
" ... "

~ ,
:.,j , ~

~j

MbSMD0S3 (D2)
.JUNE 1979

EXORdisk IIIIII Operating System User's Guide

Th~ in~ormation in this document has been carefully
ctr~ked; and, is believed to be enti,..ely reliable. No

. T";~spo.n·sibilityJ however, is assumed for inaccuracies.
: FU'r"'t'her1nore, such information does not convey to the
~ p. u/r"c has. e·r 0: f the pro due t des cr· i bed any 1 i c en s e. un d e r the
:;:pat:e:n·t- T'ig;hts of Motorola, Inc. or othel's.

Motorola reserves the right to change speci~ic:ations
\J1it:llou t no t-i c e.

·EXORcise,..@: EXbug, EXORdisk, EXORterm 'and MDOS are
trade-maT'ks of Motorola, Inc.

Second Edition
CopYTight 1979 by Motorola. Inc.

First Edition, December 1978

TABLE OF CONTENTS Page

2.9.4 LIST - >F~il·e d lSP lay 02-26
2.9.5 MERGE -- File concatenation ... ,. 02-26
2.9.6 BINEX -- EXbug-loadable file c~eatiQn . 02-27
2.9.7 FREE -- Available file space display 02-27
2.9.8 ECHO -- Echo console IIO on p~inter. . 02-27
2.9.9 PATCH -- Executable p~ogram ~ile patching 02-27
2.9.10 CHAIN ----- MDOS command chaining. 02-27
2.9.11 REPAIR -- System table checking . 02-28
2.9.12 DUMP -- Diskette sector display 02-29
2.9.13 FORMAT -- Diskette ref~rmatting 02-28
2.9.14 DOSGEN -- MDOS diskette gene~ation . 02-28
2.9.15 ROLLOUT -- Memor~ rollout to diskette . 02-29

2. 10 MOOS-Supported SoftUJa~e Products . 02-29
2. 11 Paper Alignment 02-29

• 4

Page iv

:"\
j

" /
---,,'

TABLE OF CONTENTS

PART II -- ADVANCED MOOS USER'S GUIDE

3.

4.

5.

6.

BACKUP COMMAND

3. 1 Use .
3.2 Diskette Copying
3.3 File Reorganization
3.4 File Appending
3.5 Diskette Verirication
3.6 Other Options .
3.7 Messages
3.8 Precautions with BACKUP

3.8.1 BACKUP and the CHAIN proces~
3.8.2 Single/double-sided diskettes
3.8.3 Four-drive systems

3.9 Examples

DINEX COMMAND

4. 1 Use .
4.2 Error Messages
4.3 Examples

BLOKEDIT COMMAND

5. 1 Use .
5.2 BLOKEDIT Command File

5. 2. 1 Comment 1 i nes
5.2.2 Command lines
5.2.3 Guoted lines

5. 3 Messages
5.4 Examples

CHAIN COMMAND

6. 1 Use .
6.2 Tag Definition, Assignment, and Substitution
6.3 Compilation Operators.

6.3. 1 Comp i lation Comments
6.3.2 IF operator .
6.3.3 XIF and ELSE operators
6.3.4 ABORT operator

6.4 Execution Operators.
6. 4. 1 Ex ec ut i on Comments
6.4.2 Operator Breakpoints
6.4.3 Error status word
6.4.4 SET operator
6.4. 5 TST operator
6.4. 6 JMP operator
6.4.7 LBL operator
6.4.8 eMD operator

6. 5 Messages
6.6 Resuming an Aborted CHAIN Process

Page

03-01

. 03-01
03-02
03-03
03-08
03-10
03-11
03-13
03-17
03--17
03-18
03-18
03-18

04-01

04-01
04-02
04-02

05-01

05-01-
05-01
05-02
05-02
05-03
05-03
05-05

06-01

06-01
06-02
06-04
06-05
06-05
06-07
06-08
06-08
06-09
06-09
06-10
06-11
06-11
06-12
-06.-13
06-13
06-13
06-16

Page v

17.

18.

19.

20.

TABLE OF CONTENTS

LIST COMMAND

17.1 Use
17.1.1 Start/end speciFications
17. 10 2 Ph Y sic all in e numb er s
17.1.3 User-supplied heading
17.1.4 Non-standard page -formats

17.2 Messages.
17.3 Examples

LOAD COMMAND

Page

17-01

17-01
17-02
17-02
17-03
17-03
17-04
17-05

18-01

18. 1 Use 18-01
18, 1. 1 Command-interpreter-loadab Ie programs 18-03
18. 1. 2 Non-command-interpreter-lcadab Ie pl'ogT"ams18-04
18.1,3 Programs in the User Memor~ Map 18-06
18.1.4 MDOS command line initialization 18-07
18.1.5 Entering the debug monitor 18-08

18.2 Error Messages 18-09
18. 3 E x amp 1 e s . 18-11

MERGE COMMAND

19. 1 Use
19.1.1 Merging non-memor'J-image files
19.1.2 Mel'ging memory-image riles
19. 1. 3 Othel' options

19.2 Messages
19.:3 Examples '.

NAME COMMAND

20. 1 Use
20.1.1 Changing rile names
20. 1. 2 C han gin 9 f i 1 eat tr i but e s

20.2 Error Messages
20.3 Examples ..

19-01

19-01
. 19-02
19-03
19-04
19-05
19-05

20-01

. 20-01
20-01
20-02
20-03
20-04

Page viii

21.

22.

23.

TABLE OF CONTENTS

PATCH COMMAND

21. 1 Use
21.2 PATCH Command Set

21.2.1 Quit -- Q
21.2.2 Set/display offset -- 0
21.2.3 Display single location
21.2.4 Display lowest address -- L
21.2.5 Display highest add~ess -- H .
21.2.6 Calculate relative address -- R
21.2.7 Dis-assemble ope~ation code -- I
21.2.8 Set search mask and patte~n -- M .
21.2.9 Search for byte -- 5 .
21. 2. 10 Searc h for word -- W
21. 2. 11 Sea r c h f or non -rna t chi n 9 b Y t e -- N
21. 2. 12 Sa arc h ~ 0,.. non -rna t chi ng w 0 i" d -- X
21. 2. 13 Di sp lay rang e of 1 ocat i cns -- P
21. 2.14 Set/dispiay execution address -- G
21. 2.15 Change locations
21. 2. 16 Instruction mnemonic decode mode

21.3 Special Considerations
21.4 Error Messages

REPAIR COMMAND

22. 1 Use
22.2 ID, LCAT, CATI BootblacK Sector Check
22.3 Directory Sector Check.
22.4 Retrieval Information Block Check
22. 5 CAT Regeneration Phase
22.6 CAT ReplacementJPhase
22. 7 Messages
22. 8 Ex~mp les .

ROLLOUT COMMAND

23. 1 Use
23. 1. 1 User Memory Map
23. 1. 2 Non-over lay ed memory
23.1.3 Overlayed memory
23. 1. 4 5 C 1" ate h dis k e t t e con v e r s ion

23.2 Messag es .
23.3 Examp 1 es .

Page

21-01

21-01
21-02
21-02
21-03
21-03
21-04
21-04
21-05
21-05
21-07
21-08
21-08
21-09
21~09

21-09
21-10
21-10
21-12
21-15
21-16

22-01

22-01
22-03
22-08
22-11
22-15
22-18
22-19
22-19

23-01

23-01
23-02
23-03
23-03
23-05
23-06
23-08

Page ix

TABLE OF CONTENTS

24. SYSTEM DESCRIPTION. .

25.

24.1 Diskette Structure
24; 1. 1 Diskette Identification Block
24.1.2 Cluster Allocation Table.
24.1.3 Lockout Cluster Allocation Table ..
24, 1. 4 Di ree tory
24.1. :; Bootblock

24.2 File Structure.
24.2.1 Retrieval Information Block
24.2.2 File formats ..

24.3 Record Structure ..
24.3. 1 Binar~ records
24.3.2 ASCII records
24. 3.3 ASCII-CQnve~ted-binaTY records
24.3.4 File descriptor records

24.4 System Files
24.4.1 System overlays
24.4.2 System error message file

24. 5 Memorq Map ,
24.6 MDOS Command Interpreter
24.7 Interrupt Handling.
24.8 System Fun~tion Calls
24.9 MOOS Equate File.

INPUT/OUTPUT FUNCTIONS FOR SUPPORTED DEVICES

25.1 Supported Devices'
25.2 Device Dependent I/O Functions

25.2.1 Console input -- .KEYIN
25.2.2 Check for BREAK key -- .CKBRK
25.2.3 Console output -- . DSPLY, . DSPLX, .DSPLZ

25.2.3. 1 Examp Ie aT console lID ..
25.2.4 Printer output ...- . PRINT, . PRINX

25.2.4.1 Example oT printel' output
25.2.5 Physical sectoT input -- . DREAD, .EREAD
25.2.6 Physical sectoT output -- . DWRIT, . EWRIT
25.2.7 Multiple sector input -- . MREAD, .MERED
25.2.8 Multiple secto~ output -- . MWRIT, . MEWRT
25.2.9 Diskette controller entry points

25.3 Device Independent IIO Functions .
25. 3. 1 1/0 Contro 1 Bloc k -- IOCB

25.3.1.1 IOCSTA Error status
25.3. 1. 2 ICCDTT Data tl"ans-Per type
25_ 3_ 1. 3 IOCnSp Data burrel' pointel'
25.3. 1. 4 lOCDBS Data bUTTer stal't
25. 3. 1. 5 IOCOBE Data bUrrel' end
25.3. 1. 6 IOCGDW Generic device word
25. 3. 1. 7 IOCLUN Logical uni t number
25.3. 1. 8 IOCNAM File name
25.3. 1. 9 IOCSUF Suffix
25.3. 1. lQ IOCMLS Maximum LSN referenced
25. 3. 1. 11 IOCSDW Current SDW
25.3. 1. 12 IOCSLS Starting LSN of SDW

Page

24-01

24-01
24-02
24-03
24-03
24-04
24-06
24-07
24-07
24-10
24-11
24-11
24-12
24-13
24-14
24-15
24-16
24-17
24-17
24-20
24-21
24-23
24-25

25-01

25-01
25-01
25-02
25-04
25-05
25-06
25-07
25-08
25-09
25-11
25-12 .
25-13
25-13
25-13
25-14
25-18
25-19
25-22
25-22
25-23
25-23
25-23
25-24
25-24
25-25
25-25
25-25

Page x

,. ---')

-'. ~.,/'

\
I

.. ./

TABLE OF CONTENTS

25. 3. 1. 13
25. 3. 1. 14
25.3.1.15

IOCLSN
ICCECF
IOCRIB

Next LSN
LSN of end-of-file .
PSN of RIB

Page

25.3. 1. 16
25.3.1. 17
25.3. 1. 18
25.3. 1. 19
25.3. 1. 20

IOCFDF
IOCDEN
IOCSBP
IOCSBS
loeSBE

File descriptor flags
Directory entry number
Sector buffer pointer
Sector blJ~~er start . .
Sector buffer end . . .

25-26
25-26
25-26
25-26
25-30
25-31
25-31
25-31
25-32
25-32

25.3.1.21 IoeSBI Internal buffer pointer
Reserve a device -- .RESRV 25.3.2

25. 3. 3
25. 3. 4
25.3.5
25. 3. 6

Open a file -- . OPEN.
Input a record -- . GETRC .
Output a record - .PUTRC
Close a file -- . CLOSE.

25.3.7 Release a device -- . RELES
25.3.8 Example of device independent 110
25.3.9 Specialized diskette I/O functions

25.3.9.1 Input logical sectors -- . GETLS
25.3.9.2 Output logical sectors -- .PUTLS
25.3.9.3 Rewind file -- . REWND
25.3.9.4 Example of logical sector I/O

25.3.10 Error handling

25-34
25-39
25-42
25-45

· 25-48
25-49

· 25-51
25-51
25-54
25-56

· 25-58
25-62

26. INPUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES 26-01

26. 1 Devi c e Dep end ent I/O .
26.2 Device Independent IIO

26.2. 1 Cont~oller Descripto.r Block -- CDB
26.2. 1. 1 CDBIOe CLlrrent IOCB add1'ess
26. 2. 1.2 CDBSDA 50~tware driver address
26. 2. 1. 3 CDBHAD Hardware address
26.2.1.4 CDBDDF Device descriptor flags
26.2.1.5 CDBVDT Valid data types
26.2.1.6 CDBDDA Device dependent area
26.2. 1.7 CDBWST Working storage

26.2.2 Device drivers . .
26.2.3 Example of device driver ..
26.2.4 Adding a non-standard device

26-01
26-01
26-01
26-04
26-04
26-04
26-04
26-07
26-08
26-08
26-08
26-10
26-13

P ag e xi

TABLE OF CONTENTS Page

27. OTHER SYSTEM FUNCTIONS .. 27-01

27.1 Register Functions
27.1.1 Transfer X to B,A . TXBA
27.1.2 Transfer a,A to X -- . TBAX
27.1.3 Exchange B,A ~ith X . XBAX

27-01
27-02

. . 27-02
27-02

27.1.4 Add B to X -- .ADBX
27.1.5 Add A to X -- .ADAX
27. 1. 6 Add B, A to X -- . ADBAX
27.1.7 Add X to B,A ~- .ADXBA
27.1.8 Subtract B from X -- .SUBX
27.1.9 Subtract A from X -- .SUAX .
27.1.10 Subtract a,A from X -- .SUBAX
27.1.11 Subtract X from a,A -- .SUXBA

B.A with X -- . CPBAX
27.1.13 Shift X right -- . ASRX
27.1.14 Shift X left -- . ASLX .
27. 1. 15 Push X on stac k -- . PSHX
27. 1. 16 Pull X from stack -- . PULX

27.2 Double-byte Arithmetic Functions.
27.2.1 Add A to memor~ -- .ADDAM
27.2.2 Subtract A from memory -- . SUBAM
27.2.3 Shift memor~ right -- ,DMA
27.2.4 Shift memor~ left -- . MMA

27.3 Character String Functions
27.3.1 StTing move -- . MOVE
27.3.2 StTing comparison --.. CMPAR
27.3.3 CharacteT-~ill a string -- . STCHR
27.3.4 Blank-fill a string -- . STCHB
27.3.5 Test for alphabetic character -- . ALPHA
27.3.6 Test for decimal digit -- . NUMD

27. 4 Dis k e t t e F i 1 e Fun c t ion s
27.4.1 Directory search -- . DIRSM .

27-02
27-03
27-03
27-03
27-04
27-04
27-04
27-05

. 27-05
27-05
27-05
27-06
27-06
27-06
27-07
27-07
27-07
27-08
27-08
27-08
27-09
27-10
27-10
27-11
27-11
27-11

. 27-14
27-17
27-20
27-25
27-28

27.4.2 Change file name/attributes -- . CHANG
27.4.3 Load program into memory -- . LOAD
27.4.4 Allocate diskette space -- . ALL DC
27.4.5 Deallocate diskette space -- . DEALe
27.4.6 Display system error message -- . MOERR . 27-30

27-35
27-35
27-38
27-39
27-40
27-40

27.5 Other Functions
27.5.1 Process rile name -- .PFNAM
27.5.2 Re-enter resident MOOS -- . MDENT .
27.5.3 Reload MDOS from diskette -- . BOOT
27.5.4 Set system error status word . EWORD
27.5.5 Allocate user program memory ~- .ALUSM

28. ERROR MESSAGES .

28.1 Diskette Controller Errors
28.1.1 Errors during initialization
28.1.2 Errors. after initialization

28.2 Standard Command Errors
28.3 Input/Ouput Functi9n Errors
28.4 System Error Status Word
28.5 Commands Affecting Error Status Word

28-01

28-01
28-01
28-05
28-06
28-18
28-19
28-20

Page xii

. ../

TABLE OF CONTENTS Page

APPgNDICES

A. Cylinder-Sector/Physical Sector Conversion Table . A-O!

B. ASCII Character Set 8-01

C. MDOS Command Syntax Summary C-Ol

D. Diskette Controller C' ... +0 "
1-" '" I ':f Points

E. Mini-Diagnostic Facility

F. Diskette Description, Handling, and Format

G. D ire c tor y Ha s h in 9 Fun c t ion

H. MDOS-Supported Software Products

H.1 ASM -- M6BOO Assembler
H.2 ASM1000 -- M141000 Cross Assembler
H.3 ASM3870 -- M3870 Cross Assembler
H. 4 BASIC -- BASIC Interpreter
H.5 E -- CRT Text Editor
~. 6 EDIT -- Text Editor
H.7 EM3870 -- M3870 Emulator
H.e FORM1000 -- M141000 ObJect File Conversion
H.9 FORT -- Relocatable FORTRAN Compiler
H. 10 MASM -- MACE Cross Assembler
H. 11 MBUG -- MACE Loader and Debug Module
H. 12 MOTEST -- Component Tester Executive
H. 13 MPL -- MPL Compiler
H. 14 PPLO/PPHI -- PROM Programmer I
H. 15 PROMPROG -- PROM Programmer 11/111
H. 16 RASM -- Re 1 ocatab 1 e M6800 Macro As semb 1 er
H. 17 RASM09 -- Relocatable M6809 Cross Assembler
H. 18 RLOAD -- Li n king Load er
H. 19 SIM1000 -- 141000 Simulator
H.20 USE with MDOS

1. MDOS EQ.uate Fi Ie Listing

J. MDOS 3.00 Differences
~. 1 Impact of MDOS 3.00 on Previous MDOS Programs
J.2 Enhancements to MOOS 2.20/2.21
J.3 Enhancements to MDOS 3.00

K. IOCB Input Parameter Summary

L. EXORdisk 11/111 Sgstem Specifications

0-01

E-Ol

F-Ol

G-Ol

H-Ol

H-02
H-04
H-07
H-09
H-l0
H-l1
H-13
H-14
H-16
H-1S
H-20
H-21
H-22
H-24
H-26
H-27
H-30
H-33
H-39
H-40

1-01

,)-01
""-01
J-04
,)-06

K-01

.L~Ol

Page xiii

CHAPTER 1

1. INTRODUCTION

The E X OR dis k I lis a sin 9 1 e -5 ide d , sin 9 1 e - den sit tJ ' d u a 1
diskette drive storage system designed for use with the
EXORciser or EXORterm, The EXORdisk III is a double-sided,
single-density, dual diskette drive storage system designed
for use with the EXORciser or EXDRterm. The EXORdisk III can
be expanded into a four-drive system.

With either the EXORdisk II or EXORdisk III system, the
following items are also included: a Tlopp~ disk controller
module, a floppy disk interconnection cable assembly, and a
software disk operating system. An illustration of a typical
EXORdisk system is shown in Figure 1-1.

The M6800 Diskette Operating System (MOOS) or M6809
Diskette Operating System (MDOS09), in conJunction with the
EXORciser and EXORdisk II or EXORdisk III, provides a
powerful and easy-to-use tool for software development. t"or
the remainder of this manual, all references to MDOS will
encompass both the M6800 version as well as the M6809
version, unless otherwise specified.

MDOS is an interactive operating system that obtains
commands from the s~stem consol~. These commands are used to
move data on the diskette, to process data, or to activate
user-written processes from diskette. All this can be
accomplished with a minimum of effort; and since MDOS is, a
facilities oriented system; rather than a supervisory
o~iented onel a minimum of overhead is imposed.

In addition, an extensive set of resident system
functions are provided for general ~evelopment use. Such
functions as dynamic space allocation, random access to data
files, record I/O for supported and non-supported devices, as
well as many registerl string, and other diskette-oriented
routines make MDOS a good basis for a user's application
system.

Page 01-01

r
/,----

Figurg 1-1. Typcial EXORdisk system.

Page 01-02

I
/

INTRODUCTION 1. 1 -- Ha~dwa~e Suppo~t Requi~ed

1. 1 Ha~dUJare SUppOT't Requi~ed

The minimum hardware configuration required to support
MOOS consists of:

an EXORciser o~ EXDRterm with EXbug ri~mware

16K RAM
EXORdisk IIIIII dual diskette drive unit
EXORdisk IIIIII floppy disk controlle~ module
Interconnect cable
ASR33 (TTY) Or RS=232C compatible te~minal

The EXORdisk II can read and write diskettes recorded in
an IBM-3740-simila~ TOT'mat (single-sided} single-density).
The EXORdisk III can ~ead and write all diskettes that the
EXORdisk II can handle. In addition: diskettes fQT'matted in
the Motorola single-density, double-sided format can also be
read and written. The double-sided diskettes cannot be used
in the EXORdisk II.

The above minimum configuration will allow the use~ to
run any of the MDOS commands that reside on the MDOS system
diskette at the time of purchase. Othe~ additional ha~dwa~e
may be required to run the MDOS-Suppo~ted software p~oducts.

Such information is described in Appendix H.

1.2 Additional Supported Hardware

MDOS also supports a line printer and the ~eaderlpunch
(record) devices of the system console. The line printer
interfaces to the EXORciser through the printe~ interface
module (MEX68PI) which consists of two PIA's plus the
necessa~y buffering devices and add~ess decoding. If the
printer inte~face from an EDOS system is used instead, it
must be modified for use with MDOS. The modirications
consist of adding the rollowing lines to th€ printe~

interface PIA:

1. Print select (high=selected) to PBO (pin 18 of PIA)
2. Paper out (low=paper available> to PBl (pin 11 of

PIA)

The system console's automatic readerlpunch (record)
devices must be similar to a Teletypewriter's paper tape
reade~ and punch. For a complete description or the system
console requirements consult the "M6800 EXORciseT' User's
Gu ide ".

Page 01--03

NTRODUCTION 1.3 -- Software Suppo~t Required

1.3 SOTt~are Support Required

No additional software is re~uired to run the operating
system as it comes shipped on the system diskette.

1.4 Program Compatibility

All of the MDOS commands and system Tiles that are
shipped on the system diskette must be used with that
particular version of MDOS. MDOS commands and system Tiles
rrom other versions should never be intermixed.
MDOS-Supported softlllal'e products (see A-9pendi~ H) with
version numbers 3.00 or greater must be used with MDOS 3.00.
They will nat operate correctly with p~iQr ver~ions o~ MDOS.
In addition} prior versions of the M6800 Linking Loader
CRLOAD, through version 2.03) will not operate with MDQS
3.00. Prior versions of other MOOS-Supported sOTtware
products will work with MDOS 3.00.

Most user-~ritten assembly language programs that were
developed independently oT MDOS can be executed on an MDOS
system without reassemblYi hOUlever, such programs 111111 have
to be converted into the memory-image rile format before they
can be loaded rrom diskette into memol'q (see section 2.8.5).
Programs need only be changed ~hen transferred ~o MDOS if:

1. They make assumptions
initialization of the stack
they are loaded into memory}

about the
pointer after

2. They are origined to load (initialize memorq
~hile loading) below hexadecimal location
$20,

3. They make assumptions about the physical
structure of diskette tables or files,

4. They utilize the diskette for input/output,

5. They make assumptions about the contents of
the SWI and IRG interrupt vectors.

If a user has prior EXORciser support software products
which he has purchased f!'om Motorola (e. g. I editors,
assemblers, or compilers), that software must be upgraded to
be compatible with MDOS.

If a user has softUJare that he has developed using
previous ve,..·s ions of MDOS, then Appendix .J should be
consulted for a list or dirferences between MDOS 3. 00 and
prior versions that may affect programs running . wi th MOOS
3.00.

Page 01-04

\

J

INTRODUCTION 1.5 -- Hardware Installation

1.5 Hardware Installation

The floppy disk controller module and drive" unit should
be inspected upon receipt for broken, damaged, or missing
parts as well as for damage to the printed circuit board.
The packing materials should be saved in case reshipping is
necessary.

1. 5.1 Four-drive system installation

The following procedure must be performed to install the
four diskette drive version of the EXORdisk III. This
section is not applicable to EXORdisk II systems or to
dual-drive EXORdisk IiI systems. This procedure must be
performed before the floppy disk controller module is
instailed (next section). It should be noted that in the
four-drive configuration, all diskette controller originated
lines must be terminated in the last d~ive of the daisy
chain. When facing the front of the disk drive units, drive
zero is on the left and drive one is on the right of one
unit, ~hile drive two is on the left and drive three is on
the right of the other unit. Before the following
modifications are made, both dual-drive units are identical.

1. The housings from both dual-drive units must be
removed.

2. In the dual-drive unit that is to contain drives
and one, the Terminator Network (Motorola
51NW9626A01) should be removed from the socket
on printed circuit board (pcb) for d~ive zero.
drive one pcb socket XA22 should not have
Terminator Network installed.

zero
PIN

XA22
The
the

3. JPR 11 should be installed in the Jumper area of the
pcb for drive zero.

4. JPR 9 should be installed in the Jumper are~ of the
pcb for drive one.

5. The housing should be replaced on this dual-drive
unit and the drives marked as zero and one.

6. On the other dual-drive unit the Terminator Network
should be installed in socket XA22 of the pcb for
d~ive three. There should be no Terminator Network
installed on socket XA22 of the pcb ror drive two.

7. ,",PR 11 in the. Jumper area of the pcb for drive two
should be removed (ir installed>. JPR 8 should be
install ed.

Page 01-05

!NTRODUCTION

8.

1.5 -- Hardware Installation

~PR 9 in the Jumper are Or the pcb ror drive three
should be removed (if installed), JPR 10 should be
installed.

9. The 50-pin ribbon cable that connects to Pi o~ the
Controller Interconnect Board must be disconnected
and insulated against
mater ial.

contact:
I.U.""II conductive

10. The housing on ,this dual-dT'ive unit should be

11.

replaced and the drives marked as two and three.

The 50-pin
should be
tlUo/th"'~HL

ribbon cable (Motorola PIN 30BW1824X01)
installed between drives zer%ne and

1. 5.2 Floppy disk controller installation

To install the floppy disk controlleT' module into the
EXORciser, the following steps should be ~ollowed:

1. The PWR .keysUJitch on the EXORciseT' should be
turned OFF. CAUTION: InseT'ting the floppy
di~k controller module while pow~r is applied
to the EXORciser system may result in damage
to components o~ the module.

2. Any other card
to addresses
through $EC07,
from the system
address range.

in the EXORciser that responds
between hexadecimal $E800

inclusivel must be removed
or configured ror a di~ferent

3. The floppy disk cont~oller module can then be
inse~ted into anq available card slot. It is
desirable to keep all or the cards in the
EXORciser close togethe~i it is speci~ically
recommended that dynamic memory boards be
kept as close to the MPU board as possible.
When properly installed, the component sides
of all cards should be facing the left-hand
side of the EXORciser chassis (as viewed from
the rront)' The EXORciser motherboard
connectors are offset and keyed to prevent
backward installation of cards.

4. The interconnect cable
attached to both the drive
diskette controller module.

should then
unit and

CAUTION:
pln index mark on the connector must match
with the index mark on the cable. Damage
the module will result if the cable
installed the wrong way.

be
the
The

up
to
is

Page 01-06

'\
I

'\
I

.J

INTRODUCTION

5.

1.5 -- Hardware Installation

Power can now be applied to both the drive
unit and to the EXORciser -- the hard~are is
installed.
habit of
following
EXORciser,
power off

The operator should get into the
turning on the power in the

sequence: system console,
EXORdi~k, and line printer. The

sequence should be the reverse:
line printer, EXORdisk; EXORcise~: and system
console. No diskettes should be in a drive
while the drive's or the EXORciser's power is
being turned on or off.

1.6 Software Installation

There is no so~tware installation that need be
performed. All MDOS software is included on the diskette
that is shipped with each EXORdisk. This diskette contains
the operating system and a set of commands that comprise
MDOS. It mayor may not contain any of the MDOS-supported
software products such as editors or assemblers. These
products are dependent on the mode of system purchase.

Page 01-07

--c

C:::
c::
~
C
o

CHAPTER 2

2. GENERAL SYSTEM OPERATION

This chaptg~ provides the user with the basic concepts
that are necessary for the simplified and typical operation
of MOOS. It contains descriptions and examples or the
initialization procedures and of the basic forms of the most
frequently used commands. These examples clearly illustrate
hoUl MOOS is used to ed ita programl to assemb 1 e i tl to
convert it into a loadable modulel to load it and execute it#
as well as some other useful ope~ations. The commands are
presented in a sequence that is commonly followed in a
software development environment.

2.1 System Initialization

To initialize the operating system, power must first be
applied to the EXORciser and to the diskette drive unit. No
diskette should be in the drive while power is being turned
on or off on either the drive or the EXORciser. Once the
power is onl the following steps must be ~ollowed:

1. EXbug must be initialized and configured for
the proper speed of the system console. If
power has Just been turned on for the first
time} EXbug initialization is automatically
performed by the power-up interrupt service
routine in EXbug. If power is already on and
MOOS is to be re-initialized, then either the
ABORT ,or RESTART pushbuttons on the
EXORciser's front panel must be depressed to
initialize EXbug. The prompt "EXBUG V.R"
will be displayed by EXbug indicating it is
waiting for operator input. "V" indicates
the version and "Rn the revision number of
the EXbug monitor in the system.

2. An MDOS diskette (one shipped from Motorola
or one that has been properly prepared by the
user (see section 2.8.10» must be placed in
drive zero. The door on the drive unit must
then be closed in order for the diskette to
begin rotating. For the side-by-side drivesl
drive zero is on the left side, as seen from
the front. For the EDOS-converted systems
us i n g ·t h eve r tic all y . S t a c ked d r i ve sid r i ve
zero is the top one.

The diskette must be oriented properly before

Page 02-01

GENERAL SYSTEM OPERATION 2.1 -- S\lstem Initialization

being inserted into the d~ive_ When the
diskette is inserted properly .. the label is
facing up .. and the edge of the diskette 1.dith
the long narrow slot in the protective
covering is inserted first. The labelled
edge will be the last edge to be covered up
as the diskette is inserted into th~ drive.

3. Operators with EXbug 2 in their systems will

4.

sk i P th is step _ The EXb ug 1 command "MAID"
must be entered. An aste'Y'isk <*) prompt will
be displayed once MAID has been activated.

The MAID command "E800,iGu must be entered if
the d eo ug man i tor is EXb ug 1. Fo'T' EXbug 2
monitors, the EXbug command "MOOS·' must be
entered. Ei th ar command uli i 1 give c ont'T'o 1 to
the diskette controller at the specified
address. The controller will initialize the
drive electronics and then proceed to read
the Bootblack into memory. Once the
Bootblack has been loaded} control is
transrerl'ed to it. The Bootblock \JIill then
attempt to load into memor~ t~e remainder of
the resident operating system ..

2. 2 Sign-on Message

Ir no e~~ors occur during the initialization process,
MDOS will display the message:

MDOS VV.RR (M6800)
=
MDOS09 VV.RR (Mb809)
=

meaning that MDOS has been successrully loaded rrom disk and
initialized. The ItVV" and "RRII indicate the version and
revision numbers of the operating system, respectively_ In
addition, an equal. sign (=) is displayed as a prompt
indicating that MDOS is ready to accept commands from the
operator. The equal sign prompt is subsequently displayed
each time the MDOS command interpreter gets control. The
sign-on message showing the version and revision numbers is
only displayed when MOOS is reloaded rrom the diskette .

. 2.3 Initialization Error Messages

If Tor some reason the drive electronics are not
properly initialized! or i~ the diskette in drive zero cannot
be read properly to load the Bootblack or the resident

Page 02-02

.'" \
J

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

operating system~ then a t~o-character error message ~ill be
displayed and control return~d to the. EXbug monitor~

The following
initialization. All

errors can be produced during
two-character messages begin with the

letter liEu.

Message

El

E2

E3

E4

E5

Probable Cause

A c~clical redundancy check (eRe)
error was detected while reading the
resident operating system into
m-e-m-o r 1:1 •

The diskette has the write protection
tab punChed out. During ~ne

initialization process, certain
information is written onto the
diskette.

The diskette is not damaged and can
still be used ror a system diskettej
howeverl the write -protection tab
must first be covered ~ith a piece of
opaque tape to allow ~riting on the
diskette.

The drive is not ready. The door is
open or the diskette is not yet
turning at the proper speed. Ir the
diskette has been inserted into the
drive with the wrong orientation, the
"not ready" error ~ill be also
generated. If a double-sided
diskette is used in the EXORdisk II
drivesl this error Ulill also occur.

Closing the dool'l waiting a little
bit ·longer before entering the
IIEBOOiG u or "MDOS" command, or
turning the diskette around so it is
properly oriented should eliminate
this error.

A deleted data mark was detected
while reading the resident operating
system into memory.

A timeout interrupt occuTred. This
indicates. that a diskette controller
function was not completed within the
allotted time. This errol' can also
occur if the ABORT pushbutton is

Page 02-03

ENERAL SYSTEM OPERAT!ON

E6

E7

EB

E9

2.3 -- Initialization Error Messages

depressed while a diskette tranSTer
is in progress.

The diskette
presented with
address that is

controller has been
a cylinder-sector

invalid.

This e~~o~ indicates some type of a
hardt.dare problem. FoT' example~ the
error can be caused by missing or
overlapping memory, bad memory; or
pending IRGs that cannot be serviced.

A seek error occurred while tr~ing to
read the resident operating system
into memory.

Like E6 errors, this one indicates
some type oT a hardware pr~blem.

A data mark error ~as detected ~hile

trying to read the resident operating
system into memory.

A CRe error was ~ound while reading
the address mark that identifies
sector locations on the diskette.

The diskette cont-roller errors EIJ E4, E8, and E9
indicate that the diskette cannot be used to load the
operating system; howeverl a new operating system can be
generated on that diskette~ making it use~ul again. Chapter
10~ DOSGEN command, and chapter 15, FORMAT command, describe
ways in ~ich damaged diskettes can be regenerated.
Depending on the extent of the e~~orsJ the diskette may be
used in d~ive one to recover any files that may be on it
(sec t i on 2. 8. 9).

,"\
!

' ~/

--)

Th e dis k etta c ontro 11 er error E5 can oc c ur for.a v,ar i ety
of reasons. The most common reason, and the most fatal, is
the destruction o~ the addressing info~mation on the
diskette. If the add~essing information has been dest~oyed
(verified by using DUMP command to examine areas of
diskette), the FORMAT command may be used to rewrite the
add res sin 9 j howe ve r lin f 0 l' roa t ion 0 nth e d a ma 9 e d dis k e t t e
cannot be recovered, Occasionally. after a system has Just
been unpacked, the read/write head may have been positioned
past its normal restore point on cylinder zero. In this
case, trying the event which caused the error three or more
tim~s may position the head to the proper place. If this
failsl th~ head ~ill have to be manually repositioned past
cylinder zero; however, this problem rarely occurs. The E5)
er~ors can also occur if a user-written program accesses
drives 1-3 without using one oT the system Tunctions and

Page 02-04

GENERAL SYSTEM OPERATION 2.3 -- Initialization Error Messages

without first restoring the read/write head on that drive.

Even after ~ne resident operating system has been
successfully read into memory, certain errors can occur in
the subsequent initialization procedure. During
initialization the resident operating system cannot access
the error message processor since it has not been
initialized. Messages similar- in fo~mat to those generated
by the diskette controller are displa~ed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-character message is a
non-numeric character. The following errors can occur during
initialization, but only after the resident operating system
has been read into memory_

Message

E?

Probable cause

This error indicates that the
Retrieval Information Block (RIB) of
the resident operating system file
MDOS.SY is in error. The operating
system cannot be loaded.

The diskette probably is not an MDOS
system diskettes or the sJ,Jstem riles
have been moved from their original
p lac.es. Th e REPAIR command (Chap tel'
22) can be used to identify which
files are missing or if their places
have been changed.

EM This error indicates that there was
insufficient memory to accommodate
the resident portion of the operating
sy stem.

E!

The memory requirements described in
section 1. 1 should be reviewed. If
the minimum reqUirements are
satisfied, then the existing memory
should be carefully examined for bad
locations.

The version and revision or MDOS
already loaded into memor9 are not
the same as those on diskette. This
error usually occurs as the result of
switching diskettes in drive zero
without following the initialization
procedure· outlined in section 2.1..
The error can also occur if the ID
sector has been damaged.

Page 02-05

GENERAL SYSTEM OPERATION 2.3 -- Initialization Er~o~ Messages

The error can be avoided i~ the
initialization procedure is followed
correctly every time a ne~ system
diskette is inserted into d~ive zero.

ER The addresses of the Retrieval
Information Blocks o~ the MDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur Tor the same
reasons as the "EI" er~or.

EV An input/output system function

EV

returned an error during the
initialization. Errors oi this so~t
indicate a possible memor~ problem or
the opening of the door to drive zero
while the initialization is taking
p lac e ..

One oT the s~stem files is missing or
cannot be loaded into memor~. IT a
system rile is missingl the diskette
has been improperly generated or the
Tile was intentionally deleted. If a
Tile cannot be loadedJ then. the
diskette should b.e regenerated. The
diskette maq be used in drive one to
save any riles that may be on it
(section 2.8.9>' This error may also
occur if the door to drive zero is
opened ~hile initialization is in
prog-ress.

2.4 Operator Command Format

Aft er the s i 9 n -0 n me s sa g e i s dis P 1 aye d , MOOS i s rea d y to
accept commands from the operator. The equal sign prompt (=)
indicates that the command interpreter is awaiting input via
the console. Generally, the equal sign prompt will be
redisplayed after each command has rinished its function.
The operator-entered command line must always indicate which
command is to be executed. In addition, the Tile names that
may be required by the command must be speci~ied. Some
commands also allow various options that can alter the way in
which their functions are performed. These options are also
entered on the command line. Each command line must be
terminated with a carriage return. The command line has the
Tollowing format:

<name i) <name 2~/<name 3>,: ... ,<name n>i<options>

where each <name i~ (i=l to n) has the Torm or a complete

Page 02-06

"-
'I .,.--J

GENERAL SYSTEM OPERATION 2.4 -- Operator Command Format

MDoS fi Ie name (see section 2.7. 1>' The name OT the command
to be executed is always <name 1>. ,The remaining names and
the options may not be required, depending on the individual
command. The following lines:

DIR EDIT. eM: liE
FREE
MERGE FILE1: l,FILE2:0,FILE3: 1,FILE1: 1

are valid examples OT MDOS command lines. Section 2.8
des c rib e sin a s imp 1 i fie d for m the bas i c for rna t (i. e., the
command's name, what file names must be specified, and what
options are available) of the most frequently used commands.
PART II gives a complete and detailed description of all MDOS
commands. In addition, Appendix H contains a summary of the
command line formats of all MDOS-Supported software products.

Most frequently a "space" is used to separate <name 1>,
the command name, from the other names which are typically
separated by "commas". The "semicolon" always separates the
options from the rest of the command line. The "space" and
II comma" are the recommended separators since they make the
command line the most readable; however, any character that
will not be mistaken for an MDOS file name character, a
suffix delimiter, a logical unit number delimiter, 01' a
device name delimiter (see section 2.7.1) can be used as a
separator. The use of special characters, although
pe-r'mitted,. is not recommended because the command line
becomes very unreadable.

2.5 System Console

The system console is used as the communications device
between the operator and the operat~ng system. MDOS messages
are displayed on the console printer or display mechanism.
MDOS commands, as well as operator inputs prompted by the
commands, are entered via the keyboard. All command line
input and most input to the various commands requires upper
case, alphabetic cha-racters. Numeric and special characters,
of course, are case independent. To allow corrections to be
made to any typed line before the terminating carriage return
is entered, several special keys on the keyboard can be used.
In addition, two other special keys serve to prematurely
abort a command in p-rogr-ess or to "freeze" the display of
messages on the consoie.

2.5. 1 CaT'riage return key

The CARRIAGE RETURN key is used to terminate any
operator response to an MDOS input p~ompt.- This is true ror
the command line as well as all other input that may be
required fT'om the operator by the various commands. The

Page 02-07

~ENERAL SYSTEM OPERATION 2.5 -- System Console

CARRIAGE RETURN will automatically perform both car~iage

return and line reed functions.

2.5.2 Breal< key

The BREAK key is used as a controlled-abo~t function
key. Most MDOS commands that take a long time to complete
their function periodically check to see if the BREAK key has
been depressed. If it has, the command will come to a
premature, but controlled, termination point.

Th e BRE.AK key shou let be used, whenever pass i b le, as an
alternative to using the EXORciser's ABORT or RESTART
pushbuttons. The controlled abort that is achieved with the
BREAK key ensures that all system tables are ln~act. ~lnce

termination is dela~ed until all critical diskette accesses
have been completed, no file space is lost nor is any sqstem
table destroyed. Such precautions cannot be guaranteed if
the ABORT or RESTART pushbuttons are used, since the operator
has no way of knowing ~hether or not diskette data t~ansfers
are in progress.

2. 5. 3 Cont1"ol-W

Cont,..ol-W i.s actually. a combination 'of two k"eys being
depressed simultaneously: the CONTROL or CTL key and the W
key. This combination is used to halt the displaq of
information on the system console or printer. All commands
that respond to the BREAK key abort function will also be
IIhaltable ll IVlth the CTL-W key. Most MDOS commands that
display more than a fe~ lines o~ information on the console
will occasionally check to see if the CTL-W key has been
depressed. I r a CTL-W is detected I the command wi 11 susp end
processing until any other key on the console keyboard is
d e pre sse d (e x c e p t I 0 .p C 0 u r s e , an 0 the r C TL -W) . T his f eat U 1" e
is particularly useful to hold the display for viewing on
systems that have a CRT. In additionl ir' output is being
directed to the p1"inter, the CTL-W can be used to suspend
printing until the paper is realigned.

2. 5. 4 Control-X

Control-X is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the X
key. This combination is used to cancel the input line that
was Just entered by the operator (before a carriage return is
depressed), All system input from the console supports
CTL-X. Any ~haracters ente1"ed on the cu~rent input lin~ thus
rar will be deleted and input can be resumed rrom the
beginning af the line. A carriage return and line feed will
be sent to the consolel so that the operator has a positive

Page 02-08

GENERAL SYSTEM OPERAiION 2.5 -- System Console

feedback that the line was cancelled.

2. 5. 5 DEL or RUBOUT

The DEL or RUBOUT key serves as a backspace key during
console input. I~ the operator detects an error in the
current input line (beTore a carriage return is depressed)J
the DEL key will cause the preceding character to be removed
from the input line. The character that is removed will be
echoed back to the console so that the operator has a
positive feedback that a character was backed out of the
line.

2.5.6 Control-D

ContTol-D is actually a combination of two keys being
depressed simultaneously: the CONTROL or CTL key and the D
key. This combination allows the op~rator to re-display the
current input line (before a terminating carriage return is
depressed). If the input line has had several characters
b a c ked 0 u t (s e e DEL key abo v e) 1 the 1 in e i s v e r y un rea dab 1 e.
Th e CTL-D k e\j can: th erefore, be used to sh ow a .. clean II cop Y
of the line for operator inspection. The newly displayed
line will be shown on the line following the current input
line. Operator input is not terminated with the CTL-D key.
Any remaining input must still be suppliedl as well as the
terminating car~iage ~eturn.

2.6 Common Erro~ Messages

Many error messages are common to the MDOS commands. In
order to be aware of the most common errors, their
desc~iptions are included here. These common error messages
will be recognizable to the operator since they are prefaced
with a pair of asterisks <**) and a two-digit reference
number. Each command may, in addition, have a set of
specific error messages that will not be displayed by other
commands. These specific error messages will not have the
aste~isks or two-digit refer~nce number. Such messages are
explained along with each command's detailed description in
PART II. A summary of the standa~d error messages can be
found in Chapter 28. Ine messages are listed there in order
of their two-digit reference numbe~so

WHAT?

The first name entered on the command line was
not the name' 0 f -a f i 1 e in' the dis k e t t -e ' s'
directory. Most oTten this error occurs as the
result o~ a mistyped command name.

Page 02--09

GENERAL SYSTEM OPERATION 2.0 -- Common Error Messages

** 01 COMMAND SYNTAX ERROR

The s~ntax of the command line parameters could
not be interpreted. Most often this error refers
to undefined characters appearing in the options
field.

** 02 NAME REGUIRED

The file name r~quired by the command as a
parameter ~as omitted from the command line.

** 03 <name> DOES NOT EXIST

The displayed file name was not ~ound in the
diskette's director". The file name must exist
prior to using the command. The <name~ is
displayed to show ~hich name of the multiple
names specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The file name entered on the command line as a
parameter does not exist in the diskette's
directo~~. The file name must exist prior to
using the command. No file name is displayedl
since only one parameter is required by the
command.

** 05 <name> DUPLICATE ·FILE NAME

The displayed file name already exists in the
diskette's director~. The file name must not
exist prior to using the command. The <name> is
displayed to show which name of the multiple
names specified as parameters caused the error.

** 06 DUPLICATE FILE NAME

The rile name entered on the command line as a
param~ter . already exists in the diskette's
directory. The rile name must not exist prior to
using the command. No rile name is displayed,
Since only one parameter is required by the
command.

** 07 OPTION CONFLICT

The speciried options were not valid ror the type
of function that was to be performed by the

\
)

command. Severa 1 of th e op ti ons are mutua 11 y '\
exclusive and cannot be specified at the same ~

time.

Page 02-10

GENERAL SYSTEM OPERATION 2.6 -- Common Error Messages

** 11 DEVICE NOT READY

Most frequently this indicates that a command is
trying to output to the printer while the printer
is not ready.

** 12 INVALID TYPE OF OB~ECT FILE

Most frequently this indicates that an attempt
was made to load a program into memory whose file
does not have the "loadable tf memory-image format,
e. g., a source file.

** 13 INVALID LOAD ADDRESS

An attempt was made to load a program into memory
that: 1) loads outside of the range of
contiguous memory established at initializationi
2) loads over the resident operating system; 3)
loads below hexadecimal location $20; or 4) loads
beyond hexadecimal location $FFFF.

** 25 INVALID FILE NAME

A ~ile name was specified that contained a family
indicator (*'~ that began with a device name
indicator (#)~ or that did not begin with an
alphabetic character.

** 41 INSUFFICIENT DISK SPACE

A command is trying to create a file or to write
into a file. Upon trying to allocate more file
spacel insufficient room remains on the diskette
to accommodate the space requirements.

**PROM 110 ERROR--STATUS=nn AT h DRIVE i-PSN J

An unrecoverable error occurred while tr~ing to
access the diskette. The error status linn" is a
value returned by the diskette controller. The
errors are or the same t~pe that cause the
initialization process to give control to 'EXbugi
however, instead of beginning with the letter
liE II , the status (nn) begins with the digit "3".
The second digit of the status corresponds
directly to the diskette controller error number
discussed in section 2.3. The liE" has been
replaced by the "3". Thus, status

Page 02-11

~ENER AL SYSTEM OPERAT I ON 2.6 -- Common Error Messages

31 is the same as El
32 is the same as E2

39 is the same as E9.

A memor~ address (only meaningful for s~stem

diagnostics) is substituted .par the letter "hili
the d~ive number is substituted for the letter
I'i"; and the physical sector number (PSN) at
which the error occurred is substituted for the
1 etter II J ".

2.7 Diskette File CQncepts

In MDOS, a diskette file is a set of related information
that is recorded more or less contiguously on the diskette.
The information can be actual machine instructions that
comprise a command or user program. The information can also
be textual data, object program data, or any of the Torms
described in Chapter 24. The following section describes how
files are named, created, deletedl and protected.

2.7.1 File name specifications

An MDOS file name specification consists of three parts:
a "file name", a "suffix", and a "logical unit number... File
names can be from one to eight alphanumeric characters in
length, the first oT which must be alphabetic. The
alphabetic characters must be uppe~ case letters. Valid rile
names could look like the following:

DIR
ASM3870
BACKUP
50'
BLOKEDIT
Z

In most cases, all that need be specified when a file
name specification .~ called for is the ~ile name. The
suffix and logical unit numbe~ are usually given appropriate
default values by the various commands.

The suffix can be either one or two characters in
length. Like Tile names, suffixes must begin with an uppe1'
case alphabetic. character. T~e rest or the suffix must be
alphanumeric. A suffix is used to explicitly refer' to a
par tic u 1 are n t r \I in the d ire c tor \I . Th a tis I the l' e ma y b e
several ent~ies with the same file name but with different
suffixes. In such cases, a file name reference alone would

Page 02-12

,.~

)

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

be ambiguous. Thus, the suffix is used to differentiate
between entries with the same file name. Usually,. suffixes
designate a particular format of the file. Thus, a source
file could have the suffix IISAII. Its assembled obJect
version could have the same file name but with the suffix
"LX", and its executable version could have the same file
name but with the suffix "LO". MDOS commands usually supply
an appropriate default suffix wnen dealing with specific
f i 1 es.

If both file name and suffix are specified, they must be
separated by a pel'iod <. >. The following are examples of
valid file name specifications using both file name and
suffix:

BLOKEDIT.CM
Z.SA
PROC1. CF
DOCUMENT. Y

Since each diskette is a complete file system in itself,
with complete directory and system files, it is possible to
have directory entries with the same file names and suffixes
on sepal'ate diskettes. Thus, the logical unit numbel' is
required to uniquely specify a directory entry on ~ given
dl'ive. Logical unit numbers consist of a single decimal
digit (0, L 2, or 3). In most case.s, MDOS commands supply,a
default value for the logical unit numbel'. If a pa~ticular

drive must be identifiedJ it must be entered by the operat·or
as a part of t~e file name specification. Logical unit
numbers follow either the file name or the suffix depending
on whether one or both are specified. The logical unit
number must be separated from the file name o~ from the
suffix by a colon (:). The following are examples of valid
file name specifications u~ing logical unit numbers.

2.7. 1. 1 Fami ly names

BLOKEDIT. CM:O
TEST. X: 1
DIR: 1
Z456.D3:3
ASM:2

Some commands allow the operatol' to specify a family of
file names. Family indicators can occur in either the file
name or the suffix. An asterisk <*) is used as a family
indicator. The family indicator represents all or part of a
file name or suffix. For exampleJ

FILE. *
would be a file name spacirication that includes all

Page 02-13

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

directory entries with the ~ile name "FILE
su~fix on the default drive. Similarly,

II but Ulith an"

PROG*.SA

is a file name specification that includ~s all directory
entries with "PROG u as the first four characters of their
file names, regardless of Ulhat the remaining characters arel
and with suffix "SAil on the default drive. The asterisk
cannot have characters following it. Thus; the following
file name specifications are invalid:

*PROQ. SA
PROGRAM.*B

Not all commands allow file
contain the family indicator.
descriptions should be consulted
indicators are acceptable.

2.7.1.2 Device specifications

name speciFications to
The individual command
to see where family

Some commands allow the operator to enter a device
specification in the command line instead of a File name
specification. Device specifications consist of two parts:
a "device. name II and an optional "logical unit number".
Device names are two characters long, both of which must be
alphabetic. A pound sign (#) is used as a leading character
to indicate that the subsequent two-character sequence is a
device name. For example,

#LP
#CN

are valid device names used ror the line ~~int~r and the
console, respectively. A device specirication may be entered
with a logical unit number. Logical unit numbers must rollo~

the device name and must be separated -rl'om it by a colon (: >.
The individual command descriptions should be consulted to
see where device specirications are allowed.

2.7.2 File creation

MDOS riles are nev~r explicitly created by the operator.
All commands that write to output riles ~ill create them
automatically ir they do not exist. Files will be created
according to the rile name specification given on the command
line. That is,. if explicit suffixes and logical unit numb.ers
are specified, the rile will be created on the indicated
drive. Otherwise, the appropriate default values supplied by
~ne command will be used to c~eate the rile. Existing riles
are unaffected by the creation of a new file.

Page 02-14

GENERAL SYSTEM OPERATION 2.7 -- Diskette File Concepts

2.7.3 File deletion

Unlike file creation, file deletion is controlled
explicitly by the operator via the DEL command which is
described later. No other command program will delete
existing files on the diskette. Exceptions to this are
commands that automatically cr~ate an intermediate work file
to perform the command's function. These intermediate files
are deleted by the command as an automatic clean-up process.

2.7.4 File protection

All MDOS files can be configured with delete protection,
with write protection: or with no protection. Delete
protection will prevent the operator from inaoverten~lY
deleti~g the file (the protection can be changed by the
ope rat 0 r sot hat the f i 1 e can bed e 1 e ted) . Wr i t e pro t e c t ion
will prevent any command from writing to that file as well as
preventing deletion of the file. Normally, files are
unprotected, alloUJing both writing to or deletion of the
file. The NAME command, described later» can be used to set
or to change a file's protection.

2.8 Typical Command Usage Examples

The following sections give simple, but meaningful,
descriptions and examples of the most frequently used MDOS
commands in a typical software development environment. No
attempt is made in these sections to cover all capabilities
and options of the described commands. The detailed command
descriptions in PART II serve that purpose. After reading
this section, the operator should be able to go "on-line"
with MDOS and be able to display the directory of a diskette,
create a source program file, assemble it, and load it into
memory for testing. The commands to delete a file, to change
its name or protection, to copy it between diskettes or to
tape are also described. New MDOS diskette generation is
discussed in the last part of this section.

It is assumed in the subsequent discussion that the
system has been properly installed and initialized. Thus, a
system diskette with the MDOS commands resides in drive zero.
Command program files have a suffix of "eM" which is supplied
as a default to the first file name that is entered on the
command line. The default logical unit number that is
supplied is n:o", In the command examples that follow, it
will be seen that both suffix and logical unit number are not
specified for the command name.

of
The following notation will be used in the description

the command line formats as well as throughout the

Page 02-15

GENERAL SYSTEM OPERAT!ON 2.8 -- Typical Command Usage Examples

.'\
remainder or the manual: j

Notation Meaning

$nnnn

<::>

CJ

{}

Hexadecimal number "nnnn".

Syntactic elements are printed in
lower case and are contained in
angle brackets; e. g.; <options)-,
<name:>.

Optional elements are contained
in square brackets. If one of a
series o~ element$ may be
selected, the available list of
elements will be separated by the
Ulord II or ", e. g. , «tag 1:> or
<tag2:> J.

A required element that must be
selected from the set of elements
will be contained in curly
brackets. The elements will be
separated by the word "01'11.

All elements that appear outside of angle brackets «~)
must be entered as is. Such elements are printed in capital
letters (if words) or printed as the actual characters (if
special characters). For example} the syntactical element
C; (options:» 'T'equires the semicolon (j) to be typed whenever
the <options~ field is used.

2.8. 1 DIR -- Di 'T'ec to'T'Y d i sp lay

The DIR command is used to display
diskette's dir~ctory. Either the
selective parts of it can be displayed.
command line for the DIR command is:

the contents Or a
entire directory or

The format of the

DIR (name>] Ci(options/J

The file name specification <name> indicates what to
display, The <options> specification indicates how to
display it. If DIR is entered by itself on the command line}
it will display on the system console the rile names or all
user-generated files on drive zero. If no user-generated
files exist on drive zero, a message will be displa~ed

indicating that no di'T'ectory .entries we'T'e found. This is
nO'T'mally the case when OIR is used without any options on the
system diskettes that a'T'e shipped with the new system. To
display the system and the useT'-geneT'ated files, the "S"
option can be placed into the options field:

Page

'.J

02-16

I
I

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

DIR is

IT drive one's directory is to be displayed, then a U; 1"
must be typed in place Or the file name specirication:

DIR : liS

To direct the output of the DIR command to the printer,
only one other option letter need be speciried -- "L". Thus,

DIR : liLS

will produce a listing of drive one's complete directory on
the printer. The "S" and "L" can be in any order, as long as
they rollow the semicolon.

The DIR command can also be used to see if a specific
rile name exists on a given drive. This is accomplished b~

entering a complete rile name specirication (i .. e. I name,
sUrTix, and logical unit number>. Thus,

DIR EDIT. eM: 1

will perform a directory ~earch ror the indicated file name
specirication on drive one. Ir the directory entry exists,
its file name and suffix will be displayed. Otherwise, a
message indicating that no entries were found will be
displayed. Directory searches -for specific rile names do not
require the US" option to distinguish between system files
and user riles. Chapter 9 contains a complete de~cription oT
the DIR command's use.

2.8.2 EDIT -- Program editing

The EDIT command is used to create and/or to change
user-tllT'itten SOUT'ce p-rogram and data riles' on diskette. The
EDIT command, although an MDOS-Supported product which may be
purchased separately, is mentioned here since it is such an
integra 1 part of th e software d eve 1 opment envi ronment. Th e
EDIT command, if not included on the MDOS system diskette,
must be copied from the diskette on which it was shipped (see
section 2.8.9). Once the EDIT command resides ori the system
diskette, it is invoked with the rollowing MDOS command line:

EDIT <name>

If the EDIT command is not copied to the system diskette, it
can be invoked rrom the diskette in drive one with the
following command line:

EDIT: 1 <name>

The only parameter supplied on the command line is the

Page 02-17

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

name of the file that is to be edited. If the file does not
e xis t,t heED IT comma n d wi 11 ere ate the f i 1 e i iTt her i 1 e
a 1 T' e ad y e xis t s , t h en i t will b e use d . The s u f T i x liSA" I W hie h
is typically used for ASCII source files, is automatically
supplied as a default if no suffix is entered on the command
line. Thus, the user need only specify the name of the file
to be edited. Upon completion of an edit: 'toe rile name will
be unchanged. That is, a user need not be conceT'ned about
renaming his files bet~een edits. A complete desc~iption of
the EDIT command's format and usage is round in the manual
accompanying the EDIT command diskette, "M6800 Co-Resident
Editor Reference Manual".

2.8.3 ASM or RASM -- ProgT'am assembling

The ASM and RASM commands rOT' MDOS and RASMC9 command
faT' MDOS09 (hereafter called the assemblers) are used to
assemble the source program files created with the EDIT
command. The assemblers translate these source programs into
object programs. The assemblers, although both
MOOS-Supported so~tware products which may be purchased
separatelYI are mentioned here since they are such an
integral part of the software development environment. I~

not included on the MDOS system dis~etteJ the assemblers must
be copied from the diskette on which they were shipped (see
section 2.8.9). Once the assemblers reside on the system
dis k e t t e , the \j are i n v 0 ked III i t h "t her 0 11 0 win 9 MOOS comma n d
1 ine:

{ASM or RASM or RASM09} <name~ C;<options~]

If the assemblers are not copied to the system diskette in
drive zero, they can be invoked from the diskette in d-rive
one by using the following command line:

{ASM: 1 or RASM: 1 or RASM09: 1} <name~ Ci<options~]

The only re~uired parameter is the name of the ~ile that"
is to be assembled. Normally, this lIIould be the name of the
rile speciried in the previous description or the EDIT
command. The assemblers will automatically supply the
default suffix for both the source file that is read (SA) and
rOT' the object File that is created (LX} assuming that the
OPT REL OT" OPT ABS assembler directive was not used), Such
an object file will be in the standard, EXbug-loadable
format. Such files cannot, however} be loaded by MDOS (see
section 2.8.5). The obJect Tile will have the same file name
as <name~, but a different suffix will be assigned to it to
differentiate it from the sou~c~ file.

Normally, a listing or the assembled program is desired. "~
lne assemblers will not p~oduce a source listing unless the
option to do so is specified in the <options~ field. Thus,

Page 02-18

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

the command line to assemble a source program rile named
TESTPROG with source listing output w.ou.ld appear as:

{ASM or RASM or RASM09} TESTPROGiL

As with the DIR command, the "L" option directs the
printed output to the printer. If. printer is not
available! or ii= the program is short, the'source listing can
be produced on the system console by using the following
option:

{ASM or RASM or RASM09} TESTPROGiL=#CN

If errors are detected during the assembly process, they
will be included on the source listing. If no source listing
is being produced, errors ~ill automatically be displayed on
~ne console. Typically, ~ne software development process
involves several iterations of the editing and assembly
processes before an error-free object i=ile is produced. The
assemblers, ho~everl require that the object file does not
exist prior to the assembly process. Therefore, if a
duplicate file name error message is displayed, the obJect
file already exists. It must first be deleted bei=ore the
assembly process can continue. The next section describes
the process oT file deletion.

During the iterative process of editing/assembling to
obtain an error-free program, the obJect rile created by the
assembler can be suppressed by specifying the option "-0" in
the 0 p t ion s fie 1 d . Th e comma n d lin e

{ASM or RASM RASM09} TESTPROGiL-O

for example, ~ill assemble the source program as in the above
examples creating the listing on the line printeri however,
the obJect file ~ill not be created. Thus, the deletion of
the obJect file between repetitive assemblies is not required
since it is never created.

The "M6800 Resident Assembler Reference Manual" or the
"M6800/M6801/M6805/M6809 Macro Assembler Reference Manual"
should be consulted ror a complete description of the
ass em b 1 e 1" s I oF u n c t ion IUS age, and comma n d for ma t.

2.8.4 DEL -- File deletion

The DEL command is used to delete file names from the
directory. The removal of a file's name from the directory
makes the file unaccessible to any other process. The file
itself is effectively deleted. Thus,iD the subsequent
descriptions, the phrases "delete a file·name ll and "delete a
file" are equivalent. The i=ormat of the command line for the
DEL command is:

Page 02-19

:ENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

DEL <name>

which will cause the specified file to be deleted. If the
obJect file from the assembly process example above is to be
deleted, for instance, the following command line ~ould be
entered:

DEL TESTPRQG.LX

It should be noted that the suffix is specified. Since
the DEL command is a general purpose command, like the DIR
commandl no default value for the ~uffix is supplied. Only
those commands that can validly make an assumption about the
t y p e 0 f f i 1 e the y UJ i 11 bed e ali n 9 wit h (e. g., ED IT, ASM I
R ASM) . wi 11 $ U P ply d e fa u 1 t s u f T i xes.

The DEL command will display a message indicating that
the Tile name was deleted o~ that the file name was not
found. Chapter 8 contains a complete description oT the DEL
command's other capabilities.

2.8.5 EXBIN -- Creating program load module

The EXBIN. command is used to coryveT't the obJect file
fT'om the assembly process (assumes no OFT REL OT' OPT ASS in
source file) into a file ~hose contents can be loaded into
memory ror execution. MDOS can only load programs into
memory that are in memory-image files. Thus, the EXBIN
command must be invoked after an ~ssembly process to CTeate
the loadable file. The fo~mat of the command line for the
EXBIN command is:

EXBIN <name:>

The <name/ speci~ied on the command line is the name o¥
the EXbug-loadable obJect file created by the assembler.
Only the rile name need be specified. The de¥ault suffix
"LX" is automatically supplied by the EXBIN command. A file
in the memory-image format will be created by the EXBIN
process that has the same fila name as <name>, but has the
su¥fi~ "LO" to differentiate its file type. The following
command line

EXBIN TESTPROG

will convert the file TESTPROG.LX:O to its memory-image
equivalent TESTPROG.LD:O. Thus, the processes of editing.
assembling, and obJect rile conversion can all be performed
on a rile by only. T'eferring to its file name. The suffix
UI i 11 b e au t oma tic alI y sup P 1 i e d. Norma 1 i Y I EXB IN UJ i 11 not
display any messages. The next section will describe how to
load a program from a file into memory a~ter it has been
converted into the proper rormat. Chapter 14 contains the

Page 02-20

'\

./

\

. .J'

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

complete description of the EXBIN command.

2.8.6 LOAD -- Program loading/execution

The LOAD command is used to load programs from a
memory-image file on the diskette into memory. After the
program has been loaded, the debug monitor can be given
control (-FOT" testing the program), or the program can be
given control directly (Tor execution>. The format of the
command line for program loading is:

LOAD <name> Li<options>J

The name of the file ~hose contents are to be loaded is
given as <name::>. The default suffix tlLO" is automatically
supplied by the LOAD command. Thus~ in normal software
develop~ent, only a file's original source program name is
required to take a user through the Tour processes of
editingl assembling, object file conversion. and program
loading.

The <options> field of the LOAD command line is used to
specify whether the debug monitor pr the loaded program is to
be given control, and whether or not the program overlays the
resident operating syst,em. If the. file TESTPROG Trom the
previous examples was origined to the hexadecimal memory
address $100, the following command line:

LOAD TESTPROGiV

would be used to load the program. The "V" option is used to
specify that the program to be loaded will overlay the
resident operating system. If the "V" option were left off
the command line, an error message Ulould be displayed. The
absence of the "G" optibn letter means that the debug monitor
will be given control after the program is loaded. SOJ the
above example would be used to load TESTPROG into memory for
testing.

If, on the other handl the program TESTPROG has already
been tested and Ulorks, the command line:

LOAD TESTPROGiVG

UJould be used to load and execute the program. No operator
inte~vention is required to speciry the starting execution
address. This is only true if the starting execution address
has been specified on the END statement Or the source program
during the assembly process.

Typically, most user-written programs that have been
developed prior to receiving the MDOS system would be loaded
and tested in this fashion. Programs that are developed with

Page 02-21

GENERAL SYSi~~ OPERATION 2.8 -- Typical Command Usage Examples

MDOS as a bas i s (i. e. I programs that use th e res i dent sy stem
functions) are loaded without the "V" option. Chapter 18
describes the details of the LOAD command and should be
consulted if more information is required.

CAUTION: AFTER THE DEBUG MONITOR HAS BEEN ENTERED VIA
THE LOAD COMMAND, MDOS MUST NOT BE INITIALIZED VIA "E800;G"
OR ItMDOS" UNTIL EITHER THE ABORT OR RESTART PUSHBUTTON HAS
BEEN DEPRESSED.

2.8.7 NAME -- File name changing

The NAME command allows file names and/or suffixes to be
changed ~,..om their originally assigned values. Often, as a
program is developed, its author decides that a file name
other than the original one would be more appropriate and
descriptive. The format of the command line for changing a
file's name is:

NAME <name l~,<name 2~

This command line requires the operator to enter two
names', The first 'name, <name l~, specifies the current or
origin.al name o.p the Tile. The default suffil "SAil is
supplied automatically if none is given by the operator. The
second name~ <name 2~J indicates the new name that is to be
assigned to the rile now known bq <name ·1>. Thus. if the
.file from the above examples, TESTPROG, were to be given a
more desc-riptive name, such as BLAK~AC~, the following
command would be used:

NAME TESTPROG,BLAKJACK

In this case, only the .pile name of the source file
~ould be changed. Other files with the name TEST?ROG but
with sUTrixes other than liSA" lJJould remain unaffected. The
contents of the file that has its name changed are also
unaffected only the name in the directory is changed.

2.8.8 NAME File protection changing

The NAME command
att~ibut~s o~ a file.
file's protection is:

is also used to change the protection
The command line format for changing a

NAME <name/i<options~

The <name> ent-ry is required to identify the file whose
attributes are to be changed. The <options~ field contains -~

the 1 e t t e r sO, W~ 0 r X to in d i cat e how the pro tee t ion j .J
attribute$ are to be changed. The letters take on the
following meanings:

Page 02-22

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

D
W
X

Thus,
protected
be used:

Set delete protection
Set write protection
Set no protection (remove existing protection)

if the file TESTPROG (source file) is to be
against deletion, the following command line would

NAME TEST?ROG;D

I~ the memory-image file that ~as produced from the
source OT TESTPROG were to be write protected and delete
protected, the following command line would be used:

NAME TESTPROG.LOiOW

The protection on this file could later be removed with
the command line:

NAME TEST?ROG. LO;X

Chapter 20 describes in more detail the other features
o~ the NAME command.

2.8.9 COpy -- File copying

The COpy command is used to make a duplicate copy of a
file on a single diskette, to move a file between two
di-Pferent diskettes, or to move a file between the console
reader/punCh (record) device and" a diskette.

To make a duplicate copy or a file on the same disketteJ
the following command line is used:

COpy <name l>,<name 2>

where <name 1> specifies the current name of an existing
file, and <name 2> specifies the name of the duplicate cop~.
The default suffix liSA" and the default logical unit number
zero are supplied for <name 1> if those parts of the file
name specification are omitted. NormallYJ the destination
file, <name 2>, does not exist. The COPY command, however,
will alert the operator if <name 2/ does exist, and ask him
if that file should be overwritten. If <name 2> has a
different logicai unit number than the original Tile: the
rile will be duplicated on the specified drive. If the
TESTPROG source file from the above examples is to be saved
in' a f i 1 e call e d TEMP I the foIl ow i n 9 comma n d 1 in e wo u 1 d b e
used:

COpy TESTPROQ,TEMP

The file TEMP will be created on the same drive as

Page 02-23

iENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

TESTPROG, namely} drive zero. To copy TESTPROG to drive one,
one need only specify the logical unit number (: 1) after the
sec ond name.

The COPY command should be used to move the EDIT, ASM,
and RASM commands from their separate diskettes onto the
!;'lstem diskette in drive zero. Since the names
ASM, and RASM commands are to be kept the same,
name can be omitted completely. All that
specified is the logical unit number. Thus,

COPY EDIT. eM: 1,:0
Copy ASM.CM: 1,:0 .
COPY RASM.CM: 1,:0

of the EDIT!
the second

needs to be

~ould be the commands that are entered
drive one contained these files.
explicitly specified since neither the
commands are source programs.

if the diskette 1n
The suffixes "eM" are

EDIT, ASM, or RASM

A similar procedure would be followed to copy any files
from a diskette in any drive to the system diskette in drive
zero. If a diskette has been damaged or cannot be used to
initialize MDOS, it may be placed in anQthe~ drive in attempt
to save any files that may be" on it. The COPY command should
be used to save files in this manne~. If diskette controlle~
e~~ors occur du~ing such a save process, the files cannot be
recovered.

I~ a user has existing files on paper tape 0'1' cassette
that are written in one of the standard reco~d formats (i. e. I

records that end ulith a carriage return, line reed, null
sequence see section 24.3) and which can be read via the
console reader, the following command line can be used to
transfe~ those files to diskette:

~here <name 2~ is the name of the diskette file into which
the tape Tile is to be ~ritten. The first parameter, #CR,
specifies the console reader device, and the "N" option
indicates that there is no MOOS heade~ record on the tape
fi leo

The above process can be changed slightly so that a rile
on diskette can be written to the console punch (record)
device. For exampleJ

COpy <name l~/#CP;N

wil"l tTansTer the rile named by <name 1> to the console punch
d ev ice I #C P , UI i tho u t the MDOS he a d e r in of o~ma t ion (II Nil
option). Chapter 7 describes in more detail the other
features oT the COpy command.

Page 02-24

GENERAL SYSTEM OPERATION 2.8 -- Typical Command Usage Examples

2.8.10 BACKUP ~- MDOS diskette creation

Ne~ diskettes, or diskettes never before usad on an MDOS
system} must first be prepared for use with MDOS. The
quickest way to generate a new MDOS diskette is to use the
BACKUP command. Usually, a copy is retained of the original
system diskette that was snipped with the EXORdisk II or !I!.
This diskette should be used to generate subsequent MDOS
diskettes. It is recommended that the original diskette not
be used for development purposes. It should serve only as
the master copy from which all other diskettes are generated.

A blank or s.cratch diskette should be placed into drive
one. The master system diskette should be resident in drive
zero. The following command line will then cause a complete
copy of the master diskette to be created:

BACKUP iU

The "U" option specifies that the entire surface of the
diskette in drive zero is to be read and copied to the
diskette in drive one. This process ensures that all sectors
on the new diskette can be written to. Once the BACKUP
command has been invoked in this way, it will display the
following message:

BACKUP FROM DRIVE 0 TO 1?

to which the operator should respond with a "y".
response will terminate the BACKUP processJ

. dis k e t t e. i n d r i ve 0 n e i n ta ct. The II Y II res p 0 n s e
the diskette copy to take place.

Any ether
leaving the
wi 11 cause

As an added precaution, the two diskettes should be
compared against each other after the BACKUP command has
completed. This diskette veriTication is invoked with the
following command line:

If any messages are
processJ the diskette
system diskette.

BACKUP iUV

displayed during the veri~ication

in drive one should not be used as a

Chapter 3 describes the BACKUP command in detail.
Chapter 10 describes an alternative method of generating new
system diskettes.

2.9 Other Available Commands

Several other powerful commands are included with each
MDOS diskette. These commands are not needed initially in

Page 02-25

GENERAL SYSTEM OPERATION 2<9 -- Othe~ Available Commands

becoming Tamilia~ with the s~stemj howeve~1 they do
helpful and necessar~ tools for the advanced
developer. A b~ief description of these commands
here to shed some light on their utility_

2.9.1 BACKUP -- Diskette copying

provide
sOTt4IJare

is given

The BAC~UP command allows making copies of enti~e MDOS
dis k e t t as. apt i on sex i 5 t ? oor ma kin 9 camp 1 e t e cop i e s , for
file reorganization to consolidate fragmented files and
available diskette space, for appending families of files
from one diskette to another, and for diskette comparisons.
Chapter 3 contains the complete desc~iption of the BACKUP
command.

2.9.2 EMCOPY -- EDOS rile conversion

The EMCOPY command allows files from a user's EDOS 2
system diskette to be copied to and catalogued on an MDOS
diskette. Options exist for copying the entire disketta,
selected filesl O~ single files. Chapter 13 contains the
complete description of the EMCOPY command.

2.9.3 BLOKEDIT -- File rearrangement

The BLO~EDIT command allows lines of taxt rrom one or
mo~e ASCII ¥iles to be s~lectively copied into a new 'ile.
This command can be useful in generating ne~ program source
~iIes b~ copying routines from existing source riles} or in
rearranging existing ~iles by copying their lines into a new
sequence. Chapter 5 contains the complete description or the
BLOKEDIT command.

2.9.4 LIST -- File display

The LIST command is used to print any ASCII rile on
either the system console or the printer. Options exist for
numbering lines, specifying page formats, printing headingsl
and indicating starting and ending points. In addition,
files can be accessed by their logical sector numbers for
rapid access to any po~tion of a file. Chapter 17 contains
the complete description of the LIST command.

2.9.5 MERGE -- File concatenation

The MERGE command allo~s one
concatenated into a new file. This
combining several smaller p~ogram

relocatable libraries to be used in

or more files to be
command is useful in
modules or in building

conjunction with the

Page 02-26

/

GENERAL SYSTEM OPERATION 2.9 -- OtheT Available Commands

M6800 Linking Loader. Chapter 19 contains the complete
description of the MERGE command.

2.9.6 BINEX EXbug-loadable file creation

The BINEX command allows memorv-image files to be
converted into an EXbug-loadable format for copying to tape.
This command performs the inverse operation of the EXBIN
command. BINEX is useful in the development of
non-diskett~-resident software with MDOSI since the obJect
code can be written to tape aft~r it has been tested.
Chapter 4 contains the complete description of the BINEX
command.

2.9.7 FREE -- Available file space display

The FREE command displays how many unallocated sectors
and how many empty directory entries are on a diskette.
Chapter 16 contains the complete description of the FREE
command.

2.9.8 ECHO -- Echo console I/O on printer

The ECHO command can be used on an EXORciser II system
to cause all input/output directed to the sys~em console to
also be printed on the line printer. Chapter 12 contains the
complete description of the ECHO command.

2.9.9 PATCH -- Executable program file patching

The PATCH command allows changes to be made to
memory-image files. An obJect file can be "fixed" due to
minor bugs or assembly errors without having to re-edit and
re-assemble it~ corresponding source file. The "fixes" can
be entered using M6800 assembly language mnemonics or the
equivalent hexadecimal operation codes. Chapter 21 c~ntains

the complete description of the PATCH command.

2.9.10 CHAIN -- MDOS command chaining

The CHAIN command allows predefined procedures to be
automatically executed. A procedure consists Or any sequence
oT MDOS command lines that have been put into a diskette
file. Instead of obtaining successive command lines from the
console, CHAIN will fetch commands from a file. This feature
allows complicated and lengthy operations to be defined once,
and then invoked any number of times, requiring no operator
intervention. The additional capabilities Or conditional
directives to the CHAIN command at b~th compilation and

Page 02-27

:ENER AL SYSTEM OPERAT I ON 2.9 -- ather Available Commands

execution time, and the capability oT string substitution,
permits an almost unlimited number of applications to be
handled by a CHAIN file. Chapter 6 contains the complete
description of the CHAIN command.

2.9.11 REPAIR -- System table checking

The REPAIR command allows the user to check and repair a
malrunctioning or a non-functioning MDOS diskette. Errors in
the system tables can be roundJ identiried, and corrected
with this command. Since MDOS performance is directly
related to the correctness of these system tables, the REPAIR
command is a use~ul diagnostic utility_ Chapter 22 contains
th e c omp 1 ete d esci' i p t i on 0 r th e REPAIR command.

2. 9. 12 DUMP - Dis k e t t e sec tor dis P 1 a y

The DUMP command allows the user to examine the entire
contents oT any physical sector on the diskette. The sector
can be displayed on either the system console or the printer.
The display contains both the hexadecimal and the ASCII
eq,uivalent of every byte in the sectoT'. The DUMP command
allows opening of riles so that they can be examined using
logical sectoT' numbe~s. Sectors can also be moved into a
tempora~~ burfe~ ~he~e changes can be applied befo~e they a~e
w~itten back to diskette. Chapter 11 contains the complete
d"escTiption of the DUMP command.

2.9. 13 FORMAT -- Diskette refo~matting

The FORMAT command attempts to ~ewrite the sector
addressing info~mation on damaged diskettes. The command can
be used to reformat either Single-sided or double-sided
diskettes; ho~eve~1 double-sided diskettes must be rormatted
~ith this command befo~e they can be used with MDOS.
Single-sided diskettes usually come pre-formatted in a
compatible ro~mat. The FORMAT command will only Ulork on
systems that are ope~ating at one Or the standa~d clock
rreq,uencies of 1 MHz} 1. 5 MHzl o~ 2 MHz. Chapter 15 contains
the complete descT'iption of the FORMAT command.

2.9. 14 DOSGEN -- MDOS diskette generation

The DOSGEN command allows specialized MDOS diskettes to
be prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
MDOS" environment. DOSGEN will a"lso create all system tables
and files on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or on approp~iately formatted double-sided diskettes.

Page 02-28

"/

" ...,/'

GENERAL SYSTEM OPERATION 2.9 -- ather Available Commands

Chapter 10 contains the complete description of the DOSGEN
command.

2. 9. 15 ROLLOUT -- Memory ro 11 out to dis k ette

The ROLLOUT command is used for 'writing the contents of
memory to diskette. Ine ROLLOUT command supports the
dual-memory maps of EXORciser II as well as the single memory.
map of EXORciser I. Options exist for writing memory
directly into a diskette file or for writing to a scratch
diskette. Chapter 23 contains the complete description of
the ROLLOUT command.

2. 10 MDOS-Supported Software Products

Although the preceding list of commands provides the
user with many powerful tools for software development, there
are many other Motorola products which are capable of running
in an MDOS environment, even though they were developed
independently. These products are called MOOS-Supported
software products. No attempt will be made in this User's
Guide to comprehensively describe any MOOS-Supported software
product. Appendix H contains a list (complete at time of
publication) of all products that can be invoked from an MOOS
diskette as a command. Each description will contain the
additional hardware requirements, if any, the command line
formats, and a brief discussion of the product's
capabilities. (MOOS-Supported software products Ulill be
received on separate diskettes. Section 2.8.9 describes how
such products can be copied onto the system diskette.

2.11 Paper Alignment

All MDOS commands that output to the line printer will
return the paper to its original position upon termination.
Thus, if the paper is correctly aligned at the time MDOS is
initialized, then the paper will never have to be aligned
again. The paper should be placad so that the print line is
positioned three lines berore a perforation (assuming
fan-fold forms>. MDOS commands use the standard format of 66
lines/page.

Page 02-29

CHAPTER 3

3. BACKUP COMMAND

The BACKUP command allows making copies of entire MDOS
diskettes. Options exist for making complete copiesJ for
file reorganization to consolidate fragmented files and
available spacel ror appending families of files from one
diskette to another, and ror diskette comparisons. The
BACKUP command will only copy MDOS=generated diskettes. The
BACKUP command may also be used for copying single-sided
diskettes onto double-sided diskettes.

3. 1 Use

The BACKUP command is invoked with the following command
line:

BACKUP ((:<s-unit>1 J:<d-unit>J Li<options>J

where <s-unit> is the source logical unit number, <d-unit> is
the destination logical unit number; and <options> can be one
or more Or the option letters described below .

.
If neither <s-unit> nor <d-unit> is specified on the

command linel then zero will be used as the source unit and
one will be used as the destination unit. Specifying only a
single logical unit number on the command line will cause
zero to be the source unit and the specified logical unit to
be the destination unit. Both <s-unit> and (d-unit> must be
valid logical unit numbers (0-3») <d-unit> cannot be zero,
and the two numbers cannot be the same.

BACKUP will always copy rrom the source unit to the
destination unit (unless diskette comparisons are specified).

I r the comma n d 1 i n e i s val i d I the me s sag e :

BACKUP FROM DRIVE <s-unit> TO <d-unit>?

01'

APPEND FROM DRIVE <s-unit> TO (d-unit>?

will be displayed where <s-unit> is the source unit number
and .<d-unit) is the destination unit number. In either easel
a response of "Y" is required if BACKUP is to continue. Any
other response will return control to MDOS. Further BACKUP
action depends on the specified options. The options are
divided into "Main Options" and "Other Options". Main

Page 03-01

BACKUP COMMAND 3. 1 - Use

Options are mutually exclusive. That is, only one Main
Option can be specified on the command line at a time. The
Other Options can be included with the Main Options as
desc~ibed in section 3.6.

--,

~ain Options

none

R

A

v

ather Options

C

D

I

L

N

s

u

y

z

Function

Cop~ all allocated space to destination
diskette.

Reo~ganize diskette so that files a~e
defragmented and free space is
consolidated on destination diskette.

Append (copy) selective Tiles to
destination diskette.

Verify (compare) source and destination
diskettes.

Function

Continue i~ read/write erro~s occur.

Continue i~ deleted data mark errors
occur.

Change ID sector during copy.

Use line printer for bulk of message
printing.

Suppress printing of file names being
copied.

Suppress printing oT byte orfsets during
c ompar i sons.

Include unallocated space in copy/verify
process.

If duplicate Tile name exists.
old, cOP1:I new.

delete

If duplicate ~ile name exists, suppress
copy.

- .. /

3.2 Diskette Copying

If no Main
BACKUP process

Options are
will produce

specified,
a physical

then the default
sector copy or the

Page 03-02

)

/

BACKUP COMMAND 3.2 -- Diskette Cop~ing

sou~ce diskette on the destination diskette. Only the
allocated space from the source diskette will be copied. The
allocated space includes all file space· and all areas locked
out in the Lockout Cluster Allocation Table (see Chapter 24).
Thus, only MDOS-generated diskettes can be copied using the
BACKUP command, since other diskettes will not have an
allocation table.

Since only. the allocated space is copied; the minimum
amount of disk space is copied, and the BACKUP p~ocess is
completed in the minimum amount of time. Sometimes, however,
it is desirable to obtain a complete copy, and not Just a
copy of the allocated space. In such cases, the "U" option
can be used to fo~ce the copying of unallocated space as well
as the allocated space.

A typical BACKUP process dialogue would look like the
follouling:

=BACKUP
BACKUP FROM DRIVE 0 TO 1?
y

=

and would produce a copy on the destination diskette of the
source diskette's allocated space.

If an EXORdisk III system is being' used, then the
destination diskette cannot be a single-sided diskette ir the
source diskette is a double-sided diskette. The error
message:

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control ~eturned to MDOS to indicate
this condition. The opposite, however, is allowed. That iSI
a single-sided diskette can be in the source drive with a
double-sided diskette in the destination drive.

3.3 File Reorganization

After an MDOS diskette has been used Tor a while, the
Tile structure may become fragmented and new riles can become
scattered. The longer a diskette is used in a development
environment, the more the total system perTormance may be
degraded due to increased access time. File reorganization
is supplied by the BACKUP command and constitutes one way to
restructure MDOS diskettes, thereby improving the system's
@TTiciency.

Page 03-03

BACKUF COMMAND 3.3 -- File Reorganization

File reorganization improves system e~~icienc~ by:

1. Consolidating rile segments,
2. Packing files more closely together,
3. Clustering related files together,
4. Operator selection to only copy desired Files,
5. Reducing marginal diskette errors by re~riting

-Piles,
6. Consolidating directory space.

File reorganization is specified with the Main Option
fiR" on the BACKUP command 1 ine. Thus,

would invoke the BAC~UP comm~nd to reorganize the Tiles on
the source diskette in drive <s-unit> during the copy to the
destination diskette in drive <d-unit>. The source diskette
must be an MOOS diskette. It is unafrected by the
reorgani zation. The message

BAC~UP FROM DRIVE <s-unit> TO <d-unit>?

is displa~ed beTore any copying takes place. Unlike the
complete copy process which ~ill proceed immediately after
the "yn respon~e is given by the operator, the reorganization
process will perform the following initialization procedure:
First the ID sector is copied (and optionally modified if the
If I·I 0 P t i on wa ssp e c i fie d) . 5 e con d I the L 0 c k 0 u t C 1 us t e l'
Allocation Table (LCAT) and the Cluster Allocation Table
(CAT) are initialized (user locked out sectors are not copied
during the reorganization process). Third, the directory
sectors on the destination disk are zeroed. Fourth, the
Bootblock is copied. Fifth, all of the file names from the
source diskette'S directory are read. They are then sorted
into alphabetical order, first by suffix} then by file name.
After the sorting has been completed the ~ollowing message
~ill be displayed:

ENTER FILE COpy SELECTION COMMANDS:
SAVE (5), DELETE (D), PRINT <P), QUIT (G), NO MORE (CR)
5. DJ p, G, (CR) :

indicating that the operator must enter file selection
commands to speciFy which ril@s from the source diskette are
to be copied to the destination diskette. The first line of
the message indicates that BACXUP has reached the Tile
selection stage. The second line contains the function of
each file selection command as ~ell as the letter that must
be used to issue that command. The third line is used as a
prompt for the curren't and subseq,uent· rile selection
commands.

Page 03-04

BACKUP COMMAND 3.3 -- File Reo~9anization

Command Letter Function

SAVE S Include a certain file name or family
of file names from the sorted
director~ in the set of files to be
copied to the destination diskette.

DELETE D Exclude a certain file name or family
of file names from the sorted
directory from the set of Tiles to be
copied to the destination diskette.

PRINT P Displa~ the set of file names from
the sorted directory that are
eligible to be copied to the
destination diskette.

QUIT G Terminate the BACKUP command and

NO MORE

return to MDOS. No copying will take
placei' howeverl the destination
diskette has been affected due to the
reorganization option as explained
above.

(CR) Entered as a carriage return only.
No more commands will be entered.
The files to be copied have been
selected. If no file selection
commands were issued, all 'iles in
the sorted directory will be / copied.
Begin the cop,=, process.

Both the SAVE and DELETE commands require file names to
be specified as parameters. The format of the SAVE and
DELETE commands are the same, exceptJ oT coursel TOT' the
command letter:

{D OT' S} <name l>C,<name 2>, ... ,<name n>J

The file nam.s specified can contain the family indicatoT'.
The default suffix "SA" will be supplied if none is
explicitly entered. FoT' example, the SAVE command:

S *.CM,EGU, IOCB. *
will cause the ~amily of files having the suffix "eM", the
rl~e EGU.SA, and the family Or files having the name rOCB to
be flagged as saved. The DELETE command: .

will cause the family of files beginning with the letter itA If
and havi ng a sufT i x of "eMil, th e f i 1 eNOL. SA. and th e -rami 1 y

Page 03-05

BACKUP COMMAND 3.3 -- File Reorganization

of files named TEST with suffixes beginning with the letter '\
ttL" to be flagged as deleted. .j

After a SAVE or DELETE command has been entered, each
file name of the sorted directory which has not already been
marked as "saved" or "deleted" and which matches one of the
<name i> (i=l to n) will be marked as "saved" or "deleted".
After all thE -File nam~s .prom the SAVE or DELETE command line
have been processedJ a ne~ prompt:

S, D, p, (1, (CR):

will be displayed. The operator can then enter further SAVE
or DELETE commands as well as an'1 oT the other valid commands
of the BACKUP file selection process.

Once a command other than SAVE or DELETE is enterea one
of two things happens to the sorted directory. I.p at least
one SAVE command has been processed without error, then all
file names in the sorted directory not marked as "saved" will
be marked as 'Ideleted". On the other hand} if no prior SAVE
commands were usedJ then all file names not marked as
" del e t e <i tI UJ i 11 bee 1 i 9 i b 1 e f or cop yin g (mar ked a s It save d ..).

The GUIT comman,d can be entered at an~ time in 1"esponse
to the file selection command prompt. QUIT will cause the
BACKUP process to be terminated and control returned to MDOS.
The file selection commands entered thus far ~ill have had no
efTect on the destination diskette; however, due to ·the
reorganization option, the destination diskette will have had
its basic system tables initialized as described above.

The NO MORE command, entered as a carriage return only,
indicates that no more file selection commands will be given
by the operator. If no file selection commands have been
entered prior to the NO MORE command, then all file names in
the sorted directory ~ill be eligible for cop~ing to the
destination diskette. The copy process will begin.

The PRINT command will cause all names from the sorted
directory which have not yet been flagged as "deleted" to be
printed. The PRINT command also makes it impossible to enter
further SAVE, DELETE, or QUIT commands. The PRINT command
has its o~n sub-command structure that allows deletion of
file names from the sorted directorq. Along with each file
name and sUTfix a t~o-digitl hexadecimal number that
indicates the position aT the file name within the sorted
director~ is displayed. Thus, the output rrom the PRINT
command could look like:

Page 03-06

./

BACKUP COMMAND 3.3 -- File Reorganization

00 BACKUP .eM
01 BINEX . eM
02 BL:OKEDIT.CM
03 CHAIN .eM
04 COPY . eM
05 DEL . CM
06 DIR .eM
lD RLOAD .CM
IE FORLB .RO
iF EGU .SA
20 IOCB .SA

The l' a n 9 e 0 f n u m beT's $07 -1 C} inc 1 u s i ve, ism iss in 9 ,
indicating that they have been excluded from the sorted
directory via prior SAVE and/or DELETE commands. If PRINT
UJ ere the fir s t comma n d t 0 bee n t e l' e d .. the n all f i len am e sin
the sorted directory would be seen, and the range or numbers
would be without gaps.

After the PRINT command has displayed all of the file
names, a new prompt will be issued:

DELETE FILE NOS.

to which the operator Can respond with a numbe~} a series of
numbers or ranges of numbers separated by commas, a range oT
numbe'T'sl OT" a single carriage return. The numbers must be
from the set of those displayed in front of the file names.
These numbers are used to indicate which files are to be
excluded from the sorted directory before files are copied to
the destination diskette. For examplel the following entry:

01-03,lE/06

would cause the file names with numbers

to be removed rram the sorted directory befo~e the Tile copy
process beg ins. Another "DELETE FILE NOS. U prompt wi 11 be
displayed if a ·number was entered in response to a previous
prompt. Thus, as many file names as desired can be excluded
from the sorted directory. A carriage return response to the
prompt has the same effect as the NO MORE command described
abo v e i i. e. lit UI ill end f u 1" the r comma n d p 1" 0 C e s sin g and c au s e
the file copy process to begin.

After the Files to be copied have been selected, the
message

COPYING MDOS .SY

will be displayed. This message will in turn be followed by
similar messages ror each of the eight remaining system riles

Page 03-07

BACKUP COMMAND 3.3 -- File Reorganization

that must be cop i ed to every dis kette. The MOOS fami ly of:"\
system files are not shown in the sorted directory since they .J
must be copied. These system files are copied first so that
they will be assured of residing in specific physical
locations required b~ the MDOS initialization process. After
the MDOS system files have been copiedJ the message:

STARTING TO COpy FILES

is d isp layed, ~o11ot.lled by messages or the -Form:

COPYING <name i~

as each file T~om the selected files list is copied to the
destination diskette.

Using the above examp-le o-r the sorted dii'ector\J and the
file names deleted f~om it, the file copy messages would look
like:

COPYING MDOS . SY
COPYING MDOSOVO .SY
COPYING MDOSaV1 .SY
COPYING MDOSOV2 ,SY
COPYING MDOSOV3 .SY
COPYING MDOSOV4 .SY
COPYING MDOSaV5 .SY
COPYING MDOSOV6 .SY
COPYING MDOSER . SY
STARTING TO COpy FILES
COPYING BACKUP .CM
COPYING COpy . CM
COpy ING DEL . CM
COPYING RLOAD .CM
COPYING EGU .SA
COPYING IOCB .SA
=

After all eligible Tiles from the sorted directorij have
been copied, BACXUP will return control to MDOS. The
destination diskette will contain all of the selected files
packed together as closely as possible, leaving as much Tree
space as possible.

3.4 File Appending

The rile append process allows selected single riles or
Tamilies of riles to be copied from the source diskette to
the destination diskette. The Tile append reature of the
BACKUP command is similar to the reorganiiation Teature
except that the destination diskette is not initialized with
new system tables or s~stem rile~ Only the file selection
and the file copying from the source diskette are performed.

.... /

Page 03-08

3.4 -- File Appending

Ina diskette in the destination drive is assumed to be a
valid MDOS diskette. The rile append process is invoked by
using the Main Option "All on the BACKUP command line:

BACKUP : <s-unit/, :<d-unit>iA

Instead of the, "BACKUP FROM DRIVE <s-unit> TO <d-unit>?"
message normally displayed by BACKUP, the message:

APPEND FROM DRIVE <s-unit) TO <d-unit)?

is shown. The operator must respond with a "Y" if the file
append process is to continue. Like the file reorganization
process, the file append process allows the operator to
select which files are to be copied. The messages ror file
selection and the commands to the file selection process are
explained in section 3.3, File Reorganization, and will not
be discussed again here. A,ter all files have been selected;
they ~ill be copied similar to the process described in
section 3.3; however, the MOOS family of system files is not
copied.

Since the destination diskette already contains entries
in its directory, a possibility of Tile name duplication
exists. In the event that one of the selected file names
from the sorted di~ecto~y duplicates a file name in the
destination directorYI the following message will be
displayed:

<name> - DUPLICATION: IS IT TO BE COPIED?

The operator must respond with either an "N" or "Y". The "Nil
response will prevent the file from being copied'to the
destination diskette. Th'e fly" response will cause the
prompt: .

NEW NAME:

to be shownJ to which the operator can respond with the new
name that is to be assigned. If a valid file name and suffix
are entered, they will be used as the name of the destination
file. The default suffix "SA" will be supplied if none is
explicitly entered. If only a carriage return is given as a
response to the prompt, then the file on the destination
diskette' will be deleted (if it is unprotected) berore the
file f~om the source diskette is copied (which will retain
its original name,
diskette's duplicate

in this case>. If
file. cannot be deleted:

CANNOT DELETE DUPLICATE NAME

the destination
the message

will be displayed and the BACKUP command will be terminated.

The ny" and "Zit options can be used in conJunction with

Page 03-09

3.4 -- File Appending

the "A" option to indicate an automatic procedure in the
event of file name duplication. The "Y" option will
automatically cause an attempt to be made to delete the file
on the destination diskette before the copy takes place. If
the "Y" option is in effect, the file name duplication
message from above takes on the following form:

<name> - DUPLICATION: IS COPYING

to indicate that a "V" was given as an automatic response to·
th e II IS T,. TO BE COP lED?" port i on of th e messag e. Th e .. Z u

option ~ill cause the file name duplication message to take
on the form:

<name> - DUPLICATION: IS NOT COPIED

to indicate that an "Nil was given as an automatic response to
the "IS IT TO BE COPIED?" portion of the message.

The rile append process causes space to be allocated on
the destination diskette in contiguous blocks. IP
inSUTricient contiguous space should remain on the
destination diskette for a given file} the file will not be
copied. The el'1"or message

OB~ECT FILE CREATION COPY ERROR

will be displayed and the BACKUP command will be terminated.
The destination diskette may have sufficient space to
accommodate the rile; howeve~1 iT the space is not
contiguousl the above errol' OCCUl'S. To copy the fileJ the
destination diskette should be run thr~ugh the file
reorganization process described in section 3.3, or the rile
must be copied via the COpy command (Chapter 7). After the
last file has been copied to the destination diskette,
control will be returned to MDOS.

3.5 Diskette Ve~irication

The Ma in 0 p t ion tf V It in v 0 k est h eve r i r y pro c e s SOT the
BACXUP command. The verify process allows a physical sector
comparison to be made between the diskettes in the source and
destination drives. The following command line, without the
presence of otheY' options; will cause the verify process to
compare the diskettes' physical secto~s based on the source
diskette's allocation table:

BACKUP : <s-unitJI :<d-unit>iV

If any bytes in any sectors fail to compare, a sector message
and a list of all offsets within the sector that did not
compare is printed:

--......
\
J

../

Page 03-10

BACKUP COMMAND 3.5 -- Diskette Verification

SECTOR nnnn
OFFSET ii DR<s-unit~-JJ DR<d-unit/-kk

where tlii" is the hexadecimal orrset into physical sector
it n n n n If I II J J II i s the hex a dec i ma 1 con ten t s 0 f the sec tor I s b Y t e
on the source diskette, and rt1c1c" is the hexadecimal contents
of the respective sector's byte on the destination diskette.
If all sectors compare, no messages are displayed. Arter the
verification has completedJ control is returned to MDOS.

If an EXORdisk III system is being used,
diskette cannot be a single-sided diskette

the destination
if the source
such cases the diskette is a double-sided diskette. In

message

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

will be displayed and control returned to MDOS. The
oppositeJ however, is allowed; that iSI a single-sided
diskette can be verified against a double-sided diskette.

3.6 Other Options

The Other Options described briefly in section 3.1
cannot be used indiscriminately with any of the Main Options.
This section serves to ~ully explain the use o~ each Other
Option.

Other Valid with Function
Option Main Option

C any The "C" option will cause the copy or
veriTY process to continue even if a
retryable read/w~ite error occur~ed ~hich
could not be corrected. The retryable
errors inc 1 ud e CRe, see k I data mar k I and
address mark CRe errors. The "c" option
will not cause read/write errors on
Retrieval InTormation Blocks to be
ignored.

D any The "0" option will cause the copy or
verify process to continue even iT a
deleted data mark error is detected.
This option allows the verification of
diskettes that have had bad sectors
locked out during the DOSGEN or REPAIR
process (such sectors are flagged with a
deleted data mark). The "D" option
permits a user to copy the maximum amount
oT data from a bad source diskette to a
good destination diskette.

Page 03-11

BACKUP COMMAND

Othe~ Valid ~ith
Option Main Option

3.0 -- Other Options

Function

I nonel R The "I" option indicates that the
diskette's ID sector is to be modiFied by
prompting the operator. The "I" option
will cause the rollowing prompt messages
to be displayed. The operator can enter
new in~ormation if that field of the ID
sector is to be changed.. If the 'ield is
to remain the same as on the source
diskette, then only a carriage return
need be entered.

L any

N

s v

P.,..nmn+.
•• -"'1'" -

OISK NAME:

DATE (MMDDYY) ;

USER NAME;

Operator Response

Maximum or eight
character~ ror
dis k ett.e ID. Format
is similar to that of
a 'i 1 e name.

Six-~igit numeric
date. No check is
made ~or valid months
or days aT the month.

Maximum of twenty
c harac ter~.

The ilL" option cause~ the output rrom the
copy process or from the verification
process to be directed to the line
printer instead of the system console.

The UN" option lIJill suppress the printing
of the rile names as theq are being
copied to the destination diskette. This
option will not suppress the printing oT
error messages.

The US" option will suppress the printing
or the SEctOr- orrset messages iP sectors
do not compare.

Page 03-12

BACKUP COMMAND 3.6 -- Other Options

Other Valid with Function
Option Main Option

U none, V The ~U~ option indicates ~nat all
ph~sical sectors, both allocated and
unallocated, are to be copied or
verified. If "U" is not speciried, only
the allocated sectors, as mapped in the

y A

z A

3.7 Messages

source diskette's allocation table, will
be used.

The "v n option will cause a ny" to be
automatically given as a response to the
rile name duplication error message.
This will automatically Torce the
attempted deletion Or the duplicate rile
on the destination diskette before the
Til e i s cop i e d . The II Y It and " Z ,. 0 P t ion s
are mutually exclusiVE.

The tlZ" option will cause an fiN" to be
automatically given as a response to the
file name duplication error message.
This will automatically prevent the Tile
on the source diskette from bei~g copied
to the. destination diskette. The ItZ" and
"Y" options are mutually exclusive.

The following messages can be displayed by the BACKUP
command. Not all messages are error messagesl although error
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

BACKUP FROM DRIVE <s-unit~ TO (d-unit>?

This indicates BACKUP will copy to the
destination diskette in drive <d-unit> from the
source diskette in drive <s-unit> if a "Y"
response is given. Any other response will cause
control to be returned to MDOS.

APPEND FROM DRIVE (s-unit> TO (d-unit>?

This indicates that BACKUP will perform the file
append process if a "Y" response is given. Any
other response will cause control to be returned
to MDOS.

Page 03-13

BACKUP COMMAND

DISI(NAME:

3.7 -- Messages

The "I" option has been speci'ied. The opeTator
is expected to respond ~ith a new disk ID or a
carriage return.

DATE (MMDDYY) :

USER NAME:

The "I" option has been specified.
is expected to respond with a new
carriage return.

The opeT'atoT'
date OT' a

The III" option has been speciried. The operator
is expected to respond with a new user name OT" a
carriage return.

ENTER FILE COpy SELECTION COMMANDS:
SAVE (5). DELETE (D)I PRINT <P), GUIT (Q/J NO MORE (CR)
5, D; P J G.I (CR) :

The "Rn or "AI' option has been specified.
file selection process is activated. The
line shows wh~t the valid responses are.

The
third

SJ 0, P J (i, (CR) :

SYNTAX ERROR

This is a subse~uent prompt from the file
selection process. SAVE and DELETE commands can
be entered until a P (print), G (q,uit), or
carriage return (NO MORE) is entered.

This indicates a mistake in a response to a
Q,uestion or prompt ~rom the BACJ.<.UP command. The
entire line entered b~ the operato~ is ignored
and a new response must be made.

STARTING TO COpy FILES

This indicates that
director~ are starting
option).

riles
to be

rrom
copied

the
(R

so~ted

or A

Page 03-14

" .

BACKUP COMMAND 3.7 -- Messages

NO FILES TO COpy

This indicates that there are no file names in
the source directory (other than the MDOS s~stem

files) or that all of the file names from the
sorted directory have been deleted. No files are
cop i e d i f the II A II 0 P t ion i sus e d . On 1 y the MDOS
family of system files will be copied if the UR"
option is used.

<name> NOT FOUND

This indicates that a file name or a family of
file names specified by a SAVE or DELETE command
could not be found in the sorted director~.

COPYING <name>

This indicates that the file name specified by
<name> is being copied to the destination
diskette.

<name> - DUPLICATION: IS IT TO BE COPIED?

NEW NAME:

This indicates th~t the file name specified by
<name> alr,ady exists o~ the destination diskette
during the append process. Only a "Y" or "N" is
accepted as a valid response.

This message is displayed if a "V n is given in
response to the preceding message. It allo~s the
operator to assign a new file name to the file
being copied from the source diskette. A
carriage return response (no file name) will
cause an automatic attempt to delete the
d up 1 i cat e des tina t i on f i 1 e to bema de, rat her
than assigning a new name to the source rile.

<name> - DUPLICATION: IS COPYING

This indicates th~t the file name speciried by
<name> already exists on the destination diskette
during the append process. The "V" option caused
an automatic attempt to delete the duplicate
destination rile to be made before the copy
continues.

Page 03-15

BACKUP COMMAND 3.7 -- Messages

<name> - DUPLICATION: IS NOT COPIED

This indicates that the file name speclried by
<nameJ already exists on the destination diskette
during the append process. The HZ" option caused
the rile to be skipped. The destination rile is
unafTec ted.

aB~ECT FILE CREATION COPY ERROR

This usually indicates that insurficient
contiguous space exists on the destination drive
for the file being copied (A option).
OccasionallYI howevert it may mean that an er,..or
was detected in the reading or writing of the
rile;s Ret~ieval Inrormation Block \011. th~

destination diskette.

CANNOT DELETE DUPLICATE NAME

This indicates that the duplicate rile name on
the destination diskette could not be deleted due
to its protection attributes.

DELETE FILE NOS. :

nn <name.>

The PRINT command displays this prompt to allow
deletion or file names by entering thei,..
displayed numbers. The prompt will be
redisplayed until a null response (carriage
return) is given.

After the PRINT command is chosen during the file
selection process, a list of all file names
eligible for cop~ing is displayed. The "nn" is a
hexadecimal number that indicates the position or
the name with respect to the total sorted
directory. The <name.>, of course, is the file's
name and surrix.

SYSTEM SECTOR COpy ERRQR

SECTOR nnnn

This indicates that a system sector could not be
~ead ~rom or written to. BACKUP cannot continue
and control is returned to MDOS.

This indicates that the physical sectors 'fl nnnn "
did not compare during the verify process.

Page 03-16

BACKUP COMMAND 3.7 -- Messages

OFFSET ii DR<s-unit/-Jj DR<d-unit>-kk

This indicates which bytes did not compare du~ing
the vel' i r y p ~ 0 c e s s . The II i i" i s the hex a dec i ma 1
orfset into the sector, II JJ II is the hexadecimal
contents of the byte on the source unit <s-unit>,
ukk lt is the hexadecimal contents of the b~te on
the destination unit <d-unit>.

DIRECTORY READ/WRITE ERROR

This indicates that an internal system error was
encountered Ulhile trying to access ·the directory
of the source diskette. Errors OT this type
indicate a possible hardware problem.

SOURCE FILE COPY ERROR

This indicates that an internal system error was
encountered while reading a Retrieval Information
Block from a file on the source diskette. Errors
of this t~pe indicate a possible hardware
prob lem.

INVALID TO COPY/VERIFY FROM DOUBLE TO SINGLE SIDED

This indicates that on an EXORdisk III. system,
the source diskette was double-sided while the
destination diskette was single-sided. This is
invalid.

3.8 Precautions with BACKUP

The rollowing sections describe some or the precautions
that should be taken when using the BACKUP command in the
various environments that are supported by MDOS.

3.8. 1 BACKUP and the CHAIN process

Since the BAC~UP command has so many dirferent paths
that can be taken, it is generally recommended that BACKUP
not be invoked from within a CHAIN process ~see Chapter 6).
The BACKUP process is so important to the protection of
diskette files that the entire process should be supervised
by the operatoT'.

Diskette verification from within a CHAIN process using
the BACKUP command is also infeasible. The CHAIN command
writes intermediate information to the diskette in drive zero
during its operation. Thus, if BACKUP with the "V" option is
invoked from within a CHAIN process, and if drive zero is
involved in the BACKUP process, then the two diskettes are

Page 03-17

BACKUP COMMAND 3.8 == Precautions with BACKUP

guaranteed to be diffe~ent.

3.8.2 Single/double-sided diskettes

an EXORdisk III systems the BACKUP command can be used
to cop~ or verify from a Single-sided diskette (source
diskette) to a double-sided diskette (destination diskette),
however, the reverse is not allowed.

When a single-sided diskette is copied to a,double-sided
diskette, the system tables (CAT and LCAT) are automatically
adJusted so that they reflect the true amount Or space
available on the double-sided diskette. When a verify takes
place, the CAT and LCAT Ulill be different between the two
diskettes; however, no verification error is displaqed if the
allocated parts of the tables are the same.

3. 8.3 Four-~Tive systems

The BACKUP command has the capability or copying to or
verifying ~ith any of the three drives (1-3) in a four-arive
system. It is not possiblel hOUlever, foT' BACz.<.UP to sense the
difTerence bet~een a two-~rive and a Tour-drive sqstem.
Thus, due to the nature o-r the two-drive disk cont-rolleT''S
Ullth EXORd·isk II, it is possible to destroq a diskette in
drive one if BAC~UP is invoked lUith the "RI! option and if
non-zero numbers aT'e speci~ie~ on the command line TOl'

<s-unitJ and <d-unit~.

If the user has a t~o-dl'ive system, it does not make any
sense for him to enter logical unit numbers qn the command
line when invoking the BACKUP command, since the propel'
default is to copy from drive zero to drive one. If he were
to specify to copy from drive two to drive three with the "R"
option, then the diskette in drive one would be accessed and
subsequently destroyed.

3.9 Examples

Many times it is desirable to differentiate the two
identical copies of diskettes from each other by use of the
ID sector information. The ID sector's contents can be
changed during a dis\(ette copy by using the II!" option.

=BACKUP ; I
BACKUP FROM DRIVE 0 TO 1?
Y
DISK NAME:NEWNAME
DATE(MMDDYY):Ol0978
USER NAME:
=

;'
./

Page 03-18

BACKUP COMMAND 3.9 -- Examples

All in~ormation to the right of the colons is supplied by the
operator. The destination diskette will be given the disk
name NEWNAME which will be printed on the heading lines of
subsequent FREE and DIR command invocations (see Chapters 16
and 9 ,re s p e c t i vel y) . Th e d ate 0 f the dis k c: 0 P \j t hat i s
generated is January 9, 1978, and the same user name that was
assigned to the source diskette during a previous BACKUP or
during the initial DOSGEN process will be given to the
destination diskette (indicated by carriage return response
without an~ data>.

The verification process using the two diskettes
generated above will cause an error when comparing the ID
sec tor s ; h 0 UJ eve r I the r e ma i n d e r 0 f the dis k e t t e s are s till
compared. The offset messages of the discrepancies can be
suppressed by also using the "5" option. ThuSi the
verification of the above example's generated diskettes UJould
show the following operator-system interactions:

=BACKUP ;VS
SECTOR 0000
=

The following example assumes that no scratch or garbage
files exist on the source diskette. Then, the reorganization
process requires a minimum amount or operato~ interaction: I

=BACKUP : 1, :2iR
BACKUP FROM DRIVE 1 TO 2?
y
ENTER FILE COpy SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P)I QUIT (Q), NO MORE (CR)
S, D, P, Gl (CR):
COPYING MDOS . SY
etc.
STARTING TO COpy FILES
COPYING BACKUP . CM
etc.
=

It should be noted tha~ no file selection commands were used.
The resulting destination diskette will contain all files
from the source diskette, but they may be in diTferent places
on the ·sur-Face of the diskette. Thus, a reorganization
process cannot be followed with a veriTication process Tor
the same diskette pair. The "N" option could have been used
in the above example to suppress the printing of the file
names as they were being copied.

The last example shows the rile append process. The
example assumes that there is an MOOS diskette in drive 1.
Alio, it a~sumes that the diskette in drive zero has a Tamily
of files which are to be copied to the destination diskette.
The Tamily has file names which start with the letters "FOR".

Page 03-19

BACKUP COMMAND 3.9 -- Examples

The following shows the operator-system interactions:

=BACKUP iA
APPEND FROM DRIVE 0 TO 17
Y
ENTER FILE SELECTION COMMANDS:
SAVE (S), DELETE (D), PRINT (P), GUIT (Cl), NO MORE (CR)
8, I), p, tl.. (CR): S FOR*,. *
5, D, P, (i, (CR):P
09 FORT . eM
OA FORTLIB .RO
OB FORTNEWS.SA
OC FORTEST!. SA
01) FORTEST2. SA
OE FORTEST3.SA
OF FORTEST4.SA
10 FORTEST5.SA
DELETE FILE NOS.
B-E, 10
DELETE FILE NOS.

STARTING TO COPY FILES
COPYING FORT . eM
COPYING FORTLIB .RO
COPYING FORTEST4. SA
FORTEST4.SA - DUPLICATION:
y
NEW NAME;FTEST
=

IS IT TO BE COPIED?

The rile selection command SAVE was used to Flag all
rile names beginning with FOR as eligible for copying- Then
the PRINT command ~as used to see the eligible list of file
names. The PRINT command terminates the use of the DELETE
and SAVE commands. Thus, the PRINT command;s delete Pile
feature is used to ~emove any ~emaining file names f~~m the
eligible list. File names OB, oe, 00, OEI and 10 were
deleted in this manne~. A null ~esponse is required to
terminate the PRINT command's inpu~ prompting. The last file
to be copied turned out to have a duplicate file name
existing on the destination drive. The operator responded
with a "Y" indicating that he wanted to copy the file anyway.
Since duplicate file names cannot exist, the append process
lets the ope~ator rename the source file befo~e it gets
copied. The new name assigned to the ~ile on the destination
diskette will be FTEST.SA (default sufrix assigned).

Page 03-20

CHAPTER 4

4. BINEX COMMAND

The BINEX command allows memory-image files to be
converted into an EXbug-loadable format for copying to tape.
This command performs the inverse operation or the EXBIN
command (see Chapter 14). BINEX is useful in the development
of non-diskette-resident software with MDOS} since the obJect
code can be wTitten to tape arter it has been tested.

4. 1 Use

The command is invoked with the command
line:

BINEX <name 1)-(, <name 2)-3

where <name 1> is the file specification of a memory-ima~e
file that is to be converted, and <name 2)- is the file
specification of a file that is to receive the results of, the
conversion. Only <name 1> is required to be entered on the
command lirie. The default suffix "LO" and the default
logical unit number zero will be supplied -for' <name 1)- if
those quantities are not explicitly given. The output' file
specificationl <name 2>, is optional. If <name 2> is
entered, it may be a partial file specification consisting of
only a file name} a suffix, or a logical unit number (or any
combination thereof). The unspeciTied parts oT <name 2:> will
be supplied from the respective parts of <name 1)-, with the
exception of the suffix. The default suffix for <name 2)- is
IILX" to indicate its EXbug-loadable Format. If no file
specification is given for <name 2JI the output file will be
created with the same file name as <name 1> but with the
s u f of i x 1/ LX" . I f 0 n 1 y a s u of fix i s g i ve n f 0 T' < n arne 2)- , t hat
suffix will be used instead of the default "LX". If no
logical unit number is given for <name 2:>, the output file
w~ll be created on the same drive as given for <name 1)-. In
any case, <name 2:> must be a file specification for which no
entry already exists in the directory.

Standard error messages will be displayed if <name 2)
already exists, if <name 1:> does not exist, Or if <name 1) is
o~ the wrong file format. If no error~ are found on th~

command line, BINEX will write into the output file a name
1" e cor d ,or SO r e cor d , t hat con t a ins the f i 1 e n am e and s u f fix
of <name 2)-. Then, BINEX will convert the content of <name
1:> into displayable ASCII c~aracters and out~ut them to <name
2:> in the form of the EXbug 51 records (the ItM6800 EXORciser
User's Guide" contains a description of this record format).

Page 04-01

BINEX COMMAND 4. 1 - Use

The terminating 59 ~ecord will contain the sta~ting execution
add~ess that was extracted from <name 1/'s load information.

The memory-image filel <name 1/, is unaffected
en t ire B I NE X pro c e s s. Th e 0 u t put f i 1 e I <: name 2)0 I can
copied to tape (see Chapter 7} COpy Command) ror use
non-diskette environment.

4.2 Error Messages

b~ the
then be

in a

No special error messages are displayed by the BINEX
command. Only the standard error messages available to all
commands aT'e used.

4.3 Examples

Most rrequentlYI ~ne de~ault sUTTixes and logical unit
numbers suffice ror BINEX operation. The following command
line

BINEX TEST?ROG

will produce the file TEST?ROG. LX on logical unit zero rrom
the memor~-image file TESTPROG. LO, also on logi,al unit zero.

IT the output file is to be created on a different d~ive
than the input file, but the other default paramete~s are
still to be applied} then only a logical unit number need be
speci~ied fo~ <name 2> as in the following example:

BINEX TESTPROG, : 1

which will c~eatg the Pile TESTPROG.LX on logical unit one.

If the rile to be converted happens to reside on a drive
o the r t han z e r 0 I the nth a t u 11 i t n u m be,.. wi 1 1 a 1 sob e ttl e
default value or the logical unit numbe,.. ro,.. the output Pile.
Thus,

BINEX TESTPROG:2

will cr~ate TESTPROG. LX on drive two.

The last example illustrates the explicit naming oT an
output file and input file. In any case involving default
values of which the operato~ is uncertain, it is always safe
to explicitly use the rull rile specirications. For examplel

BINEX TESTPROG.LO:Q,FILEX. LT:O

will c~eate FILEX.LT on drive zero.

Page 04-02

CHAPTER 5

5. BLOKEDIT COMMAND

The BLOKEDIT command allows lines of text ~~om one o~

more ASC!! files to be selectively copied into a new ~ile.

This command can be useful in gene~ating new p~og~am sou~ce
riles by copying routines ~rom existing sou~ce riles, or in
rearranging existing files by copying their lines into a ne~

se.quence.

5. 1 Use

The BLOKEDIT command is invoked with the following
command line:

BLOKEDIT <name 1>, (name 2>

Both of the parameters a~e ~equired by the BLOKEDIT command.
<name 1> is the file specification or a command file, and
<name 2/ is the rile specification or a ne~ file which will
be created. The new rile UJill be written into 'as directed by
commands in the command file.

Both file specirications are giv~n the de~ault suffix
"SAil and the derault logical unit number zero. <name 1:> must
be the name of a file that exists in the directorq. <name 2>
must not al~eady exist. A standard error message will be
displayed if either Or these criteria is not met, o~ ir
enamel> is Or the wrong file Format.

5.2 BLOKEDIT Command File

The command file speciried b~ <name 1> is the
controlling facto~ in the execution of the BLOKEDIT command.
The command file contains the names of the source Files that
are to be used for the extraction Or data, the numbe~s of the
lines within a particular source file that are to be copied
into <name 2/1 comments, and original text supplied bV the
user that is also to be copied into <name 2>. The command
rile must be created with the EDIT command~ or a sim.ilar
command, prior to using the BLOKEDIT command.

There a~e three kinds of lines that can appear in the
command file:

1. Comment 1 ines
2. Command lines
3. Guoted lines

Page 05-01

BLOKEDIT COMMAND 5.2 -- BLO~EDIT Command File

The three types 01 lines that comprise the command ~ile are
discussed in the following sections.

5.2.1 Comment lines

A comment line is a line whose first character is an
asterisk Fe,. examp le:

* * THESE THREE LINES ARE BLOKEDIT COMMENT LINES

*
The occurrence of comment line-s in the command rile is
ignored by the BLOKEDIT command. Comment lines serve only to
document the command rile.

5.2.2 Command lines

A command line is rgcognized by the ~act that its ~irst
character is an upper-~ase alphabetic character, a decimal
digitJ or a double ~uote character. For example,

FILENAME: 1
5,75-80
"

are thrge valid command lines.

Command lines ~hich begin with an upper-~ase alphabetic
character indicate that a source rile is being name~. Such
command lines are used to specif~ from ~hich ~ile the
subsequent lines are to be copied. A sour~e rile can only
be named by putting its file specification at the beginnin~
oT a command line. Optionally, the suffix and/or logical
unit numbe~ can be speci~ied in the standard format after the
file's name. The default values of "SA" and zero are
supplied automatically i~ no explicit references to surfix or
logical unit number are made.

Command lines which begin with a decimal digit indicate
that the command line will contain one or more numbers.
These numbers represent the physjcal line numbers to be
copied ~rom a source file which has been named using the
prior form or the command line. Ph~sical line numbers can be
up to rive digits in length and must be in the range 1-65535,
inclusive. More than one physical line number can appear on
a command line iT it is followed by a comma. A range o~

ph~sical line numbers can be specified by separating the
start and end of the ra-ng-e with a hyphen (->. . For--examplel

-"-
)

Page 05-02

BLOKEDIT COMMAND 5.2 -- BLOKEDIT Command File

5
12345
100-364
12,15,1-5,17-200,5-15,2,2

a~e valid forms Or physical line numbe~ command lines. A
source Tile's physical line numbers can be printed using the
LIST command described in Chapter 17.

5.2.3 Guoted lines

A command line that begins with a double quote character
(") indicates the beginning 01" the end oT quoted lines. Any
information that appears on the same line as the double quote
is ignored. A quoted line is any line bounded b~ a pail" of
command lines which begin with a double quote character. All
quoted lines will be copied directly from file
into the neUf file, as is. Thus, it is possible to include
original lines of text that will be copied into the new file
in addition to the physical lines copied rrom the named
source files. The following example illustrates the use Or
quoted lines:

II START OF QUOTED LINE SEGUENCE
LABEL LDAA #$FD SET MASK

LSRB .
• STAB TAB+4
TAB.

*

.

* COMMENTS IN QUOTED LINES GET WRITTEN OUl

*'
'-'MP EX IT .

" END OF QUOTED LINE SEQUENCE

The first and the last lines Or the example will be discarded
by the BLOKEDIT command. The eight lines in between will be
written as is into the new file.

5. 3 Messages

"he rollowing messages can be displayed by the BLOKEDIT
command. Not all messages are error messagesl although error
me£sages are included in this list. The standard errol"
messages that can be displayed by all commands are not listed
here.

Page 05-03

BLOKEDIT COMMAND 5.3 -- Messages

CURRENT SOURCE FILE IS <name>

DONE.

A command line containing the name Or a source
rile has been processed. The name or sou~ce rile
is sho~n as <name>. This message is used to
monitor the path Or BLOKEDIT through the command
file.

NEW FILE LINE COUNT IS nnnnn

The command rile has been exhausted (end of rile
encountered) ~hen this message is displayed. It
indica~es th~t no more command lines ~ill be
processed. The number of phqsical lines that
~ere copied into the ne~ rile is given by the
decimal number "nnnnn". After this message is
d i sp lay ed l C ontro 1 is returned to MDOS.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

This message is displayed when the source rile
being read was exhausted (end of rile
encountered) before a speciried physical line
numbel' was found. This is not, a ratal eT'roT'.
The next command line -r'T'om the command rile will
be processed.

** 38 INVALID LINE NUMBER OR RANGE

This er~or message can be displayed for several
r~asons. A line in the command rile did not
beg i n wit han as t e 1" i ski ado ubI e Q. U ate J a dec. i ma 1
dig i t (0-9 Lor a n alp h abe tic c h a rae tel' (A-Z) I

and the line was not a quoted line. If the
command line started with a digitI then the
physical line number had a value outside of the
range 1- 65535l or the starting number or aline
number range was greate1" than the ending line
numbeT' of the range. In any ease, this is a
ratal er~or.· BLDKEDIT is terminated and control
returned to MDOS. The command line in error is
displayed prior to this message.

** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE

This message indicates that the command file
contained a !lne with a decimal digit in the
rirst position before a source rile was named.
Processing cannot continue, so the BLO~EDIT

command is terminated. The command line in error
is displayed· prior to this message.

--,
)

. ,/

./'

Page 05-04

BLOKEDIT COMMAND 5.4 -- Examples

5.4 Examples

In the ~Qllowing example it is assumed that the three
source files EDIT. SA: 1, ASM.SA:O, and LOAD.SA:O contain some
special utility subroutines that are to be extracted and
placed into a new file UTILITY.SA:O. The physical line
numbers of the routines can be determined by listing the
source riles on the console Or printer- (Chapter 17, LIST
Command). With that information, the command 'ile
BLKCMD.SA:O is created using the EDIT command:

* * Define the 'irst source file

* EDIT: 1
176-205
224-230
'*
* Define the second source file

* ASM.SA:O
" Insert a PAGE directive to separate routines

PAGE
II

56-80,90-101,150-163

* * Define the last source file

* LOAD
If Insert another PAGE directive

PAGE
1/

27, 28, 29, 3Q, 31, 32, 33, 34, 35,36
37
38
39
40

* * End of Command File

*
Then, the MDOS command line

BLOKEDIT BLKCMD,UTILITY

is used to invoke the BLOKEDIT command. During the
processing, BLOKEDIT will display the following messages:

CURRENT SOURCE FILE IS EDIT . SA: 1
CURRENT SOURCE FILE IS ASM .SA:O
CURRENT SOURCE FILE IS LOAD . SA:O
DONE. NEW FILE LINE COUNT IS 104
=

Page 05-05

BLOKEDIT COMMAND 5.4 -- Examples

. --...
\.

The ne~ file will contain the indicated lines From the)
respective source files. Each set of lines copied from the
source files has been separated from the next file's set of
lines by a PAGE directive (causing paging when the UTILITY
file is assembled), The PAGE directive was inserted using
quoted 1 i nes.

BLOKEDIT can also be used to rearrange the lines or an
existing file by copying them in a given se~uence into the
n e UI f i 1 e. The r 0 1 low i n 9 comma n d f i 1 e :

PROGl
207-300, 10-2061 1-9

ror example} could be used to shu~fle the lines in the source
file PROGl. SA: O. First, lines 207-300 tliould be copied into
the new ~ile. These would be folloUled by lines 10-206, which
would be followed by lines 1-9.

The last example illustrates an error. message displayed
by BLOKEDIT. The command line in error is displayed prior to
the error message. The initial five-digit number in Tront of
the displayed command line gives the line's physical line
number within the rile (as displayed with the LIST command,
Chapter 17).

=BLOKEDIT BLKCMD,TEMPEGU
CURRENT SOURCE FILE IS EGU . SA:O
00002 .. 56-34
** 38 INVALID LINE NUMBER OR RANGE
=

The error was caused by an invalid line
sta~ting .number of a ra~ge must be less
ending number or the range.

number range. The
than or e~ual to the

Page 05-06

CHAPTER 6

6. CHAIN COMMAND

The CHAIN command allows predefined procedures to be
automatically executed. A procedure consists or any sequence
of MOOS command lines that has been put into a diskette ~ile,

known as a CHAIN rile. Instead Or obtaining successive
command lines from the console: CHAIN will retch commands
from the CHAIN rile. This Teatu~e allows complicated and
lengthy operations to be defined once, and then invoked any
number or times, requiring no operator intervention. The
additional capabilities of conditional directives to the
CHAIN command at both compilation and execution time, and the
capabilitq of string substitution! permit an almost unlimited
number or applications to be handled by a CHAIN file.

6. 1 Use

The CHAIN command is initially invoked by the following
command 1 ine:

CHAIN <name 1> [i<srg 1>" I<arg n>J

The only required parameter is <name 1>, the rile name
specification or the diskette rile that contains the
procedure definition. The CHAIN file, <name 1:>, is given the
derault sufrix "CF" , permitting the file name to be
identified in the director~ listing at a glance as being a
CHAIN file. The default logical unit number is zero. The
optional arguments, <arg i:> (i = 1 to n), are CHAIN tag
definitions which can be used to modif~ the compilation,
content, or ex ec uti on of a CHAIN of i le.

Two special forms of the CHAIN command line can be used
to restart an aborted CHAIN process. These command lines are
s h 0 usn her e , but are des c,.. i bed i n d eta i 1 ins e c t ion 6. 6.

CHAIN N*
CHAIN *

CHAIN executes a compilation phase and an execution
phase. In the compilation phase, <nam~ 1> is read from
beg inn i rig to end. An i nteT"med iate f i 1 e, CHAIN. SY: 0, is
created during the compilation. The intermediate file
consists of lines to be used in the execution phase of the
CHAIN process. This file will be automatically deleted upon
the subse~uent successful ~ompletion of the CHAIN pro~ess.

During the execution phase, CHAIN basically intercepts

Page 06-01

CHAIN COMMAND o. 1 - Use

the sy~tem console input ~e~ue~ts so that input can be
supplied from the intermediate file. Each time an input
request is made by a command that is invoked by the CHAIN
process, the next line from the intermediate file will be
read and passed to the command. As far as the command is
conce~ned, it is receiving its input information from the
operator at the console.

The CHAIN. command only intercepts console input via the
MOOS stlstem function It. KEVIN" (see section 25. 2L The~e.pore,

only programs (commands or user-written programs) that use
this system function will receive their input Trom the
intermediate file. Programs which contain their own input
routines, or which use the device independent lID functions
(see section 25.3) can be invoked by the CHAIN process, but
tne subsequent input to those programs must be supplied
manuall~ via the console.

Tbe CHAIN command cannot be invoked from within a CHAIN
process unless it is invoked from the last line of the
intermediate file. An er~or message will be displayed if
oth-er t1Jpes oT CHAIN command recursion are attempted.

The CHAIN command.will continue to supply information
from the intermediate file until the end of the File is
encounte-red. If, at that point, the next input i'-equest from
the console is bq the MDOS· command interpreter, the CHAIN
process will be properly terminated .. MDOS ~ill be re-entered, "
and commands will again be accepted f~om the operator at the
console. I:r, however, the end of the intermediate file is
encountered while a program is re~uesting console input, t'en
the CHAIN p-rocess is aborted, an error message is displayedl
and the cur-rently active program will be s~opped. Control
will then be given to the MDOS command interpreter.

The diskette in drive zero must remain in
throughout the execution of the CHAIN process,
ReF" file is compiled from drives other than zero.

drive zero
even i:r the

6.2 Tag DeTinition, Assignment, and Substitution

The CHAIN
arguments that

command
follow

line can be parameterized
the CHAIN file specification.

argument has the rollo~ing format:

<tag:>Ch<value:>;'J

with
Each

~here <tag:> is the name b~ which the argument is reTerenced
within the CHAIN file, and <value:> is the value assigned to
that argument. As many ar9ument~ as fit on the command line
can be specified. Multiple arguments must be separated by
commas. Tags may be from one to thirty-two characters in
length and can contain any displayable character except the

Page

\
\

"~

06-02

CHAIN COMMAND 6.2 -- Tag Definition, Assignment, and Substitution

per i 0 d (.), the comma (,), the spa c e () lOT" the per c en t s i g n
(%). A tag's value can be any series of displayable
chaT"acters with the exception of the percent sign. A tag is
given a value b~ following the tag's name ~ith the value
enclosed in percent signs. IT no percent sign follows a
tag's name, it is assigned a null value. FaT' example, the
command line

CHAIN TFILE;LIST!DAY%17%!TIME%02:30%

defines three tags: LIST, DAY and TIME. The tag LIST is
assigned a null valuei the tag DAY is given the value 17; the
tag TIME is given the value 02:30.

CHAIN allows t~o uses to be made of tags. First, tests
can be performed within the CHAIN file to determine whetheT"
or not a specific tag has been specified on the CHAIN command
line. Second, the value of a tag can be substituted for a
tag's occurrence within the CHAIN file. Thus, using the
above example, the CHAIN file could contain a test ror the
presence of the tag LIST to determine if the CHAIN process
will produce output to a printer. The values of the tags DAY
and TIME could be substituted in one Gf the heading lines
that may be produced by the CHAIN process.

So rar in the discussion, the value or a tag has not
been used. The existence of a tag can be tested regardless
of a tag's ~alue. A iag's value is substituted ror each
occurrence or·th.e tag's name contained between two delimiting
percent signs. The following example will illustrate tag
substitution. I~ a CHAIN .pile contains these statements:

RASM TESTPROGiH7.0PTIONi.
PROGRAM ASSEMBLED ON Y.DATE%
EXBIN TESTPROGi.STARrl.

then the tags OPTION,
respective values put
delimiting peT"cent signs
intermediate file. If
CHAIN at its invocation,
would be compiled:

DATE, and START will have their
in place Or their tag names and the
before each line is written into the
no tags were specified for the above
then the following inteT"mediate file

RASM TESTPROGiH
PROGRAM ASSEMBLED ON
EXBIN TESTPROG

If the tags were given initiai values via the CHAIN command
1 ine as:

OPTIONi.XLGi.,DATEI.JANUARY 8, 1978i.,STARTl.i 10007.

then the following intermediate rile would be compiled:

Page '06-03

CHAIN COMMAND 6.2 -- Tag Definition, Assignment, and Sub~titution

RASM TESTPROGiHXLG
PROGRAM ASSEMBLED ON ~ANUARY 8, 1978
EXBIN TESTPROGil000

Tag substitution is used here to specify the various options
for the assembly process, a date for the heading line printed
during the assembly, and the starting execution address ~or

the converted obJect file. The use of tags and tag values~
thel'erore, is Or gl'eat importance in the creation of
complicated and geneT'al pu~pose CHAIN files.

To pass tag values from one CHAIN file to another, a
forcing character, is used. The backslash character ,\, is
used te indicate that the next character of a line is not to
be tested as a special character (i. e. I to see if an operator
-rollows~ or a valid tag). ThuS, passing oil t:ag from one CHAIN
file to another can be ddne ~ith a series of statements like
the following:

RASM TESTPROGiH7.0PT!DN%
PROGAM ASSEMBLED ON 7.DATE7.
CHAIN FILE2iSTART\7.7.STARTi.\7.

The fi~~t and last pe~cent signs of the last line are not tag
r~placement indicato~s. When the above lines .re compiledJ
the resultant intermediate file will not contain the
b a c Ie s 1 ash c h a r act e yO s . I -F the va 1 u e It XL G If i s give n t G OPT I ON,
"01. 8. 78" to DATEI and 'lfi'1000n to START1 then the compiled
CHAIN file would appear as

RASM TESTPROGiHXLG
PROGRAM ASSEMBLED ON 01.8.78
CHAIN FILE2iSTARTki lOOOi.

The value or START would be passed from the first CHAIN file
to the second CHAIN file. The second CHAIN process can only

,be invoked from the last line of the intermediate file.

6.3 Compilation Operators

T~o t~pes of CHAIN operators exist which can be used to
modify the procedure that is performed through the CHAIN
process: Compilation Operators and Execution Operators.
Execution Operators are described in section 6.4.
Compilation Operato~s permit the operator to parameterize a
CHAIN file to perform many different procedures. For
example, a CHAIN file may contain the MDOS command lines to
assemble an entire system of programs. Based on the CHAIN
arguments specified on the CHAIN command linel all or part of

'the system of programs may be assembled. The options for the
assembly process can also be supplied via a CHAIN argument,
(see example in section 6.7).)

Page 06-04

CHAIN COMMAND 6.3 -- Compilation Operators

All Compilation Operators are included in the CHAIN rile
along with any other statements. Compilation Operators are
denoted ~y a slash e/) appearing in the first column of a

"line. An"y number of intervening spaces (including none) can
be placed between the slash and the operator. If an operator
is found which is not defined. the CHAIN process will be
aborted. The following Compilation Operators are defined:

Operator

'*
IFS
IFC
XIF
ELSE
ABORT

Function

Comment
Conditional "if set" test
Conditional "if clear" test
End conditional
Conditional alteTnative
Unconditional CHAIN abort

6.3.1 Compilation Comments

I' the character following a slash is an asterisk <*),
then a Compilation Comment is indicated. The remainder of
the line following the asterisk contains the comment, which
can include any displayable characters. Compilation Comments
are not urritten into the int.ermediate file. They are,
however, displayed on the console immediately after they are
read 'rom the CHAIN file. Compilation Comments are useful in
communicating to the operator what intermediate Tile is being
compiled for execution .. The comment lines are only displayed
if the part of the file containing the comments is being
compiled into the intermediate file (see next section).

0.3.2 IF operator

If the characters following a slash are IIIFu, an IF
operator is denoted. There may be any number Or intervening
spaces between the slash and the IF operator. This feature
allows a structured type of CHAIN file to be constructed that
will shoUJ by i.ts physical appearance the range of the
conditional operators. The IF operator allows a test to "be
made for the existence of one 01' more tags on the CHAIN
command line. If the test proves positive, or true, then the
lines from the CHAIN file following the IF operatoT will be
included in the intermediate file (written to the CHAIN.SY
file>. If, however, the test proves negatiVE, OT" ~alse, then
the subse~uent lines will not be included in the intermediate
file. The lines from the CHAIN file will be included or
excluded following the IF operator until an ELSE or XIF
operator (explained below) is encountered.

The IF operator has two forms: IFS and IFC, which stand
for "if set" and lIif clear ll

, respectively. The IFS operator

Page 06-05

CHAIN COMMAND 6.3 -- Compilation Ope~ators

P l' ov e s p 0 sit i ve iTa n y 0 T the ta 9 s 1 i s ted as its 0 per and h a v e -,-, -J
been specified on the CHAIN command line. For example,

IIFS LIST

will prove positive if the tag LIST was mentioned on the
CHAIN command line. The same test ~ill prove negative if
LIST did not a p pea 1" • L i k stu i s e; the IF 0 per a tor

lIFe DAY

will prove positive ir the tag DAY was not speciried on the
CHAIN command line. The test ~ill prove negative if DAY did
appea~. Multiple IF operators can appeal' in sequence to see
ir all tags of a certain group ~ere speciFied. Thus,

IIFS FLAG!
IIFS FLAG2
IIFS FLAG3

will prove positive only if tags FLAG 1 I FLAG21 and FLAG3 ~ere
specified on the CHAIN command line.

More than one tag can appear in the operand field of an
IF operator. A comma separating tag names on an IF line will
perform an "i~clusive or" function. A period separating tag
namesl on the other handl wi 11 perform an "and" -function.
The "and ll function has precedence ovel' the "or" -function. .,/'i
Th at is, the comma s (or) can bet h 0 ugh t 0 f as 9 r 0 up i n g the
perio~s (and). For examplel the IF operator line

IIFS FLAG1.FLAG2.FLAG3

is equivalent to the previous example o~ three successive IF
operators. The ~ollob.ling linel

IIFS Fl. F2,FLAG3,TAG1.TAG2. LIST

~hich can be thought of as being evaluated b~ the ~ollowing
grouping)

(Fl and F2) or (FLAG3) or (TAG1 and TAG2 and LIST)

will prove positive ir the tags Fl and F2 are speci~ied, or
if FLAG3 is specifiedJ 01" if tags TAGl and TAG2 and LIST are
specified.

If one IF
subsequent lines
operators, will be
or XIF operatol'
used to modify the

operator has proven negativel then the
~ l' om the C HA I N f i 1 eli n c 1 u din got h e T' IF
ignol'ed until either a corresponding ELSE
is ~ound. In ·this way, the IF operator is·
resultant intermediate File.

Page 06-06

CHAIN COMMAND 6.3 -- Compilation Operators

6.3.3 XIF and ELSE operators

Two Compilation Operators can cause the range of an IF
operator to be ended. The XIF operator marks the end of a
series of conditionally compiled statements. The ELSE
operator reverses the sense of the IF's test condition, and
is use~ to indicate what is compiled if the test condition is
net met. The conditional IF operators can be nested to a
depth of sixteen levels. The following example shows the use
OT XIF and ELSE:

IIFS LIST
LIST TESTFILEiLH
TEST PROGRAM HEADING LINE
IELSE
LIST TESTFILE
IXIF

In this exampleJ the file TESTFILE will be listed on the
printer only if the tag LIST is specified on the CHAIN
c emma n d 1 in e . A h e ad i n 9 , 1 i n e i sal sop r 0 v ide d lIJ i t h i nth e
CHAIN file if the LIST tag is used. If, however, LIST is not
specified, then the ELSE portion of the conditional operator
~ill be compiled, causing TESTFILE to be shown on the s~stem

console instead.

If the above example were to be written without the ELSE
ope't'ator, - one additional IF and XIF operator pair Ulould have
to be used, as shown:

IIFS LIST
LIST TESTFILEiLH
TEST PROGRAM HEADING LINE
/XIF
lIFe LIST
LIST TESTFILE
/XIF

It can be seen that the use of the ELSE operator makes the
CHAIN file easier to understand.

Each IF operator must have a corresponding XIF operator.
The ELSE operator is available at the option of the user.
The following example shows ho~ nested IF operators might
appear in a CHAIN file:

IIFS Fl
ASM TESTPROG
/ IFS F2
EXBIN TESTPROG
/ . XIF
/XIF

Page 06-07

CHAIN COMMAND 6.3 -- Compilation Ope~ators

In this ease, the tag Fl governs whether or not the Tile
TESTPROG UJill be assembled. If Fl is specified, then the
assembly blill be performed. Then, if in addition F2 is
speci-ried on the CHAIN command line, the obJect rile
conversion will also take place. The CHAIN rile can be used,
therefore, to perform only the assembly, or the assembly and
the obJect rile conversion, but not the obJect file
conversion by itself.

If, through the use or the conditional operators, a null
(empty) intermediate file is genel'ated; then the Execution
Phase of the CHAIN command will be skipped. Control will be
given to the MDOS command interpreter1 as ir no CHAIN had
ever been executed.

The ABORT operator provides a way of instantly retu'T"ning
to MDOS during a CHAIN Tile's compilation. No messages will
be displa~ed as a ~esult or encounte~ing the ABORT ope~ator.

It is the user's responsibility to include an explanation for
the ABORT through the use o~ Compilation Comments.

The ABORT operator is typiaally employed in terminating

/~
\

.~

a CHAIN compilation if one or more critical tags have been ~

omitted from the CHAIN command line. For example, the J
Tollowing CHAIN Tile will be aborted during the compilation
phase ir both or the tags OPT and FILE are missing. The
Compilation Comments will indicate the reason ro~ the
tel'mination:

IIFS OPT. FILE
1* GOING TO ASSEMBLE ,-FILE7-
RASM %FILE7.;7.0PT%
IELSE
1* BOTH IIFILE" AND "OPT" MUST BE SPECIFIED
1* CHAIN TERMINATED
IABORT
IXIF

6.4 Execution Operators

Execution Oper-ator-s can be used for the dynamic
adjustment o~ a CHAIN process while it is being executed.
Through the use of these operators, the user can set values
in an e~ror status word maintained by MDOS, test the word,
and, depending upon the results of the testJ skip a pOTtion
of the procedure. The error status word is accessed by all
MDOS commands to indicate whether or not they completed their
function without error. ~

../

All CHAIN Execution Operators are denoted b~ the

Page 06-08

CHAIN COMMAND 6.4 -- Execution Operators

commercial at-sign (@) as the first character of a line. Any
number of intervening spaces (including none) can be placed
between the at-sign and the o~~rator. If an operator is
found which is not defined, the CHAIN process will be
aborted. The following Execution Operators are derined:

Operator Function

Comment
Operator breakpoint
Set error status word
Test error status word

SET
TST
~MP

LBL
CMD

Continue se~uential processing at label
Define a label
Change state of CHAIN input echo

6. 4. 1 E x e C fJ t i on C g mme n t s

If the character following the at-Sign is an asterisk
(*)1 then an Execution Comment is indicated. The i"'emainder
oT the line following the asterisk contains the commentJ
which can include any displayable characters. Execution
Comments are compiled into the intermediate file and are not
displaqed until they are encountered during the execution
phase. Execution Comments are used to relay information to
the operator during the actual execution of the intermediate
file. In conjunction with the Operator Breakpoint (next
section») these comments also serve as a means of passing
instructions to the operator for mounting paper into the
pr inter I swap ping dis Ie ettes in dr i yes one} tWOl or three,
loading a cassette, etc.

6.4.2 Operator Breakpoints

A variation of the Execution Comment is the Operator
Breakpoint. Ir a period (., is used instead of an asterisk
for the Execution Comment, then the normal Execution Comment
is displayed; however, instead of c~ntinuing with the
processing of the next line of the intermediate rile, the BEL
($07) character is sent to the console to alert the operator.
Th e CHAIN proc ess th en wa i ts for any key on .th e key board to
be depressed before continuing. For example, the following
compiled CHAIN file:

@* GOING TO ASSEMBLE PROGRAM
@. TURN ON PRINTER
RASM TESTPROGiLXG

would display the two comments during the execution of the
CHAIN process. Prior to starting the assembly, however, the
CHAIN process would pause allowing the operator time to ready

Page 06-09

CHAIN COMMAND 6.4 -- Execution Operators

the printer. Execution ~ould not resume until aTter the
operator had depressed any keQ on the system console.

0.4.3 Error status word

Among the operating system's resident variables is a
two-byte error status ~ord. Each MOOS command ~ill set or
clear a bit within this status word to indicate the status o~
the command's comp letion. The error status Ulord has the
TolloUling Format:

FED C B A 987 6 543 210

Error Error

I ----

Error Type

Bits 0-7 describe
error

Error Mas k Flag
Bit B (S-A unused)

Error Status Fla~
Bit F (C-E unused)

Normallql a~ter the completion of each command, all bits of
the Error Status and the Error Type are cleared (= 0). The
Error Mask is not affected by MDOS commands. If an error
occurred during the commandl the Error Status Flag (bit F)
tali 11 b e set b y the comma n d . In add i t i on, an E r l' 0 r T y P e UI i 11
be set into the lower hal~ o~ the status word (bits 0-7).
The Error Type is used to indicate which error was detected
by the command.

UsuallYI the CHAIN process will abo~t anytime the Er~or
Status Flag is set by one of the commands invoked from the
intermediate ~ile. The Er~or Mask can be used to inhibit
CHAIN process abo~ting due to command er~ors by setting the
Error Mask Flag (bit B) to a 1.

The Execution Ope~ators can affect certain pa~ts of the
status word. The following symbols are used to refer to the
various parts of the status wo~d:

I

,,/

)
'-../

Page 06-10

CHAIN COMMAND 6.4 -- Execution Ope~ators

Word Designato~ Error Status Wo~d Part

W Whole ~o~d (bits o-F)
T Error T~pe (bits 0-7)
M Error Mask (bits 8-B)
5 Error Status (bits C-F)

0.4.4 SET operator

The SET operator can be used to place a certain bit
pattern into the system error status wo~d. In pa~ticula~J

the SET operator is the only ~a~ that the Error Mask Flag can
be set to inhibit CHAIN process abortions. The MOOS commands
will only set the Error Status and the Error Type. The SET
operator has the following ~ormat:

where <J/ is the status word designator (explained above) and
<valueJ is a hexadecimal numbe~ that is to be placed into the
designated word part. The size of <value> must not be
greater than the size of the word part into which the it is
to be placed. If the status word designator is not
specified, then W, the whole word part, will be assumed .. If
<va 1 u e:> i s not s p e c i fie d I t h en z e row i 11 b e ass u m,e d . As an
example of the SET operatorl the following will set the E~ror
Mask Flag Cbit B) to inhibit CHAIN process aborting due to
command execution e~rors:

@SET,M 8
@SET,W 800
@SET 800

All three Torms will set bit B of the error status wordi
howevel'l the last two forms wi 11, in add i ti on, set to zero
all othe-r parts of the error statvs word.

6.4.5 TST operator

The TST operator
word Tor a particular
following format:

is used to examine the error status
condition. This operator has the

whe~e <J} is the status word designator, <condition> is the
test condition to be performed, and <value> is a hexadecimal
number that is used as pal't of the test.

Use of the TST ope~ato~ ~esults in a true or false
condition based on the test performed. If the result of the

Page 06-11

CHAIN COMMAND 6.4 -- Execution Operators

test is true, then the next sequential line in the '~
intermediate file will be skipped. IT the result of the test _~
is false, hOllJeve1"J then the next sequential line in the
intermediate file will be processed. In other words) a -False
condition has the same errect as if the TST operator was not
processed at all.

If the status \.LIord designator is not speciFied, then W.
the whole word part, Ulill be assumed. The following test
conditions can be used in the <condition~ field or the TST
op erator:

<condition~ Test performed on word part

EG Equal to <value~
NE Not equal to <value~
GT Greater than <value~
LT Less than <value~
GE Gr~ate1" than or equal to <value/
LE Less than or e~ual to <value~
as Bit set (=1)
Be Bit clear <=0)

The first six tests ar~ the standard relational tests
Tor eq,uality, etc., that can be performed with the <value:>
and the deSignated word part. The last two tests (BS and Be)
allow specific bits in the deSignated word part to be tested
for being set (BS) or clear <Bel. The bits to be tested are
indicated by the one bits from <value>.

The <value> part oT the TST operator is a hexadecimal
number in the range O-FFFF. The size of <valu~j must not be
greater than the size of the word part that is being tested.
No Signed numbers can be used. That is, all comparisons and
tests are made with positive integers. If <valuej is not
specified, then the default of zero will be u'Se~.

6.4.6 JMP operator

The JMP operator allows skipping lines in the
intermediate file during its execution. Used in conjunction
with the TST operatorl the JMP operator can be turned into a
conditional jump around critical steps if certain conditions
are detected during the execution of the CHAIN process.

The JMP operator has the following format:

@JMP <labelj

where <label~ must be defined via the label operator LBL.
Jumps can only be made in a forward direction. That is, once
a line has been executed Tram the intermediate Tile, it

j

Page 06-12

CHAIN COMMAND 6.4 -- Execution Operators

cannot be Jumped ~o with the ~MP operator} even if it has a
defined label. Jumps to undefined labels or backward Jumps
will cause the CHAIN process to be aborted.

6.4.7 LBL operator

The LBL operator is used to define a label within the
CHAIN file. All labels referenced by the JMP operator must
be defined with the LBL operator. The format of the LBL
operator is:

where <label>
names (section
undefined, or

@LBL <label:>

follows the same restrictions placed on tag
6.2). Labels that are multiply defined,
backward references will be flagged as errors

during the CHAIN compilation phase.
the CHAIN process to be aborted.

Such errOrs will cause

6.4.8 CMD operator

Normally, during the execution phase, as commands are
processed from the intermediate file, each command line is
displayed on the console. Likewise, all· input reQ.uested by
the command that is supplied from the intermediate rile will
be displayed on the console. The CMD operator can be used to
suppress console display or all input that originates rrom
the intermediate rile. The CMD operator has the follo~ing
format:

@CMD {ON or OFF}

where either ON or OFF must be specified. The CMD operator
can be used as many times as needed within the inteTmediate
file. Initially during the execution phasel the ON form of
the CMD operator is in effect.

6. 5 Messages

The following messages can be displayed b~ the CHAIN
command. The standard errol' messages that c:an be displayed
by all commands are not listed here. The messages are broken
up into two sections: those that can be displayed during the
c:ompilation phase, and those that can be displayed during the
execution phase.

The following error messages can be displayed during the
compilation phase:

Page 06-13

CHAIN COMMAND O. 5 -= Messages

ILLEGAL NESTING OF CHAIN COMMANDS

A CHAIN command ~as found in the intermediate
file that did not coincide with the last record
of the file. CHAIN pl"ocesses can only invoke
another CHAIN command from the last line of the
intermediate file.

SOURCE SYNTAX ERROR

One of the source lines of the CHAIN file
contained a backslash (\) as the last character
of the record, or an illegal tag rererence Ulas
enc ountered.

ILLEGAL OPERATOR

The operator rollowing a slash (I) was not a
valid Compilation Operatorl or the operator
following an at-sign (@) was not a valid
Execution Operator.

INVALID CONDITIONAL EXPRESSION

I

An invalid tag reference or invalid tag separator
(other than period or comma) ~as used on a
conditional Compilation Operator statement.

. J

INVALID NESTING OF CONDITIONALS

Mo~e than sixte@n levels of conditionals were
usedl an unequal number of IFs and XIFs exist, or
an ELSE operator was used illegally.

EXECUTION OPERATOR OPERAND ERROR

The operand of an execution operator was invalid.

VALUE TOO LARGE FOR FIELD

A value was specified for the Execution Operators
SET or TST that was larger than the status word
part designator allowed.

END OF FILE REACHED BEFORE LAST XIF FOUND

The end Or the CHAIN rile ~as encountered while
searching for an XIF operator. Usually this
indicates an unbalanced number oT IFs and XIFs.

UNDEFINED LABELS FOUND

A JMP operator referenced a label which was never
defined with a LBL operator.

Page

.-/

06-14

CHAIN COMMAND 6. 5 -- Messages

OUTPUT RECORD BUFFER OVERFLOW

A line from the CHAIN file was ehc~untered ~hich,
after the substitution of all tag values,
exceeded eighty characters in length.

** 48 CHAIN OVERLAY DOES NOT EXIST

The MOOS system CHAIN overlay does not have an
ent'r\J in the directory. The REPAIR command
(Chapter 22) should be used to check the diskette
for other errors.

The follo~ing messages can be displayed during the execution
phase:

This message is displayed upon the successful
termination of a CH~IN process. The next console
input request will be obtained Tram the system
console again. The intermediate rilel
CHAIN. ~:O, will have been deleted.

** 01 COMMAND SYNTAX ERROR

An Execution Operator was encountered that had an
illegal operand field.

** 08 CHAIN ABORTED BY BREAK KEY

The operator depressed the BREAK key during the
execution phase causing the CHAIN proce.ss to be
aborted.

** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last executed program set an error status
into the system error status word which was not
masked by the SET operator. If no SET operators
are used in a CHAIN fi Ie, any error status word
change will cause the CHAIN process to be
aborted.

** 22 BUFFER OVERFLOW

The response obtained from the intermediate file
to an input re~uest exceeded the maximum number
of characters that were acceptable to the input
request.

Page 06-15

CHAIN COMMAND 6.5 -- Messages

** 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal Execution Operator was encountered in
the intermediate file.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A ~MP operator was encountered which referenced a
label that did not exist (Backward references are
treated as undefined labels>.

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate file returned an
end-or-iile condition when an input re~uest ~as
m'ade bq a program that usas invoked by the CHAIN
process. All input that is expected b~ the
prog~am must be in the intermediate file.

6.6 Resuming an Aborted CHAIN Process

If a CHAIN process is aborted during the slecution phase
~or any reason, the CHAIN process can still be restarted.
Since the intermediate file is not deleted until the CHAIN
process has been successfully completed, this capability
eliminates the need t? recompile the original CHAIN file.

The special CHAIN command line:

CHAIN *

will restart the execution phase with the line last Tetched
from the intermediate ~ile (the line that caused the error).
For example, if an assembly has been invoked bq the CHAIN
process Tor which a duplicate object file exists, the CHAIN
process will normally be aborted. The operator could then
manually delete the duplicate file name and restart the CHAIN
process with the above special form of the command line.

If the failing command can never succeed, the current
line of the intermediate rile can be bypassed, and the next
one used to resume the aborted CHAIN process by using the
following special command line:

CHAIN N*

If the nelt line of the intermediate rile has been intended
as a keyin response ror the program (which Just failed), then
the process will generally abort again immediately. Bq using
the "N*" form of the special command line several times, the
invalid step can usually be bypassed and the CHAIN process

..../

resumed at a val id MDOS command line. .J'

Page 06-16

CHAIN COMMAND 6.6 -- Resuming an Aborted CHAIN Process

The Error Status Mask and the current state
operator are lost when a CHAIN is aborted.
cannot be restored when an aborted CHAIN
restarted;

6.7 Examples

o~ the CMD
These values
process is

The following example shows a fairly complex CHAIN file
that incorporates most of the reatures described in this
chapter. This CHAIN rile is used to assemble and create
loadable riles of a system of program files that resides on
multiple diskettes. The primary assumption made is that an
MDOS system diskette is on drive zero and that the source
programs will be on drive one (although not all at the same
time) .

In this example the CHAIN process ~ill display messages
to the operator if no parameters are supplied. It ~ill also
display messages that indicate what path the compilation
phase is takingJ based on the passed CHAIN tags.

lIFe ASM.LOAD

1* THIS CHAIN REGUIRES AT LEAST ONE OF THE FOLLOWING
1* PARAMETERS:
1*
1* ASM -- CHAIN FOR ASSEMBLIES
1* LOAD CHAIN FOR PRODUCING MEMORY-IMAGE FILE

1* AND ONE OR MORE OF THESE PARAMETERS:
1*
1* D1, D2 -- DISK 1 and DISK 2
1* ALL ALL FILES ON ALL DISKS
1* <name> -- NAME OF FILE
1*
1* THE FOLLOWING ARE OPTIONAL PARAMETERS
1*
1* OPT ASSEMBLER OPTIONS
1*
IABORT
IELSE
I IFS ASM
1* CHAIN FOR ASSEMBLING PROGRAMS
I XIF
1 IFS LOAD
1* CHAIN FOR MEMORY-FILE CREATION
/ XIF
/XIF
@SET,M 8
IIFS ALL,Dl,PROGllPROG2
@. INSERT DISK 1 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
/ IFS ALL,Dl,PROGl
1* PROGRAM PROG1

Page 06-17

CHAIN COMMAND 6.7 -- Examples

I IFS ASM
DEL PROG1. RO: 1
RASM NOL;EGU,LIS/PROG1: 1;R'l.OPT7.0=PROG1: 1
I XIF
I IFS LOAD
@TST,S EG
@~p SKIPPGMl
DEL PROG1. LO: 1
RLOAD
IDONiBASE;CURP=\\$100iLOAD=PROG1: 1
OB~A=PRQG1: 1
CURP=\\$lOOiLOAD=PROG1: 1
MO=4L?iMAPF
EXIT
@LBL SKIPPGMl
/ "',.~ AJ.r

I XIF
/ IFS ALLI 01, PROG2
l-it PROGRAM PROG2
I IFS ASM
DEL PROG2.RO: 1
RASM NOLJEGU,LIS,PROG2: liR7.0PT7.0=PROG2: 1
/ XIF
I IFS LOAD
@TST/S EG'
@JMP ENDl .
DEL PROG2.LO: 1
RLOAD
IDONi BASE; CURP=\\S100iLOAD=PROG2: 1
OB~A=PRaG2: 1
CURP=\\$100;LOAD=PROG2: 1
MO=#LP; MAPF
EXIT
@LBL ENOl
I XIF
I XIF
/XIF
IIFS ALL/D2JPROG3,PROG4
@. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
/ IFS ALLJD2JPROG3
1* PROGRAM PROG3
1 IFS ASM
DEL PROG3.LX:l
RASM PROG3: lihOPT'l.
/ XIF
/ IFS LOAD
@TST,S EG
@JMP SKIPPGM3
DEL PROG3.LO: 1
EXBIN PROG3: 1
@LBL SKIPPGM3
/ XIF
/ XIF
/ IFS ALL,D21PROG4

Page

.. J

06-18

r"'"

CHAIN COMMAND

/* PROGRAM PROG4
/ IFS ASM
DEL PROG4.LX: 1
RASM PROG4: li7.0PTi.
/ XIF
/ IFS LOAD
@TST,S EG
@JMP END2
DEL PROG4.LO: 1
EXBIN PROG4: 1
@LBL END2
I XIF
/ XIF
/XIF

6.7 -- Examples

The tags ALLI D1, D2,. PROG1, PROG2, PROG3, and PROG4 are
used to identiT~ which programs rrom the s~stem of p~og~ams

are to be selected by th~ CHAIN process. All programs 'rom
ail diskettes can be selected by specifying ALL. A specific
program can be selected by specifying its name: either
PROG11 PROG21 PROG3, or PROG4. All programs on a specific
diskette can be selected by specifying Dl or D2.

The tags ASM and LOAD are used to select what process
the programs will go through. ASM specifies the programs
will be assembled. LOAD specifies link/loading or obJect
file conversion via EXBIN.

It should b'e noted that nested IFs have been indented
(spaces between slash and IF) to indicate their level of
nesting. This is optional, but makes the CHAIN file easier
to understand. Prior to the assembly and link/load or obJect
file conversion processes, a DEL command has been placed to
ensure that the output rile rrom the process does not exist.
The first time that the CHAIN file is used, the DEL command
will cause an error to occuri however, the SET operator has
been used to inhibit CHAIN process aborting.

The TST operator is used after each assembly process to
check for errors. If an error occurred, then the error
status word will be non-zero in the portion indicated bq the
itS" deSignator. Thus, the test condition for being equal to
zero will be false, causing the JMP to be executed.
Therefore, if assemblq errors occur, the link/load or obJect
file conver~ion process will be bypassed since it would only
generate an unusable ~.; , e.

It should also be noted that the backslash character is
used in the RLOAD command CURP. Thus, the CHAIN Tore ing
character, which is also a backslash, must be entered.

The Operator Breakpoint is used to pause the CHAIN
process. This allows the operator time to insert the proper
diskette into drive one. Otherwise, if all programs from all

Page 06-19

CHAIN COMMAND 6.7 -- Examples

diskettes we~e to be assemblecl the~e might not be sufTicient
time Tor the operator to s~ap diskettes.

00" ____

The following example illustrates what is displayed on
the system console ~hen the CHAIN is invoked without any
parameters. Since this would p~oduce an empty intermediate
file, the condition is tested Tor and an appropriate message
displayed. The name of the CHAIN file in the directo~y is
SYSGEN. CF.

=CHAIN SYSGEN

=

THIS CHAIN REGUIRES AT LEAST ONE OF THE FOLLOWING
PARAMETERS;

ASM -- CHAIN FOR ASSEMBLIES
CHA!N FOR PRODUCING MEMORY-IMAGE FILE

AND ONE OR MORE OF THESE PARAMETERS:

D1; D2 -- DISK 1 and DISK 2
ALL ALL FILES ON ALL DISKS
<name/ -- NAME OF FILE

THE FOLLOWING ARE OPTIONAL PARAMETERS

OPT -- ASSEMBLER OPTIONS

The next example uses the same CHAIN rile againi
ho~ever, this time the parameters ~or assembling (ASM),
memo~y-image rile cT~ation (LOAD), and processing all ~iles

i nth e s y stem (ALL) al' e s pee i r i e d . I n .a d d i t ion, the 0 p t ion s
~ield or the assembler will be initialized with the value
HLX" to pl'oduce a listing and a cross reTe~ence table on the
line pl'int.e~.

=CHAIN SYSGENiASM,LOAD,ALLJDPT7.LX7.
CHAIN FOR ASSEMBLING PROGRAMS
CHAIN FOR MEMORY-FILE CREATION
PROGRAM PROGl
PROGRAM PROG2
PROGRAM PROG3
PROGRAM PROG4

@SET FOFF 0600
@. INSERT DIS~ 1 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROGl. RO: 1
PROGl .RO: 1 DELETED
RASM NOL/EGU, LIS, PROG1: 1;RLXO=PROG1: 1
MDOS MACROASSEMBLER 03.00
COPYRIGHT B¥ MOTOROLA 1977

or)

@TST,FOOO 0000 0027)
@.JMP 2F29

Page 06-20

CHAIN COMMAND

DEL PROG2.RO: 1
PROG2 .RO: 1 DELETED
RASM NOL, EGU, LIS, PROG2: 1;RLXO=PROG2: 1
MOOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST,FOOO 0000 0027
@'-"MP 2F33

6.7 -- Examples

@< INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROG3.LX: 1
PROG3 .LX: 1 DELETED
RASM PROG3: liLX
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TST,FOOO 0000 0027
@JMP 2F41
DEL PROG4. LX: 1
PROG4 .LX:1 DELETED
RASM PROG4: liLX
MDOS MACROASSEMBLER 03. 00
COPYRIGHT BY MOTOROLA 1977

@TSTIFOOO 0000 0027
@JMP 2F4B
END CHAIN
=

From the example abovel it can be seen that even though
the LOAD paramete~ was entered on the CHAIN command line, the
process to create memory-image files was not performed. This
resulted f~om the fact that the assembly process generated
e~rors in each p~ogram. Had no e~rors occurredl the
memory-image files would have been created. The operands of
the Execution Operators have been converted into hexadecimal
codes during the compilation to make it easier Tor the
execution phase overlay to process the intermediate file.

The last example uses the same CHAIN file again;
howeverl this time only a single program is processed, PROG3.
The. operator does not need to know on which diskette this
program resides. The Operator Breakpoint is used to notify
the operator when a diskette is to be inserted into drive
one. In this example1 no errors occurred during the assembly
process since the memory-image file is created.

Page 06-21

CHAIN COMMAND 0.7 -;Examples

-"'"'""-,
=CHAIN SYSGENiASM,LOAD,?ROG3,OPT7.LN=1207.)

CHAIN FOR ASSEMBLING PROGRAMS
CHAIN FOR MEMORY-FILE CREATION
PROGRAM PROG3

@SET FOFF 0800
@. INSERT DISK 2 INTO DRIVE 1 -- DEPRESS ANY KEY WHEN READY
DEL PROG3.LX:l
?ROG3 . LX: 1 DELETED
RASM ?ROG3: ljLN=120
MDOS MACROASSEMBLER 03.00
COPYRIGHT BY MOTOROLA 1977

@TSTIFOOO 0000 0027
DEL PROG3.LO: 1
?RQG3 . LO: 1 DELETED
EXBIN PROG3: 1
@LBL 2F29
END CHAIN
=

\
;

.. ./

Page 06-22

CHAPTER 7

7. COpy COMMAND

The COpy command allDws files to be copied from one
diskette to another, from a diskette to another device, 01"

from another device to a diskette. It is not possible to
copy files bet~een two non-diskette devices with the COpy
command. Options exist Tor copy verification and ror the use
of non-standard devices.

7. 1 Use

The COpy command is invoked with the following command
line:

COPY <name l~C,<name 2~J (;(options>J

where <name 1> is the name of a source file o~ sou~ce device,
<name 2/ is the name of a destination file or destination
device, and <options> may specify the type of copying that is
to be pe'T'fo-rmed. The following options are valid. Their use
is desc~ibed' explicitly in the next sections:

Option

B

c

D=<name 3:>(, J

L

M

N

Function

Perfo'T'm both the copy and the verify
processes when copying between two
diskette files.

Use binary 'T'ecord conversion during
the copy to a non-diSKette device.

Use a
instead
device
verify
located

List

user-defined device drivel'
of a standard MOOS-supported
driver during the copy or
process. The driver is
in a diskette file <name 3>.

errors on the line printer
during file verification.

Go to debug monitor after loading
user-defined device driver file.

Use non-file format mode for the
non-diskett. device.

Page 07-01

COpy COMMAND 7. 1 -- Use

v

w

Ve~ify source and destination files.
No copy is performed.

Use automatic
destination file
diskette.

overwrite
already exists

iT
on

7.1.1 Diskette-to-diskette copying

In order to copy one diskette rile into another) both
<name l~ and <name 2/ must be specified. The source rile
name specification, <name 1:>1 will be supplied with the
de-rault surfix "SA·II and the default logical unit number zero
if those quantities are not explicitly given. The
destination file name specification~ <name 2~, need onl~ be
specified with a file namel a surfixJ or a logical unit
n u m'b e l' (or any com bin at ion t n eT' e 0 r),; h (uu eve -r , a t lea s ton e
part of <name 2/'s file name specification must be entered.
The unspecified parts of <name 2/ will be supplied from the
respective parts of <name 1~. Thusl if TESTPROG. SA:O is to
be cGpied to the diskette on drive one, then only the logical
un i t n u m beT' ' nee d be s p e c i fie d f 0 l' <n am e 2:> , sin c e the f i 1 e
name and suffix will be supplied from <name 1~:

COpy TESTPROG .. : 1

In this example the deTault values were rirst supplied for
<name 1/1 and then the derault values supplied ror <name 2/.
There is no restriction in file format when copying from one
diskette file into another.

an 1 y the " Bit, It L It I • /I V II and the II W n 0 p t ion s are val i d
when copying between two diskette files. The "V" and "B"
opt i on 5 I a s UJ e 11 a s the If V n an d n W If opt i on s , are m u t u.a 1 1 y
exclusive. The IIL" option is valid only valid lJJith "V" or
"B". The 111;.1" option is used to allolJJ the de-stination
diskette Tile to be overwTitten iT its rile name already
exists. If, in the above example, the file name
TESTPROG.SA: 1 already existed, then COpy lJJould have displayed
the message

TESTPROG.SA: 1 EXISTS. OVERWRITE?

and aUJf3l."lO a response from the operator. A "V" response would
allow the COpy process to continue, and the file on drive 1
would be overwritten. Any other response would cause the
COpy command to be terminated, and the destination Til~ lJJould
be unaffected. The "WI! option's presence will Porce the COpy
command to attempt the copy if the destination file name
exists, with-out prompting the operator.

The other options are explained in subsequent sections. ~'

J

Page 07-02

COpy COMMAND 7. 1 -- Use

7.1.2 Diskette-to-device copying

If a diskette file is to beo copioed to another device,
both <name 1/ and <name 2> must be specified on the command
line. The default assumptions for the source file are the
same as in diskette-to-diskette copyingi however, <name 2)

must now indicate a destination device rather than a file.
The following are valid device specifications that can be
used for <name 2>:

Device
Name

#CN
#CP
#LP
#UD

Associated Physical Device

Console printer
Console punch (record) device
Line printer
User-defined device

Unlike diskett~to-diskette copying, where <name 1>
could be the name of any diskette file, <name 1:> can only be
an ASC I lor bin a r" r e cor d f i 1 e (s e e sec t ion 24. 3) . T h us, not
every di~kette file can be copied to a non-diskette device.
If memory-imag e f i 1 es are to boe cop i ed to a non-d i s k ette
device, then they must first be converted via the BINEX
command (Ch ap tel" 4).

There are two modes for copying files to a non-diskette
device: file format mode and non-file formaot mode. The file
format mode is the default mode that the COpy command uses.
The file format mode will write one extra record to the
device before any data records are copied from the file.
This special record is called the File Descriptor Rec9rd
(FDR) and serves the same purpose as a directory entry for
diskette files: the FDR contains the diskette file's name,
suffix and file format <see section 24.3). The "N" option
inhibits the ~riting of the FDR to the output device~ and is
used to indicate the non-file format mode. Thus, if an FDR
is to be written to the output device, the "N" option should
be omitted; if an FDR should not be written, the UN" should
be specified.

The output deviceso#CN and #LP can be used as the
destination device in the diskette-to-device copy mode.
However, the presence of the "N" option on the command line
when copying to these devices has no effect. The #CN and #LP
devices are not "rile" devices since no FDR could ever be
read from them. Thus, the COpy command wi 11 automatically
force the non-file format mode to be in effect and suppress
the writing of the FDR.

Some output devices cannot support eight-bit binar~
data. In such instancesl the "e" option must be used when

Page 07-03

COpy COMMAND 7. 1 -- Use

binary record files are being copied. The PC" option will
cause the binary data to be converted into seven-bit ASCII
data (see section 24.3) which can be handled by the device.
The following table shows what the destination file format
",i 11 be, based on th e fi 1 e format oT th e sou-rce f i I e and the
options specified:

SOUT'ce File Destination File

ASCII ASCI I.

Binar1J' no lie" Binary, if supported btl device;
A5CII-~onverted-binar~.

Sinal',:!' "en ASClI-converted-binar~.

else

In the nan-file Tormat mode (IINtI option specified), only
ASCII record files can be copied.

The" "V" and "Lu options are valid in this copy mode.
The "W" and "B" options are invalid since no diskette 'ile is
being \dritten to. The "D" and "M" options can be used, but
only if the device #UD is specified for <name 2J (see section
7.2).

7.1.3 Device-to-diskette COPtling

IT a file is to be copied from another device to the
disikette, then <name 1:> is re~uired; howeverJ depending on
the copy mode chosen (rile fo~mat o~ non-~ile ~ormat) <name
2~ is optional. If the file format mode is to be used (no
"N" option specified), then <name 2~ can be omitted. In such
cases, the file name to be used Tor the diskette file is
taken out of the FDRi however, if <name 2~ is specified
(still no liNn option), the SOUl'ce device will be r1!ad until
an FDR is found that matches <name 2~ before the copy takes
place. In other Ulords, in the file format mode, <name 2~
indicates the name"or the rile on the device which will be
copied to diskette. The name of the Tile can only be changed
with the NAME command (Chapter 20) after the file has been
copied to diskette.

I r the II Nit 0 P t ion iss p e c i ~ i ed, the n no FDR pro c e s sin 9
will be performed. Therefol'eJ <name 2J must indicate the
diskette file that is to be written to.

In eithe~ case ("Nil option or no "Nfl option), <name 1)
will specify the source device, and <name 2~ will speciftl the
destinati on disk ette f i 1 e. The defaul t va lues "SA" and zero
will be supplied for <name 2~'s surrix and logical unit
numberl respectively, if they are not explicitly entered by
the operator. The valid device specifications that can be

/

"

Page 07-04

COpy COMMAND

used for <name 1> are:

Device
Name

#CR
#UD
#HR

Associated Ph~sical Device

Console reader device
User-defined device
EXORtape (see section 7.6)

Only ASCII record files can be copied using the "N"
option. If paper tapes or cassettes have been generated in a
non-MDOS environment, they must conform to the MOOS format
ror ASCII record files (section 24.3). Most important is the
record termination seq,uence. Each record must end with a
carriage return} line reed, and null character combination.
Otherwise. lead ing data characters tlrom the subsequent record
can be dropped. Next, in importance is the end-of-file
indicator. The tape should contain the ASCII end-or-file
record (section 24.3) or generate a timeout condition
(section of erased or blank tap~) to cause the console reader
to stop.

If binary records are to be copied, then the file format
mode must be used. The binary record copied to diskette will
always be in the binary format, never in the
ASClI-converted-binary format. The FOR contains the format
o-f the rile on the device. Thus, the conversion from
ASClI-c9nverted-binary to binary is perfcirmed automatically.
The lie II option, there-fore, is invalid with this Torm Or the
COPY command.

The "W" option can be specified to automatically
overwrite the diskette file «name 2/) if it already exists.
The "0" and 11M" options are only valid ir <name 1> is the #UD
device. The uBti option is invalid, but the ltV" and ilL"
options are valid. The IfL u option can only be specified if
"V" is specified.

7.1.4 Verification

The "V" option can be used to compare two files against
each other. No file copying will take place if this option
is specified. The "V" option is valid with all three modes
of ~ne COpy command: diskette-to-diskettel
diskette-to-devicEh and device-to-diskette. IT, hOlileverJ a
device speCification is being used for either <name 1> or
<name 2:>, it must be a device that supports input. FoT'
example, even though a rile from diskette can be copied to
the line printer or the console punc.h, the "V" option is
invalid ror 'those speciric devices.

The veT'irication process will display the message

Page 07-05

COpy COMMAND 7. 1 -- Use

VERIFY IN PROGRESS

while the verification is taking place. IF the files being
compared are both diskette files, then the parts of the files
that do not compare will be displayed in the following
Tormat:

SECTOR nnnn
OFFSET xx SRC-yy DST-zz

where IInnnn" is the logical sector number of the File, "XX"

is the offset into the sector, "~y" is the source File's byte
(<name 1)-), and "IZ" is the destination -Fil'e's blJte «name
2:>) . A 11 va 1 u e s a'r e dis p I a 4J e din hex ad e c i ma 1.

riles heing
files' RIBs will also be included in the
ensure that the load information matches.

c: ompared ~ then tn e
verify process to

In the event that only a sector number is displa~ed
during the veri-Fy process (no byte discrepancies shown), then
the two files are of different. lengths. The files are
identical through the end-of-file of the shorter File. The
sector number displayed is one sector beyond the end-or-file
of the shorter file.

When veri~ying a diskette file with a non-diskette file,
the mis-comparisons between the two files are displayed in a
slightly diFferent format as shown below:

RECORD mmmmm
OFFSET kkk SRC-yy DST-zz

Ulhere "mmmmm" is the physical record number in the diskette
file (in decimal), IIkkk" is the offset within the record
(a 1 so i n dec i rna 1) , and " y y .. and II z Z .. are the sa mea s
described above. Ir the t~o files being compared are of
diFferent lengths. and if they are I identical through the
end-of-file of the shorter -File, then the offset portion of
the error message will not be printed.

The ilL" option can be used in conJunction with the "V"
option to cause the mis-comparisons between the two files to
be printed on the line printer instead of the console.

7.1.5 Automatic verification

The "B" option can be used when copying from one
diskette file to another to automatically cause the two riles
to be verified after the copy has taken place .. Section 7.1.1
describes the copy process between two diskette files.
Section 7.1.4 describes the verification process.

, .. --... . \
'.)

I

.J

Page 07-06

COpy COMMAND 7. 1 -- Use

For example, the following c~mmand line:

COpy TESTPROG,: liB

performs exactly the same function as the following two
command 1 ines:

COPY TESTPROG, : 1
COpy TESTPROG,: liV

The "L" option can be specified along with the "B"
option to cause any errors during the verification process to

'be printed on the line printer instead of the console.

7.2 Use~-Oefined Devices

The COpy command allows the user to specify his own
device drivers. Such device drivers must Tollow the
specifications described in this section. The device name
#UD is used on the COPY command line to indicate that a
user-defined device driver is speci~ied in the options field.
The "D" option is used to pass the File name of the device
driver to the COpy command. The "0" option has the following
format:

O=<name 3:>L J

where the terminating comma is optional. If the "0" option
is the last option ,specified, then the comma need not be
supplied; however, if other options follow the "D" option,
then the comma must be present to serve as a terminator for
the file name specification of the device driver.

The device d~iver must be in a Tile that has the
memor,,-image format. <name 3:> is a complete file name
specification. The default values of "LO" and zero will be
supplied Tor the suffix and for the logical unit number. The
device driver must meet the requirements set forth in section
26.2 for entry pOintsl for calling sequences, and for return
conditions. In addition, the following criteria must be
satisfied:

10 The first twelve bytes of the device driver
must contain the Controller Descriptor Block
(CDS) for the device (Chapter 26).

2. The device driver must not overlay the COpy
command. It is suggested that the device
driver load as close to the end Or the COpy
command as possible. This address should be
$3000.

Page 07-07

COPY COMMAND 7.2 -- User-Derined Devices

It may be necessary to set breakpoints in the .-"""",
user-defined device driver to ensure that it is working .)
properly. The tiM It option will cause the COPY command to
enter the debug monitor after the device driver has been
loaded into memory. This reature is especially useful during
the initial testing of the ,device driver.

The 18M'" option cannot be used without the "Dn option.
If the "M" option is present, the debug monitor will display
one Or the Following messages depending on the version or the
EXbug firmware. The first message is displayed by EXbug 11
the second by EXbug 2:

BKPT ERROR
P-2126 X-2161 A-OD B-80 C-CO S-226F

SWI P-2126 X-2161 A-OD B-SO C-CO S-226F
*E

These messages indicate that the user-defined device driver
has Just been loaded into memory. The actual numbers in the
pseudo-registers may dirrer and are inconse~uential. The
purpose of going to the debug monitor is to allow the user to
set bl''aakpoints. at critical places in t.he device drivel' to
vel'if~ that it is working p~operly. After the breakpOints
are set~ control- is .returned to the COpy command by entering
the EXbug command

i P

Then} when the user-defined device driver is accessed bq the
COPY command, the set breakpoints will allow the user to
check the device driver;s Functions_

7.3 COpy Mode Summary

The following table summarizes the requirements for the
three COpy command modes. The following symbols are used in
the table:

Stjmbol

OK-OK
DK-DV
DV-DK
R
a
F
o

Meaning

Oiskette-to-diskette copying
Diskette-to-device copying
Oevice-to-diskette copying
Req,uil'ed
Optional
File name
Device name

.--/

Page 07-08

COPY COMMAND

COpy
Mode

DK-OK

DK-DV

DV-DK

Val id
Options

B,LIV,W

<name 1> <name 2)

R,F

R,D

O,F

7. 3 -- COPY Mode Summary

Restrictions

V and W options are
mutually exclusive. V
and B options are
mutually exclusive.
L is onl~ valid with
V or B.

N option implies
ASCII record Tormat.
C option implies
binary record Tormat.
D option implies #UD
device name. v
option implies input
device. L option is
only valid tIIith V.

D option implies #UD
devjce name. V
option implies input
device. Wand V
options are mutually
exc lusive. N option
re~uires <name 2/.
<name 2) causes
search Tor FDR on
device if no N
option. L option is
only valid with V.

7. 4 Messages

The following messages can be displayed by the COpy
command. Not all messages are error messages. although error
messages are include~ in the list. The standard error
messages that can be displayed by all commands are not listed
h eT"e.

<name> EX ISTS. OVERWRITE?

ihe rile named by <name> already exists in the
director'J. BeroT'e overwriting the rile, the
op eT'ator must resp and wi th a "y... Any oth er
response will terminate the COpy command.

VERIFY IN PROGRESS

The "V" OT"
command 1 ine.

"B" option was specified on the
The two files are being compared.

Page 07-09

COPY COMMAND

SECTOR nnnn

RECORD mmmmm

7.4 -- Messages

iwo diskette riles did net compare during the
verify process. "nnnn" indicates th~ logical
sector number (hexadecimal) oT the failure.

Two files did not compare during the veriFy
p,..ocess. One file is on diskette: the other file
i s not. It mmmmm II in d i cat est h e p h Y sic aIr e COT' d
number (decimal) in the diskette rile where the
railuT'e occurred. The LIST command (Chapter 17)
can be used to display the records in a file with
their physical record numbers.

OFFSET <xx or kkk} SRC-yy DST-zz

7.5 Examples

This message indicates ~hich bytes ~ithin a
logical sector or within a physical recora or the
t~o files being compared do not match. The
of¥set "xx" is hexadecimal if comparing diskette
files. The offset "kkktf is decimal iF comparing
a diskette file with a non-diskette file. The
b~te in the source file is shown as "~y". The
byte in the destination rile is shown as II ZZ II.

The following examples have been separated into the
three COpy modes as illustTated in the table oT section 7.3.

7.5.1 Diskette-to-diskette example

The follo~ing command line

COpy PROGS.RO:2J.RN: 1

will copy the file PROGS.RO from drive two into the file
PROGS.RN on drive one. A useT response is re~uired to
continue the copy if the file on drive one already exists.
The user response can be suppressed, regardless Or whethe~

the rile on drive one exists, by adding the "W" option as
sho",n:

COpy PROGS. RO:2,. RN: liW

No error results if the file on drive one does not exist. In
either case, if the logical unit number had been omitted Trom
the <name 2~ specification, the rile would have been created
on drive tlJlO. ~_.,J

Page 07-10

COPY COMMAND 7.5 -- Examples

~he next example illustrates the display of the bytes
which do not compare when two files are compared with the "V"
option.

=COpy BLAK~ACK: 1, :OiV
VERIFY IN PROGRESS
SECTOR 0000

=

OFFSET 10 SRC-31
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET
OFFSET

11
12
13
14
15
16
17
18
76
77
78
79

SRC-34
SRC-2B
SRC-SA
SRC-53
SRC-31
SRC-38
SRC-OD
SRC-2B
SRC-45
SRC-4C
SRC-53
SRC-45

7.5.2 Diskette-to-device example

The follo~ing command line

COpy TEXT,#C?

will copy the rile TEXT. SA from drive
punch (record) devic.e. The punch device

DST-02
DST-03
DST-04
DST-05
DST-06
DST-07
D5T-08
DST-09
D57-00
DST-55
D5T-66
DST-77
DST-88

zero
must

to
be

the console
ready to

receive data berore the command line is entered. Since no
"Nt. option UJas specifiedJ an FDR record
before any data records are copied.

Most f,..eQ.uently, however; the user
files to the console punch for loading via
command. In such cases, the FDR should not
punch device. ThenJ the following command
used:

COpy TESTPROG.LXJ#CPiN

will be written

will copy object
the EXbug LOAD

be written to the
line should be

where TEST?ROG.LX is the output file from an assembly process
(in the EXbug-loadable format). The liN II option suppresses
the writing o~ the FDR. If the TESTPROG.LX file had a
non-ASCII file format, then an error message would have been
d isp layed.

The n.ext example illustrates how source listings that
have been directed to diskette by the assembler (RASM) can be
printed on. the line printer,. ·Since the file already contains
page formattingJ the LIST command would cause the printed
copy to look strange since LIST imposes its own page

Page 07-11

COPY COMMAND 7.5 -- Examples

formatting. Thu15, the Copy command should be used to print .. ~
source listings from diskette:)

COpy TESTPROG.ALJ#LP

The console printerl #CN, could be used instead of #LP Just
as well. The liN" option is not used in this example because
the printer (eithsT' #LP 01' #CN) is not a "file" device.
COPlJing to a "non-file" device will automaticalllJ set the
non-file fOTmat mode. If the UN" option were specified in
such a case, no erro~ ~ould result. It would only be a
redundant re~uest.

The last example illustrates ho~ the command line ~ould
appear iT a user-~efined device driver is used:

COpy TEST?ROG.LXJ#UDiND=TAPE

The user device is indicated via the #UD. The liD" option
must be present. Otherwise; an error Ulould result. The file
TAPE.LO on drive zero will be used as the device driver file
.po,.. the user device.

7.5.3 Device-to-diskette example

Once a file has been copied to the console punch with an
FDR, it can be ve~iTied or cQpie~ back to diskette without
having to speciftj its name. The following command line:·

COpy #CR

~ill cause COPY to search .pOl' the .pirst FDR on the console
reader device. Once it is ~ound, the file name' contained in
tne FDR will be used ~or <name 2/. IT the rile name does not
exist in the directory, it will be created before receiving
the data records from the console reader. If the file name
already exists in the directory, a message will be displayed
by the COpy command asking the operator ir the file should be
overwri tten.

The command line

COpy #CRJ TESTPROG. LXiVL

on the other hand, will search the console reader device for
an FDR that contains the file name TESTPROG. LX. The same
file name must also exist in the directory of the diskette in
drive zero so that the verification can take place. Any
mis-comparisons between the two Piles will be printed on the
line printer.

If the user has files in a rormat that can be read by
the console reader devicel but wh ich have no FDRI the liN" .~

Page 07-12

/

COpy COMMAND 7.5 -- Examples

option must be used to copy those ·files to diskette:

COpy #CR,FILEliN

In this example, the rile indicated by <name 2/ will receive
the· data from the console readel'. No search is performed for
an FDR. 1ft h e Til e i son pap e r tap e I the nit mu s t be ina
Tormat that is compatible with the MDOS ASCII records
(section 24. 3>' Th~t is. a carriage retUrnl line reed, null
sequence must terminate each record. OtherUlise, one or two
data characters from the subsequent records may be lost.
This results from the fact that the detection of a carriage
return Torces the device driver to turn off the reader. In
the amount of time it takes to turn the reader ofTI one or
tUfO frames (characters) may have passed by the read head.

The ~ollowing example illustrates how a user would set
breakpoints in his device driver to verif~ that it is
performing the functions of a driver as specified in section
26.2. The example shows EXbug 1 as the debug monitor:

=COpy #UDJTESTiNMD=DRIVER
BKPT ERROR
P-2126 X-2161 A-OD B-80 C-CO S-226F
*3056iV
*3064iV
*3082iV
*iP

The EXbug monitor is given control after the user's driver
file, DRIVER. LO:O, has been loaded into memory b'd the COPY
c amma n d . Th e use r then set s t h r e e b r ea Ie poi n t s (t he add res s e s
.pOl' the breakpoints are, of course, meaningless in this
example -- they serve only to illustrate that breakpoints are
set>. The Hi pit command then returns control to the COpy
command. When one of the breakpoints is reached during ~ne

execution of the COpy command, the normal breakpoint display
UJ i 11 b e s e en . At t hat p 0 in t ; the use l' c an e x am i n ere 9 i s t e,.. s ,
memory, etc. I to ensure that his driver is runctioning
prop er 1 y.

7.6 COpy with EXORtape Reader

The COPY command will provide users with EXORtape ·paper
tape readers an additional device type, Users with paper
tape readers that are similar to the EXORtape can also use
the COpy command without the requirement of a user-defined
device driver.

The EXORtape reader interfaces through a PIA on the
EXORdisk I interface" module. The following steps must be
followed to permit the EXORdisk I Interrace Module to be
accessed by the COpy command.

Page 07-13

COpy COMMAND

1.

7.6 -- COpy with EXORtape Reader

No boa~ds may reside in the EXORciser that
respond to addresses at locations $EOOO-E7FF,
inc luslve.

2. The M68IFC's base address must be changed via
the five-position microswitch so that:

3.

55 is closedJ
94 is closed,
S3 is closed,
92 is open.
51 is open.

The M68IFC must
EXORciser'S card

be inserted into the
cage with power ofT on the

4. The EXORtape should then be connected via its
cable to P3 of the Interface Module. The
COpy command can now use the EXORtape reader
as an input device through the device name

#HR

in all instances that an input ~evice is
valid ..

For users without the M68IFC but with a compatible paper
tape reader (see "M68R680 EXDRtape User's Guide")1 a standard
PIA interface can be used if the PIA is configured to the
address $E404.

Page 07-14

CHAPTER 8

8. DEL COMMAND

The DEL command is used to remove MDOS file names from a
di~ectory and to deallocate all space that belongs to the
deleted entry. A single file name, a list of file names, OT'

a family of file names may be deleted with a single command.

8. 1 Use

The DEL command is invoked ~ith the following command
line:

DEL «name 1> (, ,<name n>JJ Ci<options/J

where each <name i> (i = 1 to n) can specify a specific file
name or a family of file names. The <options> field can be
one or both of the following option letters:

Option Function

S When family name specifications are used
include entries in the directory with the
"system" attribute.

y Automatically delete all file names of a
family. Do not ask the operator if each
member of ~he family should be deleted.

The list of file names specified on the command line is
processed from left to right. As the list is processed, the
file names are searched for in the directory specified by the
logical unit numbers. If no logical unit number is
explicitly entered by the operator, zero will be supplied as
a default. No default suffix is supplied.

File names which are deleted by accident via the DEL
command may be restored if no other commands that afrect the
directory or the allocation table have been run after the
deletion. The REPAIR command description (Chapter 22)
contains an example of the procedure that must be follo~ed to
res tor e sue h r i 1 eo na me s. ! tis 1" e C 0 mm end e d . h 0 tv eve T' ; t hat
files be configured with delete protection or that adequate
backup copies be kept as an alternative to restoring file
names in this mannerl especially since this restoration will
only work i~ the ~rror is detected immediately after the file
name i s del e ted.

Page 08-01

DEL COMMAND 8. 1 -- Use

8.1.1 Single file name deletion

A single Tile name is deleted by specifying its name as
the only parameter on the command line. Both the file's name
and suffix must be supplied by the operator. If the file
name is not found in directory of the indicated (or default)
drive, the message

<name> DOES NOT EXIST

will be displayed. If the file name
directory and if the file is unprotected,

<name" DELETED

is found
the message

in the

will be
delet.ed.

displayed to verify that the file name has been
I r the f i lei s pro tee ted I the me s sa g e

<name" IS PROTECTED

\IIi 11 b e 5 haUl". In this case, the file name is not deleted.

8.1.2 Multiple rile name deletion

Multiple file names can be deleted by specifying more
than one name on the command line. Multiple file names must
be separated by commas or some other valid delimitar. Like
single file name deletionl multiple file name deletion will
cause one message to be displayed for each file name entered
on the command line to indicate whether it ~as deleted,
Ulhethe~ it did not exist, or whether it was protected and
could not be deleted. As many file names as can be
accommodated on the command line can be deleted at one time.

8.1.3 Familq deletion

In either the single or the multiple file name modes, a
file name specification can contain the family indicator.
The family of file names speciried by such a deSignation will
then be considered for deletion. Unlike the single and
multiple file name modes, the operator will be prompted with
the message

DELETE <name" ?

for each Tile name that belongs to the family. This permits
the operator to see all family members before they are
deleted. A ny" response to the above prompt will cause the
file name to be deleted. Any other response will inhibit
deletion of that family member. Protected file names ~ithin
the family will be displayed with the standard protection

Page

.,)

08-02

DEL COMMAND 8. 1 -- Use

message 'indicating that the~ cannot be deleted.

Without the presence of ang optionsl only Tile names_
lacking the "system" attribute will be considered as eligible
ror deletion in the family mode.

A special case or the family mode is the absence or any
file name specification. In this case, the DEL command
processes the command line as iT the following file name
specification had been given

.:0

which will make all non-system file names on drive zero
eligible for deletion.

A logical unit number may be entered on the command line
as the only part of the file name specification. In this
ease, the family *. * will be eligible for deletion. Instead
of the de-FBult drive, however, the operator entered logical
unit number will be used.

8. 2 Op t ions'

The liS" option is used to i,nclude rile names with the
system attribute in the family mode of deletion. Normall~,

the ram i 1 y mod e e xcI u des s u c h r i 1 e n am e s .T h e It S fI 0 P t ion has
no effect in the single or multiple file name modes.

The ItY" option will inhibit the DEL command's prompt
asking if each family member is be deleted. The effect o~

specifying the tty" option is to give an automatic "Y"
response to the prompti however, neither the prompt nor the
automatic response are displayed. The deletion messages
indicating which members of the family were deleted or
protected will still be shown.

The "Y" and "S" options can be used concurrently.

8.3 Messages

The following messages can be displayed by the DEL
command. Not all messages are error messagesi however, error
messages
messages
here.

are included 1" the list. The standard error
that can be displayed by all commands are not shown

<name> DOES NOT EXIST

This message is displayed ror each ~ile name on
the command line that is not found in a
directory.

Page 08-03

DEL COMMAND 8.3 -- Messages

<name::> DELETED

This message is displayed for each file name that
is deleted. It is displayed in sing1el multiple,
o~ famil~ file name modes.

DELETE <name::> ?

This prompt is displayed whenever a ramil~ of
file names containing at least one member has
been speclTied on the command line, and the "Y"
option is not present. The operator must respond
with a "yu to delete each membe~ of the family.

<name::> IS PROTECTED

8.4 Examples

This message is displayed ror each rile name that
cannot be deleted due to its protection
att~ibutes. The message is displayed in sing1el
multiple, or family rile name modes.

To delete a single file name called TEST?ROG. SA on d~ive
zero, the following command line !.IIould be' entered:

DEL TESTPROG. SA

The DEL command would then display the message

TESTPROG.SA:O DELETED

after it has deleted the Tile name. To delete the three rile
names: SCRATCH. SA on drive one, TEST. LX on d~ive two, and
PROG.RO on drive zero, the following command line would be
used. The system's -responses a,-e also shown:

=DEL SCRATCH. SA: 1, TEST. LX: 21 PROG. RO
SCRATCH. SA: 1 'DELETED
TEST . LX: 2 DELETED
PROG . RO: 0 DELETED
=

The follo~ing command line

DEL *.SA,*.SA: 1

will search for all file names without the system attribute
and with the suffix liSA II on drives zero and one. After a
file name is found, its tomplete name ~ill be displayed along
with the prompt asking if the file is to be deleted. The
operator has complete control over the deletjon of any member
of the family since a response is re~uired for every member.

-~
)

----/

Page 08-04

DEL COMMAND

To delete all unprotected
without having to respond "V"
command line could be used:

-Pile names on
to each prompt,

DEL :3iYS or DEL *.*:3iVS

8.4 -- Examples

drive three
the following

In this case, unprotected rile names ~ith and without the
system attribute will be deleted.

Page 08-05

CHAPTER 9

9. DIR COMMAND

The DIR command displays MDOS file names from the
directory. The entire directory or selective parts or it may
be displayed. Options exist for displaying an entire
directory entry, its allocation in~ormation, and for
dire~ting the output to the printer.

9. 1 Use

The D!R command is invoked with the following command
1 ine:

DIR «name>] Li<options>J

where <name> can specify a speciric rile name or a family of
rile names. The <options/ field can be one or more of the
follo~ing option letters:

Option Functi~n

L Direct output to line printer.

s

E

A

:ton c 1 u d e f i 1 e n a m e s . UI i t h the "system ll

attribute when displaying a family.

Display the entire directory entry fo~ each
fi le name.

Display the associated allocation information
along with the entire dir@ctory ent~~.

Whenever the DIR command is invoked, regardless of
options or file name specifications, the drive number and the
ID from the diskette in the specified or default drive ~ill
be displayed as a heading. This heading will serve to
identify the subsequent output. The heading has the
following format:

DRIVE i DISK I. D. xxxxxxxx

wh~re "i" UJill be the logical unit number zero, one, two. OT'

t h T' ee, an d " x x x x x x x x" til i 11 bet h e e i g h t - c h a rae t e rID t hat wa s
assigned to the diskette via the DOSGEN command (Chapter 10)
or the BACKUP command' (Chapter 3>'

Normally, u.lithout the presence of any options, the

Page 09-01

DIR COMMAND 9. 1 - Use

directory entry specified by <name> will be searched 'or
its name and suffix displayed on the system console.
following sections explain the various options that can
speciried on the command line.

9, 1. 1 Farni 1 ias

and
The

be

If <name/ contains a family indicator in either the
su~fix or the file name po~tiQn of the rile name
speciFication, the entire family 0';: -File names will be
searched for in the directory and displayed. If no <name~ is
speciFied at all, the de-rault family It*. *:. on will be used.
I r on 1 y a log i cal un i t n um b e l' iss p e c i fie d I the f am i 1 Y II *. * II

on the indicated logical unit will be used. If the "SH
option has not been specified, only file nam~~ without the
"system" attTibute will be included in the display. This
eliminates the display of all MDOS system files and commands.

When <name> contains a family indicator (expli~itly or
by default), the file names ara displayed in the order in
which they are round in the directory. A file name's
position in the directory is a function of its name and
su~Tix. Appendix G describes in more datail how names ar~

placed into the directory; however, it should be noted here
that ~hen a File's name OT' suffix is changed, its position in
the directory may also change. Thusl when the directory is
sho\Un at different times, the order of the displayed names
ma y d i .p f e i' .

9.1.2 System files

File names with the "systemll attribute will be included
in the output of the DIR command if the "S" option is
specified on the command line. If a speciFic file name is
being searched for «name~ does not contain the ramily
indicator), then the liS" option has no effect.

The effect of the "5" option is identical to its effect
\Uith the DEL command (Chapter 8>' Thus, the same family Or
file names displayed b~ the DIR command will be af~ected by
the DEL command (if invoked with similar command line
parameters). This feature allows an operator to see ahead of
time what family Or file names ~il1 be affected by the DEL
command.

9. 1. 3 Enti re d i rec tory entr'J

Normally, DIR will only display a Pile's name and
s u f fix. Th e " E II 0 P t ion can b e use d to c a use the en t ire
directory entry to be displayed. The presence of the "E" ~)

option will cause each displayed line From the DIR command to

Page 09-02

DIR COMMAND 9. 1 -- Use

look like:

FFFFFFFF.SS WDSCN# RRRR ZZZZ DD

where the symbols take on the following meanings:

Sqmbol Meaning
------ -------

FFFFFFFF File name
55 SU-rrix
WDSCN# Att-ributes
RRRR RIB address
ZZZZ File size
DD Director\j entry number

The file name and suffix are, of coursel obvious. The rile
attributes are always displayed as a six-character r~e~u.

The presence of a letter or number in a specific position of
the attribute field indicates that the particular attribute
applies to the file. A period in a position of the attribute
field indicates that the particular attribute does not apply.
The following letters (and positions) are defined in the
attribute field:

W D SeN #

File format (O=user derined;
2=memory-imagel
3=b i nary rec ord,
5=ASC I I -rec ord,
7=ASCII-converted-

binary record)
Non-compressed spaces
Contiguous space allocation
System rile
Delete protection
Write protection

T h us, i f the If W II i s dis P 1 aye d I the f i lei s wr i t e pro t e c ted.
I f noll W " i s dis P 1 aye d I the' r i 1 e i s not wr i t e pro tee ted i i f
the "C" is displayedl the file is allocated contiguous spacei
if no "C" is displayed, the file is segmented; etc.

The remainder Or the fields of the director~ entry
contairi only hexadecimal numbers. The RRRR field contains
the physical sector number o~ the first sector of the file.
This sector is known as the file's Ret~ieval Information
Block (RIB>' It is described in detail in Chapte-r 24. The
RIB contains the allocation information that describes where
the remainder of the rile is located on diskette.

The ZZZZ field contains the Pile's size in sectors. Due
to the allocation scheme used by MDOS, this field will always

Page 09-03

D I R COMM.~ND 9. 1 -- Use

be a multiple of the basic unit of all~cation (see Chapte~
24>. The size is, therefore, the physical size of the file.
The logical file size. or the number of sectors from the
beginning to the end-of-file indicator, may be smaller.

The DD field is an eight-bit coded field that describes
the directory entr~'s physical position ~ithin the directory.
It is inte~preted as rQllo~s:

7 5 4 3

9. 1. 4 Segment d escr i p tOT'S

2 1 o

Position within sector
(0-7)

Physical sector number
($3-$16)

loft he" A " 0 P t ion iss p e c i fie don the comma n d 1 i n e I the n
in addition to having the entire directory entry displayed
ror each file name, the file's allocation information will
also be shown. The allocation information is contained in
the rile's RIB and descnibes where each segment of the file
is located on the diskette. This information is displayed
following the complete directory entry. One line is sho~n

for each segment of the file. The format of the allocation
information is

ss pppp lIZ

Ulhere "ss" is the number OT the segment
npppp" is the physical sector number
s tart s the s e 9 me n t (hex a dec i ma 1) I and II z Z I II

the s e 9 men tin sec tor s (hex a dec i ma 1) .
directorq entry could appear as follows:

(0-56, dec i ma 1) ,
oT the sector that
is the size oT
For e x amp 1 e, a

FORLB . RO . OS .. 3 0490 0088 75 00 0490 080
01 0510 008

The rile FORLB.RO consists OT two segments. The first
segment starts in physical sector $490 and is $80 sectors
long. The second segment starts in ph~sical sector $510 and
is 8 sectors long. The rile's physical size is $88 sectors.

9.1.5 Other options

Normally, the output from the DIR command is displayed

.--",

on the system console. The "Llt option can be used to direct ./

Page 09-04

DIR COMMAND 9. 1 -- Use

the output to the line printer. The format of the display is
the same. Like other MOOS commands that direct output to the
line printer, the paging will be preserved by the DIR
command. Thus, onCe the paper in the printer has been
aligned, it will remain aligned after a directory has been
printed.

9. 2 Messages

The following messages can be displa~ed by the DIR
command. The standard error messages that can be displayed
by 'all commands are not listed here.

DRIVE : i DISK 1. D. xxxxxxxx

This is the directory command's heading line that
is displayed each time the command is invoked.
"i" is the logical unit number. "xxxxxxxx" is
the diskette's ID that was aSSigned to it when it
UJas generated.

TOTAL NUMBER OF SECTORS : dddd/$hhh

This message is displayed if either the "E" or
the "Alf option UJas specified on the command line,
and if one or more directory entries ~ere found.
It· gives the total number of sectors that is
al10cated to th e Til es whose names are d i sp lay.ed.
"dd d d II is the dec ima 1 val ue of the tota 1. "hhh It
is the hexadecimal value OT the total. This
message is displayed after all file names have
been printed.

TOTAL DIRECTORY ENTRIES SHOWN ddd/$hh

This message is shown at the end OT each
directory search that found at least one file
name. It gives the total number of director~

entries included in the display. uddd" gives the
decimal value of the total. "hhll gives the
h-exadecimal value of the total.

NO DIRECTORY ENTRY FOUND

This message is displayed if the <name> specified
on the command line does not result in any
matches with directory entrie~ on the diskette.
If <name> contains a family(indicator, the
message means that no members of that family were
round on the diskette.

Page 09-05

DIR COMMAND 9.2 - Messages

NO SDWIS

This message will only be displayed if the "AU
option is in effect and if an invalid RIB is
found for a file. The message is displa~ed in
place of the segment descriptor information that
appears to the right of the entire director~

entT'Y. When such a message is seen! it indicates
that the rile has probably been damaged. Since
no segment descriptors a~e round in the RIB, the
file will not be accessible any longer. The
REPAIR command (Chapter 22) should be used to
check the remainder of the diskette, as well as
to remove the er~oneous file.

NO TERMINATOR FOUND IN FILE'S R_ I.B"

9.3 Examples

This message can only be displayed if the "AU
option was specified on the command line. Like
th e pT'evi GUS mes sag e. th is one i nd i cates that a
rile's RIB has been damaged. It indicates that
the terminator was missing from the RIB. The
allocation information displaqed for the file is
meaningless since 56 segment descriptors have
been displayed. The ~ile's content is no" longe~

accessible. The REPAIR command (Chapte~ 22)
should be used to check the remainde~ of the
diskette, as ~ell as to remove the e~~oneous
-F i 1 e.

When the DIR command is invoked without any options on a
newly received system disketteJ this is what will be seen on
the system console:

=DIR
DRIVE: 0 DISK I.D. : MDOS0300
NO DIRECTORY ENTRY FOUND
=

A new system diskette has only file names with the
attribute. Those file names will be excluded

"systemll
from the

directory search unless the US" option is specified. Thus,
the default family *. *:0 (since no <name/ was specified)
contains no members. Using the US" option on the above
example would result in" the following display:

/
./

Page 09-06

DIR COMMAND

=DIR is
DRIVE 0 DISK 1.0.
BINEX .CM
LIST . eM
MDOSOVO .SY
DIR .CM
MERGE . eM
MDOSOV4 . SY
MDOS . SY
MDOSOV6.SY
FREE . eM
EGU . SA
ROLLOUT .eM
DUMP . eM
EXB!N .CM
NAME . CM
MDOSOVl .SY
PATCH . CM
BLOKEDIT. eM
LOAD . CM
MDOSOV3 . SY
MDOSER .SY
DEL . CM
ECHO . CM
CHAIN .CM
BA~KUP . eM
REPAIR . eM
MDOSOV5 . SY
DOSGEN . CM
EMCOPY . CM
COPY . eM
FORMAT . eM

M0050300

TOTAL NUMBER OF ENTRIES SHOWN
=

9.3 -- Examples

030/$lE

No ~ile attributes or file sizes are displayed since neither
the "E" nor the "AU option was specified.

If a diskette is in drive one which contains
MOOS-Supported software products (see Appendix H), the
following shows how the directory entries with sufrix "eM" on
that drive can be displayed:

=DIR ".eM: liAS
DRIVE 1 DISK I. D. : EDIT0300
ASM . eM . DSC.2 OOBO 002C 70 00 OOBO 02C
EDIT . eM . DSC. 2 0230 0018 72 00 0230 018
TOTAL NUMBER OF SECTORS : 0068/$044
TOTAL DIRECTORY ENTRIES SHOWN : 002/$02
=

Both the EDIT and ASM commands reside on drive one. From
their attributes it can be seen that those files are not
write protected, are delete protectedJ are system filesl are

Page 09-07

DIR COMMAND 9.3 -- Examples

contigously allocated on diskette" and are or file -Format 2 .-"
(memoT"y-image). The ASM command is located starting at
physical sectoT" $80 and is $2C sectors long. The EDIT
command is located starting at sector $230 and is $18 sectors
long. Both fi 1 es have onl y one segment descri ptor. The ASM
command's file name is the first directory entry in physical
sector $E (found by shifting its directory entry number to
the right three bit positions). The EDIT command'$ directory
entT"Y is in the same sector, but is the third entry in that
~ec tOT".

In all of the above examples, the ilL" option could have
been used in addition to any other options to direct the
output from the DIR command to the line printer.

It is recommended that a cop~ of the directory p~intout
containing the entire directoT"~ entry and the allocation
information be kept ~ith each diskette. Since files can
d~namically expand and contract, their location on diskette
mag change. If something happens to the diskette to damage
the directorYI there is no way to recover any inT1Jrmation
from it if a p-rio-r printout has not been saved. NormallYI
the printout ~ill never be needed, but as a precaution it is
indi spensab 1 e.

Page 09-08

CHAPTER 10

10. DOSGEN COMMAND

The DOSGEN command allows specialized MDOS diskettes to
Qe prepared. Diskettes that have bad sectors can have those
sectors locked out so that the diskette can be used in an
MDOS environment. DOSGEN will also create all system tables
and riles on the generated diskette. The DOSGEN command can
be used to generate system diskettes on either single-sided
or appropriately formatted double-sided diskettes.

10. 1 Use

New single-sided diskettes, or single-sided diskettes
never before used on an MDOS systeml must first be prepared
for use with MDOS. One way to generate a new MDOS diskette
is by invoking the BACKUP command (Chapter 3); howevel', the
BACKUP command does not perform the ~rite/read test that can
be invoked via DOSGEN; nor is there the guarantee that all
system files are copied to the destination diskette since the
operator can selectively prevent files from be.ing copied.
Another way to generate a new MOOS diskette is by invoking
the DOSGEN command from an already up-and-running MDOS
system.

DOSGEN· does not create the sector addressing
information. Single.-sided diskettes usually come
pre-formatted in an IBM-3740-similal' format with the
established sector addressing information. Double-sided
diskettes, however, must be formatted with the FORMAT command
(Chaptel' 15), since the double-sided format required by an
EXDRdisk III is a non-standard single-density format. In
either case, whether single- or double-sided, other
information must be written on a new diskette in order to
make it recognizable by MOOS. OOSGEN creates the system
tables required by MDOS (see Chapter 24). These tables
include a skeleton directorYi a bit map showing which sectors
of the diskette are available for space allocation; a lockout
map showing which sectors of the diskette are bad or locked
out by the useri and an identification sector containing a
name to identiry the diskette, the generation date, and the
MDOS version number. The OOSGEN command also copies across
the required MDOS famlly of system files wnlcn must be
present on any diskette used in the MDOS environment. These
riles and tables must not be moved or changed in any way
other than through the DOSGEN command and two othel' commands:
BACKUP (Chapter 3) and REPAIR (Chapter 22). Opti-onallYI th·e
MDOS commands may be copied to the diskette.

Page 10-01

DOSGEN COMMAND 10. 1 - Use

The DOSGEN command is invoked wi th the TolloUling command ~-~\

line:

DOSGEN C:(unit:>J L;<options:>J

where <unit> is the logical unit numbe~ (1-3) of the drive
containing the diskette to be DOSGENed, and <options> can be
one or both of the opticn letters desc~ibed below:

Option Function

T Perform write/read test.

U Generate minimum sqstem (user diskette>.

If <unit~ is not specified, logical unit one will be
used as a default. Logical unit zero cannot be DOSGENed.

The diskette to be DOSGENed must be placed in the
logical unit speciried on the command line (logical unit one,
i f no < u nit:> Ula ssp e c i r i e d) . DOSGEN UI i 11 res p on d 1.11 i t h the
following ~uestion asking if <unit~ contains a diskette that
can be ~ritten to=

DOSGEN DRIVE <unit:> 7

The response should be the lettel' nyll; if the diskette in the
indicated <unit:> is to be DOSGENed. Any other response ~ill

terminate the DOSGEN command and return control to MDOS. In
this case~ the diskette in <unit)- is not affected.

I -F a \I Y II i s 9 i ve n a s are s p 0 n s e , c e l' t a i n in for ma t ion . for
the diskette's identirication secto~ must be supplied by the
operator. This in~ormation is entered in response to the
following DOSGEN prompts:

Prompt

DISK NAME:

DATE (MMDDYY) :

USER NAME:

Operator Input

An alphanumeric name, a maximum of 8
characters in length, which will
appear on subsequent heading lines
rrom the DIR and FREE commands. The
name must begin with an alphabetic
character.

The date of generation in six-digit,
numeric Torm as indicated by the
parenthetical inset.

A maximum of twenty
characters used Tor
information only.

displayable
descriptive

---I

Page 10-02

DOSGEN COMMAND 10. 1 -- Use

The version and revision numbers or MDOS will be
automatically supplied by the DOSGEN command.

The opeTato~ is then given a chance to lock out an area
of the diskette. This area ~ill not be accessed by any MDOS
command or function since it is an allocated block without a
RIB. This permits the operator to set aside a part of the
diskette for his own use. All MOOS inrormation must be in
files in order to be accessed by MDOS. The message

LOCKOUT ADDITIONAL SECTORS?

is displayed to allow sector lockout. An "N" response will
cause DOSGEN to continue with the next step; no sectors will
be locked out; leaving as much diskette space as possible for
conventional rile use. A nyu response will cause the
follOwing messages to be shown:

ENTER STARTING SECTOR (HHH):
ENTER ENDING SECTOR (HHH):

The operator can respond with only a carriage return, which
will casue the lockout request to be bypassed. Otherwisel
the response must be a valid hexadecimal sector number for
each prompt. The secto~ numbers entered must meet the
following criteria in order to cau~e the specified diskette
area to be locked out:

1. The sector numbers must be hexadecimal.

2. The starting sector number must be the
physical sector number of the first cluster
to be locked out. The ending sector number
must be the physical sector numbe~ oT the
last cluste~ to be locked out.

3. The starting sector number must be less than
or e~ual to the ending sector numbeT. If the
two numbers are equal,. only one cluster will
be locked out.

4. Both secto~ numbers must be greater than $18
and less than $700 if generating a
single-sided diskette. or greater than $18
and less than $FA4 if generating a
double-sided diskette. In either case, the
locked out area should be located such that
the largest block of free space resides in
sectors with numbers less than that of the
start of the locked out area.

DOSGEN will then w~ite the ID sectoTJ an initialized
allocation table, a lockout table, an empty directory, and a
Boo t b 1 0 c k tot h e des tin a t ion dis k e t t e . Nor ma 1 1 y , DOSGEN UI ill

Page 10-03

DOSGEN COMMAND 10. 1 -- Use

then copy all files that have the "system" attribute from the
diskette in drive zero to the destination diskette. When
DQSGEN is finishedJ a complete MDOS system will have been
generated on the destination diskette.

10.2 Diskette Surface Test

If DOSGEN is invoked with the "T" optionl a write/read
test ~ill be perrormed to ensure that the sectors on the
destination drive are good. Any sectors which fail the
write/read test will be flagged with the deleted data mark.
If sectors cannot be flagged in this mannerl the diskette
cannot be genel"ate<i. Su-ch diskettes may oe made usable again
by using the FORMAT command (Chapter 15>' If a sector can be
marked as bad} th~n the cluster to which the bad sector
belongs will be automatically locked out from MDOS usage.
This individual cluster lockout is independent Or the area of
diskette that can be lOCked out by the operator. It will
allow diskettes ~ith bad spots to be ,generated and made
usable as MDOS system diskettes.

Diskettes that have such bad sectors can be used as
normal diskettes with the following exception. The BACKUP
command should not be invoked without a Main Option (unless
the IIDII option is used) to make a complete copy Or the
allocated space. Without the "DIt option, the complete copy
process will abort if a ratal read error occurs. Since the
complete copy is based on the allocation table, it is
inevitable that the bad sectors locked out via DOSGEN will be
read. Thus, the resultant copy of the diskette will always
be incomplete. Thererorel BACKUP should al~ays be run with
the URn option to rorce rile reorganization. In this manner,
the bad sectors will never be read since they are not a part
oT any allocated file.

Diskettes which have had bad sectors locked out should
not be used as the destination diskette with BACKUP.

If sectors get locked out into which the MOOS system
riles normally are copied (in the first several cylinders)
the OOSGEN process will fail. Such diskettes cannot be used
as MDOS system diskettes unless the FORMAT command (Chapter
15) can be used to correctly rewrite the bad sectors.

10.3 Minimum System Generation

If the DOSGEN command is invoked UJith the "U" options
the resultant diskette will not contain any of the MDOS
commands from drive zero.' Only th~ MDOS family of system
files that must reside on every diskette used in an MOOS ~

environment will be copied. The nu" option is useful in .
./

generating user diskettes which are to contain only data

Page 10-04

DOSGEN COMMAND 10.3 -- Minimum System Generation

files and will almost always be used in drives other than
zero.

10.4 Messages

The following messages can be displayed by the DOSGEN
command. Not all messages are error messagesl although error
,messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

DOSGEN DRIVE <unit> ?

DISK NAME:

This message permits the operator to exit the
DOSGEN command or allows him time to insert a
scratch diskette before continuing. A "V"
response will cause DOSGEN to continue. Anq
other response will cause control to be returned
to MDOS.

This prompt is used to obtain the eight character
1D Pield that is subsequently displayed by all
DIR and FREE commands when used on the generated
diskette. The ID field has the same Pormat as an
MODS rile name.

DATE (MMDDYY) :

USER NAME:

This prompt is used
diskette generation.
numeric characters.

to
The

obtain the
date must

date
be

of
six

This prompt is used to obtain the descriptive
information ror the ID sector. Up to twenty
displayable characters may be entered.

LOCKOUT ADDITIONAL SECTORS?

This message allows the user to specir~ whether
or not he wishes to reserve a block of the
diskette Tor his own use. The block will be
e x c 1 u d edT r om use b y MDOS. A If Y" res p on s e \II i 11
cause the next two prompts to be issued. Any
other response will cause the lockout request to
be bypassed.

Page 10-05

DOSGEN COMMAND 10.4 -- Messages

ENTER STARTING SECTOR (HHH):

This prompt is u5ed to obtain
hexadecimal sector number of the
that is to be locked out.

ENTER ENDING SECTOR (HHH):

This prompt is used to
hexadecimal sector number
that is to be locked out.

ABOVE SECTORS HAVE BEEN LOCKED OUT

obtain
of the

the
first

starting
cluster

the starting
last clustel'

This message will be displayed if valid starting
and ending sector numbers have been speci~ied for
the area to be locked out.

INVALID SECTOR NUMBER

This message is displayed if either the starting
or ending sector number does not meet the
criteria set rorth in section 10.1. The operator
is given another chance to enter the sector
number range.

SECTOR nnnn LOCKED OUT

When a bad sector is detected during the
l.II,..ite/read test ("Ttl option), this message is
displayed to indicate which sector failed the ·
test. The "nnnnlt is the hexadecimaL physical
sector number. The cluster in which the sector
resides will be automatically locked out.

COPYING FILE <namej

This message is displayed for each system file as
it is being copied to the destination diskette.
It serves only to monitor the DOSGEN operation.

MDOS.SY DOES NOT START AT SECTOR $18

This message indicates that the destination
diskette cannot be generated. Either the
operator or the write/read test locked out
sectors which prevented the resident operating
system file MDOS.SY Trom residing at the
speciried phqsical location. If the operator
locked out those sectors, the diskette should be
regenerated with a different range locked out.
If the write/read test locked out those sectors,
the diskette is unusable as a system diskette.
Chapter 15 should be consulted for making such a

Page 10-06

DOSGEN COMMAND 10. 4 -- Messages

diskette usable again.

10.5 Examples

The rollowing example shows the operator-system
interaction during a DOSGEN process:

DOSGEN DRIVE 1? Y
DISK NAME: USEROOOl
DATE (MMDDYY): 072578
USER NAME: SYSTEM DEVELOPMENT 1
LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE MDOS .SY
COPYING FILE MDOSOVO .SY
COPYING FILE MDOSOVl · BY
COPYING FILE MDOSOV2 · SY
COPYING FILE MDOSOV3 · Sy
COPYING FILE MDOSOV4 · SY
COPYING FILE MDOSOV5 · Sy
COPYING FILE MDOSOV6 · SY
COPYING FILE MDOSER · SY
=

The diskette to be generated was tested with the write/read
test ("T" option) to ensure that all sectors were good. A
min i mum s y s t em wa s 9 en era ted'. (" U" 0 P t ion) . The n e lIJ I D I
USEROOOIJ the geneT'ation date, July 25, 1978, and the
descT'iptive infoT'mation, SYSTEM DEVELOPMENT I, were placed
into the ID sector. Since no additional sectors lIJeT'e locked
out, DOSGEN proceeded to copy the MDOS family of system files
that must reside on each diskette.

The following example shows what might happen iF a bad
diskette is used in the generation process:

=DOSGEN :2iT
DOSGEN DRIVE 2? Y
DISK NAME: USER0002
DATE (MMDDYY): 072578
USER NAME: TEST SYSTEM
SECTOR 0030 LOCKED OUT
SECTOR 0031 LOCKED OUT
SECTOR 0056 LOCKET OUT
LOCKOUT ADDITIONAL SECTORS? N
COPYING FILE MDOS .SY
MDOS. SY DOES NOT START AT SECTOR $18
=

Th~ee bad sectoT's were found during the write/read test.
When the MDOS ramily of files wa·s copied, it was detect-ed
that the locked out sectoT's prevented the resident operating
system file MDOS.SY from T'esiding at the specified physical

Page 10-07

DOSGEN COMMAND 10.5 -- Exampl'es

location. IT the operator locked out those sectoT's, the
diskette should be regenerated with a diTTeT'ent range locked
out. If the WTite/~ead test locked out those sectoT's~ the
diskette is unusable as a system diskette. Chapter 15 should
be consulted for making such a diskette usable again.

Page 10-08

CHAPTER 11

11. DUMP COMMAND

The DUMP command allows the use~ to examine the enti~e

contents of any physical s2ctor on the diskette. The sector
can be displa~ed on either the system console or the printe~.
The display contains both the hexadecimal and the ASCII
equivalent or eve~y b~te in the sector. The DUMP command
allows the opening of riles so that they can be examined
using logical sector numbers. Sectors can also be moved into
a temporary bufrer where changes can be applied before they
are written back to diskette.

11. 1 Use

The DUMP command is invoked with the following command
line:

DUMP r::<name:»

whe~e the presence or the optional file name determines the
initial mode of operation. The DUMP command is an
interactive program that has its o~n command structure. Once
DUMP is running, it will display a colon (:) as an input
prompt whenever it is ~eady to accept a command from the
operator. Commands exist ror selecting logical units, for
opening and closing riles, for displaying sectors, ror
modifying single sectors, and ror displaying the directory
and cluster allocation table.

11. 1. 1 Physical Mode of operation

If no <name> is specified on the command line, or if
<name> only consists of a logical unit number, then DUMP will
be in the "Physical Mode" when it displays its input prompt.
The heading

,PHYSI CAL MODE

will be displayed prior to the prompt the ~irst time that
DUMP is activated. From that point on, it is the operator's
task to keep track of whiCh mode of operation DUMP is in.
The Physical Mode of operation means that all subsequent
commands referring to sector numbers will be interpreted as
physical sector numbers. The Physical Mode of operation
remains active as long as no files a~e opened.

If no <name) is specified on the command line, DUMP will

Page 11-01

DUMP COMMAND 11. 1 -- Use

default to logical unl~ ze~o ~O~ all subsequent commands.
The unit will remain selected until another unit selection
command is issued by the operator. To override the default
unit selected, the operator can specify only a logical unit
number on the command line in place of <name)', In this case,
the initial unit selected will be the logical unit number
entered on the command line (0-3>. The logical unit number
must be preceded by a colon: the logical unit number
delimite1".

When a logical unit number is specified on the command
linel the diskette to be inspected with DUMP should already
be in the indicated drive. If no diskette is in the
speciFied drive, the message

**PROM IIO ERROR-STATUS=33 AT h DRIVE i-PSN J

is displayed;
"un command

indicating that the drive is not ready. The
(section 11.2.2> must be used to restore the

diskette drive after the diskette has been inserted.

11. 1. 2 Logical Mode of operation

If a <name> which exists in the di~ectory is specified
on t n e comma n d 1 i n e I the n DUMP I.&J i 11 b e i nth e /I Log i cal Mod e If
of operation ~hen it displays the input prompt. <name~ must
contain an explicit suffix. No default suffix is supplied by
the DUMP command., The logical unit number, hOUJever, is given
a default value of zero if it is not specified on the command
line.

IT the <name:> cannot be found in the directory, a
standard error message will be displayed indicating that the
file name does not exist. In that case, the. Physical Mode of
operation will be entered; however, the physical mode message
will not be displayed since the error message has already
indicated that the file could not be opened.

The Logical Mode of operation means that all subsequent
references to sector numbers will be interpreted as logical
sector numbers of the file <nameJ. A special convention is
used ~hen referring to the RIB of a file. The logical sector
number of the RIB is FFFF. Since logical sector number zero
is the first data sector of the file, the RIB has a logical
sector number o~ minus one (FFFFL DUMP will remain in the
Logical Mode of operation until the file is closed or until
another unit is selected.

1"1. 1. 3 Sectol" change buffer

Certain commands can re~erence a temporary sector burfer
known as the "sector change buffer". This buffer is large

Page

~\
I

.. /

11-02

DUMP COMMAND 11. 1 -- Use

enough to accommodate one sector from diskette. The sector
change buffer can be used in either mode or operation. The
contents of the sector change buffer will not be destroyed or
altered unless the operator issues a command to do so.

Associated with the sector change buffer is a "sector
address validity flag ll

• This flag indicates whether or not a
critical command has been executed between the time the
sector change burfer wa~ read into and the time that the
sector change buffer is written back to diskette. When the
sector change buffe~ is read into, a sector address is
specified. This address is retained so that if the sector is
to be written back to diskette~ the address need not be
speciried again; however, certain actions, described under
the separat'e c emmand d escr i p t i ens that fo 11 ow, can cause th e
sec tor add res s to b e i nv ali d ate d . Th en I the wr i tin 9 0 f the
sector change buffer requi~es a respecification o~ the
sector'address into which the buffer is to be WTitten.

The sector change buffer is very useful in modifying
sectors. Most -FrettuentlYI the sector change buf-Fer is used
in conjunction with "the REPAIR command (Chapter 22) to Tix
critical system tables which have been round in error. Or
course, this procedure is not recommended unless the operator
has detailed knowledge of the system table structure.
Situations do arise when critical file information can only
bel" e c 0 v ere d t h r 0 ugh the ma n u a 1 . r e con s t r u c t ion 0 f c e r t a i n
system tables. 1he DUMP command's s~ctor change buffer
p~ovides the ideal means for doing this.

11.2 DUMP Command Set

Each command to DUMP must be entered by the operator
after the input prompt'" (:) is displayed on the system
console. Like all MDOS input, all DUMP commands must be
terminated by a carriage return. In the following command
desc~iptions these symbols are used:

Symbol Meaning

m, n Bot h II In " and II n II a r,e on e to f 0 u r dig i t
hexadecimal numbe~s used for specifying a
sector number or a cluster number,

i

b

"in is a one digit number used for
referring to the logical unit number.

"b" is a one or two digit hexadecimal
number used as an offset into the sector
change buffer.

Page 11-03

DUMP COMMAND 11.2 -- DUMP Command Set

c

a

<st,..>

11. 2. 1 Gu i t -- G

"c" is a one or two digit hexadecimal
number.

II a II i san ASC I I c h a 1" act e 1" •

"<$t~>" is a string of elements separated
by commas. Each element can be a "C'I or
a gr-oup
~uotes.

_l!
ur

tt...,Jf_
a ::» enclosed

"<cr>" is a carriage retu~n.

.ioU doubl~

The G command 1S used to terminate DUMP and return
cootT'O 1 to MDOS. Th e rOT'mat Or th e G command iss imp 1 y th e
letter "Q". Any information in the sector change buffer is
lost. The G command is valid in either mode of operation.
If a ¥iIe is openl it is unaffected by the execution of the G
command.

11.2.2 Select logical unit -- U

.
The U command is used to select the logical unit number.

The format of theU command is

U i

~here "i" can be any of the digits 0-3. The U command is
valid in either mode of operationi hOUlever, ii= the current
mode of operation is the Logical ModeJ then the file that is
open ~ill be automatically closed. After the U command is
executedl the Ph~sical Mode of operation will be in effect.
The sector address associated with the sector change bufTe~
is invalidated by the U command.

If DUMP was invoked with only a logical unit numbe~ on
the command line, and if a diskette was not in the drive at
the time DUMP was invoked, then the U command must be used to
restore the diskette drive after a diskette has been inserted
into the drive. If this procedure is not followed, timeout
errors may occur on that drive since the head may not have
been properly positioned to c~linder zeroo

11.2.3 Open diskette file -- a

The a command is used to open a file and thereby enter
the "Logical Mode of operation. "The f~rmat of the a command
is

o <name)-

Page 11-04

DUMP COMMAND 11.2 -- DUMP Command Set

where <name> consists of at least a file name and a suffix.
If no logical unit number is specified for <name>, the last
logical unit selected via the U command will be used as a
default. If a logical unit number is specified for <name>,
then it ~ill become the selected unit number even if the
Ph~sical Mode of operation is entered later. If a file is
currently open, it will be automatically closed when the a
command is executed. If the file <name:> is not found, then
the Physical Mode of operation will be in effect arter an
error message is displayed. The sector address associated
with the sector change buffer is invalidated by the a
command.

11.2.4 Close diskette file -- C

The C command is used to close the file that is
currently open. The format of the close command is simply
the letter "CII. If the current mode of operation is already
the Physical Mode, then no action results from the execution
oft h e C comma n d . I f a f i 1 e i sop en 1 the nth e Ph y sic aIM 0 d e
of operation will be entered after the' file is closed. The
sector address associated with the sector change buffer is
invalidated by the C command.

11.2.5 Show sector -- S

The S command is used to display a sector's contents on
the system console. There are several forms or the S
command.

Command Effect

S Display the contents of the sector change
buffer.

SB Display the contents of the Cluster
Allocation Table. The SB command is only
valid in the Physical Mode of operation.

S me,n] Display the contents of sector "m" or the
contents of sectors "m" through "nil. The
values of tim" and "nit are either physical
Or logical sector numbe~s depending on
the current mode of operation.

SD (mC/nJJ Display the contents of the directory
sectors. The entire directory wi 11 be
displayed if no "mil and no "n" are given.
Oth e·rwi sel th e 109 i ca 1 sec tor "m" or th e
logical sectors "m" through "nil of the
directory will be displayed. The SD

Page 11-05

DUMP COMMAND

SC me,n)

11.2 -- DUMP Command Set

command is only valid in the Physical ~\
Mode of operation.)

Display the contents of cluster "m n or
the contents of clusters Om" through Un".
In this case, Ifm" and fin II are physical
cluster numbers rather than ph~sical

sector nymbers. The SC co~~and is only
valid in the Physical Mode of operation.
For each cluster, four sectoTs ~ill be
d isp la~ed.

The format of a displayed sector is shown in section 11.4.

11.2.6 Print sector -- L

The L command is used to print a sector's contents on
the line printer. There ara several forms of the L command.

Command

L

E-rfect

Print the contents of the sector change
buffer.

LB Print the contents 'of the Cluster
Allocation Table. The LB command is only
valid in the Ph~sical Mode of operation.

L me,nJ Print ~ the contents of sector " mJl or the
contents of sectors "mit through "nit, The
values 01= rIm" and Itn" are either physical
or logical sector numbers depending on
the cur~ent mode oT operation.

LD (me/nJJ P~int th~ contents o~ the directo~q

LC mE,"J

sectors. The entire directory will be
p-rinted if no "m" and no "n u are given.
OtherUJise, the logical sector "m U or' the
logical sectors 11m" through "n" of the
directory will be printed. The LD
command is only valid in the Physical
Mode of operation.

Print the contents of cluster limn or the
contents of clusters "mil through "n/t. In
this casel "mil and "nil are physical
cluster numbers ~ather than physical
sec tor numb ers. Th e LC command is on 1 y
valid in the ,Physical Mode of operation.
For each clusterl -rour sectors lIIill be
printed.

Page 11-06

DUMP COMMAND 11.2 -- DUMP Command Set

The format of a printed sector is shown in section 11.4.

11.2.7 Read sector inta ~hange buffer -- R

The R command is used to read a specified sector into
the sector change buffer. Once the sector is in the change
burfeT'1 changes can be applied to it. The sector change
buffer can then be ~itten back to diskette. The R command
has several forms. Each form of the R command will
initialize the sector address validity flag associated with
the sector change buffer. This flag allows the change buffer
to be re-written to the same sector from which it was read
without specifying the sector address again.

Command Effect

RB Read the Cluster Allocation iable into
the sector change buffer. The RB command
is only valid in the Physical Mode of
operation.

RD m Read the specified logical sector of the
directory into the change buff~r. The RD
command is only valid in the Physical
Mode of operation.

R m Read the specified sector into the change
buffer. The current mode of operation
will determine whether II mil is a logical
or a physical sector number.

11.2.8 Write change buffer into sector -- W

The W command is used to write the
sector change buf~er into a sector.
severa 1 forms.

Command Effect

contents of the
The W command has

W Write the change buf~er back into the
sector from which it was originally ~ead.
This form of the W command is only valid
if the U, D. C, or F commands have not
been used since the sector change buffer
was read into.

CAUTION: THE FOLLOWING FORMS OF THE W COMMAND
CAN DESTRO¥ SYSTEM TABLES OR USER DATA IF USED
INDISCRIMINATELY. USE OF THE FOLLOWING FORMS
SHOULD BE RESTRICTED TO DISKETTE REPAIR

Page 11-07

DUMP COMMAND 11.2 -- DUMP Command Set

FUNCTIONS.

WB W~ite the contents of the sector change
buffer into the Cluster Allocation Table.
The WB command is only valid in the
Physical Mode or operation.

WD m Write the contents o~ the sector- change
bUTfer into logical sector "m" or the
directory. The WD command is only valid
in the Phqsical Mode of operation.

W m Write the contents of the sector change
buffer into sector "m". The current mode
of operation will determine whether "mil
is a logical or a ph~$ical sector number.
If the current mode of operation is the
Logical Model then writing past the
end-of-file sector will cause the CAT and
the file's RIB to be updated in the event
that additional diskette space is
allocated.

11.2.9 Fill change buffer -- F

The F command is used to fill the sector change burfer
with a certain bit pattern o~ a certain ASCII characte~. The
format of the F command is:

where the
hexadecimal
the buffer

-Pi rst
bit

with
associated with
the F command.

F c or Fila"

form will rill the bu~~er with ~he

pattern 1Ic:/I, and the sec:ond Torm will fill
the character "a". The sector address
the sector change bUT~e~ is invalidated by

11. 2.10 Examine/change sectoT buffer

A special command is used fOT examining/changing the
individual bytes or the sector change buffeT. In order to
gain access to a specific byte of the sector change buffer,
the offset must be specified in the following manner:

b/<cr:>

where lib" is a hexadecimal number ($OQ-7F). The slash
character causes the location at offset "b ll to be "opened"
a.n.d its con ten t s dis pIa y e d . Aft era par tic.u l.a r 1 0 cat ion has
been opened in this manner, the change buffer can be examined
O~ changed a byte at a time by using the following commands:

Page

..~
. J

./

\.

11-08

. '

DUMP COMMAND 11.2 -- DUMP Command Set

r<str:>J<cr>

or

or

C<st,..>J/<c,..:>

The element string <str> will cause successive bytes of the
change buffer to be changed to the respective values of
<str::>. If <st-r::> is not specified, no changes usili be applied
to the change buffer. The <cr> only will cause the next
offset of th e chang e buffer to be opened and d i sp layed. The
1I· <cr)" will cause the previous location of the change buffer
to be opened and displayed. The "I<cr)" will cause the
current location to be closed and the examine/change mode to
be terminated.

The initial command used to enter the examin~/change
mode can also take on the follo~ing forms:

which will
at offset
Then the
displayed.
commands.

b/<str><cr)

cause the locations of the change buffer starting
"b" to be changed according to the string <str).

location after the last one changed will be
The operator can then ental' other examine/change

If the initial command has the form:

b/<stT')/<cr)

then the same function will be performed as in the previous
command; however, instead of remaining in the examine/change
mode, the normal command mode is entered.

11. 3 Messages

The following messages can be displayed by the DUMP
command. Not all messages are error messagesi however, error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

WHAT?

The command issued in response to the DUMP input
prompt was not recognized. A new input prompt is
displayed .

Page 11-09

DUMP COMMAND 11.:3 -- Me s sa 9 e s

SYNTAX ERROR

MODE ERROR

The command issued in response to the DUMP input
prompt was recognizedi however, it was
parametel'ized illegally_ A new input prompt is
dis P 1 aye d . The c amma n d has not bee n pro c e sse d .

The 3, C, or D q,ualii=ie'r was used with the 5, LI
Ri or W command while in the Logical Mode of
ope'ration. These i=orms of the commands are only
valid in the Physical Mode.

BOUNDARY ERROR

The offset lib" in the examine/chang.e command was
outside the 'range oT the sector change buffel'
($OO-7F) lor a sub seq u en t lac at ion wa s to b e
displayed which was outside the range of the
sector change buffer. The examine/change mode is
terminated.

INVALID SECTOR ADDRESS

The sector address associated with the sector
change buffer has been invalidated. In this
case, the W command cannot be used without
specifying a sect~r address.

PHYSICAL MODE

This message is displayed initially ~hen the DUMP
command is ente~ed and the mode of operation is
the Physical Mode. If the message is not
displayed and iF no error messages are shownl the
Logical Mode aT operation is initially in effect,
Subsequent mode changes must be kept track of bq
the operator.

** 21 END OF FILE

This message indicates that a logical sector
beyond the logical end-af-file was to be read
with one Of the DUMP commands. In the Logical
Mode of operation only sectors allocated to the
rile can be read.

'i
/

Page 11-10

DUMP COMMAND 11. 3 -- Messages

**PROM I/O ERROR-STATU8=36 AT h DRIVE i-PSN J

This message indicates that a phisical sector
beyond the end or the diskette ~as to be accessed
with one or the DUMP commands. In the Physical
Mode or operation, only sectors 0-$7D1
(single-sided) or sectors Q-$FA3 (double-sided)
can be accessed. A memory address (only
meaningful ror system diagnostics) is substituted
rOT' the letter "h"i the logical unit number is
substituted foT" the letter "illi and the physical
sector number (PSN) at ~hich the error occurred
is substituted rOT' the letter "JII.

The display format of a sector's contents is shown in
section 11.4. The messages associated with that display are
explained here. The secto~ display will contain headings to
identify ~hat sector is being displayed.

"UNITIt Ulill always speciry the currently selected
logical unit number.

The heading IJCHANGE BUFFER" utilI be displayed, if the
sector change buffer is being shown.

The heading ItCLUSTER ALLOCATION MAP" indicates that the
B qualifier was used with either the 5 or L command.
Likewise, the heading "DIRECTORY" indicates that the D
qualirier was used with either the S or L command.

The heading "FILE=xxxxxxxx. xx" indicates that the
Logical Mode of operation is in effect. The rile's name and
suffix are displayed to the right or the equal sign.

"PSN II gives the displayed sector's physical sector
number I regard 1 es s of th €I mod e of op erat ion. "LSN", or
logical sector number, is only shown if the director~ is
being displayed or if the current mode of ope~ation is the
Logical Mode.

The digits 00-70 down the left edge of the display are
the hexadecimal orfsets into the sector. The contents of the
sector are shown both in hexadecimal and in displayable
ASCII. Non-displayable characters are printed as periods
Co>'

I~ sectors are displayed on the line printer, they will
appear five sectors per page. The unit number and associated
heading will be automatically printed at the top of each
page. The paper alignment will be restored once the G
comma n dis iss u e d .

Page 11-11

DUMP COMMAND 11. 4 -- Examples

11. 4 Examples .~

-------------)

The following example shows how the Cluster Allocation
Table is displa\led with the DUMP command (a single-sided
diskette is used) .

=DUMP
PHYSICAL MODE

sa
UNIT=O CLUSTER ALLOCATION MAP

PS-N=OOOl
00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF " " .
1" FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF --...... rr-
20 FF FF FF FF FF FF FF FF FF FF FF FF FF FO 00 00 " "
30 00 00 00 03 FF FF FF FF FF 00 00 00 00 00 OF FF "
40 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ,

50 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Gil.. • .. • ~ ..

60 FF FF FF FF FF'FF FF FF FF FF FF FF FF FF FF FF

70 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
G

:::

The next example illustrates haUl the logical sectors
ze'T'O through three or the directory are displayed.

=DUMP
PHYSICAL MODE

SD 0,3
UNIT=O DIRECTORY

PSN=OO03 LSN=OOOO
00 42 49 4E 45 58 20 20 20 43 4D 01 4C 72 00 00 00 BINEX CM. Lr ...
10 42 55 49 4C 44 20 20 20 43 4D 01 6c 72 00 00 00 BUILD eM. lr ...
20 4C 49 53 54 20 20 20 20 43 40 02 F8 72 00 00 00 LIST CM .. r .. ,
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PSN=OOO4 LSN=OOOl
00 4D 44 4F 53 4F 56 30 20 53 59 00 5C 72 00 00 00 MDOSOVO SY. \1' . ..
10 46 4F 52 54 20 20 20 20 43 4D 02 74 72 00 00 00 FORT eM. tr ...
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... e

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00· 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 "\

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
j

Page 11-12

DUMP COMMAND 11.4 -- Examples

PSN=OOO5 LSN=OOO2
00 44 49 52 20 20 20 20 20 43 4D 01 B8 72 00 00 00 DIR eM .. r ...
10 4D 45 52 47 45 20 20 20 43 4D 03 28 72 00 00 00 MERGE ct:1. (r ...

20 52 4C 4F 41 44 20 20 20 43 4D 04 lC 72 00-00 00 RLOAD eM .. T" •••

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00,,, ",.... 00 00 00 nor. r.r. "" 00 00 00 00 00 00 00 00 00 IV VV ...,..., ...,..., wv

PSN=OO06 LSN=OOO3
00 4D 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SY .. r ...
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

30 00 00 00 00 00 00 00 00 00 00 00 '00 00 00 00 00

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ~
G

=

In the following e xamp 1 e, the DUMP command is invoked
with a file name on the command 1 i nei however, the 'Fi 1 e name
does not exist as it is specified (i. e. , a suffix of spaces).
The Physical Mode of operation is entered aut 0 rna tic a 11 y .
Then .the a command is used to open the f i 1 e. Subsequently,
two sectors of the file are displayed. The logical sector
numbers allow a user- to examine the file's contents without
knowing where the file is physically located on the diskette.

=DUMP MDOSER
** 04 FILE NAME NOT FOUND

o MDOSER.SY
S 1,2

UNIT=O FILE=MDOSER . SY

PSN=OOA6 LSN=OOOl
00 81 30 36 81 44 55 50 4C 49 43 41 54 45 81 46 49 .06. DUPLICATE. Fl
10 4C 4'5 81 4E 41 4D 45 OD 30 44 81 30 37 81 4F 50 LE.NAME. 00. 07. OP
20 54 49 4F 4E 81 43 4F 4E 46 4C 49 43 54 00 33 30 TION. CONFLICT. 30
30 81 30 38 81 43 48 41 49 4E 81 41 42 4F 52 54 45 .08. CHAIN. ABORTE
40 44 81 42 59 81 42 52 45 41 4B 81 4B 45 59 00 33 D. BY. BREAK. KEY. 3
50 31 81 30 39 81 43 48 41 49 4E 81 41 42 4F 52 54 1. 09. CHAIN. ABORT
60 45 44 81 42 59 81 53 59 53 54 45 4D 81 4S 52 52 ED. BY. SYSTEM. ERR
70 4F 52 81 53 54 41 54 55 53 81 57 4F 52 44 00 31 OR. STATUS. WORD. 1

PSN=OOA7 LSN=OOO2
00 43 81 31 30 81 46 49 4C 45 81 49 53 81 44 45 4C C. 10. FILE. IS'. DEL
10 45 54 45 81 50 52 4F 54 45 43 54 45 44 OD 32 34 ETE.PROTECTED.24
20 81 31 31 81 44 45 56 49 43 4.5 81 4E 4F 54 81 52 . 11. DEVICE. NOT. R
30 45 41 44 59 OD 30 45 81 31 32 81 49 4E 56 41 4C EADY. OE. 12. INVAL
40 49 44 81 54 59 50 45 81 4F 46 81 4F 42 4A 45 43 10. TYPE. OF. OBJEC

Page 11-13

DUMP COMMAND 11. 4 -- Examples

50
60
70

G
=

54 81 46 49 4C 45 OD 30 46 81 31 33 81 49 4E 56 T.FILE.OF. 13. INV
41 4C 49 44 81 4C 4F 41 44 81 41 44 44 52 45 53 ALID. LOAD. ADORES
53 OD 31 33 81 31 34 81 49 4E 56 41 4C 49 44 81 S. 13. 14. INVALID.

The following example illust~ates how the DUMP command
car. be used to ::1=ix:: part o-r the MDOS system tables that wEI-a

round to be in e,..,..or by the REPAIR command (Chapter 22>' No
discussion is given neT"e Or the REPAIR command; however, the
example does show what the REPAIR command displayed insofar
as diagnostic messages are concerned. These messages contain
the required information needed by the operator so that the
DUMP command can be used to "rix" the bad sector. The REPAIR
command could show the following on the system console:

=REPAIR
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DRVO
06 03 01 TESTPROG.SA 05BC 05810000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? N
33 GOOD FILES 00 FILES WITH BAD RIBS
RECONSTRUCTED C. A. T. MATCHES DISK .
=

The first -Few lines show the contents Or the ID sector. The
line that begins with "06 03 01 11 shows the contents of a
directory entry that has been found in er~or. The subsequent
line shows the error that REPAIR detected. The error is in
the attribute bytes of the directory entry. Chapter 22
describes the format of the displayed directory entry. With
that information, the operator knows that the attribute rield
is displayed as "0581". The error is in the least
significant byte Or this field. It should be zero, not lI8i"
as shown. From the other information displayed, it can be
seen that this directory entry is the second entry (01) in
the third sector (03) of the directory. With that
inrormation the DUMP command is used ~o read the sector
containing the bad directory entry into the sector change
buffer.· The buffer is modified so that the "81" becomes a
1100". In the following example, the sector change buffer is
displayed both before and aPter the modification,

Such repair functions must be performed with extreme
caution. The REPAIR command should always be run again after
a system sector has been changed in this way to ensure that
the change was made correctly.

Page 11-14

- ------ \

/

DUMP COMMAND 11. 4 -- E x amp 1 e s

=DUMP
PHYSICAL MODE

RD 3
S
CHANGE BUFFER

PSN=0006
r\"... JlT"I 44 4F

1:;..., 4F 56 34 20 53 59 00 88 72 00 "" ... 00 MDOSOV4 QV ...
'lJV ""T'-J wOol "'.1"""" '-' s • • t

10 54 45 53 54 50 52 4F 47 53 41 05 Be 05 81 00 00 TESTPROGSA
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 '"' I

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

181
18 53
19 41
1A 05
10 BC .~

lC 05
lD 81 00/

S
CHANGE BUFFER

PSN=OOO6
00 4D 44 4F 53 4F 56 34 20 53 59 00 88 72 00 00 00 MDOSOV4 SY .. r ...
10 54 45 53 54 50 52 4F 47 53 41 05 BC 05 00 00 00 TESTPROGSA
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
W
G

=

Page 11-15

CHAPTER 12

12. ECHO COMMAND

lhe ECHO command can only be used on an EXORcise~ II
system. ECHO causes c3l! subsequent input/output that is
directed to the system console to also be printed on the line
printer. The ECHO command is also used to stop echoing
console IIO on the printer.

12. 1 Use

The ECHO command is invoked with the .c "", , ,... _I .. Pi '"
10 U\W"I'~ command

line:

ECHO (;<options~J

w her e < 0 p t ion s)- can bet h e 1 e t t e l' II N" . I of the EC HO comma n d
is invoked without any options, then all subsequent input and
output to the system console via the MDOS console driver or
the EXbug entry points will be duplicated on the line
printer .. The line prj,nter will continue to rE;ceive a copy Or
all console I/O until the ECHO command is invoked with the
"N" option.

The UN" option will turn off the echo feature. No
paging is performed. Thus, if paper alignment is critical,
it will have to be manually reset after the echo feature is
disabled.

12.2 Messages

The following messages can be displaged by the ECHO
command.

ECHO NOT AVAILABLE WITH EXBUG 1

The ECHO command was invoked on
system. The command has no
systems.

** 11 DEVICE NOT READY

an EXORciser I
effect on such

The printer was not ready when the ECHO command
was invoked. The command has had no ef~ect on
the system. The printer must be readied and the
ECHO command invdked again if the echo feature is
to be enabled.

Page 12-01

CHAPTER i3

13. EMCOPY COMMAND

The EMCOPY command allows files from a user's EDOS 2
system diskette to be copied to and catalogued on an MDOS
diskette. Options exist ror copying the entire diskette,
selected files~ or single files.

13. 1 Use

The EMCO?Y command is invoked with the following command
line:

EMCOPY «name l>JC,<name 2>J Li<options>J

where <name 1> is the name of an EDOS rile, <name 2> can be a
new name that is to be used for <name 1> on the MDOS
diskette, and <options> can be one or more of the option
letters defined belo~. If neither of the two file names is
entered on the command line, then an <options> speCification
must be present. Tha following option letters are available.
They are described, in detail in the followin~ sections.

Option Function

A File is of the ASCII record format.

R F'ile is of the binary record format as
created by the Macro Assembler with the
OPT REL option.

D

C

S

E

Set the delete protection on the MOOS
r i 1 e.

Create the MOOS file with contiguous
space allocation.

Copy selected files
diskette.

rrom

Copy the entire EDOS diskette.

the EDOS

Fo~ each oT the diTferent ways that EMCOPY can be used,
the EDOS diskette must always be in drive one and the MDOS
diskette in drive zero, rega~dless of whether a two-drive or
a four-drive system is being used.

Page 13-01

EMCOPY COMMAND 13. 1 -- Use

13.1.1 Single ~ile copy

I -r as in 9 Ie EDOS. f i Ie is to be copied to the MDOS
dis k ette, -i ts name must be sp ec i r i ed as <name 1:>. On ly EDOS
rile names that meet the MDOS criteria Tor valid file names
can bee 0 pie d (s e e sec t ion 2. 7. 1 >. Sin c e EDOS r i 1 e na m e s are
only rive characters long and have no suffixes, <name 1> is
not specified with a suffix. Only the first five characters
o T <n a mel:> w ill b e use d t 0 sea l' C h the EDOS d ire c tor y . . A
logical unit number should not be specified for <name 1>.
The options "Elt or IIsn cannot be specified on the command
line if only the single file <name 1~ is to be copied. An
error will be displayed if <name 1:> cannot be round in the
EDOS d i r eo c tor 'J.

If no <name 2:> is given on the command line, then an
MDOS file with the name of (name 1:> and the default suffix
IIED" will be used as the destination rile on drive zero. The
default suffi~ can be overridden by specifying only a su~fil

for <name 2~. The default name can also be overridden by
specifying a rile name ror <name 2~.

In either case, whether an ,explicit or a de-rault <name
2~ is used, a rile with that name must not alr~ady exist on
the MDOS diskette.. A standar(f error mes-sage will 'be
d i .s pIa y e d' i r (n am e 2:> aIr e a dye xis t s.

Ir no option or if the ItAIl option is speci-Pied on the
command line, EMCOPY will assume that the EDOS rile is in the
ASCII record format. The "R" option c~n be used to copy EDOS
files that wer~ created by the EDOS Macro Assembler with the
relocatable option (OPT REL)' Obviously, URII and itA" cannot
be speciFied at the same time. If the EDOS file is round
UJl"Cn the npermanent Att'ribute" set, then the MDOS rile will
be automatically created with delete protection. The delete
protection can be explicitly set ror the MDOS file by using
th e liD" op ti on on th e command 1 i ne.

13. 1. 2 En t ire dis k e t t e cop y

To cop~ all valid EDOS files f~om drive one to the MDOS
diskette in drive, zero, no file name specification must be
given ror <name 1/, no rile name must be given foT' <name 2)
(however, a suffi x can be spec i fied) I and the "E" op tion must
be specified.

The EDOS diskette will have its entire directory
sea l' c h e d Ion e en try a tat i me J roT" V ali d (MDOS com pat i b 1 e)
file names. When a valid name is roundl it will be given the
derault suffix "ED II or the explicit sur-rix specified by <name
2), and copied to the MDOS diskette. Or courseJ a rile with
that name cannot already exist on the MDOS diskette. This

Page

\
.)

./

13-02

EMCOPY COMMAND 13. 1 -- Use

process is repeated until all entries in the EDOS directory
have been examined.

As rile names are processed from the EDOS directory one
of the following two messages will be displayed ror each file
name. The message

COPYING FILE: <name~

indicates that the EDOS file identified by <name> is being
transferred to the MDOS diskette. The message

<name:>
** 25 INVALID FILE NAME

indicates that the file <name:> does not have a valid MOOS
rile name and cannot be copied. If the file is to be copied.
it must first be renamed on an EDOS system using the RENAM
command.

The IIC"; UD", "R", OT' itA" options can be specified on
the c: 0 mma n d 1 i n e . The s e· 0 p t ion s , e x p 1 a i ned i nth e p l' e vi 0 U s
section, can be used to assign attributes to all files copied
from the EDOS diskette. If no options are specified. then
the MDOS files will use segmented allocation and be of the
ASCII record format. The delete protection will
automatically be set for files with the "Permanent Attribute"
on th e' EDOS dis kette.

The liS" option cannot be speciFied at the same time as
the liE" option.

13.1.3 Selected file copy

To copy only selected riles from the EDOS diskette, the
itS" option must be specified on the command line. Nothing
can be specified for <name 1:> or <name 2::> if the liS" option
is used. Basically, the selected rile copy mode UJorks like
the entire diskette copy mode; however, the operator can
assign different attributes and suffixes to each fileJ as
well as deciding whether or not a particular file is to be
copied at all. During the selected file copy mode, as valid
file names are found in the EDOS directory, the message

copy <name::> ?

will be displayed. The operator must respond with a "V" if
the file is to be copied to the MDOS diskette. Any other
response will cause that file to be bypassed and not copied.
The next valid file name will then be searched for.

If a "V" response is given to the above prompt,
will display two additional prompts:

EMCOPY

Page 13-03

EMCOPY COMMAND 13. 1 -- Use

SUFFIX?
ATTRIBUTES?

The operator can assign an explicit suffix by entering it
after the "SUFFIX?" promptl and he can assign explicit
attributes by entering the appropirate attribute letters (A,
C, D, R) after the "ATTRIBUTES?" prompt. The default suffix
liED" and the default attribute ItA n can be assigned by
responding with only a carriage return. If an invalid
attribute is entered by the operator, the "ATTRIBUTES?"
prompt will be redisplsyedJ forcing the operator to enter new
attributes. This procedure will continue until all entries
from the EDOS directory have been processed. At that time
the message

NO MORE FILES

~ill be displayed and control returned to MDOS.

13.2 File Differences Between EDOS and MDOS

Both EDOS and MDOS systems support the ASCII and the
binary record format. The ASCII record rormat is primarily
used for source program riles and object program riles in the
EXbug-loadable 'o~mat. The binary reco~d rormat i$ used
primarily ror the relocatable object output Files created by
the Macro Assembler~ RASM. J'

The'EMCOPY command will tTansfer either t~pe of fi~e on
a sector-by-sector basis. Thus, af~er a file is copied to
the MDOS diskette, its sectors are still in the same internal
r 0 r ma t; h 0 \&I eve r , III h e 11 an ASC I Ire cor d r i 1 e i s pro c e sse d b Y
the MDOS e d ito r , i t UJ °i lIb e a 1 t ere d . M u 1 tip 1 e spa c e s III ill b e
compressed into a single by tel and the carriage return, line
~eed, null sequence that terminates all ASCII records on EDOS
~iles ~ill be replaced by a single carriage return. Thus,
the resultant MDOS ~ile will be signiTicantly smaller than
its original EnOS Torm.

Space compression is, oT cou~sel not performed on the
binary record riles; however, weT'e the same object file to be
produced by the MDOS Macro Assembler, it would not be
identical to .its EDOS counterpart. The carriage return, line
reed, null sequence UJould have been replaced by a single
carriage return.

13.3 Messages

'The 'ollowing messages .can be displayed by the EMCOPY
command.' Not all messages are e~ror m'essages, although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed

Page 13-04

EMCOPY COMMAND 13.3 -- Messages

here.

COPYING FILE: <nam~J

During the ~ntire diskette copy mode, this
message monitors which riles are being copied to
the MDOS diskette.

COPY <nameJ ?

SUFFIX?

During the selected file copy mode, this p~ompt.

allows the operato~ to choose which files get
copied. Any" r-esponse will cause <name:> to be
copied. Any other response will cause <name/ to
be bypassed.

This prompt allows the user to specify an
explicit two-character suffix during the selected
file copy mode. A response of carriage return
only will cause the de-Fault su-Ffix liEDii to be
used.

ATTRIBUTES?

This prompt allows the user to specify explicit
attributes during the selected file copy mode.
The attribute letters "All, "C", "D", or "RI! can
be entered. A response of carriage return only
will cause the "A" attribute to be used.

NO MORE FILES

The EDOS director~ has been exhausted during the
selected file copy mode.

13.4 Examples

The following e.xample illustrates how the single file
TEST? from an EDOS diskette would be copied into the file
TESTPROG. SA on an MDOS diskette.

EMCOPY TESTP,TESTPROG.SA

The MDOS file will be allocated segmented space. It will be
in the ASCII record ~ormat. The file may be delete protected
iT the EDOS fi le had the "Permanent Attribute" set.

The
,i s cop i e d.
file names
that <name

following example shows how an entire EDOS diskette
The first two fi les are no.t . cop ied since their

are not valid MDDS file names. It should be noted
1> is not specified. Thus, in order to specify a

Page 13-05

EMCOPV COMMAND 13.4 -- Examples

su~fix Tor <name 2>, the comma had to be entered to indicate ~

that <name 1:> is null, or missing. The <name 2:> surFi x liSA"
will be used instead or the de-Fault surfix "ED" rOl' all riles
copied to the MDOS diskette. Since no other options were
given, all Files will be created in the ASCII record rOl'mat.

=EMCOPV I.SAiE
$D05
** 25 INVALID FILE NAME
SDIR
** 25 INVALID FILE NAME
COPYING FILE: PRNTX
COPYING FILE: 0120
COPYING FILE: OMEX
COPYING FILE; OXRF
COPYING FILE; ONOL

** 06 DUPLICATE FILE NAME
COPYING FILE: OLlS
COPYING FILE: ONNe
COPYING FILE: DASM
COPYING FILE: DUP05
COPYING FILE: OOlK
COPYING FILE: aOPl
COPYING FILE: TITLE
COPYING FILE: PAGE
COPYING FILE: PCHO
COPYING FILE: RSMB

** 41 INSUFFICIENT DIS~ SPACE
=

The rile ONOL was not copied because the MDOS file ONOL. SA
alreadq existed. The file RSMB was partially copied. The
MDOS diskette lacked SUTTicient space ro~ that EDOS Tile.
The EMCOPY is stopped at that point since subsequent files
~ould probably not have room either. Files like RSMB, RLOAD,
ASMB, and EDIT on EDOS diskettes should not be copied to MDOS
diskettes, since those programs make assumptions about the
diskette structure, and will Fail to Uloric iF copied and
executed (aFter EXBIN conversion).

The last example shows how the selected File copy mode
is used. In this example, not all files have the same record
format. Thus, iF they lUere copied with the "En option, some
would be created with the wrong file format. The rile PRNTX
i s a bin a r y r e cor d Til e. I tis 9 i v e nth e Sur fix Ii R 0 Ii (s u f fix
for relocatable object Fi.les created by the Macro Assembler).
The file ONOLI on the other hand, is an ASCII record file.
It is given the default s,uffix "ED" (from the above example,
ONOL. SA already existed on the MDOS diskette). The invali"d
file names from the EDOS diskette are displayed, but they are
not copied. A single carriage return is used in this example
to respond to the "COPY?ft prompt to indicate a negative

Page

I
./

13-06

EMCOPY COMMAND

response.

=EMCOPY is
$D05
** 25 INVALID FILE NAME
$DIR
** 25 INVALID FILE NAME
COpy PRNTX?
y
SUFFIX?
RO
ATTRIBUTES?
R
COpy 0120 ?

COpy OMEX ?

COpy OXRF ?

COpy aNOL ?
y
SUFFIX?

ATTRIBUTES?

COpy OLlS ?

COpy ONMC ?

COpy DASM ?

COpy DUPOS?

COpy 001K ?

COpy OOPl ?

COpy TITLE?

COpy PAGE ?

COpy PCHO ?

COPY RSMB ?

NO MORE FILES
=

13.4 -- Examples

Page 13-07

CHAPTER 14

14. EXBIN COMMAND

The EXBIN command is used to convert files in the
EXbug-loadable format (e. g.; obJect output from ~ne assemo!y
process without the OPT REL or OPT ASS directive) into riles
that can be loaded into memory TO~ execution. The EXBIN
command performs the inverse operation of the BINEX command.

14. 1 Use

The EXBIN command is invoked with the rollowing cummand
line:

EXBIN <name l~(,<name 2/J (j<options/J

where <name 1/ is the file specification of an EXbug-loadable
file that is to be converted, and <name 2/ is the file
specification of a file that is to receive the results of the
conversion. Only <name 1/ is required to be entered on the
command line. The default suffix "LX" and the default
logical unit number zero will be supplied for <name 1/ if
those quantities are not explicitly given. The output file
specification, "(name 2::>1 is optional. If <name 2:> is
entered, it may be a partial file specification consisting of
only a file namel a suffix, or a logical unit number (or any
combination thereof). The unspecified parts of <name 2> will
be supplied from the respective parts of <name 1/. with the
exception of the suffix. The default suffix for <name 2:> is
"LO" to indicate its memor~-image format. If no file
specification is given for <name 2>, the output file ~ill be
created with the same file name as <name 1/ but with the
s u oF ;: i x II LO " . I oF 0 n 1 tj a s u f fix i s 9 i v e n for <n am e 2:> I t hat
suffix ~ill be used instead of the default "LO". If no
logical unit number is given for <name 2>~ the output file
will be created on the same drive as given for <name 1>. In
any case, <name 2:> must be a file speciFication for which no
entry already exists in the directory.

Standard error messages will be displayed if <name 2/
already exists. if <name 1::> does not exist. 0,.. if <name 1)- is
of the wrong file format.

The (options> field can be used to specify a starting
execution address for the memory-image file. If no <options:>
field is given, EXBIN will use the address contained in the
59 reco~d ror the starting execution address.

EXBIN will ignore the SO, or name record, as well as any

Page 14-01

EXBIN COMMAND 14. 1 -- Use

null records from <name 1>. Null records consist OT a --'.
carriage return only. The content of the 51 records will be
converted to its binary equivalent and written into <name 2>.

Since the EXbug-loadable riles can contain 51 records
that would be loaded into non-adjacent blocks of memor~ based
on their address fields, the resulting memory-image file may
be larg@r (occup~ mere diskette space) than <name 1>. This
r~sults from the fact that <name 2> is a memory-image file.
All parts or memory which are not directly referenced by the
51 records, but which are included between the lowest and the
highest address contained in all Sl records, will be a paT't
of the memory-image in the file <name2> (initialized to
binar1.j zeroes).

The EXbug-loadable ~ile~ <name 1>, is unaffected by the
entire EXBIN conversion process. The output rilEib <name 2/1
can then be loaded into memor1.j directly ~rom diskette using
the LOAD command (see Chapter 18).

14.2 Execution Address Specification

A starting execution address for the memor~-image file
can be specified by entering a valid hexadecimal number in
the <options~ rield. The number must be in the range
$OOOO-FFFF (entered in the <options~ rield without the dollar
sign>. In addition, the e~ecution address must fal~ l.Dithin
the range of addresses spanned bq the file. That is, the
starting execution address cannot be less than the lowest
addr~ss found in an Sl record, and it cannot be greater than
the highest address. If an execution address is specified in
the <options> field, it will override any value contained in
the S9 recor~ of <name 1~.

14.3 Error Messages

The following error messages can be displayed by the
EXBIN command. The standard error messages that can be
displayed b~ all commands are not listed here.

CHECKSUM ERROR

On~ of the Srecords From <name 1~ contained an
invalid checksum.

Page 14-02

EXBIN COMMAND 14.3 -- Error Messages

RECORD FORMAT ERROR

One of the records from <name l~ was not in the
EXbug-loadable format. Exceptions to this are
null records, or records which consist of only a
carriage return. Null records are simply dropped
and will produce no errors. Otherwise, only
record s beg inning wi th SO, 51, or 59 are
acceptable. If all records de begin with t~ese

characters when this error occurs, then something
else is wT'cnQ with their format. The "M6800
EXORciser User's Guide tl contains a complete
description of the S record format.

SOURCE FILE NOT ASCII

The file <name ,' the ASC!! reco-rd
rormat. EXbug-loadable riles must be ASCII.

START ADDRESS OUT-OF-RANGE

The starting execution address specified in the
<options) field or the address contained in the
59 reiord is not within the range of memory
addresses spanned by the file.

** 30 INVALID EXECUTION ADDRESS

Normally, this standard error message has a
slightly different meaning. During the EXBIN
process, however, this error indicates that the
starting execution address given in the <optio~s/
field was not a valid hexadecimal number.

14.4 Examples

Most ~l'eq,uently,

numbel's suffice ~or

command line

the default suffixes and
the EXBIN operation.

EXBIN TESTPROG

logical unit
The following

wil-l produce the file TESTPROG.LO on logical unit zero from
the EXbug-loadable file TESTPROG. LXJ also on logical unit
zero. The starting execution address rrom the 59 record will
be used.

The following command line

EXBIN TESTPROG, :2i2100

will create the same file as in the previous example. In
this easel however, the file is created on logical unit two.

Page 14-03

EXBIN COMMAND 14.4 -- Examples

The starting execution address $2100 will be assigned to the -~

output Tile, regardless Or ~hat is contained in the S9
record.

Page 14-04

CHAPTER 15

15. FORMAT COMMAND

The FORMAT command attempts to rewrite the sector
ad~ressing information on diskettes. The FORMAT command can
be used to reformat either single-sided or double-sided
diskettes; hOUleverl double-sided diskett-es must be -Formatted
with this command be~ore they can be used with MDOS.
Single-sided diskettes usually come pre-Tormatted in a
compatible format. The FORMAT command will only work on
systems that are operating at one of the standard clock
T r e Q. U e n c i e S 0 f 1 MH Z J 1. 5 MH Z I 0 l' 2 MH z .

15. 1 Use

The FORMAT command is invoked with the following command
line:

FORMAT C:<unit)-J

where <unit> is an optional logical unit
specified, <unit> can take on the values 1-3.
not specified, logic~l unit number one will be
default.

number. Ii!
If <unit> is

used as a

If a user has a dual-drive EXORdisk II system, there is
no need for him to specify a <unit~ on the command line. IT
he does, caution must be used since- the specification of
logical unit number 2 on a EXORdisk II system will cause
logical unit number zero to be formatted due to the ~ay the
diSK cont~oller works!

Since the FORMAT command will destroy all information on
the diskette in the specified drivel the prompt

FORMAT DRIVE <unit)?

will be displayed, where <unit> indicates the logical unit
number containing the diskette to be formatted. <unit) is
either the number entered on the command line, or the default
value supplied by the command itself. Any response other
than "V" will cause the FORMAT command to be terminated and
control returned to MDOS. In this case, the diskette in the
specified drive is unaffected. If the "V" response is
entered, the operator should have placed a diskette that
needs to be rormatted into the specified logical unit.

FORMAT will then proceed to:

Page 15-01

FORMAT COMMAND 15. 1 -- Use

1. Rew~ite the sort sector addressing info~mation on
each cylind~r (Appendix F contains a desc~iption

of the diskette format),

2. Initialize ·eve~t.J byte of each sector to the
hexadecimal value $ESI

3. Re=read each cylinder to verify that the CRC's
are good and that the diskette is readable.

The above process terminates when the diskette is
completely formatted or when a diskette controller error
occurs repeatedly. In the rormer case, control is returned
to MDOS. In the latte-r ease, the FORMAT command tIIi!l displaq
the diskette controller error with the standard "PROM I/O"
error message. The diskette is not necessarily unusable ir
such errors occur. The FORMAT command should be re-run after
having noted the physical sector number at which the error
occurred. IT the same error occurs at the same physical
sector number a~te,.. three attempts at running the FORMAT
commandl then the oxide on the diskette is probably damaged.
The'diskette is unusable in such cases. I~ the unusable
diskette is inspected careFully by manually turning the
diskette ~ithin its protective envelope, a mark or
indentation can usually be found on its surface.

The FORMAT command can be used to format Single-sided
diskettes on the single- and double-sided Calcomp EXORdisk
II/!II systems O~ on the single-sided Pertee EXORdisk II
systems; noweverl double-sided diskettes can only be
formatted on the double-sided Calcomp EXORdisk III systems.

15.2 Messages

The only messages that the FORMAT command can display
a~e the p,..ompt shoUln above, asking if the diskette in the
specified <unit> is to be Formatted, and the standard PROM
IIO error message, indicating that a diskett~ controller
error was encountered during the formatting process.

15.3 Example

The Tollowing example shows the FORMAT command being
used repeatedly after an error is detected. Since the
physical sector number of the error keeps increasing, it
indicates that the FORMAT command is able to re~rite more and
mo~e of the diskette; however, at one point, the physical
sector number is al~ays the same. At that time the FORMAT
command is not, used any longer since the diskette in drive
one is unusab 1 e.

"-

/

Page 15-02

\

FORMAT COMMAND 15.3 -- Example

=FORMAT
FORMAT DRIVE 1?
y
**PROM IIO ERROR-STATU5=38 AT 2006 ON DRIVE l-PSN 01D8
=FORMAT
FORMAT DRIVE 17
Y
**PROM lID ERROR-STATU5=38 AT 2006 ON DRIVE l-PSN OlF2
=FORMAT
FORMAT DRIVE 1?
y
**PROM lID ERROR-STATUS=38 AT 2006 ON DRIVE I-PSN 0226
=FORr-1AT
FORI1AT DRIVE 1?
Y
**PROM lID ERROR-STATUS=31 AT 2006 ON DRIVE l-PSN 0226
=FORMAT
FORMAT DRIVE 1?
Y
**PROM IIO ERROR-STATU5=31 AT 2006 ON DRIVE l-PSN 0226
::

Page 15-03

CHAPTER 16

16. FREE COMMAND

The FREE command displays the number of unallocated
sectors and the number of empt~ directory entries remaining
on a diskette.

16. 1 Use

The FREE command program is invoked with the following
command line:

FREE C:<unit>J Li<options>J

UJheT'e <unit:> can be the logical unit number 0, 1, 21 or 3,
and <options)- can be the letter "L". If the <unit:> is not
specified on the command line, the default value zero will be
used.

The FREE command normally displays its summary data on
the system console. The option "L u

, however, can be used to
direct this data to the line printer instead. After the FREE
command has deteT'mined the available space on the diskette,
the data will be displayed in the following format:

DRIVE i: xxxxxxxx
aaaa/$bbb SECTORS ccc/$dd FILES
eeee/$fff LARGEST CONTIGUOUS BLOCK

The symbols have the rollowing meanings:

Stjmbol

i
xxxxxxxx
aaaa
$bbb
ccc

$dd

eeee

Meaning

Logical unit number selected.
Eight character diskette 10.
Available sectors in decimal.
Available sectors in hexadecimal.
Available directory ent~ies in
dec irnal.
Available directory entires in
hex a dec i rna 1 .
Size of largest, available block or
contiguous sectors in decimal.
Size or largest, available block or
contiguous sectors in hexadecimal.

Page 16-01

FREE C QMMAND 16.2 -- Example

16.2 Example

The following example shows the output from the FREE
command as displayed on the system console (a double-sided
diskette is used).

=FREE :3
DRIVE 3: MDOS0300

=

3004/$BBC SECTORS 124/$7C FILES,
0212/$004 LARGEST CONTIGUOUS BLOCK

The last example uses a single-sided diskette. No
< u nit)- i sen t ere don the comma n d 1 in e J sot h e d e .p au 1 t 0 f z e l' 0

is used.

=FREE
DRIVE 0: MDOS0300

=

0820/$334 SECTORS 140/$8C FILES
0064/$040 LARGEST CONTIGUOUS BLOCX

Page 16-02

CHAPTER 17

17. LIST COMMAND

The LIST command is used to print any ASCII file on
either the system console or the printer. Options exist for
numbering lines, specifying page rormatsl printing headings,
and indicating starting and ending points. In addition:
riles can be accessed by their logical sector numbers ror
rapid access to any portion oT a file.

17.1 Use

The LIST command is invoked with the Tollowing command
1 ine:

LIST <name>(J C<start>Je/<end)JJ Ci<options/J

where <name> is the file specification of an ASCII file that
is to be displayed, <start> and <end> are the optional
starting and ending points of tne display, and <options> can
be one pr more of the option letters describ~d below .

. Option Function

L

H

N

F

Display file on line printer.

Get head i nog information from system
console.

Display physical line number~ for each
1 ine.

Use a non-standard page format.

The <nam~) parameter must be specified with the LIST
command. If no suffix is given, the default value "SA" will
be supplied. The default logical unit number is zero.

The following sections describe each of the options in
detail. The "L" option can be used with any other optioris to
specifq that the output from the LIST command is to be
directed to the line printer. If the ilL" option is missing,
the system console will be used instead.

If the ASCII file contains anq non-displayable
characters, the LIST command will convert them into a percent
sign (7.) so that they will be visible. If records are
contained in the rile that are longer than the selected page

Page 17-01

LIST COMMAND 17. 1 -- Use

Tormat, they will be truncated on the right be~ore they are
displa\led.

17.1.1 Start/end specifications

The derault starting point ror the display is thp first
physical line of <name>. The default ending point is the
last physical line. The <start> specificatio~ can be used to
start the display o~ the file at a specific physical line
number or at a specific logical sector number. If the
<start~ specification is present on the command line it must
be in one Or the following two formats:

Lnnnnn

or

Smmm

The "Ln"nn"" rorm is used to specify a starting physical line
number. The value "nnnnn" must be a 1-5 digit decimal number
in the range 1-65535, inclusive. The "Smmmit form is used to
specify a starting logical sector number. The value Itmmm"
must be a 1-3 digit hexadecimal number in the range $O-FFF,
inclusive. The default <start~ specification is "Ll".

The <end~ specification can be used to specify where the
display oT the file is to stop. The <end> specification has
the same. two forms as the <start> specification. If no
<start> specification is ente~ed on the command line, then
the Cend:> specirication can be or either Tormi however, if
the Cstart/ specification is entered, then the <end/
specirication must be OT the same -Form. For examplel it is
invalid to speci-Fy a <start> specification of logical sector
-Five and an <end~ specirication OT physical line 216. The
<end> speci~ication must be larger than the <start~

specification. The default <end> specification is the
logical end of the -File.

17.1.2 Physical line numbers

NormallYJ the disp layed rile UJill not be shown with
physical line numbers. Only the actual data of the lines in
the f i 1 e UI ill b e s h 0 tun. The II N II 0 P t ion can b e use d to c a use
physical line numbers to be generated by the LIST command and
displayed with each line of data from the file. The physical
line numbe~s will be printed as five digit decimal numbers.
I-F the standard page format is used, each data line that is
longer than the eighty charac·ters will be displayed.w~th
eight· Fewer data charactersl truncated from the right. The
physical line numbers are useful when using the BLO~EDIT
command (Chapter 5) or when trying to rind verify errors Trom

Page 17-02

LIST COMMAND 17.1 -- Use

the COpy command
tape fi Ie.

(Chapte~ 7) between a diskette ~ile and a

The physical line number opticn "N" is fairly
meaningless if the logical sector form of the <start>
specirication is used. Since no count is available ror the
number Or lines between the beginning of the file and the
specified logical sector, the physical line numbers (if
printed) ~ould only b2 r21ativ2 to the part of
was displayed. A partial line will usually be
first line since the records ~andomly

boundaries.

17.1.3 User-supplied heading

the rile that
seen as the
cross secto"!'

Normally: the LIST command wi 11 p'T'int a page number and
the file name specification of the file being listed as a
heading. The flH" option can be used to cause additional
information to be displayed on the heading line. The "H"
option will cause the following prompt to be shown on the
system console before the file is listed:

ENTER HEADING:

The operator can then respond ~ith a line of text that is to
be used as the heading. The maximum length of the entered
heading is 100 (decimal) characters. The heading line
containing the page number, rile name specirication, and
user-supplied text will automatically be printed on the
second line of each~page.

17. 1.4 Non-standard page formats

Normally, the LIST command will display a maximum oT
eighty characters per line and sixty-six lines per page. The
"F" option can be used to override the standard page rormat.
The format of the "F" option is as follows:

FEcccJ. [ppJ

where at least one of the two parameters must be present.
The "ccc" parameter is used to specify the number Or columns
to be printed per line. It must be a decimal number in the
range 1-132, inclusive. The "pp" parameter is used to
speciFy the number of lines per page. It, too, must be a
dec imal number, but in the range 10-99, inc lusive. An error
message will be displayed if an illegal page format is given.
Either the line length or the page length can be specified
without the other (e. g., "F20." or ifF. 58", respectively>.
Only the line length nee~ be specified if longer lines are to
be printed on a standard length page.

Page 17-03

LIST COMMAND 17.2 -- Messages

17.2 Mes-sages

The following messages can be displayed by the LIST
command. Not all messages are error messages; however, error
messages are included in the list. The standa~d er~or

messages that can be displayed by all commands are not listed
here.

PAGE ddd <name>

This is the standard heading supplied by the LIST
command. "ddd n is the decimal page number and
<name~ is the ~ile name specification, of the rile
being printed.

ENTER HEADING:

This message is displaqed when the "H" option is
used to print additional heading text on each
page. A maximum of 100 (decimal) characters can
be entered.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

This error is caused when a <start~ specification
references a logical sector number that is
greater than the logical sector number of the end
of file.

** 34 INVALID START/END SPECIFICATIONS

The <start~ and <end~ specifications on the
command line Ulere not both of the same -form (ilL"
or "sn); or the <end:> specification had a value
that was less than the value of the <start>
specification. This error can also be caused if
the <start) or <endJ specifications begin with
letters other than ilL II or "5 11

•

** 35 INVALID PAGE FORMAT

The parameters of the ItF" option did not meet the
criteria explained in section 17.1.4.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

The <start) specification on the command line
specified a physical line number whose value was
larger than the total number of lines in the
file.

I
/'

Page 17-04

LIST COMMAND 17.3 -- Examples

17.3 Examples

The MDOS equate Tile is used in all or the following
examples. The rollowing example shows what is probabl~ the
most commonly used form of the LIST command. No options are
used. The default values foT' suffix, logical unit numbeT',
<s tart:> and <end:> sp ec i f i cat ions, pag e forma t, and outp ut
device ar~ used. It is assumed that the BREAK key was
depressed to terminate the LIST command and return control to
MDOS in this example.

=LIST EGU

PAGE 001 EGU . SA: 0

* * TURN OFF THE LISTING

'*

*

OPT NOL
PAGE

* MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- JULY 25,1978

*
SPC 3

*
=

The following example uses the <end> specification to
stop on the tenth line of the file. Since the default value
for the <start> specification is to be used, a null parameter
must be specified for it. This is done b~ entering the two
adjacent commas. The II Nit option causes the display of the
ph~sical line numbers.

=LIST EGU"Ll0iN

PAGE 001 EOU , SA: 0

00001 *
* TURN OFF THE LISTING

*

*

OPT NOL
PAGE

00002
00003
00004
00005
00006
00007
00008
00009
00010

* MDOS VERSION 03. 00 -- SYSTEM EQUATE FILE JULY 25, 1978

=

* SPC 3

*

The following example uses both
specifications to cause the display
t h T' 0 U 9 h 40 lin c 1 us i ve.

<start> and <end~

of physical lines 30

Page 17-05

LIST COMMAND 17.3 -- Examples

=LIST EGU,L30,L40

PAGE 001 EGU . SA: 0

* THE SAME CONCEPT AS THE "SKIP2 11 MACRO IS USED, EXCEPT THAT
.. A "BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATED.

* SKIP! MACR

*

FeB $85
ENDM

*' seA L L ..
SCALL MACR

IFEG NARG-l
=

MAC R a (SYSTEM FUNCTION CALL)

The following example illustrates how the logical sector
number can be used to rapidly access any part o~ a ~ile.

When the <start~ and <end~ speciTications refer to phYSical
line numbers, the ~ile must be read from the beginning, a
record at a time, in order to find the correct lines;
however, the logical sector Torm of the <start~ speci~ication
permit~ the LIST command to go directly to the sector. The
physical line number option liN" is Fairly meaningless if the
logical sector form of the <start~ specification is used.
Since no count is available for the numb~r o~ lines between
the beginning of the file and the specified logical sector,
the physical line numbers (if printed) would only be relative
to the part of the file that was displayed. A paTtial line
will usually be seen as the first line since the records
randomly cross sector boundaries. The BREAK key was used in
this example to terminate the display of the file.

=LIST EGU,S5

PAGE 001 EGU. . SA: 0

TEn OP CODE IS GENERATED.

*' SKIPl MACR

'*

FeB $85
ENDM

*' SeA L L

*' SCALL MACR
IFEQ NARG-l

=

MAC R a (SYSTEM FUNCTION CALL)

The following example displays the MDOS equate rile
using a non-standard line length specification. Only the
rirst twenty characters of each line will be shown. Notice

Page

, -....\

)

17-06

LIST COMMAND 17.3 -- Examples

that this format also applies to the printed heading. The
BREAK key was used to terminate the display.

=LIST EQUjF20

PAGE 001 EGU .S

* * TURN OFF THE L!ST!

* OPT NOL
PAGE

'* '* MDOS VERSION 03.00

'* =
The last example lists the first nine lines of the MDOS

equate file. In addition to the previously shown featuresl
the "H" option is used to specify a heading. This heading
would be printed at the top of each page if multiple pages
we're p'rinted.

=LIST EGU"L9iHN
ENTER HEADING: THIS IS THE MDOS SYSTEM EGUATE FILE .

PAGE 001 EGU . SA:O THIS IS THE MDOS SYSTEM EGUATE FILE

00001
00002
00003
00004
00005
00006
00007
00008
00009
=

* '* TURN OFF THE LISTING

*

'*

OPT NOL
PAGE

* MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- JULY 25,1978

"*
SPC 3

Page 17-07

CHAPTER 18

18. LOAD COMMAND

The LOAD command is used to load a program from a
memory-image file on the diskette into memory. Options exist
for entering the debug monitor after loading a program, for
automaticall~ executing a programl Tor loading a program into
the User Memory Map of EXORciser II system51 and for loading
a program over the resident operating system.

18-. 1 Use

The LOAD command is most frequently used to load a
program into memor~ for testing; however, certain types of
programs, specifically those that overlay MDOS, that load
outside range or contiguous memory knonw to MDOS, or that
execute in the User Memory Map of an EXORciser II system with
the dual memory map configured, can only be executed via the
LOAD command and one of its options (G). The LOAD command is
invoked with the following command line:

LOAD «name>] (i<options>J

where <name> is the file name specification of a file from
which the program is to be loaded into memory, and <options>
specifies how to load the program. If <name~ is specified,
it must be the name of a ~ile that has the memory-image
format. The default- suffix "LO" will be supplied if no
explicit suffix is given. The default logical unit number is
zero.

The <options~ are divided into "Main Options" and "Other
Options". Main Options are mutually exclusive. That is,
only one Main Option can be specified on the command line at
a time: The Other Options can be included with anyone of
the Main Options. The following tables show both Main and
Other Options.

Page 18-01

LOAD COMMAND

Main Option

none

u

v

Other Option

none

G

«st'I'::»

18. 1 -- Use

Function

Load p~og~am into contiguous
memory above MDOSi keep MDOS SWI
vecto~ to allow system function
access.

Load program into User Memory, Map
of an EXORc i sel' -1 I sy stem lIIi th a
dual memory map conTiguration.

Allow program to load over MDOS
or anywhere else in memor~i

disable MDOS's SWI vector.

Function , --------

Enter debug monitor after loading
pl'og-ram.

Execute p~ogram.arter loading.

In i t-i ali z e MDOS . comma n d 1 in e
buffer with the character string
<str> as indicated in the
enclosed parentheses.

The <options::> are discussed in detail
sections.

in the following

The LOAD command does not verify that memory exists for
the areas into which a program gets loaded.
Command-i nterpreter-l oadab 1 e programs (sec t ion 18. 1. 1) are
guaranteed that memorq exi9ts since the memory ~as sized at
initialization timei however, programs loading into
discontiguous areas of memor~ o~ into the User Memor~ Map of
a dual memo~~ map configuration- are not guaranteed that
memory exists. The operator is responsible for knowing where
memor~ is configured in his s~stem and where his programs are
loaded. Also, du.e to the nature Or the diskette contl"ollerl
it is not possible Tor the LOAD command to compare what is
read from the ~ile with ~hat is stored into memory. Only
diskette controller read errors can be detected.

Programs brought into memory from the diskette will be
loaded in multiples of eight bytes. This fact must be
considered when programs are loaded into adJacent blocks of
memory close to othel' programs, or if programs are loaded
into the upper end of a block of memory.

Page. 18-02

LOAD COMMAND 18. 1 -- Use

18. 1. 1 Command-i nterpreter-l oadab 1 e programs

Prog~ams that can be loaded by the MOOS command
interpreter are usually loaded for testing by not specifying
anything in the <options> field. The "G" option can be used
to load and execute the program in one stepi however, Tor
such programs this is awkward. They are usually loaded and
executed directly by the MDOS command interpreter by entering
their file names as the first rile name speci~ication on an
MDOS command line. The command line

LOAD TESTPROG

would attempt to load the file TESTPROG.LO from logical unit
zero above the resident operating system (the program must
have already been assembled atl or link/loaded and assigned
memory locations at the proper addresses so l~ loads above
MDOS)' After the file was loaded, control would be given to
the debug monitor.

The following command lines

TESTPROG. LO

or

'LOAD TESTPROG;G

would load the program from TESTPROG. LO from logical unit
zero and execute the program. It should be noted that these
two command lines will accomplish the same function. Since
the first ~orm of the command line is shorter, especially if
the suffix were change to "eMil, the second form is seldomly
used.

Command-interpreter-loadable
follo~ing requirements:

programs must meet the

1. The program must load above the resident
operating system; it must be origined to load
above hexadecimal location $lFFF. The prog~am

can access the direct addreSSing area below
hexadecimal address $100 (BSCT) during executioni
howeverl that area of the memory cannot be loaded
into. Thus, variables in BSCT cannot be
initialized during loading. In addition, if a
program is going to use diskette lID, none of the
locations below address $20 can be used by the
program for its own variables.

The· program must load within the range of
contiguous memory that was establiShed during
MDOS initialization. Such programs require an

Page 18-03

LOAD COMMAND 18. 1 - Use

additional eight bytes of memor~ beyond their
highest loaded address to allow room for a stack
when the debug monitor is entered. These eight
bytes must be within the contiguous memory block
known to MDOS.

If either of these criteria is not met, the standard error
message will be displa~ed indicating that the program has an
invalid load address.

ATter the program is loaded (without any options), the
debug monitor will. be entered (as seen by the input pT'ompt of
the resident monitor). The pseudo registers of the debug
monitor will have been initialized by the LOAD command to the
Following values:

Pseudo register Contents

?
X
S

A,B,C
Y
U=S
DP=Q

Starting execution addr~ss
Lowest address loaded into
Highest address loaded into (eight
bytes greater than the highest actual
program location)
IndeteT'minate
Indeterminate (MDOS09)
MDOS09 only
MDOS09 only

Normally, command-inteT'pT'eteT'-lo~dable p~ogT'ams take
advantage of the Tact that the stack pointer is initialized
to the end of the program area by using that part of memory
ror the actual stack during execution. Such stacks must be a
minimum of 80 (decimal) bytes in size.

In addition to setting up the pseudo registers, the LOAD
command will change the MDOS variable ENDUS$ (Chapter 24) to
contain the last address loaded into by the program. This
allo~s the pT'ogram to dynamically allocate additional
contiguous memoT'Y ror buffers, etc. I via the ". ALUSM u

function (Chapter 27).

Caution must be exercised when loading a progT'am and
entering the debug monitor. If MDOS is to be reinitializedl
the ABORT or RESTART pushbuttons must first be dep~essed

before the debug command !lEBOO; G ii aT' ;iMDOS:1 is executed.

18.1.2 Non-command-interpreteT'-loadable progT'ams

P~ogT'ams are not loadable by the MDOS command
interpreter must be loaded into memo~y ror either testing or
execution via the LOAD command. Normally, such p~ograms will
overlay the resident operating system or will load into areas

Page 18-04

LOAD COMMAND 18. 1 -- Use

outside of the contiguous memory
programs cannot be executed directly
interpreter.

known to
via the

MDOS. Such
MOOS command

The "V" option will inhibit the memory boundary tests
explained in the previous section. A program loaded with the
UV" option, however, must still meet the following
requirements:

1. The program must load ab.ove the RAM' variables
required by the diskette controller. That is,
the program must be assembled to load above
hexadecimal location $lF. The program can access
the direct addressing area below hexadecimal
location $20 during executioni howeverl that area
of memor~ cannot be loaded into. Thus, variables
in the direct addressing area cannot be
initialized during loading if their addresses are
between $0000 and $OOlFI inclusive.

2. The program's ending load address; as calculated
from the parameters in the RIB, must not be
greater than $FFFF. SpecificallYI the starting
load address plus the number of sectors to load

. minus one (expressed in numbers Or bytes), plus
the number of bytes to load from the last sector
minus one, must be less than or equal to SFFFF
(see section 24.2>'

If either of these criteria is not met, the standard error
messages will be displayed indicating that the program has an
invalid load address.

If the program is to be loaded for testing, only the "V"
option should be specified. Thus, the command line

LOAD TESTPROGiV

will cause the debug monitor to be entered after the program
is loaded from the file TESTPROG.LO from logical unit zero.
The pseudo registers will contain the following values:

Pseudo register Contents

p

X
S
A,B,C
Y
U=S
DP=O'

Starting execution address
Lowest address loaded into
EXbug stack address
Indeterminate
Indeterminate (MDOS09)
MDOS09 only
MDOS09 only

Since the memory boundary check is bypassed with the "VII

Page 18-05

LOAD COMMAND 18. 1 -- Use

option, the program can be assembled to load anywhere above
location $lFi however, no check is made to verify that memory
exists ~here the program is loaded.

One e programs have been tested I th e\l can bee x ecuted via
the LOAD command by speci'ying the additional option "G", as
in the following command line:

LOAD TESTPROGiVG

The "Gil option will bypass entering the debug monitor and
cause control to be passed directly to the loaded program.
The stack pOinter is still configured as explained above.

If the "VII option is used (!JIith or without the "G II

option)~ the SWI vector will be restored to its original
value that points back to the debug monitor. Thus, programs
loaded with the "V" option cannot use the resident MDOS
~unctions.

18. 1.:3 Programs in the User Memor"J Map

By using the flU" option as shown in the following
command line, the LOAD command can be used to load a program
into the User Memory Map Or an EXORcise~ II system that has
the dual memorq map configured:

LOAD TESTPROG;U

If the dual memory map is not 'configured, an er~or message
will be displayed.

The only requirement placed on programs loading into the
User Memory Map is that the ending load address not be
greater than $FFFF. Otherwise; any memorq locations
(SOOOO-FFFF) can be loaded into; however, no check is made to
ensure that memory exists where the program is loaded. If
the "Gil option omi tted, the debug moni tor wi 11 be entered
after the progTam is'loaded. The debug monitor will display
the User Memory Map prompt, not the Executive Memory Map
prompt. The pseudo registers will contain th~ following
values:

Pseudo register Contents

p
X
5
A, B, C
y
U=S
DP=O

Starting execution address
Lowest address loaded into
Highest address loaded into
Indeterminate
Indeterminate (MDOS09)
MDOS09 only
MDOS09 only

Page 18-06

LOAD COMMAND 18. 1 -- Use

Caution must be exercised in starting exeCU~lon of
programs loaded in this manner. Since the stack pointer
contains the address of the last loaded program locationl use
of the debug monitor commands "iP" or ";N" will cause seven
locations of the program to be destroyed. This ma~ alter
program data or instructions. It is recommended that the
s t a c k poi n t er fir s t b e chan g e d v i a the It is'' comma n d i t hat the
"nnnn;G" command be used to initiate execution; or that area
for the stack be provid~d at the end or the program.

The LOAD co~mand/s "G" option can be used in addition to
the "un option to give control to the program immediately
after it has been loaded:

LOAD TESTPRDGjUG

The "M6800 EXORciser II User's Gu.:ide" should be consulted for
a complete discussion of the User Memory Map.

If the "un option is used (~ith or without the "G"
option), the SWI vector will be restored to its original
value that points baCK to the debug monitor. Thus, programs
loaded with the nu" option cannot use the resident MDOS
runc tions.

18.1.4 /'rIDOS command line initialization

The Other Option «str» is used while testing
c ommand-i nterprete'T'-l oadab 1 e programs (sec t i on 18. 1. 1). Sue h
prog~ams usually obtain parameters via the initial command
line that activated the program. When testing such programs,
however, the command line buffer will contain the command
line that- invoked the LOAD command. Thus, the «str:» option
is used to allow testing of the loaded program as if it had
been invo-ked from the command line directly, simulating its
execution-time environment. The quantity <str> will be
place-d into the MDOS command line buffer. The command line
buffer pointer, CBUFP$ (Chapter 24), will be adjusted to
point to a null character which precedes the string (a valid
terminator for the . PFNAM function; Chapter 27>' Any
displayable characters, except the right parenthesis It)", can
be included in the string <str>. The string will be
terminated with a carriage return after it is placed into the
command line buffer. Thus, the use of the null string U()11,

will cause a single carriage return to be placed into the
buffer.

The «str» option can be used with any of the Main
Options; however, it only makes sense when no Main Option is
used (command-interpreter-loadable programs).

Page 18-07

LOAD COMMAND 18. 1 -- Use

18.1.5 Entering the debug monitor

The LOAD command can be invoked without entering a file
specification. For example, the command line

LOAD

will
MDOS,

cause the debug
the message

monitor to be entered directly. For

BKPT ERROR
P-2131 X-2170 A-OD B-80 C-CO S-227F

*'
or the message

SWI P-2131 X-2170 A-OD 8-80 C-CO S-227F
E*

~ill be displayed depending an whether EXbug 1 or EXbug 2J
l'espectivelYI is in the system. The actual contents of the
pseudo registers may di~fer.

For MDOS09, the message

SWI P-2131 U-227F Y~FF34 X-2170 DP-OO A-OD B-80 C-CO
S-227F

will be displayed."

If the LOAD command is invoked in th is way, then at no
time should MOOS be l'einitialized via the l'E800i G" or "MDOS"
command without first depl'essing either the ABORT or RESTART
pushbuttons on the Tront panel aT the EXORciser. Ir the LOAD
command ~as entered as shown in the example aboveJ MDOS can
be reentered without reinitialization by using the debug
monitor command "~P". The LOAD command has con~igured itself
so that the lIiP" command will cause a normal return to the
MDOS command interpreter.

IT the "V" option was used without a file name specified
on the command line, the IIi pI' command ~ill cause MDOS to
reinitialize as i~ an "E800iG" or "MDOS" command had been
given to the debug monitor, The II V" option has the same
ef~ect as using the ABORT or RESTART pushbuttons insofar as
the SWI vector configuration is concerned.

The "V" option is invalid with this ~orm of the LOAD
command.

The Other Options "Gil and 1t«stT':»JI are invalid when the
LOAD command is invoked without a file name speCification on
the command line.

Page 18-08

LOAD COMMAND 18.2 -- E~ro~ Messages

18.2 Error Messages

The LOAD command displays error messages from the
standard error message set; hOUlever, since some of these
messages have special Significance to the LOAD command only,
they are listed here.

** 07 OPTION CONFLICT

This error message can be displayed ror the
following reasons: More ~nan one Main Option was
specified at the same time; the LOAD command was
invoked without a file name with the "un option;
01' the nu" option was used on an EXORcise!' I
system 01' on an EXORciser II system without the
dual memory map con~igured.

Earlier versions aT MDOS supported the tip" and
ItM" options which we'T'e used as defaults iT no
options were entered. The uP" option had same
e f f e c t as the null Ma i n 0 p t ion. 1 he" MilO P t ion
had the same effect as the null Other Option. If
II P " wa sus e d UJ i t han y 0 f the Ma i n 0 p t ion s ,or i f
II M" wa sus e d wit h the .. G II opt ion, the nth i s
message would also be displayed.

** 12 INVALID TYPE OF OB~ECT FILE

This error message is displayed if the Tile
specified on the command line was not a
memory-image file. In odd cases, this message is
also be displayed if the Retrieval Information
Block of the file has been damaged. If this is
the suspected cause, then the REPAIR command
(Chapter 22) should be 'T'un to verify that the RIB
is in error.

Page 18-09

LOAD COMMAND 18.2 -- Error Messages

** 13 INVALID LOAD ADDRESS

If the LOAD command was invoked with the null
Main Optionl the program cannot be loaded for one
of the following reasons:

1. It loads over the resident operating
sgstem. That is, it loads below
hexadecimal locati~n $2000.

2. It loads beyond the range of contiguous
memor~ known to MOOS (established at
initialization time).

If the LOAD command was invoked with the Main
Option !!V'·, the prog1'"am cannot be loaded because
it loads below hexadecimal location $20, or the
program's ending load address is greater than
$FFFF.

If the LOAD command was invoked with the Main
Option nu", ending load address is greater than
$FFFF.

In the cases where the ending load address
exceeds $FFFFI the RIB of the file has been
invalidly created. UsuallYI this occurs when a
program loads into the highest memory location
($FFFF) but does not start-loading at an address'
that is a multiple of eight. Since the only
in~ormation available to the LOAD command is the
starting load address and the program's size (a
multiple of eight bytes)! the ending load address
may exceed $FFFF <diskette controller forces the
multiple of eight byte criterion). Then, tne
program should be re-assembled or re-link/loaded
so that the starting load address is a multiple
of e i 9 h t. 1ft his i s not the cas e I the REPA I R
command (Chapter 22) should be invoked to check
for other files that may also be in error.

** 30 INVALID EXECUTION ADDRESS

The the file from which a program is to be loaded
ha~ an invalid RIB which must be fixed with
REPAIR. The starting execution address lies
outside of the block oT memory that would be
loaded by the program.

Page 18-10

LOAD COMMAND 18.3 -- Examples

18.3 Examples

The following command line:

LOAD TESTPROG:li (FILE1,FILE2iS=lOOO)

~ill load the program rrom the rile TESTPROG.LO from logical
unit one into memory. The program must be origined to load
above the resident MDOS and below the end of contiguous
memory. The MDOS command line buffer will be initialized
with the string

FILE1,FILE2iS=1000

to allow the program to be tested as if it had been invoked
from the command line directly. After the program is loaded,
control is given to the debug monitor.

The next example illustrates how user-written programs
are executed from diskett~ directly. The program can load
anywhere in memory except below hexadecimal location $20.
The program cannot use any of the resident MDOS functions:

LOAD BLAK~ACKiVG

The next example iilustrates how the PROM • Programmer I
program can be used for m~king PROMs of programs that load
above resident MDOS and the area re~uired by the command
interpreter and LOAD command. It is assumed that the program
in the file TPROM.LO loads above $2300. Since the contents
of memory are not destroyed during the initialization
procedurel MDOS can be reinitialized after loading the
program TPROM without losing the content of those memory
locations. Then, the LOAD command is used again to load and
execute a version of the P~om Programmer I program (origined
to load at location $20).

=LOAD TPROMiV
*E800iG
MDOS 03.00
=LOAD PPLOiVG
?

The command "E800;G" can be validly used since the program in
the file TPROM. LO was loaded with the "V" option. If no Main
Options are u~ed, the ABORT or RESTART pushbuttons would have
to be depressed first.

Page 18-11

CHAPTER 19

19. MERGE COMMAND

The MERGE command allows one or more riles to be
concatenated into a new file. This command is useful in
combining several smaller program files into one large rilel
or in building relocatable libraries to be used in
conjunction with the M6800 Linking Loader (RLOAD).

19. 1 Use

ihe MERGE command is invoked with the ~ollowing command
1 ine:

MERGE <name l>C,<name 2/, ... ,<name n>J, <dname>Ci <options>J

where <name i> (i=1 to n) are the names Or the files to be
merged togetherl <dname> is the name of the destination file,
and (options> can be one or both or the options listed below.
A maximum of 38 (decimal) file names can be accommodated by
the MERGE command.

Option Function

W Use automatic overwrite if destination
file already exists on diskette.

<addr> Use hexadecimal <addr> as starting
execution address of destination file.

The <options> are described
sections.

in detail in the following

Only <name 1:> and <dname) are required. All file name
specifications on the MERGE command line must contain at
lea s t a f i 1 e n a me. For a 11 <name i ::> I the d e fa u 1 t Sur of i x If SA "
and the default logical unit number zero will be used if none
are explicitly given. The defa~lt suffix and logical unit
numbe~ for <dname::> are taken from <name 1>.

MERGE will pe~fo~m two different functions depending on
wh eth er <dname::> is th e same as <name 1> or not. If <dname>
is different from <name 1::>, then all of the files specified
by <name i::> will be combined into the destination file
<dname::>. Each of the <name i::> files will remain unaffected.
If <dname::> is th e same a s <name 1), however, th en MERGE wi 11
append the files specified by <name 2::> through <name n> to
the end of the file <name 1>. In' this case, the file <name

Page 19-01

MERGE COMMAND 19. 1 -- Use

1~ will be changed.

The rile names <name 2/ th~ough <name n> a~e optional.
I f the y a l' e s p e c i fie d I the y m us t b e o.p the sa mer i 1 e forma t
and have similar allocation and space comp~ession attributes
as <name l~o In addition, their names cannot be the same as
that of <dname/ unless <dname/ is the same as <name 1/. If
file names <name 2/ through <name n~ are not speci~ied, the
MERGE command performs the same function as the COpy command.
That is,

MERGE <name l>,<dname>

is identical to the command line

assuming that <name 1~ is not the same as <dname>.

Onl~ rour t~pes of riles can be processed by ~ne MERGE
command. The files specified by <name i> must have one of
the following formats:

File format as File format
sho4lJn by OIR

o
2
3
5

User-defined
Memory-image
Binary record
ASCII record

Memory-image files can be merged together. The file
<dname>, however, cannot exist in such cases because MERGE
must ensure that the destination file is allocated contiguous
space to accommodate the memory-images of all (name i~ files.
If <dname> already ex ists, MERGE cannot ensure such
allocation. For all other file formats that <name i) can
assume, <dname:> can already exist. In such cases where
<dname> is different from <name 1:> and already exists in the
d ire c to,.. y (and noll W II 0 P t ion 0 nco mma n d 1 i n e), the me s sag e

<dname> EX ISTS. OVERWRITE?

will be displayed. The operator must respond with a "V" if
MERGE is to perform the me~ge operation Any other response
will terminate the MERGE command and return control to MDOS.

19. 1. 1 Merg ing non-memory-image fi les

If the files specified by <name i>
use,..-defined format, ·the binary record format,

are all of the
or the ASCII

rec or d format, then the destination ~ile <dname:> will be a

,.--~

. .~

j

Page 19-02

MERGE COMMAND 19. 1 -- Use

direct concatenation Or ali of the SOUTce ~iles. For
example, if five ASCII record files are merged, the
destination file can be represented by:

Destination File

File 2 : File 3: File 4 : File 5

start of file end of file :

The same type of concatenation would take place if the
file format was either user-defined or binar~ record. The
MERGE command can be used in this manner to create one large
data or source program file from smaller files. or a library
file of relocatable obJect programs.

19. 1. 2 Merg ing memory-image fi les

If all of the files specified by <name i> are
memory-image format filesl then the destination file <dname>
will be a memory-image file also; howeveri it will span all
memory locations between the lowest and the highest address
spanned by the <name i> fi~es. If the files to be merged
occupy overlapping areas in memory, then ih. destination file
will contain the contents of the last file to be merged that
occupies those common locations. The MERGE command produces
a file that is the memory image of riles 1-n as if they were
loaded into memory in the sequence in which they appear on
the command line. Regions of memory spanned by <dname> that
are not "loaded" into by the <name i~ files will contain
bina-ry zeroes.

For example, if three memory-image files as described in
the following table were merged togethe~1

<name ' 1 ... Lowest Highest
rile add,..ess address

-------- ------- -------

1 600 FFF
2 100 7FF
3 1200 13FF

then the resulting destination file can be represented by:

Page 19-03

MERGE COMMAND 19.1 - Use

Memorq
Location 1

o
o

6
0
0

8 F
0 F
0 F

12222222222222222222222211111111
i2222222222222222222222211111111
12222222222222222222222211111111

: ... Overlayed <name 1~

1 1
2 :3
0 F
0 F

33333333~

33333333;
33333333:

.. Start or <dname~ End o~ <dname~ :

The numbe~s in the body of the ~ectangle above indicate
the data OT the respective <name i~ Tile. Thus, "2"
indicates the data of <name 2)O~ etc. BetUleen locations $600
and $7FF, the data of <name 2~ is seen. It overlayed any
information put into <dname~ by <name 1/. Since none oT the
<name i~ Tiles spanned the addresses from $1000 to $11FF,
inclusive, that part oT <dname~ is initializeo to binar~
zeroes.

It should be noted that programs from memo~y-image riles
loaded into memory are alUlays a multiple OT eight bytes in
length. This is a function of the diskette contToller.
Regardless of the actual data aT a file, a multiple of ei'ght
bytes ~ill al~ays be loaded. This fact must be kept in mind
~hen merging flles ~hich span memo~~ locations that a~e close
together.

Memo~y-image ~iles have associated with their load
information a starting execution address. Ir no <options~
~ield is speciTied on the MERGE command line, <dname~ will
have the sta~ting execution add~~ss oT <name 1~ assigned to
it; however. as can be seen from the above example, this
default execution address can be meaningless. An explicit
starting execution address can be specified in the <options~

field as a one to four digit hexadecimal number. The address
must lie within the range of memory addresses spanned by
<dname:>.

19.1.3 Other options

The "W" option is used to allow the destination file to
be overwritten if its rile name already exists; the
"OVERWRITE" prompt is not displayed and MERGE per~orms its
expected ~unction. Ir the "W" option is ~ot used, the MERG~

command will prompt the operator before overw~iting the
destination file. The "W" option is not valid if <n~me 1~ is
a memor~-image file because the destination rile cannot exist

Page

.--.

19-04

\
I

MERGE COMMAND 19. 1 - Use

in that case.

19.2 Messages

The following messages can be displayed by the MERGE
command. Not all messages are error messages, although error
messages are included in the list. The standard error
messages that can be displayed by all commands are not listed
here.

<name:> EXISTS. OVERWRITE?

The specified file name already exists in the
directory. The operator is prompted before the
f i lei $ overUlr i tten. Any" resp onse LIIi 11 cause
the merge to take place. Any other response Ulill
cause control be to returned to MDOS.

** 15 <name> HAS INVALID FILE TYPE

The file indicated by <name> is not of the proper
format (i. e. I ASCI I record! binary record,
memory-imagel or user-defined) J or the RIB of the
file is damaged. ·A memory-image file's RIB is
considered to be dama~ed if the number of se~tors
to load is zero, the number of bytes to load -From
the last sector is zero, or if the ending load
address is larger than $FFFF. If a damaged RIB
is suspected, the REPAIR command (Chapter 22)
should be invoked to co~~ect tbe er~or.

** 16 CONFLICTING FILE TYPES

The riles specified by <name i::> have diTfe~ent
file formats. They must all be the same format.
Even if the format (ASCI I record, etc.) is the
same, the contiguous allocation attribute and the
space compression att~ibute must also agree
between all <name i::>. This error can also oc~ur

if <dname> (not the same as <name 1>' exists and
has a diffe~ent file fo~mat than <name 1::>.

** 33 TOO MANY SOURCE FILES

More than 38 (decimali file names were specified
ror <name i::>.

19.3 Examples

The following example combines the first Tour files
specified on the command line into a new file (the last name
on the command line). The fi~st four files all have the same

Page 19-05

MERGE COMMAND 19.3 -- Examples

att-r-ibutes. The last name is the name o-r a new rile since
the OVERWRITE p-r-ompt was not displayed.

The default sufrix liSA" was used for each file name. The
destination file BOOK is c~eated on the default logical unit
number used for PART1, unit zero.

The next example illust-r-ates how a l'elocatable llDl'a~~

file can be constl'ucted r~om various smaller files. The
library file already exists. It will have the riles appended
to its end.

MERGE L!B.RO,DSKIO.RO,CNSIO. RO,FLOT. RO,LIB.RO

The last example illustrates how a patch file can be
attached to a test program file. A new starting execution
address is specified as $lF20.

MERGE TESTPROG. LO,PATCH1. LO,NEWTEST. LOi lF20

The file name NEWTEST.LO must not already exist.
other t~o files must be memory~image in fo~mat.

Both of the

Page 19-06

CHAPTER 20

-20. NAME COMMAND

The NAME comma n d a 11 0 W s the nam e s,s U T fix e san d /01'

attributes oT a rile to be changed in the directory. A
single rile name or a ramil~ of file names can be affected.
The contents Or a file remain unchanged.

20. 1 Use

The NAME command is invoked with the following command
1 ine:

NAME <name 1> (j<name 2>J (;<options/]

where <name 1> is the rile name specification Or an existing
file, <name 2:> is the new name the file is to be given, and
<options> can be one or more of the option letters listed
below.

Option Function

D Set delete protection

W Set write protection

X Remove protection

S Set system attribute

N Remove system attribute

The <options> are discussed in detail in the following
sections.

20. 1. 1 C han gin 9 f i 1 e name s

If <name 2:> is specified on the command line, the NAME
command will attempt to change the name and/or suffix of
<name 1>. <name 1> must always be specified. The defauit
suffix ilSA Ii and the default logical unit number zero are
supplied if none are explicitly given for <name 1>.

Ir only a rile name is speciried Tor <name 2/, then only
<name l)'s file name will be changed; its suffix will remain
the same. For example, the following command line

Page 20-01

NAME COMMAND 20. 1 - Use

NAME TESTPROG,BLA~~ACK

will change the Tile name TESTPROG.SA:O to the ne~ name
BLAK~ACK. SA. The de~ault suffix and logical unit number ~ere
applied to <name 1~ before performing the name change.
Likewise, iT only a sUTfix is supplied for <name 2:>, then
<name l::>"s file name will not be c.hanged; only its suffix
will be affected. Thus, the following command line

NAME TESTPROG.LX: 1,.EY

will change the suffix of the file name TEST?ROG.LX on drive
one to l'EY u

•

A logical unit number should not be specified for <name
2) since the Tile <name 1/ cannot be moved Trom one logical
unit to another when its name is being changed; however: if a
logical unit number is speciFied for <name 2/1 it must agree
with the logical unit number of <name 1::>.

When changing Tile names. the family indic.ator can be
used in either the Tile name portion or in the suffix portion
o~ <name 1~. The ~amily indicato~ cannot appear in both
places. The family indicator can be used to change the names
o~ the su~~ixes or an entire ramily of file names. Fo~

example, the command line

NAME *.ED •. SA

would change all ~ile names on d~ive ze~o that had the suffix
liED"" (as Ulould be c-reated by the EMCOPY command when it uses
the de¥ault suf¥ix) so that they had the new suffix "SA".
S i mil a r 1 Y I the comma n d lin e

would change all Tiles name~ TESTPROG (any suffix) on d~ive
two to have the new name ELAKJACK. The suffixes would remain
the same, prese~ving the identity of source, EXbug-loadable
obJect, and memory-image files as designated by their
respective suffixes~

Regardless of how the NAME command is invoked to change
a file's name and/or suffix, the neu. name must not already
e xis tin the d ire c tor y . S i mil aT' 1 Y I the old n arne s pee i Tie d b Y
<name 1~ must exist in the directory. If either one of tnese
t~o conditions is not true, one of the standa~d er1"OT'

messages will be displayed.

20.1.2 Changing file att,..ibutes

In addition to changing a file's name and/or suffixi
NAME command can be used to change a file'$ att-ributes.

the
The

.-""
)

./

/

Page 20-02

NAME COMMAND 20. 1 -- Use

way in which the attributes are to be changed is specified in
the <options:> field. Thus, it is possible to change both a
~ile's name and/or suffix and its attributes with the same
invocation of the NAME command.

The inherent attributes or a Tile that define its
physical format on the diskette (contiguous allocation, space
compression: memoT'y-im.3ge; etc.) cannot be changed. These
attributes remain with a file Trom the time it is created
until the time it is deletedi however, the protection
attributes and the system attribute can be changed at any
time.

The protection attributes or a rile are changed by
specirying the letter "X" {remove protection)1 tfW" (set wi'ite
protection), OT' "D" (set delete protection) in the <options:>
rield. The system attribute is Changed by speciFying the
letter "S" (set system attribute) or "Nil (remove system
attribute). A maximum or rive option letters can be
specified at one time. The option letters are processed from
left to -right. For example, if a file Ulith write protection
set is to have only delete protection set, the command line

NAME TESTPROGi XD

could be used. If the "X" and tiD" options were reversed, the
file would be unpT'otected.

If no <name 2~ is speciried, then an <options> field
must be present. In such cases, the -Family indicator can be
used ror both the file name and the su-Ffix or (name 1).
Thus, a diskette can have all o-F its files protected or
unprotected with a single invocation o-F the NAME command.

20. 2 ET'ror Messages

1he -Following error messages can be displayed by the
NAME command. The standard error messages that can be
displayed by all commands are not listed here ..

** 25 INVALID FILE NAME

This error message is displayed rOT the following
reasons: both <name 1:> and <name 2:> were
specified on the command line and the family
indicator was present in both the ~ile name and
the suffix portion of <name 1); both <name 1:> and
<name 2> were entered with the -Family indicatoT';
or a device name was used for <name 1) or <name
2:>.

Page 20-03

NAME COMMAND 20.3 - Examples

20.3 Examples

The rollowing command line

NAME *.*:liX

~ill remove both delete and write protection from eve~~ file
named in the directory of drive one.

The next command line shows how riles' names and their
attributes can be changed at the same time.

NAME *.EDJ.LXi X

This example w~ll take all file names with the suffi: "ED",
change it to "LXIt~ and remove anq protection that may be
present.

The last example illust,..ates how a user-iJiritten program
can be incorporated as a system command file.

NAME TEST?ROG.LO:3,SURFACE. CMjSD

This command line changes both rile name and suT~ix. In
addition, the system attribute and delete pTotection are set.
Thus, the program rile named SURFACE. CM will nou.! be treated
as a system rile by the DIR, DEL, and DOSGEN programs.

--...".

)

../

Page 20-04

CHAPTER 21

21. PATCH COMMAND

The PATCH command allows changes to be made to
memory-image Files. An ob Ject File can be UFixed" due to
minor bugs 'or assembl~ errors without having to re=edit and
re-assemble its corr~sponding source File. The "Fixes" can
be entered using M6800 assembly language mnemonics or the
equivalent hexadecimal operation codes.

21. 1 Use

The PATCH command 15 invoked with the rollo~ing command
1 ine:

where
Ti Ie.
number
<name:>.
if the

PATCH <name:>

<name> is the file specification of a memory-image
The default suffix "LO" and the default logical unit
zero will be supplied if none are explicitly given ror

One 0' the stan~ard error messages will be displayed
file <name> does not exist or ~f it is aT the wrong

f i 1 e format.

The PATCH command is an interactive program that has its
own command structure. Once PATCH is running, it will
display a greater-than sign (» as an input prompt to
indicate that a command must be entered by the operator.
Commands exist to assign an oFfset used as a base address Tor
acceSSing the file, to calculate the relative addresses for
branches, to dis-assemble opcodesl to search the file for
eight- or sixteen-bit patterns, to display and change
locations in the fileJ and to change the starting execution
address of the file.

If the file <name> exists and is of the proper format,
the PATCH command will display the following~

nnnn cc
>

The ;; n n n n :: i s the a b $ 0 1 ute hex ad e c i ma 1 add reS S 0 r the lowes t
location or the memory-image ~ile and is used as the initial
offset (section 21. 2. 2>' The "cc" is the hexadecimal content
Or that location. The second line is the PATCH input prompt.
The following sections describe the various commands that
comprise the PATCH command s~t.

Page 21-01

PATCH COMMAND 21. 2 -- PATCH .Command Set

21.2 PATCH Command Set

Each command to PATCH must be entered by the ope~ator
aTter the input prompt <» is displayed on the system
console. Like all MOOS inputl all commands must be
te~minated by a carriage return. In the Following command
desc~iptions these s~mbols are used:

Symbol Meaning

<str)

i

*

21. 2. 1 Gu i t -- Q

Both "mil and lin" are one to rour digit
hexad ec ima 1 numb e1's.

"c" is a one or two digit hexadecimal
number.

flail is an ASCII character.

"<st,..-:>II is
by commas.
a g~oup

a string of elements separatad
Each element can be a "e" or

or "aus enclosed in double
q,uotes.

lIill is a valid M6800 assembly
mnemonic (M6809 assembly
mnemonic ,if using MDOS09).

lang uag e
language

The pe~iod symbol represents the current
position within the rile <name>. It
takes on the value of the current
absolute address minus the current
oTTset.

The asterisk represents the assembler
location counter when used in the operand
rield or instructions.

"<C~:>1f is a carriage return.

The G command is used to terminate PATCH and return
control to MDOS. The format oT the G command is simply the
letter :IG U

• Any changes to the rile wilich are still in
memor~ will be written into the file beTore PATCH is
terminated.

Page 21-02

PATCH COMMAND 21.2 -- PATCH Command Set

21.2.2 Set/display orfset -- 0

The 0 command is used to display and/or change the value
of the current offset. The offset is used as a base address
to which the locat~bn parameters of the other PATCH commands
are added to arrive at an absolute address within the file.
The for~at of the a command is

If the parameters "m"
command will display
e xamp 1 eJ

(m(,nJJO

and fin II are not specified, the 0
the current value Or the offset. For

>0
OFFSET=2000

If either of the parameters tlmn or lin II aT"e specified,
the current value of the offset will be changed to either the
single value Itm'f; if only "m n is specifiedl or to the value
11m plus n"J if both parameters are present. The following
sequence of commands illustrates both forms of the 0 command:

>A01FO
>0
OFFSET=AOIF
>1234,56780
>0
OFFSET=68AC

21.2.3 Di~play single location

The comma n d to dis P 1 a y the con ten t s a f a s i 'n 9 1 e 1 0 cat ion
~ithin the file has the following format

(mC,nJJ<cr>

If both "m" and "nit are omitted, only a single carriage
return is entered. This form of the command will caus~ the
next sequential location of the Tile to be displa~ed. Since
PATCH initializes the current location to the first location
of the file when first invoked, the carriage return by itself
can be used to step through the file showing a byte at a
time, as in the following example.

Page 21-03

PATCH COMMAND

=PATCH TESTPROG
2000 30
>
2001 32
)-

2002 30
>
2003 30
>
2004 OE
><1
=

21.2 -- PATCH Command Set

If either "m" or "n" are entered prior to the car~iage
Ulill

con ten t s 01= 1 0 cat ion II m p 1 u s the curl' en tOT 1= set I. 0 l' the
contents 01= location "m plus nil. For example,

=PATCH TESTPROG
2000 30
>0
OFFSET=2000
>10
2010 2D
>100
2100 OD
>200,2000
2200 A6
>1000, 1000
2000 30
><1
=

21.2.4 Display lowest address -- L

The L command is used to change the current location to
the lowest address o~ the file. The contents of the lowest
address will also be displayed. The format 01= the L command
is simply the letter "L".

Initially, when the PATCH command is started, the lowest
address is shown automatically. The L command can be used to
return to this point o~ the ~ile at an~ time. Locations at
addresses numerically less than "L" cannot be accessed since
they do not correspond to any diskette space allocated to the
.pi Ie.

21. 2. 5 0 i s pIa y h i g h est add T' e s s -- H

The H command is used to change the current loc~tion to ~
the highest address oT the riie. The contents of the highest

Page 21-04

PATCH COMMAND 21.2 -- PATCH Command Set

address will also be displayed. The fermat o~ the H command
is simply the letter UHf!. Locations at addresses numerically
greater than IIHII cannot be accessed since they do not
correspond to an'J diskette 'space allocated to the rile.

21.2.6 Calculate relative address -- R

The R command is used to calculate the relative address
between any two locations in the rile. The Tormat of the R
command is

mL,nJR

The R command UJill calculate the relative address between -the
current location in the file and the address Urn plus the
current offset U or the address "m plus nil. The following
example illustratEs the use Or th~ R command. It is assumed
that the locations used in the example are the second bytes
of branch instructions.

=PATCH LOG. eM
8200 00
:>BA
82BA 05
:>COR
REL ADDR=0005
>119
8319 F9
>113R
REL ADDR=FFF9
:>0

=
The first relative address is in the forward direction. The
second relative address is in the backward direction. The
relative address is shown as a siAteen-bit numberl even
though only eight bits are re~uired for the operand of the
M6800 branch instructions.

21.2.7 Dis-assemble operation code -- I

The I command is used to convert a one-byte operation
code into its equivalent M6800 or M6809 assembly language
mnemonic. The format of the I command is

roT
where IfC

Il is the one-byte hexadecimal operation code for
MDOS. For MDOS09, IIC" may be a one- or two-byte hexadecimal
ope rat ion cod e . 1ft W 0 b Y t e Sit h e fir s t b Y t emu s t b e 00 J 1 0 I

or 11. The contents of the file are not affected by the I
command. For MDOS, the format of the assemb ly language

Page 21-05

PATCH COMMAND 21.2 -- PATCH Command Set

mnemonic that is displayed is the following:

MMM erA or B) C#J<HH or HHHH O~ RR} (,X)J

For MDOS09, the format of the assembly language mnemonic that
is displayed is the following:

MMM etA or BJ (#J<HH or HHHH or RR or RRRR or RL or R,R)

The symbols take on the following meanings:

Stjmbol Meaning

MMM The three-cnaracter mnemonic or base
mnemonic.

A or B The accumulator specification for

HH

HHHH

RR

I X

RRRR

accumulator instruction tqpes.

The immediate addressing mode operand
qualifier (cannot appear concurrently
with II, X", "RR" , uRRRR ll

, IIRL", "R, RII, or
I1,RII).

~ one-b~te he~adecimal operand.

A two-byte hexadecimal operand.

A one-byte hexadecimal operand indicating
relative addressing mode (cannot appear
concurrently with 11#"1 ", X", or If, RII).

The indexed addressing mode operand
~ualifier (cannot appear concurrently
wi th "#11, II HHHH " , or "RR").

A two-byte hexadecimal operand indicating
relative addressing mode (cannot appear
concurT'ently with 11#" or II,Rn).

RL The operand is a register list (cannot
appear concurrently with "#" or It, R").

RIR The operand is a ~egiste~ pair (cannot
appear concurrently with 11#" or II,RII).

,R Th~ indexed addreSSing mode operand
qualifier (cannot appear concurrently
with "#/1, IIRR" .. or "RRRRfI).

The following example ror the M6800 illustrates the
di~ferent types of displays that can be generated by the I

Page 21-06

PATCH COMMAND

command.

=PATCH TESTPROG
2000 30
>8B!
ADDA #HH
:>9BI
ADDA HH
:>AB1
ADDA HH, X
:>BB1
ADDA HHHH
:>531
COMB
:>8DI
BSR RR
>BD!
JSR HHHH
:>29 I
BVS RR
:>G

=
21.2.8 Set search mask and pattern -- M

21.2 -- PATCH Command Set

The M command is used to initialize a sixteen-bit search
pattern and a sixteen-bit search mask Tor subse~uent byte or
word searches (sections 21. 2.9-21. 2. 12). The format of the M
command is

(m]L,nJM

\11 her e " m " • i s the sea r c h pat t ern and "n tI i s the sea r c h ma s k .
Initially, both the search pattern and the search mask are
set to zero. The M command can be used to set both pattern
and mask or to set either independently aT the other. For
examplel

E5E5M

will set only the search pattern to the hexadecimal number
$E5E5. The search mask is unaffected; however, the command

I FFFFM

will set only the search mask to the
$FFFF. The search pattern is unaffected.

E5E5,FFFFM

hexadecimal number
The command

will set both the search pa~tern and the search mask.

Page 21-07

PATCH COMMAND 21.2 -- PATCH Command Set

21.2.9 Search ror byte -- S

The S command is used to search the file for a specific
eight-bit pattern. The format Or the S command is

m,nS

whe1'"'e um" and "nlt represent the starting and ending addresses
of the search. The addresses are both modiFied by the
cUT'i"'ent value Or the ofrset. The pattern to be searched for
must have been specified via the M command (section 21.2.8).
Only the least significant bytes of the search pattern and
the search mask are used by the 5 command. The S command
will display all addresses that contain patterns which meet
the search criteria. ihe locations of the file included in
the s ear chi s from add r es slim p 1 u s 0 .p r set u t 0 lin p 1 u s
off set It J inc 1 us i ve . A ma t chi sin d i cat e d i f a b y t e i nth e
~ile meets the following condition:

contents of address & search mask = search pattern

where the lI~n indicates the logical "and ll -function. The
following example il1ust~ates the use o~ the S command:

=PATCH TESTPROG
8200 30
"OOEE~FFFFM

>OJ lD7?
82A7 EE
82AD EE
82AF EE
:><1
=

21. 2. 10 Search Tor IJJora W

The W command is similar to the S command; however,
instead of searching fa,.. only a single byte, a double byte,
or Ulo,..d, is searc h ed for. Th e i=o,..ma t of th e W command is

m,nW

The address range searched with the W command is from U m plus
ofrsetll to Hn plus one plus offset", inclusive. Thus, lin"
cannot be the highest address aT the Tile, since IIn+1" would
be an illegal address. Otherwise, the W command functions
identically to the S command.

Page 21-08

PATCH COMMAND 21.2 -- PATCH Command Set

21. 2. 11 Searc h for non-mate hi ng byte == N

The N command is simil~r in format and function to the S
command; however, instead of displaying all bytes that meet
the search criteria, all bytes that do not meet the search
criteria are shown. This makes it easy to search through a
buffer of all zeroesl for example, to find any non-zero
locations.

21.2.12 Search for non-matching word -- X

The X command is similar in format and function to the W
comma n d j h 0 \II eve r lin s tea d 0 f dis P 1 a yin gal 1 d 0 ubI e b y t est hat
meet the search criteria, all double bytes that do not meet
the search criteria are shown.

21. 2. 13 Dis pIa y ran 9 e 0 flo cat i on s -- P

The P command prints the
locations on the system console.
is

m.nP

conten~s of a range of
The format of the P command

where locations "m plus offset" through un plus offset",
inclusive, are the locations to be shown. The format of the
display is illustrated in the following example:

=PATCH TESTPROG
8200 30
:>95,DOP
8290 0090 00 00 00 00 00 00 00 00 00 00 '00 00 00 00 00 00
82AO OOAO 00' 00 00 00 00 3F 32 EE 04 FF 80 04 30 EE 00 EE 72 0 ...
82BO OOBO 06 FF 80 06 CE 80 00 3F 05 24 05 SF 3F 20 3F 1A 7. $. 7 7.
82CO
82DO
:>G
=

OOCO 3F 33 3F 0:5 24 03 7E 03 D3 7E 04 32 30 31 30 30 73? $ 20100
OODO 00 00 00 00 43 4F 4E :53 4F 4C 45 20 4C 4F 47 20 CONSOLE

The contents or the locations are shown in both
hexadecimal and the equivalent displayable ASCII. IT a
location contains a non-displayable cha~acter, it is shown as
a pe~iod (. >. The first fou~-digit number contains the
absolute address while the second four-digit number contains
the relative add~ess of the locations (~elative to the
beginning Or the rile). Even though the starting location
requested was $95, the displayed locations start at location
$90. A rull sixteen locations are displayed for each line,
regardless of the ~equested starting and ending points of the
range.

LOG

Page 21-09

PATCH COMMAND 21.2 -- PATCH Command Set

21.2. 14 Set/displa~ execution address -- G

The G command is used to display and/or change the value
of the file's starting execution address. The format of the
G command is

[mC,nJJG

If the parameters "mil and "n" are not specifiedJ the G
comma n d lU i 11 dis p lay the c u 1'1' en t va 1 u e 0 r the· e x e cut i on
address. The ~ollowing example illustrates this use -of the G
command:

=PATCH TESTPROG
8200 30

EXEC ADR=8259
:>0
=

If either of the parameters "~" or " n /l aT'e specirie~,

the cur~ent value oT the execution address will be changed to
11m plus offset" or "m plus nlf, The execution address must be
within the range of addresses spanned by the ~ile (between
.addresses shown with Land H commands), The following
example shows how the G command is used to change the
starting execution address:

21. 2.15 Change locations

=PATCH TESTPROG
8200 30
)OG

EXEC ADR=8259
:>2G
:>G
EXEC ADR=8202
:>G
=

Two commands exist that will open a specified location
within the rile and allow the contents of that and subsequent
locations to be examined o~ changed. The ro~mat or these
commands is

mL,n){/ or \}C<st~:>J

whe~e the slash (/) and backslash (\, characters are used to
distinguish between the two commands. Both comma~ds will
open the specified location ("m plus orTset" or tim plus nil).
The slash command will set the "increment" mode. The

/

backslash command will set the "decrement" mode. The .--/

Page 21-10

PATCH COMMAND 21.2 -- PATCH Command Set

parameter <str> contains any changes that are to be applied
to the specified locations. I-f the "increment" mode is set
(slash command), any changes specified in <str)o will be
applied to the opened location and each subsequent higher
location, one increment being applied ror each element or the
s t l' in 9 . I r the It dec l' em e n t If mod e iss e t (b a c k s 1 ash comma n d) I

any changes specified in <str> will be applied to the opened
location and each preceding lower location, one decrement
being applied for each element or the string. If any of the
elements of the string are null, an increment (or decrement)
will still be applied for those elements. Thus, if the
entire string is null (one null element); one increment (OT'

decrement) will be applied. The "increment" or "decrement"
modes will remain in effect until changed by another slash,
backslash. or parenthesis command (section 21. 2.16).

The string <str> can contain either hexadecimal elements
or ASCII string elements} in any combination. For examplel
the command

1500, 0 I AA, L 2EJ "AABBCC"

will change the following locations to the indicated value-s:

Absolute NeUi value
Address
-------- ---------

1500 $AA
1501 $01
1502 $2E
1503 $41
1504 $41
1505 $42
1506 $42
1507 $43
1508 $43

If the backslash command had been used instead, locations
$14FF, . $14·FEI etc. I would have received the values SOL $2E,
etc.

An element of the string can be null (indicated by
successive commas). Null elements will not affect the
location that corresponds to that part of the string.

IF an e~~o~ is encountered in the string or elements
<str>, the entire command will be ignored and no changes will
be applied. An error message is printed to indicate that the
command was not parameterized properly.

Page 21-11

PATCH COMMAND 21.2 -- PATCH Command Set

21.2.16 Instruction mnemonic decode mode

The instruction mnemonic decode m~de is similar to the
slash command explained above. Instead or using a slash,
however, the open-parenthesis character «) is used. This
command allows changes to be applied to a series of locations
in the file using -M6800 or M6809 assembly language mnemonics
instead of the hexadecimal operation codes. The format Or
the command is

m(,nJ(CiJe)]

where "m" and "n" specify the starting location (either Hm
plus offset" or "m plus nUl, the open-parenthesis character
signl~les ~ne start of the inst~uctian mnemonic decode mode;
"in can be ang valid M6800 assembly language mnemonic CM6809
assembly language mnemonic for MDOS09), and the
close-parenthesis character indicates the end of the
instruction decode mode. Since the close-parenthesis is
optionall the user can remain in the instruction mnemonic
decode mode to enter several lines of inst~uctions until a
close-parenthesis character is entered.

Once the open-parenthesis command has been issued, all
other PATCH commands are invalid until the close-parenthesis
command is issuedl or until an error is encountered.

The ~ormat of the commands ~ollowing the
open-parenthesis command is sho~n below:

<blanks)) <anYJ <cr>

or

<blanks> <opcode~ «blanks~ <operand>] «any~) <anYJJ <cr>

The sqntactic elements are desc~ibed as Tollows:

./

Page 21-12

PATCH COMMAND

Element

<blanks>

<any:>

<cr)

<opcode>

<operand>

21.2 -- PATCH Command Set

Meaning

Any numb er of spacesl- inc 1 ud i ng zero.

Any character besides a carriage
return O~ a close-pa~enthesis.

Carriage return.

Any valid as~embly language mnemonic
as specified in the
"M6800/M6801/M6805/M6809 Macro
AssembleT's Reference Manual"; no
space is allowed between the mnemonic
and th e ac c umu lator des i gnator (e. g. ,
LDAA is valid, LDA A is not>.

Only val id
req,uires an
is required,
as <any:>.

if the instruction
op erana. I f no op erand

the <operand~ is treated

The <operand:> field,
format:

when required, has the following

~#J<ar9>({+ or '-}<arg>J

or

C<arg>[{+ or -}<arg>J, JX

wh ere th e U#II i nd i cates immed iate ad dres sing mod e and ", X"
indicates the indexed addressing mode. The "+" or "_" allows
simple expressions to be used in the operand field. Each of
the arguments <arg> can be one of the following kinds of
elements:

Page 21-13

PATCH COMMAND 21.2 -- PATCH Command Set

Element

'A

$HHHH

DD .. , D

i.BB ... B

'*

o

Meaning

A one-character ASCII lite~al.

A one to rour digit
number.

hexadecimal

A decimal number} any number of
digits in 1 eng th i only the least
significant 8 OT' 16 bits aT the
converted number will be used.

A binary numberl any number o~ digits
in length; only the least significant
8 or 16 bits of the converted number
will be used.

The value of the current location
counter (identical to the "*" used by
M6800 assembler).

The value oT the current oTfset.

For MDOS09, the <operand> field is expanded to allow
register. lists, indirect, auto-incrementl auto-decrementJ and
forced direct/extended. PATCH automatically generates direct
mode instructions only when the most significant byte Or the
expression is zero. In all other cases, the direct mode must
be forced by the user. Reference "M6800/M6801/M6805/M6809
MacT'o Assemblers Manual. \I

This -Format allows the operator to enter assembly
language mnemonics with comments after the operand field Tor
documenting the patch. The instruction mnemonic decode mode
automatically puts the PATCH command into the "incT'ement ii

mode.

As long as a close-parenthesis charactar is not
encountered, PATCH will remain in the instruction mnemonic
decode mode. A different input prompt is displayed to
distinguish the two different PATCH input modes; the normal
input prompt (/) is replaced the by the instruction mnemonic
decode mode prompt (=:».

The following M6800 example illustrates how the
instruction mnemonic decode mode is used to insert a patch
into a -rile:

./

Page 21-14

PATCH COMMAND 21.2 -- PATCH Command Set

Line Console Display

01 =PATCH TESTPROG
02 8200'30
03 >0
04 OFFSET=8200
05 :>F7
06 82F7 CE
07 >. (~MP $8317 GO TO THE PATCH AREA OF PROGRAM)
08 >8317,Q(LDX #O+$A THE LDX OVERLAYED BY THE JMP
09 =>STX 0+$D2
10 =>SWI THIS IS A SYSTEM FUNCTION CALL)
11 . 110
12 . (BEG *+5 IF NO ERRORS, CONTINUE
13 =>JMP 0+$113 GO PROCESS ERROR
14 =~LDX X PICK UP THE POINTER
15 =>LDAA Q,X GET A CHARACTER
16 =>CMPA #'1 IS IT UNIT 1?
17 =>BNE *-10 GO PROCESS ERROR
18 =>~MP $82FD RETURN TO MAIN CODE
19 =»
20 >G
21 =

In the abo v. e e x amp 1 e,l in e 03 lila sus edt 0 dis p' 1 a y the
value of the current offset. Line 05 was used to display the
contents OT location $F7J relative to the beginning of the
file. Line 07 was used to enter the instruction mnemonic
decode mode to modify the current location (offset + $F7).
Three locations were changed as a result of entering line 07.
Line 08 was used to reenter the instruction mnemonic decode
mo d e i h oute v e r I t his time a b sol ute - 1 0 cat i on $831 7 wa s the
address where a patch was to be placed. Line 11 was used to
insert a hexadecimal constant into the location following the
previously entered SWI instruction. Line 12 was used to
return to the instruction mnemonic decode mode at the
location following the hexadecimal constant inserted using
line 11. Line 19 was used to finally exit the inst~uction
mnemonic decode mode. Line 20 was used to exit the PATCH
command and return control to MDOS. Comments were used
throughout the instruction mnemonic decode mode to document
what-the patCh does.

21.3 Special Considerations

The period symbol <.) can be used with any PATCH command
that requires an address as an argument. The value
associated with the period symbol is the absolute address of
the current location minus the value of the current offset.
Since the offset is automatically added to most Or the
command parametersl the resulting value for the period symbol

Page 21-15

PATCH COMMAND 21.3 -- Special Conside~ations

will be the absolute address o~ the current location.

For example, the rollowing uses oT the period can save
time and eliminate remembering the address Or the current
location:

Command Function

., nO Sets the o~fset to the current location
i9 "n" is the value of the offset be'o~e
the command is entered .

. <cr> Displays the contents and the address o~'

the current location .

. I<str> Opens the current location and applies
the changes from the string <str). It is
not necessary for the operator to count
the number of elements in <str> if the
next command is to apply more changes.
Long strings are usually changed by
initially using the "m,nI" form o~ the
change' command. Thenl subseq,uent changes
use It, I", The same holds true for the
bacxslash and open-parenthesis commands
used ~ith the period symbol.

. InS

m •. P

Search from the current location to the
address "n plus offset".

Display locations"m plus offset" to the
current location.

21. 4 ET~or Messages

The following messages can be displayed by the PATCH
command. The standard error messages that can be displaqed
by all commands are not listed here.

WHAT?

SYNTAX ERROR

The command issued in response to the PATCH input
prompt C» was not recognized. A new input
prompt is displayed.

The command issued in response to the PATCH input
prompt C» was recognizedi however, it was
parameterized illegally. A new input prompt is
displayed, The command has not been processed. ~

Page 21-16

PATCH COMMAND 21.4 -- Error Messages

ILLEGAL ADDRESS

An address was specified which referenced a
location that was outside O"T the range" of
addresses spanned by the file. Only addresses
between the lowest (L command) and the highest
address (H command) can be referenced by PATCH.
If new program area is to be allocated Tor
additional patch space, a merge process,
reassembly process, or link/load process must be
used to create the new space.

ILLEGAL OP CODE

The instruction mnemonic decoder did not
recognize a valid Mb8-00 assembly language
mnemonic. The instruction mnemonic decode mode
is terminated. The current inst~uction was not
used to change the Pile. This error can also
occur if an invalid M6800 operation code is given
as the 0 per and 0 f the II I II comma n d .

ILLEGAL OPERAND

An illegal operand was used in the operand field
of the instruction. The instruction mnemonic
decode mode is terminated. The current
instruction was not used to change the file.

INITIALIZATION ERROR

This error indicates some sort of internal system
malfunction. Errors of this type indicate a
hardware Tailure or damaged program Tiles on the
diskette.

Page 21-17

CHAPTER 22

22. REPAIR COMMAND

The REPAIR command allo~s the use~ to check and repair a
malfunctioning o~ a non-functioning MDOS diskette. Errors
in the s~stem tables can be found, identified, and corrected
with this command. Since MOOS performance is directly
related to the correctness of these system tables, the REPAIR
command is a useful diagnostic utility. The REPAIR command
works with either single-sided or double-sided MOOS
diskettes.

22. 1 Use

The REPAIR command is invoked with the following command
1 ine:

REPAIR [:<unit:>J

whe~e <unit> is the logical unit number on which a diskette
that is to be IIrepaired" resides. If no <unit:> is given,
logical unit number zero will be used as a default.

The REPAIR command runs through five different phases:

1. ID I LCAT, CAT, and Bootblock sector check phase,

2. Directory sector check phase,

3. Retrieval Information Block check phase,

4. CAT regeneration phase, and

5. CAT rep lacement phase.

Each of the different phases is described in detail in the
following sections.

REPAIR progresses from each phase to the next carrying
along information that was obtained during a prior phase. If
errors are discovered, the operator will be noti~ied via the
system console. IF REPAIR can fix the error; the ope~ator
will also be asked ir the error should be corrected on the
diskette. Thus, the operator has complete control over any
changes that are made to the diskette. The operator can
suppress any action that may be suggested by the REFAIR
command as the means for correcting an error.

The amount of knowledge about the MDOS tables that is

Page 22-01

REPAIR COMMAND 22. 1 -- Use

required by the operator depends upon two things: the amount
of actual damage on the diskette and the amount of
information the operator wants to recover From the damaged
tables.

IF the operator merely permits REPAIR to perrorm every
suggested action to correct every error, then the resulting
diskette is guaranteed to have e~ror Tree system tables. In
this case, the amount Or systems knowledge required is
insignificant.

On the other handl if the operator takes notes during
the REPAIR command on what tables are damaged, and i~ the
operator does not choose to delete those riles that are
invalid, then a great deal about the the MDOS rile structure
and system tables must be xnown to reconstruct the tables"
Chapter 24 describes the system structure in detail. It is
required reading ror a complete understanding Or ali the
functions and the errors that the REPAIR command can perrorm
and detect.

The REPAIR command must be invoked from a working MOOS
diskette. Thus, if a given diskette cannot be used ~or

initialjzation, it must be placed into drives onel two, or
th~ee, and anothe~ working diskette (or the same MDOS version
as the dammaged diskette) placed into d~ive zero before the
REPAIR command can be used.

REPAIR does not attempt
riles. It only attempts to find
tables.

to rind errors within data
errors within the system

It is suggested that REPAIR be used Fo~ the following
reasons:

1. As a regular diskette checking utility. It never
hurts to run REPAIR as a preventative maintenance
tool to catch erro~s as they may be developing,
before serious malfunctions are noticed. If
nothing is wrong with a diskettel no ope~ator

interaction is ~e~ui~ed. REPAIR will simply
return to MDOS after having displayed some
monitoring information.

2. If strange things start happening or if system
e~ror messages are displayed without apparent
reason. IF files or records within files
disappear or get scrambledJ the system tables may
have been damaged.

3. If MDOS will not run at all.

Page 22-02

REPAIR COMMAND 22. 1 -- Use

4. After the ABORT or- RESTART pushbuttcns were
depressed to stop the system while diskette
transfers were in progress.

5. After a power railure occurred while diskette
transfers were in progress. Power failures
include those caused by inadvertently switching
off the EXORciser or EXORdisk II as well as those
that affect an entire installation.

6. After a diskette has had its system tables
repair.d manually with the DUMP command. This
ensures that the tables were corrected properly.

22.2ID, LCAT} CAT, Bootblock Sector Check

Phase 1 of REPAIR begins by checking the !D sector ror
readability. If an error occurs during the read attempt,
REPAIR will display the following:

**PROM 1/0 ERRQR-STATU5=31 AT 2C4C ON DRIVE l-PSN 0000
ID SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The actual error status; address. and drive number of the
first line will vary depending on the type of ~ead error that
was detected, tbe version of REPAIR being used, and the drive
in which the diskette resides. The same is true for all of
the PROM 1/0 error messages given in the examples· of this
chapter. A response of either "N" or "V" must be made b~ the
operator. The "N" response wi 11 cause the message

ID SECTOR CANNOT BE CHECKED

to be displayed. Since the other system tables could still
b e a c c e sse d , REP A I R UJ i 11 c on tin u e . I -P a II Y II res p 0 n s e i s
given, the ID sector will be re-written in an attempt to
clear the error. If an error develops during the write, the
ID sector is considered unfixablei however, in this case, the
other system tables could still be accessed, so REPAIR will
continue.

I-P the ID sector can b~ read initially without error, or
if the ID sector can be rewritten without error, the contents
of the ID sector will be displayed as follows:

DISK ID:
VERSION:
REVISION:
DATE:
USER:

MDOS0300
03
00
072578
SYS DEVELOPMENT DISK

Each field within the IO sector is checked by the REPAIR

Page 22-03

REPAIR COMMAND 22.2 -- IDs LeAT, CAT, Bootblock Secto~ Check

command. The following table shows what tests are made ror
the respective fields:

Field Test Perrormed
----- ------------~--

DISK 1D MDOS rile name format
VERSION Same as MDOS.SY
REVISION Same as MDOS.SY
DATE ASCII numeric
USER Displayable ASCII
Remainder 13inarq zero, excluding MDOS RIE

addr"ess ar~a

If the fields in the ID sector fail to meet the above
criteria; the field's name will be displayed as a prompt to
the opel'ator to enteT' a correct value. If only" a carT'iage
retu~n is entered in response to such a prompt, the ID sector
field will no·t be changed. Otherwise, the entered field will
be checked for correctness and then sto~e~ into the ID
sector.

The version and T'evision numbers in the ID sector are
compa~ed against those of the resident operating system file
on diskette. If the numbers a~e not identical, REPAIR will
use the version/revision numbers from the MDOS file since the
diskette cannot be initialized if they are not the same. The
message:

VERSION AND REVISION NUMBERS IN ID SECTOR AND RESIDENT MDOS
FILE ARE DIFFERENT

THE NUMBERS IN THE ID SECTOR ARE CHANGED TO: vV.rr

to i nd i cate th e c orrec ti on. Th e numb ei'S "vv" and "1"1"" are
the version and revision numbers of the resident operating
system file, respectively. The operator has no control over
~hat the version/revision numbers are in the ID sector.
Thus, those two fields cannot be supplied by the operator.
In the event that a diskette controller error occu~s when
trying to read the corT"ect\veT'sion/revision numbers Trom the
MDOS file, the message

**PROM 110 ERROR-STATUS=31 AT 2E8A ON DRIVE l-PSN 0019
RESIDENT MDOS CANNOT BE LOADED -- SECTOR READ ERROR

will be displayed. The diskette being repaired cannot be
used in drive zero since the operating system cannot be read;
howeveT'J REPAIR will continue to check the remaining system
tables.

If the unused area of the ID sector has been damaged,
the message

ID UNUSED AREA NOT ZERO. ZERO IT?

...... ,

Page 22-04

REPAIR COMMAND 22.2 -- ID, LCAT, CAT, Bootblack Sector Check

The operator must respond with either a lIy" or an liN", The
"Y" response will cause the ID sector's unused area to be
filled with binary zeroesl as it is sup·posed to be. The "Nit
response ~ill cause REPAIR to leave tha ID sector alone.

After the ID sector has been checked. REPAIR will
examine the Lockout Cluster Allocation Table CLeAT) for
readability. If the LCAT sector cannot be read, REPAIR will
display the rollowing messages:

**PROM I/O ERROR-STATUS=31 AT 2E8A ON DRIVE l-PSN 0002
LOC~OUT C.A. T. READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a "Y" or "N" to the
last question, IT an UN" is entered, REPAIR cannot continue
to check other system tables SlDce subsequent checking is
based on the validity o-F the LCAT. Thus, the message

DISK IS NOT FIXABLE

i s dis p 1 aye dan d con t r a 1 ret urn edt 0 MDOS. I fa" Y fI res p 0 n s e
is given, REPAIR will attempt to re~rite the LCAT sector. r-F
an error develops during the write, the sector will be
considered unfixable (as will the diskette). The message
shown above will be displayed and MDOS given control.

1 f the L CAT s e I! tor i s rea dab 1 e J 0 r i of r e Ulr i tin g the
sec tor c 1 ear s the e r l' 0 r I REP A I R wi IIp roc e edt 0 c h e c k the
contents of the LCAT. The LeAT must show that the diskette's
system tables in the first cylinder are locked out
(unavailable -For allocation by a -FileL and all regions of
the diskette that correspond to non-phYSical locations
(beyond the highest physical sector number) must be locked
out.

r-F either o-F these two criteria is not satisfied, the
LCAT will be considered destroyed. REPAIR ~ill display the
message

LOCKOUT C. A. T. IN ERROR - RECONSTRUCT?

and awai t a response from th e operator. An UN" response wi 11
make the LCAT unfixable. REPAIR will display a message to
t hat e -F oF e c tan d ret urn to MDOS. A" Y II res p 0 n s e \II ill c a use a
new LCAT to be rebuilt by REPAIR. In order to build a new
LCAT, the entire diskette is read in an attempt to find any
deleted data marks. The deleted data marks signify bad
clusters round by the DOSGEN surface test (Chapter 10), All
clusters containing deleted data marks will be locked out
again automatically by this process. In addition, the
operator can lock out an additional area of the diskette (for
the same reasons as specified in Chapter 10). Arter the
diskette's surface has been completely ~ead, REPAIR will

Page 22-05

RE?AIR COMMAND 22.2 -- ID; LCAT~ CAT! Bootblack SectoT Check

display the message

WHICH SECTOR RANGE IS TO BE LOCKED OUT?

The operator can respond with a carriage return to indicate
that no additional sectors aTe to be locked out. Otherwisel
the operator can respond with a range of sector numbeTs
entered in the ~Qrmat

mmm-nnn

where tlmmm" and "nnn" al'e hexadecimal numbel's of sectors that
start on a cluster boundary (sector number is evenly
divisible by four). I~ an illegal sector number is entered;
or iT the starting number is greater than the ending number,
the above mes~age will be redisplayed until the ope~atcr
enters a valid range or a single carriage retu~n. Only one
contiguous range oT sectors can be locked out. The same
cautions described in Chapter 10 regarding user-locked out
sectors apply here; however, in tnis easel since Tiles
already reside on the disk with allocated spaceJthe locked
out sectors must not conflict with any files. If a diskette
did not have user-locKed out sectors before, then sectoTs
must not be locked out during the REPAIR process since they
could c9nflict with sectors already allocated. The REPAIR
command is not intended to be used for tne normal lockout
procedure; that is tne runction of the DOSGEN command
(Chapter 10), If a diskette did have sectors locked outl
then t~e identical sectors must be locked out by the operato~
again here.

Arter the LCAT has been rebuilt, or if it was good to
begin with, the Cluster Allocation Table (CAT) will be
checked. If the CAT sector cannot be read, the following
message ~ill be displayed:

**PROM I/O ERROR-STATUS=31 AT 2E8A ON DRIVE l-PSN 0001
C.A.T. READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a "Y" or an "Nil to the
las t q, u est ion. I fan .. N II i sen tel' ed, REP A I Rca n not con tin u e
to check the other system tables since subsequent checking is
based on the validiy of the CAT. Thus the message,

DISK IS NOT FIXABLE

is displayed and control returned to MDOS. If a "V" response.
i s 9 i ve n J REP A I R wi 1 1 a t t em p t tor e lIIr i t e the CAT sec tor. I r
an error develops during the write, the sector will be
considered unfixable (as will the diskette). The mess~ge

shown above will be displayed and MDOS given control.

If the CAT sector is readable. or if rewriting the

Page 22-06

REPAIR COMMAND 22.2 -- ID, LCAT, CAT, Bootblock Sector Check

sector cleared the error, REPAIR will proceed to check the
contents of the CAT. The CAT must show that all parts of the
diskette locked out by the LCAT are flagged as allocated (see
above for LeAT val"idity criteria>. If the CAT contains an
error at this point, REPAIR will display the message

C.A.T. IN ERROR - RECONSTRUCT?

and await a
result in
message

response from
an unfixable

the operator. An tiN" response will
diskette. REPAIR will show the

DISK IS NOT FIXABLE

and return control to MOOS.
CAT to be reconstructed
Phases 2 th~ough 4.

A "Y" response will cause a new
~rom the information gathered in

After checking the CAT, REPAIR will attempt ta read the
Bootblock sector. If the Bootblack sector cannot be read,
REPAIR will display the following message:

**PROM I/O ERROR-STATUS=31 AT 2EDC ON DRIVE l-PSN 0017
BOOT BLOCK SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The operator must respond wi th either a try.. or uNfI. to the
last q,uestion. 'I~ an "N" is entered} REPAIR wi 11 d isp lay the
message

BOOT BLOCK SECTOR CANNOT BE CHECKED

before continuing. Since the Bootblock is not affected by
other system tables, REPAIR ~ill continue to check the
remainder of the diskette; however, a diskette ~ith a
damaged Bootblock sector cannot be used as an MOOS diskette
in drive zero. If a "Y" is entered, REPAIR will attempt to
rewrite the sector in an attempt to clear the error. If an
error develops during the writel the sector is unfixable and
the diskette can never be used to initialize the system from
drive zero.

If the Bootblock sector is readable or if the error is
cleared by rewriting the sector, REPAIR wi.ll verify that the
sector contains a valid copy of the Bootblack program. If
the data is in ~T'ror; the message

BOOT BLOCK SECTOR HAS BEEN DESTROYED
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

will be displayed. An liN" response wi1 leave the Bootblock
sector' unchanged. A "Y" response will cause a neUf Bootblock
to be written to the diskette. The REPAIR command will then
begin Phase 2.

Page 22-07

REPAIR COMMAND 22.3 -- Directo~y Sector Check

22.3 Directory Sector Check

Phase 2 of REPAIR deals entirely with the MDOS directory
sectors. Each of the directory sectors is first checked fo~
readability_ If a read error is found} the operato~ is
informed and given the choice of trying to clear the read
error via the following display:

**FROM IIO ERROR-STATU5=31 AT 2F38 ON DRIVE l-PSN 0013
DIRECTORY SECTOR READ ERROR
WRITE TO DISK TO ATTEMPT TO CLEAR ERROR?

The actual numbers in the error message will depend on the
actual sector that is in error. If the operator responds
UJ i t han ,; N:; , 0 or i r the r e Uil' i tea t t em p t (;; Y :: 1" e s p 0 n s e) r ail s
to cleaT" the error, the message

DISK IS NOT FIXABLE

will be displayed and control returned to MDOS. If the
sectors are all readable, or if the rewrite attempt
succeeded, each di~ectory sector is examined again. This
time, each directory entry within each sector ~s tested
against the rollowing criteria.

. 1. If the. first byte Or the directory entry
(unused entry), then the remaining bytes
entr~ must be zero also.

is lero
of the

2. If the first byte of the directory entry is the
hex ad e c i ma 1 n u m bel' $FF < del e ted en try) I the nth e
second byte of the entry must be $FF also. If
the second byte is not $FF, and if the remainder
of the entry is validJ then the entry is the
result·of an incomplete name change. It was
probably caused by a power failure or interrupt
(ABORT or RESTART pushbuttons) during the time
that the old name was deleted and the new name
was added to the directory. REPAI~ will allow
the operator to delete the directory entry
entirely or to reassign a name to the partially
deleted entry. The. name assigned must be the
same as the original one. OtherwiseJ the name
will probably be improperly placed in the
directory (ci'ite-r-ion 5).

3. The physical sector number of the Retrieval
Information Block must the Tirst sector aT a
cluster, must not be the sector number of one o~

the system tables checked in Phase 1 or 2, and
must not be greater than the highest valid
physical sector number.

..../

Page 22-08

REPAIR COMMAND 22.3 -- Directory Sector Check

4. The directory entry's attribute field must have
the least significant byte (unused) set to zero.
In additionl the twb ~nused bytes at the end of a
directory ent~y must be set to zero.

5. The calculated hash index for the file name and
suffix must locate the directory entry where it
currently resides. An error in the hash index
means that the directory entry is inaccessible.
Appendix G contains a detailed description of the
hash i n9 me th ode

6. The system file MDOS.SY must have a Retrieval
Information Block in a specific physical sector.
In addition, the other files in the family
MDOS*.SY must be present in the directory.

If any directory entry fails to meet one of the first
five criteria, REPAIR will display the entr~ in error as well
as a message identifying the problem. The directory entry is
displayed in the following format:

PSN LSN EN NAME SUF RIB ATTR NU [HEXNAM HEXSUFJ

where ~he symbols have the following meanings:

Symbol

PSN
LSN
EN
NAME
SUF
RIB
ATTR
NU
HEXNAM
HEXSUF

Meaning

Directory sector's physical sector number
Directory sector's log~cal sector number
Entry number within sector
File name
File suffix
Physical sector number ~f RIB
Attributes
Not used portion of directory entry
File name in hexadecimal
Suffix in hexadecimal

All of the fields are displayed as hexadecimal numbers with
the exception of the file name and sufFix. If
non-displayable characters appear in either the file's name
or suffi x, they wi 11 be shown as' percent signs (7.>' In such
cases, the hexadecimal forms of the file name and suffix are
shown to the right of the directory entr~.

In the folloll,ling. examples, the same directory entry is
used so that the changes from one to the other can be more
easily detected. The first line always shows the directory
entry. The second line contains the error message and a
prompt to the user. If a "Y" is entered, the entry \&Ii 11 be
removed from the directory (and later the space associated
with that directory entry will be deallocated). An "N"

Page 22-09

REPAIR COMMAND 22.3 -- Directory Sector Check

response will leave the directory entry unchanged.

The following message is shown Tor director~
that fail to meet criterion 1. Not all bytes of the
are zero if first byte is zero.

entries
entry

03 00 00 %INEX .eM 014C 7200 0000 00494E4558202020434D
DIRECTORY ENTRY IN ERROR. DELETE?

The following message is sho~n rOT' directory entries
that fail to meet criterion 2. The directory entry is the
result of an incomplete name change. Instead of asking the
operator if the file name should be deleted~ REPAIR allows
the original name to be reassigned. If no name is entered in
response to the prompt (carriage return only), the directory
ent~y will fail criterion 2J so the entry will be redisplayed
as in the above example. If the original name is supplied,
the file's directory entry will be recreated in the
directory. The content Or the file is unaffectedi however;
if a name is assigned other than the original, crite,..ion 5
will probably not be satisFied. The directory entry would
then be displayed again, with the corresponding error
message.

03 00 00 i.lNEX . eM 014C 7200 0000 FF494E4558202020434D
POSSIBLE INCOMPLETE NAME CHANGE
NEW NAME:

The rollowing example illustrates a directory entry that
rails to meet criterion;3. The RIB address' is oi! the
director\J entry is invalid. , In this case, the RIB address is
a sector that is not on a cluster bounda,..y.

03 00 00 BINEX . eM 014D 7200 0000
INVALID RIB SECTOR NUMBER. DELETE?

The next example shows a di,..ectory entr~ that fails to
meet criterion 4. The directory entry's attribute field has
a non-ze,..o unused byte.

03 00 00 BINEX .eM 014C 72FF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE?

The last example illustrates a directory entry that
fails to meet criterion 5. The hash index for the file name
and suffix places the di,..ectory entry into a different
directory sector than the one in which it appears (file's
original name is BINEX. eM).

03 00 00 AINEX . eM 014C 7200 0000
HASH OR NAME DUPLICATION ,ERROR. DELETE?

Criterion 6 does not deal with directory entries in
the speciric names of the system files are general.

Page 22-10

REPAIR COMMAND 22.3 -- Di~ecto~y Secto~ Check

sea~ched fo~ in the di~ectory to ensure they ex i st. The
absence of any one of the system files is noted by the
display of one of the following messages:

MOOS · SY DOES NOT EXIST
MOOSER · SY DOES NOT EXIST
MDOSOVO · SY DOES NOT EXIST
MDOSOVl · SY DOES NOT EXIST
~.DOSOV2 · Sy oncc:::

""' OJ NOT EXIST
MDOSOV3 · SY DOES NOT EXIST
MDOSOV4 · SY DOES ,NOT EXIST
MDOSOV5 · SY DOES NOT EXIST
MDOSOV6 · SY DOES NOT EXIST

In addition, if the resident operating s~stem file does not
have a RIB in the proper physical sector; the diskette could
not be used for system initialization in drive zero. Thusl
the message

MDOS. SY DOES NOT START AT SECTOR $18

is displayed in such cases.

Since erro~s in the directo~y entries are not Tatal
insofar as REPAIR is concerned (they can be if the diskette
is to be used for initialization or to run any pro~rams),

Phase 3 is started after these checks have been completed.

22.4 Retrieval Information Block Check

Phase 3 of REPAIR checks the Retrieval Information
Blocks (RIBs) of all directory entries that have a valid RIB
address. If a RIB address is invalid in a directory entry,
then the RIB cannot be found. The RIBs are checked in the
order in which they are referenced in the directory. If a
RIB secto~ cannot be read, the following message will be
displayed:

**PROM I/O ERROR-STATUS=31 AT 30D8 ON DRIVE l-PSN 0570
RIB READ ERROR
WRITE TO DIS~ TO ATTEMPT TO CLEAR ERROR?

The operator must respond with either a ny" O~ an "Nil to the
last question. If a ny" is entered, REPAIR wi 11 attempt to
rewrite the RIB. If the error is cleared, REPAIR will
continue. If an error occurs during the rewriting of the
RIB, or if an "N" was ente~ed, REPAIR cannot check the RIB
any further. Thus, a message of the form

03 00 00 BINEX .CM 014C 5200 0000
RIB IN ERROR - DELETE FILE?

is displayed to alloUJ the operator to delete the file

Page 22-11

REPAIR COMMAND 22.4 -- Ret~ieval Inro~mation Block Check

completely so it is not allocated space in Phase 4. The
first line shows the directo~y entry that belongs to the
file. It is in the same format as the directory entry
explained in the previous section. If the file is not
deleted ("N" response)1 it will not be affected, nor will the
allocation table be updated. If the file is deleted ("yu
response), then whatever space ~as allocated to it will be
marked as available for allocation in the reconst~ucted

allocation table. If a RIB is in erT'or, the content of the
file is usually unaccessible unless the error is corrected by
the user. If this cannot be done, the file should be deleted
by responding with a "Y" to the above prompt.

If the RIB can be properly read, or if the RIB was
properlg rewritten, then REPAIR ~ill continue to check the
RIB for the following criteria. If the RIB rails to satisfy
the cT"it~T"iai an error message !.!Jill be shown, rollowed by the
director~ entry and a prompt that allo~s the file to be
deleted:

<cause Or erT'or:>
03 00 00 BINEX .eM 014C 5200 0000
RIB IN ERROR - DELETE FILE?

The actual content or the
vary. The following messages
<cause o~ error> field.

FIRST SDW IN ERROR

directory entry, however,
can appear in place of

UJill
the

This error message will be displayed if the fir5t
Segment Descriptor Word (SOW) does not contain
the cluster number Or the RIB as its starting
cluster number. Since a RIB is the first
physical sector of a rilel it will always be in
the file's first cluster. This message will also
be displayed if the first SDW has the terminator
bit set to one.

SDW BOUNDS ERROR

This error message will be displayed if an SDW
has an invalid starting cluster number. Invalid
cluster numbers are those that include the system
table area Or the diskette as well as areas
be~ond the maximum physical sector number.

If an SDW describes a segment which doesn't lie
entirely within the boundaries of the diskette,
this message will also be sho~n. That is, the
contiguous clusters adJacent to the starting
cluster Or an SDW must also have valid cluster
numbers.

!
./

Page 22-12

REPAIR COMMAND 22.4 -- Retrieval Information Block Check

RIB CLUSTER ALLOCATION DUPLICATION

This error message wil"! be displayed if two SOWs
describe the same ph~sical cluseter, All SDWs
must span unique segments of the diskette.

ILLEGAL SOW TERMINATOR

This error message will be displayed if the SDW
that a~ts as the terminator for the other segment
descriptors does not exist or if it contains a
logical sector number (used for monitoring the
logical end-of-file) that is not a part of the
allocated file.

NON-CONTIGUOUS SDW ERROR

This error message will be displayed iF files
with the contiguous allocation attribute have
SDWs that describe a segmented area of the
diskette.

NON-O BYTES AFTER SOW TERMINATOR

This error message will be displayed ir bytes
following the terminating SDW are not zero. Only
Files in the memory-image format can have
non-zero bytes in the RIB follo~ing the
terminatorl and then only beginning with the
117th (decimal) byte of the sector (117 is
relative to zerOi ze~o being the First byte in
the RIB>'

BINARY LOAD FILE RIB ERROR

This error message can be displayed for a variety
of reasons. The RIB of memory-image files
contains special load information in the last
eleven bytes of the sector. If those bytes do
not meet the following specifications, this error
message will be displayed. The o~fsets used to
refer to the various bytes are relative to zero
(zero being the first byte of the RIB sector).
All offsets are given in decimal.

1. Byte 117, the number of bytes to load from
the last sector, must be non-zero: a multiple
of 8, an dIe sst h an or e qua 1 to 128 ($80) .

2. Bytes 118-1191 the number of sectors to load,
must contain a number that is non-zero, less
than the total numbeT' of sectors allocated to
the f i 1 e, and less than or equal to 512
($200) .

Page 22-13

REPAIR COMMAND

3.

22.4 -- Ret~ieval Information Block Check

By tes 120-1211 th e start i ng load ad dress, are
not checked. For programs loading in an
EXORc i seT' I s~ stem~ in th e User Memory Map Or
an EXORciser II system with the single memory
map configu~ed, or in the Executive Memory
Map of an EXORciser II system with the dual
memory map configured, this value must be
greater than hexadecimal location $lF ir the
program is to be loaded via the MDOS loader.
EXORciser II systems with the dual memory map
configured can have programs loaded into the
User Memory Map starting at location zero.

4. The ending load address is calculated From
bytes 117-121 in the following manner:

EL = (NSL - 1) * 128 + NELS + SL - 1

where EL is the ending load address, NSL is
the number of sectors to load (bytes
118-119) , NBLS is the number- of bytes in the
last sector (byte 117) , and SL is the
starting load address (bytes 120-121 >. The
ending load address must be less than 65536.

5. Bytes 122-123, the starting execution
address, must lie within the r-ange of
addresses spanned by the program (greater
than or equal to the starting load address,
and less than or equal to the ending load
address) .

6. Bytes 124-127 are not used and must be zero.

Because of the complexity of the errors that can occur
in a RIB, th~ REPAIR command will make no attempt to "fix" a
RIB. If a RIB error is detected, REPAIR will give the
operator a choice oT deleting the rile (thereby removing the
RIB and fixing the problem) or leaving the RIB alone.

No space can be allocated to files ~ith directo~y

entries that have invalid RIB addresses or to riles that have
RIBs with detectable er-rors (since the allocation information
is contained in the RIB). Thus, when REPAIR goes through the
Phase 4, it will exclude all riles with bad RIBs: however!
the REPAIR command will not update the allocation table on
diskette if files with bad RIBs are left undeleted. Thus,
the riles with bad RIBs should be deleted when REPAIR gives
the operator the option to do so (the DEL command must not be
used!), or they should be ma~ually repaired via the DUMP
command (Chapter'11) before the diskette is used. The DUMP
command can be used to examine the damaged RIE and, if
necessary, to examine where a File's sectors actually are on
the dis k e t t e . DUMP's sec t 0 i'" i'" e ad, sec tor c h .3 n 9 e ; and sec t Q r

Page 22-14

REPAIR COMMAND 22.4 -- Retrieval Information Block Check

write commands can be used to reconstruct a valid RIB.
Sometimes, it will re~uire less effort to recreate a file's
RIB (if the allocation map has been recently printed via the
D1R command) than to recreate the file itself.

After a RIB has been reconstructed, REPAIR should be run
again to ensure that there is no dual allocation with another
fi 1 e.

After all Or the RIBs have been checked,
di~played to monitor REPAIR's progress.
information takes on the following Tormat:

a summary is
The summary

xx GOOD FILES yy FILES WITH BAD RIBS

where " XX " and nl:p::I1f are both hexadecimal numbers. The
display of this message indicates the end of Phase 3.

22.5 CAT Regeneration Phase

Phase 4 of the REPAIR command reconstructs a cluster
allocation table in memory from the RIBs of those files that
have no errors ("xx" in the Phase 3. summary message>. Phase
4 consists of three passes.

Pass 1 o~ Phase 4 reads all valid RIBs. All clusters
that are allocated are retained in memory in a table called
Table 1. A second table, Table 2, also in memory, will
contain all clusters which have been allocated to more than
one Tile. If no dual allocation has occurred, Table 2 should
be empty at the end of Pass 1. IT it is, the rest oT Phase 4
is skipped.

If Pass 1 has determined that dual allocation occurred,
then Pass 2 of Phase 4 will read all RIBs a second time.
This time, the files which have clusters allocated in Table 2
are Tlagged so the file's names and conflicts can be shown in
Pass 3.

A summary message is displayed at the end of Pass 2 that
gives totals of the number of files with and without dual
allocation. The format of the summary message is

xx GOOD FILES yy FILES WITH DUPLICATIONS
zzzz ALLOCATION DUPLICATIONS

whe-re "XX": "yy".1 and "ZIZZ" are all hexadecimal numbers.
The totals "xx" and "yy" refer to numbers of files. The
number " ZIZZ ", however, refers to the number of clusters that
are common to th e II \j \j tI of i I es. Th e ac tual messag e is
displayed on a single line.

Pass 3 of Phase 4 will perform an analysis of all riles

Page 22-15

REPAIR COMMAND 22. S -- CAT Regeneration Phase

that have allocation conflicts with each othe~. The riles
are analyzed two at a time. The result of the analysis will
be displaqed in the Following Tormat:

09 06 00 RASM . eM 031C 7200 0000
SIZE: OOlF CONFLICTS; OOlF CLUSTERS

10 OD 01 FORLB .RO 05DO 6300 0000
SIZE: 0041 CONFLICTS: OOlF CLUSTERS

031C 0320 0324 0328 032C 0330 0334 0338 033C 0340 0344 0348
034C 0350 0354 0358 035C 0360 0364 0368 036C 0370 0374 0378
037C 0380 0384 0388 038C 0390 0394

The names of the files and the numeric data displayed differl
of coursel depending on the exact files involved.

The first line of the display contains the directo~y
ent~~ or a rile with which other files have duplicate
allocation. The format of the director~ entry is the same as
d U1' in 9 Ph as e 2 (s e c t ion 22. 3), Sin c e t his 1 in e i sex ten d e d
to the lei=t further than the other lines, this rile is
rere~-red to in the rolloUling desc'T'iption as the "Outer rile".
The second line or the display contains the total size or the
Oute-r rile in cluste'T's (SIZE) and the total numbe1' oT
clu$te~s that cause allocation conrlicts (CONFLICTS), When
the total size is compared to tha PS'T't of the file that is in . .
conrlictl a relative indication can be obtained of the
fraction ,of the rile that may be in e'T'ro'T'. The CONFLICTS
total fo1' the Oute1' rile includes the allocation conFlicts
with all "Inne1' riles" (desc1'ibed below).

The third and fourth lines of the display a1'e of the
sam e f 0 l' ma t as the r irs t two lin e s ; h owe v e l' I the s eli n e s
describe an "Inner file" that has allocation conflicts with
the Oute1' ~ile. Since more than one Inner file can be shoUln~
the CONFLICTS total for each Inner file contains only the
number of cluste1's in that file that cause allocation
conflicts with the O~te~ file.

Following the two-line desc1'iption of the Inner file
will be a list of.clusters (b~longing to the Inner file) that
conflict with the Oute~ file. The starting physical sector
numbe1' is given TO~ each cluster.

After the Oute~ file and one Inner rile have been
displayed in this format, REPAIR will issue the following
prompt (data supplied to go along with the above example):

DELETE; NEITHER(l), BOTH(2), FORLB . RO(3), RASM . eM (4) ~

The above p1'ompt allows the user to select the action that
REPAIR is to take by entering a number from 1 to 4. Number 1
will cause neither the Inner no~ the Outer file to be
deleted. Number 2 will cause both files to be deleted.
Number 3 will cause the Inner rile to be deleted. Number 4

Page 22-16

REPAIR COMMAND 22. 5 -- CAT Regeneration Phase

will cause the Outer file to be deleted.

As long as the "Outer file is not d~lete~1 all of the
files that have conTlicts with it will be displayed as Inner
files. When all Inner files conflicting with the Outer file
have been displayed in this rashionl REPAIR will take the
next file in its list of files with allocation conflicts and
use it as an Outer file. This process continues until all
files with allocation conflicts have been dealt ~ith.

Conflicting pairs of files will be printed only once.
An Inner file may subsequently be displayed as an Outer file
ir it has additional conflicts with other files. As files
are deleted, other files that were originally in conflict
with it may no longer have allocation conflicts.

Usually, the REPAIR command will be used mOTe than once
if files happen to have allocation conflicts. The first
time, the operator will pick the "NEITHER" selection from the
above prompt. In this UJayl he can accumulate the information
required to decide which files should be deleted and which
should be retained. The DUMP command may be used to examine
the conflicting clusters to See which file theq actually
bel on g to. Th en I REP A I R i s l' una sec 0 n d tim e to act ua 1 1 Y
delete the files in error. The files must not be deleted
with the DEL command since it deallocates the files' space in
addition to deleting the directory entries."

For riles with allocation conrlicts,
~ollowing statements may be t~ue:

one of

1. The Outer file may have a correct RIB and contain
all valid data. Thus, the error is caused by the
Inner files that have allocation conflicts with
the Outer file.

2. The Outer file may have an incorrect or
o v e l' \Ill' itt en RIB. I nth i s cas e j the Inn e l' f i 1 e s
having allocation conflicts with the Outer file
are all correct."

3. Some of the Outer file's existing space may have
been erroneously allocated to, and possibly
o v e rwr itt en by, a n Inn e r -F i 1 e . I nth a t cas e I
since the Inner file was written to last, the
Inner file contains valid data and has a valid
RIB even though its space was allocated by error.

4. Some of the Inner file's existing space may have
been erroneously allocated tOI and possibly
overwritten by, ~n Outer file. In that case,
sin c e the 0 ute l' f i 1 e wa s wr itt en to 1 a s t , the
Outer rile contains valid data and has a valid
RID even though its space was allocated by error.

the

Page 22-17

REP A IRe OMMAND 22.5 -- CAT Regeneration Phase

5. A combination of 2, 3, and 4 may have occu~~ed.

It is necessary to be knowledgeable of the MOOS file
structure before allocation conflicts can be ~isely ~esolved.
It should be noted that although space is allocated to a
f i 1 e, the spa c e ma y not n e c e s 5 a r i 1 y h a v e bee n usr itt e n in to.

IT onl~ an Outer rile is displayed with no Inner Tiles
at the beginning of Phase 4, then the user has locked out
sectors which conflict with files that al~eady have allocated
space. REPAIR assumed that the correct sectors were
specified by the user during the Phase 1; howeverl if that is
not true, then this kind of a allocation conflict will be
seen.

22.6 CAT Replacement Phase

Phase 5 of the REPAIR command compares the reconstructed
allocation table in memory with the actual allocation table
on the diskette. If the two tables are identical (normal
case), REPAIR will display the message

RECONSTRUCTED C.A. T. MATCHES DISK

before terminating and returning cont~ol to MDOS.

If the reconst~ucted table does not match the one on
diskette, and if no RIB errors remain, then the message

WRITE RECONSTRUCTED C. A. T. TO DISK?

will be displayed. The operator must respond ~ith either a
"Y" or an "N u

. The llyn response ud11 cause the new
allocation table (the correct one) to be written to the
diskette. The "NII response will leave the erroneous system
table intact. MOOS ~il1 be given control after either
response.

The allocation table that is written to the diskette is'
a combination of Table 1 which was built during Pass 1 of
Phase 4, and the LCAT. If Tiles with invalid RIBs were
encountered during the REPAIR process which were'not deleted,
in all probability the allocation tables will differ. REPAIR
will not update the diskette table until the riles ~ith

invalid RIBs are fixed or deleted (but they must not be
deleted with the DEL command -- only by the REPAIR command).
In such cases, REPAIR will display the message

INVALID RIES RESULTED IN RECONSTRUCTED C. A. T. NOT MATCHING
DISK

as a reminder that the allocation table and some RIBs contain
e~rors. MDOS is given centrol after the message is

Page 22-18

REPAIR COMMAND

displayed.

22.7 Messages

The following messages
command. Only those messages
preceding sections are listed.

Y (YES) OR N (NO) :

22.6 -- CAT Replacement Phase

can be displayed by the REPAIR
not already covered in the

The REPAIR command's prompts usually accept only
a ,·Y II or- IINrI response from the operatol'. If any
other response is given} this message will be
displayed, forcing a new response to be entered.

22.8 Examples

The following example illustrates how REPAIR is used on
a working diskette in drive zero to verify that the system
tables are correct:

=REPAIR
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
31 GOOD FILES 00 FILES WITH BAD RIBS
RECONSTRUCTED C.A. T. MATCHES DISK
=

The next example illustrates how REPAIR is used once
Just to gather information about what is ~rong with the
dis k e t t e . The n I DUMP i sus edt 0 fix the d ire c tor y I and
REPAIR run a second time to verify that the error was
corrected. The file LOG.eM is presumably a user-written
program that functions as a commandi however, the attribute
area Or the directory entry was created illegally or has been
destroyed.

Page 22-19

REPAIR COMMAND 22.8 -- Examples

=REPAIR :2
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
OA 07 03 LOG .eM 0570 FFFF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? N
NON-O BYTES AFTER SDW TERMINATOR
OA 07 03 LOG .eM 0570 FFFF 0000
RIB IN ERROR - DELETE FILE? N
2F GOOD FILES 01 FILES WITH BAD RIBS
INVALID RIBS RESULTED IN RECONSTRUCTED C.A. T. NOT

MATCHING DIS1-\
=

The DUMP command (Chapter 11)'can then ~e used to change
the directory entry. Since LOG. CM is a memor~-image rile,
the RIB contains load information after the terminatori
however, the attribute part of the directory entry ~as

destTo'Jed. Thus. REPAIR could not detect the memory-image
format.

From the information shown ror the directory entTyJ it
is.determined t~at the directory entry for the rile LOG. eM is
in physical sector $OA or directory logical sector 7. The
following sequence is used to "repai,.." the attribute field:

Page 22-20

REPAIR COMMAND

=DUMP :2
PHYSICAL MODE
:RD 7
:5

CHANGE BUFFER

PSN=OOOA
00 42 41 53 49
10 46 52 45 45
20 45 51 55 20
30 4C 4F 47 20
40 00 00 00 00
50 00 00 00 00
60 00 00 00 00
70 00 00 00 00
: 3Ci
3C FF 52/001
:W
:G
=REPAIR :2

43
20
20
20
00
00
00
00

DISI(ID: MDOS0300
VERSION: 03
REVISION: 00
DATE: 072578

20 20
20 20
20 20
20 20
00 00
00 00
00 00
00 00

USER: SYS DEVELOPMENT

20 43
20 43
20 53
20 43
00 00
00 00
00 00
00 00

DISK
30 GOOD FILES 00 FILES WITH BAD

4D 01
4D 02
41 04
4D 05
00 00
00 00
00 00
00 00

RIBS
RECONSTRUCTED C. A. T. MATCHES DISK
=

22.8 -- Examples

00 72 00 00 00 BASIC eM .. i' ..
B4 72 00 00 00 FREE eM .. r ..
BO 65 00 00 00 EGU SA .. e ..
70 FF FF 00 00 LOG eM. p ...
00 00 00 00 00 ·
00 00 00 00 00

00 00 00 00 00 ·
00 00 00 00 00 ·

The REPAIR c,ommand was then invoked a second time to
ensure that the "fix" usas correctly applied. Since REPAIR
then recognized the file LOG.CM as a memory-image file, the
RIB errol' disappeared automatically.

The same erro~ could have been corrected without having
the detailed systems knowledge that was used in the above
example. If" the file were deleted, the errol' Ulould be ~ixed

and the diskette would be a valid MDOS diskette. The
rollowing example shows the minimal-knowledge approach to
fixing the diskette:

=REPAIR : 2
DISK ID: MDOS0300
VERSION: 03
REVISION: 00
DA TE: 072578
USER: SYS DEVELOPMENT DISK
OA 07 03 LOG .eM 0570 FFFF 0000
ILLEGAL ATTRIBUTE OR UNUSED BYTES. DELETE? Y
2F GOOD FILES 00 FILES WITH BAD RIBS
WRITE RECONSTRUCTED C.A.T. TO DISK? Y
=

Page 22-21

REPAIR COMMAND 22.8 -- Examples

Since the file was deleted, the reconstructed allocation
table did not match the one on the diskette. Thus, a new one
was written to make the allocation table correct.

The last example illustrates how a file Just having been
deleted by accident can be recreated if no other process is
invoked that causes a directory entry to be created or space
to be allocated or deallocatad. Since ~ne deletion only
-removes the, name from the directory and frees the allocated
'space, all that needs to be done is to rebuild the directory
entry using DUMPi and to recreate the allocation table using
REPAIR. The following example shows the se~uence of events
from the file's deletion through its directory entry
reconstruction. This exaffi91e assumes that the operator knows
the file's position in the directory (from DEN of a directory
listing). Otherwise, the DUMP command '!SDH would have to be
used to display the entire directory, allowing the operator
to search ~or the deleted entr~ visually.

=OEL TESTPROG. SA
TESTPROG. SA:O DELETED
=DUMP
PHYSICAL MODE
: RD 3
:5

CHANGE BUFFER

PSN=OOO6
00 4D 44 4F 53 4F 56
10 FF FF 53 54 50 52
20 00 00 00 00 00 00
30 00 00 00 00 00 00
40 00 00 00 00 00 00
50 00 00 00 00 00 00
60 00 00 00 00 00 00
70 00 00 00 00 00 00
: lO/ltTE"/
:5

CHANGE BUFFER

PSN=OOO6
00 4D 44 4F 53- 4F 56
10 54 45 53 54 50 52
20 00 00 00 00 00 00
-S~ 1"'\1"\ 00 00 00 1"'\1"\ rtrl wV owv v'V VV

40 00 00 00 00 00 00
50 00 00 00 00 00 00
60 00 00 00 00 00 00
70 00 00 00 00 00 00
:W
:<3
=REPAIR
DISK ID: MDOS0300
VERSION: 03

34
4F
00
00
00
00
00
00

34
4F
00
00
00
00
00
00

20 53 59 00 88 72 00 00 00 MDOSOV4 SY .. 'r ..
47 53 41 05 Fe 05 00 00 00 .. STPROGSA
00 00 00 00 00 00 00 00 00 " " " .. "

00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 " e

00 00 00 00 00 00 00 00 00 " 0

00 00 00 00 00 00 00 00 00 "

00 00 00 00 00 00 00 00 00 I

20 53 59 00 88 72 00 00 00 MDOSOV4 SY .. r ..
47 53 41 05 Fe 05 00 00 00 TESTPROGSA
00 00 00 00 00 00 00 00 00 " "

00 00 00 00 00 00 00 00 00 • ~ =

00 00 00 00 00 00 00 00 00 " "

00 00 00 00 00 00 00 00 00 " "

00 00 00 00 00 00 00 00 00 0) I

00 00 00 00 00 00 00 00 00 ~ '"' '"

Page 22-22

---.,

REPAIR COMMAND

REVISION: 00
DATE: 072578
USER: SYS DEVELOPMENT DISK
33 GOOD FILES 00 FILES WITH BAD RIBS
WRITE RECONSTRUCTED C.A. T. TO DISK? Y
=DIR TESTPROG.SAiA
DRIVE: 0 DISK I.D. : MDOS0300
TESTPROG. SA 5 05FC 0004 31 00 05FC 004
TOTAL NUMBER OF SECTORS : 0004/$004
TOTAL DIRECTORY ENTRIES SHOWN : 001/$01
=

22.8 -- Examples

The above procedure should only be used as a last resort. It
can be avoided completely if an adequate backup copy is kept
of all files and if the protection attributes are set for
those files which are not to be deleted.

Page 22-23

CHAPTER 23

23. ROLLOUT COMMAND

The ROLLOUT command is used for writing the contents of
memory to diskette. The ROLLOUT command supports the Single
and dual memory maps of EXORciser II as well as the Single
memory map oT EXORciser I. Options exist for writing memory
directly into a diskette file or for writing to a scratch
diskette.

23. 1 Use

The ROLLOUT command is invoked with the following
command line:

ROLLOUT C<name~J C;<options~J

where <name> is the name of a diskette file and <options> is
one of the options descT'ibed below. The file namel if used,
is .given the default suffix "LO" and the defcault logical unit
number zeT'o. In some casesl it is invalid to have the File
name specified with logical unit number one (see section
23.1.4>. If a file name is specified on the command line,- it
must be the name of a file which does not already exist in
the diT'ectory. WheneveT' the file is created, it will be in
the memory-image format and allocated contiguously on the
diskette.

There are four different ways in which the ROLLOUT
command can be used. Each of the four uses of ROLLOUT is
specified via th~ <options> field.

Option Function

U. Write memory into a file from the User
Memory Map Or an EXORciser II system that
has the dual memory map configured.

none Write memory into a file. Only memory
not ove~layed by MDOS Qr ROLLOUT command
can be accessed.

V Write memory to scratch diskette (not to
a file>. Any memory block can be written
out.

D Copy the scratch diskette's data ("V"
option) into a diskette file.

Page 23-01

ROLLOUT COMMAND 23. 1 -- Use

The ROLLOUT command cannot be invoked from within a -\
CHAIN file (Chapter 6). Since most of the processing is done
by a position-independent routine that must work without MDOS
being resident, the resident MDOS lID functions cannot be
use d . Th ere for e I the s pee i a 1 key boa r d key s C TL - X I C TL - D I
CTL-W, BREAK, and RUBOUT are non-functional during the
ROLLOUT command; however, each operator response must still
be terminated with a carriage return.

Caution must be used when writing out blocks of memory
that include the highest addressed memory location $FFFF.
Since MDOS can only load programs in a multiple of eight
bytes, the starting load address of such programs must be an
add res s t hat i s a mu 1 tip 1 e 0 f e i 9 h t. 0 the r us i s e I the end in g
load address will be greater than $FFFF.

23. 1. 1 User Memor'J Map

When the ROLLOUT command is invoked with the command
line

ROLLOUT <name).;U

the memo~y ~rom the UseT Memory Map of an EXORcise~ II s~stem
ulith the dual memory' map configured will be written into the
di,kette file <name~ on tha specified logical unit. If the
dual memor'J map is not configured, ROLLOUT will terminate
after displa~ing the following message:

USER MEMORY MAP NOT CONFIGURED

If the dual memory map is configured, then ROLLOUT will
continue and display the messages

ST ART ADDRESS:
END ADDRESS:

The user responds by entering the starting and ending memor~
addresses in the Use~ Memor~ Map which are to be written into
the diskette file. The addresses must be input in
hexadecimal ($OOOO-FFFF), and the starting address must be
less than or equal to the ending address. If these two
conditions are not met, the message

INVALID ADDRESS RANGE

will be displayed and the operator will be given another
chance to enter the addresses. After having supplied the
memory range to be written to diskette, the message

ARE YOU SURE (V, N, Q)?

will be displayed. The operator must respond with a "Y" to

!

--I

Page 23-02

ROLLOUT COMMAND 23. 1 -- Use

have the memory ~~l~~en into ~ne diskette rile. The m~mory
block is only written into the Tile if su~ficient contiguous
space can be allocated. ROLLOUT will then terminate and
return 'control to MDOS.

The liN" response Ulill cause the memory start and end
address messages to be redisplayed in order to allow another
set of addresses to be entered. The It Gil response will
terminate the ROLLOUT command and return control to MOOS.

23. 1. 2 Non-overlayed memory

If the ROLLOUT command is invoked with the command line

ROLLOUT <name:>

then any block of memory not overlayed by MDOS or ~ne ROLLOUT
command in either EXORcise~ I o~ II (single or Executive
memory map) can be written to the diskette Tile speciTied by
<name>. The file can be specified to reside on any logical
un i t number.

As described in section 23. 1. 1, the start/end address
message prompts will be displayed; howeve~1 in addition to
the criteria set forth in that section ror valid addresses,
the address range must not have been overlayed by MOOS or the
ROLLOUT command. If an address range is specified that Tails
into the overlayed memory, the message

START ADDRESS MUST BE GREATER THAN Snnnn

~ill be displayed. The "nnnn" is the last address that has
been used by MDOS or the ROLLOUT command. The operator is
then given a chance to re-enter the addresses. Otherwise,
the function of the ROLLOUT command is similar to the
Tunction describ~d in the previous section.

23. '1. 3 Over lay ed memorq

If the ROLLOUT command has been invoked with the command
line

ROLLOUT iV

then an~ block of memo~~ can be subsquently ~ritten to a
scratch diskette. A position-independent routine will be
moved into memory. This routine can subsequentlv be
activated bV the user from the debug monitor after loading
his test program into memory. The routine will be used to
writ~ memory to a scratch diskette that has been placed into
drive one.

Page 23-03

ROLLOUT COMMAND 23. 1 -- Use

No file name specification can be entered ~ith the "V"
option. The diskette that will be written to in drive one
must not contain an MDOS system that is to be used again.
The system tables on that diskette will be overwritten. The
diskette will have to be regenerated in order to be used as
an MDOS system diskette.

ROLLOUT will display the following message once it has
been invoked ~ith the "V" option:

LOAD ADDRESS:

to which the operator must respond with the starting
hexad~cimal add~~ss of a memory block into which the ROLLOUT
command will attempt to move the position-independent
routine. The address must be ror memory above that required
by MDOS and the ROLLOUT command. !r ~ne address entered is
too lowl ROLLOUT will display the message

LOAD ADDRESS MUST BE GREATER THAN $nnnn

"and return control to MDOS. "nnnn" is the hexadecimal
address of the last location in memory occupied bq MDOS or
the ROLLOUT command. Ir the entered address speciFied spans
non-existent memor~1 ROLLOUT will display the standa~d e~ro~
message

** 53 INSUFFICIENT MEMORY

and return to MDOS.

Caution must be used in ·locating the
position-independent routine in memory. Since MDOS uses the
upper end of memory when the command interpreter is running,
the rOU~lne should not be loaded within 100 (decimal) bqtes
of the end of contiguous memory_ Ca~e must also be taken to
en~ure that the program being tested does not destroy the
$200 locations occupied by the position-independent routine.

IT the position-independent routine was successFully
transTer~ed, ROLLOUT will terminate and return control to
MDOS. The user can then invoke the LOAD command to bring his
test program into memory. Then, whenever the time is reached
that memory is to be written to diskettel the user need only
give control to the still resident position-independent
routine at the address that was entered in respon~e to the
"LOAD ADDRESS" prompt discussed above. This is done via the
EXbug command

nnnniG

When the pOSition-independent routine receives control in
this manner, it will prompt the ope~ator for the starting and
end i n gad d res s e s a s des c rib e din sec t ion 23. 1. 1. Af t e l' the

Page 23-04

ROLLOUT COMMAND 23. 1 -- Use

address range has been entered and the nyu response given to
the IIARE YOU SURE?" question, the message

DRIVE 1 SCRATCH?

will be displayed. At this point, a scratch diskette must be
placed into drive one. A "Y II response will then cause the
block of memory to be written to the scratch diskette. Any
other response will give control to the debug monitor.

The liN II response to the "ARE YOU SURE?" prompt will
allow the address range to be reentered. The "Q" responsel
however, wi 11 return control to the debug moni tor, rather
than to MDOS. After the block of memory has been rolled out,
the debug monitor will receive cont~Ql again.

The ROLLOUT command can be
sec t ion 23. 1. 4) to cop Y the raw
diskette into a Tile on drive zero.

subsequently used (see
data from the scratch

23. 1. 4 Scratc h d i $ k ette C onvers i on

If the ROLLOUT command is invoked with the command line

ROLLOUT <name::>; 0

then the memory written to the scratch diskette with the "V"
option will be copied into the file <name>. ROLLOUT will
assume that a scratch diskette is in drive one that has been
created via the ROLLOUT command with the "V" option. The
<name> specified must be for logical unit zero. Since the
diskette in drive one is scratch, no rile can be created
there.

The ROLLOUT command ~ill display the following message
once it has been invoked with th~ itO II option:

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

to· which the operator must respond with a "Y" if the ROLLOUT
command is to continue. Any other response will terminate
the ROLLOUT command and return control to MDOS.

If the "Y" response is given to the
ROLLOUT will check that the diskette in
generated with the "V" option. If an invalid
been placed into drive one, the message

INVALID DISKETTE IN DRIVE 1

above messagel
drive one was
diskette has

~ill be displayed and ROLLOUT will be terminated. If a valid
diskette is found, then ROLLOUT will proceed to build a file
on drive zero that contains the memory information from the

Page 23-05

ROLLOUT COMMAND 23. 1 - U5e

sc~atch diskette.

23.2 Messages

The following messages can be displayed by the ROLLOUT
command. Not all messages are error messages, although errOT"
messages are included in this list. The standard error
messages that can be displayed by all commands are not listed
here.

START ADDRESS:

END ADDRESS:

The starting addT'ess of the alock o-r m-emot'\j to be
written out must be entered.

The ending address of the block o-r memory to be
written out must be entered.

INVALID ADDRESS RANGE

The starting address was greater than the ending
address, or one o-r the two addresses contained an
ihvalid hexadecimal number.

ARE YOU SURE (V, N, Q)?

This message allows the operator to veriry that
the starting/ending addresses entered are what he
wants. The "Y" response wi 11 cause ROLLOUT to
continue. The "N" response will allow a new
address range to be entered. The "G" response
will terminate the ROLLOUT command.

DRIVE 1 SCRATCH?

This message is displa~ed by the
position-independent routine to allo~ the
operator a chance to insert a sc~atch diskette
into drive one. A "Y" T'esponse will cause the
memor~ to. be written to the diskette. Any other
T'esponse will return control to the debug
moni tor.

START ADDRESS MUST BE GREATER THAN $nnnn

The start/end addresses include memory occupied
by MDOS and/or the ROLLOUT command. If this
memory is to be written out} . the ROLLOUT command
should be invoked with the "V" option.
Otherwise, the start/end addresses must be
greater that " nnnn !l.

Page 23-06

23.2 -- Messages

LOAD ADDRESS MUST BE GREATER THAN $nnnn

The add~ess specified for locating the
positiori-indepenodent routine' in memory includes
memory occupied by MDOS and/or the ROLLOUT
command. The address must be greater than $nnnn
shown in th e message.

USER MEMORY MAP NOT CONFIGURED

The "U" option has been specified on an EXORciser
I system or on an EXORciser II system that has no
d ua 1 memory, map c onf i 9 ured.

LOAD ADDRESS:

The operator must specify an address at which the
position-independent routine will be located for
subsequent access via the debug monitor. The
load address entered will be the starting
execution address that is used to activate the
ROLLOUT routine from the debug monitor.

DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT?

This message allows the operator time t~ insert
the scratch diskette created via a previous
ROLLOUT process with the "V" option into dri,ve
one berore ROLLOUT will convert the data into a
diskette file on drive zero. A "V" response will
cause ROLLOUT to continue. Any other ~esponse

will cause control to be returned to MDOS.

INVALID DISKETTE IN DRIVE 1

This message indicates that the diskette in drive
one was not created by the ROLLOUT command with
the "V" oJ) t ion.

** 53 INSUFFICIENT MEMORY

The operator specified an address which started a
block of memory that does not exist or that
contains bad memory_ This block is used to
receive a copy of the pOSition-independent
routine that is given control from the debug
monitor. $200 bytes of memory must be available
starting at the address entered by the operator.
The c aut ion s 1 i s ted ins e c t ion 23. 1. 3 s h 0 U 1 d a 1 so
be reviewed.

Page 23-07

ROLLOUT COMMAND 23.3 -- Examples

23.3 Examples

The following example shows the ope~ator-system dialogue
ror writing a block of memory to a Tile from the User Memory
Map or an EXORciser II system with the dual memory map
confi gured:

=ROLLOUT UMBLOCKiU
START ADDRESS: 100
END ADDRESS: 7FF
ARE YOU SURE (Y, N, G)? Y
=

The file named UMBLOCK. LO will be created on drive
will contain the block o~ memory from $100
inclusive, rrom the User Memory Map.

zero. It
to $7FF,

The following example illustrates
diskette controller ROM can be written

how a copy of the
into a diskette file:

=ROLLDUT DISKROM:2
START ADDRESS: E800
END ADDRESS: EBFF
ARE YOU SURE (Y, N. G)? Y
=

.
The file named DISKROM.LO will be created on drive two.
example is valid for either type or EXORciser system.

THis

The following example shows how the ROLLOUT command is
used to write memory to disk during a test session of a use~

program that overlays MOOS. A maximum contiguous memory
range or 32~ is assumed.

=ROLLDUT ;V
LOAD ADDRESS: 7F80
** 53 INSUFFICIENT MEMORY
=ROLLOUT iV
LOAD ADDRESS: 7DOO
=LOAD TESTPROGiV
* (User does testing here via EXbug)
*7DOOiG
START ADDRESS: 100
END ADDRESS: 5FFF
ARE YOU SURE (Y, N, G)? N
START ADDRESS: 100
END ADDRESS: 2FFF
ARE YOU SURE (V, N. G)? Y
DRIVE 1 SCRATCH? Y

*
In the above example, the
block Or memory which was

operator initially specified a
too small to receive the

Page 23-08

ROLLOUT COMMAND 23.3 -- Examples

position-independent routine. $200 bytes are required to
contain the routine; however, since the end or memory is used
by the MDOS command interpreter, an additional block of
memory is allowed for the MDOS stack. Thus; the ROLLOUT
command had to be invoked again. Then, after loading and
testing his program, the operator invoked the routine via the'
1f7DOOiG" EXbug command. After enteT'ing the end addressl the
user realized an error, and responded "N" to the "ARE YOU
SURE?" question. Testing can be continued after the block of
memory has been written to the diskette.

The last example illustrates how the scratch diskette
generated above is converted -into a file:

=ROLLDUT TESTROLL;D
DOES DRIVE 1 CONTAIN A MEMORY ROLLOUT? Y
=

The file named TESTROLL. LO will be created on drive zero.

Page 23-09

CHAPTER 24

24. SYSTEM DESCRIPTION

This chapter contains the detailed descriptions of the
structure of an MDOS diskette: the structure of MDOS files
and the i l' formats, th e sy stem over lay s, th e memory map, th e
command interpreter, interrupt handlers, the system function
handler, and the MDOS eq,uate file. The subseq,uent three
chapters contain the detailed descriptions of the individual
system functions and how they are parameterized.

24.1 Diskette Structure

MOOS is based on a single- or double-sided,
single-densit~ flexible disk, or diskette. The diskette is
compact in size: portable,· rairly durable) and easily
inserted into and removed rrom the diskette drives. Due to
the diskette's portability and interchangeabilit~1 each
diskette is treate~ by MDOS as a complete, self-contained
entity. Each diskette has its own system tables, operating
system, and riles.

Information on an MDOS diskette is stored in sectors 128
(decimal) bytes in size. As the diskette turns, the
read/write head in a stationary position will pass over 26
(decimal) sectors each revolution. The area accessible to
the stationary head on one side of the diskette is called a
track. The area accessible to the stationary head on both
sides of the diskette is called a cylinder. The head can be
p 0 sit ion e d 0 v e r 77 (d e c i ma I) dis c l' e tee y 1 i n d e l' s . Th us, the l' e
are a total of 2002 (decimal) sectors on each surface Or a
diskette. A single-sided diskette only has one surface that
can be read Tram and written to. A double-sided diskette has
two surfac es.

In order to minimize access time and yet provide ror a
dynamic allocation scheme, all disk~tte space allocation is
done in terms of clusters, rather than sectors. MDOS
clusters consist of rour, physically sequential sectors. A
cluster is the smallest structural unit of information on the
dis k e t t e . T h us, the s rna 11 est p os sib 1 e s i z e t hat a f i 1 e c an
have is one cluster.

The
statistics.

rollowing table summarizes these diskette

Page 24-01

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

Single-sided Double-sided

Quantity Decimal Hex Decimal Hex
---.---.-.---- ------- -------

Surfaces/diskette 1 1 2 2
BytesisectoT" 128 80 128 80
Sectors/tl'ack 26 lA 26 lA
TracksicylindeT' 1 1 2 2
Sectors/c~linder 26 lA 52 34
Cylinders/diskette 77 4D 77 4D
Sectors/surface 2002 7D2 2002 7D2
Sectors/diskette 2002 7D2 4004 FA4
Sectors/cluster 4 4 4 4
Clu5ters/disiette 500 lF4 1001 3E9

MDOS accesses sectors on the diskette via a phqsical
sector number (PSN). The diskette contTolle~ decodes the PSN
into the appropriate cylinder/sector position. To avoid
confusion, all sector numbers given in this section will
refer to physical sector numbers. If a need should arise to
convert between cylinder/sector and physical sector numbers,
Appendix A has been provided. It contains the physical
sector numbers of the First sector of each cylinder on each
sUT'fac e.

A portion of each diskette is reserved for some special
system tables. These tables reside in the outermost cylinder
of the diskette, cylinder zero. Each table, with the
exception of the directory, occupies a single sector. The
Tollowing table summarizes the location Or the system tables:

System table

Diskette Identirication Block
Cluster Allocation Table
Lockout Cluster Allocation Table
Director~
Bootblock, MDOS RIB

24.1.1 Diskette IdentiFication Block

PSN

$00
$01
$02
$03-16
$17,18

The Diskette Identirlcation Block is created during
system generation. It contains an IDJ the version and
revision number of the resident operating system, the date
the diskette was generated, a user name identification area,
and a dynamiC area .Tor the MOOS overlay RIB addresses. The
ID is displayed by the DIR, FREE, and REPAIR commands. The

--

Page 24-02

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

Diskette Identi~ication Block has the rollowing format:

Bytes Size Contents
----- --------

0-7 8 Diskette ID
8-9 2 Version number
$A-B 2 Revision number
$C-l1 6 Generation date
$12-25 $14 User name
$26-39 $14 MDOS overlay RIB addresses
$3A-$7F $46 Zeroes

24.1.2 Cluster Allocation Table

The Cluster- Allocation Table (CAT) contains a bit map Or
the areas on the disk~tte that are available for new space
allocation. Each bit in the CAT represents a physical
cluster of diskette stDrage. The rirst bit of the first byte
of the CAT (bit 7 of byte 0) represents cluster O. The
subsequent bits represent subsequent clusters. A bit set to
one indicates that the cluster is allocated. If a bit is set
to zero, it indicates that the corresponding cluster is
available for allocation. Since not all 128 bytes o~ the CAT
correspond to physical clusters) the parts of the CAT that
~epresent clusters beyond the physical end of the diskette
are marked as allocated so that they cannot be used by any
MDOS functions.

an single-Sided diskettes} bytes Q-$3E of the CAT
correspond to the physical locations on the diskettei
however, in byte $3EJ bits 0-3 are set to one since no
physical sectors correspond to·those cluster numbers. Bytes
$3F-7F are set to all ones. The cluster division for
allocation only includes 2000 (decimal) sectors. Since there
are 2002 sectors, the last two phYSical sectors or a
Single-sided diskette are not available for allocation
($7DO-7D1L

On double-sided diskettes, bytes O-$7D correspond to the
physical locations on the diskette; however, in byte $7D,
bits 0-6 are set to one since no physical sectors correspond
to those cluster numbers. Bytes $7E and $7F are set to all
ones. The cluster division for allocation includes all
physical sectors (4004. decimal>. There are no unused
sectors on a double-sided diskette.

24.1.3 Lockout Cluster Allocation Table

The Lockout 'Cluster Allocation Table, or LCAT, is
similar to the CAT in structure; however, it is only used
during the DOSGEN and REPAIR processes. The LCAT provides a

Page 24-03

SYSTEM DESCRIPTION 24. 1 -- Diskette Structure

map of which areas of the diskette have been flagged as bad -~

during the DOSGEN write/read test. In additionJ the LCAT is)
configured so that those sectors or the diskette occupied by
the system tables in cylinder zero and any user lo~ked out
areas (see Chapter 10, DOSGEN command) are flagged as
unavailable ror normal allocation.

24. 1. 4 Directory

The director~ occupies twenty sectors. Each directory
sector contains eight entries Or sixteen bytes each. Each
entry contains a rile name, a suffix, the address of the
file's first clusterl the file's attributes, and some room
for e x pans ion.

A rile is one or more clusters containing related
information. This information may be ASCII source programsi
binary object records, user-generated data, etc. Each -rile
must reside wholly on a single diskette. Files are
identiried to the system by their names, suffixes, and
logical unit numbers.

The name as stored in the directory consists or ten
bytes; howeve~ the MOOS command interpreter deals with an
eight-byte name. and a two-byte suffix. This is merely a
c~nvention of the command interpret~r and has no signi-ricance
in relatirin to the internal format of the directory. System
routines and functions dealing with file names as a pa~ameter

use a ten'-b'Jte block which .. is always dealt w-ith as a
mon 01 i t hie item.

File names assigned by the user must be from one to
eight alphanumeric characters in length. The first character
must be alphabetic. A file's suffix is used to further
identify the file. The suffix is primarily used to identify
the for ma t 0 f the f i 1 e con t e" t i h 0 us eve r I t n i sis pur e 1 tl a
convention; the attribute field of the director~ entry
describes the file's physical format. Suffixes are
considered as an extension of the file name. They can be one
or two alphanumeric characters in length. The first
character of the suffix must be alphabetic. Both the file
name and the suffix, if shorter than their maximum allowable
lengthsl are left Justified and space-filled in the directory
entry.

In most cases, the MDOS commands make certain default
assumptions about a file's suffix if it is not explicitly
specified by the operator; however, explicit suffixes can be
used whenever the derault is to be overridden. The standard
MDOS.default suffixes ar~:

\

. .,J

Page 24-04

SYSTEM DESCRIPTION 24. 1 -- Diskette St~ucture

Su~~ix Implied meaning

AL Assembly listing file
CF Chain p~ocedu~al file
eM Command file file
ED EDOS-converted file
LO Loadable, memory-image file
LX EXbug-loadable ~ile
RO Relocatable obJect file
SA ASCII source file
SY Internally-used system file

Logical unit numbers identify the drive that contains
the file. Since each diskette ca~~ies with it its o~n
directorYI different files with identical names and suffixes
can reside on different diskettes.

The standard format ror specirying rile names} suffixes
and logical unit numbers is:

<file-namej.<suffix>:<logical unit number)

UJ h e ~ e the per i 0 d (.) and colon (:) s e r vet 0 del i mit the s ta r t
of the suffix and the logical unit numbe~ fields,
resp ec t i ve 1 y.

In addition to a name} each directory entry contains a
set of att~ibutes which characterize the file's content. A
file's attributes include inherent attributes and aSSignable
att~ibutes. The inherent attributes of a file describe its
allocation scheme (contiguous o~ segmented), the file format
(ASCII record, binary record, memory-image, or use~-defined)'
and whether space compression is used for ASCII records. The
file fo~mats are described in section 24.3.

The assignable attributes include write p~otectionl

delete protection, and the s~stem file attribute. If a file
i s UI~ i t e pro tee ted lit can not b e \IJ~ itt en in too r del e ted. I f
a file is delete protected, it cannot be deleted. If a file
has the system attri~ute, it will be included in the s~stem
generation process (DOSGEN) and is handled differently by the
DEL and DIR commands.

The_ format or a directory ent~y is described in the
following table:

Page 24-05

SYSTEM DESCRIPTION 24. 1 -- Diskette St~ucture

Bytes

$0-7
$8-9
$A-B
$C-D
$E-F

Size

8
2
2
2
2

Contents

File name
Suffix
PSN of first cluster
Attributes
Zeroes

The att-ribute field o~ a directo-ry entry has the
follo~ing format:

F E o c B A 9 8 7 6 4 3 2 1 o

<-------- Not Used (=0) -------~

File format (O=user-defined,
2=memcry-imag e;
3=binary T'"ecord,
5=ASCI I record}
7=ASClI-converted-

binarq record)

Non-compressed space bit
.Contiguous allocation bit
S\lstem file bit
Delete protection bit
Write protection bit

Associated with each diT'ectory entry is an eight-bit
numbeT'1 the directory entry number (DEN), which is a runction
of the phqsical location of the entry within the directorq.
The DEN-is not found anywhere in the directory. It is a
calculated ~uantity and is interpreted as follows:

7 6 5 4 3

24. 1. 5 Bootb loc k

2 1 o

Position within sector
(0-7)

Physical sector number
($3-$16)

The Bootblock is a small loader program that is brought
into memorq along with the next physical sector by the
diskette contralle~ during system initialization. The second

/

Page 24-06

SYSTEM DESCRIPTION 24. 1 - Diskette Structure

sector that is loaded contains information regarding the size
or the resident operating system. From this information. the
Bootblock program configures the diskette controller to load
into memory the actual resident operating system.

24.2 File. Structure

While the contents of a rile can be thought of as a
logically contiguous block or information, the actual
diskette area allocated to the file mayor may not be
physically contiguous. Space can be allocated to one or more
groups of physically contiguous clusters on the diskette.
Each contiguous group of clusters is called a segment. This
segmentation allows the dynamic allocation and deallocation
or space to occur without having to move any of the
information contained in the file

Eac h r i 1 e must, th ereforel have a tab 1 e that d escri bes
which segments are allocated to the file. This table is kept
in the first physical sector of each file and is called the
Retrieval Information Block (RIB), It is the address of the
RIB that is contained in the directory entry or a file.

MDOS accesses sectors within a file by logical sector
numbe~ (LSN)' Since the first physical sector of a rile is
not really a data sector) the RIB is given an LSN Or minus
one ($FFFF)' Therefore, logical sector zero of a rile (the
first data sector) is actually the second phqsical sector of
the file. Logical sector numbers for data sectors are
numbered sequentially beginning with zero. Thus, even though
a file may be segmented (not physically contiguous on the
diskette), it is treated as a logically contiguous collection
of sectors when accessed by logical sector number. The
system I/O functions decode the LSN into the actual PSN.

24.2.1 Retrieval Information Block

For all files, the RIB contains a series of two-byte
entries called segment descriptor words (SDWs). A special
SDW is used as a terminator to indicate the end of the
segment descriptors within the RIB. Each SDW (other than the
terminator) contains two pieces of information: the cluster
number of the first cluster in the segment, and the length of
the segment. Since each segment consists of physically
contiguous clusters, this information is all that is needed
to describe where a segment of the file is located on the
diskette. A RIB can contain a maximum or 57 (decimal) SDWs
and one terminator.

The RIB of a memory-image file contains some additional
information that describes where the contents of the file are
to be loaded in memory. This info~mation includes the

Page 24-07

SYSTEM DESCRIPTION 24.2 -- File St~uctu~e

starting load add~ess,
number of b~tes in
execution add~ess.

the number of sectors
the last sector, and

to load, the
the s ta r tin 9

The memory-image file load information is described in
the following paragraphs. Both the content and the location
of each field are described. The offsets used to refer to
~ne various bytes are relative to zero ~zero being the first
byte of the RIB sector>. All offsets ar~ given in decimal.

1. Byte 117, the numbeT' of bytes to load fT'om
the last sectoT'I must be non-zero, a multiple
of 8, and less than or equal to 128 (S80).

2. B~tes 118-119} the number of sectors to load,
must contain a number that is non-zero; less
than the total number of sectors allocated to
the r i 1 e, and 1 es 5 than or equal to 512
($200) .

3. Bytes 120-1211 the starting load address, are
not checked. For programs loading in an
EXDRcisel' I system} in the User Memory Map of
an EXORcier II system with the single memory
map configuredl or in the Executive Memory
Map of an EXORciser II system with the dual
memory map configured, this value must be
greater than hexadecimal location $lF if the
program is to be loaded via the MOOS loader.
EXORciser II systems can have pT'ograms loaded
into the User Memory Map of the dual memory
map configuration starting at location zero.

4. The ending load addl'ess is calculated from
bytes 117-121 in the following manner:

5.

EL = (NSL - 1) * 128 + NELS + SL - 1

where EL is the ending load address, NSL is
the number of sectors to load (bqtes
118-119), NBLS is the number of bytes in the
1 a-s t sec tOT' (b Y tell 7) , and SL i s the
starting load address (bytes 120-121>' The
ending load address must be less than 65536.

Bytes 122-123, the starting execution
address, must lie within the range of
addresses spanned by the rile (greater than
or eQ.ual to the starting load ad dress, and
less than aT' equal to the ending load
address).

6. By tes 124-127 are not u sed and must be zero.

Page 24·-08

SYSTEM DESCRIPTION 24.2 -- File Structure

F

F

The following diagrams illustrate the format of a
segment descriptor word and the te~minator.

SEGMENT DESCRIPTOR WORD

E D c B A 9 8 7 6 5 4 3 2 1 o

(------- Starting cluster number ------>

Number of contiguous clusters 1

Zero (Non-terminator bit)

TERMINATOR

E D c B A 9 8 7 6 5 4 3 2 1 o

: <------- Logical,sector number of logical end-of-file ----->
•

One (Terminator bit)

The SDW terminator is used to monitor the logical
end-or-file. It contains the logical sector number of the
end-or-file. The sector which is the end of a rile may be
partially filled with null characters. Thus, no actual
end-or-file record will be found ~ithin a file. This feature
allows files to be merged together without having to read
through the entire file looking rOT an end-or-file record.

The actual format of a RIB is shown in the following
diagram. For non-memory-image filesl the bytes following the
terminator must all be zero. Only memory-image files can
have non-zero bytes following the terminator, and then those
bytes must meet the six criteria listed above.

Page 24-09

SYSTEM DESCRIPTION 24.2 -- File St~ucture

FED C B A 987 654 3 2 1 0

00 sow 0

02 SDW 1

04

Other SDWs

TERMINATOR

Zeroes

74 : BYTES IN LAST SECTOR :

76 NUMBER OF SECTORS TO LOAD

78 STARTING LOAD ADDRESS

STARTING E'XECUTION ADDRESS

7C ZERO

7E ZERO

24.2.2 File rormats

MDOS deals with ~our types of rile formats on diskette:
user-define<L memor'l--imagel binary record, and ASCII record.

User-defined riles are dealt with by MDOS at the sector
level. MDOS will keep track of where the rile is and will
onl~ allow access to the rile by logical sector number. The
user has the responsibility or formatting the data within the
sectors in the manner suited to his application.

Memory-image ~iles include all files whose contents are
to be loaded into memory directly rrom the diskette by the
MDOS loader. Memory-image riles are allocated contiguous
space on the diskette. The only information retained about
where the content is to be loaded is kept in the file's RIB.
The data within the sectors or the rile contain no load or
record information. .It is merely an image Or a block of
memory to be loaded into. Due to the nature of the diskette
controller, MDOS programs can only be loaded in multiples of
eight bytes, A Turther restTiction placed on memory-image

Page 24-10

SYSTEM DESCRIPTION 24.2 -- File St~ucture

files is that their content cannot load betow memory location
$20 if they are to reside in the single memory map of an
EXORciser I or EXORciser II system.

Binary record files are used primarily for the
relocatable obJect data produced by the Macro Assembler and
the relocatable FORTRAN compiler; however, the user can
create data files using this binary record format as well.

ASCII record files are used to contain all other
MDOS-supported data. Such files can be in either
space-compressed or non-space-compressed rorm. Normally,
MDOS will always create ASCII files with the
space-comdression attribute to conserve diskette space.

The non-memory-image files can be allocated in either
contiguous or segmented fashion. Normally. MDOS ~ill create
such files in a segmented manner to take advantage of the
dynamic allocation scheme. If files are segmented, theq can
expand'to the full capacity of the diskette when they need to
grow in sizej however, if files have contiguously allocated
space, then they can only be expanded if they are allocated
space that is contiguous to the originally allocated space.
Normally, contiguous files are created with the maximum space
that they will ever need.

24.3 Record Structure

This section describes in detail the two record types
supported for diskette files. In addition, a special record
t~pe used for copying binary files to a non-diskette device
is also discussed. The actual use of such records is fully
discussed in Chapter 25 which describes the supported I/O
functions. All records supported by MDOS are terminated by a
carriage return, line -Feed, and null sequence; however, on
the diskette, only the carriage return character is retained
in order to conserve diskette space. When diskette files are
copied to a non-diskette device, the other two characters are
automatically supplied by MDOS.

24.3.1 Binary records

Binary records are used primarily as output -From the
Macro Assembler and the FORTRAN compiler, and Tor input to
the Linking Loader. Binary records contain a special ~@co~d

header, a byte count, and a checksum. The checksum is a
two's-complemented sum of all bytes in the record from the
byte count through the last data byte, inclusive. A maximum
~f 254 (decimal) data bytes can be contained in each binary
record.

The -Format of a binary record can be illustrated as

Page 24-11

SYSTEM DESCRIPTION 24.3 -- Record Structure

TO 11oUls:

--------------.---------------- / / -------------
: 0 I Be I DATA : CK : CR I
------------------------------/ /-------------

The symbols take on the following meanings:

Symbol Meaning

o The binary record header character "0"
($44>.

Be A one bqte "byte count" that contains the
number- Or data byt~s in the record plus
one (for the checksum byte).

DATA A maximum of 254 (decimal) data bytes.
An~ eight-bit values are valid for the
data bytes.

CK The twa's-complemented sum of the byte
count and all data bytes. CK is a one
byte field.

CR The' terminating carriage r~turn. For
non-diskette devices this will actually
be a carriage return. line feed, and null
sequence.

Since diskette riles contain the logical end-of-file
indicator in the RIB, the bin~ry EOF record only will be seen
on non-diskette deviceso The binary EOF record has the
following format:

; E I Be : C~ : CR :

The symbol "E" is the end-or-file record header which is the
letter liE" ($45>. The other symbols are the same as in the
above table. The EOF record has no data bytes.' Thus, the
byte count will be equal to one.

24.3.2 ASCII records

ASCII records are used primarily ror source riles on the
diskette; however, EXbug-loadable format riles are ASCII even
though they are object files output from the assemblers or
Linking Loader.

ASC I Ire cor d s con t a inn 0 r e cor d h e a d e 1" S , b Y tee 0 U ii t s, 0 r
)

Page 24-12

SYSTEM DESCRIPTION 24.3 -- Record Structure

checksum fields. The first ASCII record in a rile begins
with the first data character of a file and is terminated by
the first carriage return. All other ASCII records in the
file begin with the. First data character Following a carl"ia'ge
return. When ASCII records are copied to non-diskette
devices, the terminating carriage return is actually a
combination of three control characters: carriage return,
1 ine feed, and null. ASCI I records should contain only
displayable characters.

When MDOS writes ASCII records to diskettel they
normally contain space compression characters to conserve
diskette space. A space compression character is indicated
by a data byte having the sign bit (bit 7) set to a one. The
remaining bits (0-6) contain a binary number representing the
number or spaces ($20) to be inserted in place of the
compressed character" MOOS automatically expands these
characters into spaces when such files are read. MDOS will
also automatically. create these compressed characters ~hen

such riles are written.

Since MDOS maintains the logical end-of-file indicato~
in a file's RIE, no ASCII EOF record will be seen in a
diskette filei however, when ASCII record riles are written
to a non-diskette device, ~he ~ollowing EOF record will be
supplied:

lA : CR :

where the "1A" symbol represents the end-or-file indicator.
It is the hexadecimal value $lA or SUB control character
(CTL-Z)' The CR symbol is the carriage return, line reed,
and null sequence.

If ASCII record files generated on another syst~m are to
be processed by MDOSJ it is important that the carriage
return, line reed, and null sequence be present at the end of
each record. Otherwise, it is possible for each data record
to lose one or two characters from its beginning.

24.3.3 ASCII-converted-binary records

A special form of the binary record exists when copying
to a non-diskette device that can only accept seven-bit data.
This record rormat is usually never kept in a diskette rile.
The rormat of the ASClI-converted-binary record is identical
to the binary record; howeverl each byte, with the exception
of the special header character and the terminating carriage
return, line feed, and null sequenc~,. is converted into two
eight-bit bytes with bit seven set to zero. This is
accomplished by taking each haIr of the original byte and

Page 24-13

SYSTEM DESCRIPTION 24.3 -- Record St~ucture

adding the bit mask X00110000 to the half-byte. The result
is a displayable two-byte sequence. For example, the
hexadecimal data byte $85 would be converted into the two
byte sequence $38 and $35.

24.3.4 File descriptor records

MDOS I/Ooperations ~ith non-diskette devices can be
one of two modes: file rormat or non-file format.
non-file format mode requires no special processing and
on 1 y th eASe I I rec o-'T"d format.

in
The

uses

The rile format mode allows MDOS to treat the data on
certain non-diskette devices' as a ufilelll similar to a -rile
on diskette. The File Descripto~ R2cord (FDR) is employed to
serve the same function as a directory entry ror a diskette
f i 1 e . The FDR eon t a ins a .p i 1 e n a m e j S U f fix; and a r i 1 e
format descriptor. Thus, MDOS can search for a named file on
a cassette or paper tapel if it was originally created using
the file format mode.

All FDRs are identical in rormat, regardless oT the
record format of the data file. Since the FDR must be
acceptable to any devicel it is written in the
ASCII-conve~ted-binary form, even if the remaining data of
the file is in binary or ASCII. . The FDR format is shown in
the following diagram:

: H : Be : NAME : SUFX : NU : FDF : NU : CK : CR :

The symbols take on the following meanings:

Page 24-14

SYSTEM DESCRIPTION 24.3 -- Record Structure

Symbol Meaning

H The FDR heade~ character "H" ($48).

Be A one-bvte "byte count" that contains the
number of bytes in all fields from NAME
through CK, inclusive. This number is
fixed for FDR records at 17 (decimal).
This number reflects the real data bytes
in the unconverted binary form, not the
bytes written in the
ASClI-converted-binary form.

NAME The eight-character file name.

SUrA

NU

~L_ .L...~ __ _ L ____ ..L.. ___ •• ".,.:. .. _

I ne ywu-~ndrc:H t:'r ~urT"~ A.

A two-byte field which is not used.
contains zeroes.

It

FDF A two-byte field similar in format to the
attribute field of a directory entry.
Only bits Sa-SA are used to describe the
f i 1 e -Format.

CK

CR

The two Is-complemented sum of the
co·unt and all other data bytes. CK
one byte fielq.

The terminating
carriage return}

character sequence
line feedl and null.

byte
is a

of!

The length of all fields of the FDR (except Hand CR) is
doubled when written (ASCII-converted-binary Tormat). Thusl
if the CR field is counted as three characters (carriage
return, line feed, null), then the physical length of an FDR
in the ASClI-converted-binary format is 36 (decimal) bytes.

24.4 System Files

On every MDOS diskette there are nine files which
comprise the operating system. These files contain the
resident operating system, a series of overlays to reduce the
main memory requirements of the system, and standard error
messages. The resident operating system file MDOS. SY must
reside in a f!ixed place on the diskette if! the Bootblack
program is to work after being activated by the diskette
controller. The other system files must remain in fixed
positions after MDOS has been initialized since they are
re~erenced by their physical sector numbers.

Page 24-15

SYSTEM DESCRIPTION 24.4 -- System Files

24.4.1 System overlays

The system overlay files are loaded into memory into one
of the Tour overlay regions discussed in the subsequent
section. The overlay handler only brings an overlay into
memory if it is not already in memory at the time a specific
function is required. If an ove~lay remains in memory;
access to its function is Taster than if it has be to loaded
from the disk~tte. The functions contained in the seven
overlay files are shown in the following table:

Overlay Function

MDosavo.SY Diskette allocation and
deallocation.

MDOSOV1.SY P~ocessing standard rile names,
allocating contiguous memory,
reserving a device, releaSing a
device, writing standard records,
writing FDRs, writing end-or-file
records. console reader/punch device
hand 1 ing.

MDOSOV2. SY Reading standard records,
FDRs. ,

i'eading

MDOSOV3. SY Closing a file/device, rewinding
diskette filesl changing file names
and attributes.

MDOSOV4.SY Opening a ~ile/device.

MDOSOV5. SY CHAIN file execution.

MDOSOV6.SY Command line interpretation.

When MDOS is initialized} the directorq is searched ror
the seven overlays by name. The physical diskette addresses
are then retained so that a subsequent rererence to an
overlay runction does not involve another directory search.
Thusl MDOS must be reinitialized each time the diskette in
drive zero is changed so that the overlays can be located
again.

Overlays MDOSOVO and MOOSaVi use overlay region one.
Overlays MDOSOV2 and MDOSOV3 use overlay region two.
Overla~s MDOSOV4 and MDOSOV5 use overlay region three I 'and
overlay MDOSOV6 uses the User Program Area into which the
MDOS commands also are loaded. The overlay regions are shown
in the memory map diagram of section 24. 5. _~

Page 24-16

SYSTEM DESCRIPTION 24.4 -- System Files

24.4.2 System error message file

In an attempt to use Eriglish language descriptions for
the various error conditions that may arise, all standard
error messages are kept in the system rile MDOSER.SY. This
file is accessed by the error message function .MDERR
(section 27.4>' The error messages are placed in this file
so that the most frequently used messages are near the
beginning.

If the error message file cannot be read or accessed,
the error message function will display a message indicating
that an invalid error message has been requested.

24. 5 Memory Map

The memory mapping of MDOS within the EXORciser system
is illustrated in the following diagram:

Page 24-17

SYSTEM DESCRIPTION

0000 : DISKETTE CONTROLLER VARIABLES :

0020

OOAE

UNUSED DIRECT ADDRESSING
AREA

COMMAND LINE BUFFER

OOFE COMMAND LINE BUFFER POINTER

0100

2000

MDOS VARIABLES,
IOCSs and SYSTEM BUFFERS

SWI HANDLER

KERNEL SYSTEM FUNCTIONS

: CONTROLLER DESCRIPTOR BLOCKS

SUPPORTED DEVICE DRIVERS

RESIDENT SYSTEM FUNCTIONS

OVERLAY HANDLER

OVERLAY REGION 1

OVERLAY REGION 2

OVERLAY REGION 3

OVERLAY REGION 4
and

USER PROGRAM AREA

3FFF END OF MINIMUM SYSTEM MEMORY

END OF CONTIGUOUS MEMORY
'---------------------------------

RAM Discontinuity

NON-MDOS RAM

EBOO DISKETTE CONiROLLER PROM

ECOO PIAs

FOOO EXbug MQNITOR

FFF8 INTERRUPT VECTORS

24. 5 -- Memory Map

.~'.

Page 24-18

SYSTEM DESCRIPTION 24. 5 -- Memory Map

Loc at ions $OOOO-OOlF I inc 1 us i ve, are re served for th e
variables of the diskette controller. These locations cannot
be initialized by a program loading from the diskette. In
addition, if a program requires the use of the diskette
functions (either directly through the diskette controller or
through the MDOS functions) I then these locations cannot be
used by the program for storage. Locations $OOAE-OOFD,
inclusive, contain the MDOS command line as it was 2ntered by
the operator. Command-interpreter-loadable programs must
load above location $lFFF. They can use the direct
addressing area for variable storage; however: this Cll'ea
cannot be initialized while the program is being loaded into
memory. Pl'ograms that do not make use of MDOS system
functions can load anlJUlhere in memorl,J above loca1;ion $OOlF.
If such programs do not use the diskette controllel' entry
points (Appendix D); the direct aaaressing area below
location $0020 can be used, but only after the program is
resident in memory.

The MDOS vari.ables (locations $FE and, highe-r) contain
pointers to several areas in memory that might be required by
a user program. The absolute addresses of these pointers
should be obtained Tram the MDOS equate file. The pointers
most often required are:

Pointer Name

CBUFP$

ENDOS$

ENDUS$

ENDSY$

Content

The address in the command line
buffer to the terminator or the
command being executed. Parameters
following the command name should be
scanned ror by using the contents of
this variable.

The address of the last location of
resident MDOS. The value Or this
address plus one is the fil'st
location that a
command-interpl'eter-loadable program
can load into.

The address of the last location
loaded into by the current program.
The program can allocate additional
memo~~ (between the last loaded
location and the end Or contiguous
memol'Y) via one of the system
functions.

The address of the last byte of
contiguous memory (RAM).

Page 24-19

SYSTEM DESCRIPTION

SWI$UV

IRGSUV

24.5 -- Memory Map

The add~ess oT a user-defined SWI
handler. This vector must be
initialized by a user prog~am iF it
is using SWIs other than those
defined for MDOS system functions.
This vector is set to point to an RTI
instruction each time the MDOS
command interpreter is given cont~ol.

The address or a user-aefined IRG
handle~. This vector must be
initialized by a use~ program iT it
is using IRGs. This vector is set to
point to an RTI instruction each time
the MDOS command interpreter is given
control- This vector is not
availabale with MDOS09.

24.6 MOOS Command Interpreter

TheMDOS command interpretsi' is one of the MDOS overlays
that g~ts control whenever MOOS has been initialized or
whenever a command has completed and returned control to
MDOS. This overlay will. cause the standard .command line
input prompt (=) to be displayed whenever it is activated.

Once in controL the interpreter waits fol' operator
input. After a line has been entered} it is scanned ror the
first valid file name specification. IT no valid rile name
is recognized~ the standaT'd message

WHAT?

will be displayed and a new input prompt shown. If the first
encountered file name specification contains a valid file
name, it will be used to search the directory. The de-Pault
suffix IICM" and the de-Fault logical unit number zei'O will be
supplied by the MDOS command interpreter if none are
explicitly entered by the operator. If the file name i~ not
found in the directory specified by the logical unit numberl
the "WHAT?" message shown above will be displayed and another
input prompt shown. If the file name is round} it must be
the name of a file that contains a
command-:-inter-pT-eter-loadable program. That is; the file must
be in the memory-image format and must have a starting load
address that is greater than the value contained in the MOOS
variable ENDOS$ (greater that $lFFF)' If the file passes
these testsl its contents are automatically loaded into
memory and given control at the starting execution address
contained in the filets RIB.

The loaded program can then extract parameters from the
MDOS command line buffer. The pointer into the buffer

Page 24-20

SYSTEM DESCRIPTION 24.6 -- MDOS Command Inte~prete~

(CBUFP$) ~as leTt pointing to the terminator that stopped the
scan for the first valid file name specification when the
MDOS command interpreter processed the input' buffer. After
completing its function, the command can return to MDOS
through one of the system functions C. MDENT) which ~ill pass
control back to the MOOS command interpreter, repeating the
cycle.

It should be noted he~e that commands invoked via the
MOOS command interprete~ do not necessarily have to have the
suffix lIeM" or reside on drive ze~o. If a user program with
an IILO" suffix is being tested, it can be loaded. and executed
di~ectly from the command line (if it meets th~ requirements
for command-interprete~-loadable programs) by explicitly
entering the suffix after the file name. Similarly.t if a
required command does not happen to reside on drive zero, its
name can be followed with a logical unit number to cause it
to be looked for and loaded from the specified unit. For
examp Ie, the command line

OIR:2

will invoke the directory command from drive two to display
the directory of the diskette in drive zero,

Whenever the MDOS command interpreter regains control
after a command terminates, it checks that the diskette in
drive zero still has the same parameters <version numberl
overlay RIB addresses) as the diskette used during the last
MOOS initializa'tion. If these parameters differ, one of the
standard error messag es EL ER, EU, EV (Chap ter 28) wi 11' be
displayed and control given to the debug monitor. MDOS will
then have to be reinitialized before the MOOS command
interpreter will accept furthe~ commands.

In addition; the following parameters are reinitialized
each time the MDOS command inter~reter is given control. The
user-defined SWI and IRG vectors (SW!SUV and IRG$UV) are
reset to point to an RTI instruction. (Only SWISUV is reset
for MDOS09.) Since the user program is no longer resident,
the interrupt handlers are deactivated. The stack pointer is
reset to the end of contiguous memory for the duration of the
command inte~preter's execution. The Error Status and Error
Type parts of the system error status word are set or cleared
d ep end i ng on Ufh eth er or not a va 1 i d command name. was entered
on the command line.

24.7 Interrupt Handling

When MDOS initializes, it saves the contents of the SWI
v~ctor required. by ... the debug monitor, The SWI and IRG
vectors are then changed to point into the MOOS function
handler. Both vectors are required to allow the operator to

Page 24-21

SYSTEM DESCRIPTION 24.7 -- Inte~rupt Handling

make full use of the debug facilities or the debug monitor
while using MDOS system functions. Some versions of the
M6800 MPU will give control to the address in the IRG vector
if an NMI occurs while an SWI is in progress. Since the
debug facilities or the debug monitor use NMIJ continuing
rrom a system runction call will result in passing control to
the address in the IRG vector. Thus, MDOS must intercept
beth SWI and IRG interrupts; however, MDOS can distinguish
the difference between this "pseudo-IRG" and a real IRG even
though both give control to the same address. Since MDOS
does not have any devices in the system that generate IRG,
there is no true IRG interrrupt handler. User programs,
however, can configure the MD05 variable IRG$UV so that if a
real IRG occurs, the routine speciFied by the user will be
given c ontro 1.

Such user-defined IRG handlers are accessible as long as
the MOOS command interpreter is not re-entered. Whenever
control is returned to the MDOS command interpreter, the
user-defined IRG vector will be changed to point back into
MDOS. Thus, lRGs cannot occur after the user program has
terminated. Otherwise, 1"'005 will hang up in a loop. This is
to be expected, since MDOS has no way of knowing what device
generated the IRGI where the device is, or how to respond to
the IRG. An IRG must not be pending or occur when the MOOS
command i~terp~eter is given control.

Since the M6809 MPU does not give control to the address
in the IRG vector if an NMI occurs while an SWI is in
progress, MDOS09 handles lRGs in a slightly different manner.
During initialization, the IRG vector is set up so that if an
IRG occurs, control is returned to EXbug after printing an
"EG" error message. If the user wishes to incorporate his
own IRG handler, he should save off the current value in the
IRG vector location (the one set up by MDOS) nad then insert
the address of his IRG handler. Only then is it safer to
allow IRGs. MDOS does not T'eset the IRG vector if control is
returned to it. Thus, the user must take responsibility ror
restoring the original value upon completion of its interrupt
processing.

For MDOS09, the FIRGJ SWl2 and SWI3 vectors are handled
in a similar manner. MDOS09 sets up these vectors so that
the l' e s p e c t i ve me s sag e s \I EF II ~ II ES " and It EW It are p l' i n ted i fan
interrupt occurs prior to the user having set up his own
interrupt handler.

Certain precautions must be remembered if a user program
is to process IRGs and use the MDOS system functions. Not
all MDOS system functions are re-entrant, thus, SCALLs should
not b e -. use din a n I R G han d 1 ~ r . A 1 so, the MDOS dis k e t t e
controller runs with interrupts inhibited for the duration of
any diskette access. Thus, regardless of whether a single
sector or multiple sectors are being processed, interrupts

Page 24-22

\

SYSTEM DESCRIPTION 24.7 -- Interrupt Handling

are inhibited throughout. Therefore, an IRG cannot always be
serviced within a definite time window if diskette accesses
can ·be "in progress. The time is dependent on the length of
the diskette access.

Another potential problem exists if NMI is to be used
while diskette functions are in progress. The NMI vector is
taken over by the diskette controller while the diskette
access is in progre~s. The NMI is uS2d as a timeout
con d i t ion. T h us, i f a user's s y stem i s g en era tin 9 NM I s til h i 1 e
diskette accesses are going on, a timeout condition will
result and the user will not be able to process the NMI. It
is for this reason that no user-defined NMI vector is
provided by MDOS.

The system functions provided by MDOS are accessible
th~ough use Qf the software interrupt or SWI instruction. A
full explanation regarding the MOOS SWIs is given in the next
section; howeverl like the user-defined IRG vectoT"J MDOS
allows a user-defined SWI vector to be configured through the
va ria b 1 e SW I $UV . L ike the use r -d e fin e d I R G han d I er I the
user-defined SWI handler is only accessible as long as the
MOOS command interpreter is not reentered. Whenever control
is returned to the MOOS command interpreter, the user-defined
SWI vector will be changed to point back int·o MDOS. Thus,
user-defined SWls cannot be processed after the user program
has terminated. This is to be expected, since MDOS commands
and user programs all load into one area of memory. Thus,
the user-defined SWI handler is not resident after the MDOS
command interpreter regains control.

24.8 System Function Calls

All of the system functions that MOOS commands use are
also available to the user and can be incorporated into his
program development. All MDOS system functions are accessed
via the software interrupt or SWI instruction. Each SUI must
be followed by a byte that contains the number of the
function to be executed. MDOS's resident soft~are interrupt
handler can access up to 128 (decimal) functions; however,
not all of these functions are defined. An error message
will be printed if the software interrupt handler is
activated and the function number is not defined.

A speCial convention is used to allow the user to define
a maximum o~ 128 ~unctions also (to be processed b~ the
user's software interrupt handler that is configured via
SWISUV). If the sign bit of the function number byte (bit 7)
is set to one, a user-defined software interrupt is
indicated. All MOOS software interrupts have function number
b y t e s wit h . the s i 9 n bit set to Z e r o. The use r-d e fin e d . SW I
handler gets control with the registers on the stack as if it
intercepted the SWI directly. The B accumulator will have

Page 24-23

SYSTEM DESCRIPTION 24.8 -- System Function Calls

the value oT the Tunction number (with the sign bit set to
zero) to facilitate indexing into the user's function table.

Since MDOS assumes control of the SWI vecto~ which is
normally used by EXbug, certain precautions must be observed
when debugging programs using the debug monitor.

1. MDOS mu s t 1i 0 t b e in i t i ali zed v i a the deb u 9
monito~ command "E800iG" or "MDOS" without first
having depressed the ABORT or RESTART pushbuttons
on the EXORciseT"s front panel. These two
pushbuttons will restore EXbug's SWI vector.

2. The normal breakpoints can be used while testing
a program, regardless or whetheT' MOOS system
functions are used 01' notj noweveT", breakpoints
set by simply placing an SWI instruction into
memor~ via the memor~ change function will cause
a system runction to be executed rather than a
breakpoint to occur. Breakpoints must only be
set or cleared via the debug monitor commands.

3. Breakpoints can be set on an SWI instruction that
i 5 an MDDS $ Y S t emf u net i.o n call; howe v e r , b e r 0 r e
continuing from that particular breakpoint with
the " i P" 0 r Il; Nil comma n d s '" the b rea k poi n t s h 0 U 1 d
be cleared (this is only true for the newer
versions or the M6800 MPU which do not give
control to the IRG vector when an NMI occurs
while an SWI is executing).

4. MDOS sy stem Tunc ti ons cannot be trac ed OT"

single-stepped through with the EXbug commands
uiN" or "iT". Since these debug monitor
functions utilize the stack, parts of MDOS will
be over~ritten due to the internal use of the
stack pointer within the system function handleT'o

MDOS system function calls or user-defined function
call. are programmed by using the SWI instruction mnemonic
and the FeB assembler directive. If programs are assembled
wit h the MDOS e ct u ate f i 1 e (n ext sec t ion) I the p 1" 0 vi d e d ma c l' 0

definitions with the names SCALL and UCALL can be used to
generate the code for MDOS system functions and user-defined
functions, respectively. The macros require an argument to
be passed. This argument is the name or value of the
function to be executed. The names aT MDOS functions are
assigned symbols in the MDOS equate rile so that the use Or
absolute numbers is not necessary. Use oT the SCALL or UCALL
macro makes the program a bit easier to read, especially if

.names are used fo~ the macro arguments.

MOOS system Tunctions receive their parameters in the
registers O~ in tables that are pointed to by the registers.

/

Page 24-24

SYSTEM DESCRIPTION 24.8 -- System Function Calls

Chapte~s 2S and 27 contain the detailed ent~y parameters and
exit conditions TO~ all MDOS system functions.

Some system runctions may not be able to pe~fo~m their
expected action. These functions will ~etu~n an indication
oT whether a normal return or an abnormal return is being
made. This condition is alwa~s passed back in the processor
status (condition code) register. In addition, a status byte
may be returned in on@ of the parameter tables or registers.

Some of the more complex system functions involving
input or output can encounter ratal error conditions as well
as non-fatal error conditions. Fatal errors suggest that the
program is hopelessly confused. In these cases, the only
logical action is to display what the problem app~ars to be
and to re-enter the MDOS command interpreter. Non-fatal
errors can include such things as illegal record Tormats,
checksum er'T'OT'S, rile protection violation, lack oT space on
the diskette: etc. Such conditions are noted and returned to
the calling program. In these instances, it is the
responsibility of the calling program to identify the source
of the error and decide what the course or action should be.

24.9 MDOS Equate File

With each MDOS system diskette comes a file, EGU.SAj
known as the MOOS equate file. The MDOS equate file contains
the deTinitions of all symbols that are required b~ the
resident MDOS and all of the MOOS commands. Not all or these
symbols will be required by the useri however, the .pile is
left as is to make it as useful as possible.

The MDOS equate file contains the Tollowing definitions.
The sequence of the d'escT'iptions more or less rollows the
sequence of the file from beginning to end. Four mac~o

definitions aT'e found at the beginning of the MOOS equate
file that are useful to the user.

Macro Name Function

SKIP2 To be used as an i nstruc ti on. Th e

SKIPl

effect or the instT'uction is to
execute a bT'anch to location *+3.
The "*11 rereT's to the address oT the
branch instruction. The condition
codes are changed as in a GFX
instruction; however, this branch
instruction requires only one byte OT
memory.

To be used as an inst~uction. The
effect oT the instruction is to

Page 24-25

SYSTEM DESCRIPTION

SCALL

UCALL

24.9 -- .MDOS E~uate File

execute a branch to location *+2.
The condition codes are changed as in
a BlTA instruction; however, the
branch instruction re~uires only one
byte of memory.

To be used with a single argument to
execute a software interrupt (SWI) to
the MDOS system function handler.
This macro ensures that the sign bit
of the function byte is set to zero.
The symbols ror the system functions
are defined later in the MDOS equate
fi Ie.

To be used with a single argument to
exe~ute a software interTupt (SWI) to
the user-defined function handler.
This macro ensures that the sign bit
of the Tunction byte is set to one.
The UCALL macro only makes sense if
the user has configured an SWl
handler.

All other macro definitions in the MOOS equate file are for
interna 1 use.

Follo~ing the macro definitions is a list of names that
identifies all of the system functions accessible via the
SCALL macro (or an SWI instruction followed by a function
byte). These equates are derined using a macro that allows
the labels to sequence themselves. Thus, if one label is
removed from the listl the numbers aSSigned to the labels
will still be consecutive, ascending integers. The first
function is given the value or zero. Subsequent functions
are assigned a number one higher than the previous function.
If the SCALL macro is used in writing programs, it is
suggested that the system symbols ror the system functions
also be used.

After the definitions of the system function symbols is
a set Or equates for all of the ASCII control characters
including space and rub out characters. These symbols are
followed by equates ror the special MDOS delimiters used ror
sUTfixes, options, logical unit numbers, device names, and
family indicators.

Next is a list of MDOS sector equates that defines where
the various system tables are located. In addition, the
sector size and the sectors/cylinder, etc. I are defined.

Then; offsets into the various system tables are
defined. These equates are followed by the deFinitions of
the fie 1 d sin the I / a can t r 0 1 b 1 0 c k (I ac B) 1 UI h i c h , i n t urn I

Page 24-26

SYSTEM DESCRIPTION 24.9 -- MDOS Equate File

are followed by another series of self-sequencing definitions
ror the various lID function error statuses.

Following the error statuses, the locations or all of
the MOOS internal variables are defined. These include the
locations of the variables needed by the user for accessing
the command buffer, the memory sizes established at
initialization, and the user-defined interrupt vectors.

After the variables is a series of equates that defines
the various bit positions of the IOCB, the offsets into the
controller descriptor block (CDB), bit definitions within the
CDB, and the offsets to the entry points of the device
dr i verso

Lastly, the diskette controller variables, entry pointsl
and ~rror statuses are equated to symbols. These equates are
followed by a partial list of the locations in EXbug required
b y MOOS. i h e EX bug eli u ate 1 i s tis not c om p let e . Th us, us eT' s
requiring other entry points into EXbug must provide them
~ithin their progra~s.

If programs are being written thpt use the resident MDOS
fun c t ion s , it· iss u 9 g est edt hat the MDOS e qua t e f i1 e b e
included as a part of the assemb 1y (requires M6800 Macro
Assembler). Symbols within the MDOS equate file may have
their values changed by Motorola in subsequent versions Or
MDOS; however, all attempts will be made to ensure a minimal
numb e r 0 r s u c h chan g e s . Th ere of 0 re, the MDOS e qua t e f i 1 e
should not be copied from one version of MDOS to another.
Like the resident system and command files that comprise the
operating systeml the MDOS equate file is associated with a
specific version and revision of the operating system.

A listing of the MDOS equate file is contained in
Appendix 1.

Page 24-27

CHAPTER 25

25. INPUT/OUTPUT FUNCTIONS FOR SUPPORTED DEVICES

In the following description of the 1/0 functions for
~upported devices these symbols will be used:

Symbol Meaning

A A accumulator
B B accumulator
X Index register
cc Condition code
z Zero flag of condition code register (bit

2)
c Carry flag of condition code register

(bit 0)
CR Carriage return

It is assumed that the reader is familiar ~ith what
system function~ are, how they are invoked; what precautions

. must be taken when testing programs using system functions,
and hoUl errors are hand.led by system functions (see section
24.8),

25. 1 Supported Devices

MDOS provides input and output functions to access the
following supported devices:

MDOS Name

eN
CP
CR
OK
LP

Physical Device

Console keyboard and/or display
Console punch
Console reader
Diskette drive
Line printer

The following sections describe the system functions that are
available for accessing these devices.

25.2 Device Dependent 1/0 Functions

MOOS provides system functions for directly' acc~s$ing

the console keyboard, display; line printer, and diskette
drives. All o~ the functions are accessed by executing an
SWI instruction followed by a function byte. The value of

Page 25-01

INPUi/QUi?UT FUNCTIONS 25.2 -- D~vice Dependent 1/0 Functions

the function byte indicates the runction to be executed and
can be obtained from the MDOS equate file. All system
functions that perform input/output operations require a
stac k in the user program area. The size of the stac k must
be at least 80 bl.Jtes (decimal>. Each system function call
pushes seven bytes on the stack. Since function calls ma~ be
nested ~ithin MDOSI a large stack is required. It should be
no~ed that EXbug does not have sufficient stack space
available; the stack area must be provided by the user
elseUlhere.

The device dependent functions for the console and the
line printer use the device independent functions (section
25.3) via parameter tables held in the MOOS variable section
of memory. Any error conditions detected by these system
runctions will cause the calling pl'cgT'am to be aborted: a
standard system
be given to the
these parameter
except "Buffer
fatal error.

error message to be displayed, and control to
MDOS command interpreter. Since MDOS manages
tables (reserving, opening, etc.), any error
Overflow" during a console input will be a

If} while accessing the console or the line pi'interJ the
errors are to be handled b~ the ~alling program, the device
irrdependent I/O runctio~s (section 25.3) must be used
instead.

25. 2. 1 Con sol e in put -- . KEY IN

The .KEYIN function inputs a specified number or
characters Trom the system console keyboard. All characters
entered (with the rollowing exceptions) are stored into"an
input buffer. The function does not return until a
terminating carriage return is supplied from the keyboard.

The following characters are treated as special control
characters when encountered by the ~KEYIN runction:

Character Value

RUB OUT or DEL $7F

Function

Removes
entered

last character
into buffer unless

bUTfer is empty. The removed
character is displayed on the
system console to indicate
that it has been removed rrom
the burrel'. No action occurs
if the .buffer is empty.

\

.j

Page 25-02

INPUT/QUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

CTL-X 01" CAN $18 Deletes all characters from
the input buffer. A carriage
return/line reed is displayed
on the console to indicate
that a new input line must be
enteT'ed.

CTL-D 01" EDT $04

CTL-M or CR SOD

Displays ~ne current contents
of the input buffeT' fT'om the
first character to the last
character entered. The input
is not teT'minated. This
feature offers a means of
displaying a "clean" line
after many characteT's have
been cut via the
RUBOUT key.

Terminates the input. The
carriage return is the last
character placed into the
input bufrer. A carriage
return/line feed is displayed
on the console.

All characters are normally echoed on the console display
mechanism to indicate that they have been ~ntered into the
i,nput bufferi howeverl the following characters are echoed
but are not placed into the input buffer:

ENTRY PARAMETERS:

Character Value

Null $00
Line feed $OA
DCl $11
DC2 $12
DC3 $13
DC4 $14

B = The ma~imum number of characters to
be input rrom the keyboard (not
including the terminating CR).
Characters entered after the maximum
has alread~ been input will not be
echoed on the console! no~ will they
be placed into the input buffer. If
B = 0, then only a CR will be
accepted from the keyboard. The
function does not return until a CR
is entered.

x = The address of the input bUTTer that
is to receive the data obtained from

Page 25-03

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.2 -- Device Dependent IIO Functions

the console ke~board. The buffer
must be large enough to accommodate
one more character than is specified
in B. This extra space must be
provided ror the terminating carriage
return which is placed into the
bUTTe'!'". 11= X happens to contain the
address, Or the MDOS command 1 ine
bu.rrer; then a special test is made
to ensure that B is less than 80
(decimal>. If B is greater than 79,
it will be automatically changed to
79 to prevent the resident MOOS Trom
being over~ritten with keyboard data.

A is indeterminate.

B = The number Or characters input (not
including the terminating CR). If B
= 0, then 0 n 1 y a CR wa sen t ere d .

X is unchanged.

CC is indeterminate.

The input bufTer contains the entered
data, including the terminating
carriage return.

25.2.2 Check for BREAK key -- .CKBRK

The .CKBRK function examines the system ACIA for a
framing error status, indicating that the BREAK key has been
depressed since the last character was input ¥rom th. console
keyboard. This Tunction also checks to see if the CTL-W key
has been depressed. I¥ the CTL-W is detected, the . eXBRt.<.
¥unction will enter a loop waiting for any other characte~ on
the ke~board to be ~ntered before returning to the calling
program.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: A. E. and X registers are unchanged.

C = 0, Z = 1 if no framing error (no
BREAK key) is detected. The
remainder or CC is indeterminate.

c = 1~ Z"::: ,0 if a Framing error (BREAK
key) is detected. The remainder OT .
CC is indeterminate. ~

No indication is returned concerning the CTL-W ke~.

Page 25-04

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent 110 Functions

This reature merely allows the operator at the console to
pause the s~stem.

The framing e~ror cannot be cleared from the ACIA bV
this function. The framing error can only be cleared upon
subsequent reception of another cha~acter from the console
keyboard. Thus, if the. CKBRK function is called more than
once without the ACIA having received any characters between
successive calls, t·he framing er'rO'f" status is detected in
each case (even though the BREAK key was depressed only
once>. As a result, the BREAK key status is not detected if
the BREAK key is depressed during an input request from the
system console, since it is the reception of another
character that clears the framing error status (and each
input refluest must be terminated Ulith a CRL

25.2.3 Console output . DSPLY: . DSPLX: .DSPLZ

The. DSPLY, . DSPLX, and . DSPLZ functions are all used to
display a specified character string on the system console.
The function . DSPLY displays a string that is terminated by a
carriage retu~n character. The functions . DSPLX and .DSPLZ
display st~ings that are te~minated by an EOT cha~acte~,

facilitating the use ~f embedded carriage returns within the
st~ing to output" multiple-line messages with one function
call. Both . DSPLY and . DSPLX will send a carriage
re~urn/line reed se~uence to the consQle so that subsequent
input or output is performed on a new line. The. DSPLZ
function does not send the terminating car~iage return/line
feed sequence so that subsequent input or output can be
performed on the same line as the displayed string.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of a displayable ASCII
string. The string must be
tel'minated b4J a ca~riage retu~n (SOD)
if us i ng . DSPL Y. Otherwi se, th e
string must be terminated by an EDT
($04). The functions . DSPLX and
. DSPLZ will convert embedded carriage
return cha~acters into cal'l'iage
returnlline reed sequences
automati call y.

A and B registers are unchanged.

x = The address of the string's
terminating character.

CC is indeterminate.

Page 25-05

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

25.2.3.1 Example of console I/O

The following example illustrates the use of the .KEVIN
and . DSPLY system functions. The example initially displays
a message on the console to p~ompt the operator ro~ input.
The entered string is then displayed back on the console, but
all characters have been reversed (the last character input
is the first chsT'scter output, etc. >. If only a carriage
retu~n is entered, MDOS is given control via the system
function .MDENT. The system function .ADBX is used to add
the contents of the B accumulator to- the X register. Both of
these functions are described in Chapter 27. A maximum
st,..ing length of ten is allowed. The exam-p Ie has been
assembled with the MDOS equate file.

It is assumed in this example that the program is
origined above location $lFFF since it is using the ~esloent

MDOS functions. The program can either be loaded with the
LOAD co~mand or invoked from the MOOS command interp~eter

directly. At the time the program is loaded, the stack
pointer is automatically initialized to the last-loaded
program location. In this example} this location is used as
the top of the stack.

I
./

Page 25-06

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent 110 Functions

START LDX #PROMPT
SCALL .DSPLY SHOW INPUT PROMPT

* * INPUT THE STRING FROM CONSOLE

* INPUT LDAB #10 MAX 10 CHAR
LDX #IBUFF
SCALL · KEYIN GET INPUT STRING
TSTB CHECK FOR ZERO INPUT
BNE SWAP
SeALL · MDENT EXIT IF NO INPUT

* * INVERT STRING INTO OBUFF

* I r\V #OBUFF ... ,.-"

SeALL · ADBX POINT TO END OF OBUFF
LDAA #eR STORE TERMINATOR
STAA X
DEX
STS STKSAV SAVE STACK POINTER
LDS #IBUFF-l

LOOP PULA GET CHAR
STAA X STORE CHAR
DEX BUMP POINTER
DECB
BNE LOOP LOOP UNl'IL ZERO
LDS STKSAV RESTORE STACK
LDX #OBUFF
SeALL · DSPLY SHOW INVERTED STRING
BRA INPUT

* * WORKING STORAGE

* IBUFF asz 10+1 INPUT BUFFER
OBUFF BSZ 10+1 OUTPUT BUFFER
PROMPT FCC "ENTER STRINGS < 11 CHARACTERS"

FCB CR
STKSAV FOB 0 SAVE AREA

BSZ 80 STACK SET HERE BY LOAD

* END START BEGIN EXECUTION AT THIS LABEL

25.2.4 Printer output -- . PRINT, .PRINX

The . PRINT and .PRINX functions are both used to print a
specified charact@r string on the line printer. The function
. PRINT prints a string that is terminated b'A a carriage
return chaTacter. The function .PRINX prints a string that
is terminated by an EOT character, facilitating the use of
embedded carriage returns within the string to print
multiple-line messages with one function call. Both
functions will send a carriage return/line feed se~uence to

Page 25-07

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent 1/0 Functions

the printer at the end of each st~ing. The .PRINX function
will, in addition, send a carriage return/line feed seq,uence
for each embedded carriage return character.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of a displayable ASCII
string. The string must be
terminated by a carriage return (SOD)
i r us ing . PRINT. OtherUli S8, th e
string must be terminated by an EOT
($04). The .PRINX function will
convert embedded carriage return
characters into carriage return/line
feed seq,uences automatically.

A and B registers are unchanged.

x = The address or the string's
terminating character.

CC fs indeterminate.

25.2.4.1 Example of printer output

.
The following example illust~ates the use of the. PRINT

system function. The example will pl'int strings. of eighty
identical characters, beginning ~ith spaces ($20) and
proceeding through the entire displayable ASCII character
set. The s~stem function . STeHR is used to fill a buffer
with the characte~ contained in the A accumulator. The
system function .MDENT is used to ~eturn control to MDOS.
Both of these functions are described in Chapter 27. The
example was assembled with the MDOS equate rile.

It is assumed in this example that the program is
origined above location $lFFF since it is using the resident
MOOS functions. The program can either be loaded with the
LOAD command or invoked from the MDQS command interpreter
directly. At the time the program is loaded, the stack
point~r is automatically initialized to the last-loaded
program location. In this example~ this location is used as
the top of the stack.

-""'-,.

Page 25-08

INPUTIOUTPUT FUNCTIONS 25.2 -- Device Dependent 1/0 Functions

START LDAA #SPACE INITIAL CHAR
LOOP LDX #OBUFF

LDAB #80
SCALL · STCHR FILL BUFFER
SCALL · PRINT PRINT THE STRING
INCA BUMP CHARACTER
CMPA #RUBOUT END OF DISPLAYABLE SEGUENCE
BNE LOOP
SCALL · MDENT EXIT TO MDOS

*
* WORKING STORAGE

* OBUFF BSZ 80 OUTPUT BUFFER
FeB CR
BSZ 80 5TAC~ SET HERE BY LOAD

'* END START BEGIN EXECUTION AT THIS LABEL

25.2.5 Physical sector input -- . DREAD, .EREAD

The. DREAD and . EREAD functions are both used to read a
single physical sector from the diskette into a specified
buffer. For multiple physical sector in~ut the functions in
section 25.2.7 should be used. The. DREAD function will only
return to the calling program if no diskette controller
errors are detected during the read attempt. The .EREAD
function, on the other hand, wi 11 return to the call ing
program whether an error occurred or not. The. EREAD
function will return the error status that was detected by
the diskette controller~

In either casel if a diskette error occurred that was
,... e t,.. y a b 1 e (eRe, del e ted d a t a ma r k , d a t a add res s ma r k lor
address mark eRe errors), the following steps were taken in
an attempt to recover from the error:

1. The sector was reread five times without
repositioning the read head.

2. The read head was stepped outward (towards
cylinder zero) a maximum of five cylinders,
repOSitioned over the cylinder in which the
sector to be read resides, and another five read
attempts were performed.

3. The read head was stepped inward (totdards
cylinder 76) a maximum of five cylinders,
repositioned over the cylinder in which the
sector to be re.ad resides, and a.nother five read
attempts were performed.

If an error occurs during the . DREAD function, the

Page 25-09

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

standard "PROM I/O" error message will be displayed giving
the status of the error and the sector number that was being
accessed. Control will then be given to the MOOS command
interpreter. If an error occurs during the. EREAD function,
the EXIT CONDITIONS described below appl~ (for C = 1).

If either OT these two functions is to access a diskette
in a drive which as not had the read
functions .DIRSM, . OPEN, . LOAD or . CHANG,
command), then the diskette controller

head restored (via
or via an MDOS
Tirmware must be
entr~ point is
is not restored

errors.

invoked to restore t.he head. The RESTOR
described in Appendix D. IT the head
properlYI it is possible to receive timeout

The diskette controller variables below location $0020
will be changed by these functions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

8 = The logical unit number.
are ignored.

Bits 2-7

x = The address of
parameter packet.
following Tormat:

a Tive-byte IIO
The packet has the

o Return status

1 Physical sector
number

2 to be read

3 Address oT 128
byte

4 sector bUTTer

C = 0 iT no errors occurred. The
remainder OT the CC is indeterminate.

The A register is indeterminate.

The X register is unchanged.

The B register contains the return
status returned in the packet ($30).

The first byte of the parameter
packet (Return Status) is set to $30
(A5.C I I z e r 0) . The r e ma i n d e roof ·t h e
parameter packet is unchange~:

The sector buffer
bytes read from

contains the 128
the specified

Page 25-10

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

physical sector.

c = 1 if an error occurred
The remainder of
indeterminate.

<. EREAD on 1 y >.
the CC is

The A register is indeterminate ..

The X registe'r is unchanged.

The B register contains the return
status returned in the first byte of
the parameter packet.

The first byte of the parameter
packet contains the diSkette
controller error ($31-$39>' Section
28.1 has a complete desc1'iption oOP
the diskette controller er1'ors.

The contents of the 128 byte sector
bUrrel' are indeterminate.

25.2.6 Physical sector output -- .OWRIT, .EWRIT

The . DWRIT and. EWRIT functions are both used to write a
single physical sector to the diskette from a specified
buffer. For multiple physical sector output the functions
described in section 25.2.8 should be used. The. DWRIT
function will only return to the calling program if no
diskette controller errors are detected during the write
attempt. The. EWRIT function} on the other hand, will return
to the calling program whether an error occurred or not. The
.EWRIT function will return the error status that was
detected by the diskette controller.

If an error occurred,
procedure described in section
attempted. In addition, the
those functions regarding the
apply to the . DWRIT and. EWRIT

the same type of recovery
25.2.5 (.DREAD, .EREAD) was
~ame precautions described for
restoring of the read head
funtti ons.

ENTRY PARAMETERS:

EXIT CONDITIONS:

Same as for . DREAD and .EREADi however,
the sector bufrer- must contain the
128 bytes that are to be written to
the diskette.

Same as for . DREAD and .EREAD; however,
the the contents of the sector buffer
are unchanged aft~r returning to the
calling program.

Page 25-11

INPUT/OUTPUT FUNCTIONS 25.2 -- Device Dependent I/O Functions

25.2.7 Multiple sector input -- .MREAD, .MERED

The .MREAD and .MERED functions are both used to read a
multiple number Or physically contiguous sectors from the
diskette into a specified buffer. The .MREAD function will
only return to the calling program iT nc diskette controller
errors are detected during the read attempt. The. MERED
function, on the other hand, will return to the calling
program IUhether an error occurred or not. The. MERED
runction will return the error status that was detected by
the diskette controller.

If an error occurred, the same type of re~overy

procedure described in section 25.2.5 <.DREAD, . EREAD) was
attempted. In addition, the same precautions regarding the
restoring of the read head described in that section apply to
the. MREAD and . MER ED ~unctions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The logical unit number.
are ignored.

Bits 2-7

x = The address o~ a seven-byte I/O
parameter packet. The paT'ameter
packet has the rollowlng rormat:

o Return status

1 : Starting physical :
sector number

2 to be read

3 Address o~

multiple
4 sector bU~Te~

5

6

Number aT
sectors

to be read

The sector bUTTer must be an integral
number of sectors in sizel and must
be large enough to accommodate the
number of sectors specified in bytes
5 and 6 of the parameter packet.

S~me as fo~.DREAD and .EREAD~ however,
the sector buffer contains data rrom
the number of sectors specified in
bytes 5 and 6 Qf the parameter packet
(only if no error occurred).

Page 25-12

INPUT/OUTPUT FUNCTIONS 25.2 Device Dependent lID Functions

25.2.8 Multiple secto~ output -- . MWRIT, .MEWRT

The . MWRIT and .MEWRT functions are both used to write a
multiple number oT physically contiguous sectors from a
speciried bUTTer to the diskette. The . MWRIT function will
only return to the calling program if no diskette controller
errors are detected during the write attempt. The .MEWRT
function, on the other hand: ~ill return to the calling
program whether an error occurred or not. The .MEWRT
function will return the error status that was detected by
the diskette controller.

If an error occurred~ the same type of recover~

procedure described in section 25.2.5 LDREAD •. EREAD) was
attempted. In addition, the same precautions regarding the
restoring OT the read head described in that section apply to
the. MWRIT and .MEWRT functions.

ENTRY PARAMETERS:

EXIT CONDITIONS:

Same as for .MREAD and .MEREDi howeve~,

the sector bUTTer must contain the
bytes that are to be written to the
diskette.

Same as ror .MREAD and .MEREDi howeve~,

the contents of the sector bUTTer are
unchanged after returning to the
calling program.

25.2.9 Diskette controller entry points

The diskette controller has various entry points that
allow the diskette to be accessed on a physical sector basis;
howeverl since these entry points are independent or MDOS,
they are described in a separate section (Appendix D). That
appendix also describes some entry points for accessing the
line printer on an MOOS-independent basis.

25.3 Device Independent IIO Functions

The following sections describe functions which
facilitate WTiting software for input/output operations
independent of the physical hardware device. In addition,
these functions are used to access files on the diskette
without having to perTorm physical sector lID.

Through the use oT a single parameter table, the 1/0
Control Block or IOCB, a common set of functions can be
accessed independently of. the I/O dev1ce. Thus, the same
function ~ould be called ror writing a record to a diskette
file or for writing a record to a line printer. The only
difference is in the initial parameterization of the lOeB.

Page 25-13

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent IIO Functions

" ---....
Th e norma 1 seq,uenc e' fo,.. call i ng th e I/O func t ions. .J

regardless of the device being used, ·is:

· RESRV
· OPEN
· QETRC
.PUTRC
· CLOSE
· RELES'

Reserve a device
Open a rile
Read a record
Write a record
Close a .pile
Release a device

The reading/writing of T'ecoT'dsl of COUT'seJ may not
necessarily be used Tor the same device. Once the file is
open, the record I/O Tunctions can be called as man~ times as
requi red.

Use of the device independent I/O functions will cause
the diskette cont1'oller variables below location $0020 to be
changed, regardless or whether or not a diskette device is
being used for a given I/O process.

In orde,.. to fully desc1'ibe each device independent liD
function, the structure of the lOeB must first be described.
In the description oT the errors that can be returned by each
Tunction; the names or the system s~mbols from the MDOS
equate Tile are used. These are noted in the description of
the status byte Or the IOCB, section 25.3.1. 1. A summary or
all possible input parameters that are required by the twelve
diffe~ent modes in which an IOCB can be used £s contained in
Appendix K.

25.3.1 I/O Control Block -- IOCB

The device independent I/O functions are parameterized
through the IOCB. The I/O functions, in turn, interface to a
device driver through another table, the Cont~oller

Descriptor Block or CDS (see section 26~2). It is only the
devi£e driver which interfaces di~ectly to the device.

The IOCB is a table of flags', bu-ffer pointers, and other
information which is maintained by the calling prog~am fo~

the duration of the I/O accesses that are to be performed.
Some of the entries in the IOCB must be initialized by the
program before calling an I/O function. Other ent~ies of the
IOCB are initialized and changed by the I/O functions
themselves. The entries of the IOCB must not be changed
between I/O accesses unless specifically indicated in the
ENTRY PARAMETERS section of each lID function's description.
The IOCB has the following format:

I

..... /

Page 25-14

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent lID Functions

Btjte
7 6 5 4 3 2 1 o <-- Bit position

v ---------------------------------
00 Error status IOCSTA

01

02

03

04

05

06

07

08

09

OA

OB

OC

OD

10 : S : 0 IT: F :

Data buffeT'
pointer

Data buffeT'
start address

Data bufrer
end address

Generic device word
or

CDB address

: R : LUN

File name
or

Maximum LSN referenced

File name continued
or

M

OE :Current segment descriptor word:

OF

10

11

12

13

File name continued
OT

Starting LSN of SDW

File name continued
or

Next logical sector number

Suffix
or

14 : Logical sector number oT 'EOF

15

16

Physical sector number
of file's RIB

17 ; W : D : S : C : N FMT

18 <reserved; =0)

IOCDTT - Data transFer
typ-e

IOCDB?

lOCDBS

IOCDBE

IOCGDW

IOCLUN -- Logical unit
number

IDCNAM / IOCMLS

IOCSDW

IOCSLS

IOCLSN

IOCSUF / IOCEOF

IOCRIB

IOCFDF - File descrip
tor flags

Page 25-15

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

7 6 5 4 3 2 1

19
(reservedi =0)

lA

113 PSN EN

lC (reserved; =0)

1D Initial new rile size

1E

IF

20

21

22

23

24

or
Se~tor bUrrel' pointer

Sector bUrrel'
start add1'9SS

Sector burf~r
end address"

Sector buf-fer
internal pointer

o

IOCDEN - Directory
entrq number

IOCSBP

rOCSBS

IoeSBE

IOCSEI

~
\

/

Page 25-16

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

IOCB FLAG DESCRIPTION SUMMARY

Field Name Bit

IOCDTT 10 6-7

IOCLUN

S 5

a 4

T 3

F 2

M 0-1

7
R 6

LUN 0-5

IOCFDF W F

D E

S o

c C

N B

Content

I/O transfer flag
Bit 6: 1 =) Output transfer
Bi t 7: 1 => Input transfer

Sector/record flag
o =) Record I/O
1 =) Sector IiO

Open/closed flag
o =)0 File open
1 =::> File closed

Truncate flag
o => Ignore truncate action
1 =) Truncate file upon closing

Non-file format flag
o =)0 File format mode
1 =) Non-file format mode

Mode flag
00 =:> Update mode, existing file
01 =::> Input mode, existing file
10 =) Output mode, new file
11 =) Update mode, any file

Not used <=0)
Reserved flag

o =) lOeB released
1 =::> lOeB reserved

Logical unit number ($30-$39)

Write protection bit
o =) No write protection
1 =) Write protected

Delete protection bit
o =::> No delete protection
1 =) Delete protected

System file bit
o =) Non-system file
1 =) System file

Contiguous allocation bit
o =) Segmented allocation
1 =) Contiguous allocation

Non-compressed space bit
o =) Spaces compressed
1 =) Spaces non-compressed

Page 25-17

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent IIO Functions

IOCB FLAG DESCRIPTION SUMMARY continued

Field Name Bit

!OCFDF FMT a-A

Content

File -Format
000 =~ User-defined format
001 => Use device's default -Format for

010 =)
011 =)

100 =::>
101 =>
110 =~
ili =>

binary records
Memory-image Tormat
Binary record -Format
Undefined format
ASCII record Tormat
Undefined -Format
ASClI-converted-binary record

forma t
0-7 Not used (=0)

IOCDEN PSN B-F
EN a-A

0-7

25.3. 1. 1 IOCSTA

Physical sector numbe~ ($03-16)
EntTY number within sector (0-7)
Not used <=0)

Error status

The IOCSTA byte contains the return status -From an lID
-Function. A zero in this byte indicates that an I/O function
completed normally without an.Y erTors. A non-zero value
indicates that an lID function encountered some sort of an
error. The -Following table contains all of the currently
defined values that can be returned in the IOCSTA. Along
with each value the system s~mbol equated to the value (MDOS
eq,uate file), and the standard error message that Ulould be
displayed iT the error message function were invoked to show
a message are given. The two-digit reference numbel"
displayed along with the error message should be used to
locate the error message's description in Chapter 28. It
should be noted that in order to decode the IOCSTA byte into
the pro per err 0 r me s 5 age I the e T' roT' me s sag e Tun c t ion, . MDER R ,
must be called with the B accumulator equal to zero. Section
27.4 describes the error message handler.

Page 25-18

INPUT/OUTPUT FUNCTIONS

IOCSTA
Value

00
01
02
03
04
05
06
07
08
09
OA
013
OC
00
OE
OF
10
11

12
13
14
1S

16
17

18
19

St}stem
Sgmbol

I$NOER
I$NODV
ISRESV
ISNORV
I$NRDY
I$IVDV
ISDUPE
I$NONM
ISCLOS
I$EOF
I$FTVP
ISDTYP
ISEOM
ISBUFO
ISCKSM
I$WRIT
I$DELT
I$RANG

I$FSPC
ISDS?C
ISSSPC
ISIDEN

I$RIB
I$DEAL

ISRECL
ISSECB

25.3 -- Device Independent I/O Functions

Standard Error Message Displayed
by . MDERR -(B=O, X=IOCB address)

Normal return, no error
** 28 DEVICE NAME NOT FOUND
** 18 DEVICE ALREADY RESERVED
** 19 DEVICE NOT RESERVED
** 11 DEVICE NOT READY
** 31 INVALID DEVICE
** 06 DUPLICATE FILE NAME
** 04 FILE NAME NOT FOUND
** 20 INVALID OPEN/CLOSED FLAG
** 21 END OF FILE
** 14 INVALID FILE TYPE
** 17 INVALID DATA TRANSFER TYPE
** 37 END OF MEDIA
** 22 BUFFER OVERFLOW
** 23 CHECKSUM ERROR
** 26 FILE IS WRITE PROTECTED
** 10 FILE IS DELETE PROTECTED
** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE
** 41 INSUFFICIENT DISK SPACE
** 40 DIRECTORY SPACE FULL
** 42 SEGMENT DESCRIPTOR SPACE FULL
** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
** 32 INVALID RIB
** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY- ENTRY EXISTS AT
nnnn

** 45 RECORD LENGTH TOO LARGE
** 52 SECTOR BUFFER SIZE ERROR

25.3.1.2 IOCDTT -- Data trans~er type

The IOCDTT byte contains the basic inf~rmation about an
liD access: whether an input or an output transfe~ is to
take place, whether secto~ or record 1/0 is to be performed,
whether the file is currently open or closed, whether a file
(diskette only) should be truncated when it is closed, and
whethe~ the file or non-file format mode is to be used.

Page 25-19

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

7

IO

The format or the IOCDTT byte is shown below:

6 5 4 3 2

; 5 i a i T l F ;

1 o

M

Mode flag
Non-file Tormat rlag
Truncate ~lag
Open/closed flag
Sector/record flag
1/0 transrer Tlag

Regardless of the t~pe of device being accessedl the
non-file format flag (F) and the mode flag (M) are to be
initialized by the user. If the device is a diskette drive,
the user may also change the sector/record flag (5) or the
truncate flag (T) between IIO function calls. If the flags
are to be changed after the IOCDTT byte has been initializedl
care must be taken so that none of the system supplied flags
are destroyed. Flags must be itor-ed II into the IOCDTT to be
set I and /I and-ed" out of th e IDCDTT to be cleared, one e th e
IOCB has ,been reserved.

The properties controlled by the various bits of the
IOCDTT are explained below.

10 (Bits 6-7) -- I/O transfer flag

These two bits are controlled exclusively by the
I/O functions themselves. They should not be set or
changed by the user in any case. If 'bit 6 is set to
one, the device driver T'ecognizes an output tl"ansfer.
IT bit 7 is set to one, the device driver recognizes
an input transfer. The device driver will not be
able to input or output a character iT both of these
bits are zero or one.

---...

Page 25-20

I

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

S (Bit 5) ,-- Sector/record -Flag

This bit controls whether sector 01' record
processing is performed during an I/O function. For
non-diskette devices, this bit must always be zero.
For diskette devices; this bit can be in either
state. A one implies that logical sector I/O will be
performed. A zero implies that record I/O will be
perTormed; however, care must be taken ·that the
corresponding I/O function is called for the proper
state of the bit. That is, the record I/O functions
(.GETRC and .PUTRC) cannot be called if US" is set to
one. Likewise, the logical sector I/O functions
(.GETLS and. PUTLS) cannot be called if US" is set to
zero.

Open/closed flag

This bit is supplied by the system liD functions
if they are properly called in their correct
sequence. The "OU bit must not be changed once I/O
transfers have been made. A one indicates that the
file (or device) is closed. A zero, on the other
hand" indicates that the file (or device) is open.

T· (Bi t 3) -- Truncate -Flag

The truncate -Flag is only applicable to liD on a
dis k e t ted e vic e . No rma 1 1 Y , the use r UI ill not h a vet 0

set or change this biti however, certain cases will
arise where changing of the truncate fiag by the user
may be necessary (see .CLOSE function, section
25.3.6). The truncate flag is used as an indication
that new space was allocated to a diskette file. If
it is set to one, any unused parts of the newly
allocated space (space beyond the maximum logical
sector number referenced in IOCMLS) will be
deallocated (returned to the available diskette
space) when the file is closed. If the truncate flag
is zero, no truncation will occur upon closing.

A special case exists if IOCMLS contains the
value SFFFF when the truncate flag is set to ·one. In
addition to having all of the file's space.
deallocated, the directory entry belonging to the
rile is r-emoved rrom the directory. The file is. in
effect~ deleted.

Page 25-21

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent liD Functions

F (Bit 2) -- Non-file format flag

I' "F" is set to one} the non-file 'ormat mode
is indicated. In this mode, all 1/0 must be to a
non-diskette device. No FDR (File Descriptor Record)
processing is performed. The only valid file format
that can be supported in this mode is ASCII (FMT = 5
of IOCFDFL

1ft he'· F U , 1 a g iss e t to z e l' 0 I the nth e f i 1 e
format mode is indicated. In this mode; 1/0 can be
either to a diskette or to a non-diskette device. If
a non-d is k ette d evi c e is being used I FDR proc ess ing
IJJ i 11 b e p er f 01" m e d . T hat i s I an FDR t1I i 11 be Ulr itt eon
to the device if opened ror outputl or an FDR will be
saarchad fcr
file format
the diskette.

on the device if opened ~or input. The
mode (F = 0) must be used ror accessing

M (Bits 0-1) -- Mode rlag

The mode flag can take on one of four different
values:

00 =) Open an existing Pile (diskette only) ror
, either input or output.

01 =~ Open an existing diskette rile or open a
device for input only.

10 =/ Create a new diskette file or open a device
for output only.

11 =) Open an existing rile or create a new rile
<diskette only) ror either input or output.

The update modes (M = 00 or 11) can only be used
when accessing diskette riles. The way in which the
rour different modes are used is described in the
. OPEN function, section 25.3.3.

25.3. 1. 3 IOCDBP -- Data bufrer pointer

This two-byte field OT the rOCB is used as a working
storage area by the record IIO ~vnctions, This ~"try should
not be changed by the calling program once lID functions have
been called.

25.3. 1. 4 IOCDBS -- Data burreT" start

-~\

__ . "..J

This two-byte field of the IoCB must be initialized by JI

the calling program berore any record IIO runctions are

Page 25-22

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

called. IOCDBS must be configured to contain the address of
the first b'lte of a buffer intoUlhich a record is to be re-ad,
or Trom which a record is to be written. None of the 1/0
functions will alte~ IOCDBS. The data bUTfer ma~ be used for
FDR processing by the . OPEN function (section 25.3.3) ~hen
dealing with non-diskette devices.

25.3.1.5 !OCDBE -- Data buffer end

This two-byte field of the IOCB must be initialized by
the calling program before any record I/O functions are
called. IOCDBE must be configured to contain the address of
the last byte of a buffer into which a record is to be read,
or from which a record is to be written. During record
input~ IOCDBS and IOCDBE define the maximum size record that
the buffer can accommodate. During record outputl lOCDES and
IOCDSE describe the first and last byte of the record to be
written. None of the I/O functions will alter IOCDBE. The
data bUTTer may be used for FDR processing b~ the . OPEN
function (section 25.3.3) when dealing with non-diskette
devices.

25.3.1.6 IOCGDW -- Generic device word

This two-byte field of the IOCB serves a dual function.
Before any I/O functions can be invoked, IOCGDW must contain
the MDOS device name that is to be accessed (se~ section
25.1>. The device name consists Or two ASCII cha-racters.
Once the . RESRV function (section 25.3.2) has been called,
IOCGDW will contain the address of the controller descriptor
block (CDB, section 26.2.1) associated with that device.
After the CDS address has been put into IOCGDW, the contents
of this field must net be changed by the calling program.
Section 26.2 contains a description of how to configure the
IOCGDW field for non-supported devices.

25.3.1.7 IOCLUN -- Logical unit number

The IOCLUN byte contains two pieces of information.
Initially, the calling program must store the logical unit
number of the device to be accessed in this byte. The
logical unit number identifies a specific device within a
g en e ric d e vic e fa m i 1 y (e. g., d r i ve z e roo r the fa mil y DK).
If there is only one device in a generic device family, a
logical unit number of zero must be placed in IOCLUN.
Logical unit numbers should be ASCII numbers in the range
$30-$39 (0-9>' Bit URn of IOCLUN indicates whether or not
the IOCB has been reserved <. RESRV function>.· Initially,
when the logical unit number is stored in IOCLUN, bit URI!
wi 11 be set to zero. After the . RESRV functi on has been
successrully invoked, bit fiR" will be set to onel indicating

Page 25-23

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

that the IOCB has been ~eserved. The IOCLUN Tield must not
be changed by the calling program aTter the .RESRV function
has been called.

25.3.1.8 IOCNAM -- File name

These eight bytes of the IOCB serve a dual purpose. If
the non-file rormat mode is being used (F = 1 of IOCDTT),
IOCNAM is not used at a 1 h however, in th e f i 1 e format mod e,
IOCNAM must contain the name of the file to be accessed. The
file name must be in the valid MDOS file name format. Any
unused parts of the name must be spaces ($20), The file name
should be placed into IOCNAMbefore the .OPEN function is
invoked. Arter a file has been opened! the eight bytes will
be replaced with the four two-byte fields IOCMLS, IOCSDW,
IOCSLSI and IOCLSN (only if the device is diskette).

When dealing with non-diskette devices in the file
fo~mat mode, the IOCNAM entry can be configured so that the
f i ~st by te is a binary z era. In th is ease, the . OPEN
function will search ~O~ the first FDR on the non-diskette
device, and place the 'ound file name (and suffix) into
IOCNAM (and IOCSUF >.

25. 3. 1. 9 IOCSUF -- Suff i x

This two-byte field of the IOCB serves a dual purpose.
If the non-file Tormat mode is being used (F = 1 of IOCDTT) I

I DC SUF i s not u's e d a tal I ; h 0 bI eve T' lin the f i 1 e r 0 ~ ma t mod e ,
IOCSUF must contain the suffix Or the file to b~ accessed.
The suffix must be in the valid MDOS suffix format. Any
unused parts of the suffix must be spaces ($20). The suffix
should be placed into IOCSUF befoT'e the . OPEN function is
invoked (at the same time that the file name is placed into
IOCNAM>' After a file has been opened, IOCSUF will be
replaced with the two-byte field IOCEDF (only if the device
is diskette>. If the device being accessed is the system
console, the Ti~st character of the IOCSUF field may be
c han g ed' b y the use,.. to a dis pIa y a b 1 eASe I I c h a r act e T'
($20-$5F>' Then} wheneveT' an input request is made on that
device, the characteT' will be displayed as an input prompt.

When dealing with non-diskette devices in the rile
format mode, the IOCNAM entry can be configured so that the
T irs t b Y t e i s a bin a r y z e,.. 0 . I nth i s cas e, the . OP EN
function will sea~ch fo~ the fi~st FDR on the non-diskette
device, and place the found rile name (and sUrrix) into
IOCNAM (and IOCSUF).

Page 25-24

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O FunctiDns

25.3.1. 10 IOCMLS -- Max imum LSN referenced

This two-byte field of the IOCB overlays the first two
bytes of the IOCNAM after the . OPEN function has been called
(diskette I/O only). It is a system-maintained field that
contains the maximum logical sector number ever referenced by
any of the I/O functions. IOCMLS and the truncate flag (T of
IOCDTT) are used in determining the amount o¥ newly allocated
diskette space that is to be deallocated from a fi~e when it
is closed. Space will only be deallocated if the truncate
flag is set to a one. Since MDOS automatically sets the
truncate flag to a one if new diskette space is allocated to
a file, any unused space will always be retur~ed to the
available space pool.

Normall~1 the user- never changes the IOCMLS O~ the
t~uncate flag in the IOCDTT since the truncate flag is
automatically set whenever additional space allocation is
performed or whenever a new file is created. When accessing
an ex is tin 9 f i 1 e us i n 9 bot h in put an d 0 u t put (M = 00 or 11 ·0 f
IOCDTT), however, the truncate flag may have to be set to one
by the use~ if the file is to be shortened or if the
end-of-file pointer in the RIB is to be updated. If an
extant ~ile does not gro~ in size, the truncate flag ~ill be
zero.

In addition, when files are to. be deleted (upon a
subsequent. CLOSE function' cal-l) I the IOCMLS must be set to .a
value of SFFFF and the ti'uncate flag must be set to one.

25.3.1.11 IOCSDW -- Current SDW

The IOCSDW field overlays the second two bytes of IOCNAM
after the . OPEN function has been called <diskette I/O only).
This field contains the segment descriptor word which
identifies the current file segment that can be accessed. If
another segment of the file is to be accessed, the disk
driver will automatically reread the file's RIB and extract
the appropriate SOW into IOCSDW. The contents of IOCSDW
should never be changed by the calling program.

25.3.1.12 IOCSLS -- Starting LSN of SDW

The IOCSLS field overlays the thi~d two bytes of IOCNAM
after the . OPEN function has been called (diskette IIO only).
This field contains the starting logical sector number of the
current segment descriptor word. The contents of IOCSLS
should never be changed by the calling program,

Page 25-25

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent liD Functions

25.3.1.13 IOCLSN -- Next LSN

The IOCLSN field overlays the fourth two bytes of IOCNAM
after the . OPEN function has been called (diskette I/O only).
This rield is never changed by the calling program if record
IIO (5 ~ 0 of IOCDTT) is being used. If logical sector I/O
is being used (5 = 1 of IOCDTT) I then rOCLSN can be changed
b~ the calling program to specify ~hich logical sectors are
to be read from or written to the file. This feature allows
the calling program to randomly access the file (by logical
sector number) without having to know physically where the
file resides on the diskette. After an I/O access has been
completed,- IOCLSN lUill contain the logical sector' number or
the next sect~r on the diskette to be accessed. When using a
multiple sector buffer, IOCLSN may have been incremented by
more than one: depending on the number 01= sectors processed.

25.3.1.14 IOCEOF -- LSN of end-of-file

The IOCEOF field overlays IOCSUF after the . OPEN
function has been called <diskette IIO only). IOCEOF is a
system-maintained parameter that represents the logical
sector number Or the logical end-of-Tile. This value must
not be changed by the calling program once the . OPEN Tunction
has been invoked.

25.3. 1. 15 IOCR IB -- PSN of RIB

This two-byte rield or the IOCB is initialized with the
physical sector number of the file's RIB after the . OPEN
function has been called <diskette I/O only>. The RIB is
used to access the file via its SDWs to allocate additional
space, to deallocate unused spaceJ and to monitor the LSN of
the rile's logical end-of-file. The IOCRIB entry should
never be changed by the calling program.

25.3.1.16 IOCFDF File descriptor flags

This two-byte field contains the rlags that describe the
inherent and the changeable attributes of a file. The format
of the IOCFDF entry is sho~n below:

..-/

Page 25-26

I

INPUT/OUTPUT FUNCTIONS . 25.3 -- Device Independent I/O Functions

F E D c B A 9 8 7 6 4 3 2 1 o

: W f DIS : C ~ N: FMT

<-------- Not Used (=0) -------)

File format bits
Non-compressed space bit
Contiguous allocation bit
System file bit
Delete protection bit
Write protection bit

The functions of the varlOUS bits Q,_ described below:

W (Bit F) -- Write protection bit

The "w n bi't only applies to diskette files. If
this bit is set to onel the rile can only be accessed
with input requests. Any IIO functions that attempt
to write to a rile with the "W" bit set will return
an error. In addition, the file cannot be deleted.
If the "W" bit is set to zero, the file can be read
r rom I wr itt en to, 0 T' del e ted (the II D II bit m u s t b e
zero also). The "W" bit is one or the changeable
attributes of a file.

D (Bit E) -- Delete protection bit

The "D" bit only applies to diskette files. If
this bit is set to one, the file cannot be deleted.
If the liD" bit is set to zero, the File can be
deleted (the "W" bit must be zero also). The "0" bit
is one of the changeable attributes of a file.

S (Bit D) -- System file bit

The "S"·bit only applies to diskette files. If
this bit is set to one, the file is considered to be
a system file. System files are treated specially by
the D I R, DEL, and DOSGEN comma n d s . 1ft he" S II bit i s
set to zero, the file is not a s'jstem file. The "sn
bit is one of the changeable attributes of a file.

Page 25-27

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

C (~it C) -- Contiguous allocation bit

The "e" bit only applies to diskette files. If
this bit is set to one, only contiguous diskette
space can be allocated to the file. All files whose
contents are to be loaded into memory directly from
the diskette must be allocated contiguous space. !r
the ftC" bit is set to zerOl the -File may be allocated
segmented diskette space. The "e" bit is one of the
inhe~ent attributes of a file. It is specified at
the time the Tile is created and cannot be changed
thereafter.

N (Bit B) -- Non-compressed space bit

The "Nil bit only applies to diskette files. If
this bit is set to one, ASCII records ~ritten to the
-File Ulill not have spaces compressed. IT the liNn bit
is set to zero, ASCII Tecords written to the Tile
Ulill have spaces compressed into a byte of the
Tollo~ing format:

7 ·6 5 4 3 2 1 o

Number Or compressed spaces
CompreSSion flag (=1)

All MDOS commands CTeate ASCII riles with space
compression (N = 0) in o~der to minimize the amount
of dis k e t t e spa c e con 5 ume d . The" N I: bit i s on e 0 f
the inherent att~ibutes o~ a file. It is specified
at the time the file is c~eated and cannot be changed
thereafter. The space compression att~ibute is only
meaningful ir the file format is ASCII record (FMT =
5). For other ro~mats, the space. compression
attribute is ignored.

FMT (Bits a-A) -- File format bits

The rile ro~mat bits de$c~ibe the internal data
structure oT the file. The file rormat is one of the
inherent attributes of a file. FMT is specified at
the time the file is created and cannot be changed
thereafter. The following table lists the values of
FMT and their meanings:

.\
)

Page 25-28

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

FMT File -Format

o User-defined -Format.
valid for diskette

This -Format is only
files. The record I/O

functions cannot be used to access files with
t his forma t. On 1 y log i c a I sec t or I /0 can b e
performed with this -Format. The calling
program is responsible for extracting data
from the sectors according to his data
struc ture.

1 Use device's default format Tor binary
records. Each device has associated with its
CDS (section 26.2) a flag that indicates ~hat
the default binary record format is (either
FMT = 3 or FMT = 7). Since some devices can
only process seven-bit data while other
devices can process both seven-bit and
eight-b it data, th is -Format (FMT = 1) allows
a program to process binary records without
knowing the specific format supported by a
particular device. The program will alwa~s
be dealing with eight-bit data in memory.
The FMT field is automatically changed to
either a "3" or "7" depending on the device
by the . OPEN function.

2 Memory-image format. This format applies
only to diskette files. Any f~le whose
contents are to be loaded into memory
directly Trom the diskette must be in the
memory-image format. Due to the nature of
the diskette controller, memory-image format
files must be allocated contiguous diskette
space (C = 1 or IOCFDFL Memory-image riles
have no record information within the data
sectors. All information concerning the
starting load address, number or bytes to
load, etc. I is contained in the rile's RIB.
The load information must be written into the
RIB by the program that is creating the
memory-image filei the information is not
automatically supplied by any system
function. The load information must meet the
requirements defined in section 24.2. The
~ecord I/O functions cannot be used to access
files with this format. Only logical sector
I/O can be performed with this format.

Page 25-29

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

3 Binary rec ord rormat. Th is format ap pI i es to
both diskette and non-diskette files;
however, non-diskette riles can only be
accessed in the Tile format mode (F = 0 Or
IOCDTT) using this format.

4 This format is undefined and should not be
used.

5 ASCI I recoi'd rormat. ih i s format app 1 ies to
both' diskette and non-diskette files.
Non-diskette riles of this format can be
accessed in either the file format or the
non-file format modes. ASCII record files
can be space compressed, but only if theq
reside on diskette.

6 ihis format is undefined and should not be
used.

7 ASClI-converted-binary record format. This
format usually applies to non-disxette files.
This format is intended to be used for
~riting binar~ record files rrom the diskette
to a non-diskette device that can only accept
seven-bit data bytes. Otherwise, this rormat
is identical to FMT = 3.

NOT USED (Bits 0-7) -- Reserved area

The least significant byte of the IOCFDF rield
is reserved ror ruture expansion. This b~te must be
zero ror all riles.

25.3. 1. 17 IOCDEN -- Di rec tory entry numb er

Associated with each di~ectory entry is a number, the
directory entry number, which is a runction Or the physical
location of the entry within the directory. The directory
entry number is not found anywhere in the directory, rather
it is a calculated quantity. The two-byte IOCDEN field is
supplied by the system after the . OPEN function (section
25.3.3) has been called. It only applies to diskette files.
The contents o~ !OCDEN should never be changed by the calling
program. The IOCDEN field has the following format:

J

Page 25-30

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

F E . D .C B A 9 8 7 6 5 4 ·3 2 1 o

PSN EN

~--------~---~---<--------- Not Used (=0) ------->

Position within sector (0-7)

Physical sector number (~3-$16)

2~.3. 1. 18 IOCSBP -- Sector buffer pOinter

The IOCSB? field only applies to diskette I/O. This
two-byte ~i@ld or the IOCE serves a dual purpose. If an
existing Tile is being openedJ the initial value of IOeSB? is
ignored. IT a file is being created, this -Field must contain
the initial number of sectors that are to be allocated to the
f i 1 e . ITt h e va 1 u e 0 f z e r 0 iss pee i fie d I MDOS UI i 11 ~ e fa u 1 t
the initial file size to a full segment descriptor (32
clusters) and no error will occur during the file's initial
space allocation if fewer than 32 clusters are available. If
a non-zero (non-default) initial size is specified, however,
an error will occur if, that initial size cannot be allocated.
The .ALLOC system function description (section 27.4>
contains a more detailed explanation of the allocation
mechanism.

After a file has been opened, the IOeSBP contains a
pointer into the sector buffer that is used by the record 110
functions. Therefore} the contents of IOeSB? must not be
changed by the calling program once a file is open when using
the record I/O functions. If the sector 110 functions are
used, then IOCSBF can be altered by the calling program in
any way after a file is open.

25.3. 1. 19 IDeSBS -- Sector buffer start

This two-byte field of the IOCB only applies to diskette
I/O. It must be initialized by the calling program before
an~ of the I/O functions are invoked. IOCSBS must be
configured to contain the address of the first byte of a
buffer into which one or more 128-byte sectors can be read.
This sector buffer will be used Tor directory searches as
well as for data transfers. lOeSaS will not be altered by
an~ of the I/O functions.

25.3.1.20 IOeSBE -- Sector buffer end

This two-byte field of the IOCB only applies to diskette
lID. It must be initialized by the calling program before

Page 25-31

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

any aT the I/O runctions are invoked. IOCSBE must be
configured to contain the address Or the last byte Or a
sector buffer that is exactly large enough to accommodate an
integral number or 128-byte sectors. An error will occur ir
the size or the sector buffer described by IOCSBS and lOeSDE
is not correct. SpeciFically} the following relationship
must be true:

I OCSBE-IOCSBS+ 1
--------------- = INTEGER (Maximum # of Sectors)

128

IoeSBE ~ill not be altered by any or the IIO Tunctions.

25.30 L 21 IOeSE! -- Internal buffer pointer

This two-byte rield of the IOCB applies only to diskette
I/O. IOeSEI is used to indicate the end or valid data within
sector buffers. Since partial buffers (an integ~al number of
sectors less than or equal to the maximum sector buffer size)
may be read or writtenJ IOCSBI is used to locate the last
valid data byte within a sector buffer.

rOeSB! is initialized and changed by the lID runctions.
The contents Or IOeSBI must not be changed by the calling
program aTter a file has been opened when using the record
IIO functions; however, when using logical sector 1/0, the
contents or IOCSBl may be changed. The value OT lOeSBI will
always be less. than or equal to the value oT IOeSBE. The
following relationship must always be true:

IOCSBI-IOCSBS+l
--------------- = INTEGER (Actual # OT Sectors)

128

25.3.2 Reserve a device -- .RESRV

The .RESRV system function links the appropriate
controller descriptor block (CDS) to the calling program's
IOCB. The .RESRV function must be called before any other or
the device independent liD functions can be invoked. Section
26.2.4 should be consulted ror a description or the impact on
the .RESRV call and the IOCB when using non-standard devices.

ENTRY PARAMETERS: x = The address of an IOCB.

IaeGOW must contain one
generiC device names:
DK, or LP.

the valid
CP, CR,

IOCLUN must contain the logical unit
number Or the device to be reserved.

Page 25-32

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

Bit uRn o~ IaCLUN must be set to zero
(this will normally be the case when
the ASCII logical unit numberJ
$30-$391 is stored into IOCLUN).

All other entries o~ the IOCB need not be
initialized.

A is indeterminate.

B = The contents of the IOCSTA entr'l. If:
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C =0 and Z = 1 if no errors occur~ed (B
= 0). The remainder af CC is
i nd eterrni nate.

C = 1 and Z = 0 if an error accur-red (B
not z er a) . The r ema in del' 0 r C Cis
i nd e terrni nate.

The IoCB is afFected in the following manner if
an error occur-red:

IOCSTA c onta ins th e error status. Th e
following error statuses can be
-returned: I$IVDV~ I$RESV, I$NODV.

The remainder of the IDCB is not changed.

The IoCB is affected in the fallowing manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the 1110" bits set to zero and
the "0" bit set to one (file closed).
The remainder of the IOCDTT is not
changed.

IOCGDW contains the address of the CDB
that is associated with the generic
device. The original contents of
IOCGDW are destroyed.

IoCLUN has the "R" bit set to one (IOCB
reseT'ved). The remainder or IOCLUN
is not changed.

The T'emainder of the IOCB is not changed.

Page 25-33

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent IIO Functions

25.3.3 Open a rile -- . OPEN

The . OPEN function prepares a rile for subsequent access
by the record or logical sector IIO functions. Data cannot
be transrerred between the file (or device) and the calling
program until the ,OPEN function has been invoked. The
specific function performed by . OPEN depends on the device
type and on the contents of the IOCDTT entry (specifically,
the non-file format flag (F) and the mode flag (M».

There are four modes in which a rile can be opened. The
input mode (M = 01 of IOCDTT) will allow only input requests
to be issued to the rile. The out'put mode (M = 10 Or IOCDTT)
will allow only output requests to be issued to the rileJ and
the update modes (M = 00 or II o~ IOCDTTl Wlll allOw both
types or requests to be issued to the file. The update modes
are only valid if the device type is DK.

The non-file format rlag also has an effect on what
.OPEN does. If the rile rormat mode is speciried (F = 0 of
IOCDTT), then FDR processing wi 11 be per-rormed. FDR
processing consists of searching for a rile descriptor record
or a directory entry if the rile is being opened ror input.
FDR processing consists o-r cre~ting a rile descriptor record
or a directory entry ir the rile is being opened ror output.
One Torm ,of update mode processing (M = 11 or IOCDTT) will be
identical to the input mode processing ir the rile already
exists in the dir~ctorYi or, it ~ill be identical to the
output mode pr~cessing ir the file does not exist in the
directory. The other form of update mode processing eM = 00
of IOCDTT) will always be the same as the input mode
processing since the file must exist ror this mode.

Ir a memory-image rile is being created, the load
inrormation must be written into the RIB by the program that
is creating the rile and must meet the requirements described
in section 24.2. The RIB can be accessed using logical
sector I/O. It has the logical sector number $FFFF.

Ir the non-file format mode is specified (F = 1 of
IOCDTT), then no FDR processing is performed. The non-file
format mode is invalid for diskette devices.

ENTRY PARAMETERS: x = The address of an IOCB which has been
properly reserved (i. e. I no errors
occurred) via the .RESRV function.
Since the IOCB needs to be reserved
only once per device or a given
log i cal un i t n u m be r , i tis P os s i ,b 1 e
to open and close a file and then
reopen another rile using the same
lOeB without issuing another .RESRV
calLI nth e s e ins tan c e s, the I DC B

"\
I

.J

Page 25-34

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

must not contain information ror an
open file {L e. ~ the first file must
have been properltj closed>. The
.OPEN function does not Torce an
already-open file to be closed.

IOCDTT must have the "M" bits set for
inputi output; 0'1' update modes~ The
update modes are only valid for
diskette devices. In addition, the
"F" bit must ~pecify file or non-file
format. The non-file format mode is
invalid for diskette devices. The
US" bit must indicate the subsequent
access method to be used. Sector IIO
is invalid Tor non-diskette devices.

lOCDBS must contain a buffer start
address unless diskette IIO (either
record or logical sector) or the
non-file format mode has been
speciried in the IOCDTT. The data
buffer described by IOCDBS and IOCDBE
is used - for FDR proc es sing wi th
non-diskette devices. If used, it
must be large enough to accommodate
an FDR (s e c t i on 24. 3. 4).

IOCDBE must contain a buffer end address
unless diskette 1/0 (either record or
logical sector) or the non-file
format mode has been specified in the
IOCDTT. The data buffer described by
IOCDBS and IOCDBE is used for FDR
processing with non-diskette devices.
If used, it must be large enough to
accommQdate an FDR (section 24.3.4>.

IOCNAM must contain a valid
MDOS-formatted file name unless the
non-file format mode has been
specified in the IOCDTT or unless the
first b~te of file name is binary
zero. In the file format mode on a
non-diskette device being opened for.
input, the . OPEN function will cause
a search to be performed for the
first FDR iT the first byte of IOCNAM
is a binary zero. This file will
then be used by the subsequent record
input requests. Otherwise, the file
name supplied in IOCLUN, IOCNAM, and
IOCSUF is searched for or created
(depending on M of IOCDTT).

Page 25-35

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

IOCSUF must contain a valid
MDOS-~ormatted suffix unless the
non-file format mode has been
speciried in the IOCDTT or unless the
first byte or IOCNAM contained a
binary zero (see above).

IOCFDF must only be initialized to
specify the file format (FMT bits) if
the output mode (M = lOoT IOCDTT) or
the update mode to a non-existing
file (M = 11 of IOCDTT) is indicated.
In addition, if the device type· is
OK, the other bits of IOCFDF must be
specified for these two open modes.
A special case exists ir the non-Tile
fo~mat mode is indicated in the
IOCDTT. In th i s i nstanc e, th e FMT
bits of IOCFDF must be set to the
ASCII ~ecord format (FMT = 5).

It is not ~ecommended that diskette
files be created with the protection
at tl" i but e sse tIS in c e the y . 1&1 i 11
prevent a rile from being deleted
upon closing if no information was
wr itt en in tot he· f i 1 e. Th e
protection attl"ibutes should be set
via the . CHANG system function or via
the NAME command.

IOCSBP must be initialized if the device
type is OK and either the output mode
(M = 10 of IOCDTT) or the update mode
to a non-~xisting file (M=11 of
IOCDTT) is specified. A value of
zero will cause the default space to
be initially allocated to the file.
A non-zero value will cause that
number of sectors to be used fo~ the
initial allocation.

A non-zero value in IOCSBP when
opening an existing file will have no
affect on the allocation Or the file.
Existing files only change in size
when writing beyond the end-of-file
or when closing them with the
truncate flag set.

IOCSBS must contain the starting address
of a sector buffer only if the
devi~e type is OK. The sector buffer
must be an integral number of sectors

Page 25-36

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

ins i z e (s e e sec t ion 25. 3. 1. 20 >.

IoeSBE mu~t contain the address of the"
last b~te of a sector buffer only if
the device type is DK. The sector
bUTTer must be an integral number of
sectors in size (see section
25. 3. 1. 20 >.

A is indeterminate.

13 = The contents of the IOCSTA entT'Y. If
no errors occurred, B usill be zero.
A non-zero value indicates that an
error oc curT' ed.

X is unchanged.

C = 0 and Z = 1 if no errors occu~red (B
= 0). The remainder of CC is
i nd etermi nate.

C = 1 and Z = 0 if an e~ror occurred (B
not zero>. The remainder of CC is
indeterminate.

The lOCB is affected in the following manner if
an error occurred:

IoeSTA contains the error status. The
follo~ing error statuses can be
returned: ISCKSM, I$CLOS, ISDSPC,
!SDTYP, ISDUPE, I$EOF, !SFSPC,
!$FTYP, I$EOM, I$IVDV, !$NONM,
ISNORV, !$NRDY, ISRIB, I$WRIT.

The remainder of the IOCB and the
contents of the data buffer
(non-diskette device) and the sector
buFfer (diskette device) are
i nd etermi nate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the "0" bit set to zero ('ile
open). The itT" bit ~ill have been
set to one if a new 'ile had to be
created on the diskette. The "10"
bits are indeterminate. The
remainder or IOCDTr is not changed.

Page 25-37

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent liD Functions

loeDSP is indete~minate.

IOCNAM is unchanged i~ the device type is
not DK. If the device type is DK,
then IOCNAM will have been replaced
with the rou~ ent~ies IOCMLS, IOCSDW.
IOCSLS and IOCLSN.

IOCMLS contains the value $FFFF if the
device type is OK.

IOCSDW contains the first SDW from the
rile's RIB if the device type is OK.

IOCSLS contains the value $FFFF if the
device type .! - 'I'"'' J.!:» lJf"\.

IOCLSN contains the value ze~o ir the
device type is DK.

IOCSUF is unchanged if the device type is
not DK. If the device type is DK,
then IaCSUF will have been replaced
with the rOCEOF entr~.

!OCEOF contains the logical sector number
of the logical end-of-file if the
device type is DK.

IOCRIB contains the physical sector
numbe~ of the file's RIB if the
device type is DK.

!OCDEN contains the
ent~~ number if the
OK.

file's
device

director'J
type is

IOCFDF contains the FDF field from the
di~ectory entry or the FDR (if open
mode is input or update to existing
f i 1 e). Oth erUli sel th e IOCFDF fie 1 d
contains its initial value; hOtileVerl
ir the initial FMT bits contained a
.1 1 .. , FMT til i 11 h a ve b e en c han g edt 0

e i the T' a "3 II 0,.. a ii 7 ii as des c l' i bed i n
section 25.3.1. 16.

IoeSBP contains the value Or zero ir the
d e vic e t y p e i s OK.

IOCSEI contains the value in IOCSBE.

The remaindeT' of the IOCB is unchanged.

"
\

. .J

Page 25-38

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

The contents oT the data bu~fer

. (non-diskette device) and the se~tor
buffer (diskette device) are
indeterminate.

25.3.4 Input a record -- .GETRC

The . GETRC function reads a record from an opened file
or device into a data buffer. The specific processing
performed by .GETRC depends on the FMT bits of IOCFDF and on
the device type. The record input function will process
three file formats: binar~ record (FMT = 3), ASCII record
(FMT = 5); and ASClI-converted-binary record (FMT = 7>'

Binary records will be stripped of their record header
(see section 24.3), their byte count, and their checksums.
Only the data characters between the byte count and checksum
fields will be returned. If characters are encountered after
the checksum field of one binary record but before the header
field of the next record, they wi 11 be ignored.

ASCII records will be stripped of null characters, line
feeds, rubouts, and the device control characters DC1-DC4.
When reading records from the diskette, compressed spaces
(bytes with bit 7 set to 1) will be· automatically expanded
into the appropriate number of spaces before being placed
into the data buffer. This automatic space ex~ansion occurs
regardless of the compression bit in IOCFDF (bit "N"). A
carriage return will be the last data character in the data
b u-Pfer.

ASClI-converted-binary records are handled similarly to
binary records; howeverl the conversion of two seven-bit data
bytes into a single eight-bit data byte is automatically
performed.

The .GETRC function treats the system console (CN) in a
slightly different way than it does other devices, since the
input from this device is usually in an interactive mode with
the operator. In addition to the normal ASCII record
pro c e s sin g I • GETR C w ill per form the f 0 1 low i n 9 . Fir s t I i f the
first byte of the IOCSUF field contains a displayable
character in the range $20-$5F, it will be automatically
diSplayed as an input prompt each time the. GETRC function is
invoked. Next, the special keyboard characters rub out ($7F),
cancel (CTL-X, $18), and EDT (CTL-D, $04) will cause the
standard MDOS keyboard functions to be performed (section
2.5), Rubout will delete the previously entered character,
cancel will delete the entire input line entered thus far,
and EDT will ~ause the in~ut -iirie .ntered thus far to be
redisplayed on a new line of the console. Lastly, the
carriage return character will cause a carriage return, line
feed, and null sequence to be sent to the consQle~ All other

Page 25-39

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

data characters will be echoed back to the console display
mechanism as they are entered from the keyboard. This
function is the same as ror the .KEYIN system function
described earlier in this chapter (section 25.2.1).

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of an IOCB which has been
properly reserved and opened (i. e.,
no errors occu~red) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the ItS" bit set to zero
(record 1/0). The mode flag (b it
"M") must speci;y either the input or
the update modes as configured prior
to opening the file.

IOCDBS must contain the address where the
first byte of the record is to be
stor1!d.

IOCDBE must contain the address where the
last byte of the maximum size record
is to be stored. The buffer
described by IaCDnS and IOCDBE must
be large enough to accommodate the
largest. possible record that mag be
encounter~d in the file.

IaCSUF may be configured by the calling
program to contain a displayable
character in its ~irst byte if the
input device is the system console.
In this case, the character will be
shown on the console as an input
prompt each time the .GETRC function
is invoked. IaCSUF must not be
changed after opening a Tile when
other devices are used.

IOCFDF must have been con~igured for a
valid file format on a previous. OPEN
cal 1 (FMT = 3, 5 I 0 l' 7).

A is indeterminate.

B = The contents of: the 10CSTA entry. !r
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

X is unchanged.

C = 0
=

and Z = 1
0>' Th e

if no errors occurred (B
remainder or CC is

-,

Page 25-40

\

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

ind etermi nate.

C = 1 . and Z = 0 if an error occurred (B
not zero). The remainder of CC is
in de term i na t e.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA ~ontains the error status. The
following error statuses can be
returned: I$BUFO, I$CKSM, ISCLOS,
I$DTYP, I$EOF, I$FTYP, I$EOM, I$NRDY,
I $RANG, ISSECB.

IOCDBP is indeterminate.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCSBP,
and IOCSEI are indeterminate if the
device type is DK. Other~ise,

IOCNAM. lOeSBP, and IOCSBI are
unchanged.

The remainder of the IOCB is unchanged ..

If a bur~er ove~~low error occurred
(lOCSTA = I$BUFO), then the last data
character of the record (carriage
return) will be the last character of
the bur-Fer. The first "n" .characters
(n being the size of the data buffer
minus one) of the record are intact.

If

Otherwise, the contents of the data
buffer are indeterminate.

the device
contents of

type
the

indeterminate.

is DK,
sector

then the
buffer are

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has the I/O transfer flag set to
indicate input (IO = 10). The
remainder of IOCDTT is unchanged.

lOCDBP contains the address of the last
character read into the input buffer.

lOCMLS, lOeSDW, IDCSLS, rOCLSN, lOCEOF,
IOeSBP, and IOeSBI contain the
system-maintained parameters as

Page 25-41

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

described in section 25.3.1 i-r the
device t~pe is DK. They reflect the
cu~~ent diskette rile pointers.
IOeNAM~ IOCSUF, IOCSBPJ and lOeSBI
are unchanged if the device is not
DK.

The remainder or the IOCB is unchanged.

The data burTer contains the record.

The sector buffer contains data from the
logical sectors read. This number is
given by IOCLSN minus the valid
buffe~ size in sectors
«IOCSBI-IOCSaS+1)/128) if the device
is DK.

25. 3. 5 Output a record -- . PUTRC

The .PUTRC function writes a record from a data buffer
to an opened file or device. The specific processing
pe~formed by .PUTRC depends on the FMT bits oT IOCFDF and on
the device type. The reco~d output function will process
three f i 1 e formats: binary rec ord < FMT = 3). ASC I I rec ord
(FMT = 5), and ASClI-converted-binar~ record (FMT = 7).

Binar~ records will be automatically supplied with their
record header (see section 24.3), a byte countl and a
checksum. In addition~ a terminating carriage return is
supplied by the .PUTRC Tunction. If the output device is a
non-diskette device~ the terminating carriage return will
actually be a carriage return, line reed~ null sequence.
None oT these automatically supplied fields are present in
the data buf~er described by the IOCB.

ASCII records will be automatically space compressed iP
the output device is diskette and iT the "N" bit or IOCFDF is
zero. OtherUlise~ spaces LUill not be compressed. A carriage
return character will be automatically written to the output
device arter the last data character has been sent unless the
last data character happens to be a car~iage return. All
carriage returns, those encountered within the data burfer as
well as the automatically supplied terminating one, are
converted into a carriage return, line reed, null se~uence

when being written to a non-diskette device. The line reed
and null characters generated from embedded car~iage returns
will not be written to the diskette.

ASClI-converted-binary records are handled similarly to
binary records; however, the conversion OT one eight-bit data
byte into two seven-bit data bytes is automatically
performed.

Page 25-42

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functions

If a record is being written into a disk~tte file,
additional space ma~ be allo~ated to accommodate the
inc~eased space requirements oT the file. The file
allocation is done automatically. The amount of secondary
allocation will depend on the available rile space; however,
an attempt will be made to allocate the default number of
clusters. IT less space is available than the default, then
the la~gest available block ~ill be allocated.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of an IOCB which has been
properly reserved and opened (1. e. I

no errors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT must have the US" bit set to zero
(recoT'o 1/0), The mode flag (bit
"M") must specify either the output
or the update modes as configured
prior to opening the file.

IOCDBS must contain the address of the
first byte of the record that is to
be wr i tten.

IOCDBE must contain the address of the
last byte of the record that is to be
UJ~itten. A terminating carriage
return is not re~uired in the data
buffer.

IOCFDF must have been configured for a
valid file format during the previous
.OPEN call (FMT = 3, 5, or 7). The
non-compressed space bit <bit "Nil)

determines whether or not spaces are
compressed (only applies to ASCII
files being written to diskette).

A is indeterminate.

B = Th e contents of th e IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that "an
error occurred.

X is unchanged.

C = 0 and Z = 1 if no errors occurred (B
= O) . The 1" e ma in d e r 0 fee i s
i nd etermi nate.

C = 1 and Z = 0 if an error occurred (B
not z er a). The l' ema i n d er 0 f CC i s
ind eterminate.

Page 25-43

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: I$CLOS, I$DTVP, I$FTVP,
!$NRDYi I$RECL.; !$RANG~ I$SECB.
I$RIB, ISFSPC, I$SSPC.

IOCDSP is indeterminate.

IOCMLS, IOCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and lOCSEI are indeterminate
if the device type is DK. IOCNAM,
!aCSUF: laeSB?, and IOeSBI are
unchanged otherwise.

The remainder o~ the IOCB is unchanged.

The contents of the data bUT~er are
unchanget'J .

The contents of the sector bur~er are
in d e term ina t e.

The IOCB is aTTected in the following manner if
no errors occurred:

IOCSTA = O.
~

IOCDTT has the 110 transfer flag set to
indicate output (10 = 01). If
additional file space was allocated,
the truncate Tlag (T) is set to one
iT it was not already one prior to
the output transfer. The remainder
oT IOCDTT is unchanged.

IOCDB? contains the address of the last
character in the data burfe~ (same as
IOCDBE) .

IOCMLS, IOCSDW, IOCSLSJ IOCLSN, IOCEOFJ
IOeSBP, and IOCSB I c onta in th e
system-maintained parameters as
described in section 25.3. i iT the
device is OK. They reflect the
current diskette file pointers. If
.PUTRC has been called ror the first
time, . and if IOCMLS. contained the
value $FFFF upon entry, IOCMLS will
contain the value $0000 upon exiting
the of un c t ion. I nth i s wa I.J ' the f i 1 e
will not be deleted upon closing,

")
. ./

Page 25-44

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

even if only a single record has been
~ritten into the sector buffer.

IOCNAM, IOCSUF, IoeSBP, and lOeSBI
are unchanged if the device is not
DK.

The remainder or the IOCB is unchanged.

The contents or the data buffer are
unchanged.

The sector bufrer contains the data that
are going to be written to diskette
starting ~ith the logical sector
specified by IOCLSN. The sector
burfer i~ not cleared arter having
been written. Thus, the parts of the
sector buffer not affected by the
.PUTRC call will still contain the
data from the buffer last written.

25.3.6 Close a file -- . CLOSE

The. CLOSE function is used to signiry completion or all
I/O transfers to a file or device in the current open mode.
Data cannot be. transrerred between the file (or device) and
the calling program after the . CLOSE function has been
invoked. The specific function performed by .CLOSE depends
on the mode flag (M of IOCDTT) I the 1/0 transfer- flag (10 of
IOCDTT), and the device type.

If the IOCB has been opened in the input mode (M = 01 of
IOCDTT) I th en th e . CLOSE func t i on wi 11 simp 1 y chang e th e IOCB
to indicate that the file is closed.

If the lOeB has been opened in the output mode (M = 10
of I OCDTT) , t h en . CLOSE wi 11 per for m the f 0 11 0 til i n g . For a
device type of DK, . CLOSE will zero-fill any unused portions
or the untllritten sector buffer to a sector- boundar-y before
writing the buffer- to the diskette (only if record lID is
being performedi logical sector lID will not cause the last
sec tor bur fer to bee han g e d 0 r- tIIr itt en) . All spa c e t hat has
been newly allocated but not written into (those logical
sectors greater than IOCMLS) will nOrmally be deallocated on
a cluster- boundary and returned to the ~~ee space pool
(assumes that the truncate flag and IOCMLS have not been
changed by the calling program). The end-of-file LSN will be
adJusted in the RIB. If the device is not DK, then .CLOSE
tIIill cause an end-of-file recor-d to be written to the device
(file format mode only). In the non-file format mode, . CLOSE
will only write an end-of-file r-ecord to the de~ice if it is
a file-type device (e. g. I an end-of-file is written to CP but

Page 25-45

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent IIO Functions

not to LP or eN), File-type devices are those which use a
medium that can be re-read later.

If the lOeB has been opened in the update modes (M = 00
or 11 of IOCDTT), then . CLOSE will perfoTm the same functions
as in the input or the output mode depending on the last IIO
t-ransfer t'dpe. The. GETRC and. GETLS functions will set IO
of IOCDTT to indicate an input t-rans-re'1', while the .PUTRC and
.PUTLS functions will set IO of IOCDTT to indicate an output
transfeT". In the latter case, space is only deallocated if
the truncate flag (T of IOCDTT) is set to one (done
automatically when new space is allocated, or done by user to
indicate fil. shortening or updating of end-aT-file pointer
in RIB),

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = ihe aaaress oT an IOCE which has been
properly reserved and opened (i. e. I

no errors occurred) via the .RESRV
and . OPEN functionsl respectively.

Normall~, no additional parameteT"s
are rea.uiredi however, when dealing
with diskette files in the update
mode (M = 00 or 11 o-r lOCDTT), the
truncate flag (T o~ IOCDTT) and the
maximum referenced logical sector
number (IOCMLS) can be configured by
the calling program. Since the
update modes only set the truncate
flag to one if a new file is created
during the open p~ocess or if
additisnal space is allocated during
the output proc ess (fi 1 e grows),
space will not be deallocated or the
end-of-file pointer updated from
existing files unless the truncate
flag and IOCMLS are explicitly set up
by the calling program. When IOCMLS
is set to the value SFFFF (value set
up d uri n 9 . OPEN) I the n' the f i 1 e UJ ill
have its directory entr~ deleted in
addition to having all of its space
deallocated (if truncate flag is set
to one when. CLOSE is invoked).

rOCDBS and IOCDBE must describe a valid
data bUrfer when dealing with
non-diskette devices (output only)
since an end-Or-file record is
written (rile-type devices only>. .

A is indeterminate.

B = The contents of the IOCSTA entry. If

\,
)

/

Page 25-46

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent lID Functions

no errors occurred, B will be zero.
A n~n-zero value indicates that an
error occurred.

Xis unchanged.

C = 0 and Z = 1 if no errors occurred (B
= 0). The remainder of CC is
indeterminate.

C = 1 and Z = 0 if an error occurred (8
not zero>. The remainder of CC is
indeterminate.

The IOCB is arrected in the following manner ir
an error occurT-ed:

IOCSTA contains the error status. The

The

following error statuses can be
returned: ISCLOS, ISDEL T, I$IDEN,
ISRANG, I$SECB, I$FSPC, ISSSPC,
IRIB, IDEAL.

remainder of
contents of

the IOCB and the
the data buffer' and the

sector buffer are indeterminate.

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has
closed>.

the "0" bit set to one (file
The remainder of the IOCDTT

is unchanged.

IOCRIB will be zero if the file ~as
deleted from the diskette. Otherwise
it will be unchanged.

IOCEOF will contain the LSN of the
logical end-of-fi1e if the device
type is DK. IOCEOF will be unchanged
if the truncate flag was zero upon
entT'\I.

The remainder OT the IOCB is unchanged.

The contents of the data bUTTer and the
sector buffer are indeterminate.

Page 25-47

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

25.3.7 Release a device -- .RELES

The . RELES function b~eaks the link between the
appropriate controller descriptor block and the calling
program~s IOCB. The .RELES function should be the last lID
function called after all lID has been completed.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of of an IOCB ~hich has
be~n properly reserved (i. e.I no
er~ors occurred) via the .RESRV
run c t ion. 1ft he. OF EN fun c t ion has
been invoked at any time aTtar
res e r v i n 9 the laC B , the r i 1 e (0,..

device) must first be closed via the
. CLOSE function before the IOCB can
be released.

A is indeterminate.

B = The contents of the IOCSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occur'T'ed.

X is unchanged.

C = 0 and Z = 1 if no errors occurred
= 0>' The remainder of CC
in de te-rmi na teo

(B
is

C = 1 and Z = 0 if an error occurred (3
not zero>. The remainde-r of CC is
indeterminate.

The IOCB is af~ected in the following manner i~

an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: !$NORVI I$CLOS.

The remainder Or the IOCB
contents oT the data buffer
sector buffer are unchanged.

and
and

the
the

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

IOCGDW = o.

IOCLUN has the UR" bit set to zero (IOCB

Page 25-48

INPUT/OUTPUT FUNCTIONS

The

25.3 -- Device Independent I/O Functions

released). The remainder or IOCLUN
is unchanged.

remainder of
contents of

the IOCB and the
the data buffer and the

sector buffer are unchanged.

25.3.8 Example of device independent lID

The following example uses the device independent 1/0
functions described thus far. The IOCB shown below is used
in the example as the control block for writing to a diskette
file. The initial values set up in this IOCB are typical for
most output operations. A fou'r-sectcT' buffer is used to
allow a maximum of four sectors to be written to the diskette
each time it is accessed. The larger a sector bUTTer is. the
fewer will be the number of diskette accesses. The logical
unit number, file name, and suffix are going to be
initialized from an operator-supplied parameter on the
command line. The system symbols from the MDOS equate file
are used throughout this example.

OUTPUT EGU * START OF OUTPUT lOCB
FeB 0 IOCSTA
FCB DT$OPO+DT$CLS . IOCDTT
FOB 0 lOCDBP
FOB RBUFF IOCDES
FDB RBUFFE IOCDBE
FCC 2,DK IOCGDW
FCB '0+0 IOCLUN DEFAULT = 0
FCC 8, IOCNAM
FCC 2~SA IOCSUF -- DEFAULT = SA
FOB 0 IOCRIB
FOB FD$FMA!<8 . IOCFDF -- ASCII
FDB 0 RESERVED
FOB 0 IOCDEN
FOB 0 IOCSBP
FOB SCTBUF IOCSBS
FOB SCTBUF+(SC$SIZ*4)-1 IDCSBE
FDB 0 IOeSBI

*
SCTBUF BSZ SC$SIZ*4 SECTOR BUFFER (4 SECTORS)
RBUFF BSZ 80 RECORD BUFFER
RBUFFE EGU *-1

The code that is shown belo~ performs the following
functions. Firstl a file name specification which has been
entered on the MOOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM s~stem function described in
Chapter 27. Thenl the IoCB is reserved and opened. Next, an
input prompt is displayed on the system console and an line
of text is a'cepted from the kevboard. If the entered line

Page 25-49

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

consisted of only a carriage return, the IOCB is closed,
released, and control returned to the MDOS command
interpreter (via the function .MDENT). ather~ise, the
entered line is written into the diskette file. The input
process is repeated until only a carriage return is entered.

'"""\

The error message function, . MDERR, is used to disp lay
standard error messages if an invalid file name specification
is entered, if a file name is miSSing, or if' one of the I/O
functions retu.'rns an error condition (e. g. I if the file name
already exists in the directory, or i~ insu~ficient diskette
space is available>. The function. ADBX is used to add the
contents of the B accumulator to the index register. Both of
these functions are discussed in detail in Chapter 27.

In this example, the assumption is made that the program
i s i nv 0 ked r l' 0 m the MDOS comma n d 1 i n e . Th us, i t mu s t b e
origined to load above location $lFFF. The stack pointer is
automatically initialized through the loading process to
point to the last-loaded program location. The stack area
has been set up so that the de~ault value o~ the stack
pointer can be used without having to execute a load stack
pointer inst~uction.

* * DEFINE SOME WORKING STORAGE

* PFNPAK FDB
PROMPT FeB
*

0,0
': , EDT

PROCESS FILE NAME PACKET
INPUT PROMPT

* EXTRACT THE FILE NAME FROM THE COMMAND LINE

* START

* ERRl
ERR2

*

LDX
STX
LDX
STX
LDX
SCALL
TSTB
BEG
ASLB
BCS
LDAB
BRA

LDAB
SCALL
BRA

ERR3. CLRB
BRA

*

#OUT?UT+IDCLUN .
PFNPAK+2 DESTINATION OF FILE NAME
CBUFP$ POINTER INTO CMD BUFFER
PFNPA~ SOURCE OF FILE NAME
#PFNPAK
.PFNAM

STARTA

ERR 1
#7
ERR2

#5
. MDERR
MDOS

ERR2

FORMAT STANDARD FILE NAME
CHECK FOR ERRORS
EO =) GOOD NAME

CS =) NAME MISSING
ILLEGAL NAME MSG NUMBER

NAME REGUIRED MSG NUMBER
DISPLAY STD ERROR MSG
EXIT THE PROGRAM

I/O ERR MSG·NUMBER; DECODED
FROM IOCSTA

* OPEN AND RESERVE THE loeB -- CREATE THE OUTPUT FILE

*

Page 25-50

/

.I

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

STARTA LDX
SCALL
BCS
SCALL
Bes

*

#OUTPUT
· RESRV
ERR3
· OPEN
ERR3

* GET LINE FROM CONSOLE

'*

CS =:> ERROR

CS => ERROR

LOOP LDX
SCALL
LDX
LDAB
SCALL
LDAA
CMPA

#PROMPT
· DSPLZ

DISPLAY ·THE INPUT PROMPT, NO CR/LF

*

BEG
STX
DEX
SCALL
STX
LDX
SCALL
BCC

'BRA

#RBUFF GET THE INPUT LINE
#RBUFFE-RBUFF
· KEYIN
X
#CR
EXIT

GET 1ST CHAR IN BUFFER
CHECK FOR TERMINATOR
EG => THIS IS THE TERMINATING LINE

QUTPUT+IOCDBS . SETUP START RECORD POINTER
. CALC END OF RECORD BUFFER

· ADBX .S = NUMB CHARS INPUT
OUTPUT+IOCDBE . SETUP END RECORD POINTER
#OUTPUT
· PUTRC WRITE THE RECORD
LOOP CC =:> NQ ERRORS
ERR3

* CLOSE AND RELEASE THE 10CB, RETURN TO MDOS

* EXIT LDX #OUTPUT POINT TO THE IOCB
SCALL · CLOSE
BCS ERR3 CS =:> ERROR
SCALL · RELES
BCS ERR3 CS => ERROR

MDOS SCALL · MDENT RETURN TO MDOS

'* * LEAVE SOME ROOM FOR STACK
'*

BSZ
END

80
START

STACK SET HERE BY LOAD

25.3.9 Specialized diskette lID functions

Three additional '1/0 functions exist that also use the
IOCB as a parameter tab 1 ei however, th ey ar e d ep enden t on the
device type being DK. An e~~or will be returned ir any other
device type is specified.

25.3.9.1 Input logical sectors -- . GETLS

The .GETLS ~unction reads one or more logical sectors
from an opened rile into a sector buffer.

ENTRY PARAMETERS: x = The address or an lOeB which has been

Page 25-51

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

properly reserved and opened Ci. e. ,
no e~rors occurred) via the .RESRV
and . OPEN functions, respectively.

lOCDTT must have the "S" bit set to one
(sector I/OL The mode flag (bit
"M") must specify either the input or
the update modes as configured prior
to opening the file.

IOCLSN must contain. the logical sector
numbe-r that is to be read. The
actual number Or sectors read depends
on the size Or the sector buffer (see
beloUi). The data sectcl"s of the rile
begin with logical sector zero. If
the RIB is to be accessed via the
.GETLS function, then IOCLSN must
contain the value $FFFF.

IOCSBS must contain the starting address
of a sector bufTer. The sector
buffer must be an integral number of
sectors in size (see section
25.3. L 20). Th is buffer does not
necessarily have to be the same one
used to open the rile. The sector
buffer can be in a different location
for· each. GETLS callj houseverl if the
sector buffer is to be moved after a
rile has been opened, then IOCSBS,
rOeSBE, and rOeSBI must be changed by
the calling program.

IoeSBE must contain the address of the
last byte of a sector bu~f-eT'. The
sector buffeT' must be an integral
number of sectors in size (see
sec t ion 25.3. 1. 20). The buffer
described by IOCSBS and IOCSBE
indicates· the maximum number of
sectors that can be processed
starting with the logical sector
whose number is in IDCLSN,

A is indeterminate.

B = Th e contents oT th e IOCSTA entry. If
no erT'ors occurred, B will be zero.
A non-~ero value indicates that an
error occurred.

X is unchanged.

Page 25-52

INPUT/OUTPUT FUNCTIONS

The IOCB
an error

25.3 -- Device Independent I/O Functions

c = 0 and Z = 1 ir no errors occurred (B

= 0>- The remainder or cc is
i nd etermi nate.

C = 1 and Z = 0 if an error occurred (B
not zero >. The remainder of CC is
indeterminate.

is affected in the folloUJing manne-r if
occurred:

IOCSTA contains the er-ror status. The
following error statuses can be
returned: I$CLDS, I$DTYP, I$EOF,
I$-5ECB, I$R-ANG.

IOCMLS1 IOCSDW! IQCSLS! IOCLSN, IOCSBP,
and lOeSEI are indeterminate.

The remainder of the lOeB is unchanged.

The contents of the sector bufrer are
indeterminate.

The lOeB is affected in the following manner if
no errors occurred:

loeSTA = O.

IOCMLS, IoeSDW, and IOCSLS contain the
system-maintained parameters
described in section 25.3.1.
reflect the current diskette
pointers.

as
They
file

IOCLSN has been incremented by the number
of sectors read into the buffer
«IOCSBI-IOCSBS+l'/128).

loeSEP contains
the sector
lOCSBS >.

the starting address of
bufrer (the same as

loeSEI contains the address or the last
valid data byte in the sector buffer.
If only a pa~tial segment was read
into the burrer, IDCSBI will not be
the same as IOeSBE (maximum end of
bufrer). The following relationship
should be used to calculate the
number of sectors read:

IOCSBI-IOCSBS+l
--------------- = # SECTORS READ

Page 25-53

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 1/0 Functions

128

The remainder Or the IOCB is unchanged.

The sector buffer contains the data from
the sectors read beginning with the
logical sector whose number was in
IOCLSN.

25.3.9.2 Output logical sectors -- .PUTLS

The .PUTLS function writes one or more logical sectors
from a sector buffer to an opened file. Additional space ma~
be allocated to the file to accommodate the increased space
.,..an II i 'T'an"~n-r. <:. . -,--- _ - .. -_. The space allocation is
automat i call y. The amount Or secondary allocation will
depend on the available space; however, an attempt
made to allocate the default number of clusters.
space is available than the default~ then the
available block ~ill be allocated.

will be
If 1 es 5

largest

ENTRY PARAMETERS: x = The address of an IOCB which has been
properly reserved and opened (1. e. ,
no errors oc~urred) via the. RESRV •
and . OPEN functions, respectively.

IOCDTT must have the "Sit bit set to one
(sector lID). The mode rlag (bit
"M") must specify either the output
or the update modes as conrigured
prior to opening the file.

IDCLSN must contain the logical sector
number that is to be written into.
The actual number of sectors written
depends on the size of the sector
buffer (see below). The data sectors
of the file begin with logical sector
zero. If the RIB is to be accessed
via the. PUTLS function, then IOCLSN
must contain the value $FFFF.

IOCSBS must contain the starting address
of a sector buffeT' containing the
data to be WT' i tten_ Th e sec tor
burfer must be an integral number of
sectors in size (see section
25.3.1.20), This buffer does not
necessarily have to be the same one
used - to op en th e' -r i 1 e. Th e sec tor
bUrrel' can be in a di-r-rerent location
-ror each. PUTLS calli however, if the "
sector buffer is to be moved afteT' a

Page 25-54

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent I/O Functions

rile has been opened, then IOCSBS,
lOeSBE, and IOeSBI must be changed by
the calling program.

IOCSBE is not used during the .PUTLS
functioni however, it should not have
been changed since the file was
opened (with restrictions mentioned
ab ove ror IOCSBS).

loeSBI must contain the address or the
last data byte to be written rrom the
sector bufrer. The sector burrer, as
described b~ IOCSBS and IoeSBl, must
be an integ~al number of sectors in
s i z t? (s e e sec t ion 25. 3. 1. 20 L

A is indeterminate.

B - The contents of the IOeSTA entry. If
no errors occurred, B will be zero.
A non-zero value indicates that an
error occurred.

x fs unc hanged.

C = 0 and Z = 1 if no errors occurred (B
= 0>' The remainder or CC is
i nd etermi nate.

C = 1 and Z = 0 if an error occurred (B
not z e r 0 >. Th e r ema in del' 0 fCC i s
indetermi nate.

The IOCB is affected in the following manner if
an error occurred:

IOCSTA contains the error status. The
following error statuses can be
returned: ISCLOS, I SDVTP , ISSECB,
ISRANG, I$RIB, iSFSPC, ISSSPC.

IOCMLS, IDCSDW, IOCSLS, IOCLSN, IOCEOF,
IOCSBP, and IDCSBI are indeterminate.

The remainder or the IOCB
contents of the sector
unc h.ang ed.

and the
buffer are

The IOCB is affected in the following manner if
no errors occurred:

IOCSTA = O.

Page 25-55

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

IOCMLS~ IOCSDW, and IOCSLS contain the
system-maintained parameters
desc,..ibed in section 25.3. 1.
reflect the current diskette
pointers.

as
The\}
file

IOCLSN has been inc~emented by
of sectors
«IOCSBI-IOCSBS+l)/128).

the numbeT'
w-ritten

I r' th e
sector speciried b\j the entry value
OT IOCLSN or any of the sectors
written from the bUTfer was outside
of the' range oT the rile's allocated
space~ additional rile space will
have been allocated (if available),

IOCEOF contains the logical sector number
of the logical end-aT-file. If
additional rile space was allocatedl
IOCEOF wi 11 'contain the neus
end-of-file LSN. IOCEOF is unchanged
othe-rUlise.

lOeSB? contains the starting address of
the ~ectar buffer (the same as
IOCSBS).

The remainder or IOCB and the contents of
the sector buffer are unchanged.

25.3.9.3 Rewind file -- .REWND

The . REWND function resets the pointers of the IOCB so
that subsequent IIO functions will access the diskette file
as if it had Just been opened, i. e., from the beginning.
Only files that have been opened in the update or input mode
can be rewound. Files opened in the output mode will cause
the. REWND function to return an er~or condition.

ENTRY PARAMETERS: x = The address of an IOCB which has been
properly rese~ved and opened (Le.,
no er-rors occurred) via the .RESRV
and . OPEN functions, respectively.

IOCDTT can have the "5" bit set to
indicate either record or sector liD.
The mode rlag (bit "M") must specify
either input or update modes as
configured prior to opening the file.

IOCSBS must contain the starting'address
of a
buffer

sector buTrer. The sector
must be an integral number of

Page 25-56

INPUT/OUTPUT FUNCTIONS

EXIT CONDITIONS:

25.3 -- Device Independent 1/0 Functions

sectors in
25.3. 1.20),

size
This

(see
buffer

section
does not

necessa~ily have to be the same one
used to open the file; however. if
the sector buffer is to be moved
after a file has been opened, then
IOeSBS, IOeSBE, and IOeSEI must be
changed by the .calling program.

IOCSBE must contain the address of the
last byte of a sector buffer. The
sector buffer must be an integral
number of sectors in size (see
section 25.3. 1.20).

A is indeterminate.

B = The contents of the IOeSTA entry. If
no err 0 r soc cur red.1 B uli lIb e z e r 0 .

A non-zero value indicates that an
error occurred.

X is unchanged.

C - 0 and Z = 1 if' no errors occurred (B
= 0) . The r e rna i n de,.. 0 of C Cis
indeterminate.

C = 1 and Z = 0 if an error occurred (B
not zero). The T'emainder of CC is
i nd etermi nate.

The IaCB is affected in the following manner if
an error occurred:

IOCSTA c onta ins the error status. Th e
same error statuses can be returned
as those that can be returned by the
. OPEN and . CLOSE functions.

IOCMLS, IOCSDW, IOeSLS, IOCLSN, IOCEOF,
IOCSBP, and IOCSEI are indeterminate.

The remainder of the lOeB is unchanged.

The contents of the sector burfer are
indeterminate.

The lOCB is arrected in the following manner if
no errors occurred:

IOCSTA = O.

IOCDTT has th e liT" bit set to zero. If

Page 25-57

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent IIO Functions

the bit was set to one before the
. REWND c a 11 wa sis sue d , $ pac a ma ~
have been deallocated from the file
and the end-aT-fila pointer in the
RIB updated. The remainde~ of IOCDTT
is unchanged.

IOCMLS contains the value SFFFF.

IOCSDW contains the first SDW from the
file's RIB.

IOCSLS contains the value $FFFF.

IOCLSN contains the value zero.

IOCEOF contains the LSN of the logical
end-af-file from the file's RIB.

IOCSBP contains the value zero.

IoeSBI contains the value in IOeSBE.

The remainder- Q~ the IOCE is unchanged.

The contents Or the sector buff~r are
indeterminate.

The effect of rewinding a file is the
same as iF a .CLOSE and a . OPEN
function were performedi howeverl the
.REWND Function reopens the file
without having the calling program
re-speci~q the file's name and
suf-rix. Thusl when the file is
rewoundl the same space deallocation
and end-Or-file pointer
considerations take ef-rect as if the
file were closed. Since the truncate
Tlag is set to zero after the .REWND
call (opening an existing file), the
calling program may have to reset the
flag ir space is to be deallocated or
the end-or-rile pointer updated upon
calling the subsequent . CLOSE
function.

25.3.9.4 Example of logical sector IIO

The following example uses the logical sector IIO
functions. The IDCB shown below is used in the example as
the °control block for reading rrom and writing to a diskette
file. The initial values set up in this lOeB are similar to

Page 25-58

INPUT/QUTPUT FUNCTIONS 25.3 -- Device Independent I/O Functions

those in the example given in section 25.3.8; however, the
se~tor I/O and update :modes are specified in the IOCDTT
entry. Only a single sector is used for a sector buffer to
make the management of logical sectors easier (eliminates
calculation of the number of sectors read or written>' The
logical unit number, file name, and suffix are going to be
initialized b~ an operator-supplied parameter obtained from
the command line. The system symbols from the MDOS e~uate

file are used throughout this example.

TEXFIL EGU * START OF TEXFIL IOCB
FCB 0 IOCSTA
FeB DTSOPU+DT$SIO+DTSCLS IOCDTT
FOB 0 IO!:DBP
FOB 0 IOCDBS
FDB 0 IOCDBE
FCC 2,DK IOCGDW
FCB '0+0 IOCLUN DEFAULT = 0
FCC 8, IOCNAM
FCC 2JSA IOCSUF -- DEFAULT :; SA
FDB 0 IOCRIB
FOB FDSFMA!<8 . IOCFDF -- ASCII
FOB 0 RESERVED
FDB 0 IOCDEN
FOB 0 lOCSB?
FOB SECBUF IOCSBS
FDB SECBUF+SC$SIZ-l IOeSBE
FDB 0 IOeSBI

* SECBUF BSZ SCSSIZ SECTOR BUFFER

The code that is shown below performs the following
functions. First, a file name specification which must have
been ente~ed on the MDOS command line is extracted from the
command line buffer and placed into the IOCB. This is
accomplished with the .PFNAM system function described in
Chapter 27. Thenl the IOCB is reserved and opened. Next,
one sector is read from the file and all upper case
alphabetic characters are converted into lower case
characters. A special ~heck is made ror punctuation marks
(period, exclamation point, and question mark) so that the
first alphabetic character following such punctuation is left
upper case. After all bytes within the sector have been
processed, they are rewritten into the same sector from which
they were read. The process is repeated until an end-or-file
condition is encountered. FinallYI after the file is closed
and released, control is returned to the MOOS command
interpreter via the function .MDENT. Since the rile does not
expandl it was opened in the update mode so that sectors
could be both read from and written to the file. It should
be noted that the logical sectornu~b~r should be decremented
before a sector is written back from where it was read.

The error message functionl .MDERRI is used to display

Page 25-59

INPUT/OUTPUT FUNCTIONS 25,3 -- Device Independent I/O Functions

standard error messages if an invalid file name specirication
is entered, if a file name is missing} of if one Or the I/O
functions returns an error condition. The system function
.ALPHA is used to test ror alphabetic characters. Both Or
these functions are discussed in detail in Chapter 27.

In this example, the assumption is made that the prog~am
is invoked from the MDOS command line. Thus, it must be
origined to load above location $lFFF. The stack pointer is
automatically initialized through the loading process to
point to the last-loaded program location. The stack area
has been set up so that the default value of the stack
pointer can be used without having to execute a load stack
pointer inst~uction.

* * DEFINE SOME WORKING STORAGE
*
PFNPAK FDB
UCFLG FCB

*
*

0,0
o

PROCESS FILE NAME PACKET
UPPER CASE CONVERSION FLAG

* EXTRACT NAME FROM COMMAND LINE

*
START

*' ERR!
ERR2

LDX
STX
LDX
STX
LDX
SCALL
TSTB
BEG
ASLB
BCS
LDAB
BRA

#TEXFIL+IOCLUN. DESTINATION
PFNPA~+2

OF NAME

CBUFP$
PFNPAK
#PFNPAK
· PFNAM

STARTA

SOURCE OF NAME

EXTRACT FILE NAME
CHECK FOR VALID NAME
EG =:> GOOD

ERR! CS =~ NAME MISSING
#7 ILLEGAL NAME MSG NUMBER
ERR2

#5 NAME REQUIRED MSG NUMBER LDAB
SCALL
BRA

· MDERR
EXIT DISPLAY ERROR, THEN EXIT PROGRAM

'* ERR3

*

CLRB
BRA

* RESERVE AND

* STARTA LDX
seALL
BCS
SeALL
BCS

*

ERR2

OPEN THE

#TEXFIL
· RESRV
ERR3
· OPEN·
ERR3

* READ A LOGICAL SECTOR

*

I/O FUNCTION ERROR MSG NUMBER

lOCB

CS => ERROR

CS =:> ERROR

INTO BUFFER

Page 25-60

INPUT/OUTPUT FUNCTIONS 25.3 -- Device Independent 110 Functions

LOOP 1 #TEXFIL
· GETLS

LDX
SCALL
Bes EOF . CS =:> ERROR I POSS ISLE END OF FILE

* CONVERT DATA WITHIN SECTOR BUFFER

* LOOP2 LDX

*

LDAA
BSR
STAA
INX
STX
CPX
BNE
LDAA
BSR
STAA

TEXFIL+IOCSBP .
X GET CHAR FROM BUFFER
CONVRT
X · PUT CHARACTER BACK

· INCREMENT BUFFER POINTER
TEXFIL+IOCSBP . SAVE POINTER
TEXFIL+IOCSBE . CHECK FOR LAST CHARACTER
LOOP2 NE => MORE DATA TO CONVERT
X CONVERT LAST CHARACTER
CDNVRT
X

* WRITE LOGICAL SECTOR BACK INTO FILE

*

*

LDX
DEX
STX
LDX
SCALL
Bes
BRA

TEXFIL+IOCLSN . PICK UP LSN
· POINT BACK TO LAST READ SECTOR

TEXFIL+IOCLSN .
#TEXFIL
'. PUTLS
ERR3
LOOP 1

WRITE THE SECTOR BACK
CS =::> ERROR
READ NEXT. SECTOR AND CONTINUE

* END-OF-FILE DETECTED ON INPUT

* EQF #ISEOF
ERR3
#TEXFIL
· CLOSE
ERR3
· RELES
ERR3

NE =::> I/O ERROR

CS =:> ERROR

CS =:> ERROR
EXIT

*

CMPB
BNE
LDX
SCALL
BCS
seALL
Bes
seALL · MOENT RETURN TO MOOS COMMAND INTERPRETER

* CONVERT ALL UPPER CASE ALPHABETIC CHARACTERS TO LOWER
* CASE CHARACTERS. FIRST ALPHABETIC
* CHARACTER FOLLOWING A PERIOD, EXCLAMATION POINT, OR
* QUESTION MARK IS NOT CHANGED.

* CONVRT · CHECK FOR UIC ALPHABETIC

NE =:> DON'T CONVERT
CONVERT TO L/C

CONVEX
CONEX2

SCALL
BCS
TST
BNE
ORAA
CLR
RTS

· ALPHA
CONTRM
UCFLG
CONVEX
#SPACE
UCFLG RESET FLAG TO CONVERT NEXT ALFA

* CONTRM CMPA
BEG

'.
SETFLG

· PERIOD

Page 25-61

INPUT/OUTPUT FUNCTIONS 25.3 ~= Device Independent 110 Functions

CMPA # '! EXCLAMATION
BEG SETFLG
CMPA #'? GUEST ION
BNE CONEX2

SETFLG INC UCFLG
BRA CONEX2 ..

*' SAVE SOME ROOM FOR STACK ..
BSZ 80 STACK POINTER SET HERE BY LOAD ..
END START

25.3.10 Error handling

All o~ the I/O Tunctions discussed in this section use
the lOeB. The first entry of the IOCB will contain an error
status upon returning from one of these functions. The
calling program is responsible Tor processing these error
conditions. If the error status is to be decoded and
displayed as a message on the system console, the system
error message function, .MDERR, can be used. This function
is ,described in detail in Chapter 27; hOUlever, it should be
not~d here that a common mistake is made in calling the errol'
message function with the value returned in the B accumulator
by the I/O fu~ctions. It is true that'this value is the same
as IaCSTA's contents; however this is not the parameter that
should be used to invoke the error message function. The
errol' message function will decode the contents of IOCSTA
only if it is called with the B accumulator equal to zero and
with the X register pointing to the IOCB.

None of the IIO functions described here will return
control to the calling program ir a diskette controller errol'
is detected (only applicable ir the device type is OK),
These errors are fatal errors and will cause the program to
be aborted (i. e. I the files will not be closed>. An error
message is displayed on the system console before giving
control to MDOS.

In order to guarantee the integrity of data riles
(especially on the diskette), it cannot be stressed often
enough that it is necessary Tor the calling program to check
for an errol' condition after each I/O runction call. A
common mistake is to Tail to check ro~ e~~o~s afte~ a ~ile

has been closed. Since output can still take place during
the closing} data at the end o~ the file can be lost without
being apparent. Another common mistake is to initialize the
IOCB with the 1I0U flag o~ IOCDTT and the IIRI! flag of IOCLUN
in the wrong sense. If the "R" flag is cleared b~¥ore the
IOCB is reseT"¥-ed, the .. a .. flag Ulill be properly set by the
functions themselves.

Page 25-62

CHAPTER 26

26. INPUT/OUTPUT PROVISIONS FOR NON-SUPPORTED DEVICES

It is assumed that the reader is
device independent I/O functions desc~ibed
berore this chapter is read.

familiar with
in section

the
25.3

This chapter describes how the I/O functions interrace
with the hardware device and how a user can interrace
non-standard devices rO~ use with the device independent I/O
f unc: t ions.

26.1 Device Dependent IIO

The device dependent liD functions described in Chapter
2S ror accessing the console and the line printer cannot be
changed to access non-standard devices. These routines are a
part Or MDOS and its basic environment requirements; howeverJ
a user can construct his own device drivers that are accessed
by his programs. If the standard MDOS commands are to
u~ilize non-standard devicesJ the user should be using MOODS
(OEM MDOS) which can be configured to work in that manner.
The COpy command (Chapter 7) is an exception. It can load a
user-defined device driver into memory to copy a file rrom
that device to the diskette or fr~m the diskette to that
device.

26.2 Device Independent I/O

This section describes how the device independent I/O
functions interface to the device driv~rs which, in turn,
interface directly to the hardware device. This description
applies to both standard and non-standard devices.

26. 2. 1 Contra 11 er Descr i p tor Bloc k -- CDa

The Controller Descriptor 13lock, OT' CDB, is a table that
describes a physical device and the types of input and output
operations that can be performed by the device. Unlike the
IOCB, the CDB is configured only once ror each device. It is
the memory location of the CDa that replaces the contents Or
the IOCGDW entry of an IOCB after the. RESRV function has
been called. The format of the CDa is shown in the following
diagram.

Page 26-01

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

Byte
7 6 3 2 1 o

v ---------------------------------
00

01

02

03

04

05

06

07

08

09

OA

OB

IOCB addl'ess

--~----~~------------------------. .
. Devi c: e dl' i veT"

address

j Ria : I : F : W : S : L : D :

iN: I a :

Device dependent
area

Working storage

<-- Bit position

CDBIoe

CDBSDA

CDBHAD

COSODF - Device desc~ip
tor flags

CDBVDT Valid data
tlJpes

CDBDOA

CDBWST

j

Page 26-02

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

cnB FLAG DESCRIPTION SUMMARY

Field Name Bit

CDBDDF R 7

0 6

I 5

F 4

W 3

5 2

L 1

D o

CDBVDT N 7

3-6
B 2

0-1

Content

Reservable device flag
o => Not reservable
1 => Rese,.vable

Output device flag
o => Cannot perform output
1 => Can perform output'

Input device flag
o =) Cannot perform input
1 => Can per~orm input

File-type device flag
o =~ Cannot open/close riles
1 =) Can open/close files

Rewindable device flag
o => Cannot.rewind files
1 => Can rewind files

System console flag
o => Not system console device
1 =) System console device

Logical sector lID flag
o =) Cannot perform logical sector

1/0
1 =) Can perform logical sector I/O

Default binary record format flag
o => Binary record is default binary

format
1 => ASClI-converted-binary record is

default binary format

Non-file format flag
0 => Non-file format mode is invalid
1 =) Non-file format mode is valid

Not used (=0)
Binary 110 flag

0 =) Eight-bit data is invalid
1 => Eight-bit data is valid

Not used (=0)

Page 26-03

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent liD

26.2. 1. 1 CDBlOC -- CUT",..ent IOCB address

These two-bytes of the CDB are reseT"ved for expansion.
They are currently not being used by the device d,..ivers.
These two bytes should be initialized to zero.

26.2.1.2 CDBSDA -- Sortware driver address

This two~byte rield or the CDS must contain the starting
address of the device driver program that contT"ols the
device. It is this addT"ess that is used to access the
individual device dT"ive-r entry points. Therefore, this entl'Y
must be pT"ovided in every CDB. The fOT"mat of the device
drive~ i~ explained in section 26.2.2.

26.2.1.3 CDBHAD -- Hardware address

These two bytes of the CDB are intended to contain the
lowest address of the haT"dware device (PIA or ACIA) used to
interface with the external device. The actual usage of this
coa entTY depends exclusively on the device driver progT"am.
The device independent liD functions do not access this
entT""l.

26.2.1.4 CDBDDF -- Device descT'.iptor flags

The CDBDDF byte contains the basic description about the
types of liD accesses that the device can perform. The
fOT"mat or the CDBDDF byte is shown below:

7 6 5 4 3 2 1 o

l R : a : I : F : W : S : L : D :

Default binary format
Logical sector liD flag
System console flag
Rewindable device r~ag

File-type device flag
Input device flag
Output device flag
ReseT"vable device flag

These flags aT"e constant once defined. The flags are
interrogated by the various device independent IIO functions
in order to verify. that the T'~Q.uested function can be
performed on the specified device. The properties controlled
by the various bits of the COBODF are explained below. .J

Page 26-04

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

R (Bit 7) -- Reservable device flag

In1s bit determines whether a device can be
reserved by multiple IOCSs at the same time. Certain
devices, like diskette devices, by nature of their
operation, can allow input/output accesses to be
performed from different callers (IOCBs). Other
devices, like a line printerl cannot logicall\j allow
multiple output accesses Trom different IOCSs to be
processed. IT the URn bit is set to one, it means
that the device is reservable. In other UJords, only
one IOCB can communicate with the device at a time.
If the URII bit is set to zero, it means that the
d e vic e i s non -1' e s e r va b 1 e (L e.; the d e vic e can
communicate with multiple IDCBs).

a (Bit 6) -- Output device flag

This bit indicates whether a device can be used
by output functions. If the "0" bit ~s set to one,
then the device can be used Tor output. If the "0"
Tlag is set to zero, then the device cannot be used
Tor output.

I (Bit 5) -- Input dev~ce flag

Th i s bit i n d i.c ate s \11 h e the r a d e vic e can b e use d
b~ input functions. If the "I" bit is set to one,
then the device can be used for input. If the "I"
flag is set to zero, then the device cannot be used
for input.

F (Bit 4) -- File-type device Flag

This bit determines whethe~ or not a device can
open and close files. A file-type device (e. g. 1

diskette d~ive, and cassette or paper tape
reader/punch) will be handled differently by the
.OPEN and . CLOSE functions than a non-file-type
device (e. g. I console printer, line printer,
ke~board). In addition to having FDR processing
performed on them, file-type devices are also
sensitive to end-of-file records. Non-file-type
devices are not sub~ect to FDR processing, nor are
end-or-file records read Trom them or written to
them. A file-type device is indicated by the "F" bit
being set to one. Non-file-type devices have the "Fit
bit set to zero.

Page 26-05

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent lID

W (Bit 3) -- Rewindable device flag

This bit indicates whether the .REWND function
is valid ror the device. In the current version of
MDOS, it may appear as i' the "W" flag and the "L"
flag are redundant, because only the diskette device
can be used rOT logical sector I/O and only the
diskette device can be "rewound"; however, in order
to a 11 ow T or e x pan s ion, the . REWND Fun c t i on's
processing depends on the "W" flag. If the "W" flag
is set to onel the device can be reUlound. If the trW"
flag is set to zero, the device cannot be rewound.

S (Bit 2) -- System console rlag

This flag distinguishes the system console ~rom
all other devices. This is needed since the record
input runction does speCial processing ror the
certain control characters which are treated
differently when being. input from another device.
These special characters are described in section
25.3.4. If the liS" bit is set to one, the device is
the s~stemconsole. If the US" bit is set to zero,
the aevice is not the s~stem console.

L (Bit 1) -- Logical sector lID flag

This flag is used to tistinguish the diskette
drives from all other devices. Since the two
specialized lID calls, .GETLS and. PUTLS, are only
valid ror the diskette drives, a -Flag is necessary
that identifies that device. If the "L" flag is set
to one, logical sector 1/0 is valid (1. e. I the device
is the diskette drive). If the "L" rlag is set to
ze,..o, logical sector I/O is invalid (1. e. I the device
is not the diskette drive).

'\
./J

Page 26-06

INPUT/OUTPUT PROVISIONS .26.2 -- Device Independent I/O

D (Bit 0) -- Oerault binary record format flag

Some devices cannot receive or transmit
eight-bit data bytes. For those types Or devices a
special record format has been designed so that
binary records can be processed.· Devices that can
process eight-bit data can process either type Or
record rormat. The uD" bit controls the default
record rormat to be used when dealing with ==binal'q='
'rec ords. The FMT ri e 1 d of the IOCFDF entry in th e
IOCB has a special value that will cause the default
binary record format to be used for the indicated
device. If the liD" bit is set to one, the default
record format will be the ASClI-converted-binary
format Conly if binary records are being processed).
If the "0" bit is set to zero, then the default
record fOrmat will be the binar~ format (only if
binary records are being processed). If the device
can process eight-bit data, then the setting of the
"0" bit is independent of the device typei however,
ror devices ~hich can only process seven-bit data,
the 110" bit must be set to one. Otherwise, the
device may respond unpredictably when binary data are -
being transmitted to it.

26.2, L 5. CDBVDT -- Valid data types

.
This byte of the CDB is an extension of the CDBDDF

entry. It contains some additional flags that govern the
types of I/O accesses that can be made on the device. The
fo~mat of the CDBVDT entry is shown below.

7 6 5 4 3

: N I

2 1

: B :

o

Not used (=0)
Binar~ device rlag
Not used (=0)
Non-file format flag

The properties controlled by the various bits of the
CDBVDT entry are explained below.

Page 26-07

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

N (Bit 7) -- Non-file format rlag

This bit indicates whethe~ O~ not the device can
be used to perform FDR processing. Certain devices
(i. e., those with the file-type bit set to zero in
CDBDDF) can never perform FDR processing; however,
devices which are file-type devices can, in some
cases, be used in eithe~ the Tile format or the
non-file format mode (see IOCDTT description, section
25.3.1.2>' If the liN" bit is set to one, then the
device can be used in the non-file Tormat mode. If
the flNfI bit is set to zero, then the device cannot be
used in the non-file format mode. The diskette drive
is an example of a device that can only be used in
the file rormat mode. The console reader is an
example of a device that can be used in either mode.
The line printer is an example aT a device that can
only be used in the non-file format mode.

NOT USED (Bits 3-6, 0-1) Reserved area

These bits of the CDaVDT byte are ~eserved for
future expansion. They must be zero.

B (Bit 2) -- Binary device flag

This bit indicates whether a device can process
eight-bit data or not. If the IIBu flag is set to
one, then eight-bit data are valid. If the "a tl flag
is set to zero, then eight-bit data are invalid.

26.2.1.6 CDBDDA -- Device dependent area

These two-bytes of the CDB are available to the device
drivers as working storage. For the MDOS-supported devices,
this field has been provided for future expansion. For other
devices, this field can be used ror whatever purposes are
deemed appropriate.

26. 2. 1. 7 CDBWST -- Wor king s torag e

These two-bytes of the CDB are available to the device
d~ivers as working storage.

26.2.2 Device drivers

Each device type that is to be.accessed via the .device
independent IIO functions (section 25.3) must have its own
d~iver program. All device drivers must be accessible for
the following five functions: j

Page 26--08

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent liD

Not
d 2vi cei
device
whether

1. Turn the device on,
2. Turn the device off,
3. Perform device initialization,
4. Perform device termination,
5. Input and/or output a single character.

necessarily all of the five functions apply to each
however; an ent~y paint must be provided in each
driver for each of the five functions, regardless of
o~ not the function is performed.

Since the only address that is available to the device
independent 110 functions is the starting address of the
device driver (CDBSDA of CDB), the following convention must
be used by each device driver. The starting address
contained in the CDBSDA entry must be the add~~ss or the
beginning of a Jump table, one Jump for each of the five
furictions listed above. An example of such Jump table is
given below:

DVDRV$

DEVIO

EGU
~MP

~MP

~MP

~MP

EQU

* DEVON
DEVOFF
DEVINT
DEVTRM

*

ADDRESS KEPT IN CDBSDA
DEVICE ON ROUTINE
DEVICE OFF ROUTINE
INITIALIZATION ROUTINE
TERMINATION ROUTINE
CHARACTER I/O ROUTINE

Each entry point to the device driver is accessed from
the device independent liD functions by executing an indexed
subroutine call. .The offset (index value) is defined by the
displacement of the entry point from the beginning of the
device driver. Since these offsets must be the same for all
device drivers, a set of system symbols is defined in the
MDOS equate file for the device driver entry point offsets.

The device on and off entry points are accessed at the
beginning and at the end of every record I/O function call
LGETRC and .PUTRC>. These entry points allow the device
driver to turn the device on and off, respectively. If such
actions are not defined ror the device, then the entry points
should Jump to a routine which simply exits the driver with a
"no error" status condition.

The device initialization and termination entry points
are called once by the . OPEN and . CLOSE functions,
respectively. These entry points are intended to allow
leader to be punched on a paper tape device, Tor example. If
such actions are not defined for the device, then the entry
points should Jump to a routine which simply exits the driver
with a "no error ll status condition.

The character I/O entry point to the driver is used to
receive or transmit one byte of data. The transmitted or
received byte is passed between the I/O functions and the

Page 26-09

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent liD

device driver in the uB" accumulator. For devices that can
process both input and outputJ the IaCE must be interrogated
("10" of IOCDTT) by the device driver to determine which
function is to be performed. Since the index register is
re~uired to execute the Jump to subroutine instructionJ the
address of the IOCB is passed to the device driver using the
Tollo~ing convention:

IOC?TR

~SR

FDB
BCS

FDB

DV$10,X
IOCPTR
ERROR

IOCB

CALL TO DRIVER
POINTER TO IOCB~S POINTER
RETURN HERE FROM DRIVER

. ADDRESS OF IOCB

With this convention, the address pushed on the stack as
a result of executing the Jump to subroutine instruction will
point to the double byte which contains a pointer. It is the
data at the address identified by the pointer that is the
actual address of the IOCB itselr. As a resultJ the device
driver cannot Just execute a return from subroutine
inst~uction to get back to the I/O runction. This calling
sequence applies to all entry points into all device d~ivers.

Before returning to the lID function, the devic~ d~iver
must set an erro~ status condition indicating the state of
the performed action. Two things must be configured by the
drivel" to indicate an el'ro1". Fil'stl the IOCSTA byte of the
lOeB must be initialized with one of the standa~d liD el"~or

statuses (section 25.3. 1. 1), Second, the carry condition
code must be set to one. If no error occur1"ed, only the
carry condition code must be set to zero. The IOCSTA entry
of the IOeB need not be changed to zero since the I/O
function will set a normal return status before exiting. The
"A" and "X" registers need not be preserved by the device
drive~ in any case. The liB" register returns the character
received if the device driver was called upon for an input
request.

26.2.3 Example of device d1"iver

The following example illustT'ates a CDB and its
associated device driver ror a high-speed papertape reader
(specifically, the EXDRtape reade~). The system symbols from
the MDOS equate file a~e used throughout this example.
First, the CDB is shoUJn:

Page 26-10

INPUTIOUTPUT PROVISIONS 26.2 -- Device Independent I/O

* * CONTROLLER DESCRIPTOR BLOCK (COB)

* HR$CDB EGU
FDB
FDB
FDB
FCB
FCB
FDB
FDB

* o . CDBlee
HRDRV$ CDBSDA
SE404 CDBHAD
DO$RES+DD$INP+DD$OCF GDBDDF
VDSNFF+VD$BIN . CDSVDT
o CDBDDA
o . CDBWST

LogicallYJ the paper tape reader should not be accessed
by multiple IDCBs at the same time. Thusl the device is
considered to be reservable (Bit "R" oT CDBDDF set to 1>-
The paper tape reader is an input device only. ThererOrEb
bit "a" of CDBDDF is zero and bit "I" is one. The paper tape
reader is sensitive to end-of-rile records. Thus, it must be
a rile-type device (Bit "F" of CDBDDF set to 1), Bits Ifw lt

,

US", and ilL" are all zero ~ince the paper tape reader is not
reUJindable (according to the definition in section 26.2.1. 4),
is not the system consolel and is not able to perform logical
sector 110. The de~ault binary format has been arbitrarily
identified as binary record.

The paper tape reader is capable of being used in the
non-file format mode and is capable of transmitting eight~bit
data to the device. Thus, both bits "N" and liB" oT CDBVDT
are set to one.

The only other required field of the CDB is the address
of the device driver in CDBSDA. The remainder of the CDB is
reserved for expansion or is used fo~ working storage by the
device driver.

Next, the device driver itself is shown. Of the five
entry points that are required by each device driver, only
two are used for the paper tape reader driver. The other
three (device on, device ooFf, and device termination) are
dumm~ vectors that set a "no error" return status and then
return to the 1/0 function.

Page 26-11

INPUT/OUTPUT PROVISIONS 26.2 -- Device Independent I/O

..
*DEVICE DRIVER ENTRY POINTS

* HRDRV$ EGU
CLC * TURN DEVICE ON
BRA RETURN ..

*

CLC
BRA

JSR

TURN DEVICE OFF
RETURN

INITR DEVICE INITIALIZATION

CLC DEVICE TERMINATION
BRA RETURN

*
BSR
TAB
BCe
TSX
LDX
LDX
LDX
LDAA
STAA

RETURN TSX
LDX
INS
INS
JMP

*

GETC?

RETURN

O,X
O,X
Q,X
#I$EOM
IOCSTA,X

x

CHARACTER INPUT
RETURN WITH CHAR IN liB"
ce =) NO ERROR
CS =) END OF MEDIA (TIMEOUT)
GET ADR OF FDB FOLLOWING JSR
GET CONTENTS OF FDB
GET ADR OF IOCB
SET END OF MEDIA STATUS

RETURN TO CALLER
GET ADR OF FDE FOLLOWING JSR
ADJUST STACK FOR RETURN

JUMP TO ADR FOLLOWING FDB

* READER INITIALIZATION ROUTINE

* INITR STX
LDX
CLR
CLR
LDAA
STAA
LDX
RTS

* * INPUT ONE
"* GETCP STX

LDX
LDAA
LDAA
STAA
LDAA·
STAA
CLR
CLR

GETCl LDAA

HR$CDB+CDEDDA
HR$CDB+CDBHAD
?TCTLJX
PTDTA,X
#$3C
PTCTLJX

SAVE INDEX REGISTER
GET THE PIA ADDRESS

HR$CDE+CDBDDA ° RESTORE INDEX REGISTER

CHARACTER

HR$CDB+CDBDDA ,SAVE THE INDEX REGISTER
HR$CDB+CDBHAD . GET THE PIA ADDRESS
PTDTA,X CLR INTERRUPT
#$34 STROBE READER
PTCTLJ X
#$3C
PTCTL, X
HR$CDB+CDBWST ° °INIT THE TIMEOUT COUNTER
HR$CDB+CDBWST+l . AND CLEAR CARRY
PTCTL/X ° READY TO READ?

Page 26-12

INPUT/OUTPUT PROVISIONS

BMI
DEC
BNE
DEC
ENE
SEC

GETC2 LDAA
BCS

*

26.2 -- Device Independent lID

GETC2 . MI => YES
HR$CDE+CDBWST+l . PL =~ CHECK TIMEOUT
GETCl . NE => KEEP LOOPING
HR$CDB+CDBWST
GETCl NE => KEEP LOOPING

SET CARRY FOR TIMEOUT
PTDTA,X . GET CHAR
GETC4 CS => TIMEOUT

'* IF ASCII FILEI STRIP PARITY

* TSX GET ADR OF IDCB
LDX 2, X GET BACK TO 1ST LEVEL SUBRTN
LDX Q,X GET CONTENTS OF 2ND FDB
LDX 01 X GET ADR OF IDCB
I nAD IOCFDFi X PICK UP FIL.E ATTRIBUTES _AJrtw

ANDB #7 ISOLATE FMT BITS
CMPB #FMSFMA ASC!I FILE ?
BNE GETC3 NE => NO, LEAVE 8 BITS
ANDA #$7F STRIP PARITY IF ASCII

GETC3 CLC SET STATUS TO OK
GETC4 LDX HR$CDB+CDBDDA RESTORE X

RTS

26.2.4 Adding a non-standard device

IT the device driver defined in the above example is to
be used by a user's program with the device independent lID
functions, then the "only function that is treated differently
is the . RESRV function. Since. RESRV must be used to link
the IOCB with a known CDB, the . RESRV call is bypassed
altogether by the user program; howeverl before the. OPEN
function is invoked, the IDCE must be parameterized as ir it
had been properly reserved.

Thus, the IOCGDW entry or the IOCB must be con~igured to
contain the address of the CDB with which communication is to
take place. In addition, bit flR" of IOCLUN must indicate
that the lOeB has been reserved. This information is also
found in the EXIT CONDITIONS description o~ the. RESRV
function <section 25.3.2).

Once the IOCB has been configured in this manner, the
other liD functions can be used in the normal fashion.

Page 26--13

CHAPTER 27

27. OTHER SYSTEM FUNCTIONS

In the following description of the system functions
these 'symbols will be used:

Symbol Meaning

A A accumulator
B B accumulato~
X Index register

CC Condition code ~egister
Z Zero flag of condition code register (bit

2)
c Carry flag of condition code register

(bit 0)
XH Most significant byte of X
XL Least significant byte of X
B,A The register pair B and A treated as a

sixteen bit register

For MDOS09, the registers YI U and DP are unchanged by
the system function calls.

It is assumed that the reader is familiar with what
system functions are, how they are invoked} what precautions
must be taken ~hen testing programs using system functionsl
and how errors are handled by system functions (se~ section
24.8) .

The remainder of this chapter is devoted to the
description of all system functions not described thus far.
The description is divided into the following sections:
register functions, double-byte arithmetic functions,
character string functions, diskette file functions, and
miscellaneous functions:

27.1 Register Functions

The register functions are used by some ~f the other
system functions as an extension of the M6800 instruction
set. Many operations that involve the transfer and exhange
of information between the register pair IfB,A" and the X
register are made feasible by the fact that the SWI
instruction (used ror accessing system runction handler)
automatically saves all registers on the stack. Since the
sixteen bit registe~s are pushed on the stack least

Page 27-01

OTHER SYSTEM FUNCTIONS 27.1 -- Register Functions

significant byte first, most significant byte last, the
register pail' liB, AU was chosen instead of itA, B". The
relationship or the B and A registers on the stack is then
identical to the other sixteen bit registers saved in this
r a $ h ion (for the M6800 0 n 1 y) . For the M6809} i tis not
anticipated that the user will use the register system
Functions as there are instructions to perform most of these
functions. However, the system Tunction calls remain
identical between MDOS and MDOS09 to allow po~tability of
program written initially ror the 6800.

27. 1. 1 TT'ans reT' X to B, A -- . TXBA

The . TXBA function transfers the contents or the X
register into the register pair a,A.

ENTRY PARAMETERS:

EXIT CONDITIONS:

No.ne.

A contains XL.
B contains XH.
X is unchanged.
CC is indeteT'minate.

27. 1. 2 TT'ans,reT' BJ A to X -- . TBAX

The . TBAX function transrers the contents of the
register pail' B,A into the X l'egist~r.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
XH c onta ins B.
XL c onta ins A.
CC is indeterminate.

27. 1. 3 Ex c han 9 e B I A UJ i t h X -- . XBAX

The . XBAX function exchanges the contents of the
register pail' a,A with the contents of the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A contains entry value Or XL.
B contains entry value Or XH.
XH contains entry value Or B.
XL contains entry value of A ..
CC is unchanged.

27. 1. 4 Add B to X -- . ADBX
)

Page 27-02

OTHER SYSTEM FUNCTIONS 27. 1 Register Functions

The .ADBX function adds the contents Or the B registe~
to th~ contents of the.X register. The addition is performed
as if B we~e an unsigned binar~ number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been incremented by the contents of

B ..
CC has been set as in a normal unsigned

addition.

27. 1. 5 Add A to X -- . ADAX

The . ADAX function adds the contents of the A register
to the contents of the X register. The addition is performed
as if A we~e an unsigned binary number.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unc hanged.
X has bee~ incremented b~ the co~tents or

A.
CC has been s~t as in a normal unsigned

addition.

27.1.6 Add B,A to X -- .ADBAX

The .ADBAX function adds the contents of the register
pair B,A to the contents Or the X registe~.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been incremented by the contents of

B, A.
CC has been set as in a normal unsigned

addition.

27.1.7 Add X to B~A -- .ADXBA

The .ADXBA function adds the contents Or the X register
to the contents Or the register pair B,A.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: A has been incremented by XL.
B has been incremented b~ XH and C.

Page 27-03

OTHER SYSTEM FUNCTIONS 27.1 - Register Functions

X is unchanged.
CC has been set as in a normal unsigned

addition.

27,1.8 Subtract B from X -- .SUBX

The . SUB X function subtracts
register from the contents
subt~action is performed as if a
number.

the contents Or the B
of the X reg ister. The

were an unsigned binary

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X has been decremented by the contents o~

B.
CC has been set as in a normal}

subtraction.
unsigned

27.1.9 SubtTact A Prom X -- .SUAX

function subtracts the contents Or the A The . SUAX
register from
subtraction is
number.

the contents of the X register. The

ENTRY PARAMETERS:

EXIT CONDITIONS:

perrormed as i~ A were an unsigned binary

None.

A is unchanged.
B is unchanged.
X has been decremented by the contents Or

A.
CC has been set as in a normal unsigned

subtraction.

27.1.10 Subtract a,A from X -- .SUBAX

The . SUBAX function subtracts the contents of the
register pair a,A from the contents oT the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unc hanged.
B is unchanged.
X has been decremented by the contents of

B, A.
CC has been set as in a normal unsigned

sub trac: t ion.

OTHER SYSTEM FUNCTIONS 27.1 -- Register Functions

27. 1. 11 Sub trac t X from B, A -- . SUXBA

The .SUXBA function subtracts the contents of the X
register from the contents of the register pair B,A.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A has been decremented by XL.
B has been decremented by XH and C.
X is unchanged.
CC has been set as in a normal unsigned

subtraction.

27. 1. 12 Compare B. A wi th X -- . CPBAX

The . CPBAX function compares the contents of the
~egister pair B,A to the contents or the X register.

ENTRY PARAMETERS: None.

EXIT CONDITIONS: A is unchanged.
B is unc hang ed.
X is unchanged.
CC has been set as in a normal unsigned

sub trac t ion.

27.1. 13 Shirt x right -- . ASRX

The. ASRX function shifts the contents of the X register
to the right by one bit position. Bit 15 is held constant
and bit 0 is moved into C.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
X is shifted right one bit position. The

sign bit is propagated into the lower
bits upon subsequent shifts.

C contains bit zero of the entry value of
X. The remainder of CC is
indeterminate.

27. 1. 14 8h i ft X left -- . ASLX

The. ASLX function shifts the contents of the X register
to the" left by one bit position. Bit 0 is filled with zero.

ENTRY PARAMETERS: None.

Page 27-05

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS: A is unchanged.
B is unchanged.

27.1 -- Register Functions

X is shifted left one bit position. Bit
zero is rilled with zero.

e contains bit 15 of the entry value of
Xo The remainder of CC is
indeterminate.

27.1.15 Push X on stack -- .PSHX

The .PSHX function pushes the contents Or the X register
on the current stack.

ENTRY PARAMETERS:

EXIT CONDITIONS;

None.

A is unchanged.
B is unchanged.
X is unchanged.
CC is unchanged.
S has been dec~emented by 2. The

contents or XL have been pushed on
the stack followed by the contents oT
XH.

27. 1. 16 Pu 11 X from stac k -- . PULX

The . PULX function pulls the contents from the stack
into the X register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

None.

A is unchanged.
B is unchanged.
XH contains the contents located at the

entry value of S + 1.
XL contains the contents located at the

entry value 01 S + 2.
CC is unchanged.
S has been incremented by 2.

27.2 Double-byte Arithmetic Functions

The double-byte arithmetic functions are used by some oT
the other system functions and the MDOS commands as an
extension of the M6800 instruction set. These functions are
not as general purpose as the register functions, but they
are useful in special cases.

c.......... ~7_l'\L.

OTHER SYSTEM FUNCTIONS 27.2 -- Double-byte Arithmetic Functions

left as the shift takes place.

27.2.4 Shift memory left -- .MMA

The .MMA function shifts the contents of a double byte
in memory to the left by the number o~ bit positions
re~resented by the contents of th~ A register. The e¥fect is
to. multiply the double byte by a power of 2. The exponent is
given by the value of the A register.

ENTRY PARAMETERS:

EXIT CONDITIONS:

x = The address of the most significant
byte of a double byte in memor~.

A is unchanged.
B is unchanged.
X is unchanged.
CC is indeterminate.
The double byte in memory has been

shifted to the left by the number Or
bits represented by the contents of
A. Zero bits are brought in from the
l' i g h t a s t h. e s h i f t t a k e s pia c e.

27.3 Character St~ing Functions

The character string functions are used by some of the
more complex system functions and the MDOS commands as macro
instructions or subroutines.

27.3. 1 String move -- . MOVE

The . MOVE function transfers a series of contiguous
bytes in memory from one location into another location. The
move is made starting with the lowest addressed byte of the
source string.

ENTRY PARAMETERS: B = The number of bytes to be moved. Ir
B is intially zero. 256 (decimal)
bytes will be moved."

X = The address Or the first byte o~ a
four-byte parameter packet. The
parameter packet has the following
format:

/

Page 27-08

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

o

1

2

3

27,3 -- Character String Functions

Address of
the

source string

Address of
the

destination strin~

A is indeterminate.
S = Q.

X is unchanged.
CC is indeterminate.
The addresses of the source and

destination strings in the parameter
packet have both been incremented by
the entr~ value or B.

The source string has been moved into the
destination string.

27.3.2 String comparison -- .CMPAR

Th e . CMPAR rune t i on compares a ser i es Or c anti 9 uous
bytes in memory from one location with a series of bqtes at
another location. The comparison is made starting with the
lowest addressed byte o~ the source string.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The number or bytes to be compared.
If B is intially zero, 256 (decimal)
bytes will be compared.

X = The address or the first byte of a
four-byte parameter packet. The
parameter packet has the follo~ing
format:

o

1

2

3

Address of
the

source string

Address of
the

destination string

A is indeterminate.
B = The number of bytes remaining in the

string which' did not compare .. If B
is zero, the strings were identical.
If the 5t~ings mis-compared on the
-First byte, B is unchanged.

Page 27-09

OTHER SYSTEM FUNCTIONS 27.3 -~ Charactar St~ing Functions

X is unchanged.
Z :: 1 if the strings compared (B = OL

The remainder of CC is indeterminate.
Z = 0 if the st-rings mis-compared. The

remainder Or CC is indeterminate.
The addresses Or the source and

destination st~ings in the parameter
packet have both been incremented by
the entry value o~ B ir the two
st~ings compared. Otherwise, the
source string pointer will contain
the address Or the character
following the mis-comparison, and the
destination string pointer will
contain the address aT
of the mis-comparison.

The source and destination strings are
unchanged.

27. 3.3 Character-~il1 a string -- . STeHR

The . STeHR runction stores a specific character into a
series Or contiguous bytes in memor~.

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be stored into the
string.

B = The number of b~tes to be rilled with
the character. If B is initially
zero, 256 (decimal) bytes will be
rilled.

X = The address Or the first byte of the
string to be rilled.

A is unchanged.
B = O.
X is unchanged.
CC is indeterminate.
The string is rilled with the character

in A.

27.3.4 Blank-fill a string -- .STCHB

The. STCHB runction stores blanks ($20) into a 5e~ies o~

contiguous bytes in memory.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The number of bytes to be filled
blanks. If B is initially zero,
(d -e c ima 1) by t e s . UI i 11 be f ill e d .

X = The address of the rirst byte of
string to be filled.

A = $20 (s pac e) .

with
256

the

/--..,
I \

Page 27-10

OTHER SYSTEM FUNCTIONS 27.3 -- Character String Functions

B = O.
Xis unc hang ed.
CC is indeterminate.
The string is filled with blanks.

27.3.5 Test ror alphabetic character -- . ALPHA

The . ALPHA function examines the character in .the A
register for being an upper case alphabetic character (A-Z).

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be tested.

A is unchanged.
B is unchanged"
X is unchanged.
C = 0 if A contains a valid alphabetic

character. The remainder Or CC is
indeterminate.

C = 1 ir A contains an invalid alphabetic
character. The remainder of CC is
i nd eterminate.

27.3.6 Test ror decimal digit -- . NUMO

The . NUMD function examines the character in the A
register for being a valid ASCII decimal digit (0-9).

ENTRY PARAMETERS:

EXIT CONDITIONS:

A = The character to be tested.

A is unchanged if it contained an invalid
digit. Otherwise, A contains the
binary equivalent Or the decimal
digit (bits 4-7 will be zero).

B is unchanged.
X is unchanged.
C = 0 if A contained a valid digit. The

remainder of CC is indeterminate.
C'= 1 ir A contained an invalid digit.

The remainde~ of CC is indeterminate.

27. 4 Di~kette File Functions

The diskette file functions can be used in conJunction
with the device dependent I/O functions (section 25.2) ror
diskette accessing. These Punctions are used by the device
independent liD functions to perform directory searches and
diskette space allocation and deallocation. The MDOS
commands use these functions fo~ changing Pile names and
attributes and for loading programs ~rom memory-image files
from the diskette into memor~.

Page 27-11

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Ail of the Tunctions described in this section require a
t~enty-Tive byte parameter table called the diskette file
table, o~ OFT. The format of the table is shown here so that
it will not have to be repeated ror each function. It will
be seen that the first sixteen b'ytes of the DFT are identical
in format with an MDOS d ir-ectory entry. Also, the entire DFT
is or the same format as part of an IOCB (starting with
IOCLUN and ending with lOeSBE). The contents of the
individual fields are not described in this section since
they have been adequately discussed in sections 24.1.4 and
25.3.1. All of the diskette rile functions ~ill change the
diskette controller variables below location $0020.

)
...... /

Paae 27-1='

OTHER SYSTEM FUNCTIONS

00

01

02

03

04

05

06

07

08

09

OA

08

oc

Logical unit number

File Name

Suffix

Physical sector number
of file's RIB

OD : W : D : S : C : N FMT

OE

OF

10

11

12

13

14

15

16

17

18

(reserved; =0)

(reserved; =0)

PSN EN

(reserved; =0)

Initial ne~ file size

Sector buffer
start address

Sector buffer
end address

27.4 -- Diskette File Functions

f·
I

LUN

NAM

SUF

RIB

FDF - File descrip
tor flags

RES

DEN - Directory
entry number

SIZ

SBS

SBE

Page 27-13

OTHER SYSTEM FUNCTIONS 27.4 ~- Diskette File Functions

27. 4. 1 Oi rec tortj searc h - . DIRSM

The .DIRSM function performs directory searches based on
va~ious criteria. This function can be used ror finding,
creating, or deleting directory entries on an MDOS diskette.

ENTRY PARAMETERS: B contains a function code that speciFies
the action to be performed by .DIRSM.

x = Tn e add res s 0 f the DFT. A 11 c a 11 s to
.DIRSM require that LUN contains the
logical unit number to be accessed
(ASCII number 0-3, $30-$33), that SBS
contains the starting address oT a
128 (decimal) byte sector buffer, and
that SBE contains the ending address
of the sector buffer. If the sector
buffer is larger than a single
sec tor ,on 1 y the r irs t 1 28 b Y t e s UJ ill
be used.

The following Function codes ror the B
register are defined:

B = 1 indicates to search. ror and

B =

B =

retrieve the next, non-deleted
d i rec tory entry. The DFT must have
DEN = 0 ror the initia.l call. The
D~N must then remain unchanged for
subsequent calls since it is used to
determine where to resume the search.
The contents or the sector bu~fer

must also remain unchanged between
successive calls for this function
code.

2 indicates to search ror and
retrieve a directory entry with a
speci-Fic rile name and su-Frix. The
DFT entries NAM and SUF are used to
speciry the rile name.

4 indicates to create a new unique
di1"ectory entry OT a given name and
suffix. Initial diskette space
allocation is performed ir the
directory entry is cre,ated. The OFT
entries NAM and SUF are used to
sp ec i f-y the directory entry· to be
created. A search of the directory
is performed ror this entry to ensure
that it does not already ex i st. Tne
OFT entries FDF and 51Z must also be

Page

----. \

I
--'"

_/

27-14

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.4 -- Diskette File Functions

s pee i fie d . FDF mu s t s p e c i r 1J bot h the
inherent and the changeable
attributes to be initially assigned
to the fi Ie. srz is used to describe
the initial diskette space that is to
be allocated. If S1Z is zero, the
default space allocation will be
performed. If SIZ is non-zero, the
allocation will be performed using
the contents of SIZ as the .minimum
number of sectors to be allocated.

B = a indicates a similar function to be
performed as Tor the B=4 caSE;
ho",eve~; in the event that ill

directory entry already exists with
the NAM and SUF found in the OFT,
that file's directory entr~

information will be returned in the
DFT. Otherwise, the OFT is
parameterized identically to the B=4
case.

B = 16 ($10) indicates that a specific
directory entry is to be deleted from
the directory. The DFT entries NAM

\ and SUF ·are used to 'spec i fy the entry
to be deleted.

B = 32 ($20) indicates to search for the
next, non-deleted ~irectory entry
with a specific set. of file
attributes. Entries encountered with
di~ferent attributes will not be
returned b~ the search. The DFT must
hav@ DEN = 0 for the initial call.
The DEN must then remain unchanged
for subse~uent calls since it is used
to determine ",here to resume the
search. The contents of the sector
buffer must also remain unchanged
between successive calls fo~ this
function code. The FDF entrq must
contain the specific attributes to be
searched for.

A is indeterminate.

B contains the return
following return
defined:

status.
statuses

The
are

B = 0 indicates that no errors occurred
<normal return).

Page 27-15

OiHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

B = 1 indicates that the directory entry
specified by LUN, NAMI and SUF was
not found in the directory.

B = 2 indicates that B contained
invalid Tunction code upon entry
. DIRSM.

an
to

B = 3 indicates the, physical end aT the
directory was encountered during a
"seaT'ch Tor next directory entry"
request <Entry value of B = 1 or 32).

B = 4 indicates that the directory is
~ull and cannot accomodate a new
entry.

B = 5 indicates that insuT~icient

diskette space exists to satisFy the
initial space requirements Or 51Z
when attempting to create a new
d i rec tory en try. Th e . ALLOC runc t ion
(section 27.4.4) should be consulted
ror a ~ull descT'iption Or the
alloc~tion scheme and the reasons Tor
arriving at this error.

B = 7 indicates that an attempt was made
to create a duplicate entry in the
diT'ectorq. The rile name identiTied
by LUN, NAM, and SUF already exists
in the director~.

B = 8 indicates that
entry was created
LUN, NAM, and SUF.

a ne~ directory
as specified by

B = 9 indicates that an attempt was made
to delete a protected rile.

X is unchanged.

C = 0 iT no el"rors occurred (B = 0). The
remainder of CC is indeterminate.

c = 1 iT an error occu~red (3 not zero).
The remainder oT CC is indeterminate.

The DFT entries were changed in the
Tollowing manner depending .on the
vaT'ious entry values of B:

B = 1. If a non-deleted directory entry
was round, then NAM, SUF, RIB, FDF,

" .. _/'

Page 27-16

,.

OTHER SYSTEM FUNCTIONS

27.4.2 Change file

27.4 -- Diskette File Functions

and RES contain the full image of the
director~ entr~. DEN will cont~in

the computed di~ector~ entr~ number.
The remainder of the DFT is
unchanged. The sector buffer
contains the current directory
sector. IT no directory entr~ was
r 0 un d , the d ire c tor yen try fie 1 d $ NAM
through RES, inclusive, will be
unchanged. DEN and the contents of
the sector buffer are indeterminate.

B = 2. The DFT is affected the same as
for 3=1.

B = 4. If a neUl directory entry UJas

13 =

B =

B =

created, RIB and DEN will reflect the
appropriate values for the new entry.
The sector buffer will contain the
current directory sector. If a new
entry was not created (duplicate Tile
name), then the DFT will be affected
in the same way as for B=l.

S. The exit conditions ror this case
are the same as for B=4. In
addition, if a -dup 1 icate entry
already existed in -the directory, the
directory entry fields NAN through
RES, inclusive, UJill contain the full
image of the duplicate entry. DEN
will also contain the duplicate
entry's directory entry number.

16. If the entry is deleted, the
complete directory entrtJ will be
returned in rields NAM through RES,
inclusive. In addition, RIB will be
z er o. The contents of the sector
bufTer are i ndetermi nate~ If the
en tr lJ is not deleted, all parameters
except RES and DEN !JIill be unc hang ed.
RES, DEN and the contents oT the
sector buffer will be indetermi nate.

32. The DFT is affected in the same
way as for B=l.

name/attributes -- . CHANG

The . CHANG functi9n alloUJs a directory entry to have its
name~ SUTTix~ and/or attribute fields changed.

Page 27-17

OTHER SYSTEM FUNCTIONS

ENTRY PARAMETERS:

EXIT CONDITIONS:

27.4 -- Diskette File Functions

B = A function code that specifies the
action to be taken by . CHANG. I' bit
o is set to one, . CHANG will change
the rile name and suffix fields of a
directory entry. If bit 1 is set to
one, the function will change the
attribute field of a directory entry"
Bits 2-7 are not used and should be
zero. Bits 0 and 1 are independent
of each other. Thus, . CHANG can be
used to change rile name, suf-Fixi and
attributes at the same time.

x = The address aT a rile table packet.
The packet has the following format:

o

1

2

3

Address or
old DFT

Add,..ess of
new DFT

The .. old DFT 11 con t a ins the L UN I NAM 1

and SUF fields or an existing
directory entry that is to be
changed. The SBS contains the
starting add,..ess Or a 128 (decimal)
byte sector buffer; SEE contains the
ending add,..ess of the sector buffer.
If the sector bu~fer is la,..ger than
one sec tor I on 1 y the f i l' S t 128 b q t e s
wi 11 be used. The IIne t,JI DFT" contains
the information that is to be placed
into the directo~y ent~y. LUN in
both OFTs must be the same (ASCII
numb er 0-3, $30-$33). Th e new OFT
must contain NAM, SUF, and/or FDF
fields as indicated by the function
code in the B register. .A sector
buffer is not required by the new
OFT.

A is indeterminate.

B contains the return
following return
derined:

status.
statuses

The
are

. ./

B = 0 indicates that no errors occurred .~)
(norma 1 return).

Page 27-18

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions -

B = 1 indicates that B contained an
invalid function code upon entr~ to
. CHANG.

B = 3 indicates that the directory entry
specified b~ LUN, NAM, and SUF of the
old DFT could not be round in the
director~. The old DFT directory
entry must exist in order Tor the
change to be possible.

B = 4 indicates that the directory entry
specified by LUN, NAM, and SUF of the
new DFT already existed in the
directory. The new DFT director~

entry must have a unique file name
and suffix (only if changing the old
en tr y I S IT i 1 e name).

B = 5 indicates that an invalid attribute
change was attempted. Only the
changeable attributes (system file,
write protection, delete protection)
can be changed. The inherent
attributes of a file remain constant
for the duration Or the file's
ex i stenc e.

X is unchanged.

C = 0 if no erroT'S occurred (B = 0), The
remainder of CC is ind~terminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The four-byte file packet is unchanged.

The old DFT and its sector buffer have
been changed as a result of
perro~ming a diT'ecto~y search (. DIRSM
with B = 2). The new DFT has been
changed as a result of perro~ming a
directory search <'DIRSM with B = 4);
however, no diskette space allocation
UJa s peT' for me d . A f i 1 e n a m e c han 9 e i s
affected by deleting the old
directory entry and by creating a new
directory entry. Thus, the directory
entry's DEN (and its position within
the directory) may have changed;
however, no space is deleted or
reallocated.

Page 27-19

OTHER SYSTEM FUNCTIONS 27.4 =- Diskette File Functions

27.4.3 Load program into memory -- . LOAD

The .LOAD function reads a program from a memory-image
file from the diskette into memory. Control can be passed to
the resident debug monitor, to the calling program, or to the
loaded program. In additionl the program can be loaded into
the User Memory Map of EXORciser II systems with the dual
memory map configuration.

The . LOAD function does not verify that memory exists
Tor the areas into ~hich a program gets loaded. Programs
which load above location $lF and below the end of contiguous
memory known to MDOS are guaranteed that memory exists since
the memory was sized during nuu~ initialization; hcweveT;
programs loading beyond the end of contiguous memory known to
MDOS or programs loading into the User Memory Map of an
EXORciser II system ~ith the dual memory map configured aTe
not guaranteed that memory exists. The operator is
responsible for knowing where memory is configured in his
sy stem and wh ere his programs are load ed. Al so, due to th e
nature of the diskette cont~oller, it is not possible ror the
. LOAD function to compare what is read from the file with
what is stored into memory. Only diskett~ cont~oller read
errors can be detected during the load process.

PTograms brought into memory rrom the diskette will be
loaded in multiples o~ eight bytes. This fact must be
considered. when programs are loaded into adjacent blocks of
memory close to other programs, or ir programs are loaded
into the upper end of a block of memory.

ENTRY PARAMETERS: B = A runction code that specifies the
action to be performed by . LOAD.
This action includes selecting the
memory map; checking the limits oT
the loaded program against the memory
ma p ; and the pas sin goof con tr 0 1 to
the debug monitor, loaded program, or
calling program. The following
Tunction codes are defined:

Bit 0 = 1 indicates that control is to be
given to
starting
obtained

the loaded program at its
execution address as

from the file's RIB. Bit 0
is mutually exclusive with bits 1 and
2.

Bit 1 = 1.indicates that control·is to be
given to the resident debug 'monitor
after the program is loaded. Bit 1
is mutualiy exclusive with bits 0 and
2.

.. .-,)

Page 27-20

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Bit 2 = 1 indicates that cont~ol is to be
given to the loaded prog~am at a
starting execution add~ess specified
in the OFT, not at the address
contained in the fl le's RIB. The
starting execution address must be
specified in DEN of the DFT. Bit 2
is mutually exclusive with bits 0 and
1.

Bit 4 = 1 indicates that the program can
only be loaded above the resident
MDOS (location SlFFF) and below the
last location Or contiguous memory
established during MDOS
initialization. Programs loaded in
this manner require an additional
eight bytes of memo~y beyond the last
address loaded into by the program.
The MOOS variable ENDUS$ will be
changed to reflect the last address
loaded into by the program. The MDOS
SWI vector will be unchanged to allow
access to M.DOS system Functions. Bit
4 is mutually exclusive with bits 5
and 7.

Bit 5 = 1 indicates that the program can
only be loaded into the User Memory
Map of an EXORciser II system with
the dual memory map configuration.
The MDOS SWI vector will be resto~ed

to point back to the debug monito~ iT
control is passed to the loaded
p~ogram or to the monitor. I~

cont~ol is ~eturned to the calling
prog~am, the MDOS SWI vector ~ill be
unchanged. The only requirement
placed on programs loading into the
User Memor~ ~ap aT a dual memory map
configuration is that the ending load
add~ess not be greater than $FFFF.
OtheruJise, any memory locations·
($OOOO-FFFF) can bel oaded into. Bit
5 is mutually exclusive ~ith bits 4
and 7.

Bit 6 = 1 indicates that no directory
search is to be performed. The RIB
entry of the DFT contains the
physical sector number of the RIB of
the file f~om ~hich the program is to
be loaded.

Page 27-21

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.4 -- Diskette File Functions

Bit 7 = 1 indicates that the p~og~am can
be loaded anywhere in memo~y above
location $lF. The only othe~

requirement is that the ending load
address not exceed $FFFF. No checks
are ma d e r 0 r 0 v e ~ 1 a yin 9 thea res ide n't
MDOS o~ fo~ loading into
discontiguous memo~y. As a result,
the MOOS SWI vector is restored to
point back into ~ne debug monitor,
making MDOS system functions
unaccessible. This function ~equi~es
one Or the cont~ol passage bits (01
L or 2) to beset to one. Contra 1
must be passed to either the load€d
program or to the debug monitoT.
Cont~ol cannot be retu~ned to the
calling program. Bit 7 is mutually
exclusive with bits 4 and 5.

I f none of bits 0-2 a~e set, th en contra 1
will be returned to the calling
program after the program is loaded.

x = The address or the DFT. All calls to
the . LOAD runction require that LUN
cDntains the logical unit number to
be accessed (ASCII number 0-3,
$30-$33), that SBS contains the
starting add~ess of a 128 (decimal)
byte sector buffer, and that SBE
contains the ending address of the
sector burrer. If the sector buffer
is larger than one sector, only the
First 128 bytes will be used. For
all cases but one (Bit 6 set to 1),
the OFT must also contain the rile
name and suFfix in NAM and SUF. For
th e Bit 6 case, NAM and ·SUF are not
required. Instead, the physical
sector number of the rile's RIB must
be placed into RIB.

A is indeterminate.

B contains the return status. The
following return statuses arg defined
(only iF control is returned to the
calling program):

B = 0 indicates that no e~~o~s occurred
<normal ~eturn).

B = 1 indicates that B contained an

\
-"-'/

Page 27-22

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

invalid function code upon entry to
. LOAD. An invalid function maij be
one that is not defined, or use of
more than one of the mutually
exclusive bits. This error will also
occur when attempting to load into
the User Memory Map in a system which
does not have the dual memory map
configured.

B = 3 indicates that the directory entry
specified bij LUN, NAMI and SUF was
not found in the directory.

E = 4 indicates that the di~ectory entry
specified by LUN, NAM, and SUF does
not have the memory-image format.
Only programs from memory-image files
can be loaded From the diskette.

B = 5 indicates that an attempt was made
to load a program into an invalid
rang e o-r memory. I r bit 4 was set;
the program must load above $lFFF and
eight bytes below the end of
contiguous memory. If bit 5 was set,
the program must load within· the
range SOOOO-$FFFF, inc lusive, in the
User Memroy Map of ap EXORciser II
s~stem with the dual memory map
con fig u red. I fbi t 7 usa sse tit h e
program must load within the range
$20-$FFFFI inclusive.

B = 6 indicates that the starting
execution address is invalid. The
starting execution address must be
within the range o~ memory loaded by
the program.

B = a diskette controller error status
($31-$39) if a diskette controller
error occurred during the load
attempt. This status can only be
returned if cont~ol was to be passed
back to the calling program (Bits 0-2
all zero and Bit 5 zero in entry
value o~ B) or if the program was to
be loaded into the User Memor~ Map of
a dual memory map configuration and
execu~ed (Bit 5 set to one and bits 0
01' 2 set to 1). Otherwise, any
diskette controller errors that are
detected while the program is being

Page 27-23

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

loaded ~ill cause the two-character
diskette controller error message to
be displayed and control passed to
the debug moni tor. These
t~o-character error messages are
discussed in detail in section 28.1.

X is unchanged if control is returned to
the calling program (Bits 0-2 all
zero in entr~ value o~ B).
Othertllise, X will contain the
starting load address of the program
<lowest address loaded into).

C = 0 l~ no errors oCCurreu (B = 0).
remainder of CC is indeterminate.

"-1.. _
'u~

C = 1 if an error occurred (B not zero).
The remainder Or CC is inaeteTminate.

S is configured depending on which range
of memorq is loaded into. If loading
above the resident MDOS (Bit 4 set to
one in entry value of B), the stack
pointer will con~ain the highe~t
address loaded into (eight bytes
greater than the highest program
location; twent~ bytes for MDOS09).
If loading over the resident MDOS or
into discontiguous memory (Bit 7 set
to one in entry value of B), the
stack pointer will contain the
add~ess of the EXbug stack a~ea. If
loaqing into the User Memo~q Map of
an EXORciser II system with the dual
memo~q map configured, the stacie
pointer will contain the highest
add~ess loaded into.

The OFT has been changed as i~ a
director~ search has been per~ormed
(.DIRSM with B = 2>' In addition,
RES contains the starting load
address and DEN contains the starting
execution address as ~ound in the
f i lei sRI B. Th e OFT con ten t sea n
only be accessed if control is
returned to the calling program.

If the resident debug monitor is given control (Bit 1
set to one in entry value of B), the pseudo reg i sters are
initialized as rollows:

Page 27-24

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Pseudo ~egiste~ Contents

P
5

v ,..
A~B,C

Y
U=S
DP=O

Starting execution address
See description of S above. Contents
vary depending on load mode.
Starting load address.
Ind etermi nate.
Indeterminate (MDOS09)
1'100509 only
MDOS09 only

This feature facilitates sta~ting the execution or a p~ogram

from the debug monitor since the starting execution address
n~ed not be remembered by the operator; however~ caution must
be exercised if prog~ams are loaded into the User Memor~ Map
of an EXORciser II with the dual memory map configured.
Since the stack pointe~ contains the address of the last
loaded program location, use of the debug commands ";PH or
.. iNn wi 11 cause seven locations of the pT'ogT'am to be
destroyed. This may alte~ program data O~ instructions. It
is recommended that the stack pointer first be changed via
the .. ; SU commandi that the "nnnn; Gil command be used to
initiate execution; or that stack area be provided at the end
of the program a~ea. Fo~ programs not loaded into the User
Memory Map of an EXORciser II system with the dual memo~y map
con oF i 9 ur e d I t his pre cal(t ion doe s not a p ply.

Pa~ticular attention should be placed on programs that
load into the highest memory address $FFFF. Since the
diskette controller can only load programs in a multiple of
eight bytesl such programs should have. a starting load
address that is a multiple of eight. Otherwise, the
calculated ending load address will be greater than $FFFF,
causing an error.

Caution must also be exercised if MOOS is to be
reinitialized f~om the debug monitor after having loaded a
prog~am. The ABORT or RESTART pushbuttons mu-st first be
depressed before the debug command "EBOOiG" or "MDOS" is
executed.

27.4.4 Allocate diskette space -- . ALLOe

The .ALLOe function allocates contiguous segments of
diskette space for a file. The file's Ret~ieval Information
Block and the system's Cluster Allocation Table are updated
to account ro~ the allocated space. Since space allocation
is performed automatically by the device independent I/O
functionsl the .ALLOe function should only be used by
progT'ams that are doing physical sector lID on MDOS
compatible diskettes.

Page 27-25

OTHER SYSTEM FUNCTIONS

ENTRY PARAMETERS:

EXIT CONDITIONS:

27,4 ~- Diskette File Functions

x = The add~ess oT the DFT.

The OFT must contain
parameters:

the Tollobling

LUN must contain the logical unit number
on which ~ne file resides (ASCII
number 0-3, $30-$33>'

RIB must contain the physical secto-r
number of the file's RIB if the
directorf,J entry has already been
c'reated (additional space
allocation). Oth erwi se, RIB must

that no Retrieval Information Block
exists for the rile (initial space
allocation).

FDF should have the lie" bit set to
indicate whether space is to be
allocated contiguously to the already
existing space (RIB not ze~o). If
the . "C" bit is set to zero,
additional space can be allocated
anywhere on the diskette. If RIB is
zero, th e FDF entry is no t req,u ire d'.

SIZ must contain the number of sectors
that are to be allocated. If SIZ is
zero, the de-Pault allocation size (32
clusters> will be used.

SBS must contain the starting address o-P
a 128 (decimal) byte sector buffer.

SEE must contain the ending address of
the sector buffer. If the sector
buffer is ·larger than one sector,
only the first 128 b~tes will be
used.

A is indeterminate.

13 contains the r-etur-'n status. The '!'"et 1.J'!'!1

statuses are taken from the set of
codes defined for the device
independent IIO functions. Only the
system symbols are given here Tor
those .return statuses.·· The exact
values can be found. from the MOOS
equate file, section 25.3.1. 11 or
sec t ion 28. 3. The f 0 1 1 0 til i n 9 ret liT' n
statuses are defined:

Page 27-26

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

B = 0 indicates that no errors occurred
(norma 1 'return >.

B = ISRIB indicates that the file had an
existing Retrieval Information Block
that ~as invalid (see section 24.2).

B = rSFSPC indicates that insufficient
space is available to accommodate the
allocation requirements. If S1Z
contained a non-zero value at the
entry to .ALLOe, this error indicates
that the specific amount of space
requested could not be allocated.
This can occur for two reasons.
First, if the fi Ie is segmented ("C"
of FDF set to zero), the number of
sectors specified in SIZ could not be
allocated in a single,. contiguous
block antJUlhere. Second, if the file
is contiguous (lie" of FDF set to
one), the number of sectors specified
in SIZ could not be allocated
contiguously Ulith the existing space.
If SIZ contained a zero value, this
error indicates that no space is
available at all on the diskette, or
that no space is available that is
contiguous to the existing space,
depending on "C" being zero or one in
FDF. If the default of 32 clusters
(SIZ = 0) cannot be allocated, .ALLOe
will allocate whatever space it can
without generating an error. If SIZ
is non-z ero, an errol' UJi 11 be
generated if the exact number of
sectors cannot be allocated.

B = ISSSPC indicates that the Tile's
Ret~ieval Information Block could not
accommodate the required number of
SDWs Tor the requested allocation.
This ~rror occurs if a file is very
fragmented.

X is unchanged.

C = 0 if no errors occurred (13 = 0), The
remainder oT CC is indeterminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The OFT is unchanged if an error

Page 27-27

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

occurred. rT no errors occurl'~d; the
DFT has been changed in the following
manneT'o By tes 3 and 4 C onta in th e
SDW or the last allocated segment.
Bytes 5 and 6 contain the starting,
logical sector number of the last
allocated segmeryt. SUF contains the
logical sector number of the logical
end-or-file, and RIB, if originally
zero, contains the physical sector
number of the file's Retrieval
I n for ma t ion !3 1 0 c k . The con ten t s 0 of
the sector bUTre~ are indeterminate.

27.4.5 Deallocate diskette space -- . DEALe

The . DEALe function deallocates segments of diskette
space from a file. The file's Ret~ieval Information Block
and the system's Cluster Allocation Table are updated to
account for the deallocated space. Since space deallocation
is performed automatically by the device independent lID
¥unctionsl the . DEALe function should only be used by
programs that are doing physical sector 1/0 on MDOS
compatible diskettes.

ENTRY PARAMETERS: x = The address of the OFT.

The DFT must· contain
parameters:

the folloUling

LUN must contain the logical unit number
on which the rile resides (ASCII
number 0-3, $30-$33).

8qtes 1 and 2 must contain the file's
logical sector number beqond which
space is to be deallocated. If these
two b~tes contain the value $FFFFJ
then the entire space belonging to

RIB

the file will be deallocated;
however, in this special easel the
file's directory entry must already
have been flagged as deleted.

must contain the physical sector
number of the file's Retrieval
Information Bloc k.

DEN . mu s t c on t a in- -t h e f i 1 e ' s d ire c tor y
entry number.

SBS must contain the starting address of
a 128 (decimal) byte sector buffer.

,- -"

I
/

-./

Paa2 27-28

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.4 -- Diskette File Functions

SBE must contain the ending address of
the secto~ buffer. If the secto~

--buffer is larg~~ than one sect~r,
only the first 128 bytes will be
used.

A is indeterminate.

B contains the retuT'n status. The return
statuses are taken from the set of
codes defined for the device
indep endent I/O runc t ions. Only the
system symbols are given here for
those return statuses. The exact
values can be found from the MDOS
eq,uate fi Ie, section 25.3. i. I, or
section 28.3. The following return
statuses ~re defined:

B = 0 indicates that no errors occurred
(norma 1 return).

B = I$RIB indicates that the file had an
existing Retrieval Information Block
that was invalid (see section 24.2>.

B = I$RANG indicates that the maximum
referenced logical sector number
specified in bytes 1 and 2 does not
belong to the fi Ie. That is, the LSN
specified is gT'eater than the number
of sectors belonging <allocated) to
the file.

B = I$IDEN indicates that an invalid DEN
was specified.

B = I$OEAL indicates that an attempt was
made to deallocate all of a file's
space (bytes 1 and 2 set to $FFFF),
but the directory entry for the file
was not flagged as deleted.

X is unchanged.

C = 0 if no errors occurred (B = 0), The
remainder of CC is indeterminate.

C = 1 if an error occurred (B not zero).
The remainder of CC is indeterminate.

The DFT is only changed if the all of a
file's space was to be deallocated.
In that case, RIB will contain the

Page 27-29

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

val ue zero. Otherwi se, th e DFT is
unchanged. The contents o~ the
sector buffer are indeterminate.

27.4.6 Display system error message -- .MDERR

The .MDERR function displays on the sgstem console one
of the standard system error messages contained in the MDOS
error message file. The error message to be displayed is
in d i cat e d b Y ani n d e x n u m b er w h i chi s P a/s sed i non e 0 f the
registers. This index number will also be used to modify the
system error status word (see section 28.4).

Certain error messages contain references to external
parameters that must be supplied by the calling program
(e. g., a file name specification or an address). These
parameters are sho~n in the list of error messages below as a
backslash character C\) followed by a numeric digit which
indentifies the format of the parameter. When an external
parameter reference is encountered in the message, the
corresponding parameter from the calling program will be
inserted into the message before it is displaqed on the
system console. The follo~ing external parameters are
defined:

./

/

I

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

Parameter reference Calling program specification

\0 The X register contains the address
of a standard MDOS file name. Eleven
bytes comprise an MDOS file name:
logical unit number (1 byte); .pile
name (eight bytes), suffix (two
bytes).

\1 The X register's contents are to be
converted into four displayable
hex a d'e c i ma 1 dig its.

\3 The X register contains an address of
a byte in memory whose contents are
to be converted into two displa~able
hexadecimal digits.

\8 The return address on the stack is
decremented by twa (pointing to the
system call of the error message
function) and converted into rour
displayable hexadecimal digits. This
parameter allows the location of the
call to .MDERR to be incorporated
into the error message ror system
diagnostic purposes.

The following table lists the standard error messages
from the MDOS error message file in order of their error
message index numbers <number required as entry parameter to
display the message). This number is not to be confused with
the two-digit decimal reference number that is displayed with
each message on the system console. The displayed reference
number only serves as a quick way or locating the error
messages' descriptions in Chapter 28.

Page 27-31

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

INDEX
NUMBER ERROR MESSAGE
------ ------------

02 ** 40 DIRECTORY SPACE FULL
03 ** 41 INSUFFICIENT DISK SPACE
04 ** 29 INVALID LOGICAL UNIT NUMBER
05 ** 02 NAME REGUIRED
06 ** 03 \0 DOES NOT EXIST
07 ** 25 INVALID FILENAME
08 ** 05 \0 DUPLICATE FILE NAME
09 ** 28 DEVICE NAME NOT FOUND
OA ** 31 INVALID DEVICE
OB ** 01 COMMAND SYNTAX ERROR
OC ** 46 INTERNAL SYSTEM ERROR AT \8
00 ** 07 OPTION CONFLICT
OE ** 12 INVALID TYPE OF OB~ECT FILE
OF ** 13 INVALID LOAD ADDRESS
10 ** 42 SEGMENT DESCRIPTOR SPACE FULL
11 ** 32 INVALID RIB
l~ ** 30 INVALID EXECUTION ADDRESS
13 ** 14 INVALID FILE TYPE
14 ** 36 FILE EXHAUSTED BEFORE LINE FOUND
15 ** 24 LOGICAL SECTOR NUMBER OUT OF RANGE
16 ** 34 INVALID START/END SPECIFICATIONS
17 ** 35 INVALID- PAGE FORMAT
18 ** 38 INVALID LINE NUMBER OR RANGE
19 ** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE
1A ** 06 DUPLICATE FILE NAME
lB ** 04 FILE NAME NOT FOUND
lC ** 10 FILE IS DELETE PROTECTED
lD ** 33 TOO MANY SOURCE FILES
IE ** 16 CONFLICTING FILE TYPES
iF ** 15 \0 HAS INVALID FILE TYPE
20 ** 27 \0 IS WRITE PROTECTED
21 ** 47 INVALID SCALL
22 ** 18 DEVICE ALREADY RESERVED
23 ** 19 DEVICE NOT RESERVED
24 ** 11 DEVICE NOT READY
25 ** 20 INVALID OPEN/CLOSED FLAG
26 ** 21 END OF FILE
27 ** 17 INVALID DATA TRANSFER TYPE
28 ** 37 END OF MEDIA

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

INDEX
NUMBER ERROR MESSAGE

29 ** 22 BUFFER OVERFLOW
2A ** 23 CHECKSUM ERROR
2B ** 26 FILE IS WRITE PROTECTED
2C ** 43 INVALID DIRECTORY ENTRY NO. AT \8
2D ** 44 CANNOT DEALLOCATE ALL SPACE, DIRECTORY

ENTRY EXISTS AT \8
2E ** 45 RECORD LENGTH TOO LARGE
2F ** 48 CHAIN OVERLAY DOES NOT EXIST
30 ** 08 CHAIN ABORTED BY BREAK KEY
31 ** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS

WORD
32 ** 49 CHAIN ABORTED BY ILLEGAL OPERATOR
33 ** 50 CHAIN ABORTED BY UNDEFINED LABEL
34 ** 51 CHAIN ABORTED BY PREMATURE END OF FILE
35 ** 52 SECTOR BUFFER SIZE ERROR
36 ** 53 INSUFFICIENT MEMORY

In addition, two error messages have speci~ic calling
sequences. These two messages have the following format when
display~d:

INDEX
NUMBER

00
01

ERROR MESSAGE

**UNIF. I/O ERROR -- STATUS ~ \3 AT \8
**PROM I/O ERROR -- STATUS = \3 AT h DRIVE i

- PSN J
.

The First case <index number DO) should be used for
displaying standard erro~ messages as a result or the device
independent I/O functions. The .MDERR function expects the X
register to contain the address or an IOCB. The status byte
of the IOCB will be decoded into one of the standard system
error messages shown above. In the event that an illegal
status code is contained in the IOCB, the error message will
take on the fOl'm as shown above. The "\3 U parameter will
contain the value of the status byte, and the "\8 11 parameter
will contain the address of the call to the error message
function.

The second case (index number 01> should be used for
displaying standard diskette contl'oller error messages (as
returned by .EREAD, . EWRIT, . MERED, .MEWRT). The .MDERR
function expects the X register to contain the address of a
three-byte packet. The format of the packet is shown below:

Page 27-33

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette Fil@ Functions

o 'Cont~olle~ er~or status :

1 Address of
Tunction call

2 l to sector I/O function

In addition, the .MDERR function will pick up the logical
unit numbe~ and the physical sector numbe~ Trom the diskette
controller va~iables in locations $0000-$00021 inclusive.
When the error message is displayed, the parameter "hO ~ill

have been replaced with the address of the call to the error
message function, the parameter "i" will have been replaced
usith the logic~l unit numberJ and the parameter IfJII will have
been replaced with the physical sector number at which the
el''1'or occurred.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The index number of the e'1'ror message
as shoUln in the above tables.

X may. not have to be parameterized. IT
the er'1'or message calls for an
external parameter, X will have to
contain the pa~ameter or the address
of the parameter that is to be placed
into the error message. The contents
of X depend on the type or message
displayed as shoUln in the above
tab 1 es.

A is indeterminate.

B is indeterminate.

X is indeterminate.

C = O. The remainder of CC is
i nd etermi na te.

The Error Type or the system e~ror status
word has been changed to contain the
index number of the displayed err-or
message. In addition; the Er~or

Status Flag of the system error
status ~ord has been set to one.
Section 28.4 contains a complete
description o~ the system error
status ~ord.

I~ the . MDERR function is called with an index number
POl'" ~hich nd valid error message exists, or l~ ~ne MDOS error
message file cannot be accessed on the diskette without an

Page 27-34

OTHER SYSTEM FUNCTIONS 27.4 -- Diskette File Functions

error, a special message will be displayed.
the -format:

** INVALID MESSAGE \3 AT \8

This message has

The "\3" parameter will have been replaced with the index
number of the error message that the .MDERR function was
tr~ing to display. This mayor may not be a valid index
number, depending on whether or not the MDOS error message
file could be ~roperly accessed. The "\8" parameter will
have been replaced with the address of the call to the .MDERR
system function. In the event that this message is
displayed, the Error Type portion of the system error status
word will contain the value SFF (the Error Status Flag will
also be set to one).

27. 5 Other Functions

The remaining system functions are so diverse that they
fail to fall into one of the previous categories. These
functions are used by the MDOS commands and are available for
user programs in o~der to extract. file name or device
specifications from the MDOS command line, allocate program
memory in the remaining block of contiguous memorYI set the
sqstem error status word when non-standard ~rror messages are
displayed so that CHAIN processing will work properly, and to
return control to the MOOS command interpreter.

27.5.1 Process ~ile name -- .PFNAM

The .PFNAM function scans a speciried input bUTTer ror a
file name or device specification. The information is
returned in a format which is called the standard MDOS Tile
name format. This format fits into the other parameter
tables required by the device independent I/O functions
(IOCB) and the diskette rile functions (DFT). The. PFNAM
function will also recognize familq indicators in either the
file name or the suffix.

Due to the nature of the free format of the MDOS command
line, any character that will not be confused with a device
name indicator, a family indicator, a suffix delimiter, a
logical unit delimiter, an option field delimiter, or an end
of line delimiter will be used to terminate the scan for a
valid file name or device specification.

The scan will never continue beyond an option delimiter
(i) or an end of line delimiter (carriage return), regardless
of the number of times .PFNAM is called with the scan pointer
pointing to such a character.

ENTRY PARAMETERS; x = The address of a file name packet.

Page 27-35

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS: A =

B

B =

27. 5 -- Othe~ Functions

This packet has the follo~ing format:

o

2

Address o-f
input buffer

Address of
standard

file name area

I"
I

Since .PFNAM is designed to be called
more than once to extract multiple
file name or device specifications
~rom a single input buffeT'1 the ~irst
pointer of the file name packetl or
scan pointer, must be pointing to a
character ~hich previously terminated
the s c an. Wh en. P FNAM i s calI edt h e
first time, special care must be
taken to ensure that the first bqte
of the input buffer is a valid
te~minator (this is automatically
handled by the MDOS command
interpreter in using the MDOS command
line bUTTer). This character is
normally a space or a commai however,
anq other valid terminator will
suffice.

The second pointer of the file name
packet defines where the standard
file name is to be placed. This area
must be eleven bytes long. The fil'st
b~te ~ill contain the logical unit
number. The next eight bytes lJJill
contain the device name o~ the file
name, and the last two bytes will
contain the SUTTix.

The chal'acter that terminated the
scan.

contains the return status. The
following -return statuses are
defined:

0 indicates that a standard MDOS file
name . s p'e c i f i cat ian was found .

Bit 0 = 1 indicates that a family
indicator was found in the rile name.

OTHER SYSTEM FUNCTIONS 27.5 -- Other Functions

Bit 1 = 1 indicates that a family
indicator was round in the suffix.

Bit 2 1 indicates that a device
specification was found.

Bits 3-6 are unused and will be zero.

Bit 7 = 1 indicates a null file name was
found. This does not necessarily
mean that a null suffix or a null
logical unit numbe~ was found.

X is unchanged.

CC is indeterminate.

The scan pointer (first t~o b~tes of file
packet) will contain the address of
the character that te~minated the
scan.

The standard file name pointer (second
two bytes of file packet) will have
been incremented by eleven <P9ints to
location rollowing the suf~ix).

The standard file name a~ea is only changed if a
co~responding element is found in the input buffe~. Thus, if
no logical unit number is found in the input burrer, the
logical unit part of the standard file name area will not be
changed.. The same is true ror the file name and for the
surfix fields. This feature allows approp~iate default
values for the logical unit number, file name, and suffix to
be placed into the standard file name area before .PFNAM is
invoked. Then, after the input bufrer is scanned, those
parts of the file name specification which were not
explicitly found will assume the default values which were
unchanged.

No delimiters of any sort are placed into the standard
file name area. The presence of device name indicators and
family indicators is indicated by the return status in the B
register only. The rile name (or device name) and suffix
will be left Justified within the file name aTea. Unused
parts of the file name or suffix ~ill be space-filled
automat i c a 11 y .

When the scan is initiated, leading spaces in front of
the file name or device specification will be treated as a
sing Ie space (ignQred). Any space, however, encounte~ed

after the first character of a specification is found will be
treated as a terminator.

Page 27-37

OTHER SYSTEM FUNCTIONS 27.5 -- Othe~ Functions

If the ~ile name, sUrrix, or logical unit numbe~

contains more valid· characters than required, they will be
automaticall~ flushed from the input stream. Thus, even if a
ten character file name is specified, only the first eight
characters will be returned in the file name area.

The follo~ing examples illustrate how .PFNAM extracts
the file name or device specification from the ;nput buffer.
The left column shows a string as it is encountered in the
input buffer. The double quotation marks delimit the start
and end of the string. It should be noted that an initial
terminator begins each string. The right column shows the
extracted information as it would appear in the standard file
name area. The dashes indicate unchanged parts of the
stand~rd file name area (those areas where the default values
would be -Found >.

Input string

II FILEJ II

I FILE1:0,"
F.SA, II

FILE~RO: 1, U

: 0, /I .

Extracted file name

-FILE
OFILEl
-F SA
lFILE RQ

0----------
. LX: 1, ..
FILENAMETOOLONG.AB: 1, U

FILESAB: 1, II

l-------LX
lFILENAMEAB
-FILE

#LP, I.

#UD: 1, II

F!LE*. *: L"

-LP
lUD
IFILE

27.5.2 Re-enter resident MDOS -- .MDENT

The ,MDENT function passes control from a calling
program to the MDOS command interpreter. It is one of the
few functions which does not return control to the calling
progTam .. MDENT can only be used if the ~esident operating
system area has not be changed by the calling program (or any
programs that may have executed prior to it).

ENTRY PARAMETERS:

EXIT CONDITIONS:

The diskette in drive zero must not have
been replaced with another diskette
since the last time MDOS was
initialized via the resident debug
man i tOT'.

There is no return
h otueveT',. th e
performed:

from this function;
following action~ are.

The SWI and IRG vectors are configured
for the MDOS function handler.

Page 27-38

OTHER SYSTEM FUNCTIONS 27.5 -- Other Functions

The user SWI and IRQ vectors main'tained
by MDOS (SWI$UV and IRG$UV) are reset
to point to an RTI instruction. The
user program is no longer resident,
thus user-defined SWI and IRG
interrupts cannot be processed after
MDOS regains centrel.

The end oT user memOTY pointer, END$US,
is reset.

The command line buffer is initialized.

The version/revision numbers of MDOS in
memor~ are compared with the
version/revision numbers in the 1D
sector. The addresses of the system
overlays are also compared in this
~ashion. If a discrepancy exists
between memory and the diskette,
EXbug is given control.

The system IOCBs for the
printer, and the MDOS error
rile are configured.'

console,
message

The input prompt (=) is displayed and a
new command line accepted from the
system console.

The system error status word is cleared
(Error Type and Error Status Flag) if
a valid command is interpreted.

27.5.3 Reload MOOS from diskette -- . BOOT

The . BOOT function reloads the resident operating system
from the diskette in drive ze~o via the diskette controller
firmware. This function' should be used if the resident
operating s~stem has been changed by the current prog~am (SWI
handler must still be intact). This function should also be
used if the diskette in drive zero has been replaced with
another MDOS diskette since the last time MDOS ~as

initialized via the debug monitor .. BOOT is one of the few
functions that does not return control to the calling
program.

This function has the same effect as if the ABORT or
RESTART pushbuttons were depressed on the EXORciser and the
debug command "E800i Gil or "MDOS" executed.

ENTRY PARAMETERS: A valid MDOS diskette must be ready in
drive zero.

Page 27-39

OTHER SYSTEM FUNCTIONS

EXIT CONDITIONS:

27.5 -- Other Functions

This ~unction does not return to the
call ing pl'ogram. A new copy 01= MDOS
is brought from the diskette into
memory. All of the functions
perfol'med during this type -of
initialization are de$c~ibed in
sec ticn 2. 1 and sec ti on 24. 6.
Control is given to the MDOS command
interpreter after MOOS has been
initial i zed.

27.5.4 Set system error status word -- . EWORD

The . EWORD function configures the system error status
word with a specific er~or type. This allows a calling
program to indicate that an error occurred during its
execution. The system error status word can then be tested
from within a CHAIN procedure (Chapter 6).

ENTRY PARAMETERS:

EXIT CONDITIONS:

B = The value that is to be placed into
the Error Type field of the system
error status word. Any value is
valid. Section 28.4 describes the
format of the error status word.

A is unchanged.

B is' unchanged.

X is unchanged.

CC is indeterminate.

The lowe~ byte of the system e~ror status
~ord contains the value passed in B.
The Er~or Status Flag has also been
set to one. Th e rema i nde~ of th e
error status ~ord is unchanged.

27.5.5 Allocate user program memory -- . ALUSM

The .ALUSM Function adjusts the MDOS pointer ENDUS$ to
reflect the end of the user prog~am area. This function
facilitates the ~ynamic allocation of variable buffer space
adJacent to the highest loaded prog~am location so that
programs can take advantage of the variable amount of
contiguous. memory that may be configured for a given
installation.

The user program area consists of all contiguous memory
between the end of the resident operating system and the end
of contiguous memory. The pointer ENDUS$ is automatically

PaQe 27-40

OTHER SYSTEM FUNCTIONS 27.5 -- Other Functions

adJusted .to ~eTlect the end of a loaded program (onl~ iT the
program is loaded directl~ from the command line or via the
LOAD c omman'd wi th out th e "U" or "V" 00 t i on>. Thus, th e
program can obtain information about the re~aining amounts of
memory without having to size memory itself.

ENTRY PARAMETERS:

EXIT CONDITIONS:

B contains a function code that specifies
the action to be taken by .ALUSM.
The following function codes (and
their impact the the X register) are
defined:

B = 0 indicates that the X registeT'
contains the add,..ess of the last
address that is to be made a part of
the cUl"-rent use'!' program aT" e~1iL

B = 1 indicates that the
contains the number
memory that a~e to be
the.end of the current

X ~egister

or bytes of
allocated to

use-r program.

B = 2 indicates that all of the remaining
contiguous memo'T'Y is to be allocated
to the current user program aT'ea.

X contains the 'parameters .as described.
above.

A is unchanged.

B contains the return
following .retu-rn
defined:

status.
statuses

The
are

B = 0 indicates that no e-rrors occurred
(normal return).

B = 1 indicates that the allocation
request would have caused ENDUS$ to
be greate-r than ENDSY$. Th e user
program area cannot extend beyond the
~nd of contiguous memor~ in the
system.

B = 2 indicates that the allocation
re~uest would have caused ENDUS$ to
bel ess than or equal to ENDOS$. The
allocated memory block must ~eside
completely above the address
con~ained in ENDOS$.

X contains an indeterminate value if an
error occurred (exit value of B not

Page 27-41

OTHER SYSTEM FUNCTIONS 27.5 -- Othe~ Functions

zero) or if the entry value o~ B was
zero.

X contains the old value plus one (value
before the call to .ALUSM) of ENDUS$
if the entry value of B was one.
Thus, X points to the starting
address of the newly allocated block.

X contains the number of bytes allocated
if the entry value oT B was two.

Z = 1 and C = 0 if no er~ors occurred (B
= 0); The remainder of CC is
indeterminate.

Z = 0 and C = 1 if an error occurred (B
not zero>. The remainder oT CC is
i nd etermi nate.

The MDOS variabl~ ENDUS$ is unch~nged iT
an error occurT'~d. Otherwise, ENDUS$
will contain the following: if the
entry value of B was zero, ENDUSS
~ill contain the entry value of the X
l' e 9 i s t er i i T th e en t,.. q val u e 0 f B wa s
one, ENDUS$ will have been
incremented by the entry value oT the
X register; and iT the entrq value OT
B was two, ENDUS$ will contain the
value of ENDSY$.

Page 27-42

CHAPTER 28

28. ERROR MESSAGES

This chapte~ contains a summary and an explanation of
all of the standard error messages that can be displa~ed

during the operation of MOOS. Standard error messages
include those displayed by the diskette controller firmware
during initialization} the PROM IIO messages that can be
displayed when any fatal diskette e~~or is detected by an
MOOS command or overlay} and the standard error messages
displayed by the commands themselves. The standard command
error messages are recognizable by the fact that a pair of
asterisks followed by two-digit reference number is displayed
before the actual message. Explanations of messages without
the two-digit number should be looked for in the detailed
command descriptions in chapters 3-23.

28. 1 Di s x ette Con tr,o 11 er Errors

The diskette controller errors can be displayed in two
forms depending on the phase MOOS is in. During the
initialization phaseJ the error messages from the tontroller
take on the form of the letter "E" followed by a, decimal
digit 0-9. Control is given to the debug monitor after the
message is displayed. Aft~r MOOS has been· properly
initialized, the diskette cont~oller e~rors are identified by
the text npROM 110 ERROR". Control is returned to the MDOS
command interpreter.

28.1.1 Errors during initialization

If for some reason the drive electronics are not
properly initializedJ or if the diskette in drive zero cannot
be read properly to load the Bootblack or the resident
operating system} then a two-character error message will be
displayed and' control returned to the debug monitor. The
function resulting in the error has been tried five times.
After the fifth failureJ the error message is displayed.

Message

El

Probable Cause

A cyclical redundancy check (eRe)
error was detected while reading the
resident o~erating system into
memory.

Page 28-01

ERRQR MESSAGES

E2

E3

E4

E5

28. 1 -- Diskette Cont~oller ErTors

The diskette has
tab punched
initialization
in of 0 rma t i on i s
diskette.

the write p~otection
out. During the
processl certain
written onto the

The diskette is not damaged and can
still be used ror a system diskette;
however, the write protection tab
must first be covered with a piece aT
opa~ue tape to allow writing on the
diskette.

The drive is not ready. The dooT' is
open or the diskette is not yet
turning at the proper speed. I~ the
diskette has be~n inserted into the
drive with the wrong orientation, the
"not l"eadyll errol' will be also
generated. This error will also
occur if a double-sided diskette is
placed into a Single-sided diskette
drive.

Clos~ng the door, waiting a little
bit longer before entering the
"E800iG" or II MDOS " command, or
turning the diskette around so it is
properly orient~d should eliminate
this error.

A deleted data mark was detected
while reading the resident operating
system into memory.

A timeout interrupt occu,-,..ed. This
indicates that a diskette control Ie,..
command was not completed within the
allotted time. This error is also
produced if a non-maskable inte~rupt

(such as depressing the ABORT
pushbutton on the EXORciser's front
panel) is generated during a diskette
opeT"ation.

---".

ERROR MESSAGES

E6

E7

E8

E9

28.1 -- Diskette Controller Errors

The diskette controller has been
presented with a cylinder-sector
address that is invalid. This error
occurs when the sum of STRSCT and
NUMSCT (see Appendix D) is larger
than the total number of sectors on
the diskette.

This error indicates some t~pe of a
hardware problem. For example, the
error can be caused b~ missing or
overlapping memory, bad memory, or
pending IRGs that cannot be serviced.

A seek error occurred while trying to
read the resident operating system
into memory.

Like Eb errors, this one indicates
some type of a hardware problem.

A data mark error was detected while
tr~ing to read the resident operating
system into memory.

A eRC error was faund while reading
the address mark that identifies

• secto~ locations on th~ diskette.

The diskette controller errors EL E4, E8, and E9
indicate that the diskette cann~t be used to load the
operating system; however, a new operating system can be
generated on that diskette, making it useful again. The
DOSGEN (Chapter 10) and/or FORMAT (Chapter 15) commands
should be consulted ror generating a new diskette. Depending
on the extent of the errors, the diskette may be used in
drive one to re~over any files that may be en it (see section
2. 8. 9>'

The diskette controller error E5 can occur for a variety
of reasons. The most common reason, and the most fatal, is
the destruction of the addressing information on the
diskette. If the addreSSing information has been destroyed
(verified by using the DUMP command to examine areas of the
diskette), the FORMAT command may be used to rewrite the
addressing; however, information on the damaged diskette
cannot be recovered. Occasionally, after a system has Just
been unpacked, the read/write head may have been pOSitioned
past its normal restore point on cylinder zero. In this
ease, trying the event which caused the error three or more
times may position the head to the proper place. If this
fails, the head will have to be manually repositioned past
cylinder zero; however, this problem rarely OCCUl'S. The E5
errors can also ,. ". I

1.1"-'-1.11 if a user-un' i tten prog1"am ac.cesses

Page 28-03

ERROR MESSAGES 28.1 -- Diskette Cont~olle~ E~~ors

drives 1-3 without using one o~ the system ~unction$ and
without ri~st restoring the read/~rite head on that drive.

Even after the resident operating system has been
successfully read into memorYJ certain errors can occur in
the subseq,uent initialization proceduT'e. During
initialization the resident operating system cannot access
the e~T'or message processor since it has not been
initialized. Messages similar in format to those generated
by the diskette controller are displa~ed to indicate such
errors. They differ from the diskette controller errors in
that the second character of the two-chaT'acter message is a
non-numeric character. The following errors can occur during
initialization, but only after
has been read into memory.

Message

E?

Probable cause

This error indicates that the RIB o~

the resident operating sqstem file
MDOS.SY is in error. The operating
system cannot be loaded.

The diskette probably is not an MDOS
system diskette; or the system riles
have been moved from their o~iginal

pIa c e s . Th e REP A I R comma n d (C hap t e l'
22) can be used to identi~~ which
riles are missing or if their places
have been changed.

EM This error indicates that there was
insuFficient memory to accommodate
the resident portion of the operating
system.

The memory requirements described in
section 1. 1 should be reviewed. If
the minimum requirements are
satisfied, then the existing memory
should be carefully examined ror bad
locations.

I
/

ERROR MESSAGES

EI

28. 1 -- Diskette Controller Errors

The version and revision 0; MDOS
. already loaded into memory is net the

same as that on diskette. This error
usually occurs as the result of
switching diskettes in drive zero
without following the initializ~tion
pro c e d u reo u t 1 in e din sec t ion 2. 1.
This error can also occur is the ID
sector has been damaged.

The error can be avoided if the
initialization procedure is followed
correctly every time a ne~ system
diskette is inserted into drive zero.

ER The addresses of the RIBs of the MDOS
overlays are not the same as those at
the time of the last initialization.
This error may occur ror the same
reasons as the "EI" error.

EU An input/output s~5tem function
returned an error during the
initialization. Errors of this sort
indic~te a possible memory problem or
the opening of the door to drive zero
while the initialization is taking
place.

EV One of the system files is missing or
cannot be loaded into memory. If a
s y stem f i 1 e ism iss in 9 I the dis k e t t e
has been improperly generated or the
file was intentionally deleted. IT a
rile cannot be loaded, then the
diskette should be regenerated. The
diskette may be used in drive one to
save any files that may be on it
(section 2.8.9), This error may also
occur if the door to drive zero is
opened while initialization is in
progress.

28.1.2 Errors after initialization

If a diskette controller error is detected after MDOS
has been initialized, then an error message of the following
format will be displayed.

**PROM I/O ERROR--STATU8=nn AT h DRIVE i-PSN J

This message indicates that an unrecoverable error occurred
while trying to access the diskette. The error status "nn"

Page 28-05

ERROR MESSAGES 28. 1 -- Oi s k etta Contl'o 11 er Errors

is a value returned by the diskette controller. The errors
are of the same type that cause the initialization process to
give cont~ol to EXbugi however, instead of beginning with the
letter liE II , the status (nn) begins with the digit "3 1

'. The
second digit or the status corresponds directly to the
diskette controller error number discussed in the previous
section. The "E't has been replaced by the "3". Thus, status

31 is the same as El
32 is the same as E2

39 is the same as E9.

A memory address (only meaningful ror system diagnostiCS) is
substituted for the lette~ Uh"; the logical unit number is
substituted ror the letter "i"; and the physical sector
number (PSNl at which the error occurred is substituted ror
the let tel' II J II •

For errors that are retryable (status 311 34, 38, and
39) J the roll ow in g act ion s h a v e b e en t a ken ina nat temp t to
bypass the errol'. Firstl the ROM firmware tried to re-access
the sector Five ·times. The head was then positioned a
maximum. of rive cylinders outward Tram the sector in error,
repositioned back over the sector, and another five accesses
attempted. Lastly, the head was positioned a maximum oT rive
cylinders inward from the sector in error} repositioned back
over the sector, and another five accesses attempted.

Occassionally, if the diskette in drive zero was changed
without properly reinitializing the system, or if an MDOS
sq~tem Tile is moved, r1!lnam@dl or deleted from the directorql
the error messages EII ERI EU, or EV can be displayed and
control given to the debug monitoT'. These error messages are
explained in the previQus section.

28.2 Standard Command Errors

The Following list contains all of the standard error
messages than can be displayed by the MDOS commands. They
are listed in order of their two-digit reference number ror
easy location. This number is not to be confused with the
error message index number that is loaded into the B
accumulator when the system error message function L MDERR,
section 27.4) is accessed.

In some cases, the error message applies also to
user-written programs using the device independent I/O
fun c t ion 5 . The nit h e e l' l' 0 l' con d i t ion l' e t urn e d . i nth e I DC B
entry IOCSTA (section 25.3.1. 20) llIill contain a value, which
when decoded by the .MDERR function, would result in the

"

ERROR MESSAGES 28.2 -- Standard Command Errors

standard error message being displayed.

The First error message is standardl but is only
displayed by the MDOS command interpreterl not by a command.
It has no number identiFying it. The second error message is
only displayed if the MDOS error message function is called
~ith an invalid error message index number, or if the system
error message rile cannot be accessed without error.

WHAT?

This message indicates that the First File name
speciFication entered on the command line ~as not
the name of a file in the dis~ette's directory.
Most often this error occurs as the result of a
m i c. +- II n I:l n r- n min..:! M n M ~ m I:l "'--v"r--- -_ _ .. - .. _ ... _.

Some' command S,

this message
command.

such
to

as DUMP and
indicate an

PATCHI display
unrecognizable

** INVALID MESSAGE mm AT nnnn

This message is displayed by the . MDERR system
runction if it is called with an index number for
which no vali~ error message exists, o~ if the
MDOS error message file cannot be accessed on the
dis k e t t e IJJ i tho uta n err 0 r . The numb e r " mm II show s
the index number or' the error message that the
.MDERR function was trying to display_ The
numbel' u nnnn " shoUis the address of the call to
the. MDERR function.

** 01 COMMAND SYNTAX ERROR

The s~ntax of the command line parameters as seen
by the command could not be interpreted. Most
often this message rerel's to undefined characters
appearing in the <options> field of the command
1 ine.

If this message is displayed during the execution
phase of the CHAIN command} it may mean that an
execution operator was encountered that had an
illegal operand field.

** 02 NAME REGUIRED

One or
command

more of the file names required by the
as parameters was omitted from the

command 1 i ne.

Page 28-07

ERROR MESSAGES 28.2 -- Standard Command Er~ors

** 03 <name~ DOES NOT EXIST

The displayed file name was not found in the
diskette's directory. The file must exist prior
to using the command. The <name/ is displayed to
show which file name of the multiple name~

specified as parameters caused the error.

** 04 FILE NAME NOT FOUND

The rile name entered on the command line as a
parameter does not exist in the diskette's
directo~y. The file must exist prio~ to using
the command. No ~ile name is displayed since
only one parameter is required by the command.

This error can also occur during the FDR
processing o~ the . OPEN function when a rile is
being opened in the input or update modes.

** 05 <name> DUPLICATE FILE NAME

The displayed file name already exists in the
diskette's directory. The rile must not exist
p r i or tau sin 9 the c amma n d . Th e <n ame)o. i s
displayed to show which ~ile name o~ the multiple
names speciried as parameters caused the error.

** 06 DUPLICATE FILE NAME

The rile name entered on the command line as a
parameter already exists in the diskette's
di~ectory. The rile must not exist prio~ to
using the command. No rile name is displayed
since only one parameter is ~equired b~ the
command.

This er~o~ can also OCCUT during the FDR
processing of the . OPEN function when a diskette
file is being opened in the output mode.

** 07 OPTION CONFLICT

The specified options were not valid for the type
of function that was to be per~ormed by the
command. Several of the options are mutually
exclusive and cannot be specified at the same
time. The specific command descriptions should
be consulted for the rest~ictions concerning the
various options.

./

ERROR MESSAGES 28.2 -- Standard Command Errors

** 08 CHAIN ABORTED BY BREAK KEY

This message is displayed by the CHAIN command to
indicate that the operator depressed the break
key during the execution phase, causing it to be
aborted.

** 09 CHAIN ABORTED BY SYSTEM ERROR STATUS WORD

The last program invoked from the CHAIN process
set an error status into the system error status
word which was not masked by a SET operator. If
no SET operators are used in a CHAIN file, any
error status word change will cause the CHAIN
process to be aborted.

** 10 FILE IS DELETE PROTECTED

An attempt was made to delete a file which had
the delete protection bit set in its directory
entry. The rile is not deleted.

** 11 DEVICE NOT READY

Most rrequently this error indicates that a
command is trying to output to the printer while
the. printer is not ready or out or paper;
however, the message can apply to any Or the
supported devices whether being used for input or
output.

** 12 INVALID TYPE OF OBJECT FILE

Most frequently this message indicates that an
attempt was made to load a program into memory
Prom a Pile which does not have the memory-image
attribute.

This message can also indicate that the RIB of a
memory-image file has been damaged (LOAD command,
Chapter 18).

Page 28-09

ERROR MESSAGES 28.2 -- Standa~d Command Erro~s

** 13 INVALID LOAD ADDRESS

This message indicates that an attempt was made
to load a prog~am into memory which, depending on
the method of loading: 1) loads outside of the
range of contiguous memory established at
initialization; 2) loads over the T'~sident

operating system; 3) loads below hexadecimal
location $20i O'r 4) loads be'Jond location $FFFF.
The latter case implies that the ¥ile's RIB may
be damaged. If this is the suspected cause, the
REP A I R comma n d (Chap t er 22) s h 0 U 1 d be use d to
correct the errol'. P~ogT'ams ~hich load into the
highest memor'J address ($FFFF) which do not have
a starting load address that is a multiple o~

eighti can also cause this erT'or.

** 14 INVAL1D FILE TYPE

The rile name entered on the command line as a
parameter has the wrong file ¥ormat (the numeric
portion o~ a displa'Jed directory entry's
attribute field) for the intended operation. No
file name is displayed since only one paramete~
is required by the command.

This error can also occur if a binary recoro
transrer is being requested to a device that does
not support binary transfersj ir a nan-record
ro~mat (e. g. 1 memory-imag e r01'mat) is 5p ec i r i ed
when opening a non-diskette device; or if a
non-ASCII record f01'mat is specified when using
the non-rile rormat mode.

** 15 <name/ HAS INVALID FILE TYPE

The displayed fil~ name has the w1'ong file f01'mat
(the nume1'ic portion o~ a displayed directory
entry's attribute ¥ield) for the intended
operation. The <name> is displayed to show which
file name of the mul~iple names specified as
parameters caused the e~~or_

The MERGE command (Chapter 19) can display this
message if a memory-image file has an invalid
RIB. The REPAIR command (Chapte1' 22) should be
used to correct the e1'ror.

** 16 CONFLICTING FILE TYPES

A command was expecting files of the same format.
The riles speciried have different rile formats
and/or attributes.

I
/

ERROR MESSAGES 28.2 -- Standard Command Er~ors

** 17 INVALID DATA TRANSFER TYPE

An attempt was made to read from an output device
0,.. f i 1 e} to Ulr i t e t 0 ani n put d e vic e 0 r f i 1 e, to
perform record 1/0 with the logical sector mode
set, to perform logical sector lID with the
record mode set, to open a non-input/output
device in the update mode, or to open a
non-diskette device in the update mode.

** 18 DEVICE ALREADY RESERVED

Bit "R" of the IOCLUN b~te in an IOCB was set to
one when the·. RESRV system function was called.

19 DEVICE NOT

Bit "R" of the IOCLUN bqte in an IOCB ~as set to
zero when the . OPEN or .RELES system functions
were ca 11 ed.

** 20 INVALID OPEN/CLOSED FLAG

Bit "0" of the IDCDTT byte in an lOeB was set to
one when the . CLOSEJ . GETRC, .GETLS, . PUTRCJ
.PUTLS, . REWND, or . RELES system function was
called, or bit "0" of the IOCDTT byte was set to
zero when the. OPEN system function was called.

** 21 END OF FILE

An end-or-file record was read from a·
non-diskette device or an attempt was made to
read beyond the logica~ end-of-file in a diskette
file. Attempting to read from a diskette file
after the end-or-file error has occurred will
result in the same e~ror. Reading from a device
after the end-or-file error occurred mayor may
not result in the same error, depending on what
caused the initial end-of-file. condition.
Reading a record from a diskette rile which
contains no carriage returns will result in this
error.

** 22 BUFFER OVERFLOW

An attempt was made to read a record which was
larger than the data buPrer provided Por the
record. The overrlow or the ~ecord is truncated.

During the CHAIN command's execution phaseJ a
sup P 1 i e d . i n put res p 0 n see x c e e d edt h e rna x i mum
number Or characters acceptable for the input
request.

Page 28-11

ERROR MESSAGES 28. 2 -- Standard Command Errors

** 23 CHECKSUM ERROR

A binary record or an ASClI-converted-binary
recorrl was read ~hose calculated checksum did not
agree with the checksum byte contained in the
record.

This error can also occur during the FDR
pro c e s 5 in 9 0 f the . OPEN fun c t ion. I r the Til e
format mode is specifiedl and the device is read
in search of an FDRJ any record that begins with
the FDR heade~ character out which is not an FDR
(e. ;.. c'!'eated in non-file format mode) will
cause this error.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

An attempt was made to read a logical sect~r

beyond the physical end of the file. The
physical end of the file is the highest numbered
logical sector allocated to the file. This error
can also be caused if the IOCSDW and IOCSLS
entries of the IaCB are changed by the calling
program after the file has been opened.

** 25 INVALID FILE NAME

A file .name was
family indicator
indicator (#)J or
c harse tel'.

specified that contained the
(*)J' began lJJith a device name
began with a non-alphabetic

The NAME command (Chapte~ 20) limits the use of
the ~amily indicator. Failure to do sa may
result in this er~or.

** 26 FILE 15 WRITE PROTECTED

An attempt was made to write into a file which
has the write protection attribute set in its
directory entry.

This er~or can also be caused by attempting to
open a diskette file in tne update mode which
already has the write protection bit set.

** 27 <name~ IS WRITE PROTECTED

The Tile <name> had the write protection
attribute set in its dire~tory ent~y when an
attempt lJJas made to write to the ~ile.

.~,

ERROR MESSAGES 28. 2 -- Standard Command Errors

** 28 DEVICE NAME NOT FOUND

A device name was specified which is not defined
as an MDOS-supported device. This usually occurs
if the device name is mistyped. The valid device
names ror the I/O functions are CN, CR, CP, DK,
and LP. If a logical unit number is speci~ied
for a proper device that is greater than the
number OT units present rOT' that device, then
th i s err OT' may a 1 so 0<: <: UT'T' (e. g. , sp ec i ~y i ng
units greater than 3 ~or ror diSKette drives or
units greater than 0 for other devices).

The COpy command (Chapter 7) will also accept the
device names HR and UD.

** 29 INVALID LOGICAL UNIT NUMBER

A logical unit number was specified that is
invalid. If the device is a diskette, the valid
logical unit numbers are zero through three. For
non-diskette supported. devices only logical. unit
numbers of zero are allowed.

** 30 INVALID EXECUTION ADDRESS

The starting execution address or'a program in a
memor~-image file is less than the lowest address
or greater than the highest address loaded into
by the program. Th is ind icates a RIB er"ror. The
REPAIR command (Chapter 22) should be used to
correct the error.

The EXBIN command (Ch~pter 14) uses this message
to rerer to an illegal specification of an
e~ecution address in the options field (i. e. I a
non-hexadecimal digit).

** 31 INVALID DEVICE

A valid device name was used in an illegal
can t ext. For e x amp 1 e , the d e vic e LP can not b e
used in the context o~ an input device. The name
DK cannot be used ~ the command line of any of
the MDOS commands. The COpy command does not
allow the eN device to be used as an input
specification.

This message can also
perform logical sector
.device, or an attempt to
I/O on a device that
non-file rormat mode.

indicate an attempt to
I/O on a non-diskette
perform non-fi le 'format
does not support the

Page 28-13

ERROR MESSAGES 28.2 -- Standard Command Errors

If a non-standard device is being interraced to
the system using the device independent lID
functions, this error can indicate that the
IOCGDW entry of an IOCB <address of COB) is zero,
or that the address of the softruare driver
(CDBSDA of CDB) is zero.

** 32 INVALID RIB .

An attempt was made to open a rile (usually a
memor~-image file) that has an invalid RIB. The
criteria for a valid RIB are explained in detail
section ?4? The REPAIR command (Chapter 22)
should be used to correct the error.

** 33 TOO MANY SOURCE FILES

More file names were specified on
line than could be accommodated

the command
by a command

which can accept multiple file names as
parame t srs.

*~ 34 INVALID START/END SPECIFICATIONS

The start and end specifications entered on the
command line for the "LIST command did not start
lIIi th th e 1 ettar s liS" or "L II.. Th is errol' can
occur if the starting specification starts with
liS" and the ending specification starts ~ith "L",
or vice ve~sa. If the end specification has a
value less than the value of the start
specification, then this error will also occur.

** 35 INVALID PAGE FORMAT

A non-standar~ page format
had an invalid number
lines/page. The specific
should be consulte~ for
specirications.

** 36 FILE EXHAUSTED BEFORE LINE FOUND

was specified which
or columns/line or
command desc~iption

the limits of these

A start specification entered ontne command line
of the LIST command (Chapte~ 17) specified a
physical line number whose value w~s larger than
the total number of lines in the file. The same
type of e~ror can be caused by a line number
specification in a 8LOKEDIT command file (Chapter
5),

ERROR MESSAGES 28. 2 -- Standard Command Errors

** 37 END OF MEDIA

searc h ed f·oT
record output

a non-diskette
of medium (e.g.,

A File Descriptor Recor~ was- ~eing

on a non-diskette device or a
transfer was taking place on
device when the device ran out
end of cassette or paper tape).

** 38 INVALID LINE NUMBER OR RANGE

A line number was encountered in the BLOKEDIT
command rile (Chapter 5) which did not begin with
an asteriskJ a double quote, a decimal digit
(O-9) I or an alphabetic character (A-Z) I and the
line was not a ~uoted line. If the command line
started with a digit: then the physical line
number had a value outside of the range 1-65535,
or the starting number of a line number range was
greater than the ending line number of the range.

** 39 LINE NUMBER ENTERED BEFORE SOURCE FILE

A line number was encountered in the BLOKEDIT
command file (Chapter 5) before an input file was
opened.

** 40 DIRECTORY SPACE FULL

An attempt was made to add a new entrq to the
directory when no empty directory entry could be
found (first byte equal to zero or to SFF). The
directory can accommodate 160 (decimal) entries.

Page 28-15

ERROR MESSAGES 28.2 -- Standard Command Errors

** 41 INSUFFICIENT DISK SPACE

While trying to write to a file or close a rile,
an allocation request for more space returned
with insufricient room to accommodate the space
requirements. This can OCCU1'" when trying to
extend a file whose attributes demand contiguous
space allocation. In this ca.se, even though more
space may be available on the diskette than is
actually required~ the space is not adjacent to
the already allocated space. This error can also
occur when trying to create a fil~ with
contiguous allocation on a diskette where the
largest available contiguous block is smaller
than the requested size. This error can also
occur if the diskette is 1007. full when a new
file is being created or when an existing file is
attempting to expand by even a single sector.
File reorganization (section 3.3) will
consolidate fragmented space, possibly increasing
the size o~ the available contiguous space.

** 42 SEGMENT DESCRIPTOR SPACE FULL

During an allocation request fo~ additional
space) the ~ile/s Retrieval Information Block. was
round to have the· maximum numbe~ of Segment
Descriptors already in usa. File reorganization
(section 3.3) will consolidate segment
descriptors.

** 43 INVALID DIRECTORY ENTRY NO. AT nnnn

An IOCB (or DFT) contained a value in its IOCDEN
(or DEN) entry ~hich was outside of the allowable
limits of valid directory entry numbers. The
address IInnnnll gives the location of the call to
the error message function.

** 44 CANNOT DEALLOCATE ALL SPACEJ DIRECTORY ENTRY EXISTS AT
nnnn

This message indicates a hardware or system
software malfunction i~ generated by one of the
MDOS commands. A directory entry must be flagged
as deleted prior to having the file's space
deallocated. The address "nnnnit gives the
location or the call to the error message
Tunc t ion.

I
./

,.J

ERROR MESSAGES 28.2 -- Standard Command Errors

** 45 RECORD LENGTH TOO LARGE

An attempt was made to write a binarq record or
an ASClI-converted-binary record which had more
than 254 (decimal) data bytes.

** 46 INTERNAL SYSTEM ERROR AT nnnn

This message indicates a hardware or system
so~tware malfunction. Careful notes should be
made regarding the events leading up to this
error. Motorola Microsystems should be noti~ied.
The address "nnnn" gives the location o~ the call
to the error message function.

** 47 INVALID SCALL

This message indicates that a program attempted
to access the MDOS SWl (system function) handler
with a function byte following the SWI
instruction that is not defined. If breakpoints
are patched into memory without using the EXbug
command tlnnnniV", this error may occur if the SWI
vector is still configured for MDOS functions.

~* 48 CHAIN OVERLAY DOES NOT EXIST

The CHAIN overlay's file name does not exist in
the directory. The REPAIR command (Chapter 22)
should be used to check the diskette for other
errors.

~* 49 CHAIN ABORTED BY ILLEGAL OPERATOR

An illegal execution operato~ was encountered in
the intermediate file during tne CHAIN command's
ex ecut i on phase.

** 50 CHAIN ABORTED BY UNDEFINED LABEL

A JMP execution operator was encountered which
referenced a label that did not exist in the
intermediate file (forward direction only) during
the CHAIN command's execution phaie.

** 51 CHAIN ABORTED BY PREMATURE END OF FILE

An access to the intermediate rile returned an
end-of-file condition when an input request was
made by a program that was invoked by the CHAIN
process. All input that is expected by the
program must be supplied by the intermediate
~i Ie.

Page 28-17

ERROR MESSAGES 28.2 -- Standard Command Errors

** 52 SECTOR BUFFER SIZE ERROR

The sector bUTfer pointers of an lOeB do not
desc~ibe a sector buffer that is an integral
number of sectors in size, When a Tile is
opened, the IOCSBS and the lOeSBE ent~ies of the
IOCB must point to the first and last byte~ of a
sector buffer. The Tollowing relationship must
be true:

IOCSBE-lOCSBS+l
--------------- = INTEGRAL NUMB£~ OF SECTORS

128

When using the logical sector I/O functions
(.GETLS, . PUTLS) , the above relationship must be
true also. In addition, the ,PUTLS function
requires that the sector bUTfer to be output be
described bq the pointers IOCSBS and loess I
(instead of laeSBE)' Then, the buffer descl'ibed
bq lOCSBS and lOeSal must also be an integral
number of sectors in size.

** 53 INSUFFICIENT MEMORY

. -~

This message indicates that a command could not
allocate sufficient memory in the user program
area to complete its task. The minimum memol''l
requirements de~cl'ibed in section 1. 1 is
sufficient Tor all MDOS commands. Thus. this
message indicates a problem with the existing
memorys or tampering with the memory map. The
same is true for the MDOS-Supported software
products that displaq this message; however, the
memory requirements Tor the particular product
that displayed the error message should be
reviewed (Appendix H), rathel' than those ror the
standard MDOS c ommand.s in sec t ion 1. 1.

The ROLLOUT command (Chapter 23) may display this
message to indicate that the addl'ess given as the
destination of the position-independent routine
is outside o-r a valid addressing range, (missing
memory) .

28.3 Input/Ouput Function Errors

The MOOS system functions that perform I/O through an
IoCB parameter table will retul'n an errol' status in the
IOCSTA entl'Y of the lOCB. These el'ror conditions can be
decoded and displayed as messages by the MDOS error message
function bf.J loading the B accumulator with a zero and leaving
the IDCE's address in the X register. The errors are part of

ERROR MESSAGES 28.3 -- Input/Output Function Errors

the standard error messages explained above. This section
contains the system symbols Trom the MOOS equate Tile that
are used to re~erence the I/O errors. The following" table
shows the value Or the IOCSTA byte, the system symbol equated
to that value from the MDOS equate file, and the error
message.

IOCSTA
Value

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
11

12
13
14
15

16
17

18
19

System
Symbol

I$NOER
I$NOD\I
r$RESV
I$NORV
I$NRDY
I$1\lDV
I$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$aUFO
I$CKSM
I$WRIT
I$DELT
I$RANG

I$FSPC
I$DSPC
I$SSPC
I$IDEN

I$RIB
ISDEAL

I$RECL
I$"SECB

Standard Error Message Displayed
by .MDERR (B=O, X=IOCB address)

Normal return, no error
** 28 DEVICE NAME NOT FOUND
** 18 DEVICE ALREADY RESERVED
** 19 DEVICE NOT RESERVED
** 11 DEVICE NOT READY
** 31 INVALID DEVICE
** 06 DUPLICATE FILE NAME
** 04 FILE NAME NOT FOUND
** 20 INVALID OPEN/CLOSED FLAG
** 21 END OF FILE
** 14 INVALID FILE TYPE
** 17 INVALID DATA TRANSFER TYPE
** 37 END OF MEDIA
** 22 BUFFER OVERFLOW
** 23 CHECKSUM ERROR
** 26 FILE IS WRITE PROTECTED
** 10 FILE IS DELETE PROTECTED
** 24 LOGICAL SECTOR NUMBER OUT OF

RANGE
** 41 INSUFFICIENT DISK SPACE
** 40 DIRECTORY SPACE FULL
** 42 SEGMENT DESCRIPTOR SPACE FULL
** 43 INVALID DIRECTORY ENTRY NO. AT

nnnn
** 32 INVALID RIB
** 44 CANNOT DEALLOCATE ALL SPACE,

DIRECTORY ENTRY EXISTS AT
nnnn

** 45 RECORD LENGTH TOO LARGE
** 52 SECTOR BUFFER SIZE ERROR

28.4 System Error Status Woro

Within the operating system's resident variables is a
two-byte error status word. Each MOOS command will set or
clear a bit within this status word to indicate the status of
the command's completion. The error status word has the
following format:

Page 28-19

ERROR MESSAGES 28.4 -- System Er~or Status Word

FED C B A 987 6 5 432 1 0

Errol"
St.atu~

Error
Mask

Error Type

Bits 0-7 descl'ibe
erT'or

ErT'or Mask Flag
Bit B (8-A unu~ed)

Error Status Flag
Bit F (C-E unused)

Normally, after the completion or each command all bits of
the ErT'or Status and the Error Type are cleared (= 0). If an
e1''I''or oc c ur'l"ed d ur i ng th e command I th e Error Status Flag (b i t
F) ~ill be set by the command. In addition, an Errol' Type
~ill be set into the lower half of the status word (bits
0-7), The Erl"or Type is used to indica.te which erl'or was
detected by the command.

Usually, the CHAIN p'I"ocess will aboT't anytime the Error
Status Flag is set by one of the commands invoked rrom the
intermediate file; however, the ErT'or Mask can be used to
inhibit CHAIN process aborting due to command errors. The
Error Mask Flag (bit B) will inhibit CHAIN process aborting
if it is set to one. The process of setting the Error Mask
is descl"ibed in section 6.4.

28.5 Commands Affecting ErT'oT' Status Worti

All MDOS commands that are intended ~o be invoked by the
CHAIN process have been programmed to configul"e er~or t~pes

into the system error status word. These error types are
summarized here to racilitate the user who is taking
advantage of the TST execution operator during the ·CHAIN
proc ess.

All MDOS commands use the system function .MDERR for
displaying the common e,..,..or messages. Thusl the error types
that correspond to these messages will always be the samei
namely, the error message's index number used to call the

MDERR function (not the same as the displa~ed, two-digiti
error message reference number); however, commands have other
error messages that are displayed independently of the .MDERR
runction. These errors will cause a value to be set into the
Error Type field of the error status word that is greater J
than or equal to 128 ($80). It is these values, which are

ERROR MESSAGES 28.5 -- Commands Affecting Error Status Word

unique to each command, that are summari zed here. The
rollowing table contains the name of the MDOS command or
system function that sets the Error Type, the value or the
Error Type in hexadecimal, and the error message or condition
that caused the error. Ir the text in the table is in
capital letters, it is an actual error message. IF the text
is in uppe~/lower case letteTs, then it is an error
condition.

MDOS Function

MDOS Command
Interpreter

. MDERR

BACKUP

BINEX

BLOKEDIT

CHAIN

COpy

DEL

DIR

DOSGEN

DUMP

Error
Type

$80

$FF

$80
$81
$82
$83

$84
$85
$86
$87

$80

$81

$80
$81

$80
$81

Error Message or Condition

WHAT?

**INVALID MESSAGE mm AT nnnn

SOURCE FILE COPY ERROR
OB~ECT FILE CREATION COpy ERROR
CANNOT DELETE DUPLICATE NAME
INVALID TO COPY/VERIFY FROM
DOUBLE TO SINGLE SIDED
DIRECTORY READ/WRITE ERROR
SYSTEM SECTOR COPY ERROR
SYNTAX ERROR
Sector veri~~ e~~or

Response other than
overwrite question
Veriry error

<name> DOES NOT EXIST
<name> IS PROTECTED

NO DIRECTORY ENTRY FOUND

"V" to

NO TERMINATOR FOUND IN FILE'S
R. 1. B.

$82 *NO SDWS*

$80
$81

$80
$81
$82
$83
$84

INVALID SECTOR NUMBER
SECTOR xxxx LOCKED OUT

SYNTAX ERROR
MODE ERROR
BOUNDARY ERROR
INVALID SECTOR ADDRESS
WHAT?

Page 28-21

ERROR MESSAGES 28.5 -- Commands Af~ecting Er~or Status Word

ECHO

EMCOPY

EXBIN

FORMAT

FREE

LIST

LOAD

NAME

MERGE

PATCH

REPAIR

ROLLOUT

$80
$81
$82
$83

$80

$80
$81
$82
$83
$84
$85

SOURCE FILE NOT ASCII
RECQRD FORMAT ERROR
START ADDRESS OUT OF RANGE
CHECXSUM ERROR

Response othe~ than
ove~write ~uestion

INITIALIZATION ERROR
WHAT?
SYNTAX ERROR
ILLEGAL OP CODE
ILLEGAL OPERAND
ILLEGAL ADDRESS

Sly" to

The rollowing MDOS-suppo~ted commands <available at time of
publication) change the Er~or Type in the er~or status word:

Command

ASM

ASM1000

ASM3870

BASIC

Error
Type Erro~ Message or Condition

The error message number oT the
last encountered error will
appear in the Error Type.

The error message number of the
last encountered error will
appear in the Error Type.

rhe error message number oT ~he

last encouritered error w{ll
appear in the Error Type.

./

ERROR MESSAGES

FORMIOOO

FORT·

MASH

MPL

RASM

RASM09

RLOAD

28.5 -- Commands Affecting Error Status Word

$80

$80

$80
$81
$83
$84
$85
$86
$87
$88
$89
$80
$SE
$8F
$90

Any compiler-detected error

Any compiler-detected error

The error message number of
last encountered error
appear in the Error Type.

The error message number of
last encountered errol'
appear in the Error Ttjpe.

Illegal Commmand
Illegal command syntax
User aSSignment error
Undefined intermediate file
Phasing er'T'or
Section overflow
Undefined object rile
Illegal obJect record
Local stjmbol table overflow
Undefined symbol
Multipl~ defined symbol
Illegal addressing mode
Global ~ymbol table overflow

the
will

the
will

Page 28-23

APPENDIX

A. Cylinder-Sector/Physical Sector Conversion Table

The following tables give the physical sector numbers
for the first sector of every cylinder. The first table is
for single-sided diskettes. All sectors are reco~ded on
surface ze,..o, 0,.. the top surfacel of a Single-sided diskette.

The second table is ror double-sided diskettes. The
physical sector numbers are given ror the first sector of a
cylinde~ on each su~face. Su~face ze~o is the top surface
and surface one is the bottom surface.

The following notation is used in the table headings:

NOTATION

CYLINDER

PSN

DEC

HEX

SFC 0

SFC 1

MEANING

The numbers in these columns are the
cylinder numbe,..s on the diskette.
They are given in both decimal and
hex a dec i ma 1.

The numbers in these columns aTe the
hexadecimal physical sector numbers
of the first sector on a cylinder
surfac e.

Numbers in these columns are decimal.

Numbers in these columns are
hexadec imal.

The top surface, surface zero.

The bottom surfacEb surrace one.

Page A-Ol

APPENDIX A Cylinder-Secto~/Physical Sector Conversion Table

SINGLE-SIDED DISKETTES

CYLINDER PSN CYLINDER PSN
---------- ------... -

DEC HEX HEX DEC HEX HEX

00 00 000 39 27 3F6
01 01 OlA 40 28 410
02 02 034 41 29 42A
03 03 04E 42 2A 444
04 04 068 43 '2B 45E
05 05 082 44 2C 478
06 06 09C 4S 2D 492
07 07 OB6 46 2E 4AC
08 08 000 47 2F 4C6
09 09 OEA 48 30 4EO
10 OA 104 49 31 4FA
11 DB l1E 50 32 . 514
12 OC 138 51 33 52E
13 00 152 52 34 548
14 OE 16C 53 35 562
15 OF 186 54 36 57C
16 10 lAO 55 37 596
17 11 lBA 56 38 5BO
18 12 1D4 57 39 5eA /

19 13 lEE 58 3A 5E4
20 14 208 59 3B 5FE
21 15 222 60 3C 618
22 16 23C 61 3D 632
23 17 256 62 3E 64C
24 18 270 63 3F 666
25 19 28A 64 40 680
26 1A 2A4 65 41 69A
27 1B 2BE 66 42 6B4
28 Ie 2D8 67 43 6eE
29 1D 2F2 68 44 6E8
30 1E 30e 69 45 702
31 1F 326 70 46 71C
32 20 340 71 47 736
33 21 35A 72 48 750
34 22 374 73 49 76A
35 23 38E 74 4A 784
36 24 3A8 75 48 79E
37 25 3C2 76 4C 7BS
38 26 3DC

APPENDIX A Cylinde~-5ector/Physical Secto~ Conve~sion Table

DOUBLE-SIDED DISKETTES

CYLINDER PSN CYLINDER PSN
-------- --------

DEC HEX SFC 0 SFC 1 DEC HEX SFC 0 SFC 1

0 000 000 01A 39 027 7EC 806
1 001 034 04E 40 028 820 83A
2 002 068 082 41 029 854 86E
3 003 09C OB6 42 02A 888 8A2
4 004 000 OEA 43 02B SBC 8D6
5 005 104 l1E 44 02C 8FO 90A
6 006 138 152 45 02D 924 93E
7 007 l6e 186 46 02E ~e ,-,-..

7\JO 7/,

8 008 lAO IBA 47 02F 98C 9A6
9 009 1D4 lEE 48 030 9CO 9DA
10 OOA 208 222 49 031 9F4 AOE
11 OOB 23C 256 50 032 A28 A42
12 OOC 270 28A 51 033 A5C A76
13 000 2A4 2BE 52 034 A90 AAA
14 OOE 2D8 2F2 53 035 AC4 ADE
15 OOF 30C 326 54 036 AF8 B12
16 010 340 35A 55 037 B2C B46
17 011 374 38E 56 038 B60 B7A
18 012 3A8 3C2 57 039 B94 BAE
19 013 3DC 3F6 58 03A BC8 BE2
20 014 410 42A 59 03B BFC C16
21 015 444 45E 60 03C C30 C4A
22 016 478 492 61 030 C64 C7E
23 017 4AC 4C6 62 03E C98 CB2
24 018 4EO 4FA 63 03F eec CE6
25 019 514 52E 64 040 DOO DIA
26 OlA 548 562 65 041 D34 D4E
27 01B 57C 596 66 042 068 082
28 OlC 5BO SCA 67 043 D9C DB6
29 OlD 5E4 5FE 68 044 DDO DEA
30 OlE 618 632 69 045 E04 E1E
31 OlF 64C 666 70 046 E38 E52
32 020 680 69A 71 047 E6C EB6
33 021 6B4 6CE 72 048 EAO EBA
34 022 bE8 702 73 049 ED4 EEE
35 023 71C 736 74 04A Foa F22
36 024 750 76A 75 04B Fac F56
37 025 784 79E 76 04C F70 FaA
38 026 7B8 7D2

Page A-03

APPENDIX

B. ASCI I Character Set

BITS 4 TO 6 - 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ p P
B 1 SOH DCl 1 A G a q,
I 2 STX DC2 II 2 B R b r
T 3 ETX DC3 # 3 C S c s
5 4 EDT DC4 $ 4 D T d t

5 ENG NAK -r '= E II e I. v "J ""
0 6 ACIo<. SYN 8< 6 F V f v

..,. BEL ETB
, -, r0- W 9 tiS { I ~

T 8 BS CAN 8 H X h x
0 9 HT EM) 9 r y i Y

A LF SUB * J Z J z
3 B VT ESC + K (k {

C FF FS < L \ 1
0 CR GS = M J m }

E SO RS ::> N n
F 51 US / ? 0 0 DEL

Page B-01

APPENDIX

C. MDOS Command Syntax Summary

Chapter Command Line Options

3* BACKUP C(: <~sou-rce unit::>, J: <destination unit:>J (i <options:>J
null - Normal copy
A - Append
R - Reorganize
V Verify

C - Disk error continue
D Deleted data mark continue
I ID sector
L - Line printer
N - No p'rinting
S - Sector number only
U - Unallocated space
Y - Delete duplicate
Z - Skip dupli,ca~e

4 BINEX (memory-image file:>(,<:EXbug-loadable file:»

5 BLOKEDIT <command file:>l<new rile>

6 CHAIN <comma'nd file:> (; <tag i)Ci.<value i:>i.J ...)
CHAIN N*
CHAIN *

7 COpy <source name>[,<destination name:» (;<options:>J

8* DEL (file:>J [;<options/)

9* DIR [(file:» (;(options:>J

B - Automatic verify after copy
C - Convert binary records
D=< f i 1 e:> L) - Dr i vel" f i 1 e
L -Line printer
M - Test driver via debug monitor
N - Non-rile format
V - Verify
W - Overwrite

S - System files
Y - Yes, delete

A - Allocation inTormation
E - Entire entT9
L - Line printer
S - System files

Page C-Ol

APPENDIX C MDOS Command Syntax Summary

Chapte~ Command Line Options

10 DOSGEN C:<unit>J Ci<option~>J
T Write/read surface test
U Use~ diskette <minimum s~stem Tiles)

11 DUMP «rite:»

12 ECHO Ci<options>]
N - Turn echo off

13 EMCO?Y «EDOS rile>JC/<MDOS rile~J Cj<options>J
A - ASCII ~ecord ~ormat

C Contiguous allocation
o Delete protection
E Entire disk cop~

R Binary ~ecord format
5 Selected file copy

14 EXBIN <EXbug lodadable file>CJ<memory-image file>J Ci<start address)

15 FORMAT C:<unit>J

16 FREE C:<unit>J (;<options>J
L - Line printer

17 LIST <ASCII File>C, C<start>JC/<end>JJ (;<options>J
FCmmmJ. CnnJ - Page format
H - Input heading
L Line printer
N - Line numbers

18 LOAD «memory-image file>] Ci<options)J
null - Go to EXbug
null - Load above MDOS
G Load and go
U - EXORciser II User Memor~ Map
V - Overlay MDOSi discontiguous memory
«string» - Initialize command bUrrel'

19 MERGE <file l>C/<file 2/1 ... I<File n>J,<destination file/ (i<options
W - Overwrite
<start addl'ess:>

20* NAME <old name~r/<new name>] (i<options>J

21 PATCH <memory-image ~ile:>

D - Delete protection
N Non-system file
5 System File
W Write protecti~n
X No protection

APPENDIX C MOOS Command Syntax Summary

Chapter Command Line Options

22 REPAIR C:<unit/)

23 ROLLOUT «memory-image file>J Li<optionsJJ
null - Memo~y above MDOS
D Build file from scratch diskette
U - EXORciser II User Memo~y Map
V Any memory to scratch diskette

* These commands allow the family indicator in the file
name specification.

Page C-03

APPENDIX

D. Diskette Cont'1'oller Entry Points

The floppy diskette controller module firmware is used
to control all of the EXORdisk II/III ha~dware functions.
The entry points to the various runctions a~e desc'1'ibed in
this section. Parameters required by the firmware functions
are stored in RAM in the locations descl'ibed by the following
table:

Name Addl'ess Definition

CURDRV $0000

STRSCT SOOOl

NUMSCT $0003

LSCTLN $0005

CURADR $0006

FDSTAT $0008

This byte contains ~ne Dlnary logical
unit numbel' of the drive to be selected
(zel'O thl'ough three).

These two bytes contain the physical
sector numbel' of the first sector to be
used (starting sector).

These two b~tes contain the number of
sectors to be used. This number includes
a partial sector} ir a partial sector
read is being requested. The sum of
STRSCT and NUMSCT cannot be greater than
$7D2 (single-sided diske~tes) 01" $FA4
(double-sided diskettes).

This byte contains the number of bytes to
be read from the last sector during a
read operation. This number should be a
multiple of eight and cannot be greater
than 128 ($80>. If a numbel' is specified
that is not a multiple of eightl the next
large~ multiple oT eight by~es ~ill be
read.

These two bytes contain the rirst address
in memory that is to be used during a
T'ead OT' w~ite operation. This location
is updated after each sector is read or

. written. During UlT'ite test operationsl
these two bytes contain the address of a
two-byte data buffer.

This byte contains a status indication of
the performed function. If an error
occurred during a diskette operation, the
carry bit in the condition code register

Page D-01

APPENDIX D

SIDES $OOOD

Diskette Controller Entry Points

~ill be set to one upon returning to the
calling program. In addition, FDSTAT
will contain a number indicating the
er,..or type ($31 - $39>' The error types
are explained in Chapter 28. If no er,..or
occurs, then the car,..y bit of the
condition code register will be set to
zero and FDSTAT will contain the value
$30.

This byte contains an indication of
type of diskette that is in a drive.
the sign bit (bit 7) of this location

the
If
is

set to one a~ter a diskette has been
accessed, then the diskette is
single-sided. If the sign bit of this
location is set to zero after a diskette
has been accessed, then the diskette is
double-sided. In earlier versions of the
diskette controller firmware (EXORdisx
I I) I t his 1 0 cat ion UJ ill a 1 UJa y s h a vet h e
sign bit set to one.

For all of the firmware entr~ points described belowl
the content of the registers is unspecified both upon e~try

and exit from the r.outine. Each entry point is accessed by
executing a n Jump to subroutine" instruction (~SR). The
parameters must have been set up in RAM as indicated for each
specific function. It should be noted that the ROM routines
for the diskette functions run with the interrupt mask bit
set to one in the condition code register. The routines also
use the NMI vectoT. Both the NMI vector and the interrupt
mask are restored before returning to the calling program.

Name Address Function

OSLOAD $E800 This entry point initializes the drive
electTonics and loads the Bootblack and
MDOS retrieval information block rrom the
diskette in drive zero. The Bootblock is
given control after it has. been loaded
from the diskette. Itl in turn, causes
the rest of the operating system to be
loaded into memory. No parameters are
required for this entry point. This
function does not return control to the
calling program. If an error occurs
during the Bootblock load processl the
error number will be displa~ed on the
sqstem console and control passed to the
resident debug monitor. At ieast $120
bytes of memory are re~uired starting at
location zero. If less memory exists,

APPENDIX D

FDINIT $E822

CHKERR $E853

PRNTER $E85A

READSC $E869

READPS $EB6D

Diskette Controller Entry Points

the Bootblock program may not be able to
display an error message indicating that
there is insufficient memory in the
system. The SWI vector must be
configured for the debug monitor before
this entry point can be used (e. g. I the
ABORT or RESTART pushbutton on the front
panel Or the EXORciser must have been
depressed) .

This entry point initializes the PIA and
SSDA. No parameters are required by this
~outine and none are modified b~ it.

This ent~y point is used to check for a
diskette controller error if called
immediately after returning from another
ROM entry point. The routine will check
the state of the carry flag in the
condition code register. If the carry
flag is set to zeroJ ·the CHKERR routine
will simply return to the calling
program. If the carry flag is set to one
(an error occuT'red), then the routine
will print an "E" followed by the
contents of FDSTAT and two spaces on the
system console. Control is given to the
resident debug monitor after printing the
error message. CHKERR does not change
any of the parameters.

This entry point will print an II Ell

followed by the contents of FDSTAT
-followed by two spaces on the slJ stem
console. PRNTER does not change any of
the parameters.

This entry point causes the number of
sectors contained in NUMSCT beginning
with STRSCT from CURDRV to be read into
memoT'Y starting at the address contained
in CURADR. CURADR is updated to the next
address that is to be usritten into after
each sector is read. The parameter
LSCTLN is automatically set to 128 ($80)
so that a complete sector is read into
memory when the last sector is processed.
The parameters CURDRV, STRSCT, and NUMSCT
are not changed. FDSTAT wi 11 contain the
status of the read operation.

This entry point is similar to READSC
with the exception that the last sector
is only partially read according to the

Page D-03

APPENDIX D

RDCRC $E86F

RWTEST $E872

RESTOR $E875

SEEK $E878

WRTEST $E87B

WRDDAM $E87E

WRVER F $E881

Diskette Controller Ent~y Points

contents or LSCTLN. Ir LSCTLN contains
128 ($80) ~ then t his en t1' 1J poi n tis
identical to READSC. The restrictions
placed on LSCTLN are described in the
preceding table g~ the parameters,

This ent~y point
sectors contained
~ith STRSCT Trom
check their CRCs.

causes the number of
in NUMSCT beginning
CURDRV to be read to

The contents of the
sectors are not read into memory_ The
only parameter changed is FDSTAT.

This entry pOint causes the two bytes
located at the address (and at address +
1) contained in CURADR to be written into
alternating bytes O~ NUMSCT sect~rs

beginning with STRSCT of CURDRV. ATter
NUMSCTsectors are written in this
rash ionl they are read bac k to veri ry
their CRCs. The only parameter changed
is FDSTAT.

This ent~y point causes the read/write
head on CURDRV to be positioned to
cylinder zero. The only paramete~

required is CURDRV. The only parameter
changed is FDSTAT.

This ent~y point causes the read/write
head of CURDRV to be positioned to the
cylinder containing STRSCT (see Appendix
AL The only parameter changed is
FDSTAT.

This ent~y point causes the two bytes of
data located at the address (and at
address + 1) contained in CURADR to be
written into alternating bytes or NUMSCT
sectors beginning with STRSCT or CURDRV.
The only parameter changed is FDSTAT.

This entry point causes a deleted data
mark to be written to NUMSCT sectors
beginning ulith STRSCT of CURDRV. The
only parameter changed is FDSTAT.

This entry point causes NUMSCT sectors
beginning at STRSCT or CURDRV to be
written r~om memory starting at the
address contained in CURADR. CURADR is
updated to the address of the next byte
to be ~ead from memory after each secto~
is written. After all sectors have been

APPENDIX D Diskette ContTolle~ Entry Points

WRITSC $E884

written to the diskettel they are read
back to verify their CRCs as checked by
the routine RDCRC. The only pa~amete~$
changed are CURADR and FDSTAT.

This entry point is identical to WRVERF
with the exception that the written
sectors are not read back to veriTY their
eRCs. The only parameters changed are
CURADR and FDSTAT.

When an error occurs, the physical sector number at
which the error occurred can be computed from the following
relationship:

where PSN is the physical sector number at which the error
occurred} and SCTCNT is a t~o-byte value contained in
locati ons $OOOE-OOOC.

The following entry points are also in the firmware but
have nothing to do with the diskette functions. ~hese entry
points can be used ~o access a line printer.

Name Address Function

LPINIT $EBCO

LIST SEBCC

LDATA $EBE4

LDA"T A'! $EB F2

This entry point intializes the PIA from
a reset condition.

This entry point sends the contents of
the A accumulator to the line printer.
If the "paper empty" or "printer not
selected" status condition is detected,
the LIST ent~y point will return with the
carry flag of the condition code register
set to one. If these conditions are not
detected, the carry flag lUill be set to
zero.

This entry point sends a character stTing
to the line printer. The string is
pointed to by the X register and must be
termi nated wi til an EDT ($04). Pr i Or to
p~inting the st~ing! a ca~~iage retu~"

and a line feed are sent to the printer.
If a printer error is detected by LDATA,
it will loop until aborted or until the
error is corrected.

This entry point performs the same
function as LDATA with the exception that
the initial carriage return and line feed

Page D-05

APPENDIX D Diskette Cont~oller Ent~~ Points

are not printed.

Fo~ a complete description oT the
module the "Flopp~ Disk ContT'oller
should be consulted.

diskette cont~oller

Module User's Guide"

/

APPENDIX

E. Mini-Diagnostic Facility

A mini-diagnostic ~outine is available in the EXORdisk
II diskette controlle~ rirmwa~e (version numbers less than
1.2). This routine permit~ the user to execute any diskette
controller function a single time or continuously. The
parameters required by the mini-diagnostic routines are
similar to those used by the other diskette controller
runctions (Appendix D). The reader should be familiar with
those parameters before attempting to use the
mini-diagnostics.

The following parameters and entry points are required
by the mini-diagnostic ~outine:

Name Address Definition

CURADR $0006

LDADDR $0020

EXADDR $0022

ONECON $0024

$0060-$0073

CLRTOP SEB90

This parameter is automatically set up by
the mini-diagnostic routine from LDADDR
(see .beloud before each execution of t~e
specified function.

These two bVtes contain the data that
would normally be placed into CURADR.
The diagnostic routine will update CURADR
from LDADDR before each function is
executed.

These two bytes must contain the address
or the entry point or the function
(READSC, WRTEST I etc.) that is to be
executed by the diagnostic routine.

This byte should contain a zero if the
function is to be executed continuously_
A non-zero value in this location will
cause the function to only be executed
once.

This area contains a two-byte counter ~or
each Or the possible states returned by a
function in FDSTAT. Locations $60-61
contain a counter ror the status of "0";
locations $62-63 contain a counter ror
the status or "l"i .and so on.

This location is the entry point to the
mini-diagnostic routine that initially

Page E-Ol

APPENDIX E

TOP $EB98

Single Execution

Mini-Diagnostic Facility

zeroes the counters in locations $60-73
befo~e executing the function.

This location is the entr~ point to the
mini-diagnostic routine that will leave
the counters at locations $60-73
unchanged be~ore executing the function.

In order to execute·a diskette function a single time,
the parameters CURDRV, STRSCTi NUMSCT; LSCTLN, and LDADDR
should be configured as required for the specific function.
The address of the specific function should then be placed
into EXADDR. The location ONECON should be initialized with
a non-zero value. The st~ck register should be pointing to a
valid area in memory (the EXbug stack is acceptable). Thenl
the debug monitor command

EB98;G

will give control to the mini-diagnostic routine causing the
PIA and SSDA to be initialized, CURDRV to be restored, and
the function in EXAODR to be executed.a single time. Upon
completion of the function, the lette~ "E" fol~owed by a
digit "0" through "9" will be printed and contTol r~turned to
the debug monitor. .The displayed message will indicate the
completion status o~ the function as retu~ned in FDSTAT.

Continuous Execution

In order to execute a diskette ¥unction continuously,
the parameters CURDRV, STRSCT, NUMSCT LSCTLN, and LDADDR
should be configured as required ror the specific function.
The ad~~ess of the specific function should then be placed
into EXADDR. The location ONECON should be initialized to
the value of zero. The the debug monitor command

EB98iG (to start at TOP)

or

EB90iG (to start at CLRTOP and zero counters)

will give control to the mini-diagnostic routine. This will
cause the PIA and SSDA to be initialized, CURDRV to be
res~ored, and the function in EXADDR to be e~ecuted

continuously until one of the two-byte counters is
incremented to ze~o. When one of the two-byte counters
reaches zero, an liE" -Followed by an error indication will be
printed at the console and control returned to the debug
monitor. The error indication following the letter "E" will

APPENDIX E Mini-Diagnostic Facility

not be the normal value in the range 0-9. Rather, it will be
the ASCII character that corresonds to twice the value of the
normal error code $30-$39. Thus, the following correlation
exists between the normal error and the printed character
following the "E":

Normal Error

o
1
2
3
4
5
6
7
8
9

Printed character

b
d
f
h

J
1
n
p
r

If the user initializes a counter to the value $FFFF, for
example, the mini-diagnostic will run continuously until the
first error of the type monitored by the counter occurs.

Page E-03

APPENDIX

F. Diskette Description, Handling, and Format

The flexible disk, or diskette, is permanently enclosed
by a durablel plastic covering. This outside Jacket allows
the diskette to be handled and at the same time gives a
certain degree of protection ror the oxide surface within.
The covering also provides rigidity to the diskette, allowing
it to be easily inserted into and removed from the diskette
d,.. i ves.

To extend the usable life of a diskette and to maximize
trouble-free operationl the diskette should be handled with
reasonable care. The following points of diskette care
should be followed. Most manufacturers usually list these
points on the protective envelope of the diskette as a
reminder.

1. The diskette should be returned to its protective
envelope when not in a drive unit.

2. The diskette in its envelope should be 'stored
vertically. It should not be stacked or placed
under heavy pre~sur~ as this can cause warping of
the oxide surface.

3. Too many diskettes should not be forced into one
box.

4. The diskette should not be exposed to any
magnetizing force in excess of 50 oersted. The
50 oersted level can be reached about three
inches away from a typical source such as
electric motors, trans rormers, etc.

5. Diskettes should not be subjected to extremes of
heat. They should not be kept in direct
sunl i 9 h t. Warp i ng can resu 1 t.

6. The label on the diskette should only be USTitten
on with a ~elt-tipped pen. Pencils, ballpoint
pens, or extreme pressure from felt-tipped pens
can emboss the oxide surface within.

7. The physical oxide surface should never be
touched. Skin oils transferred to the su~face in
this manne~ can attract and retain dust and other
c ontami nants.

Page F-Ol

APPENDIX F Diskette Description, Handling, and Format

8. The sur~ace oT the diskette should never be wiped
or cleaned. Any physical contact with the
surface should be avoided.

9. The diskette should never be To~ced into the
drive. Neither should the diskette be rolded or
bent.

10. The door on the diskette drive should not be
closed before the diskette has been inserted all
the way. Damage to the drive hub hole can
result. Likewisel the door on the drive should
be ~~lly opened be~ore the diskette is removed.

The diskette mayor may not have a write-protect hole
along the edge that is inserted first into the drive. This
hole is located 6.25 inches from the right edge as seen from
above the diskette. When the hole is not covered, the
diskette is write protected. The hole must be covered in
order to write on the diskette. An opaque adhesive-backed
label or tape can be used to cover the hole.

The Single-sided diskette is recorded in a format that
is similar to the Single-sided single-densit~ format of an
IBM-3740 diskette. The detailed format description is
contained in· the IBM document number GA21-9190-3, IIIEM
One-sided Diskette OEM Information"J Appendix B. The format
described in that appendix is in reference to IBM part number
2305830.

The single-sided format is similar to the IBM 3740
format insofar as ~ne addressing information is concerned.
The usage and content of the actual sectors and c~linders is
not necessaril~ similar.

The double-sided diskette is recorded in the Motorola
single-densit~ double-sided format. This format is an
extension of the single-sided single-density format onto the
other side of the diskette. Appendix A gives the location of
the phsyical sectors with respect to surface and cylinder for
both s1ngle- and double-sided diskettes.

.--......,

}

APPENDIX

G. Directory Hashing Function

In order to speed up a directory sea~ch ro~ a specific
file name, a hashing function is used to map a rile's name
into one of the directory's sectors. As a result, the number
of sectors that have to be read before a match is found or
not found is minimized.

All ten b~tes of the file name and suffix are used by
the hashing function. The function computes a number which,
when added to th~ physical sector number of the start of the
directory, is the sector number of the first sector used in a
linear search of the directory.

An entry in the dir-ectory will have in its first byte a
value of zero, indicating that this entry has never been
used; a value of $FF, indicating that the entry is deleted;
or an ASCII character, indicating the presence of a rile
name.

Initially, all directory sectors are filled with zeroes ..
New names are added se~uentially to the se~tor identified by
the hashing fun~tion. New entries can be made into those
entries which have a zero oor an $FF in 'their first byte.
Thus, a search for a name can stop whenever an entry is Found
~hich has the first byte equal to zero.

A directory search begins in the sector id~ntified by
the hashing function. If no entries within this sector
contain zero in their first byte, and iT no match is found,
the next sector in the directory is searched. The sectors
~ill continue to be searched in this round-robin fashion
until a match or an entry with first byte of zero is found,
or until all sectors have been examined. The only time all
sectors of the directory are searched is if ever~ entry
contains a valid file name or a deleted rile name. Thus,
directory searches are faster if the directory has been
reorganized with the BACKUP command (section 3.3).

The following routine is similar to the one used in MDOS
to perform the directory hashing Function. It is documented
here to allow users who wish to write disk-oriented programs
to access the directory without using MDOS.

Page G-Ol

APPENDIX G Directo~y Hashing Function

* * MDOS DIRECTORY HASHING FUNCTION

* * ENTRY: X = ADDRESS OF 10 BYTE FILE NAME

*'
* * EXIT:

*' ,.
*

AND SUFFIX

A ACCUMULATOR CONTAINS THE
HASH CODE -- A NUMBER IN THE
RANGE 0-19, DECIMAL.

TMPl RMB 1
TMP2 RNB 1
T~a~
I I II >J

* HASH LDAB
STAB
CLC
CLRB

HASH2 STAB
TPA
STAA
LDAB
SUBS
BPL
CLRB

HASH25 LDAA
TAP
ADCB
ROLE
INX
DEC
ENE
RORB
TEA
RORA
RORA
RORA
RORA
ABA
TAB
ANDB
CMPB
BLS
SUBB
CMPB
BHI
ASRA
ROLB

HASH3 STAB
RTS

1

#'10
TMP3

TMPl

TMP2
0, X GET FILE CHAR
#$25 MAKE IT UNIGUE
HASH25

TMP2

TMPl

TMP3
HASH2

#7.00011111
#.19
HASH3
#20
~9

HASH3

TMP3

APPENDIX

H. MOOS-Supported 50~tware Products

This Appendix contains a list of the MDOS-Supported
software products available at the time of publication.
These products are capable of running in an MDOS environment
even though some of them have been developed independentlq.
All MOQS-Supported products are purchased and shipped
separately from MDOS. At the time or publ ication, onl\} the
following suppo~ted products are available For MDQS09:
RASM09! RLDAD, EDIT, and E.

These descriptions contain a brier discussion of how the
product is invoked from the MDOS command line. Anq
additional hardware re~uirements are also noted. The
product's manual that is sh'ipped along with its diskette
should be consulted for details about its operation.

Page H-Ol

APPENDIX

H. 1 ASM -- MoSOO Assemble~

The ASM. command processes sou~ce progT'sm statements
w~itten in the M6800 Assembly Language. The M6800 Assembler,
ASMI t~anslates these source statements into object programs.

The M6800 Assemble~ is invoked from the MDQS command
line as are other MDOS commands. No additional hardware
requirements are needed to Tun
minimum conriguration used for
comma n d 1 in e is:

the assembler oth€r
MDOS. The format

than the
Or the

ASM <name~ Ci<optionsjJ

where <name~ is the name Or source file. The source file
<name~ is in the standard MDOS file name format

<file name) C. <su~~ix)J C:<logical unit number»)

The de-fault values of! "SA" and 110" are used if <suffix)- and
<logical unit number~ are not explicitly entered.

The <options> maq be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing and the
destination Or the object file can be specified from ~ithin

the source prog~am with the OPT directive. Ce~tain options
are automatically used as a default condition. These
conditions can be reversed or over~idden by preceding the
option letter with a minus sign (-). The following options
are recognized by the assembler:

OPTION DEFAULT
------- -------

G -G

L -L
L==lCN. -L
0 0

O=<namej,
s

o
-9

ATTRIBUTE CONTROLLED BY OPTION

Printing or generated code rrom FeB,
FDB. and FCC di~ectives

Print SOUT'ce listing on line p~inter
Print source listing on console
Create obJect file with name of
source rile and surfix IILX" on same
logical unit as source Tile on
command line
Create obJect file with name_.<name>
Print s~mbol table

Certain options CL=, 0=) re~uire a terminating comma only if
othe~ options follow. Options are specified without any
intervening blanks or separators.

APPENDIX H. 1

Each symbol in the symbol table requires eight bytes.
Thus, if the minimum of 16K bytes of memory is used, the
M6800 Assembler can accommodate about 300 (decimal) symbols.

For more details about the M6800 Assembler, the "M6800
Co-Resident Assembler Rererence Manual" should be conSUlted.
The following enhancements have been made in the MDOS version
of the M6800 Assembler over the ~pecifications in its
reference manual.

The symbols may contain the special characters period
<.) and dollar sign ($)i however, the dollar sign may not be
used as the first character of a symbol.

The END directive has been changed so that it now has
the follo~ing rormat:

END C<expression>J

where the value of the optional <expressicn~ will be placed
into the 59 record of the object file. This record is used
to specify the starting execution address of the object file.
If no expression is specified, the value of zero will be
used.

Like other MDOS commands, the ASM command is sensitive
to the BREAK and CTL-W keys of the system console.

The object file produced is in the EXbug-loadable
format. The file must be converted into a memory-image file
before it can be loaded from the diskette into memory."

Page H-03

APPENDIX

H.2 ASM1000 -- M141000 Cross Assembler

The ASM1000 command processes source program statements
Ulritten in the M141000 Assembly Language. The M141000 Cross
Assembler, ASM1000, translates these source statements into
obJect programs that can be executed by the M141000
Simulator, SIM1000.

The M141000 Cross Assembler is invoked ~~om the MDOS
command line as are other MDOS commands; however, the Cross
Assembler re~uires that the system has a minimum of 24K bytes
of memory. The format of the command line is:

ASM1000 <name l~C,<name 2/, ... ,<name nj] Ci<optionsJJ

where <name i> are the names of source files. Each file name
in the .1 is tis i nth e s ta n dar d MDOS Til e n a me forma t

<rile name> (.<suffix>] C:<logical unit number>J

The de-rault values of "SA" and "0 11 are used if <suffix.> and
<logical unit number)- are not explicitly entered. Up. to
t~enty file names can be accommodated by .the assembler.

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing, the
destination oT the obJect file, and the printing aT error
messages on the printer iF no listing is desiredJ can be
speciFied from within the source program with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be reversed or
overridden by preceding ·the option letter with a minus sign
(-). The following options are recognized by the assembler:

APPENDIX H.2

OPTION DEFAULT

c
D
E
F
G

H

L
L=#CN,
L=<name",

M

N=ddd,

o

O=<name"J
P=dd,

S
T
U

x

C
0
-E
F
-G

-H

-L
-L
-L

-M

N=72

a

o
P=58

-s
-T
-u

-x

ATTRIBUTE CONTROLLED BY OPTION

Printing of macl'O calls
Printing of macl'O de-finitions
Printing of macl'O expansions
Printing of conditional directives
Printing of generated code from OPLA
directive
Input initial heading from the
console
Print source listing on line pl"'inter
P,..int source listing on console
Print source listing into diskette
file <name> (default suffix is II ALII ,
default logical unit number is zero/.
Such files should be printed with the
COPY command.
Print error messages only on line
printer
Set printed line length to IIddd ll

(decimal)
Create object file with name <name 1"
and suffix "AD" on same logical unit
as <name 1> of command line
Create object file with name <name>
Set numbel' aT printed lines per page
toll d d If (dec i ma 1) . A -P sup P 1'" e sse s
paging.
Print symbol table
Print opcode usage statistics table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=, N=, 0=, p=) re~uire a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

Each symbol in the symbol table re~uires ten bytes.
Thus, if the minimum of 24K bytes of memory is used, the
M141000 Cross Assembler can accommodate about 490 (decimal)
symbols; however, i-f the cross reference option is specified,
the symbol table requirements differ. In this case, an
additional ten bytes are required by each symbol for every
four refe~ences to that symbol. If any mac~o definitions are
used (either MACR or INST directives), the available symbol
table space will be smaller.

For mOl'e details about the M141000 Cross Assembler, the
liM141000 Cross Assembler- Reference Manual" should be
consulted.

Like othe~ MDOS commands, the ASM1000 command is

Page H-05

APPENDIX H.2

,-.-~

sensitive to the BREAK and CTL-W keys of the system console.

APPENDIX

H.3 ASM3870 -- M3870 Cross Assembler

The ASM3870 command processes sourc~ program statements
written in the M3870 Assembl~ Language. The M3870 Cross
Assembler, ASM3870, translates these source statements into
object programs that can be executed by the M3870 Emulator,
EM3870.

The M3870 Cross Assembler is invoked from the MDOS
command line as are other MDOS commandsi however, the Cross
Assemble~ re~uires that the system has a minimum or 20K bytes
of memory. The format of the command line is:

ASM3870 <name l>C,<name 2>, ... ,<name nJJ Li<options>J

where <name i> are the names of source files. Each file name
in the list is in the standard MDOS file name format

<file name> (.<suffix» C:<logical unit number>J

The default values of "SA" and "0" are used if <suffix:> and
<logical unit number) are not explicitly entered. Up to
twenty file names can be accommodated by the assembler.

The <options> may be one or more of the options listed
in the following table. All options except those that
cont~ol the destination of the source listing, the
destination of the object rile, and the printing Or e~ror

messages on the printer if no listing is desired, can be
specified Trom within the sou~ce program with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be ~eversed or
overridden by preceding the option letter with a minus sign
(-). The follo~in9 options are recognized by the assembler:

Page H-07

OPTION DEFAULi

c C
D D
E -E
F F
G -G

H -H

L -L
L=#CN. -L
L=<:name:> , -L

M -M

N=d d d I N=72

a Q

O=<name)o, a
P=dd, P=58

S -s
u -u

x -x

ATTRIBUTE CONTROLLED BY OPTION

Printing of mac~o calls
Printing of macro de~initions
Printing of macro expansions

APPENDIX H.3

Printing of conditional directives
Printing of generated code from DA
and DC directives
Input initial heading from the
console
Print source listing on line p~inter
Print source listing on console
Print source listing into diskette
file <name> (default suffix is HAL",
default logical unit number is zero).
Such files should be printed with the
COpy command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create object file with name <name 1>
and suffix I-LX" on same logical unit
as <name 1> of command line
Create object file with name <name~
Set number· of printed lines per page
to" d d II (d e c i ma 1) . A -P sup pre sse s
pag ing.
Print s~mbol table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=I N=J 0=1 P=) require a terminating comma
only if other options follow. Options are specified ~ithout
any intervening blanks or separators.

Each s~mbol in the symbol table requires ten bytes.
Thus, if the minimum of 20K bytes of memory is used, the
M3870 Cross Assembler can accommodate about 230 (decimal)
symbols; h.owever, if the cross reference option is specified,
the symbol table requirements diffeT. In this case, an
additional ten bytes are required by each s~mbol for every
four references to that symbol. If any macro definitions are
used (MACR directive), the available symbol table space will
be smaller.

For more de~ails about the M3870 Cross Assembler, the
"M3870Cross Assembler Reference Manualu··should be conSUlted.

Like other MDOS commands} the ASM3870 command is
sensitive to the BREAK and CTL-W keys of the system console.

APPENDIX

H. 4 BASIC -- BASIC Interprete~

The BASIC command processes source program statements
UI~itten 1n the BASIC language, The BASIC interpreteT', BASIC,
can be used to create, modify, and inteT'pret these source
statements.

The BASIC interprete~ is invoked from the MDOS command
line as are other MDOS commands; however; the interpreter
requires that the system has a minimum of 20K bytes of
memory. The format of the command 1 ine is:

BASIC <name l>C,<name 2:>J

where (name 1> is the name of a source program file to be
loaded or cT'eated, and <name 2> can be the name of a file
into which the source program file is to be saved. Both file
specifications are of the standard MDOS file name format

<file name:> C. (suffix>] C:<logical unit number:»

The default suffix "SAil and the default logical unit number
zero will be automatically supplied if none are explicitly
entered.

If <name 1> is the name of file which alread~ exists in
the directory, then it must contain a valid' BASIC program.
The contents of the file <name 1> will then be automatically
loaded into the work space. If <name 1> does not exist, it
will be used to save the contents of the work space when the
BASIC interpreter is terminated.

The file <name 2~ can optionally be used to save the
contents or the work space if <name 1> is to be left
unchanged. Ir (name 2) is specified, it must be the name of!
a file that does not already exist.

For a detailed description Or the BASIC interpreter, the
ItM6800 BASIC Interpreter Reference Manual" should be
consulted.

Page H-09

APPENDIX

H.5 E -- CRT Text Editor

The E command can be used to create or to modiFy ASCII
record ~iles on the diskette. Use o~ the Edito~ in
conjunction with the EXORterm 200/220 or EXORterm
l~O/EXORciser sqstem allows the user to perform editingJ
employing speci~ically designed ~eatures of the EXORterm.

The E command is invoked rrom the MDOS command line as
are other MDOS commands; however, the Editor re~uires

the system has a minimum Or 32~ bytes of memory_

For a complete description of the E command's usagel
IIM6800EDITORM Resident Editor Reference Manual" should
consulted.

that

the
be

, .. ~
. ;

/

APPENDIX

H.6 EDIT -- Text Editor

The EDIT command can be used to create or to modify
ASCII record files on the diskette. The EDIT command is
invoked r~om the MDOS command line as are other MDOS
commands. No additional hardware re~uirements are needed to
run the EDIT command other than the minimum configuration
used for MOOS.

The EDIT command is invoked with the following com~~nd

line:

EDIT <name l~Ci<name 2>J

where (name 1~ is the name of the file to be edited and <name
2/ can be the name of an output or scratch file. Both file
specifications are in the standard MDOS format:

<file name) C.<suffix/J C:<logical unit number»)

The default values "SA" and zero are used for the suffix and
the logical unit numberl respectivelYI if the~ are not
explicitly entered.

If only <name 1> is specified on the command linel then
it will be the name of the file to be edited. If <name 1>
already exists, the input will be taken from it. If <name 1>
does not already existl then it will be automatically
created, and all output written to it.

The second rile name specificationl <name 2>, can only
be used if the file to be edited already exists on the
dis k e t t e . Norma 1 1 Y I <n am e 2:> i s not s p e c i r i e d . I nth i s
case, the EDIT program will automatically create a temporary
output rile called SCRATCH. SA. The output file will be
created on the same logical unit number as <name 1>, unless a
specific logical unit number is entered for <name 2/. The
output file is used to receive the data from <name 1> after
it has been edited by the operator. When the edit process is
ended: any unedited portion or the input file <name 1> will
be copied into the output file. The output rile will then
contain a complete copy or the input file plus any changes
that were made to it.

If the default output rile is used, the file <name 1>
will be automatically deleted and the output rile renamed so
it has the same name as the original input ·foile: Thus, as
far as the operator is concerned, the file <name lj now
contains the T'esults of the edit. <name 1:> will, therefore,

Page H-l1

APPENDIX H. 6

always be the name of the input file and need not be changed
as a result of editing it.

If, however, <name 2::> was explicitly ente-red on the
command line, then <name 1::> will not be deleted when the EDIT
cOMmand is tSTminated. In this ~q; a set of changes can be
applied to the input file without affecting the original copy
Df the file. The result of the edit will be in <name 2~
afte~ the edit is ended. Ir onl~ a logical unit numbeT is
ente~ed fOT the <name 2::> file name spe~ificationl then the
result of the edit will be on the specified logical unit.

One of the standard MDOS error messages will be
displayed iT the input rile <name 1::> is delete or write
prote~ted and <name 2::> is not specified. Since a protected
file cannot be deleted, the edited output file SCRATCH.SA
will contain the results of the edit; however, the input file
must be manually deleted and the rile SCRATCH. SA must be
manually renamed by the ope~ator.

If the Tile SCRATCH. SA already exists on
when the EDIT command is invoked without
speciTication, the error message

the diskette
a <name 2:>

** 06 DUPLICATE FILE NAME

will be displa~ed. The ril~ to receive the output, whether
explicitly entered on the command line or implicitly used as
SCRATCH. SAJ cannot exist p~io-r to the edit.

One or the standard error messages will also be
dis p 1 a ':I e d i r d ur i n g a c r 0 s s - d r i vee d i t I < n a m e 2::> can not b e
renamed after the original Tile <name 1> has been deleted.
This can occur if (name 1~ exists on both drives. In this
case, the edited output will again be intact in the rile
SCRATCH. SAj however, it UJill have to be renamed manually.

For a complete description of the EDIT command's usage,
the uM6800 Co-Resident Editor Reference Manual" should be
consulted.

The EDIT command has been changed slightly ror MDOS Tram
thE way it is described in the EDIT command's Manual. In an
at"tempt to conrorm to the MDOS keyboard controls, the RU130UT
(DEL) key can be used to backspace a character out of the
input buffer; however, the CTL-D key cannot be used to
re-display the current line. In addition, the BREAK key can
be used to prematurely terminate p~inting of lines (T
command) and file searching eN command>. Control will be
returned to the EDIT command procass~r. The CTL-W can' also
be used to "hold lt the lines for consoles that are CRTs. The
IIFtI command (punch .nulls .pCi' leader) is invalid.
command appends 255 lines into the edit buffer.

The "Ait

t"'lI __ _

APPENDIX

H.7 EM3870 -- M3870 Emulator

The EM3870 command is the controlling software for the
M3870 Emulator Module. It permits the user to load 3870
object programs from the diskettei to perform examine and
change operations on the various programmable registers and
memor~i and to insert, to display and to remove breakpoints
in the user program.

The EM3870 Emulator is invoked from the MOOS command
line as are o~ner MDDS commands; however, the Emulator
requires that the system has a minimum of 20K bytes of memor~
as ~ell as an M3870 Emulator Module. In addition, the user's
development system must not contain memory between locations
$0000 through $DFFF, inclusive.

The EM3870 Emulator is
command line:

invoked from the following

EM3870

For a complete description of the Emulator and its command
structure, consult the "MC3870 Development System User's
Guide".

Page H-13

APPENDIX

H.8 FORM1000 -- M141000 ObJect File Conver~ion

The FORM1000 command takes the output
M141000 Cross Assembler and converts the data
record ~ile. The resultant ~ile can then
cassette or pape~ tape via the MDOS COpy
additional hardware reo.uir-e-ments are needed to
file conversion program other than the minimum
needed to run the M141000 Cross Assembler,

T i 1 e -from th e
to an ASCII

be copied to
command. No

run the Object
configuration

The FORM1000 command
command line:

is invoked with the following

FORMI000 <name l/C/<name 2>J

where <name l~ is the name of the object output file produced
bq the M141000 Cross Assemblerl and <name 2~ is the name of
the file that is to be produced. Both file specifications
take on the form:

<file name> [.<suffix>] C:<logi~al unit number»

If <name 2> is not speci~ied on the command 1ineJ then <name
1>'s rile name and logical unit number will be used as
default values for <name 2/. If either suffix 1s omitted
from the command line, then the default values "AO" and "AF"
will be used ~or <name 1~ and <name 2:>, respectively. If the
logical unit number is not specified ror <name 1>, then the
default value zero will be used.

Once the command has been invoked, the specified
directories ~ill be searched to ensure that:

1. <name 1/ exists, and
2. <name 2j does not exist.

IT these conditions are met, <name 2j will be created. <name
1> will be read and its content converted into ASCII records
that ar@ written into <name 2/. Each record will be eight~

bytes Or data terminated bq a carriage return. A total of
sixty-six records will be written into <name 2/ (64 data
records and 2 OPLA records>. The eighty-character records
have the rollowing Tormat:

)

,/

APPENDIX H. 8

COLUMN
o
1

XX XX.

XX XX.
ZZ ZZ.
ZZ ZZ.

4
7

· XX XX xx XX

· XX XX XX xx
· ZZ ZZ ZZ ZZ
· zz ZZ ZZ ZZ

5
4

yyy

yyy
yyy
yyy

6
o

PAD 000 THRU 015

PAD F48 THRU F63
OPLA TERMS 00 THRU 15
OPLA TERMS 16 THRU 31

I.U her e II X X .. a r ~ the ins t l' U c t ion 0 p ~,.. a t ion cod e s I If YYY" aT' e the
arithmetic sums of all "XX" or "zzn ror that recordl and nzz"
are output PLA initialization values.

During the processing Or the command, the BREAK key can
be depressed at any time to cause a controlled termination of
the program; however, the partially-generated' output rile
will have to be deleted manually.

The output file, <name 2>, does not get cT'eated with
space compression as do other MDOS ASCII files. The~efore;

<name 2/ must not be edited with the MDOS EDIT command since
the editor automatically creates space-compT'essed riles.

Page H-15

APPENDIX

H.9 FORT -- Relocatable FORTRAN Compile~

The FORT command processes source program statements
written in the M6800 FORTRAN Language. The FORTRAN compiler,
FORT, compiles these source statements into relocatable
obJect programs. The output from the FORTRAN compiler must
b@ processed by the M6800 Linking Loader in order to obtain
an executable object file.

The FORTRAN comp1~er is invoked from the MDOS command
1 ine as are other MDOS commands; however, the ccmp i ler
requires that a system has a minimum of 24K bytes of memory.
The format of the command line is

FORT <name l>CJ<name 2>, ... ,<name n>J C;<options>J

where <name i> are the names Or source files. Each file name
in the list is in the standard MDOS File name format:

(rile name> C. (suffix>J C:(logical unit number»)

The default values "SA" and zero are used if <suffix> and
<logical unit number> are not explicitly entered. Up to
twent~ file ~ames can be aCGommodated by the compiler.

The <options> may be one or more Or the options listed
in the following table. Certain options are automatically
used as a default condition. These conditions can be
reversed or overridden by preceding the option letter with a
minus sign (-). The rollowing options are recogized by the
camp i 1 er:

Page H-16

APPENDIX H.9

OPTION DEFAULT

H -H

L -L
L=:lCN, -L
L=<name:> -L

N=ddd, N=80

a a

O=<name)-, a
P=dd, P=58

S -5
X -x

ATTRIBUTE CONTROLLED BY OPTION

Input initial heading from the
console
?~int source listing on line printer
P~int source listing on console
Print source listing into diskette
file <name> (default suffix HAL",
logical unit number zero). Such
files should be printed with the COpy
command.
Set p~inted line length to "ddd"
(decimal)
Create obJect rile with name <name 1)
and suffix "RO" on same logical unit
as <name 1> of command line
Create obJect file with name <name:>
Set number of printed lines per page
to ICdd U (decimal j. A -P suppresses
paging.
?~int s~mbol table
Conditional compilation of statements
beginning with letter "XU

Certain ·options (L=, N=, 0=, P=) require a terminating comma
only if other options follow. Options are specified without
any intervening blanks or separators.

For
consult
Manual".

a
the

complete
IIM6800

description of
Resident FORTRAN

the FORTRAN compiler
Compiler Reference

Page H-17

APPENDIX

H.10 MASM -- MACE Cross Assembler

The MASM command processes source program statements
written in a user-de~ined assembly language. The MACE Cross
Assembler, MASM, allows the user to de~ine the microword size
and instruction field formats for a particular hardware
configuration as well as to process source statements written
in this ~ormat. The object files created by the MACE Cross
Assembler can be loaded via the MACE Loade~ and Debug Module
(MBUG) .

The MACE Cross Assembler is invoked Tram the MDOS
command line as are other MDOS commands; however, the Cross
Assembler re~uires that the system has a minimum of 32K bytes
of memory. The format or the command line is:

where (name iJ are the names Or source riles. Each file name
in the list is in the standard MDOS file name format

(rile name> (.(surfil» C:(logical unit number»

The default values o-P "SA" and "0" are useti i-F <suffix> and
(logical unit number> are not explicitly entered.

The <options> may be one or more of the options listed
in the following table. Certain options are automatically
used as a default condition. These conditions can be
reversed or overridden by preceding the option letter ~ith a
minus sign (-). The rolloUling options al'e recognized by the
assemble'!':

APPENDIX H. 10

OPTION DEFAULT

D D

D=<name:>, D

L -L
L=#CN, :""L

L=<name:>, -L

M -M

N=ddd, N=72

0 0

O=<name:>; a
P=dd, P=58

T=<name:>, -T

x -x

ATTRIBUTE CONTROLLED BY OPTION

Build definition table in file <name
1:> from command 1 inei default suffix
is "DT II ; default logical unit number
taken Trom <name 1:>
Build definition table in file
<name>; default suffix is "DT" and
logical unit number is zero
Print source listing on line printer
Print source listing on console
Print source listing into diskette
rile <name:> (default suffix is "AL",
derault logical unit numbeT is zero).
Such riles should be printed with the
"'."DV ~ ~~
....,1 1 ... ""1"U,cal t y •

Print error messages only on line
printer
Set printed line length to "ddd ll

(decimal)
Create obJect file with name <name 1:>
and suffix "AD" on same logical unit
as <name 1> of command line
Create obJect file with name <name:>
Set number of printed line~ per page
to" d d" (d e c i ma 1) . A -P sup pre sse s
paging.
Specifies name of file containing
definition tables to be referenced
during the assembly phase; -T implies
tables are in memorq
Print cross reference table

Certain options (D=, L=, N=, 0=, p=, T=) re~uire a
terminating comma only if other options Tollow. Options are
specified without any intervening blanks or separators.

Each s~mbol in the s~mbol table ~equires a
number of b~tes depending on the complexity of the
definition. If the minimum of 32K bytes of memory
the MACE Cross Assembler can accommodate about 8K
tab Ie.

variable
micro\llord
is used,
of symbol

For more details about the MACE Cross
"MACE 29/800 Development System User's
consul ted.

Assembler, the
Guide" should be

Like other MDOS commands, the MASM command is sensitive
to the BREAK and CTL-W keys of the system console.

Page H-19

APPENDIX

H.11 MBUG -- MACE Loader and Debug Module

The MBUQ command allows a user to load a program from a
diskette file created by the MACE Cross Assembler into the
microprogram control storage. MBUG also allows the control
s tor age to bee x ami ned, c han 9 e d I and Ulr itt en b a c kin tot h e
diskette file.

The MBUG command is invoked Prom the MDOS command line
as are other- MDOS commands; no~ever. MBUG requi~e~ that the
system has a minimum of 32~ bytes of memor~1 the Memory
Emulator, and the System Analyzer. The format of the command
line is

MBUG «name l>]e,<name 2/J Cj<options>J

where <name 1/ is the name of a file from which a program is
to be loaded, and <name 2~ is the name of an output file.
80th file names are in the standard MDOS Pile name format:

<rile name~ C. <suffix» C:<logical unit number>]

The default value "AD" will be used for the suffixes of <name
1> and <name 2:> ir none are explicitly entered. The derault
logical unit number for <name 1/ is zero. The default
logical unit number for <name 2~ is taken from the logical
unit number of <name 1>.

Only two letters can appear in the <options> field: "V"
and II Gil , The "V" option indicates that <name 1> is to be
verified against the current contents Or memo,..~. IT "VII is
specified, <name 1> must exist.

The "G" option indicates that all addresses entered will
be interpreted as octal. All displayed addresses will also
b e i n 0 c tal. I f II G II i s not s p e c i fie d , the hex ad e c i ma 1 bas e
will be used.

For a complete description of MBUG, consult the ~MACE

29/000 Development System Use1"s Guide lf
•

Page

-~'

--/"

H-20

APPENDIX

H.12 MOTEST -- Component Tester Executive

The MDOS version of the MOTEST Component Tester has the
~ame functional capabilities as described in the "MOTEST
Component Tester Module Supplement". The operating procedure
of the MOTEST executive is described in that supplement.

The MOTEST executive program is invoked by the following
command line:

LOAD MOTSTiVG

This MOOS command will both load and execute the executive
program.

Since all versions of the MOT EST Component Tester are
identical, regardless of the media on which they were
supplied, the conversion to diskette will greatly speed up
the amount of time it requires to initially load the program.

If tne program is on either paper tape or cassett~} it
can be copied to the diskette by, using the following MDOS
command:

COpy #CR,MOTST.LX;N

If the program is on an EDOS diskette, it can be copied to
the MOOS diskette by using the following command:

EMCOPY MOTST,.LX

Once the program is on an MDOS diskette) it must be converted
into a memory-image file for loading by using the following
MDOS command:

EXBIN MOTSTi200

The~eaTer, the LOAD command can be used as described above.

Page H-21

APPENDIX

H.13 MPL -- MPL Compile~

The MPL command processes sou~ce program statements
~ritten in the M6800 MPL Language. The MPL compiler, MPL,
compiles these source statements into assembly language
source programs. The output from the MPL compilel' must' be
assembled ~ith the M6800 Macro Assembler. The output from
the Macro Assembler must be processed by the M6800 Linking
Loader in order to oct~in an executable object rile.

The MPL compiler is invoked from the MDOS command line
as are other MDOS commands; however, the compiler requires
that a sqstem has a minimum 0;: 56K bytes of memorlJ. The
format o~ the command line is

where <name i~ ar~ the names of source files. Each file . name
in the list is in the standard MDOS file name format:

<file name> C. (suFfix» C:<logical unit number»

The default values "SA" and zero are used if <suffix> and
<logical unit number> are not explicitly ent~T'ed.

The <options/ may be one or more of the options listed
in the following table. Certain options are automatically
used as a default condition. The sense or an option can be
reversed by preceding the option letter with a minus sign
(-). The following options are recognized by the compiler:

OPTION DEFAULT
------ -------

L -L

M -M

N -N

O=<name> -0

s 5

ATTRIBUTE CONTROLLED BY OPTION

Produce source listing on the line
printer
Print error messages only on the line
printer
Sequence numbers are present on each
source statement
Generate compiler output <used Tor
subsequent assembler input) in the
rile <name>. The rile is given the
d-e-rc!lult suffix "SAil and default
logical unit number zero. The "0"
option, iT used, must be the last
option speciTied on the command line.
Include MPL statements as comments in
the output Tile

APPENDIX H. 13

Options are specified without any intervening blanks or
separators.

For a complete description or the MPL compiler consult
the "M6800 Resident MPL Compiler Reference Manual".

The S9mbol table requirements ror the NPL compiler are
fairly complex; however, 6000 (decimal) bytes of symbol table
space are available. This is sufficient to accommodate
a p pro x i ma tel y 200 (d e c i ma 1) s y mb 0 1 s.

Page H-23

APPENDIX

H. 14 PPLO/PPHI -- PROM P~ogrammer I

The MDOS version oT ths PROM Prog~ammer ! has the same
runctional capabilities as described in the "PROM Programmer
Module Supplement". Both versions of the PROM programmer
(PROMP HI and PROMP La) are provided on the MDOS diskette in
the riles PPHI.LO and PPLO.LO~ respectively. These ~iles are
in the memory-image rormat to allow them to be loaded into
memQr~ directly from the diskette.

The operating procedure ~or each version of the PROM
Programmer I is described in the above-mentioned Supplement;
ho~everj the process of loading the PROM Programmer r ~rom

the diskette is explained here.

Either version oT the PROM programmer I can be loaded
and executed from the MDOS diskette by entering the MDOS
command line

LOAD PPHliVG or LOAD PPLO;VG

depending on which version is to be used. Ir a user program
on the diskette is to be placed into a PROM, the following
procedure can be used iT the user program loads above the
resident operating system and MDOS command interpreter. The
file can be loaded into memory using the MDOS command

LOAD <name~;V

where <name~ is the file name oT the user's program. Since
MDOS does not destroy memor~ during initialization, the
system can be reinitialized and the PROM programmer loaded as
explained above.

Ir the user program overlays the resident MDOS, then it
must be ~relocated" by changing the file's Retrieval
Information Block before loading it into memory. The
following sequence of commands should be used to alter a user
programs's starting load address:

DUMP <name>
R FFFF
78/mm,nn/
W
Q

The values "mm" and "nn" represent the hexadecimal numbers of

~---

i
/

APPENDIX H. 14

the most significant and least significant bytes of the new
s ta 1" tin 9 loa dad d res s (abo vet her e sid e n.t MDOS >. Aft er the
offset load address has been configured in this mannerl the
above procedure should be followed to load the user program
and then load and execute the PROM Programmer I.

A user program whose rile has been modified in this
fashion cannot be executed after being loaded into mem~ry.
The fila should be deleted after it has been placed into the
PROM.

If the user has the PROM Programmer I on a non-MDOS
diskette media, it can be copied to the MDOS diskette using
the follo~ing procedure.

If the
the commands

PROM Programmer r 15 on

COpy #CR,PPHI. LX;N
COpy #CR,PPLO. LXiN

should be used. Ir the PROM Programmer
diskette the commands

EMCOPY PPHI/.LX
EMCOPY PPLO,.LX

is on an EDOS

should be used. After the files are on the MDOS'diskette,
th~y must be converted into loadable memory-image riles using
the commands:

EXBIN PPLOi20
EXBIN PPHli 1000

Page H-25

APPENDIX

H.15 PROMPROG -- PROM Programmer IIIIII

The PROM Programmer IIIIII is the controlling software
ror the Univer~al EROM/PROM Programmer Module. It p~ovides

the user with a means of programming a variety o~ 4-bit and
8-bit PROMs and EROMs.

The PROM Programmer 11/111 is invoked From the MDOS
command line as a~e other nDDS commands; hOweVeTI tn@ PROM
Programmer requires that the system contains the PROM
Programmer 11/111 Module. The format of the command line is:

PROMPROG

For a complete description oT the PROM Programmer IIIIII and
its command structure; the "PROM Programmei' II/II! Rererence
Manual" should be consulte~.

)
/

APPENDIX

H.16 RASH -- Relocatable M6800 Macro Assembler

The RASM command processes source program statements
written in the M6800/M6801 Assemb ly Language. The Macro
Assembler; RASM; translates these source statements into
object programs. If programs are assembled using the
relocatable option, the M6800 Linking Loader is re~uired to
create a file that can be loaded from diskette into memory.

The Macro Assembler is invoked from the MDOS command
line as are other MDOS commandsi howeverl the Macro
requires that the system has a minimum Or 24~

memory. The format of the command line is:

Assembler'
bytes of

RASM <name i>C,<name 2~/ ... ,<name niJ C;<options>J

where <name i:> are the names of source Piles'. Each file name
in the list is in the standard MDOS file name format

<Pile name~ C. <suffix>] C:<logical unit number»

The de-rault values of "SAil and "0" are used if! <suffix::>
<logical unit number> are not explicitly entered.
twenty fil~ names can be accommodated by the assembler.

and
Up to

The <options> may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing, the
destination of! the object rile, and the printing of error
messages on the printer if no listing is desired, can be
specified Prom within the source prog~am with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be reve~sed or
overridden by preceding the option letter with a minus sign
(-). The following opti.ons are recognized by the assembler:

Page H-27

OPTION DEFAULT

A -A
C C
D D
E -E
F F
G -G

H -H

L -L • _..LL.,. _1 1...-"""", -.
L=<name:>, -L

M -M

N=dddJ N=72

Q a

O=<name)-, a
P=dd, P=58

R -R
S -5
U -u

x -x
z -z

APPENDIX H. 16

ATTRIBUTE CONTROLLED BY OPTION

Memory-image object rile output
Printing of macro calls
Printing oT mac~o de~initions
Printing of macro expansions
Printing of conditional directives
PTinting of geneTatad code Trom FeB;
FDB, and FCC directives
Input initial heading Trom the
console
Print source listing on line printer
P~int source listing on console
Print source listing into diskette
rile <name)- (default suffix is "AL",
default logical unit number is zer~).

Such riles should be printed with
COPY command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create object file with name <name 1>
and suffix "LX" (non-relocatable)'
sufTix "RO" (relocatable), or suFfix
IiLO" (memory-image) on same logical
unit as <name 1:> or command line
Create obJect rile with name <name~
Set number of printed lines per page
to If d d" < dec i ma 1) . A -P sup pre sse s
pag ing.
Relocatable object rile output
Print symbol table
Print unassembled code between
conditional directives
Print cross rererence table
Use M6801 instTuction mnemonics
instead of M6800 and create M6801
object output

Certain options (L=, N=, 0=, P=) require a terminating comma
only if other options follow. up~lons are spec~fied without
any intervening blanks or separators.

Each symbol in the symbol table requires ten bytes.
Thus, iT the minimum or 2410<. bytes of memory is used, the
Macro Assembler can accommodate about 195 (decimal) symbols;
however, if the cross reference option is speciried, the
symbol table requirements' di~~er. In this case, an
additional" ten bytes are required by each symbol ror every
rour references to that symbol. ~~ macro definitions are
used 01ACR directive), the available symbol table space will . ./'
be smaller. For more details about the Macro Assemblerl the

APPENDIX Ho 16

"M6800/M6801/M6809 Macro Assembler Reference Manual" should
be consulted.

Like other MDOS commands, the RASM command is sensitive
to the BREAK and CTL-W keys of the system console.

Page H-29

APPENDIX

H.17 RASM09 -- Relocatable M6809 Cross Assembler

The RASM09 command p~oces$es source program statements
written in the M6809 Assembly Language. The M6809 Cross
Assemble~1 RASM09, translates these source statement~ into
object programs. RASM09 is the resident macro assembler for
MDOS09. If programs are assembled using the relocatable
option, the Linking Loader is required to create a File that
can be loaded from diskette by the M6809 Simulator.

The M6809 Cross Assembler is invoked from the MDOS
command line as are other MDOS commands; howeve~, the Macro
Assembler requiTes that the system has a minimum of 32~ bytes
of memory. The format of the command line is:

RASM09 <name l/CJ<name 2~, ... ,<name n~) C;<options~J

wh ere <name i:> are th e names of sourc e f i 1 es. Each f i 1 e name
in the list is in the standard MDOS rile name format

<file name~ C. (su-r:rlx:>J C: <logical unit number:»

The default values of "SA" and "0" are used if <suffix> and
<logical unit number) a~e not explicitly entered. Up to
twenty file names can be accommodated by the assembler.

The <options~ may be one or more of the options listed
in the following table. All options except those that
control the destination of the source listing, the
destination of the obJect file, and the printing or error
messages on the printer if no listing is desired, can be
specified from within the source program with the OPT
directive. Certain options are automatically used as a
default condition. These conditions can be reversed or
overridden by preceding the option letter with a minus sign
(-). The following options are recognized by the assembler:

APPEND! X H. 17

OPTION DEFAULT

A -A
C C
D D
E -E
F F
G -G

H -H

L -L
L=#CN, -L
L=<name:>. -L

M -M

N=ddd, N=72

o a

O=<name:>, a
P=dd, P=58

R -R
5 -s
U -u

x -x

ATTRIBUTE CONTROLLED BY OPTION

Memory-image object rile output
Printing of macro calls
Printing of macro definitions
Printing of macro expansions
Printing of conditional directives
Printing of generated code from FeB,
FOB, and FCC directives
Input initial heading from the
console
Print source listing on line printer
Print source listing on console
Print source listing into diskette
rile <name:> (default suffix is "AL",
default logical unit number is zero}.
Such files should be printed with
COpy command.
Print error messages only on line
printer
Set printed line length to "ddd"
(decimal)
Create obJect file with name <name 1)

and suffix "LX" (non-relocatable),
surfix "RO" (relocatable), or suffix
"La" "(memory-image) on same logical
unit as <name 1:> or command line'
Create obJect file with name <name:>
Set number of printed lines per page
to" d d II { dec i ma l. A -P sup pre sse-s
pag ing.
Relocatable object file output
Print symbol table
Print unassembled code between
conditional directives
Print cross reference table

Certain options (L=, N=, 0=, P=) require a terminating comma
only if other options follow. Options are specified without
an~ inte~vening blanks or separators.

Each symbol in the symbol table requires ten bytes.
Thus, if the minimum of 32K bytes of memory is used, the
M6809 Cross Assembler can accommodate about 700 (decimali
symbols; however, if the cross reference option is specified;
the symbol table requirements differ. In this case, an
additional ten bytes are required by each symbol for eveTY
four references to that symbol. If macro definitions aTe
used (MACR directive), the available symbol table space will
be smaller. For more details about the· Mb809 Cr"oss
Assembler, the "M6800/M6801/M6809 Macro Assembler Reference
Manual" should be consulted.

Page H-31

APPENDIX H. i7

Like other MDOS commands, the RASM09 command is
sensitive to the BREAK and CTL-W keys of the system console.

.---

APPENDIX

H. 18 RLOAD -- Link ing Loader

The RLOAD command combines relocatable obJect files
created by the M6800/M6801/M6805/M6809 Mac~o Assemblers or
the M6800 FORTRAN Compiler and produces an absolute obJect
file in either memory-image or EXbug-loadable format.

The Linking Loader is invoked from the MDOS command line
as are other MDOS
requires that the
memory. The format

command Si

system
however I th e

has a minimum
" .L.L 0,.. \I>(1':!

______ ..1

\,. UUJIUdllU

RLOAD

Linking Loader
of 2410<. bytes of

RLOAD works basically the same as described in the "M6800
Linking Loader Reference Manual"; however, the following
changes have been made in the MDOS version Or RLOAD over the
specifications in the manual.

Some commands have been removed from RLOAD since they
were originally intended ror a c~ssette version of the
Linking Loader which is no longer supported. These commands
are: EXBUG, aI, SRCH, SKIP, FILE, and MODU.

The STR, CUR (without backslash option), and END
commands allow the use of either a defined ASCT symbol or a
numeric constant to the right of the equal sign.

The default BSCT address that RLOAD will assign is $0020
if assembly language progT'ams are being linked; however, the
default address of aSCT will become $0040 if FORTRAN programs
are linked. In addition, FORTRAN programs will be
automatically assigned memory locations so that DSCT and PSCT
fallon even addresses. Therefore, the CUR commands with the
backslash option (\) need not be used when linking FORTRAN
programs; however, if the CUR command with the backslash
op~ion is used when linking FORTRAN programs, the user must
ensure that the supplied number is an even number.

Programs with uninitialized BSCT anoior USCT wiil no~ De
allocated space on the diskette when an absolute:
memory-image fi Ie is created; however, all of the BSCT and
DSCT must be uninitialized for this reatUT'e to be of use.

The format of the load map is slightly improved over the
examples shown in the Linking Loader manual. Each program's
symbols are printed separately, in alphabetical order, so
that an individual symbol can be more easily located in the
printed maps.

Page H-33

APPENDIX H. 18

The following two ca~tions should be observed when RLOAD
is invoked from within a CHAIN file. Since CHAIN uses a
.p 0 l' C in 9 c h a r act e l' 0 f a b a c k s las h (\) I two b a c k 5 1 ash
characters have to be entered for the RLOAD commands that use
that characte~. S~stems whicn have a CRT as a console may
lose the error messages displayed by RLOAD if errors are
inhibited within the CHAIN process. Since such e~ro1'S are
not reflected in anq printed MAPs, it is possible to lose
sight of the fact that an error occurred, ~esulting in an
invalid output file.

Each symbol in RLOAD requires twelve bytes. If the
minimum memor~ configuration of 24K is used~ about 85 ent~ies
can be made into the local symbol table and about 265 entries
can be made into the global symbol table; howeverl other
items besides s~mbols occupy this area. The exact symbol
table requirements can be calculated from the following:

SIZE = GST + largest LST

where SIZE is the total size Or the symbol table in bytes and
GST and LST are computed r~om the fo~mulas given below:

GST = 12 * (5 + ASCT + NC + XDEF + UXREF + NMOO)

LST = 12 * (5 + ASCT + NC + XDEF + XREF)

The symbols have the rollo~ing meanings:

Symbol

GST
LST

ASCT
NC
XDEF
XREF
UXREF

NMOD

Meaning

Size of Global Symbol Table.
Size of Local Symbol Table. An LST is
created for each file loaded; however,
only one LST is kept in memo~~ at anyone
time.
Numbe~ of absolute sections.
Number of named common sections.
Number of exte~nal definitions.
Number of external references.
Number of external references not
satisfied <defined) by an external
definition.
Number of files loaded.

RLOAD divides the available memo~y so that about three
fourths of it is available ror the global symbol table and
one' fourth is av~ila&l~ for the local symbol table. .The
global symbol table contains all of the external definitions
and all undefined exte~nal references from all loaded files.
The local symbol table contains the external definitions and
references that pertain to an individual program. Thus, if a
global symbol table overflows (GOV error), mo~e memory should

APPENDIX H. 18

be added to the system, or ~ewer external de~initions should
be made. I~ a local symbol table overflow occurs (LOV
error), then more memoT'tj" should be added or the program
causing the error should be split into smaller programs.

The following error messages are defined in the RLOAD
manuali however, some expansions and new causes for the
errors are listed here. All error messages that are
generated by RLOAD take on the following format:

ERR-<cause:>

where <cause:> can be any of the follo~ing messages:

<cause> Explanation

BAE BSCT Assignment Error. The size of the base
section is greater than $100 bytes. This message
can be displayed only after a MAP or OBJ command.

COV Common Section Overflow Error. The size of a
common section is greater than $FFFF bytes.

GAE General Assignment Error. The Linking Loade~
cannot assign absolute memory addresses for one
or more of the following reasons:

The combined length of all sections is
greater than $FFFF bytes.
Due to the location of ASCTs or user assigned
sections, the remaining unassigned sections.
cannot be placed into unassigned areas of
memory.
The automatic sequence in ~hich sections are
assigned memor~ locations (BSCT, CSeT, DSCT,
PSCT) results in the Linking loader being
unable to assign memory. User speciried
starting and/or ending addresses can possibly
be used to override the automatic sequence of
assigning memory to force a successful
link/load.

GOV Global Symbol Table Overflow Error. The amount
of memory available for the global symbol table
was too small to accommodate all section
information and external definitions.

lAM Illegal Address Mode Error. A four-digit
hexadecimal number will be displayed following
this error message. This number is the address
of a reference 'to a global symbol which is used
in the program as a one-byte operandi however,
the most significant byte of this symbol's value

Page H-35

APPENDIX H. 18

is not ze~o. One byte relocation wili be
pe~formed on the b~te located at the specified
addressl using only the least signiricant byte of
the s~mbol!s value. The obJect file should be
examined to ensure it can be executed.

IeM Illegal Command Error. An entered command was
not recognized by the Linking Loader.

lOR Illegal ObJect Record Error. A record in the
input file is not a valid relocatable obJect
"record.

ISY Ill€gal Command Syntax Error, An ei"1'or occurred
in the option or specification field of a
command. The rollowing causes ara examples of
syntax errors:

LOV

A command separator other than a space,
semicolon, or carriage raturn was used.
A command (e. g., OB~A, DEF) was entered
without the required e~ual sign.
A <name) was used when a (number) was
required by the command (e. g., CURP=\LABEL).
An invalid section specification was used
with the DEF command.
A non-ASCT symbol was used to the right of
the equal sign of a STRI CUR, or END command.
A backslash was used with the STR or END
commands.
An undefined global symbol was used to the
right of the equal sign of the EXIT command.
The file/module qualifier was invalid with
the LOAD or LIB command.
A logical unit number greate~ than 3 was
specified with a rile name.
A non-numeric logicai unit number was
specified with a file name.
A numeric constant was used after the device
delimiter of the MO command.

Local Symbol Table Overflow Error. The amount of
memory available for the local symbol table was
too small to accommodate the section and s~mbol

information Tor a single program.

MDS Multiply Defined Symbol Error. The symbol in
error is shown following the MDS message. Only
one external definition (from files loaded o~ via
DE'F: command) can be encountered by the Lin'ki"ng
Loader, Only the first definition is valid and
will be used.

PHS Phasing ErroT'. The value of a symbol's absolute

APPENDIX H. 18

addr~ss assigned at the end OT Pass I (prior to
OBJ command) d'oes not agree with the value
obtained during Pass II (aTter the OB~ command).
This error can also occur if a program is being
searched Tor during Pass II and it is not found.

SOV Section Overflow Error. The length of a section
is greater than $FFFF bytes (non-BSCT section).

UAE User Assignment Error. This error can occur for
anyone or more of the following reasons:

If the OBJA command is being used, the
starting load address is less than $0020.
If the OBJA command is being used~ the
calculated ending load address is greater
than $FFFF.
A user assigned start address for a section
is l~ss than the user assigned end address
for that section.
The user assigned
section is too
sec t ion.

space (end-start) rOT' a
~mall to contain the actual

The user assigned addresses ror sections
over lap.
The execution address specified with the EXIT
command is less than the starting load
address or greater than the ending load
address of the program.
The user assigned starting/ending address for
BSCT is greater than $0100.

UDS Undefined Symbol Error. The symbol in question
is displayed following the UDS message. The
symbol was not defined during Pass I via a loaded
program's external defintiions or via a DEF
command. Th is error can occur aTter a LOAD, LIB,
DEFI STR, CUR, or END command. A value OT zero
will be used for the undeTined symbol.

UIF Undefined Intermediate File Error. The IFON
command was issued but no intermediate Tile has
been derined via the IF command.

In addition, some or the standard MDOS error messages
can be displayed by RLOAD. The following are the most
frequently seen messages:

** 03 <name> DOES NOT EXIST

The file ~n~me> was u~ed with the LOAD or LIB'
command but does not exist on the specified
logical unit.

Page H-37

APPENDIX H. 18

** 05 <name> DUPLICATE FILE NAME

The ~ile <name~ ~as used with OBJA, OBJX,
IF commands. These commands req,uire the
rile to not exist prior to execution.

** 11 DEVICE NOT READY

MO, or
named

A MAP command is trying to write to the printe~
which is not ready.

** 14 INVALID FILE TYPE

The rile speciried with ~ne ~u~u or
~s not a binarq record ~ile.

** 24 LOGICAL SECTOR NUMBER OUT OF RANGE

command

During Pass II (after OBJA camm,and), the programs
loaded ,..e~uired the accessing o.p allocated
diskette space outside of the range that was
calculated as suf~ic:ient during Pass I. This can
occur iT diTferent ~iles are loaded during the
tUlO passes. This message UJill again occur when
the EXIT command is issued, resulting in the
output file being deleted.

** 41 INSUFFICIENT DISK SPACE

Any memory-image rile Tor which an appropriate
contiguous block of space does not exist ~ill
cause this error. Usually; this occurs when
c~eatin9 a file with initialized BSCT or DSCT at
lo~ memory add~esses and PSCT at high memory
addresses. IT an intermediate file is being used
(Ulh i c hal so r e qui r e ~ dis k spa c e) , i tis s u 9 9 est e d
that the link/load process be run without the
intermediate ~ile (using CHAIN for example). Map
output ~iles also require disk space and can
cause this error.

./

APPENDIX

H. 19 SIM1000 -- 141000 Simulator

The SIMIOOO command
M141000 Simulator Module.
object programs Tram the
various registers and
rewrite the program with

is the controlling software ror the
It permits the user to load 141000

diskette, to examine and change the
memory I to deb ug th e program, and to
changes back to the diskette.

The SIMIOOO Simulator is invoked from the MDOS command
line as are other MDOS commands; however, the Simulator
requires that the system has a minimum of 24K bytes of memory
as ... _" -- --\U'C'~ ... Q:::l QII

M1Ll1n"f"I c;~,.,-"'-+-,., MI"\I'I,.1"",
lJ ... '""'T ... • .. r....,-....,, IiI'W' ... 'Q'V'W't tIWW"""'40.""'",

The SIM1000 Simulator is invoked from the following
command line:

SIM1000

For a complete description of the Simulator and its command
structure; consult the "MC141000/1200 Simulator User's
Guide".

Page H-39

APPENDIX

H.20 USE ~ith MDOS

Several versions of the Floppy Diskette Cont~oller

Module are available for use ~ith MDOS. If a crystal on the
controller board is used to generate timing Tor the diskette
interfacel this section is not applicable; however, if the
memorq clock from the EXORciser bus is being used to generate
the ~lmingl the follo~ing precautions must be taie,n when
using MDOS and USE together.

Th e use reI a c k mu s t run at 1 MH z .i P 1 us 0 r m i n.u s are w
percent (variable clock rate acceptable in Series II
versions)1 to permit loading user memory with a program from
a file from the di~kette. If the user clock is not near 1
MHzJ the object file should first be converted to an
EXbug-loadable file and copied to cassette or paper tape in
the regular MOOS environment. Then, the user can load the
tape via EXbug in his own environment running with the user
c 1 oc k.

The other precauti·on is the possibility of having a . PIA
or ACIA in the user memory· generate an IRG when MDOS is
initializing. When memory resides at the same addresses in
both EXORciser and user system, the EXORciser memory responds
when such a redundant location is readi howeve~, both
locations respond (one in each system) when the EXORciser
memory is ~1'itten to. Thus, if! an liD device resides in the
user's system at an address that is within the range Or
contiguous memory in the EXORciser system, the device will be
written to ~hen MDOS sizes memory at initialization. It is
possible, the~erorel to configure the liD device to generate
a n I R G. MDOS doe s not run IJI i t h I RGs p en din 9 . T h us, a s wit c h
should be installed to allow the IRG line to be opened. This
has been done in the burfer box aT USE2B.

FoT' a more detailed discussion Or USE and the Floppy
Diskette ControlleT' Module one OT' more of the following three
manuals should be consulted: IIMEXUSE2B User's Guide n

,

"Floppy Disk Contro-Iler Module User's Guide n
, or the appendix

af the "USE User's Guide".

"

APPENDIX

I. MDOS Equate File Listing

This appendix contains a modified listing of the MDOS
and MDOS09 equate files. Only the pertinent parts the
assembler output are shown. The leftmost column contains the
value of the location counter which represents the value
equated to the system symbol. The MDOS equate file can be
assembled on a user's system if the M6800 Macro Assembler is
available. The MOOS equate file is shown first, followed by
the MDOS09 equate file.

0000 A
0000 A

* * MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- ~ULY 25,1978

*
* *DEFINE TYPE OF MDOS--RESIDENT MOOS ONLY
*
MDOSF$ EQU 0 0 => MDOS, 1 =:> OEM MOOS
MDOS9$ EGU 0 0 => MDOS, 1 =:> MDOS09

'* '* S K I P 2 MAC R a
'* '* THE GENERATED BYTE IS A "COMPARE INDEX IMMEDIATE".
'* THE EXECUTION OF THE BYTE WILL CHANGE THE CONDITION CODE
'* NO REGISTERS ARE AFFECTED. THUS, A ONE BYTE INSTRUCTION
'* IS FORMED THAT SKIPS FORWARD TWO BYTES.

'* SKIP2 MACR

*

FeB $8C
ENDM

'* SKI P 1

'*
MAC R a

'* THE SAME CONCEPT AS THE "SKIP2" MACRO IS USEDI EXCEPT TH
* A "BIT TEST ACCUMULATOR A .IMMEDIATE" OP CODE IS GENERATE

'* SKIPl MACR
FeB $85
ENDM

*
* seA L L

* SCALL MACR
lFEG NARG-l
SWI

MAC R 0

FeB \O!. %01111111
ENDC

'* IFNE NARG-l

(SYSTEM FUNCTION CALL)

Page 1-01

APPENDIX I MDOS Equate File Listing

FAIL '* UNDEFINED SWI CALL ARGUMENT *
ENDC
ENDM

*' *' U CAL L

UCALL MACR
IFEG NARG-l
SWI

MAC R 0

FeB \O!+i.l0000000
ENDC

*' IFNE NARG-l
SCALL
EN DC
ENDM

*' *' S E G

*
SEG MACR

IFNE NARG
\0 EGU *'

ENDC
ORG *+1
ENDM

*

MAC R 0

(USER FUNCTION CALL)

(NUMBERING SEGUENT!AL EGUATES)

* s Y S T E M
*'

FUN C T ION D E FIN I TID N

*' ,
*' SET LOCATION COUNT TO 0 FOR THE EQUATE DEFINITIONS
*'

. 0000 A .$SAV SET *' $0
SAVE OLD LOCATION COUNT

0000 ORG

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
0000
OOcE
OOOF
0010
0011

*
* ..

SEQ
SEa
SEQ
SEa
SEG
SEa
SEG
SEa
SEa
SEa
SEa
SEG
SEa
SEG
SEa
SEG
SEG
SEG

.RESRV

.RELES
· OPEN
· CLOSE
· GETRC
· PUTRC
.REWND
· GETLS
.PUTLS
· KEYIN
· DSPLY
· DSPLX
· DSPLZ
· CKBRK
· DREAD
· DWRIT
· MOVE
· CMPAR

RESERVE A DEVICE
RELEASE A DEVICE
OPEN A FILE
CLOSE A FILE
READ A RECORD
WRITE A RECORD
POSITION TO BEGINNING OF FILE
READ LOGICAL SECTOR
WRITE LOGICAL SECTOR
CONSOLE INPUT
CONSOLE OUTPUT (TERM WI CR)
CONSOLE OUTPUT (TERM WI E01)
CONSOLE OUTPUT (TERM WI EDT, NO C
CHECK CONSOLE FOR BREAK Jo<.EY
EROM DISK READ
EROM DISK WRITE
MOVE A STRING
COMPARE STRINGS

P""\ ___
T ,,~

. "-',

. ./

APPENDIX I

0012
0013
0014
0015
0016
0017
0018
0019
OOlA
0018
OOlC
0010
OOlE
OOlF
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
0020
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E
003F

0000

0000
0001
0002

*
*

SEG
SEG
SEQ
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEQ
SEG
SEG
SEG
SEQ
SEG
SEG
SEG
SEQ
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEQ
SEQ
SEG
SEG
SEG
SEQ
SEQ
SEG
SEQ
SEQ
SEG
SEQ
SEQ
SEQ
SEQ
SEG

ORG

· STCHB
· STCHR
· ALPHA
· NUMD
· ADDAM
· SUBAN
· MMA
· DMA
· MDENT
· LOAD
· DIRSM
.PFNAM
.ALUSM
. CHANG
· MDERR
, ALLDe
· DEALe
· EWORD
· TXBA
· TSAX
· XBAX
· ADBX
· ADAX
· ADBAX
· ADXBA
· SUBX
· SUAX
· SUBAX
· SUXBA
.CPBAX
· ASRX
· ASLX
.PSHX
.PULX
. PRINT
.PRINX
· GETFD
.PUTFD
.PUTEF
· EREAD
· EWRIT
· MREAD
· MWRIT .
· MERED
· MEWRT
· BOOT

.$SAV

MDOS E~uate File Listing

STORE BLANKS
STORE CHARACTERS
CHECK ALPHABETIC CHARACTER
CHECK DECIMAL DIGiT
INCREMENT MEMORY (DOUBLE BYTE) BY
DECREMENT MEMORY (DOUBLE BYTE) BY
MULTIPLY (SHIFT LEFT) MEMORY BY A
DIVIDE (SHIFT RIGHT) MEMORY BY A
ENTER MDOS WITHOUT RELOADING
LOAD A FILE FROM DISK
DIRECTORY SEARCH AND MODIFY
PROCESS FILE NAME
ALLOCATE USER MEMORY
CHANGE NAME/ATTRIBUTES
MDOS ERROR MESSAGE HANDLER
ALLOCATE DISK SPACE
RETURN DISK SPACE
SET ERROR STATUS WORD FOR CHAIN
TRANSFER X TO B,A
TRANSFER B,A TO X
EXCHANGE B.A AND X
ADD B TO X
ADD A TO X
ADD BIA TO X
ADD X TO B,A
SUBTRACT B FROM X
SUBTRACT A FROM X
SUBTRACT B,A FROM X
SUBTRACT X FROM B,A
COMPARE a,A TO X
SHIFT X RIGHT (ARITHMETIC)
SHIFT X LEFT (ARITHMETIC/LOGICAL)
PUSH X ON STACK
PULL X FROM STACK
PRINT-TERMINATE WITH CR
PRINT-TERMINATE WITH EaT
REA.D FDR (RESIDENT MDOS ONLY)
WRITE FDR (RESIDENT MDOS ONLY)
WRITE EOF (RESIDENT MDOS ONL.Y)
DISK READ WI ERR RETN
DISK WRITE WI ERR RETN
MULTIPLE SECTOR ·READ
MULTIPLE SECTOR WRITE
MULTIPLE SECTOR READ W/ ERR RETUR
MULTIPLE SECTOR WRITE WI ERR RETU
RELOAD MDOS

RESTORE LOCATION COUNTER

* A SCI I CON T R 0 L C H A RAe ATE R S

*
A NULL
A SOH
A STX

EGU· ·0
EQU 1
EGU 2

NULL
START OF HEADING
START OF TEXT

Page 1-03

~PPENDIX I

0003
0004
0005
0006
0007
0008
0009
OOOA
oooa
oooe
0000
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
COlA
OOlB
OOlC
0010
OOlE
OOlF
0020
007F

002E
003B
003A
0023
002A
0080

0000
0001
0002
0003
0016
0017
0018
0080
OOlA
0034
0004

A ETX
A EDT
A ENG
A ACK
A BEL
A BS
A HT
A LF
A VT
A FF
A CR
ASO
A 51

EQU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EQU
EGU
EGU
EGU

A DLE EGU
A DCl EGU
A DC2 EGU
A DC3 EGU
A DC4 EGU
A NAK EGU
A SYN EGU
A ETB EGU
A CAN EGU
A EM EGU
A SUB EGU
A ESC EGU
A FS EGU
A GS EGU
A RS EGU
A US EGU
A SPACE EGU
A RUB OUT EGU

*

3
4
5
6
7
8
9
$A
$B
$C
$0
$E
$F

$11
$12 ,
$13
$14
$15
$16
$17
$18
$19
$lA
$1B
$lC
$lD
$lE
$lF
$20
$7F

* S PEe I A L
*

A SUFDLM EGU
A OPTDLM EGU
A DRVDLM EGU
~ DEVDLM EGU
A FAMDLM EGU
A E$FATL EGU

*

I •
I

/ .
'#

'*
1 !<7

MDOS Equate File Listing

END OF TEXT
END OF TRANSMISSION
ENGUIRY (WRU - WHO ARE YOU)
ACKNOWLEDGE
BELL
BACKSPACE
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN
SHIFT OUT
SHIFT IN
DATA LINK ESCAPE
DEVICE CONTROL 1
DEVICE CONTROL 2
DEVICE CONTROL 4
DEVICE CONTROL 4
NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE
END OF TRANSMISSION BLOCK
CANCEL
END OF MEDIUM
SUBSTITUTE
ESCAPE
FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR
SPACE (WORD SEPARATOR)
DELETE (RUB OUT)

C H A RAe T E R E QUA T E 5

SUFFIX DELIMETER
OPTIONS DELIMETER
LOGICAL DRIVER DELIMETER
GENERIC DEVICE NAME DELIMETER
FAMILY NAME/SUFFIX DELIMETER
FATAL ERROR BIT

, - -"

* M D Q S SEC TOR E G U ATE S

* A SC$DID EGU
A SC$CAT EGU
A SC$LOK EGU
A SC$OIR EGU
A SC$DRE EGU
A S~$BB EGU
A SC$OOS EGU
A SC$SIZ EGU
A SC$TRK EGU
A SC$TKD EGU
A SC$CL5 EGU

o
1
2
3
$16
$17
$18
128
26
52
4

DISK ID PHYSICAL SECTOR NUMBER
CLUSTER ALLOCATION TABLE PHSYICAL
LOCKOUT CLUSTER TABLE PHYSICAL SE
DIRECTORY START PHYSICAL SECTOR N
DIRECTORY END PHYSICAL SECTOR NUM
BOOT BLOCK ~HYSICAL SECTOR NUMBER
OPERATIN~ SYSTEMPHSYICAL SECTOR
SECTOR SIZE IN BYTES
NUMBER OF SECTORS/TRACK (SINGLE S
NUMBER OF SECTORS/CYLINDER (DOUBL .. ~
NUMBER OF SECTORS / CLUSTER

C!:lt'l Go T -<lA.

APPENDIX I MDOS Equate File Listing

0700 A SC$MAX EGU 2000 MAX!MUM I";~ OF USABLE SECTORS (S1 l'fU.

OFA4 A SC$MXD EGU 4004 MAXIMUM NO. OF USABLE SECTORS (DO
0020 A DFCLS$ EGU 32 DEFAULT NO. OF CLUSTERS

*' * D T S K I D S E C TOR OFF SET S "-

* 0000 A O1D$1D EGU 0 OFFSET TO DISK ID (8 BYTES)
0008 A DID$VN EGU 8 OFFSET TO VERSION NUMBER (2 BYTES
OOOA A DID$RN EGU 10 OFFSET TO REVISION NUMBER (2 BYTE
OOOC A DID$OT EGU 12 OFFSET TO DATE (6 BYTES)
0012 A DID$NM EGU 18 .' OFFSET TO USER NAME' (20 BYTES·)
0026 A DID$RB EGU 38 OFFSET TO RIB AODRS. (20 BYTES)

* * D I R E C T 0 R Y E N T R Y o F F SET S

* 0000 A DIR$NM EGU 0 OFFSET TO NAME (8 BYTES)
0008 A DIR$SX EGU 8 OFFSET TO SUFFIX (2 BYTES)
"",-"'r\. A. A T'\T~..r~~ r=' n.Z I ir.. nC"C"eC"T Tn PTO AnnoC'cc (2 BYTES) VVVM M 1.IJ."~".&;1 i;;.,\,ZV, \J·t I ,.., j I \.J t-..w ,....,..,..,,'\ ... '-''"''''

OOOC A DIR$AT EGU 12 OFFSET OF ATTRIBUTES (2 BYTES)
OOOE A DIR$NU EGU 14 OFFSET TO NOT USED AREA (2 BYTES)

* * R ! B B I N A R Y F I L E OFF S E T

* 0075 A RIB$LB EGU 117 NUMBER OF BYTES IN LAST SECTOR
0076 A RIB$SL EGU 118 NUMBER OF SECTORS TO LOAD
0078 A RIB$L..A EGU 120 MEMORY LOAD ADDRESS
007A A RIB$SA EQU 122 START EXECUTION ADDRESS

* .. U N I F I E D 1: I a CON T R o L B L 0 C K ..
* a F F S E T S

*
*

0000 A lOCSTA EGU 0 ERROR STATUS
0001 A IOCDTT EQU 1 DATA TRANSFER TYPE
0002 A IOCDBP EQU 2 DATA BUFFER POINTER
0004 A IOCDBS EGU 4 DATA BUFFER START ADDRESS
0006 A IOCDBE EGU 6 DATA BUFFER END ADDRESS
0008 A IOCGDW EQU 8 GENE~IC DEVICE TYPE/CDS ADDRESS
OOOA A IOCLUN EQU 10 LOGICAL UNIT NUMBER
OOOS A IOCNAM EGU 11 FILE NAME
OOOB A IOCMLS EQU 11 MAXIMUM REFERENCED LSN
OOOD A IOCSDW EQU 13 CURRENT SEGMENT DESCRIPTOR WORD
OOOF A IOCSLS EGU 15 1ST LOGICAL SECTOR OF CURRENT SEG
0011 A IDCLSN EGU 17 CURRENT LOGICAL SECTOR NUMBER
0013 A IOCSUF EGU 19 FILE NAME SUFFIX
0013 A IOCEOF EGU 19 LOGICAL END OF FILE
0015 A !OCRIB EQU 21 PHYSICAL DISK ADDRESS OF R. I. B.
0017 A IOCFDF EQU 23 FILE DESCRIPTOR FLAGS
001S A IOCDEN EQU 27 DIRECTORY ENTRY NUMBER
0010 A IOCSBP EQU 29 SECTOR BUFFER POINTER/INITIAL SIZ
OOlF A IOCSSS EQU 31 SECTOR BUFFER START ADDRESS
0021 A lOCSBE EGU 33 SECTOR BUFFER END .ADDRESS
0023 A IOCSSI EGU 35 SECTOR BUFFER INTERNAL PTR

Page 1-05

:lENDIX I MDOS Equate File Listing

0025 A IOCBLN EGU IOCSBI+2-IOCSTA loeB LENGTH

* * U N I FIE D I/O ERR 0 R S TAT USE

)0

::>0
::>1
:J2
:J3
04
05
06
07
08
09
OA
08
OC
00
OE
OF
10
11
12
13
14
15
16
17
18
19

00

* 0000 A .$SAV SET

0100
0050
OOAE
OOFE
0100
0102
0104
0106
0108
010A
OlOE
0110
0112

*

..
'*
'*

ORG

SEG
SEG
SEG
SEG
SEQ
SEQ
SEe
SEQ
SEa
SEG
SEa
SEa
SEa
SEG
SEa
SEQ
SEa
SEa
SEa
SEa
SEG
SEa
SEa
SEa
SEa
SEa

ORG

'* M DOS

'*
*
'*

AND

A MOOS$ EGU
A CBUFL$ EGU
A CBUFF$ EGU
A CBUFF$ EGU
A VERS$$ EGU
A REVS$$ EGU
A KYI$SV EQU
A ENDOS$ EGU
A ENDUS$ EGU
A ENDSY$ Eau
A RIBBA$ EGU
A ENDRV$ EGU
A GDBA$ EGU

* $0

I$NOER
I$NODV
I$RESV
I $NOR V
I$NRDY
I$IVDV
!$DUPE
I$NONM
I$CLOS
I$EOF
I$FTYP
I$DTYP
I$EOM
I$BUFO
I$CKSM
I$WRIT
I$OELT
I$RANG
I$F5PC
I$OSPC
I$SSPC
I$IDEN
I$RIB
I$DEAL
I$RECL
I$SECB

. $SAV

REMEMBER THE CURRENT LOCATION COU
RESET IT TO ZERO TO USE THE SEa M

NO ERRORS, NORMAL RETURN
NO SUCH DEVICE
DEVICE RESERVED ALREADY
DEVICE NOT RESERVED
DEVICE NOT READY
INVALID DEVICE
DUPLICATE FILE NAME
FILE NAME NOT FOUND
INVALID OPEN/CLOSED FLAG
END OF FILE
INVALID FILE TYPE
INVALID DATA TRANSFER TYFE
END OF MEDIA
BUFFER OVERFLOW
CHEClo<.SUM ERROR
FILE IS WRITE PROTECTED
FILE IS DELETE PROTECTED
LOGICAL SECTOR NUMBER OUT OF RANG
NO DISK FILE SPACE AVAILABLE
NO DIRECTORY SPACE AVAILABLE
NO SEGMENT DESCRIPTOR SPACE AVAIL
INVALID OIR. ENTRY NO.
INVALID RIB
CAN'T DEALLOCATE ALL SPACE
BINARY RECORD LENGTH TOO LRGE
SECTOR BUFFER SIZE ERROR

RESTORE THE LOCATION COUNTER

I N T ERN A L V A R I A B -L E

L 0 CAT ION E G U ATE S

$100 START OF MOOS ASECT
80 COMMAND BUFFER LENGTH
MDOS$-CBUFL$-2 . COMMAND BUFFER LOCATION
CBUFF$+CBUFL$. COMMAND BUFFER SCAN POINTER
MDOS$ VERSION #
VERS$~+2 REVISION #
REVS$$+2 SAVE AREA FOR KEYIN$ VECTOR
KYI$SV+2 END OF.MOOS
ENDOS$+2 END OF USER P~OGRAM AREA
ENDUS$+2 END OF SYSTEM (MDOS) RAM
ENDSY$+4 RIB BUFFER ADDRESS
RIBBA$+2 END OF MOOS ROM VARIABLES
ENORV$+2 GENERIC DEVICE TABLE ADDRESS

APPENDIX I

0114
0116
0118
OllA
OllC
011E
0120
0145
OlbA

A SYERR$ EQU
A SWISSV EGU
A SWI$UV EQU
A IRG$UV EQU
A IRG$SV EGU
A CHFLG$ EGU
A SYIOCB EGU
A SYPOCB EQU
A SYEOCB EQU

* *L 0 G I CAL

*

MOOS E~uate File Listing

GDBA$+2 SYSTEM ERROR STATUS WORD
SYERRS+2 SWI VECTOR SAVE AREA
SWISSV+2 . SWI USER VECTOR
SWISUV+2 IRG USER VECTOR
IRG$UV+2 IRG VECTOR SAVE AREA
IRGSSV+2 CHAIN FUNCTION FLAG WORD
CHFLGS+2 SYSTEM CONSOLE IOCB
SYIOCB+IOCBLN . SYSTEM PRINTER IOCB
SVPOCB+IOCBLN . ERR MSG FILE

U NIT N U M B E R - - BIT D E F.

0040 A LU$RES EGU 7.01000000 IOCB RESERVED FLAG

0001
0002
0003
0004
0008
0010
0020
0040
0080

0000
0001
0002
0003
0005
0007
0008
0010
0020
0040
0080

0000
0002
0004
0006
0007
0008
OOOA
OOOC

..

.. laC D T T

* A DT$OPP EGU
A DTSOPI EGU
A OTSOPo EGU
A OTSOPU EGU
A OT$NFF EGU
A OT$TRU EGU
A DT$CLS EGU
A OT$SIO EGU
A DrSOUT EQU
A DT$INP EGU ..

.. I a C F D F

'* A FD$FMU EGU
A FDSFMD EGU
A FD$FML EGU
A FD$FMB EGU
A FDSFMA EGU
A FDSFMC EGU
A FDSeM? EGU
A FD$CON EGU
A F'D$SYS EGU
A FD$DEL EGU
A FD$WRT EGU

*

BIT D E FIN I T ION S

%00000000
7.00000001
7.00000010
%00000011 .
7.00000100
7.00001000
1.00010000
1.00100000
1.01000000
7.10000000

OPEN UPDATE/INPUT
OPEN INPUT MODE
OPEN OUTPUT MODE
OPEN UPDATE MODE
NON-FILE FORMAT IIO FLAG
TRUNCATE FLAG
FILE OPEN/CLOSE FLAG
SECTOR IIO FLAG
OUTPUT TRANSFER TYPE
INPUT TRANSFER TYPE

. BIT D E FIN I T ION S

7.00000000
7.00000001
7.00000010
7.00000011
7.00000101
7.00000111
7.00001000
7.00010000
7.00100000
7.01000000
1.10000000

USER DEFINED FORMAT (SECTOR I/O
DEFAULT OBJECT REC/D FORMAT
BINARY LOAD FORMAT
BINARY RECORD FORMAT
ASCII RECORD FORMAT
ASCI-CONVERTED-BINARY REC'D FORM
SPACE COMPRESSION FLAG
CONTIGUOUS ALLOCATION FLAG
SYSTEM FILE ATTRIBUTE
DELETE PROTECTION ATTRIBUTE
WRITE PROTECTION ATTRIBUTE

* U N I FIE 0

*
I/O CONTROL DES C R I

.. ..
A CDBloe EGU
A CDBSDA EQU
A CDBHAD EGU
A CDBDDF EGU
A CDBVDT EGU
A CDBDDA EGU
A CDBWST EGU
A CDBLEN EGU

*

B L 0 C K OFF SET S

o
2
4
6
7
8
10
CDBW5T+2

ADDRESS OF IOCB
SOFTWARE DRIVER ADDRESS
HARDWARE ADDRESS
DEVICE DESCRIPTOR FLAGS
VALID DATA TYPE
DEVICE DEPENDENT AREA
WORKING STORAGE'
CDS LENGTH

Page 1-07

~PPENDIX I

0001
0002
0004
0008
0010
0020

·0040
0080

0004
0008
0010
0080

0000
0003
0006
0009
OOOC

. 0000
0001
0003
0005
0006
0008
oooa
0000

EBOO
EB22
E853
E85A
E869
E86D
E86F
E872
E875.
E87B
E87B
E87E
EB81
E884

* C D B D D F
* A DD$FMC EQU

A DD$LOG EGU
A DDsCNS EGU
A DD$RWD EGU
A DDSOCF EGU
A DDSINP EGU
A DOS OUT EGU
A OO$RES EGU

* .. COB V 0 T

A VO$BIN EGU
A VD$GDB EGU
A VD$SDA EGU
A VOSNFF EGU

* -*DEVICE

* A DVSON EGU
A DV$OFF EGU
A OV$INT EGU
A DV$TRM EGU
A DV$ID EGU

* .. DIS K

* A CURDRV EGU
A STRSCT EGU
A NUMSCT EGU
A LSCTLN EGU
A CURADR EGU
A FDSTAT EGU
A SCTCNT EGU
A SIDES EGU

* * E ROM

* A OSLOAD EGU
A FDINIT EGU
A CHKERR EGU
A PRNTER EGU
A READSC EGU
A READPS EGU
A RDCRC EGU
A RWTEST EGU
A RESTOR EGU
A SEEK EGU
A WRTEST EGU
A WRDDAM EGU
A WRVERF EGU
A WRITSC EGU

*

MDOS E~uate File Listing

BIT D E FIN I T ION S

7.00000001
%00000010
7.00000100
'X00001000
7.00010000 .
7.00100000 .
7.01000000
7.10000000

ASCII-CONVERTED-BINARY IS DEFAUL
LOGICAL SECTOR I/O FLAG
CONSOLE FLAG
REWIND FLAG
OPEN/CLOSE FLAG
INPUT DEVICE FLAG
OUTPUT DEVICE FLAG
RESERVABLE DEVICE FLAG

BIT D E FIN I T ION S

7.00000100
%00001000
7.00010000
7.10000000

BINARY OB~ECT FLAG
TEMP GDB POINTER FLAG
TEMP SDA POINTER FLAG
NON-FILE FORMAT FLAG

D R I V E R E N TRY OFF SET

o
3
6
9
12

E ROM

o
1
3
5
6
8
11
$0

E N TRY

$E800
$E822
$E853
$E85A
$E869
$E86D
$E86F
SE872
$E875
$E878
$E87B
$E87E
$E881
$E884

DEVICE ON OFFSET
DEVICE OFF OFFSET
DEVICE INTIALIZAT!ON OFFSET

,. DEVICE TERMINATION OFFSET
DEVICE CHARACTER INPUT/OUTPUT OFF

E QUA T E S

CURRENT DRIVE NUMBER
STARTING PHYSICAL SECTOR NUMBER
NUMBER OF SECTORS TO OPERATE UPON
OF BYTES TO READ FROM LAST SECT
MEMORY ADDRESS FOR DISK TRANSFER
DISK TRANSFER STATUS
SECTOR COUNT USED IN DETERMINING
- -)SINGLEi + -) DOUBLE. SIDED

POI N T S

BOOTSTRAP THE OPERATING SYSTEM
INITIALIZE THE DISK'S PIA AND SSD
CHECK AND PRINT ERROR FROM FDSTAT
PRINT ERROR FROM FDSTAT
READ SECTOR(S)
READ PART!AL SECTOR
READ AND CHECK FOR CRe
WRITE/READ TEST
MOVE HEAD TO TRACK 0
POSITION HEAD TO TRACK OF "STRSCT
WRITE TEST
WRITE DELETED DATA MARK
WRITE AND VERIFY CRe
WRITE SECTOR(S)

Page 1-08

APPENDIX I

0031
0032
0033
0034
0035
0036
0037
0038
0039

'* E ROM

'*
A ERSCRC EGU
A ERSWRT EGU
A ERSRDY EQU
A ER$MRK EQU
A ER$TIM EGU
A ER$DAD ECiU
A ERSSEK EGU
A ER$DMA EQU
A ER$ACR EQU

'*

ERR a R

'1
'2
'3
'4
'5
'6
'7
"8
'9

MDOS Equate File Listing

E G U ATE S

DATA eRC ERROR
WRITE PROTECTED DISK
DISK NOT READY
DELETED DATA MARK ENCOUNTERED
TIMEOUT
INVALID DISK ADDRESS
SEEK ERROR
DATA ADDRESS MARK ERROR
ADDRESS MARK CRC ERROR

'* MIS C ELL A N E a u S E ROM E G U ATE S

'* 0005 A RETRY$ EGU 5 RETRY COUNT FOR DISK READ/WRITE E

.. LIN E P R I N T E R E ROM E G U ATE S

'* INIT PRINTER PIA EBCO
EBCC
EBE4
EBF2

A LPINIT EGU
A LIST EGU
A LDATA EQU
A LDATAl EGU

" $EBCO
$EBCC
$EBE4
$EBF2

PRINT CONTENTS OF 'A'
PRINT STRING, CR/LF
PRINT STRING, NO CR/LF ..

'* E X BUG E G U ATE S F O· R M DOS
* (PARTIAL LIST ONLY)

* F01S A INCHNP EGU $F015 INPUT CHARACTER -(NO PARITY)
F01S A OUTCH EGU $F018 OUTPUT -QNE CHARACTER
F021 A PCRLF EGU $F021 PRINT LF/CR
F024 A PDATA EGU $F024 PRINT STRING
FCFD A SBITS EGU $FCFD BIT 7 INDICATES IRG OCCURRED (IF
FF1F A BRKPT$ EGU $FF1F MAID"S BREAKPOINT TABLE (8 FOB'S)
FF4F A BKPINS EGU $FF4F EXBUG BREAKPOINTS IN MEMORY
FF53 A AECHO EGU $FF53 INPUT CHARACTER ECHO FLAG (O=>ECH
FFFB A IRG$VC EGU $FFF8 IRG VECTOR
FFFA A SWI$VC EGU $FFFA SWI VECTOR
FFFC A NMISVC EGU $FFFC NMI VECTOR
FF8A A XSTAK$ EGU $FF8A EXBUG STACK
FOF3 A MAIDS EGU $FOF3 MAID ENTRY POINT
FF16 A XREG$P EQU $FF16 MAID P-REG.
FF18 A XREG$X EQU $FF18 MAID X-REG.
FF1A A XREG$A ECiU $FFIA MAID A-REG.
FFIB A XREGSB EGU $FFIB MAID B-REG.
FFIC A XREG$C EGU $FFIC MAID C-REG.
FFID A XREG$S EGU $FFID MAID S-REG.
FF63 A BRKPE$ EGU $FF63 END OF MAID BREAKPOINT TABLE
FCF4 A CNACI$ EQU $FCF4 CONSOLE ACIA

* * SPECIAL MACRO FOR THE CENTRONIX PRINTERS TO PRINT TITLES
* (NO LONGER USED)
TITLE MACR

TTL \0
ENDM

Page 1-09

APPENDIX I MDOS E~uate File Listing

.. -.- ,

TOTAL ERRORS 00000--00000

· $SAV 0000 · ADAX 0028 · ADBAX 0029 · ADBX 0027 · ADDAM 0016
· ADXBA 002A · ALLOC 0021 · ALPHA 0014 · ALUSM OOlE · ASLX 0031
· ASRX 0030 . BOOT 003F · CHANG OOlF · CKBRK 0000 · CLOSE 0003
· CMPAR 0011 · CPBAX 002F · DEALe 0022 · DIRSM OOlC · DMA 0019
· DREAD OOOE · DSPLX OOOB . DSPLY OOOA · DSPLZ eooc · DWRIT OOOF
· EREAD 0039 · EWORD 0023 · EWRIT 003A · GETFD 0036 · GETLS 0007
· GETRC 0004 · KEYIN 0009 · LOAD OOlS · MDENT OOlA · MDERR 0020
· MERED 003D · MEWRT 003E · MMA 0018 · MOVE 0010 · MREAD 003B
· MWRIT OOX . NUMD 0015 · OPEN 0002 .PFNAM OOlD · PRINT 0034
· PRINX 0035 .PSHX 0032 · PULX 0033 · PUTEF' 0038 .PUTFD 0037
.PUTLS 0008 .PUTRC 0005 .RELES 0001 · RESRV 0000 · REWND 0006
· STCH13 OOi2 · STeHR 0013 · SUAX 002C · SUSAM 0017 · SUBAX 1"I..t"l~1"I vvc::.J.I

· SUBX 002B · SUXBA 002E · TBAX 0025 · TXBA 0024 · XBAX 0026
ACK 0006 AECHO FF53 BEL 0007 BKPIN$ FF4F BRKPES FF63
BRKPT$ FF1F BS 0008 CAN 0018 CBUFFS OOAE CBUFL$ 0050
CBUF?$ OOFE CDaDDA 0008 cnBDOF 0006 CDBHAD 0004 CDBIOC 0000
CDELEN OOOC CDBSDA 0002 CDBVDT 0007 CDBWST OOOA CHFLG$ 011E
CHKERR E853 CNACIS FCF4 CR 0000 CURADR 0006 CURDRV 0000
DCl 0011 DC2 0012 OC3 0013 DC4 0014 DO$CNS 0004
DD$FMC 0001 DDSINP 0020 ODSLOG 0002 DD$OCF 0010 DD$OUT 0040
DD$RES 0080 DDSRWD 0008 OEVDLM 002:3 DFCLS$ 0020 DIDSDT OOOC
DID$ID 0000 DID$NM 0012 DID$RB 0026 DIDSRN OOOA DID$VN 0008
DIR$AT OOOC DIRSNM 0000 DIR$NU OOOE DIR$RB OOOA DIR$SX 0008
OLE 0010 DRVDLM 003A DT$CLS 0010 DT$INP 0080 DT$NFF 0004
DT$OPI 0001 DT$OPO 0002 DT$OPP 0000 DT$OPU 0003 DT$OUT 0040
DT$SIO 0020 DT$TRU 0008 DVSINT 0006 DV$IO OOOC DV$OFF 0003
DV$ON 0000 DV$TRM 0009 E$FATL 0080 EM 0019 ENDOS$ 0106
ENDRV$ 0110 ENDSYS OlOA ENDUS$ 0108 ENG 0005 EDT 0004
ERSACR 0039 ER$CRC 0031 ER$DAD 0036 ER$DMA 0038 ER$MRK 0034
ERSRDY 0033 ER$SEK 0037 ER$TIM 0035 ER$WRT 0032 ESC OOlE
ETB 0017 ETX 0003 FAMDLM 002A FD$CMP 0008 FD$CON 0010
FD$DEL 0040 FD$FMA 0005 FD$FMB 0003 FD$FMC 0007 FD$FMD 0001
FD$FML 0002 FD$FMU 0000 FD$SYS 0020 FD$WRT 0080 FDINIT E822
FDSTAT 0008 FF OOOC FS OOlC GDBA$ 0112 GS COlD
HT 0009 ISEUFO OOOD I$CKSM OOOE ISCLOS 0008 I$DEAL 0017
I$DELT 0010 ISOS?C 0013 ISDTYP 0008 lSOUPE 0006 I$EOF 0009
I$EOM OOOC I$FSPC 0012 l$FTYP OOOA ISlDEN 0015 I$lVDV 0005
ISNODV 0001 ISNOER 0000 I$NONM 0007 ISNORV 0003 ISNRDY 0004
ISRANG 0011 ISRECL 0018 I$RESV 0002 rSRIB 0016 I$SECB 0019
I$SSPC 0014 I$WRIT OOOF INCHNP F015 IOCBLN 0025 IOCDBE 0006
lOCDBP 0002 lOCDBS 0004 IOCDEN 0018 lOCDTT 0001 IOCEOF 0013
IOCFDF 0017 IOCGDW 0006 IOCLSN 0011 rOCLUN OOOA rOCMLS COOB
IOCNAM OOOE lOCRIB 0015 IaCSBE 0021 lOCSBI 0023 IaeSBP OOlD
IOCSBS OOlF IOCSDW 0000 IOCSLS OOOF rOCSTA 0000 IOCSUF 0013
IRG$SV 01lC IRG$UV OllA IRG$VC FFF8 KYI$SV 0104 LDATA EBE4
LDATA1 EBF2 LF OOOA LIST EBCC LPINIT EBCO LSCTLN 0005
LU$RES· 0040 MAIDS FOF3 MOOS$ 0100 MDOS9$ 0000 MDOSF$ 0000
NAK 0015 NMI$VC FFFC NULL 0000 NUMSCT 0003 OPTDLM 0038
aSLDAD E800 DUTCH F018 PCRLF F021 PDATA F024 PRNTER EB5A
RDCRC E86F READPS E86D READSC E869 RESTOR E875 RETRY$ 0005
REVS$$ 0102 RIE$LA 0078 RIB$LB 0075 RIB$SA 007A RIB$SL 0076
RIBBA$ OlOE RS OOlE RUBOUT 007F RWTEST E872 SBlTS FCFD

APPENDIX I MDOS Equate Fi Ie Listing

SC$BB 0017 SC$CAT 0001 5C$CLS 0004 SC$DID 0000 SC$DIR 0003
SC$DOS 0018 SC$DRE 0016 SC$LOK 0002 SC$MAX 07DO SCSMXD OFA4

. SC$S·IZ 0080 SC$TKD 0034 SC$TRK 00lA SCTCNT OOOS SEEK E878
51 eeOF SIDES 0000 SO OOOE SOH 0001 SPACE 0020
STRSCT 0001 STX 0002 SUB OOlA SUFDLM 002E SWISSV 0116
SWI$UV 0118 SWI$VC FFFA SYEDCB 016A SYERR$ 0114 SYIOCE 0120
5YN 0016 SYPOCB 0145 US OOlF VD$BIN 0004 VD$GDB 0008
VO$NFF 0080 VD$SDA 0010 VERS$$ 0100 VT OOOS WRDDAM EB7E
WRITSC E884 WRTEST E87B WRVERF ESS! XREGSA FFIA XREGSB FF1B
XREGSC FF1C XREG$P FF16 XREG$S FF1D XREG$X FF18 XSTAK$ FF8A

Page 1-11

~PPENDIX I MDOS09 Equate File Listing

JNLY.

..
* 6809 MDOS VERSION 03.00 -- SYSTEM EGUATE FILE -- 01/26/79

*

'* *DEFINE TYPE OF MDOS--RESIDENT MDOS ONLY

* 0000 A MDOSF$ EGU
0001 A MDOS9$ EGU

o
1

o =~ MDOS, 1 => OEM MDOS
. 0 => MOOS, 1 => MDOS09

..

.. 5 KIP 2 MAC R 0
*'
.. THE GENERATED BYTE IS A "COMPARE INDEX IMMEDIATEII .
.. THE EXECUTION OF THE BYTE WILL CHANGE THE CONDITION CODES

.. NO REGISTERS ARE AFFECTED. THUS, A ONE BYTE INSTRUCTION
* IS FORMED THAT SKIPS FORWARD TWO BYTES.

*' SKIP2 MACR

*

FeB $8C
ENDM

.. SKI P 1 .. MAC R a

.. THE SAME CONCEPT AS THE IISKI?2" MACRO IS USED, EXCEPT THAT

.. A '"BIT TEST ACCUMULATOR A IMMEDIATE" OP CODE IS GENERATED .

..
SKIPl MACR

FCB $85
ENDM ..

.. S CAL L

* SCALL MACR
IFEG NARG-l
SWI

MAC R 0

FCB \O!. i.01111111
ENDC

* IFNE NARG-l

(SYSTEM FUNCTION CALL)

FAIL .. UNDEFINED SWI CALL ARGUMENT ..
ENDC
ENDM ...

.. U CAL L .. MAC R 0 (USER FUNCTION CALL)

P.:;a~ 1-12

---........ "

APPENDIX I

0000 .A

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOE
OOOC
0000
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017

UCALL MACR
IFEG NARG-l
SWI

*

*'

FeB \O!+i.l0000000
ENDC

IFNE NARG-l
SCALL
ENDC
ENDM

*' S E G MAC R 0

* SEG MACR
IFNE NARG

\0 EGU if-

*'
*' ..
*'

ENDC
ORG *+1
ENDM

5 Y S T E M F

* SET LOCATION COUNT ..
. SSAV SET

ORG

*'
*
*' SEG

SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG

* SO

.RESRV
· RELES
· OPEN
. CLOSE
· GETRC
· PUTRC
· REWND
· GETLS
.PUTLS
· KEVIN
· DSPLY
· DSPLX
, DSPLZ
· CKBRK
· DREAD
· DWRIT
· MOVE
· CMPAR
· STCHB
· STeHR
· ALPHA
· NUMD
· ADDAM
· SUBAM

U N C

TO 0

MDOS09 Equate File Listing

(NUMBERING SEGUENTIAL EGUATES)

T I o N D E F I N I T

FOR THE EQUATE DEFINITIONS

SAVE OLD LOCATION COUNT

RESERVE A DEVICE
RELEASE A DEVICE
OPEN A FILE
CLOSE A FILE
READ A RECORD
WRITE A RECORD

I

POSITION TO BEGINNING OF FILE
READ LOGICAL SECTOR
WRITE LOGICAL SECTOR
CONSOLE INPUT

o N 5

CONSOLE OUTPUT (TERM WI CR)
CONSOLE OUTPUT (TERM WI EDT)
CONSOLE OUTPUT (TERM WI EOTI NO CR
CHECK CONSOLE FOR BREAK KEY
EROM DISK READ
EROM DISK WRITE
MOVE A STRING
COMPARE STRINGS
STORE BLANKS
STORE CHARACTERS
CHECK.ALPHABETIC CHARACTER
CHECK DECIMAL DIGIT
INCREMENT MEMORY (DOUBLE BYTE) BY
DECREMENT MEMORY (DOUBLE BYTE) BY

Page 1-13

ENDIX I

8
9
A
B
c
D
E
F

!O
!1
!2
!3
~4

?5
!6
~7

28
?9
2A
2B
~C

2D
ZE
2F
30
31
32
33
34
35
36
37
38
39
3A
3D
3C
3D
3E

3F

)0

0000
0001
0002
0003
0004
0005
0006
0007

*

*'

SEG
SEG
SEQ
SEQ
SEG
SEQ
SEQ
SEQ
SEG
SEQ
SEG
SEG
SEG
SEQ
SEG
SEa
SEQ
SEQ
SEG
SEG
SEG
SEG
SEG
SEG
SEQ
SEQ
SEQ
SEQ
SEa
SEa
SEa
SEG
SEQ
SEa
SEG
SEa
SEQ
SEQ
SEa

SEG

ORG

*' A SCI I

*'
A NULL
A SOH
A STX
A ETX
A EDT
A ENG
A ACK
A BEL

EGU
EGU
EGU
EGU
EGU
EGU
EQU
EGU

· MMA
· DMA
· MDENT
· LOAD
, DIRSM
· PFNAM
· ALUSM
· CHANG
· MDERR
· ALLOC
· DEALC
· EWORD
· TXBA
· TBAX
· XBAX
· ADBX
· ADAX
· ADBAX
· ADXBA
· SUBX
· SUAX
· SUBAX
· SUXBA
· CPBAX
· ASRX
· ASLX
· PSHX
· PULX
· PRINT
· PRINX
· GETFD
· PUTFD
.PUTEF
· EREAD
· EWRIT
· MREAD
· MWRIT
· MERED
· MEWRT

· BOOT

· $SAV

MDOS09 Equate File Listing

MULTIPLY (SHIFT LEFT) MEMORY BY A
DIVIDE (SHIFT RIGHT) MEMORY BY A
ENTER MDOS WITHOUT RELOADING
LOAD A FILE FROM DISK
DIRECTORY SEARCH AND MODIFY
PROCESS FILE NAME
ALLOCATE USER MEMORY
CHANGE NAME/ATTRIBUTES
MOOS ERROR-MESSAGE HANDLER
ALLOCATE DISK SPACE
RETURN DISK SPACE
SET ERROR STATUS WORD FOR CHAIN
TRANSFER X TO B,A
TRANSFER B,A TO X
EXCHANGE B,A AND X
ADD B TO X
ADD A TO X
ADD a,A TO x
ADD X TO B,A
SUBTRACT B FROM X
SUBTRACT A FROM X
SUBTRACT B,A FROM X
SUBTRACT X FROM a,A
COMPARE a,A TO x
SHIFT X RIGHT (ARITHMETIC)
SHIFT X LEFT (ARITHMETIC/LOGICAL)
PUSH X ON STACK
PULL X FROM STACK
PRINT-TERMINATE WITH CR
PRINT-TERMINATE WITH EDT
READ FDR (RESIDENT MDOS ONLY)
WRITE FDR (RESIDENT MDOS ONLY)
WRITE EOF (RESIDENT MDOS ONLY)
DISK READ WI ERR RETN
DISK WRITE WI ERR RETN
MULTIPLE SECTOR READ
MULTIPLE SECTOR WRITE
MULTIPLE SECTOR READ WI ERR RETURN
MULTIPLE SECTOR WRITE WI ERR RETURN

RELOAD MDOS

RESTORE LOCATION COUNTER

CON T R a L C H A RAe ATE R S

o
1
2
3
4
5
6
7

NULL
START OF HEADING
.START OF TEXT
END OF TEXT
END OF TRANSMISSION
ENGUIRY (WRU - WHO ARE YOU)
ACKNOWLEDGE
BELL

.. "

APPENDIX I

0008
0009
OOOA
DOOB
DOOC
0000
OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
OOlA
001B
OOlC
0010
OOlE
OOlF
0020
007F

002E
003B
003A
0023
002A
0080

0000
0001
0002
0003

0016
0017
0018
0080
001A

0034
0004
07DO
OFA4
0020

A BS EGU
A HT EQU
A LF EGU
A VT EGU
A FF EQU
A CR EQU
A SO EGU
A 51 EGU
A OLE EGU
A DCl EGU
A DC2 EQU
A DC3 EGU
A DC4 EGU
A NAK EGU
A SYN EGU
A ETB EGU
A CAN EGU
A EM EGU
A SUB EGU
A ESC EGU
A FS EGU
A GS EGU
A RS EGU
A US EQU
A SPACE EGU
A RUBOUT EGU

*

8
9
SA
$8
$C
$D
SE
$F
S10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$18
SlC
$lD
$lE
$lF
$20
$7F

* 5 P E C I A L

* A SUFDLM EGU
A OPTDLM EGU
A ORVDLM EGU
A DEVDLM EGU
A FAMDLM EGU
A E$FATL EGU

*

, .
I

, .
'#

'*
1 !<7

MDOS09 E~uate File Listing

BACKSPACE
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN
SHIFT OUT
SHIFT IN
DATA LINK ESCAPE
DEVICE CONTROL 1
DEVICE CONTROL 2
DEVICE CONTROL 4
DEVICE CONTROL 4
NEGATIVE ACKNOWLEDGE
SYNCHRONOUS IDLE
END OF TRANSMISSION BLOCK
CANCEL
END OF MEDIUM
SUBSTITUTE
ESCAPE
FILE SEPARATOR
GROUP SEPARATOR
RECORD SEPARATOR
UNIT SEPARATOR

.. SPACE (WORD SEPARATOR)
PELETE (RUB· OUT)

C H· A R ACT E R E G U ATE S

SUFFIX DELIMETER
OPTIONS DELIMETER
LOGICAL DRIVER DELIMETER
GENERIC DEVICE NAME DELIMETER
FAMILY NAME/SUFFIX DELIMETER
FATAL ERROR BIT

* MOO S SEC TOR E G U ATE S

* A SCSOIO EGU
A SCSCAT EGU
A SCSLOK EGU
A SCSDIR EGU

A SC$DRE EGU
A seSBB EGU
A SCSDOS EGU
A SCSSIZ EGU
A SCSTRJ.<. EGU

A SCSTKD EGU
A SC$CLS EGU
A SCSMAX EGU
A SCSMXD EGU
A DFCLS$ EGU

o
1
2
3

$16
$17
$18
128
26

52
4
2000
4004
32

DI,SK ID PHYSICAL SECTOR NUMBER
CLUSTER ALLOCATION TABLE PHSYICAL
LOCKOUT CLUSTER TABLE PHYSICAL SEC
DIRECTORY START PHYSICAL SECTOR NUN

DIRECTORY END PHYSICAL SECTOR NUM
BOOT BLOCK PHYSICAL SECTOR NUMBER
OPERATING SYSTEM PHSYICAL SECTOR N
SECTOR SIZE IN BYTES
NUMBER OF SECTORS/TRACK (SINGLE SID

NUMBER OF SECTORS/CYLINDER (DOUBLE
NUMBER OF SECTORS / CLUSTER
MAXIMUM NO. OF USABLE SECTORS (51
MAXIMUM NO. OF USABLE SECTORS (OOU
DEFAULT NO. OF CLUSTERS

Page I-15

'ENDI X I

0000
0008
oeOA

OOOC
0012
0026

0000
0008
OOOA
OOOC
eOOE

0075
0076
0078
007A

0000
0001
0002
0004
0006
0008
OOOA
oooa
oooa
0000
OOOF
0011
0013
0013
0015
0017
OOlB
OOlD
001F
0021
0023
0025

if-

* DIS K

* A 010$1D EGU
A OID$VN EGU
A DID$RN EGU

A DID$DT EGU
A DID$NM EGU
A DID$RB EGU

*

I D

o
8
10

12
18
38

MDOS09 Equate File Listing

5 E C TOR OFF SET S

OFFSET TO DISX ID (8 BYTES)
OFFSET TO VERSION NUMBER (2 BYTES)
OFFSET TO REVISION NUMBER (2 BYTES)

OFFSET TO DATE (6 BYTES)
OFFSET TO USER NAME (20 BYTES)
OFFSET TO RIB ADDRS. (20 BYTES)

* 0 IRE eTa R Y E N TRY OFF SET S

* A DIR$NM EQU
A DIR$SX EGU
A DIR$RB EGU
A DIR$AT EQU
A DIR$NU EGU

* * R . I B

A RIB$LB EGU
A RIB$SL EGU
A RI13$LA EGU
A RIB$SA EGU

*

a
8
10
12
14

117
.118
120
122

OFFSET TO NAME (8 BYTES)
OFFSET TO SUFFIX (2 BYTES)
OFFSET TO RIB ADDRESS (2 BYTES)
OFFSET OF ATTRIBUTES (2 BYTES)
OFFSET TO NOT USED AREA (2 BYTES)

BIN A R Y F I L E OFF SET S

NUMBER OF BYTES IN LAST SECTOR
NUMBER OF SECTORS TO LOAD
MEMORY LOAD ADDRESS
START EXECUTION ADDRESS

* U N I FIE 0 I/O CON T R 0 L B LaC K

*
*
*
* A IOCSTA EGU

A IOCDTT EGU
A lOCDS? EGU
A IOCDBS EGU
A IOCDSE EGU
A IOCGDW EGU
A IOCLUN EGU
A IOCNAM EGU
A IOCMLS EGU
A IOCSDW EGU
A IOCSLS EGU
A IOCLSN EGU
A IOCSUF EGU
A IOCEOF EGU
A IOCRIB EQU
A IOCFDF EGU
A IOCDEN EGU
A IOCSBP EGU
A IoeSBS EGU
A IOeSEE" EGU
A IOCSEI EQU
A IOC13LN EGU

*

OFF SET S

o ERROR STATUS
1 DATA TRANSFER TYPE
2 DATA BUFFER POINTER
4 DATA BUFFER START ADDRESS
6 DATA BUFFER END ADDRESS
8 GENERIC DEVICE TYPE/COB ADDRESS
10 LOGICAL UNIT NUMBER
11 FILE NAME
11 MAXIMUM REFERENCED LSN
13 CURRENT SEGMENT DESCRIPTOR WORD
15 1ST LOGICAL SECTOR OF CURRENT SEGM
17 CURRENT LOGICAL SECTOR NUMBER
19 FILE NAME SUFFIX
19 LOGICAL END OF FILE
21 PHYSICAL DISK ADDRESS OF R. I. B.
23 FILE DESCRIPTOR FLAGS
27 DIRECTORY ENTRY NUMBER
29 SECTOR BUFFER POINTER/INITIAL SIZE
31 .. SECTOR BUFFER START ADDRESS ..
33 SECTOR BUFFER END ADDRESS
35 SECTOR BUFFER INTERNAL PTR
I DeSB I +2- I DCSTA. I DCB LENGTH

Page 1-16

APPENDIX I MDOS09 Equate File Listing

.. U N I FIE D I/O ERR 0 R S TAT USE S

'*
0000 A .$SAV SET

ORG
'*
$0

REMEMBER THE CURRENT LOCATION COUN
RESET IT TO ZERO TO USE THE SEa MA

0100
0050
OOAE
OOFE
0100
0102
0104
0106
0108
OlOA
OlOE
0110
0112
0114
0116

..

'*
*
'*

SEG I$NOER
SEG I$NODV
SEG I$RESV
SEG !$NORV
SEQ I$NRDY
SEG I$IVDV
SEG !$DUPE
SEG I$NONM
SEG I$CLOS
SEG I$EOF
SEQ !$FTYP
SEG I$DTYP
SEG I$EOM
SEG I$BUFO
SEG I$CKSM
SEG I$WRIT
SEG I$DELT
SEG ' I$RANG
SEG I$FSPC
SEG I$OSPC
SEG ISSSPC
SEG I$IDEN
SEG I$RIB
SEG I$DEAL
SEG I$RECL
SEG I$SECB

ORG . $SAV

NO ERRORS, NORMAL RETURN
NO SUCH DEVICE
DEVICE RESERVED ALREADY
DEVICE NOT RESERVED
DEVICE NOT READY
INVALID DEVICE
DUPLICATE FILE NAME
FILE NAME NOT FOUND
INVALID OPEN/CLOSED FLAG
END OF FILE
INVALID FILE TYPE
INVALID DATA TRANSFER TYPE
END OF MEDIA
BUFFER OVERFLOW
CHECKSUM ·ERROR
FILE IS WRITE PROTECTED
FILE IS DELETE PROTECTED
LOGICAL SECTOR NUMBER OUT OF RANGE
NO DISK FILE SPACE AVAILABLE
NO DIRECTORY SPACE AVAILABLE
NO SEGMENT DESCRIPTOR SPACE AVAIL
INVALID OIR. ENTRY NO.
INVALID RIB
CAN'T DEALLOCATE ALL SPACE
~INARY RECORD LENGTH TOO LRGE
SECTOR BUFFER SIZE ERROR

RESTORE THE LOCATION COUNTER

-* M DOS I N T ERN A L V A R I A B L E

'*
*
'*

AND

A MDOS$ EGU
A CBUFL$ EGU
A CBUFF$ EGU
A CBUFP$ EGU
A VERS$$ EGU
A REVS$$ EGU
A KY!$SV EGU
A ENDOS$ EGU
A ENDUS$ EGU
A ENDSY$ EGU
A RIBBA$ EGU
A ENDRV$ EGU
A GDBA$ EGU
A ·SYERR$ EGU
A SWI$SV EGU

L 0 CAT ION E G U ATE S

$100 START OF MDOS ASECT
80 COMMAND BUFFER LENGTH
MDOS$-CBUFL$-2 . COMMAND BUFFER LOCATION
CBUFF$+CBUFL$. COMMAND BUFFER SCAN POINTER
MDOS$ VERSION #
VERS$$+2
REVS$$+2
KYI$SV+2
ENDOS$+2
ENDUS$+2
ENDSY$+4
RIBBA$+2
ENDRV$+2
GDBA$+2
SYERR$+2

REVISION #
SAVE AREA FOR KEYIN$ VECTOR
END OF MOOS
END OF USER PROGRAM AREA
END OF SYSTEM (MDOS) RAM
RIB BUFFER ADDRESS
END OF MDOS ROM VARIABLES
GENERIC DEVICE TABLE ADDRESS
SYSTEM ERROR STATUS WORD
SWl VECTOR SAVE AREA

Page !-17

APPENDIX I

0118
OllA
OllC
0141
0166

A SWI$UV EGU
A CHFLGS EGU
A SYIOCB EGU
A SYPOCB EGU
A SYEOCB EGU

* *L 0 Q I CAL

* 0040 A LU$RES EGU

'* * I 0 eDT T
*' 0000 A DT$OPP EGU

0001
0002
0003
0004
0008
0010
0020
0040
0080

0000
0001
0002
0003
0005
0007

0008
0010
0020
0040
0080

A DT$OPI EGU
A DT$OPO EGU
A DTSOPU EGU
A DT$NFF EGU
A DTSTRU EGU
A DT$CLS EGU
A DT$SIO EGlJ
A DT$OUT EGU
A DTSINP EGU

* '* I a C F D F

'*
A FD$FMU EGU
A FD$FMD EGU
A FDSFML EGU .
A FD$FMB EGU
A FD$FMA EGU
A FD$FMC EGU

A FDSCMP EGU
A FD$CON EGU
A FD$SYS EGU
A FD$DEL EGU
A FD$WRT EGU

*

MDOS09 E~uate File Listing

SWI$SV+2 . SWI USER VECTOR
SWI$UV+2 . CHAIN FUNCTION FLAG WORD
CHFLG$+2 . SYSTEM CONSOLE IOCB
SYIOCB+IOCBLN . SYSTEM PRINTER IOCB
SYPQCB+IOCBLN . ERR MSG FILE

U NIT N U M B E R - - BIT

7.01000000 IaCB RESERVED FLAG

D E F.

BIT D E FIN I T I a N S

7.00000000
%OOOOOOQ1
7.00000010
1.00000011
7.00000100
1.00001000
1.00010000 .
1.00100000
7.01000000
7.10000000

OPEN UPDATE/INPUT
OPEl'" I NFUT MODE
OPEN OUTPUT MODE
OPEN UPDATE MODE
NON-FILE FORMAT I/O FLAG
TRUNCATE FLAG
FILE OPEN/CLOSE FLAG
SECTOR liD FLAG
OUTPUT TRANSFER TYPE
INPUT TRANSFER TYPE

BIT D E FIN I T ION S

7.00000000
1.00000001
7.00000010
7.00000011
1.00000101
7.00000111

USER DEFINED FORMAT (SECTOR liD
DEFAULT aB~ECT REC/D FORMAT
BINARY LOAD FORMAT
BINARY RECORD FORMAT
ASCII RECORD FORMAT
ASCI-CONVERTED-BINARY REC'O FORMAT

1.00001000 SPACE COMPRESSION FLAG
1.00010000 CONTIGUOUS ALLOCATION FLAG
7.00100000 SYSTEM FILE ATTRIBUTE
1.01000000 DELETE PROTECTION ATTRIBUTE
1.10000000 . WRITE PROTECTION ATTRIBUTE

* U N I FIE D

'*
I/O CON T R a L DES C R I

0000
0002
0004
0006
0007
0008
OOOA
OOOC

'*
* A CDBIOC EIJU

A CDESDA EGU
A CDBHAD EGU
A CDBDDF EGU
A CDBVDT EGU
A CDBDDA EGU
A CDBWST EGU
A CDBLEN EGU

'* '* C D B D D F

'*
0001 A DD$FMC EGU

B L 0 C K OFF SET 5

o
2
4
6
7
8
10
CDBWST+2

ADDRESS OF IOCB
SOFTWARE DRIVER ADDRESS
HARDWARE ADDRESS
DEVICE DESCRIPTOR FLAGS
VALID DATA TYPE
DEVICE DEPENDENT AREA
WORKING STORAGE
CDB LENGTH

BIT D E FIN I i ION S
J

~OOOOOOOl ASCII-CONVERTED-BINARY IS DEFAULT

'.
I
I

APPENDIX I

0002
0004
0008
0010
0020
0040
0080

0004
0008
0010
0080

0000
0003
0006
0009
OOOC

0000
0001
0003
0005

0006
0008
COOB
OOOD

EBOO
E822
E853
EBSA
E869
EB6D
E86F
E872
E875
EB7B
E87B
E87E
EBBl
E884

A DD$LOG EGU
A DDSCNS EGU
A nO$RWD EGU
A DD$OCF EQU
A DD$INP EGU
A DDSOUT EGU
A DD$RES EGU

'*
* C D B V D T

'* A VD$BIN EGU
A VD$G'DB EGU
A VD$SDA EGU
A VDSNFF EGU

* * D E V ICE

* A DV$ON EGU
A DVSOFF EGU
A DVSINT EGU
A DV$TRM EGU
A DV$IO EGU

* * DIS K

* A CURDRV EGU
A STRSCT EGU
A NUMSCT EGU
A LSCTLN EGU

A CURADR EGU
A FDSTAT EGU
A SCTCNT EGU
A SIDES EGU

* * E ROM

* A OSLOAD EGU
A FDINIT EGU
A CHKERR EGU
A PRNTER EGU
A READSC EGU
A READPS EGU
A RDCRC EGU
A RWTEST EGU
A RESTOR EGU
A SEEK EGU
A WRTEST EGU
A WRDDAM EGU
A WRVERF EGU
A WRITSC EGU

'* * E ROM

'*

7.00000010
7'00000100
7.00001000
h00010000 .
X00100000 .
~01000000 .
7.10000000 .

MDOS09 Equate File Listing

LOGICAL SECTOR 110 FLAG
CONSOLE FLAQ
REWIND FL'AG
OPEN/CLOSE FLAG
INPUT DEVICE FLAG
OUTPUT DEVICE FLAG
RESERVABLE DEVICE FLAG

BIT D E FIN I T ION S

7.00000100 . BINARY OB~ECT FLAG
7.00001000 TEMP GDB POINTER FLAG
7.00010000 TEMP SDA POINTER FLAG
7.10000000 NON-FILE FORMAT FLAG

o
3
6
9
12

D R I V

E ROM

o
1
3
5

6
8
11
$D

E N TRY

$EBOO
$E822
$E853
$E85A
$E869
$E86D
$E86F
SE872
$E875
$E878
$E87B
$E87E
SEBSl
$E884

ERR a R

C' 0
.... I" E N TRY

DEVICE ON OFFSET
DEVICE-OFF OFFSET

OFF SET S

DEVICE INTIALIZATION OFFSET
DEVICE TERMINATION OFFSET
DEVICE CHARACTER INPUT/OUTPUT OFF

E G U ATE 5

CURRENT DRIVE NUMBER
STARTING PHYSICAL SECTOR NUMBER
NUMBER OF SECTORS TO OPERATE UPON
OF BYTES TO READ FROM LAST SECTOR

MEMORY ADDRESS FOR DISK TRANSFER
DISK TRANSFER STATUS
SECTOR COUNT USED IN DETERMINING E
- ->SINGLEi + -> DOUBLE SIDED

POI N T S

BOOTSTRAP THE OPERATING SYSTEM
INITIALIZE THE DISK'S PIA AND SSDA
CHECK AND PRINT ERROR FROM FDSTAT
PRINT ERROR FROM FDSTAT
READ SECTOR(S)
READ PARTIAL SECTOR
READ AND CHEC~ FOR eRC
WRITE/READ TEST
MOVE HEAD TO TRACK 0
POSITION HEAD TO TRACK OF "STRSCT"
WRITE TEST
WRITE DELETED DATA MARK
WRITE AND VERIFY CRe
WRITE SECTOR(S)

E G U ATE S

Page I-19

tPPENDIX I

0031
0032
0033
0034
0035
0036
0037
0038
0039

A ER$CRC EGU
A ER$WRT EGU
A ER$RDY EGU
A ER$MRK EGU
A ER$TIM EGU
A ER$DAD EGU
A ER$SEl(EGU
A ER'$DMA EGU
A ER$ACR EGU ..

Ii ..
'2
'3
'4
'5
'6
'7
'8
'9

MDOS09 E~uate File Listing

DATA eRe ERROR
WRITE PROTECTED DISK
DISK NOT READY
DELETED DATA MARK ENCOUNTERED
TIMEOUT
INVALID DISK ADDRESS
SEEK ERROR
DATA ADDRESS MARK ERROR
ADDRESS MARK CRe ERROR

.. MIS C ELL A N E 0 U 5 ERa M E G U ATE S ..
0005 A RETRY$ EGU

.. LIN E

* EBCO A L?INIT EGU
EBCC A LIST EGU
EBE4 A LDATA EGU
EBF2 A LDATAl EGU ..

5 RETRY COUNT FOR D!SK READ/WRITE ER

P R I N T E R ERa M E G U ATE S

$EBCO
$EBCC
$EBE4
$EBF2

INIT PRINTER PIA
PRINT CONTENTS OF 'A'
PRINT STRING, CR/LF
PRINT STRING, NO CR/LF

.. E X BUG E G U ATE S FOR M DOS

F01S
F01S
F021
F024
FCFD

FF24
FF54
FF58

FFF2
FFF4
FFF6
FFFB
FFFA
FFFC
FF8F
FOF3
FF16
FF18
FF1A
FF1C
FF1E
FF1F
FF20
FF21
FF22
FF68
FCF4
FF92

.. (INCLUDES ALL REFERENCES BUT ROLLOUT)

A INCHNP EGU
A OUTCH EGU
A PCRLF EGU
A PDATA EGU
A SBIT$ EGU

A BRKPT$ EGU
A BKPIN$ EGU
A AECHO EGU

A SW3$VC
A SW2$VC
A FIR$VC
A IRQ$VC
A SWI$VC
A NMI$VC
A XSTAK$
A MAID$
A XREG$P
A XREG$U
A XREG$Y
A XREG$X
A XREG$O
A XREG$B
A XREG$A
A XREG$.C
A XREG$S
A BRKPE$
A CNACI$
A LINES$

EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU
EGU

$F015
$F018
$F021
$F024
$FCFD

$FF24
$FF54
$FF58

$FFF2
$FFF4
$FFF6
$FFFB
$FFFA
$FFFC
$FF8F
$FOF3
$FF16
$FF18
$FF1A
$FF1C
$FF1E
$FF1F
$FF20
$FF21
$FF22
$FF68
$FCF4
$FF92

INPUT CHARACTER (NO PARITY)
OUTPUT ONE CHARACTER
PRINT LF/CR
PRINT STRING
BIT 7 INDICATES IRG OCCURRED (IF 0)

~AID~S BREAKPOINT TABLE (S FDB'S)
EXBUG BREAKPOINTS IN MEMORY
INPUT CHARACTER ECHO FLAG (O=>ECHO)

SWI 3 VECTOR
SWI 2 VECTOR
FAST IRG VECTOR
IRG VECTOR
SWI VECTOR
NMI VECTOR
EXBUG STACK
MAID ENTRY POINT
MAID P-REG.
MAID U-REG.
MAID Y-REG.
MAID X-REG.
MAID DP-REG.
MAID B-REG.
MAID A-REG.
MAID C-REG.
MAID S-REG.
END OF MAID BREAKPOINT TABLE
CONSOLE ACIA

SEARCH/LOAD/VERIFY BUFFER

Paae 1-20

APPENDIX I MDOS09 Equate File Listing

F9CF A OCHAR$ EGU
FF02 A X?EED$ EGU
FF67 A CAS$ET EGU

*

$F9CF
$FF02
$FF67

OUTPUT CHAR ROUTINE WITHOUT NULL PAD
TERMINAL SPEED FLAG
PUNCH ON FLAG

* SPECIAL MACRO FOR THE CENTRONIX PRINTERS TO PRINT TITLES
* (NO LONGER USED)
TITLE MACR

*

TTL \0
ENDM

OPT LIST

* SPECIAL OPTION -- TURN ON THE LISTING

TITLE (SYMBOL TABLE)
END

TOTAL ERRORS 00000--00000
TOTAL WARNINGS 00000--00000

· $SAV 0000 · ADAX 0028 · ADBAX 0029 · ADBX 0027 · ADDAM 0016
· ADXBA 002A · ALLDC 0021 · ALPHA 0014 · ALUSM OOlE · ASLX 0031
· ASRX 0030 · BOOT 003F · CHANG OOlF · CKBRK OOOD · CLOSE 0003
· CMPAR 0011 · CPBAX 002F · DEALC 0022 · DIRSM OOlC · DMA 0019
· DREAD OOOE · DSPLX oooa · DSPLY OOOA · DSPLZ OOOC · DWRIT OOOF
· EREAD 0039 · EWORD 0023 · EWRIT 003A · GETFD 0036 · GETLS 0007
· GETRC 0004 · KEVIN 0009 · LOAD OOlB · MDENT OOlA · MDERR 0020
· MERED 003D · MEWRT 003E · MMA 0018 · MOVE 0010 · MREAD 003B
· MWR1T 003C · NUMD 0015 · OPEN 0002 · PFNAM OOlD · PRINT 0034
· PRINX 0035 · PSHX 0032 · PULX 0033 .PUTEF 0038 · PUTFD 0037
.PUTLS 0008 · PUTRC 0005 · RELES 0001 · RESRV 0000 · REWND 0006
· STCHB 0012 · STeHR 0013 .SUAX 002C · SUBAM 0017 · SUBAX 002D
· SUBX 002B · SUXBA 002E · TBAX 0025 · TXBA 0024 · XBAX 0026
ACK 0006 AECHO FF58 BEL 0007 BKPINS FF54 BRKPE$ FF68
BRKPT$ FF24 BS 0008 CAN 0018 CASSET FF67 CBUFF$ OOAE
CBUFL$ 0050 CBUFP$ OOFE CDBDDA 0008 CDBDDF 0006 CDBHAD 0004
CDBIOC 0000 CDBLEN DOOe CDBSDA 0002 COaVDT 0007 CDBWST OOOA
CHFLG$ OllA CHKERR E853 CNACI$ FCF4 CR 0000 CURADR 0006
CURDRV 0000 DCl 0011 DC2 0012 DC3 0013 DC4 0014
DDSCNS 0004 DnSFMC 0001 DDSINP 0020 DDSLOG 0002 DD$OCF 0010
DDSOUT 0040 DD$RES 0080 DDSRWD 0008 DEVDLM 0023 DFCLS$ 0020
DID$DT oooe D1D$1D 0000 DID$NM 0012 DIDSRB 0026 DIDSRN OOOA
DID$VN 0008 DIRSAT OOOC DIR$NM 0000 DIRSNU aOOE DIRSRB OOOA
DIRSSX 0008 DLE ·0010 DRVDLM 003A DT$CLS 0010 DT$INP 0080
DT$NFF 0004 DT$OPI 0001 DTSOPO 0002 Di$OPP 0000 DT$OPU 0003
OT$OUT 0040 DT$SIO 0020 DT$TRU 0008 DVSINT 0006 DVSIO OOOC
DV$OFF 0003 DVSON 0000 DVSTRM 0009 E$FATL 0080 EM 0019
ENDOS$ 0106 ENDRVS 0110 ENDSY$ OlOA ENDUS$ 0108 ENG 0005
EDT 0004 ERSACR 0039 ERSCRC 0031 ERSDAD 0036 ERSDMA 0038
ERSMRK 0034 ERSRDY 0033 ER$SEK 0037 ER$TIM 0035 ER$WRT 0032
ESC 001B ETB 0017 ETX 0003 FAMDLM· 002A FDSCMP 0008
FD$CON 0010 FD$DEL 0040 FDSFMA 0005 FD$FMB 0003 FDSFMC 0007
FD$FMD 0001 FDSFML 0002 FDSFMU 0000 FDSSYS 0020 . FDSWRT 0080
FDINIT E822 FDSTAT 0008 FF OOOC FIR$VC FFF6 FS OOlC

Page I-21

APPENDIX I MDOS09 Equate File Listing

-----.
GDBA$ 0112 GS OOiD HT 0009

~

I$BUFO OOOD I$CKSM OOOE
I$CLOS 0008 l$DEAL 0017 I$DELT 0010 I$OSPC 0013 I$OTYP OOOB
!$DUPE 0006 I$EOF 0009 I$EOM OOOC I$FSPC 0012 I$FTYP OOOA
I$IDEN 0015 I$IVDV 0005 I$NODV 0001 I$NOER 0000 I$NONM 0007
I$NORV 0003 I$NRDY 0004 I$RANG 0011 ISRECL 0018 I$RESV 0002
I-$R IS 0016 I$SECB OOi9 I$SSPC 0014 I$WRIT OOOF I NCHNP F01S
IOCBLN 0025 IOCDBE 0006 IOCDBP 0002 IOCDBS 0004 IOCDEN OOlB
IOCDTT 0001 IOCEOF 0013 IOCFDF 0017 IaCGDW oooe IOCLSN 0011
rOCLUN OOOA IOCMLS OOOB IOCNAM eOOB IOCRIB 001S IOCSBE 0021
lOCSBl 0023 IOCSBP 0010 lOCSBS OOlF IOCSDW OOOD IOCSLS OOOF
lOCSTA 0000 IOCSUF 0013 IRG$VC FFF8 KYI$SV 0104 LDATA EBE4
LDATAl EBF2 LF OOOA LINESS FF92 LIST EBCC LPINIT EDCO
LSCTLN 0005 LU$RES 0040 MAIDS FOF3 MDDSS 0100 MDOS9$ 0001
MDOSF$ 0000 NA~ 0015 NM1$VC FFFC NULL 0000 NUMSCT 0003
OCHAR$ F9CF OPTDLM 003B OSLOAD EBOO OUTCH F01S PCRLF F021
PDATA F024 PRNTER E85A RDCRC E86F READPS E86D READSC E869
RESTOR E875 RETRY$ 0005 REVS$$ 0102 RIBSLA 0078 RIB$LB 0075
RIBSSA 007A RIB$SL 0076 RIBBA$ 010E RS OOlE RUBOUT 007F
RWTEST E872 SBITS FCFD SC$SB 0017 SC$CAT 0001 SC$CLS 0004
SC$DID 0000 SC$OIR 0003 SC$OOS 0018 SC$ORE 0016 SC$LQK 0002
SC$MAX 07DO SC$MXD OFA4 SC$S1Z 0080 SC$TKD 0034 SC$TRK OOlA
'SCTCNT OOOB SEE(E878 51 OOOF SIDES OOOD SO OOOE
SOH 0001 SPACE 0020 STRSCT 0001 STX 0002 SUB OOlA
SUFDLM 002E SW2SVC FFF4 SW3$VC FFF2 SW1$SV 0116 SWI$UV 0118
SWI$VC FFFA SYEOCB 0166 SYERRS 0114 SYIOCB 011C SYN 0016
SYPOCB 0141 US 00lF VDSBIN 0004 VD$GD~ 0008 VD$NFF 0080
VD$SDA 0010 VERS$$ 0100 VT OOOB WRDDAM E87E WRITSC E884
WRTEST E87B WRVERF EB81 XPEED$ FF02 XREG$A FF20 XREG$B FF1F
XRE~$C FF21 XREGSO FF1E XREG$P FF16 XREG$S FF22 XREG$U FF18
XREGSX FF1C XREG$Y FF1A XSTAK$ FFBF

Q"....... T_~':)

APPENDIX

J. MDOS 3.00 Differences

The rollowing appendix contains a description of the
diTrerences between MDOS 3.00 and prior versions or MDOS.
The first part of the appendix contains those differences
that may have an impact on user-written programs which were
based on prior versions of MDOS. The second part oT the
appendix contains the enhancements that are apparent to the
operator at the MDOS command level. These enhancements have
been separated by the version number of MDOS in which they
~irst appeared. All of the listed enhancements are
incorporated into MDOS 3.00.

J. 1 Impact of MDOS 3.00 on Previous MOOS Programs

MOOS version 3.00 accommodates both the single-sided and
the double-sided diskettes, a four-drive system, an.d multiple
sector .1/0. There are several items which as a result of
these new features must be checked in all programs that have
been ~eveloped to use prior versions of MDOS. These items
a1'e listed below.

1. A program making explicit checks for logical unit
numbers 0 and 1 must be changed to accommodate the
new numbers 2 and 3.

2. A program referring to the maximum number of sectors
on a diskette as 2000 (decimal) or 2002, or the
symbol from the MDOS equate rile (SC$MAX), must be
changed to accommodate the possible larger diskette
sizes that can be encoun~ered with the double-sided
systems. Once a diskette has been accessed, the
diskette cont~olle~ va~iable SIDES (location $OOOD)
will have bit seven set or cleared to indicate the
number of sides· on the diskette. If bit seven is
one, a single-sided diskette has been accessed. IF
bit seven is zero, a double-sided d·iskette has been
accessed. This variable is set up properly in all
versions of the MDOS diskette controller,

A single-sided diskette can be accessed in a
double-sided drive; however, a double-sided diskette
cannot be accessed in a single-sided drive.

A new symbol has been placed into the MOOS equate.
file that gives the maximum number of sectors on a
double-sided diskette (SCSMXD).

Page J-Ol

APPENDIX ..J MDOS 3.00 DirTe~ences

3.

The double-sided diskette has no unused sectors as de
the single-sided diskettes, since an integral number
or clusters exists.

A program using the IaCB for diskette IIO must have
the ~ull IOeB conTiguTed as desc~ibed in all MDOS
manuals. This includes the until-now-unused entry
IOCSBI.

4. A program using the IOCB Tor diskette 1/0 will have
to be changed iT the sector bur~er at the time of the
. OPEN function call is not exactly an integral number
or sectors. In previous versions of MDOSI the sector
size did not get check,ad until a subseq,uent IIO
transfer was made (even though the entry parameters
for the . OPEN call specified that !OCSBS and IOeSBE
must be set up),

5. A program using the IOCB Tor diskette 110 will have
to be changed if the sector burTer pointers (IOCSBS
and lOeSBE) are altered after the . OPEN runction has
been called. Since, OPEN sets rOeSB! to the same
value as IOCSBEI moving the sector bu~fg~ ~e~uires

that all sector bu.pfe~ pOinters (IOCSBS, IOCSBEJ and
lOeSBI) be changed accordingly.

6. A program accessing logical unit 1 without first
using the system runction . OPEN, .DlRSM, . CHANG, or
,LOAD, will have to be changed so that the ~ead head
is restored before the unit is accessed. Previous
versions of MDOS resto~gd both logical units 0 and 1
each time the system initialized and each time the
MDOS command interpreter received control; however,
in MDOS 3.0 th is is no longe~ true. Thus. the
diskette controller rir~a~e entr~ point RESTOR must
be used to restore the head on the unit to be
accessed if not using one or the above system
functions (Ulh ich do the restore themselves). The
same is true if the p~ogram is to access un{ts 2 or 3
without first using one of these Tunctions.

7. A program that has been designating logical unit
numbers in the diskette controlle~ variable CURDRV
<ioeation $0000) as either a zero or a non-ze~o value
(to access either unit 0 01" 1), will have to be
changed so that the actual binary number is used
instead. A non-ze~o value no longer guarantees that
unit 1 \.Uill be accessed (physical liD).

B.' If a program has
. ALUSM, the entry
changed. Section
detailed description
c ond i ti ons.

been using the syst~m function
and exit conditions have be~n

27.5.5 should be consulted Tor a
of the current entry and exit

• J-O=:>

APPENDIX ~ MDOS 3.00 Differences

9. FOUT new system functions have been pTovided ror
multiple sectoT physical diskette I/O. These ne~

functions aTe described in sections 25.2.7 and
25.2.8. The existing system functions have not had
theiT function numbers changed.

10. The device independent 1/0 functions (Unified 1/0
functions in previous versions Or MDOS manuals) ¥or
accessing the diskette have been enhanced with the
multiple sector lID capability. Now, a sector buffer
can be larger than a single sector in orde~ to
minimize the number of diskette accesses that must be
made (and therefore decrease the amount of time it
takes a program to run). The following areas have
been affected:

loess!' the IOCB sector buffer internal pointer, is
now used. This pointer indicates the end of valid
data within the user's sector buffer. It is
initialized by the . OPEN function to point to the end
of the sector buffer (IOCSBE). It is changed by the
input functions to reflect the end of the valid data
<if only using a single sector, rOeSSI will always be
the same as IOeSBE).

IOCSBEJ the IOeE ending sector bur-rer pointer, still
points to the last b~te in the sector buffer;
however, the sector buffer can be an integral number
of sectors in length (one or more).

No program modification will be required if a program
is using record 1/0 and if the sector buffer stays in
the same place; however, changing the size of the
sector bUTfer should speed up the program.

Programs using logical sector 1/0 will not require
modification if only a single sector is accommodated
b~ the buffer and if the sector burfer is always in
the same place. Thus, existing programs should be
minimally impacted. If the sector buffer changes
locations (single sector size), then the IOeSBI entry
must be adjusted along with the IOeSBE entry to
reflect the end of the valid data within the sector
buffer.

If the user supplies a sector bu~fer larger than one
sectoTI then he must realize that after a .GETLS
function, he may have more sectors in the buffer than
Just the logical sector number requested. IOCLSN
will be updated to point to the logical sector to be
read next (incremented by the number of sectors that
were read into the buffer). Upon return from the
. GETLS calli IOeSB! will point to the last valid data
byte within the sector buffer (less than or equal to

Page ~-03

APPENDIX J MDOS 3.00 Di~~e~ences

loeSBE)' Thus# the user must check lOeSBI to
determine the end or the data in the bUTfer and to
calculate the number of sectors read.

The .PUTLS function will write the logically
contiguous sectors from IOCSBS through lOeSB! r~om

the buffer to the file starting at IOCLSN. IOCMLS
and IOCLSN are updated as expectedl and additional
space may have been allocated.

J.2 Enhancements to MOOS 2.20/2.21

MDOS 2.20 ~as released to support the dual memor~ map of
the EXORciser II system. Other enhancements, ho~everl were
added to the MDOS commands at the same time. MDOS 2.21 is
almost identical toMDOS 2.20. A change was implemented to
aid in the proper sizing or contiguous memory during
initialization when running with the USE module.

1. A ne~ command} ROLLOUT, was added to the standard

2.

command pac kage. ROLLOUT ,allOWS the user to
write blocks of m~mory to a diskette.

A new command, ECHO, was added to the
command package. ECHO allows' users
EXORciser II system to ecno all
input/output to a line printer

standard
with an

console

3. The Bootb loc k program may generate a new el''rOl'
message: EM. This message indicates that
insufficient contiguous RAM exists in the system
to load the resident MDOS.

4. When MDOS 2.20 or 2.21 ini tial i z es via the EBOOi G
or MDOS command to the debug monitorl it sizes
memory using a technique that will not change the
contents of memory. Thusl pl'ogl'ams can be loaded
above MDOS, the system reinitialized, and another
program loaded with the first program image still
intact ~n memo'rY (first program must load above
MDOS command interpreter and LOAD command),

5. The FR EE comma n d can b e i n v 0 ked wit h the "L II
option, causing its output to be directed to the
line printer.

6. The REPAIR command will default to drive z e'r 0 if
no logical unit number is specified. In
addition, if- a file with "a RIB error is not
deleted, the user will not be able to update the
CAT on diskette. A message is displayed to that
effect during the last phase of the REPAIR
process.

/
./

)

"" - - - I J"O,'"

APPENDIX J MDOS 3.00 Dirrerences

7. The COpy command allows users with an EXORtape
paper tape reader to use that device. In
addition, a use~ can provide his own device
driver to be used by COpy for an input or output
device.

8. The LOAD command allows files to be loaded into
the User Memc~~ Map of an EXORciser II system
that has the dua 1 memor'l map c onf i 9 ured. Th is is
dene with the "U" option. The "V" option now
allows programs to be loaded anywhere in memor~
(not below $20 or beyond $FFFFI however). In
addition, the stack pointer is set to the EXbug
stack area Ulhen the nv" option is speciried.

9, The DEL command will display the logical unit
numbers along with the file names shown as being
deleted or protected. In addition, the command
line processing has been changed so that a null
file name am~ng a list of multiple file names is
invalid.

10. The BINEX command generates an SO record
containing the memory image file name and suffix.

12. All standard error messages are displa'led with a
two-digit decimal reference number to allow them
to be easily looked up in the error message
chapter OT the new MDOS manual. Most error
messages are still, the same. However") the
wording was changed on several to make them more
uniform. Also, the "AT nnnn" phrase that
accompa~ied many error messages has been removed
to make the messages less cryptic. A neUl erl'or
message was added (as was a new erl'or code) Tor
sector 110 functions that are called with a
sector bUTfer not 128 bytes in size.

13. The EXBIN command ignores null records (carriage
return only) if encountered in the EXbug-loadable
fi Ie.

14. The EOT chal'acter ($04) which was output by the
. PRINX, . DSPLX and . DSPLZ functions, is no longer
written to the output device.

15. The seq,uence of line feed, carriage return, nuli
written to console and/or printer, has been
changed to carriage return, line feed, null to
eliminate the overprinting problem encountered on
certain printers with an·SO character buffer when
lines of 80 characters were printed.

16. The FORMAT command has been upgraded to function

Page ~-05

APPENDIX .J MDQS 3.00 Differences

with either a 1 MHz or a 2 MHz system.

17. The recovery or accidentally deleted riles has
b ee'n mad e eas i er ror th ose users wh 0 refuse to
keep directory listings or backup copies. The
director~ entTy is only changed so that the fir~t
t~o bytes are changed to an $FF when deleted.
This retains 8 characters o~ name and suffix out
of the original 10 to make the ent~~ visible in
the directory. In addition~ the RIB is no longer
zero-filled when the rile is deleted. Thusl the
user has only to use DUMP to rebuild the tUlO

FF-ed name bytes in the directorlj. Then, the
REPAIR program must be run immediately afterwards
to reconstruct the allocation table.

J.3 Enhancements to MDOS 3.00

MDOS 3.00 was released to support EXORdisk III
(four-drives. double-sided), The other major enhancement was
the addition of multiple sector I/O. The implementation Or
this enhancement has considerably reduced the amount of time
it takes all MDOS commands to execute. Commands like LIST,
MERGEJ COpy, DOSGEN, and EDIT show the greatest increases in
speed. The other enhancements are listed below.

1. The BACKUP command has been modiried to allow
single-~ided diskettes to' be copi~d onto
double-Sided diskettes. A logical unit number
specification can be entered on the command line
to allow copying diskettes from units other than
zero to units other than one. The IIR u option no
longer copies the LCAT ~rom the source diskette.
The destination diskette's LCAT is initialized
completely. The "V" option no longer terminates
the veri~y process if the sqstem sectors in
cylinder zero miscompare since the BREAK key can
be used to abort the proc~ss at any time.

2. The COPY command's "V" option will cause the
miscomparisons to be displayed between sectors or
records when verifying files. The ilL" option can
be used to direct this display to the line
printer. The liB II option has been added to
automatically verif~ riles after the copy has
completed (diskette-to-diskette copy only).

3. The DOSGEN command has been changed allow logical
unit numbe~ specifications 1-3. Either sin~la
or double-sided diskettes can be DOSGENed. The
write/read test has been changed to veriFy that
the sectors locked out indeed have tHe deleted
data mark written in them. The BREA~ key is

APPENDIX J MDOS 3. 00 Dir~erences

sensed at times other than the rile copy phase.
Only one sector range cari be locked out by the
user. All input rrom the operator is entered on
the same line as the input prompts.

4. The FORMAT command has been changed to allow
logical units other than number one to be
rormatted. Both single- and double-sided
diskettes can be rormatted.

5. The REPAIR command has been changed so that it
will work with logical units 0-3 and with single
and double-sided diskettes. In addition, the
version numbers between the resident MDOS and the
ID sector are compared and made the same. The
version and revision numbers can no longer be
changed by the operator. Several of the messages
have been changed.

Page ~-07

APPENDIX

K. IOCB Input Parameter Summary

The following appendix contains a summary of the twelve
different modes in which an IOCB can be used. The tables
show the entries of an IOCB labelled on the left. A~ross the
top of each table are the names of the valid device
independent lID functions. Immediately underneath each lID
function will be the letter "N" 01' "Y". The "Nil indicates
that the function cannot be used in the mode described by the
title line under each table. A Hy" indicates that the
function can be used.

An "X" appears in those places where a given IOCB entr~

is required as an input parameter to the function in whose
column the "XU appeal's. At the bottom of each table, the
values that must be placed into the IOCB entries are
summarized. Periods in the table serve as place holders to
show the columns.

Page K-Ol

APPENDIX K

VALID CALL
loeB ENTRY

IOCSTA
IOCDTT
IOCDBP
IOCDBS
IOCDBE
IOCGDW
IOCLUN
IOCNAM/MLS

/SDW
ISLS
ILSN

IOCSUF/EOF
IOCRIB
IOCFDF

IOCDEN
lOCSBP/SIZ
laCSBS
loeSBE
lOCSEI

R
E
S
R
V

y

X
X

a
P
E
N

y

X

X
X
X
X
X

x
x

G p
E U
T T
R R ,. ,.
"" ""
V N

X
V
A

IOCB Input Parameter Summary

" --"""'.

C R G P R
L E E U E
0 L T T W
S E L L N
E S S 5 n ..,

y y N N Y

Diskette Device -- Record Processingl Input (Existing File)

IOCDTT = DT$CLS .. DT$OP!
IaCGDW = DK
IOCLUN = 0-3
IOCNAM = File name of e~isting file
IaCSUF = Suffix
laCSBS = Sector buffer start
IOeSBE = Sector buffer end
lOCDBS = Data bUTTer start
IOCDBE = Data buffer end

I

;'
. ./

1:3 __ _ u _r.""l

APPENDIX K IOCB Input Parameter Summary

R 0 G ? C R ,...
P R ~

E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL Y Y N Y y y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
lOCDBP
IOCDBS X
IOCDBE X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
lOCFDF X

. lOCDEN f ,
IOCSBP/SIZ X
IOCSBS)(

laCSBE X
lOCSBI

Diskette Device -- Record Procesing, Output (New file)

IOCDTT = DTSCLS + DTSOPO
IOCGDW = D~
IOCLUN = 0-3
IOCNAM = File name of new rile
IOCSUF = Suffix
lOCFDF = FD$FMA or FD$FMB plus other optional attributes
IOCSIZ = 0 (Default size) or specific size
IOCSBS = Sector buffer start
IOCSBE = Sector burfer end
IOCDeS = Data bufrer start
IOCDBE = Data buffer end

Page K-03

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T a L T T W
R N R R S E L L N
V C C E S S S D

VALID CALl.· y y y y y y N N Y
IOCB ENTRY

IOCSTA
IocnTT x
IOCDBP
IOCDBS X X
IOCDBE v v

A A

IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
IOCRIB
IaCFDF x

IOCDEN
lOCSBP/SIZ X
loesas x
IaCSBE x
loeSBI

Diskette Device -- Record Processingl Update (New File)

IOCDTT = DT$CLS + DT$OPU
IOCQDW = DK
IOCLUN = 0-3
IOCNAM = Fi Ie name oT new Tile
IOCSUF = Suffix
IOCFDF = FD$FMA or FD$FMB plus other optional attributes
IOCSlZ = 0 (Default size) or specific size
IOCSBS = Sector bufTer start
IOeSBE = Sector buffer end
IOCDBS = Data buffer start
IOCDSE = Data bufTer end

APPENDIX K IOCB Input Parameter Summar~

R a G p C R G P R
E P E U L E E U E
S E T T a L T T W
R N R R 5 E L L N
V C C E S S 5 D

VALID CALL y y y y y y N N y
IOCB ENTRY

IOCSTA
laCDTT x x
lOCDBP
lOCDBS X X
IOCDBE X X
IOCGDW X
IOCLUN x
laCNAM/MLS x x

ISDW X
ISLS X
ILSN X

IOCSUF/EOF X
lOCRIB
IOCFDF

-IOCDEN
IOCSBP/SIZ
lOCSBS X
lOCSBE X
lOCSEl

Diskette Device -- Record Processing, Update (Existing file)

lOCDTT = DTSCLS + DT$OPP
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = Fi Ie name
IOCSUF = Suffix
IOCSBS = Sector burfer start
lOeSBE = Sector buffer end
lOCnBS = Data buffer start
IOCnSE = Data buffer end

Page 10\-05

APPENDIX K

VALID CALL
IOCB ENTRY

IOCSTA
IOCDTT
lOCDSP
IOCDBS
!OCDBE
IOCGDW
IOCLUN
IOCNAM/MLS

ISDW
ISLS
ILSN

IOCSUF/EOF
IOCRIB
rOCFDF

IOCDEN
IOCSBP/SIZ
IoeSBS
loeSBE
locsal

R
E
S
R
V

y

x
x

a
P
E
N

y

X

x
x
x
x
x

x
x

G p

E U
T T
R R
C C

N N

IOCB Input Parameter

C R G P R
L E E U E
0 L T T W
5 E L L N
E S S S 0

Y Y Y N Y

. --------------------------------------

Diskette Device Logical"Sector P'rocessing, Input
(Existing file)

IOCDTT = DT$CLS + DT$OPI + DT$SIO
IOCGDW = OK
lOCLUN = O~3
IOCNAM = File name o~ existing file
IOCSUF = Su~rix
IOCLSN = Starting logical sector number to be l"ead
IOCSBS = Sector bUTTe,.. start
laeSBE - Sector &.... __ IIt,. __ end lJUrT~r

SummarlJ

'-

, . ---'

APPENDIX K IOCB Input Parameter Summary

..
R a G p C R ,... P R \7

E P E U L E E U E
S E T T a L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL. y y N N Y Y N Y N
loeB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCD·BS
IOCDBE
!OCGDW X
IOCLUN X
!OCNAM/MLS X

ISDW X
ISLS X
ILSN X X

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IDCSBP/SIZ X
IOCSBS X X
lOCSBE X
IOCSBl X . --------------------------------------

Diskette Device -- Logical Sector Processing, Output
(New file)

IOCDTT = DT$CLS + DT$OPO + DT$SID
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name OT new file
IaCSUF = Suffix
IOCFDF = Optional attributes
IOCLSN = Starting logical sector number to be written
IOCSIZ = 0 (DefCiult size) or specific size
IOCSBS = Sector buffer start
IOeSBI = Sector bUTTer end

Page K-07

APPENDIX K IOCB Input Pa~amete~ Summary

R a G p C R G P R
E P E U L E E U E
S E T T 0 L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL y Y N N V V V V Y
IOCB ENTRY

IOCSTA
IOCDTT x
IOCDSf'
IOCDBS
Tnrnas:-
.. '-'''''*II

IOCGDW X
IOCLUN X
IOCNAM/MLS X

/SOW X
ISLS X
ILSN X X X

I OCSUFIEOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ X
IOCSBS X X X
lOeSBE x x
lOCSBI X

---------------------------------~----

Diskette Device -- Logical Sector ProcessingJ Update
(New file)

IOCDTT = DT$CLS + DT$OPU + DT$SIO
IOCGDW = DJ.<.
IOCLUN = 0-3
lOCNAM = File name oT new file
IOCSUF = Suffix
laCFDF = Optional attributes
IOCLSN = Starting logical sector number
IOCSIZ - 0 (Default size) or specific size
!OCSBS = Sector buffer start
IOeSBE = Sector buffer end
IOeSBI = Sector buffer end

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T a L T T W
R N R R S E L L N
V e c E S 5 S D

VALID CALL y y N N Y y Y Y Y
loeB ENTRY

rOCSTA
IOCDTT x X
lOCDBP
lOCDBS
lOCDBE
IOCGDW X
Tn I UItJ,"W' 1.-'-1"" X
IOCNAM/MLS X X

/SDW X
ISLS X
ILSN X X X

IOCSUF/EOF X
lOCRlB
lOCFDF

lOCDEN
lOCSBP/SIZ
lOCSBS X X X
loeSBE X X
lOeSB! X

Dis k e t t e De vic e -- Log i cal Sec tor Pro c e s sin 9 , Up d ate
(Existing File)

IOCDTT = DT$CLS + DT$OPP + DTSSIO
IOCGDW = DK
IOCLUN = 0-3
IOCNAM = File name OT existing file
IOCSUF = Sur-rix
IOCLSN = Starting logical sector number
IOCSBS = Sector buffer start
lOeSBE = Sectol' buffeT' end
IOCSBI = Sector buffer end

Page K-09

APPENDIX K IOCB Input Parameter Summar~

R a G p C R G P R
E P E U L E E U E
5 E T T 0 L T T W
R N R R 5 E L L N
V C C E S S 5 D

VALID CALL Y y y N Y y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X
IOCDBE X
IOCGDW X
IOCLUN X
IOCNAM/MLS

ISDW
ISLS
ILSN

IOCSUF/EOF X
IOCRIB
IOCFDF X

IOCDEN
IOCSBP/SIZ
IOCSBS
loeSBE
loeSEI

Non-diskette Device -- Non-file Format~ Input

IOCDTT = DTSCLS + DT$NFF + DT$OPl
IOCGDW = eN or CR
IOCLUN = 0
IOCFDF = FD$FMA
IOCSUF = Display prompt if device is eN
lOCDBS = Data buffer start
IOCDBE = Data buffer end

Page K-l0

APPENDIX K IOCB Input Parameter Summary

R 0 G P C R G P R
E P E U L E E U E
S E T T a L T T W
R N R R S E L L N
V C C E S S S D

VALID CALL y y N y y y N N N
loeB ENTRY

IOCSTA
IOCDTT v ,..
rOCDBP
IOCDBS x X
IOCDBE X X
IOCGDW X
IOCLUN X
IOCNAMlMLS

ISDW
/SLS
ILSN

IOCSUF/EOF
IOCRIE
IOCFDF X

IOCDEN
IOCSBP/SIZ
IOCSBS
IOCSBE
IOCSEI

Non-diskette Device -- Non-file Format, Output

IOCDTT = DTSCLS + DTSNFF + DTSOPO
IOCGDW = LP, eN, or CP
IOCLUN = 0
IOCFDF = FD$FMA
lOCDBS = Data buffer start
IOCDBE = Data buffer end

Page K-l1

APPENDIX K IOCE Input Paramete~

VALID CALL
IDCB ENTRY

lOCSTA
IeCDTT
IOCDBP
lOCDBS

lOCGDW
IOCLUN
lOCNAM/MLS

ISDW
ISLS
ILSN

IOCSUF/EOF
IOCRIB
IOeFDF

IoeDEN
IoeSBP/SIZ
IOCSBS
loeSBE
loeSBI

R
C' ...
S
R
V

Y

X
X

0 G
P E
E T
N R

C

Y y

X

X X
X X

X
X
X
X
X

P e R G P
U L E E U
T a L T T
R S E L L
" E S S S "*

N y Y N N

Non-fiiskette Device - File Formati Input

lOCDTT = DTSCLS + DT$OPI
IOCGDW = CR
lOCLUN = 0
IOCDBS = Data buffer start (used ror FDR processing)
IOCDBE = Data bUTrer end
IOCNAM = File name of existing file
IOCSUF = Suffix

R
E
W
N
D

N

Summar~

-"

APPENDIX K IOCB Input Pa~ameter Summa~y

R 0 G P C R G P R
E P E U L E E II E v

S E T T 0 L T T W
R N R R 5 E L L N
V C C E S S S D

VALID CALL y Y N Y Y y N N N
IOCB ENTRY

IOCSTA
IOCDTT X
IOCDBP
IOCDBS X X X
IOCDBE X X X
IOCGDW X
IOCLUN X
IOCNAM/MLS X

ISDW X
/SLS X
ILSN X

IOCSUF/EOF X
IOCRI13
IOCFDF X

I DC DEN
IDCSBP/SIZ
IOCSBS
lOeSBE
loeSBI

Non-diskette Device -- File Formatl Output

IDCDTT = DT$CLS + DT$OPO
lOCGDW = CP
IOCLUN = 0
IOCDBS = Data bu-F-Fe~ start (used -For FDR processing)
IOCDBE = Data bu;:~e~ end
IOCNAM = File name
IDCSUF = Suffix
IOCFDF = FDFMA, FDFMB, FD$FMCI o~ FDSFMD (only)

Page K-13

APPENDIX

L. EXORdisk II/III System Specirications

The following table lists the characteristics and
specirications of the EXORdisk II/III system.

CHARACTERISTICS

POWER REGUIREMENTS
AC Power

DC Power supplied by
EXORciser

BUS INTERFACE SIGNALS
Address, Control busses

Data bus

DIS~-TD-CONTROLLER INTERFACE
SIGNALS

OPERATING TEMPERATURE

PHYSICAL CHARACTERISTICS
Disk Drive Unit

Width
Depth
Height
Weight

Floppy Disk Controller
Width
Height
Board thickness

CONNECTOR TYPES
Bus Connector (Pl)

Di sk' D-ri ve Un i t
Connector (P2)

SPECIFICATIONS

I I"\. r..l_
OV nLI 3.4

A. __ ~

Mill., ::t 110 Vael
110 Vac,
220 Vac,

00 HZI 3.4 Amps
50 Hz I 1. 8 Amp s

+ 5 Vdc @ 2.75 Amps
+12 Vdc @ 20·mAmps
-12 Vdc @ 45 mAmps

TTL compatible

Bi-di-rectional, three state
TTL compatible

Positive true TTL compatible

0-70 degrees Celsius

17.75 inches
23. 5 inches
6.96 inches

48 pounds

9.75 inches
5.75 inches
0.06 inches

Stanro-rd Applied Engineering
SAC-43D/1-2 or equivalent

AMP PIN 88393-7 or
equivalent

Page L-Ol

SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and· publications. Please use this form.
I
I
I
I

: 10' I • Motorola Microsystems
P.O. Box 20912 I

I
I
I
I Attention: Publications Manager

,Mail Drop M374
Phoenix, Az. 85036

i
I

!
j
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I

Comments
Product:

I Please Print
I
I
I
I
I
I
I

I ---I Name
I
I
I
I
I
i

I ~---------------------------------------! Company
i
I
I

Street

City

Hardware Support:
Software Support:

(800) 528-1908
(602) 962-3935

Manual:

Title

Division

Mail Drop Phone Number

State Zip

ItIIOTOROLA Semiconductor Products Inc.
P.O. BOX 20912 • PHOENIX, ARIZONA 85036 • A SUBSIDIARY OF MOTOROLA INC.

124M-1. PRTflTm rN II~ l/n.un rMPnrAI I rTll1 RGX71 1nnn

	00001
	00003
	00004
	00005
	00008
	00009
	00010
	00011
	00012
	00013
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-00
	04-01
	04-02
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	14-01
	14-02
	14-03
	14-04
	15-01
	15-02
	15-03
	16-01
	16-02
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	20-01
	20-02
	20-03
	20-04
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	24-23
	24-24
	24-25
	24-26
	24-27
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	25-12
	25-13
	25-14
	25-15
	25-16
	25-17
	25-18
	25-19
	25-20
	25-21
	25-22
	25-23
	25-24
	25-25
	25-26
	25-27
	25-28
	25-29
	25-30
	25-31
	25-32
	25-33
	25-34
	25-35
	25-36
	25-37
	25-38
	25-39
	25-40
	25-41
	25-42
	25-43
	25-44
	25-45
	25-46
	25-47
	25-48
	25-49
	25-50
	25-51
	25-52
	25-53
	25-54
	25-55
	25-56
	25-57
	25-58
	25-59
	25-60
	25-61
	25-62
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-08
	27-09
	27-10
	27-11
	27-12
	27-13
	27-14
	27-15
	27-16
	27-17
	27-18
	27-19
	27-20
	27-21
	27-22
	27-23
	27-24
	27-25
	27-26
	27-27
	27-28
	27-29
	27-30
	27-31
	27-32
	27-33
	27-34
	27-35
	27-36
	27-37
	27-38
	27-39
	27-40
	27-41
	27-42
	28-01
	28-02
	28-03
	28-04
	28-05
	28-06
	28-07
	28-08
	28-09
	28-10
	28-11
	28-12
	28-13
	28-14
	28-15
	28-16
	28-17
	28-18
	28-19
	28-20
	28-21
	28-22
	28-23
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	F-01
	F-02
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	H-20
	H-21
	H-22
	H-23
	H-24
	H-25
	H-26
	H-27
	H-28
	H-29
	H-30
	H-31
	H-32
	H-33
	H-34
	H-35
	H-36
	H-37
	H-38
	H-39
	H-40
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	L-01
	replyA
	xBack

