17 18 30 31 

Figure 2-11. Thermal Management Register 3 (THRM3) 

Chapter 2. MPC750 Processor Programming Model 2-23 



The bits in THRM3 are described in Table 2-17. 

Table 2-17. THRM3 Bit Settings 

Bits Name Description 

0-17 - Reserved for future use. System software should clear these bits when writing to the THRM3. 

18-30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction 
temperature vs. threshold comparison result is sampled for TIN bit setting and interrupt 
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator 
settling time being greater than the processor cycle time. The value should be configured to allow 
a sampling interval of 20 microseconds. 

31 E Enables the thermal sensor compare operation if eitherTHRM1[V] orTHRM2[V] is set. 

The THRM registers can be accessed with the mtspr and mfspr instructions using the 
following SPR numbers: 

• THRM1 is SPR 1020 
• THRM2 is SPR 1021 
• THRM3 is SPR 1022 

2.1.5 L2 Cache Control Register (L2CR) 
The L2 cache control register, shown in Figure 2-12, is a supervisor-level, 
implementation-specific SPR used to configure and operate the L2 cache. It is cleared by a 
hard reset or power-on reset. 

o 1 234 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31 

Figure 2-12. L2 Cache Control Register (L2CR) 

The L2 cache interface is described in Chapter 9, "L2 Cache Interface Operation." The 
L2CR bits are described in Table 2-18. 
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Table 2-18. L2CR Bit Settings 

Bit Name Function 

0 L2E L2 enable. Enables L2 cache operation (including snooping) starting with the next transaction the L2 
cache unit receives. Before enabling the L2 cache, the L2 clock must be configured through 
L2CR[2CLK]. and the L2 DLL must stabilize (see the hardware specifications). All other L2CR bits 
must be set appropriately. The L2 cache may need to be invalidated globally. 

1 L2PE L2 data parity generation and checking enable. Enables parity generation and checking for the L2 
data RAM interface. When disabled, generated parity is always zeros. 

2-3 L2SIZ L2 size-Should be set according to the size of the L2 data RAMs used. A 256-Kbyte L2 cache 
requires a data RAM configuration of 32 Kbytes x 64 bits; a 512-Kbyte L2 cache requires a 
configuration of 64 Kbyte x 64 bits; a 1-Mbyte L2 cache requires a configuration of 128K x 64 bits. 
00 Reserved 
01 256 Kbyte 
10 512 Kbyte 
11 1 Mbyte 

4-6 L2CLK L2 clock ratio (core-to-L2 frequency divider). Specifies the clock divider ratio based from the core 
clock frequency that the L2 data RAM interface is to operate at. When these bits are cleared, the L2 
clock is stopped and the on-chip DLL for the L2 interface is disabled. For nonzero values, the 
processor generates the L2 clock and the on-chip DLL is enabled. After the L2 clock ratio is chosen, 
the DLL must stabilize before the L2 interface can be enabled. (See the hardware specifications). The 
resulting L2 clock frequency cannot be slower than the clock frequency of the 60x bus interface. 
000 L2 clock and DLL disabled 
001 +1 
010 +1.5 
011 Reserved 
100 +2 
101 +2.5 
110 +3 
111 Reserved 

7-8 L2RAM L2 RAM type-Configures the L2 RAM interface for the type of synchronous SRAMs used: 
Flow-through (register-buffer) synchronous burst SRAMs that clock addresses in and flow data out . Pipelined (register-register) synchronous burst SRAMs that clock addresses in and clock data out 
Late-write synchronous SRAMs, for which the MPC750 requires a pipelined (register-register) 
configuration. Late-write RAMs require write data to be valid on the cycle after WE is asserted, 
rather than on the same cycle as the write enable as with traditional burst RAMs. 

For burst RAM selections, the MPC750 does not burst data into the L2 cache, it generates an address 
for each access. Pipelined SRAMs may be used for all L2 clock modes. Note that flow-through 
SRAMs can be used only for L2 clock modes divide-by-2 or slower (divide-by-1 and divide-by-1.5 not 
allowed). 
00 Flow-through (register-buffer) synchronous burst SRAM 
01 Reserved 
10 Pipelined (register-register) synchronous burst SRAM 
11 Pipe lined (register-register) synchronous late-write SRAM 

9 L2DO L2 data-only. Setting this bit enables data-only operation in the L2 cache. For this operation, only 
transactions from the L 1 data cache can be cached in the L2 cache, which treats all transactions from 
the L 1 instruction cache as cache-inhibited (bypass L2 cache, no L2 checking done). This bit is 
provided for L2 testing only. 

10 L21 L2 global invalidate. Setting L21 invalidates the L2 cache globally by clearing the L2 bits including 
status bits. This bit must not be set while the L2 cache is enabled. 

Chapter 2. MPC750 Processor Programming Model 2-25 



Table 2-18. L2CR Bit Settings (Continued) 

Bit Name Function 

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ (low-power 
mode) signal for cache RAMs that support the ZZ function. While L2CTL is asserted, L2ZZ asserts 
automatically when the MPC750 enters nap or sleep mode and negates automatically when the 
MPC750 exits nap or sleep mode. This bit should not be set when the MPC750 is in nap mode and 
snooping is to be performed through deassertion of QACK. 

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default write-back mode) 
so all writes to the L2 cache also write through to the 60x bus. For these writes, the L2 cache entry is 
always marked as clean (valid unmodified) rather than dirty (valid modified). This bit must never be 
asserted after the L2 cache has been enabled as previously-modified lines can get remarked as 
clean during normal operation. 

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L 1 data cache that result from 
debt and debst instructions to be written only into the L2 cache and marked valid, rather than being 
written only to the 60x bus and marked invalid in the L2 cache in case of hit. This bit allows a 
debz/debt instruction sequence to be used with the L 1 cache enabled to easily initialize the L2 cache 
with any address and data information. This bit also keeps debz instructions from being broadcast on 
the 60x and single-beat cacheable store misses in the L2 from being written to the 60x bus. 

14-15 L20H L2 output hold. These bits configure output hold time for address, data, and control signals driven by 
the MPC750 to the L2 data RAMs. They should generally be set according to the SRAM's input hold 
time requirements, for which late-write SRAMs usually differ from flow-through or burst SRAMs. 
00 0.5 nS 
01 1.0 nS 
1x Reserved 

16 L2SL L2 DLL slow. Setting L2SL increases the delay of each tap of the DLL delay line. It is intended to 
increase the delay through the DLL to accommodate slower L2 RAM bus frequencies. Generally, 
L2SL should be set if the L2 RAM interface is operated below 100 MHz. 

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and 
L2CLK_OUTB) of the L2 interface to operate as one differential clock. In this mode, the B clock is 
driven as the logical complement of the A clock. This mode supports the differential clock 
requirements of late-write SRAMs. Generally, this bit should be set when late-write SRAMs are used. 

18 L2BYP L2 DLL bypass. The DLL unit receives three input clocks: 
A square-wave clock from the PLL unit to phase adjust and export 
A non-square-wave clock for the internal phase reference 
A feedback clock (L2SYNC_IN) for the external phase reference. 

Asserting L2BYP causes clock #2 to be used as clocks #1 and #2. (Clock #2 is the actual clock used 
by the registers of the L2 interface circuitry.) L2BYP is intended for use when the PLL is being 
bypassed, and for engineering evaluation. If the PLL is being bypassed, the DLL must be operated in 
divide-by-1 mode, and SYSCLK must be fast enough for the DLL to support. 

19-30 - Reserved. These bits are implemented but not used; keep at 0 for future compatibility. 

31 L21P L2 global invalidate in progress (read only)-This read-only bit indicates whether an L2 global 
invalidate is occurring. It should be monitored after an L2 global invalidate has been initiated by the 
L21 bit to determine when it has completed. 

The L2CR register can be accessed with the mtspr and mfspr instructions using SPR 1017. 
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2.1.6 Reset Settings 
Table 2-19 shows the state of the registers and other resources after a hard reset and before 
the first instruction is fetched from address OxFFFO_OI00 (the system reset exception 
vector). 

Table 2-19. Settings Caused by Hard Reset (Used at Power-On) 

Resource Setting Resource Setting 

BATs Undefined MSR OxOOOO_0040 (only IP set) 

Caches (L 1 IL2)* Invalidated and disabled PMCn Undefined 

CR Undefined PVR ROM value 

CTR Undefined Reservation address Undefined 

DABR Breakpoint is disabled. Address is undefined. Reservation flag Cleared 

DAR OxOOOO_OOOO SDR1 OxOOOO_OOOO 

DEC OxFFFF_FFFF SIA OxOOOO_OOOO 

DSISR OxOOOO_OOOO SPRGO-SPGR3 OxOOOO_OOOO 

EAR OxOOOO_OOOO SRs Undefined 

FPR Undefined SRRO OxOOOO_OOOO 

FPSCR OxOOOO_OOOO SRR1 OxOOOO_OOOO 

GPR Undefined TBU andTBL OxOOOO_OOOO 

HIDO OxOOOO_OOOO THRM1-THRM3 OxOOOO_OOOO 

HID1 OxOOOO_OOOO TLB Undefined 

IABR OxOOOO_OOOO (Breakpoint is disabled.) UMMCRn OxOOOO_OOOO 

ICTC OxOOOO_OOOO UPMCn OxOOOO_OOOO 

L2CR OxOOOO_OOOO USIA OxOOOO_OOOO 

LR OxOOOO_OOOO XER OxOOOO_OOOO 

MMCRn OxOOOO_OOOO 

* The processor automatically begins operations by issuing an instruction fetch. Because caching is inhibited at 
start-up, this generates a single-beat load operation on the bus. 
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2.2 Operand Conventions 
This section describes the operand conventions as they are represented in two levels of the 
PowerPC architecture-UrSA and YEA. Detailed descriptions are provided of conventions 
used for storing values in registers and memory, accessing PowerPC registers, and 
representation of data in these registers. 

2.2.1 Floating-Point Execution Models-UISA 
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard 
requires that single-precision arithmetic be provided for single-precision operands. The 
standard permits double-precision arithmetic instructions to have either (or both) 
single-precision or double-precision operands, but states that single-precision arithmetic 
instructions should not accept double-precision operands. 

The PowerPC urSA follows these guidelines: 

• Double-precision arithmetic instructions may have single-precision operands but 
always produce double-precision results. 

• Single-precision arithmetic instructions require all operands to be single-precision 
and always produce single-precision results. 

For arithmetic instructions, conversion from double- to single-precision must be done 
explicitly by software, while conversion from single- to double-precision is done implicitly 
by the processor. 

All PowerPC implementations provide the equivalent of the following execution models to 
ensure that identical results are obtained. The definition of the arithmetic instructions for 
infinities, denormalized numbers, and NaNs follow conventions described in the following 
sections. 

Although the double-precision format specifies an II-bit exponent, exponent arithmetic 
uses two additional bit positions to avoid potential transient overflow conditions. An extra 
bit is required when denormalized double-precision numbers are prenormalized. A second 
bit is required to permit computation of the adjusted exponent value in the following 
examples when the corresponding exception enable bit is one: 

• Underflow during mUltiplication using a denormalized operand 

• Overflow during division using a denormalized divisor 

2.2.2 Data Organization in Memory and Data Transfers 
Bytes in memory are numbered consecutively starting with O. Each number is the address 
of the corresponding byte. 

Memory operands may be bytes, half words, words, or double words, or, for the load/store 
multiple and load/store string instructions, a sequence of bytes or words. The address of a 
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memory operand is the address of its first byte (that is, of its lowest-numbered byte). 
Operand length is implicit for each instruction. 

2.2.3 Alignment and Misaligned Accesses 
The operand of a single-register memory access instruction has an alignment boundary 
equal to its length. An operand's address is misaligned if is not a multiple of its width. 
Operands for single-register memory access instructions have the characteristics shown in 
Table 2-20. Although not permitted as memory operands, quad words are shown because 
quad-word alignment is desirable for certain memory operands. 

The concept of alignment is also applied more generally to data in memory. For example, 
a 12-byte data item is said to be word-aligned if its address is a multiple of four. 

Some instructions require their memory operands to have certain alignment. In addition, 
alignment may affect performance. For single-register memory access instructions, the best 
performance is obtained when memory operands are aligned. 

Instructions are 32 bits (one word) long and must be word-aligned. 

The MPC750 does not provide hardware support for floating-point memory that is not 
word-aligned. If a floating-point operand is not aligned, the MPC750 invokes an alignment 
exception, and it is left up to software to break up the offending storage access operation 
appropriately. In addition, some non-double-word-aligned memory accesses suffer 
performance degradation as compared to an aligned access of the same type. 

In general, floating-point word accesses should always be word-aligned and floating-point 
double-word accesses should always be double-word-aligned. Frequent use of misaligned 
accesses is discouraged since they can degrade overall performance. 

2.2.4 Floating-Point Operand 
The MPC750 provides hardware support for all single- and double-precision floating-point 
operations for most value representations and all rounding modes. This architecture 
provides for hardware to implement a floating-point system as defined in ANSIlIEEE 
standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed 
information about the floating-point execution model can be found in Chapter 3, "Operand 
Conventions," in The Programming Environments Manual. 

The MPC750 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, 
denormalized numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE 
conforming manner. This is accomplished by delivering results that approximate the values 
required by the IEEE standard. Table 2-20 summarizes the conditions and mode behavior 
for operands. 
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Table 2-20. Floating-Point Operand Data Type Behavior 

Operand A Operand B Operand C IEEE Mode Non·IEEE Mode 
Data Type Data Type Data Type (NI = 0) (NI = 1) 

Single denormalized Single denormalized Single denormalized Normalize all three Zero all three 
Double denormalized Double denormalized Double denormalized 

Single denormalized Single denormalized Normalized or zero Normalize A and B Zero A and B 
Double denormalized Double denormalized 

Normalized or zero Single denormalized Single denormalized Normalize Band C Zero Band C 
Double denormalized Double denormalized 

Single denormalized Normalized or zero Single denormalized Normalize A and C Zero A and C 
Double denormalized Double denormalized 

Single denormalized Normalized or zero Normalized or zero Normalize A Zero A 
Double denormalized 

Normalized or zero Single denormalized Normalized or zero Normalize B Zero B 
Double denormalized 

Normalized or zero Normalized or zero Single denormalized Normalize C Zero C 
Double denormalized 

Single QNaN Don't care Don't care QNaN1 QNaN1 

Single SNaN 
Double QNaN 
Double SNaN 

Don't care Single QNaN Don't care QNaN1 QNaN1 

Single SNaN 
Double QNaN 
Double SNaN 

Don't care Don't care Single QNaN QNaN 1 QNaN 1 

Single SNaN 
Double QNaN 
Double SNaN 

Single normalized Single normalized Single normalized Do the operation Do the operation 
Single infinity Single infinity Single infinity 
Single zero Single zero Single zero 
Double normalized Double normalized Double normalized 
Double infinity Double infinity Double infinity 
Double zero Double zero Double zero 

1 Prioritize according to Chapter 3, "Operand Conventions," in The Programming Environments Manual. 
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Table 2-21 summarizes the mode behavior for results. 

Table 2-21. Floating-Point Result Data Type Behavior 

Precision Data Type IEEE Mode (NI = 0) Non-IEEE Mode (NI = 1) 

Single Denormalized Return single-precision denormalized number Return zero. 
with trailing zeros. 

Single Normalized, Return the result. Return the result. 
infinity, zero 

Single ONaN, SNaN Return ONaN. Return ONaN. 

Single INT Place integer into low word of FPR. If (Invalid Operation) 
then 

Place (Ox8000) into FPR[32-63] 
else 

Place integer into FPR[32-63]. 

Double Denormalized Return double-precision denormalized number. Return zero. 

Double Normalized, Return the result. Return the result. 
infinity, zero 

Double ONaN, SNaN Return ONaN. Return ON aN. 

Double INT Not supported by MPC750 Not supported by MPC750 

2.3 Instruction Set Summary 
This chapter describes instructions and addressing modes defined for the MPC750. These 
instructions are divided into the following functional categories: 

• Integer instructions-These include arithmetic and logical instructions. For more 
information, see Section 2.3.4.1, "Integer Instructions." 

• Floating-point instructions-These include floating-point arithmetic instructions, as 
well as instructions that affect the floating-point status and control register (FPSCR). 
For more information, see Section 2.3.4.2, "Floating-Point Instructions." 

• Load and store instructions-These include integer and floating-point load and store 
instructions. For more information, see Section 2.3.4.3, "Load and Store 
Instructions ." 

• Flow control instructions-These include branching instructions, condition register 
logical instructions, trap instructions, and other instructions that affect the 
instruction flow. For more information, see Section 2.3.4.4, "Branch and Flow 
Control Instructions." 

• Processor control instructions-These instructions are used for synchronizing 
memory accesses and managing caches, TLBs, and segment registers. For more 
information, see Section 2.3.4.6, "Processor Control Instructions-UISA," 
Section 2.3.5.1, "Processor Control Instructions-VEA," and Section 2.3.6.2, 
"Processor Control Instructions-OEA." 
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• Memory synchronization instructions-These instructions are used for memory 
synchronizing. See Section 2.3.4.7, "Memory Synchronization 
Instructions-UISA," Section 2.3.5.2, "Memory Synchronization 
Instructions-VEA," for more information. 

• Memory control instructions-These instructions provide control of caches, TLBs, 
and segment registers. For more information, see Section 2.3.5.3, "Memory Control 
Instructions-VEA," and Section 2.3.6.3, "Memory Control Instructions-OEA." 

• External control instructions-These include instructions for use with special 
input/output devices. For more information, see Section 2.3.5.4, "Optional External 
Control Instructions." 

Note that this grouping of instructions does not necessarily indicate the execution unit that 
processes a particular instruction or group of instructions. This information, which is useful 
for scheduling instructions most effectively, is provided in Chapter 6, "Instruction Timing." 

Integer instructions operate on word operands. Floating-point instructions operate on 
single-precision and double-precision floating-point operands. The PowerPC architecture 
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word, 
and word operand loads and stores between memory and a set of 32 general-purpose 
registers (GPRs). It also provides for word and double-word operand loads and stores 
between memory and a set of 32 floating-point registers (FPRs). 

Arithmetic and logical instructions do not read or modify memory. To use the contents of a 
memory location in a computation and then modify the same or another memory location, 
the memory contents must be loaded into a register, modified, and then written to the target 
location using load and store instructions. 

The description of each instruction includes the mnemonic and a formatted list of operands. 
To simplify assembly language programming, a set of simplified mnemonics and symbols 
is provided for some of the frequently-used instructions; see Appendix F, "Simplified 
Mnemonics," in The Programming Environments Manual for a complete list of simplified 
mnemonics. Note that the architecture specification refers to simplified mnemonics as 
extended mnemonics. Programs written to be portable across the various assemblers for the 
PowerPC architecture should not assume the existence of mnemonics not described in that 
document. 

2.3.1 Classes of Instructions 
The MPC750 instructions belong to one of the following three classes: 

• Defined 

• Illegal 
• Reserved 

Note that while the definitions of these terms are consistent among the PowerPC 
processors, the assignment of these classifications is not. For example, PowerPC 
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instructions defined for 64-bit implementations are treated as illegal by 32-bit 
implementations such as the MPC750. 

The class is determined by examining the primary opcode and the extended opcode, if any. 
If the opcode, or combination of opcode and extended opcode, is not that of a defined 
instruction or of a reserved instruction, the instruction is illegal. 

Instruction encodings that are now illegal may become assigned to instructions in the 
architecture or may be reserved by being assigned to processor-specific instructions. 

2.3.1.1 Definition of Boundedly Undefined 
If instructions are encoded with incorrectly set bits in reserved fields, the results on 
execution can be said to be boundedly undefined. If a user-level program executes the 
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious 
change from user to supervisor state is not allowed, and the level of privilege exercised by 
the program in relation to memory access and other system resources cannot be exceeded. 
Boundedly-undefined results for a given instruction may vary between implementations, 
and between execution attempts in the same implementation. 

2.3.1.2 Defined Instruction Class 
Defined instructions are guaranteed to be supported in all PowerPC implementations, 
except as stated in the instruction descriptions in Chapter 8, "Instruction Set," in The 
Programming Environments Manual. The MPC750 provides hardware support for all 
instructions defined for 32-bit implementations. It does not support the optional fsqrt, 
fsqrts, and tIbia instructions. 

A PowerPC processor invokes the illegal instruction error handler (part of the program 
exception) when the unimplemented PowerPC instructions are encountered so they may be 
emulated in software, as required. Note that the architecture specification refers to 
exceptions as interrupts. 

A defined instruction can have invalid forms. The MPC750 provides limited support for 
instructions represented in an invalid form. 

2.3.1.3 Illegal Instruction Class 
Illegal instructions can be grouped into the following categories: 

• Instructions not defined in the PowerPC architecture.The following primary 
opcodes are defined as illegal but may be used in future extensions to the 
architecture: 

1,4,5,6,9,22,56,57,60,61 

Future versions of the PowerPC architecture may define any of these instructions to 
perform new functions. 
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• Instructions defined in the PowerPC architecture but not implemented in a specific 
PowerPC implementation. For example, instructions that can be executed on 64-bit 
PowerPC processors are considered illegal by 32-bit processors such as the 
MPC750. 

The following primary opcodes are defined for 64-bit implementations only and are 
illegal on the MPC750: 

2,30,58,62 

• All unused extended opcodes are illegal. The unused extended opcodes can be 
determined from information in Section A.2, "Instructions Sorted by Opcode," and 
Section 2.3.1.4, "Reserved Instruction Class." Notice that extended opcodes for 
instructions defined only for 64-bit implementations are illegal in 32-bit 
implementations, and vice versa. The following primary opcodes have unused 
extended opcodes. 

17, 19,31,59,63 (Primary opcodes 30 and 62 are illegal for all 32-bit 
implementations, but as 64-bit opcodes they have some unused extended opcodes.) 

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This 
increases the probability that an attempt to execute data or uninitialized memory 
invokes the system illegal instruction en"or handler (a program exception). Note that 
if only the primary opcode consists of all zeros, the instruction is considered a 
reserved instruction, as described in Section 2.3.1.4, "Reserved Instruction Class." 

The MPC750 invokes the system illegal instruction error handler (a program exception) 
when it detects any instruction from this class or any instructions defined only for 64-bit 
implementations. 

See Section 4.5.7, "Program Exception (Ox00700)," for additional information about illegal 
and invalid instruction exceptions. Except for an instruction consisting of binary zeros, 
illegal instructions are available for additions to the PowerPC architecture. 

2.3.1.4 Reserved Instruction Class 
Reserved instructions are allocated to specific implementation-dependent purposes not 
defined by the PowerPC architecture. Attempting to execute an unimplemented reserved 
instruction invokes the illegal instruction error handler (a program exception). See 
"Program Exception (Ox00700)," in Chapter 6, "Exceptions," in The Programming 
Environments Manual for information about illegal and invalid instruction exceptions. 

The PowerPC architecture defines four types of reserved instructions: 

• Instructions in the POWER architecture not part of the PowerPC VISA. For details 
on POWER architecture incompatibilities and how they are handled by PowerPC 
processors, see Appendix B, "POWER Architecture Cross Reference," in The 
Programming Environments Manual. 

• Implementation-specific instructions required for the processor to conform to the 
PowerPC architecture (none of these are implemented in the MPC750) 
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All other implementation-specific instructions 

Architecturally-allowed extended opcodes 

2.3.2 Addressing Modes 
This section provides an overview of conventions for addressing memory and for 
calculating effective addresses as defined by the PowerPC architecture for 32-bit 
implementations. For more detailed information, see "Conventions," in Chapter 4, 
"Addressing Modes and Instruction Set Summary," of The Programming Environments 
Manual. 

2.3.2.1 Memory Addressing 
A program references memory using the effective (logical) address computed by the 
processor when it executes a memory access or branch instruction or when it fetches the 
next sequential instruction. 

Bytes in memory are numbered consecutively starting with zero. Each number is the 
address of the corresponding byte. 

2.3.2.2 Memory Operands 
Memory operands may be bytes, half words, words, or double words, or, for the load/store 
multiple and load/store string instructions, a sequence of bytes or words. The address of a 
memory operand is the address of its first byte (that is, of its lowest-numbered byte). 
Operand length is implicit for each instruction. The PowerPC architecture supports both 
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian. 
See "Byte Ordering," in Chapter 3, "Operand Conventions," of The Programming 
Environments Manual for more information about big- and little-endian byte ordering. 

The operand of a single-register memory access instruction has a natural alignment 
boundary equal to the operand length. In other words, the "natural" address of an operand 
is an integral multiple of the operand length. A memory operand is said to be aligned if it 
is aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about 
memory operands, see Chapter 3, "Operand Conventions," of The Programming 
Environments Manual. 

2.3.2.3 Effective Address Calculation 
An effective address is the 32-bit sum computed by the processor when executing a 
memory access or branch instruction or when fetching the next sequential instruction. For 
a memory access instruction, if the sum of the effective address and the operand length 
exceeds the maximum effective address, the memory operand is considered to wrap around 
from the maximum effective address through effective address 0, as described in the 
following paragraphs. 

Effective address computations for both data and instruction accesses use 32-bit unsigned 
binary arithmetic. A carry from bit ° is ignored. 
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Load and store operations have the following modes of effective address generation: 

EA = (rAIO) + offset (including offset = 0) (register indirect with immediate index) 

• EA = (rAIO) + rB (register indirect with index) 

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation," for a detailed 
description of effective address generation for load and store operations. 

Branch instructions have three categories of effective address generation: 

• Immediate 
Link register indirect 

Count register indirect 

2.3.2.4 Synchronization 
The synchronization described in this section refers to the state of the processor that is 
performing the synchronization. 

2.3.2.4.1 Context Synchronization 
The System Call (sc) and Return from Interrupt (rfi) instructions perform context 
synchronization by allowing previously issued instructions to complete before performing 
a change in context. Execution of one of these instructions ensures the following: 

No higher priority exception exists (sc). 

All previous instructions have completed to a point where they can no longer cause 
an exception. If a prior memory access instruction causes direct-store error 
exceptions, the results are guaranteed to be determined before this instruction is 
executed. 

• Previous instructions complete execution in the context (privilege, protection, and 
address translation) under which they were issued. 

• The instructions following the sc or rfi instruction execute in the context established 
by these instructions. 

2.3.2.4.2 Execution Synchronization 
An instruction is execution synchronizing if all previously initiated instructions appear to 
have completed before the instruction is initiated or, in the case of sync and isync, before 
the instruction completes. For example, the Move to Machine State Register (mtmsr) 
instruction is execution synchronizing. It ensures that all preceding instructions have 
completed execution and cannot cause an exception before the instruction executes, but 
does not ensure subsequent instructions execute in the newly established environment. For 
example, if the mtmsr sets the MSR[PR] bit, unless an isync immediately follows the 
mtmsr instruction, a privileged instruction could be executed or privileged access could be 
performed without causing an exception even though the MSR[PR] bit indicates user mode. 
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2.3.2.4.3 Instruction-Related Exceptions 
There are two kinds of exceptions in the MPC750-those caused directly by the execution 
of an instruction and those caused by an asynchronous event (or interrupts). Either may 
cause components of the system software to be invoked. 

Exceptions can be caused directly by the execution of an instruction as follows: 

An attempt to execute an illegal instruction causes the illegal instruction (program 
exception) handler to be invoked. An attempt by a user-level program to execute the 
supervisor-level instructions listed below causes the privileged instruction (program 
exception) handler to be invoked. The MPC750 provides the following 
supervisor-level instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr, 
mtsr, mtsrin, rfi, tlbie, and tlbsync. Note that the privilege level of the mfspr and 
mtspr instructions depends on the SPR encoding. 

Any mtspr, mfspr, or mftb instruction with an invalid SPR (or TBR) field causes 
an illegal type program exception. Likewise, a program exception is taken if 
user-level software tries to access a supervisor-level SPR. An mtspr instruction 
executing in supervisor mode (MSR[PR] = 0) with the SPR field specifying HIDI 
or PVR (read-only registers) executes as a no-op. 

An attempt to access memory that is not available (page fault) causes the lSI or DSI 
exception handler to be invoked. 

• The execution of an sc instruction invokes the system call exception handler that 
permits a program to request the system to perform a service. 

• The execution of a trap instruction invokes the program exception trap handler. 

• The execution of an instruction that causes a floating-point exception while 
exceptions are enabled in the MSR invokes the program exception handler. 

A detailed description of exception conditions is provided in Chapter 4, "Exceptions." 

2.3.3 Instruction Set Overview 

This section provides a brief overview of the PowerPC instructions implemented in the 
MPC750 and highlights any special information with respect to how the MPC750 
implements a particular instruction. Note that the categories used in this section correspond 
to those used in Chapter 4, "Addressing Modes and Instruction Set Summary," in The 
Programming Environments Manual. These categorizations are somewhat arbitrary and are 
provided for the convenience of the programmer and do not necessarily reflect the PowerPC 
architecture specification. 

Note that some instructions have the following optional features: 

• CR Update-The dot (.) suffix on the mnemonic enables the update of the CR. 
Overflow option-The 0 suffix indicates that the overflow bit in the XER is enabled. 
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2.3.4 PowerPC UISA Instructions 
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level 
cache control, synchronization, and time base instructions), user-level registers, 
programming model, data types, and addressing modes. This section discusses the 
instructions defined in the UISA. 

2.3.4.1 Integer Instructions 
This section describes the integer instructions. These consist of the following: 

• Integer arithmetic instructions 

• Integer compare instructions 
• Integer logical instructions 
• Integer rotate and shift instructions 

Integer instructions use the content of the GPRs as source operands and place results into 
GPRs, into the integer exception register (XER), and into condition register (CR) fields. 

2.3.4.1.1 Integer Arithmetic Instructions 
Table 2-22 lists the integer arithmetic instructions for the PowerPC processors. 

Table 2-22. Integer Arithmetic Instructions 

Name Mnemonic Syntax 

Add Immediate addi rD,rA,SIMM 

Add Immediate Shifted addis rD,rA,SIMM 

Add add (add. addo addo.) rD,rA,rB 

Subtract From subf (subf. subfo subfo.) rD,rA,rB 

Add Immediate Carrying addic rD,rA,SIMM 

Add Immediate Carrying and Record addic. rD,rA,SIMM 

Subtract from Immediate Carrying subfic rD,rA,SIMM 

Add Carrying addc (addc. add co addco.) rD,rA,rB 

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB 

Add Extended adde (adde. add eo addeo.) rD,rA,rB 

Subtract from Extended subfe (subfe. subfeo sUbfeo.) rD,rA,rB 

Add to Minus One Extended addme (add me. addmeo addmeo.) rD,rA 

Subtract from Minus One Extended subfme (subfme. subfmeo sUbfmeo.) rD,rA 

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA 

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA 

Negate neg (neg. nego nego.) rD,rA 

Multiply Low Immediate mulli rD,rA,SIMM 
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Table 2-22. Integer Arithmetic Instructions (Continued) 

Name Mnemonic Syntax 

Multiply Low mullw (mullw. mullwo mUllwo.) rD,rA,rB 

Multiply High Word mulhw (mulhw.) rD,rA,rB 

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB 

Divide Word divw (divw. divwo divwo.) rD,rA,rB 

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB 

Although there is no Subtract Immediate instruction, its effect can be achieved by using an 
addi instruction with the immediate operand negated. Simplified mnemonics are provided 
that include this negation. The subf instructions subtract the second operand (r A) from the 
third operand (rB). Simplified mnemonics are provided in which the third operand is 
subtracted from the second operand. See Appendix F, "Simplified Mnemonics," in The 
Programming Environments Manual for examples. 

The UISA states that an implementation that executes instructions that set the overflow 
enable bit (OE) or the carry bit (CA) may either execute these instructions slowly or prevent 
execution of the subsequent instruction until the operation completes. Chapter 6, 
"Instruction Timing," describes how the MPC750 handles CR dependencies. The summary 
overflow bit (SO) and overflow bit (OV) in the integer exception register are set to reflect 
an overflow condition of a 32-bit result. This can happen only when OE = 1. 

2.3.4.1.2 Integer Compare Instructions 
The integer compare instructions algebraically or logically compare the contents of register 
rA with either the zero-extended value of the UIMM operand, the sign-extended value of 
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi 
and cmp instructions, and unsigned for the cmpli and cmpI instructions. Table 2-23 
summarizes the integer compare instructions. 

Table 2-23. Integer Compare Instructions 

Name Mnemonic Syntax 

Compare Immediate cmpi crfD,L,rA,SIMM 

Compare cmp crfD,L,rA,rB 

Compare Logical Immediate cmpli crfD,L,rA,UIMM 

Compare Logical cmpl crfD,L,rA,rB 

The crfD operand can be omitted if the result of the comparison is to be placed in CRO. 
Otherwise the target CR field must be specified in crfD, using an explicit field number. 

For information on simplified mnemonics for the integer compare instructions see 
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual. 
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2.3.4.1.3 Integer Logical Instructions 
The logical instructions shown in Table 2-24 perform bit-parallel operations on the 
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and 
instructions andi. and andis. set CR field CRO to characterize the result of the logical 
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA]. 

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for 
simplified mnemonic examples for integer logical operations. 

Table 2-24. Integer Logical Instructions 

Name Mnemonic Syntax Implementation Notes 

AND Immediate andi. rA,rS,UIMM -
AND Immediate Shifted andis. rA,rS,UIMM -

OR Immediate ori rA,rS,UIMM The PowerPC architecture defines ori rO,rO,O as the 
preferred form for the no-op instruction. The dispatcher 
discards this instruction (except for pending trace or 
breakpoint exceptions). 

OR Immediate Shifted oris rA,rS,UIMM -

XOR Immediate xori rA,rS,UIMM -

XOR Immediate Shifted xoris rA,rS,UIMM -

AND and (and.) rA,rS,rB -

OR or (or.) rA,rS,rB -

XOR xor (xor.) rA,rS,rB -

NAND nand (nand.) rA,rS,rB -

NOR nor (nor.) rA,rS,rB -

Equivalent eqv (eqv.) rA,rS,rB -

AND with Complement andc (andc.) rA,rS,rB -

OR with Complement orc (orc.) rA,rS,rB -

Extend Sign Byte extsb (extsb.) rA,rS -
Extend Sign Half Word extsh (extsh.) rA,rS -

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS -

2.3.4.1.4 Integer Rotate and Shift Instructions 
Rotation operations are performed on data from a GPR, and the result, or a portion of the 
result, is returned to a GPR. See Appendix F, "Simplified Mnemonics," in The 
Programming Environments Manual for a complete list of simplified mnemonics that 
allows simpler coding of often-used functions such as clearing the leftmost or rightmost 
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and 
shifts. 
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Integer rotate instructions rotate the contents of a register. The result of the rotation is either 
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit 
of the rotated data is placed into the target register, and if the mask bit is 0 the associated 
bit in the target register is unchanged), or ANDed with a mask before being placed into the 
target register. 

The integer rotate instructions are summarized in Table 2-25. 

Table 2-25. Integer Rotate Instructions 

Name Mnemonic Syntax 

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME 

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME 

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME 

The integer shift instructions perform left and right shifts. Immediate-form logical 
(unsigned) shift operations are obtained by specifying masks and shift values for certain 
rotate instructions. Simplified mnemonics (shown in Appendix F, "Simplified 
Mnemonics," in The Programming Environments Manual) are provided to make coding of 
such shifts simpler and easier to understand. 

Multiple-precision shifts can be programmed as shown in Appendix C, "Multiple-Precision 
Shifts," in The Programming Environments Manual. The integer shift instructions are 
summarized in Table 2-26. 

Table 2-26. Integer Shift Instructions 

Name Mnemonic Syntax 

Shift Left Word slw (slw.) rA,rS,rB 

Shift Right Word srw (srw.) rA,rS,rB 

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH 

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB 

2.3.4.2 Floating-POint Instructions 
This section describes the floating-point instructions, which include the following: 

Floating-point arithmetic instructions 

• Floating-point multiply-add instructions 
Floating-point rounding and conversion instructions 

• Floating-point compare instructions 
• Floating-point status and control register instructions 
• Floating-point move instructions 
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See Section 2.3.4.3, "Load and Store Instructions," for information about floating-point 
loads and stores. 

The PowerPC architecture supports a floating-point system as defined in the IEEE 754 
standard, but requires software support to conform with that standard. All floating-point 
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode 
FPSCR[NI]. 

2.3.4.2.1 Floating-Point Arithmetic Instructions 
The floating-point arithmetic instructions are summarized in Table 2-27. 

Table 2-27. Floating-Point Arithmetic Instructions 

Name Mnemonic Syntax 

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB 

Floating Add Single fadds (fadds.) frD,frA,frB 

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB 

Floating Subtract Single fsubs (fsubs.) frD,frA,frB 

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC 

Floating Multiply Single fmuls (fmuls.) frD,frA,frC 

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB 

Floating Divide Single fdivs (fdivs.) frD,frA,frB 

Floating Reciprocal Estimate Single 1 fres (fres.) frD,frB 

Floating Reciprocal Square Root Estimate 1 frsqrte (frsqrte.) frD,frB 

Floating Select 1 fsel frD,frA,frC,frB 

lThe fsel instruction is optional in the PowerPC architecture. 

All single-precision arithmetic instructions are performed using a double-precision format. 
The floating-point architecture is a single-pass implementation for double-precision 
products. In most cases, a single-precision instruction using only single-precision 
operands, in double-precision format, has the same latency as its double-precision 
equivalent. 

2.3.4.2.2 Floating-Point Multiply-Add Instructions 
These instructions combine multiply and add operations without an intermediate rounding 
operation. The floating-point multiply-add instructions are summarized in Table 2-28. 

Table 2-28. Floating-Point Multiply-Add Instructions 

Name Mnemonic Syntax 

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB 

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB 
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Table 2-28. Floating-Point Multiply-Add Instructions (Continued) 

Name Mnemonic Syntax 

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB 

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB 

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB 

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB 

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB 

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB 

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions 
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit 
double-precision number to a 32-bit single-precision floating-point number. The 
floating-point convert instructions convert a 64-bit double-precision floating-point number 
to a 32-bit signed integer number. 

Examples of uses of these instructions to perform various conversions can be found in 
Appendix D, "Floating-Point Models," in The Programming Environments Manual. 

Table 2-29. Floating-Point Rounding and Conversion Instructions 

Name Mnemonic Syntax 

Floating Round to Single frsp (frsp.) frD,frB 

Floating Convert to Integer Word fctiw (fctiw.) frD,frB 

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB 

2.3.4.2.4 Floating-Point Compare Instructions 
Floating-point compare instructions compare the contents of two floating-point registers. 
The comparison ignores the sign of zero (that is +0 = -0). The floating-point compare 
instructions are summarized in Table 2-30. 

Table 2-30. Floating-Point Compare Instructions 

Name Mnemonic Syntax 

Floating Compare Unordered fcmpu crfD,frA,frB 

Floating Compare Ordered fcmpo crfD,frA,frB 
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The PowerPC architecture allows an fcmpu or fcmpo instruction with the Rc bit set to 
produce a boundedly-undefined result, which may include an illegal instruction program 
exception. In the MPC750, crfD should be treated as undefined 

2.3.4.2.5 Floating-Point Status and Control Register Instructions 
Every FPSCR instruction appears to synchronize the effects of all floating-point 
instructions executed by a given processor. Executing an FPSCR instruction ensures that all 
floating-point instructions previously initiated by the given processor appear to have 
completed before the FPSCR instruction is initiated and that no subsequent floating-point 
instructions appear to be initiated by the given processor until the FPSCR instruction has 
completed. The FPSCR instructions are summarized in Table 2-31. 

Table 2-31. Floating-Point Status and Control Register Instructions 

Name Mnemonic Syntax 

Move from FPSCR mffs (mfls.) frO 

Move to Condition Register from FPSCR mCrfs crfO,crfS 

Move to FPSCR Field Immediate mUsfi (mUsfi.) crfO,IMM 

Move to FPSCR Fields mUsf (mUsf.) FM,frS 

Move to FPSCR Sit 0 mUsbO (mtfsbO.) crbO 

Move to FPSCR Sit 1 mUsb1 (mtfsb1.) crbO 

Implementation Note-The PowerPC architecture states that in some implementations, 
the Move to FPSCR Fields (mtfst) instruction may perform more slowly when only some 
of the fields are updated as opposed to all of the fields. In the MPC750, there is no 
degradation of performance. 

2.3.4.2.6 Floating-Point Move Instructions 
Floating-point move instructions copy data from one FPR to another. The floating-point 
move instructions do not modify the FPSCR. The CR update option in these instructions 
controls the placing of result status into CRI. Table 2-32 summarizes the floating-point 
move instructions. 

Table 2-32. Floating-Point Move Instructions 

Name Mnemonic Syntax 

Floating Move Register fmr (fmr.) frO,frS 

Floating Negate fneg (fneg.) frO,frS 

Floating Absolute Value fabs (fabs.) frO,frS 

Floating Negative Absolute Value fnabs (fnabs.) frO,frS 
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2.3.4.3 load and Store Instructions 
Load and store instructions are issued and translated in program order; however, the 
accesses can occur out of order. Synchronizing instructions are provided to enforce strict 
ordering. This section describes the load and store instructions, which consist of the 
following: 

Integer load instructions 

• Integer store instructions 
Integer load and store with byte-reverse instructions 

Integer load and store multiple instructions 
Floating-point load instructions 

• Floating-point store instructions 
• Memory synchronization instructions 

Implementation Notes-The following describes how the MPC750 handles 
misalignment: 

The MPC750 provides hardware support for misaligned memory accesses. It performs 
those accesses within a single cycle if the operand lies within a double-word boundary. 
Misaligned memory accesses that cross a double-word boundary degrade performance. 

For string operations, the hardware makes no attempt to combine register values to reduce 
the number of discrete accesses. Combining stores enhances performance if store gathering 
is enabled and the accesses meet the criteria described in Section 6.4.7, "Integer Store 
Gathering." Note that the PowerPC architecture requires load/store multiple instruction 
accesses to be aligned. At a minimum, additional cache access cycles are required. 

Although many unaligned memory accesses are supported in hardware, the frequent use of 
them is discouraged since they can compromise the overall performance of the processor. 

Accesses that cross a translation boundary may be restarted. That is, a misaligned access 
that crosses a page boundary is completely restarted if the second portion of the access 
causes a page fault. This may cause the first access to be repeated. 

On some processors, such as the 603, a TLB reload would cause an instruction restart. On 
the MPC750, TLB reloads are done transparently and only a page fault causes a restart. 

2.3.4.3.1 Self-Modifying Code 
When a processor modifies a memory location that may be contained in the instruction 
cache, software must ensure that memory updates are visible to the instruction fetching 
mechanism. This can be achieved by the following instruction sequence: 

dcbst lupdate memory 
sync Iwait for update 
icbi Iremove (invalidate) copy in instruction cache 
isync Iremove copy in own instruction buffer 
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These operations are required because the data cache is a write-back cache. Since 
instruction fetching bypasses the data cache, changes to items in the data cache may not be 
reflected in memory until the fetch operations complete. 

Special care must be taken to avoid coherency paradoxes in systems that implement unified 
secondary caches, and designers should carefully follow the guidelines for maintaining 
cache coherency that are provided in the VEA, and discussed in Chapter 5, "Cache Model 
and Memory Coherency," in The Programming Environments Manual. Because the 
MPC750 does not broadcast the M bit for instruction fetches, external caches are subject to 
coherency paradoxes. 

2.3.4.3.2 Integer Load and Store Address Generation 
Integer load and store operations generate effective addresses using register indirect with 
immediate index mode, register indirect with index mode, or register indirect mode. See 
Section 2.3.2.3, "Effective Address Calculation," for information about calculating 
effective addresses. Note that in some implementations, operations that are not naturally 
aligned may suffer performance degradation. Refer to Section 4.5.6, "Alignment Exception 
(Ox00600)," for additional information about load and store address alignment exceptions. 

2.3.4.3.3 Register Indirect Integer Load Instructions 
For integer load instructions, the byte, half word, word, or double word addressed by the 
EA (effective address) is loaded into rD. Many integer load instructions have an update 
form, in which rA is updated with the generated effective address. For these forms, if 
rA =t 0 and rA =t rD (otherwise invalid), the EA is placed into rA and the memory element 
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that 
the PowerPC architecture defines load with update instructions with operand r A = 0 or 
rA = rD as invalid forms. 

Implementation Notes-The following notes describe the MPC750 implementation of 
integer load instructions: 

The PowerPC architecture cautions programmers that some implementations of the 
architecture may execute the load half algebraic (lha, lhax) instructions with greater 
latency than other types of load instructions. This is not the case for the MPC750; 
these instructions operate with the same latency as other load instructions. 

• The PowerPC architecture cautions programmers that some implementations of the 
architecture may run the load/store byte-reverse (lhbrx, lbrx, sthbrx, stwbrx) 
instructions with greater latency than other types of load/store instructions. This is 
not the case for the MPC750. These instructions operate with the same latency as the 
other load/store instructions. 

• The PowerPC architecture describes some preferred instruction forms for load and 
store multiple instructions and integer move assist instructions that may perform 
better than other forms in some implementations. None of these preferred forms 
affect instruction performance on the MPC750. 
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• The PowerPC architecture defines the lwarx and stwcx. as a way to update memory 
atomically. In the MPC750, reservations are made on behalf of aligned 32-byte 
sections of the memory address space. Executing lwarx and stwcx. to a page marked 
write-through does not cause a DSI exception if the W bit is set, but as with other 
memory accesses, DSI exceptions can result for other reasons such as a protection 
violations or page faults. 

• In general, because stwcx. always causes an external bus transaction it has slightly 
worse performance characteristics than normal store operations. 

Table 2-33 summarizes the integer load instructions. 

Table 2-33. Integer Load Instructions 

Name Mnemonic Syntax 

Load Byte and Zero Ibz rD,d(rA) 

Load Byte and Zero Indexed Ibzx rD,rA,rB 

Load Byte and Zero with Update Ibzu rD,d(rA) 

Load Byte and Zero with Update Indexed Ibzux rD,rA,rB 

Load Half Word and Zero 1hz rD,d(rA) 

Load Half Word and Zero Indexed Ihzx rD,rA,rB 

Load Half Word and Zero with Update Ihzu rD,d(rA) 

Load Half Word and Zero with Update Indexed Ihzux rD,rA,rB 

Load Half Word Algebraic Iha rD,d(rA) 

Load Half Word Algebraic Indexed Ihax rD,rA,rB 

Load Half Word Algebraic with Update Ihau rD,d(rA) 

Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB 

Load Word and Zero Iwz rD,d(rA) 

Load Word and Zero Indexed Iwzx rD,rA,rB 

Load Word and Zero with Update Iwzu rD,d(rA) 

Load Word and Zero with Update Indexed Iwzux rD,rA,rB 

2.3.4.3.4 Integer Store Instructions 
For integer store instructions, the contents of rS are stored into the byte, half word, word or 
double word in memory addressed by the EA (effective address). Many store instructions 
have an update form, in which r A is updated with the EA. For these forms, the following 
rules apply: 

• If rA -:;:. 0, the effective address is placed into rA. 

• If rS = r A, the contents of register rS are copied to the target memory element, then 
the generated EA is placed into rA (rS). 
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The PowerPC architecture defines store with update instructions with rA = 0 as an invalid 
form. In addition, it defines integer store instructions with the CR update option enabled 
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-34 
summarizes the integer store instructions. 

Table 2-34. Integer Store Instructions 

Name Mnemonic Syntax 

Store Byte stb . rS,d(rA) 

Store Byte Indexed stbx rS,rA,rB 

Store Byte with Update stbu rS,d(rA) 

Store Byte with Update Indexed stbux rS,rA,rB 

Store Half Word sth rS,d(rA) 

Store Half Word Indexed sthx rS,rA,rB 

Store Half Word with Update sthu rS,d(rA) 

Store Half Word with Update Indexed sthux rS,rA,rB 

Store Word stw// rS,d(rA) 

Store Word Indexed 
/ 

stwx rS,rA,rB 

Store Word with Update stwu rS,d(rA) 

Store Word with Update Indexed stwux rS,rA,rB 

2.3.4.3.5 Integer Store Gathering 
The MPC750 performs store gathering for write-through accesses to nonguarded space or 
to cache-inhibited stores to nonguarded space if the stores are 4 bytes and they are 
word-aligned. These stores are combined in the load/store unit (LSU) to form a double 
word and are sent out on the 60x bus as a single-beat operation. However, stores can be 
gathered only if the successive stores that meet the criteria are queued and pending. Store 
gathering takes place regardless of the address order of the stores. The store gathering 
feature is enabled by setting HIDO[SGE]. Store gathering is done for both big- and 
little-endian modes. 

Store gathering is not done for the following: 

• Cacheable stores 
• Stores to guarded cache-inhibited or write-through space 
• Byte-reverse store 
• stwcx. and ecowx accesses 
• Floating-point stores 
• Store operations attempted during a hardware table search 

If store gathering is enabled and the stores do not fall under the above categories, an eieio 
or sync instruction must be used to prevent two stores from being gathered. 
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2.3.4.3.6 Integer Load and Store with Byte-Reverse Instructions 
Table 2-35 describes integer load and store with byte-reverse instructions. When used in a 
PowerPC system operating with the default big-endian byte order, these instructions have 
the effect of loading and storing data in little-endian order. Likewise, when used in a 
PowerPC system operating with little-endian byte order, these instructions have the effect 
of loading and storing data in big-endian order. For more information about big-endian and 
little-endian byte ordering, see "Byte Ordering," in Chapter 3, "Operand Conventions," in 
The Programming Environments Manual. 

Table 2-35. Integer Load and Store with Byte-Reverse Instructions 

Name Mnemonic Syntax 

Load Half Word Byte·Reverse Indexed Ihbrx rD,rA,rB 

Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB 

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB 

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB 

2.3.4.3.7 Integer Load and Store Multiple Instructions 
The load/store multiple instructions are used to move blocks of data to and from the GPRs. 
The load multiple and store multiple instructions may have operands that require memory 
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be 
interrupted by a DSI exception associated with the address translation of the second page. 

Implementation Notes-The following describes the MPC750 implementation of the 
load/store multiple instruction: 

For load/store string operations, the hardware does not combine register values to 
reduce the number of discrete accesses. However, if store gathering is enabled and 
the accesses fall under the criteria for store gathering the stores may be combined to 
enhance performance. At a minimum, additional cache access cycles are required. 

• The MPC750 supports misaligned, single-register load and store accesses in 
little-endian mode without causing an alignment exception. However, execution of 
misaligned load/store multiple/string operations causes an alignment exception. 

The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the 
range of registers to be loaded as an invalid form. 

Table 2-36. Integer Load and Store Multiple Instructions 

Name Mnemonic Syntax 

Load Multiple Word Imw rD,d(rA) 

Store Multiple Word stmw rS,d(rA) 
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2.3.4.3.8 Integer Load and Store String Instructions 
The integer load and store string instructions allow movement of data from memory to 
registers or from registers to memory without concern for alignment. These instructions can 
be used for a short move between arbitrary memory locations or to initiate a long move 
between misaligned memory fields. However, in some implementations, these instructions 
are likely to have greater latency and take longer to execute, perhaps much longer, than a 
sequence of individual load or store instructions that produce the same results. Table 2-37 
summarizes the integer load and store string instructions. 

In other PowerPC implementations operating with little-endian byte order, execution of a 
load or string instruction invokes the alignment error handler; see "Byte Ordering," in The 
Programming Environments Manual for more information. 

Table 2-37. Integer Load and Store String Instructions 

Name Mnemonic Syntax 

Load String Word Immediate Iswi rD,rA,NB 

Load String Word Indexed Iswx rD,rA,rB 

Store String Word Immediate stswi rS,rA,NB 

Store String Word Indexed stswx rS,rA,rB 

Load string and store string instructions may involve operands that are not word-aligned. 

As described in Section 4.5.6, "Alignment Exception (Ox00600)," a misaligned string 
operation suffers a performance penalty compared to an aligned operation of the same type. 
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned 
string operation that crosses a 256-Mbyte boundary always causes an alignment exception. 
A non-word-aligned string operation that crosses a double-word boundary is also slower 
than a word-aligned string operation. 

Implementation Note-The following describes the MPC750 implementation of 
load/store string instructions: 

For load/store string operations, the hardware does not combine register values to 
reduce the number of discrete accesses. However, if store gathering is enabled and 
the accesses fall under the criteria for store gathering the stores may be combined to 
enhance performance. At a minimum, additional cache access cycles are required. 

• The MPC750 supports misaligned, single-register load and store accesses in 
little-endian mode without causing an alignment exception. However, execution of 
misaligned load/store multiple/string operations cause an alignment exception. 
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2.3.4.3.9 Floating-Point Load and Store Address Generation 
Floating-point load and store operations generate effective addresses using the register 
indirect with immediate index addressing mode and register indirect with index addressing 
mode. Floating-point loads and stores are not supported for direct-store accesses. The use 
of floating-point loads and stores for direct-store access results in an alignment exception. 

There are two forms of the floating-point load instruction-single-precision and 
double-precision operand formats. Because the FPRs support only the floating-point 
double-precision format, single-precision floating-point load instructions convert 
single-precision data to double-precision format before loading an operand into an FPR. 

Implementation Notes-The MPC750 treats exceptions as follows: 

The FPU can be run in two different modes-ignore exceptions mode (MSR[FEO] = 
MSR[FEl] = 0) and precise mode (any other settings for MSR[FEO,FEl]). For the 
MPC750, ignore exceptions mode allows floating-point instructions to complete 
earlier and thus may provide better performance than precise mode. 

• The floating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, 
stfsux, stfdx, stfdux) are invalid when the Rc bit is one. In the MPC750, executing 
one of these invalid instruction forms causes CRO to be set to an undefined value. 

The PowerPC architecture defines a load with update instruction with rA = 0 as an invalid 
form. Table 2-38 summarizes the floating-point load instructions. 

Table 2-38. Floating-Point Load Instructions 

Name Mnemonic Syntax 

Load Floating-Point Single Ifs frD,d(rA) 

Load Floating-Point Single Indexed Ifsx frD,rA,rB 

Load Floating-Point Single with Update Ifsu frD,d(rA) 

Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB 

Load Floating-Point Double Ifd frD,d(rA) 

Load Floating-Point Double Indexed Ifdx frD,rA,rB 

Load Floating-Point Double with Update Ifdu frD,d(rA) 

Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB 

2.3.4.3.10 Floating-Point Store Instructions 
This section describes floating-point store instructions. There are three basic forms of the 
store instruction-single-precision, double-precision, and integer. The integer form is 
supported by the optional stfiwx instruction. Because the FPRs support only floating-point, 
double-precision format for floating-point data, single-precision floating-point store 
instructions convert double-precision data to single-precision format before storing the 
operands. Table 2-39 summarizes the floating-point store instructions. 
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Table 2-39. Floating-Point Store Instructions 

Name Mnemonic Syntax 

Store Floating-Point Single stfs frS,d(rA) 

Store Floating-Point Single Indexed stfsx frS,r B 

Store Floating-Point Single with Update stfsu frS,d(rA) 

Store Floating-Point Single with Update Indexed stfsux frS,r B 

Store Floating-Point Double stfd frS,d(rA) 

Store Floating-Point Double Indexed stfdx frS,rB 

Store Floating-Point Double with Update stfdu frS,d(rA) 

Store Floating-Point Double with Update Indexed stfdux frS,r B 

Store Floating-Point as Integer Word Indexed 1 stfiwx frS,rB 

lThe stfiwx instruction is optional to the PowerPC architecture. 

Some floating-point store instructions require conversions in the LSD. Table 2-40 shows 
conversions the LSD makes when executing a Store Floating-Point Single instruction. 

Table 2-40. Store Floating-Point Single Behavior 

FPR Precision Data Type Action 

Single Normalized Store 

Single Denormalized Store 

Single Zero, infinity, QNaN Store 

Single SNaN Store 

Double Normalized If(exp ~ 896) 
then Denormalize and Store 
else 

Store 

Double Denormalized Store zero 

Double Zero. infinity. QNaN Store 

Double SNaN Store 
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Table 2-41 shows the conversions made when performing a Store Floating-Point Double 
instruction. Most entries in the table indicate that the floating-point value is simply stored. 
Only in a few cases are any other actions taken. 

Table 2-41. Store Floating-Point Double Behavior 

FPR Precision Data Type Action 

Single Normalized Store 

Single Denormalized Normalize and Store 

Single Zero, infinity, QNaN Store 

Single SNaN Store 

Double Normalized Store 

Double Denormalized Store 

Double Zero, infinity, QNaN Store 

Double SNaN Store 

Architecturally, all floating-point numbers are represented in double-precision format 
within the MPC750. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux) 
instruction requires conversion from double- to single-precision format. If the exponent is 
not greater than 896, this conversion requires denormalization. The MPC750 supports this 
denormalization by shifting the mantissa one bit at a time. Anywhere from 1 to 23 clock 
cycles are required to complete the denormalization, depending upon the value to be stored. 

Because of how floating-point numbers are implemented in the MPC750, there is also a 
case when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction 
can require internal shifting of the mantissa. This case occurs when the operand of a store 
floating-point double instruction is a denormalized single-precision value. The value could 
be the result of a load floating-point single instruction, a single-precision arithmetic 
instruction, or a floating round to single-precision instruction. In these cases, shifting the 
mantissa takes from 1 to 23 clock cycles, depending upon the value to be stored. These 
cycles are incurred during the store. 

2.3.4.4 Branch and Flow Control Instructions 
Some branch instructions can redirect instruction execution conditionally based on the 
value of bits in the CR. When the processor encounters one of these instructions, it scans 
the execution pipelines to determine whether an instruction in progress may affect the 
particular CR bit. If no interlock is found, the branch can be resolved immediately by 
checking the bit in the CR and taking the action defined for the branch instruction. 

2.3.4.4.1 Branch Instruction Address Calculation 
Branch instructions can alter the sequence of instruction execution. Instruction addresses 
are always assumed to be word aligned; the PowerPC processors ignore the two low-order 
bits of the generated branch target address. 
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Branch instructions compute the EA of the next instruction address using the following 
addressing modes: 

Branch relative 

Branch conditional to relative address 
Branch to absolute address 

Branch conditional to absolute address 
Branch conditional to link register 
Branch conditional to count register 

Note that in the MPC750, all branch instructions (b, ba, bl, bla, be, bea, bel, bela, belr, 
belrl, beetr, beetrl) and condition register logical instructions (erand, eror, erxor, 
ernand, ernor, erande, ereqv, erore, and merf) are executed by the BPU. Some of these 
instructions can redirect instruction execution conditionally based on the value of bits in the 
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or 
mispredicted. Correcting a mispredicted branch requires that the MPC750 flush 
speculatively executed instructions and restore the machine state to immediately after the 
branch. This correction can be done immediately upon resolution of the condition registers 
bits. 

2.3.4.4.2 Branch Instructions 
Table 2-42 lists the branch instructions provided by the PowerPC processors. To simplify 
assembly language programming, a set of simplified mnemonics and symbols is provided 
for the most frequently used forms of branch conditional, compare, trap, rotate and shift, 
and certain other instructions. See Appendix F, "Simplified Mnemonics," in The 
Programming Environments Manual for a list of simplified mnemonic examples. 

Table 2-42. Branch Instructions 

Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO, B I, target_add r 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 

2.3.4.4.3 Condition Register Logical Instructions 
Condition register logical instructions, shown in Table 2-43, and the Move Condition 
Register Field (med) instruction are also defined as flow control instructions. 

Table 2-43. Condition Register Logical Instructions 

Name Mnemonic Syntax 

Condition Register AND crand crbD,crbA,crbB 

Condition Register OR cror crbD,crbA,crbB 

2-54 MPC750 RISC Microprocessor User's Manual 



Table 2·43. Condition Register Logical Instructions (Continued) 

Name Mnemonic Syntax 

Condition Register XOR crxor crbD,crbA,crbB 

Condition Register NAND crnand crbD,crbA,crbB 

Condition Register NOR crnor crbD,crbA,crbB 

Condition Register Equivalent creqv crbD,crbA, crbB 

Condition Register AND with Complement crandc crbD,crbA, crbB 

Condition Register OR with Complement crorc crbD,crbA, crbB 

Move Condition Register Field mcrf crfD,crfS 

Note that if the LR update option is enabled for any of these instructions, the PowerPC 
architecture defines these forms of the instructions as invalid. 

2.3.4.4.4 Trap Instructions 
The trap instructions shown in Table 2-44 are provided to test for a specified set of 
conditions. If any of the conditions tested by a trap instruction are met, the system trap type 
program exception is taken. For more information, see Section 4.5.7, "Program Exception 
(Ox00700)." If the tested conditions are not met, instruction execution continues normally. 

Table 2·44. Trap Instructions 

Name Mnemonic Syntax 

Trap Word Immediate twi TO,rA,SIMM 

Trap Word tw TO,rA,rB 

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for 
a complete set of simplified mnemonics. 

2.3.4.5 System Linkage Instruction-UISA 
The System Call (sc) instruction permits a program to call on the system to perform a 
service; see Table 2-45. See also Section 2.3.6.1, "System Linkage Instructions-OEA," 
for additional information. 

Table 2·45. System Linkage Instruction-UISA 

Name Mnemonic Syntax 

System Call sc -

Executing this instruction causes the system call exception handler to be evoked. For more 
information, see Section 4.5.10, "System Call Exception (OxOOCOO)." 
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2.3.4.6 Processor Control Instructions-UISA 
Processor control instructions are used to read from and write to the condition register 
(CR), machine state register (MSR), and special-purpose registers (SPRs). See 
Section 2.3.5.1, "Processor Control Instructions-VEA," for the mftb instruction and 
Section 2.3.6.2, "Processor Control Instructions-OEA," for information about the 
instructions used for reading from and writing to the MSR and SPRs. 

2.3.4.6.1 Move to/from Condition Register Instructions 
Table 2-46 summarizes the instructions for reading from or writing to the condition register. 

Table 2-46. Move to/from Condition Register Instructions 

Name Mnemonic Syntax 

Move to Condition Register Fields mtcrf CRM,rS 

Move to Condition Register from XER mcrxr crfD 

Move from Condition Register mfcr rD 

Implementation Note-The PowerPC architecture indicates that in some implementations 
the Move to Condition Register Fields (mtcrf) instruction may perform more slowly when 
only a portion of the fields are updated as opposed to all of the fields. The condition register 
access latency for the MPC750 is the same in both cases. 

2.3.4.6.2 Move to/from Special-Purpose Register Instructions (UISA) 
Table 2-47 lists the mtspr and mfspr instructions. 

Table 2-47. Move to/from Special-Purpose Register Instructions (UISA) 

Name Mnemonic Syntax 

Move to Special-Purpose Register mtspr SPR,rS 

Move from Special-Purpose Register mfspr rD,SPR 

Table 2-48 lists the SPR numbers for both user- and supervisor-level accesses. 

Table 2-48. PowerPC Encodings 

SPR1 

Register Name Access mfspr/mtspr 
Decimal spr[5-9] spr[G-4] 

CTR 9 00000 01001 User (UISA) Both 

DABR 1013 11111 10101 Supervisor (OEA) Both 

DAR 19 00000 10011 Supervisor (OEA) Both 

DBATOL 537 10000 11001 Supervisor (OEA) Both 

DBATOU 536 10000 11000 Supervisor (OEA) Both 

DBATIL 539 10000 11011 Supervisor (OEA) Both 
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Table 2-48. PowerPC Encodings (Continued) 

SPR1 

Register Name Access mfspr/mtspr 
Decimal spr[5-S] spr[0-4] 

DBAT1U 538 10000 11010 Supervisor (OEA) Both 

DBAT2L 541 10000 11101 Supervisor (OEA) Both 

DBAT2U 540 10000 11100 Supervisor (OEA) Both 

DBAT3L 543 10000 11111 Supervisor (OEA) Both 

DBAT3U 542 10000 11110 Supervisor (OEA) Both 

DEC 22 00000 10110 Supervisor (OEA) Both 

DSISR 18 00000 10010 Supervisor (OEA) Both 

EAR 282 01000 11010 Supervisor (OEA) Both 

IBATOL 529 10000 10001 Supervisor (OEA) Both 

IBATOU 528 10000 10000 Supervisor (OEA) Both 

IBAT1L 531 10000 10011 Supervisor (OEA) Both 

IBAT1U 530 10000 10010 Supervisor (OEA) Both 

IBAT2L 533 10000 10101 Supervisor (OEA) Both 

IBAT2U 532 10000 10100 Supervisor (OEA) Both 

IBAT3L 535 10000 10111 Supervisor (OEA) Both 

IBAT3U 534 10000 10110 Supervisor (OEA) Both 

LR 8 00000 01000 User (UISA) Both 

PVR 287 01000 11111 Supervisor (OEA) mfspr 

SDR1 25 00000 11001 Supervisor (OEA) Both 

SPRGO 272 01000 10000 Supervisor (OEA) Both 

SPRG1 273 01000 10001 Supervisor (OEA) Both 

SPRG2 274 01000 10010 Supervisor (OEA) Both 

SPRG3 275 01000 10011 Supervisor (OEA) Both 

SRRO 26 00000 11010 Supervisor (OEA) Both 

SRR1 27 00000 11011 Supervisor (OEA) Both 

TBL 2 268 01000 01100 Supervisor (OEA) mtspr 

284 01000 11100 Supervisor (OEA) mtspr 

TBU 2 269 01000 01101 Supervisor (OEA) mtspr 

285 01000 11101 Supervisor (OEA) mtspr 
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Table 2-48. PowerPC Encodings (Continued) 

SPR1 

Register Name Access mfspr/mtspr 
Decimal spr[5-9] spr[Q-4] 

XER 1 00000 00001 User (UISA) Both 

Notes: 

1 The order of the two 5-bit halves of the SPR number is reversed compared with actual, 
instruction coding. For mtspr and mfspr instructions, the SPR number coded in assembly 
language does not appear directly as a 1 O-bit binary number in the instruction. The number 
coded is split into two 5-bit halves that are reversed in the instruction, with the high-order five 
bits appearing in bits 16-20 of the instruction and the low-order five bits in bits 11-15. 

2 The TB registers are referred to as TBRs rather than SPRs and can be written to using the 
mtspr instruction in supervisor mode and the TBR numbers here. The TB registers can be read 
in user mode using either the mftb or mtspr instruction and specifying TBR 268 for TBl and 
SPR 269 for TBU. 

Encodings for the MPC750-specific SPRs are listed in Table 2-49. 

Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr) 

Register 
SPR1 

Name 
Access mfspr/mtspr 

Decimal spr[5-9] spr[O-4] 

DABR 1013 11111 10101 User Both 

HIDO 1008 11111 10000 Supervisor Both 

HIDl 1009 11111 10001 Supervisor Both 

IABR 1010 11111 10010 Supervisor Both 

ICTC 1019 11111 11011 Supervisor Both 

L2CR 1017 11111 11001 Supervisor Both 

MMCRO 952 11101 11000 Supervisor Both 

MMCRl 956 11101 11100 Supervisor Both 

PMCl 953 11101 11001 Supervisor Both 

PMC2 954 11101 11010 Supervisor Both 

PMC3 957 11101 11101 Supervisor Both 

PMC4 958 11101 11110 Supervisor Both 

SIA 955 11101 11011 Supervisor Both 

THRMl 1020 11111 11100 Supervisor Both 

THRM2 1021 11111 11101 Supervisor Both 

THRM3 1022 11111 11110 Supervisor Both 

UMMCRO 936 11101 01000 User mfspr 

2-58 MPC750 RISC Microprocessor User's Manual 



Table 2-49 SPR Encodings for MPC750-Defined Registers (mfspr) (Continued) 

Register 
SPR1 

Name 
Access mfspr/mtspr 

Decimal spr[5-9] spr[O-4] 

UMMCR1 940 11101 01100 User mfspr 

UPMC1 937 11101 01001 User mfspr 

UPMC2 938 11101 01010 User mfspr 

UPMC3 941 11101 01101 User mfspr 

UPMC4 942 11101 01110 User mfspr 

USIA 939 11101 01011 User mfspr 

Note: 

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual 
instruction coding. 

For mtspr and mfspr instructions, the SPR number coded in assembly language does not 
appear directly as a 1 O-bit binary number in the instruction. The number coded is split into two 
5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in bits 
16-20 of the instruction and the low-order 5 bits in bits 11-15. 

2.3.4.7 Memory Synchronization Instructions-UISA 
Memory synchronization instructions control the order in which memory operations are 
completed with respect to asynchronous events, and the order in which memory operations 
are seen by other processors or memory access mechanisms. See Chapter 3, "Ll Instruction 
and Data Cache Operation," for additional information about these instructions and about 
related aspects of memory synchronization. See Table 2-50 for a summary. 

Table 2-50. Memory Synchronization Instructions-UISA 

Name Mnemonic Syntax Implementation Notes 

Load Word Iwarx rO,rA,rB Programmers can use Iwarx with stwcx. to emulate common semaphore 
and Reserve operations such as test and set, compare and swap, exchange memory, and 
Indexed fetch and add. Both instructions must use the same EA. Reservation 

Store Word rS,rA,rB 
granularity is implementation-dependent. The MPC750 makes reservations on 

stwcx. behalf of aligned 32-byte sections of the memory address space. If the W bit is 
Conditional set, executing Iwarx and stwcx. to a page marked write-through does not 
Indexed cause a OSI exception, but OSI exceptions can result for other reasons. If the 

location is not word-aligned, an alignment exception occurs. 
The stwcx. instruction is the only load/store instruction with a valid form if Rc is 
set. If Rc is zero, executing stwcx. sets CRO to an undefined value. In general, 
stwcx. always causes a transaction on the external bus and thus operates with 
slightly worse performance characteristics than normal store operations. 
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Table 2-50. Memory Synchronization Instructions-UISA (Continued) 

Name Mnemonic Syntax Implementation Notes 

Synchronize sync - Because it delays subsequent instructions until all previous instructions 
complete to where they cannot cause an exception, sync is a barrier against 
store gathering. Additionally, all load/store cache/bus activities initiated by prior 
instructions are completed. Touch load operations (dcbt, dcbtst) must 
complete address translation, but need not complete on the bus. If HIDO[ABE] 
= 1, sync completes after a successful broadcast. 
The latency of sync depends on the processor state when it is dispatched and 
on various system-level situations. Therefore, frequent use of sync may 
degrade performance. 

System designs with an L2 cache should take special care to recognize the hardware 
signaling caused by a SYNC bus operation and perform the appropriate actions to 
guarantee that memory references that may be queued internally to the L2 cache have been 
performed globally. 

See 2.3.5.2, "Memory Synchronization Instructions-VEA," for details about additional 
memory synchronization (eieio and isync) instructions. 

In the PowerPC architecture, the Rc bit must be zero for most load and store instructions. 
If Rc is set, the instruction form is invalid for sync and lwarx instructions. If the MPC750 
encounters one of these invalid instruction forms, it sets CRO to an undefined value. 

2.3.5 PowerPC VEA Instructions 
The PowerPC virtual environment architecture (VEA) describes the semantics of the 
memory model that can be assumed by software processes, and includes descriptions of the 
cache model, cache control instructions, address aliasing, and other related issues. 
Implementations that conform to the VEA also adhere to the VISA, but may not necessarily 
adhere to the OEA. 

This section describes additional instructions that are provided by the VEA. 

2.3.5.1 Processor Control Instructions-VEA 
In addition to the move to condition register instructions (specified by the VISA), the VEA 
defines the mftb instruction (user-level instruction) for reading the contents of the time base 
register; see Chapter 3, "LI Instruction and Data Cache Operation," for more information. 
Table 2-51 shows the mftb instruction. 

Table 2-51. Move from Time Base Instruction 

Name Mnemonic Syntax 

Move from Time Base mftb rD, TBR 
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Simplified mnemonics are provided for the mfth instruction so it can be coded with the 
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See 
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for 
simplified mnemonic examples and for simplified mnemonics for Move from Time Base 
(mfth) and Move from Time Base Upper (mfthu), which are variants of the mfth 
instruction rather than of mfspr. The mfth instruction serves as both a basic and simplified 
mnemonic. Assemblers recognize an mfth mnemonic with two operands as the basic form, 
and an mfth mnemonic with one operand as the simplified form. Note that the MPC750 
ignores the extended opcode differences between mfth and mfspr by ignoring bit 25 and 
treating both instructions identically. 

Implementation N otes-The following information is useful with respect to using the 
time base implementation in the MPC750: 

• The MPC750 allows user-mode read access to the time base counter through the use 
of the Move from Time Base (mfth) and the Move from Time Base Upper (mfthu) 
instructions. As a 32-bit PowerPC implementation, the MPC750 can access TBU 
and TBL only separately, whereas 64-bit implementations can access the entire TB 
register at once. 

• The time base counter is clocked at a frequency that is one-fourth that of the bus 
clock. Counting is enabled by assertion of the time base enable (TBE) input signal. 

2.3.5.2 Memory Synchronization Instructions-VEA 
Memory synchronization instructions control the order in which memory operations are 
completed with respect to asynchronous events, and the order in which memory operations 
are seen by other processors or memory access mechanisms. See Chapter 3, "Ll Instruction 
and Data Cache Operation," for more information about these instructions and about related 
aspects of memory synchronization. 

In addition to the sync instruction (specified by urSA), the VEA defines the Enforce 
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The 
number of cycles required to complete an eieio instruction depends on system parameters 
and on the processor's state when the instruction is issued. As a result, frequent use of this 
instruction may degrade performance slightly. 
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Table 2-52 describes the memory synchronization instructions defined by the YEA. 

Table 2-52. Memory Synchronization Instructions-VEA 

Name Mnemonic Syntax Implementation Notes 

Enforce eieio - The eieio instruction is dispatched to the LSU and executes after all previous 
In-Order cache-inhibited or write-through accesses are performed; all subsequent 
Execution instructions that generate such accesses execute after eieio. If HIDO[ABE] = 1 an 
of 110 EIEIO operation is broadcast on the ex1ernal bus to enforce ordering in the 

ex1ernal memory system. The eieio operation bypasses the L2 cache and is 
forwarded to the bus unit. " HIDO[ABE] = 0, the operation is not broadcast. 
Because the MPC750 does not reorder noncacheable accesses, eieio is not 
needed to force ordering. However, if store gathering is enabled and an eieio is 
detected in a store queue, stores are not gathered. " HIDO[ABE] = 1, 
broadcasting eieio prevents external devices, such as a bus bridge chip, from 
gathering stores. 

Instruction isync - The isync instruction is refetch serializing; that is, it causes the MPC750 to purge 
Synchronize its instruction queue and wait for all prior instructions to complete before 

refetching the next instruction, which is not executed until all previous instructions 
complete to the point where they cannot cause an exception. The isync 
instruction does not wait for all pending stores in the store queue to complete. 
Any instruction after an isync sees all effects of prior instructions. 

2.3.5.3 Memory Control Instruetions-VEA 
Memory control instructions can be classified as follows: 

• Cache management instructions (user-level and supervisor-level) 
• Segment register manipulation instructions (OEA) 
• Translation lookaside buffer management instructions (OEA) 

This section describes the user-level cache management instructions defined by the VEA. 
See Section 2.3.6.3, "Memory Control Instructions-OEA," for information about 
supervisor-level cache, segment register manipulation, and translation lookaside buffer 
management instructions. 

2.3.5.3.1 User-Level Cache Instructions-VEA 
The instructions summarized in this section help user-level programs manage on-chip 
caches if they are implemented. See Chapter 3, "Ll Instruction and Data Cache Operation," 
for more information about cache topics. The following sections describe how these 
operations are treated with respect to the MPC750's cache. 

As with other memory-related instructions, the effects of cache management instructions 
on memory are weakly-ordered. If the programmer must ensure that cache or other 
instructions have been performed with respect to all other processors and system 
mechanisms, a sync instruction must be placed after those instructions. 

Note that the MPC750 interprets cache control instructions (iebi, debi, debf, debz, and 
debst) as if they pertain only to the local Ll and L2 cache. A debz (with M set) is always 
broadcast on the 60x bus. The debi, debf, and debst operations are broadcast if 
HIDO[ABE] is set. 
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The MPC750 never broadcasts an icbi. Of the broadcast cache operations, the MPC750 
snoops only dcbz, regardless of the HIDO[ABE] setting. Any bus activity caused by other 
cache instructions results directly from performing the operation on the MPC750 cache. All 
cache control instructions to T = 1 space are no-ops. For information how cache control 
instructions affect the L2, see Chapter 9, "L2 Cache Interface Operation." 

Table 2-53 summarizes the cache instructions defined by the VEA. Note that these 
instructions are accessible to user-level programs. 

Table 2-53. User-Level Cache Instructions 

Name Mnemonic Syntax Implementation Notes 

Data Cache Block dcbt rA,rB The VEA defines this instruction to allow for potential system performance 
Touch 1 enhancements through the use of software-initiated prefetch hints. 

Implementations are not required to take any action based on execution of 
this instruction, but they may prefetch the cache block corresponding to 
the EA into their cache. When dcbt executes, the MPC750 checks for 
protection violations (as for a load instruction). This instruction is treated 
as a no-op for the following cases: 

· A valid translation is not found either in BAT orTLB 

· The access causes a protection violation. 
The page is mapped cache-inhibited, G = 1 (guarded). or T = 1. 
The cache is locked or disabled 

· HIDO[NOOPTI] = 1 
Otherwise, if no data is in the cache location, the MPC750 requests a 
cache line fill (with intent to modify). Data brought into the cache is 
validated as if it were a load instruction. The memory reference of a dcbt 
sets the reference bit. 

Data Cache Block dcbtst rA,rB This instruction behaves like dcbt. 
Touch for Store 1 

Data Cache Block dcbz rA,rB The EA is computed, translated, and checked for protection violations. For 
Set to Zero cache hits, four beats of zeros are written to the cache block and the tag is 

marked M. For cache misses with the replacement block marked E, the 
zero line fill is performed and the cache block is marked M. However, if the 
replacement block is marked M, the contents are written back to memory 
first. The instruction executes regardless of whether the cache is locked; if 
the cache is disabled, an alignment exception occurs. If M = 1 (coherency 
enforced), the address is broadcast to the bus before the zero line fill. 
The exception priorities (from highest to lowest) are as follows: 
1 Cache disabled-Alignment exception 
2 Page marked write-through or cache Inhibited-Alignment exception 
3 BAT protection violation-DSI exception 
4 TLB protection violation-DSI exception 
dcbz is the only cache instruction that broadcasts even if HIDO[ABE] = O. 
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Table 2-53. User-Level Cache Instructions (Continued) 

Name Mnemonic Syntax Implementation Notes 

Oata Cache Block dcbst rA,rB The EA is computed, translated, and checked for protection violations. 
Store For cache hits with the tag marked E, no further action is taken. 

· For cache hits with the tag marked M, the cache block is written back 
to memory and marked E. 

A dcbst is not broadcast unless HIOO[ABE] = 1 regardless of WIMG 
settings. The instruction acts like a load with respect to address translation 
and memory protection. It executes regardless of whether the cache is 
disabled or locked. 
The exception priorities (from highest to lowest) for dcbst are as follows: 
1 BAT protection violation-OS I exception 
2 TLB protection violation-OSI exception 

Oata Cache Block dcbf rA,rB The EA is computed, translated, and checked for protection violations. 
Flush · For cache hits with the tag marked M, the cache block is written back 

to memory and the cache entry is invalidated. 

· For cache hits with the tag marked E, the entry is invalidated. 

· For cache misses, no further action is taken. 
A dcbf is not broadcast unless HIOO[ABE] = 1 regardless ofWIMG 
settings. The instruction acts like a load with respect to address translation 
and memory protection. It executes regardless of whether the cache is 
disabled or locked. 
The exception priorities (from highest to lowest) for dcbf are as follows: 
1 BAT protection violation-OS I exception 
2 TLB protection violation-OSI exception 

Instruction Cache icbi rA,rB This instruction performs a virtual lookup into the instruction cache (index 
Block Invalidate only). The address is not translated, so it cannot cause an exception. All 

ways of a selected set are invalidated regardless of whether the cache is 
disabled or locked. The MPC750 never broadcasts icbi onto the SOx bus. 

Note: 

1 A program that uses debt and dcbtst instructions improperly performs less efficiently. To improve 
performance, HIDO[NOOPTI] may beset, which causes debt and dcbtst to be no-oped at the 
cache. They do not cause bus activity and cause only a 1-clock execution latency. The default 
state of this bit is zero which enables the use of these instructions. 

2.3.5.4 Optional External Control Instructions 
The PowerPC architecture defines an optional external control feature that, if implemented, 
is supported by the two external control instructions, eciwx and ecowx. These instructions 
allow a user-level program to communicate with a special-purpose device. These 
instructions are provided and are summarized in Table 2-54. 

Table 2-54. External Control Instructions 

Name Mnemonic Syntax Implementation Notes 

External eciwx rO,rA,rB A transfer size of 4 bytes is implied; the TBST and TSIZ[0-2] signals are 
Control In redefined to specify the Resource 10 (RIO), copied from bits EAR[28-31]. For 
Word Indexed these operations, TBST carries the EAR[28] data. Misaligned operands for 

External rS,rA,rB 
these instructions cause an alignment exception. Addressing a location 

ecowx where SR[T] = 1 causes a OSI exception. If MSR[OR] = 0 a programming 
Control Out error occurs and the physical address on the bus is undefined. 
Word Indexed Note: These instructions are optional to the PowerPC architecture. 
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The eciwx/ecowx instructions let a system designer map special devices in an alternative 
way. The MMV translation of the EA is not used to select the special device, as it is used 
in most instructions such as loads and stores. Rather, it is used as an address operand that 
is passed to the device over the address bus. Four other signals (the burst and size signals 
on the 60x bus) are used to select the device; these four signals output the 4-bit resource ID 
(RID) field located in the EAR. The eciwx instruction also loads a word from the data bus 
that is output by the special device. For more information about the relationship between 
these instructions and the system interface, refer to Chapter 7, "Signal Descriptions." 

2.3.6 PowerPC OEA Instructions 
The PowerPC operating environment architecture (OEA) includes the structure of the 
memory management model, supervisor-level registers, and the exception model. 
Implementations that conform to the OEA also adhere to the VISA and the VEA. This 
section describes the instructions provided by the OEA. 

2.3.6.1 System Linkage Instructions-OEA 
This section describes the system linkage instructions (see Table 2-55). The user-level sc 
instruction lets a user program call on the system to perform a service and causes the 
processor to take a system call exception. The supervisor-level rfi instruction is used for 
returning from an exception handler. 

Table 2-55. System Linkage Instructiolls-OEA 

Name Mnemonic Syntax Implementation Notes 

System Call sc - The sc instruction is context-synchronizing. 

Return from rfi - The rfi instruction is context-synchronizing. For the MPC750, this means 
Interrupt the rfi instruction works its way to the final stage of the execution pipeline, 

updates architected registers, and redirects the instruction flow. 

2.3.6.2 Processor Control Instructions-OEA 
This section describes the processor control instructions used to access the MSR and the 
SPRs. Table 2-56 lists instructions for accessing the MSR. 

Table 2-56. Move to/from Machine State Register Instructions 

Name Mnemonic Syntax 

Move to Machine State Register mtmsr rS 

Move from Machine State Register mfmsr rD 
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The OEA defines encodings of mtspr and mfspr to provide access to supervisor-level 
registers. The instructions are listed in Table 2-57. 

Table 2-57. Move to/from Special-Purpose Register Instructions (OEA) 

Name Mnemonic Syntax 

Move to Special-Purpose Register mtspr SPR,rS 

Move from Special-Purpose Register mfspr rO,SPR 

Encodings for the architecture-defined SPRs are listed in Table 2-48. Encodings for 
MPC750-specific, supervisor-level SPRs are listed in Table 2-49. Simplified mnemonics 
are provided for mtspr and mfspr in Appendix F, "Simplified Mnemonics," in The 
Programming Environments Manual. For a discussion of context synchronization 
requirements when altering certain SPRs, refer to Appendix E, "Synchronization 
Programming Examples," in The Programming Environments Manual. 

2.3.6.3 Memory Control Instructions-OEA 
Memory control instructions include the following: 

Cache management instructions (supervisor-level and user-level) 
Segment register manipulation instructions 
Translation lookaside buffer management instructions 

This section describes supervisor-level memory control instructions_ Section 2.3.5.3, 
"Memory Control Instructions-VEA," describes user-level memory control instructions. 

2.3.6.3.1 Supervisor-Level Cache Management Instruction-(OEA) 
Table 2-58 lists the only supervisor-level cache management instruction. 

Table 2-58. Supervisor-Level Cache Management Instruction 

Name Mnemonic Syntax Implementation Notes 

Oata debi rA,rB The EA is computed, translated, and checked for protection violations. For cache 
Cache hits, the cache block is marked I regardless of whether it was marked E or M. A 
Block debi is not broadcast unless HIOO[ABE] = 1, regardless of WIMG settings. The 
Invalidate instruction acts like a store with respect to address translation and memory 

protection. It executes regardless of whether the cache is disabled or locked. 
The exception priorities (from highest to lowest) for debi are as follows: 
1 BAT protection violation-OSI exception 
2 TLB protection violation-OS I exception 

See Section 2.3.5.3.1, "User-Level Cache Instructions-VEA," for cache instructions that 
provide user-level programs the ability to manage the on-chip caches. If the effective 
address references a direct-store segment, the instruction is treated as a no-op. 
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2.3.6.3.2 Segment Register Manipulation Instructions (OEA) 
The instructions listed in Table 2-59 provide access to the segment registers for 32-bit 
implementations. These instructions operate completely independently of the MSR[IR] and 
MSR[DR] bit settings. Refer to "Synchronization Requirements for Special Registers and 
for Lookaside Buffers," in Chapter 2, "PowerPC Register Set," of The Programming 
Environments Manual for serialization requirements and other recommended precautions 
to observe when manipulating the segment registers. 

Table 2-59. Segment Register Manipulation Instructions 

Name Mnemonic Syntax Implementation Notes 

Move to Segment Register mtsr SR,rS -

Move to Segment Register Indirect mtsrin rS,rB -

Move from Segment Register mfsr rD,SR The shadow SRs in the instruction MMU can be read 
by setting HIDO[RISEG] before executing mfsr. 

Move from Segment Register Indirect mfsrin rD,rB -

2.3.6.3.3 Translation Lookaside Buffer Management Instructions-(OEA) 
The address translation mechanism is defined in terms of the segment descriptors and page 
table entries (PTEs) PowerPC processors use to locate the logical-to-physical address 
mapping for a particular access. These segment descriptors and PTEs reside in segment 
registers and page tables in memory, respectively. 

See Chapter 7, "Memory Management," for more information about TLB operations. 
Table 2-60 summarizes the operation of the TLB instructions in the MPC750. 

Table 2-60. Translation Lookaside Buffer Management Instruction 

Name Mnemonic Syntax Implementation Notes 

TLB tlbie rB Invalidates both ways in both instruction and data TLB entries at the index 
Invalidate provided by EA[14-19].lt executes regardless of the MSR[DR] and MSR[IR] 
Entry settings.To invalidate all entries in both TLBs, the programmer should issue 64 

tlbie instructions that each successively increment this field. 

TLB t1bsync - On the MPC750, the only function t1bsync serves is to wait for the TLBISYNC 
Synchronize signal to go inactive. 

Implementation Note--The tibia instruction is optional for an implementation if its 
effects can be achieved through some other mechanism. Therefore, it is not implemented 
on the MPC750. As described above, tlbie can be used to invalidate a particular index of 
the TLB based on EA[14-19]-a sequence of 64 t1bie instructions followed by a t1bsync 
instruction invalidates all the TLB structures (for EA[14-19] = 0, 1,2, ... ,63). Attempting 
to execute tibia causes an illegal instruction program exception. 
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The presence and exact semantics of the TLB management instructions are 
implementation-dependent. To minimize compatibility problems, system software should 
incorporate uses of these instructions into subroutines. 

2.3.7 Recommended Simplified Mnemonics 
To simplify assembly language coding, a set of alternative mnemonics is provided for some 
frequently used operations (such as no-op, load immediate, load address, move register, and 
complement register). Programs written to be portable across the various assemblers for the 
PowerPC architecture should not assume the existence of mnemonics not described in this 
document. 

For a complete list of simplified mnemonics, see Appendix F, "Simplified Mnemonics," in 
The Programming Environments Manual. 
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Chapter 3 
L 1 Instruction and Data Cache 
Operation 
The MPC750 microprocessor contains separate 32-Kbyte, eight-way set associative 
instruction and data caches to allow the execution units and registers rapid access to 
instructions and data. This chapter describes the organization of the on-chip instruction and 
data caches, the MEl cache coherency protocol, cache control instructions, various cache 
operations, and the interaction between the caches, the load/store unit (LSU), the 
instruction unit, and the bus interface unit (BIU). 

Note that in this chapter, the term 'multiprocessor' is used in the context of maintaining 
cache coherency. These multiprocessor devices could be actual processors or other devices 
that can access system memory, maintain their own caches, and function as bus masters 
requiring cache coherency. 

The MPC750 cache implementation has the following characteristics: 

• There are two separate 32-Kbyte instruction and data caches (Harvard architecture). 

• Both instruction and data caches are eight-way set associative. 

• The caches implement a pseudo least-recently-used (PLRU) replacement algorithm 
within each set. 

• The cache directories are physically addressed. The physical (real) address tag is 
stored in the cache directory. 

• Both the instruction and data caches have 32-byte cache blocks. A cache block is the 
block of memory that a coherency state describes, also referred to as a cache line. 

• Two coherency state bits for each data cache block allow encoding for three states:· 

- Modified (Exclusive) (M) 

- Exclusive (Unmodified) (E) 

- Invalid (I) 

• A single coherency state bit for each instruction cache block allows encoding for two 
possible states: 

- Invalid (INV) 

- Valid (VAL) 

Chapter 3. L 1 Instruction and Data Cache Operation 3-1 



Each cache can be invalidated or locked by setting the appropriate bits in the 
hardware implementation-dependent register 0 (HIDO), a special-purpose register 
(SPR) specific to the MPC750. 

The MPC750 supports a fully-coherent 4-Gbyte physical memory address space. Bus 
snooping is used to drive the MEl three-state cache coherency protocol that ensures the 
coherency of global memory with respect to the processor's data cache. The MEl protocol 
is described in Section 3.3.2, "MEl Protocol." 

On a cache miss, the MPC750's cache blocks are filled in four beats of 64 bits each. The 
burst fill is performed as a critical-double-word-first operation; the critical double word is 
simultaneously written to the cache and forwarded to the requesting unit, thus minimizing 
stalls due to cache fill latency. 

The instruction and data caches are integrated into the MPC750 as shown in Figure 3-1. 

Instruction Unit 

nstructions (0-127) 

I-Cache 

32-Kbyte 
B-Way Set Associative 

EA: Effective Address 
PA: Physical Address 

EA (20-26) 

MMU/L2 BIU (MPC750 only)/60x BIU 

Load/Store Unit 
(LSU) 

Data (0-63) 

D-Cache 

32-Kbyte 
B-Way Set Associative 

Data (0-63) 

Figure 3-1. Cache Integration 

Both caches are tightly coupled to the MPC750's bus interface unit to allow efficient access 
to the system memory controller and other bus masters. The bus interface unit receives 
requests for bus operations from the instruction and data caches, and executes the 
operations per the 60x bus protocol. The BIU provides address queues, prioritizing logic, 
and bus control logic. The BIU captures snoop addresses for data cache, address queue, and 
memory reservation (lwarx and stwcx. instruction) operations. 
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The data cache provides buffers for load and store bus operations. All the data for the 
corresponding address queues (load and store data queues) is located in the data cache. The 
data queues are considered temporary storage for the cache and not part of the BIU. The 
data cache also provides storage for the cache tags required for memory coherency and 
performs the cache block replacement PLRU function. 

The data cache supplies data to the GPRs and FPRs by means of the load/store unit. The 
MPC750's LSU is directly coupled to the data cache to allow efficient movement of data to 
and from the general-purpose and floating-point registers. The load/store unit provides all 
logic required to calculate effective addresses, handles data alignment to and from the data 
cache, and provides sequencing for load and store string and multiple operations. Write 
operations to the data cache can be performed on a byte, half-word, word, or double-word 
basis. 

The instruction cache provides a 128-bit interface to the instruction unit, so four 
instructions can be made available to the instruction unit in a single clock cycle. The 
instruction unit accesses the instruction cache frequently in order to sustain the high 
throughput provided by the six-entry instruction queue. 

3.1 Data Cache Organization 
The data cache is organized as 128 sets of eight blocks as shown in Figure 3-2. Each block 
consists of 32 bytes, two state bits, and an address tag. Note that in the PowerPC 
architecture, the term 'cache block,' or simply 'block,' when used in the context of cache 
implementations, refers to the unit of memory at which coherency is maintained. For the 
MPC750, this is the eight-word cache line. This value may be different for other PowerPC 
implementations. 

Each cache block contains eight contiguous words from memory that are loaded from an 
eight -word boundary (that is, bits A[27 - 31] of the logical (effective) addresses are zero); as 
a result, cache blocks are aligned with page boundaries. Note that address bits A[20-26] 
provide the index to select a cache set. Bits A[27-31] select a byte within a block. The two 
state bits implement a three-state MEl (modified/exclusive/invalid) protocol, a coherent 
subset of the standard four-state MESI (modified/exclusive/shared/invalid) protocol. The 
MEl protocol is described in Section 3.3.2, "MEl Protocol." The tags consist of bits 
PA[O-19]. Address translation occurs in parallel with set selection (fromA[20-26]), and the 
higher-order address bits (the tag bits in the cache) are physical. 

The MPC750's on-chip data cache tags are single-ported, and load or store operations must 
be arbitrated with snoop accesses to the data cache tags. Load or store operations can be 
performed to the cache on the clock cycle immediately following a snoop access if the 
snoop misses; snoop hits may block the data cache for two or more cycles, depending on 
whether a copy-back to main memory is required. 
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128 Sets I • • 

~ I 
. ., 

• • 
r--

Block 0 Address Tag 0 - State Words [0-7] r----

Block 1 Address Tag 1 - State Words [0-7] r----

Block 2 Address Tag 2 - State Words [0-7] I---

Block 3 Address Tag 3 - State Words [0-7] I---

Block 4 Address Tag 4 - State Words [0-7] I---

BlockS Address Tag S - State Words [0-7] r----

Block 6 Address Tag 6 State Words [0-7] 

Block 7 Address Tag 7 State Words [0-7] 

"'� .. 1------8 Words/Block·-------l~~1 

Figure 3·2. Data Cache Organization 

3.2 Instruction Cache Organization 
The instruction cache also consists of 128 sets of eight blocks, as shown in Figure 3-3. Each 
block consists of 32 bytes, a single state bit, and an address tag. As with the data cache, each 
instruction cache block contains eight contiguous words from memory that are loaded from 
an eight-word boundary (that is, bits A[27-3l] ofthe logical (effective) addresses are zero); 
as a result, cache blocks are aligned with page boundaries. Also, address bits A[20-26] 
provide the index to select a set, and bits A[27-29] select a word within a block. 

The tags consist of bits PA[O-19]. Address translation occurs in parallel with set selection 
(fromA[20-26]), and the higher order address bits (the tag bits in the cache) are physical. 

The instruction cache differs from the data cache in that it does not implement MEl cache 
coherency protocol, and a single state bit is implemented that indicates only whether a 
cache block is valid or invalid. The instruction cache is not snooped, so if a processor 
modifies a memory location that may be contained in the instruction cache, software must 
ensure that such memory updates are visible to the instruction fetching mechanism. This 
can be achieved with the following instruction sequence: 

3-4 

dcbst 
sync 
icbi 
sync 
isync 

# update memory 
# wait for update 
# remove (invalidate) copy in instruction cache 
# wait for reB! operation to be globally performed 
# remove copy in own instruction buffer 
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These operations are necessary because the processor does not maintain instruction 
memory coherent with data memory. Software is responsible for enforcing coherency of 
instruction caches and data memory. Since instruction fetching may bypass the data cache, 
changes made to items in the data cache may not be reflected in memory until after the 
instruction fetch completes. 

128 Sets I • • 

~ I • 
., 

• 
t-1 

Block 0 Address Tag 0 r- Valid Words [0-7] I---

Block 1 Address Tag 1 I"- Valid Words [0-7] f---

Block 2 Address Tag 2 r- Valid Words [0-7] I---

Block 3 Address Tag 3 r- Valid Words [0-7] f---

Block 4 Address Tag 4 I- Valid Words [0-7] f---

BlockS Address Tag S I- Valid Words [0-7] f---

Block 6 Address Tag 6 Valid Words [0-7] 

Block 7 Address Tag 7 Valid Words [0-7] 

1-0� .. 1-------:8 Words/Block------J~~1 

Figure 3-3. Instruction Cache Organization 

3.3 Memory and Cache Coherency 
The primary objective of a coherent memory system is to provide the same image of 
memory to all devices using the system. Coherency allows synchronization and cooperative 
use of shared resources. Otherwise, multiple copies of a memory location, some containing 
stale values, could exist in a system resulting in errors when the stale values are used. Each 
potential bus master must follow rules for managing the state of its cache. This section 
describes the coherency mechanisms of the PowerPC architecture and the three-state cache 
coherency protocol of the MPC750 data cache. 

Note that unless specifically noted, the discussion of coherency in this section applies to the 
MPC750's data cache only. The instruction cache is not snooped. Instruction cache 
coherency must be maintained by software. However, the MPC750 does support a fast 
instruction cache invalidate capability as described in Section 3.4.1.4, "Instruction Cache 
Flash Invalidation." 
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3.3.1 Memory/Cache Access Attributes (WIMG Bits) 
Some memory characteristics can be set on either a block or page basis by using the WIMG 
bits in the BAT registers or page table entry (PTE), respectively. The WIMG attributes 
control the following functionality: 

• Write-through (W bit) 

• Caching-inhibited (I bit) 
• Memory coherency (M bit) 
• Guarded memory (G bit) 

These bits allow both uniprocessor and multiprocessor system designs to exploit numerous 
system-level performance optimizations. 

The WIMG attributes are programmed by the operating system for each page and block. 
The W and I attributes control how the processor performing an access uses its own cache. 
The M attribute ensures that coherency is maintained for all copies of the addressed 
memory location. The G attribute prevents out-of-order loading and prefetching from the 
addressed memory location. 

The WIMG attributes occupy four bits in the BAT registers for block address translation 
and in the PTEs for page address translation. The WIMG bits are programmed as follows: 

• The operating system uses the mtspr instruction to program the WIMG bits in the 
BAT registers for block address translation. The IBAT register pairs do not have a 
G bit and all accesses that use the IBAT register pairs are considered not guarded. 

• The operating system writes the WIMG bits for each page into the PTEs in system 
memory as it sets up the page tables. 

When an access requires coherency, the processor performing the access must inform the 
coherency mechanisms throughout the system that the access requires memory coherency. 
The M attribute determines the kind of access performed on the bus (global or local). 

Software must exercise care with respect to the use of these bits if coherent memory support 
is desired. Careless specification of these bits may create situations that present coherency 
paradoxes to the processor. In particular, this can happen when the state of these bits is 
changed without appropriate precautions (such as flushing the pages that correspond to the 
changed bits from the caches of all processors in the system) or when the address 
translations of aliased real addresses specify different values for any of the WIMG bits. 
These coherency paradoxes can occur within a single processor or across several 
processors. It is important to note that in the presence of a paradox, the operating system 
software is responsible for correctness. 

For real addressing mode (that is, for accesses performed with address translation 
disabled-MSR[IR] = 0 or MSR[DR] = 0 for instruction or data access, respectively), the 
WIMG bits are automatically generated as ObOOII (the data is write-back, caching is 
enabled, memory coherency is enforced, and memory is guarded). 
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3.3.2 MEl Protocol 
The MPC750 data cache coherency protocol is a coherent subset of the standard MESI 
four-state cache protocol that omits the shared state. The MPC750's data cache 
characterizes each 32-byte block it contains as being in one of three MEl states. Addresses 
presented to the cache are indexed into the cache directory with bits A[20-26], and the 
upper-order 20 bits from the physical address translation (PA[0-19]) are compared against 
the indexed cache directory tags. If neither of the indexed tags matches, the result is a cache 
miss. If a tag matches, a cache hit occurred and the directory indicates the state of the cache 
block through two state bits kept with the tag. The three possible states for a cache block in 
the cache are the modified state (M), the exclusive state (E), and the invalid state (I). The 
three MEl states are defined in Table 3-1. 

Table 3-1. MEl State Definitions 

MEl State Definition 

Modified (M) The addressed cache block is present in the cache, and is modified with respect to system 
memory-that is, the modified data in the cache block has not been written back to memory. The 
cache block may be present in the MPC750's L2 cache, but it is not present in any other coherent 
cache. 

Exclusive (E) The addressed cache block is present in the cache, and this cache has exclusive ownership of the 
addressed block. The addressed block may be present in the MPC750's L2 cache, but it is not 
present in any other processor's cache. The data in this cache block is consistent with system 
memory. 

Invalid (I) This state indicates that the address block does not contain valid data or that the addressed cache 
block is not resident in the cache. 

The MPC750 provides dedicated hardware to provide memory coherency by snooping bus 
transactions. Figure 3-4 shows the MEl cache coherency protocol, as enforced by the 
MPC750. Figure 3-4 assumes that the WIM bits for the page or block are set to 001; that is, 
write-back, caching-not-inhibited, and memory coherency enforced. 
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WH SH/CIR 

Bus Transactions 

SH ~ Snoop Hit CD ~ Snoop Push 
RH ~ Read Hit 
RM ~ Read Miss 
WH ~ Write Hit CD ~ Cache Block FiJI 
WM ~ Write Miss 
SH/CRW ~ Snoop Hit, Cacheable Read/Write 
SH/CIR ~ Snoop Hit, Caching-Inhibited Read 

Figure 3-4. MEl Cache Coherency Protocol-State Diagram (WIM = 001) 

Since data cannot be shared, the MPC750 signals all cache block fills as if they were write 
misses (read-with-intent-to-modify), which flushes the corresponding copies of the data in 
all caches external to the MPC750 prior to the cache-block-fill operation. Following the 
cache block load, the MPC750 is the exclusive owner of the data and may write to it without 
a bus broadcast transaction. 

To maintain the three-state coherency, all global reads observed on the bus by the MPC750 
are snooped as if they were writes, causing the MPC750 to flush the cache block (write the 
cache block back to memory and invalidate the cache block if it is modified, or simply 
invalidate the cache block if it is unmodified). The exception to this rule occurs when a 
snooped transaction is a caching-inhibited read (either burst or single-beat, where TT[O--4] 
= XI0I0; see Table 7-1 for clarification), in which case the MPC750 does not invalidate the 
snooped cache block. If the cache block is modified, the block is written back to memory, 
and the cache block is marked exclusive. If the cache block is marked exclusive, no bus 
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action is taken, and the cache block remains in the exclusive state. This treatment of 
caching-inhibited reads decreases the possibility of data thrashing by allowing noncaching 
devices to read data without invalidating the entry from the MPC750's data cache. 

Section 3.8, "MEl State Transactions," provides a detailed list of MEl transitions for 
various operations and WIM bit settings. 

3.3.2.1 MEl Hardware Considerations 
While the MPC750 provides the hardware required to monitor bus traffic for coherency, the 
MPC750 data cache tags are single-ported, and a simultaneous load/store and snoop access 
represents a resource conflict. In general, the snoop access has highest priority and is given 
first access to the tags. The load or store access will then occur on the clock following the 
snoop. The snoop is not given priority into the tags when the snoop coincides with a tag 
write (for example, validation after a cache block load). In these situations, the snoop is 
retried and must re-arbitrate before the lookup is possible. 

Occasionally, cache snoops cannot be serviced and must be retried. These retries occur if 
the cache is busy with a burst read or write when the snoop operation takes place. 

Note that it is possible for a snoop to hit a modified cache block that is already in the process 
of being written to the copy-back buffer for replacement purposes. If this happens, the 
MPC750 retries the snoop, and raises the priority of the castout operation to allow it to go 
to the bus before the cache block fill. 

Another consideration is page table aliasing. If a store hits to a modified cache block but 
the page table entry is marked write-through (WIMG = lxxx), then the page has probably 
been aliased through another page table entry which is marked write-back (WIMG = Oxxx). 
If this occurs, the MPC750 ignores the modified bit in the cache tag. The cache block is 
updated during the write-through operation and the block remains in the modified state. 

The global (GBL) signal, asserted as part of the address attribute field during a bus 
transaction, enables the snooping hardware of the MPC750. Address bus masters assert 
GBL to indicate that the current transaction is a global access (that is, an access to memory 
shared by more than one device). If GBL is not asserted for the transaction, that transaction 
is not snooped by the MPC750. Note that the GBL signal is not asserted for instruction 
fetches, and that GBL is asserted for all data read or write operations when using real 
addressing mode (that is, address translation is disabled). 

Normally, GBL reflects the M-bit value specified for the memory reference in the 
corresponding translation descriptor(s). Care should be taken to minimize the number of 
pages marked as global, because the retry protocol enforces coherency and can use 
considerable bus bandwidth if much data is shared. Therefore, available bus bandwidth 
decreases as more memory is marked as global. 
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The MPC750 snoops a transaction if the transfer start (TS) and GBL signals are asserted 
together in the same bus clock (this is a qualified snooping condition). No snoop update to 
the MPC750 cache occurs if the snooped transaction is not marked global. Also, because 
cache block castouts and snoop pushes do not require snooping, the GBL signal is not 
asserted for these operations. 

When the MPC750 detects a qualified snoop condition, the address associated with the TS 
signal is compared with the cache tags. Snooping finishes if no hit is detected. If, however, 
the address hits in the cache, the MPC750 reacts according to the MEl protocol shown in 
Figure 3-4. 

3.3.3 Coherency Precautions in Single Processor Systems 
The following coherency paradoxes can be encountered within a single-processor system: 

• Load or store to a caching-inhibited page (WIMG = xlxx) and a cache hit occurs. 

The MPC750 ignores any hits to a cache block in a memory space marked 
caching-inhibited (WIMG = xlxx). The access is performed on the external bus as 
if there were no hit. The data in the cache is not pushed, and the cache block is not 
invalidated. 

• Store to a page marked write-through (WIMG = lxxx) and a cache hit occurs to a 
modified cache block. 

The MPC750 ignores the modified bit in the cache tag. The cache block is updated 
during the write-through operation but the block remains in the modified state (M). 

Note that when WIM bits are changed in the page tables or BAT registers, it is critical that 
the cache contents reflect the new WIM bit settings. For example, if a block or page that 
had allowed caching becomes caching-inhibited, software should ensure that the 
appropriate cache blocks are flushed to memory and invalidated. 

3.3.4 Coherency Precautions in Multiprocessor Systems 
The MPC750's three-state coherency protocol permits no data sharing between the 
MPC750 and other caches. All burst reads initiated by the MPC750 are performed as read 
with intent to modify. Burst snoops are interpreted as read with intent to modify or read 
with no intent to cache. This effectively places all caches in the system into a three-state 
coherency scheme. Four-state caches may share data amongst themselves but not with the 
MPC750. 

3.3.5 MPC750-lnitiated Load/Store Operations 
Load and store operations are assumed to be weakly ordered on the MPC750. The 
load/store unit (LSU) can perform load operations that occur later in the program ahead of 
store operations, even when the data cache is disabled (see Section 3.3.5.2, "Sequential 
Consistency of Memory Accesses). However, strongly ordered load and store operations 
can be enforced through the setting of the I bit (of the page WIMG bits) when address 
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translation is enabled. Note that when address translation is disabled (real addressing 
mode), the default WIMG bits cause the I bit to be cleared (accesses are assumed to be 
cacheable), and thus the accesses are weakly ordered. Refer to Section 5.2, "Real 
Addressing Mode," for a description of the WIMG bits when address translation is disabled. 

The MPC750 does not provide support for direct-store segments. Operations attempting to 
access a direct-store segment will invoke a DSI exception. For additional information about 
DSI exceptions, refer to Section 4.5.3, "DSI Exception (Ox00300)." 

3.3.5.1 Performed Loads and Stores 
The PowerPC architecture defines a performed load operation as one that has the addressed 
memory location bound to the target register of the load instruction. The architecture 
defines a performed store operation as one where the stored value is the value that any other 
processor will receive when executing a load operation (that is of course, until it is changed 
again). With respect to the MPC750, caching-allowed (WIMG = xOxx) loads and 
caching-allowed, write-back (WIMG = OOxx) stores are performed when they have 
arbitrated to address the cache block. Note that in the event of a cache miss, these storage 
operations may place a memory request into the processor's memory queue, but such 
operations are considered an extension to the state of the cache with respect to snooping 
bus operations. Caching-inhibited (WIMG = xlxx) loads, caching-inhibited (WIMG = 
xlxx) stores, and write-through (WIMG = lxxx) stores are performed when they have been 
successfully presented to the external 60x bus. 

3.3.5.2 Sequential Consistency of Memory Accesses 
The PowerPC architecture requires that all memory operations executed by a single 
processor be sequentially consistent with respect to that processor. This means that all 
memory accesses appear to be executed in program order with respect to exceptions and 
data dependencies. 

The MPC750 achieves sequential consistency by operating a single pipeline to the 
cache/MMU. All memory accesses are presented to the MMU in exact program order and 
therefore exceptions are determined in order. Loads are allowed to bypass stores once 
exception checking has been performed for the store, but data dependency checking is 
handled in the load/store unit so that a load will not bypass a store with an address match. 
Note that although memory accesses that miss in the cache are forwarded to the memory 
queue for future arbitration for the external bus, all potential synchronous exceptions have 
been resolved before the cache. In addition, although subsequent memory accesses can 
address the cache, full coherency checking between the cache and the memory queue is 
provided to avoid dependency conflicts. 

3.3.5.3 Atomic Memory References 
The PowerPC architecture defines the Load Word and Reserve Indexed (lwarx) and the 
Store Word Conditional Indexed (stwcx.) instructions to provide an atomic update function 
for a single, aligned word of memory. These instructions can be used to develop a rich set 
of multiprocessor synchronization primitives. Note that atomic memory references 
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constructed using lwarxlstwcx. instructions depend on the presence of a coherent memory 
system for correct operation. These instructions should not be expected to provide atomic 
access to noncoherent memory. For detailed information on these instructions, refer to 
Chapter 2, "MPC750 Processor Programming Model," in this book and Chapter 8, 
"Instruction Set," in The Programming Environments Manual. 

The lwarx instruction performs a load word from memory operation and creates a 
reservation for the 32-byte section of memory that contains the accessed word. The 
reservation granularity is 32 bytes. The lwarx instruction makes a nonspecific reservation 
with respect to the executing processor and a specific reservation with respect to other 
masters. This means that any subsequentstwcx. executed by the same processor, regardless 
of address, will cancel the reservation. Also, any bus write or invalidate operation from 
another processor to an address that matches the reservation address will cancel the 
reservation. 

The stwcx. instruction does not check the reservation for a matching address. The stwcx. 
instruction is only required to determine whether a reservation exists. The stwcx. 
instruction performs a store word operation only if the reservation exists. If the reservation 
has been cancelled for any reason, then the stwcx. instruction fails and clears the CRO[EQ] 
bit in the condition register. The architectural intent is to follow the lwarxlstwcx. 
instruction pair with a conditional branch which checks to see whether the stwcx. 
instruction failed. 

If the page table entry is marked caching-allowed (WIMG = xOxx), and an lwarx access 
misses in the cache, then the MPC750 performs a cache block fill. If the page is marked 
caching-inhibited (WIMG = xlxx) or the cache is locked, and the access misses, then the 
lwarx instruction appears on the bus as a single-beat load. All bus operations that are a 
direct result of either an lwarx instruction or an stwcx. instruction are placed on the bus 
with a special encoding. Note that this does not force alllwarx instructions to generate bus 
transactions, but rather provides a means for identifying when an lwarx instruction does 
generate a bus transaction. If an implementation requires that all lwarx instructions 
generate bus transactions, then the associated pages should be marked as caching-inhibited. 

The state of the reservation is always presented onto the RSRV output signal. This can be 
used to determine when an internal condition has caused a change in the reservation state. 

The MPC750's data cache treats all stwcx. operations as write-through independent of the 
WIMG settings. However, if the stwcx. operation hits in the MPC750's L2 cache, then the 
operation completes with the reservation intact in the L2 cache. See Chapter 9, "L2 Cache 
Interface Operation," for more information. Otherwise, the stwcx. operation continues to 
the bus interface unit for completion. When the write-through operation completes 
successfully, either in the L2 cache or on the 60x bus, then the data cache entry is updated 
(assuming it hits), and CRO[EQ] is modified to reflect the success of the operation. If the 
reservation is not intact, the stwcx. completes in the bus interface unit without performing 
a bus transaction, and without modifying either of the caches. 
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3.4 Cache Control 
The MPC750's L1 caches are controlled by programming specific bits in the HIDO 
special-purpose register and by issuing dedicated cache control instructions. Section 3.4.1, 
"Cache Control Parameters in HIDO," describes the HIDO cache control bits, and 
Section 3.4.2, "Cache Control Instructions," describes the cache control instructions. 

3.4.1 Cache Control Parameters in HIDO 
The HIDO special-purpose register contains several bits that invalidate, disable, and lock 
the instruction and data caches. The following sections describe these facilities. 

3.4.1.1 Data Cache Flash Invalidation 
The data cache is automatically invalidated when the MPC750 is powered up and during a 
hard reset. However, a soft reset does not automatically invalidate the data cache. Software 
must use the HIDO data cache flash invalidate bit (HIDO[DCFI]) if data cache invalidation 
is desired after a soft reset. Once HIDO[DCFI] is set through an mtspr operation, the 
MPC750 automatically clears this bit in the next clock cycle (provided that the data cache 
is enabled in the HIDO register). 

Note that some PowerPC microprocessors accomplish data cache flash invalidation by 
setting and clearing HIDO[DCFI] with two consecutive mtspr instructions (that is, the bit 
is not automatically cleared by the microprocessor). Software that has this sequence of 
operations does not need to be changed to run on the MPC750. 

3.4.1.2 Data Cache Enabling/Disabling 
The data cache may be enabled or disabled by using the data cache enable bit, HIDO[DCE]. 
HIDO[DCE] is cleared on power-up, disabling the data cache. 

When the data cache is in the disabled state (HIDO[DCE] = 0), the cache tag state bits are 
ignored, and all accesses are propagated to the L2 cache or 60x bus as single-beat 
transactions. Note that the CI (cache inhibit) signal always reflects the state of the 
caching-inhibited memory/cache access attribute (the I bit) independent of the state of 
HIDO[DCE]. Also note that disabling the data cache does not affect the translation logic; 
translation for data accesses is controlled by MSR[DR]. 

The setting of the DCE bit must be preceded by a syne instruction to prevent the cache from 
being enabled or disabled in the middle of a data access. In addition, the cache must be 
globally flushed before it is disabled to prevent coherency problems when it is re-enabled. 

Snooping is not performed when the data cache is disabled. 

The debz instruction will cause an alignment exception when the data cache is disabled. 
The touch load (debt and debtst) instructions are no-ops when the data cache is disabled. 
Other cache operations (caused by the debf, debst, and debi instructions) are not affected 
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by disabling the cache. This can potentially cause coherency errors. For example, a dcbf 
instruction that hits a modified cache block in the disabled cache will cause a copyback to 
memory of potentially stale data. 

3.4.1.3 Data Cache Locking 
The contents of the data cache can be locked by setting the data cache lock bit, 
HIDO[DLOCK]. A data access that hits in a locked data cache is serviced by the cache. 
However, all accesses that miss in the locked cache are propagated to the L2 cache or 60x 
bus as single-beat transactions. Note that the CI signal always reflects the state of the 
caching-inhibited memory/cache access attribute (the I bit) independent of the state of 
HIDO[DLOCK]. 

The MPC750 treats snoop hits to a locked data cache the same as snoop hits to an unlocked 
data cache. However, any cache block invalidated by a snoop hit remains invalid until the 
cache is unlocked. 

The setting of the DLOCK bit must be preceded by a sync instruction to prevent the data 
cache from being locked during a data access. 

3.4.1.4 Instruction Cache Flash Invalidation 
The instruction cache is automatically invalidated when the MPC750 is powered up and 
during a hard reset. However, a soft reset does not automatically invalidate the instruction 
cache. Software must use the HIDO instruction cache flash invalidate bit (HIDO[ICFI]) if 
instruction cache invalidation is desired after a soft reset. Once HIDO[ICFI] is set through 
an mtspr operation, the MPC750 automatically clears this bit in the next clock cycle 
(provided that the instruction cache is enabled in the HIDO register). 

Note that some PowerPC microprocessors accomplish instruction cache flash invalidation 
by setting and clearing HIDO[ICFI] with two consecutive mtspr instructions (that is, the bit 
is not automatically cleared by the microprocessor). Software that has this sequence of 
operations does not need to be changed to run on the MPC750. 

3.4.1.5 Instruction Cache Enabling/Disabling 
The instruction cache may be enabled or disabled through the use of the instruction cache 
enable bit, HIDO[ICE]. HIDO[ICE] is cleared on power-up, disabling the instruction cache. 

When the instruction cache is in the disabled state (HID [ICE] = 0), the cache tag state bits 
are ignored, and all instruction fetches are propagated to the L2 cache or 60x bus as 
single-beat transactions. Note that the CI signal always reflects the state of the 
caching-inhibited memory/cache access attribute (the I bit) independent of the state of 
HIDO[ICE]. Also note that disabling the instruction cache does not affect the translation 
logic; translation for instruction accesses is controlled by MSR[IR]. 
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The setting of the ICE bit must be preceded by an isyne instruction to prevent the cache 
from being enabled or disabled in the middle of an instruction fetch. In addition, the cache 
must be globally flushed before it is disabled to prevent coherency problems when it is 
re-enabled. The icbi instruction is not affected by disabling the instruction cache. 

3.4.1.6 Instruction Cache Locking 
The contents of the instruction cache can be locked by setting the instruction cache lock bit, 
HIDO[ILOCK]. An instruction fetch that hits in a locked instruction cache is serviced by 
the cache. However, all accesses that miss in the locked cache are propagated to the L2 
cache or 60x bus as single-beat transactions. Note that the CI signal always reflects the state 
of the caching-inhibited memory/cache access attribute (the I bit) independent of the state 
of HIDO[ILOCK]. 

The setting of the ILOCK bit must be preceded by an isyne instruction to prevent the 
instruction cache from being locked during an instruction fetch. 

3.4.2 Cache Control Instructions 
The PowerPC architecture defines instructions for controlling both the instruction and data 
caches (when they exist). The cache control instructions, debt, debtst, debz, debst, debf, 
debi, and icbi, are intended for the management of the local Ll and L2 caches. The 
MPC750 interprets the cache control instructions as if they pertain only to its own Ll or L2 
caches. These instructions are not intended for managing other caches in the system (except 
to the extent necessary to maintain coherency). 

The MPC750 does not snoop cache control instruction broadcasts, except for debz when 
M = 1. The debz instruction is the only cache control instruction that causes a broadcast on 
the 60x bus (when M = 1) to maintain coherency. All other data cache control instructions 
(debi, debf, debst and debz) are not broadcast, unless broadcast is enabled through the 
HIDO[ABE] configuration bit. Note that debi, debf, debst and debz do broadcast to the 
MPC750's L2 cache, regardless of HIDO[ABE]. The iebi instruction is never broadcast. 

3.4.2.1 Data Cache Block Touch (dcbt) and 
Data Cache BlockTouch for Store (dcbtst) 

The Data Cache Block Touch (debt) and Data Cache Block Touch for Store (debtst) 
instructions provide potential system performance improvement through the use of 
software-initiated prefetch hints. The MPC750 treats these instructions identically (that is, 
a debtst instruction behaves exactly the same as a debt instruction on the MPC750). Note 
that PowerPC implementations are not required to take any action based on the execution 
of these instructions, but they may choose to prefetch the cache block corresponding to the 
effective address into their cache. 

The MPC750 loads the data into the cache when the address hits in the TLB or the BAT, is 
permitted load access from the addressed page, is not directed to a direct-store segment, and 
is directed at a cacheable page. Otherwise, the MPC750 treats these instructions as no-ops. 
The data brought into the cache as a result of this instruction is validated in the same manner 
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that a load instruction would be (that is, it is marked as exclusive). The memory reference 
of a debt (or debtst) instruction causes the reference bit to be set. Note also that the 
successful execution of the debt (or debtst) instruction affects the state of the TLB and 
cache LRU bits as defined by the PLRU algorithm. 

3.4.2.2 Data Cache Block Zero (dcbz) 
The effective address is computed, translated, and checked for protection violations as 
defined in the PowerPC architecture. The debz instruction is treated as a store to the 
addressed byte with respect to address translation and protection. 

If the block containing the byte addressed by the EA is in the data cache, all bytes are 
cleared, and the tag is marked as modified (M). If the block containing the byte addressed 
by the EA is not in the data cache and the corresponding page is caching-allowed, the block 
is established in the data cache without fetching the block from main memory, and all bytes 
of the block are cleared, and the tag is marked as modified (M). 

If the contents of the cache block are from a page marked memory coherence required 
(M = 1), an address-only bus transaction is run prior to clearing the cache block. The debz 
instruction is the only cache control instruction that causes a broadcast on the 60x bus 
(when M = 1) to maintain coherency. The other cache control instructions are not broadcast 
unless broadcasting is specifically enabled through the HIDO[ABE] configuration bit. 

The debz instruction executes regardless of whether the cache is locked, but if the cache is 
disabled, an alignment exception is generated. If the page containing the byte addressed by 
the EA is caching-inhibited or write-through, then the system alignment exception handler 
is invoked. BAT and TLB protection violations generate DSI exceptions. 

3.4.2.3 Data Cache Block Store (dcbst) 
The effective address is computed, translated, and checked for protection violations as 
defined in the PowerPC architecture. This instruction is treated as a load with respect to 
address translation and memory protection. 

If the address hits in the cache and the cache block is in the exclusive (E) state, no action is 
taken. If the address hits in the cache and the cache block is in the modified (M) state, the 
modified block is written back to memory and the cache block is placed in the exclusive (E) 
state. 

The execution of a debst instruction does not broadcast on the 60x bus unless broadcast is 
enabled through the HIDO[ABE] bit. The function of this instruction is independent of the 
WIMG bit settings of the block containing the effective address. The debst instruction 
executes regardless of whether the cache is disabled or locked; however, a BAT or TLB 
protection violation generates a DSI exception. 
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3.4.2.4 Data Cache Block Flush (dcbf) 
The effective address is computed, translated, and checked for protection violations as 
defined in the PowerPC architecture. This instruction is treated as a load with respect to 
address translation and memory protection. 

If the address hits in the cache, and the block is in the modified (M) state, the modified block 
is written back to memory and the cache block is placed in the invalid (I) state. If the address 
hits in the cache, and the cache block is in the exclusive (E) state, the cache block is placed 
in the invalid (I) state. If the address misses in the cache, no action is taken. 

The execution of debf does not broadcast on the 60x bus unless broadcast is enabled 
through the HIDO[ABE] bit. The function of this instruction is independent of the WIMG 
bit settings of the block containing the effective address. The debf instruction executes 
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection 
violation generates a DSI exception. 

3.4.2.5 Data Cache Block Invalidate (dcbi) 
The effective address is computed, translated, and checked for protection violations as 
defined in the PowerPC architecture. This instruction is treated as a store with respect to 
address translation and memory protection. 

If the address hits in the cache, the cache block is placed in the invalid (I) state, regardless 
of whether the data is modified. Because this instruction may effectively destroy modified 
data, it is privileged (that is, debi is available to programs at the supervisor privilege level, 
MSR[PR] = 0). 

The execution of debi does not broadcast on the 60x bus unless broadcast is enabled 
through the HIDO[ABE] bit. The function of this instruction is independent of the WIMG 
bit settings of the block containing the effective address. The debi instruction executes 
regardless of whether the cache is disabled or locked; however, a BAT or TLB protection 
violation generates a DSI exception. 

3.4.2.6 Instruction Cache Block Invalidate (icbi) 
For the icbi instruction, the effective address is not computed or translated, so it cannot 
generate a protection violation or exception. This instruction performs a virtual lookup into 
the instruction cache (index only). All ways of the selected instruction cache set are 
invalidated. 

The icbi instruction is not broadcast on the 60x bus. The icbi instruction invalidates the 
cache blocks independent of whether the cache is disabled or locked. 
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3.5 Cache Operations 
This section describes the MPC750 cache operations. 

3.5.1 Cache Block ReplacementlCastout Operations 
Both the instruction and data cache use a pseudo least-recently-used (PLRU) replacement 
algorithm when a new block needs to be placed in the cache. When the data to be replaced 
is in the modified (M) state, that data is written into a castout buffer while the missed data 
is being accessed on the bus. When the load completes, the MPC750 then pushes the 
replaced cache block from the castout buffer to the L2 cache (if L2 is enabled) or to main 
memory (if L2 is disabled). 

The replacement logic first checks to see if there are any invalid blocks in the set and 
chooses the lowest-order, invalid block (L[O-7]) as the replacement target. If all eight 
blocks in the set are valid, the PLRU algorithm is used to determine which block should be 
replaced. The PLRU algorithm is shown in Figure 3-5. 
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Figure 3-5. PLRU Replacement Algorithm 
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Each cache is organized as eight blocks per set by 128 sets. There is a valid bit for each 
block in the cache, L[O-7]. When all eight blocks in the set are valid, the PLRU algorithm 
is used to select the replacement target. There are seven PLRU bits, B [0-6] for each set in 
the cache. For every hit in the cache, the PLRU bits are updated using the rules specified in 
Table 3-2. 

Table 3-2. PLRU Bit Update Rules 

If the Then the PLRU bits are Changed to: 
Current 

Access is 
80 81 82 83 84 85 86 To: 

LO 1 1 x 1 x x x 

L1 1 1 x 0 x x x 

L2 1 0 x x 1 x x 

L3 1 0 x x 0 x x 

L4 0 x 1 x x 1 x 

L5 0 x 1 x x 0 x 

L6 0 x 0 x x x 1 

L7 0 x 0 x x x 0 

x = Does not change 

If all eight blocks are valid, then a block is selected for replacement according to the PLRU 
bit encodings shown in Table 3-3. 

Table 3-3. PLRU Replacement Block Selection 

Then the 
810ck 

If the PLRU 8its Are: Selected for 
Replacement 

Is: 

0 0 0 LO 
83 

0 0 1 L 1 

0 81 1 0 L2 
84 

0 1 1 L3 
80 

.. 

1 0 0 L4 
85 

1 0 ., .. 1 L5 
, 

1 82 1 I 0 L6 
86 

1 ... 1 1 L7 
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During power-up or hard reset, all the valid bits of the blocks are cleared and the PLRU bits 
cleared to point to block LO of each set. Note that this is also the state of the data or 
instruction cache after setting their respective flash invalidate bit (HIDO[DCFI] or 
HIDO[ICFI]). 

3.5.2 Cache Flush Operations 
The instruction cache can be invalidated by executing a series of icbi instructions or by 
setting HIDO[ICFI]. The data cache can be invalidated by executing a series of debi 
instructions or by setting HIDO[DCFI]. 

Any modified entries in the data cache can be copied back to memory (flushed) by using 
the debf instruction or by executing a series of 12 uniquely addressed load or debz 
instructions to each of the 128 sets. The address space should not be shared with any other 
process to prevent snoop hit invalidations during the flushing routine. Exceptions should be 
disabled during this time so that the PLRU algorithm does not get disturbed. 

The data cache flush assist bit, HIDO[DCFA], simplifies the software flushing process. 
When set, HIDO[DCFA] forces the PLRU replacement algorithm to ignore the invalid 
entries and follow the replacement sequence defined by the PLRU bits. This reduces the 
series of uniquely addressed load or debz instructions to eight per set. HIDO[DCFA] should 
be set just prior to the beginning of the cache flush routine and cleared after the series of 
instructions is complete. 

3.5.3 Data Cache-Block-Fill Operations 
The MPC750's data cache blocks are filled in four beats of 64 bits each, with the critical 
double word loaded first. The data cache is not blocked to internal accesses while the load 
(caused by a cache miss) completes. This functionality is sometimes referred to as 'hits 
under misses,' because the cache can service a hit while a cache miss fill is waiting to 
complete. The critical-double-word read from memory is simultaneously written to the data 
cache and forwarded to the requesting unit, thus minimizing stalls due to cache fill latency. 

A cache block is filled after a read miss or write miss (read-with-intent-to-modify) occurs 
in the cache. The cache block that corresponds to the missed address is updated by a burst 
transfer of the data from the L2 or system memory. Note that if a read miss occurs in a 
system with multiple bus masters, and the data is modified in another cache, the modified 
data is first written to external memory before the cache fill occurs. 

3.5.4 Instruction Cache-Block-Fill Operations 
The MPC750's instruction cache blocks are loaded in four beats of 64 bits each, with the 
critical double word loaded first. The instruction cache is not blocked to internal accesses 
while the fetch (caused by a cache miss) completes. On a cache miss, the critical and 
following double words read from memory are simultaneously written to the instruction 
cache and forwarded to the instruction queue, thus minimizing stalls due to cache fill 
latency. There is no snooping of the instruction cache. 
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3.5.5 Data Cache-Block-Push Operation 
When a cache block in the MPC750 is snooped and hit by another bus master and the data 
is modified, the cache block must be written to memory and made available to the snooping 
device. The cache block that is hit is said to be pushed out onto the 60x bus. The MPC750 
supports two kinds of push operations-normal push operations and enveloped 
high-priority push operations, which are described in Section 3.5.5.1, "Enveloped 
High-Priority Cache-Block -Push Operation." 

3.5.5.1 Enveloped High-Priority Cache-Block-Push Operation 
In cases where the MPC750 has completed the address tenure of a read operation, and then 
detects a snoop hit to a modified cache block by another bus master, the MPC750 provides 
a high-priority push operation. If the address snooped is the same as the address of the data 
to be returned by the read operation, ARTRY is asserted one or more times until the data 
tenure of the read operation is completed. The cache-block-push transaction can be 
enveloped within the address and data tenures of a read operation. This feature prevents 
deadlocks in system organizations that support multiple memory-mapped buses. 

More specifically, the MPC750 internally detects the scenario where a load request is 
outstanding and the processor has pipelined a write operation on top of the load. Normally, 
when the data bus is granted to the MPC750, the resulting data bus tenure is used for the 
load operation. The enveloped high-priority cache block push feature defines a bus signal, 
data bus write only (DBWO), which when asserted with a qualified data bus grant indicates 
that the resulting data tenure should be used for the store operation instead. This signal is 
described in Section 8.10, "Using Data Bus Write Only." Note that the enveloped 
copy-back operation is an internally pipelined bus operation. 

3.6 L 1 Caches and 60x Bus Transactions 
The MPC750 transfers data to and from the cache in single-beat transactions of two words, 
or in four-beat transactions of eight words which fill a cache block. Single-beat bus 
transactions can transfer from one to eight bytes to or from the MPC750, and can be 
misaligned. Single-beat transactions can be caused by cache write-through accesses, 
caching-inhibited accesses (WIMG = xlxx), accesses when the cache is disabled 
(HIDO[DCE] bit is cleared), or accesses when the cache is locked (HIDO[DLOCK] bit is 
cleared). 

Burst transactions on the MPC750 always transfer eight words of data at a time, and are 
aligned to a double-word boundary. The MPC750 transfer burst (TBST) output signal 
indicates to the system whether the current transaction is a single-beat transaction or 
four-beat burst transfer. Burst transactions have an assumed address order. For cacheable 
read operations, instruction fetches, or cacheable, non-write-through write operations that 
miss the cache, the MPC750 presents the double-word-aligned address associated with the 
load/store instruction or instruction fetch that initiated the transaction. 
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As shown in Figure 3-6, the first quad word contains the address of the load/store or 
instruction fetch that missed the cache. This minimizes latency by allowing the critical code 
or data. to be forwarded to the processor before the rest of the block is filled. For all other 
burst operations, however, the entire block is transferred in order (oct-word-aligned). 
Critical-double-word-first fetching on a cache miss applies to both the data and instruction 
cache. 

MPC750 Cache Address 
Bits (27... 28) 

00 

A 

01 

B 

10 11 

C o 

If the address requested is in double-word A, the address placed on the bus is that of double-word A, and 
the four data beats are ordered in the following manner: 

Beat 
o 2 3 

A B C o 

If the address requested is in double-word C, the address placed on the bus will be that of double-word 
C, and the four data beats are ordered in the following manner: 

Beat 
o 2 3 

C o A B 

Figure 3-6. Double-Word Address Ordering-Critical Double Word First 

3.6.1 Read Operations and the MEl Protocol 
The MEl coherency protocol affects how the MPC750 data cache performs read operations 
on the 60x bus. All reads (except for caching-inhibited reads) are encoded on the bus as 
read-with-intent-to-modify (RWITM) to force flushing of the addressed cache block from 
other caches in the system. 

The MEl coherency protocol also affects how the MPC750 snoops read operations on the 
60x bus. All reads snooped from the 60x bus (except for caching-inhibited reads) are 
interpreted as RWITM to cause flushing from the MPC750's cache. Single-beat reads 
(TBST negated) are interpreted by the MPC750 as caching inhibited. 

These actions for read operations allow the MPC750 to operate successfully (coherently) 
on the bus with other bus masters that implement either the three-state MEl or a fOUf-state 
MESI cache coherency protocol. 
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3.6.2 Bus Operations Caused by Cache Control Instructions 
The cache control, TLB management, and synchronization instructions supported by the 
MPC750 may affect or be affected by the operation of the 60x bus. The operation of the 
instructions may also indirectly cause bus transactions to be performed, or their completion 
may be linked to the bus. 

The debz instruction is the only cache control instruction that causes an address-only 
broadcast on the 60x bus. All other data cache control instructions (debi, debf, debst, and 
debz) are not broadcast unless specifically enabled through the HIDO[ABE] configuration 
bit. Note that debi, debf, debst, and debz do broadcast to the MPC750's L2 cache, 
regardless of HIDO[ABE]. HIDO[ABE] also controls the broadcast of the syne and eieio 
instructions. The iebi instruction is never broadcast. No broadcasts by other masters are 
snooped by the MPC750 (except for debz kill block transactions). For detailed information 
on the cache control instructions, refer to Chapter 2, "MPC750 Processor Programming 
Model," in this book and Chapter 8, "Instruction Set," in The Programming Environments 
Manual. 

Table 3-4 provides an overview of the bus operations initiated by cache control instructions. 
Note that Table 3-4 assumes that the WIM bits are set to 001; that is, the cache is operating 
in write-back mode, caching is permitted and coherency is enforced. 

Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001) 

Instruction 
Current 

Next Cache State Bus Operation Comment 
Cache State 

sync Don't care No change sync Waits for memory queues 
(if enabled in to complete bus activity 
HIDO[ABE]) 

tlbie - - None -
tlbsync - - None Waits for the negation of 

the TLBSYNC input signal 
to complete 

eieio Don't care No change eieio Address-only bus 
(if enabled in operation 
HIDO[ABE]) 

Icbi Don't care I None -

dcbi Don't care I Kill block Address-only bus 
(if enabled in operation 
HIDO[ABE]) 

dcbt I, E I Flush block Address-only bus 
(if enabled in operation 
HIDO[ABE]) 

debt M I Write with kill Block is pushed 

debst I, E No change Clean block Address-only bus 
(if enabled in operation 
HIDO[ABE]) 

3-24 MPC750 RISC Microprocessor User's Manual 



Table 3-4. Bus Operations Caused by Cache Control Instructions (WIM = 001) 

Instruction 
Current 

Next Cache State Bus Operation Comment 
Cache State 

debst M E Write with kill Block is pushed 

debz I M Write with kill -
debz E, M M Kill block Writes over modified data 

debt I E Read-with-intent-t Fetched cache block is 
a-modify stored in the cache 

debt E,M No change None -
debtst I E Read-with-intent-t Fetched cache block is 

a-modify stored in the cache 

debtst E,M No change None -

For additional details about the specific bus operations performed by the MPC750, see 
Chapter 8, "System Interface Operation." 

3.6.3 Snooping 
The MPC750 maintains data cache coherency in hardware by coordinating activity between 
the data cache, the bus interface logic, the L2 cache, and the memory system. The MPC750 
has a copy-back cache which relies on bus snooping to maintain cache coherency with other 
caches in the system. For the MPC750, the coherency size of the bus is the size of a cache 
block, 32 bytes. This means that any bus transactions that cross an aligned 32-byte 
boundary must present a new address onto the bus at that boundary for proper snoop 
operation by the MPC750, or they must operate noncoherently with respect to the MPC750_ 

As bus operations are performed on the bus by other bus masters, the MPC750 bus 
snooping logic monitors the addresses and transfer attributes that are referenced. The 
MPC750 snoops the bus transactions during the cycle that TS is asserted for any of the 
following qualified snoop conditions: 

• The global signal (GBL) is asserted indicating that coherency enforcement is 
required. 

• A reservation is currently active in the MPC750 as the result of an lwarx instruction, 
and the transfer type attributes (TT[O-4]) indicate a write or kill operation. These 
transactions are snooped regardless of whether GBL is asserted to support 
reservations in the MEl cache protocol. 

The state of ABB is not sampled to determine a qualified snoop condition. All transactions 
snooped by the MPC750 are checked for correct address bus parity. Every assertion of TS 
detected by the MPC750 (whether snooped or not) must be followed by an accompanying 
assertion of AACK 
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Once a qualified snoop condition is detected on the bus, the snooped address associated 
with TS is compared against the data cache tags, memory queues, and/or other storage 
elements as appropriate. The L1 data cache tags and L2 cache tags are snooped for standard 
data cache coherency support. No snooping is done in the instruction cache for coherency. 

The memory queues are snooped for pipeline collisions and memory coherency collisions. 
A pipeline collision is detected when another bus master addresses any portion of a line that 
this MPC750's data cache is currently in the process of loading (Ll loading from L2, or 
L1IL2 loading from memory). A memory coherency collision occurs when another bus 
master addresses any portion of a line that the MPC750 has currently queued to write to 
memory from the data cache (castout or copy-back), but has not yet been granted bus access 
to perform. 

If a snooped transaction results in a cache hit or pipeline collision or memory queue 
collision, the MPC750 asserts ARTRY on the 60x bus. The current bus master, detecting 
the assertion of the ARTRY signal, should abort the transaction and retry it at a later time, 
so that the MPC750 can first perform a write operation back to memory from its cache or 
memory queues. The MPC750 may also retry a bus transaction if it is unable to snoop the 
transaction on that cycle due to internal resource conflicts. Additional snoop action may be 
forwarded to the cache as a result of a snoop hit in some cases (a cache push of modified 
data, or a cache block invalidation). 

3.6.4 Snoop Response to 60x Bus Transactions 
There are several bus transaction types defined for the 60x bus. The transactions in 
Table 3-5 correspond to the transfer type signals TT[0-4] , which are described in 
Section 7.2.4.1, "Transfer Type (TT[0-4])." 

Table 3-5. Response to Snooped Bus Transactions 

Snooped Transaction TI[Q-4] MPC750 Response 

Clean block 00000 No action is taken. 

Flush block 00100 No action is taken. 

SYNC 01000 No action is taken. 

Kill block 01100 The kill block operation is an address-only bus transaction initiated 
when a dcbz or dcbi instruction is executed 
• If the addressed cache block is in the exclusive (E) state, the cache 

block is placed in the invalid (I) state. 
• If the addressed cache block is in the modified (M) state, the 

MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the invalid (I) state. 

• If the address misses in the cache, no action is taken. 
Any reservation associated with the address is canceled. 

EIEIO 10000 No action is taken. 

External control word 10100 No action is taken. 
write 
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Table 3-5. Response to Snooped Bus Transactions (Continued) 

Snooped Transaction TI[O-4] MPC750 Response 

TLB invalidate 11000 No action is taken. 

External control word 11100 No action is taken. 
read 

Iwarx reservation set 00001 No action is taken. 

Reserved 00101 -

TLBSYNC 01001 No action is taken. 

ICBI 01101 No action is taken. 

Reserved 1XX01 -

Write-with-flush 00010 A write-with-flush operation is a single-beat or burst transaction 
initiated when a caching-inhibited or write-through store instruction is 
executed. 
• If the addressed cache block is in the exclusive (E) state, the cache 

block is placed in the invalid (I) state. 
• If the addressed cache block is in the modified (M) state, the 

MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the invalid (I) state. 

• If the address misses in the cache, no action is taken. 
Any reservation associated with the address is canceled. 

Write-with-kill 00110 A write-with-kill operation is a burst transaction initiated due to a 
castout, caching-allowed push, or snoop copy -back. 
• If the address hits in the cache, the cache block is placed in the 

invalid (I) state (killing modified data that may have been in the 
block). 

• If the address misses in the cache, no action is taken. 
Any reservation associated with the address is canceled. 

Read 01010 A read operation is used by most single-beat and burst load 
transactions on the bus. 
For single-beat, caching-inhibited read transaction: 
• If the addressed cache block is in the exclusive (E) state, the cache 

block remains in the exclusive (E) state. 
• If the addressed cache block is in the modified (M) state, the 

MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the exclusive (E) 
state. 

• If the address misses in the cache, no action is taken. 
For burst read transactions: 
• If the addressed cache block is in the exclusive (E) state, the cache 

block is placed in the invalid (I) state. 
• If the addressed cache block is in the modified (M) state, the 

MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the invalid (I) state. 

• If the address misses in the cache, no action is taken. 
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Table 3-5. Response to Snooped Bus Transactions (Continued) 

Snooped Transaction TT[O-4J MPC750 Response 

Read-with-intent-to-mo 01110 A RWITM operation is issued to acquire exclusive use of a memory 
dify (RWITM) location for the purpose of modifying it. 

• If the addressed cache block is in the exclusive (E) state, the cache 
block is placed in the invalid (I) state. 

• If the addressed cache block is in the modified (M) state, the 
MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the invalid (I) state. 

• If the address misses in the cache, no action is taken. 

Write-with-flush-atomic 10010 Write-with-flush-atomic operations occur after the processor issues 
an stwcx. instruction. 
• If the addressed cache block is in the exclusive (E) state, the cache 

block is placed in the invalid (I) state. 
• If the addressed cache block is in the modified (M) state, the 

MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the invalid (I) state. 

• If the address misses in the cache, no action is taken. 
Any reservation is canceled, regardless of the address. 

Reserved 10110 -

Read-atomic 11010 Read atomic operations appear on the bus in response to Iwarx 
instructions and generate the same snooping responses as read 
operations. 

Read-with-intent-to-mo 11110 The RWITM atomic operations appear on the bus in response to 
dify-atomic stwcx. instructions and generate the same snooping responses as 

RWITM operations. 

Reserved 00011 -

Reserved 00111 -

Read-with-no-intent-to- 01011 A RWNITC operation is issued to acquire exclusive use of a memory 
cache (RWNITC) location with no intention of modifying the location. 

• If the addressed cache block is in the exclusive (E) state, the cache 
block remains in the exclusive (E) state. 

• If the addressed cache block is in the modified (M) state, the 
MPC750 asserts ARTRY and initiates a push of the modified block 
out of the cache and the cache block is placed in the exclusive (E) 
state. 

• If the address misses in the cache, no action is taken. 

Reserved 01111 -

Reserved 1XX11 -

3.6.5 Transfer Attributes 
In addition to the address and transfer type signals, the MPC750 supports the transfer 
attribute signals TBST, TSIZ[O-2], WT, CI, and GBL. The TBST and TSIZ[O-2] signals 
indicate the data transfer size for the bus transaction. 

The WT signal reflects the write-through status (the complement of the W bit) for the 
transaction as determined by the MMU address translation during write operations. WT is 
asserted for burst writes due to debf (flush) and debst (clean) instructions, and for snoop 
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pushes; WT is negated for ecowx transactions. Since the write-through status is not 
meaningful for reads, the MPC750 uses the WT signal during read transactions to indicate 
that the transaction is an instruction fetch (WT negated), or not an instruction fetch (WT 
asserted). 

The CI signal reflects the caching-inhibited/allowed status (the complement of the I bit) of 
the transaction as determined by the MMU address translation even if the Ll caches are 
disabled or locked. CI is always asserted for eciwxlecowx bus transactions independent of 
the address translation. 

The GBL signal reflects the memory coherency requirements (the complement of the M bit) 
of the transaction as determined by the MMU address translation. Castout and snoop 
copy-back operations (TT[O-4] = 00110) are generally marked as nonglobal (GBL 
negated) and are not snooped (except for reservation monitoring). Other masters, however, 
may perform DMA write operations with this encoding but marked global (GBL asserted) 
and thus must be snooped. 

Table 3-6 summarizes the address and transfer attribute information presented on the bus 
by the MPC750 for various master or snoop-related transactions. 

Table 3-6. AddressITransfer Attribute Summary 

Bus Transaction A[D-31] TT[O-4] TBST TSIZ[O-2] GBl WT Ci 

Instruction fetch operations: 

Burst (caching·allowed) PA[Q-28)II ObOOO 011 1 0 0 010 ,M 1 1-

Single·beat read PA[Q-28)II ObOOO 0101 0 1 000 ,M 1 ,1 
(caching·inhibited or cache 
disabled) 

Data cache operations: 

Cache block fill (due to load or PA[O-28)II ObOOO A 1110 0 010 ,M 0 1-

store miss) 

Castout CA[Q-26)II ObOOOOO 00110 0 010 1 1 1-

(normal replacement) 

Push (cache block push due to PA[O-26)II ObOOOOO 00110 0 010 1 a 1-

debf/debst) 

Snoop copyback CA[Q-26)II ObOOOOO 0011 0 0 a 10 1 a 1-

Data cache bypass operations: 

Single·beat read PA[D-31) A1010 1 SSS ,M a ,1 
(caching·inhibited or cache 
disabled) 

Single·beat write PA[O-31) a 0 010 1 SSS ,M ,w ,1 
(caching·inhibited, write·through, 
or cache disabled) 

Special instructions: 
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Table 3-6. AddressfTransfer Attribute Summary (Continued) 

Bus Transaction A[0-31] TT[D-4] TBST TSIZ[D-2] GBl WT Cf 

dcbz (addr-only) PA[Q-28]II ObOOO 01100 0 010 O' 0 l' 

dcbi (ifHIDO[ABE] = 1, PA[O-26]II ObOOOOO 01 100 0 010 ~M 0 l' 
addr-only) 

dcbf (if HIDO[ABE] = 1, PA[Q-26]II ObOOOOO 00100 0 010 ~M 0 . l' 
addr-only) 

dcbst (if HIDO[ABE] = 1, PA[O-26]II ObOOOOO 00000 0 010 ~M 0 l' 
addr-only) 

sync (if HIDO[ABE] = 1, OxOOOO_OOOO 01000 0 010 0 0 0 
addr-only) 

eieio (if HIDO[ABE] = 1, OxOOOO_OOOO 10000 0 010 0 0 0 
addr-only) 

stwcx. (always single-beat write) PA[O-29]II ObOO 10010 1 100 ~M ~W ~I 

eciwx PA[O-29]II ObOO 11100 EAR[28-31] 1 0 0 

ecowx PA[O-29]II ObOO 10100 EAR[28-31] 1 1 0 

Notes: 
PA = Physical address, CA = Cache address. 
W,I,M = WIM state from address translation; ~ = complement; O'or l' = WIM state implied by transaction type in table 
For instruction fetches, reflection of the M bit must be enabled through HIDO[IFEM]. 
A = Atomic; high if Iwarx, low otherwise 
S = Transfer size 
Special instructions listed may not generate bus transactions depending on cache state. 

3.7 Bus Interface 
The bus interface buffers bus requests from the instruction and data caches, and executes 
the requests per the 60x bus protocol. It includes address register queues, prioritizing logic, 
and bus control logic. The bus interface also captures snoop addresses for snooping in the 
cache and in the address register queues, snoops for reservations, and holds the touch load 
address for the cache. All data storage for the address register buffers (load and store data 
buffers). are located in the cache section. The data buffers are considered temporary storage 
for the cache and not part of the bus interface. 
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The general functions and features of the bus interface are as follows: 

• Seven address register buffers that include the following: 

- Instruction cache load address buffer 

- Data cache load address buffer 

- Two data cache castoutlstore address buffers (associated data block buffers 
located in cache) 

- Data cache snoop copy-back address buffer (associated data block buffer located 
in cache) 

- Reservation address buffer for snoop monitoring 

• Pipeline collision detection for data cache buffers 
• Reservation address snooping for lwarxlstwcx. instructions 

• One-level address pipelining 

• Load ahead of store capability 

A conceptual block diagram of the bus interface is shown in Figure 3-7. The address 
register queues in the figure hold transaction requests that the bus interface may issue on 
the bus independently of the other requests. The bus interface may have up to two 
transactions operating on the bus at any given time through the use of address pipelining. 

J I·Cache L 
I I 

I D-Cache ~ 
• I 

• • • BIU H I·Cache II D·Cache III D-Cache ) II D·Cache II D-Cache I 
Control LD Addr LD Addr CST/ST Addr 0 CST/ST Addr 1 SNP Addr 

t t t t 

I I Snoop 

Addrl Control Addri Data Dat a 

L2 or System Bus I 

Figure 3-7. Bus Interface Address Buffers 

For additional information about the MPC750 bus interface and the bus protocols, refer to 
Chapter 8, "System Interface Operation." 
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3.8 MEl State Transactions 
Table 3-7 shows MEl state transitions for various operations. Bus operations are described 
in Table 3-5. 

Table 3-7. MEl State Transitions 

Cache Bus 
Current Next 

Bus 
Operation WIM Cache Cache Cache Actions 

Operation sync 
State State 

Operation 

Load Read No xOx I Same 1 Cast out of modified Write-with-kill 
(T=O) block (as required) 

2 Pass four-beat read Read 
to memory queue 

Load Read No xOx E,M Same Read data from cache -
(T=O) 

Load (T = 0) Read No x1x I Same Pass single-beat read to Read 
memory queue 

Load (T = 0) Read No x1x E I CRTRYread -

Load (T = 0) Read No x1x M I CRTRY read (push Write-with-kill 
sector to write queue) 

Iwarx Read Acts like other reads but bus operation uses special encoding 

Store Write No OOx I Same Cast out of modified Write-with-kill 
(T=O) block (if necessary) 

Pass RWITM to RWITM 
memory queue 

Store Write No OOx E,M M Write data to cache -
(T=O) 

Store * stwcx. Write No 10x I Same Pass single-beat write Write-with-flus 
(T =0) to memory queue h 

Store * stwcx. Write No 10x E Same Write data to cache -
(T=O) 

Pass single-beat write Write-with-flus 
to memory queue h 

Store * stwcx. Write No 10x M Same CRTRYwrite -
(T=O) 

Push block to write Write-with-kill 
queue 

Store (T = 0) Write No x1x I Same Pass single-beat write Write-with-flus 
or stwcx. to memory queue h 
(WIM= 10x) 

Store (T = 0) Write No x1x E I CRTRYwrite -
or stwcx. 
(WIM = 1 Ox) 
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Table 3-7. MEl State Transitions (Continued) 

Cache Bus Current Next Bus 
Operation WIM Cache Cache Cache Actions Operation sync State State Operation 

Store (T = 0) Write No x1x M I CRTRYwrite -
or stwex. 
(WIM = 10x) Push block to write Write-with-kill 

queue 

stwex. Conditional If the reserved bit is set, this operation is like other writes except the bus operation 
write uses a special encoding. 

debf Data cache No xxx I,E Same CRTRY debf -
block flush 

Pass flush Flush 

Same I State change only -

debf Data cache No xxx M I Push block to write Write-with-kill 
block flush queue 

debst Data cache No xxx I,E Same CRTRYdebst -
block store 

Pass clean Clean 

Same Same No action -

debst Data cache No xxx M E Push block to write Write-with-kill 
block store queue 

debz Data cache No x1x x x Alignment trap -
block set to 
zero 

debz Data cache No 10x x x Alignment trap -
block set to 
zero 

debz Data cache Yes OOx I Same CRTRYdebz -
blocksetto 
zero Cast out of modified Write-with-kill 

block 

Pass kill Kill 

Same M Clear block -

dcbz Data cache No OOx E,M M Clear block -
block set to 
zero 

debt Data cache No x1x I Same Pass single-beat read to Read 
block touch memory queue 

debt Data cache No x1x E I CRTRY read -
block touch 

debt Data cache No x1x M I CRTRYread -
block touch 

Push block to write Write-with-kill 
queue 
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Table 3-7. MEl State Transitions (Continued) 

Cache Bus 
Current Next 

Bus 
Operation WIM Cache Cache Cache Actions 

Operation sync 
State State 

Operation 

dcbt Data cache No xOx I Same Cast out of modified Write-with-kill 
block touch block (as required) 

Pass four-beat read to Read 
memory queue 

dcbt Data cache No xOx E,M Same No action -
block touch 

Single-beat Reload No xxx I Same Forward data_in -
read dump 1 

Four-beat read Reload No xxx I E Write data_in to cache -
(double-word-al dump 
igned) 

Four-beat write Reload No xxx I M Write data_in to cache -
(double-word-al dump 
igned) 

E~I Snoop No xxx E I State change only ~ 

write or kill (committed) 

M~I Snoop No xxx M I State change only -
kill (committed) 

Push Snoop No xxx M I Conditionally push Write-with-kill 
M~I flush 

Push Snoop No xxx M E Conditionally push Write-with-kill 
M~E clean 

tlbie TLB No xxx x x CRTRYTLBI -
invalidate 

PassTLBI -

No action -
sync Synchroni- No xxx x x CRTRYsync -

zation 
Pass sync -
No action -

Note that single-beat writes are not snooped in the write queue. 
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Chapter 4 
Exceptions 
The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC 
processors implement exceptions (referred to as interrupts in the architecture specification). 
Exception conditions may be defined at other levels of the architecture. For example, the 
VISA defines conditions that may cause floating-point exceptions; the OEA defines the 
mechanism by which the exception is taken. 

The PowerPC exception mechanism allows the processor to change to supervisor state as a 
result of unusual conditions arising in the execution of instructions and from external 
signals, bus errors, or various internal conditions. When exceptions occur, information 
about the state of the processor is saved to certain registers and the processor begins 
execution at an address (exception vector) predetermined for each exception. Processing of 
exceptions begins in supervisor mode. 

Although multiple exception conditions can map to a single exception vector, often a more 
specific condition may be determined by examining a register associated with the 
exception-for example, the DSISR and the floating-point status and control register 
(FPSCR). Also, software can explicitly enable or disable some exception conditions. 

The PowerPC architecture requires that exceptions be taken in program order; therefore, 
although a particular implementation may recognize exception conditions out of order, they 
are handled strictly in order with respect to the instruction stream. When an instruction
caused exception is recognized, any unexecuted instructions that appear earlier in the 
instruction stream, including any that have not yet entered the execute state, are required to 
complete before the exception is taken. For example, if a single instruction encounters 
multiple exception conditions, those exceptions are taken and handled sequentially. 
Likewise, exceptions that are asynchronous and precise are recognized when they occur, 
but are not handled until all instructions currently in the execute stage successfully 
complete execution and report their results. 

To prevent loss of state information, exception handlers must save the information stored 
in the machine status save/restore registers, SRRO and SRRl, soon after the exception is 
taken to prevent this information from being lost due to another exception being taken. 
Because exceptions can occur while an exception handler routine is executing, multiple 
exceptions can become nested. It is up to the exception handler to save the necessary state 
information if control is to return to the excepting program. 
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In many cases, after the exception handler handles an exception, there is an attempt to 
execute the instruction that caused the exception. Instruction execution continues until the 
next exception condition is encountered. Recognizing and handling exception conditions 
sequentially guarantees that the machine state is recoverable and processing can resume 
without losing instruction results. 

In this book, the following terms are used to describe the stages of exception processing: 

Recognition 

Taken 

Handling 

Exception recognition occurs when the condition that can cause an 
exception is identified by the processor. 

An exception is said to be taken when control of instruction 
execution is passed to the exception handler; that is, the context is 
saved and the instruction at the appropriate vector offset is fetched 
and the exception handler routine is begun in supervisor mode. 

Exception handling is performed by the software linked to the 
appropriate vector offset. Exception handling is begun in supervisor 
mode (referred to as privileged state in the architecture 
specification). 

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this 
book, the term 'interrupt' is reserved to refer to asynchronous exceptions and sometimes to 
the event that causes the exception. Also, the PowerPC architecture uses the word 
'exception' to refer to IEEE-defined floating-point exception conditions that may cause a 
program exception to be taken; see Section 4.5.7, "Program Exception (Ox00700)." The 
occurrence of these IEEE exceptions may not cause an exception to be taken. IEEE-defined 
exceptions are referred to as IEEE floating-point exceptions or floating-point exceptions. 

4.1 M PC750 Microprocessor Exceptions 
As specified by the PowerPC architecture, exceptions can be either precise or imprecise and 
either synchronous or asynchronous. Asynchronous exceptions are caused by events 
external to the processor's execution; synchronous exceptions are caused by instructions. 

The types of exceptions are shown in Table 4-1. Note that all exceptions except for the 
system management interrupt, thermal management, and performance monitor exception 
are defined, at least to some extent, by the PowerPC architecture. 

Table 4-1. MPC750 Microprocessor Exception Classifications 

Synchronous/Asynchronous Precise/Imprecise Exception Types 

Asynchronous, nonmaskable Imprecise Machine check, system reset 

Asynchronous, maskable Precise External interrupt, decrementer, system management interrupt, 
performance monitor interrupt, thermal management interrupt 

Synchronous Precise Instruction·caused exceptions 
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These classifications are discussed in greater detail in Section 4.2, "Exception Recognition 
and Priorities." For a better understanding of how the MPC750 implements precise 
exceptions, see Chapter 6, "Instruction Timing." Exceptions implemented in the MPC750, 
and conditions that cause them, are listed in Table 4-2. 

Table 4-2. Exceptions and Conditions 

Exception Type 
Vector Offset 

Causing Conditions 
(hex) 

Reserved 00000 -

System reset 00100 Assertion of either HRESET or SRESET or at power-on reset 

Machine check 00200 Assertion of TEA during a data bus transaction, assertion of MCP, or an 
address, data, or L2 bus parity error. MSR[ME] must be set. 

OSI 00300 As specified in the PowerPC architecture. For TLB misses on load, store, or 
cache operations, a OSI exception occurs if a page fault occurs. 

lSI 00400 As defined by the PowerPC architecture 

External interrupt 00500 MSR[EE] = 1 and INT is asserted 

Alignment 00600 . A floating-point load/store, stmw, stwcx., Imw, Iwarx, eciwx, or ecowx 
instruction operand is not word-aligned. 
A multiple/string load/store operation is attempted in little-endian mode 
An operand of a dcbz instruction is on a page that is write-through or 
cache-inhibited for a virtual mode access. 
An attempt to execute a dcbz instruction occurs when the cache is 
disabled. 

Program 00700 As defined by the PowerPC architecture 

Floating-point 00800 As defined by the PowerPC architecture 
unavailable 

Oecrementer 00900 As defined by the PowerPC architecture, when the most-significant bit of the 
OEC register changes from 0 to 1 and MSR[EE] = 1 

Reserved OOAOO-OOBFF -

System call OOCOO Execution of the System Call (sc) instruction 

Trace 00000 MSR[SE] =1 or a branch instruction is completing and MSR[BE] =1. The 
MPC750 differs from the OEA by not taking this exception on an isync. 

Reserved OOEOO The MPC750 does not generate an exception to this vector. Other PowerPC 
processors may use this vector for floating-point assist exceptions. 

Reserved 00E10-00EFF -

Performance monitor OOFOO The limit specified in PMCn is met and MMCRO[ENINT] = 1 (MPC750-specific) 

Instruction address 01300 IABR[0-29] matches EA[0-29] of the next instruction to complete, IABR[TE] 
breakpOint matches MSR[IR], and IABR[BE] = 1 (MPC750-specific) 

System management 01400 MSR[EE] = 1 and SMI is asserted (MPC750-specific) 
interrupt 
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Table 4-2. Exceptions and Conditions (Continued) 

Exception Type 
Vector Offset 

Causing Conditions 
(hex) 

Reserved 01500-016FF -

Thermal 01700 Thermal management is enabled, junction temperature exceeds the threshold 
management interrupt specified in THRMI orTHRM2, and MSR[EE] = 1 (MPC750-specific) 

Reserved 01800-02FFF -

4.2 Exception Recognition and Priorities 
Exceptions are roughly prioritized by exception class, as follows: 

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions
system reset and machine check exceptions (although the machine check exception 
condition can be disabled so the condition causes the processor to go directly into 
the checkstop state). These exceptions cannot be delayed and do not wait for 
completion of any precise exception handling. 

2. Synchronous, precise exceptions are caused by instructions and are taken in strict 
program order. 

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are 
caused by instructions and they are delayed until higher priority exceptions are 
taken. Note that the MPC750 does not implement an exception of this type. 

4. Maskable asynchronous exceptions (external, decrementer, thermal management, 
system management, performance monitor, and interrupt exceptions) are delayed 
until higher priority exceptions are taken. 

The following list of exception categories describes how the MPC750 handles exceptions 
up to the point of signaling the appropriate interrupt to occur. Note that a recoverable state 
is reached if the completed store queue is empty (drained, not canceled) and any instruction 
that is next in program order and has been signaled to complete has completed. If 
MSR[RI] = 0, the MPC750 is in a nonrecoverable state. Also,instruction completion is 
defined as updating all architectural registers associated with that instruction, and then 
removing that instruction from the completion buffer. 

4-4 

• Exceptions caused by asynchronous events (interrupts). These exceptions are further 
distinguished by whether they are maskable and recoverable. 
- Asynchronous, nonmaskable, nonrecoverable 

System reset for assertion of HRESET -Has highest priority and is taken 
immediately regardless of other pending exceptions or recoverability. (Includes 
power-on reset) 

MPC750 RISC Microprocessor User's Manual 



- Asynchronous, maskable, nonrecoverable 

Machine check exception-Has priority over any other pending exception 
except system reset for assertion of HRESET. Taken immediately regardless of 
recoverability. 

- Asynchronous, nonmaskable, recoverable 

System reset for SRESET -Has priority over any other pending exception 
except system reset for HRESET (or power-on reset), or machine check. Taken 
immediately when a recoverable state is reached. 

- Asynchronous, maskable, recoverable 

System management, performance monitor, thermal management, external, and 
decrementer interrupts-Before handling this type of exception, the next 
instruction in program order must complete. If that instruction causes another 
type of exception, that exception is taken and the asynchronous, maskable 
recoverable exception remains pending, until the instruction completes. Further 
instruction completion is halted. The asynchronous, maskable recoverable 
exception is taken when a recoverable state is reached. 

• Instruction-related exceptions. These exceptions are further organized into the point 
in instruction processing in which they generate an exception. 

- Instruction fetch 

lSI exceptions-Once this type of exception is detected, dispatching stops and 
the current instruction stream is allowed to drain out of the machine. If 
completing any of the instructions in this stream causes an exception, that 
exception is taken and the instruction fetch exception is discarded (but may be 
encountered again when instruction processing resumes). Otherwise, once all 
pending instructions have executed and a recoverable state is reached, the lSI 
exception is taken. 

- Instruction dispatch/execution 

Program, DSI, alignment, floating-point unavailable, system call, and instruction 
address breakpoint-This type of exception is determined during dispatch or 
execution of an instruction. The exception remains pending until all instructions 
before the exception-causing instruction in program order complete. The 
exception is then taken without completing the exception-causing instruction. If 
completing these previous instructions causes an exception, that exception takes 
priority over the pending instruction dispatch/execution exception, which is then 
discarded (but may be encountered again when instruction processing resumes). 

- Post-instruction execution 

Trace-Trace exceptions are generated following execution and completion of 
an instruction while trace mode is enabled. If executing the instruction produces 
conditions for another type of exception, that exception is taken and the post
instruction exception is forgotten for that instruction. 
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Note that these exception classifications correspond to how exceptions are prioritized, as 
described in Table 4-3. 

Table 4-3. MPC750 Exception Priorities 

Priority Exception Cause 

Asynchronous Exceptions (Interrupts) 

0 System reset Power on reset, assertion of HRESET and TRST (hard reset) 

1 Machine check Any enabled machine check condition (L 1 address or data parity error, L2 data 
parity error, assertion of TEA or MCP) 

2 System reset Assertion of SRESET (soft reset) 

3 System management Assertion of SMI 

4 External interrupt Assertion of INT 

5 Performance monitor Any programmer·specified performance monitor condition 

6 Oecrementer Oecrementer passes through zero 

7 Thermal management Any programmer·specified thermal management condition 

Instruction Fetch Exceptions 

0 lSI Any lSI exception condition 

Instruction Dispatch/Execution Exceptions 

0 Instruction address Any instruction address breakpoint exception condition 
breakpoint 

1 Program Occurrence of an illegal instruction, privileged instruction, or trap exception 
condition. Note that floating'point enabled program exceptions have lower priority. 

2 System call System Call (sc) instruction 

3 Floating·point Any floating'point unavailable exception condition 
unavailable 

4 Program A floating'point enabled exception condition (Iowest'priority program exception) 

5 DSI DSI exception due to eciwx, ecowx with EAR[E] = 0 (DSISR[11]). Lower priority 
OSI exception conditions are shown below. 

6 Alignment Any alignment exception condition, prioritized as follows: 
1 Floating'point access not word·aligned 
2 Imw, stmw, Iwarx, stwcx. not word·aligned 
3 eciwx or ecowx not word·aligned 
4 Multiple or string access with MSR[LE] set· 
5 dcbz to write-through or cache-inhibited page or cache is disabled 

7 OSI BAT page protection violation 

8 DSI Any access except cache operations to a segment where SR[T] = 1 (OSISR[5]) or 
an access crosses from a T = 0 segment to one where T = 1 (DSISR[5]) 

9 OSI TLB page protection violation 

10 OSI DABR address match 
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Table 4-3. MPC750 Exception Priorities (Continued) 

Priority I Exception I Cause 

Post-Instruction Execution Exceptions 

11 I Trace I MSR[SE] ; 1 (or MSR[BE] ; 1 for branches) 

System reset and machine check exceptions may occur at any time and are not delayed even 
if an exception is being handled. As a result, state information for an interrupted exception 
may be lost; therefore, these exceptions are typically nonrecoverable. An exception may not 
be taken immediately when it is recognized. 

4.3 Exception Processing 
When an exception is taken, the processor uses SRRO and SRRI to save the contents of the 
MSR for the current context and to identify where instruction execution should resume after 
the exception is handled. 

When an exception occurs, the address saved in SRRO helps determine where instruction 
processing should resume when the exception handler returns control to the interrupted 
process. Depending on the exception, this may be the address in SRRO or at the next address 
in the program flow. All instructions in the program flow preceding this one will have 
completed execution and no subsequent instruction will have begun execution. This may be 
the address of the instruction that caused the exception or the next one (as in the case of a 
system call, trace, or trap exception). The SRRO register is shown in Figure 4-1. 

SRRO (Holds EA for Instruction in Interrupted Program Flow) 

31 

Figure 4-1. Machine Status Save/Restore Register 0 (SRRO) 

SRRI is used to save machine status (selected MSR bits and possibly other status bits as 
well) on exceptions and to restore those values when an rfi instruction is executed. SRRI 
is shown in Figure 4-2. 

Exception·Specific Information and MSR Bit Values 

31 

Figure 4-2. Machine Status Save/Restore Register 1 (SRR1) 

For most exceptions, bits 2-4 and 10-12 of SRRI are loaded with exception-specific 
information and MSR[ 5-9, 16-31] are placed into the corresponding bit positions of SRRl. 

The MPC750's MSR is shown in Figure 4-3. 
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12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Figure 4-3. Machine State Register (MSR) 

The MSR bits are defined in Table 4-4. 

Table 4-4. MSR Bit Settings 

Bit(s) Name Description 

0 - Reserved. Full function.1 

1-4 - Reserved. Partial function.1 

5-9 - Reserved. Full function.1 

10-12 - Reserved. Partial function.1 

13 POW Power management enable 
0 Power management disabled (normal operation mode). 
1 Power management enabled (reduced power mode). 
Power management functions are implementation-dependent. See Chapter 10, "Power and Thermal 
Management." 

14 - Reserved. Implementation-specific 

15 ILE Exception little-end ian mode. When an exception occurs, this bit is copied into MSR[LE] to select the 
endian mode for the context established by the exception. 

16 EE External interrupt enable 
0 The processor delays recognition of external interrupts and decrementer exception conditions. 
1 The processor is enabled to take an external interrupt or the decrementer exception. 

17 PR Privilege level 
0 The processor can execute both user- and supervisor-level instructions. 
1 The processor can only execute user-level instructions. 

18 FP Floating-point available 
0 The processor prevents dispatch of floating-point instructions, including floating-point loads, 

stores, and moves. 
1 The processor can execute floating-point instructions and can take floating-point enabled 

program exceptions. 

19 ME Machine check enable 
0 Machine check exceptions are disabled. 
1 Machine check exceptions are enabled. 

20 FEO IEEE floating-point exception mode 0 (see Table 4-5). 

21 SE Single-step trace enable 
0 The processor executes instructions normally. 
1 The processor generates a single-step trace exception upon the successful execution of every 

instruction except rfi, isync, and sc. Successful execution means that the instruction caused 
no other exception. 
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Table 4-4. MSR Bit Settings (Continued) 

Bit(s) Name Description 

22 BE Branch trace enable 
a The processor executes branch instructions normally. 
1 The processor generates a branch type trace exception when a branch instruction executes 

successfully. 

23 FE1 IEEE floating-point exception mode 1 (see Table 4-5). 

24 - Reserved. This bit corresponds to the AL bit of the POWER architecture. 

25 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is prepended 
with Fs or as. In the following description, nnnnn is the offset of the exception. 
a Exceptions are vectored to the physical address OxOOOn_nnnn. 
1 Exceptions are vectored to the physical address OxFFFn_nnnn. 

26 IR Instruction address translation 
a Instruction address translation is disabled. 
1 Instruction address translation is enabled. 
For more information see Chapter 5, "Memory Management." 

27 DR Data address translation 
a Data address translation is disabled. 
1 Data address translation is enabled. 
For more information see Chapter 5, "Memory Management." 

28 - Reserved. Full function 1 

29 PM Performance monitor marked mode 
a Process is not a marked process. 
1 Process is a marked process. 
MPC750-specific; defined as reserved by the PowerPC architecture. For more information about 
the performance monitor, see Section 4.5.13, "Performance Monitor Interrupt (OxOOFOO)." 

30 RI Indicates whether system reset or machine check exception is recoverable. 
0 Exception is not recoverable. 
1 Exception is recoverable. 
The RI bit indicates whether from the perspective of the processor, it is safe to continue (that is, 
processor state data such as that saved to SRRO is valid), but it does not guarantee that the 
interrupted process is recoverable. 

31 LE Little-endian mode enable 
a The processor runs in big-endian mode. 
1 The processor runs in little-end ian mode. 

Note: 

1 Full function reserved bits are saved in SRR1 when an exception occurs; partial function reserved 
bits are not saved. 

The IEEE floating-point exception mode bits (FEO and FEl) together define whether 
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at 
all. As shown in Table 4-5, if either FEO or FEl are set, theMPC750 treats exceptions as 
precise. MSR bits are guaranteed to be written to SRRl when the first instruction of the 
exception handler is encountered. For further details, see Chapter 6, "Exceptions," of The 
Programming Environments Manual. 
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Table 4-5. IEEE Floating-Point Exception Mode Bits 

FEO FE1 Mode 

0 0 Floating-paint exceptions disabled 

0 1 Imprecise nonrecoverable. For this setting, the MPC750 operates in floating-point precise mode. 

1 0 Imprecise recoverable. For this setting, the MPC750 operates in floating-point precise mode .. 

1 1 Floating-point precise mode 

4.3.1 Enabling and Disabling Exceptions 
When a condition exists that may cause an exception to be generated, it must be determined 
whether the exception is enabled for that condition. 

• IEEE floating-point enabled exceptions (a type of program exception) are ignored 
when both MSR[FEO] and MSR[FEl] are cleared. If either bit is set, all IEEE 
enabled floating-point exceptions are taken and cause a program exception. 

• Asynchronous, maskable exceptions (such as the external and decrementer 
interrupts) are enabled by setting MSR[EE]. When MSR[EE] = 0, recognition of 
these exception conditions is delayed. MSR[EE] is cleared automatically when an 
exception is taken to delay recognition of conditions causing those exceptions. 

• A machine check exception can occur only if the machine check enable bit, 
MSR[ME], is set. If MSR[ME] is cleared, the processor goes directly into checkstop 
state when a machine check exception condition occurs. Individual machine check 
exceptions can be enabled and disabled through bits in the HIDO register, which is 
described in Table 4-8. 

• System reset exceptions cannot be masked. 

4.3.2 Steps for Exception Processing 
After it is determined that the exception can be taken (by confirming that any instruction
caused exceptions occurring earlier in the instruction stream have been handled, and by 
confirming that the exception is enabled for the exception condition), the processor does 
the following: 

1. SRRO is loaded with an instruction address that depends on the type of exception. 
See the individual exception description for details about how this register is used 
for specific exceptions. 

2. SRR1[1-4, lO-15] are loaded with information specific to the exception type. 

3. SRR1[5-9, 16-31] are loaded with a copy of the corresponding MSR bits. 
Depending on the implementation, reserved bits may not be copied. 

4-10 MPC750 RISC Microprocessor User's Manual 



4. The MSR is set as described in Table 4-4. The new values take effect as the first 
instruction of the exception-handler routine is fetched. 

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore, 
address translation is disabled for both instruction fetches and data accesses 
beginning with the first instruction of the exception-handler routine. 

5. Instruction fetch and execution resumes, using the new MSR value, at a location 
specific to the exception type. The location is determined by adding the exception's 
vector (see Table 4-2) to the base address determined by MSR[IP], If IP is cleared, 
exceptions are vectored to the physical address OxOOOn_nnnn. IfIP is set, exceptions 
are vectored to the physical address OxFFFn_nnnn. For a machine check exception 
that occurs when MSR[ME] = 0 (machine check exceptions are disabled), the 
checkstop state is entered (the machine stops executing instructions). See 
Section 4.5.2, "Machine Check Exception (Ox00200)." 

4.3.3 Setting MSR[RI] 
An operating system may handle MSR[RI] as follows: 

• In the machine check and system reset exceptions-If MSR[RI] is cleared, the 
exception is not recoverable. If it is set, the exception is recoverable with respect to 
the processor. 

• In each exception handler-When enough state information has been saved that a 
machine check or system reset exception can reconstruct the previous state, set 
MSR[RI], 

• In each exception handler-Clear MSR[RI], set SRRO and SRRI appropriately, and 
then execute rfi. 

• Note that the RI bit being set indicates that, with respect to the processor, enough 
processor state data remains valid for the processor to continue, but it does not 
guarantee that the interrupted process can resume. 

4.3.4 Returning from an Exception Handler 
The Return from Interrupt (rfi) instruction performs context synchronization by allowing 
previously-issued instructions to complete before returning to the interrupted process. In 
general, execution of the rfi instruction ensures the following: 

• All previous instructions have completed to a point where they can no longer cause 
an exception. If a previous instruction causes a direct -store interface error exception, 
the results must be determined before this instruction is executed. 

• Previous instructions complete execution in the context (privilege, protection, and 
address translation) under which they were issued. 

• The rfi instruction copies SRRI bits back into the MSR. 

• Instructions fetched after this instruction execute in the context established by this 
instruction. 

• Program execution resumes at the instruction indicated by SRRO 
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For a complete description of context synchronization, refer to Chapter 6, "Exceptions," of 
The Programming Environments Manual. 

4.4 Process Switching 
The following instructions are useful for restoring proper context during process switching: 

• The sync instruction orders the effects of instruction execution. All instructions 
previously initiated appear to have completed before the sync instruction completes, 
and no subsequent instructions appear to be initiated until the sync instruction 
completes. For an example showing use of sync, see Chapter 2, "PowerPC Register 
Set," of The Programming Environments Manual. 

• The isync instruction waits for all previous instructions to complete and then 
discards any fetched instructions, causing subsequent instructions to be fetched (or 
refetched) from memory and to execute in the context (privilege, translation, and 
protection) established by the previous instructions. 

• The stwcx. instruction clears any outstanding reservations, ensuring that an lwarx 
instruction in an old process is not paired with an stwcx. instruction in a new one. 

The operating system should set MSR[RI] as described in Section 4.3.3, "Setting 
MSR[RI]." 

4.5 Exception Definitions 
Table 4-6 shows all the types of exceptions that can occur with the MPC750 and MSR 
settings when the processor goes into supervisor mode due to an exception. Depending on 
the exception, certain of these bits are stored in SRRI when an exception is taken. 

Table 4-6. MSR Setting Due to Exception 

MSR Bit 
Exception Type 

POW ILE EE PR FP ME FEO SE BE FE1 IP IR DR PM RI LE 

System reset 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Machine check 0 - 0 0 0 0 0 0 0 0 - 0 0 0 0 ILE 

DSI 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

lSI 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

External interrupt 0 - 0 p 0 - 0 0 0 0 - 0 0 0 0 ILE 

Alignment 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Program 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Floating-point unavailable 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Decrementer interrupt 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

System call 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 
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Table 4-6. MSR Setting Due to Exception (Continued) 

MSR Bit 
Exception Type 

POW ILE EE PR FP ME FED SE BE FE1 IP IR DR PM RI LE 

Trace exception 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

System management 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Performance monitor 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

Thermal management 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE 

o Bit is cleared. 
ILE Bit is copied from the MSR[ILE]. 

Bit is not altered 
Reserved bits are read as if written as O. 

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the 
bit is cleared, exceptions are vectored to the physical address OxOOOn_nnnn (where nnnnn 
is the vector offset); if IP is set, exceptions are vectored to physical address OxFFFn_nnnn. 
Table 4-2 shows the exception vector offset of the first instruction of the exception handler 
routine for each exception type. 

4.5.1 System Reset Exception (Ox00100) 
The MPC750 implements the system reset exception as defined in the PowerPC 
architecture (OEA). The system reset exception is a nonmaskable, asynchronous exception 
signaled to the processor through the assertion of system-defined signals. In the MPC750, 
the exception is signaled by the assertion of either the SRESET or HRESET inputs, 
described more fully in Chapter 7, "Signal Descriptions." 

Table 4-7 lists register settings when a system reset exception is taken. 

Table 4-7. System Reset Exception-Register Settings 

Register Setting Description 

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRR1 0 Loaded with equivalent MSR bits 
1-4 Cleared 
5-9 Loaded with equivalent MSR bits 
10-15 Cleared 
16-31 Loaded with equivalent MSR bits 
Note that if the processor state is corrupted to the extent that execution cannot resume reliably, 
MSR[RI] (SRR1[30]) is cleared. 

MSR POW 0 FP 0 BE 0 DR 0 
ILE - ME - FE1 0 PM 0 
EE 0 FEO 0 IP - RI 0 
PR 0 SE 0 IR 0 LE Set to value of ILE 

Chapter 4. Exceptions 4-13 



If SRESET is asserted, the processor is first put in a recoverable state. To do this, the 
MPC750 allows any instruction at the point of completion to either complete or take an 
exception, blocks completion of any following instructions and allows the completion 
queue to drain. The state before the exception occurred is then saved as specified in the 
PowerPC architecture and instruction fetching begins at the system reset interrupt vector 
offset, OxOOlOO. The vector address on a soft reset depends on the setting of MSR[IP] 
(either OxOOOO_OlOO or OxFFFO_OlOO). Soft resets are third in priority, after hard reset and 
machine check. This exception is recoverable provided attaining a recoverable state does 
not generate a machine check. 

SRESET is an edge-sensitive signal that can be asserted and deasserted asynchronously, 
provided the minimum pulse width specified in the hardware specifications is met. 
Asserting SRESET causes the MPC750 to take a system reset exception. This exception 
modifies the MSR, SRRO, and SRRl, as described in The Programming Environments 
Manual. Unlike hard reset, soft reset does not directly affect the states of output signals. 
Attempts to use SRESET during a hard reset sequence or while the JTAG logic is non-idle 
cause unpredictable results. 

A hard reset is initiated by asserting HRESET. Hard reset is used primarily for power-on 
reset (POR) (in which case TRSf must also be asserted), but can also be used to restart a 
running processor. The HRESET signal must be asserted during power up and must remain 
asserted for a period that allows the PLL to achieve lock and the internal logic to be reset. 
This period is specified in the hardware specifications. The MPC750 internal state after the 
hard reset interval is defined in Table 2-19. If HRESET is asserted for less than this amount 
of time, the results are not predictable. If HRESET is asserted during normal operation, all 
operations cease and the machine state is lost. 

The MPC750 implements HIDO[NHR], which helps software distinguish a hard reset from 
a soft reset. Because this bit is cleared by a hard reset, but not by a soft reset, software can 
set this bit after a hard reset and tell whether a subsequent reset is a hard or soft reset by 
examining whether this bit is still set. See Section 2.1.2.2, "Hardware Implementation
Dependent Register 0." 

4.5.2 Machine Check Exception (Ox00200) 
The MPC750 implements the machine check exception as defined in the PowerPC 
architecture (OEA). It conditionally initiates a machine check exception after an address or 
data parity error occurred on the bus or in either the Ll or L2 cache, after receiving a 
qualified transfer error acknowledge (TEA) indication on the MPC750 bus, or after the 
machine check interrupt (MCP) signal had been asserted. As defined in the OEA, the 
exception is not taken if MSR[ME] is cleared, in which case the processor enters checkstop 
state. 
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Certain machine check conditions can be enabled and disabled using HIDO bits, as 
described in Table 4-8. 

Table 4-8. HIDO Machine Check Enable Bits 

Bit Name Function 

0 EMCP Enable MCP. The primary purpose of this bit is to mask out further machine check exceptions caused 
by assertion of MCP, similar to how MSR[EE] can mask external interrupts. 
0 Masks MCP. Asserting MCP does not generate a machine check exception or a checkstop. 
1 Asserting MCP causes a checkstop if MSR[ME] = 0 or a machine check exception if MSR[ME] = 1. 

1 DBP Enable/disable 60x bus address and data parity generation. 
0 If address or data parity is not used by the system and the respective parity checking is disabled 

(HIDO[EBA] or HIDO[EBD] = 0), input receivers for those signals are disabled, do not require pull-up 
resistors, and therefore should be left unconnected. If all parity generation is disabled, all parity 
checking should also be disabled and parity Signals need not be connected. 

1 Parity generation is enabled. 

2 EBA Enable/disable 60x bus address parity checking. 
0 Prevents address parity checking. 
1 Allows a address parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if 

MSR[ME] = 1. 
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity. 

3 EBD Enable 60x bus data parity checking 
0 Parity checking is disabled. 
1 Allows a data parity error to cause a checkstop if MSR[ME] = 0 or a machine check exception if 

MSR[ME] = 1. 
EBA and EBD allow the processor to operate with memory subsystems that do not generate parity. 

15 NHR Not hard reset (software use only) 
0 A hard reset occurred if software had previously set this bit 
1 A hard reset has not occurred. 

A TEA indication on the bus can result from any load or store operation initiated by the 
processor. In general, TEA is expected to be used by a memory controller to indicate that a 
memory parity error or an uncorrectable memory ECC error has occurred. Note that the 
resulting machine check exception is imprecise and unordered with respect to the 
instruction that originated the bus operation. 

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and 
handled; otherwise, the processor generates an internal checks top condition. When a 
processor is in checkstop state, instruction processing is suspended and generally cannot 
continue without restarting the processor. Note that many conditions may lead to the 
checks top condition; the disabled machine check exception is only one of these. 

A machine check exception may result from referencing a nonexistent physical address, 
either directly (with MSR[DR] = 0) or through an invalid translation. If a dcbz instruction 
introduces a block into the cache associated with a nonexistent physical address, a machine 
check exception can be delayed until an attempt is made to store that block to main memory. 
Not all PowerPC processors provide the same level of error checking. Checkstop sources 
are implementation-dependent. 
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Machine check exceptions are enabled when MSR[ME] = 1; this is described in the 
following section, Section 4.5.2.1, "Machine Check Exception Enabled (MSR[ME] = 0." 
If MSR[ME] = 0 and a machine check occurs, the processor enters the checkstop state. 
Checkstop state is described in Section 4.5.2.2, "Checkstop State (MSR[ME] = 0)." 

4.5.2.1 Machine Check Exception Enabled (MSR[ME] = 1) 
Machine check exceptions are enabled when MSR[ME] = 1. When a machine check 
exception is taken, registers are updated as shown in Table 4-9. 

Table 4-9. Machine Check Exception-Register Settings 

Register Setting Description 

SRRO On a best-effort basis the MPC750 can set this to an EA of some instruction that was executing or about to 

SRRI 

MSR 

be executing when the machine check condition occurred. 

0-10 Cleared 
11 Set when an L2 data cache parity error is detected, otherwise zero 
12 Set when MCP signal is asserted, otherwise zero 
13 Set when TEA signal is asserted, otherwise zero 
14 Set when a data bus parity error is detected, otherwise zero 
15 Set when an address bus parity error is detected, otherwise zero 
16-31 MSR[I6-31] 

POW 0 FP 0 BE 0 DR 0 
ILE - ME 0 FEI 0 PM 0 
EE 0 FEO 0 IP - RI 0 
PR 0 SE 0 IR 0 LE Set to value of ILE 

Note that to handle another machine check exception, the exception handler should set MSR[ME] as soon 
as it is practical after a machine check exception is taken. Otherwise, subsequent machine check excep
tions cause the processor to enter the checkstop state. 

The machine check exception is usually unrecoverable in the sense that execution cannot 
resume in the context that existed before the exception. If the condition that caused the 
machine check does not otherwise prevent continued execution, MSR[ME] is set to allow 
the processor to continue execution at the machine check exception vector address. 
Typically, earlier processes cannot resume; however, operating systems can use the 
machine check exception handler to try to identify and log the cause of the machine check 
condition. 

When a machine check exception is taken, instruction fetching resumes at offset Ox00200 
from the physical base address indicated by MSR[IP]. 

4.5.2.2 Checkstop State (MSR[ME] = 0) 
If MSR[ME] = 0 and a machine check occurs, the processor enters the checks top state. 

When a processor is in checks top state, instruction processing is suspended and generally 
cannot resume without the processor being reset. The contents of all latches are frozen 
within two cycles upon entering checks top state. 
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4.5.3 051 Exception (Ox00300) 
A DSI exception occurs when no higher priority exception exists and an error condition 
related to a data memory access occurs. The DSI exception is implemented as it is defined 
in the PowerPC architecture (OEA). In case of a TLB miss for a load, store, or cache 
operation, a DSI exception is taken if the resulting hardware table search causes a page 
fault. 

On the MPC750, a DSI exception is taken when a load or store is attempted to a direct-store 
segment (SR[T] = 1). In the MPC750, a floating-point load or store to a direct-store 
segment causes a DSI exception rather than an alignment exception, as specified by the 
PowerPC architecture. 

The MPC750 also implements the data address breakpoint facility, which is defined as 
optional in the PowerPC architecture and is supported by the optional data address 
breakpoint register (DABR). Although the architecture does not strictly prescribe how this 
facility must be implemented, the MPC750 follows the recommendations provided by the 
architecture and described in the Chapter 2, "Programming Model," and Chapter 6 
"Exceptions," in The Programming Environments Manual. 

4.5.4 151 Exception (Ox00400) 
An lSI exception occurs when no higher priority exception exists and an attempt to fetch 
the next instruction fails. This exception is implemented as it is defined by the PowerPC 
architecture (OEA), and is taken for the following conditions: 

• The effective address cannot be translated. 
• The fetch access is to a no-execute segment (SR[N] = 1). 

• The fetch access is to guarded storage and MSR[IR] = l. 
• The fetch access is to a segment for which SR[T] is set. 
• The fetch access violates memory protection. 

When an lSI exception is taken, instruction fetching resumes at offset Ox00400 from the 
physical base address indicated by MSR[IP]. 

4.5.5 External Interrupt Exception (Ox00500) 
An external interrupt is signaled to the processor by the assertion of the external interrupt 
signal (INT). The INT signal is expected to remain asserted until the MPC750 takes the 
external interrupt exception. If INT is negated early, recognition of the interrupt request is 
not guaranteed. After the MPC750 begins execution of the external interrupt handler, the 
system can safely negate the INT. When the MPC750 detects assertion of INT, it stops 
dispatching and waits for all pending instructions to complete. This allows any instructions 
in progress that need to take an exception to do so before the external interrupt is taken. 
After all instructions have vacated the completion buffer, the MPC750 takes the external 
interrupt exception as defined in the PowerPC architecture (OEA). 
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An external interrupt may be delayed by other higher priority exceptions or if MSR[EE] is 
cleared when the exception occurs. Register settings for this exception are described in 
Chapter 6, "Exceptions," in The Programming Environments Manual. 

When an external interrupt exception is taken, instruction fetching resumes at offset 
Ox00500 from the physical base address indicated by MSR[IP]. 

4.5.6 Alignment Exception (Ox00600) 
The MPC750 implements the alignment exception as defined by the PowerPC architecture 
(OEA). An alignment exception is initiated when any of the following occurs: 

• The operand of a floating-point load or store is not word-aligned. 
• The operand of lmw, stmw, lwarx, or stwcx. is not word-aligned. 
• The operand of dcbz is in a page that is write-through or cache-inhibited. 

• An attempt is made to execute dcbz when the data cache is disabled. 
• An eciwx or ecowx is not word-aligned 
• A multiple or string access is attempted with MSR[LE] set 

Note that in the MPC750, a floating-point load or store to a direct-store segment causes a 
DSI exception rather than an alignment exception, as specified by the PowerPC 
architecture. For more information, see 4.5.3, "DSI Exception (Ox00300)." 

4.5.7 Program Exception (Ox00700) 
The MPC750 implements the program exception as it is defined by the PowerPC 
architecture (OEA). A program exception occurs when no higher priority exception exists 
and one or more of the exception conditions defined in the OEA occur. 

The MPC750 invokes the system illegal instruction program exception when it detects any 
instruction from the illegal instruction class. The MPC750 fully decodes the SPR field of 
the instruction. If an undefined SPR is specified, a program exception is taken. 

The VISA defines mtspr and mfspr with the record bit (Rc) set as causing a program 
exception or giving a boundedly-undefined result. In the MPC750, the appropriate 
condition register (CR) should be treated as undefined. Likewise, the PowerPC architecture 
states that the Floating Compared Unordered (fcmpu) or Floating Compared Ordered 
(fcmpo) instruction with the record bit set can either cause a program exception or provide 
a boundedly-undefined result. In the MPC750, an the BF field in an instruction encoding 
for these cases is considered undefined. 

The MPC750 does not support either of the two floating-point imprecise modes supported 
by the PowerPC architecture. Unless exceptions are disabled (MSR[FEO] = MSR[FEl] = 
0), all floating-point exceptions are treated as precise. 
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When a program exception is taken, instruction fetching resumes at offset Ox00700 from 
the physical base address indicated by MSR[IP]. Chapter 6, "Exceptions," in The 
Programming Environments Manual describes register settings for this exception. 

4.5.B Floating-Point Unavailable Exception (OxOOBOO) 
The floating-point unavailable exception is implemented as defined in the PowerPC 
architecture. A floating-point unavailable exception occurs when no higher priority 
exception exists, an attempt is made to execute a floating-point instruction (including 
floating-point load, store, or move instructions), and the floating-point available bit in the 
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in 
Chapter 6, "Exceptions," in The Programming Environments Manual. 

When a floating-point unavailable exception is taken, instruction fetching resumes at offset 
Ox00800 from the physical base address indicated by MSR[IP]. 

4.5.9 Decrementer Exception (Ox00900) 
The decrementer exception is implemented in the MPC750 as it is defined by the PowerPC 
architecture. The decrementer exception occurs when no higher priority exception exists, a 
decrementer exception condition occurs (for example, the decrementer register has 
completed decrementing), and MSR[EE] = 1. In the MPC750, the decrementer register is 
decremented at one fourth the bus clock rate. Register settings for this exception are 
described in Chapter 6, "Exceptions," in The Programming Environments Manual. 

When a decrementer exception is taken, instruction fetching resumes at offset Ox00900 
from the physical base address indicated by MSR[IP]. 

4.5.10 System Call Exception (OxOOCOO) 
A system call exception occurs when a System Call (sc) instruction is executed. In the 
MPC750, the system call exception is implemented as it is defined in the PowerPC 
architecture. Register settings for this exception are described in Chapter 6, "Exceptions," 
in The Programming Environments Manual. 

When a system call exception is taken, instruction fetching resumes at offset OxOOCOO from 
the physical base address indicated by MSR[IP]. 

4.5.11 Trace Exception (OxOODOO) 
The trace exception is taken if MSR[SE] = 1 or if MSR[BE] = 1 and the currently 
completing instruction is a branch. Each instruction considered during trace mode 
completes before a trace exception is taken. When a trace exception is taken, the values 
written to SRRI are implementation-specific; those values for the MPC750 are shown in 
Table 4-10. 
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Table 4-10. Trace Exception-SRR1 Settings 

Register Setting 

SRR1 0-2 010 
3 Set for a load instruction, otherwise cleared 
4 Set for a store instruction, otherwise cleared 
5-9 Cleared 
10 Set for Iswx or stswx, otherwise cleared 
11 Set for mtspr to SDR1, EAR, HIDO, PIR, IBATs, DBATs, SRs 
12 Set for taken branch, otherwise cleared 
13-15 Cleared 
16-31 MSR[16-31] 

Implementation Note-The MPC750 processor diverges from the PowerPC architecture 
in that it does not take trace exceptions on the isync instruction. 

When a trace exception is taken, instruction fetching resumes as offset OxOODOO from the 
base address indicated by MSR[IP]. 

4.5.12 Floating-Point Assist Exception (OxOOEOO) 
The optional floating-point assist exception defined by the PowerPC architecture is not 
implemented in the MPC750. 

4.5.13 Performance Monitor Interrupt (OxOOFOO) 
The MPC750 microprocessor provides a performance monitor facility to monitor and count 
predefined events such as processor clocks, misses in either the instruction cache or the data 
cache, instructions dispatched to a particular execution unit, mispredicted branches, and 
other occurrences. The count of such events can be used to trigger the performance monitor 
exception. The performance monitor facility is not defined by the PowerPC architecture. 

The performance monitor can be used for the following: 

• To increase system performance with efficient software, especially in a 
multiprocessing system. Memory hierarchy behavior must be monitored and studied 
to develop algorithms that schedule tasks (and perhaps partition them) and that 
structure and distribute data optimally. 

To help system developers bring up and debug their systems. 

The performance monitor uses the following SPRs: 

The performance monitor counter registers (PMCl-PMC4) are used to record the 
number of times a certain event has occurred. UPMC l-UPMC4 provide user-level 
read access to these registers. 

• The monitor mode control registers (MMCRO-MMCRl) are used to enable various 
performance monitor interrupt functions. UMMCRO-UMMCRI provide user-level 
read access to these registers. 
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• The sampled instruction address register (SIA) contains the effective address of an 
instruction executing at or around the time that the processor signals the 
performance monitor interrupt condition. The USIA register provides user-level 
read access to the SIA. 

Table 4-11 lists register settings when a performance monitor interrupt exception is taken. 

Table 4-11. Performance Monitor Interrupt Exception-Register Settings 

Register Setting Description 

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRR1 0 Loaded with equivalent MSR bits 
1-4 Cleared 
5-9 Loaded with equivalent MSR bits 
10-15 Cleared 
16-31 Loaded with equivalent MSR bits 

MSR POW 0 FP 0 BE 0 DR 0 
ILE - ME - FE1 0 PM 0 
EE 0 FEO 0 IP - RI 0 
PR 0 SE 0 IR 0 LE Set to value of ILE 

As with other PowerPC exceptions, the performance monitor interrupt follows the normal 
PowerPC exception model with a defined exception vector offset (OxOOFOO). The priority 
of the performance monitor interrupt lies between the external interrupt and the 
decrementer interrupt (see Table 4-3). The contents of the SIA are described in 
Section 2.1.2.4, "Performance Monitor Registers." The performance monitor is described 
in Chapter 11, "Performance Monitor." 

4.5.14 Instruction Address Breakpoint Exception (Ox01300) 
An instruction address breakpoint interrupt occurs when the following conditions are met: 

• The instruction breakpoint address IABR[O-29] matches EA[O-29] of the next 
instruction to complete in program order. The instruction that triggers the instruction 
address breakpoint exception is not executed before the exception handler is 
invoked. 

• The translation enable bit (IABR[TE]) matches MSR[IR]. 

• The breakpoint enable bit (IABR[BE]) is set. The address match is also reported to 
the JTAGICOP block, which may subsequently generate a soft or hard reset. The 
instruction tagged with the match does not complete before the breakpoint exception 
is taken. 
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Table 4-12 lists register settings when an instruction address breakpoint exception is taken. 

Table 4-12. Instruction Address Breakpoint Exception-Register Settings 

Register Setting Description 

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRR1 0 Loaded with equivalent MSR bits 
1-4 Cleared 
5-9 Loaded with equivalent MSR bits 
10-15 Cleared 
16-31 Loaded with equivalent MSR bits 

MSR POW 0 FP 0 BE 0 DR 0 
ILE - ME - FE1 0 PM 0 
EE 0 FEO 0 IP - RI 0 
PR 0 SE 0 IR 0 LE Set to value of ILE 

The MPC750 requires that an mtspr to the IABR be followed by a context-synchronizing 
instruction. The MPC750 cannot generate a breakpoint response for that context
synchronizing instruction if the breakpoint is enabled by the mtspr(IABR) immediately 
preceding it. The MPC750 also cannot block a breakpoint response on the context
synchronizing instruction if the breakpoint was disabled by the mtspr(IABR) instruction 
immediately preceding it. The format of the IABR register is shown in Section 2.1.2.1, 
"Instruction Address Breakpoint Register (IABR)." 

When an instruction address breakpoint exception is taken, instruction fetching resumes as 
offset Ox01300 from the base address indicated by MSR[IP]. 

4.5.15 System Management Interrupt (Ox01400) 
The MPC750 implements a system management interrupt exception, which·is not defined 
by the PowerPC architecture. The system management exception is very similar to the 
external interrupt exception and is particularly useful in implementing the nap mode. It has 
priority over an external interrupt (see Table 4-3), and it uses a different vector in the 
exception table (offset OxOI400). 
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Table 4-13 lists register settings when a system management interrupt exception is taken. 

Table 4-13. System Management Interrupt Exception-Register Settings 

Register Setting Description 

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRRl 0 Loaded with equivalent MSR bits 
1-4 Cleared 
5-9 Loaded with equivalent MSR bits 
10-15 Cleared 
16-31 Loaded with equivalent MSR bits 

MSR POW 0 FP 0 BE 0 DR 0 
ILE - ME - FEl 0 PM 0 
EE 0 FEO 0 IP - RI 0 
PR 0 SE 0 IR 0 LE Set to value of ILE 

Like the external interrupt, a system management interrupt is signaled to the MPC750 by 
the assertion of an input signal. The system management interrupt signal (SMI) is expected 
to remain asserted until the interrupt is taken. If SMI is negated early, recognition of the 
interrupt request is not guaranteed. After the MPC750 begins execution of the system 
management interrupt handler, the system can safely negate SM!. After the assertion of 
SMI is detected, the MPC750 stops dispatching instructions and waits for all pending 
instructions to complete. This allows any instructions in progress that need to take an 
exception to do so before the system management interrupt is taken. 

When a system management interrupt exception is taken, instruction fetching resumes as 
offset Ox01400 from the base address indicated by MSR[IP]. 
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4.5.16 Thermal Management Interrupt Exception (Ox01700) 
A thermal management interrupt is generated when the junction temperature crosses a 
threshold programmed in either THRMI or THRM2. The exception is enabled by the TIE 
bit of either THRM1 or THRM2, and can be masked by setting MSR[EE]. 

Table 4-14 lists register settings when a thermal management interrupt exception is taken. 

Table 4-14. Thermal Management Interrupt Exception-Register Settings 

Register Setting Description 

SRRa Set to the effective address of the instruction that the processor would have attempted to execute next 
if no exception conditions were present. 

SRR1 a Loaded with equivalent MSR bits 
1-4 Cleared 
5-9 Loaded with equivalent MSR bits 
10-15 Cleared 
16-31 Loaded with equivalent MSR bits 

MSR POW a FP a BE 0 DR a 
ILE - ME - FE1 a PM a 
EE a FEa a IP - RI a 
PR a SE a IR a LE Set to value of ILE 

The thermal management interrupt is similar to the system management and external 
interrupts. The MPC750 requires the next instruction in program order to complete or take 
an exception, blocks completion of any following instructions, and allows the completed 
store queue to drain. Any exceptions encountered in this process are taken first and the 
thermal management interrupt exception is delayed until a recoverable halt is achieved, at 
which point the MPC750 saves the machine state, as shown in Table 4-14. When a thermal 
management interrupt exception is taken, instruction fetching resumes as offset Ox01700 
from the base address indicated by MSR[IP]. 

Chapter 10, "Power and Thermal Management," gives details about thermal management. 
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Chapter 5 
Memory Management 
This chapter describes the MPC750 microprocessor's implementation of the memory 
management unit (MMU) specifications provided by the operating environment 
architecture (OEA) for PowerPC processors. The primary function of theMMU in a 
PowerPC processor is the translation of logical (effective) addresses to physical addresses 
(referred to as real addresses in the architecture specification) for memory accesses and I/O 
accesses (I/O accesses are assumed to be memory-mapped). In addition, the MMU 
provides access protection on a segment, block, or page basis. This chapter describes the 
specific hardware used to implement the MMU model of the OEA in the MPC750. Refer 
to Chapter 7, "Memory Management," in The Programming Environments Manual for a 
complete description of the conceptual model. Note that the MPC750 does not implement 
the optional direct-store facility and it is not likely to be supported in future devices. 

Two general types of memory accesses generated by PowerPC processors require address 
translation-instruction accesses and data accesses generated by load and store 
instructions. Generally, the address translation mechanism is defined in terms of the 
segment descriptors and page tables PowerPC processors use to locate the 
effective-to-physical address mapping for memory accesses. The segment information 
translates the effective address to an interim virtual address, and the page table information 
translates the interim virtual address to a physical address. 

The segment descriptors, used to generate the interim virtual addresses, are stored as 
on-chip segment registers on 32-bit implementations (such as the MPC750). In addition, 
two translation lookaside buffers (TLBs) are implemented on the MPC750 to keep 
recently-used page address translations on-chip. Although the PowerPC OEA describes one 
MMU (conceptually), the MPC750 hardware maintains separate TLBs and table search 
resources for instruction and data accesses that can be performed independently (and 
simultaneously). Therefore, the MPC750 is described as having two MMUs, one for 
instruction accesses (IMMU) and one for data accesses (DMMU). 

The block address translation (BAT) mechanism is a software-controlled array that stores 
the available block address translations on-chip. BAT array entries are implemented as pairs 
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There 
are separate instruction and data BAT mechanisms, and in the MPC750, they reside in the 
instruction and data MMUs, respectively. 
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The MMUs, together with the exception processing mechanism, provide the necessary 
support for the operating system to implement a paged virtual memory environment and for 
enforcing protection of designated memory areas. Exception processing is described in 
Chapter 4, "Exceptions." Section 4.3, "Exception Processing," describes the MSR, which 
controls some of the critical functionality of the MMUs. 

5.1 MMU Overview 
The MPC750 implements the memory management specification of the PowerPC OEA for 
32-bit implementations. Thus, it provides 4 Gbytes of effective address space accessible to 
supervisor and user programs, with a 4-Kbyte page size and 256-Mbyte segment size. In 
addition, the MMUs of 32-bit PowerPC processors use an interim virtual address (52 bits) 
and hashed page tables in the generation of 32-bit physical addresses. PowerPC processors 
also have a BAT mechanism for mapping large blocks of memory. Block sizes range from 
128 Kbyte to 256 Mbyte and are software-programmable. 

Basic features of the MPC750 MMU implementation defined by the OEA are as follows: 

• Support for real addressing mode-Effective-to-physical address translation can be 
disabled separately for data and instruction accesses. 

• Block address translation-Each of the BAT array entries (four IBAT entries and 
four DBAT entries) provides a mechanism for translating blocks as large as 
256 Mbytes from the 32-bit effective address space into the physical memory space. 
This can be used for translating large address ranges whose mappings do not change 
frequently. 

• Segmented address translation-The 32-bit effective address is extended to a 52-bit 
virtUal address by substituting 24 bits of upper address bits from the segment 
register, for the 4 upper bits of the EA, which are used as an index into the segment 
register file. This 52-bit virtual address space is divided into 4-Kbyte pages, each of 
which can be mapped to a physical page. 

The MPC750 also provides the following features that are not required by the PowerPC 
architecture: 

5-2 

• Separate translation lookaside buffers (TLBs)-The 128-entry, two-way 
set-associative ITLBs and DTLBs keep recently-used page address translations 
on-chip. 

• Table search operations performed in hardware-The 52-bit virtual address is 
formed and the MMU attempts to fetch the PTE, which contains the physical 
address, from the appropriate TLB on-chip. If the translation is not found in a TLB 
(that is, a TLB miss occurs), the hardware performs a table search operation (using 
a hashing function) to search for the PTE. 

• TLB invalidation-The MPC750 implements the optional TLB Invalidate Entry 
(tlbie) and TLB Synchronize (tlbsync) instructions, which can be used to invalidate 
TLB entries. For more information .on the tlbie and tlbsync instructions, see 
Section 5.4.3.2, "TLB Invalidation." 
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Table 5-1 summarizes the MPC750 MMU features, including those defined by the 
PowerPC architecture (OEA) for 32-bit processors and those specific to the MPC750. 

Table 5-1. MMU Feature Summary 

Architecturally 
Feature Category Defined! Feature 

MPC750-Specific 

Address ranges Architecturally defined 232 bytes of effective address 

252 bytes of virtual address 

232 bytes of physical address 

Page size Architecturally defined 4 Kbytes 

Segment size Architecturally defined 256 Mbytes 

Block address Architecturally defined Range of 128 Kbyte-256 Mbyte sizes 
translation 

Implemented with IBAT and DBAT registers in BAT array 

Memory protection Architecturally defined Segments selectable as no·execute 

Pages selectable as user/supervisor and read-only or guarded 

Blocks selectable as user/supervisor and read-only or guarded 

Page history Architecturally defined Referenced and changed bits defined and maintained 

Page address Architecturally defined Translations stored as PTEs in hashed page tables in memory 
translation 

Page table size determined by mask in SDR1 register 

TLBs Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync 
instructions in MPC750) 

MPC750-specific 128·entry, two-way set associative ITLB 
128·entry, two-way set associative DTLB 
LRU replacement algorithm 

Segment descriptors Architecturally defined Stored as segment registers on-chip (two identical copies 
maintained) 

Page table search MPC750-specific The MPC750 performs the table search operation in hardware. 
support 
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5.1.1 Memory Addressing 
A program references memory using the effective (logical) address computed by the 
processor when it executes a load, store, branch, or cache instruction, and when it fetches 
the next instruction. The effective address is translated to a physical address according to 
the procedures described in Chapter 7, "Memory Management," in The Programming 
Environments Manual, augmented with information in this chapter. The memory 
subsystem uses the physical address for the access. 

For a complete discussion of effective address calculation, see Section 2.3.2.3, "Effective 
Address Calculation." 

5.1.2 MMU Organization 
Figure 5-1 shows the conceptual organization of a PowerPC MMU in a 32-bit 
implementation; note that it does not describe the specific hardware used to implement the 
memory management function for a particular processor. Processors may optionally 
implement on-chip TLBs, hardware support for the automatic search of the page tables for 
PTEs, and other hardware features (invisible to the system software) not shown. 

The MPC750 maintains two on-chip TLBs with the following characteristics: 

• 128 entries, two-way set associative (64 x 2), LRU replacement 

• Data TLB supports the DMMU; instruction TLB supports the IMMU 
• Hardware TLB update 
• Hardware update of referenced (R) and changed (C) bits in the translation table 

In the event of a TLB miss, the hardware attempts to load the TLB based on the results of 
a translation table search operation. 

Figure 5-2 and Figure 5-3 show the conceptual organization of the MPC750 instruction and 
data MMUs, respectively. The instruction addresses shown in Figure 5-2 are generated by 
the processor for sequential instruction fetches and addresses that correspond to a change 
of program flow. Data addresses shown in Figure 5-3 are generated by load, store, and 
cache instructions. 

As shown in the figures, after an address is generated, the high-order bits of the effective 
address, EA[0-19] (or a smaller set of address bits, EA[O-n], in the cases of blocks), are 
translated into physical address bits PA[O-19]. The low-order address bits, A[20-31], are 
untranslated and are therefore identical for both effective and physical addresses. After 
translating the address, the MMUs pass the resulting 32-bit physical address to the memory 
subsystem. 
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The MMUs record whether the translation is for an instruction or data access, whether the 
processor is in user or supervisor mode and, for data accesses, whether the access is a load 
or a store operation. The MMUs use this information to appropriately direct the address 
translation and to enforce the protection hierarchy programmed by the operating system. 
Section 4.3, "Exception Processing," describes the MSR, which controls some of the 
critical functionality of the MMUs. 

The figures show how address bits A[20-26] index into the on-chip instruction and data 
caches to select a cache set. The remaining physical address bits are then compared with 
the tag fields (comprised of bits PA[0-19]) of the two selected cache blocks to determine if 
a cache hit has occurred. In the case of a cache miss on the MPC750, the instruction or data 
access is then forwarded to the L2 interface tags to check for an L2 cache hit. In case of a 
miss (and in all cases of an on-chip cache miss on the MPC740) the access is forwarded to 
the bus interface unit which initiates an external memory access. 
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Figure 5-1. MMU Conceptual Block Diagram-32-Bit Implementations 
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5.1.3 Address Translation Mechanisms 
PowerPC processors support the following three types of address translation: 

Page address translation-translates the page frame address for a 4-Kbyte page size 

Block address translation-translates the block number for blocks that range in size 
from 128 Kbytes to 256 Mbytes. 

Real addressing mode address translation-when address translation is disabled, the 
physical address is identical to the effective address. 

Figure 5-4 shows the three address translation mechanisms provided by the MMU s. The 
segment descriptors shown in the figure control the page address translation mechanism. 
When an access uses page address translation, the appropriate segment descriptor is 
required. In 32-bit implementations, the appropriate segment descriptor is selected from the 
16 on-chip segment registers by the four highest-order effective address bits. 

A control bit in the corresponding segment descriptor then determines if the access is to 
memory (memory-mapped) or to the direct-store interface space. Note that the direct-store 
interface was present in the architecture only for compatibility with existing 110 devices 
that used this interface. However, it is being removed from the architecture, and the 
MPC750 does not support it. When an access is determined to be to the direct-store 
interface space, the MPC750 takes a DSI exception if it is a data access (see 
Section 4.5.3, "DSI Exception (Ox00300)"), and takes an lSI exception if it is an instruction 
access (see Section 4.5.4, "lSI Exception (Ox00400)"). 

For memory accesses translated by a segment descriptor, the interim virtual address is 
generated using the information in the segment descriptor. Page address translation 
corresponds to the conversion of this virtual address into the 32-bit physical address used 
by the memory subsystem. In most cases, the physical address for the page resides in an 
on-chip TLB and is available for quick access. However, if the page address translation 
misses in the on-chip TLB, the MMU causes a search of the page tables in memory (using 
the virtual address information and a hashing function) to locate the required physical 
address. 

Because blocks are larger than pages, there are fewer upper-order effective address bits to 
be translated into physical address bits (more low-order address bits (at least 17) are 
untranslated to form the offset into a block) for block address translation. Also, instead of 
segment descriptors and a TLB, block address translations use the on-chip BAT registers as 
a BAT array. If an effective address matches the corresponding field of a BAT register, the 
information in the BAT register is used to generate the physical address; in this case, the 
results of the page translation (occurring in parallel) are ignored. 
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Figure 5-4. Address Translation Types 

When the processor generates an access, and the corresponding address translation enable 
bit in MSR is cleared, the resulting physical address is identical to the effective address and 
all other translation mechanisms are ignored_ Instruction address translation and data 
address translation are enabled by setting MSR[IR] and MSR[DR], respectively_ 
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5.1.4 Memory Protection Facilities 
In addition to the translation of effective addresses to physical addresses, the MMUs 
provide access protection of supervisor areas from user access and can designate areas of 
memory as read-only as well as no-execute or guarded. Table 5-2 shows the protection 
options supported by the MMUs for pages. 

Table 5-2. Access Protection Options for Pages 

Option 

Supervisor-only 

Supervisor-only-no-execute 

Supervisor-write·only 

Supervisor-write-only-no-execute 

Both (user/supervisor) 

Both (user·/supervisor) no-execute 

Both (user-/supervisor) read·only 

Both (user/supervisor) 
read-only-no-execute 

" Access permitted 
- Protection violation 

User Read 

I-Fetch Data 

- -

- -

" " 
- " 
" " 
- " 
" " 
- " 

User 
Supervisor Read 

Write 
I-Fetch Data 

- " " 
- - " - " " - - " 
" " " 
" - " - " " 
- - " 

Supervisor 
Write 

" " 
" 
" 
" " 
-

-

The no-execute option provided in the segment register lets the operating system program 
determine whether instructions can be fetched from an area of memory. The remaining 
options are enforced based on a combination of information in the segment descriptor and 
the page table entry. Thus, the supervisor-only option allows only read and write operations 
generated while the processor is operating in supervisor mode (MSR[PR] = 0) to access the 
page. User accesses that map into a supervisor-only page cause an exception. 

Finally, a facility in the VEA and OEA allows pages or blocks to be designated as guarded, 
preventing out-of-order accesses that may cause undesired side effects. For example, areas 
of the memory map used to control I/O devices can be marked as guarded so accesses do 
not occur unless they are explicitly required by the program. 

For more information on memory protection, see "Memory Protection Facilities," in 
Chapter 7, "Memory Management," in the The Programming Environments Manual. 
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5.1.5 Page History Information 
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the 
page address translation mechanism that can be used as history information relevant to the 
page. The operating system can use these bits to determine which areas of memory to write 
back to disk when new pages must be allocated in main memory. While these bits are 
initially programmed by the operating system into the page table, the architecture specifies 
that they can be maintained either by the processor hardware (automatically) or by some 
software-assist mechanism. 

Implementation Note-When loading the TLB, the MPC750 checks the state of the 
changed and referenced bits for the matched PTE. If the referenced bit is not set and the 
table search operation is initially caused by a load operation or by an instruction fetch, the 
MPC750 automatically sets the referenced bit in the translation table. Similarly, if the table 
search operation is caused by a store operation and either the referenced bit or the changed 
bit is not set, the hardware automatically sets both bits in the translation table. In addition, 
when the address translation of a store operation hits in the DTLB, the MPC750 checks the 
state of the changed bit. If the bit is not already set, the hardware automatically updates the 
DTLB and the translation table in memory to set the changed bit. For more information, see 
Section 5.4.1, "Page History Recording." 

5.1.6 General Flow of MMU Address Translation 
The following sections describe the general flow used by PowerPC processors to translate 
effective addresses to virtual and then physical addresses. 

5.1.6.1 Real Addressing Mode and Block Address Translation 
Selection 

When an instruction or data access is generated and the corresponding instruction or data 
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used 
(physical address equals effective address) and the access continues to the memory 
subsystem as described in Section 5.2, "Real Addressing Mode." 

Figure 5-5 shows the flow the MMUs use in determining whether to select real addressing 
mode, block address translation, or the segment descriptor to select page address 
translation. 
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Figure 5-5. General Flow of Address Translation (Real Addressing Mode and Block) 

Note that if the BAT array search results in a hit, the access is qualified with the appropriate 
protection bits. If the access violates the protection mechanism, an exception (lSI or DSI 
exception) is generated. 
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5.1.6.2 Page Address Translation Selection 
If address translation is enabled and the effective address information does not match a BAT 
array entry, the segment descriptor must be located. When the segment descriptor is located, 
the T bit in the segment descriptor selects whether the translation is to a page or to a 
direct-store segment as shown in Figure 5-6. For 32-bit implementations, the segment 
descriptor for an access is contained in one of 16 on-chip segment registers; effective 
address bits EA[0-3] select one of the 16 segment registers. 

Note that the MPC750 does not implement the direct-store interface, and accesses to these 
segments cause a DSI or lSI exception. In addition, Figure 5-6 also shows the way in which 
the no-execute protection is enforced; if the N bit in the segment descriptor is set and the 
access is an instruction fetch, the access is faulted as described in Chapter 7, "Memory 
Management," in The Programming Environments Manual. Note that the figure shows the 
flow for these cases as described by the PowerPC OEA, and so the TLB references are 
shown as optional. Because the MPC750 implements TLBs, these branches are valid and 
are described in more detail throughout this chapter. 
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If SR[T] = 0, page address translation is selected. The information in the segment descriptor 
is then used to generate the 52-bit virtual address. The virtual address is then used to 
identify the page address translation information (stored as page table entries (PTEs) in a 
page table in memory). For increased performance, the MPC750 has two on-chip TLBs to 
cache recently-used translations on-chip. 

If an access hits in the appropriate TLB, page translation succeeds and the physical address 
bits are forwarded to the memory subsystem. If the required translation is not resident, the 
MMU performs a search of the page table. If the required PTE is found, a TLB entry is 
allocated and the page translation is attempted again. This time, the TLB is guaranteed to 
hit. When the translation is located, the access is qualified with the appropriate protection 
bits. If the access causes a protection violation, either an lSI or DSI exception is generated. 

If the PTE is not found by the table search operation, a page fault condition exists, and an 
lSI or DSI exception occurs so software can handle the page fault. 

5.1.7 MMU Exceptions Summary 
To complete any memory access, the effective address must be translated to a physical 
address. As specified by the architecture, an MMU exception condition occurs if this 
translation fails for one of the following reasons: 

• Page fault-there is no valid entry in the page table for the page specified by the 
effective address (and segment descriptor) and there is no valid BAT translation. 

• An address translation is found but the access is not allowed by the memory 
protection mechanism. 

The translation exception conditions defined by the OEA for 32-bit implementations cause 
either the lSI or the DSI exception to be taken as shown in Table 5-3. 

The state saved by the processor for each of these exceptions contains information that 
identifies the address of the failing instruction. Refer to Chapter 4, "Exceptions," for a more 
detailed description of exception processing. 
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Table 5-3. Translation Exception Conditions 

Condition Description Exception 

Page fault (no PTE found) No matching PTE found in page tables (and I access: lSI exception 
no matching BAT array entry) SRR1[1] = 1 

D access: DSI exception 
DSISR[1] =1 

Block protection violation Conditions described for block in "Block I access: lSI exception 
Memory Protection" in Chapter 7, "Memory SRR1[4] = 1 
Management," in The Programming 

D access: DSI exception Environments Manual." 
DSISR[4] =1 

Page protection violation Conditions described for page in "Page I access: lSI exception 
Memory Protection" in Chapter 7, "Memory SRR1[4] = 1 
Management," in The Programming 

D access: DSI exception Environments Manual. 
DSISR[4] =1 

No-execute protection violation Attempt to fetch instruction when SR[N] = 1 lSI exception 
SRR1[3] = 1 

Instruction fetch from Attempt to fetch instruction when SR[T] = 1 lSI exception 
direct-store segment SRR1[3] =1 

Data access to direct-store Attempt to perform load or store (including FP DSI exception 
segment (including load or store) when SR[T] = 1 DSISR[5] =1 
floating-point accesses) 

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] = 1 lSI exception 
memory and either matching xBAT[G] = 1, or no SRR1 [3] =1 

matching BAT entry and PTE[G] = 1 

In addition to the translation exceptions, there are other MMU-related conditions (some of 
them defined as implementation-specific, and therefore not required by the architecture) 
that can cause an exception to occur. These exception conditions map to processor 
exceptions as shown in Table 5-4. The only MMU exception conditions that occur when 
MSR[DR] = 0 are those that cause an alignment exception for data accesses. For more 
detailed information about the conditions that cause an alignment exception (in particular 
for string/multiple instructions), see Section 4.5.6, ''Alignment Exception (Ox00600)." 

Note that some exception conditions depend upon whether the memory area is set up as 
write-though (W = 1) or cache-inhibited (I = 1). These bits are described fully in 
"Memory/Cache Access Attributes," in Chapter 5, "Cache Model and Memory Coherency," 
of The Programming Environments Manual. Refer to Chapter 4, "Exceptions," and to 
Chapter 6, "Exceptions," in The Programming Environments Manual for a complete 
description of the SRRI and DSISR bit settings for these exceptions. 
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Table 5-4. Other MMU Exception Conditions for the MPC750 Processor 

Condition Description Exception 

dcbz with W = 1 or I = 1 dcbz instruction to write-through or Alignment exception (not 
cache-inhibited segment or block required by architecture for 

this condition) 

Iwarx or stwcx. with W = 1 Reservation instruction to write-through DSI exception 
segment or block DSISR[5] =1 

Iwarx, stwcx., eciwx, or ecowx Reservation instruction or external control DSI exception 
instruction to direct-store segment instruction when SR[T] =1 DSISR[5] =1 

Floating-point load or store to FP memory access when SR[T] =1 See data access to 
direct-store segment direct-store segment in 

Table 5-3. 

Load or store that results in a Does not occur in MPC750 Does not apply 
direct-store error 

eciwx or ecowx attempted when eciwx or ecowx attempted with EAR[E] = 0 DSI exception 
external control facility disabled DSISR[11] = 1 

Imw, stmw, Iswi, Iswx, stswi, or Imw, stmw, Iswi, Iswx, stswi, or stswx Alignment exception 
stswx instruction attempted in instruction attempted while MSR[LE] = 1 
little-endian mode 

Operand misalignment Translation enabled and a floating-point Alignment exception (some 
load/store, stmw, stwcx., Imw, Iwarx, eciwx, of these cases are 
or ecowx instruction operand is not implementation-specific) 
word-aligned 

5.1.8 MMU Instructions and Register Summary 
The MMU instructions and registers allow the operating system to set up the block address 
translation areas and the page tables in memory. 

Note that because the implementation of TLBs is optional, the instructions that refer to 
these structures are also optional. However, as these structures serve as caches of the page 
table, the architecture specifies a software protocol for maintaining coherency between 
these caches and the tables in memory whenever the tables in memory are modified. When 
the tables in memory are changed, the operating system purges these caches of the 
corresponding entries, allowing the translation caching mechanism to refetch from the 
tables when the corresponding entries are required. 

Note that the MPC750 implements all TLB-related instructions except tIbia, which is 
treated as an illegal instruction. 

Because the MMU specification for PowerPC processors is so flexible, it is recommended 
that the software that uses these instructions and registers be encapsulated into subroutines 
to minimize the impact of migrating across the family of implementations. 
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Table 5-5 summarizes MPC750 instructions that specifically control the MMU. For more 
detailed information about the instructions, refer to Chapter 2, "MPC750 Processor 
Programming Model," in this book and Chapter 8, "Instruction Set," in The Programming 
Environments Manual 

Table 5-5. MPC750 Microprocessor Instruction Summary-Control MMUs 

Instruction Description 

mtsr SR,rS Move to Segment Register 
SR[SR#]f--- rS 

mtsrin rS,rB Move to Segment Register Indirect 
SR[rB[O-311f---rS 

mfsr rD,SR Move from Segment Register 
rDf---SR[SR#] 

mfsrin rD,rB Move from Segment Register Indirect 
rDf---SR[rB[O-311 

tlbie rB' TLB Invalidate Entry 
For effective address specified by rB, TLB[V]f---O 
The tlbie instruction invalidates all TLB entries indexed by the EA, and operates on both the 
instruction and data TLBs simultaneously invalidating four TLB entries. The index corresponds to 
bits 14-19 of the EA. 
In addition, depending on the setting of HIDxx, execution of this instruction causes all entries in 
the congruence class corresponding to the EA to be invalidated in the other processors attached 
to the same bus. 
Software must ensure that instruction fetches or memory references to the virtual pages specified 
by the tlbie instruction have been completed prior to executing the tlbie instruction. 

tlbsync' TLB Synchronize 
Synchronizes the execution of all other tlbie instructions in the system. In the MPC750, when the 
TLBISYNC signal is negated, instruction execution may continue or resume after the completion 
of a tlbsync instruction. When the TLBISYNC signal is asserted, instruction execution stops after 
the completion of a tlbsync instruction. 

'These instructions are defined by the PowerPC architecture, but are optional. 

Table 5-6 summarizes the registers that the operating system uses to program the MPC750 
MMUs. These registers are accessible to supervisor-level software only. These registers are 
described in Chapter 2, "MPC750 Processor Programming Model." 
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Table 5-6. MPC750 Microprocessor MMU Registers 

Register Description 

Segment registers The sixteen 32-bit segment registers are present only in 32-bit implementations of 
(SRO-SR15) the PowerPC architecture. The fields in the segment register are interpreted 

differently depending on the value of bit o. The segment registers are accessed by 
the mtsr, mtsrin, mfsr, and mfsrin instructions. 

BAT registers There are 16 BAT registers, organized as four pairs of instruction BAT registers 
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and four pairs of data BAT registers 
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined 
DBATOU-DBAT3U,and as 32-bit registers in 32-bit implementations. These are special-purpose registers 
DBATOL-DBAT3L) that are accessed by the mtspr and mfspr instructions. 

SDR1 The SDR1 register specifies the variables used in accessing the page tables in 
memory. SDR1 is defined as a 32-bit register for 32-bit implementations. This 
special-purpose register is accessed by the mtspr and mfspr instructions. 

5.2 Real Addressing Mode 
If address translation is disabled (MSR[IR] = a or MSR[DR] = 0) for a particular access, 
the effective address is treated as the physical address and is passed directly to the memory 
subsystem as described in Chapter 7, "Memory Management," in The Programming 
Environments Manual. 

Note that the default WIMG bits (ObOOl1) cause data accesses to be considered cacheable 
(I = 0) and thus load and store accesses are weakly ordered. This is the case even if the data 
cache is disabled in the HIDO register (as it is out of hard reset). If 1/0 devices require load 
and store accesses to occur in strict program order (strongly ordered), translation must be 
enabled so that the corresponding I bit can be set. Note also, that the G bit must be set to 
ensure that the accesses are strongly ordered. For instruction accesses, the default memory 
access mode bits (WIMG) are also ObOOll. That is, instruction accesses are considered 
cacheable (I = 0), and the memory is guarded. Again, instruction accesses are considered 
cacheable even if the instruction cache is disabled in the HIDO register (as it is out of hard 
reset). The Wand M bits have no effect on the instruction cache. 

For information on the synchronization requirements for changes to MSR[IR] and 
MSR[DR], refer to Section 2.3.2.4, "Synchronization," in this manual, and 
"Synchronization Requirements for Special Registers and for Lookaside Buffers" in 
Chapter 2, "PowerPC Register Set," in The Programming Environments Manual. 
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5.3 Block Address Translation 
The block address translation (BAT) mechanism in the OEA provides a way to map ranges 
of effective addresses larger than a single page into contiguous areas of physical memory. 
Such areas can be used for data that is not subject to normal virtual memory handling 
(paging), such as a memory-mapped display buffer or an extremely large array of numerical 
data. 

Block address translation in the MPC750 is described in Chapter 7, "Memory 
Management," in The Programming Environments Manual for 32-bit implementations. 

Implementation Note-The MPC750 BAT registers are not initialized by the hardware 
after the power-up or reset sequence. Consequently, all valid bits in both instruction and 
data BATs must be cleared before setting any BAT for the first time. This is true regardless 
of whether address translation is enabled. Also, software must avoid overlapping blocks 
while updating a BAT or areas. Even if translation is disabled, multiple BAT hits are treated 
as programming errors and can corrupt the BAT registers and produce unpredictable results. 

5.4 Memory Segment Model 
The MPC750 adheres to the memory segment model as defined in Chapter 7, "Memory 
Management," in The Programming Environments Manual for 32-bit implementations. 
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented 
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte 
pages in physical memory (page address translation), while providing the programming 
flexibility afforded by a large virtual address space (52 bits). 

The segment/page address translation mechanism may be superseded by the block address 
translation (BAT) mechanism described in Section 5.3, "Block Address Translation." If not, 
the translation proceeds in the following two steps: 

1. from effective address to the virtual address (which never exists as a specific entity 
but can be considered to be the concatenation of the virtual page number and the byte 
offset within a page), and 

2. from virtual address to physical address. 

This section highlights those areas of the memory segment model defined by the OEA that 
are specific to the MPC750. 

5.4.1 Page History Recording 
Referenced (R) and changed (C) bits in each PTE keep history information about the page. 
They are maintained by a combination of the MPC750 table search hardware and the 
system software. The operating system uses this information to determine which areas of 
memory to write back to disk when new pages must be allocated in main memory. 
Referenced and changed recording is performed only for accesses made with page address 
translation and not for translations made with the BAT mechanism or for accesses that 
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correspond to direct-store (T = 1) segments. Furthermore, Rand C bits are maintained only 
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1). 

In the MPC750, the referenced and changed bits are updated as follows: 

• For TLB hits, the C bit is updated according to Table 5-7. 

• For TLB misses, when a table search operation is in progress to locate a PTE. The 
R and C bits are updated (set, if required) to reflect the status of the page based on 
this access. 

Table 5-7. Table Search Operations to Update History Bits-TLB Hit Case 

Rand C bits 
Processor Action 

inTLB Entry 

00 Combination doesn't occur 

01 Combination doesn't occur 

10 Read: No special action 
Write: The MPC750 initiates a table search operation to update C. 

11 No special action for read or write 

The table shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is 
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in 
the page tables if there is a TLB hit). Therefore, when software clears the R and C bits in 
the page tables in memory, it must invalidate the TLB entries associated with the pages 
whose referenced and changed bits were cleared. 

The debt and debtst instructions can execute if there is a TLBIBAT hit or if the processor 
is in real addressing mode. In case of a TLB or BAT miss, these instructions are treated as 
no-ops; they do not initiate a table search operation and they do not set either the R or C bits. 

As defined by the PowerPC architecture, the referenced and changed bits are updated as if 
address translation were disabled (real addressing mode). If these update accesses hit in the 
data cache, they are not seen on the external bus. If they miss in the data cache, they are 
performed as typical cache line fill accesses on bus (assuming the data cache is enabled). 

5.4.1.1 Referenced Bit 
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page 
is referenced (with a read or write access) and the R bit is zero, the MPC750 sets the R bit 
in the page table. The OEA specifies that the referenced bit may be set immediately, or the 
setting may be delayed until the memory access is determined to be successful. Because the 
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all 
MPC750 TLB entries is effectively always set. The processor never automatically clears the 
referenced bit. 

The referenced bit is only a hint to the operating system about the activity of a page. At 
times, the referenced bit may be set although the access was not logically required by the 
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program or even if the access was prevented by memory protection. Examples of this in 
PowerPC systems include the following: 

• Fetching of instructions not subsequently executed 

• A memory reference caused by a speculatively executed instruction that is 
mispredicted 

• Accesses generated by an Iswx or stswx instruction with a zero length 

• Accesses generated by an stwcx. instruction when no store is performed because a 
reservation does not exist 

• Accesses that cause exceptions and are not completed 

5.4.1.2 Changed Bit 
The changed bit of a page is located both in the PTE in the page table and in the copy of the 
PTE loaded into the TLB (if a TLB is implemented, as in the MPC750). Whenever a data 
store instruction is executed successfully, if the TLB search (for page address translation) 
results in a hit, the changed bit in the matching TLB entry is checked. If it is already set, it 
is not updated. If the TLB changed bit is 0, the MPC750 initiates the table search operation 
to set the C bit in the corresponding PTE in the page table. The MPC750 then reloads the 
TLB (with the C bit set). 

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store 
operation is allowed by the page memory protection mechanism and the store is guaranteed 
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or 
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be 
set: 

• The execution of an stwex. instruction is allowed by the memory protection 
mechanism but a store operation is not performed. 

• The execution of an stswx instruction is allowed by the memory protection 
mechanism but a store operation is not performed because the specified length is 
zero. 

• The store operation is not performed because an exception occurs before the store is 
performed. 

Again, note that although the execution of the debt and debtst instructions may cause the 
R bit to be set, they never cause the C bit to be set. 

5.4.1.3 Scenarios for Referenced and Changed Bit Recording 
This section provides a summary of the model (defined by the OEA) that is used by 
PowerPC processors for maintaining the referenced and changed bits. In some scenarios, 
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows 
that the bits may be set (not absolutely required), and in some scenarios, the bits are 
guaranteed to not be set. Note that when the MPC750 updates the R and C bits in memory, 
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the accesses are performed as if MSR[DR] = 0 and G= 0 (that is, as nonguarded cacheable 
operations in which coherency is required). 

Table 5-8 defines a prioritized list of the R and C bit settings for all scenarios. The entries 
in the table are prioritized from top to bottom, such that a matching scenario occurring 
closer to the top of the table takes precedence over a matching scenario closer to the bottom 
of the table. For example, if an stwcx. instruction causes a protection violation and there is 
no reservation, the C bit is not altered, as shown for the protection violation case. Note that 
in the table, load operations include those generated by load instructions, by the eciwx 
instruction, and by the cache management instructions that are treated as a load with respect 
to address translation. Similarly, store operations include those operations generated by 
store instructions, by the ecowx instruction, and by the cache management instructions that 
are treated as a store with respect to address translation. 

Table 5-8. Model for Guaranteed Rand C Bit Settings 

Causes Setting of R Bit Causes Setting of C Bit 
Priority Scenario 

OEA MPC750 OEA MPC750 

1 No-execute protection violation No No No No 

2 Page protection violation Maybe Yes No No 

3 Out-ol-order instruction letch or load operation Maybe No No No 

4 Out-ol-order store operation. Would be required Maybe1 No No No 
by the sequential execution model in the absence 
01 system-caused or imprecise exceptions, or 01 
floating-point assist exception for instructions that 
would cause no other kind 01 precise exception. 

5 All other out-ol-order store operations Maybe1 No Maybe1 No 

6 Zero-length load (Iswx) Maybe No No No 

7 Zero-length store (stswx) Maybe1 No Maybe1 No 

8 Store conditional (stwex.) that does not store Maybe1 Yes Maybe1 Yes 

9 In-order instruction fetch Yes2 Yes No No 

10 Load instruction or eeiwx Yes Yes No No 

11 Store instruction, eeowx or debz instruction Yes Yes Yes Yes 

12 iebi, debt, or debtst instruction Maybe No No No 

13 debst or debf instruction Maybe Yes No No 

14 debi instruction Maybe1 Yes Maybe1 Yes 

Notes: 
1 II C is set, R is guaranteed to be set also. 
2 Includes the case in which the instruction is letched out of order and R is not set (does not apply lor MPC750). 
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For more information, see "Page History Recording" in Chapter 7, "Memory 
Management," of The Programming Environments Manual. 

5.4.2 Page Memory Protection 
The MPC750 implements page memory protection as it is defined in Chapter 7, "Memory 
Management," in The Programming Environments Manual. 

5.4.3 TLB Description 
The MPC750 implements separate 128-entry data and instruction TLBs to maximize 
performance. This section describes the hardware resources provided in the MPC750 to 
facilitate page address translation. Note that the hardware implementation of the MMU is 
not specified by the architecture, and while this description applies to the MPC750, it does 
not necessarily apply to other PowerPC processors. 

5.4.3.1 TLB Organization 
Because the MPC750 has two MMUs (IMMU and DMMU) that operate in parallel, some 
of the MMU resources are shared, and some are actually duplicated (shadowed) in each 
MMU to maximize performance. For example, although the architecture defines a single 
set of segment registers for the MMU, the MPC750 maintains two identical sets of segment 
registers, one for the IMMU and one for the DMMU; when an instruction that updates the 
segment register executes, the MPC750 automatically updates both sets. 

Each TLB contains 128 entries organized as a two-way set-associative array with 64 sets as 
shown in Figure 5-7 for the DTLB (the ITLB organization is the same). When an address 
is being translated, a set of two TLB entries is indexed in parallel with the access to a 
segment register. If the address in one of the two TLB entries is valid and matches the 40-bit 
virtual page number, that TLB entry contains the translation. If no match is found, a TLB 
miss occurs. 
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'---------. PA[O-19] 

Figure 5-7. Segment Register and DTlB Organization 

Unless the access is the result of an out-of-order access, a hardware table search operation 
begins if there is a TLB miss. If the access is out of order, the table search operation is 
postponed until the access is required, at which point the access is no longer out of order. 
When the matching PTE is found in memory, it is loaded into the TLB entry selected by the 
least-recently-used (LRU) replacement algorithm, and the translation process begins again, 
this time with a TLB hit. 

To uniquely identify a TLB entry as the required PTE, the PTE also contains four more bits 
of the page index, EA[O-13] (in addition to the API bits in of the PTE). 

Software cannot access the TLB arrays directly, except to invalidate an entry with the tlbie 
instruction. 
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Each set of TLB entries has one associated LRU bit. The LRU bit for a set is updated any 
time either entry is used, even if the access is speculative. Invalid entries are always the first 
to be replaced. 

Although both MMUs can be accessed simultaneously (both sets of segment registers and 
TLBs can be accessed in the same clock), only one exception condition can be reported at 
a time. ITLB miss exceptions are reported when there are no more instructions to be 
dispatched or retired (the pipeline is empty), and DTLB miss conditions are reported when 
the load or store instruction is ready to be retired. Refer to Chapter 6, "Instruction Timing," 
for more detailed information about the internal pipelines and the reporting of exceptions. 

When an instruction or data access occurs, the effective address is routed to the appropriate 
MMU. EAO-EA3 select one of the 16 segment registers and the remaining effective address 
bits and the VSID field from the segment register is passed to the TLB. EA[I4-19] then 
select two entries in the TLB; the valid bits are checked and the 40-bit virtual page number 
(24-bit VSID and EA4-EAI9]) must match the VSID, EAPI, and API fields of the TLB 
entries. If one of the entries hits, the PP bits are checked for a protection violation. If these 
bits don't cause an exception, the C bit is checked and a table search operation is initiated 
if C must be updated. If C does not require updating, the RPN value is passed to the memory 
subsystem and the WIMG bits are then used as attributes for the access. 

Although address translation is disabled on a reset condition, the valid bits of TLB entries 
are not automatically cleared. Thus, TLB entries must be explicitly cleared by the system 
software (with the t1bie instruction) before the valid entries are loaded and address 
translation is enabled. Also, note that the segment registers do not have a valid bit, and so 
they should also be initialized before translation is enabled. 

5.4.3.2 TLB Invalidation 
The MPC750 implements the optional t1bie and tlbsync instructions, which are used to 
invalidate TLB entries. The execution of the tlbie instruction always invalidates four 
entries-both the ITLB and DTLB entries indexed by EA[14-19]. 

The architecture allows tlbie to optionally enable a TLB invalidate signaling mechanism in 
hardware so that other processors also invalidate their resident copies of the matching PTE. 
The MPC750 does not signal the TLB invalidation to other processors nor does it perform 
any action when a TLB invalidation is performed by another processor. 

The tlbsync instruction causes instruction execution to stop if the TLBISYNC signal is 
asserted. IfTLBISYNC is negated, instruction execution may continue or resume after the 
completion of a t1bsync instruction. Section 8.8.2, "TLBISYNC Input," describes the TLB 
synchronization mechanism in further detail. 

The tibia instruction is not implemented on the MPC750 and when its opcode is 
encountered, an illegal instruction program exception is generated. To invalidate all entries 
of both TLBs, 64 t1bie instructions must be executed, incrementing the value in 
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EAl4-EA19 by one each time. See Chapter 8, "Instruction Set," in The Programming 
Environments Manual for detailed information about the tlbie instruction. 

Software must ensure that instruction fetches or memory references to the virtual pages 
specified by the tlbie have been completed prior to executing the tlbie instruction. 

Other than the possible TLB miss on the next instruction prefetch, the tlbie instruction does 
not affect the instruction fetch operation-that is, the prefetch buffer is not purged and does 
not cause these instructions to be refetched. 

5.4.4 Page Address Translation Summary 
Figure 5-8 provides the detailed flow for the page address translation mechanism. 

The figure includes the checking of the N bit in the segment descriptor and then expands 
on the 'TLB Hit' branch of Figure 5-6. The detailed flow fQr the 'TLB Miss' branch of 
Figure 5-6 is described in Section 5.4.5, "Page Table Search Operation." Note that as in the 
case of block address translation, if an attempt is made to execute a dcbz instruction to a 
page marked either write-through or caching-inhibited (W = 1 or I = 1), an alignment 
exception is generated. The checking of memory protection violation conditions is 
described in Chapter 7, "Memory Management," in The Programming Environments 
Manual. 
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5.4.5 Page Table Search Operation 
If the translation is not found in the TLBs (a TLB miss), the MPC750 initiates a table search 
operation which is described in this section. Formats for the PTE are given in "PTE Format 
for 32-Bit Implementations," in Chapter 7, "Memory Management," of The Programming 
Environments Manual. 

The following is a summary of the page table search process performed by the MPC750: 

1. The 32-bit physical address of the primary PTEG is generated as described in "Page 
Table Addresses" in Chapter 7, "Memory Management," of The Programming 
Environments Manual. 

2. The first PTE (PTEO) in the primary PTEG is read from memory. PTE reads occur 
with an implied WIM memory/cache mode control bit setting of ObOOI. Therefore, 
they are considered cacheable and read (burst) from memory and placed in the 
cache. 

3. The PTE in the selected PTEG is tested for a match with the virtual page number 
(VPN) of the access. The VPN is the VSID concatenated with the page index field 
of the virtual address. For a match to occur, the following must be true: 

- PTE[H] =0 

- PTE[V] = 1 

- PTE[VSID] = VA[0-23] 

- PTE [API] = VA[24-29] 

4. If a match is not found, step 3 is repeated for each of the other seven PTEs in the 
primary PTEG. If a match is found, the table search process continues as described 
in step 8. If a match is not found within the 8 PTEs of the primary PTEG, the address 
of the secondary PTEG is generated. 

5. The first PTE (PTEO) in the secondary PTEG is read from memory. Again, because 
PTE reads have a WIM bit combination of ObOOI, an entire cache line is read into 
the on-chip cache. 

6. The PTE in the selected secondary PTEG is tested for a match with the virtual page 
number (VPN) of the access. For a match to occur, the following must be true: 

- PTE[H] = 1 

- PTE [V] = 1 

- PTE[VSID] = VA[0-23] 

- PTE [API] = VA[24-29] 

7. If a match is not found, step 6 is repeated for each of the other seven PTEs in the 
secondary PTEG. If it is never found, an exception is taken (step 9). 
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8. If a match is found, the PTE is written into the on-chip TLB and the R bit is updated 
in the PTE in memory (if necessary). If there is no memory protection violation, the 
C bit is also updated in memory (if the access is a write operation) and the table 
search is complete. 

9. If a match is not found within the 8 PTEs of the secondary PTEG, the search fails, 
and a page fault exception condition occurs (either an lSI exception or a DSI 
exception). 

Figure 5-9 and Figure 5-10 show how the conceptual model for the primary and secondary 
page table search operations, described in The Programming Environments Manual, are 
realized in the MPC750. 

Figure 5-9 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and 
that the R bit may be updated in memory (if required) before the operation is performed or 
the alignment exception occurs. The R bit may also be updated if memory protection is 
violated. 
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The LSU initiates out-of-order accesses without knowledge of whether it is legal to do so. 
Therefore, the MMU does not perform hardware table search due to TLB misses until the 
request is required by the program flow. In these out-of-order cases, the MMU does detect 
protection violations and whether a dcbz instruction specifies a page marked as 
write-through or cache-inhibited. The MMU also detects alignment exceptions caused by 
the dcbz instruction and prevents the changed bit in the PTE from being updated 
erroneously in these cases. 

If an MMU register is being accessed by an instruction in the instruction stream, the IMMU 
stalls for one translation cycle to perform that operation. The sequencer serializes 
instructions to ensure the data correctness. For updating the IBATs and SRs, the sequencer 
classifies those operations as fetch serializing. After such an instruction is dispatched, the 
instruction buffer is flushed and the fetch stalls until the instruction completes. However, 
for reading from the IBATs, the operation is classified as execution serializing. As long as 
the LSU ensures that all previous instructions can be executed, subsequent instructions can 
be fetched and dispatched. 
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5.4.6 Page Table Updates 
When TLBs are implemented (as in the MPC750) they are defined as noncoherent caches 
of the page tables. TLB entries must be flushed explicitly with the TLB invalidate entry 
instruction (tlhie) whenever the corresponding PTE is modified. As the MPC750 is 
intended primarily for uniprocessor environments, it does not provide coherency of TLBs 
between multiple processors. If the MPC750 is used in a multiprocessor environment 
where TLB coherency is required, all synchronization must be implemented in software. 

Processors may write referenced and changed bits with un synchronized, atomic byte store 
operations. Note that the V, R, and C bits each reside in a distinct byte of a PTE. Therefore, 
extreme care must be taken to use byte writes when updating only one of these bits. 

Explicitly altering certain MSR bits (using the mtmsr instruction), or explicitly altering 
PTEs, or certain system registers, may have the side effect of changing the effective or 
physical addresses from which the current instruction stream is being fetched. This kind of 
side effect is defined as an implicit branch. Implicit branches are not supported and an 
attempt to perform one causes boundedly-undefined results. Therefore, PTEs must not be 
changed in a manner that causes an implicit branch. Chapter 2, "PowerPC Register Set," in 
The Programming Environments Manual, lists the possible implicit branch conditions that 
can occur when system registers and MSR bits are changed. 

5.4.7 Segment Register Updates 
Synchronization requirements for using the move to segment register instructions are 
described in "Synchronization Requirements for Special Registers and for Lookaside 
Buffers" in Chapter 2, "PowerPC Register Set," in The Programming Environments 
Manual. 
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Chapter 6 
Instruction Timing 
This chapter describes how the MPC750 microprocessor fetches, dispatches, and executes 
instructions and how it reports the results of instruction execution. It gives detailed 
descriptions of how the MPC750 execution units work, and how those units interact with 
other parts of the processor, such as the instruction fetching mechanism, register files, and 
caches. It gives examples of instruction sequences, showing potential bottlenecks and how 
to minimize their effects. Finally, it includes tables that identify the unit that executes each 
instruction implemented on the MPC750, the latency for each instruction, and other 
information that is useful for the assembly language programmer. 

6.1 Terminology and Conventions 
This section provides an alphabetical glossary of terms used in this chapter. These 
definitions are provided as a review of commonly used terms and as a way to point out 
specific ways these terms are used in this chapter. 

• Branch prediction-The process of guessing whether a branch will be taken. Such 
predictions can be correct or incorrect; the term 'predicted' as it is used here does 
not imply that the prediction is correct (successful). The PowerPC architecture 
defines a means for static branch prediction as part of the instruction encoding. 

• Branch resolution-The determination of whether a branch is taken or not taken. A 
branch is said to be resolved when the processor can determine which instruction 
path to take. If the branch is resolved as predicted, the instructions following the 
predicted branch that may have been speculatively executed can complete (see 
completion). If the branch is not resolved as predicted, instructions on the 
mispredicted path, and any results of speculative execution, are purged from the 
pipeline and fetching continues from the nonpredicted path. 

• Completion-Completion occurs when an instruction has finished executing, 
written back any results, and is removed from the completion queue. When an 
instruction completes, it is guaranteed that this instruction and all previous 
instructions can cause no exceptions. 
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• Fall-through (branch fall-through)-A not-taken branch. On the MPC750, fall
through branch instructions are removed from the instruction stream at dispatch. 
That is, these instructions are allowed to fall through the instruction queue via the 
dispatch mechanism, without either being passed to an execution unit and or given 
a position in the completion queue. 

• Fetch-The process of bringing instructions from memory (such as a cache or 
system memory) into the instruction queue. 

• Folding (branch folding)-The replacement with target instructions of a branch 
instruction and any instructions along the not-taken path when a branch is either 
taken or predicted as taken. 

• Finish-Finishing occurs in the last cycle of execution. In this cycle, the completion 
queue entry is updated to indicate that the instruction has finished executing. 

• Latency- The number of clock cycles necessary to execute an instruction and make 
ready the results of that execution for a subsequent instruction. 

• Pipeline-In the context of instruction timing, the term 'pipeline' refers to the 
interconnection of the stages. The events necessary to process an instruction are 
broken into several cycle-length tasks to allow work to be performed on several 
instructions simultaneously-analogous to an assembly line. As an instruction is 
processed, it passes from one stage to the next. When it does, the stage becomes 
available for the next instruction. 

Although an individual instruction may take many cycles to complete (the number 
of cycles is called instruction latency), pipelining makes it possible to overlap the 
processing so that the throughput (number of instructions completed per cycle) is 
greater than if pipelining were not implemented. 

• Program order-The order of instructions in an executing program. More 
specifically, this term is used to refer to the original order in which program 
instructions are fetched into the instruction queue from the cache. 

• Rename register-Temporary buffers used by instructions that have finished 
execution but have not completed. 

• Reservation station-A buffer between the dispatch and execute stages that allows 
instructions to be dispatched even though the results of instructions on which the 
dispatched instruction may depend are not available. 

• Retirement-Removal of the completed instruction from the completion queue. 

Stage-The term 'stage' is used in two different senses, depending on whether the 
pipeline is being discussed as a physical entity or a sequence of events. In the latter 
case, a stage is an element in the pipeline during which certain actions are 
performed, such as decoding the instruction, performing an arithmetic operation, or 
writing back the results. A stage is typically described as taking a processor clock 
cycle to perform its operation; however, some events (such as dispatch and write
back) happen instantaneously, and may be thought to occur at the end of the stage. 
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An instruction can spend multiple cycles in one stage. An integer multiply, for 
example, takes multiple cycles in the execute stage. When this occurs, subsequent 
instructions may stall. 

In some cases, an instruction may also occupy more than one stage simultaneously, 
especially in the sense that a stage can be seen as a physical resource-for example, 
when instructions are dispatched they are assigned a place in the completion queue 
at the same time they are passed to the execute stage. They can be said to occupy 
both the complete and execute stages in the same clock cycle. 

• Stall-An occurrence when an instruction cannot proceed to the next stage. 

• Superscalar-A superscalar processor is one that can issue multiple instructions 
concurrently from a conventional linear instruction stream. In a superscalar 
implementation, multiple instructions can be in the execute stage at the same time. 

o Throughput-A measure of the number of instructions that are processed per cycle. 
For example, a series of double-precision floating-point multiply instructions has a 
throughput of one instruction per clock cycle. 

• Write-back-Write-back (in the context of instruction handling) occurs when a 
result is written into the architectural registers (typically the GPRs and FPRs). 
Results are written back at completion time. Results in the write-back buffer cannot 
be flushed. If an exception occurs, these buffers must write back before the 
exception is taken. 

6.2 Instruction Timing Overview 
The MPC750 design minimizes average instruction execution latency, the number of clock 
cycles it takes to fetch, decode, dispatch, and execute instructions and make the results 
available for a subsequent instruction. Some instructions, such as loads and stores, access 
memory and require additional clock cycles between the execute phase and the write-back 
phase. These latencies vary depending on whether the access is to cacheable or 
noncacheable memory, whether it hits in the Ll or L2 cache, whether the cache access 
generates a write-back to memory, whether the access causes a snoop hit from another 
device that generates additional activity, and other conditions that affect memory accesses. 

The MPC750 implements many features to improve throughput, such as pipelining, 
superscalar instruction issue, branch folding, removal of fall-through branches, two-level 
speculative branch handling, and multiple execution units that operate independently and 
in parallel. 

As an instruction passes from stage to stage in a pipelined system, the following instruction 
can follow through the stages as the former instruction vacates them, allowing several 
instructions to be processed simultaneously. While it may take several cycles for an 
instruction to pass through all the stages, when the pipeline has been filled, one instruction 
can complete its work on every clock cycle. 
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Figure 6-1 represents a generic pipe lined execution unit. 

Stage 1 Stage 2 Stage 3 
I I 

Clock 0 II Instruction A III 
I 

Clock 1 
I 
I 
I 

Clock 2 I 
I 
I 

Clock 3 I Instruction D 

Figure 6-1. Pipelined Execution Unit 

The entire path that instructions take through the fetch, decode/dispatch, execute, complete, 
and write-back stages is considered the MPC750's master pipeline, and two of the 
MPC750's execution units (the FPU and LSU) are also multiple-stage pipelines. 

The MPC750 contains the following execution units that operate independently and in 
parallel: 

• Branch processing unit (BPU) 
Integer unit 1 (IU1)-executes all integer instructions 

• Integer unit 2 (IU2)-executes all integer instructions except mUltiplies and divides 

• 64-bit floating-point unit (FPU) 

• Load/store unit (LSU) 
• System register unit (SRU) 

The MPC750 can retire two instructions on every clock cycle. In general, the MPC750 
processes instructions in four stages-fetch, decode/dispatch, execute, and complete as 
shown in Figure 6-2. Note that the example of a pipelined execution unit in Figure 6-1 is 
similar to the three-stage FPU pipeline in Figure 6-2. 
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Figure 6-2. Superscalar/Pipeline Diagram 

The instruction pipeline stages are described as follows: 

instruction 
clock cycle 

• The instruction fetch stage includes the clock cycles necessary to request 
instructions from the memory system and the time the memory system takes to 
respond to the request. Instruction fetch timing depends on many variables, such as 
whether the instruction is in the branch target instruction cache, the on-chip 
instruction cache, or the L2 cache. Those factors increase when it is necessary to 
fetch instructions from system memory, and include the processor-to-bus clock 
ratio, the amount of bus traffic, and whether any cache coherency operations are 
required. 

Because there are so many variables, unless otherwise specified, the instruction 
timing examples below assume optimal performance, that the instructions are 
available in the instruction queue in the same clock cycle that they are requested. The 
fetch stage ends when the instruction is dispatched. 

• The decode/dispatch stage consists of the time it takes to fully decode the instruction 
and dispatch it from the instruction queue to the appropriate execution unit. 
Instruction dispatch requires the following: 

- Instructions can be dispatched only from the two lowest instruction queue 
entries, IQO and IQl. 

- A maximum of two instructions can be dispatched per clock cycle (although an 
additional branch instruction can be handled by the BPU). 

- Only one instruction can be dispatched to each execution unit per clock cycle. 

- There must be a vacancy in the specified execution unit. 
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- A rename register must be available for each destination operand specified by the 
instruction. 

- For an instruction to dispatch, the appropriate execution unit must be available 
and there must be an open position in the completion queue. If no entry is 
available, the instruction remains in the IQ. 

• The execute stage consists of the time between dispatch to the execution unit (or 
reservation station) and the point at which the instruction vacates the execution unit. 

Most integer instructions have a one-cycle latency; results of these instructions can 
be used in the clock cycle after an instruction enters the execution unit. However, 
integer multiply and divide instructions take multiple clock cycles to complete. The 
lUI can process all integer instructions; the IU2 can process all integer instructions 
except multiply and divide instructions. 

The LSU and FPU are pipelined (as shown in Figure 6-2). 

• The complete (complete/write-back) pipeline stage maintains the correct 
architectural machine state and commits it to the architectural registers at the proper 
time. If the completion logic detects an instruction containing an exception status, 
all following instructions are cancelled, their execution results in rename registers 
are discarded, and the correct instruction stream is fetched. 

The complete stage ends when the instruction is retired. Two instructions can be 
retired per cycle. Instructions are retired only from the two lowest completion queue 
entries, CQO and CQ1. 

The notation conventions used in the instruction timing examples are as follows: 

6-6 

Fetch-The fetch stage includes the time between when an instruction is 
requested and when it is brought into the instruction queue. This latency can 
be very variable, depending upon whether the instruction is in the BTIC, the 
on-chip cache, the L2 cache, or system memory (in which case latency can 
be affected by bus spe~d and traffic on the system bus, and address translation 
issues). Therefore, in the examples in this chapters, the fetch stage is usually 
idealized, that iS,an instruction is usually shown to be in the fetch stage when 
it is a valid instruction in the instruction queue. The instruction queue has six 
entries, IQO-IQ5. 

In dispatch entry (IQOIIQl)-Instructions can be dispatched from IQO and 
IQ1. Because dispatch is instantaneous, it is perhaps more useful to describe 
it as an event that marks the point in time between the last cycle in the fetch 
stage and the first cycle in the execute stage. 

Execute-The operations specified by an instruction are being performed by 
the appropriate execution unit. The black stripe is a reminder that the 
instruction occupies an entry in the completion queue, described in 
Figure 6-3. 
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Complete-The instruction is in the completion queue. In the final stage, the 
results of the executed instruction are written back and the instruction is 
retired. The completion queue has six entries, CQO-CQ5. 

In retirement entry-Completed instructions can be retired from CQO and 
CQ 1. Like dispatch, retirement is an event that in this case occurs at the end 
of the final cycle of the complete stage. . 

Figure 6-3 shows the stages of MPC750 execution units. 
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Fetch 

FPU Instructions 

Fetch 
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Fetch 

In Dispatch 
Entry 

In Dispatch 
Entry 

In Dispatch 
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Execute 1 Complete/Retire 
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Calculation 

I®.'b 'W"oo" 

Execute 

Multiply Add Round/ 
Normalize 
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In Dispatch In Completion Complete/Retire2 

Entry Queue2 
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1 Several integer instructions, such as multiply and divide instructions, require multiple cycles in 
the execute stage. 

2 Only those branch instructions that update the LR or CTR take an entry in the completion queue. 

Figure 6-3. MPC750 Microprocessor Pipeline Stages 

6.3 Timing Considerations 
The MPC750 is a superscalar processor; as many as three instructions can be issued to the 
execution units (one branch instruction to the branch processing unit, and two instructions 
issued from the dispatch queue to the other execution units) during each clock cycle. Only 
one instruction can be dispatched to each execution unit. 

Although instructions appear to the programmer to execute in program order, the MPC750 
improves performance by executing multiple instructions at a time, using hardware to 
manage dependencies. When an instruction is dispatched, the register file provides the 
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source data to the execution unit. The register files and rename register have sufficient 
bandwidth to allow dispatch of two instructions per clock under most conditions. 

The MPC750's BPU decodes and executes branches immediately after they are fetched. 
When a conditional branch cannot be resolved due to a CR data dependency, the branch 
direction is predicted and execution continues from the predicted path. If the prediction is 
incorrect, the following steps are taken: 

1. The instruction queue is purged and fetching continues from the correct path. 

2. Any instructions ahead of the predicted branch in the completion queue are allowed 
to complete. 

3. Instructions after the mispredicted branch are purged. 

4. Dispatching resumes from the correct path. 

After an execution unit finishes executing an instruction, it places resulting data into the 
appropriate GPR or FPR rename register. The results are then stored into the correct GPR 
or FPR during the write-back stage. If a subsequent instruction needs the result as a source 
operand, it is made available simultaneously to the appropriate execution unit, which allows 
a data-dependent instruction to be decoded and dispatched without waiting to read the data 
from the register file. Branch instructions that update either the LR or CTR write back their 
results in a similar fashion. 

The following section describes this process in greater detail. 

6.3.1 General Instruction Flow 
As many as four instructions can be fetched into the instruction queue (IQ) in a single clock 
cycle. Instructions enter the IQ and are issued to the various execution units from the 
dispatch queue. The MPC750 tries to keep the IQ full at all times, unless instruction cache 
throttling is operating. 

The number of instructions requested in a clock cycle is determined by the number of 
vacant spaces in the IQ during the previous clock cycle. This is shown in the examples in 
this chapter. Although the instruction queue can accept as many as four new instructions in 
a single clock cycle, if only one IQ entry is vacant, only one instruction is fetched. Typically 
instructions are fetched from the on-chip instruction cache, but they may also be fetched 
from the branch target instruction cache (BTIC). If the instruction request hits in the BTIC, 
it can usually present the first two instructions of the new instruction stream in the next 
clock cycle, giving enough time for the next pair of instructions to be fetched from the 
instruction cache with no idle cycles. If instructions are not in the BTIC or the on-chip 
instruction cache, they are fetched from the L2 cache or from system memory. 

The MPC750's instruction cache throttling feature, managed through the instruction cache 
throttling control (ICTC) register, can lower the processor's overall junction temperature by 
slowing the instruction fetch rate. See Chapter 10, "Power and Thermal Management." 
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Branch instructions are identified by the fetcher, and forwarded to the BPU directly, 
bypassing the dispatch queue. If the branch is unconditional or if the specified conditions 
are already known, the branch can be resolved immediately. That is, the branch direction is 
known and instruction fetching can continue from the correct location. Otherwise, the 
branch direction must be predicted. The MPC750 offers several resources to aid in quick 
resolution of branch instructions and for improving the accuracy of branch predictions. 
These include the following: 

• Branch target instruction cache-The 64-entry (four-way-associative) branch target 
instruction cache (BTIC) holds branch target instructions so when a branch is 
encountered in a repeated loop, usually the first two instructions in the target stream 
can be fetched into the instruction queue on the next clock cycle. The BTIC can be 
disabled and invalidated through bits in HIDO. 

• Dynamic branch prediction-The 512-entry branch history table (BHT) is 
implemented with two bits per entry for four degrees of prediction-not-taken, 
strongly not-taken, taken, strongly taken. Whether a branch instruction is taken or 
not-taken can change the strength of the next prediction. This dynamic branch 
prediction is not defined by the PowerPC architecture. 

To reduce aliasing, only predicted branches update the BHT entries. Dynamic 
branch prediction is enabled by setting HIDO[BHT]; otherwise, static branch 
prediction is used. 

• Static branch prediction-Static branch prediction is defined by the PowerPC 
architecture and involves encoding the branch instructions. See Section 6.4.1.3.1, 
"Static Branch Prediction." 

Branch instructions that do not update the LR or CTR are removed from the instruction 
stream either by branch folding or removal of fall-through branch instructions, as described 
in Section 6.4.1.1, "Branch Folding and Removal of Fall-Through Branch Instructions." 
Branch instructions that update the LR or CTR are treated as if they require dispatch (even 
through they are not issued to an execution unit in the process). They are assigned a position 
in the completion queue to ensure that the CTR and LR are updated sequentially. 

All other instructions are issued from the IQO and IQ1. The dispatch rate depends upon the 
availability of resources such as the execution units, rename registers, and completion 
queue entries, and upon the serializing behavior of some instructions. Instructions are 
dispatched in program order; an instruction in IQ 1 cannot be dispatched ahead of one in 
IQO. 

Chapter 6. Instruction Timing 6-9 



Figure 6-4 shows the paths taken by instructions. 

Fetch 
(Maximum four instructions per clock cycle) 

Instruction Queue 
(In program order) 
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Figure 6-4. Instruction Flow Diagram 
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6.3.2 Instruction Fetch Timing 
Instruction fetch latency depends on whether the fetch hits the BTIC, the on-chip 
instruction cache, or the L2 cache, if one is implemented. If no cache hit occurs, a memory 
transaction is required in which case fetch latency is affected by bus traffic, bus clock speed, 
and memory translation. These issues are discussed further in the following sections. 

6.3.2.1 Cache Arbitration 
When the instruction fetcher requests instructions from the instruction cache, two things 
may happen. If the instruction cache is idle and the requested instructions are present, they 
are provided on the next clock cycle. However, if the instruction cache is busy due to a 
cache-line-reload operation, instructions cannot be fetched until that operation completes. 

6.3.2.2 Cache Hit 
If the instruction fetch hits the instruction cache, it takes only one clock cycle after the 
request for as many as four instructions to enter the instruction queue. Note that the cache 
is not blocked to internal accesses during a cache reload completes (hits under misses). The 
critical double word is written simultaneously to the cache and forwarded to the requesting 
unit, minimizing stalls due to load delays. 

Figure 6-5 shows a simple example of instruction fetching that hits in the on-chip cache. 
This example uses a series of integer add and double-precision floating-point add 
instructions to show how the number of instructions to be fetched is determined, how 
program order is maintained by the instruction and completion queues, how instructions are 
dispatched and retired in pairs (maximum), and how the FPU, IUI, and IU2 pipelines 
function. The following instruction sequence is examined: 

0 add 
1 fadd 
2 add 
3 fadd 
4 br 6 
5 fsub 
6 fadd 
7 fadd 
8 add 
9 add 
10 add 
11 add 
12 fadd 
13 add 
14 fadd 
15 
16 
17 
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Figure 6-5. Instruction Timing-Cache Hit 

The instruction timing for this example is described cycle-by-cycle as follows: 

o. In cycle 0, instructions 0-3 are fetched from the instruction cache. Instructions 0 and 
1 are placed in the two entries in the instruction queue from which they can be 
dispatched on the next clock cycle. 
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1. In cycle 1, instructions 0 and 1 are dispatched to the JU2 and FPU, respectively. 
Notice that for instructions to be dispatched they must be assigned positions in the 
completion queue. In this case, since the completion queue was empty, instructions 
o and 1 take the two lowest entries in the completion queue. Instructions 2 and 3 drop 
into the two dispatch positions in the instruction queue. Because there were two 
positions available in the instruction queue in clock cycle 0, two instructions (4 and 
5) are fetched into the instruction queue. Instruction 4 is a branch unconditional 
instruction, which resolves immediately as taken. Because the branch is taken, it can 
therefore be folded from the instruction queue. 

2. In cycle 2, assume a BTIC hit occurs and target instructions 6 and 7 are fetched into 
the instruction queue, replacing the folded b instruction (4) and instruction 5. 
Instruction 0 completes, writes back its results and vacates the completion queue by 
the end of the clock cycle. Instruction 1 enters the second FPU execute stage, 
instruction 2 is dispatched to the JU2, and instruction 3 is dispatched into the first 
FPU execute stage. Because the taken branch instruction (4) does not update either 
CTR or LR, it does not require a position in the completion queue and can be folded. 

3. In cycle 3, target instructions (6 and 7) are fetched, replacing instructions 4 and 5 in 
IQO and IQ1. This replacement on taken branches is called branch folding. 
Instruction 1 proceeds through the last of the three FPU execute stages. Instruction 
2 has executed but must remain in the completion queue until instruction 1 
completes. Instruction 3 replaces instruction 1 in the second stage of the FPU, and 
instruction 6 replaces instruction 3 in the first stage. Also, as will be shown in cycle 
4, there is a single-cycle stall that occurs when the FPU pipeline is full. 

Because there were three vacancies in the instruction queue in the previous clock 
cycle, instructions 8-11 are fetched in this clock cycle. 

4. Instruction 1 completes in cycle 4, allowing instruction 2 to complete. Instructions 
3 and 6 continue through the FPU pipeline. Although instruction 7 is in IQl, it 
cannot be dispatched because the FPU is busy, and because instruction 7 cannot be 
dispatched neither can instruction 8. The additional cycle stall allows the instruction 
queue to be completely filled. Because there was one opening in the instruction 
queue in clock cycle 3, one instruction is fetched (12) and the instruction queue is 
full. 

5. In cycle 5, instruction 3 completes, allowing instruction 7 to be dispatched to the 
FPU, which in tum allows instruction 8 to be dispatched to the JU2. Instructions 9 
and 10 drop to the dispatch positions in the instruction queue. No instructions are 
fetched in this clock cycle because there were no vacant IQ entries in clock cycle 4. 

6. In cycle 6, instruction 6 completes, instruction 7 is in stage 2 of the FPU execute 
stage, and although instruction 8 has executed, it must wait for instruction 7 to 
complete. The two integer instructions, 9 and 10, are dispatched to the IU2 and lUI, 
respectively. Fetching resumes with instructions 13 and 14. 
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7. In cycle 7, instruction 7 is in the final FPU execute stage and instructions 8-10 wait 
in the completion queue. Instructions 11 and 12 are dispatched to the IU2 and FPU, 
respectively. Note that at this point the completion queue is full. Two more 
instructions (15 and 16, which are shown only in the instruction queue) are fetched. 

8. In cycle 8, instructions 7-11 are through executing. Instructions 7 and 8 complete, 
write back, and vacate the completion queue. Because the completion queue is full, 
instructions 13 and 14 cannot be dispatched and must remain in the instruction 
queue. Only the FPU is executing during this cycle (instruction 12). Additional 
instructions (instructions 16 and 17, shown only in the instruction queue) are 
fetched, filling the instruction queue. 

9. In cycle 9, two more instructions (instructions 7 and 8) are retired from the 
completion queue allowing instructions 13 and 14 to be dispatched, again filling the 
completion queue. No instructions are fetched on this cycle because the instruction 
queue was full on the previous clock cycle. 

6.3.2.3 Cache Miss 
Figure 6-6 shows an instruction fetch that misses both the on-chip cache and L2 cache. A 
processor/bus clock ratio is 1:2 is used. The same instruction sequence is used as in 
Section 6.3.2.2, "Cache Hit," however in this example, the branch target instruction is not 
in either the Ll or L2 cache. Because the target instruction is not in the L1 cache, it cannot 
be in the BTIC. 

A cache miss, extends the latency of the fetch stage, so in this example, the fetch stage 
shown represents not only the time the instruction spends in the IQ, but the time required 
for the instruction to be loaded from system memory, beginning in clock cycle 2. 

During clock cycle 3, the target instruction for the b instruction is not in the BTIC, the 
instruction cache or the L2 cache; therefore, a memory access must occur. During clock 
cycle 5, the address of the block of instructions is sent to the system bus. During clock cycle 
7, two instructions (64 bits) are returned from memory on the first beat and are forwarded 
both to the cache and the instruction fetcher. 
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Figure 6-6. Instruction Timing-Cache Miss 

6.3.2.4 L2 Cache Access Timing Considerations (MPC750 Only) 
If an instruction fetch misses both the BTIC and the on-chip instruction cache, the MPC750 
next looks in the L2 cache. If the requested instructions are there, they are burst into the 
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MPC750 in much the same way as shown in Figure 6-6. The formula for the L2 cache 
latency for instruction accesses is as follows: 

1 processor clock + 3 L2 clocks + 1 processor clock 

Therefore, if the L2 is operating in 2: 1 mode, the instruction fetch takes 8 processor clock 
cycles. Additional factors can also affect this latency, including the type of memory used to 
implement the L2 and whether the processor clock and L2 clocks are aligned immediately. 

For more information about the L2 cache implementation, see Chapter 9, "L2 Cache 
Interface Operation." 

6.3.3 Instruction Dispatch and Completion Considerations 
Several factors affect the MPC7 50' s ability to dispatch instructions at a peak rate of two per 
cycle-the availability of the execution unit, destination rename registers, and completion 
queue, as well as the handling of completion-serialized instructions. Several of these 
limiting factors are illustrated in the previous instruction timing examples. 

To reduce dispatch unit stalls due to instruction data dependencies, the MPC750 provides 
a single-entry reservation station for the FPU, SRU, and each IU, and a two-entry 
reservation station for the LSU. If a data dependency keeps an instruction from starting 
execution, that instruction is dispatched to the reservation station associated with its 
execution unit (and the rename registers are assigned), thereby freeing the positions in the 
instruction queue so instructions can be dispatched to other execution units. Execution 
begins during the same clock cycle that the rename buffer is updated with the data the 
instruction is dependent on. 

If both instructions in IQO and IQI require the same execution unit, the instruction in IQI 
cannot be dispatched until the first instruction proceeds through the pipeline and provides 
the subsequent instruction with a vacancy in the requested execution unit. 

The completion unit maintains program order after instructions are dispatched from the 
instruction queue, guaranteeing in-order completion and a precise exception model. 
Completing an instruction implies committing execution results to the architected 
destination registers. In-order completion ensures the correct architectural state when the 
MPC750 must recover from a mispredicted branch or an exception. 

Instruction state and all information required for completion is kept in the six-entry, first
in/first-out completion queue. An completion queue entry is allocated for each instruction 
when it is dispatched to an execute unit; if no entry is available, the dispatch unit stalls. A 
maximum of two instructions per cycle may be completed and retired from the completion 
queue, and the flow of instructions can stall when a longer-latency instruction reaches the 
last position in the completion queue. Subsequent instructions cannot be completed and 
retired until that longer-latency instruction completes and retires. Examples of this are 
shown in Section 6.3.2.2, "Cache Hit," and Section 6.3.2.3, "Cache Miss." 
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The MPC750 can execute instructions out-of-order, but in-order completion by the 
completion unit ensures a precise exception mechanism. Program-related exceptions are 
signaled when the instruction causing the exception reaches the last position in the 
completion queue. Prior instructions are allowed to complete before the exception is taken. 

6.3.3.1 Rename Register Operation 
To avoid contention for a given register file location in the course of out-of-order execution, 
the MPC750 provides rename registers for holding instruction results before the 
completion commits them to the architected register. There are six GPR rename registers, 
six FPR rename registers, and one each for the CR, LR, and CTR. 

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename 
register (or registers) for the results of that instruction. If an instruction is dispatched to a 
reservation station associated with an execution unit due to a data dependency, the 
dispatcher also provides a tag to the execution unit identifying the rename register that 
forwards the required data at completion. When the source data reaches the rename register, 
execution can begin. 

Instruction results are transferred from the rename registers to the architected registers by 
the completion unit when an instruction is retired from the completion queue without 
exceptions and after any predicted branch conditions preceding it in the completion queue 
have been resolved correctly. If a branch prediction was incorrect, the instructions 
following the branch are flushed from the completion queue, and any results of those 
instructions are flushed from the rename registers. 

6.3.3.2 Instruction Serialization 
Although the MPC750 can dispatch and complete two instructions per cycle, so-called 
serializing instructions limit dispatch and completion to one instruction per cycle. There are 
three types of instruction serialization: 

• Execution serialization-Execution-serialized instructions are dispatched, held in 
the functional unit and do not execute until all prior instructions have completed. A 
functional unit holding an execution-serialized instruction will not accept further 
instructions from the dispatcher. For example, execution serialization is used for 
instructions that modify nonrenamed resources. Results from these instructions are 
generally not available or forwarded to subsequent instructions until the instruction 
completes (using mtspr to write to LR or CTR does provide forwarding to branch 
instructions). 

• Completion serialization (also referred to as post-dispatch or tail serialization)
Completion-serialized instructions inhibit dispatching of subsequent instructions 
until the serialized instruction completes. Completion serialization is used for 
instructions that bypass the normal rename mechanism. 

• Refetch serialization (flush serialization)-Refetch-serialized instructions inhibit 
dispatch of subsequent instructions and force refetching of subsequent instructions 
after completion. 
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6.4 Execution Unit Timings 
The following sections describe instruction timing considerations within each of the 
respective execution units in the MPC750. 

6.4.1 Branch Processing Unit Execution Timing 
Flow control operations (conditional branches, unconditional branches, and traps) are 
typically expensive to execute in most machines because they disrupt normal flow in the 
instruction stream. When a change in program flow occurs, the IQ must be reloaded with 
the target instruction stream. Previously issued instructions will continue to execute while 
the new instruction stream makes its way into the IQ, but depending on whether the target 
instruction is in the BTIC, instruction cache, L2 cache, or in system memory, some 
opportunities may be missed to execute instructions, as the example in Section 6.3.2.3, 
"Cache Miss," shows. 

Performance features such as the branch folding, removal of fall-through branch 
instructions, BTIC, dynamic branch prediction (implemented in the BHT), two-level 
branch prediction, and the implementation of nonblocking caches minimize the penalties 
associated with flow control operations on the MPC750. The timing for branch instruction 
execution is determined by many factors including the following: 

Whether the branch is taken 

Whether instructions in the target stream, typically the first two instructions in the 
target stream, are in the branch target instruction cache (BTIC) 

Whether the target instruction stream is in the on-chip cache 

Whether the branch is predicted 

• Whether the prediction is correct 

6.4.1.1 Branch Folding and Removal of Fall-Through Branch 
Instructions 

When a branch instruction is encountered by the fetcher, the BPU immediately begins to 
decode it and tries to resolve it. All branch instructions except those that update either the 
LR or CTR are removed from the instruction flow before they would take a position in the 
completion queue. 

Branch folding occurs either when a branch is taken or is predicted as taken (as is the case 
with unconditional branches). When the BPU folds the branch instruction out of the 
instruction stream, the target instruction stream that is fetched into the instruction queue 
overwrites the branch instruction. 

Figure 6-7 shows branch folding. Here a br instruction is encountered in a series of add 
instructions. The branch is resolved as taken. What happens on the next clock cycle depends 
on whether the target instruction stream is in the BTIC, the instruction cache, or if it must 
be fetched from the L2 cache or from system memory. 
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Figure 6-7 shows cases where there is a BTIC hit, and when there is a BTIC miss (and 
instruction cache hit). 

If there is a BTIC hit on the next clock cycle the b instruction is replaced by the target 
instruction, andl, that was found in the BTIC; the second and instruction is also fetched 
from the BTIe. On the next clock cycle, the next four and instructions from the target 
stream are fetched from the instruction cache. 

If the target instruction is not in the BTIC, there is an idle cycle while the fetcher attempts 
to fetch the first four instructions from the instruction cache (on the next clock cycle). In 
the example in Figure 6-7, the first four target instruction are fetched on the next clock. 

If it misses in the caches, an L2 cache or memory access is required, the latency of which 
is dependent on several factors, such as processorlhus clock ratios. In most cases, new 
instructions arrive in the IQ before the execution units become idle. 

Branch Folding 
(Taken Branch/BTIC Hit) 
Clock 0 Clock 1 Clock 2 

I~~ IQ4 a 
IQ3 a 3 
IQ2 
IQ1 a ~ IQO a an 

Branch Folding 
(Taken Branch/BTIC Miss) 
Clock 0 Clock 1 Clock 2 

I~I ~ 
IQ4 a 
IQ3 a 
IQ2 
IQ1 a 2 
IQO a 

Figure 6-7. Branch Folding 

Figure 6-8 shows the removal of fall-through branch instructions, which occurs when a 
branch is not taken or is predicted as not taken. 

Branch Fall-Through 
(Not-Taken Branch) 

Clock 0 Clock 1 Clock 2 

1~1~;1 [; Iii 
Figure 6-8. Removal of Fall-Through Branch Instruction 

In this case the branch instruction remains in the instruction queue and is removed from the 
instruction stream as if it were dispatched. However, it is not dispatched to an execution unit 
and is not assigned an entry in the completion queue. 
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When a branch instruction is detected before it reaches a dispatch position, and if the branch 
is correctly predicted as taken, folding the branch instruction (and any instructions from the 
incorrect path) reduces the latency required for flow control to zero; instruction execution 
proceeds as though the branch was never there. 

The advantage of removing the fall-through branch instructions at dispatch is only 
marginally less than that of branch folding. Because the branch is not taken, only the branch 
instruction needs to be discarded. The only cost of expelling the branch instruction from 
one of the dispatch entries rather than folding it is missing a chance to dispatch an 
executable instruction from that position. 

6.4.1.2 Branch Instructions and Completion 
As described in the previous section, instructions that do not update either the LR or CTR 
are removed from the instruction stream before they reach the completion queue, either by 
branch folding (in the case of taken branches) or by removing fall-through branch 
instructions at dispatch (in the case of non-taken branches). However, branch instructions 
that update the architected LR and CTR must do so in program order and therefore must 
perform write-back in the completion stage, like the instructions that update the FPRs and 
GPRs. 

Branch instructions that update the CTR or LR pass through the instruction queue like 
nonbranch instructions. At the point of dispatch, however, they are not sent to an execution 
unit, but rather are assigned a slot in the completion queue, as shown in Figure 6-9. 

Branch Completion 
(LR/CTR Write-Back) 

Clock 0 Clock 1 Clock 2 Clock 3 

105~ 104 a 
103 a 
102 c 
101 a 
100 a 1 

C05~ C04 
C03 
C02 
C01 
COO 

;51 i a a a 8 
a a a 7 

c a a 

~~~ 
Figure 6-9. Branch Completion 

In this example, the be instruction is encoded to decrement the CTR. It is predicted as not
taken in clock cycle O. In clock cycle 2, be andadd3 are both dispatched. In clock cycle 3, 
the architected CTR is updated and the be instruction is retired from the completion queue. 
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6.4.1.3 Branch Prediction and Resolution 
The MPC750 supports the following two types of branch prediction: 

Static branch prediction-This is defined by the PowerPC architecture as part of the 
encoding of branch instructions. 

• Dynamic branch prediction-This is a processor-specific mechanism implemented 
in hardware (in particular the branch history table, or BHT) that monitors branch 
instruction behavior and maintains a record from which the next occurrence of the 
branch instruction is predicted. 

When a conditional branch cannot be resolved due to a CR data dependency, the BPU 
predicts whether it will be taken, and instruction fetching proceeds down the predicted path. 
If the branch prediction resolves as incorrect, the instruction queue and all subsequently 
executed instructions are purged, instructions executed prior to the predicted branch are 
allowed to complete, and instruction fetching resumes down the correct path. 

The MPC750 executes through two levels of prediction. Instructions from the first 
unresolved branch can execute, but they cannot complete until the branch is resolved. If a 
second branch instruction is encountered in the predicted instruction stream, it can be 
predicted and instructions can be fetched, but not executed, from the second branch. No 
action can be taken for a third branch instruction until at least one of the two previous 
branch instructions is resolved. 

The number of instructions that can be executed after the issue of a predicted branch 
instruction is limited by the fact that no instruction executed after a predicted branch may 
actually update the register files or memory until the branch is completed. That is, 
instructions may be issued and executed, but cannot reach the write-back stage in the 
completion unit. When an instruction following a predicted branch completes execution, it 
does not write back its results to the architected registers, instead, it stalls in the completion 
queue. Of course, when the completion queue is full, no additional instructions can be 
dispatched, even if an execution unit is idle. 

In the case of a misprediction, the MPC750 can easily redirect its machine state because the 
programming model has not been updated. When a branch is mispredicted, all instructions 
that were dispatched after the predicted branch instruction are flushed from the completion 
queue and any results are flushed from the rename registers. 

The BTIC is a cache of recently used branch target instructions. If the search for the branch 
target hits in the cache, the first one or two branch instructions is available in the instruction 
queue on the next cycle (shown in Figure 6-5). Two instructions are fetched on a BTIC hit, 
unless the branch target is the last instruction in a cache block, in which case one instruction 
is fetched. 

In some situations, an instruction sequence creates dependencies that keep a branch 
instruction from being resolved immediately, thereby delaying execution of the subsequent 

Chapter 6. Instruction Timing 6-21 



instruction stream based on the predicted outcome of the branch instruction. The instruction 
sequences and the resulting action of the branch instruction are described as follows: 

• An mtspr(LK) followed by a belr-Fetching stops and the branch waits for the 
mtspr to execute. 

• An mtspr(CTR) followed by a bcctr-Fetching stops and the branch waits for the 
mtspr to execute. 

• An mtspr(CTR) followed by a be (CTR decrement)-Fetching stops and the branch 
waits for the mtspr to execute. 

• A third be(based-on-CR) is encountered while there are two unresolved be(based
on-CR). The third bc(based-on-CR) is not executed and fetching stops until one of 
the previous be(based-on-CR) is resolved. (Note that branch conditions can be a 
function of the CTR and the CR; if the CTR condition is sufficient to resolve the 
branch, then a CR-dependency is ignored.) 

6.4.1.3.1 Static Branch Prediction 
The PowerPC architecture provides a field in branch instructions (the BO field) to allow 
software to hint whether a branch is likely to be taken. Rather than delaying instruction 
processing until the condition is known, the MPC750 uses the instruction encoding to 
predict whether the branch is likely to be taken and begins fetching and executing along that 
path. When the branch condition is known, the prediction is evaluated. If the prediction was 
correct, program flow continues along that path; otherwise, the processor flushes any 
instructions and their results from the mispredicted path, and program flow resumes along 
the correct path. 

Static branch prediction is used when HIDO[BHT] is cleared. That is, the branch history 
table, which is used for dynamic branch prediction, is disabled. For information about static 
branch prediction, see "Conditional Branch Control," in Chapter 4, "Addressing Modes and 
Instruction Set Summary," in The Programming Environments Manual. 

6.4.1.3.2 Predicted Branch Timing Examples 
Figure 6-10 shows cases where branch instructions are predicted. It shows how both taken 
and not-taken branches are handled and how the MPC750 handles both correct and 
incorrect predictions. The example shows the timing for the following instruction sequence: 

0 add 
1 add 
2 be 
3 mulhw 
4 be TO 
5 fadd 
6 and 
add 
T7 add 
TB add 
T9 add 
T10 add 
Tll or 
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• Instructions 5 and 6 are not in the IQ in clock cycle 5. Here, the fetch stage shows cache latency. 

Figure 6-10. Branch Instruction Timing 

o. During clock cycle 0, instructions 0 and 1 are dispatched to their respective 
execution units. Instruction 2 is a branch instruction that updates the CTR. It is 
predicted as not taken in clock cycle O. Instruction 3 is a mulhw instruction on which 
instruction 4 depends. 
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1. In clock cycle 1, instructions 2 and 3 enter the dispatch entries in the IQ. Instruction 
4 (a second be instruction) and 5 are fetched. The second be instruction is predicted 
as taken. It can be folded, but it cannot be resolved until instruction 3 writes back. 

2. In clock cycle 2, instruction 4 has been folded and instruction 5 has been flushed 
from the IQ. The two target instructions, TO and Tl, are both in the BTIC, so they 
are fetched in this cycle. Note that even though the first be instruction may not have 
resolved by this point (we can assume it has), the MPC750 allows fetching from a 
second predicted branch stream. However, these instructions could not be 
dispatched until the previous branch has resolved. 

3. In clock cycle 3, target instructions T2-T5 are fetched as TO and Tl are dispatched. 

4. In clock cycle 4, instruction 3, on which the second branch instruction depended, 
writes back and the branch prediction is proven incorrect. Even though TO is in CQ 1, 
from which it could be written back, it is not written back because the branch 
prediction was incorrect. All target instructions are flushed from their positions in 
the pipeline at the end of this clock cycle, as are any results in the rename registers. 

After one clock cycle required to refetch the original instruction stream, instruction 5, the 
same instruction that was fetched in clock cycle 1, is brought back into the IQ from the 
instruction cache, along with three others (not all of which are shown). 

6.4.2 Integer Unit Execution Timing 
The MPC750 has two integer units. The lUI can execute all integer instructions; and the 
IU2 can execute all integer instructions except mUltiply and divide instructions. As shown 
in Figure 6-2, each integer unit has one execute pipeline stage, thus when a multicycle 
integer instruction is being executed, no other integer instructions can begin to execute. 
Table 6-6 lists integer instruction latencies. 

Most integer instructions have an execution latency of one clock cycle. 

6.4.3 Floating-Point Unit Execution Timing 
The floating-point unit on the MPC750 executes all floating-point instructions. Execution 
of most floating-point instructions is pipelined within the FPU, allowing up to three 
instructions to be executing in the FPU concurrently. While most floating-point instructions 
execute with three- or four-cycle latency, and one- or two-cycle throughput, three 
instructions (fdivs, fdiv, and fres) execute with latencies of 11 to 33 cycles. The fdivs, fdiv, 
fres, mtfsbO, mtfsbl, mtfsfi, mffs, and mtfsf instructions block the floating-point unit 
pipeline until they complete execution, and thereby inhibit the dispatch of additional 
floating-point instructions. See Table 6-7 for floating-point instruction execution timing. 
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6.4.4 Effect of Floating-Point Exceptions on Performance 
For the fastest and most predictable floating-point performance, all exceptions should be 
disabled in the FPSCR and MSR. 

6.4.5 Load/Store Unit Execution Timing 
The execution of most load and store instructions is pipelined. The LSD has two pipeline 
stages. The first is for effective address calculation and MMD translation and the second is 
for accessing data in the cache. Load and store instructions have a two-cycle latency and 
one-cycle throughput. 

If operands are misaligned, additional latency may be required either for an alignment 
exception to be taken or for additional bus accesses. Load instructions that miss in the cache 
block subsequent cache accesses during the cache line refill. Table 6-8 gives load and store 
instruction execution latencies. 

6.4.6 Effect of Operand Placement on Performance 
The PowerPC VEA states that the placement (location and alignment) of operands in 
memory may affect the relative performance of memory accesses, and in some cases affect 
it significantly. The effects memory operand placement has on performance are shown in 
Table 6-1. 

The best performance is guaranteed if memory operands are aligned on natural boundaries. 
For the best performance across the widest range of implementations, the programmer 
should assume the performance model described in Chapter 3, "Operand Conventions," in 
The Programming Environments Manual. 

The effect of misalignment on memory access latency is the same for big- and little-endian 
addressing modes except for multiple and string operations that cause an alignment 
exception in little-endian mode. 
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Table 6-1. Performance Effects of Memory Operand Placement 

Operand Boundary Crossing 

Size Byte Alignment None 8 Byte Cache Block Protection Boundary 

Integer 

4 byte 4 Optimal1 - - -
<4 Optimal Good Good Good 

2 byte 2 Optimal - - -

<2 Optimal Good Good Good 

1 byte 1 Optimal - - -

Imw, 4 Good 3 Good Good Good 
stmw2 

Poor 4 <4 Poor Poor Poor 

String 2 - Good Good Good Good 

Floating·Point 

8 byte 8 Optimal - - -
4 - Good Good Good 

<4 - Poor Poor Poor 

4 byte 4 Optimal - - -

<4 Poor Poor Poor Poor 

Notes: 

1 Optimal means one EA calculation occurs. 

2 Not supported in little-endian mode, causes an alignment exception. 

3 Good means multiple EA calculations occur that may cause additional bus activities with multiple bus transfers. 

4 Poor means that an alignment exception occurs. 

6.4.7 Integer Store Gathering 
The MPC750 performs store gathering for write-through operations to nonguarded space. 
It performs cache-inhibited stores to nonguarded space for 4-byte, word-aligned stores. 
These stores are combined in the LSD to form a double word and are sent out on the 60x 
bus as a single-beat operation. However, stores are gathered only if the successive stores 
meet the criteria and are queued and pending. Store gathering occurs regardless of the 
address order of the stores. Store gathering is enabled by setting HIDO[SGE]. Stores can be 
gathered in both endian modes. 

Store gathering is not done for the following: 

• Cacheable store operations 
• Stores to guarded cache-inhibited or write-through space 

• Byte-reverse store operations 
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• stwcx. instructions 

• ecowx instructions 

• A store that occurs during a table search operation 

• Floating-point store operations 

If store gathering is enabled and the stores do not fall under the above categories, an eieio 
or sync instruction must be used to prevent two stores from being gathered. 

6.4.8 System Register Unit Execution Timing 
Most instructions executed by the SRU either directly access renamed registers or access or 
modify nonrenamed registers. They generally execute in a serial manner. Results from these 
instructions are not available to subsequent instructions until the instruction completes and 
is retired. See Section 6.3.3.2, "Instruction Serialization," for more information on 
serializing instructions executed by the SRU, and refer to Table 6-4 and Table 6-5 for SRU 
instruction execution timings. 

6.5 Memory Performance Considerations 
Because the MPC750 can have a maximum instruction throughput of three instructions per 
clock cycle, lack of memory bandwidth can affect performance. For the MPC750 to 
maximize performance, it must be able to read and write data efficiently. If a system has 
multiple bus devices, one of them may experience long memory latencies while another bus 
master (for example, a direct-memory access controller) is using the external bus. 

6.5.1 Caching and Memory Coherency 
To minimize the effect of bus contention, the PowerPC architecture defines WIM bits that 
are used to configure memory regions as caching-enforced or caching-inhibited. Accesses 
to such memory locations never update the on-chip cache. If a cache-inhibited access hits 
the on-chip cache, the cache block is invalidated. If the cache block is marked modified, it 
is copied back to memory before being invalidated. Where caching is permitted, memory 
is configured as either write-back or write-through, which are described as follows: 

• Write-back- Configuring a memory region as write-back lets a processor modify 
data in the cache without updating system memory. For such locations, memory 
updates occur only on modified cache block replacements, cache flushes, or when 
one processor needs data that is modified in another's cache. Therefore, configuring 
memory as write-back can help when bus traffic could cause bottlenecks, especially 
for multiprocessor systems and for regions in which data, such as local variables, is 
used often and is coupled closely to a processor. 

If multiple devices use data in a memory region marked write-through, snooping 
must be enabled to allow the copy-back and cache invalidation operations necessary 
to ensure cache coherency. The MPC750's snooping hardware keeps other devices 
from accessing invalid data. For example, when snooping is enabled, the MPC750 
monitors transactions of other bus devices. For example, if another device needs data 
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that is modified on the MPC750's cache, the access is delayed so the MPC750 can 
copy the modified data to memory. 

Write-through-Store operations to memory marked write-through always update 
both system memory and the on-chip cache on cache hits. Because valid cache 
contents always match system memory marked write-through, cache hits from other 
devices do not cause modified data to be copied back as they do for locations marked 
write-back. However, all write operations are passed to the bus, which can limit 
performance. Load operations that miss the on-chip cache must wait for the external 
store operation. 

Write-through configuration is useful when cached data must agree with external 
memory (for example, video memory), when shared (global) data may be needed 
often, or when it is undesirable to allocate a cache block on a cache miss. 

Chapter 3, "Ll Instruction and Data Cache Operation," describes the caches, memory 
configuration, and snooping in detail. 

6.5.2 Effect of TLB Miss 
If a page address translation is not in a TLB, the MPC750 hardware searches the page tables 
and updates the TLB when a translation is found. Table 6-2 shows the estimated latency for 
the hardware TLB load for different cache configurations and conditions. 

Table 6-2. TLB Miss Latencies 

L 1 Condition 
L2 Condition 

Processor/L2 Processor/System Bus Estimated Latency 
(Instruction and Data) Clock Ratio Clock Ratio (Cycles) 

100% cache hit - - - 7 

100% cache miss 100% cache hit 1 :1 - 13 

100% cache miss 100% cache hit 1.5:1 - 18 

100% cache miss 100% cache hit 2:1 - 20 

100% cache miss 100% cache miss 1 :1 2.5:1 (6:3:3:3 memory) 62 

100% cache miss 100% cache miss 1:1 4:1 (5:2:2:2 memory) 77 

The PTE table search assumes a hit in the first entry of the primary PTEG. 
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6.6 Instruction Scheduling Guidelines 
The performance of the MPC750 can be improved by avoiding resource conflicts and 
scheduling instructions to take fullest advantage of the parallel execution units. Instruction 
scheduling on the MPC750 can be improved by observing the following guidelines: 

• To reduce mispredictions, separate the instruction that sets CR bits from the branch 
instruction that evaluates them. Because there can be no more than 12 instructions 
in the processor (with the instruction that sets CR in CQO and the dependent branch 
instruction in IQ5), there is no advantage to having more than 10 instructions 
between them. 

• Likewise, when branching to a location specified by the CTR or LR, separate the 
mtspr instruction that initializes the CTR or LR from the dependent branch 
instruction. This ensures the register values are immediately available to the branch 
instruction. 

Schedule instructions such that two can be dispatched at a time. 

• Schedule instructions to minimize stalls due to execution units being busy. 

• Avoid scheduling high-latency instructions close together. Interspersing single
cycle latency instructions between longer-latency instructions minimizes the effect 
that instructions such as integer divide and multiply can have on throughput. 

Avoid using serializing instructions. 

Schedule instructions to avoid dispatch stalls: 

- Six instructions can be tracked in the completion queue; therefore, only six 
instructions can be in the execute stages at anyone time 

- There are six GPR rename registers; therefore only six GPRs can be specified as 
destination operands at any time. If no rename registers are available, 
instructions cannot enter the execute stage and remain in the reservation station 
or instruction queue until they become available. 

Note that load with update address instructions use two destination registers 

- Similarly, there are six FPR rename registers, so only six FPR destination 
operands can be in the execute and complete stages at any time. 

6.6.1 Branch, Dispatch, and Completion Unit Resource 
Requirements 

This section describes the specific resources required to avoid stalls during branch 
resolution, instruction dispatching, and instruction completion. 
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6.6.1.1 Branch Resolution Resource Requirements 
The following is a list of branch instructions and the resources required to avoid stalling the 
fetch unit in the course of branch resolution: 

• The beIr instruction requires LR availability. 

• The bcctr instruction requires CTR availability. 

• Branch and link instructions require shadow LR availability. 

• The "branch conditional on counter decrement and the CR" condition requires CTR 
availability or the CR condition must be false, and the MPC750 cannot execute 
instructions after an unresolved predicted branch when the BPU encounters a 
branch. 

• A branch conditional on CR condition cannot be executed following an unresolved 
predicted branch instruction. 

6.6.1.2 Dispatch Unit Resource Requirements 
The following is a list of resources required to avoid stalls in the dispatch unit. IQ[O] and 
IQ[l] are the two dispatch entries in the instruction queue: 

• Requirements for dispatching from IQ[O] are as follows: 

- Needed execution unit available 

- Needed GPR rename registers available 

- Needed FPR rename registers available 

- Completion queue is not full. 

- A completion-serialized instruction is not being executed. 

• Requirements for dispatching from IQ[1] are as follows: 

- Instruction in IQ[O] must dispatch. 

- Instruction dispatched by IQ[O] is not completion- or refetch-serialized. 

- Needed execution unit is available (after dispatch from IQ[O]). 

- Needed GPR rename registers are available (after dispatch from IQ[O]). 
- Needed FPR rename register is available (after dispatch from IQ[O]). 

- Completion queue is not full (after dispatch from IQ[O]). 

6.6.1.3 Completion Unit Resource Requirements 
The following is a list of resources required to avoid stalls in the completion unit; note that 
the two completion entries are described as CQ[O] and CQ[1], where CQ[O] is the 
completion queue located at the end of the completion queue (see Figure 6-4). 

• Requirements for completing an instruction from CQ[O] are as follows: 

- Instruction in CQ[O] must be finished. 

- Instruction in CQ[O] must not follow an unresolved predicted branch. 

- Instruction in CQ[O] must not cause an exception. 
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• Requirements for completing an instruction from CQ[1] are as follows: 

- Instruction in CQ[O] must complete in same cycle. 

- Instruction in CQ[l] must be finished. 

- Instruction in CQ[l] must not follow an unresolved predicted branch. 

- Instruction in CQ[I] must not cause an exception. 

- Instruction in CQ[l] must be an integer or load instruction. 

- Number of CR updates from both CQ[O] and CQ[1] must not exceed two. 

- Number of OPR updates from both CQ[O] and CQ[1] must not exceed two. 

- Number of FPR updates from both CQ[O] and CQ[l] must not exceed two. 

6.7 Instruction Latency Summary 
Table 6-3 through Table 6-8 list latencies associated with instructions executed by each 
execution unit. Table 6-3 describes branch instruction latencies. 

Table 6-3. Branch Instructions 

Mnemonic Primary Extended Latency 

b[l][a] 18 - Unless these instructions update either the CTR or the LR, branch 

bc[l][a] 16 
operations are folded if they are either taken or predicted as taken. They fall 

- through if they are not taken or predicted as not taken. 

bcctr[l] 19 528 

bclr[l] 19 16 

Table 6-4 lists system register instruction latencies. 

Table 6-4. System Register Instructions 

Mnemonic Primary Extended Unit Cycles Serialization 

eieio 31 854 SRU 1 -

isync 19 150 SRU 2 Completion, refetch 

mfmsr 31 83 SRU 1 -

mfspr (OBATs) 31 339 SRU 3 Execution 

mfspr (IBATs) 31 339 SRU 3 -

mfspr (not I/OBATs) 31 339 SRU 1 Execution 

mfsr 31 595 SRU 3 -

mfsrin 31 659 SRU 3 Execution 

mftb 31 371 SRU 1 -

mtmsr 31 146 SRU 1 Execution 

mtspr (OBATs) 31 467 SRU 2 Execution 

mtspr (IBATs) 31 467 SRU 2 Execution 
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Table 6-4. System Register Instructions (Continued) 

Mnemonic Primary Extended Unit Cycles Serialization 

mtspr (not I/DBATs) 31 467 SRU 2 Execution 

mtsr 31 210 SRU 2 Execution 

mtsrin 31 242 SRU 2 Execution 

mttb 31 467 SRU 1 Execution 

rfi 19 50 SRU 2 Completion, reletch 

sc 17 - -1 SRU 2 Completion, reletch 

sync 31 598 SRU 31 -

tlbsync 2 31 566 - -

Notes: 

1 This assumes no pending stores in the store queue. II there are, the sync completes after they complete to memory. 
II broadcast is enabled on the 60x bus, sync completes only after a successlul broadcast. 

2 tlbsync is dispatched only to the completion buffer (not to any execution unit) and is marked linished as it is 
dispatched. Upon retirement, it waits for an external TLBISYNC signal to be asserted. In most systems ""T"LB";I""S"'Y"'N"'C 
is always asserted so the instruction is a no-op. 

Table 6-5 lists condition register logical instruction latencies. 

Table 6-5. Condition Register Logical Instructions 

Mnemonic Primary Extended Unit Cycles Serialization 

crand 19 257 SRU 1 Execution 

crandc 19 129 SRU 1 Execution 

creqv 19 289 SRU 1 Execution 

crnand 19 225 SRU 1 Execution 

crnor 19 33 SRU 1 Execution 

cror 19 449 SRU 1 Execution 

crorc 19 417 SRU 1 Execution 

crxor 19 193 SRU 1 Execution 

mcrf 19 0 SRU 1 Execution 

mcrxr 31 512 SRU 1 Execution 

mfcr 31 19 SRU 1 Execution 

mtcrf 31 144 SRU 1 Execution 

Table 6-6 shows integer instruction latencies. Note that the lUI executes all integer 
arithmetic instructions-multiply, divide, shift, rotate, add, subtract, and compare. The IU2 
executes all integer instructions except multiply and divide (that is, shift, rotate, add, 
subtract, and compare). 
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Table 6-6. Integer Instructions 

Mnemonic Primary Extended Unit Cycles Serialization 

addc[o][.] 31 10 IU1/1U2 1 -

adde[o][.] 31 138 IU1/1U2 1 Execution 

addi 14 - IU1/1U2 1 -
addic 12 - IU1/1U2 1 -

addic. 13 - IU1/1U2 1 -

addis 15 - IU1/1U2 1 -

addme[o][.] 31 234 IU1/1U2 1 Execution 

addze[o][.] 31 202 IU1/1U2 1 Execution 

add[o][.] 31 266 IU1/1U2 1 -
andc[.] 31 60 IU1/1U2 1 -

andi. 28 - IU1/1U2 1 -
andis. 29 - IU1/1U2 1 -

and[.] 31 28 IU1/1U2 1 -

cmp 31 0 IU1/1U2 1 -

cmpi 11 - IU1/1U2 1 -
cmpl 31 32 IU1/1U2 1 -

cmpli 10 - IU1/1U2 1 -
cntlzw[.] 31 26 IU1/1U2 1 -

divwu[o][.] 31 459 IU1 19 -
divw[o][.] 31 491 IU1 19 -

eqv[.] 31 284 IU1/1U2 1 -
extsb[.] 31 954 IU1/1U2 1 -

extsh[.] 31 922 IU1/1U2 1 -
mUlhwu[.] 31 11 IU1/1U2 2,3,4,5,6 -

mulhw[.] 31 75 IU1/1U2 2,3,4,5 -

mulIi 7 - IU1 2,3 -

mull[o][.] 31 235 IU1 2,3,4,5 -

nand[.] 31 476 IU1/1U2 1 -
neg[o][.] 31 104 IU1/1U2 1 -

nor[.] 31 124 IU1/1U2 1 -

orc[.] 31 412 IU1/1U2 1 -

ori 24 - IU1/1U2 1 -
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Table 6-6. Integer Instructions (Continued) 

Mnemonic Primary Extended Unit Cycles Serialization 

oris 25 - IU1/IU2 1 -
or[.] 31 444 IU1/IU2 1 -

rlwimi[.] 20 - IU1/IU2 1 -
rlwinm[.] 21 - IUlIIU2 1 -
rlwnm[.] 23 - IU1/IU2 1 -
slw[.] 31 24 IU111U2 1 -

srawi[.] 31 824 IU1/IU2 1 -
sraw[.] 31 792 IUlIIU2 1 -
srw[.] 31 536 IU1/IU2 1 -
subfc[o][.] 31 8 IU111U2 1 -

subfe[o][.] 31 136 IU1/IU2 1 Execution 

subfic 8 - IUlIIU2 1 -

subfme[o][.] 31 232 IUlIIU2 1 Execution 

subfze[o][.] 31 200 IU1/IU2 1 Execution 

sUbf[.] 31 40 IUlIIU2 1 -
tw 31 4 IU1/IU2 2 -

twi 3 - IU1/IU2 2 -
xori 26 - IU1/IU2 1 -
xoris 27 - IU1/IU2 1 -
xor[.] 31 316 IU1/IU2 1 -

Table 6-7 shows latencies for floating-point instructions. Pipelined floating-point 
instructions are shown with number of clocks in each pipeline stage separated by dashes. 
Floating-point instructions with a single entry in the cycles column are not pipelined; when 
the FPU executes these nonpipelined instructions, it remains busy for the full duration of 
the instruction execution and is not available for subsequent instructions. 

Table 6-7. Floating-Point Instructions 

Mnemonic Primary Extended Unit Cycles Serialization 

fabs[.] 63 264 FPU 1-1·1 -
fadds[.] 59 21 FPU 1-1·1 .-

fadd[.] 63 21 FPU 1·1·1 -
fcmpo 63 32 FPU 1·1-1 -
fcmpu 63 0 FPU 1-1·1 -
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Table 6-7. Floating-Point Instructions (Continued) 

Mnemonic Primary Extended Unit Cycles Serialization 

fctiwz[.) 63 15 FPU 1-1-1 -

fctiw[.) 63 14 FPU 1-1-1 -
fdivs[.) 59 18 FPU 17 -

fdiv[.) 63 18 FPU 31 -
fmadds[.) 59 29 FPU 1-1-1 -

fmadd[.) 63 29 FPU 2-1-1 -

fmr[.) 63 72 FPU 1-1-1 -
fmsubs[.] 59 28 FPU 1-1-1 -

fmsub[.] 63 28 FPU 2-1-1 -

fmuls[.) 59 25 FPU 1-1-1 -

fmul[.) 63 25 FPU 2-1-1 -
fnabs[.) 63 136 FPU 1-1-1 -

fneg[.] 63 40 FPU 1-1-1 -
fnmadds[.] 59 31 FPU 1-1-1 -

fnmadd[.) 63 31 FPU 2-1-1 -
fnmsubs[.] 59 30 FPU 1-1-1 -

fnmsub[.) 63 30 FPU 2-1-1 -
fres[.] 59 24 FPU 10 -

frsp[.] 63 12 FPU 1-1-1 -
frsqrte[.] 63 26 FPU 1-1-1 -
fsel[.) 63 23 FPU 1-1-1 -
fsubs[.] 59 20 FPU 1-1-1 -

fsub[.] 63 20 FPU 1-1-1 -

mcrfs 63 64 FPU 1-1-1 Execution 

mffs[.) 63 583 FPU 1-1-1 Execution 

mtfsbO[.] 63 70 FPU 3 -

mtfsb1[.] 63 38 FPU 3 -
mtfsfi[.) 63 134 FPU 3 -
mtfsf[.] 63 711 FPU 3 -
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Table 6-8 shows load and store instruction latencies. Pipelined load/store instructions are 
shown with cycles of total latency and throughput cycles separated by a colon. 

Table 6-8. Load and Store Instructions 

Mnemonic Primary Extended Unit Cycles Serialization 

dcbf 31 86 LSU 3:51 Execution 

dcbi 31 470 LSU 3:31 Execution 

dcbst 31 54 LSU 3:51 Execution 

dcbt 31 278 LSU 2:1 -
dcbtst 31 246 LSU 2:1 -

dcbz 31 1014 LSU 3:61,2 Execution 

eciwx 31 310 LSU 2:1 -

ecowx 31 438 LSU 2:1 -
icbi 31 982 LSU 3:41 Execution 

Ibz 34 - LSU 2:1 -
Ibzu 35 - LSU 2:1 -

Ibzux 31 119 LSU 2:1 -
Ibzx 31 87 LSU 2:1 -

Ifd 50 - LSU 2:1 -
Ifdu 51 - LSU 2:1 -

Ifdux 31 631 LSU 2:1 -
Ifdx 31 599 LSU 2:1 -

Ifs 48 - LSU 2:1 -
Ifsu 49 - LSU 2:1 -
Ifsux 31 567 LSU 2:1 -
Ifsx 31 535 LSU 2:1 -
Iha 42 - LSU 2:1 -

Ihau 43 - LSU 2:1 -

Ihaux 31 375 LSU 2:1 -
Ihax 31 343 LSU 2:1 -
Ihbrx 31 790 LSU 2:1 -

1hz 40 - LSU 2:1 -
Ihzu 41 - LSU 2:1 -

Ihzux 31 311 LSU 2:1 -
Ihzx 31 279 LSU 2:1 -
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Table 6-8. Load and Store Instructions (Continued) 

Mnemonic Primary Extended Unit Cycles Serialization 

Imw 46 - LSU 2 + n 3 Completion, execution 

Iswi 31 597 LSU 2+n3 Completion, execution 

Iswx 31 533 LSU 2 + n 3 Completion, execution 

Iwarx 31 20 LSU 3:1 Execution 

Iwbrx 31 534 LSU 2:1 -
Iwz 32 - LSU 2:1 -

Iwzu 33 - LSU 2:1 -
Iwzux 31 55 LSU 2:1 -
Iwzx 31 23 LSU 2:1 -

stb 38 - LSU 2:1 -

stbu 39 - LSU 2:1 -
stbux 31 247 LSU 2:1 -
stbx 31 215 LSU 2:1 -
stfd 54 - LSU 2:1 -

stfdu 55 - LSU 2:1 -
stfdux 31 759 LSU 2:1 -

stfdx 31 727 LSU 2:1 -
stfiwx 31 983 LSU 2:1 -

stfs 52 - LSU 2:1 -
stfsu 53 - LSU 2:1 -

stfsux 31 695 LSU 2:1 -
stfsx 31 663 LSU 2:1 -

5th 44 - LSU 2:1 -
sthbrx 31 918 LSU 2:1 -

sthu 45 - LSU 2:1 -
sthux 31 439 LSU 2:1 -
sthx 31 407 LSU 2:1 -

1--'. 
2 + n 3 stmw 47 - LSU Execution 

stswi 31 725 LSU 2+ n 3 Execution 

stswx 31 661 LSU 2 + n 3 Execution 

stw 36 - LSU 2:1 -
stwbrx 31 662 LSU 2:1 -
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Table 6-8. Load and Store Instructions (Continued) 

Mnemonic Primary Extended Unit Cycles Serialization 

stwcx. 31 150 LSU 8:8 Execution 

stwu 37 - LSU 2:1 -

stwux 31 183 LSU 2:1 -
stwx 31 151 LSU 2:1 -

tlbie 31 306 LSU 3:41 Execution 

Notes: 

1 For cache-ops, the first number indicates the latency in finishing a single instruction; the second indicates the 
throughput for back-to-back cache-ops. Throughput may be larger than the initial latency as more cycles may be 
needed to complete the instruction to the cache, which stays busy keeping subsequent cache-ops from executing. 

2 The throughput number of 6 cycles for dcbz assumes it is to nonglobal (M = 0) address space. For global address 
space, throughput is at least 11 cycles. 

3 Load/store multiple/string instruction cycles are represented as a fixed number of cycles plus a variable number of 
cycles, where n is the number of words accessed by the instruction. 
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Chapter 7 
Signal Descriptions 
This chapter describes the MPC750 microprocessor's external signals. It contains a concise 
description of individual signals, showing behavior when the signal is asserted and negated 
and when the signal is an input and an output. 

NOTE 

A bar over a signal name indicates that the signal is active 
low-for example, ARTRY (address retry) and TS (transfer 
start). Active-low signals are referred to as asserted (active) 
when they are low and negated when they are high. Signals that 
are not active low, such as AP[O-3] (address bus parity signals) 
and TT[O-4] (transfer type signals) are referred to as asserted 
when they are high and negated when they are low. 

The MPC750 signals are grouped as follows: 

• Address arbitration-The MPC750 uses these signals to arbitrate for address bus 
mastership. 

• Address transfer start-These signals indicate that a bus master has begun a 
transaction on the address bus. 

• Address transfer-These signals include the address bus and address parity signals. 
They are used to transfer the address and to ensure the integrity of the transfer. 

• Transfer attribute-These signals provide information about the type of transfer, 
such as the transfer size and whether the transaction is bursted, write-through, or 
cache-inhibited. 

• Address transfer terrnination-These signals are used to acknowledge the end of the 
address phase of the transaction. They also indicate whether a condition exists that 
requires the address phase to be repeated. 

• Data arbitration-The MPC750 uses these signals to arbitrate for data bus 
mastership. 

• Data transfer-These signals, which consist of the data bus and data parity, are used 
to transfer the data and to ensure the integrity of the transfer. 

Chapter 7. Signal Descriptions 7-1 



• Data transfer termination-Data termination signals are required after each data 
beat in a data transfer. In a single-beat transaction, the data termination signals also 
indicate the end of the tenure; while in burst accesses, the data termination signals 
apply to individual beats and indicate the end of the tenure only after the final data 
beat. They also indicate whether a condition exists that requires the data phase to be 
repeated. 

• L2 cache address/data-The MPC750 has separate address and data buses for 
accessing the L2 cache (not supported in the MPC740). 

• L2 cache clocklcontrol-These signals provide clocking and control for the L2 
cache (not supported in the MPC740). 

• Interrupts/resets-These signals include the external interrupt signal, checks top 
signals, and both soft reset and hard reset signals. They are used to interrupt and, 
under various conditions, to reset the processor. 

• Processor status and control-These signals are used to set the reservation 
coherency bit, enable the time base, and other functions. They are also used in 
conjunction with such resources as secondary caches and the time base facility. 

Clock control-These signals determine the system clock frequency. They can also 
be used to synchronize multiprocessor systems. 

• Test interface-The JTAG (IEEE 1149.1 a-1993) interface and the common on-chip 
processor (COP) unit provide a serial interface to the system for performing board
level boundary-scan interconnect tests. 
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7.1 Signal Configuration 
Figure 7-1 illustrates the MPC750's signal configuration, showing how the signals are 
grouped. A pinout showing pin numbers is included in the MPC750 hardware 
specifications. 
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Chapter 7. Signal Descriptions 7-3 



7.2 Signal Descriptions 
This section describes individual MPC750 signals, grouped according to Figure 7-1. Note 
that the following sections summarize signal functions. Chapter 8, "System Interface 
Operation," describes many of these signals in greater detail, both with respect to how 
individual signals function and how groups of signals interact. 

7.2.1 Address Bus Arbitration Signals 
The address arbitration signals are input and output signals the MPC750 uses to request the 
address bus, recognize when the request is granted, and indicate to other devices when 
mastership is granted. For a detailed description of how these signals interact, see 
Section 8.3.1, "Address Bus Arbitration." 

7.2.1.1 Bus Request (BR)-Output 
Following are the state meaning and timing comments for the BR output signal. 

State Meaning Asserted-Indicates that the MPC750 is requesting mastership of 
the address bus. Note that BR may be asserted for one or more 
cycles, and then de-asserted due to an internal cancellation of the bus 
request (for example, due to a load hit in the touch load buffer). See 
Section 8.3.1, "Address Bus Arbitration." 

Negated-Indicates that the MPC750 is not requesting the address 
bus. The MPC750 may have no bus operation pending, it may be 
parked, or the ARTRY input was asserted on the previous bus clock 
cycle. 

Timing Comments Assertion-Occurs when the MPC750 is not parked and a bus 
transaction is needed. This may occur even if the two possible 
pipeline accesses have occurred. BR will also be asserted for one 
cycle during the execution of a dcbz instruction, and during the 
execution of a load instruction which hits in the touch load buffer. 

Negation-Occurs for at least one bus clock cycle after an accepted, 
qualified bus grant (see BG and ABB), even if another transaction is 
pending. It is also negated for at least one bus clock cycle when the 
assertion of ARTRY is detected on the bus. 

7.2.1.2 Bus Grant (BG)-Input 
Following are the state meaning and timing comments for the BG input signal. 

State Meaning Asserted-Indicates that the MPC750 may, with proper 

7-4 

qualification, assume mastership of the address bus. A qualified bus 
grant occurs when BG is asserted and ABB and ARTRY are not 
asserted the bus cycle following the assertion of AACK. The ABB 
andARTRY signals are driven by the MPC750 or other bus masters. 
If the MPC750 is parked, BR need not be asserted for the qualified 
bus grant. See Section 8.3.1, "Address Bus Arbitration." 
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Negated- Indicates that the MPC750 is not the next potential 
address bus master. 

Timing Comments Assertion-May occur at any time to indicate the MPC750 can use 
the address bus. After the MPC750 assumes bus mastership, it does 
not check for a qualified bus grant again until the cycle during which 
the address bus tenure completes (assuming it has another 
transaction to run). The MPC750 does not accept aBG in the cycles 
between the assertion of any TS and AACK. 

Negation-May occur at any time to indicate the MPC750 cannot 
use the bus. The MPC750 may still assume bus mastership on the bus 
clock cycle of the negation of BG because during the previous cycle 
BG indicated to the MPC750 that it could take mastership (if 
qualified). 

7.2.1.3 Address Bus Busy (ABB) 
The address bus busy (ABB) signal is both an input and an output signal. 

7.2.1.3.1 Address Bus Busy (ABB)-Output 
Following are the state meaning and timing comments for the ABB output signal. 

State Meaning Asserted-Indicates that the MPC750 is the address bus master. See 
Section 8.3.1, "Address Bus Arbitration." 

Negated-Indicates that the MPC750 is not using the address bus. If 
ABB is negated during the bus clock cycle following a qualified bus 
grant, the MPC750 did not accept mastership even if BR was 
asserted. This can occur if a potential transaction is aborted 
internally before the transaction begins. 

Timing Comments Assertion-Occurs on the bus clock cycle following a qualified BG 
that is accepted by the processor (see Negated). 

Negation-Occurs for a minimum of one-half bus clock cycle 
following the assertion of AACK. If ABB is negated during the bus 
clock cycle after a qualified bus grant, the MPC750 did not accept 
mastership, even if BR was asserted. 

High Impedance-Occurs after ABB is negated. 

7.2.1.3.2 Address Bus Busy (ABB)-Input 
Following are the state meaning and timing comments for the ABB input signal. 

State Meaning Asserted-Indicates that the address bus is in use. This condition 
effectively blocks the MPC750 from assuming address bus 
ownership, regardless of the BG input; see Section 8.3.1, "Address 
Bus Arbitration." 

Negated-Indicates that the address bus is not owned by another bus 
master and that it is available to the MPC750 when accompanied by 
a qualified bus grant. 
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Timing Comments Assertion-May occur when the MPC750 must be kept from using 
the address bus (and the processor is not currently asserting ABB). 

Negation-May occur whenever the MPC750 can use the address 
bus. 

7.2.2 Address Transfer Start Signals 
Address transfer start signals are input and output signals that indicate that an address bus 
transfer has begun. The transfer start (TS) signal identifies' the operation as a memory 
transaction. 

For detailed information about how TS interacts with other signals, refer to Section 8.3.2, 
''Address Transfer." 

7.2.2.1 Transfer Start (TS) 
The TS signal is both an input and an output signal on the MPC750. 

7.2.2.1.1 Transfer Start (TS)-Output 
Following are the state meaning and timing comments for the TS output signal. 

State Meaning Asserted-Indicates that the MPC750 has begun a memory bus 
transaction and that the address bus and transfer attribute signals are 
valid. When asserted with the appropriate TT[O-4] signals it is also 
an implied data bus request for a memory transaction (unless it is an 
address-only operation). 

Negated-Indicates that no bus transaction is occurring during 
normal operation. 

Timing Comments Assertion-Coincides with the assertion of ABB. 
Negation-Occurs one bus clock cycle after TS is asserted. 
High Impedance-Coincides with the negation of ABB. 

7.2.2.1.2 Transfer Start (TS)-Input 
Following are the state meaning and timing comments for the TS input signal. 

State Meaning Asserted-Indicates that another master has begun a bus transaction 
and that the address bus and transfer attribute signals are valid for 
snooping (see GBL). 

Negated-Indicates that no bus transaction is occurring. 

Timing Comments Assertion-May occur during the assertion of ABB. 
Negation-Must occur one bus clock cycle after TS is asserted. 

7.2.3 Address Transfer Signals 
The address transfer signals are used to transmit the address and to generate and monitor 
parity for the address transfer. For a detailed description of how these signals interact, refer 
to Section 8.3.2, "Address Transfer." 
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7.2.3.1 Address Bus (A[O-31]) 
The address bus (A[O-3ID consists of 32 signals that are both input and output signals. 

7.2.3.1.1 Address Bus (A[O-31 ])-Output 
Following are the state meaning and timing comments for the A[O-31] output signals. 

State Meaning Asserted/Negated-Represents the physical address (real address in 
the architecture specification) of the data to be transferred. On burst 
transfers, the address bus presents the double-word-aligned address 
containing the critical code/data that missed the cache on a read 
operation, or the first double word of the cache line on a write 
operation. Note that the address output during burst operations is not 
incremented. See Section 8.3.2, "Address Transfer." 

Timing Comments Assertion/Negation-Occurs on the bus clock cycle after a qualified 
bus grant (coincides with assertion of ABB and TS). 

High Impedance-Occurs one bus clock cycle after AACK is 
asserted. 

7.2.3.1.2 Address Bus (A[O-31 ])-Input 
Following are the state meaning and timing comments for the A[O-31] input signals. 

State Meaning Asserted/Negated-Represents the physical address of a snoop 
operation. 

Timing Comments AssertionlNegation-Must occur on the same bus clock cycle as the 
assertion ofTS; is sampled by MPC750 only on this cycle. 

7.2.3.2 Address Bus Parity (AP[O-3]) 
The address bus parity (AP[O-3]) signals are both input and output signals reflecting one 
bit of odd-byte parity for each of the 4 bytes of address when a valid address is on the bus. 

7.2.3.2.1 Address Bus Parity (AP[O-3])-Output 
Following are the state meaning and timing comments for the AP[O-3] output signals on 
the MPC750. 

State Meaning AssertedlNegated-Represents odd parity for each of the 4 bytes of 
the physical address for a transaction. Odd parity means that an odd 
number of bits, including the parity bit, are driven high. The signal 
assignments correspond to the following: 

APO A[O-7] 
API A[8-15] 
AP2 A[16-23] 
AP3 A[24-31] 

For more information, see Section 8.3.2.1, "Address Bus Parity." 

Timing Comments AssertionlNegation-The same as A[0--31]. 
High Impedance-The same as A[0--31]. 
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7.2.3.2.2 Address Bus Parity (AP[O-3])-lnput 
Following are the state meaning and timing comments for the AP[0-3] input signal on the 
MPC75D. 

State Meaning AssertedlNegated-Represents odd parity for each of the 4 bytes of 
the physical address for snooping operations. Detected even parity 
causes the processor to take a machine check exception or enter the 
checkstop state if address parity checking is enabled in the HIDD 
register; see Section 2.1.2.2, "Hardware Implementation-Dependent 
Register D." 

Timing Comments AssertionlNegation-The same as A[D:"'31]. 

7 .2.4 Address Transfer Attribute Signals 
The transfer attribute signals are a set of signals that further characterize the transfer-such 
as the size of the transfer, whether it is a read or write operation, and whether it is a burst 
or single-beat transfer. For a detailed description of how these signals interact, see 
Section 8.3.2, "Address Transfer." 

Note that some signal functions vary depending on whether the transaction is a memory 
access or an I/O access. 

7 .2.4.1 Transfer Type (TT[O-4]) 
The transfer type (TT[D-4]) signals consist of five input/output signals on the MPC75D. For 
a complete description of TT[0-4] signals and for transfer type encodings, see Table 7-1. 

7.2.4.1.1 Transfer Type (TT[O-4])-Output 
Following are the state meaning and timing comments for the TT[0-4] output signals on 
the MPC75D. 

State Meaning AssertedlNegated-Indicates the type of transfer in progress. 

Timing Comments AssertionlNegationlHigh Impedance-The same as A[0-31]. 

7.2.4.1.2 Transfer Type (TT[O-4])-lnput 
Following are the state meaning and timing comments for the TT[0-4] input signals on the 
MPC75D. 

State Meaning AssertedlNegated-Indicates the type of transfer in progress (see 
Table 7-2). 

Timing Comments AssertionlNegation-The same asA[D-31]. 
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Table 7-1 describes the transfer encodings for an MPC750 bus master. 

Table 7-1. Transfer Type Encodings for MPC750 Bus Master 

MPC750 Bus 
Transaction 

60x Bus 
Master 

Source 
TTO TT1 TT2 TT3 TT4 Specification Transaction 

Transaction Command 

Address only 1 dcbst a a a a a Clean block Address only 

Address only 1 dcbf a a 1 a a Flush block Address only 

Address only 1 sync a 1 a a a sync Address only 

Address only 1 dcbz or dcbi a 1 1 a a Kill block Address only 

Address only 1 eieio 1 a a a a eieio Address only 

Single-beat ecowx 1 a 1 a a External control Single-beat 
write (nonGBl) word write write 

N/A N/A 1 1 a a a TlB invalidate Address only 

Single-beat eciwx 1 1 1 a a External control Single-beat 
read (nonGBl) word read read 

N/A N/A a a a a 1 twarx Address only 
reservation set 

N/A N/A a a 1 a 1 Reserv8d -

N/A N/A a 1 a a 1 tlbsync Address only 

N/A N/A a 1 1 a 1 icbi Address only 

N/A N/A 1 X X a 1 Reserved -

Single-beat Caching-inhibited a a a 1 a Write-with-flush Single-beat 
write or write-through write or burst 

store 

Burst Cast-out, or 0 a 1 1 a Write-with-kill Burst 
(nonGBl) snoop copyback 

Single-beat Caching-inhibited a 1 a 1 a Read Single-beat 
read load or instruction read or burst 

fetch 

Burst load miss, store a 1 1 1 a Read-with-intent- Burst 
miss, or to-modify 
instruction fetch 

Single-beat stwcx. 1 a a 1 a Write-with-flush- Single-beat 
write atomic write 

N/A N/A 1 a 1 1 a Reserved N/A 

Single-beat Iwarx (caching- 1 1 a 1 0 Read-atomic Single-beat 
read inhibited load) read or burst 

Burst Iwarx 1 1 1 1 a Read-with-intent- Burst 
(load miss) to-modify-atomic 

N/A N/A a a a 1 1 Reserved -
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Table 7-1. Transfer Type Encodings for MPC750 Bus Master (Continued) 

MPC750 Bus 
Transaction 

60x Bus 
Master 

Source 
TTO TI1 TI2 TIa TI4 Specification Transaction 

Transaction Command 

N/A N/A 0 0 1 1 1 Reserved -
N/A N/A 0 1 0 1 1 Read-with-no- Single-beat 

intent-to-cache read or burst 

N/A N/A 0 1 1 1 1 Reserved -

N/A N/A 1 X X 1 1 Reserved -

Note: 1 Address-only transaction occurs if enabled by setting HIDO[ABE] bit to 1. 

Table 7-2 describes the 60x bus specification transfer encodings and the MPC750 bus 
snoop response on an address hit. 

Table 7-2. MPC750 Snoop Hit Response 

60x Bus Specification 
MPC750 Bus 

Transaction TIO TI1 TI2 TIa TI4 Snooper; 
Command 

Action on Hit 

Clean block Address only 0 0 0 0 0 N/A 

Flush block Address only 0 0 1 0 0 N/A 

sync Address only 0 1 0 0 0 N/A 

Kill block Address only 0 1 1 0 0 Flush, cancel 
reservation 

eieio Address only 1 0 0 0 0 N/A 

External control word write Single-beat write 1 0 1 0 0 N/A 

TLB Invalidate Address only 1 1 0 0 0 N/A 

External control word read Single-beat read 1 1 1 0 0 N/A 

Iwarx Address only 0 0 0 0 1 N/A 
reservation set 

Reserved - 0 0 1 0 1 N/A 

tlbsync Address only 0 1 0 0 1 N/A 

icbi Address only 0 1 1 0 1 N/A 

Reserved - 1 X X 0 1 N/A 

Write-with-flush Single-beat write or burst 0 0 0 1 0 Flush, cancel 
reservation 

Write-with-kill Single-beat write or burst 0 0 1 1 0 Kill, cancel 
reservation 

Read Single-beat read or burst 0 1 0 1 0 Clean or flush 

Read-with-intent-to-modify Burst 0 1 1 1 0 Flush 
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Table 7-2. MPC750 Snoop Hit Response (Continued) 

60x Bus Specification 
MPC750 Bus 

Transaction TTO TT1 TT2 TT3 TT4 Snooper; 
Command 

Action on Hit 

Write-with-flush-atomic Single-beat write 1 0 0 1 0 Flush, cancel 
reservation 

Reserved N/A 1 0 1 1 0 N/A 

Read-atomic Single-beat read or burst 1 1 0 1 0 Clean or flush 

Read-with-intent-to modify- Burst 1 1 1 1 0 Flush 
atomic 

Reserved - 0 0 0 1 1 N/A 

Reserved - 0 0 1 1 1 N/A 

Read-with-no-intent-to-cache Single-beat read or burst 0 1 0 1 1 Clean 

Reserved - 0 1 1 1 1 N/A 

Reserved - 1 X X 1 1 N/A 

7.2.4.2 Transfer Size (TSIZ[O-2])-Output 
Following are the state meaning and timing comments for the transfer size (TSIZ[O-2]) 
output signals on the MPC750. 

State Meaning Asserted/Negated-For memory accesses, these signals along with 
TBST, indicate the data transfer size for the current bus operation, as 
shown in Table 7-3. Table 8-3 shows how the transfer size signals are 
used with the address signals for aligned transfers. Table 8-4 shows 
how the transfer size signals are used with the address signals for 
misaligned transfers. Note that the MPC750 does not generate all 
possible TSIZ[O-2] encodings. 

For external control instructions (eciwx and ecowx), TSIZ[O-2] are 
used to output bits 29-31 of the external access register (EAR), 
which are used to form the resource ID (TBSTIITSIZO-TSIZ2). 

Timing Comments AssertioniNegation-The same as A[O-31]. 
High Impedance-The same as A[O-31]. 

Table 7-3. Data Transfer Size 

TBST TSIZ[O-2] Transfer Size 

Asserted 010 Burst (32 bytes) 

Negated 000 8 bytes 

Negated 001 1 byte 

Negated 010 2 bytes 

Negated 011 3 bytes 
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Table 7-3. Data Transfer Size (Continued) 

TBST TSIZ[O-2] Transfer Size 

Negated 100 4 bytes 

Negated 101 5 bytes1 

Negated 110 6 bytes 1 

Negated 111 7 bytes1 

Note: 1Not generated by. MPC750. 

7.2.4.3 Transfer Burst (TBST) 
The transfer burst (TBST) signal is an input/output signal on the MPC750. 

7.2.4.3.1 Transfer Burst (TBST)-Output 
Following are the state meaning and timing comments for the TBST output signal. 

State Meaning Asserted-Indicates that a burst transfer is in progress. 

Negated-Indicates that a burst transfer is not in progress. 

For external control instructions (eciwx and ecowx), TBST is used to 
output bit 28 of the EAR, which is used to form the resource ID 
(TBSTIITSIZO-TSIZ2). 

Timing Comments AssertionlNegation-The same as A[O-31]. 
High Impedance-The same as A[O-31]. 

7.2.4.3.2 Transfer Burst (TBST)-Input 
Following are the state meaning and timing comments for the TBST input signal. 

State Meaning AssertedlNegated-Used when snooping for single-beat reads (read 
with no intent to cache). 

Timing Comments Assertion/Negation-The same as A[O-31]. 

7.2.4.4 Cache Inhibit (CI)-Output 
The cache inhibit (CI) signal is an output signal on the MPC750. Following are the state 
meaning and timing comments for the CI signal. 

State Meaning Asserted-Indicates that a single-beat transfer will not be cached, 
reflecting the setting of the I bit for the block or page that contains 
the address of the current transaction. 

Negated-Indicates that a burst transfer will allocate an MPC750 
data cache block. 

Timing Comments Assertion/Negation-The same as A[O-31]. 
High Impedance-The same asA[O-31]. 
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7 .2.4.5 Write-Through (WT)-Output 
The write-through (WT) signal is an output signal on the MPC750. Following are the state 
meaning and timing comments for the WT signal. 

State Meaning Asserted-Indicates that a single-beat write transaction is write
through, reflecting the value of the W bit for the block or page that 
contains the address of the current transaction. Assertion during a 
read operation indicates instruction fetching. 

Negated-Indicates that a write transaction is not write-through; 
during a read operation negation indicates a data load. 

Timing Comments AssertionIN egation-The same as A[O-31]. 
High Impedance-The same as A[O-31]. 

7.2.4.6 Global (GBl) 
The global (GBL) signal is an input/output signal on the MPC750. 

7.2.4.6.1 Global (GBl)-Output 
Following are the state meaning and timing comments for the GBL output signal. 

State Meaning Asserted-Indicates that a transaction is global, reflecting the setting 
of the M bit for the block or page that contains the address of the 
current transaction (except in the case of copy-back operations and 
instruction fetches, which are nonglobal.) 

Negated-Indicates that a transaction is not global. 

Timing Comments AssertionlNegation-The same as A[O-31]. 
High Impedance-The same as A[O-31]. 

7.2.4.6.2 Global (GBl)-lnput 
Following are the state meaning and timing comments for the GBL input signal. 

State Meaning Asserted-Indicates that a transaction must be snooped by the 
MPC750. 

Negated-Indicates that a transaction is not snooped by the 
MPC750. 

Timing Comments AssertionlNegation-The same asA[O-31]. 

7.2.5 Address Transfer Termination Signals 
The address transfer termination signals are used to indicate either that the address phase 
of the transaction has completed successfully or must be repeated, and when it should be 
terminated. For detailed information about how these signals interact, see Section 8.3.3, 
"Address Transfer Termination." 
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7.2.5.1 Address Acknowledge (AACK)-Input 
The address acknowledge (AACK) signal is an input-only signal on the MPC750. 
Following are the state meaning and timing comments for the AACK signal. 

State Meaning Asserted-Indicates that the address phase of a transaction is 
complete. The address bus will go to a high-impedance state on the 
next bus clock cycle. The MPC750 samples ARTRY on the bus clock 
cycle following the assertion of AACK. 

Negated-(During ABB) indicates that the address bus and the 
transfer attributes must remain driven. 

Timing Comments Assertion-May occur as early as the bus clock cycle after TS is 
asserted; assertion can be delayed to allow adequate address access 
time for slow devices. For example, if an implementation supports 
slow snooping devices, an external arbiter can postpone the assertion 
ofAACK. 

Negation-Must occur one bus clock cycle after the assertion of 
AACK. 

7.2.5.2 Address Retry (ARTRY) 
The address retry (ARTRY) signal is both an input and output signal on the MPC750. 

7.2.5.2.1 Address Retry (ARTRY)-Output 
Following are the state meaning and timing comments for the ARTRY output signal. 

State Meaning Asserted-Indicates that the MPC750 detects a condition in which a 
snooped address tenure must be retried. If the MPC750 needs to 
update memory as a result of the snoop that caused the retry, the 
MPC750 asserts BR the second cycle after AACK if ARTRY is 
asserted. 

High Impedance-Indicates that the MPC750 does not need the 
snooped address tenure to be retried. 

Timing Comments Assertion-Asserted the third bus cycle following the assertion of 
TS if a retry is required. 

7-14 

Negation-Occurs the second bus cycle after the assertion of AACK. 
Since this signal may be simultaneously driven by multiple devices, 
it negates in a unique fashion. First the buffer goes to high impedance 
for a minimum of one-half processor cycle (dependent on the clock 
mode), then it is driven negated for one bus cycle before returning to 
high impedance. 

This special method of negation may be disabled by setting 
precharge disable in HIDO. 
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7.2.5.2.2 Address Retry (ARTRY)-Input 
Following are the state meaning and timing comments for the ARTRY input signal. 

State Meaning Asserted-If the MPC750 is the address bus master, ARTRY 
indicates that the MPC750 must retry the preceding address tenure 
and immediately negate BR (if asserted). If the associated data 
tenure has already started, the MPC750 also aborts the data tenure 
immediately, even if the burst data has been received. If the MPC750 
is not the address bus master, this input indicates that the MPC750 
should immediately negate BR to allow an opportunity for a copy
back operation to main memory after a snooping bus master asserts 
ARTRY. Note that the subsequent address presented on the address 
bus may not be the same one associated with the assertion of the 
ARTRY signal. 

Negated/High Impedance-Indicates that the MPC750 does not 
need to retry the last address tenure. 

Timing Comments Assertion-May occur as early as the second cycle following the 
assertion of TS, and must occur by the bus clock cycle immediately 
following the assertion of AACK if an address retry is required. 

Negation-Must occur two bus clock cycles after the assertion of 
AACK. 

7.2.6 Data Bus Arbitration Signals 
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly 
process for determining data bus mastership. Note that there is no data bus arbitration signal 
equivalent to the address bus arbitration signal BR (bus request), because, except for 
address-only transactions, TS implies data bus requests. For a detailed description on how 
these signals interact, see Section 8.4.1, "Data Bus Arbitration." 

One special signal, DBWO, allows the MPC750 to be configured dynamically to write data 
out of order with respect to read data. For detailed information about using DBWO, see 
Section 8.10, "Using Data Bus Write Only." 

7.2.6.1 Data Bus Grant (DBG)-Input 
The data bus grant (DBG) signal is an input-only signal on the MPC750. Following are the 
state meaning and timing comments for the DBG signal. 

State Meaning Asserted-Indicates that the MPC750 may, with the proper 
qualification, assume mastership of the data bus. The MPC750 
derives a qualified data bus grant when DBG is asserted and DBB, 
DRTRY, and ARTRY are negated; that is, the data bus is not busy 
(DBB is negated), there is no outstanding attempt to retry the current 
data tenure (DRTRY is negated), and there is no outstanding attempt 
to perform an ARTRY of the associated address tenure. 

Negated-Indicates that the MPC750 must hold off its data tenures. 
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Timing Comments Assertion-May occur any time to indicate the MPC750 is free to 
take data bus mastership. It is not sampled until TS is asserted. 

Negation-May occur at any time to indicate the MPC750 cannot 
assume data bus mastership. 

7.2.6.2 Data Bus Write Only (DBWO)-Input 
The data bus write only (DBWO) signal is an input-only signal on the MPC750. Following 
are the state meaning and timing comments for the DBWO signal. 

State Meaning Asserted-Indicates that the MPC750 may run the data bus tenure 
for an outstanding write address even if a read address is pipelined 
before the write address. Refer to Section 8.10, "Using Data Bus 
Write Only," for detailed instructions for using DBWO. 

Negated-Indicates that the MPC750 must run the data bus tenures 
in the same order as the address tenures. 

Timing Comments Assertion-Must occur no later than a qualified DBG for an 
outstanding write tenure. DBWO is sampled by the MPC750 on the 
clock of a qualified DBa. If no write requests are pending, the 
MPC750 will ignore DBWO and assume data bus ownership for the 
next pending read request. 

Negation-May occur any time after a qualified DBG and before the 
next assertion of DBG. 

7.2.6.3 Data Bus Busy (DBB) 
The data bus busy (DBB) signal is both an input and output signal on the MPC750. 

7.2.6.3.1 Data Bus Busy (DBB)-Output 
Following are the state meaning and timing comments for the DBB output signal. 

State Meaning Asserted-Indicates that the MPC750 is the data bus master. The 
MPC750 always assumes data bus mastership if it needs the data bus 
and is given a qualified data bus grant (see DBG). 

Negated-Indicates that the MPC750 is not using the data bus. 

Timing Comments Assertion-Occurs during the bus clock cycle following a qualified 
DBG. 

Negation-Occurs for a minimum of one-half bus clock cycle 
(dependent on clock mode) following the assertion of the final TA. 

High Impedance-Occurs after DBB is negated. 

7.2.6.3.2 Data Bus Busy (DBB)-Input 
Following are the state meaning and timing comments for the DBB input signal. 

State Meaning Asserted-Indicates that another device is bus master. 

7-16 

Negated-Indicates that the data bus is free (with proper 
qualification, see DBG) for use by the MPC750. 
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Timing Comments Assertion-Must occur when the MPC750 must be prevented from 
using the data bus. 

Negation-May occur whenever the data bus is available. 

7.2.7 Data Transfer Signals 
Like the address transfer signals, the data transfer signals are used to transmit data and to 
generate and monitor parity for the data transfer. For a detailed description of how the data 
transfer signals interact, see Section 8.4.3, "Data Transfer." 

7.2.7.1 Data Bus (DH[O-31], DL[O-31]) 
The data bus (DH[O-3]1 and DL[O-31]) consists of 64 signals that are both inputs and 
outputs on the MPC750. Following are the state meaning and timing comments for the DH 
and DL signals. 

State Meaning The data bus has two halves-data bus high (DH) and data bus low 
(DL). See Table 7-4 for the data bus lane assignments. 

Timing Comments The data bus is driven once for noncached transactions and four 
times for cache transactions (bursts). 

Table 7-4. Data Bus Lane Assignments 

Data Bus Signals Byte Lane 

DH[O-7) 0 

DH[8-15) 1 

DH[16-23) 2 

DH[24-31) 3 

DL[O-7) 4 

DL[8-15) 5 

DL[16-23) 6 

DL[24-31) 7 

7.2.7.1.1 Data Bus (DH[O-31], DL[O-31])-Output 
Following are the state meaning and timing comments for the DH and DL output signals. 

State Meaning Asserted/Negated-Represents the state of data during a data write. 
Byte lanes not selected for data transfer will not supply valid data. 

Timing Comments Assertion/Negation-Initial beat coincides with DBB and, for 
bursts, transitions on the bus clock cycle following each assertion of 
TA. 

High Impedance-Occurs on the bus clock cycle after the final 
assertion ofTA, following the assertion of TEA, or in certain ..... A...,R~T""'R~Y'"" 
cases. 
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7.2.7.1.2 Data Bus (DH[O-31], DL[O-31])-lnput 
Following are the state meaning and timing comments for the DH and DL input signals. 

State Meaning AssertedlNegated-Represents the state of data during a data read 
transaction. 

Timing Comments AssertionlNegation-Data must be valid on the same bus clock cycle 
that TA is asserted. . 

7.2.7.2 Data Bus Parity (DP[O-7]) 
The eight data bus parity (DP[O-7]) signals on the MPC7S0 are both output and input 
signals. 

7.2.7.2.1 Data Bus Parity (DP[O-7])-Output 
Following are the state meaning and timing comments for the DP output signals. 

State Meaning AssertedlNegated-Represents odd parity for each of the 8 bytes of 
data write transactions. Odd parity means that an odd number of bits, 
including the parity bit, are driven high. The generation of parity is 
enabled through HIDO. The signal assignments are listed in 
Table 7-5. 

Timing Comments AssertionlNegation-The same as DL[O-31]. 
High Impedance-The same as DL[O-31]. 

Table 7-5. DP[O-7] Signal Assignments 

Signal Name Signal ASSignments 

DPO DH[O-7] 

DP1 DH[8-15] 

DP2 DH[16-23] 

DP3 DH[24-31] 

DP4 DL[O-7] 

DP5 DL[8-15] 

DP6 DL[16-23] 

DP7 DL[24-31] 

7.2.7.2.2 Data Bus Parity (DP[O-7])-lnput 
Following are the state meaning and timing comments for the DP input signals. 

State Meaning AssertedlNegated-Represents odd parity for each byte of read data. 
Parity is checked on all data byte lanes, regardless of the size of the 
transfer. Detected even parity causes a checks top if data parity errors 
are enabled in the HIOO register. 

Timing Comments AssertionlNegation-The same as DL[0-31]. 
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7.2.7.3 Data Bus Disable (DBDIS)-Input 
Following are the state meaning and timing comments for the DBDIS signal. 

State Meaning Asserted-Indicates (for a write transaction) that the MPC750 must 
release the data bus and the data bus parity to high impedance during 
the following cycle. The data tenure remains active, DBB remains 
driven, and the transfer termination signals are still monitored by the 
MPC750. 

Negated-Indicates the data bus should remain normally driven. 
DBDIS is ignored during read transactions. 

Timing Comments Assertion/Negation-May be asserted on any clock cycle when the 
MPC750 is driving or will be driving the data bus; may remain 
asserted multiple cycles. 

7.2.8 Data Transfer Termination Signals 
Data termination signals are required after each data beat in a data transfer. Note that in a 
single-beat transaction, the data termination signals also indicate the end of the tenure, 
while in burst accesses, the data termination signals apply to individual beats and indicate 
the end of the tenure only after the final data beat. 

For a detailed description of how these signals interact, see Section 8.4.4, "Data Transfer 
Termination." 

7.2.8.1 Transfer Acknowledge (TA)-Input 
Following are the state meaning and timing comments for the TA signal. 

State Meaning Asserted- Indicates that a single-beat data transfer completed 
successfully or that a data beat in a burst transfer completed 
successfully (unless DRTRY is asserted on the next bus clock cycle). 
Note that TA must be asserted for each data beat in a burst 
transaction and must be asserted during assertion of DRTRY. For 
more information, see Section 8.4.4, "Data Transfer Termination." 

Negated-(During DBB) indicates that, until TA is asserted, the 
MPC750 must continue to drive the data for the current write or must 
wait to sample the data for reads. 

Timing Comments Assertion-Must not occur before AACK for the current transaction 
(if the address retry mechanism is to be used to prevent invalid data 
from being used by the processor); otherwise, assertion may occur at 
any time during the assertion of DBB. The system can withhold 
assertion ofTA to indicate that the MPC750 should insert wait states 
to extend the duration of the data beat. 

Negation-Must occur after the bus clock cycle of the final (or only) 
data beat of the transfer. For a burst transfer, the system can assert TA 
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for one bus clock cycle and then negate it to advance the burst 
transfer to the next beat and insert wait states during the next beat. 

7.2.8.2 Data Retry (DRTRY)-Input 
Following are the state meaning and timing comments for the DRTRY signal. 

State Meaning Asserted-Indicates that the MPC750 must invalidate the data from 
the previous read operation. 

Negated-Indicates that data presented with TA on the previous read 
operation is valid. Note that DRTRY is ignored for write 
transactions. 

Timing Comments Assertion-Must occur during the bus clock cycle immediately after 
TA is asserted if a retry is required. The DRTRY signal may be held 
asserted for multiple bus clock cycles. When DRTRY is negated, 
data must have been valid on the previous clock with TA asserted. 

Negation-Must occur during the bus clock cycle after a valid data 
beat. This may occur several cycles after DBB is negated, effectively 
extending the data bus tenure. 

Start-up-The DRTRY signal is sampled at the negation of 
HRESET; if DRTRY is asserted, no-DRTRY mode is selected. If 
DRTRY is negated at start-up, DRTRY is enabled. 

7.2.8.3 Transfer Error Acknowledge (TEA)-Input 
Following are the state meaning and timing comments for the TEA signal. 

State Meaning Asserted-Indicates that a bus error occurred. Causes a machine 
check exception (and possibly causes the processor to enter 
checkstop state if machine check enable bit is cleared 
(MSR[ME] = 0». For more information, see Section 4.5.2.2, 
"Checkstop State (MSR[ME] = 0)." Assertion terminates the current 
transaction; that is, assertion of TA and DRTRY are ignored. The 
assertion of TEA causes the negationihigh impedance ofDBB in the 
next clock cycle. However, data entering the OPR or the cache are 
not invalidated. (Note that the term 'exception' is also referred to as 
'interrupt' in the architecture specification.) 

Negated-Indicates that no bus error was detected. 

Timing Comments Assertion-May be asserted while DBB is asserted, and the cycle 
after TA during a read operation. TEA should be asserted for one 
cycle only. 

Negation-TEA must be negated no later than the negation of DBB. 
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7.2.9 System Status Signals 
Most system status signals are input signals that indicate when exceptions are received, 
when checkstop conditions have occurred, and when the MPC750 must be reset. The 
MPC750 generates the output signal, CKSTP _OUT, when it detects a checkstop condition. 
For a detailed description of these signals, see Section 8.7, "Interrupt, Checks top, and Reset 
Signals." 

7.2.9.1 Interrupt (INT)-Input 
Following are the state meaning and timing comments for the INT signal. 

State Meaning Asserted-The MPC750 initiates an interrupt if MSR[EE] is set; 
otherwise, the MPC750 ignores the interrupt. To guarantee that the 
MPC750 will take the external interrupt, INT must be held active 
until the MPC750 takes the interrupt; otherwise, whether the 
MPC750 takes an external interrupt depends on whether the 
MSR[EE] bit was set while the INT signal was held active. 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.1, "External Interrupts." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the input clocks. The INT input is level-sensitive. 
Negation-Should not occur until interrupt is taken. 

7.2.9.2 System Management Interrupt (SMI)-Input 
Following are the state meaning and timing comments for SMI. 

State Meaning Asserted-The MPC750 initiates a system management interrupt 
operation if the MSR[EE] is set; otherwise, the MPC750 ignores the 
exception condition. The system must hold SMI active until the 
exception is taken. 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.1, "External Interrupts." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the input clocks. The SMI input is level-sensitive. 

Negation-Should not occur until interrupt is taken. 

7.2.9.3 Machine Check Interrupt (MCP)-Input 
Following are the state meaning and timing comments for the MCP signal. 

State Meaning Asserted-The MPC750 initiates a machine check interrupt 
operation if MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is 
cleared and HIDO[EMCP] is set, the MPC750 must terminate 
operation by internally gating off all clocks, and releasing all outputs 
(except CKSTP _OUT) to the high-impedance state. IfHIDO[EMCP] 
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is cleared, the MPC750 ignores the interrupt condition. The MCP 
signal must be held asserted for two bus clock cycles. 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.1, "External Interrupts." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the input clocks. The MCP input is negative edge
sensitive. 

Negation-May be negated two bus cycles after assertion. 

7.2.9.4 Checkstop Input (CKSTP _IN)-Input 
Following are the state meaning and timing comments for the CKSTP _IN signal. 

State Meaning Asserted-Indicates that the MPC750 must terminate operation by 
internally gating off all clocks, and release all outputs (except 
CKSTP _OUT) to the high-impedance state. Once CKSTP _IN has 
been asserted it must remain asserted until the system has been reset. 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.2, "Checkstops." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the input clocks. 

Negation-May occur any time after the CKSTP _OUT output signal 
has been asserted. 

7.2.9.5 Checkstop Output (CKSTP _OUT)-Output 
Note that the CKSTP _OUT signal is an open-drain type output, and requires an external 
pull-up resistor (for example, 10 kQ to V dd) to assure proper de-assertion of the 
CKSTP _OUT signal. Following are the state meaning and timing comments for the 
CKSTP _OUT signal. 

State Meaning Asserted-Indicates that the MPC750 has detected a checkstop 
condition and has ceased operation. 

Negated-Indicates that the MPC750 is operating normally. 
See Section 8.7.2, "Checkstops." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the MPC750 input clocks. 

Negation-Is negated upon assertion of HRESET. 
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7.2.9.6 Reset Signals 
There are two reset signals on the MPC750-hard reset (HRESET) and soft reset 
(SRESET). Descriptions of the reset signals are as follows: 

7.2.9.6.1 Hard Reset (HRESET)-Input 
The hard reset (HRESET) signal must be used at power-on in conjunction with the TRST 
signal to properly reset the processor. Following are the state meaning and timing 
comments for the HRESET signal. 

State Meaning Asserted-Initiates a complete hard reset operation when this input 
transitions from asserted to negated. Causes a reset exception as 
described in Section 4.5.1, "System Reset Exception (OxOOlOO)." 
Output drivers are released to high impedance within five clocks 
after the assertion of HRESET. 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.3, "Reset Inputs." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the MPC750 input clock; must be held asserted 
for a minimum of 255 clock cycles after the PLL lock time has been 
met. Refer to the MPC750 hardware specifications for further timing 
comments. 

Negation-May occur any time after the minimum reset pulse width 
has been met. 

This input has additional functionality in certain test modes. 

7.2.9.6.2 Soft Reset (SRESET)-Input 
Following are the state meaning and timing comments for the SRESET signal. 

State Meaning Asserted- Initiates processing for a reset exception as described in 
Section 4.5.1, "System Reset Exception (OxOOlOO)." 

Negated-Indicates that normal operation should proceed. See 
Section 8.7.3, "Reset Inputs." 

Timing Comments Assertion-May occur at any time and may be asserted 
asynchronously to the MPC750 input clock. The SRESET input is 
negative edge-sensitive. 

Negation-May be negated two bus cycles after assertion. 

This input has additional functionality in certain test modes. 

7.2.9.7 Processor Status Signals 
Processor status signals indicate the state of the processor. This includes the memory 
reservation signal, machine quiesce control signals, time base enable signal, and 
TLBISYNC signal. 
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7.2.9.7.1 Quiescent Request (QREQ)-Output 
Following are the state meaning and timing comments for QREQ. 

State Meaning Asserted-Indicates that the MPC750 is requesting all bus activity 
normally required to be snooped to terminate or to pause so the 
MPC750 may enter a quiescent (low power) state. When the 
MPC750 has entered a quiescent state, it no longer snoops bus 
activity. 

Negated-Indicates that the MPC750 is not making a request to 
enter the quiescent state. 

Timing Comments AssertionlNegation-May occur on any cycle. QREQ will remain 
asserted for the duration of the quiescent state. 

7.2.9.7.2 Quiescent Acknowledge (QACK)-Input 
Following are the state meaning and timing comments for the QACK signal. 

State Meaning Asserted-Indicates that all bus activity that requires snooping has 
terminated or paused, and that the MPC750 may enter the quiescent 
(or low power) state. 

Negated-Indicates that the MPC750 may not enter a quiescent 
state, and must continue snooping the bus. 

Timing Comments AssertionlNegation-May occur on any cycle following the 
assertion of QREQ, and must be held asserted for at least one bus 
clock cycle. 

7.2.9.7.3 Reservation (RSRV)-Output 
Following are the state meaning and timing comments for RSRY. 

State Meaning AssertedlNegated-Represents the state of the reservation 
coherency bit in the reservation address register that is used by the 
Iwarx and stwex. instructions. See Section 8.8.1, "Support for the 
lwarx/stwcx. Instruction Pair." 

Timing Comments AssertionlNegation-Occurs synchronously with respect to bus 
clock cycles. The execution of an lwarx instruction sets the internal 
reservation condition. 

7.2.9.7.4 Time Base Enable (TBEN)-Input 
Following are the state meaning and timing comments for the TBEN signal. 

State Meaning Asserted-Indicates that the time base should continue clocking. 
This input is essentially a count enable control for the time base 
counter. 

Negated-Indicates the time base should stop clocking. 

Timing Comments AssertionlNegation-May occur on any cycle. 
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7.2.9.7.5 TLBI Sync (TLBISYNC)-Input 
The TLBI Sync (TLBISYNC) signal is an input-only signal on the MPC750. Following are 
the state meaning and timing comments for the TLBISYNC signal. 

State Meaning Asserted-Indicates that instruction execution should stop after 
execution of a tlbsync instruction. 

Negated-Indicates that the instruction execution may continue or 
resume after the completion of a tlbsync instruction. 

'""'"""~""'"",.....,.,"" Timing Comments AssertionlNegation-May occur on any cycle. The TLBISYNC 
signal must be held negated during HRESET. 

7.2.9.7.6 L2 Cache Interface 
The MPC750's dedicated L2 cache interface provides all the signals required for the 
support of up to 1 Mbyte of synchronous SRAM for data storage. The use of the L2 data 
parity (L2DP[0-7J) and L2 low-power mode enable (L2ZZ) signals is optional, and 
depends on the SRAMs selected for use with the MPC750. Note that the least-significant 
bit of L2 address (L2ADDR[16-0J) signals is identified as bit 0, and the most-significant 
bit is identified as bit 16. 

Note that the L2 cache interface is not implemented in the MPC740. 

7.2.9.8 L2 Address (L2ADDR[16-0])-Output 
Following are the state meaning and timing comments for the L2 address output signals. 

State Meaning AssertedlNegated-Represents the address of the data to be 
transferred to the L2 cache. The L2 address bus is configured with 
bit 0 as the least-significant bit. Address bit 14 determines which 
cache tag set is selected. 

Timing Comments AssertionlNegation-Driven valid by the MPC750 during read and 
write operations; driven with static data when the L2 cache memory 
is not being accessed. 

7.2.9.9 L2 Data (L2DATA[O-63]) 
The data bus (L2DATA[0-63J) consists of 64 signals that are both input and output on the 
MPC750. 

7.2.9.9.1 L2 Data (L2DATA[O-63])-Output 
Following are the state meaning and timing comments for the L2 data output signals. 

State Meaning Asserted/Negated-Represents the state of data during a data write 
transaction; data is always transferred as double words. 

Timing Comments AssertionlNegation-Driven valid by MPC750 during write 
operations; driven with static data when the L2 cache memory is not 
being accessed by a read operation. 
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High Impedance-Occurs for at least one cycle when changing 
between read and write operations to the L2 cache memory. 

7.2.9.9.2 L2 Data (L2DATA[0-63])-lnput 
Following are the state meaning and timing comments for the L2 data input signals. 

State Meaning AssertedlNegated-Represents the state of data during a data read 
transaction; data is always transferred as double words. 

Timing Comments AssertionlNegation-Driven valid by L2 cache memory during read 
operations. 

7.2.9.10 L2 Data Parity (L2DP[O-7]) 
The eight data bus parity (L2DP[0-7]) signals on the MPC750 are both output and input 
signals. 

7.2.9.10.1 L2 Data Parity (L2DP[O-7])-Output 
Following are the state meaning and timing comments for the L2 data parity output signals. 

State Meaning AssertedlNegated-Represents odd parity for each of the 8 bytes of 
L2 cache data during write transactions. Odd parity means that an 
odd number of bits, including the parity bit, are driven high. Note 
that parity bit 0 is associated with bits 0-7 (byte lane 0) of the 
L2DATA bus. 

Timing Comments AssertionlNegation-The same as L2DATA[0-63]. 
High Impedance-The same as L2DATA[0-63]. 

7.2.9.10.2 L2 Data Parity (L2DP[O-7])-lnput 
Following are the state meaning and timing comments for the L2 parity input signals. 

State Meaning AssertedlNegated-Represents odd parity for each byte of L2 cache 
read data. 

Timing Comments AssertioniNegation-The same as L2DATA[0-63]. 

7.2.9.11 L2 Chip Enable (L2CE)-Output 
Following are the state meaning and timing comments for the L2CE signal. 

State Meaning Asserted-Indicates that the L2 cache memory devices are being 
selected for a read or write operation. 

Negated-Indicates that the MPC750 is not selecting the L2 cache 
memory devices for a read or write operation. 

Timing Comments AssertionlNegation-May occur on any cycle. L2CE is driven high 
during HRESET assertion. 
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7.2.9.12 L2 Write Enable (L2WE)-Output 
Following are the state meaning and timing comments for the L2WE signal. 

State Meaning Asserted-Indicates that the MPC750 is performing a write 
operation to the L2 cache memory. 

Negated-Indicates that the MPC750 is not performing an L2 cache 
memory write operation. 

Timing Comments AssertionlNegation-May occur on any cycle. L2WE is driven high 
during HRESET assertion. 

7.2.9.13 L2 Clock Out A (L2CLK_OUTA)-Output 
Following are the state meaning and timing comments for the L2CLK_OUTA signal. 

State Meaning AssertedINegated-Clock output for L2 cache memory devices. The 
L2CLK_OUTA signal is identical and synchronous with the 
L2CLK_ OUTB signal, and provides the capability to drive up to four 
L2 cache memory devices. If differential L2 clocking is configured 
through the setting ofthe L2CR, the L2CLK_OUTB signal is driven 
phase inverted with relation to the L2CLK_OUTA signal. 

Timing Comments AssertionlNegation-Refer to the MPC750 hardware specifications 
for timing comments. The L2CLK_OUTA signal is driven low 
during assertion of HRESET. 

7.2.9.14 L2 Clock Out B (L2CLK_OUTB)-Output 
Following are the state meaning and timing comments for the L2CLK_OUTB signal. 

State Meaning Asserted/Negated-Clock output for L2 cache memory devices. The 
L2CLK_OUTB signal is identical and synchronous with the 
L2CLK_ OUT A signal, and provides the capability to drive up to four 
L2 cache memory devices. If differential L2 clocking is configured 
through the setting of the L2CR, the L2CLK_OUTA signal is driven 
phase inverted with relation to the L2CLK_OUTB signal. 

Timing Comments AssertionlNegation-Refer to the MPC750 hardware specifications 
for timing comments. The L2CLK_OUTB signal is driven low 
during assertion of HRESET. 

7.2.9.15 L2 Sync Out (L2SYNC_OUT)-Output 
Following are the state meaning and timing comments for the L2SYNC_OUT signal. 

State Meaning AssertedINegated-Clock output for L2 clock synchronization. The 
L2SYNC_OUT signal should be routed half of the trace length to the 
L2 cache memory devices and returned to the L2SYNC_IN signal 
input. 
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Timing Comments AssertionlNegation-Refer to the MPC750 hardware specifications 
for timing comments. The L2SYNC_OUT signal is driven low 
during assertion of HRESET. 

7.2.9.16 L2 Sync In (L2SYNC_IN)-lnput 
Following are the state meaning and timing comments for the L2SYNC_IN signal. 

State Meaning AssertedlNegated-Clock input for L2 clock synchronization. The 
L2SYNC_IN signal is driven by the L2SYNC_OUT signal output. 

Timing Comments Assertion/Negation-Refer to the MPC750 hardware specifications 
for timing comments. The routing of this signal on the printed circuit 
board should ensure that the rising edge at L2SYNC_IN is 
coincident with the rising edge of the clock at the clock input of the 
L2 cache memory devices. 

7.2.9.17 L2 Low-Power Mode Enable (L2ZZ)-Output 
Following are the state meaning and timing comments for the L2ZZ signal. 

State Meaning AssertedlNegated-Enables low-power mode for certain L2 cache 
memory devices. Operation of the signal is enabled through the 
L2CR. 

Timing Comments Assertion/Negation-Occurs synchronously with the L2 clock when 
the MPC750 enters and exits the nap or sleep power modes; after 
negation of this signal, at least two L2 clock cycles will elapse before 
L2 cache operations resume. The L2ZZ signal is driven low during 
assertion of HRESET. 

7.2.10 IEEE 1149.1a-1993 Interface Description 
The MPC750 has five dedicated JTAG signals which are described in Table 7-6. The test 
data input (TDI) and test data output (TDO) scan ports are used to scan instructions as well 
as data into the various scan registers for JTAG operations. The scan operation is controlled 
by the test access port (TAP) controller which in turn is controlled by the test mode select 
(TMS) input sequence. The scan data is latched in at the rising edge of test clock (TCK). 

Table 7-6. IEEE Interface Pin Descriptions 

Signal Name Input/Output 
Weak Pullup 

IEEE 1149.1a Function 
Provided 

TOI Input Yes Serial scan input signal 

TOO Output No Serial scan output signal 

TMS Input Yes TAP controller mode signal 

TCK Input Yes Scan clock 

TRST Input Yes TAP controller reset 

7-28 MPC750 RISC Microprocessor User's Manual 



Test reset (TRST) is a JTAG optional signal which is used to reset the TAP controller 
asynchronously. The TRST signal assures that the JTAG logic does not interfere with the 
normal operation of the chip, and must be asserted and deasserted coincident with the 
assertion of the HRESET signal. 

7.2.11 Clock Signals 
The MPC750 clock signal inputs determine the system clock frequency and provide a 
flexible clocking scheme that allows the processor to operate at an integer multiple of the 
system clock frequency. 

Refer to the MPC750 hardware specifications for exact timing relationships of the clock 
signals. 

7.2.11.1 System Clock (SYSCLK)-Input 
The MPC750 requires a single system clock (SYSCLK) input. This input sets the frequency 
of operation for the bus interface. Internally, the MPC750 uses a phase-locked loop (PLL) 
circuit to generate a master clock for all of the CPU circuitry (including the bus interface 
circuitry) which is phase-locked to the SYSCLK input. The master clock may be set to an 
integer or half-integer multiple (2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, or 
7:1) of the SYSCLK frequency allowing the CPU core to operate at an equal or greater 
frequency than the bus interface. 

State Meaning AssertedlNegated-The SYSCLK input is the primary clock input 
for the MPC750, and represents the bus clock frequency for 
MPC750 bus operation. Internally, the MPC750 may be operating at 
an integer or half-integer multiple of the bus clock frequency. 

Timing Comments Duty cycle-Refer to the MPC750 hardware specifications for 
timing comments. 
Note: SYSCLK is used as the frequency reference for the internal 
PLL clock generator, and must not be suspended or varied during 
normal operation to ensure proper PLL operation. 

7.2.11.2 Clock Out (CLK_OUT)-Output 
The clock out (CLK_OUT) signal is an output signal (output-only) on the MPC750. 
Following are the state meaning and timing comments for the CLK_OUT signal. 

State Meaning AssertedlNegated-Provides PLL clock output for PLL testing and 
monitoring. The configuration of the HIDO[SBCLK] and 
HIDO[ECLK] bits determines whether the CLK_OUT signal clocks 
at either the processor clock frequency, the bus clock frequency, or 
half of the bus clock frequency. See Table 2-5 for HIDO register 
configuration of the CLK_OUT signal. The CLK_OUT signal 
defaults to a high-impedance state following the assertion of 
HRESET. The CLK_OUT signal is provided for testing only. 

Chapter 7. Signal Descriptions 7-29 



Timing Comments AssertionlNegation-Refer to the MPC750 hardware specifications 
for timing comments. 

7.2.11.3 PLL Configuration (PLL_CFG[O-3])-lnput 
The PLL (phase-locked loop) is configured by the PLL_CFG[0-3] signals. For a given 
SYSCLK (bus) frequency, the PLL configuration signals set the internal CPU frequency of 
operation. Refer to the MPC750 hardware specifications for PLL configuration. 

Following are the state meaning and timing comments for the PLL_CFG[0-3] signals. 

State Meaning AssertedlNegated- Configures the operation of the PLL and the 
internal processor clock frequency. Settings are based on the desired 
bus and internal frequency of operation. 

Timing Comments AssertionlNegation-Must remain stable during operation; should 
only be changed during the assertion of HRESET or during sleep 
mode. These bits may be read through the PC[0-3] bits in the HID! 
register. 

7.2.12 Power and Ground Signals 
The MPC750 provides the following connections for power and ground: 

• V DD-The V DD signals provide the supply voltage connection for the processor 
core. 

• OV DD-The OV DD signals provide the supply voltage connection for the system 
interface drivers. 

• L2V DD-The L2V DD signals provide the supply voltage connection for the L2 
cache interface drivers. These power supply signals are isolated from the V DD and 
OVDD power supply signals. These signals are not implemented on the MPC740. 

• AV DD-The AV DD power signal provides power to the clock generation phase
locked loop. See the MPC750 hardware specifications for information on how to use 
this signal. 

• L2AVDD-The L2AVDD power signal provides power to the L2 delay-locked loop. 
See the MPC750 hardware specifications for information on how to use this signal. 
This signal is not implemented on the MPC740. 

• GND and OGND-The GND and OGND signals provide the connection for 
grounding the MPC750. On the MPC750, there is no electrical distinction between 
the GND and OGND signals. 

• L2GND-The L2GND signals provide the ground connection for the L2 cache 
interface. These ground signals are isolated from the GND and OGND ground 
signals. These signals are not implemented on the MPC740. 
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Chapter 8 
System Interface Operation 
This chapter describes the MPC750 microprocessor bus interface and its operation. It 
shows how the MPC750 signals, defined in Chapter 7, "Signal Descriptions," interact to 
perform address and data transfers. 

8.1 MPC750 System Interface Overview 
The system interface prioritizes requests for bus operations from the instruction and data 
caches, and performs bus operations in accordance with the protocol described in the 
PowerPC Microprocessor Family: The Bus Inteiface for 32-Bit Microprocessors. It 
includes address register queues, prioritization logic, and bus control unit. The system 
interface latches snoop addresses for snooping in the data cache and in the address register 
queues, and for reservations controlled by the Load Word and Reserve Indexed (lwarx) and 
Store Word Conditional Indexed (stwcx.) instructions, and maintains the touch load address 
for the cache. The interface allows one level of pipelining; that is, with certain restrictions 
discussed later, there can be two outstanding transactions at any given time. Accesses are 
prioritized with load operations preceding store operations. 

Instructions are automatically fetched from the memory system into the instruction unit 
where they are dispatched to the execution units at a peak rate of two instructions per clock. 
Conversely, load and store instructions explicitly specify the movement of operands to and 
from the integer and floating-point register files and the memory system. 

When the MPC750 encounters an instruction or data access, it calculates the logical address 
(effective address in the architecture specification) and uses the low-order address bits to 
check for a hit in the on-chip, 32-Kbyte instruction and data caches. During cache lookup, 
the instruction and data memory management units (MMUs) use the higher-order address 
bits to calculate the virtual address, from which they calculate the physical address (real 
address in the architecture specification). The physical address bits are then compared with 
the corresponding cache tag bits to determine if a cache hit occurred in the Ll instruction 
or data cache. If the access misses in the corresponding cache, the physical address is used 
to access the L2 cache tags (if the L2 cache is enabled). If no match is found in the L2 cache 
tags, the physical address is used to access system memory. 

In addition to the loads, stores, and instruction fetches, the MPC750 performs hardware 
table search operations following TLB misses, L2 cache cast-out operations when 
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least-recently used cache lines are written to memory after a cache miss, and cache-line 
snoop push-out operations when a modified cache line experiences a snoop hit from another 
bus master. 

Figure 8-1 shows the address path from the execution units and instruction fetcher, through 
the translation logic to the caches and system interface logic. 

The MPC750 uses separate address and data buses and a variety of control and status 
signals for performing reads and writes. The address bus is 32 bits wide and the data bus is 
64 bits wide. The interface is synchronous-all MPC750 inputs are sampled at and all 
outputs are driven from the rising edge of the bus clock. The processor runs at a multiple of 
the bus-clock speed. The MPC750 core operates at 2.5 volts, and the I/O signals operate at 
3.3 volts. 

8.1.1 Operation of the Instruction and Data L 1 Caches 
The MPC750 provides independent instruction and data Ll caches. Each cache is a 
physically-addressed, 32-Kbyte cache with eight-way set associativity. Both caches consist 
of 128 sets of eight cache lines, with eight words in each cache line. 

Because the data cache on the MPC750 is an on-chip, write-back primary cache, the 
predominant type of transaction for most applications is burst-read memory operations, 
followed by burst-write memory operations and single-beat (noncacheable or 
write-through) memory read and write operations. Additionally, there can be address-only 
operations, variants of the burst and single-beat operations (global memory operations that 
are snooped, and atomic memory operations, for example), and address retry activity (for 
example, when a snooped read access hits a modified line in the cache). 

Since the MPC750 data cache tags are single ported, simultaneous load or store and snoop 
accesses cause resource contention. Snoop accesses have the highest priority and are given 
first access to the tags, unless the snoop access coincides with a tag write, in which case the 
snoop is retried and must re-arbitrate for access to the cache. Loads or stores that are 
deferred due to snoop accesses are performed on the clock cycle following the snoop. 

The MPC750 supports a three-state coherency protocol that supports the modified, 
exclusive, and invalid (MEl) cache states. The protocol is a subset of the MESI 
(modified/exclusive/shared/invalid) four-state protocol and operates coherently in systems 
that contain four-state caches. With the exception of the debz instruction (and the debi, 
debst, and debf instructions, if HIDO[ABE] is enabled), the MPC750 does not broadcast 
cache control instructions. The cache control instructions are intended for the management 
of the local cache but not for other caches in the system. 

Cache lines in the MPC750 are loaded in four beats of 64 bits each. The burst load is 
performed as critical double word first. The critical double word is simultaneously written 
to the cache and forwarded to the requesting unit, thus minimizing stalls due to load delays. 
If subsequent loads follow in sequential order, the instructions or data will be forwarded to 
the requesting unit as the cache block is written. 
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Cache lines are selected for replacement based on a pseudo least-recently-used (PLRU) 
algorithm. Each time a cache line is accessed, it is tagged as the most-recently-used line of 
the set. When a miss occurs, and all eight lines in the set are marked as valid, the least 
recently used line is replaced with the new data. When data to be replaced is in the modified 
state, the modified data is written into a write-back buffer while the missed data is being 
read from memory. When the load completes, the MPC750 then pushes the replaced line 
from the write-back buffer to the L2 cache (if enabled), or to main memory in a burst write 
operation. 

8.1.2 Operation of the L2 Cache 
The MPC750 provides an on-chip, two-way set associative tag memory, and a dedicated L2 
cache port with support for up to 1 Mbyte of external synchronous SRAMs for data storage. 
The L2 cache normally operates in copy-back mode and supports system cache coherency 
through snooping. Designers should note that the MPC740 does not implement the on-chip 
L2 tag memory, or the signals required for the support of the external SRAMs, and memory 
accesses go directly to the bus interface unit. 

The L2 cache receives independent memory access requests from both the Ll instruction 
and data caches. The Ll accesses are compared to the L2 cache tags and the data or 
instructions are forwarded from the L2 to the Ll cache if there is a cache hit, or are 
forwarded on to the bus interface unit if there is an L2 cache miss, or if the address being 
accessed is from a page marked as caching-inhibited. Burst read accesses that miss in the 
L2 cache initiate a load operation from the bus interface. As the load operation transfers 
data to the Ll cache, the data is also loaded into the L2 cache, and marked as valid 
unmodified in the L2 cache tags. An Ll load, store, or castout operation can cause an L2 
cache block allocation resulting in the castout of an L2 cache block marked modified to the 
bus interface. For additional information about the operation of the L2 cache, refer to 
Chapter 9, "L2 Cache Interface Operation." 

8.1.3 Operation of the System Interface 
Memory accesses can occur in single-beat (1,2,3,4, and 8 bytes) and four-beat (32 bytes) 
burst data transfers. The address and data buses are independent for memory accesses to 
support pipelining and split transactions. The MPC750 can pipeline as many as two 
transactions and has limited support for out-of-order split-bus transactions. 

Access to the system interface is granted through an external arbitration mechanism that 
allows devices to compete for bus mastership. This arbitration mechanism is flexible, 
allowing the MPC750 to be integrated into systems that implement various fairness and 
bus-parking procedures to avoid arbitration overhead. 
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Typically, memory accesses are weakly ordered to maximize the efficiency of the bus 
without sacrificing coherency of the data. The MPC750 allows load operations to bypass 
store operations (except when a dependency exists). In addition, the MPC750 can be 
configured to reorder high-priority store operations ahead of lower-priority store 
operations. Because the processor can dynamically optimize run-time ordering of 
load/store traffic, overall performance is improved. 

Note that the synchronize (sync) and enforce in-order execution of 10 (eieio) instructions 
can be used to enforce strong ordering. 

The following sections describe how the MPC750 interface operates, providing detailed 
timing diagrams that illustrate how the signals interact. A collection of more general timing 
diagrams are included as examples of typical bus operations. 

Figure 8-2 is a legend of the conventions used in the timing diagrams. 

This is a synchronous interface-all MPC750 input signals are sampled and output signals 
are driven on the rising edge of the bus clock cycle (see the MPC750 hardware 
specifications for exact timing information). 

8.1.4 Direct-Store Accesses 
The MPC750 does not support the extended transfer protocol for accesses to the 
direct-store storage space. The transfer protocol used for any given access is selected by the 
T bit in the MMU segment registers; if the T bit is set, the memory access is a direct-store 
access. An attempt to access instructions or data in a direct-store segment will result in the 
MPC750 taking an lSI or DSI exception. 
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Figure 8-2. Timing Diagram Legend 

8.2 Memory Access Protocol 
Memory accesses are divided into address and data tenures. Each tenure has three phases
bus arbitration, transfer, and termination. The MPC750 also supports address-only 
transactions. Note that address and data tenures can overlap, as shown in Figure 8-3. 

Figure 8-3 shows that the address and data tenures are distinct from one another and that 
both consist of three phases-arbitration, transfer, and termination. Address and data 
tenures are independent (indicated in Figure 8-3 by the fact that the data tenure begins 
before the address tenure ends), which allows split-bus transactions to be implemented at 
the system level in multiprocessor systems. Figure 8-3 shows a data transfer that consists 
of a single-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte cache 
lines require data transfer termination signals for each beat of data. 
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Figure 8-3. Overlapping Tenures on the MPC750 Bus for a Single-Beat Transfer 

The basic functions of the address and data tenures are as follows: 

• Address tenure 

- Arbitration: During arbitration, address bus arbitration signals are used to gain 
mastership of the address bus. 

- Transfer: After the MPC750 is the address bus master, it transfers the address on 
the address bus. The address signals and the transfer attribute signals control the 
address transfer. The address parity and address parity error signals ensure the 
integrity of the address transfer. 

- Termination: After the address transfer, the system signals that the address tenure 
is complete or that it must be repeated. 

• Data tenure 

- Arbitration: To begin the data tenure, the MPC750 arbitrates for mastership of 
the data bus. 

- Transfer: After the MPC750 is the data bus master, it samples the data bus for 
read operations or drives the data bus for write operations. The data parity and 
data parity error signals ensure the integrity of the data transfer. 

- Termination: Data termination signals are required after each data beat in a data 
transfer. Note that in a single-beat transaction, the data termination signals also 
indicate the end of the tenure, while in burst accesses, the data termination 
signals apply to individual beats and indicate the end of the tenure only after the 
final data beat. 

The MPC750 generates an address-only bus transfer during the execution of the debz 
instruction (and for the debi, debf, debst, sync, and eieio instructions, if HIDO[ABE] is 
enabled), which uses only the address bus with no data transfer involved. Additionally, the 
MPC750's retry capability provides an efficient snooping protocol for systems with 
multiple memory systems (including caches) that must remain coherent. 
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8.2.1 Arbitration Signals 
Arbitration for both address and data bus mastership is performed by a central, external 
arbiter and, minimally, by the arbitration signals shown in Section 7.2.1, "Address Bus 
Arbitration Signals." Most arbiter implementations require additional signals to coordinate 
bus master/slave/snooping activities. Note that address bus busy (ABB) and data bus busy 
(DBB) are bidirectional signals. These signals are inputs unless the MPC750 has 
mastership of one or both of the respective buses; they must be connected high through 
pull-up resistors so that they remain negated when no devices have control of the buses. 

The following list describes the address arbitration signals: 

• BR (bus request)-Assertion indicates that the MPC750 is requesting mastership 
of the address bus. 

• BG (bus grant)-Assertion indicates that the MPC750 may, with the proper 
qualification, assume mastership of the address bus. A qualified bus grant occurs 
when BG is asserted and ABB and ARTRY are negated. 

If the MPC750 is parked, BR need not be asserted for the qualified bus grant. 

• ABB (address bus busy)-Assertion by the MPC750 indicates that the MPC750 is 
the address bus master. 

The following list describes the data arbitration signals: 

8-8 

• DBG (data bus grant)-Indicates that the MPC750 may, with the proper 
qualification, assume mastership of the data bus. A qualified data bus grant occurs 
when DBG is asserted while DBB, DRTRY, and ARTRY are negated. 

The DBB signal is driven by the current bus master, DRTRY is oniy driven from the 
bus, and ARTRY is from the bus, but only for the address bus tenure associated with 
the current data bus tenure (that is, not from another address tenure). 

• DBWO (data bus write only)-Assertion indicates that the MPC750 may perform 
the data bus tenure for an outstanding write address even if a read address is 
pipelined before the write address. If DBWO is asserted, the MPC750 will assume 
data bus mastership for a pending data bus write operation; the MPC750 will take 
the data bus for a pending read operation if this input is asserted along with DBG 
and no write is pending. Care must be taken with DBWO to ensure the desired write 
is queued (for example, a cache-line snoop push-out operation). 

• DBB (data bus busy)-Assertion by the MPC750 indicates that the MPC750 is the 
. data bus master. The MPC750 always assumes data bus mastership if it needs the 

data bus and is given a qualified data bus grant (see DBG). 

For more detailed information on the arbitration signals, refer to Section 7.2.1, 
"Address Bus Arbitration Signals," and Section 7.2.6, "Data Bus Arbitration 
Signals." 
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8.2.2 Address Pipelining and Split-Bus Transactions 
The MPC750 protocol provides independent address and data bus capability to support 
pipelined and split-bus transaction system organizations. Address pipelining allows the 
address tenure of a new bus transaction to begin before the data tenure of the current 
transaction has finished. Split-bus transaction capability allows other bus activity to occur 
(either from the same master or from different masters) between the address and data 
tenures of a transaction. 

While this capability does not inherently reduce memory latency, support for address 
pipelining and split-bus transactions can greatly improve effective bus/memory throughput. 
For this reason, these techniques are most effective in shared-memory multimaster 
implementations where bus bandwidth is an important measurement of system 
performance. 

External arbitration is required in systems in which multiple devices must compete for the 
system bus. The design of the external arbiter affects pipelining by regulating address bus 
grant (BG), data bus grant (DBG), and address acknowledge (AACK) signals. For example, 
a one-level pipeline is enabled by asserting AACK to the current address bus master and 
granting mastership of the address bus to the next requesting master before the current data 
bus tenure has completed. Two address tenures can occur before the current data bus tenure 
completes. 

The MPC750 can pipeline its own transactions to a depth of one level (intraprocessor 
pipelining); however, the MPC750 bus protocol does not constrain the maximum number 
of levels of pipelining that can occur on the bus between multiple masters (interprocessor 
pipelining). The external arbiter must control the pipeline depth and synchronization 
between masters and slaves. 

In a pipelined implementation, data bus tenures are kept in strict order with respect to 
address tenures. However, external hardware can fmther decouple the address and data 
buses, allowing the data tenures to occur out of order with respect to the address tenures. 
This requires some form of system tag to associate the out-of-order data transaction with 
the proper originating address transaction (not defined for the MPC750 interface). 
Individual bus requests and data bus grants from each processor can be used by the system 
to implement tags to support interprocessor, out-of-order transactions. 

The MPC750 supports a limited intraprocessor out-of-order, split-transaction capability via 
the data bus write only (DBWO) signal. For more information about using DBWO, see 
Section 8.10, "Using Data Bus Write Only." 
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8.3 Address Bus Tenure 
This section describes the three phases of the address tenure-address bus arbitration, 
address transfer, and address termination. . 

8.3.1 Address Bus Arbitration 
When the MPC750 needs access to the external bus and it is not parked (BG is negated), it 
asserts bus request (BR) until it is granted mastership of the bus and the bus is available (see 
Figure 8-4). The external arbiter must grant master-elect status to the potential master by 
asserting the bus grant (BG) signal. The MPC750 requesting the bus determines that the bus 
is available when the ABB input is negated. When the address bus is not busy (ABB input 
is negated), BG is asserted and the address retry (ARTRY) input is negated. This is referred 
to as a qualified bus grant. The potential master assumes address bus mastership by 
asserting ABB when it receives a qualified bus grant. 

-1 o 
Logical Bus Clock 

A~~ ,~------~------~~ 
'-O.-~-------.; 

Figure 8-4. Address Bus Arbitration 

External arbiters must allow only one device at a time to be the address bus master. 
Implementations in which no other device can be a master, BG can be grounded (always 
asserted) to continually grant mastership of the address bus to the MPC750. 

If the MPC750 asserts BR before the external arbiter asserts BG, the MPC750 is considered 
to be unparked, as shown in Figure 8-4. Figure 8-5 shows the parked case, where a qualified 
bus grant exists on the clock edge following a need_bus condition. Notice that the bus clock 
cycle required for arbitration is eliminated if the MPC750 is parked, reducing overall 
memory latency for a transaction. The MPC750 always negates ABB for at least one bus 
clock cycle after AACK is asserted, even if it is parked and has another transaction pending. 
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Typically, bus parking is provided to the device that was the most recent bus master; 
however, system designers may choose other schemes such as providing unrequested bus 
grants in situations where it is easy to correctly predict the next device requesting bus 
mastership. 

-1 o 

A~~ r. --------+-------~~ 
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Figure 8-5. Address Bus Arbitration Showing Bus Parking 

When the MPC750 receives a qualified bus grant, it assumes address bus mastership by 
asserting ABB and negating the BR output signal. Meanwhile, the MPC750 drives the 
address for the requested access onto the address bus and asserts TS to indicate the start of 
a new transaction. 

When designing external bus arbitration logic, note that the MPC750 may assert BR 
without using the bus after it receives the qualified bus grant. For example, in a system using 
bus snooping, if the MPC750 asserts BR to perform a replacement copy-back operation, 
another device can invalidate that line before the MPC750 is granted mastership of the bus. 
Once the MPC750 is granted the bus, it no longer needs to perform the copy-back 
operation; therefore, the MPC750 does not assert ABB and does not use the bus for the 
copy-back operation. Note that the MPC750 asserts BR for at least one clock cycle in these 
instances. 

System designers should note that it is possible to ignore the ABB signal, and regenerate 
the state of ABB locally within each device by monitoring the TS and AACK input signals. 
The MPC750 allows this operation by using both the ABB input signal and a locally 
regenerated version of ABB to determine if a qualified bus grant state exists (both sources 
are internally ORed together). The ABB signal may only be ignored if ABB and TS are 
asserted simultaneously by all masters, or where arbitration (through assertion of BG) is 
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properly managed in cases where the regenerated ABB may not properly track the ABB 
signal on the bus. If the MPC750's ABB signal is ignored by the system, it must be 
connected to a pull-up resistor to ensure proper operation. Additionally, the MPC750 will 
not qualify a bus grant during the cycle that TS is asserted on the bus by any master. Address 
bus arbitration without the use of the ABB signal requires that every assertion of TS be 
acknowledged by an assertion of AACK while the processor is not in sleep mode. 

8.3.2 Address Transfer 
During the address transfer, the physical address and all attributes of the transaction are 
transferred from the bus master to the slave device(s). Snooping logic may monitor the 
transfer to enforce cache coherency; see discussion about snooping in Section 8.3.3, 
"Address Transfer Termination." 

The signals used in the address transfer include the following signal groups: 

• Address transfer start signal: transfer start (TS) 

• Address transfer signals: address bus (A[0-31]), and address parity (AP[0-3]) 

• Address transfer attribute signals: transfer type (TT[O-4]), transfer size 
(TSIZ[0-2]), transfer burst (TBST), cache inhibit (CI), write-through (WT), and 
global (GBL) 

Figure 8-6 shows that the timing for all of these signals, except TS, is identical. All of the 
address transfer and address transfer attribute signals are combined into the ADDRt
grouping in Figure 8-6. The TS signal indicates that the MPC750 has begun an address 
transfer and that the address and transfer attributes are valid (within the context of a 
synchronous bus). The MPC750 always asserts TS coincident with ABB. As an input, TS 
need not coincide with the assertion of ABB on the bus (that is, TS can be asserted with, or 
on, a subsequent clock cycle after ABB is asserted; the MPC750 tracks this transaction 
correctly). 

In Figure 8-6, the address transfer occurs during bus clock cycles 1 and 2 (arbitration occurs 
in bus clock cycle 0 and the address transfer is terminated in bus clock 3). In this diagram, 
the address bus termination input, AACK, is asserted to the MPC750 on the bus clock 
following assertion ofTS (as shown by the dependency line). This is the minimum duration 
of the address transfer for the MPC750; the duration can be extended by delaying the 
assertion of AACK for one or more bus clocks. 
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Figure 8-6. Address Bus Transfer 

8.3.2.1 Address Bus Parity 
The MPC750 always generates 1 bit of correct odd-byte parity for each of the 4 bytes of 
address when a valid address is on the bus. The calculated values are placed on the AP[0-3] 
outputs when the MPC750 is the address bus master. If the MPC750 is not the master and 
TS and GBL are asserted together (qualified condition for snooping memory operations), 
the calculated values are compared with the AP[O-3] inputs. Ifthere is an error, and address 
parity checking is enabled (HIDO[EBA] set to 1), a machine check exception is generated. 
An address bus parity error causes a checkstop condition if MSR[ME] is cleared to O. For 
more information about checkstop conditions, see Chapter 4, "Exceptions." 

8.3.2.2 Address Transfer Attribute Signals 
The transfer attribute signals include several encoded signals such as the transfer type 
(TT[O-4]) signals, transfer burst (TBST) signal, transfer size (TSIZ[O-2]) signals, 
write-through (WT), and cache inhibit (CI). Section 7.2.4, "Address Transfer Attribute 
Signals," describes the encodings for the address transfer attribute signals. 

8.3.2.2.1 Transfer Type (TT[O-4]) Signals 
Snooping logic should fully decode the transfer type signals if the GBL signal is asserted. 
Slave devices can sometimes use the individual transfer type signals without fully decoding 
the group. For a complete description of the encoding for TT[O-4], refer to Table 8-1 and 
Table 8-2. 

8.3.2.2.2 Transfer Size (TSIZ[O-2]) Signals 
The TSIZ[O-2] signals indicate the size of the requested data transfer as shown in Table 8-1. 
The TSIZ[O-2] signals may be used along with TBST and A[29-31] to determine which 
portion of the data bus contains valid data for a write transaction or which portion of the 
bus should contain valid data for a read transaction. Note that for a burst transaction (as 
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indicated by the assertion of TBST), TSIZ[0-2] are always set to ObO 10. Therefore, if the 
TBST signal is asserted, the memory system should transfer a total of eight words (32 
bytes), regardless of the TSIZ[0-2] encodings. 

Table 8-1. Transfer Size Signal Encodings 

TBST TSIZO TSIZ1 TSIZ2 Transfer Size 

Asserted 0 1 0 Eight-word burst 

Negated 0 0 0 Eight bytes 

Negated 0 0 1 One byte 

Negated 0 1 0 Two bytes 

Negated 0 1 1 Three bytes 

Negated 1 0 0 Four bytes 

Negated 1 0 1 Five bytes (N/A) 

Negated 1 1 0 Six bytes (N/A) 

Negated 1 1 1 Seven bytes (N/ A) 

The basic coherency size of the bus is defined to be 32 bytes (corresponding to one cache 
line). Data transfers that cross an aligned, 32-byte boundary either must present a new 
address onto the bus at that boundary (for coherency consideration) or must operate as 
noncoherent data with respect to the MPC750. The MPC750 never generates a bus 
transaction with a transfer size of 5 bytes, 6 bytes, or 7 bytes. 

8.3.2.2.3 Write-Through (WT) Signal 
The MPC750 provides the WT signal to indicate a write-through operation as determined 
by the WIM bit settings during address translation by the MMU. The WT signal is also 
asserted for burst writes due to the execution of the debf and debst instructions, and snoop 
push operations. The WT signal is deasserted for accesses caused by the execution of the 
eeowx instruction. During read operations the MPC750 uses the WT signal to indicate 
whether the transaction is an instruction fetch (WT set to 1), or a data read operation (WT 
cleared to 0). 

8.3.2.2.4 Cache Inhibit (CI) Signal 
The MPC750 indicates the caching-inhibited status of a transaction (determined by the 
setting of the WIM bits by the MMU) through the use of the CI signal. The CI signal is 
asserted even if the L1 caches are disabled or locked. This signal is also asserted for bus 
transactions caused by the execution of eciwx and eeowx instructions independent of the 
address translation. 
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8.3.2.3 Burst Ordering During Data Transfers 
During burst data transfer operations, 32 bytes of data (one cache line) are transferred to or 
from the cache in order. Burst write transfers are always performed zero double word first, 
but since burst reads are performed critical double word first, a burst read transfer may not 
start with the first double word of the cache line, and the cache line fill may wrap around 
the end of the cache line. 

Table 8-2 describes the data bus burst ordering. 

Table 8-2. Burst Ordering 

For Starting Address: 
Data Transfer 

A[27-28] = 00 A[27-28] = 01 A[27-28] = 10 A[27-28] = 11 

First data beat OWO OW1 OW2 OW3 

Second data beat OW1 OW2 OW3 OWO 

Third data beat OW2 OW3 OWO OW1 

Fourth data beat OW3 OWO OW1 OW2 

Note: A[29-31] are always ObOOO for burst transfers by the MPC750. 

8.3.2.4 Effect of Alignment in Data Transfers 
Table 8-3 lists the aligned transfers that can occur on the MPC750 bus. These are transfers 
in which the data is aligned to an address that is an integral multiple of the size of the data. 
For example, Table 8-3 shows that I-byte data is always aligned; however, for a 4-byte 
word to be aligned, it must be oriented on an address that is a multiple of 4. 

Table 8-3. Aligned Data Transfers 

Data Bus Byte Lane(s) 
Transfer Size TSIZO TSIZ1 TSIZ2 A[29-31] 

0 1 2 3 4 5 6 7 

Byte a a 1 000 ..,j - - - - - - -

0 0 1 001 - ..,j - - - - - -

0 0 1 010 - - ..,j - - - - -

0 0 1 011 - - - ..,j - - - -

0 0 1 100 - - - - ..,j - - -
0 0 1 101 - - - - - ..,j - -

0 0 1 110 - - - - - - ..,j -
0 0 1 111 - - - - - - - ..,j 
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Table 8-3. Aligned Data Transfers (Continued) 

Data Bus Byte Lane(s) 
Transfer Size TSIZO TSIZ1 TSIZ2 A[29-31] 

0 1 2 3 4 5 6 

Hall word 0 1 0 000 " " - - - - -
0 1 0 010 - - " " - - -

0 1 0 100 - - - - " " -
0 1 0 110 - - - - - - " Word 1 0 0 000 " " " " - - -
1 0 0 100 - - - - " " " Double word 0 0 0 000 " " " " " " " 

Notes: These entries indicate the byte portions of the requested operand that are read or written during 
that bus transaction. 
These entries are not required and are ignored during read transactions and are driven with unde
fined data during all write transactions. 

7 

-
-

-

" 
-

" 
" 

The MPC750 supports misaligned memory operations, although their use may 
substantially degrade performance. Misaligned memory transfers address memory that is 
not aligned to the size of the data being transferred (such as, a word read of an odd byte 
address). Although most of these operations hit in the primary cache (or generate burst 
memory operations if they miss), the MPC750 interface supports misaligned transfers 
within a word (32-bit aligned) boundary, as shown in Table 8-4. Note that the 4-byte 
transfer in Table 8-4 is only one example of misalignment. As long as the attempted transfer 
does not cross a word boundary, the MPC750 can transfer the data on the misaligned 
address (for example, a half-word read from an odd byte-aligned address). An attempt to 
address data that crosses a word boundary requires two bus transfers to access the data. 

Due to the performance degradations associated with misaligned memory operations, they 
are best avoided. In addition to the double-word straddle boundary condition, the address 
translation logic can generate substantial exception overhead when the load/store multiple 
and load/store string instructions access misaligned data. It is strongly recommended that 
software attempt to align data where possible. 
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Table 8-4. Misaligned Data Transfers (Four-Byte Examples) 

Transfer Size 
Data Bus Byte Lanes 

(Four Bytes) 
TSIZ[D-2] A[29-31] 

0 1 2 3 4 5 6 7 

Aligned 100 000 A A A A - - - -
Misaligned-first access 011 001 A A A - - - -

second access 001 100 - - - - A - - -
Misaligned-first access a 10 010 - - A A - - - -

second access 011 100 - - - - A A - -
Misaligned-first access 001 011 - - - A - - - -

second access 011 100 - - - - A A A -

Aligned 100 100 - - - - A A A A 

Misaligned-first access 011 101 - - - - - A A A 

second access 001 000 A - - - - - - -

Misaligned-first access a 10 110 - - - - - - A A 

second access a 10 000 A A - - - - - -

Misaligned-first access 001 1 1 1 - - - - - - - A 

second access 01 1 000 A A A - - - - -

Notes: 

A: Byte lane used 
-: Byte lane not used 

8.3.2.4.1 Alignment of External Control Instructions 
The size of the data transfer associated with the eciwx and ecowx instructions is always 
4 bytes. If the eciwx or ecowx instruction is misaligned and crosses any word boundary, the 
MPC750 will generate an alignment exception. 

8.3.3 Address Transfer Termination 
The address tenure of a bus operation is terminated when completed with the assertion of 
AACK, or retried with the assertion of ARTRY. The MPC750 does not terminate the 
address transfer until the AACK (address acknowledge) input is asserted; therefore, the 
system can extend the address transfer phase by delaying the assertion of AACK to the 
MPC750. The assertion of AACK can be as early as the bus clock cycle following TS (see 
Figure 8-7), which allows a minimum address tenure of two bus cycles. As shown in 
Figure 8-7, these signals are asserted for one bus clock cycle, three-stated for half of the 
next bus clock cycle, driven high till the following bus cycle, and finally three-stated. Note 
that AACK must be asserted for only one bus clock cycle. 
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The address transfer can be terminated with the requirement to retry if ARTRY is asserted 
anytime during the address tenure and through the cycle following AACK. The assertion 
causes the entire transaction (address and data tenure) to be rerun. As a snooping device, 
the MPC750 asserts ARTRY for a snooped transaction that hits modified data in the data 
cache that must be written back to memory, or if the snooped transaction could not be 
serviced. As a bus master, the MPC750 responds to an assertion of ARTRY by aborting the 
bus transaction and re-requesting the bus. Note that after recognizing an assertion of 
ARTRY and aborting the transaction in progress, the MPC750 is not guaranteed to run the 
same transaction the next time it is granted the bus due to internal reordering of load and 
store operations. 

If an address retry is required, the ARTRY response will be asserted by a bus snooping 
device as early as the second cycle after the assertion of TS. Once asserted, ARTRY must 
remain asserted through the cycle after the assertion of AACK. The assertion of ARTRY 
during the cycle after the assertion of AACK is referred to as a qualified ARTRY. An earlier 
assertion of ARTRY during the address tenure is referred to as an early ARTRY. 

As a bus master, the MPC750 recognizes either an early or qualified ARTRY and prevents 
the data tenure associated with the retried address tenure. If the data tenure has already 
begun, the MPC750 aborts and terminates the data tenure immediately even if the burst data 
has been received. If the assertion of ARTRY is received up to or on the bus cycle following 
the first (or only) assertion ofTA for the data tenure, the MPC750 ignores the first data beat, 
and ifitis a load operation, does not forward data internally to the cache and execution 
units. If ARTRY is asserted after the first (or only) assertion of TA, improper operation of 
the bus interface may result. 

During the clock of a qualified ARTRY, the MPC750 also determines if it should negate BR 
and ignore BG on the following cycle. On the following cycle, only the snooping master 
that assertedARTRY and needs to perform a snoop copy-back operation is allowed to assert 
BR. This guarantees the snooping master an opportunity to request and be granted the bus 
before the just-retried master can restart its transaction. Note that a nonclocked bus arbiter 
may detect the as~ertion of address bus request by the bus master that asserted ARTRY, and 
return a qualified bus grant one cycle earlier than shown in Figure 8-7. 

Note that if the MPC750 asserts ARTRY due to a snoop operation, and asserts BR in the 
bus cycle following ARTRY in order to perform a snoop push to memory it may be several 
bus cycles later before the MPC750 will be able to accept a BG. (The delay in responding 
to the assertion ofBG only occurs during snoop pushes from the L2 cache.) The bus arbiter 
should keep BG asserted until it detects BR negated or TS asserted from the MPC750 
indicating that the snoop copy-back has begun. The system should ensure that no other 
address tenures occur until the current snoop push from th~ MPC750 is completed. Snoop 
push delays can also be avoided by operating the L2cache in write-through mode so no 
snoop pushes are required by the L2 cache. 
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Figure 8-7. Snooped Address Cycle with ARTRY 

8.4 Data Bus Tenure 
This section describes the data bus arbitration, transfer, and termination phases defined by 
the MPC750 memory access protocol. The phases of the data tenure are identical to those 
of the address tenure, underscoring the symmetry in the control of the two buses. 

8.4.1 Data Bus Arbitration 
Data bus arbitration uses the data arbitration signal group-DBG, DBWO, and DBB. 
Additionally, the combination ofTS and IT[O-4] provides information about the data bus 
request to external logic. 

The TS signal is an implied data bus request from the MPC750; the arbiter must qualify TS 
with the transfer type (IT) encodings to determine if the current address transfer is an 
address-only operation, which does not require a data bus transfer (see Figure 8-7). If the 
data bus is needed, the arbiter grants data bus mastership by asserting the DBG input to the 
MPC750. As with the address bus arbitration phase, the MPC750 must qualify the DBG 
input with a number of input signals before assuming bus mastership, as shown in 
Figure 8-8. 
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Figure 8-8. Data Bus Arbitration 

A qualified data bus grant can be expressed as the following: 

QDBG = DBG asserted while DBB, DRTRY, and ARTRY (associated with the data 
bus operation) are negated. 

When a data tenure overlaps with its associated address tenure,a qualified ARTRY 
assertion coincident with a data bus grant signal does not result in data bus mastership 
(DBB is not asserted). Otherwise, the MPC750 always asserts DBB on the bus clock cycle 
after recognition of a qualified data bus grant. Since the MPC750 can pipeline transactions, 
there may be an outstanding data bus transaction when a new address transaction is retried. 
In this case, the MPC750 becomes the data bus master to complete the previous transaction. 

8.4.1.1 Using the DBB Signal 
The DBB signal should be connected between masters if data tenure scheduling is left to 
the masters. Optionally, the memory system can control data tenure scheduling directly 
with DBG. However, it is possible to ignore the DBB signal in the system if the DBB input 
is not used as the final data bus allocation control between data bus masters, and if the 
memory system can track the start and end of the data tenure. If DBB is not used to signal 
the end of a data tenure, DBG is only asserted to the next bus master the cycle before the 
cycle that the next bus master may actually begin its data tenure, rather than asserting it 
earlier (usually during another master's data tenure) and allowing the negation of DBB to 
be the final gating signal for a qualified data bus grant. Even if DBB is ignored in the 
system, the MPC750 always recognizes its own assertion of DBB, and requires one cycle 
after data tenure completion to negate its own DBB before recognizing a qualified data bus 
grant for another data tenure. If DBB is ignored in the system, it must still be connected to 
a pull-up resistor on the MPC750 to ensure proper operation. 
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8.4.2 Data Bus Write Only 
As a result of address pipelining, the MPC750 may have up to two data tenures queued to 
perform when it receives a qualified DBG. Generally, the data tenures should be performed 
in strict order (the same order) as their address tenures were performed. The MPC750, 
however, also supports a limited out-of-order capability with the data bus write only 
(DBWO) input. When recognized on the clock of a qualified DBG, DBWO may direct the 
MPC750 to perform the next pending data write tenure even if a pending read tenure would 
have normally been performed first. For more information on the operation of DBWO, refer 
to Section 8.10, "Using Data Bus Write Only." 

If the MPC750 has any data tenures to perform, it always accepts data bus mastership to 
perform a data tenure when it recognizes a qualified DBG. If DBWO is asserted with a 
qualified DBG and no write tenure is queued to run, the MPC750 still takes mastership of 
the data bus to perform the next pending read data tenure. 

Generally, DBWO should only be used to allow a copy-back operation (burst write) to 
occur before a pending read operation. If DBWO is used for single-beat write operations, 
it may negate the effect of the eieio instruction by allowing a write operation to precede a 
program-scheduled read operation. 

8.4.3 Data Transfer 
The data transfer signals include DH[O-31], DL[0-31], and DP[O-7]. For memory 
accesses, the DH and DL signals form a 64-bit data path for read and write operations. 

The MPC750 transfers data in either single- or four-beat burst transfers. Single-beat 
operations can transfer from 1 to 8 bytes at a time and can be misaligned; see 
Section 8.3.2.4, "Effect of Alignment in Data Transfers." Burst operations always transfer 
eight words and are aligned on eight-word address boundaries. Burst transfers can achieve 
significantly higher bus throughput than single-beat operations. 

The type of transaction initiated by the MPC750 depends on whether the code or data is 
cacheable and, for store operations whether the cache is in write-back or write-through 
mode, which software controls on either a page or block basis. Burst transfers support 
cacheable operations only; that is, memory structures must be marked as cacheable (and 
write-back for data store operations) in the respective page or block descriptor to take 
advantage of burst transfers. 

The MPC750 output TBST indicates to the system whether the current transaction is a 
single- or four-beat transfer (except during eciwxlecowx transactions, when it signals the 
state of EAR[28]). A burst transfer has an assumed address order. For load or store 
operations that miss in the cache (and are marked as cacheable and, for stores, write-back 
in the MMU), the MPC750 uses the double-word-aligned address associated with the 
critical code or data that initiated the transaction. This minimizes latency by allowing the 
critical code or data to be forwarded to the processor before the rest of the cache line is 
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filled. For all other burst operations, however, the cache line is transferred beginning with 
the eight-word-aligned data. 

8.4.4 Data Transfer Termination 
Four signals are used to terminate data bus transactions-TA, DRTRY (data retry), TEA 
(transfer error acknowledge), and ARTRY. The TA signal indicates normal termination of 
data transactions. It must always be asserted on the bus cycle coincident with the data that 
it is qualifying. It may be withheld by the slave for any number of clocks until valid data is 
ready to be supplied or accepted. DRTRY indicates invalid read data in the previous bus 
clock cycle. DRTRY extends the current data beat and does not terminate it. If it is asserted 
after the last (or only) data beat, the MPC750 negates DBB but still considers the data beat 
active and waits for another assertion of TA. DRTRY is ignored on write operations. TEA 
indicates a nonrecoverable bus error event. Upon receiving a final (or only) termination 
condition, the MPC750 always negates DBB for one cycle. 

If DRTRY is asserted by the memory system to extend the last (or only) data beat past the 
negation of DBB, the memory system should three-state the data bus on the clock after the 
final assertion ofTA, even though it will negate DRTRY on that clock. This is to prevent a 
potential momentary data bus conflict if a write access begins on the following cycle. 

The TEA signal is used to signal a nonrecoverable error during the data transaction. It may 
be asserted on any cycle during lSBB, or on the cycle after a qualified fA during a read 
operation, except when no-DRTRY mode is selected (where no-DRTRY mode cancels 
checking the cycle after TA). The assertion of TEA terminates the data tenure immediately 
even if in the middle of a burst; however, it does not prevent incorrect data that has just been 
acknowledged with TA from being written into the MPC750's cache or GPRs. The 
assertion of TEA initiates either a machine check exception or a checks top condition based 
on the setting of the MSR[ME] bit. 

An assertion of ARTRY causes the data tenure to be terminated immediately if the ARTRY 
is for the address tenure associated with the data tenure in operation. If ARTRY is 
connected for the MPC750, the earliest allowable assertion of T A to the MPC750 is directly 
dependent on the earliest possible assertion of ARTRY to the MPC750; see Section 8.3.3, 
"Address Transfer Termination." 

8.4.4.1 Normal Single-Beat Termination 
Normal termination of a single-beat data read operation occurs when TA is asserted by a 
responding slave. The TEA and DRTRY signals must remain negated during the transfer 
(see Figure 8-9). 
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Figure 8-9. Normal Single-Beat Read Termination 

The DRTRY signal is not sampled during data writes, as shown in Figure 8-10. 

o 2 3 

AACK: 

Figure 8-10. Normal Single-Beat Write Termination 
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Normal termination of a burst transfer occurs when T A is asserted for four bus clock cycles, 
as shown in Figure 8-11. The bus clock cycles in which T A is asserted need not be 
consecutive, thus allowing pacing of the data transfer beats. For read bursts to terminate 
successfully, TEA and DRTRY must remain negated during the transfer. For write bursts, 
TEA must remain negated for a successful transfer. DRTRY is ignored during data writes. 

2 3 4 5 6 7 

liJJiJi,~i fUJI8!G: 
1'-----"''''----74'' 

lOiEliEl ;.-. --+.;-...,= 
~--+---~--~---~~ 

Figure 8-11. Normal Burst Transaction 

For read bursts, D RTRY may be asserted one bus clock cycle after T A is asserted to signal 
that the data presented with T A is invalid and that the processor must wait for the negation 
of DR TRY before forwarding data to the processor (see Figure 8-12). Thus, a data beat can 
be terminated by a predicted branch with fA and then one bus clock cycle later confirmed 
with the negation of DRTRY. The DRTRY signal is valid only for read transactions. TA 
must be asserted on the bus clock cycle before the first bus clock cycle of the assertion of 
DRTRY; otherwise the results are undefined. 

The DRTRY signal extends data bus mastership such that other processors cannot use the 
data bus until DRTRY is negated. Therefore, in the example in Figure 8-12, DBB cannot 
be asserted until bus clock cycle 6. This is true for both read and write operations even 
though DRTRY does not extend bus mastership for write operations. 
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Figure 8-12. Termination with DRTRY 

Figure 8-13 shows the effect of using DRTRY during a burst read. It also shows the effect 
of using T A to pace the data transfer rate. Notice that in bus clock cycle 3 of Figure 8-13, 
TA is negated for the second data beat. The MPC750 data pipeline does not proceed until 
bus clock cycle 4 when the T A is reasserted. 

2 3 4 5 6 7 8 9 

Figure 8-13. Read Burst with TA Wait States and DRTRY 

Note that DRTRY is useful for systems that implement predicted forwarding of data such 
as those with direct-mapped, third-level caches where hit/miss is determined on the 
following bus clock cycle, or for parity- or ECC-checked memory systems. 

Note that DRTRY may not be implemented on other PowerPC processors. 
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8.4.4.2 Data Transfer Termination Due to a Bus Error 
The TEA signal indicates that a bus error occurred. It may be asserted while DBB (and/or 
DRTRY for read operations) is asserted. Asserting TEA to the MPC750 terminates the 
transaction; that is, further assertions of TA and DRTRY are ignored and DBB is negated. 

Assertion of the TEA signal causes a machine check exception (and possibly a checkstop 
condition within the MPC750). For more information, see Section 4.5.2, "Machine Check 
Exception (Ox00200)." Note also that the MPC750 does not implement a synchronous error 
capability for memory accesses. This means that the exception instruction pointer saved 
into the SRRO register does not point to the memory operation that caused the assertion of 
TEA, but to the instruction about to be executed (perhaps several instructions later). 
However, assertion of TEA does not invalidate data entering the GPR or the cache. 
Additionally, the address corresponding to the access that caused TEA to be asserted is not 
latched by the MPC750. To recover, the exception handler must determine and remedy the 
cause of the TEA, or the MPC750 must be reset; therefore, this function should only be 
used to indicate fatal system conditions to the processor (such as parity or uncorrectable 
ECC errors). 

After the MPC750 has committed to run a transaction, that transaction must eventually 
complete. Address retry causes the transaction to be restarted; TA wait states and DRTRY 
assertion for reads delay termination of individual data beats. Eventually, however, the 
system must either terminate the transaction or assert the TEA signal. For this reason, care 
must be taken to check for the end of physical memory and the location of certain system 
facilities to avoid memory accesses that result in the assertion of TEA. 

Note that TEA generates a machine check exception depending on MSR[ME]. 
the machine check exception enable control bits leads to a true checks top 
(instruction execution halted and processor clock stopped). 

8.4.5 Memory COherency-MEl Protocol 

Clearing 
condition 

The MPC750 provides dedicated hardware to provide memory coherency by snooping bus 
transactions. The address retry capability enforces the three-state, MEl cache-coherency 
protocol (see Figure 8-14). 

The global (GBL) output signal indicates whether the current transaction must be snooped 
by other snooping devices on the bus. Address bus masters assert GBL to indicate that the 
current transaction is a global access (that is, an access to memory shared by more than one 
device). If GBL is not asserted for the transaction, that transaction is not snooped. When 
other devices detect the GBL input asserted, they must respond by snooping the broadcast 
address. 

Normally, GBL reflects the M bit value specified for the memory reference in the 
corresponding translation descriptor(s). Note that care must be taken to minimize the 
number of pages marked as global, because the retry protocol discussed in the previous 
section is used to enforce coherency and can require significant bus bandwidth. 
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When the MPC750 is not the address bus master, GBL is an input. The MPC750 snoops a 
transaction if TS and GBL are asserted together in the same bus clock cycle (this is a 
qualified snooping condition). No snoop update to the MPC750 cache occurs if the snooped 
transaction is not marked global. This includes invalidation cycles. 

When the MPC750 detects a qualified snoop condition, the' address associated with the TS 
is compared against the data cache tags. Snooping completes if no hit is detected. If, 
however, the address hits in the cache, the MPC750 reacts according to the MEl protocol 
shown in Figure 8-14, assuming the WIM bits are set to write-back, caching-allowed, and 
coherency-enforced modes (WIM = 001). 

SH =Snoop Hit 
RH =Read Hit 
WH =Write Hit 
WM=Write Miss 
RM =Read Miss 

BUS TRANSACTIONS 

CD= Snoop Push 

CD = Cache Line Fill 

SH/CRW=Snoop Hit, Cacheable Read/Write 
SH/CIR =Snoop Hit, Caching-Inhibited Read 

Figure 8-14. MEl Cache Coherency Protocol-State Diagram (WIM = 001) 
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8.5 Timing Examples 
This section shows timing diagrams for various scenarios. Figure 8-15 illustrates the fastest 
single-beat reads possible for the MPC750. This figure shows both minimal latency and 
maximum single-beat throughput. By delaying the data bus tenure, the latency increases, 
but, because of split-transaction pipelining, the overall throughput is not affected unless the 
databus latency causes the third address tenure to be delayed. 

Note that all bidirectional signals are three-stated between bus tenures. 
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Figure 8-15. Fastest Single-Beat Reads 
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Figure 8-16 illustrates the fastest single-beat writes supported by the MPC750. All 
bidirectional signals are three-stated between bus tenures. 
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Figure 8-16. Fastest Single-Beat Writes 
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Figure 8-17 shows three ways to delay single-beat reads showing data-delay controls: 

• The TA signal can remain negated to insert wait states in clock cycles 3 and 4. 
• For the second access, I5BG could have been asserted in clock cycle 6. 
• In the third access, DRTRY is asserted in clock cycle 11 to flush the previous data. 

Note that all bidirectional signals are three-stated between bus tenures. The pipelining 
shown in Figure 8-17 can occur if the second access is not another load (for example, an 
instruction fetch). 
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Figure 8-17. Single-Beat Reads Showing Data-Delay Controls 
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Figure 8-18 shows data-delay controls in a single-beat write operation. Note that all 
bidirectional signals are three-stated between bus tenures. Data transfers are delayed in the 
following ways: 

• The TA signal is held negated to insert wait states in clocks 3 and 4. 
• In clock 6, DBG is held negated, delaying the start of the data tenure. 

The last access is not delayed (DRTRY is valid only for read operations). 
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Figure 8-18. Single-Beat Writes Showing Data Delay Controls 
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Figure 8-19 shows the use of data-delay controls with burst transfers. Note that all 
bidirectional signals are three-stated between bus tenures. Note the following: 

• The first data beat of bursted read data (clock 0) is the critical quad word. 
• The write burst shows the use of TA signal negation to delay the third data beat. 

• The final read burst shows the use of DRTRY on the third data beat. 
• The address for the third transfer is delayed until the first transfer completes. 
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Figure 8-19. Burst Transfers with Data Delay Controls 
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Figure 8-20 shows the use of the TEA signal. Note that all bidirectional signals are 
three-stated between bus tenures. Note the following: 

• The first data beat of the read burst (in clock 0) is the critical quad word. 

• The TEA signal truncates the burst write transfer on the third data beat. 

• The MPC750 eventually causes an exception to be taken on the TEA event. 
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Figure 8-20. Use of Transfer Error Acknowledge (TEA) 
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8.6 Optional Bus Configuration 
The MPC750 supports an optional bus configuration that is selected by the assertion or 
negation of the DRTRY signal during the negation of the HRESET signal. The operation 
and selection of the optional bus configuration is described in the following sections. 

8.6.1 No-ORTRY Mode 
The MPC750 supports an optional mode to disable the use of the data retry function 
provided through the DRTRY signal. The no-DRTRY mode allows the forwarding of data 
during load operations to the internal CPU one bus cycle sooner than in the normal bus 
protocol. 

The 60x bus protocol specifies that, during load operations, the memory system normally 
has the capability to cancel data that was read by the master on the bus cycle after TA was 
asserted. In the MPC750 implementation, this late. cancellation protocol requires the 
MPC750 to hold any loaded data at the bus interface for one additional bus clock to verify 
that the data is valid before forwarding it to the internal CPU. For systems that do not 
implement the DRTRY function, the MPC750 provides an optional no-DRTRY mode that 
eliminates this one-cycle stall during all load operations, and allows for the forwarding of 
data to the internal CPU immediately when TA is recognized. 

When the MPC750 is in the no-DRTRY mode, data can no longer be cancelled the cycle 
after it is acknowledged by an assertion of TA. Data is immediately forwarded to the CPU 
internally, and any attempt at late cancellation by the system may cause improper operation 
by the MPC750. 

When the MPC750 is following normal bus protocol, data may be cancelled the bus cycle 
after fA by either of two means-late cancellation by DRTRY, or late cancellation by 
ARTRY. When no-DRTRY mode is selected, both cancellation cases must be disallowed 
in the system design for the bus protocol. 

When no-DRTRY mode is selected for the MPC750, the system must ensure that DRTRY 
is not asserted to the MPC750. If it is asserted, it may cause improper operation of the bus 
interface. The system must also ensure that an assertion of ARTRY by a snooping device 
must occur before or coincident with the first assertion of TA to the MPC750, but not on 
the cycle after the first assertion ofTA. 

Other than the inability to cancel data that was read by the master on the bus cycle after T A 
was asserted, the bus protocol for the MPC750 is identical to that for the basic transfer bus 
protocols described in this chapter. 

The MPC750 selects the desired DRTRY mode at startup by sampling the state of the 
DRTRY signal itself at the negation of the HRESET signal. If the DRTRY signal is negated 
at the negation of HRESET, normal operation is selected. If the DRTRY signal is asserted 
at the negation ofHRESET, no-DRTRY mode is selected. 
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8.7 Interrupt, Checkstop, and Reset Signals 
This section describes external interrupts, checks top operations, and hard and soft reset 
inputs. 

8.7.1 External Interrupts 
The external interrupt input signals (INT, SMI and MCP) of the MPC750 eventually force 
the processor to take the external interrupt vector or the system management interrupt 
vector if the MSR[EE] is set, or the machine check interrupt if the MSR[ME] and the 
HIDO[EMCP] bits are set. 

8.7.2 Checkstops 
The MPC750 has two checks top input signals-CKSTP _IN (nonmaskable) and MCP 
(enabled when MSR[ME] is cleared, and HIDO[EMCP] is set), and a checks top output 
(CKSTP _OUT) signal. If CKSTP _IN or MCP is asserted, the MPC750 halts operations by 
gating off all internal clocks. The MPC750 asserts CKSTP _OUT if CKSTP _IN is asserted. 

If CKSTP _OUT is asserted by the MPC750, it has entered the checks top state, and 
processing has halted internally. The CKSTP _OUT signal can be asserted for various 
reasons including receiving a TEA signal and detection of external parity errors. For more 
information about checkstop state, see Section 4.5.2.2, "Checks top State (MSR[ME] = 0)." 

8.7.3 Reset Inputs 
The MPC750 has two reset inputs, described as follows: 

• HRESET (hard reset)-The HRESET signal is used for power-on reset sequences, 
or for situations in which the MPC750 must go through the entire cold start sequence 
of internal hardware initializations. 

SRESET (soft reset)-The soft reset input provides warm reset capability. This 
input can be used to avoid forcing the MPC750 to complete the cold start sequence. 

When either reset input is negated, the processor attempts to fetch code from the system 
reset exception vector. The vector is located at offset OxOO 1 00 from the exception prefix (all 
zeros or ones, depending on the setting of the exception prefix bit in the machine state 
register (MSR[IP]). The MSR[IP] bit is set for HRESET. 

8.7.4 System Quiesce Control Signals 
The system quiesce control signals (QREQ and QACK) allow the processor to enter the nap 
or sleep low-power states, and bring bus activity to a quiescent state in an orderly fashion. 

Prior to entering the nap or sleep power state, the MPC750 asserts the QREQ signal. This 
signal allows the system to terminate or pause any bus activities that are normally snooped. 
When the system is ready to enter the system quiesce state, it asserts the QACK signal. At 
this time the MPC750 may enter a quiescent (low power) state. When the MPC750 is in the 
quiescent state, it stops snooping bus activity. While the MPC750 is in the nap power state, 
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the system power controller can enable snooping by the MPC750 by deasserting the QACK 
signal for at least eight bus clock cycles, after which the MPC750 is capable of snooping 
bus transactions. The reassertion of QACK following the snoop transactions will cause the 
MPC750 to reenter the nap power state. 

B.B Processor State Signals 
This section describes the MPC750's support for atomic update and memory through the 
use of the lwarxlstwcx. opcode pair, and includes a description of the TLBISYNC input. 

8.8.1 Support for the Iwarx/stwcx. Instruction Pair 
The Load Word and Reserve Indexed (lwarx) and the Store Word Conditional Indexed 
(stwcx.) instructions provide a means for atomic memory updating. Memory can be 
updated atomically by setting a reservation on the load and checking that the reservation is 
still valid before the store is performed. In the MPC750, the reservations are made on behalf 
of aligned, 32-byte sections of the memory address space. 

The reservation (RSRV) output signal is driven synchronously with the bus clock and 
reflects the status of the reservation coherency bit in the reservation address register; see 
Chapter 3, "Ll Instruction and Data Cache Operation," for more information. For 
information about timing, see Section 7.2.9.7.3, "Reservation (RSRV)-Output." 

8.8.2 TlBISYNC Input 
The TLBISYNC input allows for the hardware synchronization of changes to MMU tables 
when the MPC750 and another DMA master share the same MMU translation tables in 
system memory. It is asserted by a DMA master when it is using shared addresses that could 
be changed in the MMU tables by the MPC750 during the DMA master's tenure. 

The TLBISYNC input, when asserted to the MPC750, prevents the MPC750 from 
completing any instructions past a tlbsync instruction. Generally, during the execution of 
an eciwx or ecowx instruction by the MPC750, the selected DMA device should assert the 
MPC750's TLBISYNC signal and maintain it asserted during its DMA tenure if it is using 
a shared translation address. Subsequent instructions by the MPC750 should include a sync 
and tlbsync instruction before any MMU table changes are performed. This will prevent 
the MPC750 from making table changes disruptive to the other master during the DMA 
period. 
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8.9 IEEE 1149.1 a-1993 Compliant Interface 
The MPC750 boundary-scan interface is a fully-compliant implementation of the IEEE 
1149.1a-1993 standard. This section describes the MPC750's IEEE 1149.1a-1993 (JTAG) 
interface. 

8.9.1 JTAG/COP Interface 
The MPC750 has extensive on-chip test capability including the following: 

• Debug control/observation (COP) 
• Boundary scan (standard IEEE 1149.1a-1993 (JTAG) compliant interface) 

• Support for manufacturing test 

The COP and boundary scan logic are not used under typical operating conditions. Detailed 
discussion of the MPC750 test functions is beyond the scope of this document; however, 
sufficient information has been provided to allow the system designer to disable the test 
functions that would impede normal operation. 

The JTAG/COP interface is shown in Figure 8-21. For more information, refer to IEEE 
Standard Test Access Port and Boundary Scan Architecture IEEE STD 1149-1a-1993. 

------J TOI (Test Data Input) 

----»\ TMS (Test Mode Select) 

------J TCK (Test Clock Input) 

.-----1 TOO (Test Data Output) 

------J TRST (Test Reset) 

Figure 8-21. IEEE 1149.1 a-1993 Compliant Boundary Scan Interface 

8.10 Using Data Bus Write Only 
The MPC750 supports split-transaction pipelined transactions. It supports a limited 
out-of-order capability for its own pipelined transactions through the data bus write only 
(DBWO) signal. When recognized on the clock of a qualified DBG, the assertion of DBWO 
directs the MPC750 to perform the next pending data write tenure (if any), even if a pending 
read tenure would have normally been performed because of address pipelining. The 
DBWO signal does not change the order of write tenures with respect to other write tenures 
from the same MPC750. It only allows that a write tenure be performed ahead of a pending 
read tenure from the same MPC750. 
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In general, an address tenure on the bus is followed strictly in order by its associated data 
tenure. Transactions pipelined by the MPC750 complete strictly in order. However, the 
MPC750 can run bus transactions out of order only when the external system allows the 
MPC750 to perform a cache-line-snoop-push-out operation (or other write transaction, if 
pending in the MPC750 write queues) between the address and data tenures of a read 
operation through the use of DBWO. This effectively envelopes the write operation within 
the read operation. Figure 8-22 shows how the DBWO signal is used to perform an 
enveloped write transaction. 

Write Address 

(1) (2) ,--__ 
L.J LJ 
~ 

LJ 

Enveloped Write 
Transaction 

(2) .--_____ -, (1 ).--_____ _ 
L.J LJ 

DBB ~~ ____________ ~!I~ ____________ ~r-
DBWO L......J 

Figure 8-22. Data Bus Write Only Transaction 

Note that although the MPC750 can pipeline any write transaction behind the read 
transaction, special care should be used when using the enveloped write feature. It is 
envisioned that most system implementations will not need this capability; for these 
applications, DBWO should remain negated. In systems where this capability is needed, 
DBWO should be asserted under the following scenario: 

1. The MPC750 initiates a read transaction (either single-beat or burst) by completing 
the read address tenure with no address retry. 

2. Then, the MPC750 initiates a write transaction by completing the write address 
tenure, with no address retry. 

3. At this point, if DBWO is asserted with a qualified data bus grant to the MPC750, 
the MPC750 asserts DBB and drives the write data onto the data bus, out of order 
with respect to the address pipeline. The write transaction concludes with the 
MPC750 negating DBB. 

4. The next qualified data bus grant signals the MPC750 to complete the outstanding 
read transaction by latching the data on the bus. This assertion of DBG should not 
be accompanied by an asserted DBWO. 
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Any number of bus transactions by other bus masters can be attempted between any of these 
steps. 

Note the following regarding DBWO: 

DBWO can be asserted if no data bus read is pending, but it has no effect on write 
ordering. 

o The ordering and presence of data bus writes is determined by the writes in the write 
queues at the time BG is asserted for the write address (not DBG). If a particular 
write is desired (for example, a cache-line-snoop-push-out operation), then BG must 
be asserted after that particular write is in the queue and it must be the highest 
priority write in the queue at that time. A cache-line-snoop-push-out operation may 
be the highest priority write, but more than one may be queued. 

Because more than one write may be in the write queue when DBG is asserted for 
the write address, more than one data bus write may be enveloped by a pending data 
bus read. 

The arbiter must monitor bus operations and coordinate the various masters and slaves with 
respect to the use of the data bus when DBWO is used. Individual DBG signals associated 
with each bus device should allow the arbiter to synchronize both pipelined and 
split-transaction bus organizations. Individual DBG and DBWO signals provide a primitive 
form of source-level tagging for the granting of the data bus. 

Note that use of the DBWO signal allows some operation-level tagging with respect to the 
MPC750 and the use of the data bus. 
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Chapter 9 
L2 Cache Interface Operation 
This chapter describes the MPC750 microprocessor L2 cache interface, and its 
configuration and operation. It describes how the MPC750 signals, defined in Chapter 7, 
"Signal Descriptions," interact to perform address and data transfers to and from the L2 
cache. Note that the MPC740 microprocessor does not implement the L2 cache interface. 

9.1 L2 Cache Interface Overview 
The MPC750's L2 cache interface is implemented with an on-chip, two-way set associative 
tag memory with 4096 tags per way, and a dedicated interface with support for up to 
1 Mbyte of external synchronous SRAM for data storage. The tags are sectored to support 
either two cache blocks per tag entry (two sectors, 64 bytes), or four cache blocks per tag 
entry (four sectors, 128 bytes) depending on the L2 cache size. If the L2 cache is configured 
for 256 Kbytes or 512 Kbytes of external SRAM, the tags are configured for two sectors 
per L2 cache block. The L2 tags are configured for four sectors per L2 cache block when 
1 Mbyte of external SRAM is used. Each sector (32-byte Ll cache block) in the L2 cache 
has its own valid and modified bits. 

The L2 cache control register (L2CR) allows control of L2 cache configuration and timing, 
byte-level data parity generation and checking, global invalidation of L2 contents, write
through operation, and L2 test support. The L2 cache interface provides two clock outputs 
that allow the clock inputs of the SRAMs to be driven at frequency divisions of 1, 1.5,2, 
2.5, and 3 of the processor core frequency. The MPC750's L2 cache normally is configured 
to operate in copy-back mode and maintains cache coherency through snooping. 

Figure 9-1 shows the MPC750 configured with a 1-Mbyte L2 cache. 
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L2ADDR[16-0] ADDR[16-0] 
L2DATA[Q-63] (Optional) DATA[Q--31] 

L2DPJQ:il PARITY[Q--3] 
L2CE E 128k x 36 
L2WE (Optional) W SRAM 
L2ZZ 0- ADSC 

1- ADSP 
ZZ 

L2CLK_OUTA K 

MPC750 
ADDR[16-\J] 
DATA[Q--31] 

L2SYNC OUT 
I fARITY[Q--3] 

L2SYNCJN E 128k x 36 
W SRAM 

0- ADSC 
1- ADSP 

(Optional) ZZ 
L2CLK_OUTB K 

Notes: 
- For a 1-Mbyte L2, use address bits 16-0 (bit 0 is LSB). 
- For a 512-Kbyte L2, use address bits 15-0 (bit 0 is LSB). 
- For a 256-Kbyte L2, use address bits 14-0 (bit 0 is LSB). 
- External clock routing should ensure that the rising edge of the L2 clock is 

coincident at the K input of all SRAMs and at the L2Sync_ln input of the 
MPC750. The clock A network can be used solely or the clock B network can 
also be used depending on loading, frequency, and number of SRAMs. 

- No pull-up resistors are normally required for the L2 interface. 
- The MPC750 supports only one bank of SRAMs. 
- For high-speed operation, no more than two loads should be presented on each 

L2 interface signal. 

Figure 9-1. Typical1-Mbyte L2 Cache Configuration 

9.1.1 L2 Cache Operation 
The MPC750's L2 cache is a combined instruction and data cache that receives memory 
requests from both Ll instruction and data caches independently. The Ll requests are 
generally the result of instruction fetch misses, dataJoad or store misses, write-through 
operations, or cache management instructions. Each Ll request generates an address 
lookup in the L2 tags. If a hit occurs, the instructions or data are forwarded to the L1 cache. 
A miss in the L2 tags causes the L 1 request to be forwarded to the 60x bus interface. The 
cache block received from the bus is forwarded to the Ll cache immediately, and is also 
loaded into the L2 cache with the tag marked valid and unmodified. If the cache block 
loaded into the L2 causes a new tag entry to be allocated and the current tag entry is marked 
valid modified, the modified sectors of the tag to be replaced are castout from the L2 cache 
to the 60x bus. 
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At any given time the Ll instruction cache may have one instruction fetch request, and the 
Ll data cache may have one load and two stores requesting L2 cache access. The L2 cache 
also services snoop requests from the 60x bus. When there are multiple pending requests to 
the L2 cache, snoop requests have highest priority, followed by data load and store requests 
(serviced on a first-in, first-out basis). Instruction fetch requests have the lowest priority in 
accessing the L2 cache when there are multiple accesses pending. 

If read requests from both the Ll instruction and data caches are pending, the L2 cache can 
perform hit-under-miss and supplies the available instruction or data while a bus transaction 
for the previous L2 cache miss is performed. The L2 cache does not support miss-under
miss, and the second instruction fetch or data load stalls until the bus operation resulting 
from the first L2 miss completes. 

All requests to the L2 cache that are marked cacheable (even if the respective Ll cache is 
disabled or locked) cause tag lookup and will be serviced if the instructions or data are in 
the L2 cache. Burst and single-beat read requests from the L1 caches that hit in the L2 cache 
are forwarded instructions or data, and the L2 LRU bit for that tag is updated. Burst writes 
from the Ll data cache due to a castout or replacement copyback are written only to the L2 
cache, and the L2 cache sector is marked modified. Designers should note that during burst 
transfers into and out of the L2 cache SRAM array an address is generated by the MPC750 
for each data beat. 

If the L2 cache is configured as write-through, the L2 sector is marked unmodified, and the 
write is forwarded to the 60x bus. If the Ll castout requires a new L2 tag entry to be 
allocated and the current tag is marked modified, any modified sectors of the tag to be 
replaced are cast out of the L2 cache to the 60x bus. 

Single-beat read requests from the L1 caches that miss in the L2 cache do not cause any 
state changes in the L2 cache and are forwarded on the 60x bus interface. Cacheable single
beat store requests marked copy-back that hit in the L2 are allowed to update the L2 cache 
sector, but do not cause L2 cache sector allocation or deallocation. Cacheable, single-beat 
store requests that miss in the L2 are forwarded to the 60x bus. Single-beat store requests 
marked write-through (through address translation or through the configuration of 
L2CR[L2WTD are written to the L2 cache if they hit and are written to the 60x bus 
independent of the L2 hit/miss status. If the store hits in the L2 cache, the 
modified/unmodified status of the tag remains unchanged. All requests to the L2 cache that 
are marked cache-inhibited by address translation (through either the MMU or by default 
WIMG configuration) bypass the L2 cache and do not cause any L2 cache tag state change. 
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The execution of the stwex. instruction results in single-beat writes from the Ll data cache. 
These single-beat writes are processed by the L2 cache according to hit/miss status, Ll and 
L2 write-through configuration, and reservation-active status. If the address associated with 
the stwex. instruction misses in the L2 cache or if the reservation is no longer active, the 
stwex. instruction bypasses the L2 cache and is forwarded to the 60x bus interface. If the 
stwex. hits in the L2 cache and the reservation is still active, one of the following actions 
occurs: 

• If the stwcx. hits a modified sector in the L2 cache (independent of write-through 
status), or if the stwex. hits both the L1 andL2 caches in copy-back mode, the stwex. 
is written to the L2 and the reservation completes. 

• If the stwex. hits an unmodified sector in the L2 cache, and either the L 1 or L2 is in 
write-through mode, the stwex. is forwarded to the 60x bus interface and the sector 
hit in the L2 cache is invalidated. 

Ll cache-block-push operations generated by the execution of debf and debst instructions 
write through to the 60x bus interface and invalidate the L2 cache sector if they hit. The 
execution of debf and debst instructions that do not cause a cache-block-push from the Ll 
cache are forwarded to the L2 cache to perform a sector invalidation and/or push from the 
L2 cache to the 60x bus as required. If the debf and debst instructions do not cause a sector 
push from the L2 cache, they are forwarded to the 60x bus interface for address-only 
broadcast if HIDO[ABE] is set to l. 

The debi instruction is always forwarded to the L2 cache and causes a segment invalidation 
if a hit occurs. The debi instruction is also forwarded to the 60x bus interface for broadcast 
if HIDO[ ABE] is set to 1. The icbi instruction invalidates only L 1 cache blocks and is never 
forwarded to the L2 cache. Any debz instructions marked global do not affect the L2 cache 
state. If a debz instruction hits in the Ll and L2 caches, the Ll data cache block is cleared 
and the debz instruction completes. If a debz instruction misses in the L2 cache, it is 
forwarded to the 60x bus interface for broadcast. Any debz instructions that are marked 
nonglobal act only on the Ll data cache. 

The sync and eieio instructions bypass the L2 cache and are forwarded to the 60x bus. 

9.1.2 L2 Cache Control Register (L2CR) 
The L2 cache control register is used to configure and enable the L2cache. The L2CR is a 
supervisor-level read/write, implementation-specific register that is accessed as SPR 1017. 
The contents of the L2CR are cleared during power-on reset. Table 9-1 describes the L2CR 
bits. For additional information about the configuration of the L2CR, refer to Section 2.l.5, 
"L2 Cache Control Register (L2CR)." 
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Table 9-1. L2 Cache Control Register 

Bit Name Function 

a L2E L2 enable 

1 L2PE L2 data parity generation and checking enable 

2-3 L2SIZ L2 size-Should be set according to the size of the L2 data RAMs used 
00 Reserved 
01 256 Kbyte 
10 512 Kbyte 
11 1 Mbyte 

4-6 L2CLK L2 clock ratio (core-to-L2 frequency divider) 
000 L2 clock and DLL disabled 
001 +1 
010 +1.5 
all Reserved 
100 +2 
101 +2.5 
110 +3 
111 Reserved 

7-8 L2RAM L2 RAM type-Configures the L2 RAM interface for the type of synchronous SRAMs used 
00 Flow-through (register-buffer) synchronous burst SRAM 
01 Reserved 
10 Pipelined (register-register) synchronous burst SRAM 
11 Pipelined (register-register) synchronous late-write SRAM 

9 L2DO L2 data-only. Setting this bit enables the caching of instructions in the L2 cache. 

10 L21 L2 global invalidate. Selling L21 invalidates the L2 cache globally by clearing the L2 status 
bits. 

11 L2CTL L2 RAM control (ZZ enable). Setting L2CTL enables the automatic operation of the L2ZZ 
(low-power mode) signal for cache RAMs that support the ZZ function. This bit should not 
be set when the MPC750 is in nap mode and snooping is being performed through 
deassertion of QACK. 

12 L2WT L2 write-through. Setting L2WT selects write-through mode (rather than the default copy-
back mode) so all writes to the L2 cache also write through to the 60x bus. 

13 L2TS L2 test support. Setting L2TS causes cache block pushes from the L 1 data cache that 
result from dcbf and debst instructions to be written only into the L2 cache and marked 
valid, rather than being written only to the 60x bus and marked invalid in the L2 cache in 
case of hit. If L2TS is set, causes single-beat store operations that miss in the L2 cache to 
be discarded. 

14-15 L20H L2 output hold. These bits configure the output hold time of the address, data, and control 
signals driven by the MPC750 to the L2 data RAMs. 
00 0.5 nS 
01 1.0 nS 
10 Reserved 
11 Reserved 

16 L2SL L2 DLL slow. Selling L2SL enables L2 data RAM clocking at frequencies less than 
100 MHz. 

17 L2DF L2 differential clock. Setting L2DF configures the two clock-out signals (L2CLK_OUTA and 
L2CLK_OUTB) of the L2 interface to operate as one differential clock. 
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Table 9-1. L2 Cache Control Register (Continued) 

Bit Name Function 

18 L2BYP L2 DLL bypass. L2BYP is intended for use when the PLL is being bypassed, and for 
engineering evaluation. 

19-30 - Reserved. These bits should be cleared to O. 

31 L21P L2 global invalidate in progress (read only)-This read-only bit indicates whether an L2 
global invalidate is occurring. 

9.1.3 L2 Cache Initialization 
Following a power-on or hard reset, the L2 cache and the L2 DLL are disabled initially. 
Before enabling the L2 cache, the L2 DLL must first be configured through the L2CR 
register, and the DLL must be allowed 640 L2 clock periods to achieve phase lock. Before 
enabling the L2 cache, other configuration parameters must be set in the L2CR, and the L2 
tags must be globally invalidated. The L2 cache should be initialized during system start
up_ 

The sequence for initializing the L2 cache is as follows: 

Power-on reset (automatically performed by the assertion of HRESET signal). 

• Disable L2 cache by clearing L2 CR[L2E]. 

• Set the L2CR[L2CLK] bits to the desired clock divider setting. Setting a nonzero 
value automatically enables the DLL. All other L2 cache configuration bits should 
be set to properly configure the L2 cache interface for the SRAM type, size, and 
interface timing required. 

• Wait for the L2 DLL to achieve phase lock. This can be timed by setting the 
decrementer for a time period equal to 640 L2 clocks, or by performing an L2 global 
invalidate. 

• Perform an L2 global invalidate. The global invalidate could be performed before 
enabling the DLL, or in parallel with waiting for the DLL to stabilize. Refer to 
Section 9.1.4, "L2 Cache Global Invalidation," for more information about L2 cache 
global invalidation. Note that a global invalidate always takes much longer than it 
takes for the DLL to stabilize. 

• After the DLL stabilizes, an L2 global invalidate has been performed, and the other 
L2 configuration bits have been set, enable the L2 cache for normal operation by 
setting the L2CR[L2E] bit to 1. 
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9.1.4 L2 Cache Global Invalidation 
The L2 cache supports a global invalidation function in which all bits of the L2 tags (tag 
data bits, tag status bits, and LRU bit) are cleared. It is performed by an on-chip hardware 
state machine that sequentially cycles through the L2 tags. The global invalidation function 
is controlled through L2CR[L2I], and it must be performed only while the L2 cache is 
disabled. The MPC750 can continue operation during a global invalidation provided the L2 
cache has been properly disabled before the global invalidation operation starts. 

The sequence for performing a global invalidation of the L2 cache is as follows: 

• Execute a sync instruction to finish any pending store operations in the load/store 
unit, disable the L2 cache by clearing L2CR[L2E], and execute an additional sync 
instruction after disabling the L2 cache to ensure that any pending operations in the 
L2 cache unit have completed. 

• Initiate the global invalidation operation by setting the L2CR[L2I] bit to 1. 

• Monitor the L2CR[L2IP] bit to determine when the global invalidation operation is 
completed (indicated by the clearing of L2CR[L2IP]). The global invalidation 
requires approximately 32K core clock cycles to complete. 

• After detecting the clearing of L2CR[L2IP], clear L2CR[L2I] and re-enable the L2 
cache for normal operation by setting L2CR[L2E]. 

9.1.5 L2 Cache Test Features and Methods 
In the course of system power-up, testing may be required to verify the proper operation of 
the L2 tag memory, external SRAM, and overall L2 cache system. The following sections 
describe the MPC750's features and methods for testing the L2 cache. The L2 cache 
address space should be marked as guarded (G = 1) so spurious load operations are not 
forwarded to the 60x bus interface before branch resolution during L2 cache testing. 

9.1.5.1 L2CR Support for L2 Cache Testing 
L2CR[DO] and L2CR[TS] support the testing of the L2 cache. L2CR[DO] prevents 
instructions from being cached in the L2. This allows the LI instruction cache to remain 
enabled during the testing process without having LI instruction misses affect the contents 
of the L2 cache and allows all L2 cache activity to be controlled by program-specified load 
and store operations. 

L2CR[TS] is used with the dcbf and dcbst instructions to push data into the L2 cache. 
When L2CR[TS] is set, and the LI data cache is enabled, an instruction loop containing a 
dcbf instruction can be used to store any . address or data pattern to the L2 cache. 
Additionally, 60x bus broadcasting is inhibited when a dcbz instruction is executed. This 
allows the use of a dcbz instruction to clear an LI cache block, followed by a dcbf 
instruction to push the cache block into the L2 cache and invalidate the LI cache block. 

When the L2 cache is enabled, cacheable single-beat read operations are allowed to hit in 
the L2 cache and cacheable write operations are allowed to modify the contents of the L2 
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cache when a hit occurs. Cacheable single-beat read and writes occur when address 
translation is disabled (invoking the use of the default WIMG bits (ObOOI1)), or when 
address translation is enabled and accesses are marked as cacheable through the page table 
entries or the BATs, and the L1 data cache is disabled or locked. When the L2 cache has 
been initialized and the LI cache has been disabled or locked, load or store instructions then 
bypass the L1 cache and hit in the L2 cache directly. When L2CR[TS] is set, cacheable 
single-beat writes are inhibited from accessing the 60x bus interface after an L2 cache miss. 

During L2 cache testing, the performance monitor can be used to count L2 cache hits and 
misses, thereby providing a numerical signature for test routines and a way to verify proper 
L2 cache operation. 

9.1.5.2 L2 Cache Testing 
A typical test for verifying the proper operation of the MPC750's L2 cache memory 
(external SRAM and tag) would perform the following steps: 

9-8 

• Initialize the L2 test sequence by disabling address translation to invoke the default 
WIMG setting (ObOOII). Set L2CR[DO] and L2CR[TS] and perform a global 
invalidation of the Ll data cache and the L2 cache. The Ll instruction cache can 
remain enabled to improve execution efficiency. 

• Test the L2 cache external SRAM by enabling the LI data cache and executing a 
sequence of dcbz, stw, and dcbf instructions to initialize the L2 cache with a desired 
range of consecutive addresses and with cache data consisting of zeros. Once the L2 
cache holds a sequential range of addresses, disable the LI data cache and execute 
a series of single-beat load and store operations employing a variety of bit patterns 
to test for stuck bits and pattern sensitivities in the L2 cache SRAM. The 
performance monitor can be used to verify whether the number of L2 cache hits or 
misses corresponds to the tests performed. 

• Test the L2 cache tag memory by enabling the LI data cache and executing a 
sequence of dcbz, stw, and dcbf instructions to initialize the L2 cache with a wide 
range of addresses and cache data. Once the L2 cache is populated with a known 
range of addresses and data, disable the LI data cache and execute a series of store 
operations to addresses not previously in the L2 cache. These store operations 
should miss in every case. Note that setting the L2CR[TS] inhibits L2 cache misses 
from being forwarded to the 60x bus interface, thereby avoiding the potential for bus 
errors due to addressing hardware or nonexistent memory. The L2 cache then can be 
further verified by reading the previously loaded addresses and observing whether 
all the tags hit, and that the associated data compares correctly. The performance 

. monitor can also be used to verify whether the proper number of L2 cache hits and 
misses correspond to the test operations performed. 

• The entire L2 cache can be tested by clearing L2CR[DO] and L2CR[TS], restoring 
the LI and L2 caches to their normal operational state, and executing a 
comprehensive test program designed to exercise all the caches. The test program 
should include operations that cause L2 hit, reload, and castout activity that can be 
subsequently verified through the performance monitor. 
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9.1.6 L2 Clock Configuration 
The MPC750 provides a programmable clock for the L2 external synchronous data RAM. 
The clock frequency for the external SRAM is provided by dividing the MPC750's internal 
clock by ratios of 1, 1.5,2,2.5, or 3, programmed through the L2CR[CLK] bits. The L2 
clock is phase-adjusted to synchronize the clocking of the latches in the MPC750's L2 
cache interface with the clocking of the external SRAM by means of an on-chip delay
locked loop (DLL). 

The ratio selected for the L2 clock is dependent on the frequency supported by the external 
SRAMs, the MPC750's internal frequency of operation, and the range of phase adjustment 
supported by the L2 DLL. Refer to the MPC750 hardware specifications for additional 
information about L2 clock configuration. 

9.1.7 L2 Cache SRAM Timing Examples 
This section describes the signal timing for the three types of SRAM (flow-through burst 
SRAM, pipelined burst SRAM, and late-write SRAM) supported by the MPC750's L2 
cache interface. The timing diagrams illustrate the best case logical (ideal, non AC-timing 
accurate) interface operations. For proper interface operation, the designer must select 
SRAMs that support the signal sequencing illustrated in the timing diagrams. Designers 
should also note that during burst transfers into and out of the L2 cache SRAM array, an 
address is generated by the MPC750 for each data beat. 

The SRAM selected for a system design is usually a function of desired system 
performance, L2 bus frequency, and SRAM unit cost. The following sections describe the 
operation of the three SRAM types supported by the MPC750, and the design trade-offs 
associated with each. 

9.1.7.1 Flow-Through Burst SRAM 
Flow-through burst SRAMs operate by clocking in the address, and driving the data directly 
to the bus from the SRAM memory array. This behavior allows the flow-through burst 
SRAMs to provide initial read data one cycle sooner than pipelined burst SRAMs, but the 
flow-through burst SRAM frequencies available may only support the slowest L2 bus 
frequencies. The MPC750 supports flow-through burst SRAM at L2 clock ratios of ..;-2, 
..;-2.5, and ..;-3. 
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Figure 9-2 shows a burst read-write-read memory access sequence when the L2 cache 
interface is configured with flow-through burst SRAM. 

SRAMClk 

L2CE 

L2WE 

SRAMAddress 
I .'--burst rd-'.. 

RO R1 R2 R3 R I 

I I I 

I 

\ I I I I I 
.'--burst wr-'.. .'--burst rd-'.. I 

W4 W5 W6 W7 R8 R9 R10 R11 R 
I I I I I I I I I 

SRAMMemory 

SRAMData I 

I 

RO 
I 

R1 R2 R3 R W4 
I 

W5 W6 W7 
I I I 

R8 R9 R10 R11 R 
I I I I 

R9 R10 R11 R 

Note: 
Rxlr indicates where an extra read cycle is signaled to keep the burst RAM driving the 

data bus for the last read. 

Figure 9-2. Burst Read-Write-Read L2 Cache Access (Flow-Through) 

Figure 9-3 shows a burst read-modify-write memory access sequence when the L2 cache 
interface is configured with flow-through burst SRAM. 

SRAMClk 
I I I I 

L2CE 1\~71--~--~-7--~--~-7--~--~-71~~~7'--~--~-7--~1~~ 
L2WE 

SRAMAddress 

SRAMMemory 

SRAMData I 

Note: 

I I 

R8 R 

RO R1 R2 R3 R4 R5 R6 R7 R8 R hiZ ,-,W,",,9"-1"-'-'-"'='-'J\'!!"!!",,",~ 

Rxlr indicates where an extra read cycle is signaled to keep the burst RAM driving the 

data bus for the last read. 

Figure 9-3. Burst Read-Modify-Write L2 Cache Access (Flow-Through) 
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Figure 9-4 shows a burst read-write-write memory access sequence when the L2 cache 
interface is configured with flow-through burst SRAM. 

SRAMClk 

L2WE 

SRAMAddress R 
I I I 1 I I I I 

SRAMMemory 

SRAMData 

Note: 

I I 

R4 R W5 W6 W7 W8 W9 W10 W11 W12 
I I I I I I I I 

\..!..!..'-'\..!"!!:"'~"-J,...!.R!24J\.!.R"",-, hiZ W5 W6 W7 W8 W9 W10 W11 W12 

Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the 

data bus for the last read. 

Figure 9-4. Burst Read-Write-Write L2 Cache Access (Flow-Through) 

9.1.7.2 Pipelined Burst SRAM 
Pipelined burst SRAMs operate at higher frequencies than flow-through burst SRAMs by 
clocking the read data from the memory array into a buffer before driving the data onto the 
data bus. This causes initial read accesses by the pipelined burst SRAMs to occur one cycle 
later than flow-through burst SRAMs, but the L2 bus frequencies supported can be higher. 
Note that the MPC750's L2 cache interface requires the use of single-cycle deselect 
pipelined burst SRAM for proper operation. 

Figure 9-5 shows a burst read-write-read memory access sequence when the L2 cache 
interface is configured with pipelined burst SRAM. 

SRAMClk 

L2CE 

L2WE I 

SRAMAddress 

SRAMMemory 

SRAMData 

..'---burst rd~ 
RO R1 R2 R3 R 

I 

\ I I I I I 
..'---burst wr_ ..'---burst rd~ I 

W4 W5 W6 W7 R8 R9 R10 R11 R 

Notes: 
Rdrv indicates where some burst RAMs may begin driving the data bus. 

Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the 

data bus for the last read. 

Figure 9-5. Burst Read-Write-Read L2 Cache Access (Pipelined) 
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Figure 9-6 shows a burst read-modify-write memory access sequence when the L2 cache 
interface is configured with pipelined burst SRAM. 

SRAMClk 

L2CE 

L2WE 

SRAMAddress 

SRAMMemory 

SRAMData 

Notes: 
Rdrv indicates where some burst RAMs may begin driving the data bus. 
Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the 

data bus for the last read. 

Figure 9-6. Burst Read-Modify-Write L2 Cache Access (Pipelined) 

Figure 9-7 shows a burst read-write-write memory access sequence when the L2 cache 
interface is configured with pipelined burst SRAM. 

SRAMClk 
~I~I ~I I 

L2CE 1 \...}J 1 \.....:...1 --'---'c--,-_-,---,I 1 1 \ 1 ~ 
I t I I I I I 

L2WE' '\""""~ 
~tiurst rd~ ~burstwr~ ~-burstwr~ 

SRAMAddress R1 R2 R3 R4 R W5 W6 W7 W8 W9 W10 W11 W12 

SRAMMemory 

SRAMData 1 

Notes: 
Rdrv indicates where some burst RAMs may begin driving the data bus. 

Rxtr indicates where an extra read cycle is signaled to keep the burst RAM driving the 
data bus for the last read. 

Figure 9-7. Burst Read-Write-Write L2 Cache Access (Pipelined) 

9.1.7.3 late-Write SRAM 
Late-write SRAMs offer improved performance when compared to pipelined burst SRAMs 
by not requiring an extra read cycle during read operations, and requiring one cycle less 
when transitioning from a read to write operation. Late-write SRAMs implement an 
internal write queue, allowing write data to be provided one cycle after the write operation 
is signaled on the address and control buses. In this way write operations are queued on the 
address and data bus in the same way as read operations, allowing transitions between read 
and write operations to occur more efficiently. 
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Figure 9-8 shows a burst read-write-read memory access sequence when the L2 cache 
interface is configured with late-write SRAM. 

SRAMClk 

L2CE 

L2WE 

SRAMAddress 

SRAMMemory 

..'--burst rd~ 
RO R1 R2 R3 

\ I I I I / 

..'--burstwr~ ..'--burst rd~ 
W4 W5 W6 W7 RS R9 R10 R11 

SRAMDrua ~' --~~{][xBIKE[KEC~rQ~G0DG~~Y1~~Xl[xBillX[R1IT1~--~--

Note: 
WQ is the last previous write that was queued in the late-write RAM. 

Figure 9-8. Burst Read-Write-Read L2 Cache Access (Late-Write SRAM) 

Figure 9-9 shows a burst read-modify-write memory access sequence when the L2 cache 
interface is configured with late-write SRAM. 

SRAMClk 

L2WE 

SRAMAddress 

SRAMMemory 

Note: 
WQ is the last previous write that was queued in the late-write RAM. 

Figure 9-9. Burst Read-Modify-Write L2 Cache Access (Late-Write SRAM) 
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Figure 9-10 shows a burst read-write-write memory access sequence when the L2 cache 
interface is configured with late-write SRAM. 

SRAMClk 

L2CE 

L2WE 

SRAMAddress 

SRAMMemory 

SRAMData 

I I 

~tiurstrd~ 
Rl R2 R3 R4 

I I I I I I I I I 

Rl R2 R3 R4 WQ W5 W6 W7 W8 
I I I I I I I 

RO hiZ Rl R2 R3 R4 hiZ W5 W6 W7 W8 W9 

Note: 
WQ is the last previous write that was queued in the late-write RAM. 

I I 
I I I I 

W9 WID Wll W12 
I I I 

WID Wll W12 

Figure 9-10. Burst Read-Write-Write L2 Cache Access (Late-Write SRAM) 
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Chapter 10 
Power and Thermal Management 
The MPC750 microprocessor is specifically designed for low-power operation. It provides 
both automatic and program-controlled power reduction modes for progressive reduction 
of power consumption. It also provides a thermal assist unit (TAU) to allow on-chip thermal 
measurement, allowing sophisticated thermal management for high-performance portable 
systems. This chapter describes the hardware support provided by the MPC750 for power 
and thermal management. 

10.1 Dynamic Power Management 
Dynamic power management (DPM) automatically powers up and down the individual 
execution units of the MPC750, based upon the contents of the instruction stream. For 
example, if no floating-point instructions are being executed, the floating-point unit is 
automatically powered down. Power is not actually removed from the execution unit; 
instead, each execution unit has an independent clock input, which is automatically 
controlled on a clock-by-clock basis. Since CMOS circuits consume negligible power when 
they are not switching, stopping the clock to an execution unit effectively eliminates its 
power consumption. The operation of DPM is completely transparent to software or any 
external hardware. Dynamic power management is enabled by setting HIDO[DPM] to 1. 

10.2 Programmable Power Modes 
The MPC750 provides four programmable power states-full power, doze, nap, and sleep. 
Software selects these modes by setting one (and only one) of the three power saving mode 
bits in the HIDO register. Hardware can enable a power management state through external 
asynchronous interrupts. Such a hardware interrupt causes the transfer of program flow to 
interrupt handler code that then invokes the appropriate power saving mode. The MPC750 
provides a separate interrupt and interrupt vector for power management-the system 
management interrupt (SMI). The MPC750 also contains a decrementer which allows it to 
enter the nap or doze mode for a predetermined amount of time and then return to full power 
operation through a decrementer interrupt. Note that the MPC750 cannot switch from one 
power management mode to another without first returning to full-power mode. The sleep 
mode disables bus snooping; therefore, a hardware handshake is provided to ensure 
coherency before the MPC750 enters this power management mode. Table 10-1 
summarizes the four power states. 
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Table 10-1. MPC750 Microprocessor Programmable Power Modes 

PM Mode Functioning Units Activation Method Full-Power Wake Up Method 

Full power All units active - -

Full power Requested logic by By instruction dispatch -
(with DPM) demand 

Doze • Bus snooping Controlled by SW External asynchronous exceptions' 
• Data cache as needed Decrementer interrupt 
• Decrementer timer Performance monitor interrupt 

Thermal management interrupt 
Reset 

Nap • Bus snooping Controlled by hardware External asynchronous exceptions 
- enabled by deassertion and software Decrementer interrupt 

of QACK Performance monitor interrupt 
• Decrementer timer Thermal management interrupt 

Reset 

Sleep None Controlled by hardware External asynchronous exceptions 
and software Performance monitor interrupt 

Thermal management interrupt 
Reset 

Note: • Exceptions are referred to as interrupts in the architecture specification. 

10.2.1 Power Management Modes 
The following sections describe the characteristics of the MPC750's power management 
modes, the requirements for entering and exiting the various modes, and the system 
capabilities provided by the MPC750 while the power management modes are active. 

10.2.1.1 Full-Power Mode with DPM Disabled 
Full-power mode with DPM disabled is selected when the DPM enable bit (bit 11) in HIDO 
is cleared. 

• Default state following power-up and HRESET 
• All functional units are operating at full processor speed at all times. 

10.2.1.2 Full-Power Mode with DPM Enabled 
Full-power mode with DPM enabled (HIDO[DPM] = 1) provides on-chip power 
management without affecting the functionality or performance of the MPC750. 

• Required functional units are operating at full processor speed. 

• Functional units are clocked only when needed. 
• No software or hardware intervention is required after mode is set. 

• Softwarelhardware and performance transparent 
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10.2.1.3 Doze Mode 
Doze mode disables most functional units but maintains cache coherency by enabling the 
bus interface unit and snooping. A snoop hit causes the MPC750 to enable the data cache, 
copy the data back to memory, disable the cache, and fully return to the doze state. 

• Most functional units disabled 

• Bus snooping and time baseldecrementer still enabled 

• Doze mode sequence 

- Set doze bit (HIDO[8] = 1), clear nap and sleep bits (HIDO[9] and HIDO[lO] = 0) 

- MPC750 enters doze mode after several processor clocks 

• Several methods of returning to full-power mode 

• 
• 

- Assert INT, SMI, MCP, decrementer, performance monitor, or thermal 
management interrupts 

- Assert hard reset or soft reset 

Transition to full-power state takes no more than a few processor cycles 

PLL running and locked to SYSCLK 

10.2.1.4 Nap Mode 
The nap mode disables the MPC750 but still maintains the phase-locked loop (PLL), delay 
locked loop (DLL), L2CLK_OUTA and L2CLK_OUTB output signals, and the time basel 
decrementer. The time base can be used to restore the MPC750 to full-power state after a 
programmed amount of time. To maintain data coherency, bus snooping is disabled for nap 
and sleep modes through a hardware handshake sequence using the quiesce request 
(QREQ) and quiesce acknowledge (QACK) signals. The MPC750 asserts the QREQ signal 
to indicate that it is ready to disable bus snooping. When the system has ensured that 
snooping is no longer necessary, it will assert QACK and the MPC750 will enter the nap 
mode. If the system determines that a bus snoop cycle is required, QACK is deasserted to 
the MPC750 for at least eight bus clock cycles, and the MPC750 will then be able respond 
to a snoop cycle. Assertion of QACK following the snoop cycle will again disable the 
MPC750's snoop capability. The MPC750's power dissipation while in nap mode with 
QACK deasserted is the same as the power dissipation while in doze mode. 

Note that when in nap mode the DLL should be kept locked to enable a quick recovery to 
full-power mode without having to wait for the DLL to re-Iock. Additionally, an L2ZZ 
signal is provided by the MPC750's L2 cache interface to drive external SRAM into a low 
power mode when the nap or sleep modes are invoked. The L2ZZ signal is enabled by 
setting the L2CR[CTL] bit to 1. Note that if bus snooping is to be performed through 
deassertion of the QACK signal, the L2CR[CTL] bit should always be cleared to O. 

Time baseldecrementer still enabled 

• Most functional units disabled 

• All nonessential input receivers disabled 
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• 

• Nap mode sequence 

- Set nap bit (HIDO[9] = 1), clear doze and sleep bits (HIDO[8] and HIDO[lO] = 0) 

- MPC750 asserts quiesce request (QREQ) signal 

- System asserts quiesce acknowledge (QACK) signal 

- MPC750 enters sleep mode after several processor clocks 

• Nap mode bus snoop sequence 

- System deasserts QACK signal for eight or more bus clock cycles 

- MPC750 snoops address tenure(s) on bus 

- System asserts QACK signal to restore full nap mode 

• Several methods of returning to full-power mode 

- Assert INT, SMI, MCP, decrementer, performance monitor, or thermal 
management interrupts 

- Assert hard reset or soft reset 

• Transition to full-power takes no more than a few processor cycles 
• PLL and DLL running and locked to SYSCLK 

10.2.1.5 Sleep Mode 
Sleep mode consumes the least amount of power of the four modes since all functional units 
are disabled. To conserve the maximum amount of power, the PLL may be disabled by 
placing the PLL_CFG signals in the PLL bypass mode, and disabling SYSCLK. Note that 
forcing the SYSCLK signal into a static state does not disable the MPC750's PLL, which 
will continue to operate internally at an undefined frequency unless placed in PLL bypass 
mode. Additionally, if the PLL is not disabled, the L2 cache interface DLL will remain 
locked and the L2CLK_OUTA and L2CLK_OUTB signals will remain active. The DLL is 
disabled by clearing the L2CR[L2E] bit to O. 

Due to the fully static design of the MPC750, internal processor state is preserved when no 
internal clock is present. Because the time base and decrementer are disabled while the 
MPC750 is in sleep mode, the MPC750's time base contents will have to be updated from 
an external time base after exiting sleep mode if maintaining an accurate time-of-day is 
required. Before entering the sleep mode, the MPC750 asserts the QREQ signal to indicate 
that it is ready to disable bus snooping. When the system has ensured that snooping is no 
longer necessary, it asserts QACK and the MPC750 will enter sleep mode. 

• All functional units disabled (including bus snooping and time base) 

• All nonessential input receivers disabled 

- Internal clock regenerators disabled 

- PLL and DLL still running (see below) 
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• Sleep mode sequence 

- Set sleep bit (HIDO[lO] = 1), clear doze and nap bits (HIDO[8] and HIDO[9]) 
- MPC750 asserts quiesce request (QREQ) 
- System asserts quiesce acknowledge (QACK) 

- MPC750 enters sleep mode after several processor clocks 

• Several methods of returning to full-power mode 

- Assert INT, SMI, or MCP interrupts 
- Assert hard reset or soft reset 

• PLL and DLL may be disabled and SYSCLK may be removed while in sleep mode 
• Return to full-power mode after PLL and SYSCLK are disabled in sleep mode 

- Enable SYSCLK 
- Reconfigure PLL into desired processor clock mode 

- System logic waits for PLL startup and relock time (100 /lsec) 
- System logic asserts one of the sleep recovery signals (for example, INT or SMI) 

- Reconfigure DLL, wait for DLL relock (640 L2 clock cycles) and re-enable L2 
cache through the L2CR 

10.2.2 Power Management Software Considerations 
Since the MPC750 is a dual-issue processor with out-of-order execution capability, care 
must be taken in how the power management mode is entered. Furthermore, nap and sleep 
modes require all outstanding bus operations to be completed before these power 
management modes are entered. Normally, during system configuration time, one of the 
power management modes would be selected by setting the appropriate HIDO mode bit. 
Later on, the power management mode is invoked by setting the MSR[POW] bit. To ensure 
a clean transition into and out of a power management mode, set the MSR[EE] bit to 1 and 
execute the following code sequence: 

sync 

mtmsr[POW = 1] 

isync 

loop: bloop 
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10.3 Thermal Assist Unit 
With the increasing power dissipation of high-perfonnance processors and operating 
conditions that span a wider range of temperatures than desktop systems, . thennal 
management becomes an essential part of system design to ensure reliable operation of 
portable systems. One key aspect of thennal management is ensuring that the junction 
temperature of the microprocessor does not exceed the operating specification. While the 
case temperature can be measured with an external thermal sensor, the thennal constant 
from the junction to the case can be large, and accuracy can be a problem. This may lead to 
lower overall system performance due to the necessary compensation to alleviate 
measurement deficiencies. 

The MPC750 provides the system designer an efficient means of monitoring junction 
temperature through the incorporation of an on-chip thennal sensor and programmable 
control logic to enable a thermal management implementation tightly coupled to the 
processor for improved perfonnance and reliability. 

lO.3.1 Thermal Assist Unit Overview 
The on-chip thennal assist unit (TAU) is composed of a thermal sensor, a digital-to-analog 
converter (DAC), a comparator, control logic, and three dedicated SPRs. See Figure 10-1 
for a block diagram of the TAU. 

Thermal Interrupt 
Request 
(Ox1700) 

Figure 10-1. Thermal Assist Unit Block Diagram 

The TAU provides thennal control by periodically comparing the MPC750's junction 
temperature against user-programmed thresholds, and generating a thennal management 
interrupt if the threshold values are crossed. The TAU also enables the user to determine the 
junction temperature through a software successive approximation routine. 
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The TAU is controlled through three supervisor-level SPRs, accessed through the mtspr/ 
mfspr instructions. Two of the SPRs (THRMI and THRM2) provide temperature threshold 
values that can be compared to the junction temperature value, and control bits that enable 
comparison and thermal intelTupt generation. The third SPR (THRM3) provides a TAU 
enable bit and a sample interval timer. Note that all the bits in THRMl, THRM2, and 
THRM3 are cleared to 0 during a hard reset, and the TAU remains idle and in a low-power 
state until configured and enabled. 

The bit fields in the THRMI and THRM2 SPRs are described in Table 10-2. 

Table 10-2. THRM1 and THRM2 Bit Field Settings 

Bits Field Description 

0 TIN Thermal management interrupt bit. Read only. This bit is set if the thermal sensor output 
crosses the threshold specified in the SPA. The state of this bit is valid only if TIV is set. The 
interpretation of the TIN bit is controlled by the TID bit. 

1 TIV Thermal management interrupt valid. Read only. This bit is set by the thermal assist logic to 
indicate that the thermal management interrupt (TIN) state is valid. 

2-8 Threshold Threshold value that the output of the thermal sensor is compared to. The threshold range is 
between 00 and 1270 C, and each bit represents 10 C. Note that this is not the resolution of 
the thermal sensor. 

9-28 - Reserved. System software should clear these bits to O. 

29 TID Thermal management interrupt direction bit. Selects the result of the temperature 
comparison to set TIN. If TID is cleared to 0, TIN is set and an interrupt occurs if the junction 
temperature exceeds the threshold. If TID is set to I, TIN is set and an interrupt is indicated 
if the junction temperature is below the threshold. 

30 TIE Thermal management interrupt enable. Enables assertion of the thermal management 
interrupt signal. The thermal management interrupt is maskable by the MSR[EE] bit. If TI E is 
cleared to 0 and THRMn is valid, the TIN bit records the status of the junction temperature 
vs. threshold comparison without asserting an interrupt signal. This feature allows system 
software to make a successive approximation to estimate the junction temperature. 

31 V SPR valid bit. This bit is set to indicate that the SPR contains a valid threshold, TID, and TIE 
controls bits. Setting THRMI/2[V] and THRM3[E] to 1 enables operation of the thermal 
sensor. 

The bit fields in the THRM3 SPR are described in Table 10-3. 

Table 10-3. THRM3 Bit Field Settings 

Bits Name Description 

0-17 - Reserved for future use. System software should clear these bits to O. 

18-30 SITV Sample interval timer value. Number of elapsed processor clock cycles before a junction 
temperature vs. threshold comparison result is sampled forTIN bit setting and interrupt 
generation. This is necessary due to the thermal sensor, DAC, and the analog comparator 
settling time being greater than the processor cycle time. The value should be configured to 
allow a sampling interval of 20 microseconds. 

31 E Enables the thermal sensor compare operation if either THRMI [V] or THRM2[V] is set to 1. 

Chapter 10. Power and Thermal Management 10-7 



10.3.2 Thermal Assist Unit Operation 
The TAU can be programmed to operate in single or dual threshold modes, which results in 
the TAU generating a thermal management interrupt when one or both threshold values are 
crossed. In addition, with the appropriate software routine, the TAU can also directly 
determine the junction temperature. The following sections describe the configuration of 
the TAU to support these modes of operation. 

10.3.2.1 TAU Single Threshold Mode 
When the TAU is configured for single threshold mode, either THRM 1 or THRM2 can be 
used to contain the threshold value, and a thermal management interrupt is generated when 
the threshold value is crossed. To configure the TAU for single threshold operation, set the 
desired temperature threshold, TID, TIE, and V bits for either THRMI or THRM2. The 
unused THRMn threshold SPR should be disabled by clearing the V bit to O. In this 
discussion THRMn refers to the THRM threshold SPR (THRMI or THRM2) selected to 
contain the active threshold value. 

After setting the desired operational parameters, the TAU is enabled by setting the 
THRM3[E] bit to 1, and placing a value allowing a sample interval of 20 microseconds or 
greater in the THRM3[SITV] field. The THRM3[SITV] setting determines the number of 
processor clock cycles between input to the DAC and sampling of the comparator output; 
accordingly, the use of a value smaller than recommended in the THRM3[SITV] field can 
cause inaccuracies in the sensed temperature. 

If the junction temperature does not cross the programmed threshold, the THRMn[TIN] bit 
is cleared to 0 to indicate that no interrupt is required, and the THRMn[TIV] bit is set to 1 
to indicate that the TIN bit state is valid. If the threshold value has been crossed, the 
THRMn[TIN] and THRMn[TIV] bits are set to 1, and a thermal management interrupt is 
generated if both the THRMn[TIE] and MSR[EE] bits are set to 1. 

A .thermal management interrupt is held. asserted internally until recognized by the 
MPC750's interrupt unit. Once a thermal management interrupt is recognized, further 
temperature sampling is suspended, and the THRMn[TIN] and THRMn[TIV] values are 
held until an mtspr instruction is executed to THRMn. 

The execution of an mtspr instruction to THRMn anytime during TAU operation will clear 
the THRMn[TIV] bit to 0 and restart the temperature comparison. Executing an mtspr 
instruction to THRM3 will clear both THRMI [TIV] and THRM2[TIV] bits to 0, and restart 
temperature comparison in THRMn if the THRM3 [E] bit is set to 1. 

Examples of valid THRMI and THRM2 bit settings are shown in Table 10-4. 
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Table 10-4. Valid THRM1 and THRM2 Bit Settings 

TIN1 TlV1 TID TIE V Description 

x x x x 0 The threshold in the SPR will not be used for comparison. 

x x x 0 t Threshold is used for comparison, thermal management interrupt 
assertion is disabled. 

x x 0 0 1 Set TIN and do not assert thermal management interrupt if the 
junction temperature exceeds the threshold. 

x x 0 1 1 Set TIN and assert thermal management interrupt if the junction 
temperature exceeds the threshold. 

x x 1 0 1 Set TIN and do not assert thermal management interrupt if the 
junction temperature is less than the threshold. 

x x 1 1 1 Set TIN and assert thermal management interrupt if the junction 
temperature is less than the threshold. 

x 0 x x 1 The state of the TIN bit is not valid. 

0 1 0 x 1 The junction temperature is less than the threshold and as a result 
the thermal management interrupt is not generated for TIE = 1. 

1 1 0 x 1 The junction temperature is greater than the threshold and as a 
result the thermal management interrupt is generated ifTlE = 1. 

0 1 1 x 1 The junction temperature is greater than the threshold and as a 
result the thermal management interrupt is not generated for TIE = 1. 

1 1 1 x 1 The junction temperature is less than the threshold and as a result 
the thermal management interrupt is generated if TIE = 1. 

Note: 1The TIN and TIV bits are read-only status bits. 

10.3.2.2 TAU Dual-Threshold Mode 
The configuration and operation of the TAU's dual-threshold mode is similar to single 
threshold mode, except both THRMI and THRM2 are configured with desired threshold 
and TID values, and the TIE and V bits are set to 1. When the THRM3[E] bit is set to I to 
enable temperature measurement and comparison, the first comparison is made with 
THRM1. If no thermal management interrupt results from the comparison, the number of 
processor cycles specified in THRM3 [SITV] elapses, and the next comparison is made with 
THRM2. If no thermal management interrupt results from the THRM2 comparison, the 
time specified by THRM3[SITV] again elapses, and the comparison retumsto THRM1. 

This sequence of comparisons continues until a thermal management interrupt occurs, or 
the TAU is disabled. When a comparison results in an interrupt, the comparison with the 
threshold SPR causing the interrupt is halted, but comparisons continue with the other 
threshold SPR. Following a thermal management interrupt, the interrupt service routine 
must read both THRMI and THRM2 to determine which threshold was crossed. Note that 
it is possible for both threshold values to have been crossed, in which case the TAU ceases 
making temperature comparisons until an mtspr instruction is executed to one or both of 
the threshold SPRs. 
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10.3.2.3 MPC750 Junction Temperature Determination 
While the MPC750's TAU does not implement an analog-to-digital converter to enable the 
direct determination of the junction temperature, system software can execute a simple 
successive approximation routine to find the junction temperature. 

The TAU configuration used to approximate the junction temperature is the same required 
for single-threshold mode, except that the threshold SPR selected has its TIE bit cleared to 
o to disable thermal management interrupt generation. Once the TAU is enabled, the 
successive approximation routine loads a threshold value into the active threshold SPR, and 
then continuously polls the threshold SPRs TIV bit until it is set to 1, indicating a valid TIN 
bit. The successive approximation routine can then evaluate the TIN bit value, and then 
increment or decrement the threshold value for another comparison. This process is 
continued until the junction temperature is determined. 

10.3.2.4 Power Saving Modes and TAU Operation 
The static power saving modes provided by the MPC750 (the nap, doze, and sleep modes) 
allow the temperature of the processor to be lowered quickly, and can be invoked through 
the use of the TAU and associated thermal management interrupt. The TAU remains 
operational in the nap and doze modes, and in sleep mode as long as the SYSCLK signal 
input remains active. If the SYSCLK signal is made static when sleep mode is invoked, the 
TAU is rendered inactive. If the MPC750 is entering sleep mode with SYSCLK disabled, 
the TAU should be configured to disable thermal management interrupts to avoid an 
unwanted thermal management interrupt when the SYSCLK input signal is restored. 

10.4 Instruction Cache Throttling 
The MPC750 provides an instruction cache throttling mechanism to effectively reduce the 
instruction execution rate without the complexity and overhead of dynamic clock control. 
Instruction cache throttling, when used in conjunction with the TAU and the dynamic power 
management capability of the MPC750, provides the system designer with a flexible means 
of controlling device temperature while allowing the processor to continue operating. 

The instruction cache throttling mechanism simply reduces the instruction forwarding rate 
from the instruction cache to the instruction dispatcher. Normally, the instruction cache 
forwards four instructions to the instruction dispatcher every clock cycle if all the 
instructions nit in the cache. For thermal management the MPC750 provides a supervisor
level instruction cache throttling control (ICTC) SPR. The instruction forwarding rate is 
reduced by writing a nonzero value into the ICTC[FI] field, and enabling instruction cache 
throttling by setting the ICTC[E] bit to 1. The overall junction temperature reduction results 
from dynamic power management reducing the power to the execution units while waiting 
for instructions to be forwarded from the instruction cache; thus, instruction cache 
throttling does not provide thermal reduction unless HIDO[DPM] is set to 1. Note that 
during instruction . cache throttling the configuration of the PLL and DLL remain 
unchanged. 
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The bit field settings of the JCTC SPR are shown in Table 10-5. 

Table 10-5. ICTC Bit Field Settings 

Bits Name Description 

23-30 FI Instruction forwarding interval expressed in processor clocks. 
OxOO-O clock cycle 
Ox01-1 clock cycle 

OxFF-255 clock cycles 

31 E Cache throttling enable 
0 Disable instruction cache throttling. 
1 Enable instruction cache throttling. 
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Chapter 11 
Performance Monitor 
The performance monitor facility provides the ability to monitor and count predefined 
events such as processor clocks, misses in the instruction cache, data cache, or L2 cache, 
types of instructions dispatched, mispredicted branches, and other occurrences. The count 
of such events (which may be an approximation) can be used to trigger the performance 
monitor exception. The performance monitor facility is not defined by the PowerPC 
architecture. 

The performance monitor can be used for the following: 

To increase system performance with efficient software, especially in a 
multiprocessing system. Memory hierarchy behavior may be monitored and studied 
in order to develop algorithms that schedule tasks (and perhaps partition them) and 
that structure and distribute data optimally. 

o To improve processor architecture, the detailed behavior of the MPC750's structure 
must be known and understood in many software environments. Some environments 
may not be easily characterized by a benchmark or trace. 

• To help system developers bring up and debug their systems. 

The performance monitor uses the following MPC750-specific special-purpose registers 
(SPRs): 

The performance monitor counter registers (PMCI-PMC4) are used to record the 
number of times a certain event has occurred. UPMCI-UPMC4 provide user-level 
read access to these registers. 

• The monitor mode control registers (MMCRO-MMCRl) are used to enable various 
performance monitor interrupt functions and select events to count. 
UMMCRO-UMMCRI provide user-level read access to these registers. 

• The sampled instruction address register (SIA) contains the effective address of an 
instruction executing at or around the time that the processor signals the 
performance monitor interrupt condition. USIA provides user-level read access to 
the SIA. 
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Four 32-bit counters in the MPC750 count occurrences of software-selectable events. Two 
control registers (MMCRO and MMCRl) are used to control performance monitor 
operation. The counters and the control registers are supervisor-level SPRs; however, in the 
MPC750, the contents of these registers can be read by user-level software using separate 
SPRs (UMMCRO and UMMCR1). Control fields in the MMCRO and MMCR1 select the 
events to be counted, can enable a counter overflow to initiate a performance monitor 
exception, and specify the conditions under which counting is enabled. 

As with other PowerPC exceptions, the performance monitor interrupt follows the normal 
PowerPC exception model with a defined exception vector offset (OxOOFOO). Its priority is 
below the external interrupt and above the decrementer interrupt. 

11.1 Performance Monitor Interrupt 
The performance monitor provides the ability to generate a performance monitor interrupt 
triggered by a counter overflow condition in one of the performance monitor counter 
registers (PMC1-PMC4), shown in Figure 11-3. A counter is considered to have 
overflowed when its most-significant bit is set. A performance monitor interrupt may also 
be caused by the flipping from 0 to 1 of certain bits in the time base register, which provides 
a way to generate a time reference-based interrupt. 

Although the interrupt signal condition may occur with MSR[EE] = 0, the actual exception 
cannqt be taken until MSR[EE] = 1. 

As a result of a performance monitor exception being signaled, the action taken depends on 
the type of event that caused the condition, which are as follows: 

• Threshold-related events-When a threshold event signals a performance monitor 
exception, the addresses of the instruction that caused the counter to overflow is 
saved in the SIA register. 

• Programmable events-To help track which part of the code was being executed 
when an exception was signaled, the address of the last completed instruction during 
that cycle is saved in the SIA. 

Exception handling for the performance monitor interrupt exception is described in Section 
4.5.13, "Performance Monitor Interrupt(OxOOFOO)." 
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11.2 Special-Purpose Registers Used by 
Performance Monitor 

The performance monitor incorporates the SPRs listed in Table 11-1. All of these 
supervisor-level registers are accessed through mtspr and mfspr instructions. The 
following table shows more information about all performance monitor SPRs. 

Table 11-1. Performance Monitor SPRs 

SPR Number spr[5-9]II spr[O-4] Register Name Access Level 

952 Ob1110111000 MMCRO Supervisor 

953 Ob11101 11001 PMC1 Supervisor 

954 Ob1110111010 PMC2 Supervisor 

955 Ob11101 11011 SIA Supervisor 

956 Ob1110111100 MMCR1 Supervisor 

957 Ob11101 11101 PMC3 Supervisor 

958 Ob1110111110 PMC4 Supervisor 

936 Ob11101 01000 UMMCRO User (read only) 

937 Ob11101 01001 UPMC1 User (read only) 

938 Ob11101 01010 UPMC2 User (read only) 

939 Ob11101 01011 USIA User (read only) 

940 Ob11101 01100 UMMCR1 User (read only) 

941 Ob11101 01101 UPMC3 User (read only) 

942 Ob11101 01110 UPMC4 User (read only) 

11.2.1 Performance Monitor Registers 
This section describes the registers used by the performance monitor. 

11.2.1.1 Monitor Mode Control Register 0 (MMCRO) 
The monitor mode control register 0 (MMCRO), shown in Figure 11-1, is a 32-bit SPR 
provided to specify events to be counted and recorded. MMCRO can be written to only in 
supervisor mode. User-level software can read the contents of MMCRO by issuing an 
mfspr instruction to UMMCRO, described in Section 11.2.1.2, "User Monitor Mode 
Control Register 0 (UMMCRO)." 
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INTONBITTRANS ------, 

RTCSELECT ----, 
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PMC21NTCONTROL 

PMClINTCONTROL 

THRESHOLD 

PMCTRIGGER 

PMC1SELECT 

15 16 17 18 19 25 26 

Figure 11-1. Monitor Mode Control Register 0 (MMCRO) 

PMC2SELECT 

31 

This register must be cleared at power up. Reading this register does not change its 
contents. Table 11-2 describes the bits of the MMCRO register. 

Table 11-2. MMCRO Bit Settings 

Bit Name Description 

a DIS Disables counting unconditionally. 
a The values of the PMCn counters can be changed by hardware. 
1 The values of the PMCn counters cannot be changed by hardware. 

1 DP Disables counting while in supervisor mode. 
a The PMCn counters can be changed by hardware. 
1 If the processor is in supervisor mode (MSR[PR) is cleared), the counters are not 

changed by hardware. 

2 DU Disables counting while in user mode. 
a The PMCn counters can be changed by hardware. 
1 If the processor is in user mode (MSR[PR) is set), the PMCn counters are not 

changed by hardware. 

3 DMS Disables counting while MSR[PM) is set. 
a The PMCn counters can be changed by hardware. 
1 If MSR[PM) is set, the PMCn counters are not changed by hardware. 

4 DMR Disables counting while MSR[PM) is zero. 
a The PMCn counters can be changed by hardware. 
1 If MSR[PM) is cleared, the PMCn counters are not changed by hardware. 

5 ENINT Enables performance monitor interrupt signaling. 
a Interrupt signaling is disabled. 
1 Interrupt signaling is enabled. 
Cleared by hardware when a performance monitor interrupt is signaled. To re-enable 
these interrupt signals, software must set this bit aiter servicing the performance 
monitor interrupt. The IPL ROM code clears this bit before passing control to the 
operating system. 

6 DISCOUNT Disables counting of PMCn when a performance monitor interrupt is signaled (that is, 
((PMCnINTCONTROL = 1) & (PMCn[a) = 1) & (ENINT = 1)) or the occurrence of an 
enabled time base transition with ((INTONBITTRANS =1) & (ENINT = 1)). 
a Signaling a performance monitor interrupt does not affect counting status of 

PMCn. 
1 The signaling of a performance monitor interrupt prevents changing ofPMC1 

counter. The PMCn counter does not change if PMC2COUNTCTL = a. 
Because a time base signal could have occurred along with an enabled counter 
overflow condition, software should always reset INTONBITTRANS to zero, if the value 
in INTONBITTRANS was a one. 
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Table 11-2. MMCRO Bit Settings (Continued) 

Bit Name Description 

7-8 RTCSELECT 64-bit time base, bit selection enable 
00 Pick bit 63 to count 
01 Pick bit 55 to count 
10 Pick bit 51 to count 
11 Pick bit 47 to count 

9 INTONBITTRANS Causes interrupt signaling on bit transition (identified in RTCSELECT) from off to on. 
a Do not allow interrupt signal on the transition of a chosen bit. 
1 Signal interrupt on the transition of a chosen bit. 
Software is responsible for setting and clearing INTONBITTRANS. 

10-15 THRESHOLD Threshold value. All 6 bits are supported by the MPC750; allowing threshold values 
from a to 63. The intent of the THRESHOLD support is to characterize L 1 data cache 
misses. 

16 PMCllNTCONTROL Enables interrupt signaling due to PMCl counter overflow. 
a Disable PMCl interrupt signaling due to PMCl counter overflow. 
1 Enable PMCl Interrupt signaling due to PMCl counter overflow. 

17 PMCINTCONTROL Enable interrupt signaling due to any PMC2-PMC4 counter overflow. Overrides the 
setting of DISCOUNT. 
a Disable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow. 
1 Enable PMC2-PMC4 interrupt signaling due to PMC2-PMC4 counter overflow. 

18 PMCTRIGGER Can be used to trigger counting of PMC2-PMC4 atter PMCl has overflowed or atter a 
performance monitor interrupt is signaled. 
a Enable PMC2-PMC4 counting. 
1 Disable PMC2-PMC4 counting until either PMC110] = 1 or a performance monitor 

interrupt is signaled. 

19-25 PMC1SELECT PMCl input selector, 128 events selectable; 25 defined. See Table 11-5. 

26-31 PMC2SELECT PMC2 input selector, 64 events selectable; 21 defined. See Table 11-6. 

MMCRO can be accessed with the mtspr and mfspr instructions using SPR 952. 

11.2.1.2 User Monitor Mode Control Register 0 (UMMCRO) 
The contents of MMCRO are reflected to UMMCRO, which can be read by user-level 
software. UMMCRO can be accessed with the mfspr instructions using SPR 936. 

11.2.1.3 Monitor Mode Control Register 1 (MMCR1) 
The monitor mode control register 1 (MMCRl) functions as an event selector for 
performance monitor counter registers 3 and 4 (PMC3 and PMC4). The MMCRI register 
is shown in Figure 11-2. 

o 4 5 910 31 

Figure 11-2. Monitor Mode Control Register 1 (MMCR1) 
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Bit settings for MMCRI are shown in Table 11-3. The corresponding events are described 
in Section 11.2.1.5, "Performance Monitor Counter Registers (PMCI-PMC4)." 

Table 11-3. MMCR1 Bit Settings 

Bits Name Description 

D-4 PMC3SELECT PMC3 input selector. 32 events selectable. See Table 11·7 for defined selections. 

5-9 PMC4SELECT PMC4 input selector. 32 events selectable. See Table 11-8 for defined selections. 

10-31 - Reserved 

MMCRI can be accessed with the mtspr and mfspr instructions using SPR 956. User-level 
software can read the contents of MMCRI by issuing an mfspr instruction to UMMCR1, 
described in Section 11.2.1.4, "User Monitor Mode Control Register 1 (UMMCRl)." 

11.2.1.4 User Monitor Mode Control Register 1 (UMMCR1) 
The contents of MMCRI are reflected to UMMCR1, which can be read by user-level 
software. UMMCRI can be accessed with the mfspr instructions using SPR 940. 

11.2.1.5 Performance Monitor Counter Registers (PMC1-PMC4) 
PMCI-PMC4, shown in Figure 11-3, are 32-bit counters that can be programmed to 
generate interrupt signals when they overflow. 

Counter Value 

o 1 31 

Figure 11~3. Performance Monitor Counter Registers (PMC1-PMC4) 

The bits contained in the PMC registers are described in Table 11-4. 

Table 11-4. PMCn Bit Settings 

Bits Name Description 

0 OV Overflow. When this bit is set, it indicates this counter has reached its maximum value. 

1-31 Counter value Indicates the number of occurrences of the specified event. 

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the 
value 2147483648 (Ox8000_0000). However, an interrupt is not signaled unless both 
MMCRO[ENINT] and either PMCIINTCONTROL or PMCINTCONTROL in the 
MMCRO register are also set as appropriate. 

Note that the interrupts can be masked by clearing MSR[EE]; the interrupt signal condition 
may occur with MSR[EE] cleared, but the exception is not taken until MSR[EE] is set. 
Setting MMCRO[DISCOUNT] forces counters to stop counting when a counter interrupt 
occurs. 
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Software is expected to use the mtspr instruction to explicitly set PMC to non-overflowed 
values. Setting an overflowed value may cause an erroneous exception. For example, ifboth 
MMCRO[ENINT] and either PMC lINTCONTROL or PMCINTCONTROL are set and the 
mtspr instruction loads an overflow value, an interrupt signal may be generated without an 
event counting having taken place. 

The event to be monitored can be chosen by setting MMCRO[19-31]. The selected events 
are counted beginning when MMCRO is set until either MMCRO is reset or a performance 
monitor interrupt is generated. Table 11-5 lists the selectable events and their encodings. 

Table 11-5. PMC1 Events-MMCRO[19-25] Select Encodings 

Encoding Description 

0000000 Register holds current value. 

0000001 Number of processor cycles 

0000010 Number of instructions that have completed. Does not include folded branches. 

0000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified 
through RTCSELECT, MMRCO[7-B]. 00 = 15,01 = 19, 10 = 23, 11 = 31 

0000100 Number of instructions dispatched-O, 1, or 2 instructions per cycle 

0000101 Number of eieio instructions completed 

0000110 Number of cycles spent performing table search operations for the ITLB 

0000111 Number of accesses that hit the L2 

0001000 Number of valid instruction EAs delivered to the memory subsystem 

0001001 Number of times the address of an instruction being completed matches the address in the IABR 

0001010 Number of loads that miss the L 1 with latencies that exceeded the threshold value 

0001011 Number of branches that are unresolved when processed 

0001100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream 

All others Reserved. May be used in a later revision. 

Bits MMCRO[26-31] specify events associated with PMC2, as shown in Table 11-6. 

Table 11-6. PMC2 Events-MMCRO[26-31] Select Encodings 

Encoding Description 

000000 Register holds current value. 

000001 Number of processor cycles 

000010 Number of instructions that have completed. Does not include folded branches 

000011 Number of transitions from 0 to 1 of specified bits in time base lower register. Bits are specified 
through RTCSELECT, MMRCO[7·B]. 00 = 15,01 = 19, 10 = 23, 11 = 31. 

000100 Number of instructions dispatched. 0, 1, or 2 instructions per cycle 

000101 Number of eieio instructions completed 
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Table 11-6. PMC2 Events-MMCRO[26-31] Select Encodings (Continued) 

Encoding Description 

00 0110 Number of cycles spent performing table search operations for the ITLB 

00 0111 Number of accesses that hit the L2 

00 1000 Number of valid instruction EAs delivered to the memory subsystem 

00 1001 Number of times that the address of an instruction being completed matches the address in the IABR 

00 1010 Number of loads that miss the L 1 and have latencies that exceeded the threshold value 

00 1011 Number of branches that are unresolved when processed 

00 1100 Number of cycles the dispatcher stalls due to a second unresolved branch in the instruction stream 

All others Reserved. May be used in a later revision. 

Bits MMCR1 [0-4] specify events associated with PMC3, as shown in Table 11-7. 

Table 11-7. PMC3 Events-MMCR1[O-4] Select Encodings 

Encoding Description 

00000 Register holds current value. 

00001 Number of processor cycles 

00010 Number of completed instructions, not including folded branches. 

00011 Number of TBL bit transitions from a to 1 of specified bits in time base lower register. Bits are 
specified through RTCSELECT (MMRCO[7-8]). a = 47, 1 = 51, 2 = 55, 3 = 63. 

a 0100 Number of instructions dispatched. 0, 1, or 2 per cycle. 

00101 Number of L 1 data cache misses 

a 0110 Number of DTLB misses 

a 0111 Number of L2 data misses 

01000 Number of taken branches, including predicted branches. 

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the 
number of MSR[PM] toggles while the processor is in user mode. 

01010 Number of store conditional instructions completed 

a 1011 Number of instructions completed from the FPU 

a 1100 Number of L2 castouts caused by snoops to modified lines 

01101 Number of cache operations that hit in the L2 cache 

a 1110 Reserved 

a 1111 Number of cycles generated by L 1 load misses 

1 0000 Number of branches in the second speculative stream that resolve correctly 

1 0001 Number of cycles the BPU stalls due to LR or CR unresolved dependencies 

All others Reserved. May be used in a later revision. 
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Bits MMCRl[5-9] specify events associated with PMC4, as shown in Table 11-8. 

Table 11-8. PMC4 Events-MMCR1[5-9] Select Encodings 

Encoding Comments 

00000 Register holds current value 

00001 Number of processor cycles 

00010 Number of completed instructions, not including folded branches 

00011 Number of TBL bit transitions from 0 to 1 of specified bits in time·base lower register. Bits are specified 
through RTCSELECT (MMRCO[7-8]). 0 = 47, 1 = 51, 2 = 55, 3 = 63. 

00100 Number of instructions dispatched. 0, 1, or 2 per cycle 

00101 Number of L2 castouts 

00110 Number of cycles spent performing table searches for DTLB accesses. 

00111 Reserved. May be used in a later revision. 

01000 Number of mispredicted branches 

01001 Number of transitions between marked and unmarked processes while in user mode. That is, the 
number of MSR[PM] toggles while the processor is in supervisor mode. 

01010 Number of store conditional instructions completed with reservation intact 

01011 Number of completed sync instructions 

01100 Number of snoop request retries 

01101 Number of completed integer operations 

01110 Number of cycles the BPU cannot process new branches due to having two unresolved branches 

All others Reserved. May be used in a later revision. 

The PMC registers can be accessed with the mtspr and mfspr instructions using the 
following SPR numbers: 

• PMCI is SPR 953 
• PMC2 is SPR 954 

PMC3 is SPR 957 
PMC4 is SPR 958 
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11.2.1.6 User Performance Monitor Counter Registers 
(UPMC1-UPMC4) 

The contents of the PMCI-PMC4 are reflected to UPMCI-UPMC4, which can be read by 
user-level software. The UPMC registers can be read with the mfspr instructions using the 
following SPR numbers: 

• UPMCI is SPR 937 

• UPMC2 is SPR 938 
• UPMC3 is SPR 941 
• UPMC4 is SPR 942 

11.2.1.7 Sampled Instruction Address Register (SIA) 
The sampled instruction address register (SIA) is a supervisor-level register that contains 
the effective address of an instruction executing at or around the time that the processor 
signals the performance monitor interrupt condition. The SIA is shown in Figure 11-4. 

Instruction Address 

o 31 

Figure 11-4. Sampled instruction Address Registers (SIA) 

If the performance monitor interrupt is triggered by a threshold event, the SIA contains the 
address of the exact instruction (called the sampled instruction) that caused the counter to 
overflow. 

If the performance monitor interrupt was caused by something besides a threshold event, 
the SIA contains the address of the last instruction completed during that cycle. SIA can be 
accessed with the mtspr and mfspr instructions using SPR 955. 

11.2.1.8 User Sampled Instruction Address Register (USIA) 
The contents of SIA are reflected to USIA, which can be read by user-level software. USIA 
can be accessed with the mfspr instructions using SPR 939. 
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11.3 Event Counting 
Counting can be enabled if conditions in the processor state match a software-specified 
condition. Because a software task scheduler may switch a processor's execution among 
multiple processes and because statistics on only a particular process may be of interest, a 
facility is provided to mark a process. The performance monitor (PM) bit, MSR[29] is used 
for this purpose. System software may set this bit when a marked process is running. This 
enables statistics to be gathered only during the execution of the marked process. The states 
of MSR[PR] and MSR[PM] together define a state that the processor (supervisor or 
program) and the process (marked or unmarked) may be in at any time. If this state matches 
a state specified by the MMCR, the state for which monitoring is enabled, counting is 
enabled. 

The following are states that can be monitored: 

(Supervisor) only 
(User) only 

(Marked and user) only 
(Not marked and user) only 

• (Marked and supervisor) only 

• (Not marked and supervisor) only 

• (Marked) only 
• (Not marked) only 

In addition, one of two unconditional counting modes may be specified: 

• Counting is unconditionally enabled regardless of the states of MSR[PM] and 
MSR[PR]. This can be accomplished by clearing MMCRO[O-4]. 

o Counting is unconditionally disabled regardless of the states of MSR[PM] and 
MSR[PR]. This is done by setting MMCRO[O]. 

The performance monitor counters count specified events and are used to generate 
performance monitor exceptions when an overflow (most-significant bit is a 1) situation 
occurs. The MPC750 performance monitor has four, 32-bit registers that can count up to 
Ox7FFFFFFF (2,147,483,648 in decimal) before overflowing. Bit 0 of the registers is used 
to determine when an interrupt condition exists. 
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11.4 Event Selection 
Event selection is handled through MMCRO and MMCR1, described in Table 11-2 and 
Table 11-3, respectively. Event selection is described as follows: 

• The four event-select fields in MMCRO and MMCR1 are as follows: 

- MMCRO[19-25] PMC1SELECT-PMC1 input selector, 12S events selectable; 
25 defined. See Table 11-5. 

- MMCRO[26-31] PMC2SELECT-PMC2 input selector, 64 events selectable; 
21 defined. See Table 11-6. 

- MMCRO[O-4] PMC3SELECT-PMC3 input selector. 32 events selectable, 
defined. See Table 11-7. 

- MMCRO[5-9] PMC4SELECT-PMC4 input selector. 32 events selectable. See 
Table 11-S. 

• In the tables, a correlation is established between each counter, events to be traced, 
and the pattern required for the desired selection. 

• The first five events are common to all four counters and are considered to be 
reference events. These are as follows: 

- OOOOO-Register holds current value 

- 0000 I-Number of processor cycles 

- OOOlO-Number of completed instructions, not including folded branches 

- 00011-Number ofTBL bit transitions from 0 to 1 of specified bits in time base 
lower register. Bits are specified through RTCSELECT (MMCRO[7-S]). 0 = 47, 
1=51,2=55,3=63. 

- OOlOO-Number of instructions dispatched. 0, 1, or 2 per cycle 

• Some events can have multiple occurrences per cycle, and therefore need two or 
three bits to represent them. 

11.5 Warnings 
The following warnings should be noted: 

• Only those load and store in queue position 0 of their respective load/store queues 
are monitored when a threshold event is selected in PMCI. 

• The MPC750 cannot accurately track threshold events with respect to the following 
types ofloads and stores: 

- Unaligned load and store operations that cross a word boundary 

- Load and store multiple operations 

- Load and store string operations 
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Appendix A 
PowerPC Instruction Set Listings 
This appendix lists the MPC750 microprocessor's instruction set as well as the additional 
PowerPC instructions not implemented in the MPC750. Instructions are sorted by 
mnemonic, opcode, function, and form. Also included in this appendix is a quick reference 
table that contains general information, such as the architecture level, privilege level, and 
form, and indicates if the instruction is 64-bit and optional. Note that the MPC750 is a 32-
bit microprocessor, and doesn't implement any 64-bit instructions. 

Note that split fields, that represent the concatenation of sequences from left to right, are 
shown in lowercase. For more information refer to Chapter 8, "Instruction Set," in The 
Programming Environments Manual. 

A.1 Instructions Sorted by Mnemonic 
Table A -1 lists the instructions implemented in the PowerPC architecture in alphabetical 
order by mnemonic. 

Key: 

o Reserved bits 

Table A-1. Complete Instruction List Sorted by Mnemonic 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addx 31 D A B PE 266 Rc 

addex 31 D A B PE 10 Rc 

addex 31 D A B PE 138 Rc 

add I 14 D A SIMM 

addie 12 D A SIMM 

addie. 13 D A SIMM 

addis 15 D A SIMM 

addmex 31 D A liioooooi ••• pE 234 Rc 

addzex 31 D A 1.·qOOOO. PE 202 Rc 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

andx 31 S A B 28 Rc 

andcx 31 S A B 60 Rc 

andi. 28 S A UIMM 

andis. 29 S A UIMM 

bx 18 LI AALK 

bcx 16 BO BI BO AALK 

bcctrx 19 BO BI 528 LK 

bclrx 19 BO BI 16 LK 

cmp 31 crlD i? L A B o o 
empi 11 crlD OL A SIMM 

empl 31 crlD 10 LAB 32 Iq 
r----------r----+++-r--------+--------~----------------~ 

cmpli 10 crlD 19 L A 
r----------r----~L-r--------+~~~~~----------------~ 

UIMM 

cntlzdx 1 31 S A laoaa{) 58 Rc 

cntlzwx 31 S A IPOOOI)i.. 26 Rc 

crand 19 crbO crbA crbB 257 10 

crandc 19 crbO crbA crbB 129 10 

creqv 19 crbO crbA crbB 289 o 
~----------+---------~---------+----------~------------------~~ 

crnand 19 crbO crbA crbB 225 I:~ 
ernor 

cror 

erorc 

erxor 

deba 2,7 

dcbf 

debi 3 

dcbst 

19 crbO crbA crbB 33 10 
19 crbO crbA crbB 449 0 

19 crbO crbA crbB 417 [0 

dcbt 31 1'.P80(}!p., A B 278 •• ~' 
r----------r~~~~r--------+--------+_----------------~ 

debtst 31 1/'0000 . .0./ A B 246? 

dcbz 

divdx 1 

divdux 1 

divwx 

divwux 

A-2 

31 

31 

31 

31 

31 

lioopof A B 10149' 

o A B joE 489 Rc 

o A B OE 457 Rc 

o A B OE 491 Rc 

o A B OE 459 Rc 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eeiwx 31 D A B 310 

eeowx 31 S A 438 

eieio 31 000 00000 854 

eqvx 31 S A 284 

31 S A 954 

31 S A 922 

31 S 986 

63 D 

63 D 

59 D 

fefidx 1 63 D 

fempo 63 crfD B 32 

fempu 63 crfD B 0 

fctidx 1 63 D B 814 

fetidzx 1 63 D B 815 

63 D B 14 

63 D 

63 D 

fdivsx 59 D A B 

fmaddx 63 D A B 

fmaddsx 59 D A B C 29 

fmrx 63 D 72 

fmsubx 63 D C 28 

fmsubsx 59 D C 28 

fmulx 63 D C 25 

fmulsx 59 D C 25 I 

fnabsx 63 D 136 - I 

fnegx 63 D 40 

fnmaddx 63 D A B C 31 

fnmaddsx 59 D A B C 31 

fnmsubx 63 D A B C 30 

fnmsubsx 59 D 

fresx 2 59 D 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

frspx 63 

frsqrtex 2 63 

fselx 2 63 

fsqrtx 2•7 63 

fsqrtsx 2•7 59 

fsubx 63 

fsubsx 59 

icbi 31 

isync 19 

Ibz 34 D A d 

Ibzu 35 D A d 

Ibzux 31 D A B 119 

Ibzx 31 D A B 87 

Id 1 58 D A ds 

Idarx 1 31 D A B 84 

Idu 1 58 D ds 

Idux 1 31 D A B 53 

Idx 1 31 D A B 21 

Ifd 50 D A d 

Ifdu 51 D A d 

Ifdux 31 D A B 631 

Ifdx 31 D A B 599 

Ifs 48 D A d 

Ifsu 49 D A d 

Ifsux 31 D A B 567 

- Ifsx 31 D A B 535 

Iha 42 D A d 

Ihau 43 D A d 

Ihaux 31 D A B 375 

Ihax 31 D A B 343 

Ihbrx 31 D A B 790 

1hz 40 D A d 

Ihzu 41 D A d 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Ihzux 

Ihzx 

Imw4 

Iswi 4 

Iswx 4 

Iwa 1 

Iwarx 

Iwaux 1 

Iwax 1 

Iwbrx 

Iwz 

Iwzu 

Iwzux 

Iwzx 

mcrf 

mcrfs 

mcrxr 

mfcr 

mffsx 

mfmsr 3 

mfspr 5 

mfsr 3,6 

mfsrin 3,6 

mftb 

mtcrf 

mtfsbOx 

mtfsb1x 

mtfsfx 

mtfsfix 

mtmsr 3,6 

mtmsrd 1,3 

mtspr 5 

mtsr 3,6 

31 D 

31 D 

46 D 

31 D 

31 D 

58 D 

31 D 

31 D 

31 D 

31 D 

32 D 

33 D 

31 D 

31 D 

19 crfD 00 

63 crfD 00 

31 crfD 00 

31 D 

63 D 

31 D 

31 D 

31 D 

31 0 

31 D 

31 S 

63 crbD 

63 crbD 

63 01 

63 crfD 00 

31 S 

31 S 

31 S 

31 S 

A B 

A B 

A 

A NB 

A B 

A 

A B 

A B 

A B 

A B 

A 

A 

A B 

A B 

crfS 00 00000 

crfS 00 00000 

00000 00000 

I 
00000 00000 

00000 00000 

00000 00000 
.. 

spr 

01 SR 1 .. 00000 

00000 B 

tbr 

01 CRM 10 

I 00000 •.•.•..•••.. 00000 •• · •• • •• · 

I 00000 · .. · •• ioono9.H ... 

FM 10 B 

00000\. IMM 
19 

00 000 I) <009QO·.·· .•• ••• 

OO.OQO< iOO?OI ..•.• 

spr 

01 SR 1·.··i··· .• ·p .• OOS.p\ .. ·•. 
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311 a 
279 a 

d 

597 a 
533 a 

ds I 2 

20 1~ 
373 a 
341 a 
534 a 

d 

d 

55 0 

23 0 

a 0 

64 .• 0 

512 a 
19 0 

583 Rc 

83 a 
339 a 
595 a 
659 a 
371 a 
144 g. 
70 Rc 

38 Rc 

711 Rc 

134 Rc 

146 a 
178 a 
467 O. 

210 a 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mtsrd 3,6 

mtsrdin 3,6 

mtsrin 3,6 

mUlhdx 1 

mUlhdux1 

mulhwx 

31 

31 

31 

31 

31 

31 

!p 

:0 
DAB .~: 73 Rc 

DAB iQ 9 Rc 

DAB)O 75 Rc 

mulhwux 31 DAB 19 11 Rc 
~--------~--------+--------+--------~+----------------r~ 

mUlldx 1 31 DAB OE 233 Rc 

mulli 7 D A SIMM 

mullwx 31 DAB O~ 235 Rc 

nandx 31 S A B 476 Rc 

.)· •. ·00.00.0.'·.,.,···· ,,<=I negx 31 D A •• ,.,.e.,: _ ••• {:,: ~I 104 Rc 
~--------~--------+--------+~~~~~~---------------r~ 

norx 31 S A B 124 Rc 

orx 31 S A B 444 Rc 

orcx 31 S A B 412 Rc 

ori 24 S A UIMM 

oris 25 S A UIMM 

rfi 3,6 19 ~i_.·M(JWQ~ 50 B 
rfid 1,3 ~----19-----+~-e~ .. ,rl·,Q:99Q~;!~:=========18=========:~:, 

rldclx 1 30 S A B mb 8 Rc 

rldcrx 1 30 S A B me 9 Rc 

rldicx 1 30 S A sh mb 2 sh Rc 

rldiclx 1 30 S A sh mb o sh Rc 

rldicrx 1 

rldimix 1 

rlwimix 

rlwinmx 

rlwnmx 

sc 

slbia 1,2,3 

slbie 1,2,3 

sldx 1 

slwx 

A-6 

30 S A sh me 1 sh Rc 

30 S A sh mb 3 sh Rc 

20 S A SH MB ME Rc 

21 S A SH MB ME Rc 

23 S A B MB ME Rc 

17 ~ •• "..... ~:.& 
31 498!p 

1--------+ 
31 B 434~: 

31 S A B 27 Rc 

31 S A B 24 Rc 
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Name 0 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22232425262728293031 

sradx 1 

sradix 1 

srawx 

srawix 

srdx 1 

srwx 

stb 

stbu 

stbux 

stbx 

std 1 

stdcx. 1 

stdu 1 

stdux 1 

stdx 1 

stfd 

stfdu 

stfdux 

stfdx 

stfiwx 2 

stfs 

stfsu 

stfsux 

stfsx 

5th 

sthbrx 

sthu 

sthux 

sthx 

stmw 4 

stswi 4 

stswx 4 

stw 

31 S 

31 S 

31 S 

31 S 

31 S 

31 S 

38 S 

39 S 

31 S 

31 S 

62 S 

31 S 

62 S 

31 S 

31 S 

54 S 

55 S 

31 S 

31 S 

31 S 

52 S 

53 S 

31 S 

31 S 

44 S 

31 S 

45 S 

31 S 

31 S 

47 S 

31 S 

31 S 

36 S 
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A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

B 794 Rc 

sh 413 ISh Rc 

B 792 Rc 

SH 824 Rc 

B 539 Rc 

B 536 Rc 

d 

d 

B 247 0 

B 215 0 

ds I 0 

B 214 1 

ds I 1 

B 181 0 

B 149 0 

d 

d 

B 759 0 

B 727 0 

B 983 0 

d 

d 

B 695 0 

B 663 0 

d 

B 918 100 
d 

B 439 'R 
B 407 qi 

d 

NB 725 0 

B 661 0 

d 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

stwbrx 31 S 

stwcx. 31 S 

stwu 37 S 

stwux 31 S 

stwx 31 S 

subfx 31 D 

subfcx 31 D 

subfex 31 D 

subfic 08 D 

subfmex 31 

subfzex 31 

sync 31 
1-------1 

td 1 31 

tdi 1 02 

tibia 2,3,7 31 

tlbie 2,3 31 

tlbsync2,3 31 
f------

tw 31 

twi 03 TO 

xorx 31 S 

xori 26 S 

xoris 27 S 

Notes: 

1 64-bit instruction 

2 Optional instruction 

3 Supervisor-level instruction 

4 Load/store string/multiple instruction 

5 Supervisor- and user-level instruction 

6 Optional 64-bit bridge instruction 

A B 662 

A B 150 

A d 

A B 183 

A B 151 

A B 40 

A B 8 

A B 136 

A SIMM 

232 

200 

598 

68 

SIMM 

370 

306 

566 

4 

A SIMM 

A B 316 

A UIMM 

A UIMM 

7 32-bit instruction not implemented by the MPC750 
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A.2 Instructions Sorted by Opcode 
Table A-2 lists the instructions defined in the PowerPC architecture in numeric order by 
opcode. 

Key: 

D Reserved bits 

Table A-2. Complete Instruction List Sorted by Opcode 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

000010 TO A SIMM 

twi 000011 TO A SIMM 

mulli 000111 o A SIMM 

subtie 001000 o A SIMM 

empli 001010 erfD A UIMM 

empi 001011 erfD A SIMM 

addie 001100 o A SIMM 

addie. 001101 o A SIMM 

addl 001110 o A SIMM 

addis 001111 o A SIMM 

010000 

010001 

010010 

010011 0000000000 

010011 0000010000 

010011 0000010010 

ernor 010011 0000100001 

rf1 2,3 010011 0000110010 

erande 010011 0010000001 

isyne 010011 0010010110 

erxor 010011 erbD erbA erbB 0011000001 

ernand 010011 erbD erbA erbB 0011100001 

erand 01001 1 erbD erbA erbB 0100000001 

ereqv 010011 erbD erbA erbB 0100100001 

erore 01001 1 erbD erbA erbB 0110100001 

eror 01001 1 erbD erbA erbB 0111000001 
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Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31 

bcctrx 

rlwimix 

010011 BO BI .-m 1000010000 ILK 

010100 S A SH MB ME IRc 

rlwinmx 010101 S A SH MB ME IRc 

rlwnmx 010111 S A B MB ME IRc 

ori 011000 S A UIMM 

oris 011001 S A UIMM 

xori 011010 S A UIMM 

xoris 01101 1 S A UIMM 

andi. 011100 S A UIMM 

andis. 011101 S A UIMM 

rldiclx 1 011110 S A sh mb 000 Ish IRc 

rldlcrx 1 011110 S A sh me 001 Ish IRc 

rldicx 1 011110 S A sh mb 010 IshRc 

rldimix 1 011110 S A sh mb 011 Ish Rc 

rldclx1 011110 S A B mb 01000 IRc 

rldcrx 1 01 1 110 S A B me 01001 IRc 

cmp o 1 1 1 1 1 criD L A B 0000000000 

tw 011111 TO A B 0000000100 

subfcx 011111 D A B pE 0000001000 IRc 

mUlhdux 1 

addcx 

01 1 1 1 1 D A B ! 0000001001 IRc 

01 1 1 1 1 D A B 0000001010 IRc 

mulhwux o 1 1 1 1 1 D A B !II 0000001011 IRc 

mfcr 011111 D 0000010011 

Iwarx 01 1 1 11 D A B 0000010100 

Idx 1 01 1 1 11 D A B 0000010101 

- Iwzx 

slwx 

011111 D A B 0000010111 

01 1 1 11 S A B 0000011000 IRc 

cntlzwx 011111 S A 0000011010 IRc 

sldx 1 01 1 1 1 1 S A B 0000011011 IRc 

andx o 1 1 1 1 1 S A B 0000011100 IRc 

cmpl 

subfx 

Idux 1 

o 1 1 1 1 1 criD L A B 0000100000 I 
01 1 1 1 1 D A B 09 0000101000 IRc 

01 1 1 1 1 D A B 0000110101 I 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

debst 

Iwzux 

entlzdx 1 

andex 

td 1 

mUlhdx 1 

mulhwx 

mtsrd 2,3 

mfmsr2 

Idarx 1 

dcbf 

Ibzx 

negx 

mtsrdin 2,3 

Ibzux 

norx 

subfex 

addex 

mtcrf 

mtmsr 2,3 

stdx 1 

stwex. 

stwx 

mtmsrd 1,2 

stdux 1 

stwux 

subfzex 

addzex 

mtsr 2,3 

stdex. 1 

stbx 

subfmex 

mulld1 

o 1 1 1 1 1 00000 A 

o 1 1 1 1 1 D A 

o 1 1 1 1 1 S A 

o 1 1 1 1 1 S A 

011111 TO A 

011111 D A 

o 1 1 1 1 1 D A 

o 1 1 1 1 1 s 01 SR 

011111 D 00000 

o 1 1 1 1 1 D A 

011111 00000 A 

011111 D A 

011111 D A 

011111 S 00000 

011111 D A 

011111 S A 

011111 D A 

011111 D A 

011111 S 01 

011111 S 00000 

011111 S A 

011111 S A 

011111 S A 

011111 S 00000 

011111 S A 

011111 S A 

011111 D A 

011111 D A 

011111 S 01 SR 

011111 s A 

011111 S A 

011111 D A 

011111 D A 
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B 0000110110 0 

B 0000110111 0 

00000 0000111010 Rc 

B 0000111100 Rc 

B 0001000100 0 

B 0 0001001001 Rc 

B 0 0001001011 Rc 

00000 0001010010 0 

00000 0001010011 0 

B 0001010100 0 

B 0001010110 0 

B 0001010111 0 

00000 O~ 0001101000 Rc 

B 0001110010 0 

B 0001110111 0 

B 0001111100 Rc 

B PE 0010001000 Rc 

B PE 0010001010 Rc 

CRM 
10 0010010000 0 

00000 0010010010 0 

B 0010010101 0 

B 0010010110 1 

B 0010010111 0 

00000 0010110010 0 

B 0010110101 10. 

B 0010110111 10 
.•.. 00.000·/ PE 0011001000 Rc 

00000 PE 0011001010 Rc 

0000.0 0011010010 19.: 

B 0011010110 1 

B 0011010111 0 

00000 PE 0011101000 Rc 

B PE 0011101001 Rc 

A-11 
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Name o 5 6 7 8 9 1011 12 13 14 15 16 17 18 192021 22232425262728293031 

addmex 011111 D A 00 0.0 0 OE 0011101010 Rc 

mullwx 011111 D A B OE 0011101011 Rc 

mtsrin 2,3 011111 S 00000 B 0011110010 0 

debtst 011111 ·.00 000 ••.• A B 0011110110 0 

stbux 011111 S A B 0011110111 0 

addx 011111 D A B O~ 0100001010 Rc 

debt o 1 1 1 1 1 I 00000 A B 0100010110 a 
Ihzx 011111 D A B 0100010111 0 

eqvx 011111 S A B 0100011100 Rc 

tlbie 2,4 011111 I 00000 _ 00000 B 0100110010 0 

eeiwx 011111 D A B 0100110110 0 

Ihzux 011111 D A B 0100110111 0 

xorx 011111 S A B 0100111100 Rc 

mfspr 5 011111 D spr 0101010011 0 

Iwax 1 011111 D A B 0101010101 0 

Ihax 011111 D A B 0101010111 0 

tibia 2,4,7 011111 1>.0 000 () Ii 00000 ....•• {YOOO 0 0101110010 0 

mftb 011111 D tbr 0101110011 0 

Iwaux 1 011111 D A B 0101110101 0 

Ihaux 011111 D A B 0101110111 O· 

sthx o 1 1 1 1 1 S A B 0110010111 0 

orex 011111 S A B 0110011100 Rc 

sradix 1 011111 S A sh 1100111011 ISh Rc 

slbie 1,2,4 011111 
. .. . .. 

00000> •• .... 00000 B 0110110010 0 

ecowx 011111 S A B 0110110110 a 

- sthux 

orx 

011111 S A B 0110110111 0 

011111 S A B 0110111100 Rc 

divdux 1 011111 D A B OE 0111001001 Rc 

divwux 011111 D A B OE 0111001011 Rc 

mtspr 5 011111 S spr 0111010011 0 

debi 2 011111 i· \)00.0 .• •· •.•. A B 0111010110 0 

nandx 011111 S A B 0111011100 Rc 

divdx 1 011111 D A B pE 0111101001 Rc 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

divwx 

slbia ',2,4 

mcrxr 

Iswx 6 

Iwbrx 

Ifsx 

srwx 

srdx' 

tlbsync 2,4 

Ifsux 

mfsr 2,3 

Iswi 6 

sync 

Ifdx 

Ifdux 

mfsrin 2,3 

stswx 6 

stwbrx 

stfsx 

stfsux 

stswi 6 

stfdx 

dcba 4,7 

stfdux 

Ihbrx 

srawx 

sradx' 

srawix 

eieio 

sthbrx 

extshx 

extsbx 

icbi 

011111 

01 1 1 1 1 

01 1 1 11 

01 1 1 1 1 

011111 

01 1 1 1 1 

011111 

o 1 1 1 1 1 

011111 

01 1 1 1 1 

011111 

01111 1 

o 1 1 1 1 1 

01 1 1 1 1 

011111 

01 1 1 1 1 

01 1 1 1 1 

01 1 1 1 1 

01 1 1 1 1 

011111 

01 1 1 1 1 

o 1 1 1 1 1 

011111 

011111 

o 1 1 1 1 1 

011111 

01 1 1 1 1 

01 1 1 1 1 

011111 

011111 

01 1 1 1 1 

o 1 1 1 1 1 

011111 

D A 

00000 00000 

erfD I 00 00000 

D A 

D A 

D A 

S A 

S A 

00000 00000 

D A 

D I SR 

D A 

00.000 00000 

D A 

D A 

D 00 o. 06 .... 
S A 

S A 

S A 

S A 

S A 

S A 

I 0009.,0,;' A 

S A 

D A 

S A 

S A 

S A 
iii! .. 

lil.~ l/lji~:MiP\~8/.ls .• 
S A 

S A 

S A 

~ A 
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B pEl 0111101011 IRe 

00000 0111110010 0 

00000 1000000000 0 

B 1000010101 0 

B 1000010110 0 

B 1000010111 lR\! 
B 1000011000 Re 

B 1000011011 IRe 

00000 1000110110 0 

B 1000110111 0 

00000 1001010011 0 

NB 1001010101 0 

I .• 00pO .. 0 .•.•. 1001010110 0 

B 1001010111 0 

B 1001110111 0 

B 1010010011 0 

B 1010010101 0 

B 1010010110 (J.e 

B 1010010111 0 

B 1010110111 10 

NB 1011010101 0 

B 1011010111 p' 

B 1011110110 q. 
B 101 1 1 101 1 1 .. R 
B 1100010110 (r~l 
B 1100011000 Re 

B 1100011010 IRe 

SH 1100111000 IRe 

1101010110 i\~11 
B 1110010110 I 

1110011010 Re 

1110111010 Re 

B 1111010110 \~~\ 

A-13 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 

s tfiwx 4 011111 S A 

~ 
1111010111 I~I 

xtsw 1 011111 .. A 1111011010 i dcbz 01 1 1 1 1 A 1111110110 

e 

Iwz 100000 D A d 

Iwzu 100001 D A d 

Ibz 100010 D A d 

Ibzu 10001 1 D A d 

stw 100100 S A d 

stwu 100101 S A d 

stb 100110 S A d 

stbu 100111 S A d 

1hz 101000 D A d 

Ihzu 101001 D A d 

Iha 101010 D A d 

Ihau 101011 D A d 

sth 101100 S A d 

sthu 101101 S A d 

Imw 6 101110 D A d 

s tmw 6 101 1 1 1 S A d 

Ifs 110000 D A d 

Ifsu 110001 D A d 

Ifd 110010 D A d 

Ifdu 1 10011 D A d 

stfs 110100 S A d 

stfsu 110101 S A d 

- stfd 1101 10 S A d 

stfdu 1 1 01 1 1 S A d 

Id 1 111010 D A ds 00 

Idu 1 1 1 1010 D A ds 01 

Iwa 1 111010 D A ds 10 

fdivsx 1 1 1 01 1 D A B 10010 Rc 

subsx 1 1 1 01 1 D A B 10100 Rc 

addsx 111011 D A B 10101 Rc 
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Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fsqrtsx 4,7 1 1 1 01 1 D 00000 B 00000 10110 

fresx 4 111011 D 00000 B 00000 1 1000 

111011 D A 00000 C 1 1 001 

11 101 1 D A B C 1 1 1 00 

1 1 1 01 1 D A B C 11101 

fnmsubsx 11 101 1 D A B C 1 1 1 1 0 

fnmaddsx 1 1 1 01 1 D A B C 1 1 1 1 1 

std 1 1 1 1 1 10 S A ds 

stdu 1 111110 S A ds 

fempu 1 1 1 1 1 1 crfD 00 A B 0000000000 

frspx 1 1 1 1 1 1 D B 0000001100 

fetiwx 111111 D B 0000001110 

fetiwzx 1 1 1 1 1 1 D 

fdivx 1 1 1 1 1 1 D 

fsubx 1 1 1 1 1 1 D 

faddx 1 1 1 1 1 1 D 

fsqrtx 4,7 1 1 1 1 1 1 D 

fselx 4 1 1 1 1 1 1 D 

fmulx 111111 D 

frsqrtex 4 111111 D 

fmsubx 111111 D 

fmaddx 1 1 1 1 1 1 D A B C 1 1 101 

fnmsubx 1 1 1 1 1 1 D A B C 1 1 1 1 0 

fnmaddx 111111 D A B C 1 1 1 1 1 

fempo 1 1 1 1 1 1 crfD 0000100000 

mtfsb1x 1 1 1 1 1 1 0000100110 -fnegx 1 1 1 1 1 1 D 0000101000 

merfs 1 1 1 1 1 1 crfD 0001000000 

mtfsbOx 1 1 1 1 1 1 0001000110 

fmrx 1 1 1 1 1 1 D 0001001000 

mtfsfix 111111 crfD 0010000110 

fnabsx 1 1 1 1 1 1 D 0010001000 

fabsx 1 1 1 1 1 1 D 0100001000 
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.. 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mffsx 111111 1001000111 

mHsfx 1 1 1 1 1 1 1 0 1 1 00 0 1 1 1 

fctidx 1 111111 1100101110 

fctidzx 1 111111 1100101111 

fcfidx 1 111111 1101001110 

A-16 

Notes: 
1 64-bit instruction 

2 Supervisor-level instruction 

3 Optional 64-bit bridge instruction 

4 Optional instruction 

5 Supervisor- and user-level instruction 

6 Load/store string/multiple instruction 

7 32-bit instruction not implemented by the MPC750 
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A.3 Instructions Grouped by Functional Categories 
Table A-3 through Table A-30 list the PowerPC instructions grouped by function. 

Key: D Reserved bits 

Table A-3. Integer Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addx 31 D A B OE 266 Rc 

addcx 31 D A B OE 10 Rc 

addex 31 D A B OE 138 Rc 

addi 14 D A SIMM 

addic 12 D A SIMM 

addic. 13 D A SIMM 

addis 15 D A SIMM 

addmex~-;31~-t--~D~--t---IA~--1:~nITi':;'~~:E[Q::,~~,~~~r'~1i~I~ODSE------:2~3~4------~Rje 
addzex 31 D A ilfQ'Q:O,q";g;;, OE 202 Re 

r------+--------+-------~~~~~~~--------------_r~ 
divdx 1 31 DAB OE 489 He 

~-----+--------+-------~--------~~--------------~~ 

divdux 1 31 DAB OE 457 iRe 

divwx 31 DAB OE 491 Re 

divwux 31 DAB OE 459Re 

mulhdx 1 31 D A Bip; 73 IRe 
r------+--------+-------~--------~~--------------_r~ 

mulhdux1 31 DAB i19~ 9 IRe 

mulhwx 

mulhwux 

mUlld 1 

mulli 

31 DAB 75 IRe 

31 DAB 11 IRe 

31 DAB p~ 233 IRe 

07 D A SIMM 

mullwxr-__ 31 __ -+ ____ D ____ +-___ A ____ ~-------2-3-5------~IR~e 
negx 31 D A 104 IRe 

~-----+--------+-------~ 

subfx 31 DAB OE 40 IRe 

subfcx 31 DAB bE 8 IRe 

subficx 08 D A SIMM 

subfexl-___ 31 __ _+----D----+----A---_-~------1-3-6------~IR-le subfmex 31 D A 232 IRe 

subfzex 31 D A 200 IRe 

Note: 
1 64-bit instruction 
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Table A-4. Integer Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

cmp 31 crfD A B 

cmpi 11 crfD A 

cmpl 31 crfD A B 

cmpli 10 crfD A UIMM 

Table A-S. Integer Logical Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

andx 31 S A B 28 

andcx 31 S A B 60 

andi. 28 S A UIMM 

andis. 29 S A UIMM 

cntlzdx' 31 S A 58 

cntlzwx 31 S A 26 

eqvx 31 S A 284 

extsbx 31 S A 954 

extshx 31 S A 922 

extswx 1 31 S A 986 

nandx 31 S A B 476 

norx 31 S A B 124 

orx 31 S A B 444 

orcx 31 S A B 412 

ori 24 S A UIMM 

oris 25 S A UIMM 

xorx 31 S A B 316 - xori 26 S A UIMM 

xoris 27 S A UIMM 

Note: 
1 64-bit instruction 
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Table A-6. Integer Rotate Instructions 

Name 0 

rldclx 1 

rldcrx 1 

rldlcx 1 

rldiclx 1 

rldicrx 1 

rldimix 1 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31 

30 S A B mb 8 Rc 

30 S A B me 9 Rc 

30 S A sh mb 2 sh Rc 

30 S A sh mb 0 sh Rc 

30 S A sh me 1 sh Rc 

30 S A sh mb 3 sh Rc 

rlwimix 22 S A SH MB ME Rc 

rlwinmx 20 S A SH MB ME Rc 

rlwnmx 21 S A SH MB ME Rc 

Note: 
1 64-bit instruction 

Table A-7. Integer Shift Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31 

sldx 1 

slwx 

sradx 1 

sradix 1 

srawx 

srawix 

srdx 1 

srwx 

31 S A 

31 S A 

31 S A 

31 S A 

31 S A 

31 S A 

31 S A 

31 S A 

Note: 
1 64-bit instruction 

Appendix A. PowerPC Instruction Set Listings 

B 27 Rc 

B 24 Rc 

B 794 Rc 

sh 413 ISh Rc 

B 792 Rc 

SH 824 Rc 

B 539 Rc 

B 536 Rc 

A-19 
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Table A-S. Floating-Point Arithmetic Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22232425 26 27 28 29 30 31 

faddx 63 D 

faddsx 59 D 

fdivx 63 D 

fdivsx 59 D 

fmulx 63 D 

59 D 

59 D 

63 D 

63 D 

59 D 

fselx 1 63 D 

fsqrtx 1,2 63 D 
r-------r---------

fsqrtsx 1 ,2 59 D 

Note: 
1 Optional instruction 

2 32-bit instruction not implemented by the MPC750 

Table A-g. Floating-Point Multiply-Add Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fmaddx 63 D A B C 29 Rc 

fmaddsx 59 0 A B C 29 Rc 

fmsubx 63 D A B C 28 Rc 

fmsubsx 59 D A B C 28 Rc 

fnmaddx 63 D A B C 31 Rc 

fnmaddsx 59 D A B C 31 Rc 

fnmsubx 63 D A B C 30 Rc 

fnmsubsx 59 D A B C 30 Rc 
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Table A-10. Floating-Point Rounding and Conversion Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fcfidx 1 

fctidx 1 

fctidzx 1 

fctiwx 

fctiwzx 

frspx 

63 D 00000 B 846 Rc 

63 D 00000 B 814 Rc 

63 D 00000 B 815 Rc 

63 D 00000 B 14 Rc 

63 D 00000 B 15 Rc 

63 D 00000 B 12 Rc 

Note: 
1 64-bit instruction 

Table A-11. Floating-Point Compare Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fcmpO~ ___ 6_3 __ -r ____ -r~-r ________ -r ________ -r __________________ -r~ 
fcmpu. 63 

~ ____ ~ ____ ~~~ ______ ~ ________ -L ________________ ~= I 
crfD lii:.~1 A B 32 

1~1 crfD A B 0 

Table A-12. Floating-Point Status and Control Register Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

64 

583 

70 

38 

711 

134 
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Table A-13. Integer Load Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Ibz 34 D A d 

Ibzu 35 D A d 

Ibzux 31 D A B 119 0 

Ibzx 31 D A B 87 0 

Id 1 58 D A ds 0 

Idu 1 58 D A ds 1 

Idux 1 31 D A B 53 0 

Idx 1 31 D A B 21 0 

Iha 42 D A d 

Ihau 43 D A d 

Ihaux 31 D A B 375 0 

Ihax 31 D A B 343 0 

1hz 40 D A d 

Ihzu 41 D A d 

Ihzux 31 D A B 311 0 

Ihzx 31 D A B 279 0 

Iwa 1 58 D A ds 2 

Iwaux 1 31 D A B 373 [0 

Iwax 1 31 D A B 341 0 

Iwz 32 D A d 

Iwzu 33 D A d 

Iwzux 31 D A B 55 0 

Iwzx 31 D A B 23 0 

Note: ... 1 64-bit instruction 
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Table A-14. Integer Store Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

stb 

stbu 

stbux 

stbx 

std 1 

stdu 1 

stdux 1 

stdx 1 

sth 

sthu 

sthux 

sthx 

stw 

stwu 

stwux 

stwx 

38 S 

39 S 

31 S 

31 S 

62 s 
62 S 

31 S 

31 S 

44 s 
45 S 

31 S 

31 S 

36 S 

37 S 

31 S 

31 S 

Note: 
1 64-bit instruction 

A d 

A d 

A B 247 

A B 215 

A ds 

A ds 

A B 181 

A B 149 

A d 

A d 

A B 439 

A B 407 

A d 

A d 

A B 183 

A B 151 

Table A-15. Integer Load and Store with Byte Reverse Instructions 

0 
;;m 

11~1 
0 

1 
'1~~ 

'0 

,Q 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

Ihbrx 31 D A B 790 

Iwbrx 31 D A B 534 

sthbrx 31 S A B 918 

stwbrx 31 S A B 662 

Table A-16. Integer Load and Store Multiple Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

Imwl 46 DAd 
~mw~---4-7--~----S----~----A----~---------------d--------------~ 

Note: 
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Table A-17. Integer Load and Store String Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31 

Iswi 31 D A NB 597 

Iswx 31 D A B 533 

stswi 31 A NB 725 

stswx 31 s A B 661 

Table A-18. Memory Synchronization Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

elelo 31 854 

isync 19 150 

Idarx 1 31 D A B 84 

Iwarx 31 D A B 20 

stdcx.1 31 s A B 214 

stwcx. 31 s A B 150 

sync 31 598 

Note: 
1 64-bit instruction 

Table A-19. Floating-Point Load Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2425 26 27 28 29 30 31 

Ifd 50 0 A d 

Ifdu 51 D A d 

Ifdux 31 D A B 631 

Ifdx 31 D A B 599 

Ifs 48 D A d - Ifsu 49 D A d 

Ifsux 31 D A B 567 

Ifsx 31 D A B 535 
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Name 0 

stfd 

stfdu 

stfdux 

stfdx 

stfiwx 1 

stfs 

stfsu 

stfsux 

stfsx 

54 

55 

31 

31 

31 

52 

53 

31 

31 

Note: 

Table A-20. Floating-Point Store Instructions 

5 6 7 8 9 1011 12131415161718192021 22232425262728293031 

S A d 

S A d 

S A B 759 0 

S A B 727 0 

S A B 983 0 

S A d 

S A d 

S A B 695 0 

S A B 663 0 

1 Optional instruction 

Table A-21. Floating-Point Move Instructions 

Name 0 5 6 7 8 9 1011 12131415161718192021 22232425262728293031 

fabsx 63 D 00000 B 264 Rc 

fmrx 63 D •• 00000 B 72 Rc 

fnabsx 63 D ..... 00000 .... B 136 Rc 

fnegx 63 D ···00000 B 40 Rc 

Table A-22. Branch Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bx 18 LI AA LK 

bcx 16 BO BI BD AA LK 

bcctrx 19 BO BI ··00000 528 LK 

bclrx 19 BO BI 00000 16 LK 
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.. 

Table A-23. Condition Register Logical Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

erand 19 crbD crbA crbB 257 1# 
erande 19 crbD crbA crbB 129 0: 

ereqv 19 crbD crbA crbB 289 R 
ernand 19 crbD crbA crbB 225 § 

ernor 19 crbD crbA crbB 33 :0 
eror 19 crbD crbA crbB 449 p 

erore 19 crbD crbA crbB 417 •. ~ •.. 
erxor 19 crbD crbA crbB 193 18 
merf 19 crfD LPg crfS lot) 1 •• • .•• •0 9Qoo.:·· 1: •• • .• · •. ·i •• •.· .. p·.R9 0qqPopp..i:n) I·Q 

Table A-24. System Linkage Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rfi 1,2 19 

rfid 1,3 19 

se 17 

Notes: 
1 Supervisor-level instruction 

Name 0 

tw 

twi 

2 Optional 64-bit bridge instruction 
3 64-bit instruction 

Table A-25. Trap Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 TO A B I 68 Ip 
03 TO A SIMM 

31 TO A B I 4 .le 
03 TO A SIMM 

Note: 
1 64-bit instruction 
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Table A-26. Processor Control Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

merxr 

mfer 

mfmsr 1 

mfspr 2 

mftb 

mterf 

mtmsr 1,3 

mtmsrd 1,4 

mtspr 2 

31 crfS I a a 00000 

31 0 00000 

31 0 00000 

31 0 

31 0 

31 S oJ 
31 S 00000 

31 S 00000 

31 0 

Notes: 

1 Supervisor-level instruction 

2 Supervisor- and user-level instruction 

3 Optional 64-bit bridge instruction 

4 64-bit instruction 

00000 

00000 

00000 

spr 

tpr 

CRM 
1 0 

00000 

00000 

spr 

Table A-27. Cache Management Instructions 

512 a 
19 0 

83 0 

339 0 

371 a 
144 a 
146 a 
178 0 

467 a 
.. 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

deba 1,3 

debf 

debi 2 

debst 

debt 

debtst 

debz 

iebi 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

31 00000 A 8 

Notes: 
1 Optional instruction 

2 Supervisor-level instruction 

3 32-bit instruction not implemented by the MPC750 
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758 0 

86 a 
470 a 

I···· 

54 a 
278 a 
246 a 
1014 0 

982 18 

A-27 
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.. 

Table A-28. Segment Register Manipulation Instructions. 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mfsr 1,2 31 0 595 

mfsrin 1,2 31 0 659 

mtsr 1,2 31 S 210 

mtsrd 1,2 31 S 82 

mtsrdin 1,2 31 S 114 

mtsrin 1,2 31 S 242 

Notes: 
1 Supervisor-level instruction 

2 Optional 64-bit bridge instruction 

Table A-29. Lookaside Buffer Management Instructions 

Name 0 5 6 7 8 9 1011 121314151617 18 19 20 21 22232425262728293031 

slbia1,2,3 31 498 

slbie1,2,3 31 434 

tibia 1,2,4 31 370 

t1bie 1,2 31 306 

tlbsync1,2 31 566 

Notes: 

1 Supervisor-level instruction 

2 Optional instruction 

3 64-bit instruction 

4 32-bit instruction not implemented by the MPC750 

Table A-30. External Control Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eCiWX~ ___ 3_1 __ -1 __________ ~ ________ -1 __________ ~ ____________________ ~~ 
ecowx. 31 

0 A B 310 

1°1 S A B 438 i® 
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A.4 Instructions Sorted by Form 
Table A-31 through Table A-45 list the PowerPC instructions grouped by form. 

Key: 

IllillHiM Reserved bits 

Table A-31. I-Form 

opeD LI 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bxl 18 LI IAAILKI 

Table A-32. B-Form 

opeD BO BI BD IAAILKI 
Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcx~1 __ 1_6 __ L-__ BO __ ~ ____ BI __ -L __________ BD __________ ~IA_A~ILKI 

Table A-33. SC-Form 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

sc 

Table A-34. D-Form 

opeD D A d 

opeD D A SIMM 

opeD S A d 

opeD S A UIMM 

opeD crfD 11~JI L A SIMM 

opeD crfD lii!1 L A UIMM 

opeD TO A SIMM 
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Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31 

addl 14 D A SIMM 

addic 12 D A SIMM 

addic. 13 D A SIMM 

addis 15 D A SIMM 

andi. 28 S A UIMM 

andis. 29 S A UIMM 

cmpi 11 crfD 
, 

L A SIMM 

cmpli 10 crfD L A UIMM 

Ibz 34 D A d 

Ibzu 35 D A d 

Ifd 50 D A d 

Ifdu 51 D A d 

Ifs 48 D A d 

Ifsu 49 D A d 

Iha 42 D A d 

Ihau 43 D A d 

1hz 40 D A d 

Ihzu 41 D A d 

Imw 1 46 D A d 

Iwz 32 D A d 

Iwzu 33 D A d 

mulli 7 D A SIMM 

ori 24 S A UIMM 

oris 25 S A UIMM 

stb 38 S A d .. stbu 39 S A d 

stfd 54 S A d 

stfdu 55 S A d 

stfs 52 S A d 

stfsu 53 S A d 

sth 44 S A d 

sthu 45 S A d 

stmw 1 47 S A d 
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stw 

stwu 

subfic 

tdi 2 

twi 

xori 

xoris 

36 S A 

37 S A 

08 D A 

02 TO A 

03 TO A 

26 S A 

27 S A 

Note: 
1 Load/store string/multiple instruction 

2 64-bit instruction 

Table A-3S. OS-Form 

OPGD D A 

OPGD S A 

Specific Instructions 

d 

d 

SIMM 

SIMM 

SIMM 

UIMM 

UIMM 

ds 

ds 

Name a 5 6 7 8 9 10 11 12 1314151617181920 21 222324252627282930 31 

Id 1 

Idu 1 

Iwa 1 

std 1 

stdu 1 

58 D 

58 D 

58 D 

62 S 

62 S 

Note: 
1 64-bit instruction 

OPGD D 

OPGD D 

OPGD D 

OPGD D 

OPGD D 

OPGD S 

OPGD S 

OPGD S 

OPGD S 

OPGD S 

A 

A 

A 

A 

A 

Table A-36. X-Form 

A B 

A NB 

00000 B 

OOOOOT .00000 

01 SR 60000······ 

A B 

A B 

A B 

A NB 

A 00000 
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ds a 
ds 1 

ds 2 

ds a 

ds 1 

XO a 

XO 0 

XO 0 

XO a 
xo .0 

XO Rc 

XO 1 

XO a 
XO a 

XO Rc 
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opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD xo 
opeD XO 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

andx 31 S A 8 28 Rc 

andcx 31 S A 8 60 Rc 

cmp 31 crID L A B 0 

cmpl 31 crID L A B 32 

cntlzdx 1 31 58 

cntlzwx 31 26 

dcba 2,6 31 758 

dcbf 31 86 - dcbi 3 31 470 

dcbst 31 54 

dcbt 31 278 

dcbtst 31 246 

dcbz 31 1014 

eciwx 31 310 

ecowx 31 438 

eieio 31 854 
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eqvx 

extsbx 

extshx 

extswx 1 

fabsx 

fcfidx 1 

fcmpo 

fcmpu 

fctidx 1 

fctidzx 1 

fctiwx 

fctiwzx 

fmrx 

fnabsx 

fnegx 

frspx 

icbi 

Ibzux 

Ibzx 

Idarx 1 

Idux 1 

Idx 1 

Ifdux 

Ifdx 

Ifsux 

Ifsx 

Ihaux 

Ihax 

Ihbrx 

Ihzux 

Ihzx 

Iswi 4 

Iswx 4 

Iwarx 

Iwaux 1 

31 S A 

31 S A 

31 S A 

31 S A 

63 D 00000 

63 D 00000 

63 crlD 00 A 

63 crlD 00 A 

63 D 00000 

63 D 00000 

63 D 00000 

63 D 00000 

63 D 00000 

63 D 00000 

63 D 00000 

63 D 00000 

31 00000 A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 

31 D A 
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B 284 Rc 

00000 954 Rc 

00000 922 Rc 

00000 986 Rc 

B 264 Rc 

B 846 Rc 

B 32 a 
B a a 
B 814 Rc 

B 815 Rc 

B 14 Rc 

B 15 Rc 

B 72 Rc 

B 136 Rc 

B 40 Rc 

B 12 Rc 

B 982 a 
B 119 a 
B 87 a 
B 84 a 
B 53 a 
B 21 a 
B 631 a 
B 599 a 
B 567 a 
B 535 a 
B 375 g 
B 343 a 

I - I 
B 790 0 

B 311 a 
B 279 6 

NB 597 a 
B 533 a 
B 20 a 
B 373 a 
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.. 

Iwax 1 31 DAB 341 o 
Iwbrx 31 DAB 534 

Iwzux 31 DAB 55 10 
Iwzx 31 DAB 23 10 

mcris 10 
mcrxr 10 

mfcr 

Rc 

mHsbOx 

mHsb1x 

nandx Rc 

norx 31 S A B 124 Rc 

orx 31 S A B 444 Rc 

orcx 31 S A B 412 Rc 

S,bia1,2,3r-_3_1 __ .•• · •••••••• :fga!&g9 .. )i 498 10 
sible 1,2,3 31 ••.•...•• B 434 I? 

~~9---------r-----------------+4 
sldx 1 31 S A B 27 

A-34 

slwx 

sradx 1 

srawx 

Rc 

31 S A B 24 Rc 

31 S A B ~ Rc 

31 S A B 792 Rc 

srawlx 31 SASH 824 Rc 
r------r--------+--------+--------~----------------~~ 

srdx 1 31 S A B 539 Rc 

srwx 31 S A B 536 Rc 

stbux 31 S A B 247 

stbx 31 S A B 215 
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stdcx. 1 

stdux 1 

stdx 1 

stfdux 

stfdx 

stfiwx 2 

stfsux 

stfsx 

sthbrx 

sthux 

sthx 

stswi 4 

stswx 4 

stwbrx 

stwcx. 

stwux 

stwx 

sync 

td 1 

tibia 2,3,6 

tlbie 2,3 

tlbsync 2,3 

tw 

xorx 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A NB 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 S A B 

31 H,O().8;~i8r,:!i· ~ 
31 TO A 

31 ,m~i~IP!O qiiiit ,iii OOO,@'~! 
31 

'~ ':i:' 000:09,,:1 

31 Ii' ::. i.',09,qo'Qg~;:1\ 
31 TO A 

31 S A 

Notes: 
1 64-bit instruction 

2 Optional instruction 

3 Supervisor-level instruction 

4 Load/store string/multiple instruction 

5 Optional 64-bit bridge instruction 

B 

:;UiniolliA1't1!!l!i! ::",,:·'.',<i;:;IIT;:;;11,::; 
B 

,';: IO;qiO,O.i 
B 

B 

6 32-bit instruction not implemented by the MPC750 
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214 

181 0 

149 0 

759 

727 

983 

695 0 

663 0 

918 0 

439 0 

407 0 

725 D 

661 ~] 
662 ~\m!l 
150 1 

183 

151 9 
598 .0. 

68 0 

370 i,9 

306 

566 

4 ,6' 
316 Rc .,.. 
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Table A-37. XL-Form 

opeD xo 

opeD xo 

opeD xo 

opeD xo 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

19 BO BI 528 

bclrx 19 BO BI 16 

crand 19 crbD crbA crbB 257 

crandc 19 crbD crbA crbB 129 

creqv 19 crbD crbA crbB 289 

crnand 19 crbD crbA crbB 225 

crnor 19 crbD crbA crbB 33 

cror 19 crbD crbA crbB 449 

crorc 19 crbD crbA crbB 417 

crxor 19 crbD crbA crbB 193 

isync 19 150 

mcrf 19 0 

rfi 1,2 19 50 

rfid 1,3 19 18 

Notes: 
1 Supervisor-level instruction 

2 Optional 64-bit bridge instruction 

3 64-bit instruction 

Table A-3B. XFX-Form .. opeD D spr XO 

opeD D ~~ CRM II XO 
EIH 

opeD S spr XO 

opeD D tbr XO 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 192021 22 23 24 25 26 27 28 29 30 31 

mfspr 1 1L--_31_-'--_D_---L ____ sp_r __ ----l ____ 33_9 ___ WlliJIIII 
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mftb 31 D tbr 371 0 

mtcrf 31 S 01 CRM 
10 144 0 

mtspr 1 31 D spr 467 0 

Note: 

1 Supervisor- and user-level instruction 

Table A-39. XFL-Form 

opeD 
1 0 1 

FM 
1 0 1 

B xo IRcl 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

mtfsfxl 63 
1 0,1 

FM 
10 1 

B 711 IRcl 

Table A-40. XS-Form 

opeD S A sh xo IShlRcl 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

sradix 1 I 31 S A sh 413 

Note: 

1 64-bit instruction 

Table A-41. XO-Form 

opeD D A B PE xo Rc 

opeD D A B !\:) 
',00 

xo Rc 

opeD D A Ei1i\ia [\1 00 bE xo Rc 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

addx 31 D A 266 I -addcx 31 D A 10 I 
addex 31 D A 138 

addmex 31 D A 234 

addzex 31 D A 202 

divdx 1 31 D A 489 

divdux 1 31 D A 457 

divwx 31 D A 491 
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divwux 31 D A 459 

mUlhdx 1 31 D A 73 

mUlhdux 1 31 D A 9 

mulhwx 31 D A 75 

mulhwux 31 D A 11 

mUlldx 1 31 D A 233 

mullwx 31 D A 235 

negx 31 D A 104 

subfx 31 D A 40 

subfcx 31 D A 8 

subfex 31 D A 136 

subfmex 31 D A 232 

subfzex 31 D A 200 

Note: 
1 64-bit instruction 

Table A-42. A-Form 

opeD D 

opeD D 

opeD D 

opeD D 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

faddx 63 D A B 

faddsx 59 D A B 

fdivx 63 D A B 

fdivsx 59 D A B - 63 D A B 

59 D A B 

63 D A B 

59 D A B 

63 D A 

59 D A 

63 D A B 

59 D A B 
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fnmsubx 

fnmsubsx 

fresx 1 

frsqrtex 1 

fselx 1 

fsqrtx 1,2 

fsqrtsx 1,2 

fsubx 

fsubsx 

Name 

rlwimix 

rlwinmx 

rlwnmx 

63 D A B 

59 D A B 

59 D 00000 B 

63 D 00000 B 

63 D A B 

63 D 00000 B 

59 D 00000 B 

63 D A B 

59 D A B 

Note: 
1 Optional instruction 
2 32-bit instruction not implemented by the MPe750 

Table A-43. M-Form 

opeD S A SH 

opeD S A B 

Specific Instructions 

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

20 S A SH 

21 S A SH 

23 S A B 

Table A-44. MD-Form 

opeD S A sh 

opeD S A sh 

Specific Instructions 

e 30 Rc 

e 30 Rc 

00000 24 Rc 

00000 26 Rc 

e 23 Rc 

00000 22 Rc 

00000 22 Rc 

00000 20 Rc 

00000 20 Rc 

MB ME 

I::' MB ME 

22 23 24 25 26 27 28 29 30 31 

MB ME Rc 

MB ME Rc 

MB ME Rc 

mb xo 

me xo 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rldicx 1 

rldiclx 1 

rldicrx 1 

rldimix 1 

30 S 

30 S 

30 S 

30 S 

Note: 
1 64-bit instruction 

A 

A 

A 

A 
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sh 

sh 

sh 

sh 

mb 2 sh Rc 

mb 0 sh Rc 

me 1 sh Rc 

mb 3 sh Rc 
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Table A-45. MDS-Form 

OPCD s A B mb XO 

1::1 OPCD s A B me XO 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rldclx 11 30 S A B mb 8 

1::1 30 S A B me 9 rldcrx 1 

Note: 
1 64-bit instruction 

-
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A.5 Instruction Set Legend 
Table A-46 provides general information on the PowerPC instruction set (such as the 
architectural level, privilege level, and form). 

Table A-46. PowerPC Instruction Set Legend 

UISA VEA OEA 
Supervisor 54· Bit 54·Bit 

Optional Form Level Only Bridge 

add x .J XO 

addcx .J XO 

addex .J XO 

addi .J D 

addic .J D 

addic. .J D 

addis .J D 

addmex .J XO 

addzex .J XO 

andx .J X 

andcx .J X 

andi. .J D 

andis. .J D 

bx .J I 

bcx .J B 

bcctrx .J XL 

bclrx .J XL 
u 

cmp .J X 

cmpi .J D 

cmpl .J X 

cmpli .J D 

cntlzdx .J .J X 

cntlzwx .J X 

crand .J XL 

crandc .J XL 

creqv .J XL 

crnand .J XL 

crnor .J XL 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 64-Bit 64-Bit 

Optional Form 
Level Only Bridge 

eror .J XL 

erore .J XL 

erxor .J XL 

deba3 .J .J X 

debf .J X 

debi .J .J X 

debst .J X 

debt .J X 

debtst .J X 

debz .J X 

divdx .J .J XO 

divdux .J .J XO 

divwx .J XO 

divwux .J XO 

eeiwx .J .J X 

ecowx .J .J X 

eieio .J X 

eqvx .J X 

extsbx .J X 

extshx .J X 

extswx .J .J X 

fabsx .J X 

faddx .J A 

faddsx .J A .. fefidx .J .J X 

fempo .J X 

fempu .J X 

fetidx .J .J X 

fctidzx .J .J X 

fetiwx .J X 

fetiwzx .J .J X 

fdivx .J A 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 54-Bit 54-Bit 

Optional Form 
Level Only Bridge 

fdivsx ...j A 

fmaddx ...j A 

fmaddsx ...j A 

fmrx ...j X 

fmsubx ...j A 

fmsubsx ...j A 

fmulx ...j A 

fmulsx ...j A 

fnabsx ...j X 

fnegx ...j X 

fnmaddx ...j A 

fnmaddsx ...j A 

fnmsubx ...j A 

fnmsubsx ...j A 

fresx ...j ...j A 

frspx ...j X 

frsqrtex ...j ...j A 

fselx ...j ...j A 

fsqrtx 3 ...j ...j A 

fsqrtsx 3 ...j ...j A 

fsubx ...j A 

fsubsx ...j A 

icbi ...j X 

isync ...j XL I 

I 
Ibz ...j D -Ibzu ...j D I 

Ibzux ...j X 

Ibzx ...j X 

Id ...j ...j DS 

Idarx ...j ...j X 

Idu ...j ...j DS 

Idux ...j ...j X 
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Table A-46. Power PC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 64-Bit 64-Bit 

Optional Form 
Level Only Bridge 

Idx .,f .,f X 

Ifd .,f D 

Ifdu .,f D 

Ifdux .,f X 

Ifdx .,f X 

Ifs .,f D 

Ifsu .,f D 

Ifsux .,f X 

Ifsx .,f X 

Iha .,f D 

Ihau .,f D 

Ihaux .,f X 

Ihax .,f X 

Ihbrx .,f X 

1hz .,f D 

Ihzu .,f D 

Ihzux .,f X 

Ihzx .,f X 

Imw 2 .,f D 

Iswi 2 .,f X 

Iswx 2 .,f X 

Iwa .,f .,f DS 

Iwarx .,f X 

Iwaux .,f .,f X .. Iwax .,f .,f X 

Iwbrx .,f X 

Iwz .,f D 

Iwzu .,f D 

Iwzux .,f X 

Iwzx .,f X 

mcrf .,f XL 

mcrfs .,f X 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA Supervisor 64·Bit 64·Bit Optional Level Only Bridge 

mcrxr " 
mfcr " mffs " mfmsr " " 
mfspr 1 " " " 
mfsr 4 " " " " 
mfsrin 4 " " " " 
mftb " 
mtcrf " mtfsbOx " mtfsb1x " mtfsfx " mtfsfix " mtmsr 4 " " " " 
mtmsrd " " " 
mtspr 1 " " " 
mtsr 4 " " " " 
mtsrd 4 " " " " " 
mtsrdin 4 " " " " " 
mtsrin 4 " " " " 
mulhdx " " mulhdux " " mulhwx " 
mulhwux " mulldx " " mulli " 
mullwx " 
nandx " 
negx " 
norx " 
orx " 
orcx " 
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Form 

X 

X 

X 

X 

XFX 

X 

X 

XFX 

XFX 

X 

X 

XFL 

X 

X 

X 

XFX 

X 

X 

X 

X 

XO 

XO 

XO 

XO 

XO 

D 

XO 

X 

XO 

X 

X 

X 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 54·Bit 54-Bit 

Optional Form 
Level Only Bridge 

ori " D 

oris " D 

rfi 4 " " " " XL 

rfid " " " XL 

rldclx " " MDS 

rldcrx " " MDS 

rldicx " " MD 

rldiclx " " MD 

rldicrx " " MD 

rldimix " " MD 

rlwimix " M 

rlwinmx " M 

rlwnmx " M 

sc " " SC 

slbia " " " " X 

slbie " " " " X 

sldx " " X 

slwx " X 

sradx " " X 

sradix " " XS 

srawx " X 

srawix " X 

srdx " " X 

srwx " X .. stb " D 

stbu " D 

stbux " X 

stbx " X 

std " " DS 

stdcx. " " X 

stdu " " DS 

stdux " " X 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 54-Bit 54-Bit 

Optional 
Level Only Bridge 

stdx " " 
stfd " 
stfdu " 
stfdux " 
stfdx " 
stfiwx " " stfs " 
stfsu " 
stfsux " 
stfsx " 
sth " sthbrx " sthu " sthux " sthx " stmw 2 " stswi 2 " stswx 2 " stw " stwbrx " stwcx. " stwu " stwux " stwx " 
subfx " 
subfcx " 
subfex " 
subfic " subfmex " 
subfzex " sync " 
td " " 
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Form 

X 

D 

D 

X 

X 

X 

D 

D 

X 

X 

D 

X 

D 

X 

X 

D 

X 

X 

D 

X 

X 

D 

X 

X 

XO 

XO 

XO 

D 

XO 

XO 

X 

X 
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Table A-46. PowerPC Instruction Set Legend (Continued) 

UISA VEA OEA 
Supervisor 64·Bit 64-Bit 

Optional Form 
Level Only Bridge 

tdi " " D 

tlblail " " " X 

tlbiex " " " X 

tlbsync " " " X 

tw " X 

twl " D 

xorx " X 

xori " D 

xoris " D 

Notes: 

1 Supervisor- and user-level instruction 

2 Load/store string or multiple instruction 

3 32-bit instruction not implemented by the MPC750 

4 Instruction is optional for 64-bit implementations only 

-
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Appendix B 
Instructions Not Implemented 
This appendix provides a list of the 32-bit and 64-bit PowerPC instructions that are not 
implemented in the MPC750 microprocessor. Note that any attempt to execute instructions 
that are not implemented on the MPC750 will generate an illegal instruction exception. 
Note that exceptions are referred to as interrupts in the architecture specification. 

Table B-1 provides the 32-bit PowerPC instructions that are optional to the PowerPC 
architecture but not implemented by the MPC750. 

Table B-1. 32-Bit Instructions Not Implemented by the MPC750 Processor 

Mnemonic Instruction 

dcba Data Cache Block Allocate 

fsqrt Floating Square Root (Double-Precision) 

fsqrts Floating Square Root Single 

tibia TLB Invalidate All 

Table B-2 provides a list of 64-bit instructions that are not implemented by the MPC750. 

Table B-2. 64-Bit Instructions Not Implemented by the MPC750 Processor 

Mnemonic Instruction 

cntlzd Count Leading Zeros Double Word 

divd Divide Double Word 

divdu Divide Double Word Unsigned 

extsw Extend Sign Word 

fcfid Floating Convert From Integer Double Word 

fctid Floating Convert to Integer Double Word 

fctidz Floating Convert to Integer Double Word with Round toward Zero 

Id Load Double Word 

Idarx Load Double Word and Reserve Indexed 

Idu Load Double Word with Update 
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Table B-2. 64-Bit Instructions Not Implemented by the MPC750 Processor 

Mnemonic Instruction 

Idux Load Double Word with Update Indexed 

Idx Load Double Word Indexed 

Iwa Load Word Algebraic 

Iwaux Load Word Algebraic with Update Indexed 

Iwax Load Word Algebraic Indexed 

mtmsrd Move to Machine State Register Double Word 

mtsrd Move to Segment Register Double Word 

mtsrdin Move to Segment Register Double Word Indirect 

mulld Multiply Low Double Word 

mulhd Multiply High Double Word 

mulhdu Multiply High Double Word Unsigned 

rldcl Rotate Left Double Word then Clear Left 

rldcr Rotate Left Double Word then Clear Right 

rldic Rotate Left Double Word Immediate then Clear 

rldicl Rotate Left Double Word Immediate then Clear Left 

rldicr Rotate Left Double Word Immediate then Clear Right 

rldimi Rotate Left Double Word Immediate then Mask Insert 

slbia SLB Invalidate All 

slbie SLB Invalidate Entry 

sid Shift Left Double Word 

srad Shift Right Algebraic Double Word 

sradi Shift Right Algebraic Double Word Immediate 

srd Shift Right Double Word 

std Store Double Word 

stdcx. Store Double Word Conditional Indexed 

stdu Store Double Word with Update 

stdux Store Double Word Indexed with Update 

stdx Store Double Word Indexed 

td Trap Double Word 

tdi Trap Double Word Immediate 
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Glossary of Terms and Abbreviations 
The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this 
book. Some of the terms and definitions included in the glossary are reprinted from IEEE 
Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by 
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE. 

A Architecture. A detailed specification of requirements for a processor or 
computer system. It does not specify details of how the processor or 
computer system must be implemented; instead it provides a 
template for a family of compatible implementations. 

Asynchronous exception. Exceptions that are caused by events external to 
the processor's execution. In this document, the term 'asynchronous 
exception' is used interchangeably with the word interrupt. 

Atomic access. A bus access that attempts to be part of a read-write operation 
to the same address uninterrupted by any other access to that address 
(the term refers to the fact that the transactions are indivisible). The 
PowerPC architecture implements atomic accesses through the 
Iwarxlstwcx. instruction pair. 

B BAT (block address translation) mechanism. A software-controlled array 
that stores the available block address translations on-chip. 

Biased exponent. An exponent whose range of values is shifted by a constant 
(bias). Typically a bias is provided to allow arange of positive values 
to express a range that includes both positive and negative values. 

Big-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the most-significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with ° 
being the most-significant byte. See Little-endian. 

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte whose 
size, translation, and protection attributes are controlled by the BAT 
mechanism. 
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Boundedly undefined. A characteristic of certain operation results that are 
not rigidly prescribed by the PowerPC architecture. Boundedly
undefined results for a given operation may vary among 
implementations and between execution attempts in the same 
implementation. 

Although the architecture does not prescribe the exact behavior for 
when results are allowed to be boundedly undefined, the results of 
executing instructions in contexts where results are allowed to be 
boundedly undefined are constrained to ones that could have been 
achieved by executing an arbitrary sequence of defined instructions, 
in valid form, starting in the state the machine was in before 
attempting to execute the given instruction. 

Branch folding. The replacement with target instructions· of a branch 
instruction and any instructions along the not-taken path when a 
branch is either taken or predicted as taken. 

Branch prediction-The process of guessing whether a branch will be 
taken. Such predictions can be correct or incorrect; the term 
'predicted' as it is used here does not imply that the prediction is 
correct (successful). The PowerPC architecture defines a means for 
static branch prediction as part of the instruction encoding. 

Branch resolution-The determination of whether a branch is taken or not 
taken. A branch is said to be resolved when the processor can 
determine which instruction path to take. If the branch is resolved as 
predicted, the instructions following the predicted branch that may 
have been speculatively executed can complete (see completion). If 
the branch is not resolved as predicted, instructions on the 
mispredicted path, and any results of speculative execution, are 
purged from the pipeline and fetching continues from the 
nonpredicted path. 

Burst. A multiple-beat data transfer whose total size is typically equal to a 
cache block. 

Cache. High-speed memory contammg recently accessed data and/or 
instructions (subset of main memory). 
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Cache block. A small region of contiguous memory that is copied from 
memory into a cache. The size of a cache block may vary among 
processors; the maximum block size is one page. In PowerPC 
processors, cache coherency is maintained on a cache-block basis. 
Note that the term 'cache block' is often used interchangeably with 
'cache line'. 

Cache coherency. An attribute wherein an accurate and common view of 
memory is provided to all devices that share the same memory 
system. Caches are coherent if a processor performing a read from 
its cache is supplied with data corresponding to the most recent value 
written to memory or to another processor's cache. 

Cache flush. An operation that removes from a cache any data from a 
specified address range. This operation ensures that any modified 
data within the specified address range is written back to main 
memory. This operation is generated typically by a Data Cache 
Block Flush (dcbf) instruction. 

Caching-inhibited. A memory update policy in which the cache is bypassed 
and the load or store is performed to or from main memory. 

Cast-outs. Cache blocks that must be written to memory when a cache miss 
causes a cache block to be replaced. 

Changed bit. One of two page history bits found in each page table entry 
(PTE). The processor sets the changed bit if any store is performed 
into the page. See also Page access history bits and Referenced bit. 

Clear. To cause a bit or bit field to register a value of zero. See also Set. 

Completion-Completion occurs when an instruction has finished 
executing, written back any results, and is removed from the 
completion queue. When an instruction completes, it is guaranteed 
that this instruction and all previous instructions can cause no 
exceptions. 

Context synchronization. An operation that ensures that all instructions in 
execution complete past the point where they can produce an 
exception, that all instructions in execution complete in the context 
in which they began execution, and that all subsequent instructions 
arefetched and executed in the new context. Context synchronization 
may result from executing specific instructions (such as isync or rfi) 
or when certain events occur (such as an exception). 

Copy-back. An operation in which modified data in a cache block is copied 
back to memory. 
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D Denormalized number. A nonzero floating-point number whose exponent 
has a reserved value, usually the format's minimum, and whose 
explicit or implicit leading significand bit is zero. 

Direct-mapped cache. A cache in which each main memory address can 
appear in only one location within the cache, operates more quickly 
when the memory request is a cache hit. 

E Effective address (EA). The 32- or 64-bit address specified for a load, store, 

F 
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or an instruction fetch. This address is then submitted to the MMU 
for translation to either a physical memory address or an 110 address. 

Exception. A condition encountered by the processor that requires special, 
supervisor-level processing. 

Exception handler. A software routine that executes when an exception is 
taken. Normally, the exception handler corrects the condition that 
caused the exception, or performs some other meaningful task (that 
may include aborting the program that caused the exception). The 
address for each exception handler is identified by an exception 
vector offset defined by the architecture and a prefix selected via the 
MSR. 

Exclusive state. MEl state (E) in which only one caching device contains 
data that is also in system memory. 

Execution synchronization. A mechanism by which all instructions in 
execution are architecturally complete before beginning execution 
(appearing to begin execution) of the next instruction. Similar to 
context synchronization but doesn't force the contents of the 
instruction buffers to be deleted and refetched. 

Exponent. In the binary representation of a floating-point number, the 
exponent is the component that normally signifies the integer power 
to which the value two is raised in determining the value of the 
represented number. See also Biased exponent. 

Fall-through (branch fall-through)-A not-taken branch. On the MPC750, 
fall-through branch instructions are removed from the instruction 
stream at dispatch. That is, these instructions are allowed to fall 
through the instruction queue via the dispatch mechanism, without 
either being passed to an execution unit and or given a position in the 
completion queue. 
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Fetch. Retrieving instructions from either the cache or main memory and 
placing them into the instruction queue. 

Floating-point register (FPR). Any of the 32 registers in the floating-point 
register file. These registers provide the source operands and 
destination results for floating-point instructions. Load instructions 
move data from memory to FPRs and store instructions move data 
from FPRs to memory. The FPRs are 64 bits wide and store floating
point values in double-precision format 

Flush. An operation that causes a modified cache block to be invalidated and 
the data to be written to memory. 

Fraction. In the binary representation of a floating-point number, the field of 
the significand that lies to the right of its implied binary point. 

G General-purpose register (GPR). Any of the 32 registers in the general-
purpose register file. These registers provide the source operands and 
destination results for all integer data manipulation instructions. 
Integer load instructions move data from memory to GPRs and store 
instructions move data from GPRs to memory. 

Guarded. The guarded attribute pertains to out-of-order execution. When a 
page is designated as guarded, instructions and data cannot be 
accessed out-of-order. 

H Harvard architecture. An architectural model featuring separate caches for 
instruction and data. 

Hashing. An algorithm used in the page table search process. 

I IEEE 754. A standard written by the Institute of Electrical and Electronics 
Engineers that defines operations and representations of binary 
floating-point numbers. 

Illegal instructions. A class of instructions that are not implemented for a 
particular PowerPC processor. These include instructions not defined 
by the PowerPC architecture. In addition, for 32-bit 
implementations, instructions that are defined only for 64-bit 
implementations are considered to be illegal instructions. For 64-bit 
implementations instructions that are defined only for 32-bit 
implementations are considered to be illegal instructions. 
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Implementation. A particular processor that confonns to the PowerPC 
architecture, but may differ from other architecture-compliant 
implementations for example in design, feature set, and 
implementation of optional features. The PowerPC architecture has 
many different implementations. 

Imprecise exception. A type of synchronous exception that is allowed not to 
adhere to the precise exception model (see Precise exception). The 
PowerPC architecture allows only floating-point exceptions to be 
handled imprecisely. 

Instruction queue. A holding place for instructions fetched from the current 
instruction stream. 

Integer unit. A functional unit in the MPC750 responsible for executing 
integer instructions. 

In-order. An aspect of an operation that adheres to a sequential model. An 
operation is said to be perfonned in-order if, at the time that it is 
perfonned, it is known to be required by the sequential execution 
model. See Out-of-order. 

Instruction latency. The total number of clock cycles necessary to execute 
an instruction and make ready the results of that instruction. 

Interrupt. An asynchronous exception. On PowerPC processors, interrupts 
are a special case of exceptions. See also asynchronous exception. 

Invalid state. State of a cache entry that does not currently contain a valid 
copy of a cache block from memory. 

K Key bits. A set of key bits referred to as Ks and Kp in each segment register 
and each BAT register. The key bits detennine whether supervisor or 
user programs can access a page within that segment or block. 

Kill. An operation that causes a cache block to be invalidated. 

L L2 cache. See Secondary cache. 
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Least-significant bit (lsb). The bit of least value in an address, register, data 
element, or instruction encoding. 

Least-significant byte (LSB). The byte of least value in an address, register, 
data element, or instruction encoding. 
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Little-endian. A byte-ordering method in memory where the address n of a 
word corresponds to the least-significant byte. In an addressed 
memory word, the bytes are ordered (left to right) 3, 2, 1,0, with 3 
being the most-significant byte. See Big-endian. 

M MESI (modifiedlexclusivelsharedlinvalid). Cache coherency protocol used 

N 

to manage caches on different devices that share a memory system. 
Note that the PowerPC architecture does not specify the 
implementation of a MESI protocol to ensure cache coherency. 

Memory access ordering. The specific order in which the processor 
performs load and store memory accesses and the order in which 
those accesses complete. 

Memory-mapped accesses. Accesses whose addresses use the page or block 
address translation mechanisms provided by the MMU and that 
occur externally with the bus protocol defined for memory. 

Memory coherency. An aspect of caching in which it is ensured that an 
accurate view of memory is provided to all devices that share system 
memory. 

Memory consistency. Refers to agreement of levels of memory with respect 
to a single processor and system memory (for example, on-chip 
cache, secondary cache, and system memory). 

Memory management unit (MMU). The functional unit that is capable of 
translating an effective (logical) address to a physical address, 
providing protection mechanisms, and defining caching methods. 

Modified state. MEl state (M) in which one, and only one, caching device 
has the valid data for that address. The data at this address in external 
memory is not valid. See MESI. 

Most-significant bit (msh). The highest-order bit in an address, registers, 
data element, or instruction encoding. 

Most-significant byte (MSB). The highest-order byte in an address, 
registers, data element, or instruction encoding. 

NaN. An abbreviation for not a number; a symbolic entity encoded in 
floating-point format. There are two types of NaNs-signaling NaNs 
and quiet NaNs. 

No-op. No-operation. A single-cycle operation that does not affect registers 
or generate bus activity. 
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Normalization. A process by which a floating-point value is manipulated 
such that it can be represented in the format for the appropriate 
precision (single- or double-precision). For a floating-point value to 
be. representable in the single- or double-precision format, the 
leading implied bit must be a 1. 

o OEA (operating environment architecture). The level of the architecture 
that describes PowerPC memory management model, supervisor
level registers, synchronization requirements, and the exception 
model. It also defines the time-base feature from a supervisor-level 
perspective. Implementations that conform to the PowerPC DBA 
also conform to the PowerPC VISA and VBA. 

Optional. A feature, such as an instruction, a register, or an exception, that is 
defined by the PowerPC architecture but not required to be 
implemented. 

Out-of-order. An aspect of an operation that allows it to be performed ahead 
of one that may have preceded it in the sequential model, for 
example, speculative operations. An operation is said to be 
performed out-of-order if, at the time that it is performed, it is not 
known to be required by the sequential execution model. See 
In-order. 

Out-of-order execution. A technique that allows instructions to be issued 
and completed in an order that differs from their sequence in the 
instruction stream. 

Overflow. An condition that occurs during arithmetic operations when the 
result cannot be stored accurately in the destination register(s). For 
example, if two 32-bit numbers are multiplied, the result may not be 
representable in 32 bits. 

P Packet. A term used in the MPC750 with respect to direct-store operations. 
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Page. A region in memory. The DBA defines a page as a 4-Kbyte area of 
memory, aligned on a 4-Kbyte boundary. 

Page access history bits. The changed and referenced bits in the PTE keep 
track of the access history within the page. The referenced bit is set 
by the MMU whenever the page is accessed for a read or write 
operation. The changed bit is set when the page is stored into. See 
Changed bit and Referenced bit. 
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Page fault. A page fault is a condition that occurs when the processor 
attempts to access a memory location that does not reside within a 
page not currently resident in physical memory. On PowerPC 
processors, a page fault exception condition occurs when a 
matching, valid page table entry (PTE[V] = 1) cannot be located. 

Page table. A table in memory is comprised of page table entries, or PTEs. 
It is further organized into eight PTEs per PTEG (page table entry 
group). The number of PTEGs in the page table depends on the size 
of the page table (as specified in the SDRI register). 

Page table entry (PTE). Data structures containing information used to 
translate effective address to physical address on a 4-Kbyte page 
basis. A PTE consists of 8 bytes of information in a 32-bit processor 
and 16 bytes of information in a 64-bit processor. 

Physical memory. The actual memory that can be accessed through the 
system's memory bus. 

Pipelining. A technique that breaks operations, such as instruction 
processing or bus transactions, into smaller distinct stages or tenures 
(respectively) so that a subsequent operation can begin before the 
previous one has completed. 

Precise exceptions. A category of exception for which the pipeline can be 
stopped so instructions that preceded the faulting instruction can 
complete, and subsequent instructions can be flushed and 
redispatched after exception handling has completed. See Imprecise 
exceptions. 

Primary opcode. The most-significant 6 bits (bits 0-5) of the instruction 
encoding that identifies the type of instruction. See Secondary 
opcode. 

Protection boundary. A boundary between protection domains. 

Protection domain. A protection domain is a segment, a virtual page, a BAT 
area, or a range of unmapped effective addresses. It is defined only 
when the appropriate relocate bit in the MSR (IR or DR) is 1. 

Quiesce. To come to rest. The processor is said to quiesce when an exception 
is taken or a sync instruction is executed. The instruction stream is 
stopped at the decode stage and executing instructions are allowed to 
complete to create a controlled context for instructions that may be 
affected by out-of-order, parallel execution. See Context 
synchronization. 
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Quiet NaN. A type of NaN that can propagate through most arithmetic 
operations without signaling exceptions. A quiet NaN is used to 
represent the results of certain invalid operations, such as invalid 
arithmetic operations on infinities or on NaNs, when invalid. See 
Signaling NaN. 

R rA. The rA instruction field is used to specify a GPR to be used as a source 
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or destination. 

rB. The rB instruction field is used to specify a GPR to be used as a source. 

rD. The rD instruction field is used to specify a GPR to be used as a 
destination. 

rS. The rS instruction field is used to specify a GPR to be used as a source. 

Real address mode. An MMU mode when no address translation is 
performed and the effective address specified is the same as the 
physical address. The processor's MMU is operating in real address 
mode if its ability to perform address translation has been disabled 
through the MSR registers IR and/or DR bits. 

Record bit. Bit 31 (or the Rc bit) in the instruction encoding. When it is set, 
updates the condition register (CR) to reflect the result of the 
operation. 

Referenced bit. One of two page history bits found in each page table entry 
(PTE). The processor sets the referenced bit whenever the page is 
accessed for a read or write. See also Page access history bits. 

Register indirect addressing. A form of addressing that specifies one GPR 
that contains the address for the load or store. 

Register indirect with immediate index addressing. A form of addressing 
that specifies an immediate value to be added to the contents of a 
specified GPR to form the target address for the load or store. 

Register indirect with index addressing. A form of addressing that specifies 
that the contents of two GPRs be added together to yield the target 
address for the load or store. 

Reservation. The processor establishes a reservation on a cache block of 
memory space when it executes an lwarx instruction to read a 
memory semaphore into a GPR. 
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RIse (reduced instruction set computing). An architecture characterized 
by fixed-length instructions with nonoverlapping functionality and 
by a separate set of load and store instructions that perform memory 
accesses. 

S Secondary cache. A cache memory that is typically larger and has a longer 
access time than the primary cache. A secondary cache may be 
shared by multiple devices. Also referred to as L2, or level-2, cache. 

Set (v). To write a nonzero value to a bit or bit field; the opposite of clear. The 
term 'set' may also be used to generally describe the updating of a 
bit or bit field. 

Set (n). A subdivision of a cache. Cacheable data can be stored in a given 
location in anyone of the sets, typically corresponding to its lower
order address bits. Because several memory locations can map to the 
same location, cached data is typically placed in the set whose cache 
block corresponding to that address was used least recently. See Set
associative. 

Set-associative. Aspect of cache organization in which the cache space is 
divided into sections, called sets. The cache controller associates a 
particular main memory address with the contents of a particular set, 
or region, within the cache. 

Signaling NaN. A type of NaN that generates an invalid operation program 
exception when it is specified as arithmetic operands. See Quiet 
NaN. 

Significand. The component of a binary floating-point number that consists 
of an explicit or implicit leading bit to the left of its implied binary 
point and a fraction field to the right. 

Simplified mnemonics. Assembler mnemonics that represent a more 
complex form of a common operation. 

Slave. The device addressed by a master device. The slave is identified in the 
address tenure and is responsible for supplying or latching the 
requested data for the master during the data tenure. 

Snooping. Monitoring addresses driven by a bus master to detect the need for 
coherency actions. 

Snoop push. Write-backs due to a snoop hit. The block will transition to an 
invalid or exclusive state. 

Glossary of Terms and Abbreviations Glossary-11 

I - I 



Split-transaction. A transaction with independent request and response 
tenures. 

Split-transaction bus. A bus that allows address and data transactions from 
different processors to occur independently. 

Static branch prediction. Mechanism by which software (for example, 
compilers) can hint to the machine hardware about the direction a 
branch is likely to take. 

Superscalar machine. A machine that can issue multiple instructions 
concurrently from a conventional linear instruction stream. 

Supervisor mode. The privileged operation state of a processor. In 
supervisor mode, software, typically the operating system, can 
access all control registers and can access the supervisor memory 
space, among other privileged operations. 

Synchronization. A process to ensure that operations occur strictly in order. 
See Context synchronization and Execution synchronization. 

Synchronous exception. An exception that is generated by the execution of 
a particular instruction or instruction sequence. There are two types 
of synchronous exceptions, precise and imprecise. 

System memory. The physical memory available to a processor. 

T Tenure. A tenure consists of three phases: arbitration, transfer, termination. 
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There can be separate address bus tenures and data bus tenures. 

TLB (translation lookaside buffer) A cache that holds recently-used page 
table entries. 

Throughput. The measure of the number of instructions that are processed 
per clock cycle. 

Transaction. A complete exchange between two bus devices. A transaction 
is minimally comprised of an address tenure; one or more data 
tenures may be involved in the exchange. 

Transfer termination. Signal that refers to both signals that acknowledge the 
transfer of individual beats (of both single-beat transfer and 
individual beats of a burst transfer) and to signals that mark the end 
of the tenure. 
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U UISA (user instruction set architecture). The level of the architecture to 
which user-level software should conform. The UISA defines the 
base user-level instruction set, user-level registers, data types, 
floating-point memory conventions and exception model as seen by 
user programs, and the memory and programming models. 

Underflow. A condition that occurs during arithmetic operations when the 
result cannot be represented accurately in the destination register. 
For example, underflow can happen if two floating-point fractions 
are multiplied and the result requires a smaller exponent and/or 
mantissa than the single-precision format can provide. In other 
words, the result is too small to be represented accurately. 

User mode. The operating state of a processor used typically by application 
software. In user mode, software can access only certain control 
registers and can access only user memory space. No privileged 
operations can be performed. Also referred to as problem state. 

V VEA (virtual environment architecture). The level of the architecture that 
describes the memory model for an environment in which multiple 
devices can access memory, defines aspects of the cache model, 
defines cache control instructions, and defines the time-base facility 
from a user-level perspective. Implementations that conform to the 
PowerPC VEA also adhere to the UISA, but may not necessarily 
adhere to the OEA. 

Virtual address. An intermediate address used in the translation of an 
effective address to a physical address. 

Virtual memory. The address space created using the memory management 
facilities of the processor. Program access to virtual memory is 
possible only when it coincides with physical memory. 

W Word. A 32-bit data element. 

Write-back. A cache memory update policy in which processor write cycles 
are directly written only to the cache. External memory is updated 
only indirectly, for example, when a modified cache block is cast out 
to make room for newer data. 

Write-through. A cache memory update policy in which all processor write 
cycles are written to both the cache and memory. 
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A 
AACK (address acknowledge) signal, 7-14 
ABB (address bus busy) signal, 7-5, 8-8 
Address bus 

address tenure, 8-7 
address transfer 

An, 7-7 
APE,8-13 
APn, 7-7 

address transfer attribute 
Cr,7-12 
GBL,7-13 
TBST, 7-12, 8-14 
TSrZn, 7-11, 8-13 
TTn, 7-8, 8-13 
WT,7-13 

address transfer start (TS), 7-6, 8-12 
address transfer tennination 

AACK,7-14 
ARTRY, 7-14 
terminating address transfer, 8-17 

arbitration signals, 7-4, 8-8 
bus parking, 8-11 

Address translation, see Memory management unit 
Addressing modes, 2-35 
Aligned data transfer, 8-15, 8-17 
Alignment 

data transfers, 8-15 
exception, 4-18 
misaligned accesses, 2-29 
rules, 2-29 

An (address bus) signals, 7-7 
APE (address parity error) signal, 8-13 
APn (address parity) signals, 7-7 
Arbitration, system bus, 8-10, 8-19 
Arithmetic instructions 

floating-point, A-20 
integer, A-17 

ARTRY (address retry) signal, 7-14 

B 
BG (bus grant) signal, 7-4, 8-8 
Block address translation 

block address translation flow, 5-12 
definition, 1-12 

Index 

INDEX 

registers 
description, 2-5 
initialization, 5-21 

selection of block address translation, 5-9 
Boundedly undefined, definition, 2-33 
BR (bus request) signal, 7-4, 8-8 
Branch fall-through, 6-18 
Branch folding, 6-18 
Branch instructions 

address calculation, 2-53 
condition register logical, 2-54, A-26 
description, A -25 
list of instructions, 2-54, A-25 
system linkage, 2-55, 2-65, A-26 
trap, 2-55, A-26 

Branch prediction, 6-1, 6-22 
Branch processing unit 

branch instruction timing, 6-23 
execution timing, 6-18 
latency, branch instructions, 6-31 
overview, 1-9 

Branch resolution 
definition, 6-1 
resource requirements, 6-30 

BTIC (branch target instruction cache), 6-9 
Burst data transfers 

64-bit data bus, 8-15 
transfers with data delays, timing, 8-32 

Bus arbitration, see Data bus 
Bus configurations, 8-34 
Bus interface unit (BIU), 3-2, 3-30 
Bus transactions and LI cache, 3-22 
Byte ordering, 2-35 

c 
Cache 

bus interface unit, 3-2, 3-30 
cache arbitration, 6-11 
cache block, definition, 3-3 
cache characteristics, 3-1 
cache coherency 

description, 3-5 
overview, 3-25 
reaction to bus operations, 3-26 

cache control, 3-13 
I 

III 
Index-1 
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cache control instructions 
bus operations, 3-24 
cache control, 3-13 
dcbi,2-66 
debt, 2-63 

cache hit, 6-11 
cache integration, 3-2 
cache management instructions, A-27 
cache miss, 6-14 
cache operations 

cache block push operations, 9-4 
data cache transactions, 3-22 
instruction cache block fill, 3-21 
load/store operations, processor initiated, 3-10 
operations, 3-18 
overview, 3-1, 8-2 
snoop response to bus transactions, 3-26 

cache unit overview, 3-3 
cache-inhibited accesses (I bit), 3-6 
data cache configuration, 3-3 
dcbf/dcbst execution, 9-4 
icbi,9-4 
instruction cache configuration, 3-4 
instruction cache throttling, 10-10 
L1 cache and bus transactions, 3-22 
L2 interface 

cache configuration, 9-2 
cache global invalidation, 9-7 
cache initialization, 9-6 
cache testing, 9-8 
clock configuration, 9-9 
dcbi,9-4 
eieio,9-4 
L2 cache considerations, 6-15 
L2 cache interface signals, 7-25 
operation, 9-2 
overview, 9-1 
SRAM timing examples, 9-9 
stwcx. execution, 9-4 
sync, 9-4 

load/store operations, processor initiated, 3-10 
PLRU replacement, 3-19 
stwcx. execution, 9-4 

Changed (C) bit maintenance recording, 5-12, 5-23 
Checkstop 

signal, 7-22, 8-35 
state, 4-16 

CI (cache inhibit) signal, 7-12 

INDEX 

Clock signals 
PLL_CFGn, 7-30 
SYSCLK,7-29 

Compare instructions 
floating-point, A-21 
integer, A-18 

Completion 
completion unit resource requirements, 6-30 
considerations, 6-16 
definition, 6-1 

Context synchronization, 2-36 
Conventions, xxxiii, xxxvii, 6-1 
COP/scan interface, 8-37 
Copy-back mode, 6-27 
CR (condition register) 

CR logical instructions, 2-54, A-26 
CR, description, 2-3 

CTR register, 2-4 

D 
DABR (data address breakpoint register), 2-7 
DAR (data address register), 2-6 
Data bus 

arbitration signals, 7-15, 8-8 
bus arbitration, 8-19 
data tenure, 8-7 
data transfer, 7-17, 8-21 
data transfer termination, 7-19, 8-22 

Data cache 
block push operation, 3-22 
configuration, 3-3 
DCFI, DCE, DLOCK bits, 3-13 
organization, 3-4 

Data organization in memory, 2-28 
Data transfers 

alignment, 8-15 
burst ordering, 8-15 
eciwx and ecowx instructions, alignment, 8-17 
operand conventions, 2-28 
signals, 8-21 

DBB (data bus busy) signal, 7-16, 8-8, 8-20 
DBDIS (data bus disable) signal, 7-19 
DBG (data bus grant) signal, 7-15, 8-8 
DBWO (data bus write only) signal, 7-16, 8-8, 

8-21,8-37 
dcbi,2-66 
dcbt, 2-63 

CKSTP _IN/CKSTP _OUT (checkstop input/output) DEC (decrementerregister), 2-7 
Decrementer exception, 4-19 
Defined instruction class, 2-33 
DHnlDLn (data bus) signals, 7-17 
Dispatch 

signals, 7-22 
Classes of instructions, 2-32 
Clean block operation, 3-26 
CLK_OUT signal, 7-29 

Index-2 

consideration&, 6-16 
dispatch unit resource requirements, 6-30 
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DPIl (data bus parity) signals, 7-18 
DRTRY (data retry) signal, 7-20, 8-22, 8-25 
DSI exception, 4-17 
DSISR register, 2-6 
DTLB organization, 5-25 
Dynamic branch prediction, 6-9 

E 
EAR (external access register), 2-7 
Effective address calculation 

address translation, 5-4 
branches, 2-35 
loads and stores, 2-35, 2-46, 2-51 

eieio, 2-62 
EMI protocol, enforcing memory coherency, 8-26 
Enveloped high-priority cache block 

push operation, 3-22 
Error termination, 8-26 
Event 

counting, 11-11 
selection, 11-12 

Exceptions 
alignment exception, 4-18 
decrementer exception, 4-19 
definitions, 4-12 
DSI exception, 4-17 
enabling and disabling exceptions, 4-10 
exception classes, 4-2 
exception prefix (IP) bit, 4-13 
exception priorities, 4-4 
exception processing, 4-7, 4-10 
external interrupt, 4-17 
FP assist exception, 4-20 
FP unavailable exception, 4-19 
instruction-related exceptions, 2-37 
lSI exception, 4-17 
machine check exception, 4-14 
performance monitor interrupt, 4-20 
program exception, 4-18 
register settings 

MSR, 4-8, 4-12 
SRRO/SRRl,4-7 

reset exception, 4-13 
returning from an exception handler, 4-11 
summary table, 4-3 
system call exception, 4-19 
system management interrupt, 4-22 
terminology, 4-2 
thermal management interrupt exception, 4-24 

Execution synchronization, 2-36 
Execution unit timing examples, 6-18 
Execution units, 1-10 
External control instructions, 2-64, 8-17, A-28 

Index 

INDEX 

F 
Features, list, 1-4 
Finish cycle, definition, 6-2 
Floating-point model 

FEO/FEl bits, 4-10 
FP arithmetic instructions, 2-42, A-20 
FP assist exceptions, 4-20 
FP compare instructions, 2-43, A-21 
FP load instructions, A-24 
FP move instructions, A-25 
FP multiply-add instructions, 2-42, A-20 
FP operand, 2-30 
FP rounding/conversion instructions, 2-43, A-21 
FP store instructions, 2-52, A-25 
FP unavailable exception, 4-19 
FPSCR instructions, 2-44, A-21 
IEEE-754 compatibility, 2-28 
NI bit in FPSCR, 2-30 

Floating-point unit 
execution timing, 6-24 
latency, FP instructions, 6-34 
overview, 1-10, 1-11 

Flush block operation, 3-26 
FPRn (floating-point registers), 2-3 
FPSCR (floating-point status and control register) 

FPSCR instructions, 2-44, A-21 
FPSCR register description, 2-3 
NI bit, 2-29 

G 
GBL (global) signal, 7-13 
GPRIl (general-purpose registers), 2-3 
Guarded memory bit (G bit), 3-6 

H 
HIDIl (hardware implementation-dependent) registers 

HIDO 
description, 2-9 
doze bit, 10-3 
DPM enable bit, 10-2 
nap bit, 10-4 

HIDl 
description, 2-13 
PLL configuration, 2-13, 7-30 

HRESET (hard reset) signal, 7-23, 8-35 

IABR (instruction address breakpoint register), 2-8 
ICTC (instruction cache throttling control) 

register, 2-21, 10-11 
IEEE ll49.1-compliant interface, 8-37 
Illegal instruction class, 2-33 

Index-3 
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Instruction cache 
configuration, 3-4 
instruction cache block fill operations, 3-21 
organization, 3-5 

Instruction cache throttling, 10-10 
Instruction timing 

examples 
cache hit, 6-12 
cache miss, 6-15 

execution unit, 6-18 
instruction flow, 6-8 
memory performance considerations, 6-27 
overview, 6-3 
terminology, 6-1 

Instructions 
branch address calculation, 2-53 
branch instructions, 6-9, 6-18, 6-20, A-25 
cache control instructions, 9-4 
cache management instructions, A-27 
classes, 2-32 
condition register logical, 2-54, A-26 
defined instructions, 2-33 
external control instructions, 2-64, A-28 
floating-point 

arithmetic, 2-42, A-20 
compare, 2-43, A-21 
FP load instructions, A-24 
FP move instructions, A-25 
FP rounding and conversion, 2-43, A-21 
FP status and control register, 2-44 
FP store instructions, A-25 
FPSCR instructions, A-21 
multiply-add, 2-42, A-20 

illegal instructions, 2-33 
instruction cache throttling, 10-10 
instruction flow diagram, 6-10 
instruction serialization, 6-17 
instruction serialization types, 6-17 
instruction set summary, 2-31 
instructions not implemented, B-1 
integer 

arithmetic, 2-38, A-17 
compare, 2-39, A-18 
load, A-22 
load/store multiple, A-23 
load/store string, A-24 
load/store with byte reverse, A-23 
logical, 2-40, A-18 
rotate and shift, 2-40, A-19 
store, A-23 

integer instructions, 6-33 
isync, 4-12 
latency summary, 6-31 

Index-4 

INDEX 

load and store 
address generation 

floating-point, 2-51 
integer, 2-46 

byte reverse instructions, 2-49, A-23 
floating-point load, A-24 
floating-point move, 2-44, A-25 
floating-point store, 2-51 
handling misalignment, 2-45 
integer load, 2-46, A-22 
integer multiple, 2-49 
integer store, 2-47, A-23 
memory synchronization, 2-59, 2-61, A-24 
multiple instructions, A-23 
string instructions, 2-50, A-24 

lookaside buffer management instructions, A-28 
memory control instructions, 2-62, 2-66 
memory synchronization instructions, 2-59, 

2-61, A-24 
PowerPC instructions, list, A-I, A-9, A-17 
processor control instructions, 2-56, 2-60, 2-65, 

A-27 
reserved instructions, 2-34 
rfi,4-11 
segment register manipulation instructions, A-28 
SLB management instructions, A-28 
stwcx" 4-12 
support for lwarx/stwcx" 8-36 
sync, 4-12 
system linkage instructions, 2-55, A-26 
TLB management instructions, A-28 
tlbie, 2-67 
tlbsync, 2-67 
trap instructions, 2-55, A-26 

INT (interrupt) signal, 7-21, 8-35 
Integer arithmetic instructions, 2-38, A-17 
Integer compare instructions, 2-39, A-18 
Integer load instructions, 2-46, A-22 
Integer logical instructions, 2-40, A-18 
Integer rotate/shift instructions, 2-40, A-19 
Integer store gathering, 6-26 
Integer store instructions, 2-47, A-23 
Integer unit execution timing, 6-24 
Interrupt, external, 4-17 
lSI exception, 4-17 
isync, 2-62, 4-12 
ITLB organization, 5-25 

K 
Kill block operation, 3-26 
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L 
LlIL2 interface operation, see Cache 
L2ADDRn (L2 address) signals, 7-25 
L2CE (L2 chip enable) signals, 7-26 
L2CLK_OUTA (L2 clock out A) signal, 7-27 
L2CLK_OUTB (L2 clock out B) signal, 7-27 
L2CR (L2 cache control register), 2-24, 9-4 
L2DAT An (L2 data) signals, 7-25 
L2DPn (L2 data parity) signals, 7-26 
L2SYNC IN (L2 sync in) signal, 7-28 
L2SYNC_OUT (L2 sync out) signal, 7-27 
L2WE (L2 write enable) signal, 7-27 
L2ZZ (L210w-power mode enable) signal, 7-28 
Latency, 8-21 
Latency 

definition, 6-2 
load/store instructions, 6-36 

Load/store 
address generation, 2-46 
byte reverse instructions, 2-49, A-23 
execution timing, 6-25 
floating-point load instructions, 2-51, A-24 
floating-point move instructions, 2-44, A-25 
floating-point store instructions, 2-52, A-25 
handling misalignment, 2-45 
integer load instructions, 2-46, A-22 
integer store instructions, 2-47, A-23 
latency, load/store instructions, 6-36 
load/store multiple instructions, 2-49, A-23 
memory synchronization instructions, A-24 
string instructions, 2-50, A-24 

Logical address translation, 5-1 
Logical instructions, integer, A-18 
Lookaside buffer management instructions, A-28 
LR (link register), 2-4 
lwarx/stwcx. support, 8-36 

M 
Machine check exception, 4-14 
MCP (machine check interrupt) signal, 7-21 
MEl protocol 

hardware considerations, 3-9 
read operations, 3-23 
state transitions, 3-32 

Memory accesses, 8-4 
Memory coherency bit (M bit) 

cache interactions, 3-6 
timing considerations, 6-27 

Memory control instructions 
description, 2-62, 2-66 
segment register manipulation, A-28 
SLB management, A-28 

Index 

INDEX 

Memory management unit 
address translation flow, 5-12 
address translation mechanisms, 5-9, 5-12 
block address translation, 5-9, 5-12, 5-21 
block diagrams 

32-bit implementations, 5-6 
DMMU, 5-8 
IMMU, 5-7 

exceptions summary, 5-16 
features summary, 5-3 
implementation-specific features, 5-2 
instructions and registers, 5-18 
memory protection, 5-11 
overview, 1-12,5-2 
page address translation, 5-9, 5-12, 5-28 
page history status, 5-12, 5-21-5-25 
real addressing mode, 5-12, 5-20 
segment model, 5-21 

Memory synchronization instructions, 2-59, 2-61 
A-24 ' 

Misalignment 
misaligned accesses, 2-29 
misaligned data transfer, 8-17 

MMCRn (monitor mode control registers), 2-14, 
4-20,11-3 

MSR (machine state register) 
bit settings, 4-8 
FEOIFEI bits, 4-10 
IP bit, 4-13 
PM bit, 2-4 
RI bit, 4-11 
settings due to exception, 4-12 

Multiple-precision shifts, 2-41 
Multiply-add instructions, A-20 

N 
No-DRTRY mode, 8-34 

o 
OEA 

exception mechanism, 4-1 
memory management specifications, 5-1 
registers, 2-4 

Operand conventions, 2-28 
Operand placement and performance, 6-25 
Operating environment architecture (OEA), xxviii 

1-21 ' 
Operations 

bus operations caused by cache control 
instructions, 3-24 

cache operations, 3-1 
data cache block push, 3-22 
enveloped high-priority cache block push, 3-22 
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instruction cache block fill, 3-21 
read operation, 3-23 
response to snooped bus transactions, 3-26 
single-beat write operations, 8-29 

Optional instructions, A-41 
Overview, 1-1 

p 
Page address translation 

definition, 1-12 
page address translation flow, 5-28 
page size, 5-21 
selection of page address translation, 5-9, 5-16 
TLB organization, 5-26 

Page history status 
cases of dcbt and dcbtst misses, 5-22 
Rand C bit recording, 5-12, 5-21-5-25 

Page table updates, 5-34 
Performance monitor 

event counting, 11-11 
event selecting, 11-12 
performance monitor interrupt, 4-20,11-2 
performance monitor SPRs, 11-3 
purposes, 11-1 
registers, 11-3 
warnings, 11-12 

Phase-locked loop, 10-3 
Physical addre"s generation, 5-1 
Pipeline 

instruction timing, definition, 6-2 
pipeline stages, 6-7 
pipelined execution unit, 6-4 
superscalar/pipeline diagram, 6-5 

PMC! and PMC2 registers, 1-26 
PMCn (performance monitor counter) 

registers, 2-16, 4-20, 11-6 
Power and ground signals, 7-30 
Power management 

doze mode, 10-3 
doze, nap, sleep, DPM bits, 2-13 
dynamic power management, 10-1 
full-power mode, 10-2 
nap mode, 10-3 
programmable power modes, 10-2 
sleep mode, 10-4 
software considerations, 10-5 

PowerPC architecture 
instruction list, A-I, A-9, A-17 
operating environment architecture (OEA), xxviii, 

1-21 
user instruction set architecture (UISA), xxviii, 

1-21 
virtual environment architecture (YEA), xxviii, 

1-21 

Index-6 

Priorities, exception, 4-4 
Process switching, 4-12 
Processor control instructions, 2-56, 2-60, 2-65, A-27 
Program exception, 4-18 
Program order, definition, 6-2 
Programmable power states 

doze mode, 10-3 
full-power mode with DPM enabled/disabled, 10-2 
nap mode, 10-3 
sleep mode, 10-4 

Protection of memory areas 
no-execute protection, 5-14 
options available, 5-11 
protection violations, 5-16 

PVR (processor version register), 2-5 

Q 
QACK (quiescent acknowledge) signal, 7-24 
QREQ (quiescent request) signal, 7-24, 8-35 
Qualified bus grant, 8-8 
Qualified data bus grant, 8-20 

R 
Read operation, 3-26 
Read-atomic operation, 3-26 
Read-with-intent-to-modify operation, 3-26 
Real address (RA), see Physical address generation 
Real addressing mode (translation disabled) 

data accesses, 5-12, 5-20 
instruction accesses, 5-12, 5-20 
support for real addressing mode, 5-2 

Referenced (R) bit maintenance recording, 5-12, 
5-22,5-31 

Registers 
implementation-specific 

ICTC, 2-21,10-11 
L2CR, 2-24, 9-4 
MMCRO, 2-14, 4-20,11-3 
MMCR!, 2-16, 4-20,11-5 
SIA, 2-20, 4-21 
THRMn, 2-21, 10-7 
UMMCRO, 2-15 
UMMCR!,2-16 
UPMCn,2-20 
USIA, 2-20 

MPC750 programming model, 2-2 
performance monitor registers, 2-14 
reset settings, 2-27 
SPR encodings, 2-58 
supervisor-level 

BAT registers, 2-5 
DABR,2-7 
DAR, 2-6 
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DEC, 2-7 
DSISR,2-6 
EAR,2-7 
HIDO, 2-9, 10-2 
HIDl,2-13 
IABR,2-8 
ICTC, 2-21,10-11 
L2CR, 2-24, 9-4 
MMCRO, 2-14,4-20,11-3 
MMCRl, 2-16, 4-20,11-5 
MSR,2-4 
PMCl and PMC2, 1-26 
PMCn, 2-16, 4-20 
PVR,2-5 
SDRl,2-5 
SIA, 2-20, 4-21, 11-10 
SPRGn, 2-6 
SPRs for performance monitor, 11-1 
SRn, 2-5 
SRRO/SRRl, 2-6 
THRMn, 2-21, 10-7 
time base (TB), 2-6 

user-level 
CR,2-3 
CTR,2-4 
FPRn,2-3 
FPSCR,2-3 
GPRn, 2-3 
LR,2-4 
time base (TB), 2-4, 2-6 
UMMCRO,2-15 
UMMCRl,2-16 
UPMCn,2-20 
USIA, 2-20,11-10 
XER,2-3 

Rename buffer, definition, 6-2 
Rename register operation, 6-17 
Reservation station, definition, 6-2 
Reserved instruction class, 2-34 
Reset 

HRESET signal, 7-23, 8-35 
reset exception, 4-13 
SRESET signal, 7-23, 8-35 

Retirement, definition, 6-2 
rfi,4-11 
Rotate/shift instructions, 2-40, A-19 
RSRV (reserve) signal, 7-24, 8-36 

s 
SDRI register, 2-5 
Segment registers 

SR description, 2-5 
SR manipulation instructions, 2-67, A-28 

Index 

INDEX 

Segmented memory model, see Memory management 
unit 

Serializing instructions, 6-17 
Shift/rotate instructions, 2-40, A-19 
SIA (sampled instruction address) register, 2-20, 4-

21,11-10 
Signals 

AACK,7-14 
ABB, 7-5, 8-8 
address arbitration, 7-4, 8-8 
address transfer, 8-12 
address transfer attribute, 8-13 
AII,7-7 
APn, 7-7 
ARTRY, 7-14, 8-22 
BG, 7-4, 8-8 
BR, 7-4, 8-8 
checks top, 8-35 
0,7-12 
CKSTP _IN,7-22 
CKSTP _OUT,7-22 
CLK_OUT, 7-29 
configuration, 7-3 
COP/scan interface, 8-37 
data arbitration, 8-8, 8-19 
data transfer termination, 8-22 
DBB, 7-16, 8-8, 8-20 
DBDIS, 7-19 
DBG, 7-15, 8-8 
DBWO, 7-16, 8-8, 8-21, 8-37 
DHnIDLn, 7-17 
DPn, 7-18 
DRTRY, 7-20, 8-22, 8-25 
GBL,7-13 
HRESET, 7-23 
INT, 7-21, 8-35 
L2 cache interface signals, 7-25 
L2ADDRn, 7-25 
L2CE,7-26 
L2CLK_OUTA,7-27 
L2CLK_OUTB, 7~27 
L2DATAn,7-25 
L2DP, 7-26 
L2SYNCIN, 7-28 
L2SYNC_OUT, 7-27 
L2WE,7-27 
L2ZZ, 7-28 
MCP, 7-21 
PLL_CFGn, 7-30 
power and ground signals, 7-30 
QACK,7-24 
QREQ, 7-24, 8-35 
reset, 8-35 
RSRV, 7-24, 8-36 
SMI, 4-23, 7-21 
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SRESET, 7-23, 8-35 
system quiesce control, 8-35 
TA,7-19 
TBEN,7-24 
TBST, 7-12, 8-14, 8-21 
'rEA, 7-20, 8-22, 8-26 
TLBISYNC, 7-25 
transfer encoding, 7-9 
TS,7-6 
TSlZn, 7-11, 8-13 
TIn, 7-8, 8-13 
WT,7-13 

Single-beat transfer 
reads with data delays, timing, 8-30 
reads, timing, 8-28 
termination, 8-22 
writes, timing, 8-29 

SLB management instructions, A-28 
SM! (system management interrupt) signal, 4-23, 7-21 
Snooping, 3-25 
Split-bus transaction, 8-9 
SPRGn registers, 2-6 
SRESET (soft reset) signal, 7-23, 8-35 
SRRO/SRRI (status save/restore registers) 

description, 2-6 
exception processing, 4-7 

Stage, definition, 6-2 
Stall, definition, 6-3 
Static branch prediction, 6-9, 6-22 
stwcx., 4-12 
Superscalar, definition, 6-3 
sync, 4-12 
SYNC operation, 3-26 
Synchronization 

context/execution synchronization, 2-36 
execution of rfi, 4-11 
memory synchronization instructions, 2-59, 

2-61, A-24 
SYSCLK (system clock) signal, 7-29 
System call exception, 4-19 
System linkage instructions, 2-55, 2-65, A-26 
System management interrupt, 4-22, 10-1 
System quiesce control signals (QACKlQREQ), 8-35 
System register unit 

T 

execution timing, 6-27 
latency, CR logical instructions, 6-32 
latency, system register instructions, 6-31 

TA (transfer acknowledge) signal, 7-19 
Table search flow (primary and secondary), 5-31 
TBEN (time base enable) signal, 7-24 
TBLITBU (time base lower/upper) registers, 2-4, 2-6 
TBST (transfer burst) signal, 7-12, 8-14, 8-21 

Index-S 

TEA (transfer error acknowledge) signal, 7-20,8-26 
Termination, 8-17, 8-22 
Thermal assist unit (TAU), 10-6 
Thermal management interrupt exception, 4-24 
THRMn (thermal management) registers, 2-21, 10-7 
Throughput, definition, 6-3 
Timing considerations, 6-7 
Timing diagrams, interface 

address transfer signals, 8-12 
burst transfers with data delays, 8-32 
L2 cache SRAM timing, 9-9 
single-beat reads, 8-28 
single-beat reads with data delays, 8-30 
single-beat writes, 8-29 
single-beat writes with data delays, 8-31 
use of TEA, 8-33 
using DBWO, 8-37 

Timing, instruction 
BPU execution timing, 6-18 
branch timing example, 6-23 
cache hit, 6-12 
cache miss, 6-15 
execution unit, 6-18 
FPU execution timing, 6-24 
instruction dispatch, 6-16 
instruction flow, 6-8 
instruction scheduling guidelines, 6-29 
IU execution timing, 6-24 
latency summary, 6-31 
load/store unit execution timing, 6-25 
overview, 6-3 
SRU execution timing, 6-27 
stage, definition, 6-2 

TLB 
description, 5-25 
invalidate (tlbie instruction), 5-27, 5-34 
LRU replacement, 5-27 
organization for ITLB and DTLB, 5-25 
TLB miss and table search operation, 5-26, 5-30 

TLB invalidate 
description, 5-27 
TLB management instructions, 2-67, A-28 

TLB miss, effect, 6-28 
tlbie,2-67 
TLBISYNC (TLBI sync) signal, 7-25 
tlbsync, 2-67 
Transactions, data cache, 3-22 
Transfer, 8-12, 8-21 
Trap instructions, 2-55 
TS (transfer start) signal, 7-6, 8-12 
TSIZn (transfer size) signals, 7-11,8-13 
TIn (transfer type) signals, 7-8,8-13 
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U 
UMMCRO (user monitor mode control 

register 0), 2-15, 11-5 
UMMCRI (user monitor mode control 

register 1), 2-16, 11-6 
UPMCn (user performance monitor 

counter) registers, 2-20, 11-10 
Use of TEA, timing, 8-33 
User instruction set architecture (UISA) 

description, xxviii, 1-21 
registers, 2-3 

USIA (user sampled instruction address) 
register, 2-20, 11-10 

Using DBWO, timing, 8-37 

v 

INDEX 

Virtual environment architecture (VEA), xxviii, 1-21 

W 
WIMG bits, 8-26 
Write-back, definition, 6-3 
Write-through mode (W bit) cache interactions, 3-6 
Write-with-atomic operation, 3-26 
Write-with-flush operation, 3-26 
Write-with-kill operation, 3-26 
WT (write-through) signal, 7-13 

X 
XER register, 2-3 
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FAI ......................... (205)837-8209 
Future Electronics ..•........• (205)83Cl-2322 
HamiltonlHalimark ......•.... (205)837-8700 
Newark ..................... (205)837-9091 
Wyle Electronics ...•...•..... (205)83Cl-1119 

ARIZONA 
Phoenix 

FAt ......................... (602)731-4661 
Future Electronics ......•...•. (602)968-7140 
HamillDnlHalimark •••.••..... (602)736-7000 
Wyle Electronics ............. (602)804-7000 

Tempe 
Arrow/SchweberElectronics ... (602)431-ll03O 
Newark ..................... (602)966-8340 
PENSTOCK .........•....... (602)967-1620 

CALIFORNIA 
Agoura Hills 

Future Electronics ............ (818)865-ll040 
Calabassas 

Arrow/Schweber Electronics ... (818)88Cl-9686 
Wyle Electronics ..•••........ (818)880-8000 

Culver City 
HamillDnlHalimark ........... (310)553-2000 

Garden Grove 
Newark ..................... (714)893-4909 

Irvine 
Arrow/Schweber Electronics ..• (714)587-ll404 
FAI ......................... (714)753-4778 
Future Electronics ...•.•...... (714)453-1515 
Hamilton/Hallmark ........... (714)789-4100 
Wyle Laboratories Corporate .. (714)753-9953 
Wyle Electronics ............. (714)789-9953 

Los Angeles 
FAI ......................... (818)879-1234 

Manhattan Beach 
PENSTOCK ....•...•.•...... (310)546-8953 

Newberry Park 
PENSTOCK •................ (805)375-8680 

Palo Alto 
Newark ..................... (415)812-6300 

Rancho Cordova 
Wyle Electronics ............. (916)638-5282 

Riverside 
Newark ..................... (909)98Cl-2105 

Rocklin 
HamiltOn/Hallmark ...•....... (916)632-4500 

Sacramento 
FAI ......................... (916)782-7882 
Newark ..................... (916)565--1760 

San Diego 
Arrow/SchweberElectronics ... (619)565-4800 
FAI ......................... (619)623-2888 
Future Electronics ............ (619)625--2800 
HamillDn/Halimark ........... (619)571-7540 
Newark ..................... (619)453-8211 
PENSTOCK ..•.............. (619)623--9100 
Wyle Electronics ............. (619)558-6600 

San Jose 
Arrow/SchweberElectronics ... (408)441-9700 
Arrow/Schweber Electronics ... (408)428-6400 
FAI ......................... (408)434-ll369 
Future Electronics ............ (408)434-1122 

Santa Clara 
Wyle Electronics ............. (408)727-2500 

Santa Fe Springs 
Newark ................ , .... (310)929-9722 

Sierra Madre 
PENSTOCK ................. (818)355-8775 

SunnY."ale 
Hamilton/Hallmark ........... (408)435--3600 
PENSTOCK ................. (408)73Cl-0300 

Thousand Oaks 
Newark ..................... (805)449-1480 

Woodland Hills 
Hamilton/Hallmark ......•.••. (818)594-ll404 

COLORADO 
Lakewood 

FAI ......................... (303)237-1400 
Future Electronics ..•.•....... (303)232-2008 

Denver 
Newark .. .. .. .. .. .. .. .. .. ... (303)373-4540 

Englewood 
Arrow/Schweber Electronics •.. (303)789...jJ258 
HamillDnlHalimark ........... (303)79Cl-1662 
PENSTOCK ..............••. (303)799-7845 

Thornton 
Wyle Electronics •...........• (303)457-9953 

CONNECTICUT 
Bloomfield 

Newark ........... " ........ (203)243-1731 
Cheshire 

FAI ......................... (203)250-1319 
Future Electronics ............ (203)25Q...jJ083 
Hamilton/Hallmark .•......... (203)271-5700 

Wallingford 
Arrow/Schweber Electronics ... (203)265--7741 
Wyle Electronics ............. (203)269-8077 

FLORIDA 
Altamonte Springs 

Future Electronics .•........•. (407)865--7900 
Clearwater 

FAI ......................... (813)53Cl-1665 
Future Electronics ............ (813)53Cl-1222 

Deerfield Beach 
Arrow/Schweber Electronics ... (305)429-8200 
Wyle Electronics ......•...••. (305)43Cl-0500 

Ft. Lauderdale 
FAI ......................... (305)428-9494 
Future Electronics ............ (305)436-4043 
Hamilton/Hallmark ........... (954)677-3500 
Newark ..................... (305)486-1151 

Lake Mary 
Arrow/Schweber Electronics ... (407)333-9300 

Largo!TampaiSt. Petersburg 
HamillDn/Halimark ........... (813)507-5000 
Newark ..................... (813)287-1578 
Wyla Electronics ........•.... (813)376-3004 

Maitland 
Wyle Electronics ............. (407)740-7450 

Orlando 
FAI ......................... (407)865--9555 
Newark ........... , ..... '''' (407)895-8350 

Tallahassee 
FAI ......................... (904)666-7772 

Tampa 
Newark ..................... (813)287-1578 
PENSTOCK .•............... (813)247-7558 

Winter Park 
Hamilton/Hallmark ........... (407)657-3300 
PENSTOCK ................. (407)672-1114 

GEORGIA 
Atlanta 

FAI ......................... (404)447-4767 
Duluth 

Arrow/SchweberElectronics ... (404)497-1300 
Hamilton/Hallmark ........... (770)623-4400 

Norcross 
Future Electronics .........•.. (770)441-7676 
Newark ..................... (770)446-1300 
PENSTOCK ................. (770)734-9990 
Wyle Electronics ............. (770)441-8045 

IDAHO 
Boise 

FAI ......................... (208)376-8080 
Newark ..................... (208)342-4311 

ILLINOIS 
Addison 

Wyle Laboratories ......•..... (708)62Q...jJ969 
Arlington Heights 

HamiltonlHalimark •........•• (847)797-7300 
Chicago 

FAI ......................... (708)843-ll034 
Newark Electronics Corp .•• 1-800-4NEWARK 

Hoffman Estates 
Future Electronics ............ (708)882-1255 

Itasca 
Arrow/Schweber Electronics ..• (708)25Q...jJ500 

Palatine 
PENSTOCK ................. (708)934-3700 

Schaumburg 
Newark ..................... (708)310-8980 

INDIANA 
Indianapolis 

Arrow/Schweller Electronics ... (317)299-2071 
HamiltonlHalimark ........•.. (317)575--3500 
FAI ......................... (317)469...jJ441 
Future Electronics ............ (317)469...jJ447 
Newark ..................... (317)259...jJ085 

Ft. Wayne 
Newark ..................... (219)484-ll766 
PENSTOCK •...•............ (219)432-1277 

IOWA 
Cedar Rapids 

Newark ..................... (319)393-3800 
KANSAS 

Kansas City 
FAI ......................... (913)381-8800 

Lenexa 
ArrowlSchweber Electronics .... (913)541-8542 

Olathe 
PENSTOCK .........•...•... (913)829-9330 

Overland Park 
Future Electronics ............ (913)649-1531 
HamillDnlHalimark .......•... (913)663-7900 
Newark ..................... (913)677-ll727 

MARYLAND 
Baltimore 

FAI ......................... (410)312-ll833 
Columbia 

Arrow/Schweber Electronics ... (301 )596-7800 
Future Electronics ..........•. (410)29Q...jJ600 
HamiltonIHalimark .....•..... (410)720-3400 
PENSTOCK .............•... (410)290-3746 
Wyle Electronics ............. (410)312-4844 

Hanover 
Newark ..................... (410)712-8922 

MASSACHUSETIS 
Bedford 

Wyle Electronics ............. (617)271-8953 
Boston 

Arrow/Schwaber Electronics ... (508)658-ll900 
FAI ......................... (508)779-3111 
Newark .................. 1-800-4NEWARK 

Bolton 
Future Corporate ............. (508)779-3000 

Burlington 
PENSTOCK ................. (617)229--9100 

Peabody 
HamillDnlHalimark ........... (508)532-3701 

Woburn 
Newark ...................•. (617)935--8350 

continued on next page 

For changes to this information contact Technical Publications at FAX (602) 244-6560 
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AUTHORIZED DISTRIBUTORS - continued 
UNITED STATES - continued 

MICHIGAN 
Detroit 

FAt .••...•••................ (313)513-0015 
Future Etectronics ............ (616)698-6800 

Grand Rapids 
Newark ..................... (616)954-£700 

Livonia 
Arrow/Schweber Electronics ... (810)455-ll85O 
Future Electronics ...........• (313)261-5270 
HamiltonlHalimark ........... (313)416-5800 

Troy 
Newark •...•............•... (810)583-2899 

MINNESOTA 
Bloomington 

Wyle Electronics .............. (612)853-2280 
Burnsville 

PENSTOCK •••............... (612)882-7630 
Eden Prairie 

Arrow/Schwaber Electronics ... (612)941-5280 
FAt .....••.........••....... (612)947-0009 
Future Electronics ............ (612)944-2200 
Hamilton/Hallmark ..•......•• (612)881-2600 

Minneapolis 
Newark •....•....•.......... (612)331-15350 

MISSOURI 
Earth City 

Hamilton/Hallmark ........... (314)291-5350 
St. Louis 

Arrow/Schweber Electronics ... (314)567~88 
Future Etectronics ............ (314)46~05 
FAI ......................... (314)542-9922 
Newark •...•••.............. (314)453-9400 

NEW JERSEY 
Bridgewater 

PENSTOCK ................. (908)575-9490 
East Brunswick 

Newark ..................... (908)937~0 
Fairfield 

FAt ...•............•........ (201)331-1133 
Marlton 

Arrow/Schweber Electronics ... (609)596-8000 
FAt ................... , ..... (609)986-1500 
Future Electronics ............ (609)596-4080 

Mt. Laurel 
Hamilton/Hallmark ........... (609)222~00 
Wyle Electronics ............. (609)439-9110 

Oradell 
Wyle Electronics ............. (201)261--3200 

Pinebrook 
Arrow/SchweberElectronics ... (201)227-7880 
Wyle Electronics ............. (201 )882-8358 

Parsippany 
Future Electronics ............ (201 )29~400 
HamiltonlHallmark ........... (201)515-1641 

NEW MEXICO 
Albuquerque 

Hamilton/Hallmark ........... (505)293-5119 
Newark ...•..•.............. (505)826-1878 

NEW YORK 
Bohemia 

Newark .•.......•........... (516)567-4200 
Hauppauge 

Arrow/Schweber Electronics ... (516)231-1000 
FAI ......................... (516)346-3700 
Future Electronics ............ (516)234-4000 
Hamilton/Hallmark ........... (516)434-7400 
Newark. . . . • . . . . . . . . . . . .. 1-M0-4NEWARK 
PENSTOCK ......... '" ..... (516)724-9580 
Wyle Electronics ............. (516)231-7850 

Henrietta 
Wyle Electronics ............. (716)334-5970 

Konkoma 
Hamilton/Hallmark •.••......• (516)737-<1600 

Pittsford 
Newark .•.•...••.......•.••. (716)381-4244 

Rochester 
Arrow/Schweber Electronics • •. (716)427-<1300 
Future Electronics ............ (716)387-9550 
FAI ..••••.......•.......•••. (716)387-9600 
Hamilton/Hallmark ...•.....•. (716)272-2740 

S~~~~.~~ ....••.............• (315)451-4405 
Future Electronics ...•.•..•. " (315)451-2371 
Newark ..........•.......... (315)457-4873 

NORTH CAROLINA 
Charlotte 

FAt .....•................. " (704)548-9503 
Future Electronics .•.......... (704)547-1107 
Newark .•.•••......••.•.•. " (704)535-5850 

Morrisville 
Wyle Electronics •.•.......••. (919)469-1502 

Raleigh 
Arrow/Schweber Electronics ..• (919)876-3132 
FAI .........•.............•. (919)876-<1068 
Future Electronics .•.......... (919)790-7111 
Hamilton/Hallmark •.........• (919)872-<1712 
Newark. • . . . • • . . . . . . • . • .. 1-800-4NEWARK 

OHIO 
Centerville 

Arrow/Schweber Etectronics ... (513)435-5563 
Cleveland 

FAI •....................•... (216)446-<1061 
Newark .••.•................ (216)391-9330 

Columbus 
Newark .•...•............... (614)326-<1352 

Dayton 
FAt .•.....................•. (513)427-M90 
Future Etectronics .••......... (513)426-<1090 
Hamilton/Hallmark •..•....•.. (513)439-6735 
Newark •...•....••.•••...... (513)294-£980 

Mayfield Heights 
Future Electronics •..•...... " (216)449-6996 

Miamisburg 
Wyle Electronics " ..•..•... " (937)436-9953 

Solon 
Arrow/Schweber Electronics ... (216)248-3990 
Hamilton/Hallmark ........... (216)498-1100 
Wyle Electronics ........... " (216)248-9996 

Worthington 
Hamilton/Hallmark ..•........ (614)886-3313 

OKLAHOMA 
Tulsa 

FAI .............•........... (918)492-1500 
HamiltOn/Hallmark .....•..... (918)459-6000 
Newark •.•...............•.. (918)252-5070 

OREGON 
Beaverton 

Arrow/Almac Electronics Corp .• (503)629-M90 
Future Electronics ....•.•..... (503)645-9454 
Hamilton/Hallmark ........... (503)526-6200 

Portland 
FAI ......................... (503)297-5020 
Newark .•.•............... " (503)297-1984 
PENSTOCK ................. (503)646-1670 
Wyle Electronics ..........•.. (503)598-9953 

PENNSYLVANIA 
Coatesville 

PENSTOCK .•.•............• (610)383-9536 
Ft. Washington 

Newark .........•........•.. (215)654-1434 
Pittsbursh 

Arrow/Schweber Electronics . .. (412)963-8807 
Newark .•.••.••..•..•...•.•. (412)788-4790 

TENNESSEE 
Knoxville 

Newark . . . . . • . . . . • . . . . . . . . •. (615)588-6493 

TEXAS 
Austin 

Arrow/Schweber Electronics ..• (512)835-4180 
Future Electronics ...•.•.....• (512)502-<1991 
FAt •.••.••..•...•.•..••.•.•. (512)~26 
HamiitonIHailmark •....•••••• (512)219-3700 
Newark . . • • . . . . . . . . . • • . . . . .• (972)456-2528 
PENSTOCK .••.••••....•••.• (512)948-9762 
Wyle Electronics .•.••.•....• , (512)833-9953 

Benbrook 
PENSTOCK ••••.....•.....•. (817)24~442 

Carollton 
Arrow/Schweber Electronics ... (214)38Q-6464 

Dallas 
FAI •••••••••.••.....•.•••... (214)231-7195 
Future Electronics .......•.... (214)437-2437 
Hamilton/Hallmark ••••..••••• (214)553-4300 
Newark .•..................• (214)456-2528 

EIPaso 
FAt •...••••.•••.•.••••..•••• (915)5n-9531 
Newark ••••••••••.....•••... (915)n2-6367 

Ft. Worth 
Allied Electronics •••.•...•••.• (817)336-5401 

Houston 
Arrow/Schweber Electronics .•. (713)647-6888 
FAt •....•......•....••....•• (713)952-7088 
Future Electronics •...••...•.• (713)785-1155 
Hamilton/Hallmark .........•. (713)781-6100 
Newark ••••..•••••....•.•... (713)894-9334 
Wyle Electronics •.•.••..•...• (713)784-9953 

Richardson 
PENSTOCK •••...........•.. (214)479-9215 
Wyle Electronics ••.........•. (214)235-9953 

San Antonio 
FAt •..••••.•••••..•....••... (210)738-3330 
Newark •••••••.•.•.•...••.•. (210)734-7960 

UTAH 
Draper 

Wyle Electronics •••....•...•. (801 )523-2335 
Salt Lake City 

Arrow/SchweberElectronics •.. (801)973-6913 
FAt ....••••..••••.•.•.••••.. (801 )467-9696 
Future Electronics .••....•.... (801)467-4448 
Hamilton/Hallmark •.•.•...... (801)266-2022 
Newark ..•••.•.•.•..•......• (801)261-5660 

West Valley City 
Wyle Electronics •.....•.•.... (801)974-9953 

WASHINGTON 
Bellevue 

Almac Electronics Corp. . .•... (206)643-9992 
PENSTOCK •.•.•...•.......• (206)454-2371 

Bothell 
Future Electronics .•.......•.. (206)489-3400 

Kirkland 
Newark •....•.•.....•....... (206)814-6230 

Redmond 
HamiltOn/Hallmark .•...•.•... (206)882-7000 
Wyle Electronics .•..........• (206)881-1150 

Seattle 
FAI .•.•...•...••..........•. (206)485-6616 

WISCONSIN 
Brookfield 

Arrow/Schweber Electronics •.• (414)792-<1150 
Future Electronics ..•......... (414)879-<1244 
Wyle Electronics .•.••........ (414)87~434 

Madison 
Newark .•.•••••.•........... (608)27B-<lln 

Milwaukee 
FAt ••••...•...•.•.•.•.•..... (414)792-9778 

New Berlin 
HamiitonIHailmark ........... (414)78D-7200 

Wauwatosa 
Newark ...•.•.•.•.•...•..•.. (414)453-9100 

For changes to this information contact Technical Publications at FAX (602) 244-6560 
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AUTHORIZED DISTRIBUTORS - continued 

CANADA 
ALBERTA 

c;1~~~ ...................... (403)291-5333 
Future Electronics ••••••••.••• (403)250-5550 
HamiitonIHallmark •••••.••••. (800)663-5500 

Edmonton 
FAI ......................... (403)438-5888 
Future Electronics. • • • • • • • • • •• (403)438-2858 
HamiltonIHallmark ••••••••••• (800)663-5500 

Saskatchewan 
HamiltonIHallmark ••.•.••••.• (800)663-5500 

BRITISH COLUMBIA 
Vancouver 

Arrow Electronics •••...••••.• (604)421-2333 
FAI ......................... (604)654-1050 
Future Electronics •••••••••••• (604)294-1166 
HamiitonIHailmark ........... (804)420-4101 

MANITOBA 
Winnipeg 

FAI ••••••••••••..••••.•••.•• (204)786-3075 
Future Electronics •••••••••••• (204)944-1446 
Hamilton/Hallmark •..•..•..•. (800)663-5500 

ONTARIO 
Kanata 

PENSTOCK ••.••.••••••••••• (613)592-6089 
London 

Newark ..................... (519)685-4280 
Mlsslssauga 

PENSTOCK •.••••...••.•.••• (905)403-0724 
Newark .. .. .. .. .. .. .. .. .. ... (905)670-2898 

Ottawa 
Arrow Electronics ............ (613)~903 
FAI . • • • • • • • • . • • . • • . • • . • • . . •• (613)82O-l1244 
Future Electronics •••••....••. (613)727-1800 
HamiitonlHa1lmark ........... (613)226-1700 

Toronto 
Arrow Electronics ••••••••.••• (905)67G-n69 
FAI ......................... (905)61:Hl898 
Future Electronics ••.•••.••.•• (905)61:Hl200 
HamntonlHallmark .•••.•.•.•. (905)564-6060 
Newark .. .. • .. • .. .. .. .. .. ... (905)67G-2898 

QUEBEC 
Montreal 

Arrow Electronics ............ (514)421-7411 
FAI ......................... (514)694-8157 
Future Electronics ••.••••.•.•. (514)894-n10 
HamiitonIHallmark ••.•••.•••• (514)335-1000 

Mt.Royal 
Newark ..................... (514)73B-4488 

QuebecCily 
Arrow Electronics ............ (418)687-4231 
FAI ......................... (418)89~n5 
Future Electronics ............ (418)8n-a&66 

INTERNATIONAL DISTRIBUTORS 

AUSTRALIA 
AVNETVSI E1OC1111nICl(Aulq .... (61)2987B-1299 
Veltek Australia Ply Ltd ..... (61)3 9574-ll300 

AUSTRIA 
EBV Elektronik .............. (43) 1 8941n4 
SEVElbatex GmbH ••••.••••.•. (43) 1 866420 
Spoerle Electronic •..•••••.•• (43) 1 31872700 

BELGIUM 
Spoerle Electronic. • • . • • . . • •. (32) 2725 4660 
EBV Elektronik ............. (32) 2716 0010 
SEVRodeico B. V. ........... (32) 2460 0560 

BULGARIA 
Macro Group ................. (359) 2708140 

CZECH REPUBLIC 
Spoerle Electronic. • • • • • • • •• •• (420) 2 731355 
SEVElbatex ................ (420) 2 4763707 
Macro Group ............... (420) 23412182 

CHINA 
Advanced Electronics Ltd. • •• (852)2 30~3 
AVNET WKKCClmponants Ud. ... (852)2357-8888 
Dlina aApp. Corp. XiaMan Co .• (86)10 681B-975O 
Nanco Eleclronics SI.!'PiY Ltd .• (852) 2 765-3025 
........................ or (852) 2333-5121 

Cing Cheng Enterprises Ltd .•. (852) 2 493-4202 
DENMARK 

Arrow Exatee ............... (45) 44 927000 
Avnet Nortee AlS •••••••••••• (45) 44 880800 
EBV Elektronik •.••••••.••.••• (45) 39690511 

ESTONIA 
Arrow Field Eesti .............. (372) 6503288 
Avnet Baltronic •..••..•.•••••. (372) 6397000 

FINLAND 
Arrow Field OY .............. (358)97 n5 71 
Avnet Nortec OY •••••••••••••. (358)9613181 
EBV Elektronik ••.•••••••••.• (358)9855n30 

FRANCE 
Arrow Electronique •• • • • . •• (33) 1 49 78 49 78 
Avnet Components •• . • • . •• (33) 1 49 65 25 00 
EBV Eleklronik ........... (33) 1 64 68 86 00 
Future Electronics •.•.•....•.• (33)169821111 
Newark .................... (33)1-30954060 
SEVScaib .... .. .. .. .. .... (33) 1 69 19 89 00 

GERMANY 
Avnet E2000 ............... (49) 89 4511001 
EBV Elektronik GmbH ....... (49) 89 99114-0 
Future Electronics GmbH •••• (49) 89-957 270 
SEVJerrnyn GmbH ••••••••.• (49) 8431-5080 
Newark .................... (49)2154-70011 
Sasco Semiconductor ••••••••. (49) 89-046110 
Spoerle Electronic.. • . • . • . .• (49) 6103-304-0 

GREECE 
EBV Elektronik ..•.•.•.•..•.•• (30) 13414300 

HONG KONG 
AVNETWKK Components Ud. ... (852)2357-l1898 
Nanshing C1r. & a.om. Co. Ud ••. (852)2333-5121 

INDIA 
Canyon Products Ltd ....... (91) 80 55B-n58 

INDONESIA 
P.T.Ometraco •..•.•.••.••. (62) 21 61!H;166 

IRELAND 
Arrow ••••••••.••••.••.••.• (353) 14595540 
Future Electronics •••••••••••.• (353) 6541330 
Macro Group ............... (353) 16766904 

ITALY 
AVNET EMG SRL ............. (39) 2381901 
EBV Elektronik ............... (39) 2660961 
Future Electronics.. ••• • • . . • • .• (39) 2660941 
Silverstar Ltd. SpA ........... (39) 2661251 

JAPAN 
AMSC Co., Ltd .•••••..••... 81-422-54-6800 
Fuji Electronics Co., Ltd .•.•• 81-3-3814-1411 
Marubun Corporation .•..... 81-3-3639-8951 
Nippon Motorola Micro Elec .• 81-3-3280-7300 
OMRON Corporation .•...•. 81-3-3nB-9053 
Tokyo Electron Ltd ••••..•.•• 81-3-5561-7254 

KOREA 
Jung Kwang Sa • • . • . . • • . . • . •. (82)227B-5333 
Ute-On Korea Ltd. • • . • • . • . • •• (82)265B-3853 
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Attention! 
This book is a companion to the PowerPC Microprocessor Family: The Programming 
Environments, referred to as The Programming Environments Manual. Note that the 
companion Programming Environments Manual exists in two versions. See the Preface for 
a description of the following two versions: 

• PowerPC Microprocessor Family: The Programming Environments, Rev 1 
Order #: MPCFPEI AD 

• PowerPC Microprocessor Family: The Programming Environmentsfor 32-Bit 
Microprocessors, Rev 1 
Order #: MPCFPE32BI AD 

Call the Motorola LDC at 1-800-441-2447 (website: http://ldc.nmd.com) or contact your 
local sales office to obtain copies. 







1ATX35873-0 Prin1ed in USA 7/97 BANTA CO. MOTO#125 5,000 LlTRISC 




