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OPTIMAL STRATEGIES AND HUMAN BEHAVIOR IN FUNGUS-EATER GAME 4 

Jun-ichi Nakahara and Masanao Toda 

In this paper we derive the optimal strategies for the finite,  non- 

coexistent V-span I  game which we call game 4,   G4.     The reader is 

assumed to be familiar with the three preceding papers of this series 

(Toda,   1962;  1963a; and 1963b) but just for refreshing the reader's memory 

a brief summary of the first issues cited above,   in particular,  the part 

relevant to the present article,  will be presented in the first section of 

this paper. 

1.     The structure of discrete F-E games and their optimal strategies 

A F-E game is said to be discrete if the F-E is allowed to move only 

along a certain branch structure.    Each branching point of the branch 

structure is said to be a choice point for the F-E.    Retracing of the 

same branch is forbidden. 

If there exists always two new branches at each choice point,   the 

game is said to be binary.    When the two new branches always converge 

to the same choice point,   the branch structure is said to be a chain. 

There are several kinds of branch structure  ,   and one theorem concerning 

the influence of branch structure. 

THEOREM 1:   If the environment is binary and homogeneous,   and the size 

of V-span is one,   the optimal decision function for a well-informed F-E 

is independent of branch structure of the environment. 

1See Toda (1963a). 



Proof of this theorem may be found in Toda (1963a) and the notion of 

homogeneous,  well-informed,   and V-span will be explained later in this 

section. 

G4 is a binary,  homogeneous,  V-span 1 game. 

The part of the branch starting from the choice point and ending at 

the next choice point,   but not including the choice points themselves,   is 

called a path.     The whole set of paths starting from the same choice point 

is said to form a unit environment.    In a binary game,   every unit environ- 

ment consists of two paths. 

The two kinds of substances which can exist in a unit environment are 

F(fungus) and U(uranium).     They do not exist on choice points but on paths. 

A F-E game is said to be singular if not more than one U and not more 

than one F can exist in any single unit environment provided by the game. 

If to a singular game is added one more constraint such that not more than 

one substance can exist on the same path,   the game is said to be exclusive. 

G4 is a singular and exclusive game. 

If the environment is singular and exclusive,   there can be only four 

types of entries in each unit environment,   (F U),   (F O),   (O U),   and (O O), 

where (F U) means that one fungus exists on one of the paths  constituting 

the unit environment and one uranium exists on the other path.     (F O) means 

that fungus exists on one of the paths,   and nothing on the other.    And so on. 

If the probability distribution over the alternative types of unit 

environment encountered at each choice point is independent of the choice 

point,   the game is said to be homogeneous.    G4 is homogeneous. 

The state of F-E (a player of a F-E game) is characterized by three 

variables,   i.e.,   the F-storage,  the U-storage,  and the L-storage. 



At the beginning of a play,   F-E is given certain initial amount of these 

three variables which may be finite or infinite.     The F-storage regularly 

decreases by one unit as F-E moves from one choice point to the next. 

Whenever one F is picked up by F-E on the way,   F-storage increases by 

a units.     Therefore,  the net gain of F-storage through the unit locomotion 

is a-1  units.     When F-storage reaches zero,   the play is finished.     The 

U-storage increases by one unit whenever F-E takes one U.     The L-storage, 

like F-storage,   decreases by one unit as F-E moves from one choice point 

to the next.    But,  there is nothing,   like fungus for F-storage,   that 

increases L-storage.     When L-storage reaches zero,   the play of the game 

is finished. 

According to whether the initial L-storage is finite or infinite,   the 

F-E game is said to be finite game or infinite game.    G4 is a finite game. 

In G4 we also assume that the initial F-storage is finite,   and that 

the initial U-storage is zero. 

When F-E is provided all necessary information concerning the structure 

of the game including the probability distributions of fungus and uranium on 

the unit environment,    the F-E is said to be well-informed.     The F-E 

in G4 is well-informed.     Besides knowledge of the probability distribution, 

F-E can see,   in general,  the contents of unit environments near his choice 

point.    If he sees starting from the unit environment belonging to his 

present choice point (the immediate unit environment) up to those belonging 

to the n-th possible choice points,  the F-E is said to be of V-span n. 

The F-E in G4 is of V-span 1. 

The pay-off to F-E is proportional to the U-storage at the time when 

play is finished. 



The well-informed F-E has knowledge about the defining characteristics 

of the game,  himself,  and the environment,   in particular,   the probabilities 

governing the distributions of F and U in the unit environment.     We call 

this set of knowledge the permanent decision context,   P.    If F-E has vision, 

he has at each choice point the information about the content in terms of 

F and U of the environment covered by his V-span.    We call this set of 

knowledge of the external decision context,  E. 

Furthermore,  with the progress of the game,   the internal state of the 

F-E defined by the variables like his F-storage,   L-storage,   and U-storage 

will change.    We will call this set of knowledge about the F-E himself the 

internal decision context,  I. 

A strategy,   or we may call it a decision function,  is a set of rules that 

dictates the F-E's decision at each choice point,   and since each choice 

point is virtually defined by the three decision contexts,   P,   E,   and I,   a 

strategy is a function of these three decision contexts,   i. e. , 

D = D(P,   E,  I)       . 

The optimal strategy,   or the optimal decision function of the given game, 

is the strategy that maximizes the expected future U return.    If F-E is 

well-informed,   the expectation is the mathematical expectation in the 

ordinary sense. 

After a game is specified,  the permanent decision context will no 

longer be variables.    It comes into the game as a set of parameters. 

Decision contexts,   I and E,  vary at each choice point.     The value 

of the decision function,  D,   is a decision.     That is,   it will take a value 

F or U according to the values of the three decision contexts,   and it is 
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unique when I and E are fixed.    If a decision function maximizes the future 

U return at each choice point,   then it is the optimal decision function. 

We define the expected future  U return function,  V,   as a functional 

of the decision function and the three decision contexts when the F-E 

is well-informed. 

V = V    {D(P,  I,  E)  ; P,  I,  E }     . 

V will attain its maximum when the decision function is the optimal 

one.     Thus,  the problem is to find the optimal decision function which 

maximizes the future U return,   i.e. , 

(1) V* = Max V(D; P,   I,  E) 
{D} 

2.    IC diagram and some remarks concerning G4 

Let us briefly talk about the IC (Internal Context) diagram which was 

introduced to the F-E game in G3 (Toda,   1963a).    Our problem may most 

conveniently be visualized by using this diagram. 

This diagram shows the internal state of the F-E by a point located at 

one of the intersections of the grid shown in Fig.   1. 

As the F-E travels one step in the environment,  the point moves either 

upward or to the right one unit,  depending upon whether he takes F or not 

on the path to the next choice point. 

If the point reaches the line on the lower right  of the diagram labeled 

"starvation absorption barrier," the point is absorbed there indicating that 

the F-E dies there by starvation. 
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The distance,   x,   to the starvation absorption barrier along a line 

parallel to the abscissa   represents F-E's F-storage,   and thus x is equal 

to zero on the starvation line.    Suppose a F-E starting with x  F-storage 

never takes fungus at all.     Then the point of his internal state keeps 

moving to the right one unit on each trial,   and reaches the starvation 

line.     Certainly he must die after x trials if he never takes fungus during 

the trip.   So,  any point located x units to the left of the starvation absorption 

line represents the internal context corresponding to the F-storage containing 

fungi sufficient for the F-E to negotiate x trials.    It is easily seen in the 

diagram that taking a fungus increases F-storage a-1 units. 

Another absorption barrier in the figure is the "Dooms Day absorption 

barrier. "   Any F-E with finite L-storage must die after traveling n steps, 

where n is a finite integer.     He may die earlier by starvation,   but he must 

die by n steps regardless of the decisions he made.     So any point in this 

diagram representing the internal context n,  namely L-storage,   must locate 

at the distance of n units away (independently from the direction of movement) 

from this barrier.    From this consideration the inclination of this barrier 

is automatically determined as shown in Fig.   1. 

The broken line in the middle of the diagram at y = 0 is called the 

critical level,  and the broken line one unit below the critical line is 

called the semi-critical level.     Let us define any point locating y units 

below the critical level as representing the new relative internal context y. 

We call y the F-need,   because the F-E is required to take at least y fungi 

to meet the D-day barrier.     We will talk about y more explicitly in a 

later section. 
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Thus,   each different internal context will explicitly be represented by 

a point in the IC diagram. 

We define G4 as a finite,  non-coexistent   V-span 1  game,   and the 

environment of this game is characterized as singular,   and thus binary, 

exclusive,   and homogeneous.     Therefore,  there are four types of unit 

environments,   (F U),   (F O),   (U O),   and (O O),   to which we assign 

probabilities fu,  f(l -u),   (1 -f)u,  and (1 -f) (1 -u),   respectively,  and which 

also exhaust the external decision contexts.    Here,   as indicated by the 

probability assignment,  we assume independence between F distribution 

and U distribution over unit environment.     The probability that F is found 

in a unit environment is f,   and the probability for U in a unit environment 

is u.     These two probabilities belong to the permanent decision context. 

The other parameter of the permanent decision context is a which represents 

the increase in F-storage due to taking one fungus. 

The parameters u,  f,   and a constitute the permanent decision context. 

We have no other element of permanent decision context,   so we may express 

the decision function as 

D(z, I; f,   u,  a) 

where z is a random variable and takes one of four values,   (F U),   (F O), 

(O U),   or (O O) with probability fu,  f(l-u),   (l-f)u,   or (l-f)(l-u) respectively, 

and I  represents the internal decision context.    When the value of z is either 

(F O),   (O U),   or (O O),   the optimal decision is obvious,   so that it is sufficient 

to solve the decision function for z = (F U). 



Any trial in which the external decision context (F U) is given to F-E 

is a (non-trivial) decision trial. 

In G4 there is no internal context which is relevant to the decision 

function other than x,   F-E's F-storage in tuts    unit,   and y,   F-E's F-need 

to see the "Dooms Day absorption barrier. " 

Let us have a short descritpion about y,  because we use y instead 

of n,   F-E's L-storage,  for describing the internal decision contexts. 

Suppose a F-E starts this F-E game with finite L-storage n and finite 

F-storage x.    Assume n > x.     Then,   to live until Dooms-Day,   the minimum 

number of F he must take is (n - x)/a.    If this quotient comes out to be an 

integer,  he is able to see that D-day without having any left-over F-storage. 

In this case we say that the D-day is in phase,   and if not,   it is out of phase. 

If the D-day is out of phase,  the minimum number of F he needs to see the 

D-day is the smallest integer greater than the above quotient,   and he will 

have some amount of left-over F-storage. 

Now y is defined as 

n - x 
y -v = —z  

where y is an integer which shows the minimum number of F necessary to 

see the D-day as we described before,  and  V is the phase.    It takes on 

values between 0 and 1,   0^_ y <   1. 

The phase is not so important a factor in determining the over-all 

decision strategy,   but still we cannot ignore it.    Sometimes it determines 

the relative value of the last F to see the D-day.    If }£is very close to one, 

almost all of the contents of the last F will be left-over. 

See Toda (1963a) 
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The value of u is determined completely by F-E's initial F-storage 

and initial L-storage, and remains unchanged throughout the rest of the 

game. 

What changes with age is y. The pair of variables (x, y) may as well 

describe the internal decision context as (x, n) and we will use the former 

in what follows. 

3.     Optimal decision function 

As we have already shown that the only external decision context 

relevant to the optimal decision function is z = (F U).    So our problem 

is to assign the optimal decision to each point of the IC diagram,   i.e. , 

the decision that is effective when z = (F U) is given at that point. 

Now what are the alternative decisions?    There are decision F, 

decision U,  and all kinds of mixed decisions.    Fortunately,  however, 

according to the  Theorem 7 given in Toda (1963a) we need not worry about 

mixed decisions in finite games. 

Thus,   our problem is to find the optimal decision at each point on 

the IC diagram,   decision "F" or decision "U",  which maximizes the 

expected future U return function V. 

Let us give a much more explicit expression to the equation (1). 

We can rewrite (1) as 

(2) V*(x ,   y) = Max     {V(D    ;x,y)    ,    VfD^x.y)} 

where D     (or Dn) is such a strategy that is identical to D*,   the optimal 

decision function,   except at I = (x ,   y) where it dictates to take F (or U), 

if possible,  whether it is optimal or not. 

- 10 - 



If actually F-E takes F,  his internal context at the next choice point 

is I = (x+a-1,   y-1) by the definition.    If z = (O U) is given,  he takes U and 

proceeds to the next choice point and his internal decision context will 

be I = (x -  1,   y).    If z = (O O) is given,  he just proceeds to I - (x - 1 ,   y). 

Then,  we have the explicit expression for V(DT:,; x,   y) as 

V(DF; x,  y) = fuV*(x + a - 1,   y-1.) 

+ f(l  - u)V*(x + a - 1,  y-1) 

+ (1  - f)u   {V*(x - 1,   y) +  1 } 

+ (1  - f)(l  - u)V*(x - 1,  y) 

= fV*(x + a - 1,  y-1) 

+ (1  - f)V*(x - 1,  y) + (1  - flu     . 

Analogously,  for V(DTT; x,  y) 

V(Du; x,y) = fu    {V*(x - 1,   y) +  1} 

+ (1  - flu   {V*(x - 1,   y) + 1 } 

+ f(l  - u)V*(x + A - 1,  y - 1) 

+ (1  - f) (1  - u)V*(x - 1,  y) 

= f(l  - u)V*(x + a - 1,  y - 1) 

+ (1  - f + fu)V*(x - 1,  y) + u     . 

By taking the difference between these two expected U gain functions, 

we can determine which one gives the greater expectation. 

V(DF; x,  y)  - Vp^ x,  y) 

= fu { V*(x + a - 1,  y-1) - V*(x - 1,  y) - 1  }   . 

So by defining a delta function 6(x ,  y) as follows 

(3) 6(x ,  y) = V*(x+ a - 1,  y - 1)  - V*(x - 1,  y) - 1 

- 11 



the value of optimal decision function for a given internal decision context 

is definitely specified as follows 

(4) D*(z = (F U); x,   y)       = F     if 5(x ,  y)  >    0 

= O     if <3(x ,   y)    =   0 

= U     if fl(x , y)  <   0     , 

where D* = 0 means indifference between F and U. 

4.    Analytical solution 

Now,  just for the sake of simplicity,  let us assume that the D-day 

is in phase.     Then y = 0 is the only critical level. 

By definition of y,  the F-E whose value of y is zero can survive up 

to D- day with probability 1.    So giving up U for F when z = (F U) is 

obviously sub-optimal.     Theorem 8 given in Toda's paper       states this 

explicitly as 

THEOREM 8:     D*(z = (F U); x,  y ) = U   if   y <   0 and n > 0 

The expected U gain function for the critical level is directly derived from 

this Theorem as 

(5) V*( x,  y = 0) = ux 

Note that we are assuming      v = 0 

Now we have Theorem 8 and the equation (5) as the boundary conditions, 

and we proceed to solve the optimal decision function for y =  1. 

This will not be too much a simplification.    It can be easily shown that 
the same procedure that we are going to use to solve this problem is 
applicable to the case of out of phase D-day. 

Toda (1963a) 
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Now,   some really interesting features appear in G4.    For example, 

the optimal decision not only depends on y but also on x.     This has never 

been the case through Gl to G3. 

By putting y = 1  in (3) we have 

5  (x,   y =  1) = V*(x + a - 1 ,   y = 0)  - V*(x - 1 ,   y = 1)  - 1      . 

What we want to solve for is that x which gives the neutral optimal 

decision,  namely the value of x with which the optimal decision is 0, 

5 (x,  y) = 0     .    Let us denote this value of x as x..     Then,   if x is greater 

than x1  the optimal decision should be U,   and if x is smaller than x. , 
3 

the optimal decision should be F    .        Thus,  this x    is the critical 

decision-shifting point on the line y =  1.     This x.  will divide the line y = 1 

into two parts characterized by different optimal decisions. 

By obtaining the decision-shifting point x? for y = 2,  x., for y =  3, 

and so on,   the whole IC diagram will be divided into two regions,  namely 

the U decision region and the Fdecision region. 

Thus,   obtaining the decision-shifting point for each value of y is 

all we need for the optimal strategy in G4.    In other words,   our problem 

is to solve x satisfying the following equation for each value of y,  y   > 0: 

D*  { z = (F U); x,   y  }      =0 

or 

(6) 6   ( x,  y)    -    0     . 

*•   See the former report   (Toda,   1963a) 

Though x is an integer in the discrete game like G4,  here we regard x 
as a continuous variable for convenience. 

Actually we not only assume the uniqueness of the solution    6 ( x,   y) = 0 
with respect to x,  but also we assume the optimal decision F on each y 
line between the decision-shifting point and the starvation absorption 
line,   and the optimal decision U on other parts of y line. 
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Then,  x1  is the solution of the equation (7), 

(7) 5 ( x, y= 1) = V*(x + a - 1, y = 0) - V*(x - 1,  y + 1) - 1 

= 0     . 

From (5) the first term of (7) is given as 

(8) V*(x + a - 1, y = 0) = u(x + a - 1)     . 

If x is neutral decision point,  x - 1  surely falls into the F decision 

region.     Therefore,  V*(x - 1,   y = 1) is the expected U gain function in the 

F decision region,  which means that the optimal F-E must take F whenever 

he comes to a fungus. So we have 

(9) V*(x - 1,  y = 1) = u(x - 1)(1  - f)x " l 

+ u(x + a - 2)    { 1  - (1 - f)x " 1 } 

where the first term    shows the expected U gain under the condition that 

the F-E dies on the line y = 1,   and the second term shows the expected 

U gain under the condition that the F-E takes one fungus and goes up to 

y = 0 line.     By substituting (8) and (9) into (7),  we have 

6( x,  y =  1) = u(x + a - 2) (1  - f) x "  1 

- u(x -  1)  (1   - f)x "  l + u -  1 

0      . 

Therefore, 

(10) (1  - f)X " 1       - 
u(a -  1) 

For convenience let us regard x as if it is continuous.     Then we have 

(11) (x - 1) log(l  - f) - log(l   - u)  - log u - log(a - 1)      . 

14 - 



Therefore 

(12) 
_  log(l  - u) - log u - log(a - 1)        + l 

log(l  - f) 

Thus,  x.   is obtained. 

What we shall do next will be to obtain the decision-shifting point 

x? for y = 2 and higher values.    But as one will soon see,   to solve the 

decision-shifting points for higher values of y is not so easy as it was for 

y =  1.    So we will just briefly portray an outline of the procedure for 

obtaining the analytical solution of x? below,   and will proceed to the next 

section where we shall discuss the numerical method for obtaining the 

decision-shifting points for higher values of y. 

The delta function for y = 2 is given as 

(13) 6(x,  y = 2) = V*(x + a - 1,   y =  1)  - V*(x - 1 ,   y = 2)  - 1 

Let us define the 9   areas and the 6  areas in the IC diagram as they are 

illustrated in Fig.   2. 

y= 0 

y= i 

y= 2 

Fig.   2 
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Usually the solution x]  of the equation (12) will not be an integer,   but 

from now on,   when we refer to x1 ,   we shall mean the integral part of 

the solution x,  of (12).     Then I = (x,   y =  1) locates in the F decision 

region and I=(x+l,y=l)in the U decision region   .     Consider the 

expected U gain function V*(x + a - 1,   y = 1) which is the first term in the 

right hand side of (13) for x = x? for the following three alternative cases: 

Case IF:    The F-E at I = (x + a - 1,   y = 1) dies on the line y =  1. 

The probability that the Case  IF becomes true is 

(1  - f)Xl  •   (1  - f + uf)X2 + a " 1  ~ xl 

and the expected U gain given Case IF is 

(1   - f)Xl • (1  - f + uf) x2 + a " l  ' xl     •    u(x + a - 1) 

Case 2F:       The F-E climbs one level up from the area    ^   ,  to the line y = 0. 

The probability that the Case 2F becomes true is 

( 1  - (1  - f)Xl )   •   (1  - f + uf) x2 + a " ]   " xl 

and  the corresponding expected U gain is 

{ 1  - (1  - f)xl  } •     (1  - f + uf)x2 + a " 1   " xl    •    u(x   + 2a - 2)      . 

Case   3F:    The  F-E  climbs  one level up from the area   9     to the line  y -  0. 

The probability that the Case  3F becomes true is 

1   - (1   - f + uf)X2 + a " 1  " xl 

When the solution x.   itself is an integer  ,   I = ( x    ,   y =  1) lies on the 
border of F and U       regions.    No harm is done,  however,  by stipulating 
that the border itself belongs to the F decision region. 
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and the corresponding expected U gain is 

{1    -    (1   -f + uf)X2+ a •  l   "Xll-    U(X   +  2a  " Z)      • 

Therefore,  V*(x + a - 1,   y =  1) is expressed as the sum of expected U 

gain under these three cases: 

V*(x + a - 1,  y = 1) =    (1  - f)Xl    •    (1  - f + uf)X2 + a " l  ' xl     •   u(x + a - 1) 

+ {   1  - (1  - f)Xl} -(1   - f + uf)X2 + a " l   ' Xl      •   u(x - 2a - 2) 

+ {   1   - (1  - f + uf)X2 + a "  l  " Xl }     •     u(x   + 2a - 2) 

= u(x   + 2a - 2) 

+    (1  - f)Xl    •    (1  - f + uf)x2 + a " 1  " xl        •     u(l  - a)       . 

Our next step is to obtain an explicit expression for V*(x - 1,  y = 2), 

the second term of (13),  and this will again be done considering the 

following alternative cases separately.    It is clear that if x? is the decision- 

shifting point,  x?  - 1   surely falls into the F decision region. 

Case 1U:    The F-E dies on the line y = 2.     The probability that the 

Case 1U becomes true is 

(1  - f)X2 " l 

and the expected U gain is 

(1   - f)X2  " l    •    u(x2  -  1)      . 

Case 2U:     The F-E dies on the line y =  1.     This case may further be 

classified into the following subclasses: 

Case 2U 8   :      The F-E goes up to the line   y =  1 from the area     3 ? and dies 

on that line.     The probability that the Case 2U  9  will happen is 

f(l   - f)X2 + a " 2      .  (X    _ a + 1) 
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and the expected U gain is 

f(l  - f)X2 + a " 2     •     (x2  - a +  1) •   u(xz + a - 2)      . 

Case 2U  B   :      The F-E goes up to the line y =  1 from the area    8   -, and 

dies on that line.     The probability for the Case 2U 6   is 

I    (1   - f + uf)(l  - f)Xl    {(1  - f + uf)X2 + a " Z  " Xl-(  1  - f)X2 + a " 2 " xl} 

and the expected U gain is 

-i-    (1   - f + uf)(l  - f)Xl    { (1   - f + uf)X2 + a " 2 " xl    -    (1   - f)x2 + a  " Z  " Xl   } 

• u(x, + a - 2) 

Case  3U:    The F-E goes up to the line y - 1 ,   and further goes up to the 

line y = 0.     This case must also be subdivided. 

Case  3U3     :    The F-E goes up to the line y = 1 from the area    3 ? ,  and further 

goes up to the line y = 0 from the area     9. .     The probability for the 

Case  3U  3    is 

(1  - f)x2 + a " 2 " xl  - (1  - f)x2 ' l  - f(l  - f)x2 + a " 2       .    (x       a + 1) 

and the expected U gain is 

{ (1  - f)X2 + a " 2 " xl  - (1  - f)x2 " 1    - f(l   - f)x2 + a " 2     .   (x.   - a + 1)} 

• u(x2 + 2a - 3) 

Case  3U$    :     The F-E goes up to the line y =  1 from the area    B-,,   and 

further goes up to the line y = 0 from the area    B, •     The probability 

for the Case 3U B is 

{1    - (1  - f)X2 + a  " 2 " Xl J 

-      I (1  - f + uf)   [   (1  - f + uf)X2 + a " 2 " Xl      -    (1   - f)X2 + a  " 2 " Xl } 
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and the expected U gain is 

[{ 1  - (1  - f)X2 + a " 2 " Xl}    -     i (1  - f + uf)  { (1  - f + uf)x2 + a " 2 " xl 

- (1  - f)X2 + a " 2 " Xl }   ]    •    u(x + 2a -  3) 

Case  3U 89        :    The F-E goes up to the line y =  1 from the area   8 ?,   and 

further goes up to the line y = 0   from the area     d   .     The probability 

for the Case 3UB9        is 

- (1  - f + uf)   {   1  - (1  - f)Xl}{(l   - f + uf)x2 + a " 2 " Xl 

- (1   - f)X2 + a " 2  " Xl } 

and the expected U gain is 

i (1 - f•+ uf) { 1  - (1  - f)Xl }   { (1  - f + uf)x2 + a " 2 " xl 

- (1  - f)X2 + a " 2 " xi}     .    u(x    + 2a - 3) 

By summing up all these expected U gains we have an explicit 

expression for V^x,  - 1 ,   y = 2)      ; 

(15) V*<x2 " l>   y ~ 2) = u(x2 + 2a "  3)  " 2u(a " 0(1   - f)X2 " l 

- (a - 1)(1  - f)Xl    (1  - f + uf)x2 + a "  l  ~ Xl 

+ (a - 1)(1   - f)X2+   a' l    . 

Thus,  finally,  the delta function for y = 2 is expressed as 

(16) 6(xz ,  y = 2) = V*(x2 + a - 1,   y - 1)  - V*(x2 - 1,   y = 1)  - 1 

= (a -  1)(1  - f)Xl    (1  - u)(l  - f + uf)X2 + a "  l  ~ xl 

(a - 1)(1  - f)X2  " l   { 2u - (1  - f)a}     - (1   - u) 
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The solution x? is therefore obtained as the maximum integer which makes 

<5( x ,  y = 2) given in (16) non-negative.     The tedious procedure thus 

portrayed for obtaining x? is certainly enough to discourage us from 

proceeding any further to seek the solution for y =  3 and higher values. 

In the next section,   therefore,  we turn our attention to numerical methods 

which will give us the dec is ion-shifting points of higher orders for a given 

set of parameters (permanent decision context) with the aid of a computer. 

5.     The recurrent relation of the expected U gain functions 

The computational procedure of our numerical method will most 

conveniently be described in terms of the recurrent relation of the 

expected U gain functions expressed as follows: 

(17) V*(x ,   y) = t*(x ,   y)  •  V*(x + a - 1,   y - 1) +T*(x ,   y)  •   V*(x - 1 ,   y) 

+ U*(x ,   y) 

where t*(x ,  y) is the probability of taking fungus under the given optimal 

strategy for the internal decision context   I = (x ,   y)  ,  and t*(x ,   y)    is the 

complement of t*(x ,  y).    U*(x ,  y) is the expected U gain under the same 

strategy for the unit travel from I = (x ,   y) to I = ( x - 1,   y). 

When F-E is in the F decision region,  he will take fungus whichever 

of the external decision contexts,   z - (F O) and z = (F U),   occurs. 

Therefore,   t*(x ,  y) is exactly f as long as F-E is in the F decision 

region,  and he proceeds to the next choice point where his internal decision 

context is expressed as I = (x + a -  1,   y - 1) with probability f.     Furthermore, 

if there happens no external decision context which contains fungus as its 

entry when F-E's internal decision context is I = ( x ,   y),  he just 
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proceeds one step toward the starvation line where his internal decision 

context is I = (x - 1,  y)  ,  and he may luckily pick up a piece of uranium 

with probability u(l  - f),  this is the probability of z^ taking the value 

z = (O U)    .     Therefore,   U*(x ,  y) is equal to u(l  - f) when F-E is in the 

F decision region. 

Analogously when F- E is in the U decision region,  he will take 

fungus only if the external decision context z = (F O) is given,  and, 

therefore,  t*(x ,  y) is equal to f(l  - u) Also U*(x ,  y) is equal to u 

when F-E is in the U decision region.    Now,   the foregoing can be 

abbreviated as follow: 

(18) 

(19) 

t*(x ,  y) - f 

= fd  - u) 

U*(x ,  y) = u(l  - f) 

= u 

if I=(x , y) is in the F decision region 

if I=(x , y) is in the U decision region 

if I=(x , y) is in the F decision region 

if I=(x ,  y) is in the U decision region 

6.    A numerical method for obtaining the optimal solution 

By virtue of Theorem 8 1 the optimal decision on the critical level, 

namely when y = 0,  is always the decision U.    Therefore,  the expected U 

gain for I = (x ,   y = 0) is a linear function of x    ,  as given in (5).     To restate: 

(5) V*(x ,   y = 0) = ux     , 

where y = 0 is assumed. 

On each absorption barrier,  there is no further U return.     This yields 

the two boundary conditions,  namely 

(20) V*(n = 0) = 0 

Toda op.   cit. 
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(21) V*(x = 0,   y) = 0     . 

Since the optimal decisions and the expected U gain function under the 

optimal strategy for y = 0 are already given,  let us proceed to the case 

when y = 1. 

When I = (1  ,   1)  ,  the delta function will be expressed as 

6(1  ,   1) = V*(a ,  0)  - V*(0 ,   1)  - 1      . 

By the boundary conditions and the equation (5),  the above equation can be 

re-written as 

6(1   ,   1) = ua - 1      . 

Therefore,  if ua -1^0,  the optimal decision is F and I = ( 1  ,   1) belongs 

to the F decision region.     Thus,  by putting t*(l   ,   1) = f,  and U*(l   ,   1) = 

u(l  - f) we have from (17) 

V*(l  ,   1) = f-V*(a ,  o) + (1  - f)-V*(0 ,   1) + U*(l  ,   1) 

= fua + u(l  - f)     , 

and if ua - 1   < 0,  I = (1  ,   1) belongs to the U decision region and the 

expected U gain function is of the form, 

V*(l  ,   1) = f(l  - u)-V*(a ,  0) + (1  - f +uf). V*(0 ,   1) + U*(l  ,1) 

= f (1  - u) • ua + u     . 

Then,  we proceed to the point of I = (2  ,   1),  where the delta function 

and the expected U gain function are written as 

6(2 ,   1) - V*(a +1,0)- V*(l  ,   1) - 1      , 

V*(2 ,   1) = t*(2 ,   1)-V*(a + 1,  0) + t*(2 ,  1)-V*(1  ,   1) 

+ U*(2 ,   1)     . 

Here we include the neutral decision point within the F decision region. 
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Since we have already calculated V*(a +1,0) and V*(l   ,   1),  the sign 

of   6(2,   1) is easily obtained and so the U gain V*(2  ,   1) 

Apply the same technique successively to   6(3,   1),  V*(3 ,   1), 

6 (4 ,   1),   and so on,   until we cover some reasonably large range of x 

for y = 1.     Then proceed to y = 2 applying the same technique.     Thus, 

we will eventually cover a desired range of x and y within which the 

F- and U- regions and the values of V* will be computed for the given 

set of parameters,   u,   f,  and a. 

Usually,   on each fixed value of y except y = 0,   the sign of the delta 

function will be positive for relatively small values of x ,   and then it 

turns to negative after passing the decision shifting point and will never 

be positive again.    In other words   6(x ,  y) seems to be a monotone 

decreasing function of x for any y.    Although this hypothesis has not 

been proved,  we are convinced of its truth and used it to simplify our 

computer program described later. 

7. Some examples of actual computation 

A DEC PDP-1 computer was used for our computation.    Fig.   3 shows 

an example of the flow chart for the computation.    Some examples of the 

results of computations for the delta function are shown in Fig.   4.    The 

dotted line of each graph represents the border between the F decision region 

and the U decision region.    In Fig.   5 are presented the values of V* plotted 

against the internal decision context x   for several values of y   . 

8. A pilot experiment for G4 

In this section,  we report an experiment in which G4 was played by 

human subjects.     The subjects were the staff's wives and secretaries of 
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Institute for Research,  State College,   Pennsylvania.    All the subjects 

being gathered in a single room were taught the rules of G4 including 

the values of the parameters,   u,  f,  and a,  which were different from 

session to session.    On each session an IC diagram sheet was given to 

each subject on which were drawn the starvation absorption barrier and 

the Dooms Day barrier. 

Before the presentation of the external decision context a "predecision" 

was required to be made on each trial.    Here a "predecision" means the 

decision to be made prior to the presentation of the actual external decision 

context and supposing the external decision context as     z = (F U),  namely 

the decision which subject will make if the external decision context turns 

out to be the non-trivial decision context.    Ss were also required to make 

the predecisions for the future choice points,  the choice points where he 

might possibly be in future,   as many as possible. 

When the predecisions were made,  the experimenter threw two dice, 

one (twenty-sided) for the probability f  and the other (ten-sided) for the 

probability u,    and announced the external decision context realized on 

that trial.    It was required that the actual decisions to be made after the 

announcement be same as the predecision if the trial turned out to be a 

decision trial.    If it turned out not to be the decision trial,  Ss  were not 

restrained to their predecisions as the case of a decision trial.     They 

might take one uranium or one fungus according to the realized external 

decision context or they might just proceed one step to the starvation 

line if the external decision context was z = (O O) 

Depending upu.i the real decision made,  Ss moved to the next choice 

point on their IC diagram sheet,  and recorded their new predecisions 
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there on the sheets.     The subjects were requested to attempt to make their 

U return maximum at the end of each session.     They were paid a quarter 

for each   uranium they collected. 

The values of the parameters and the results are shown in the 

following pages.     Traces of Ss' actual locomotion are plotted on the IC 

diagrams and the corresponding optimal decision shifting line are given so 

that we can compare Ss' decisions with the optimal decisions.    Double 

lines show that the trial which happened between two choice points was a 

decision trial. 

Each circle above the locomotion line shows that S gained a piece of uranium 

there.    Subject's predecisions were also plotted on the IC diagram,  but 

we did not show all of them except the predecision made just for the next 

trial.    Letters F and U on the locomotion lines are predecisions made by Ss. 
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Session I 

Values of parameters (u=. 5 f =. 4 a= 3)   :   Starting conditions (x=9 y=7 L=31) 

trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

outc ome 

(U O) 
(U F) 
(U O) 
(U F) 
(U O) 
(O F) 
(U O) 
(u F) 
(U O) 
(U O) 
(O O) 
(U O) 
(U O) 
(O F) 
(O O) 

trial 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

outcome 

(U F 
(O O 
(U F 
(O F 
(U O 
(O O 
(O O 
(O F 
(O O 
(O O 
(O O 
(O O 
(U F 
(O F 
(U O 
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Session II 

Values of parameters (u=. 5 f=.2 a= 3)   ;   Starting conditions (x=l6 y=5 L=31) 

trial 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

outcome 

(O F) 
(U O) 
(O O) 
(O O) 
(U O) 
(U O) 
(O F) 
(O O) 
(U O) 
(U O) 
(O O) 
(O O) 
(U F) 
(U O) 
(O O) 

trial 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

outcome 

(U O) 
(U O) 
(U O) 
(U O) 
(O F) 
(U F) 
(O O) 
(O O) 
(U O) 
(U O) 
(U O) 
(O O) 
(O O) 
(O F) 
(O O) 
(O F) 
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Values of parameters (u=. 3 f=.4 a=3)    :   Starting conditions (x=7 y=8 L=31) 
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Values of parameters (u=. 3 f+. 2 a= 3)    :   Starting conditions (x=ll y=7 L=32) 
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Session IV B 

Values of parameters (u=. 3 f=. 2 a= 3)    :   Starting conditions (c=ll y=7 L=32) 
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Values of parameters (u=.2 i-.Z a- 3)    :   Starting conditions (x=9 y-7 L=30) 
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Session V B 

Values of parameters (u=.2 f =. 2 a= 3)    :    Starting conditions (x=9 y-1 L=30) 
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Session VI A 

Values of parameters (u=. 6 f=. 1 a=3)    :   Starting conditions (x=19 y= 3 L=28) 
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Session VI B 

Values of parameters (u=. 6 £=. 1 a= 3)    :    Starting conditions (x=15 y=7 L=36) 
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9.     Conclusion 

We used a digital computer to solve the optimal decision problem 

of the F-E game,  though G4 could not be regarded as a very complex game. 

We can anticipate from this point of view that it will be getting more and 

more difficult to get the optimal solution analytically in more elaborated 

F-E games    .     Therefore,   our primary concern will be to get the 

computer program which will give us the optimal solution of each game. 

As for the results of experiments,  we have no right to discuss them in 

detail,  because of the lack of sufficient data to uncover decision strategies 

actually employed by Ss.    For that purpose we certainly need to repeat 

the same experiment over and over again with the same parameter values 

so that the locomotion traces of each subject cover a fairly large part 

of the IC diagram. 

One thing we might be able to say is about the type of strategies 

used by most of the subjects on most of the games.    It is the type of 

strategy one of the authors called the critical x-value strategy or the 

economist's strategy   .    Every subject seems to be trying to follow his 

own decision-shifting line  .     The critical x-value seems to vary from 

subject to subject,  and also vary with the values of parameters.    At 

least,  therefore,  we may say that the observed strategies were not 

very far from optimal,   contaminated,  though,  with individual's 

characteristic biases. 

1 
Toda,   op.   cit. 
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