

ADVANCED CONTINUOUS

SIMULATION LANGUAGE

USER GUIDE/REFERENCE MANUAL

ADVANCED CONTINUOUS

SIMULATION LANGUAGE

(ACSL)

USER GUIDE / REFERENCE MANUAL

Copyr. © Mitchell and Gauthier, Associates 1981.
Printed in the United States of America

Third Edition

FOREWORD

This manual describes the operations available with the Advanced Continuous Simulation Language, ACSL (pronounced "axle"). This language was designed for modelling and evaluating the performance of continuous systems described by time dependent, non-linear differential equations.

In the development of the simulation system, emphasis has been placed on the ability to run and evaluate the model on-line. Provision has been made to overcome the usual problem of high data volume -- monitoring information can be directed to the terminal, high volume output to a local line printer.

In becoming familiar with this book, it is recommended that the reader look through Chapters 1, 2 and 3 and then turn to the example programs given in Appendix A -- making reference to the operators, Chapter 4, and run-time commands, Chapter 5, as necessary. These chapters listing the available operators are not designed for direct reading because of the alphabetic organization of the material.

Before running a simulation, make sure Chapter 7 on program debugging has been studied.

TABLE OF CONTENTS

Section/Para Page

1. INTRODUCTION 1-1
1.1 JOB PROCESSING 1-1
1.2 LANGUAGE FEATURES 1-1
1.3 CODING PROCEDURE 1-4
1.4 RESERVED NAMES 1-4
1.5 FORTRAN SUBROUTINES 1-5
2. LANGUAGE ELEMENTS 2-1
2.1 CONSTANTS 2-1
2.2 VARIABLES 2-2
2.3 LABELS 2-3
2.4 EXPRESSIONS 2-4
3. EXPLICIT STRUCTURE 3-1
3.1 PROGRAM FLOW 3-1
3.2 PROGRAM SORTING 3-3
4. ACSL STATEMENTS 4-1
4.1 ABS 4-2
4.2 ACOS 4-3
4.3 AINT 4-3
4.4 ALGORITHM 4-3
4.5 ALOG 4-4
4.6 ALOG10 4-5
4.7 AMAXO 4-5
4.8 AMAX1 4-5
4.9 AMINO 4-5
4.10 AMIN1 4-5
4.11 AMOD 4-5
4.12 ARRAY 4-5
4.13 ASIN 4-6
4.14 ASSIGN 4-6
4.15 ASSIGNMENT STATEMENT 4-6
4.16 ATAN 4-6
4.17 ATAN2 4-7
4.18 BCKLSH 4-7
4.19 BOUND 4-8
4.20 CALL 4-8
4.21 CINTERVAL 4-8
4.22 CMPXPL 4-10
4.23 COMMENT 4-10
4.24 CONSTANT 4-11
4.25 CONTINUE 4-11
4.26 COS 4-11
4.27 DBG 4-11
4.28 DBLINT 4-12
4.29 DEAD 4-12

TABLE OF CONTENTS (Continued)

Section/Para Page
4.30 DELAY 4-13
4.31 DERIVATIVE 4-14
4.32 DERIVT 4-16
4.33 DIM 4-17
4.34 DISCRETE 4-17
4.35 DO STATEMENT 4-19
4.35 DYNAMIC 4-19
4.36 END 4-20
4.37 EQUIVALENCE 4-20
4.38 ERRTAG 4-21
4.39 EXP 4-21
4.40 EXPF 4-21
4.41 FCNSW 4-22
4.42 FORMAT 4-22
4.43 GAUSS 4-22
4.44 GAUSI or UNIFI 4-23
4.45 GO TO STATEMENT 4-23
4.46 HARM 4-24
4.47 HYSTERESIS 4-24
4.48 IABS 4-24
4.49 IDIM 4-25
4.50 IF STATEMENTS 4-25
4.51 IMPL 4-25
4.52 INITIAL 4-27
4.53 INT 4-27
4.54 INTEG 4-27
4.55 INTEGER 4-29
4.56 INTERVAL 4-29
4.57 INTVC. 4-30
4.58 I/O STATEMENTS 4-30
4.59 ISIGN 4-31
4.60 LEDLAG 4-31
4.61 LIMINT 4-32
4.62 LINES 4-32
4.63 LOG. 4-33
4.64 LOGICAL 4-33
4.65 LSW, RSW 4-33
4.66 MACRO. 4-34
4.67 MAX0 4-34
4.68 MAX1 4-34
4.69 MAXTERVAL 4-34
4.70 MERROR, XERROR 4-34
4.71 MIN0 4-35
4.72 MIN1 4-35

TABLE OF CONTENTS (Continued)

Section/Para
 Page

4.73 MINTERVAL, MAXTERVAL . 4. 4 45
4.74 MOD . 4 4-36
4.75 MODINT . 4-36
4.76 NSTEPS. 4-37
4.77 OU. 4-37
4.78 OUTPUT, PREPAR . 4-39
4.79 PAGE. 4-39
4.80 PREPAR . 4-4
4.81 PRINT . 4-4
4.82 PROCEDURAL . 4-40
4.83 PROGRAM . 4-41
4.84 PTR . 4-41
4.85 PULSE. 4-41
4.86 QNTZR . 4 4-42
4.87 RAMP . 4-42
4.88 READ . 4-43
4.89 REAL . 4-43
4.90 REALPL . 4 4
4.91 RESET. 4-43
4.92 RSW . 4-4
4.93 RTP . 4-44
4.94 SAVE. 4-45
4.95 SCALE. 4 4 45
4.96 SIGN . 4-45
4.97 SIN . 4-46
4.98 SQRT. 4 4-46
4.99 STEP . 4-46
4.100 TABLE . 4 4 46
4.101 TAN . 4-48
4.102 TERMINAL. 4-48
4.103 TERMT . 4-48
4.104 TRAN . 4-4
4.105 TYPE. 4-4
4.106 UNIF . 4-51
4.107 UNIFI . 4-51
4.108 VARIABLE . 4-51
4.109 WRITE . 4-51
4.110 XERROR . 4-5
4.111 ZHOLD . 4-51
4.112 ZOH . 4-52
5. ACSL RUN-TIME COMMANDS . 5-1
5.1 ACTION . 5 5-2
5.2 ANALYZ. 5-2
5.3 COMMENT . 5-5

TABLE OF CONTENTS (Continued)

Section/Para Page
5.4 CONTIN 5-5
5.5 DISPLY (sic): Short Form D 5-5
5.6 END 5-5
5.7 MERROR, XERROR 5-6
5.8 OUTPUT 5-6
5.9 PLOT 5-7
5.10 PREPAR 5-9
5.11 PRINT 5-9
5.12 PROCED 5-10
5.13 RANGE 5-10
5.14 REINIT 5-11
5.15 RESTOR 5-11
5.16 SAVE 5-11
5.17 SET: Short Form S 5-11
5.18 SPARE. 5-12
5.19 START 5-12
5.20 STOP 5-12
5.21 XERROR 5-12
6. MACRO LANGUAGE 6-1
6.1 MACRO DEFINITIONS 6-1
6.2 MACRO DEFINITION HEADER 6-2
6.3 MACRO DIRECTIVE STATEMENTS 6-3
6.4 MACRO EXAMPLES 6-7
6.5 MACRO CALLS 6-10
7. PROGRAM DEBUGGING 7-1
7.1 MEANING OF DEBUG PRINT OUT 7-2
8. APPLICATION NOTES 8-1
8.1 PARAMETER SWEEP 8-1
8.2 PHASE AND GAIN PLOTS 8-2
8.3 SUMMARY OUTPUT 8-3
8.4 IMPULSE AND STEP RESPONSE 8-3
8.5 EXTERNALLY DEFINED VARIABLES. 8-5
APPENDIX A A-1

1. LIMIT CYCLE A-1
2. SPRING A-7
3. CONTROL LOOP A-7
4. PILOT EJECTION STUDY A-19
5. TEMPERATURE DISTRIBUTION ALONG A RADIATING FIN A-28
6. AIRCRAFT ARRESTING GEAR SYSTEM A-41
7. LONGITUDINAL STUDY A-51
8. PHYSBE A-62
9. PHASE AND GAIN. A-76
10. MISSILE AIRFRAME MODEL A-84
11. DISCRETE SAMPLED COMPENSATOR A-104
12. ASPIRIN DOSAGE EVALUATION A-112

TABLE OF CONTENTS (Continued)

Section/Para Page
APPENDIX B B-1

1. AGET (name, a), APUT (name, a) B-1
2. BLDDCT (nHname, name, type, size) B-1
3. DEBUG B-2
4. IGET (nHname,i) RGET(nHname,i) B-3
5. INTEG B-3
6. LISTD (file) B-3
7. LOG B-4
8. RGET (nHname, i) B-4
9. SET (value, name, times) B-4
10. TIMER B-4
11. VPUT (name, i, value) B-4
12. WEM (nH message, nchar) B-4
13. WRITG B-5
14. XFERB B-5
APPENDIX C C-1
15. Refers to Plots in General C-1
16. Refers to Printer Plots C-2
17. Refers to Line or Calcomp Plots C-2
18. Refers to Strip Plots C-4
19. Refers to Print Data C-4
20. Integration Control C-5
21. General C-5
APPENDIX D D-1
APPENDIX E E-1
22. Batch Operation E-1
23. Terminal Operation E-2
APPENDIX F. F-1
24. ACSL Translator Error Messages F-1
25. Run-Time Error Messages F-3
INDEX G-1

THIS PAGE INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Simulation of physical systems is a standard analysis tool used in the evalution of hardware design prior to actual construction. The continuous system simulation language described herein, and referred to as ACSL - Advanced Continuous Simulation Language - has been developed expressly for the purpose of modelling systems described by time dependent, non-linear differential equations and/or transfer functions.* Typical application areas are control system design, chemical process representation, missile and aircraft simulation or fluid flow and heat transfer analysis. Program preparation can either be from block diagram interconnection, conventional FORTRAN statements or a mixture of both.

Highlights of the language are free form input, function generation of up to three variables, and independent error control on each integrator. Flexibility is provided for plotting the behavior of the models under a number of external forcing functions. Many simulation oriented operators such as variable time delay, dead zone, backlash and quantization are included and made readily accessible.

The ACSL program was intended to provide a simple method of repre, enting these mathematical models on a digital computer. Working from an equation description of the problem or a block diagram, the user writes ACSL statements to describe the system under investigation. Drive cards are written to exercise the model and these statements are keypunched and submitted for solution. An alternate mode is via a remote terminal such as a teletype; true on-line control is now possible with the user changing model constants and monitoring the resulting solutions.

Statements describing the model need not be ordered since the ACSL processor will sort the equations so that no values are used before they have been calculated (applies only to the DERIVATIVE section of an explicitly structured program - see subsection 3.0). This operation of the language is to be contrasted to the usual digital programming languages like FORTRAN, where program execution depends critically on statement order. The ACSL sorting procedure is described in more detail in Subsection 3.2.

1.1 JOB PROCESSING

The cards supplied by the user are in two distinct groups - the first group contains those concerned with defining the model or structure of the system being simulated; the second group contains the sequence of commands that exercise this model - i.e., change parameters, start runs, control which plots to make.

The model definition statements are read by the ACSL program which translates these to a set of intermediate FORTRAN programs. These FORTRAN programs are compiled, loaded with the ACSL Run-time Library and executed. The run-time drive cards now are read by the executive which decodes and executes commands in sequence - refer to Section 5 for a description of the commands usable at run-time. At least a START command is necessary at this point to exercise the model.

1.2 LANGUAGE FEATURES

The language consists of a set of arithmetic operators, standard functions and a set of special statements and a MACRO capability which allows extension of the special statements, either at the system level for each installation, or for each individual user. The arithmetic operators are $+,-{ }^{*}, /,^{* *}$, denoting addition, subtraction, multiplication, division and exponentiation. The functions are listed in Section 4 and consist of special ACSL operators such as QNTZR (quantization), UNIF (uniform random number), etc. In addition, all the functions of the FORTRAN library are available such as SQRT (square root), AMOD (modulus), etc. Integration is a special ACSL operator that is accomplished either by INTEG or INTVC, i.e.

[^0]$$
\mathrm{R}=\mathrm{INTEG}(\mathrm{X}, \mathrm{RZERO})
$$
implies
$$
\mathrm{R}=\mathrm{RZERO}+\int_{0}^{\mathrm{T}} \mathrm{Xdt}
$$

This integration operator is the heart of the simulation system. In building any model, it is necessary to change differential operators into integration operators and this is conventionally accomplished by expressing the highest derivative of a variable in terms of lower derivatives and other variables. As an example, consider the spring dashpot system excited by a given function of time $F(t)$. In general form it can be written

$$
\ddot{\mathrm{x}}+2 \zeta \omega \dot{\mathrm{x}}+\omega^{2} \mathrm{x}=\mathrm{F}(\mathrm{t})
$$

where ω is the natural frequency and ζ the damping ratio. Expressing this equation in terms of the highest derivative $\ddot{\mathrm{x}}$, we have

$$
\ddot{\mathrm{x}}=\mathrm{F}(\mathrm{t})-2 \zeta \omega \dot{\mathrm{x}}-\omega^{2} \mathrm{x}
$$

Since \dot{x} appears on the right hand side, we must give it a name (XD). The two integrations can the be written as

$$
\begin{aligned}
\mathrm{XD} & =\operatorname{INTEG}\left(\mathrm{F}(\mathrm{~T})-2^{*} \mathrm{ZE} \mathrm{~W}^{*} \mathrm{XD}-\mathrm{W}^{* *} 2^{*} \mathrm{X}, \mathrm{XDIC}\right) \\
\mathrm{X} & =\mathrm{INTEG}(\mathrm{XD}, \mathrm{XIC})
\end{aligned}
$$

This process transforms the original set of differential equations to a set of first order equations which can be solved directly by integrating.

It is necessary to be somewhat careful in the transformation process to avoid the introduction of redundant state variables. In the above sequence we could have avoided the reference to \dot{x} (XD) by calculating $\ddot{\mathrm{x}}$ (XDD) directly and embedding an INTEG operator in the expression, i.e.

$$
\mathrm{XDD}=\mathrm{F}(\mathrm{~T})-2^{*} \mathrm{ZE}^{*} \mathrm{~W}^{*} \operatorname{INTEG}(\mathrm{XDD}, \mathrm{XDIC})-\mathrm{W}^{* *} 2^{*} \mathrm{X}
$$

Now X is the second integral of XDD so
X = INTEG(INTEG(XDD, XDIC), XIC)

In these two equations, there are three INTEG operators - each one a state variable - but two are integrations of XDD with the same initial condition, one of these is redundant and can be eliminated by explicitly naming the first derivative as shown previously.

Before we give a detailed description of the language, let us code a simple problem using the arithmetic operators and the SQRT and INTEG functions defined above.

The coding for the equations

$$
\begin{aligned}
& \dot{\mathrm{X}}=\mathrm{Y}+\mathrm{X}\left(1-\mathrm{X}^{2}-\mathrm{Y}^{2}\right) / \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} ; \mathrm{X}(0)=0.5 \\
& \dot{\mathrm{Y}}=-\mathrm{X}+\mathrm{Y}\left(1-\mathrm{X}^{2}-\mathrm{Y}^{2}\right) / \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} ; \mathrm{Y}(0)=0.0
\end{aligned}
$$

is shown in Figure 1-1.
While this series of statements completely describes the equations to be solved it does not represent the complete problem statement. Figure 1-2 lists the complete running program where each card is numbered for reference. To complete the model definition a PROGRAM card (1) is needed to start; the communication interval must be defined by the CINTERVAL operator (3); the termination condition must be specified as a logical expression forming the argument for the TERMT operator (7); and the model definition must be completed by an END card (8) which matches the PROGRAM card. This end card tells the translator nothing further is expected unless FORTRAN subroutines or functions are included. A further refinement is in assigning symbolic names for the initial condition, $\mathrm{X}(0)$ and $\mathrm{Y}(0)$, and for the stop time TSTOP. These are preset in the CONSTANT statement (2).

```
R2 = X X*2 + Y**2
    X = INTEG(Y + X*(1.0-R2)/SQRT(R2), 0.5)
    Y = INTEG(-X + Y*(1.0-R2)/SQRT(R2),0.0)
```

Figure 1-1. Model Equations Corresponding to Mathematical Definition - Limit Cycle Problem

MODEL DEFINITION CARDS
(1)
(2) PROGRAM LIMIT CYCLE
(3)
(4)
(4NTERVAL $=$ X

Figure 1-2. Programs for Model Definition and Run-time Drive Cards - Limit Cycle Problem

Once a symbol is assigned to a variable it can be changed at run-time. Embedding literal constants (the characters 0.5 are a literal constant) in the program is not good programming practice. It is much better to use a symbol preset to the value desired. Changes then occur in one place.

In addition to the model definition statements, the run-time group of cards must be defined that tells how the model is to be exercised. These are separated from the model definition section by an end-of-record separator for a batch run (7-8-9 multipunch in column one on a CDC 6000/7000 machine) or else a separate file. Interactively the run time commands can come from a key board or a terminal. The OUTPUT statement (9) defines the variables which are to be listed at each communcation interval; then the model must be told to go by the command START (10). Card number eleven is a comment, twelve changes the intial condition and thirteen says run again. Card number fourteen terminates the simulation study. Section 1 of Appendix A lists the actual program and the output listing and plots obtained in solving this set of equations.

1.3 CODING PROCEDURE

The ACSL coding line contains eighty characters of which the first seventy-two are used for program information and 73-80 for identification, if needed. The ACSL statement may be placed anywhere on the card and the user should arrive at some standards to preserve a uniform appearance of the source text. Suggested standards are as follows:

Section delineators - PROGRAM, INITIAL, DYNAMIC, END, etc., starting in column 1
PROCEDURAL brackets - matching pairs of PROCEDURAL/END statements starting in column 6
Unlabelled statements - starting in column 7
Labelled statements - label starting in column 6
Assignment statements - ensure the equal sign ($=$) falls in column 15 or beyond
These procedures are not necessary, but they make the resulting program much neater and easier to read.
More than one statement can be placed on one card by separating them by a dollar sign (\$). Any statement can be continued on to the next line by adding an ellipsis (three consecutive periods . . .) anywhere at the end of the card - to the right of any non-blank information but before column seventy-two. Any trailing blanks are squeezed out of the card containing the ellipsis and the following card is added directly - it is as though the characters were strung on the end after the last non-blank charcter of the preceding card, starting with column 1. Leading blanks of the continuation card are not suppressed. Comments may be added by enclosing a complete statement in quotes. Note that neither a quote (') nor a dollar sign (\$) can be part of a comment. Examples:

```
'THIS IS A COMMENT CONTINUED ON TO . . .
    THE NEXT LINE'
'THE NEXT LINE HAS TWO STATEMENTS'
    \(\mathrm{A}=\mathrm{B}+\mathrm{C} \quad \$ \quad \mathrm{X}=\mathrm{Y}+\mathrm{Z}\)
‘COMMENTS CAN BE ADDED IN LINE AS . . .
    A SEPARATE STATEMENT’
    \(\mathrm{X}=\mathrm{Y}+\mathrm{Z} \quad \$ \quad\) 'ASSIGN VALUE TO X'
'NEXT ARE TWO LABELLED STATEMENTS'
    LABEL . . C = D +50
    1000 . . FORMAT(1X, 3E12.5)
```

Blank lines can be interspersed throughout the code in order to help produce an attractive program format.

1.4 RESERVED NAMES

The only reserved names in the language are those of the form Z0nnnn and ZZaaaa, where ' n ' is any digit and ' a ' is any alphanumeric character. All generated variables and system subroutine names are in this form. However, it behooves you, the user, to keep in mind the system variable default names listed in Table $1-1$. These default names can be changed to any name you please, but if you do not, the default names will be in existence so they can be set by program control in the model definition section. Other uses of these names, e.g., defining MAXT as a state variable, could cause conflicts.

TABLE 1-1. System Variable Default Names

Set By Statement	Default Name	Default Value	Definition
CINTERVAL	CINT	0.1	Communication Interval
MINTERVAL	MINT	$1.0 \mathrm{E}-10$	Minimum Calculation Interval
MAXTERVAL	MAXT	$1.0 \mathrm{E}+10$	Maximum Calculation Interval
NSTEPS	NSTP	10	Number of Calculation Intervals
VARIABLE	T	0.0	Independent Variable
ALGORITHM	IALG	5	Integration Algorithm
ERRTAG	none	.FALSE.	Error Indicator
NOTE: It is probably a good idea to treat these names as reserved and not use them for any purpose except that stated.			

A second level of names is the run-time executive system constants listed in Appendix C. These are flags and numeric values that determine the manner in which plots are going to be made, print intervals, etc.

Such quantities as the y-axis length in inches (YINCPL) for line plots, number of points between grid lines in the x-direction for printer plots (NGXPPL) can be under user's control - at run-time - if desired. All these symbols have a default value that is chosen for reasonableness. Access is by normal SET commands, i.e.,

$$
\text { SET YINCPL }=5.0
$$

Any symbol in the SET command causes a search of the user's dictionary - established by the symbols in the model definition code - and if that is unsuccessful, the dictionary of run-time system symbols is searched. Thus, if you use one of the system constants as a name in the program, that use will override the internal use within the run-time executive. It merely means that you will not have the luxury of modifying the system default value.

1.5 FORTRAN SUBROUTINES

Any user defined FORTRAN function or subroutine may be used in the simulation program by including it following the END card that matches the PROGRAM card. The translator looks for the following:

REAL FUNCTION

INTEGER FUNCTION
LOGICAL FUNCTION
SUBROUTINE

FUNCTION

PROGRAM
and if found, assumes all the rest of the cards in the model definition section are to be passed directly to the FORTRAN compiler. The format of these cards is not changed in any way so FORTRAN card format must be followed exactly, i.e. start in column seven or beyond etc.

The only change the translator makes is to look for a dollar sign (\$) in column one. This card is replaced by the simulation common block and type statements - which may run to many cards - so making available to the subroutine the names and values accessible in the main program.

WARNING: There is no selectivity in this process - either all the symbols are obtained or none. It is easy to get name conflicts and also violate the translator sorting algorithm by this action.

2. LANGUAGE ELEMENTS

The following list of language elements must be understood before proceeding to the next section which describes the individual ACSL statements in detail. Most of the basic elements are defined the same as in FORTRAN with the exception of the list in Table 2-1, which lists the major differences between ACSL and FORTRAN. A reader who is familiar with FORTRAN could continue to the next section at this point.

TABLE 2-1. Major Differences, ACSL to FORTRAN

LABELS	Symbolic as well as numeric labels allowed. Labels are separated from statements to which they are attached by two periods. Due to problems with MACRO expansions within labelled statements, it is recommended that labels only be used with CONTINUE statements. See LABELS section 2-3 for further information. No embedded blanks are allowed in names. Each name must have no more than $\boldsymbol{S I X}$ characters. Names should not be of form Znnnnn or ZZaaaa where n is any digit and a is any alphanumeric character. Variables starting with I, J, K, L, M or N are not automatically considered integer. All variables and functions are considered real, floating point variables unless typed explicitly otherwise.
TYPES	Free format - use any columns 1 through 72. An ellipsis (. .) at the end of a line implies continuation onto the next card image. A non-blank column six has no significance in free format.
CODING	A fully quoted statement is a comment and cannot contain another quote or dollar sign. A ‘'C' in column one has no significance in free format.
COMMENTS	

2.1 CONSTANTS

Constants may be either integer, real, logical or Hollerith. An integer constant is a whole number, written without a decimal point or embedded blanks. Positive numbers may be prefixed with a plus sign; negative numbers must be prefixed with a minus sign. Length is implementation dependent (CDC 6600, about thirteen digits). Subscripts of arrays are limited to about five digits.

$$
\text { Examples: } 0 \quad 0 \quad+526 \quad-63 \quad 476
$$

A real constant is written with a decimal point together with an optional exponent. Positive numbers may be prefixed with a plus sign; negative numbers must be prefixed with a minus sign.

Examples:	$3 . \mathrm{E} 1$	3.1416	$31.416 \mathrm{E}-1$
	-0.000345	0.347 E 03	$-27.6 \mathrm{E}+220$

Logical constants may be one of two values:
.TRUE. .FALSE.
Hollerith constants are strings of letters and digits and are defined differently for the translator and at run-time. The translator accepts the normal character count - an unsigned integer - followed by H , followed by the character string. The general form is

$$
\mathrm{nHh}_{1} \mathrm{~h}_{2} \ldots \mathrm{~h}_{\mathrm{n}}
$$

Examples of this are

3HSAM
1H)

12HCONTROL DATA

5H LEAD

Note that blanks are signficant in the character count. For the run-time executive, Hollerith strings are defined by enclosing in quotes - so implying that the quote character cannot be included in the Hollerith constants, i.e.,

SET TITLE $=$ 'LIMIT CYCLE, RUN1'

While literal constants can be used in expressions directly, there is no way of changing the value at run-time. The original source cards must be changed and the program retranslated, compiled and executed. If the same constant appears more than once, it implies more changes in the source text. Better programming practice is to give all constants symbolic names to be used in expressions, presetting these via CONSTANT statements; i.e.,
don't say
AREA $=3.142^{*} \mathrm{R}^{* *} 2$
Instead:
CONSTANT PI $=3.142$

$$
\mathrm{AREA}=\mathrm{PI}{ }^{*} \mathrm{R}^{* *} 2
$$

2.2 VARIABLES

Variable names are symbolic representations of numerical quantities that may or may not change during a simulation run. They refer to a location and have a value equal to the current number stored in that location. Both simple and subscripted variables may be used. A symbolic name must start with a letter and be followed by zero to five letters and digits (not more than SIX characters). All variables in an ACSL program are assumed to be of type REAL unless explicitly typed otherwise. The FORTRAN convention for integers starting with the letters I through N does not apply.

Examples of simple variables:
A
A57
AB57D
K20

A subscripted variable may have one, two or three subscripts enclosed in parentheses. Subscripts can be expressions in which the operands are simple integer variables and integer constants, and the operators are addition, subtraction, multiplication and division only. For more information on storage allocation see ARRAY statement - Section 4.12.

Examples of subscripted variables names are:

$$
\begin{array}{ll}
\mathrm{B}(5,2) & \mathrm{B} 53(5 * \mathrm{I}+2,6,7 * \mathrm{~K}+3) \\
\mathrm{C} 47(3) & \operatorname{ARRAY}(2)
\end{array}
$$

In the above example I and K must be declared explicitly to be INTEGER variables.

2.3 LABELS

A label may be attached to a statement so that control may be transferred to it by GO TO or used to label a FORMAT statement. Labels may be either:

1) One through six alphanumeric characters with the first alphabetic
2) One through five numeric characters (digits)*

The labels must be set off from the statement to which they apply by two periods - i.e.,
$\mathrm{L} 1 \ldots \mathrm{X}=\mathrm{A}+\mathrm{B}$
$1000 \ldots Y=C+D$
GO TO L1
Although it is legal to attach a statement label to any executable statement, it is recommended that these labels only appear on CONTINUE statements. Aside from the improvement in appearance, structure and modifiability, many problems can be avoided. The basic difficulty is that the statement body may contain MACRO calls. The effect of a MACRO call inside a statement - functional form - is that the macro is expanded first followed by the labelled statement. As an example, consider the random number generator, GAUSS which is implemented as a MACRO. It's use could be in a PROCEDURAL in a labelled statement

GO TO LABEL

LABEL . . X = GAUSS(MEAN, SIGMA)
This would expand to the FORTRAN code
GO TO 99996

Z09999 $=$ MEAN + GRV (ZZSEED) ${ }^{*}($ SIGMA $)$
99996 X = Z09999
Now the intermediate variable Z09999 won't be assigned a value if the GO TO transition is followed. However, if we use a CONTINUE instead

GO TO LABEL

```
LABEL . . CONTINUE
X = GAUSS(MEAN, SIGMA)
```

This code expands to
GO TO 99996

$$
99996 \text { CONTINUE } \quad \begin{aligned}
& \text { Z09999 = MEAN }+\operatorname{GRV}(\text { ZZSEED })^{*}(\text { SIGMA }) \\
& \mathrm{X}=\mathrm{Z} 09999
\end{aligned}
$$

which gives the correct sequence. The stand alone form of the MACRO works in this case and avoids the extra assignment statement, since no intermediate variable is generated, i.e.

[^1]LABEL . . GAUSS(X = MEAN, SIGMA)
becomes*
$99996 \mathrm{X}=\mathrm{MEAN}+\operatorname{GRV}($ ZZSEED $) *($ SIGMA $)$
To avoid the label problem, we had originally thought of attaching the LABEL to the first line of the code generated from the MACRO but then the problem with the DO loop raises it's head - now the label must be the last operation of the loop - statements generated after the labelled statement are not included in the loop. Even if we differentiate between the DO-loop labels, the language allows a loop with direct GO TO's to the terminating statement label:

DO LABEL I $=1,20$

IF (condition) GO TO LABEL

LABEL . $\mathrm{X}=\mathrm{X}+$ GAUSS(MEAN, SIGMA)
To formulate rules to translate this sequence appears to be impossible. If the operation is programmed with labelled CONTINUE statements, two labels will be necessary and the translation is straightforward, i.e.

DO LABEL1 $\mathrm{I}=1,20$

IF (condition) GO TO LABEL2

LABEL2 . . CONTINUE

$$
\mathrm{X}=\mathrm{X}+\text { GAUSS(MEAN, SIGMA) }
$$

LABEL1 . . CONTINUE

2.4 EXPRESSIONS

An expression is a combination of operators and operands which, when evaluated, produces a SINGLE numerical value.

The arithmetic operators are

$$
\begin{array}{ll}
+ \text { addition } & * \text { multiplication } \\
- \text { subtraction } & \text { / division } \\
& * * \text { exponentiation }
\end{array}
$$

The relational operators are
.EQ. equal to .NE. not equal to
.GT. greater .GE. greater than or equal to
.LT. less than .LE. less than or equal to
(The results of a relational expression can only be .TRUE. or .FALSE.)
The logical operators are

[^2].NOT. reverses truth of logical expression that follows it
.AND. combines two logical expressions to give value .TRUE. when BOTH are .TRUE. otherwise .FALSE.

OR. combines two logical expessions to give value .TRUE. when EITHER is .TRUE. otherwise .FALSE.

The operands may be either constants, variables (simple or subscripted) or functions. Examples of arithmetic expressions:
A
5.76
$3+16.5$
$\mathrm{B}+\mathrm{A}(5) / 2.75$
-(C + DEL*AERO)
$\left(\mathrm{B}-\mathrm{SQRT}\left(\mathrm{A}^{* *} 2+\mathrm{X}^{* *} 2\right)\right) / 2.0$

Two arithmetic operators may not appear next to each other in an arithmetic expression. If minus is to be used to indicate a negative operand, the sign and the element must be enclosed in parentheses is preceded by an operator -

$$
\begin{aligned}
& \text { i.e., } \\
& \begin{array}{l}
\mathrm{B}^{*} \mathrm{~A} /(-\mathrm{C}) \\
\mathrm{A}^{*}(-\mathrm{C})
\end{array} \quad \text { not } \quad \mathrm{B}^{*} \mathrm{~A} /-\mathrm{C}
\end{aligned}
$$

but,
$-\mathrm{A} * \mathrm{~B}-\mathrm{C}$
Parentheses may be used to indicate groupings as in ordinary mathematical notation but they may not be used to indicate multiplication.

Relational expressions are a combination of two arithmetic expressions with a relational operator. The relational expression will have the value .TRUE. or .FALSE. depending on whether the stated relation is valid or not. The general form of the relational expression is:
$\mathrm{a}_{1} \mathrm{op} \mathrm{a}_{2}$
where the a's are arithmetic expressions and op is a relational operator.
NOTE: A relational operator must have two operands combined with one operator. Thus the form a_{1} op a_{2} op a_{3} (A. EQ. B. EQ. C) is INVALID.
Examples are:
A. EQ. B
A + D .LT. 5.3
A57. GT. 0.0
(5.0*B - 3.0).LE.(4.0-C)

Logical expressions are combinations of logical operands and/or logical operators which, when evaluated, will have a value of .TRUE. or .FALSE.

$$
\ell_{1} \text { op } \ell_{2} \text { op } \ell_{3} \text { op } \ell_{4} \ldots
$$

where the ℓ 's are logical operands or relational expressions. i.e.,
LOGICAL AA, CC, LFUNC
AA. AND. (B. GE. C). OR. CC. AND. LFUNC(X,Y). AND. (X. LE. Y). OR.. NOT. AA
Note that the symbolic names AA, CC and LFUNC have been declared to be of type logical. LFUNC is a function with a .TRUE. or .FALSE. result calculated from the value of the variables X and Y .

Note that arguments of functions may, in general, be expressions. Since expressions can contain functions, an arbitrary depth of complexity can be generated. Just using the SIN and COS function as an example, a valid expression would be

$$
\mathrm{A}+\operatorname{SIN}\left(\mathrm{X}^{*} \operatorname{COS}\left(5^{*} \mathrm{X}+\mathrm{Y}\right)-\operatorname{COS}\left(\mathrm{A}+\mathrm{Z} / \operatorname{SIN}\left(5.3^{*} \mathrm{C}\right)+\mathrm{C}^{*} \mathrm{Y} / \operatorname{SIN}\left(\operatorname{SIN}(\mathrm{X}+\mathrm{Y})^{*} \mathrm{PI}\right)\right)\right)
$$

Remember the sole requirement for an expression is that it has ONE value when evaluated numerically.

3. EXPLICIT STRUCTURE

The basic program structure where the model is surrounded by PROGRAM...END cards has limitations when it comes to calculating initial conditions. They must be real variables, expressions or constants and cannot incorporate multiple statement logic. In order to have a more flexible structure, three extra regions of the program may be introduced - INITIAL, DYNAMIC and TERMINAL - and the model definition is placed in a DERIVATIVE section embedded in the DYNAMIC. Each section must be terminated with an END card as shown in Figure 3-1. If this method is chosen, any or all of these four explicit blocks may be included: Each block must have its own terminating END card and the ordering INITIAL, DYNAMIC, embedded DERIVATIVE and TERMINAL must be followed.

```
PROGRAM
    INITIAL
        }tatements performed before the run begins. State variables do not contain
        the initial conditions yet.
        END
    DYNAMIC
        DERIVATIVE
            Statements needed to calculate derivatives of each INTEG
            statement. The dynamic model.
        END
        }Statements executed every communications interval.
    END
    TERMINAL
        Statements executed when the termination condition TERMT becomes
        ftrue.
    END
END
```

Figure 3-1. Outline of Explicitly Structured Program

3.1 PROGRAM FLOW

The program flow when leaving the executive (due to the START command) is to sequentially proceed through the INITIAL section (Figure 3-2 shows a flow diagram). At this point, the initial conditions have not been transferred into the state variables (outputs of integrators) so these variables will be undefined if any attempt is made to use them. It should be possible to arrange the calculation of any necessary initial conditions in terms of any constants or other initial conditions already defined. Another alternative is to use the RESET (q.v.) operator that will transfer the available initial conditions to the state names and may (RESET('EVAL')) or may not (RESET('NOEVAL')) be accompanied by a call to the derivative evaluation routine to calculate all intermediate variables.

Leaving the INITIAL region, the integration routine is initialized which involves transferring all initial conditions into the corresponding states and evaluating the code in the DERIVATIVE section once. This

Figure 3-2. Main Program Loop of ACSL Model
action is taken to ensure that all calculated variables are known before the data logging at the time equals zero condition. Note that it may appear from the program listing that the DYNAMIC section is executed before the DERIVATIVE section; in actual fact, this is not so. You should not rely on calculations in the DYNAMIC section to initialize variables for this DERIVATIVE section. On the other hand, all values calculated in the DERIVATIVE section are available in the DYNAMIC section.

Still following the flow chart in Figure 3-2, the STOP flag is reset and the program starts to execute the code within the DYNAMIC block.

There is no restriction on the variables that may be referred to in this DYNAMIC section. All the states will have values and intermediate calculations in the DERIVATIVE section will have been executed.

After this block the STOP flag is tested to see if it is time to transfer to the TERMINAL region. Note, the STOP flag is set by the TERMT statement and if any of these statements are included in the DYNAMIC block, exit will occur at this check when one of the arguments becomes true.

If the STOP flag is not set, the program writes out the values of all the variables specified in the OUTPUT and PREPAR lists - the former to the output file or printer, the latter to a scratch file for later plotting.

The integration routine is now asked to integrate over a communication interval using the code embedded in the DERIVATIVE block to evaluate the state variable derivatives.

The integration routine returns with the states advanced through the communication interval and again the STOP flag is tested. At this point, it may have been set by a TERMT statement placed in the DERIVATIVE routine. If not set, the program loops and reexecutes the DYNAMIC section.

Control can be transferred between sections using GO TO's and statement labels, if needed. It is illegal to transfer into the DYNAMIC region, since the integration initialization won't be performed correctly. Transfer from the dynamic region to either INITIAL or TERMINAL is quite acceptable, so also, is transfer between INITIAL and TERMINAL blocks. Note at least one GO TO in the DYNAMIC region or one TERMT statement must be included or the program will never stop!

Control cannot be transferred either into or out of the DERIVATIVE section since this is changed into a separate subroutine and as such, is inaccessible to the main program loop.

When the STOP flag is set true, program control transfers to the TERMINAL section which is executed in sequence. On passing out of the section END, control returns to the executive which will read and process another control card (run-time command - PLOT, DISPLY, etc.). Note, if a jump (GO TO) is included in the TERMINAL section back to the INITIAL, the last output will not be written out, unless the LOG operator is used (see Chapter 4).

3.2 PROGRAM SORTING

The model definition code that is placed in the DERIVATIVE subroutine is sorted so that outputs are calculated before they are used. The sort algorithm is relatively simple and consists of two passes. Pass number one examines each statement; output variables are marked as calculated and an input list is established for the statement - all the variables on the right of the equals sign. A variable name may appear simultaneously on both left and right hand sides of an equal sign $(=)$ in either an assignment statement or PROCEDURAL header. In this case sorting takes place only on the left hand or output variable so that the block is positioned before any use of the variable. Pass number two takes the list of statements and examines them in turn. If none of the variables on the input list have their calculated flags set, the statement is added to the compile file and the calculated flag for the output variable (or variables) is turned off.

If any of the variables on the input list are marked calculated, the statement is saved and the next statement examined. If any statement has been added to the compile file, all the saved statements are
reexamined to see if they can now be disposed of and their calculated flags reset. This algorithm works because any output variables that have already been processed will have their calculated flags reset. Only output variables coming up in the statement stream will be flagged and as such can hold up statements that depend on these outputs. State variables, of course, are not flagged as calculated - the calculation must be performed by the integration routine and all derivative evaluations finally derive from the current value of the state variables. Example:

CONSTANT PI $=3.142, \mathrm{RZ}=1.0$
AREA $=\mathrm{PI}^{*}{ }^{*}{ }^{* *}{ }^{*}$
$R=R Z+L R$
LR $=$ INTEG(AREA, 0.0)
The first statement is translated into the FORTRAN DATA statement and an I/O list established. There are no inputs and the variables PI and RZ have their calculated flags set.

DATA PI/3.142/, RZ/1.0/
The second statement has inputs PI and R, and variable AREA has its calculated flag set. Third statement has an inputs, RZ and LR; the calculated flag for R is set. The last statement establishes LR as a state and AREA as the derivative. The calculated flag for LR is not set - it is assumed known at the start.

At the end of the first pass the symbol table looks like Table 3-1, and the calculated flags are set as in the (a) column.

TABLE 3-1. Calculated Flags in Symbol Table During Sort

Symbol	(a) Begin Pass 2	(b) After Constant	(c) After R=Statement	(d) After AREA $=$ Statement
AREA LR	ON	ON	ON	
PI	ON			
R	ON	ON		
RZ	ON			

The second pass starts by reading the statements in sequence again, along with the associated I/O lists. The first statement has no input list, so it can be output to the compile file directly - in so doing, the calculated flags for PI and RZ are reset - Column (b), Table 3-1.

No other statements are pending so the next statement is read. Inputs are PI and R. R is still flagged as calculated so the statement is saved.

The next statement is read. Inputs are RZ and LR - neither of these are flagged so that statement is transferred to the compile file and the output variable flag for R is reset. The saved statement is reexamined and now, no input variables are flagged so the statement can be disposed of, erasing the flag on AREA.

Any well posed problem (without algebraic loops) can be completely disposed of by this method and the compile file will have all the statements correctly ordered.

CONSTANT statements are treated like regular assignment statements as far as sorting so if you place all the CONSTANT statements at the end of the program almost all the other statements will have to be saved
or held up. It's usually considered good practice to place these at the front of the modules in which they are used.

Algebraic loops are identified inside the ACSL translator by the fact that statements are left over at the end of the DERIVATIVE section sort. This is normally considered an error since true algebraic loops should be broken with the IMPL statement. In this case the remaining statements are listed by chaining through the loop, listing each statement in turn. It is usually easiest to follow the loop backwards from the bottom of the list where it will be found that each variable on the left side of an equals ($=$) sign will appear on the right hand side of the statement above it. Procedural blocks make following the path more difficult since the entire block is listed and considered as one statement but the position is determined by the variables on the left and right hand side of the PROCEDURAL header. When the code is reconstructed, the PROCEDURAL header has been lost so the dependencies should be marked in to replace the entire code block.

Most algebraic loops are programming errors caused by incorrect PROCEDURAL headers or missing state equations. For example, the PROCEDURAL block:

PROCEDURAL (A, B = C, D)

$$
\mathrm{A}=\mathrm{C}
$$

$$
B=D
$$

END \$ 'END OF PROCEDURAL’

may cause an algebraic loop by implying that A is a function of D and B is a function of C . Use PROCEDURALs sparingly and with care. Using many small PROCEDURALs is better than using a few large ones.

Algebraic loops can be broken by algebra, the IMPL operator or by use of a PROCEDURAL . . END block to hide the actual computational order from the sorter so that the previous value of the implicit variable can be used (needs initializing).

THIS PAGE INTENTIONALLY LEFT BLANK

4. ACSL STATEMENTS

Included in this section are all the basic statements which can be recognized by the ACSL translator. A number of these are the same as equivalent FORTRAN statements with the exception that there is no restriction on which card column to start in.

As a general philosophy, ACSL uses the equals sign in an unfamiliar way. In translating a user's program, ACSL needs to know what are the inputs to each statement and what are the outputs in order that the statement sequence can be sorted into the correct order. For an assignment statement, all variables to the right of the equal sign are input, the variable to the left is given the single numerical value of the right hand expression and so is the output. The idea is extended to cases where more than one element is an output so that all elements to the left of the equal sign are considered outputs, those to the right are considered input.

PROCEDURAL (A, B, C = D, E)
. . . block of statements
END
This tells the translator to treat the statements bracketed by the PROCEDURAL . . END statements as a block (i.e., not to rearrange the order) and that it is to consider D and E as inputs; A, B and C as outputs. Only variables calculated elsewhere in the same DERIVATIVE block must be listed on the input list. Expert users can use judicious manipulation of the input and output lists in order to override the ACSL sort operation, if necessary.

Elements listed in lower case are syntactical elements (i.e., variables) and may be replaced by any character string that satisfies the definition. Elements listed in uppercase must have these characters exactly as spelled out in the statement. Ambiguities can normally be resolved by assuming that any applicable FORTRAN standards hold.

A number of special functions are described that aid in the definition of simulation models. In general, the output of each function is a single number (usually floating point) and the arguments are arithmetic expressions which may be of arbitrary complexity; i.e., these may contain functions which contain arguments which contain functions to any depth desired. Included in this list for completeness are all the standard FORTRAN library functions. In general, logical or relational expressions are used to determine switching criteria; for constants, .TRUE. and .FALSE. should be used since the bit pattern of logical variables depends on the installation and FORTRAN compiler in use.

The basic program structure is explained in detail in Section 3, which includes program flow and statement sorting. The program is set up to calculate the derivatives of the state variables (outputs and integrators) and the statements that perform this operation are bracketed by PROGRAM . . END cards. Each statement will have certain input variables and it will calculate the value of one (usually) or more output variables. The program sorting sequence will rearrange the statement sequence if necessary so that values are not used before they have had fresh values calculated. Blocks of code that the user requires for a fixed sequence may be bracketed by PROCEDURAL . . . END cards which tell the sort routine to treat the included cards as a single block. In that case all inputs needed by the block and all values output must be included in the argument list of the PROCEDURAL (q.v.) block header. A variable may not be both input and output for a single PROCEDURAL BLOCK simulataneously. Variables may be both input and output to a statement if they cross a memory or integration operator., i.e.

$$
\begin{aligned}
& \mathrm{X}=\operatorname{INTEG}\left(-\mathrm{K}^{*} \mathrm{X}+\mathrm{F}, \mathrm{XIC}\right) \\
& \mathrm{Z}=\operatorname{DELAY}\left(\mathrm{K} 1^{*} \mathrm{Z}+\mathrm{K} 2^{*} \mathrm{~F}, \ldots\right)
\end{aligned}
$$

is a normal model description but

$$
X=Y+3.0^{*} \operatorname{SIN}(X)
$$

is illegal since the sort cannot be performed. See the IMPL operator.
More flexibility is obtained by including INITIAL, DYNAMIC and TERMINAL sections to evaluate code only at the beginning (INITIAL), at every communication interval (DYNAMIC) or at the end (TERMINAL). Statements included in these sections will not have the order of calculation changed; they will be executed directly in the sequence given.

The use of labels on statements normally implies that the order of the statements is important. ASSIGN, GO-TO and IF statements are normally associated with changing the order of program execution. In order to avoid the rearrangement that goes on in the DERIVATIVE section of an explicit program or within the PROGRAM block of an implicit program they should normally be enclosed in PROCEDURAL . . . END brackets so that the group of statements is treated as a whole. It is not necessary to bracket blocks in the INITIAL, DYNAMIC or TERMINAL region since these are not sorted into a different order.

Some of the operators involve state variables and can only be invoked from within a DERIVATIVE section. While they can be included in a first level PROCEDURAL block these must always be executed and cannot be successfully by-passed by jumping around operator statements. The following is a list of such operators:

CMPXPL	DBLINT	INTEG	LEDLAG
OU	REALPL	TRAN	

If an attempt is made to skip around any of these statements, the derivative for the state variable will usually be left a non-zero value (constant while the operator is skipped) so that the internal state variable will continue to change. The correct method for stopping a state variable changing is to ensure that the derivative goes to zero.

Other operators are defined using a MACRO skeleton in which case two alternative forms of invocation are possible when the operator only has one output. As an example consider REALPL, the first order lag. A conventional use of this operator is:

$$
\mathrm{Y}=\mathrm{K} 1 * \operatorname{REALPL}(\mathrm{~T} 1, \mathrm{X})
$$

where the state variable (output of the real pole function) is given an assigned dummy name and so not considered visible. It is usually advantageous to multiply the input by constants rather than the output synonymous if the operator is linear - as so:

$$
\mathrm{Y}=\operatorname{REALPL}\left(\mathrm{T} 1, \mathrm{~K} 1^{*} \mathrm{X}\right)
$$

where the input to the operator is now an expression. If the form of the statement is then a single assignment, the stand alone macro invocation can be used as so:

$$
\operatorname{REALPL}(\mathrm{Y}=\mathrm{T} 1, \mathrm{~K} 1 * \mathrm{X})
$$

and in this case (only) the variable Y will be assigned to the state table. This stand alone form is usually preferred in order to minimize the number of internally generated variables but numerically all forms are equivalent. Operators that can be expressed in stand alone form are so indicated in the following list.

4.1 ABS

Absolute value of the argument expression

$$
y=\operatorname{ABS}(x)
$$

x is a real floating point expression

4.2 ACOS

Arc-cosine is a function

$$
y=\operatorname{ACOS}(x)
$$

where x is real floating point variable or expression lying between -1.0 and +1.0 . Result is real number in radians (zero to π).

4.3 AINT

Integerize by using the functional form

$$
y=\operatorname{AINT}(x)
$$

where x is a real floating point variable or expression of arbitary complexity. Result - Y sign of X times largest integer $\leq|x|$ and is a real floating point number.

4.4 ALGORITHM

The algorithm used by the integration routine may be chosen and/or the system variable name changed. The name IALG is the default and may be set numerically at run-time to control the execution algorithm. Standard form is

ALGORITHM name $=$ integer constant

where "name" will be the new name for the integer defining the run-time algorithm.
At present there are seven integration algorithms available as listed in Table 4-1. The Adams-Moulton ($\mathrm{IALG}=1$) and Gear's Stiff (IALG=2) are both variable step, variable order integration routines that are self-initializing. In general they will attempt to keep the per-step error in each state variable below the desired value. This desired value is obtained by taking the maximum of the corresponding absolute allowed error (XERROR) and the relative allowed error (MERROR) multiplied by the maximum absolute value of the state so far

$$
\mathrm{E}_{\mathrm{i}}=\max \left(\mathrm{X}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}\left|\mathrm{Y}_{\mathrm{i}}\right| \max \right)
$$

TABLE 4-1. Integration Algorithm Numbers

IALG	ALGORITHM
0	Sample Data Systems
1	Adam's Moulton; variable step, variable order
2	Gears Stiff; variable step, variable order
3	Runge-Kutta first order or Euler
4	Runge-Kutta second order
5	Runge-Kutta fourth order
7	User supplied subroutine (INTEG)

The order of integration starts at one and then changes dynamically as the program progresses, along with the calculation interval as the integration routine attempts to take the largest possible step consistent with the allowed error bounds.*

[^3]Gear's Stiff integration method can take calculation steps that are orders of magnitude larger than the smallest time constant. There is an overhead involved, however, since a linearized state transition matrix must be formed and inverted. Tests have shown that for problems where the range of time constants only differs by one or two decades, there is little benefit in using this method - the Adams-Moulton technique is invariably faster. If the range of time constants covers more than three or four decades, then this technique should be significantly faster than any other.

A problem was noted in using the Stiff integration algorithm with one of the states only defined when positive. This difficulty occurred in integrating for mean square receiver noise in a missile adjoint formulation. The simulation model took the square root of this quantity. In starting off the algorithm the linearized state derivative matrix - or Jacobian - is evaluated numerically by perturbing each state first minus, then plus* and computing the approximate slope from the change in the derivative value. The perturbation magnitude used to compute this slope is the current allowable error obtained from MERROR and XERROR. If the positive state starts with an initial condition of zero, then the first perturbation will make it negative - an unacceptable situation for the derivative evaluation. The way round this problem is to start the integrator off with enough bias in the initial condition so that the calculation of the Jacobian doesn't violate any constraints. Since the number used for the perturbation is the allowable per-step error, then a bias of this amount should not affect overall model validity.

At the end of a simulation run that uses a variable step-size algorithm, statistics are written out giving the weight each state had in controlling step size. You can adjust the error criterion using this information. A separate listing indicates the number of times the predictor-corrector algorithm failed to converge and cause a general step size reduction - usually considered a more serious failure than bumping into the allowable error tolerance. This error summary may be suppressed by setting (SET) the system variable WESITG (write error summmary, integration control) to .FALSE. - useful when running from a terminal.

Current step size (CSSITG) and current integration order (CIOITG) are available as system variables which may be OUTPUT or PREPARed. CIOITG is an integer and cannot be plotted.

The Runge-Kutta routines (IALG $=3,4$ and 5) work by evaluating the derivatives at various points across a calculation interval. A weighted combination of these derivatives is then used to step across the interval. Runge-Kutta second order (IALG $=4$) advances the state with two derivative evaluations per step. This usually needs a smaller step than Runge-Kutta fourth order (IALG $=5$), four derivative evaluations per step): However, for the same step size, it should run about twice as fast: Experiment is worthwhile for production jobs.

Integration algorithm zero is treated as a special case and is included to model discrete controllers with samplers controlling transfers to and from the continuous world - modelled by another DERIVATIVE block with a smaller effective step size. DERIVATIVE blocks with an integration algorithm of zero are called DISCRETE blocks and are further described under that heading.

4.5 ALOG

Natural logarithm of real argument x by

$$
\mathrm{y}=\operatorname{ALOG}(\mathrm{x})
$$

x should be >0.0.

NOTE: This function is NOT the antilogarithm.

[^4]
4.6 ALOG10

Logarithm to base ten of real argument x is given by the function

$$
y=\operatorname{ALOG} 10(x)
$$

x should be >0.0.

4.7 AMAXO

Determine maximum argument; standard functional form

$$
y=\operatorname{AMAX} 0\left(j_{1}, j_{2}, \ldots, j_{n}\right)
$$

where the j_{i} are integer variables or expressions. Y will be the real floating point value of the maximum argument.

4.8 AMAX1

Determine maximum argument; standard functional form

$$
y=\operatorname{AMAX} 1\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where the x_{i} are real, floating point variables or expressions of arbitrary complexity. Y will be given the value of the maximum x_{i}. Negative values are considered less than positive values.

4.9 AMINO

Determine minimum integer argument and convert to floating point; standard form

$$
y=\operatorname{AIMIN} 0\left(j_{i}, j_{2}, \ldots, j_{n}\right)
$$

Similar to AMAX0 except returns the value of the minimum argument.

4.10 AMIN1

Determine minimum real argument; standard functional form

$$
y=\operatorname{AMIN} 1\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Similar to AMAX1 except returns the value of the minimum argument.

4.11 AMOD

Remainder of modulus can be obtained by
$\mathrm{y}=\mathrm{AMOD}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$
which returns the floating point remainder when dividing x_{1} by x_{2}. The definition is a bit loose if x_{2} is negative so it is actually defined as $x_{1}-\left[x_{1} / x_{2}\right] x_{2}$ where [] determines the integer with magnitude not greater than the argument and with the same sign. x_{1} and x_{2} may be real floating point variables or expressions of arbitrary complexity.

4.12 ARRAY

Equivalent to the FORTRAN DIMENSION statement, this operator allocates space for up to three dimensions to be associated with a variable name. Standard form of the ARRAY statement is

$$
\operatorname{ARRAY} v_{1}, v_{2}, v_{3}, v_{4}, \ldots v_{n}
$$

The variable names v_{i} may have 1,2 or 3 integer CONSTANT subscripts separated by commas; i.e., SPACE $(5,5,5)$. (Note the subscripts must not be symbolic). While this statement can, in general, appear anywhere in the program, it is recommended that it be placed in the beginning of each module. It must appear
before any invocation of a MACRO that uses dimension information. Section 10 of Appendix A gives an example of the use of this statement.

4.13 ASIN

Arc-sine of the real argument x is

$$
y=\operatorname{ASIN}(x)
$$

x should be between -1.0 and +1.0 and the result will be in radians $(-\pi / 2 \leq \mathrm{Y} \leq+\pi / 2)$

4.14 ASSIGN

A label can be assigned to a simple integer variable for use later in an assigned go to. Standard form of the statement is

ASSIGN k TO m
where k is a statement label and m is a simple integer variable. It is important for the ACSL translator to find a space between the label k and the following TO. Subsequent evaluation of

GO TO m
will transfer control to the statement labelled, k. Example:
ASSIGN RTURN2 TO M
The variable M should be explicitly typed INTEGER.

4.15 ASSIGNMENT STATEMENT

variable $=$ expression
'variable' may be simple or subscripted. If subscripted in a sort' section it must be enclosed in a PROCEDURAL block. On execution, the single value of the expression is stored into the location defined by 'variable'. A special form is the integration statement

$$
\mathrm{A}=\mathrm{INTEG}(\text { expression, AIC) }
$$

which marks A as a state variable. It actually stores a value (of expression) in the derivative of A.
The integration statement can be embedded at any depth in an expression since it only has one value, so the following is valid.

$$
\mathrm{X}=\mathrm{A}^{*} \operatorname{INTEG}(\text { DERIV }, \mathrm{IC})+3.0^{*} \mathrm{C}
$$

In this case a made-up variable is assigned to be a state and the value of this used in the expression. This form is not recommended since states should be well defined and accessible to the user. Define your own intermediate variable, i.e.,

$$
\begin{aligned}
& \mathrm{ST}=\mathrm{INTEG}(\text { DERIV, IC }) \\
& \mathrm{X}=\mathrm{A} * \mathrm{ST}+3.0^{*} \mathrm{C}
\end{aligned}
$$

4.16 ATAN

Arc-tangent of real argument x is

$$
\mathrm{y}=\mathrm{ATAN}(\mathrm{x})
$$

x is unlimited - except infinite - and result Y will be in radians such that ($-\pi / 2<\mathrm{Y}<+\pi / 2$).
NOTE: For full coverage of the circle it is better to use ATAN2 (q.v.).

4.17 ATAN2

Arc-tangent of angle formed by the point with real coordinates x, y and the positive X axis. Function is

$$
\mathrm{z}=\operatorname{ATAN} 2(\mathrm{y}, \mathrm{x})
$$

x and y can be both positive and negative, defining the full circle of revolution. Result will be in radians such that $-\pi<\mathrm{z} \leq+\pi$.

4.18 BCKLSH

Backlash may be modelled using the following standard forms:
$\mathrm{y}=\mathrm{BCKLSH}(\mathrm{ic}, \mathrm{dl}, \mathrm{x})$
$\operatorname{BCKLSH}(y=i c, d l, x)$
where
ic $=$ initial conditions on y . Output will always lie between the limits $\mathrm{x}-\mathrm{dl}$ and $\mathrm{x}+\mathrm{dl}$ $\mathrm{dl}=$ half width of backlash - see Figure 4-1
$\mathrm{x}=$ input, a real variable or expression

Figure 4-1. Mechanism Illustrating BCKLSH Operator

For unsymmetric applications change the expression for the input x , i.e. If Y is to move when x is greater than UL or less than LL then the invocation would be

$$
\mathrm{Y}=\mathrm{BCKLSH}\left(\mathrm{YIC}, 0.5^{*}(\mathrm{UL}-\mathrm{LL}), \mathrm{X}-0.5^{*}(\mathrm{UL}-\mathrm{LL})\right)
$$

4.19 BOUND

Variables may be bounded or limited with this function. It should not be used to limit the output of an integrator since the integrator itself will continue to wind up and must actually integrate out of the limit. The function LIMINT should be used in this case, which sets the derivative to zero if it is still driving into the limit. On sign reversal the integrator will immediately come out of the limit. Standard form of the BOUND function is

$$
\mathrm{y}=\mathrm{BOUND}(\ell \ell, \mathrm{u} \ell, \mathrm{x})
$$

Result

$$
\begin{array}{ll}
\mathrm{y}=\ell \ell, & \mathrm{x}<\ell \ell \\
\mathrm{y}=\mathrm{x}, & \ell \ell \leq \mathrm{x} \leq \mathrm{u} \ell \\
\mathrm{y}=\mathrm{u}, & \mathrm{x}>\mathrm{u},
\end{array}
$$

4.20 CALL

Subroutines may be invoked by an explicit call which has the standard forms
CALL name
CALL name ($\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$)
name is the name of the subroutine being called and p_{i} are actual arguments which may be expressions of arbitrary complexity for input values. Variables, arrays and subscripted variables may be used for arguments that have values stored into them. Note that in this form the translator cannot tell which arguments are inputs and which are outputs so the call must be embedded in a PROCEDURAL block if it is in the sortable section of the program (DERIVATIVE), i.e., if O_{i} are output variables and P_{i} are input variables or expressions, then the following cards could be used

```
PROCEDURAL ( \(\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}=\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}\) )
\(\operatorname{CALL} \operatorname{SUBR}\left(\mathrm{O}_{1}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{O}_{3}, \mathrm{O}_{2}\right)\)
END
```

Now the translator will handle this section as a block and it will have been told which variables are inputs and which are outputs.

A third form of the call is provided just in case the subroutine happens to be written with the input expressions on the left and the output variables on the right. In this case use
$\operatorname{CALL} \operatorname{SUBR}\left(\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{m}}=\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$
where the O_{i} are output variables - names or arrays that have their values calculated by the subroutine and the P_{i} are input expressions.

The translator will rearrange the order and change the equal sign ($=$) to a comma so that the resulting call will be
$\operatorname{CALL} \operatorname{SUBR}\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}=\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{\mathrm{m}}\right)$

4.21 CINTERVAL

The communication interval is the interval where control returns to the dynamic section and output variables have their values recorded. In general, no finer grain detail can be seen, so it is extremely important that the user choose this communciation interval with care. The standard form of the statement is

CINTERVAL name $=$ real constant
where name is a simple, unsubscripted variable.
The system default name is CINT and the default value is 0.1 . The value of the name defined in the CINTERVAL statement may be changed by the program so that different phases can be viewed at different data rates.

Assume we have a missile simulator that has four phases of flight:

1) Initial turn
2) Midcourse
3) Acquisition
4) Terminal

Now we would like to measure these phases at different rates - initial turn at a fairly fine level of a tenth of a second; the long midcourse only every second and acquisition and terminal at the fine rate of every 50 msec . In the initial section (Figure 4-2) PHASE is declared to be an integer and initialized to one. An array STEP is defined and filled with the desired communication intervals to match each phase of flight; PHASE is one for initial turn, two for midcourse, three for acquisition and four for terminal. In the DYNAMIC section the communication interval (using default name CINT) is set using the current value of the flight PHASE (will range from one to four). In the derivative section the value of PHASE is computed from the logic used to establish the different flight regions. This is shown as a block since the algorithm will depend on the implementation of the model. However, when it is implemented, the value of PHASE should be maintained in the range one to four.

INITIAL SECTION	$\begin{cases}\text { INTEGER } & \text { PHASE } \\ \text { ARRAY } & \text { STEP (4) } \\ \text { CONSTANT } & \text { STEP }=0.1,1.0,0.05,0.05 \\ \text { PHASE }=1 \$ \text { 'INITIALIZE PHASE TO START' }\end{cases}$
DYNAMIC SECTION	$\left\{\begin{array}{l}\text {. } \\ \text { CINT }= \\ \ldots\end{array} \quad\right.$ STEP (PHASE
DERIVATIVE SECTION	
	END

Figure 4-2. Example of Program to Vary Communication Interval

The following example changes the name of the variable defining the communication interval (from the default CINT)

$$
\text { CINTERVAL CI }=0.01
$$

Now all references should be made to the symbol CI when the value is to be recorded or changed.
CINT acts as an upper bound on the integration step size, except for integration algorithm zero, and also for the last step of a communication interval since the model will be advanced to the data recording time. This question is discussed in more depth under DYNAMIC (qv). The actual integration step is obtained from the following statements.

$$
\begin{aligned}
& H=\operatorname{MAX}(\text { MINT }, \operatorname{MIN}(\text { MAXT, CINT/NSTP })) \\
& H=\operatorname{MIN}(H, \text { time left to next event })
\end{aligned}
$$

which applies bounds of MAXT and MINT to first guess of CINT/NSTP and then limits this to be no more than the time left in the current communciation interval or to the next event (DISCRETE section)

4.22 CMPXPL

A second order transfer function may be conveniently implemented by using the standard forms:

$$
\begin{aligned}
& y=\operatorname{CMPXPL}(p, q, x, i c l, i c 2) \\
& \operatorname{CMPXPL}(y=p, q, x, i c 1, i c 2)
\end{aligned}
$$

Results: y will be related to input x through the transfer function

$$
\begin{aligned}
& \frac{y}{x}=\frac{1}{p s^{2}+q s+1} \\
& \dot{y}(0)=i c 1 \\
& y(0)=i c 2
\end{aligned}
$$

The same restriction on IC's are present as for the INTEG operator; both may be omitted if zero. p and q may be expressions of arbitrary complexity (Figure 4-3).

```
MACRO CMPXFL(Y,P,Q,X,TCI,TCO)
MACFO STANMUAL TC1=0.0, ICS=0.0
MACRO REDEFINE YHOT
YOOT=INTEG(((X)-(Y)-(Q)*YNOT)/(F), ICI)
Y=TNTEG(YMOT, IC2)
MACRO ENII
```

Figure 4-3. Listing of CMPXPL Operator Macro

4.23 COMMENT

Any complete statement may be inclosed in quotation marks and it will then be ignored by the translator. It is illegal to ADD the quoted string to another statement, i.e.,

$$
\mathrm{A}=\mathrm{B}+\mathrm{C} \text { 'THIS IS AN ASSIGNMENT' }
$$

is all one statement and hence illegal. The card can be broken up into two statements by

$$
\mathrm{A}=\mathrm{B}+\mathrm{C} \$ \text { 'THIS IS AN ASSIGNMENT' }
$$

The normal rule regarding continuations using the trailing ellipsis applies, i.e.,
$\mathrm{A}=\mathrm{B}+\mathrm{C} \$$ ‘THIS IS A LONGER COMMENT . . .
REGARDING THE ASSIGNMENT OF A VALUE TO A'
Since the quotes must be balanced and the statement separator (\$) overrides all other operators, comments cannot contain quotation marks or dollar signs.

4.24 CONSTANT

Similar to a FORTRAN DATA statement, this operator is used to preset symbolic locations with numeric data. Standard form of the CONSTANT statement is

$$
\text { CONSTANT } \mathrm{d}_{1}=\mathrm{a}_{1}, \mathrm{~d}_{2}=\mathrm{k}^{*} \mathrm{a}_{2}, \mathrm{~d}_{3}=\mathrm{a}_{31}, \mathrm{a}_{32}, \mathrm{k}^{*} \mathrm{a}_{33}
$$

where

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}}= & \text { Identifiers representing simple variables or array names. Implied do-loop notation may not } \\
& \text { be used. If } \mathrm{d}_{\mathrm{i}} \text { is an array name, integer subscripts may be used to fill individual elements } \\
& \text { within the array, else the entire array must be filled. }
\end{aligned}
$$

No check is made that reals are stored into reals, integers into integers and logicals into logicals. A common error is to omit the decimal point from a number which will then be stored as an integer. When the symbolic name is used as a real number, the integer stored there may be considered zero. An example of the correct use of the CONSTANT statement is:

LOGICAL L1
INTEGER II
ARRAY A(2)
CONSTANT $\quad \mathrm{L} 1=$. TRUE., $\mathrm{II}=2, \mathrm{~A}=2^{*} 1.0, \mathrm{~B}=5.76$

4.25 CONTINUE

Is a do-nothing statement which is normally used for a label to transfer control to or terminate a DO-loop. For preference, this statement should be used for all labels due to problems with MACRO expansions - see sub-section 2.3.

4.26 COS

Takes the cosine of a real argument x which must be in radians

$$
y=\cos (x)
$$

result will be $-1.0 \leq \mathrm{Y} \leq+1.0$

4.27 DBG

Debug features are built into the translator and varying sections of the translator process can be printed on command via this statement. It should normally only be used under instruction of someone familiar with the programming of the translator.

4.28 DBLINT

A special operator is provided for integrator limiting when the limited output is the second integral of an acceleration. This type of limiting can best be described in terms of the mass spring-damper system described by

$$
m \ddot{x}+b \dot{x}+c x=f(t) ; \dot{x}(0)=X D Z, x(0)=X Z
$$

where physical stops constrain the mass to move only between $x_{\ell \ell}$ (lower limit) and $x_{u \ell}$ (upper limit) i.e.,

$$
\mathrm{x}_{\ell \ell} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{u} \ell}
$$

When the displacement (x) of the mass reaches its limit, the mass must stop, implying that the velocity ($\dot{\mathrm{x}}$) is zero. The mass must remain stopped until the force acting on it ($f(t)$ - cx) changes sign. The DBLINT operator (double limited integration) can be used to represent this type of limiting. The standard form of the invocation is

$$
\operatorname{DBLINT}(\mathrm{x}, \mathrm{xd}=\mathrm{xic}, \mathrm{xdd}, \mathrm{xdic}, \ell \ell, \mathrm{u} \ell)
$$

where

$$
\begin{aligned}
\mathrm{x} & =\text { a displacement } \\
\mathrm{xd} & =\mathrm{a} \text { velocity }(\dot{\mathrm{x}}) \\
\mathrm{xic} & =\mathrm{x}(0) \\
\mathrm{xdd} & =\text { the input, an acceleration }(\ddot{\mathrm{x}}) \\
\mathrm{xdic} & =\dot{\mathrm{x}}(0) \\
\ell \ell & =\text { the lower limit } \\
\mathrm{u} \ell & =\text { the upper limit }
\end{aligned}
$$

Figure 4-4 gives a listing of the macro operator.

```
MACRO MESITNT(X,V,XTC,A, UTC,LEX, URX)
MACRO FETIEFINE: UI.., TC
CONSTANT TO=O.O
CALIL ZZMLTM(U, UL=WC,X,TNTEG(ZZLTMF (X,A,LBX,UBX), UTC), 0.O,LBX,UBX)
X:=INTUG(U, XIC)
MACRO ENN
```

Figure 4-4. Listing of DBLINT Operator Macro

An alternate way of performing this operation is to wrap a stiff spring around the loop when the wall is approached - this corresponds to what happens physically since the wall will always have a finite spring constant (Figure 4-5). The problem with this representation is in the behavior of the digital integration routine in the vicinity of the wall when the wall stiffness is made extremely high.

4.29 DEAD

Dead space has standard form

$$
\mathrm{y}=\operatorname{DEAD}(\ell \ell, \mathrm{u} \ell, \mathrm{x})
$$

Result is:

Figure 4-5. Limited Displacement - Spring Stiffness, \mathbf{K}_{s}, Wall Stiffness K_{W}, Damping Constant K_{d}

$$
\begin{array}{lc}
\mathrm{y}=\mathrm{x}-\ell \ell, & \mathrm{x}<\ell \ell \\
\mathrm{y}=0.0, & \ell \ell \leq \mathrm{x} \leq \mathrm{u} \ell \\
\mathrm{y}=\mathrm{x}-\mathrm{ul}, & \mathrm{x}>\mathrm{u} \ell
\end{array}
$$

4.30 DELAY

A variable must be delayed in time to model passage through a pipe or other transport effects. This operator should not be used lightly since it tends to use a lot of storage and the extra calculation time can be significant.

The operator is invoked by the standard function forms

$$
\mathrm{y}=\operatorname{DELAY}(\mathrm{x}, \mathrm{ic}, \mathrm{tdl}, \mathrm{nmx})
$$

or
DELAY ($\mathrm{y}=\mathrm{x}, \mathrm{ic}, \mathrm{tdl}, \mathrm{nmx}$)
where
$\mathrm{x}=$ the input - an arithmetic expression of arbitrary complexity
ic $=$ the initial value of the output until the independent variable has advanced by the delay, tdl
$\mathrm{tdl}=$ the delay between input and output
$m m x=$ an integer CONSTANT (i.e 10) giving the maximum number of calculation intervals in the delay. The calculation interval may vary but the sum of $n m x$ calculation intervals must always be greater than the current time delay.

This operator is implemented by allocating a dummy array, $2^{*} \mathrm{nmx}$ words long, and prefilling with the value of ic, extending over all past history. Each entry in the table is associated with a time and at each new calculation interval a new value is inserted into the array - treating it as a circular list. To compute the output value, tdl, the current time delay is subtracted from the independent variable value and the table is searched for time values that bracket this required previous time. A linear interpolation is performed between the corresponding input values. If not enough data points are present, an error is reported. This operator approximates the pipeline with a varying velocity. For best results the time delay should vary slowly.

NOTE: This operator requires the sort algorithm to separate sections of code and so should not be included in a PROCEDURAL block.

4.31 DERIVATIVE

Identifies the blocks of code performed at the request of the integration routine to evaluate the state variable derivatives. The integration routine is called from the dynamic section (Subsection 3.1) and asked to advance the state over the next communication interval using the code embedded in the DERIVATIVE blocks to evaluate the state variable derivates. The actual number of evaluations depends on the integration algorithm employed. All the statements in the DERIVATIVE blocks are translated into a separate subroutine so it is illegal to transfer control by GO TO's from these blocks to other sections (INITIAL, DYNAMIC, or TERMINAL) or vice versa.

More than one DERIVATIVE section may be used, each with its own independent integration algorithm and integration step size. Although this technique can save execution time when correctly used, any implementation must be approached with caution since, in general, incorrect answers will be obtained unless the model is split with a full understanding of the effects of computation delays for variables that cross block boundaries. This tool has been provided for research into problem split rules and should be regarded more as a state-of-theart technique rather than for every day practical implementation. For anyone who considers himself a novice, no more than one DERIVATIVE section should ever be used, unless it is to model a discrete controller where natural delays occur.

The basic structure is to include more than one derivative block - delimited by DERIVATIVE...END statements within the DYNAMIC block, i.e.

DYNAMIC
DERIVATIVE SECTION 1

END \$' OF SECTION 1'

DERIVATIVE SECTION 2

END \$' OF SECTION 2'

etc
END \$' OF DYNAMIC ${ }^{\prime}$
Each derivative section can have its own integration algorithm, maximum step size, minimum step size and NSTEPS value. Default values for these quantities are established in normal fashion. If a value is specified outside a DERIVATIVE section, this becomes the default for all DERIVATIVE sections. Values relating to a particular DERIVATIVE section are defined by including the appropriate statement between the DERIVATIVE . . . END delimiters, i.e.

ALGORITHM IALG $=4$

```
    NSTEPS NSTP = 1
DERIVATIVE SEC1
    ALGORITHM ALGl = 3
    MAXTERVAL MAX1 }=0.00
END $' OF SEC1'
DERIVATIVE SEC2
    MAXTERVAL MAX2 = 0.010
END $` OF SEC2'
```

The first two statements establish algorithm number four (4) to be the default algorithm and each section will have a NSTP of 1 . Within derivative section one, the algorithm is specified to be three (3) with a maximum step size of $1 \mathrm{msec}(0.001)$. Within derivative section two, the default algorithm is taken and the maximum step size set to $10 \mathrm{msec}(0.010)$. Since NSTP is one, these will be the actual step sizes.

Implementation for these block descriptor names is by forming an array of length the number of derivative sections for each one of the describing quantities. The names used are the default or those specified outside the DERIVATIVE sections. In the preceding example, this would be IALG(2), NSTP(2), MAXT(2) and MINT(2). Names specified within the derivative sections are equivalenced into appropriate slot of the main array, i.e.

$$
\begin{aligned}
& \operatorname{IALG}(1) \equiv \mathrm{ALG} 1 \\
& \operatorname{MAXT}(1) \equiv \operatorname{MAX} 1 \\
& \operatorname{MAXT}(2) \equiv \operatorname{MAX} 2
\end{aligned}
$$

and preset to the value indicated. These values can be changed by SET commands at run-time. To change the integration algorithm for section two, it must be referred to as IALG(2) since a name was not explicitly given, i.e.

$$
\text { SET ALG1 }=5, \operatorname{IALG}(2)=5
$$

Because of the equivalencing convention, it is important that unique names be used for descriptors defined within DERIVATIVE blocks.

At the start of the simulation run, the DERIVATIVE blocks are placed on an event list and executed in the order in which they are specified in the model definition section. Note that the sort algorithm cannot rearrange statements over a block boundary, so that if a value calculated in the second block is used in the first block, the first time it will be undefined. Such quantities should be initialized in the INITIAL section.

Each block is placed back on the event list assigned with the time to which that block has advanced. In the case given of a 1 msec step associated with Section 1 and a 10 msec step associated with Section 2, the event list will look like:

A	B	C	D	E	F	G
0.0	0.0	0.001	0.002	0.010	0.010	0.011
1	2	1	1	1	2	1
0.0	0.001	0.010	0.010	0.010	0.011	0.020
2	1	2	2	2	1	2

After Section 1 has been advanced one step to 1 msec , the event list has Section 2 at the top (B) with a time of 0.0 . Advancing this section one step leaves it at 10 msec and now Section 1 is back at the head of the list again (C). Section 1 keeps on being advanced until they are both at $10 \mathrm{msec}(\mathrm{E})$. Now we assume that 1 is a little ahead of 2, and goes to $11 \mathrm{msec}(\mathrm{F})$. Next step advanced 2 by 10 msec and the event list picture changes to (G). This cycle then repeats.

The only break in the regular progression is at a communication interval or at an equivalent barrier represented by a DISCRETE block or a block with an integration algorithm of zero. The times for all DISCRETE blocks and also the communication action are entered onto a separate event list where all actions are ordered in time; the next time on the event list is called the barrier time.

For all other DERIVATIVE blocks, the current step size is checked against the current time (T) and the barrier time from the next event list. If the integration with the current step size will exceed the barrier time, the actual step is reduced so that the last step is made exactly up to the event. All states will then line up in time for the event to take place. If the event is a communication interval data recording, the derivatives are evaluated once more so that all algebraic variables depending on the states will be consistent. This action is not taken for barriers established by DISCRETE blocks since differences are likely to be small and the overhead of an extra forced derivative evaluation comparatively high. If. any problems are encountered remember that the state variables will be at the correct time and any algebraic variables can be rederived in the sampling code if necessary.

It seems most people choose step sizes and communication intervals that are integer multiples of each other. The ACSL system does not require this however, and it is acceptable to choose a fixed step length for the continuous section of 4 msec , a sampling INTERVAL (qv) in the DISCRETE block of 11 msec and a communication interval of 20 msec . The first few calculation intervals would then be

$$
4,4,3,4,4,1,2,4,4,3,4,3,4, \ldots
$$

The first short step of 3 msec brings time up to 11 msec the first barrier time. Then two more normal steps are followed by a short step of 1 msec to bring time up to the communication time of 20 msec . The next barrier is the DISCRETE block at 22 msec causing a step size of 2 msec and so on. The variable step algorithms are similar in that the step length will vary but the last step will always be reduced to move the block exactly up to the barrier time. Note however for monitoring purposes, the variable CSSITG or current step size will contain the step length the integration algorithm would like to take, not the shorter one actually taken up to the communication interval time.

4.32 DERIVT

The derivative function can be implemented if ABSOLUTELY necessary. Note that it is never necessary to invoke a derivative - it can be expressed instead in terms of all the other states in the system. Since the derivative operator is a first order approximation, it can lead to instability if it is used to represent any major loop. The only time this may be justified is for a minor term where a large amount of extra calculation may be needed to reform the problem in terms of the states. Standard form is

$$
\begin{aligned}
& y=\operatorname{DERIVT}(\mathrm{ic}, \mathrm{x}) \\
& \operatorname{DERIVT}(\mathrm{y}=\mathrm{ic}, \mathrm{x})
\end{aligned}
$$

where:
ic $=\mathrm{Y}(0)$
$\mathrm{x}=$ the input, an arithmetic expression
NOTE: This operator should not be included in a PROCEDURAL block.

4.33 DIM

Positive difference is obtained by the function

$$
y=\operatorname{DIM}\left(x_{1}, x_{2}\right)
$$

where x_{1} and x_{2} are real floating point variables or expressions. Result is

$$
\begin{aligned}
& y=x_{1}-x_{2} \text { if } x_{1}>x_{2} \\
& y=0.0 \text { otherwise }
\end{aligned}
$$

4.34 DISCRETE

An equivalent to the DERIVATIVE block is introduced by the keyword DISCRETE. The intent is to make it easy to model digital sampled data controllers where the communication to and from the continuous world occurs at fixed, known in advance, times. The format of the statement is

DISCRETE name

END
inserted within the DYNAMIC code block, if any, at the same level as any DERIVATIVE blocks. The action of the statement is to demarcate a code sequence that is executed at a discrete event or time point with the execution being controlled by the keyword INTERVAL. Like the DERIVATIVE blocks, each DISCRETE block has a time associated with it which is entered into an event list, which time will become a barrier for all the other DERIVATIVE blocks ensuring that they all take a final step (may be short) up to the barrier time before the code in the DISCRETE section is executed. If the INTERVAL statement is included, the DISCRETE block is re-entered on the event list with a time equal to the current time plus the current contents of the INTERVAL variable.

An example using a DISCRETE block to model a control computer is given in Section 11 of Appendix A and is shown in outline here by the following structure

PROGRAM discrete controller

DERIVATIVE CONTIN
(X DEPENDS ON U)

END \$' OF CONTINUOUS SECTION'

DISCRETE SAMPLE
INTERVAL DTSAMP $=0.100$

(U DEPENDS ON X)

END \$' OF DISCRETE’

END \$ OF PROGRAM'

In the continuous section we define a plant that can be as complex as necessary but structurally has an output X that depends on a control U. The control U should be visualized as being generated via a digital to analog converter so that the value of the control remains constant between output intervals. The next section is a DISCRETE block that is executed every DTSAMP seconds, defined by the INTERVAL statement to be 0.1 seconds. This block uses the output value of the plant X , which will be at the sample time, to compute a control U which will be used over the next sample interval. The successful operation of this simulation requires the continuous section to be exactly at the sample time when the plant value X is used to determine the next control U.

Jumps in the control U will modify all the high order derivatives estimated for the continuous plant so variable step algorithms will usually have to reduce the step size or even restart, since the fixed step size algorithms retain no memory of previous history, the new step will start out with a new evaluation of the discontinuous derivatives. The key to the action is the fact that the effective time of the continuous section is exactly at the sample time when the DISCRETE section code is executed.

The order of execution of the blocks is as given in the model definition code at time equals zero and both DERIVATIVE and DISCRETE blocks can be mixed. In general, in a closed loop situation, some variables will have to be initialized in the INITIAL section since they are used before being calculated in a later block. Reference as an example the control variable U in the preceding code sequence which is used in the continuous section before it is calculated in the DISCRETE block. If used like this without initialization, the first value of U used in the continuous section will be the last value left behind by the previous run! A test of the presence of these initialization problems is to make two identical runs i.e. START \$ START. If any answers are different it usually indicates an error.

The sequence of events at the time-equals-zero condition differs somewhat from the corresponding DERIVATIVE blocks. For conventional DERIVATIVE blocks, the initial conditions are moved to the state variable array and the derivative code executed once. Then the integration algorithm takes over and in integrating over the first step re-evaluates the derivatives again (the variable step algorithm IALG $=1$ or 2 will predict the state variables first before the correct iteration) so it appears that two derivative evaluations are used at time-equal-zero. With the DISCRETE block, the first evaluation takes place and then the block is placed back on the event list at some time in the future (depends on the INTERVAL statement) with any state variables still with their initial condition values. Now time will advance for other sections until the DISCRETE section barrier time is reached when the integration algorithm first advances the state variables, if any, to the current time by euler integration and then re-evaluates the DISCRETE section code. In general integration statements (INTEG or INTVC) are not used inside DISCRETE blocks since the facility is designed to represent sampling actions independent from the continuous physical world where the true integrations take place. There is sometimes a need for a simplified integration algorithm with a fixed step size and a single derivative evaluation per step. This has arisen in the past in translating DYNAMO models to run under ACSL. In this case the entire model can be placed in a DISCRETE block and no extra derivative evaluations will be inserted at the communication interval times. Since the states are always advanced just before a re-evaluation of the derivative code, algebraic variables are always synchronized to the state variables for data recording.

The mechanism for implementation of a DISCRETE section is to set an effective algorithm of zero in the corresponding IALG slot which can be seen from the debug output. The INTERVAL variable is equivalenced into the MINT (MINTERVAL) array and preset to the appropriate numeric value. Slots in the corresponding MAXT (MAXTERVAL) and NSTP (NSTEPS) arrays are ignored.

4.35 DO STATEMENT

The standard FORTRAN DO statement may be included. Note that the loop should normally be embedded in a PROCEDURAL block so that the sort routine will not rearrange the order of execution. This is not necessary within the INITIAL, DYNAMIC or TERMINAL regions of an explicit program since these are not sorted - each statement being executed in sequence. The loop cannot extend from INITIAL to TERMINAL to execute a sequence of runs. Each loop must be closed within its own block. The reason is the CONTIN statement that branches directly into the DYNAMIC loop. Most FORTRAN compilers will reject a branch into a loop. If a loop is established to make successive runs, then CONTIN cannot have any meaning since the initialization won't be performed properly.

A DO statement makes it possible to repeat a group of statements a designated number of times using an integer variable whose value is progressively altered with each repetition. The initial value, final value and rate of increase of this integer variable is defined by the set of indexing parameters included in the DO statement. The range of the repetition extends from the DO statement to the terminal statement, which must follow the DO statement, and is called the DO loop. The standard form of the DO statement is

$$
\begin{aligned}
& \text { DO } \mathrm{ni}=\mathrm{m}_{1}, \mathrm{~m}_{2} \\
& \text { DO } \mathrm{ni}=\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}
\end{aligned}
$$

where
$\mathrm{n}=\mathrm{a}$ label of the terminal statement of the loop, may be a symbol or numeric.
$\mathrm{i}=$ a simple integer variable called the index variable. With each repetition its value is altered by the increment parameter, m_{3}. This varible may not be changed within the loop.
$\mathrm{m}_{1}=$ initial parameter, the value of i during the first loop.
$m_{2}=$ terminal parameter, when the value of i surpasses the value of m_{2}, DO execution is terminated and control goes to the statement immediately following the terminal statement.
$\mathrm{m}_{3}=$ increment parameter, the amount i is increased with each repetition. If omitted - first form above - the value 1 is assumed.

The m_{1}, m_{2}, and m_{3} must be simple integer variables or unsigned integer constants.
In general, the use of DO statements should be minimized. More flexibility is usually obtained by programming each loop explicitly, i.e.,

$$
\begin{aligned}
& \mathrm{I}=\mathrm{m}_{1} \\
& \mathrm{~L} 1 \ldots \mathrm{IF}\left(\mathrm{I} . \mathrm{GE} \cdot \mathrm{~m}_{2}\right) \text { GO TO } \mathrm{L}_{2}
\end{aligned}
$$

```
...} loop
```

$\mathrm{I}=\mathrm{I}+\mathrm{m}_{3}$

GO TO L1

L2 . . CONTINUE

Now general expressions, arrays and real variables can be used for the indexing parameters.
For more information on the structure of the DO statement see the local FORTRAN reference manual. The ACSL translator checks the syntax of the DO statement but does not validate the correct nesting of loops or terminal statements. Errors of structure will be indicated by the FORTRAN compiler.

4.35 DYNAMIC

Identifies the block of code that is performed every communication interval throughout the run. It must be accompanied by its matching END card. Code executed in the DYNAMIC block can leave variable values around for use by the DERIVATIVE and DISCRETE blocks over the next communication interval and in that sense it can act as a sampler or D/A converter. It is preferable to include code calculations in a separate DISCRETE block and so make model behavior independent of the data recording action. The intent within the DYNAMIC block is to provide a place to put output related calculations so that they can be performed at the usually slower data recording rate rather than at each derivative evaluation. Examples are unit conversions such as radians to degrees or meters/seconds squared to gees. The time interval for the next communication interval can be itself changed, based on some simulation phase or configuration so obtaining variable data recording rates - see CINTERVAL statement for example.

No sorting is performed on any of the code within the DYNAMIC block.

4.36 END

Denotes the end of a block or section. Subsection 3.1 shows the use of END's in structuring an explicit program. One of the most common errors is not getting the right number of END's to balance off the program blocks. Error messages 'NOT ENOUGH ENDS' and 'TOO MANY ENDS' are issued when the count is incorrect. It acts like a right parenthesis in an arithmetic expression, except that it terminates blocks of statements. An incorrect count corresponds to unbalanced parentheses.

4.37 EQUIVALENCE

This operator is similar to the FORTRAN version in that it allows renaming of areas of storage. Due to the nature of storage in ACSL (all variables appear in a single common block) there are specific rules for the use of EQUIVALENCE which do not appear in normal FORTRAN usage. The standard form of the statement is:

EQUIVALENCE (Main variable, equivalenced variables(s)) . . .
,(Main variable, equivalenced variables(s)) . . .
,(etc.)
where "main variable" will appear in the users common block, and thereby reserve storage, while the equivalenced variables will be assigned storage relative to the main variable, but will not reserve space. All variables will appear in the dictionary with their own types and dimensionality.

Rules which restrict the use of EQUIVALENCE are as follows:

1) System variables (CINT etc.), States, Derivatives and Initial Conditions may only appear as main variables.
2) A main variable may never appear as an equivalenced variable.
3) An equivalenced variable must not appear more than once.
4) Variables may have no subscript or only one when being specified in an EQUIVALENCE statement. Multi subscripted arrays must appear using their equivalent single subscript. For example, given $\mathrm{A}(5,5)$, equivalencing the $(3,3)$ element to SAM would require a reference to $\mathrm{A}\left(5^{*} 3+3\right)$ or $\mathrm{A}(18)$ i.e.

EQUIVALENCE (A(18), SAM)
In using equivalenced variables, any reference to an equivalenced variable name is taken to be a reference to its associated main variable, even through the equivalenced variable may be only one element of a large main variable array. Thus the sorter will produce the error message "multiply defined symbol" if two equivalenced variables are assigned values outside a PROCEDURAL block.

ARRAY RM(3)
EQUIVALENCE (RM(1), RM1), (RM(2), RM2), (RM(3), RM3)

RM1 $=0.0$
$\mathrm{RM} 2=10000.0$
MULTIPLY DEFINED SYMBOL
Generally the main variable is equal to or larger than it's equivalenced variable(s) since the main variable reserves storage, i.e.,

ARRAY A(10)
EQUIVALENCE (A, B)
Here A is the main variable, B is the equivalenced variable. A reference to B uses the first element of A (= $A(1))$. $B(2)$ is not allowed unless B is a separately defined array.

ARRAY A(10)
EQUIVALENCE (B, A)
Now B is the main variable - which reserves one word of memory - and A is the equivalenced variable. A reference to $A(2)$ will access the variable that follows B in the common block, generally not known to the user.

4.38 ERRTAG

The name given to the variable that is used to indicate an attempt to reduce the step size below the minimum, MINT, can be changed. This name will be set .TRUE. to indicate an error by a variable step size integration algorithm which is reducing the step size to control the error bound. Standard form of the statement is

ERRTAG name

where 'name' is a simple unsubscripted variable. The type of 'name' will be automatically set to LOGICAL and it will be preset to .FALSE. to start with. The variable step integration routine will call the derivative subroutine once with the name given under ERRTAG set to TRUE. if it needs to reduce the step size below the minimium calculation interval, MINT. If it is still .TRUE. on return, the termination flag for that run will be set. Control should then revert to the terminal section, or executive and the next command will be read. If provision is made to handle this case and reset the flag, then care must be taken that an endless loop is not formed.

4.39 EXP

Exponential of real argument x

$$
y=\operatorname{EXP}(x)
$$

x is limited in size such that the maximum machine word size should not be exceeded by the exponential. Result is

$$
y=e^{x}
$$

4.40 EXPF

The exponential function can be switched on or off. The output is a function rising on a time constant to 1.0 ($\mathrm{ON}=$. TRUE.) or decaying to zero ($\mathrm{ON}=$.FALSE.). Standard form is

$$
y=\operatorname{EXPF}(\mathrm{ic}, \mathrm{ta}, o n)
$$

$\operatorname{EXPF}(\mathrm{y}=\mathrm{ic}, \mathrm{ta}, \mathrm{on})$
where:
ic $=\mathrm{Y}(\mathrm{o})-$ should be between zero and 1.0
$\mathrm{ta}=$ the time constant (τ)
on $=$ a logical variable or expression, denotes rise or decay
Results:

$$
\begin{aligned}
& \mathrm{y}=1.0-\operatorname{EXP}\left(-\left(\mathrm{T}-\mathrm{T}_{0}\right) / \tau\right) ; \mathrm{ON}=. \mathrm{TRUE} . \\
& \mathrm{y}=\operatorname{EXP}\left(-\left(\mathrm{T}-\mathrm{T}_{1}\right) / \tau\right) ; \mathrm{ON}=. \mathrm{FALSE} .
\end{aligned}
$$

T_{0} and T_{1} are the times at which ON changed .FALSE. to .TRUE. and .TRUE. to .FALSE. respectively.

4.41 FCNSW

Function switch operator has standard form

$$
y=\operatorname{FCNSW}(p, x 1, x 2, x 3)
$$

Results:

$$
\begin{aligned}
& y=x 1, p<0.0 \\
& y=x 2, p=0.0 \\
& y=x 3, p>0.0
\end{aligned}
$$

4.42 FORMAT

The FORTRAN FORMAT statement may be used and must have a label. In an explicit program, the FORMAT statement and corresponding I/O statement (READ, WRITE, etc.) must both be in the DERIVATIVE section or neither. Standard form of the FORMAT statement is

L1 . . FORMAT(character string)

The ACSL translator does not check the detailed syntax of the FORMAT statement. For further specification, reference should be made to a standard FORTRAN manual.

4.43 GAUSS

A normally distributed random variable can be generated by

$$
\begin{aligned}
& y=\operatorname{GAUSS}(m, s) \\
& \operatorname{GAUSS}(y=m, s)
\end{aligned}
$$

y will be normally distributed with mean m and standard deviation s .
NOTE: Warning listed under UNIF.
The seed for a random sequence can be reset by UNIFI or GAUSI. If not set, a different random sequence will be in effect for each run. Figure 4-6 gives a listing of the operator macro.

MACRO GAUSS (Y, AUE, STG)
$Y=A \cup E+G R U(Z Z S E E G) *(S T G)$
MACRO ENX

Figure 4-6. Listing of GAUSS Operator Macro

4.44 GAUSI or UNIFI

The seed for the random number generator can be initialized by using this operator. Standard form of the call is

GAUSI(k)
UNIFI(k)
where k is an integer constant or expression and should be an odd number for a maximal length sequence. If it's small ($1,3,5 \ldots$) the first five or ten values of random numbers will be highly correlated. Figure 4-7 gives a listing of the operator macro expansion. Only one initialization routine should be used since they both set the same seed variable.

NOTE: This operator should only be invoked in the INITIAL section of an explicit program or provision must be made to skip over it except at the beginning of each run in an implicit program. If it is repeatedly executed, the random numbers won't change.

```
MACRO GAUST (SEEGO
FROCEDURAL (=SEEGO
ZZSEEO=SEEM
ENM
MACRO ENI
```

Figure 4-7. Listing of GAUSI Operator Macro

4.45 GO TO STATEMENT

GO TO statements transfer control to a labelled statement whose reference is fixed or which is assigned during execution of the program. The statement labels used in the GO TO statements must be associated with executable statements in the same program unit as the GO TO statement. In explicit programs, the INITIAL, DYNAMIC and TERMINAL sections exist in a single program unit. However, control cannot be transferred into the DYNAMIC region. The reason for this is that the integration routines must be initialized at the start of the run and this initialization operation is done on leaving the INITIAL section and entering the DYNAMIC section. Control can be transferred from the DYNAMIC region and between INITIAL and TERMINAL
regions. The DERIVATIVE section is a separate program block.
In the following a statement label may be either numeric or symbolic. Standard forms of the various labels are:

GO TO k
Execution resumes at the statement labelled k. Example:

> GO TO LOOP

GO TO m, $\left(\mathrm{n}_{1}, \mathrm{n}_{2} \ldots, \mathrm{n}_{\mathrm{m}}\right)$
GO TO m
The statement acts as a many branched GO TO. m is a simple integer variable ASSIGNed a label value. The n_{i} are statement labels which should correspond to a possible label assigned to m .

$$
\text { GO TO }\left(n_{1}, n_{2}, \ldots, n_{m}\right), \text { i }
$$

where:
$\mathrm{n}_{\mathrm{i}}=$ statement labels
$\mathrm{i}=\mathrm{a}$ simple integer variable that has been given an integer value between l and m.
If i has the value k, then control will be transferred to the $k^{\text {th }}$ statement label, n_{k}, in the above list.
WARNING: The inclusion of a large number of GO TO's is considered harmful to the successful completion of any simulation project.

4.46 HARM

A sinusoidal or harmonic drive function can be defined by:

$$
y=\operatorname{HARM}(\mathrm{tz}, \mathrm{w}, \mathrm{p})
$$

Result:

$$
\begin{array}{ll}
\mathrm{y}=0.0 & \mathrm{~T}<\mathrm{tz} \\
\mathrm{y}=\operatorname{SIN}\left(\mathrm{w}^{*}(\mathrm{~T}-\mathrm{tz})+\mathrm{p}\right) & \mathrm{T} \geq \mathrm{tz}
\end{array}
$$

where:
tz $=$ delay in sec
$\mathrm{w}=$ frequency in rad $/ \mathrm{sec}$
$\mathrm{p}=$ phase shift in rad
Note that if p is nonzero a jump discontinuity will be involved.

4.47 HYSTERESIS

Use the backlash operator BCKLSH

4.48 IABS

Absolute value of an integer argument can be obtained by the function

$$
\mathrm{n}=\operatorname{IABS}(\mathrm{j})
$$

j is an integer variable or expression of arbitrary complexity.
NOTE: Integer variables must be declared to be type INTEGER. The default type is REAL. The function name IABS should be typed INTEGER as well.

4.49 IDIM

Integer positive difference can be obtained by the function
$\mathrm{n}=\operatorname{IDIM}\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)$
where j_{1} and j_{2} are integer variables or expressions.
NOTE: IDIM should be declared of type INTEGER prior to its use.
Result:
$\mathrm{n}=\mathrm{j}_{1} \mathrm{j}_{2} ;$
$\mathrm{j}_{1} \geq \mathrm{j}_{2}$
$\mathrm{n}=0$;
$\mathrm{j}_{1}<\mathrm{j}_{2}$

4.50 IF STATEMENTS

IF statements are used to transfer control conditionally. At the time of execution, an expression in the IF statement is evaluated and the result determines the statement to which the jump will be made. The most useful form is the one-branch logical IF. It has the standard form

IF (lexpr) statement
where lexpr is a logical or relational expression (one that has a single value - either .TRUE. or .FALSE.) and statement is any executable FORTRAN statement except another logical IF, a DO statement or END. Non-FORTRAN statements or those particular to ACSL may expand to more than one actual FORTRAN statement. Only a single statement can be included in the logical IF statement. Examples are:
$\operatorname{IF}(\mathrm{A} . \operatorname{LT} .5 .0) \mathrm{A}=\mathrm{A}+0.1$
IF(T. GT. TSTOP) GO TO FINISH
The real switch (RSW) operator (q.v.) can often be used in place of an IF which then avoids having to bracket the IF code sequence by PROCEDURAL . . . END statements in order that statement order can be maintained.

The three-branch arithmetic IF is also included for completeness. In general, these should be avoided entirely due to the difficulty encountered in following any complex branching structure. Use only logical IF's given before with explicit GO TO's which effectively act like a two-branch IF and avoid the statement label on fall through. Standard form of arithmetic IF is

$$
\mathrm{FF}(\mathrm{c}) \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}
$$

where:

$$
\mathrm{c}=\text { any arithmetic expression }
$$

$$
\mathrm{n}_{\mathrm{i}}=\text { statement labels }
$$

Control is transferred as

$$
\begin{aligned}
& c<0, \text { jump to statement } n_{1}, \\
& c=0, \text { jump to statement } n_{2}, \\
& c>0, \text { jump to statement } n_{3}
\end{aligned}
$$

4.51 IMPL

The solution of simultaneous or algebraic equations cannot be written directly because of the sort algorithm. Every value is assumed calculable on the outputs of the integrators or state variables. Equations of the form $x=f(x)$ cannot be expressed in this form and it is necessary to find another way to calculate the output. Often an algebraic operation can be performed that can simplify the result. Feedback round a summer,

leads to

$$
\mathrm{Y}=\mathrm{X}-\mathrm{KY}
$$

which cannot be modeled directly.
A little algebra can easily give

$$
Y=\frac{X}{1+K}
$$

Some functional relations may be impossible to solve explicitly and so the implicit operator can be invoked. This will separate out the algebraic loop and use a Newton-Raphson iteration method to try to find a solution.

WARNING: This operation can multiply the computer time need for a simulation study many times.
It is worth spending some time trying to avoid implicit loops.
The standard form for the function is:

$$
\begin{aligned}
& y=\operatorname{IMPL}(y z, e, m, e f l, \text { expr, ydl) } \\
& \operatorname{IMPL}(y=y z, e, m, e f l, ~ e x p r, y d l)
\end{aligned}
$$

where:

$$
y z=\text { initial guess }
$$

$\mathrm{e}=$ the error bound - real constant or arithmetic expression
$m=$ the maximum number of iterations to try - must be an integer constant or variable - not an expression
efl $=$ the error flag - a variable only - which is set nonzero if the iteration does not converge
expr $=$ the expression that contains or eventually leads back to Y
$\mathrm{ydl}=$ the value used to increment the initial value to estimate the derivative. If not specified the assumed value is 0.0001
NOTE: The IMPL operator should not be used in a PROCEDURAL block that will prevent the correct sorting of any intervening statements.
The iterative method used is Newton-Raphson to solve

$$
\begin{aligned}
& Y=f(Y) \\
& C_{n}=\frac{f_{n}-f_{n-1}}{Y_{n}-y_{n-1}} \quad \text { is the derivative estimate } \\
& Y_{n+1}=\frac{f_{n}-C_{n} Y_{n}}{1-C_{n}}
\end{aligned}
$$

Upon initial entry

$$
Y_{n-1}=Y Z
$$

$$
Y_{n}=\left(1.0+Y_{n}\right)^{*} Y_{n-1}
$$

The error criterion for successful completion of the iteration is

$$
\left|Y_{n}-f_{n}\right| \leq\left|Y_{n}\right| * E
$$

4.52 INITIAL

Identifies the block of code that is performed just once before the start of each run. It must be accompanied by its own matching END card enclosing the block and the block must be placed before the DYNAMIC (q.v.) section. Refer to Subsection 3.1 for rules of explicitly structured programs. No sorting is done on any code within the INITIAL block.

4.53 INT

Integerization of a real floating point argument

$$
\mathrm{n}=\mathrm{INT}(\mathrm{x})
$$

n will be the sign of x times the largest integer $\leq|\mathrm{x}|$

NOTE: INT should be declared of type INTEGER prior to it use.

4.54 INTEG

All integration in an ACSL program is handled by a centralized integration routine. In performing integrations, the integration algorithms utilize two intervals - the calculation interval and the communication interval. Since digital integration is basically a discrete process, the calculation interval is the fundamental interval over which the state variables are updated. No finer detail is accessible except by some interpolation scheme. All integration schemes for the set of first order differential equations

$$
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x})
$$

finish up looking like

$$
x_{n+1}=x_{n}+h f\left(x_{n+\alpha}\right)
$$

where $0 \leq \alpha \leq 1$. The problem is to find the effective derivative to be used in updating the state vector. Note that with suitable conditions on continuity and differentiability, the mean value theorem guarantees that an α exists that will produce an exact answer for the state trajectory - finding it is another matter, however. Different integration schemes approximate the derivative in different ways - usually by expanding the derivative function in a Taylor series, about the current state.

As an example, consider the Runge-Kutta integrations. The derivative function $f(x)$ is evaluated four times and saved as the v_{i}. The first is the slope at the beginning of the interval:

$$
\mathrm{v}_{1}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)
$$

This slope is extrapolated half way across the interval and a new value calculated:

$$
\mathrm{v}_{2}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+0.5 \mathrm{hv}_{1}\right)
$$

This new slope is brought back to the beginning of the interval and again used to extrapolate half way across the interval and a new slope evaluated

$$
\mathrm{v}_{3}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+0.5 \mathrm{hv}_{2}\right)
$$

This third slope is brought back to the beginning of the interval and used to extrapolate all the way across and a new slope evaluated there

$$
\mathrm{v}_{4}=\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{hv}_{3}\right)
$$

We now have four slopes - one an exact one at the beginning of the interval and approximations - two in the middle and one at the end. Runge-Kutta says that the average slope to be used in updating the state is the
weighted average of these - assigning twice the weight to the slopes in the center of the interval as the ends, i.e.,

$$
f\left(x_{n+a}\right)=\left(v_{1}+2 v_{2}+2 v_{3}+v_{4}\right) / 6
$$

Errors introduced at each step will normally be proportional to h^{5} for this method.
The form of the integration statement is either

$$
\text { state }=\text { INTEG(deriv, ic) }
$$

or embedded in any legal expression as a function that has a single output, the value of the state. When the integration statement is alone, then the state name can be identified - embedding in an expression means a generated variable must be used for the state.
'state' $=$ a simple variable or subscripted array name with a single integer CONSTANT subscript.*
'deriv' $=$ an arithmetic expression of arbitrary complexity, i.e., may contain further INTEG statements, functions or MACRO's
'ic' = a simple non-subscripted variable, a real constant or a general expression enclosed in parentheses. If it is a simple variable (preferred), then this variable name must not be used as another initial condition, state, derivative or system variable name.
If the expression form is chosen the statement is sorted in such a way that all components in the expression are evaluated before the state value is assigned. Equations using the state will then follow. Problems may occur when using this form with the REINIT command (q.v.) at model execution time. The expression will always be evaluated and substituted for an initial condition established by the reinitialization operation.

Examples of use are as follows:

```
ARRAY X(5)
\(\mathrm{Y}=\operatorname{INTEG}\left(5.0^{*} \mathrm{X}+\mathrm{C}, \mathrm{YIC}\right)\)
\(\mathrm{X}(1)=\operatorname{INTEG}(\mathrm{A}+\mathrm{B}, \mathrm{X} 1 \mathrm{IC})\)
\(\mathrm{X}(2)=\operatorname{INTEG}\left(\operatorname{INTEG}\left(4.0^{*} \mathrm{DD}+\mathrm{X}(1), 0.0\right), \mathrm{X} 2 \mathrm{IC}\right)\)
\(\mathrm{Z}=\mathrm{P}^{*} \operatorname{INTEG}(\mathrm{ZDOT}, 0.0)+\mathrm{BT}\)
\(\mathrm{W}=\operatorname{INTEG}\left(\mathrm{WDOT},\left(2.0^{*} \mathrm{AL}^{*} \operatorname{SIN}(\mathrm{TH})\right)\right.\) )
```

The following comments are to be noted.

1) That Z, in the above, is not a state since the INTEG function appears embedded in an expression.
2) Once the array X has been defined as a state by the single INTEG statement, another assignment statement cannot be used to fill the other slots of an array. If one element of an array is a state, ALL elements of the array must be states; i.e.,

$$
\begin{aligned}
& \mathrm{X}(3)=\mathrm{W}+5.0^{*} \mathrm{Y} \\
& \mathrm{X}(4)=\mathrm{AL}^{*} \operatorname{INTEG}(\mathrm{ALP}, 0.0)+\mathrm{W}
\end{aligned}
$$

are both illegal when accompanying the above.
Initial conditions can only be names not used as states, other initial conditions or system variables; i.e.,

```
YY = INTEG(YYD, YIC)
ZZ = INTEG(Z*4.0,X)
ZK = INTEG(KK, CINT)
```

[^5]are all illegal when used with the above cards. CINT could be used if the system default name has been changed by a CINTERVAL statement (q.v.).

The reason for the rules may be better understood if the actual translation operation is explained. The translator is building up three lists of names that will be placed in sequence in a FORTRAN common block. The state list will contain all the state variables and arrays, the derivative list will contain names that have values for the derivatives stored into them and the initial condition list will have names with values corresponding to the equivalent slot in the state list. The problem comes about that each name in these lists must be unique. The initial condition name for each state must be different. If it is a constant or an expression, a generated name is used (Znnnnn) but if it is a simple variable the translator uses that name directly. The expression form is changed into a test (IF statement) on the first evaluation of a run, in which case the expression is evaluated and the result stored into the state. The derivatives at present are all generated variables to avoid conflict since it was thought that integrating a state was too common a feature to eliminate. The statements

$$
\begin{aligned}
& \mathrm{YD}=\operatorname{INTEG}\left(5.0^{*} \mathrm{X}, 1.0\right) \\
& \mathrm{Y}=\operatorname{INTEG}(\mathrm{YD}, \mathrm{YIC})
\end{aligned}
$$

will generate the following assignment statements

$$
\begin{aligned}
& \mathrm{Z} 09999=5.0^{*} \mathrm{X} \\
& \mathrm{Z} 09998=\mathrm{YD}
\end{aligned}
$$

and a DATA statement for the generated initial condition

DATA Z09997/1.0/

Now the state list will be YD, Y; the derivative list will be Z09999, Z09998; and the initial condition list will be Z09997,YIC. Each name on the list is unique.

From this we can show that it saves time to include the derivative expressions in the INTEG statement rather than calculating the derivative by name explicitly. Of course, if the derivative is needed in other calculation sequences then it must be given a name, but this would be an unusual case, i.e.,

$$
\begin{aligned}
& Y D=5.0^{*} X+Y Y \\
& Y=\operatorname{INTEG}(Y D, Y I C)
\end{aligned}
$$

would be better done by

$$
Y=\operatorname{INTEG}\left(5.0^{*} X+Y Y, Y I C\right)
$$

unless the value of the expression $5.0^{*} \mathrm{X}+\mathrm{YY}$ is needed elsewhere in the program. The extra assignment statement is avoided. However, see the use of INTVC below for single elements - pseudo arrays of size one.

4.55 INTEGER

See type statements.

4.56 INTERVAL

In order to schedule repeated execution of a DISCRETE (q.v.) block, the INTERVAL statement is used both to define the name of the variable controlling the repetition period and its initial value. Standard form for the statement is

INTERVAL name $=$ real constant
where 'name' is a simple unsubscripted variable name. There is no default and a DISCRETE section without an INTERVAL statement will never be executed.

The mechanization of the INTERVAL feature is to use the slot in the global MINTERVAL array corresponding to the DISCRETE block and equivalence the INTERVAL variable into this array. If no INTERVAL statement is placed within the DISCRETE block, a value of zero is used as the default which flags the DISCRETE block as not to be executed during the initialization phase.

4.57 INTVC

The restrictions on the INTEG operator with regard to initial condition and derivative arrays can be avoided by using this vector integrator operator. Standard form is

$$
\mathrm{x}=\operatorname{INTVC}(\mathrm{xd}, \mathrm{xic})
$$

where x, $x d$ and xic are arrays of the same size and correspond to state, derivative and initial condition respectively. See the program in Section 10 of Appendix A for examples of the use of the INTVC operator.

The restrictions on the use of the INTVC operator are as follows:

1) INTVC cannot be used in an expression.
2) The derivative array must not appear anywhere else as a state. (If you must use a state as a derivative - velocity, for instance - use the block transfer (XFERB) subroutine to move it into another array before using INTVC.
3) The initial condition cannot be a constant or expression.
4) The array size may be one - or equivalently a single undimensioned variable can be used instead. In this case, the derivative name is used explicitly and no extra assignment statement is generated.
5) The derivative array cannot be preset with a CONSTANT statement since it is cleared automatically to zero before the derivative evaluation routine is called the first time - after the INITIAL section - after every START.

As an example consider
ARRAY $\mathrm{X}(10), \mathrm{XD}(10), \mathrm{XIC}(10), \mathrm{M}(5,5), \operatorname{MD}(5,5), \operatorname{MIC}(5,5)$

X = INTVC(XD, XIC) \$ 'VECTOR INTEGRATION'
$\mathrm{M}=\mathrm{INTVC}(\mathrm{MD}, \mathrm{MIC}) \$$ 'MATRIX INTEGRATION'
If R, V and A are range, velocity and acceleration vectors so
ARRAY R(3), V(3), A(3)
the following is ILLEGAL -
$\mathrm{V}=\mathrm{INTVC}(\mathrm{A}, \mathrm{VIC})$
$\mathrm{R}=\mathrm{INTVC}(\mathrm{V}, \mathrm{RIC})$
since these statements ask for V to be considered as both a state and a derivative at the same time. Using the XFERB (transfer block) subroutine and defining an RD (R dot) array, the sequence becomes
$\mathrm{V}=\mathrm{INTVC}(\mathrm{A}, \mathrm{VIC})$
CALL XFERB (RD $=\mathrm{V}, 3$)
$\mathrm{R}=\mathrm{INTVC}(\mathrm{RD}, \mathrm{RIC})$

4.58 I/O STATEMENTS

FORTRAN read, write and file handling statements can be included and are recognized by the ACSL translator but a minimum of syntax checking is performed. Most errors will be indicated at the FORTRAN compilation that follows translation.

The following definitions apply to all the I/O statements covered:
$\mathrm{i}=$ logical I / O number that determines the file. The logical unit numbers available depend on machine type and operating system. See addendum.
$\mathrm{i}=5$ being the INPUT file or card reader
$=6$ being the OUTPUT or print file
$=9$ being the PRINT file - must be disposed of explicitly
$\mathrm{n}=$ FORMAT declaration identifier which must be a statement label (number or symbol)
$\mathrm{L}=$ input/output list. This list portion of an input/output statement indicates the data items and the order, from left to right, of transmission. The input/output list can contain any number of elements. List items may be array names, simple or subscripted variables, or an implied DO-loop. Items are separated by commas, and their order must correspond to any FORMAT specifications associated with the list. External records are always read or written until the list is satisfied. The ACSL translator does not check the syntax of the list - any character string will be accepted and errors will be indicated by the subsequent FORTRAN compilation. For more details on list format, refer to a FORTRAN reference manual.

Standard form of the I/O statements are as follows:
PRINT n, L - Information in the list L is transferred to the OUTPUT unit-printer or remote terminal - in accordance with the FORMAT declaration, n .N.B. Use LINES (q.v.) before the PRINT or WRITE to tell the executive how many lines are being written. Top-of-form is then handled automatically.

WRITE(i, n)L-Same as PRINT above except the file is determined by the value of the unit i. Valid logical unit numbers depend on machine type and operating system. See addendum.

READ n, L - One or more card images are read from the standard INPUT unit - card reader or remote terminal. Information is converted from left to right in accordance with the FORMAT specification, n , and is stored in the locations named in the list, L .

READ(i, n)L - Same as READ above, except the file is determined by the value of the unit i. Valid logical unit numbers depend on machine type and operating system. See addendum.

4.59 ISIGN

Append a sign by

$$
\mathrm{n}=\operatorname{ISIGN}\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)
$$

where j_{1} and j_{2} are integer variables or expressions. Result is sign of j_{2} times absolute value of j_{i} and the result will be an integer.

NOTE: ISIGN should be declared to be of type INTEGER prior to its use.

4.60 LEDLAG

A lead-lag compensator may be conveniently implemented by using the standard form
$y=\operatorname{LEDLAG}(p, q, x, i c)$
$\operatorname{LEDLAG}(\mathrm{y}=\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{ic})$
Result: y will be related to input x through the transfer function

$$
\begin{aligned}
& \frac{y}{x}=\frac{p s+1}{q s+1} \\
& y(0)=\frac{p}{q} x(0)+i c
\end{aligned}
$$

The same restriction on ic is present as for the INTEG operator. p and q may be expressions of arbitrary complexity. Figure $4-8$ shows the mechanization of this operator as a system macro.

```
MACRO LEMLAG(OUT, F,Q,TN,TC)
MACEO STANKUAL T.C=O.O
MACRO RELIFTNE X,Y
X=1.N
OUT:=Y+(F)*X/(Q)
Y=INTEG((X-OUT)/(Q),IC)
MACRO ENH
```

Figure 4-8. Listing of LEDLAG Operator Macro

4.61 LIMINT

Integrators should not be limited using the BOUND function since the integrator will continue to integrate and will thus require a time to integrate out of the limit when the derivative changes sign. The LIMINT operator holds the integrator at the limit as long as the derivative is of such a sign to drive it further into limit.* When the derivative reverses sign, the integrator will immediately come off limit. The operator has the standard form

$$
\begin{aligned}
& \mathrm{y}=\operatorname{LIMINT}(\mathrm{yd}, \mathrm{ic}, \ell \ell, \mathrm{u}) \\
& \operatorname{LIMINT}(\mathrm{y}=\mathrm{yd}, \mathrm{ic}, \ell \ell, \mathrm{u} \ell)
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{yd}=\text { an expression for the derivative } \\
& \text { ic }=\mathrm{y}(0)-\text { same restriction on ic as on the INTEG statement; may be omitted if zero } \\
& \ell \ell=\text { lower limit on } y \\
& u \ell=\text { upper limit on } y
\end{aligned}
$$

Figure 4-9 shows the effect of the LIMINT operator.

4.62 LINES

Used to tell the executive processor how many lines are going to be written with PRINT or WRITE statements. Pass by this if you do not use FORTRAN FORMAT statements. The executive processor at run-time keeps track of the number of lines written on the output file and every 55 lines issues a top-of-form and prints out the header and TITLE. If FORTRAN write statements are included in the model definition they are expected to inform the processor how many lines they are going to write so that the pagination is performed correctly. Standard forms of the call are

[^6]
yd' IS MADE ZERO WHEN y EXCEEDS BOUNDS

Figure 4-9. Effect of LIMINT Operator

CALL LINES (n)

where n is the number of lines about to be printd. If n lines are not available on the current page, the page will be ejected. You should not issue your own top-of-form by making Column 1 a digit 1.

CALL LINES(2)

PRINT99, A, B, C
99 . . FORMAT(1X, 2E12.5/1X, F12.2)
In order to force a top-of-form prior to the write, call subroutine PAGE(q.v) before calling LINES.

4.63 LOG

The data logging operation for the OUTPUT and PREPAR lists can be forced by a call to this subroutine. Data logging only takes place after each pass through the DYNAMIC section and on exit from the TERMINAL section. Finer detail can be recorded by judicious use of this operation. An example of use is as follows:

LOGICAL HIRATE
IF(HIRATE) CALL LOG
which will force the data logging action whenever logical variable HIRATE is true.

4.64 LOGICAL

See type statements.

4.65 LSW, RSW

Logical (or integer) and real switch functions. The standard form of these two operators is

$$
\begin{aligned}
& \mathrm{i}=\operatorname{LSW}\left(\mathrm{p}, \mathrm{j}_{1}, \mathrm{j}_{2}\right) \\
& \mathrm{y}=\operatorname{RSW}\left(\mathrm{p}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)
\end{aligned}
$$

The functions take on the value of the second argument, j_{1} or x_{1}, when the logical expression p has the value .TRUE., otherwise the value of the third argument, j_{2} or x_{2}. The j_{1} and j_{2} are any integer or logical expressions; x_{1} and x_{2} are real expressions.

NOTE: LSW should be declared to be of type INTEGER prior to its use.

4.66 MACRO

Denote the beginning of a MACRO definition if not already within a definition. Within a definition denotes special subcommands to be interpreted by the MACRO processor. For a full description of the MACRO capability see Section 6.

4.67 MAXO

Maximum of a string of integer arguments can be obtained from

$$
\mathrm{n}=\operatorname{MAX} 0\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{n}}\right)
$$

where the j_{i} are integer variables or expressions; any number of arguments may be included.
NOTE: MAXO should be declared of type INTEGER prior to its use.

4.68 MAX1

Maximum of a string of real arguments can be found from the function

$$
\mathrm{n}=\operatorname{MAX} 1\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

where the x_{i} are real, floating point variables or expressions. Any number may be included. Result will be the integerized value of the largest x_{i}, where the integerized value is the sign of the x_{i} times the largest integer $\leq\left|x_{i}\right|$

NOTE: MAX1 should be declared to be of type INTEGER prior to its use.

4.69 MAXTERVAL

See MINTERVAL.

4.70 MERROR, XERROR

Relative and absolute error bounds - per step - for individual state variables. They are written in the standard form -

MERROR $\mathrm{v}_{1}=$ real constant, $\mathrm{v}_{2}=$ real constant, etc.
XERROR $\mathrm{v}_{1}=$ real constant, $\mathrm{v}_{2}=$ real constant, etc.
where the v_{i} are nonsubscripted variable names that are state variables, i.e., appear opposite an INTVC or INTEG statement that is not embedded in an expression. The state itself can be an array, but then the errors specified will apply to all elements in the array. Individual elements cannot be given separate error tolerances.

MERROR is used for relative (fractional) errors and
XERROR for absolute errors.
If any relative or absolute errors are specified, the FIRST specification encountered will be applied to all integrators that are unspecified. If no values are specified, the relative and absolute errors will both be set to $1.0 \mathrm{E}-4$.

Example:

$$
\text { MERROR X }=1.0 \mathrm{E}-4, \mathrm{Y}=1.0 \mathrm{E}-6
$$

where:

$$
\begin{aligned}
& \mathrm{X}=\operatorname{INTEG}(\mathrm{XD}, \mathrm{XIC}) \\
& \mathrm{Y}=\mathrm{INTEG}(\mathrm{YD}, \mathrm{YIC}) \\
& \mathrm{Z}=5.0^{*} \operatorname{INTEG}(\mathrm{ZZZ}, 0.0)+\operatorname{COS}(\mathrm{X})
\end{aligned}
$$

Note Z in the above example cannot have any error bounds specified since it is not a state. The actual state will be a generated variable which will be placed in the assignment statement instead of the INTEG function.

The MERROR and XERROR statements have meaning only for the variable step-size integration algorithms and are used to bound the error introduced at each step. Based on the maximum absolute value of a state variable $\left|\mathrm{V}_{\mathrm{i}}\right|_{\text {max }}$ since the start of the run*, the allowable error bound is defined to be

$$
E_{i}=\operatorname{MAX}\left(X_{i}, M_{i}\left|v_{i}\right|_{\max }\right)
$$

If any of the predicted errors in a step of the integration program are greater than the corresponding E_{i}, the calculation interval or step size is reduced appropriately. If the error is still too large after the step size has been reduced to the minimum, the ERRTAG variable, if any, is set .TRUE. and the run aborted.

4.71 MINO

Minimum of a string of integer arguments can be found from the function

$$
\mathrm{n}=\operatorname{MIN} 0\left(\mathrm{j}_{1}, \mathrm{j}_{2}, \ldots, \mathrm{j}_{\mathrm{n}}\right)
$$

where the j_{i} are integer variables or expressions. Any number of arguments may be included.
NOTE: MINO should be declared to be of type INTEGER prior to its use.

4.72 MIN1

Integerized minimum of a string of real arguments can be found from the function

$$
\mathrm{n}=\operatorname{MIN} 1\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Arguments will be the same as for MAX1.
NOTE: MIN1 should be declared of type INTEGER prior to its use.

4.73 MINTERVAL, MAXTERVAL

The minimum and maximum calculation intervals (integration step size) can be controlled and renamed using these statements. If a variable step size algorithm attempts to go below the value of the minimum step size, the error tag will be set. If it is already set, the termination flag will be set. Standard form for the statements are

MINTERVAL name $=$ real constant
MAXTERVAl name $=$ real constant
where 'name' is a simple unsubscripted variable name. Default names for these variables are MINT and MAXT so why not use them? They can be set by assignment statements in the program or by SET commands at run-time. Example:

MINTERVAL MINT $=1.0 \mathrm{E}-6$

[^7]then at run-time
SET MINT $=2.0 \mathrm{E}-6$
MAXTERVAL may be used to control the step size independently of the communication interval changes if NSTEPS (q.v.) is made 1. The calculation interval (step size) is started off at the CINT/NSTP and this is then forced to lie in the region MINT to MAXT.

4.74 MOD

Modulus, or remainder, of an integer divided by an integer can be obtained by

$$
\mathrm{n}=\operatorname{MOD}\left(\mathrm{j}_{1}, \mathrm{j}_{2}\right)
$$

where j_{1} and j_{2} are integer constants, variables or expressions.
Result is remainder of j_{1} divided by j_{2}. When j_{2} is negative, this isn't quite correct. What actually happens is that the result is $\mathrm{j}_{1}-\left[\mathrm{j}_{1} / \mathrm{j}_{2}\right] \mathrm{j}_{2}$ where [] is an integer with magnitude of not more than the argument and with the same sign.

NOTE: MOD should be declared to be type INTEGER since the default for all variables is type REAL.

4.75 MODINT

Moded integrator allows operation in reset and hold mode as well as normal operate. The mode of the integrator is determined by the two flags in the call. Standard form is

$$
\begin{aligned}
& Y=\operatorname{MODINT}(y d, i c, \ell 1, \ell 2) \\
& \operatorname{MODINT}(y=y d, i c, \ell 1, \ell 2)
\end{aligned}
$$

where:
yd is the derivative variable or expression.
ic is the initial condition - see INTEG for restrictions on initial conditions.
$\ell 1$ and $\ell 2$ are logical variables or expressions of arbitrary complexity denoting the mode.
The truth table is

$\ell 1$	$\ell 2$	Mode
T	F	reset
F	F	operate
T	T	operate
F	T	hold

where

$$
\mathrm{T}=. \mathrm{TRUE} . \text { and } \mathrm{F}=. \text { FALSE. }
$$

Figure 4-10 shows the mechanization of this operator as a system macro.

```
MACRO MOMTNT (Y, I, TC, LCOU, L..CUS)
MACNO RE:IABE!.. &
MACNO KEWFFNF TCTEM, STATE,STORE, MONED
LOGTCAL MOMN:M
CONSTANT STOFE=0.
FOCFMURAL (Y, MOMEG:STATE, TC, LOUN, LCU2)
CA&L ZZTCS(TOTEM=STOFE)
TF(ZZFGT(STATE). LT. O. F)GOTO &
MOMEM:=. FALSE:.
IF((ICUI).ANI. (LGU&).OR. NOT.((LCOI).OF. (LCV2)))GOTO B
MOMEM=. TRUE:
IF (1.CUI) TCTEM=1C--STATE
& . Y=:STATE:TCTEM
ENO
STATE=INTEG(ZZKSW(MOXFI,O., II),IC)
MACRO ENO
```

Figure 4-10. Listing of MODINT (Moded Integrator) Operator Macro

4.76 NSTEPS

Defines the calculation interval - integration step size - in terms of the communication interval. It renames the integer variable that defines the number of integration steps in a communication interval. Standard form of the statement is

NSTEPS name $=$ integer constant
where name is a simple nonsubscripted variable. The default name is NSTP and is normally given a value of 10 . This means that the integration step will be one-tenth the communication interval.

The variable named in the NSTEPS statement is automatically typed INTEGER. The name defined in the NSTEPS statement (or NSTP by default) can be set by assignment statements within the program itself.

The maximum and minimum step size values MAXT and MINT take precedence over the step size arrived at by dividing the communication interval by NSTP, i.e., the step size H is given by

$$
\mathrm{H}=\mathrm{MAX}(\mathrm{MINT}, \operatorname{MIN}(\mathrm{MAXT}, \mathrm{CINT} / \mathrm{NSTP}))
$$

It is recommended that the value of NSTP be made unity so that the integration step size can be controlled by the value of MAXT, specified by a knowledge of the plant dynamics i.e. include the statement NSTEPS NSTP $=1$. If CINT/NSTP is controlling, then a change in observation interval CINT will require a corresponding change to NSTP to keep the same step size. Having to change two variables for one result is normally considered bad programming practice.

4.77 OU

Band limited white noise can be implemented by this function. A normal random number generator (GAUSS) will deliver a fixed total power - rms value - but the frequency spread will depend on the current
calculation interval. Usually, the low frequency power density is important so casual use of GAUSS into a low pass filter will lead to ill-defined variation of this quantity as the step size is changed. The OrnsteinUhlenbeck process maintains a constant source of power over a specified frequency band, so eliminating any problem of having to include the current calculation interval in the standard deviation of the random variable. Standard forms are

$$
\begin{aligned}
& \mathrm{y}=\mathrm{OU}\left(\tau_{\mathrm{a}}, \mathrm{~m}, \mathrm{~s}\right) \\
& \mathrm{OU}\left(\mathrm{y}=\tau_{\mathrm{a}}, \mathrm{~m}, \mathrm{~s}\right)
\end{aligned}
$$

where
τ_{a} is the low-pass filter time constant. Break frequency is $1 / 2 \pi \tau_{\mathrm{a}} \mathrm{Hz}$
m is the mean value of Y
s is the standard deviation of Y (rms value)
The operator is implemented by generating a correlated noise sequence from the general formula

$$
n_{i+1}=n_{i} e^{\frac{-\Delta t}{\tau}}+\omega_{i}
$$

where
τ is the correlation time constant
$\Delta \mathrm{t}$ is the sample interval
ω_{i} is a gaussian random variable
We would like to find the ω_{i} that will produce the correct noise power or such that

$$
\overline{\mathrm{n}^{2}}=\overline{\sigma^{2}}
$$

Square the above equation for n_{i+1} and take expected values

$$
\overline{n_{i}^{2}}+1=\overline{n_{i}^{2}} \mathrm{e}^{\frac{-2 \Delta t}{\tau}}+\overline{\omega_{\mathrm{i}}^{2}}
$$

since we can assume the random drive uncorrelated with the noise sequence. i.e.

$$
\overline{n_{i} \omega_{i}}=0
$$

But $\quad \overline{n_{\mathrm{i}}^{2}}=\overline{n_{\mathrm{i}}^{2}}+1=\overline{\sigma^{2}}$
so $\quad \omega_{\mathrm{i}}^{2}=\sigma^{2}\left(1-\mathrm{e}^{\frac{-2 \Delta t}{\tau}}\right)$
Now the sequence can be expressed by

$$
\left.n_{i+1}=n_{i} \mathrm{e}^{\frac{-\Delta \mathrm{t}}{\tau}}+\sigma \sqrt{\left(1-\mathrm{e}^{\frac{-2 \Delta \mathrm{t}}{\tau}}\right.}\right) \mathrm{g}_{\mathrm{i}}
$$

where g_{i} is a gaussian random variable of zero mean and unit variance.

4.78 OUTPUT, PREPAR

Variables to be recorded at each communication interval can be specified by these two statements. In general, these statements should be viewed as part of the exercising of the model and included in the run-time commands. It is realized, however, that standard lists may be defined and, in that case, may be included within the model definition part of the program. The statements are accomplished by system MACRO's so the arguments must be enclosed in parentheses for the model definition. The corresponding run-time commands do not have parentheses. Standard forms are

$$
\begin{aligned}
& \operatorname{OUTPUT}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \text { etc. }\right) \\
& \operatorname{PREPAR}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \text { etc. }\right)
\end{aligned}
$$

where v_{i} are either simple variables or array names. If the v_{i} are array names, the entire array will be reported. In this form it is not possible to select array elements.

OUTPUT designates the variables that will have their values recorded on the print file as the run progresses at each communication interval. PREPAR records the values on a save file that is used by any subsequent PLOT or PRINT commands. The OUTPUT list cannot be in columns, since each communication interval the entire block of output variables must be printed. Once the data has been saved, it can be put into columns by repeated passes down the file.
N.B. The OUTPUT and PREPAR statements in the model definition wastes core space since the names must be preset into a data array and then transferred once at run-time to the lists used by the executive. Only one OUTPUT and PREPAR statement is significant. If more than one is used the first one will be effective.

Any run-time OUTPUT or PREPAR statements will override these statements embedded in the model definition.

For an explicit program (Subsection 3.1) they should be placed in the INITIAL section. They must not be placed in the TERMINAL section.

These statements are translated to a subroutine call that passes the list of names given. The appropriate list (OUTPUT or PREPAR) is checked and if the length is currently zero, the list of names is added. If the length non-zero, no action is performed. By this means, build up is avoided in loops and the run-time specification will override the model definition specification.

4.79 PAGE

In order to control pagination, subroutine PAGE can be used to force a top-of-form and turn on or suppress auto page eject. As a by product, the number of lines left on the current page is returned as the second argument. The format of the call is

CALL PAGE (K , nll) where K is a code to modify the page eject as follows:
$=-2$, suppress auto page eject, eject next write
$=-1$, suppress auto page eject
$=0$, ignore but return 'NLL'
$=1$, turn on auto page eject
$=2$, turn on auto page eject, eject next write
nll is returned as the number of lines left on the current page. In order to force a new page before writing ten lines via a formatted write statement use

CALL PAGE (2, NLL)
CALL LINES (10)

WRITE $(6,99) .$.

The ACSL system normally operates in an internal auto page eject mode. The exception is the printer PLOT command when plots can span page boundaries. Auto page eject is restored after each PLOT.

4.80 PREPAR

See OUTPUT.

4.81 PRINT

See I/O statements.

4.82 PROCEDURAL

Denotes the beginning of a block of PROCEDURAL code that will finish with a matching END. The code within the block will be executed in the sequence given and no attempt will be made to reorder it. Form of statement
PROCEDURAL (output list = input list)
where:

```
output list = variable, variable, variable . . .
```

input list $=$ expression, expression,...

The output list should contain only nonsubscripted variable names. They may belong to arrays however, in which case the entire array must be filled within the block. The sort algorithm requires that values only appear as outputs once - otherwise, the error message 'multiply defined output symbol' is issued.
So

$$
\begin{aligned}
& A(1)=X+Y \\
& A(2)=Y+Z
\end{aligned}
$$

flags the variable A as having a value placed in it twice and so illegal. An acceptable form would embed this sequence in a PROCEDURAL block.

$$
\begin{aligned}
& \text { PROCEDURAL }(\mathrm{A}=\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \\
& \mathrm{A}(1)=\mathrm{X}+\mathrm{Y} \\
& \mathrm{~A}(2)=\mathrm{Y}+\mathrm{Z} \\
& \text { END }
\end{aligned}
$$

which tells the sort routine to place the block before a reference to any element of the array A.
PROCEDURAL . . . END brackets need only be used in a DERIVATIVE section where the code is sorted. Remember PROGRAM . . . END alone is an implicit DERIVATIVE section. Code placement in the INITIAL, DYNAMIC, or TERMINAL sections is unsorted so although PROCEDURAL . . . END may be used, it will have no effect.

Within a DERIVATIVE section, the entire block is moved so that is is placed after the calculation of all variables on the input list and before the use of any variables on the output list. Although other variables may be present on the list, sorting is only with respect to variables calculated within the same DERIVATIVE section. The sort operation never moves code across section boundaries. The entire DERIVATIVE section can be made a PROCEDURAL block and since it then can't be moved, no input or output argument list is necessary. PROCEDURAL . . . END brackets should always be used around code constructs in which the order must not be changed. Typical operators are DO, GOTO and IF (three way or single branch).

Expert users may lie in specifying what is on the input/output lists. The ACSL translator never looks inside the PROCEDURAL block to ensure compliance with the list supplied, so it is possible to break algebraic loops for approximate solution by omitting one of the loop variables from the PROCEDURAL input list. Since this variable will be used before it's calculated, initialization is required in the INITIAL section. In breaking implicit loops this way, the last value of the variable will be used which is satisfactory in a large number of cases. Be warned however that the results will change with step size and a variable phase shift will be present in traversing the implicit block.

Abstract

NOTE: Statements involving memory operators which must be sorted into correct execution order should not be included in a PROCEDURAL block. These are ZHOLD (zero order hold), DELAY, DBLINT, DERIVT, (the derivative operator) and for other reasons IMPLicit.

4.83 PROGRAM

The first card in the model definition section must be this card; it has the form
PROGRAM any character string except a dollar sign
The character string is not used in any way and serves merely to identify the deck and listing. This card must be accompanied by a matching END statement to terminate the model definition section.

4.84 PTR

A resolver - polar to rectangular - can be implemented by the standard form

$$
\operatorname{PTR}(X, y=r, t h)
$$

Result is

$$
\begin{aligned}
& x=R^{*} \operatorname{COS}(t h) \\
& y=R^{*} \operatorname{SIN}(t h)
\end{aligned}
$$

where the angle, th, must be expressed in radians. Figure 4-11 lists the mechanization of this operator as a system macro.

```
MACRO PTR(XI:XO,R,TH)
XI=(\mathbb{F})*\operatorname{Cos(TH)}
X2=(R)*SIN(TH)
MACRO ENO
```

Figure 4-11. Listing of PTR (Polar to Rectangular) Operator Macro

This form is not a functional representation since there are two outputs. Thus, this statement cannot be embedded in an expression. It can only stand alone as shown.

4.85 PULSE

A train of pulses can be generated using the PULSE function. The independent variable, default T, is used to drive it. Note that the integration step size may affect the answers in that too large a step could cause
the pulse to stay on indefinitely. The output will always be turned on $(=1.0)$ at the beginning of the first calculation interval that follows the exact turn on time. Standard form is

$$
\mathrm{y}=\operatorname{PULSE}(\mathrm{tz}, \mathrm{p}, \mathrm{w})
$$

Result
Y is a pulse train (0.0 or 1.0) starting at the first calculation interval that equals or exceeds tz . Period is p and width is w.

4.86 QNTZR

A variable may be quantized so that only discrete values are used. It is a zero centered system as shown in the diagram. Standard form

$$
y=\operatorname{QNTZR}(p, x)
$$

Result:

where x and p are real variables or expressions.

4.87 RAMP

The RAMP function generates a linear ramp of unit slope, starting at a specified time. It is another way of applying a dead zone (DEAD q.v.) to the independent variable. Standard form is:

$$
\mathrm{y}=\operatorname{RAMP}(\mathrm{tz})
$$

Result is:

$$
\begin{array}{lc}
\mathrm{y}=0.0 & \mathrm{~T}<\mathrm{tz} \\
\mathrm{y}=\mathrm{T}-\mathrm{tz}, & \mathrm{~T} \geq \mathrm{tz}
\end{array}
$$

RAMP starts at first calculation interval that equals or exceeds tz.

4.88 READ

See I/O statements.

4.89 REAL

See type statements.

4.90 REALPL

A first order lag may be implemented by the standard form

$$
y=\operatorname{REALPL}(p, x, i c)
$$

REALPL $(y=p, x, i c)$
Result:
y will be related to input x through the transfer function

$$
\begin{aligned}
& \frac{y}{x}=\frac{1}{p s+1} \\
& Y(0)=\mathrm{ic}
\end{aligned}
$$

The same restrictions on ic are present as for the INTEG operator; if zero, it may be omitted. P may be an expression of arbitrary complexity. Figure 4-12 lists the macro to implement this operator.

```
MACRO REALFL_(Y, F,X,TC)
MACFO STANOUAL TC=0.O
Y=INTEG((X-(Y))/(F), IC)
MACRO END
```

Figure 4-12. Listing of REALPL Operator System Macro

4.91 RESET

A special operator is provided for use in the INITIAL section that can initialize the state variables and optionally perform intermediate calculations. Normally when entering the INITIAL region, the state variable names are undefined - it is only on exit from the INITIAL region to the DYNAMIC region that the initialization operation is performed. Remember the prime objective of the INITIAL region is to calculate the unknown initial conditions. Two forms of the call are possible so

RESET ('EVAL')

RESET ('NOEVAL’)

where the argument explicitly says whether or not a complete derivative evaluation is to be attempted. It is the user's responsibility to ensure that unknown initial conditions have "reasonable" values to prevent arithmetic errors (divisions by zero say). An example would be calculating the initial conditions to be placed on the
accelerometer filters in a missile simulation. In order to obtain the nominal acceleration, the missile velocity vector must be rotated into the missile axes, the angle of attack determined and the aerodata looked up to obtain force coefficients. This code must be expressed in terms of the inital condition variables rather than the state variables unless the RESET operator is used.

This extra code can be avoided by

RESET ('EVAL')

at the beginning of the INITIAL region since the derivative subroutine would calculate body acceleration using the state variable names. The problem is that the process is not selective - calculations of all state variable derivatives is attempted. In the above example the output of the accelerometer filter must lead somewhere and if initialized indefinite will lead to an arithmetic error. If the undefined initial conditions are preset in a CONSTANT statement (0.5 is a useful default number) then the calculation can proceed and the meaningless numbers can be disregarded. The important thing is that all the calculations can proceed without arithmetic errors.

The operator is defined in terms of a state vector S , and the initial condition vector IC. The state derivative vector is given by

$$
\stackrel{\rightharpoonup}{\mathrm{S}}=\mathrm{f}(\mathrm{~S}, \mathrm{~T})
$$

Now the RESET(a) action is

$$
\begin{aligned}
& S \leftarrow I C, T \leftarrow \text { XICITG } \\
& \text { if }(a=E V A L) \text { evaluate } f(S, T)
\end{aligned}
$$

4.92 RSW

See LSW (logical switch).

4.93 RTP

A resolver - rectangular to polar - can be implemented by the standard form

$$
\operatorname{RTP}(\mathrm{r}, \mathrm{th}=\mathrm{x}, \mathrm{y})
$$

Result:

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \text { th }=\operatorname{ATAN} 2(y, x)
\end{aligned}
$$

The angle, th, will be in radians and will cover the range $-\pi$ to $+\pi$ depending on the magnitude and signs of x and y. Figure $4-13$ shows the mechanization of this operator as a system macro. Note the second argument of the arc-tangent (ATAN2) is modified by the addition of a very small amount. Inputs of $0.0,0.0$ will return an angle of zero instead of indefinite.

```
MACRO FTP(F,TH, X1,X2)
R=5@RT((X1)**2+(X2)**2)
TH=ATAN2(X2, X1+1. OE--30)
MACRO ENG
```

Figure 4-13. Listing of RTP (Rectangular to Polar) Operator Macro

This form is not a functional representation since there are two outputs. Thus, this statement cannot be embedded in an expression. It can only be used as stand alone as shown.

4.94 SAVE

The current MACRO tables containing the MACRO names and packed definitions are written - in binary - on the ACSL System Macro File. This operation allows each user to maintain his own file of MACRO's separate from the system file.

The normal operation of the system is to read into the MACRO definition tables, the contents of this Macro File before the translation begins. If it does not exist, no MACRO definitions are present.

Action of SAVE is to write the current contents of the MACRO tables back on this file, thus destroying the original contents. To use SAVE you must have WRITE permission on the current MACRO file.

4.95 SCALE

Rounds the given maximum and minimum values so that they are suitable for plotting. Standard form of the call is
$\operatorname{SCALE}(\mathrm{smn}, \mathrm{smx}=\mathrm{ymn}, \mathrm{ymx})$
where:
$y m n$ and $y m x$ are the minimum and maximum values
smn and smx are the scaled minimum and maximum to be used on a plot (i.e., rounded to multiples of $1,2,4$, or 10)
The first two arguments need not be distinct frm the second, i.e.,
SCALE (ymn, ymx $=y m n, y m x)$
replaces actual minimum and maximum values with the rounded ones.
Normally, this operator should be used in the TERMINAL section of an explicit program to establish scale factors for subsequent PLOT (q.v.) commands. It is only used when two or more plots need the same, originally unknown, scale factors.

4.96 SIGN

Append a sign by

$$
\mathrm{y}=\operatorname{SIGN}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

where:
x_{1} and x_{2} are real, floating point constants, variables or expressions.
Result is the sign of x_{2} time the absolute value of x_{1};
To mulitiply by the SGN of a variable where

$$
\begin{array}{ll}
\operatorname{SGN}(x)=+1.0 & x \geq 0.0 \\
\operatorname{SGN}(x)=-1.0 & x<0.0
\end{array}
$$

the SIGN function can be used so
$y=X * S I G N(1.0, Z)$
which will give

$$
y=X^{*} \operatorname{SGN}(Z)
$$

NOTE: The result of $\operatorname{SIGN}(X, Z)$ is not the same thing as $X * \operatorname{SIGN}(1.0, Z)$.

4.97 SIN

Takes the sine of a real argument which must be in radians

$$
y=\operatorname{SIN}(x)
$$

Result will be such that $-1.0 \leq \mathrm{y} \leq 1.0$

4.98 SORT

Take the square root of a positive real argument x .

$$
y=\operatorname{SQRT}(x)
$$

4.99 STEP

The STEP function produces a change from zero to one in the output at a specified value of the independent variable. Standard form is

$$
\mathrm{y}=\operatorname{STEP}(\mathrm{tz})
$$

Result is

$$
\begin{aligned}
& \mathrm{y}=0.0, \mathrm{~T}<\mathrm{tz} \\
& \mathrm{y}=1.0, \mathrm{~T} \geq \mathrm{tz}
\end{aligned}
$$

Pulse starts at first calculation interval that equals or exceeds tz.

4.100 TABLE

Used to describe an arbitrary function of one, two or three variables. A separate TABLE statement must be used to define each function. The standard form is:

TABLE name, n , dimension(s)/data list/
where 'name' $=$ name of the function. The value will be accessed by name (arg1), name (arg1, arg2) or name ($\arg 1, \arg 2, \arg 3$) for functions of one, two or three variables respectively. The arguments in the above are arithmetic expressions, hence can contain an arbitrary level of complexity.
' n ' $=$ an unsigned integer constant giving the number of independent variables; must be 1,2 or 3 .
'dimension(s)' $=$ unsigned integer constants; the number of constants must correspond to the value for n . The value of the constants give the number of discrete data points for each successive independent variable. A dimension of one is illegal.
'data list' $=$ real constants: First comes the list of independent variable values. The number of these points should equal the sum of the dimensions. Then, the data points of the function with the first argument varying fastest. The number of function data points must equal the product of the dimensions.

All data points for the independent variables (break points) must be of monotonically increasing order - values may be identical but a breakpoint must never be less than a preceeding value. Each TABLE statement may contain as many data points as desired. Once the function has been defined it may be referenced just like any other ACSL function. Repeat counts may be used in the data specification.

Examples of use in tables of one, two and three variables. Breakpoints are 2 for $\arg \mathrm{a}, 3$ for $\arg \mathrm{b}$ and 4 for arg c.

TABLE F1ARG, $1,2 / 0.0,1.0, \mathrm{f}_{1}, \mathrm{f}_{2} /$
TABLE F2ARG, 2, 2, 3/0.0, 1.0, - $1.0,0.0,+1.0 \ldots$

$$
\mathrm{f}_{11}, \mathrm{f}_{21}, \mathrm{f}_{12}, \mathrm{f}_{22}, \mathrm{f}_{13}, \mathrm{f}_{23} /
$$

TABLE F3ARG, 3, 2, 3, 4/0.0, $1.0,-1.0,0.0,+1.0,0.0,0.1,0.2,0.3 \ldots$

$$
\begin{aligned}
& , \mathrm{f}_{111}, \mathrm{f}_{211}, \mathrm{f}_{121}, \mathrm{f}_{221}, \mathrm{f}_{131}, \mathrm{f}_{231} \cdots \\
& , \mathrm{f}_{112}, \mathrm{f}_{212}, \mathrm{f}_{122}, \mathrm{f}_{222}, \mathrm{f}_{132}, \mathrm{f}_{232} \cdots \\
& , \mathrm{f}_{113}, \mathrm{f}_{213}, \mathrm{f}_{123}, \mathrm{f}_{223}, \mathrm{f}_{133}, \mathrm{f}_{233} \cdots \\
& , \mathrm{f}_{114}, \mathrm{f}_{214}, \mathrm{f}_{124}, \mathrm{f}_{224}, \mathrm{f}_{134}, \mathrm{f}_{234} /
\end{aligned}
$$

For all function generation routines, if the calculated values of the independent variables lie outside the range specified by the TABLE statement, the values for the function will be obtained by extrapolating from the last values given.

The table operator makes up a MACRO of the same name as the function so that all references after the table definition are caught. An array is also defined with the same name and enough storage to contain both function data values and the corresponding argument breakpoint values. This array name is entered into the dictionary and it may be accessed in normal fashion by SET, DISPLY etc. commands. One point to note is the order of data entry into the array - the function data is listed first, then the breakpoint values follow. This order is the opposite from that listed in the TABLE statement. It was felt that the more normal operation at run time was changing function values rather than breakpoints.

Consider the pitching moment table as a function of Mach number
TABLE CM, 1, 5

$$
\begin{aligned}
& / 0.0,0.8,1.2,1.5,2.5 \ldots \\
& , 0.50,0.51,0.92,0.83,0.15 /
\end{aligned}
$$

This will make up an array $\mathrm{CM}(10)$ - the first five words will contain the function values $0.50,0.51,0.92$, $0.83,0.15$; the words six through ten will contain the breakpoint values $0.0,0.8,1.2,1.5,2.5$. To change the function value for Mach 1.5 we can

$\operatorname{SET} \operatorname{CM}(4)=0.65$

To change the breakpoint from Mach 1.5 to Mach 1.6, we must calculate the position in the table $(=5+$ 4) so

$$
\operatorname{SET~CM}(9)=1.6
$$

will change the breakpoint. For multidimension tables, the function data all comes first, then the breakpoint data in order - first, second, third argument. Remember the run-time command SET cannot access a multidimension array.

When used, the function referenced is translated into an assignment to a dummy variable from the function look up subroutine i.e.

$$
\mathrm{Q}=0.5 * \mathrm{RO}(\mathrm{H})^{*} \mathrm{~V}^{* *} 2
$$

would become

$$
\begin{aligned}
& \mathrm{Z} 09999=\mathrm{ZZF} 1(10, \mathrm{Z} 09998, \mathrm{RO}, \mathrm{H}) \\
& \mathrm{Q}=0.5^{*} \mathrm{Z} 09999^{*} \mathrm{~V}^{* * 2}
\end{aligned}
$$

where the first argument of ZZF1 (the 10) is the number of breakpoints, the second argument is the current breakpoint interval, the third argument is the array name which will contain the function value and the fourth argument is the expression that is the original argument expression. Note the problem with labels - if the original statement is labelled so that control can be transferred by other GOTO's. i.e.

$$
\mathrm{L} 1 . . \mathrm{Q}=0.5 * \mathrm{RO}(\mathrm{H})^{*} \mathrm{~V}^{* *} 2
$$

The label will still be attached to the $\mathrm{Q}=$ statement in the translated text and the $\mathrm{Z} 09999=$ assignment will be bypassed unless control flows directly. Labels in general should be avoided and when used should only be attached to CONTINUE cards to prevent this problem (see Section 2.3 for more details)

4.101 TAN

Take the tangent of the real argument x which must be expressed in radians

$$
\mathrm{y}=\mathrm{TAN}(\mathrm{x})
$$

4.102 TERMINAL

Identifies the block of code performed at the end of each run. It must be accompanied by a matching END card. In order to save calculating variables over and over again during the simulation run, the calculation can be placed in the TERMINAL block and executed only at the end of the.run. Radial miss distance is a case in point where range components XMT, YMT and ZMT may be available throughout the flight. Radial miss distance at the end would be computed from

$$
\text { MISS }=\operatorname{SQRT}\left(\mathrm{XMT}^{* *} 2+\mathrm{YMT}^{* *} 2+\mathrm{ZMT}^{* *} 2\right)
$$

Placing this in the TERMINAL section would save the extra central processor time to evaluate this expression every integration step. Code in the TERMINAL section is not sorted.

4.103 TERMT

The terminate conditions must be specified that will stop the simulation run. In an explicit program, control will be transferred to the TERMINAL region and from thence back to the executive which will interpret the next sequential command. An implicit program will transfer control back to the executive directly. Standard form of the operator is:

TERMT (logical expression)
The run will terminate when the logical expression is .TRUE.. More than one TERMT statement can be used though it is usually better to extend the logical expression in the argument to cover all possibilities. It should normally be placed in the DYNAMIC region of an explicit program.

Example,
TERMT((H. LE. 0.0). OR. (V. LE. VMIN). OR. . . .

(T. GE. TMAX))

A TERMT statement placed in the DYNAMIC section will stop the simulation at a communication interval. A TERMT statement placed in a DERIVATIVE or DISCRETE section will stop the simulation at the integration step (calculation interval) following when it becomes .TRUE..

4.104 TRAN

Transfer functions in the form of a ratio of polynomials in the Laplace operator, s, may be directly implemented in ACSL by the transfer function simulation operator. The simple first order transfer function - REALPL and LEDLAG and second order CMPXPL are preferred since the code generated is more efficient. Higher order operators should use TRAN. Standard forms are:

$$
\begin{aligned}
& y=\operatorname{TRAN}(n n, n d, q n, q d, x) \\
& \operatorname{TRAN}(y=n n, n d, q n, q d, x)
\end{aligned}
$$

where:
nn is an integer CONSTANT giving ORDER of the numerator polynomial nd is an integer CONSTANT giving the ORDER of the denominator polynomial
qn is the coefficient array for the numerator (may be a real constant if nn is zero)
qd is the coefficient array for the denominator
x is the input, an arithmetic expression of arbitrary complexity
The polynomials are in the form of highest power of s coefficient first and any coefficient that is missing must be input as zero. Note $n n+1$ and nd +1 numbers are required in the numerator and denominator arrays since it is the ORDER that is defined, not the number of coefficients.

All initial conditions are taken as zero and nn and nd must be integer constants, not symbols. That is, the order cannot be changed during a run, nor can it be changed artificially by setting the highest power of the denominator polynomial to zero, i.e., $\mathrm{QD}(1)$ must be nonzero.
Example 1:

$$
G(s)=\frac{3 s+2}{s^{3}+2 s^{2}+5}
$$

ARRAY P(2), Q(4)
CONSTANT $\mathrm{P}=3.0,2.0, \mathrm{Q}=1.0,2.0,0.0,5.0$
$\operatorname{OUT}=\operatorname{TRAN}(1,3, \mathrm{P}, \mathrm{Q}, \mathrm{IN})$
Note the s^{1} term has to be filled in as a zero in the Q array.
Example 2:

$$
G(s)=\frac{K}{s^{3}+1}
$$

$$
\begin{aligned}
& \text { ARRAY } \mathrm{D}(4) \\
& \begin{aligned}
\text { CONSTANT } \mathrm{D} & =1.0,0.0,0.0,1.0 \\
\mathrm{Z} & =\operatorname{TRAN}\left(0,3, \mathrm{~K}, \mathrm{D}, 5^{*} \mathrm{X}+\operatorname{COS}(\mathrm{TH})\right)
\end{aligned}
\end{aligned}
$$

Note when the numerator is a single value it does not need to be declared in an array. Some way of calculating the value - constant or assignment statement or expression must be provided, however. Figure 4-14 lists the mechanization of this operator as a system macro. This listing is to be viewed as an example of the complexities that can be implemented using macros.

4.105 TYPE

Variables may be typed and optionally dimensioned at the same time by the three statements REAL, INTEGER and LOGICAL. The standard form of the statements is:

```
MACFO TRAN(OUT,NN,NI,F,G,TN)
MACKO ASSTGN N
MACRO REMEFTNE T,Z,ZM,ZTC
MACRO RELABEL L1,1.2
MACRO MULTIFL_Y O
MACRO TNCFEMENT NN
MACRO 10..TF(N=NII)2O
MACRO IF (N=1000)999
MACRO TNCFEMENT I
MACRO GOTO 10
MACRO 2O..CONTINUE
AFRAY Z(NII),ZM(NMI, ZTC(NDI)
CONSTANT ZTC=NN*O.O
FFOCEMURAL (ZU=FF,O,IN)
ZM(1)=IN-Z(1)*Q(2)
MACRO TF (NO=1)25
MO 1. 1. T=2,NO
Za(1)=7n(1)--z(#)*(Q(I+1)
11.. ZM(I)=Z(I-1)
MACRO 厄E. CONTTNUE
Za(1)=7M(1)/Q(1)
ENG
MACFO DECFEMENT NN
MACRO TF(NN=NOI26
FROCEMURAL (OUT.=F,Z)
MACRO TF (NN=O)}3
OUT=FP(1)*Z(N)
MACRO GOTO 27
MACRO 2G..CONTTNUE
FROCEMURAL (OUT=F,Z,ZZI)
OUT=F(1)*ZM(1)
MACRO 27..CONTINUE
MO L2 T=1,NN
12. ouT=0UT+F(I+1)*Z(I+N)
MACRO GOTO 40
MACRO ZO..CONTTNUE
OUT=(F:)*Z(NM)
MACRO 40..CONTTNUE
FND
Z=TNTUC(ZO,ZIC)
MACRO EXITT
MACRO 999..FFRNT NUMERATOR GREATER THAN MENOMINATOR
MACRO ENG
```

Figure 4-14. Listing of TRAN (Transfer Function) Operator Macro

REAL	v_{1}, v_{2}, v_{3}, etc.
INTEGER	v_{1}, v_{2}, v_{3}, etc.
LOGICAL	v_{1}, v_{2}, v_{3}, etc.

where the V_{i} are either simple variable names or else subscripted arrays with 1,2 or 3 integer CONSTANT subscripts separated by commas.
Examples are:
INTEGER K, JJ(10), $\operatorname{FRED}(2,2)$

LOGICAL FLAG

Note no variable name need be typed as REAL as all variables are assumed to be this form unless explicitly typed otherwise. The FORTRAN convention that symbols starting with I, J, K, L, M or N are integer does not hold.

4.106 UNIF

A uniform random number sequence can be generated by
$\mathrm{y}=\operatorname{UNIF}(\ell, \mathrm{u})$
Result is that y is a random variable uniformly distributed between a lower value ℓ and an upper value u.
WARNING: The power density or what is usually more important, the low frequency power, will depend on the calculation interval. Variable step integration methods can produce peculiar results. See OU operator.

4.107 UNIFI

See Gaussian initialization, GAUSI.

4.108 VARIABLE

A nonsubscripted variable is designated as the independent variable for integration with its initial value given by a real constant. It is written in the form

VARIABLE name $=$ real constant, initial condition name $=$ real constant
If this statement is omitted, the independent variable will be called T, with an initial value of 0.0 . The initial condition value will not have an accessible default name.

4.109 WRITE

See I/O statements.

4.110 XERROR

See MERROR.

4.111 ZHOLD

A zero order hold can be implemented with the standard forms:

$$
\begin{aligned}
& y=\mathrm{ZHOLD}(\mathrm{ic}, \mathrm{p}, \mathrm{x}) \\
& \mathrm{ZHOLD}(\mathrm{y}=\mathrm{ic}, \mathrm{p}, \mathrm{x})
\end{aligned}
$$

where:
ic is $y(0)$ if $p(0)$ is false
p is the sampling switch, i.e.,
$\mathrm{y}=\mathrm{x}$, while p is true.
$y=$ previous value while p is false.
x is the input to be sampled - an arithmetic expression of arbitrary complexity.
Figure 4-15 gives a listing of the mechanization of this operator as a system macro.

Figure 4-15. Listing of ZHOLD Operator Macro

A monostable can be implemented using this feature by defining a triangular waveform DL that is zero when START becomes true. Before START is true, the large initial condition ensures that DL has a large positive value

LOGICAL START, MONO

DL $=\mathrm{T}-$ ZHOLD (-1.0 E 100 , START, T)
MONO = DL. LT. TMONO
The logical variable MONO will be true for a time TMONO after START becomes true. Arrangements should be made for turning off START (making false) once MONO becomes true so that is is only activated by a pulse.

IF $(\mathrm{MONO}) S T A R T=$. FALSE.
The ZHOLD step will only take place on the first pass through the DERIVATIVE subroutine of each calculation interval. Subsequent passes and iterations for predictor- corrector algorithms are protected from discontinuities in this way. Thus it is necessary to wait for the hold to be established before turning off the activating variable (START).

This statement requires the sort algorithm to be operative, so it should not be included within a PROCEDURAL block.

NOTE: The ZHOLD operator should not be used in a PROCEDURAL block that will prevent the correct sorting of any intervening statements.

4.112 ZOH

A zero order hold that is similar to the one used in MIMIC may be invoked by this function. The output is sampled repetitively every dt units. The standard forms are:

$$
\begin{aligned}
& y=\mathrm{ZOH}(x, i c, t z, d t, i) \\
& \mathrm{ZOH}(y=x, i c, t z, d t, i)
\end{aligned}
$$

where:
x is the input expression
ic is the initial value for the output - up to tz
tz is the time the sampling action starts
dt is the sampling interval
i is an optional integer variable starting at one and incremented before each sampling action:
Fill an array by

$$
\mathrm{ZOH}(\operatorname{ARR}(\mathrm{I})=\mathrm{x}, \mathrm{ic}, \mathrm{tz}, \mathrm{dt}, \mathrm{I})
$$

Figure 4-16 presents a listing of this operator as a system macro

```
MACRO ZOH(OUTFUT, TNFUT, TC, TO, DT, I.)
MACRO REGEFINE TL,TN
MACRO ASSTGN N
FROCEDURAL (TL:ETO)
TI.:"TN
CALL ZZICS(TL=T0)
ENO
MACRO TF(N=6)10
MACRO GOTO 2O
MACRO 1O..CONTINUE
MACRO REGEFTNE TZ
TNTEOER T,TZ
CONSTANT TZ=1
CALI ZKSMFL(T=T+1,T%,TL)
MACRO ZO..CONTTNUE
CALL ZZSMFL. (OUTFUT=TNFUT,TC,TL.
CALI ZXSMFL(TN=TL+UT, TO,TL.,
MACRO ENG
```

Figure 4-16. Listing of ZOH Operator Macro

In order to generate a triangular wave (TWV) use
TWV $=\mathrm{T}-\mathrm{ZOH}(\mathrm{T}, 0.0,0.0, \mathrm{DT})$
The output of the zero order hold sampling T itself will be a staircase. When this is subtracted from T a triangular wave will result for:

THIS PAGE INTENTIONALLY LEFT BLANK

5. ACSL RUN-TIME COMMANDS

Once the model has been translated, and has gone through the FORTRAN compile and load and is in execution, control is by a sequential set of commands that exercise the model. The order of execution is the order given and no branching or looping commands are available. Data values may be changed and once changed stay that way until changed by command or unless the code in the model definition recalculates them. Control is retained in the executive section until a START command is received when control is released to the model program and the integration starts. Some method of terminating the run must be present in the model definition code otherwise the executive will never regain control. (See TERMT operator, Chapter 4.)
For typical command sequences used to exercise the models see examples in Appendix A. Throughout the description of these run-time commands the philosophy employed is that symbols or variable names imply the value stored in the location corresponding to the name. Strings in quotation marks stand for themselves and so may be general Hollerith data and act as a title, comments or subcommands or qualifiers to each of the main commands.

If any data is needed by the command it must be supplied in the correct format - either integer, real or logical. An integer is a string of digits with no decimal point, a real number is a string of digits with a decimal point and/or exponent (E); a logical constant is .TRUE. or .FALSE. Hollerith data, i.e., strings in quotation marks, are considered to be of type integer. Integers used for real variables will be automatically floated prior to use.
Whenever a data element is expected, a symbol can be substituted and the program will consider the data element to be that contained in the symbol. The type of the data is considered to be that associated with the symbol when the model was defined. As an example, consider

> OUTPUT T, A, B, 'NCIOUT’ = I

The subcommand 'NCIOUT' expects an integer following that is going to define the number of communication intervals between OUTPUTs. The current value in the symbol I is used to specify this number. The symbol I must have been typed explicitly by

INTEGER I

in the model definition section since all variables not so typed are considered real. This feature does not provide a variable output rate changeable by the value in I as the simulation proceeds. It is the current value in the symbol that is used at the time the command is executed.

Commands are the first variable names on the statement, separated from the arguments to the command by one or more spaces. Extra commands can be written on the same line by delimiting them by a dollar sign (\$). A command may extend over the end of a line by terminating with an ellipsis (three periods . . .). The following line is appended to the end of the previous card with trailing blanks suppressed. Leading blanks on the continuation card are not eliminated. Be careful when splitting a symbol that no blanks are accidentally inserted into the resulting string. Do not forget the delimiter if splitting between symbols (usually a comma) - it can be at the end of the card before the ellipsis or on the beginning of the following card. The latter is preferred mainly so that it stands out and cannot get lost if a large number of continuation cards are used.

Arrays may be accessed by element but only a single index is allowed, i.e., referring to TABLE $(2,4,3)$ is illegal. You should calculate the position in a linear array by assuming the first index varies fastest. If the previous array had been defined by

ARRAY TABLE ($10,10,10$)

the $(2,4,3)$ element could be accessed by TABLE $(232)\left(2+(4-1)^{*} 10+(3-1)^{*} 10^{*} 10\right)$. In general, it is recommended that arrays with more than one dimension be avoided.

5.1 ACTION

Actions can be scheduled at different values of the independent variable. At present, these consist in changing a variable value such as setting a switch.

The debug printout is produced if a system integer variable NDBUG is greater than zero. If it is, the debug list is written out and NDBUG is decremented by one. For example, five debug listings are needed at $\mathrm{T}=0.0$ and two at $\mathrm{T}=1.0$. We can satisfy this requirement by

$$
\begin{aligned}
& \text { ACTION 'VAR' }=0.0,{ }^{\prime} \mathrm{VAL} \text { ' }=5,{ }^{\prime} \mathrm{LOC} \text { ' }=\text { NDBUG } \ldots \\
& \text {, 'VAR' = } 1.0,{ }^{\prime} \mathrm{VAL} '=2,{ }^{\prime} \mathrm{LOC} '=\text { NDBUG }
\end{aligned}
$$

Read this as schedule an action when the independent variable ('VAR') is zero, take a value ('VAL') of five and place it in the location ('LOC') NDBUG. When the independent variable is 1.0 , take a value of 2 and place it in location NDBUG. 'VAR' and 'VAL' must precede the 'LOC' they refer to. Output rates can be changed by scheduling similar actions on NCIOUT (number of communication intervals per output - default one). Each ACTION card is cumulative, the action scheduled being added to a linked list. It is not necessary to order the values of the independent variables. As with all other commands, a symbol name may be used where a data item is expected and the contents of this variable will be used. The value used however is the value at the time the ACTION card is analyzed, not that at the time the ACTION is performed.

To remove all scheduled actions and start afresh, use

ACTION ‘CLEAR’

Each time 'LOC' is mentioned, an ACTION is set up using the then current values for 'VAR' and 'VAL' which don't have to be changed every time.

5.2 ANALYZ

The ANALYZ command invokes a linear analysis capability that can evaluate the Jacobian, trim the state variables to null the rates and also calculate eigen values and their associated eigen vectors. Subcommands available under this generic command are:

```
'TRIM', 'JACOB', 'EIGEN', 'FREEZE', 'EIGVEC', 'EIGPER',
'DISPLY', 'LIST', 'RMSEMX', 'FRACMX', 'FRACDL'
```

The subcommands 'TRIM', 'JACOB' and 'EIGEN' are action commands with no data, the others on the list require a value or a name to follow.

5.2.1 'TRIM'

The subcommand 'TRIM', transfers the initial conditions to the state variables computes the Jacobian and then using Newton-Raphson iteration adjusts the state variables until the derivatives go to zero i.e., if

$$
\dot{\mathrm{X}}=[\mathrm{A}] \mathrm{X}+[\mathrm{B}] \mathrm{U}
$$

the iteration is:

$$
X_{n+1}=X_{n}-[A]^{-1} X_{n}
$$

Use 'FREEZE' to remove states that cause the determinant of [A] to become zero. Use 'FRACMX' and 'FRACDL' to limit the magnitude of the state change per iteration step. It is necessary to follow the TRIM by a REINIT (q.v.) in order to run the simulation from the steady state condition.

5.2.2 'JACOB'

The subcommands 'JACOB' calculates the Jacobian about the current point in state space by numerical perturbation. The result is then printed out as a large matrix. Note the states must have been given values either by a preceding START or a 'TRIM'.

5.2.3 'EIGEN'

This subcommand 'EIGEN' calculates the Jacobian and then evaluates and lists the complex eigen values and optionally the eigen vectors and/or the performance of the eigen evaluator (requires access to IMSL library for EIGRF routine).

5.2.4 'FREEZE' = X, Y . . .

This subcommand eliminates the listed variables from the state vector. Useful to eliminate open loop integrators prior to the trim operation. Open loop integrators form a zero column in the Jacobian so the inverse doesn't exist. Variables are only frozen for a single ANALYZ command and the action must be repeated for each invocation.

5.2.5 'EIGVEC' = .T. (Default is .FALSE.)

This command should precede 'EIGEN' and determines whether eigen vectors are to be calculated. Once set, it stays that way until changed.

5.2.6 'EIGPER' = .T. (Default is .FALSE.)

This subcommand should precede 'EIGEN' and determines whether performance and figure of merit is given by the eigen vector analysis routine. If the figure is less than 1 , the eigen values are considered very good, between 1 and 100 probably alright and over a hundred the results can't be considered to have any accuracy. Once set, the flag stays that way until changed.

5.2.7 'DISPLY' = .T. (Default is .FALSE.)

In general ANALYZ operations are considered high volume operations written only on the PRN unit (like PLOT and PRINT). If 'DISPLY' is set true, output is repeated on the DIS unit if different for monitoring at the terminal. Once set, the flag stays that way until changed.

5.2.8 'LIST' = .T. (Default is .FALSE.)

This subcommand turns on a flag that writes out details of the 'TRIM' iteration - successive values of the state vector, the derivative vector and residual. Once set, this flag stays that way until changed.

5.2.9 'RMSEMX' $=\mathbf{0 . 0 0 1}$ (Default is 0.0001)

This subcommand specifies the allowable error at which trim convergence is obtained. Each state is associated with an allowable error in usual fashion by

$$
\mathrm{d} \mathrm{X}_{\mathrm{j}}=\operatorname{AMAX} 1\left(\mathrm{XE}_{\mathrm{j}}, \mathrm{ME}_{\mathrm{j}} \cdot \mathrm{ABS}\left(\mathrm{X}_{\mathrm{j}}\right)\right)
$$

where XE_{j} and ME_{j} are the absolute and relative errors specified for the particular state. This quantity is used in the Jacobian calculation as from

$$
\begin{aligned}
\dot{X}_{1} & =\mathrm{F}_{1}\left(\mathrm{X}_{1}, \mathrm{X}_{2} \ldots, \mathrm{X}_{\mathrm{j}}, \ldots\right) \\
\frac{\operatorname{der}\left(\mathrm{F}_{1}\right)}{\operatorname{der}\left(\mathrm{X}_{\mathrm{j}}\right)} & =\frac{\mathrm{F}_{1}\left(\ldots, \mathrm{X}_{\mathrm{j}}+\mathrm{d} \mathrm{X}_{\mathrm{j}}, \ldots\right)-\mathrm{F}_{1}\left(\ldots, \mathrm{X}-\mathrm{d} \mathrm{X}_{\mathrm{j}}, \ldots\right)}{2 \mathrm{~d} \mathrm{X}_{\mathrm{j}}}
\end{aligned}
$$

During trim the weighted residual \mathbf{R} is computed from:

$$
R=\sqrt{\sum_{j=1}^{N}\left(\frac{\dot{x}_{j}}{d X_{j}}\right)^{2}}
$$

and the iteration is continued until R is less than the value defined by the ' RMSEMX ' subcommand. Once set, the value stays that way until changed.

5.2.10 'NITRMX' $=10$ (Default is 50)

This subcommand specifies the maximum number of iterations before the 'TRIM' command gives up. For a non-linear system, judicious choice of initial condition values may be necessary before a steady state can be achieved. Once set, this iteration count stays that way until changed.

5.2.11 'FRACMX' $=\mathbf{0 . 2}$ (Default is 1.0E30)

This subcommand specifies the maximum fractional change in a state variable - applied at each step of the TRIM iteration. In highly non-linear problems the linear extrapolation can move the state vector into unallowable regions in state space if unconstrained. The use of 'FRACMX' is to restrict the movement and typical values are 1% to 10% or 'FRACMX' $=0.10$. The state movement (state X) is never limited to a smaller value than allowable error dX_{j}.

$$
X_{n+1}-X_{n} \leq \max \left(d X_{j}, \text { FRACMX.abs }\left(X_{n}\right)\right)
$$

5.2.12 'FRACDL' $=0.8$ (Default is 1.0)

This subcommand specifies the fractional step actually taken when compared with that calculated by the Newton-Raphson iteration. With non-linear problems, taking the full step, 'FRACDL' $=1.0$, can cause cycling. The amount of the step can be reduced to prevent this, though at the expense of convergence speed.

5.2.13 EXAMPLES OF ANALYZ COMMAND

As examples of the use of the ANALYZ command, consider the following. In general, specification statements come before action statements. The sequence of operations is performed in a left to right manner with as many continuation lines as necessary.
?ANALYZ 'LIST'=.T., 'FREEZE'=X, 'TRIM', . . .
? 'JACOB', 'EIGEN'
This command turns on the list, eliminates ('FREEZE') the state X and its corresponding derivative from the Jacobian, finds a steady state and then evaluates the Jacobian and eigen values.
?START
?ANALYZ 'JACOB', 'EIGVEC'=.T., 'EIGEN'
This command determines the Jacobian about the point in state space where the simulation terminated, specifies that eigen vectors are required and then calculates both eigen values and eigen vectors. Note if we'd used 'TRIM', the ending states would have been overwritten with the initial conditions.

?ANALYZ ‘TRIM'

?REINIT
This command uses the current initial conditions to establish a steady state and then the REINIT command writes the current state vector back over the initial condition vector. Every subsequent START will now start from a trim or steady state condition.

The use of ANALYZ presupposes that the model is defined by a sequence of non-linear equations of the form

$$
\dot{X}_{1}=F_{1}\left(X_{1}, \ldots, X_{j}, \ldots, X_{N}, t\right)
$$

The use of self contained states within the model - those not defined by INTEG and INTVC - will usually prevent the correct evaluation of the Jacobian. Likewise, memory operators such as ZHOLD, BCKLSH and DELAY should not be present.

Another point is that all initial conditions must be defined before 'TRIM' is invoked. If some are calculated in the INITIAL section, set a run time of zero and execute once prior to using ANALYZ i.e.

$$
\text { SET TSTP }=0.0
$$

START
ANALYZ 'LIST' = .T., 'TRIM'
REINIT
SET TSTP $=99.9$
START

REINIT is used after the 'TRIM' to move the trimmed state variables back into the initial condition values so that the steady state point in state space will become the starting point for any subsequent run (START).

5.3 COMMENT

Comments may be included in the run-time drive cards by quoting the entire command. i.e.
START \$ 'EXECUTE THE MODEL’
The comment may not contain either a quote (') or dollar sign (\$).

5.4 CONTIN

The run may be continued where it left off, if the stop conditions have been changed, by CONTIN. This operation bypasses writing the initial condition into the state vector so that the program will continue to integrate from the previous position in state space. Note this command only makes sense after a START card has established a state and also the termination condition of the previous run must have been changed, otherwise it will stop immediately, i.e.,
model:
CONSTANT TF $=10.0$
TERMT(T. GE. TF)
run-time commands:

START
SET TF $=15.0$
CONTIN
\$'Run to 10.0 sec'
$\$$ 'Extend to 15.0 sec
\$'Run 10.0 to 15.0 sec '

5.5 DISPLY (sic): Short Form D

Display the values that are currently in the named list. Usually used at the end of a run to determine terminal values.

DISPLY X1, X2, X3(5)
Arrays, if not explicitly referred to by element, are listed in total.

5.6 END

Tells the run-time executive that a PROCEDure definition is complete.

5.7 MERROR, XERROR

The relative and absolute errors allowable during the integration step may be individually specified by these commands. Each state is associated with a corresponding entry and the relative error table (MERROR) and absolute error table (XERROR): These two commands behave like a SET (q.v.) except that they access the error table corresponding to the state name rather than the state name itself

$$
\begin{aligned}
& \text { MERROR SV1 }=1.0 \mathrm{E}-3, \mathrm{SV} 2=0.01 \\
& \text { XERROR SA1 }=5^{*} 0.0001, \mathrm{SA} 2(3)=0.02
\end{aligned}
$$

where the SVi and SAi are state variables and state arrays respectively. Note that arrays may be filled by a repeat count: An individual array element may be specified - at model definition time the same allowable error must be specified for all elements in an array.

During the integration step, the estimated error for each state variable is compared to the allowable error E_{i} obtained from

$$
\mathrm{E}_{\mathrm{i}}=\max \left(\mathrm{X}_{\mathrm{i}}, \mathrm{M}_{\mathrm{i}}\left|\mathrm{Y}_{\mathrm{i}}\right|_{\max }\right)
$$

where $\left(\mathrm{Y}_{\mathrm{i}}\right)_{\max }$ is the maximum of the absolute value of the state achieved so far during the run.

5.8 OUTPUT

The output from the model can be obtained by the command
OUTPUT T, A, B, C(5), D
The command designates the list elements as data whose values are to be listed as the simulation model advances in time. This action occurs following a subsequent START (q.v.) command. Subcommands are available and when used must be quoted so

'NCIOUT', ‘CLEAR'

The values of the list elements will normally be written out every communication interval. If this rate is too high, a reduction can be effected by including the subcommand 'NCIOUT' - number of communication intervals between output. i.e.

OUTPUT T, A, B, 'NCIOUT' $=5$

Only one value for 'NCIOUT' can be in effect at one time - the last value set stays in effect until changed in a subsequent OUTPUT command. The starting value of 'NCIOUT' is one. It isn't possible to designate different list element blocks to be recorded at varying data rates - all elements on the OUTPUT list are given together.

Array elements can be listed by referring to the specific element ($\mathrm{A}(3)$ say). If the name given is an array but no specific element is called for, all elements will be listed.

OUTPUTs are cumulative. To clear the list and start afresh, use the 'CLEAR' subcommand.
OUTPUT ‘CLEAR', BILL, JOE, SAM
Output is considered to be low volume and will be written to both the DIS and PRN files if different. The width of the line is controlled by the system variable TCWPRN (terminal character width) which controls the line width of data being written on the DIS logical unit number. If TCWPRN is set to 72, output will be three variables across: If TCWPRN is 132, output will be five variables across.

NOTE: The independent variable is not included on the OUTPUT list automatically - it must be
deliberately mentioned if you want to see it.

5.9 PLOT

Both printer and line plots can be made using values recorded for any of the variables on the PREPAR list. The actual form of the plots are controlled by system symbols (q.v.) PRNPLT (printer plots), CALPLT (line plots) and STRPLT (strip plots). Note the order of commands must be:

PREPAR - establishes list to be saved (used once)
START - runs the model, saves values on the PREPAR list

PLOT - makes plots using the data saved during the run
with any other commands in between the above sequence. It is illegal to change the PREPAR list and continue plotting data made with a previous START. It is the current PREPAR list that is used by the PLOT command to find the data for each variable on the intermediate scratch file.

The basic form of the plot command is:
PLOT Y1, Y2, Y3, ..., YN
which will plot the variables $\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3, \ldots, \mathrm{YN}$ - picking as the X -axis the first variable on the PREPAR list. The form (printer plots, line plots or strip plots) will be determined (all, either or none) by the current settings of the system symbols PRNPLT, CALPLT and STRPLT.

Sub-commands are available and when used must be in quotes so:
'XAXIS', ‘XHI', ‘XLO', 'XLOG', 'XTAG’, 'SAME', ‘OVER',
'ALL', 'HI', 'LO', ‘CHAR', 'LOG', 'TAG'

5.9.1 X-AXIS QUALIFIERS (XAXIS, XHI, XLO, XLOG, XTAG)

The X -axis can be changed from the default to any variable on the PREPAR list as in:
PLOT 'XAXIS' $=\mathrm{X} 2$, 'XLO' $=5.0, ~ ' X H I '=10.0, \mathrm{Y} 1, \mathrm{Y} 2$
In addition to specifying a new X -axis variable, X 2 , the scales are also given so that the X -axes will run from 5.0 (low) to 10.0 (high). There is a reason for specifying the X -axis change first on the PLOT command line since the automatic scaling for the Y -axis variables is determined by picking maxima and minima within the current X -axis window when the Y -axis variable is reached, in a left to right scan. Other options relating to the X -axis variable are logarithmic scales, 'XLOG', and a character string or tag that can be appended to the right of the variable name - can be used to identify units for instance

$$
\begin{aligned}
& \text { PLOT ‘XAXIS'=W, ‘XTAG'=‘(RAD/SEC)', ‘XLOG', ‘XLO'=WMN, } \ldots \\
& \text { GAIN, PHASE }
\end{aligned}
$$

The respecification of the X-axis variable resets all parameters to their default values, which is why the other subcommands follow the X -axis definition in the left to right sequence. The default values are no tag string, linear scales and axis limits chosen by rounding the maximum and minimum values on the data file. When logarithmic scales are selected the minimum value must usually be specified if the default rounding is to zero. Zero or negative scale limits are not permitted with logarithmic scales and will produce a diagnostic message and a replacement with linear scales.

X -axis related parameters, once set, remain that way for all subsequent PLOT commands unless respecified or the X -axis variable itself is changed.

5.9.2 Y-AXIS QUALIFIERS (HI, LO, CHAR, LOG, TAG)

Individual y-axes variables can have the scales set, the character selected, logarithmic scales specified and a tag string given. These subcommands all follow the y-axis variable name as qualifiers, applying to the variable name to the immediate left. As an example, consider:

```
PLOT Y1, 'LO' \(=0.0, ~ ' H I '=10.0, Y 2, Y 3, ~ ' L O '=5.0, \ldots\)
' HI ' \(=5.0\), \({ }^{\text {' } \mathrm{CHAR}}{ }^{\prime}=\) ' T '
```

Any variable not followed by given scale factors will have 'best' scales chosen automatically. i.e., Y2 in the above example. The automatic scaling is obtained by determining the maximum and minimum values of the variable while the x -axis variable is between its given limits 'XLO' and 'XHI'. This operation ensures that the scales are chosen appropriately for the plot since it may be necessary to examine in detail a small fraction or window within the total simulation run. Other options include logarithmic scales 'LOG', and a character string or tag that can be appended next to the variable name i.e.
PLOT Y1, 'LOG', ‘TAG'=‘GAIN', ‘LO’=0.001
where the variable Y 1 will be plotted on logarithmic scales. The axis will be labelled with the name Y1 concatenated with the string GAIN with a space in the middle.

It is sometimes necessary to set a group of scales to the same, originally unknown, value. If maximum and minimum values can be collected in the model definition section (the DYNAMIC section for preference), then they can be used to set scale factors by using the symbol name instead of a constant i.e.
PLOT Y1, ‘LO'=YMIN, ‘HI'=YMAX, etc.

Remember, any symbol stands for the value of its contents where a data item is expected.
When any array is plotted, the array name stands for all its elements and any qualifiers such as scale factors explicitly given apply to all elements of the array. For individual qualifiers each element of the array must be individually specified on the PLOT command list.

5.9.3 SAME, OVER and ALL

The 'SAME' and 'OVER' subcommands act on a string of Y-axis variables - all the variables to the left of the keyword. The command:

PLOT Y1, Y2, Y3, 'SAME'

will apply the scales selected for the first name in the list, Y1 in this case, to the rest of the elements in the list, Y2 and Y3 as shown. Note this option doesn't pick the maximum of the maxima and the minimum of the minima.

The key word 'OVER' is used to suppress the extraneous printing of the axes and is normally used in conjunction with 'SAME'. The command line:

PLOT Y1, Y2, Y3, 'OVER'

will draw and label the vertical axes for Y 1 , the first element in the list but will suppress the separate axes and labels (although the scales may be different) of Y1 and Y2. The main use of this is comparison plots using the strip chart option (STRPLT $=. \mathrm{T}$.) because otherwise all plots on the list are drawn on separate areas of the graph.

All the variables on the PREPAR list can be plotted by a single command so:

PLOT 'ALL'

used normally for debug purposes. Plots are drawn nominally three to a page (see system symbol NPPPLT or number of plots per page).

5.9.4 EXAMPLES OF PLOT COMMAND

Some examples of PLOT commands are as follows: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W are regular variables; A is a three element array.

1) Normal plotting, x-axis operations specified first:
PLOT ‘XTAG’=‘(SEC)’, X, Y, Z, W
2) Plot X and Y to the default scale of X, and Z and W to same given scale:

PLOT X, Y, 'SAME', Z, 'LO' $=0.0$, 'HI' $=5.0, \mathrm{~W}, ~ ' S A M E '$
3) Plot array A normally - all element scale factors are individually chosen:

PLOT A

4) Plot array A using default scales for $\mathrm{A}(1)$:

PLOT A, 'SAME'
5) Plot array A on given scales - the low and high apply to all elements of the preceding array PLOT A, 'HI'=50.0, 'LO'=-50.0
or
PLOT A, 'HI'=50.0, 'LO' $=-50.0$, 'SAME'
6) Plot $\mathrm{A}(1)$ on the same scale as $\mathrm{A}(2)$ and add descriptive tag to $\mathrm{A}(3)$

PLOT A(2), A(1), 'SAME', A(3), 'TAG'='(FURLONGS)'
7) Use logarithmic scales and tag descriptors:

$$
\begin{aligned}
& \text { PLOT 'XAXIS'=W, 'XLOG', 'XLO' }=0.01, \ldots \\
& \text { 'XTAG' }=‘(\text { RAD } / \mathrm{SEC})^{\prime}, \mathrm{X},{ }^{\prime} \text { LOG', 'LO'=1.0E-4, } \ldots \\
& \text { 'TAG' }=\text { '-GAIN' }
\end{aligned}
$$

8) Plot X and Y to the same scale as $X ; Z$ and W to the same scale as Z :

PLOT X, Y, 'SAME', Z, W, 'SAME'

5.10 PREPAR

The variables that are to be recorded on a scratch file during the run are listed so
PREPAR T, A, B, C(2)
The same comments on the arguments apply as to the OUTPUT command, with the exception that recording is every communication interval.

The plot programs assume as a default that the X -axis variable is the first one on the PREPAR list. The PREPAR list is cumulative. Reset is by PREPAR 'CLEAR', T, JOE, . . .

5.11 PRINT

All the variables on the PREPAR list can be listed in columnar form (10 columns to a page) once the run has been completed and the PREPAR file established. PRINT is similar to PLOT in that it can have a list of variables and/or subcommands. Subcommands are
'ALL', 'NCIPRN'
For example:

$$
\text { PRINT 'NCIPRN' }=5 \text {, 'ALL’ }
$$

will print all the variables on the PREPAR list, listing values every five communication intervals (NCIPRN $=$ number of communication intervals for print).

PRINT T, X1, X2, X3, X4

```
PRINT 'NCIPRN' = 2, T, Y1, Y2, Y3, Y4
```

Successive print commands can be used to format the data. Five columns are normally used for listings to be reproduced directly on "A" size (eight-and-a-half by eleven) paper. Note that the independent variable has to be included on each list if needed - it doesn't get printed automatically. The 'NCIPRN' subcommand is optional - once used the argument becomes the default from then on.

If array names are used, all array elements will be listed. An array element may be listed separately.
PRINT T, ARRAYA, ARRAYB(3)
The data is only listed on the PRN logical unit unless HVDPRN is true, so if this is set to 9, this high volume output will go onto the PRINT file for later disposal to the printer queue.

5.12 PROCED

Command sequences can become long and cumbersome when much plotting is performed. To save repeating the directions after each run a procedure can be defined. Do not confuse this with PROCEDURAL referenced during the translation phase. This command PROCED is invoked at execution time, i.e.,

PROCED GO \$ START
PLOT 'XAXIS' $=\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
PLOT 'XAXIS' $=\mathrm{T}, \mathrm{N}, \mathrm{M}$
DISPLY RMISS
END
The sequence of commands START, PLOT - - until END are saved but not executed. But now a command GO will execute the entire sequence, i.e.,
$\mathrm{SET} \mathrm{A}=5.0 \$ \mathrm{GO}$
SET A $=6.0 \$ \mathrm{GO}$
SET A $=7.0 \$ \mathrm{GO}$
which allows the value of the parameter A to be changed before executing the sequence of commands stored in the procedure 'GO'. Note that the names and values within the procedure are fixed and cannot be changed when the procedure is invoked.

5.13 RANGE

This command determines the maximum and minimum values of variables, that have been saved during a run by the PREPAR statement. Subcommands are available, and when used must be quoted
'ALL', 'IHI', 'ILO', 'IVAR'
Standard form of the command is
RANGE A, B, C(5)
As usual, array names stand for all the elements in the array. Errors will be reported if any name on the RANGE list is not defined in the PREPAR list.

Windows may be defined so that sub-ranges can be determined, by specifying both the independent variable to be used, 'IVAR', and the high 'IHI', and low, 'ILO', values to be used for the test.

RANGE ${ }^{\prime} I V A R '=X, ~ ' I L O '=50.0, ~ ' I H I '=100.0, ~ ‘ A L L ’$
which would report the maximum and minimum values of all elements on the PREPAR list when the variable X lay between 50.0 and 100.0 . Once set, the 'IVAR', 'ILO' and 'IHI' values remain that way for subsequent RANGE commands, if not changed. Initial values of 'ILO' and 'IHI' are - RMX and RMX respectively where RMX is the largest floating point number available on the machine. The independent variable 'IVAR' is set to be the first variable on the PREPAR list.

5.14 REINIT

Reinitialize takes the current value of the state variables and writes them back to the initial condition table, thereby destroying the original numbers on the table. REINIT can be used when a midcourse guidance system flies out and is stopped before the terminal phase. It now establishes this current point as the starting point for subsequent runs.

Refer to SAVE and RESTOR for details on how to recover back to an original condition.

5.15 RESTOR

Restores the user's data area written on a named file. The file must have been established by a previous SAVE command

RESTOR 'fn'

where fn is a valid file name - see SAVE command.

5.16 SAVE

The entire contents of the user's data block may be saved on an external file to be subsequently RESTORed and so override any intermediate changes. ACSL system constants (TITLE, PRNPLT, XINCPL, etc. are not saved. Standard form is

SAVE 'fn'
where fn is any valid file name - starts with a letter and six characters or less. Do not use INPUT, OUTPUT, RRR or PRINT. Any number of SAVE commands may be issued on the same or different files. If it is the same file, the previous information is overwritten and destroyed.

5.17 SET: Short Form S

Data can be set into any known constant array or variable by this command. If the model definition is going to calculate a new value of a variable, after START, then it does not usually make much sense to change it. The command would normally be used for changing the values of constants. Once changed, they stay that way until changed again.

Legal forms of the SET commands are

$$
\begin{aligned}
& \text { SET NSTP }=10, \text { RANGE }=5.6 E 3, \text { MAS }=4.6, \text { GAIN }=5 \\
& \text { SET LOGVAR }=. \text { TRUE., } \operatorname{ARRAY}(5)=4.3, \mathrm{SWITCH}=. \mathrm{T} \\
& \text { SET ARRAY }(2)=2.0,3.0,4.0, \operatorname{TSTOP}=4.6 \ldots \\
& , \text { TITLE }={ }^{\prime} \text { DOPPLER STUDY', } \operatorname{ARRAY~}(6)=5^{*} 0.0
\end{aligned}
$$

The data form must agree with the type of the symbol with the exception that integers may be set into real variables and automatic floating will take place: Integer variables must not have a decimal point and logical variables can only be .TRUE. or .FALSE. (.T. and .F. are Short Forms). Arrays can be set by individual elements or a data list can follow when succeeding data items will be stored in subsequent array slots. Attempting to exceed the array length will result in an error. Data can also be obtained from another symbolic location by using the symbol name, i.e.,

SET RMI $=$ RANGE, $\mathrm{RMT}=$ RANGE

when after execution the variables RMI and RMT will both contain the value of the number stored in the symbol RANGE. This concept is useful if a data item has to be stored in many places. It can be stored by value once and then picked up by name subsequently, thus value changes need only be made in one place.

Hollerith data can be set into a symbol or array that is of type integer. Normally only the system array TITLE would be so used.

5.18 SPARE

A spare command is provided that will link to a user provided subroutine SPARE. A default version of this subroutine is available that will list the central processor time, i.e.,

SPARE
ACCUMULATED CP TIME nnn.nnn SEC. ELAPSED CP TIME nnn.nnn SEC.
The accumulated time is normally the time from the beginning of the job: The elapsed time is the incremental time from the previous invocation of the command. The sequence

SPARESSTARTSSPARE

can be used for timing simulation execution.

5.19 START

Command to allow the model definition to integrate over the state trajectory. Control is released to the model definition program and provision must be made to terminate execution at some time.

5.20 STOP

Tells the run-time executive that no more commands follow. A termination record is written on the line plot file, if any plots have been made.

This command should always be the last command issued so that all the files established by the executive are cleaned up or terminated correctly. It may be necessary to precede STOP with a blank for those operating systems that interpret STOP as an abort.

5.21 XERROR

Absolute error specification - see MERROR.

6. MACRO LANGUAGE

The macro capability of ACSL allows the user to expand the language capability by defining new operators as the need arises.

A macro may be used in one of two essentially distinct ways. The first is akin to a subroutine or function which is defined once and then called from many places. The macro is defined once and then invoked. Actual statements are produced for each macro invocation, but the extra amount of storage used for such instructions is always small. The only way to define operators involving integrators and memory functions is by using this macro operator.*

The second approach is to define blocks and write all the equations in terms of standard nomenclature. These blocks can become part of a system library and with all the variables relabeled, no conflict will appear between the standard block and another user's invocation of it. For instance, a standard actuator system could be defined with input, the commanded deflection; output, the actual deflection. Invocation would then be:

ACTUAT(DLC, DL)

which would tell the processor to reproduce the code to represent the actuator but use the name DLC for command deflection; DL for the actual deflection.

Some of the more important features of the macro language are:

1) Variables and statement labels may be locally generated. In the event the macro is called more than once, this will prevent multiply defined variables or doubly defined statement labels.
2) An unlimited number of macro input arguments may be used. These arguments must be valid expressions with balanced parentheses - of arbitrary complexity - or else any character string enclosed in quotation marks.
3) Macro definitions may invoke, other macros (nesting) to an unlimited level of complexity. Note, however, that macro definitions may not be nested. This needs a count of nesting level within the definition to match up with the correct MACRO END. This count is not performed. The first MACRO END terminates the definition.
4) Macro's may be placed anywhere within an ACSL program: They must be defined, however, before they are used. Any current macro may be redefined and the most recently defined macro will be used in the expansion.
5) The concatenation operator (\rightarrow) allows arguments to be placed together without intervening spaces so making up symbols.
Argument strings are substituted for each appearance of the macro argument name. If the argument is an expression, care must be taken that the resulting code is correct after the substitution (see Section 6.5). Other names that may be substituted during macro expansion are the ASSIGNed variable (see Section 6.3.1), local variable names identified by a REDEFINE (see Section 6.3.12) and local labels identified by a RELABEL (see Section 6.3.13).

6.1 MACRO DEFINITIONS

The macro definition is a block of code which consists of the following:

1) Macro definition header

[^8]2) Macro directive or ACSL statements
3) MACRO END

The macro definition header specifies the name of the current definition and a list of dummy reference parameters, analogous to dummy arguments in a FORTRAN subroutine. The translator scans the statements in the macro body for the appearance of these names, flagging them for substitution by the actual argument supplied on invocation. The definition terminator, MACRO END, must be present to flag the translator to return to direct translation instead of saving the macro skeleton (the macro body with the substitutable arguments flagged is known as the skeleton).

If a macro name is the same as one already defined, either in the system macro file or the current model definition, the new macro definition replaces the old one. No error message is issued since this is considered to be a feature whereby the user can always override an old macro definition.

6.2 MACRO DEFINITION HEADER

Two types of macro can be defined but for the most purposes - excluding arrays - the first one is to be preferred. This is of the form:

MACRO identifier ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \ldots, \mathrm{x}_{\mathrm{n}}$)
where identifier will be the macro name (6 characters or less)
x_{i} are variable names - not constants or expressions.
Anywhere the symbol x_{i} is referred to in the macro definition it will be replaced by the ith argument - symbol or expression - when the macro is invoked. Example:

MACRO MULT(X, Y, Z) \$ 'DEFINITION’

$$
\begin{aligned}
& \mathrm{X}=\mathrm{Y}^{*} \mathrm{Z} \\
& \text { MACRO END } \\
& \mathrm{C}=\mathrm{A}^{*} \operatorname{MULT}\left(5.0^{*} \mathrm{~B}, \mathrm{D}\right) \$ \text { 'INVOCATION' }
\end{aligned}
$$

The output of the function is considered the first argument X ; Y will be replaced by $5^{*} \mathrm{~B}$ and Z by D everywhere throughout the definition.

A second type of definition is useful when handling arrays. This form has an extra macro so
MACRO MACRO identifier ($\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$)
where identifier is as defined previously, p is the primary argument (any symbol) and $\mathrm{q}, \mathrm{r}, \mathrm{s}$ are secondary arguments, optional symbols. ' p ' is the dummy reference parameter and may be thought of as being an array, each element of which identifies the respective elements in the argument list at invocation time, i.e.,

MACRO MACRO HEAD (P, Q) \$ 'DEFINITION'

MACRO END

ARRAY B(5)
$\operatorname{HEAD}\left(\mathrm{A}, \mathrm{B}=5^{*} \mathrm{D}, \mathrm{E}+\mathrm{F}, \mathrm{LOW}\right) \$$ 'INVOCATION'
Now $\mathrm{P}(1)$ appearing in the definition body will be substituted by the symbol A, the first argument, at invocation time. $\mathrm{P}(4)$ will be replaced by the expression $\mathrm{E}+\mathrm{F}$, the fourth argument.* The secondary arguments allow access to the dimension of any argument from a previous ARRAY statement. The ARRAY statement must come before the macro invocation.

[^9]Any reference to Q for an array will access the first dimension. In the example above, $\mathrm{Q}(2)$ will have the value 5 from the dimension in the previous ARRAY statement. $\mathrm{Q}(3)$ and $\mathrm{Q}(4)$ will be illegal since these arguments are expressions that cannot have a dimension.

Symbols substituted for the secondary arguments R and S act similarly to Q except they provide the second and third dimensions respectively.

NOTE: Macros written in this second form are extremely hard to read since no mnemonic symbols can be used for the arguments.

The array expressions are restricted to the following forms.

1) $P(i)$ - i is an integer constant
2) $P(n)-n$ is the ASSIGNed variable (q.v.)
3) $\mathrm{P}(\mathrm{n} \pm \mathrm{i})$ - combination of the above.

In general, the substitutable symbols must be separated from other character strings by nonalphanumeric characters, i.e., ${ }^{*},+,-$, 'blank' in order for the scan to operate. If the above macro MULT contained the statement

ASSIGNZ TO K
The symbol Z would not be identified for substitution. Here, the space is all important so
ASSIGN Z TO K works well.
In order to allow the substitutable argument to appear next to a character string the concatenation operator is defined. This operator is a right arrow (\rightarrow) on CDC systems or underline ($_$) on ASCII based machines, which serves as a separator for symbol identification, but is removed entirely from the skeleton. As an example, suppose we wish to make up unique symbols by adding an F to the third argument of the MULT macro and including it in an expression.* The new name would be written $F \rightarrow Z$ (F concatenated with Z), i.e., the statement

$$
\mathrm{X}=\mathrm{Y}^{*} \mathrm{~F} \rightarrow \mathrm{Z}
$$

could be included in the macro definition. Invoking the MULT macro with

$$
\mathrm{A}=\mathrm{MULT}(\mathrm{SAM}, \mathrm{JOE})
$$

would result in the statement

$$
\mathrm{A}=\mathrm{SAM}^{*} \mathrm{FJOE}
$$

where the new symbol FJOE has been defined.
The above call MULT will enter a symbol JOE on the symbol table. If only the made up symbols are important, the argument may be quoted as

$$
\mathrm{A}=\mathrm{MULT}\left(\mathrm{SAM},{ }^{\prime} \mathrm{JOE}^{\prime}\right)
$$

where the same expression will be generated but now the symbol JOE will not be entered in the symbol table. The argument in quotes has the quote characters removed and the literal string of characters enclosed including blanks - is substituted for the appropriate argument symbol.

6.3 MACRO DIRECTIVE STATEMENTS

The following section lists in alphabetical order the macro directive statements that may be included within a macro definition. No code will result from these statements, but extremely flexible control is possible, of the manner in which the macro is processed at invocation time. The ACSL statements themselves produce

[^10]code, and symbols in the statements will be substituted for the appropriate argument at invocation time. All these directive statements have MACRO in front to indicate an instruction to the macro processor. See Subsection 6.4 for some examples of the use of a macro.

All directive statements can have labels attached to them which can be used by the MACRO GO TO and MACRO IF directives. These labels must be distinct from any labels attached to non-directive statements. The label is inserted between the leading MACRO of the directive, i.e.,

MACRO S1 . . RELABEL I
MACRO S2 . . CONTINUE
MACRO S3 . . END
Note, these labels control the sequence of the macro processor at macro invocation time. The labels on nondirective statements control the sequence at run-time execution.

6.3.1 MACRO ASSIGN

The ASSIGN macro directive statement has the standard form
MACRO ASSIGN n
where n is a symbol (usually N is used). The ASSIGN directive assigns the number of arguments in the macro call to the variable \mathbf{N}; the value of N will always be an integer. If the dummy reference parameter contains a variable subscript, the variable must be the same as the variable used in the ASSIGN statement. Whenever N is used as part of the dummy reference parameter subscript, the current value of N will refer to the Nth argument in the macro call list at invocation time. Example:

Second header type
MACRO MACRO SAM(P) \$ 'DEFINITION'
MACRO ASSIGN N

MACRO END

SAM (X, Y, Z) \$ 'INVOCATION'
Within the macro definition
$P(N)$ is the Nth argument ' Z '
$\mathrm{P}(1)(\mathrm{N})$ is $\mathrm{X}(3)$
$\mathrm{P}(\mathrm{N}-1)(\mathrm{N})$ is the N th element of the $(\mathrm{N}-1)$ argument, $\mathrm{Y}(3)$

6.3.2 ARITHMETIC MACRO DIRECTIVES

The arithmetic macro directives have the form

MACRO INCREMENT	i
MACRO DECREMENT	i
MACRO MULTIPLY	i
MACRO DIVIDE	i

where i is an unsigned integer constant, the secondary arguments: $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$; or a macro argument name that has a literal numeric integer value.

These directives provide arithmetic operations on the ASSIGNED variable N . The value of N may be added to, subtracted from, multiplied or divided; all arithmetic operations are performed in fixed point integer.

Example:
MULTIPLY 0
will make the ASSIGNED variable zero
To make the assigned variable equal the dimension of the second argument, the following code can be used.

MACRO MACRO BIL(P, Q)
MACRO ASSIGN N
MACRO MULTIPLY 0
MACRO S1 . . IF(N = Q(2)) S2
MACRO INCREMENT 1
MACRO GO TO S1
MACRO S2 . . CONTINUE
On exit from this section, N , the assigned variable, will have the integer value $\mathrm{Q}(2)$ or the dimension of the second argument. In this way N can be used as a counter or control variable irrespective of its basic purpose of transmitting the actual number of arguments used at invocation time.

6.3.3 MACRO CONTINUE

The CONTINUE macro directive has the standard form
MACRO CONTINUE
It is a do-nothing and invariably is included so that it can be labelled as so
MACRO L1 . . CONTINUE
In this form the MACRO IF or MACRO GO TO can branch to this section within the definition.

6.3.4 MACRO DECREMENT

See arithmetic macro directives.

6.3.5 MACRO DIVIDE

See arithmetic macro directives.

6.3.6 MACRO EXIT

The EXIT directive statement has the form
MACRO EXIT
It stops the generation of code at invocation time. The action is the same as a MACRO GO TO to the macro definition terminator.

6.3.7 MACRO GO TO

The GO TO macro directive statement is written in the form
MACRO GO TO s
where s is a statement label attached to ANOTHER MACRO DIRECTIVE. The GO TO provides an unconditional branch to another section within the definition.

6.3.8 MACRO IF

The IF macro directive statement is of the form
MACRO IF $\left(e_{1}=e_{2}\right) s$
where e_{1} and e_{2} can be the dummy reference parameters corresponding to the call list, integer constants, character strings or the identifier used in the ASSIGN directive. They must not be expressions; s is a macro directive statement label. This directive provides for a conditional branch to the macro directive label s inside the current definition if the relation $e_{1}=e_{2}$ holds. The strings e_{1} and e_{2} are tested character by character excluding blanks for equality.

In order to compare a character string with a string passed as a macro argument, the string must be enclosed in quotes when the macro is invoked and then the MACRO IF compares the argument with an un-quoted string i.e., if the definition is as follows:

```
MACRO TEST (ARG)
MACRO IF \((\mathrm{ARG}=\mathrm{TOP}) \mathrm{LAB} 1\)
```


MACRO LAB1 . . CONTINUE

MACRO END
and the invocation is
TEST ('TOP')
then the macro will expand via LAB1.

6.3.9 MACRO INCREMENT

See arithmetic macro directives.

6.3.10 MACRO MULTIPLY

See arithmetic macro directives.

6.3.11 MACRO PRINT

Error messages may be handled within the macro at invocation time by this PRINT directive statement. It has the form

MACRO PRINT any character string except a dollar sign (\$)
This directive lists the character string on the output device. It will override any global list control. The primary use is for the user to diagnose his own errors at invocation time and output informative messages. See the examples in Subsection 6.4.

6.3.12 MACRO REDEFINE

The REDEFINE macro directive statement has the form

$$
\text { MACRO REDEFINE } v_{1}, v_{2}, \ldots, v_{n}
$$

where v_{i} are variable names appearing in the body of the macro. REDEFINE identifies the variables as being locally defined and specifies that they are to be replaced by unique symbols at each invocation. The generated variables consist of the letter Z followed by five digits.

6.3.13 MACRO RELABEL

The RELABEL macro directive has the form

$$
\text { MACRO RELABEL } 1_{1}, 1_{2}, \ldots, 1_{n}
$$

where 1_{i} is an alphanumeric label ($\mathrm{i} \geq 1$). RELABEL specifies that all symbols in the list are locally defined statement labels which are to be substituted for by unique generated numbers at invocation time. These labels must only be attached to ACSL statements - not macro directive statements (statements preceded with MACRO).

6.3.14 MACRO STANDVAL

The STANDVAL macro directive statement has the standard form

$$
\text { MACRO STANDVAL } \arg _{1}=c_{1}, \arg _{2}=c_{2} \ldots
$$

where $\arg _{i}$ are the dummy argument names and the c_{i} are literal constants that can be real (1.5), integer (5) or logical (.TRUE.). The alternate MACRO invocation can also be used with STANDVAL which has the form as follows:

$$
\text { MACRO STANDVAL } P(i)=e_{i}, P(j)=e_{j}, \ldots
$$

where i is an unsigned integer constant and the e_{i} are constants. The statement is used to provide standard values for arguments of a macro. If the i-th argument is not given, then the constant (e_{i}) is used in its place. If an argument is to take its standard value, then its position in the argument list must be left empty, i.e., the delimiting commas must be present, and the absence of an argument indicated by a null string (" "). Arguments may be simply omitted at the end of the argument list without the need for commas and a null string to indicate their absence. The STANDVAL directive must immediately follow the macro header in the definition if it is used at all.

6.4 MACRO EXAMPLES

The examples will be given of the use of macro calls that demonstrate some of the uses of the directive statements and of direct parameter substitution.

6.4.1 Sampler

A sampler can be built up of a switch and two zero order holds but for convenience, the entire sequence can be embedded in a macro and invoked as a function. We would like to say at invocation time

$$
\mathrm{Y}=\mathrm{SAMPLE}(\mathrm{YIC}, \mathrm{DL}, \mathrm{~T}, \mathrm{X})
$$

where YIC will be the initial value of Y, the sample will be repeated every DL of the independent variable, T. X is the variable to be sampled. Define this macro by

$$
\begin{aligned}
& \text { MACRO SAMPLE (SAMP, DL, T, X, IC) } \\
& \text { MACRO STANDVAL IC }=0.0 \$ \text { LOGICAL SNSW } \\
& \text { MACRO REDEFINE TS, SNSW } \\
& \text { TS = ZHOLD }(0.0, \text { SNSW, TS + DL) } \\
& \text { SNSW = T.GE.TS } \\
& \text { SAMP = ZHOLD (IC, SNSW, X) } \\
& \text { MACRO END }
\end{aligned}
$$

Note, the output name has to be included in the argument list. The sample time TS is sampled from the function TS + DL, but only when T equals or exceeds TS, setting SNSW nonzero (1.0) SAMP is snapped by the zero order hold from the input argument X .

6.4.2 DOT Product

To take the vector DOT product of two arrays A and B, we would like to be able to use the functional form

$$
\mathrm{X}=\operatorname{DOT}(\mathrm{A}, \mathrm{~B})
$$

where X is a scalar and A and B are vectors, previously dimensioned in an ARRAY statement. Since it is a function (has one output) the operator can be embedded in an arithmetic expression of arbitrary complexity. We do not want to have to mention the dimension of the vectors in the call since that is likely to change.

To pick up the array dimension we need to use the second form of the macro header. This header designates P as the primary variable and Q as the secondary variable, that will access the dimension of the corresponding primary argument. (Figure 6-1 gives macro listings.) The REDEFINE statement ensures the variable I will not conflict with any other use. If this were omitted, a program variable I could have its value changed when the macro is executed; a potentially disastrous effect. The test needed is to see if the second and third arguments have the same dimension; if not, the DOT product is undefined and a macro error message is printed. If the dimensions are correct the DO loop summation is formed. Note, $\mathrm{Q}(2)$ and $\mathrm{Q}(3)$ will be replaced at invocation time by integers corresponding to the array size of the respective arguments: The MACRO IF must branch to another macro directive statement, hence, the label on the MACRO CONTINUE. This label could not have been attached to the following statement since this is not a macro directive statement.

At invocation time, with the call shown, this will be translated into
INTEGER Z09999

$$
X=0.0
$$

DO 99999 Z09999 = 1, 10

$$
99999 \ldots \mathrm{X}=\mathrm{X}+\mathrm{Y}(\mathrm{Z} 0999) * \mathrm{Z}(\mathrm{Z} 09999)
$$

where the variable I will have been changed into a unique generated variable Z09999. If embedded functionally in an expression, this code will precede the expression evaluation and a Z variable will be used in the expression.

6.4.3 Concatenation Example: A Pressure Tank

One of the problems with using MACRO is the tendency to generate large numbers of dummy variables (Z0nnnn) which have no physical significance. All REDEFINED variables have this form. An alternate approach is to use the concatenation feature to build unique symbols that are available for plotting or printing. This technique can also reduce considerably the length of the argument list which is the other alternative when unique symbolic names are required.

As an example consider a macro to define a gas holding tank which is similar to the PHYSBE example in Appendix A. We will calculate the flow in as the difference in pressure divided by a resistance. Total pressure will be the integrated net flow divided by a volume. The macro definition now looks like

MACRO TANK(N)

```
F_N_I = (P_N_I - P_N)/R_N_I
P_N = (INTEG ((F_N_I - F_N_O)/V_N, P_N_IC)
MACRO END
```

The basic equations for different vessels can now be established by the statements

```
TANK(1)
```

'MACRO DEFINITION'
'MACRO DEFINITION'
MACRO MACRO DOT (P,Q)
MACRO MACRO DOT (P,Q)
MACRO RELABEL L2 \$MACRO REDEFINE I
MACRO RELABEL L2 \$MACRO REDEFINE I
MACRO $\operatorname{IF}(Q(2)=Q(3)) L 1$
MACRO $\operatorname{IF}(Q(2)=Q(3)) L 1$
MACRO PRINT CONFLICTING DIMENSIONS IN DOT PRODUCT
MACRO PRINT CONFLICTING DIMENSIONS IN DOT PRODUCT
maCRO MACRO EXIT
maCRO MACRO EXIT
MACRO L1..CONTINUE
MACRO L1..CONTINUE
$P(1)=0.0$
$P(1)=0.0$
DO L2 $I=1, Q(2)$
DO L2 $I=1, Q(2)$
L2.. $P(1)=P(1)+P(2)(I) * P(3)(I)$
L2.. $P(1)=P(1)+P(2)(I) * P(3)(I)$
MACRO END
MACRO END
ARRAY Y(10), Z(10)
ARRAY Y(10), Z(10)
'MACRO INVOCATION'
'MACRO INVOCATION'
$\operatorname{DOT}(X=Y, Z)$
$\operatorname{DOT}(X=Y, Z)$
...
...

Figure 6-1. DOT Product Macro Forms $X=\sum_{i=1}^{n} Y_{i} Z_{i}$
TANK (3)
and the rest of the model must specify constants as interconnections. The first invocation TANK(1) will generate

$$
\begin{aligned}
& \mathrm{F} 1 \mathrm{I}=(\mathrm{P} 1 \mathrm{I}-\mathrm{P} 1) / \mathrm{R} 1 \mathrm{I} \\
& \mathrm{P} 1=\mathrm{INTEG}((\mathrm{~F} 1 \mathrm{I}-\mathrm{F} 10) / \mathrm{V} 1, \mathrm{P} 1 \mathrm{IC})
\end{aligned}
$$

Constants must be defined elsewhere for the resistance R1I, the volume V1 and initial pressure P1IC. Variables that must be defined elsewhere are the input pressure node P1I and the output flow F10. This macro will then make available to other sections of the simulation the input flow F1I and tank pressure P1.

The alternative form of the macro invocation without the concatenation feature would have to be
TANK (F1I, P1 = P1I, R1I, F10, V1, P1IC)
with similar statements for all the other vessels. There is a trade off in deciding how to define the macro which can be considered as follows: Without the concatenation feature, argument lists become long and complicated but there is flexibility in naming and arguments can be expressions. Using the concatenation feature, the argument list is simple - one argument, usually a constant, but can be mixed. The TANK macro could have the output flow and downstream pressure specified in the argument list since these are likely to be expressions i.e.

MACRO TANK (N, PI, FO)
F_N_I = (PI - P_N)/R_N_I
P_N = INTEG ((F_N_I - (FO))/V_N, P_N_IC)
MACRO END
and in invocation of
TANK (1, PSOURCE, (P1 - P5)/R5I)
which substitutes PSOURCE for inlet pressure PI and the expression for the outlet flow FO. The disadvantage of the concatenation approach is the inflexibility in naming convention and also the fact that any resulting symbol must be six characters or less. If three digits are used for the number N , then all concatenated symbols must have no more than three other characters. In practical problems one usually only has to allow for one digit to identify a component or at most two.

6.5 MACRO CALLS

Once a macro has been defined it must be invoked with specific arguments listed for substitution. The first form of call is to embed the macro name in an arithmetic expression. For this form only one output (a single number) should be produced by the macro - this has functional form

$$
\mathrm{X}=5.0 * \operatorname{SIN}(\operatorname{DOT}(\mathrm{~A}, \mathrm{~B}) / 4.0)
$$

where the DOT product macro is embedded in the argument of the SIN function. A and B in this case correspond to the second and third argument of the macro respectively. The output is the first argument.

Alternative form of the call is as a stand alone statement -

$$
\operatorname{DOT}(\mathrm{X}=\mathrm{A}, \mathrm{~B})
$$

or its exact equivalent
DOT(X, A, B)
The equals ($=$) sign in the first form is to indicate to the reader that X is an output. The program determines what are the actual inputs and outputs as it processes the statements produced by the macro, i.e., no error would result if the operator were invoked so

$$
\operatorname{DOT}(\mathrm{X}, \mathrm{~A}=\mathrm{B})
$$

but it would be a little misleading. Note especially that

$$
\mathrm{X}=\operatorname{DOT}(\mathrm{A}, \mathrm{~B})
$$

is an assignment statement and the name X will not be substituted for the first argument. Only a single numerical value can be passed across the equals sign of an assignment statement.

On the other hand, consider a matrix integration operator we might write:

$$
\operatorname{MATINT}(X, X D=A, X I C)
$$

In this set up two entire vectors are the output of the operator and have their values effectively passed across the equals sign.

The substitution of macro arguments is by replacement of the character string forming the argument with the substitutable name. Where expressions are used, the wrong answer can be obtained if parentheses are not placed around the argument; i.e., consider a macro to integrate a difference in flow rate so

MACRO ACCUM(TOT, W1, W2, IC)
TOT $=$ INTEG (W1 - W2, IC)
MACRO END
At invocation time we use an expression for net flow out so

$$
\text { ACCUM }(\text { MASS }=\text { WIN, WP1 }+ \text { WP2, MASSIC })
$$

which would give the line of code

$$
\text { MASS }=\operatorname{INTEG}(\text { WIN }- \text { WP1 }+ \text { WP2, MASSIC })
$$

which isn't really what we wanted, since the second flow WP2 has a plus sign in front of it. The answer is to surround the substitutable name - where operator precedence can cause a problem - with parentheses. The macro above should have been defined by

MACRO ACCUM(TOT, W1, W2, IC)
TOT $=\operatorname{INTEG}(\mathrm{W} 1-(\mathrm{W} 2), \mathrm{IC})$
MACRO END
and now at substitution the executed statement is

$$
\text { MASS }=\text { INTEG }(\text { WIN }-(\mathrm{WP} 1+\mathrm{WP} 2), \text { MASSIC })
$$

It's not necessary to parenthesise the first parameter W1, since any expression substitution will give the correct answer. Trouble usually arises when arguments are negated, multiplied or divided by other variables or used as a divisor in the macro definition.

THIS PAGE INTENTIONALLY LEFT BLANK

7. PROGRAM DEBUGGING

One of the more important features of the ACSL language is the availability of tools that assist in pinpointing errors. The first thing is to establish a frame of mind that believes in the existence of errors. It is difficult, in general, for the average user who writes a model definition to believe that there are any errors. However, if somebody else wrote it, you know there would be something wrong. You must accept the fact that all programs have at least one error and part of the joy of coming up with a finished product will be in finding it.

As you write the program, prepare the first run for debugging. Set the stop condition (TERMT) for the first run to a small value (typically one communication interval will suffice) so that no time will be wasted calculating the incorrect values. Use the ' D ' option (despite any errors)* in the translator so that the program will proceed to uncover as many errors as possible.

The first run through the translator will produce syntax error indications and probably error messages as well. The latter are listed in Appendix E with some further explanation. The translator analyzes each statement in turn and if an error occurs it will indicate this. The way the error is indicated is to write out again the statement in error, including any continuations, with a line of asterisks $\left({ }^{*}\right)$ underneath to indicate the acceptable section. The asterisk should stop just below where the error is located.

Example:

$$
\begin{aligned}
& \mathrm{X}=\mathrm{Y}+(\operatorname{SIN}(\mathrm{Y} . \mathrm{Y})) \\
& * * \mathrm{~S}^{*} \operatorname{NTAX} \operatorname{ERROR} * * * T H E \text { LINE IS LISTED WITH A POINTER TO THE ERROR } \\
& \mathrm{X}=\mathrm{Y}+(\operatorname{SIN}(\mathrm{Y} . \mathrm{Y})) \\
& * * * * * * * * * * * * * * *
\end{aligned}
$$

which shows that the period (.) separating the two Y's is not allowed. It should be an asterisk (*) to indicate a multiply. Two points should be noted when these errors are indicated. The first is that only the first error in the statement will be indicated. If this error is corrected, it may need a second (or third) run to uncover other problems further into the statement. When you make a correction, take a long hard look at the rest of the statement.

The second is that the line listed may not look like the input text if continuation cards are used. The error listing gives the complete string to be analyzed after the trailing blanks have been squeezed from the end of any cards continued.

Next check for misspelling - variables you may have intended to be the same get keypunched wrongly. Names you intended to change get overlooked. To check these, look at the symbol cross-reference tables listed at the end of the translator output. Any variables listed under 'VARIABLES NOT SPECIFIED IN ANY BLOCK' will be misspellings, constants you forgot to specify, or correct variables that had their name misspelled at the statement defining them. They should have been defined.

Next, take note of any unsatisfied external references from the load map. These will usually correspond to arrays you forgot to declare in an ARRAY statement - without this they look just like functions.

The first run-time command should set up a debug action and usually over the first five or ten derivative evaluations will suffice. Include the following card at run-time:

$$
\text { SET } \quad \text { NDBUG }=10
$$

Alternatively an action can be scheduled that will ensure a debug printout after every START until CLEARed

[^11]
ACTION 'VAR' $=0.0$, 'VAL' $=10,{ }^{\prime} \mathrm{LOC}^{\prime}=\mathrm{NDBUG}$

NOTE: While the system variable NDBUG is greater than zero the complete set of user variables is printed out and the value of NDBUG is reduced by one.

This output is probably the most important data to help in debugging; the previous set of tools was merely to ensure you had the mechanics correct - commas in the right place, spellings consistent, etc. This debug output gives you the actual numbers calculated for every one of the state derivatives and intermediate variables. Look at the numbers carefully and check for reasonableness using your knowledge of the system you are trying to model. It is a good idea to start with initial conditions nonzero. If there are too many zero values, the arithmetic calculations can conceal errors. For preference, pick conditions so the derivatives all have a nonzero value which can be checked. Check the values that are listed for the constants. Any that have been preset in a CONSTANT statement and where the decimal point has been left off will be listed as having a value of 0.0 . This problem is a very common error. Some arrays may be missing from this printout if they happen to be longer than the integer contained in the system variable MALPRN (maximum array limit for print out). See system variable summary for the default value.

Now the time comes to try the first full run. Plan what significant output variables will enable you to deduce correct model operation. Specify these in an OUTPUT command; increase the termination time and START.

It is at this point that the modeller's skill comes in, in order to rationalize the behavior of the simulation in terms of how the real word system is expected to behave. About the only help that can be offered is that once questionable areas have been uncovered, schedule debug printouts to cover the area of interest so that as much information is recorded as possible. Note that the debug output occurs every derivative evaluation. For Runge-Kutta fourth order integration four derivative evaluations are made for a time step (calculation interval), one at the beginning, two in the middle, and one at the end. Looking at the independent variable it will appear to advance in half-steps, with two derivative evaluations taking place each step. An extra evaluation will take place prior to each communication interval or trip through the DYNAMIC section.

7.1 MEANING OF DEBUG PRINT OUT

The debug output is generated by going through the user dictionary which points to all variables in the user common block, listing the values of each one by one. The first fifteen variables are ACSL control variables that are defined as follows (see Figure A4-7 for an example):
a) T-Real; Independent variable. May have been renamed in a VARIABLE statement
b) ZZTICG - Real; Initial condition on the independent variable
c) CINT - Real; Current communication interval. May have been renamed by CINTERVAL
d) ZZIERR - Logical; Variable step error flag; May have been renamed by ERRTAG
e) ZZNBLK - Integer; Number of DERIVATIVE and DISCRETE blocks in use
f) ZZI - Integer; Distinguishes pre-initial ($=0$), START $(=1)$ and CONTIN $(=2)$
g) ZZST - Logical; Stop flag set by TERMT operator
h) ZZFRFL - Logical; First flag set true at first derivative evaluation of every step
i) ZZICFL - Logical; Initial condition flag set true at first derivative evaluation of every run immediately after initial conditions have been transferred to states
j) ZZRNFL - Logical; Reinitialize flag set true by REINIT. Used during initialization $($ ZZICFL $=$. TRUE. $)$ and then turned false
k) ZZNS - Integer array of length number of DERIVATIVE blocks giving number of state variables in each block

1) MINT - Real array of length number of DERIVATIVE blocks giving minimum integration step size for each block. Name may be changed by global MINTERVAL statement
m) MAXT - Real array of length number of DERIVATIVE blocks giving maximum integration step size for each block. Name may be changed by global MAXTERVAL statement
n) NSTP - Integer array of length number of DERIVATIVE blocks giving communication interval divisor for each block. Name may be changed by global NSTEPS statement
o) IALG - Integer array of length number of DERIVATIVE blocks giving integration algorithm number to be used for each block. Name may be changed by global ALGORITHM statement
Next in the debug print out comes the list of state variables in DERIVATIVE block order and in alphabetical order within each block, with their corresponding derivatives and initial conditions on the same line. If line width (see TCWPRN and HVDPRN) is sufficient (126) the corresponding values of absolute error (XERR) and relative error (MERR) are also listed on the same line. In general the derivatives will all be dummy variables (Z0nnnn form) except for those defined by the INTVC integration operator.

After the states come all the algebraic variables in alphabetical order. Any EQUIVALENCED variables are listed at the end. System variable ZZSEED contains the random number seed variable which will change (depends on machine type) with every call for a new random number. ZZTLXP is a logical variable present in some machine versions to request the reprieve/interrupt capability. If it is set false before the first START, normal system dumps can be obtained if desired.

THIS PAGE INTENTIONALLY LEFT BLANK

8. APPLICATION NOTES

A number of techniques used in simulation models and run control are included in this section.

8.1 PARAMETER SWEEP

It is possible to define a run which consists of a sequence of runs in which a parameter (P) is varied from a low limit (PMN) to a high limit (PMX) by a certain increment between runs (PDL). This can be programmed using the explicit mode and then plots can be made showing a sequence of curves with the parametric variation.
Example:
PROGRAM SWEEP
INITIAL
$\mathrm{P}=\mathrm{PMN}$
L1 . . CONTINUE
END \$' OF INITIAL’
DYNAMIC
DERIVATIVE
MODEL DEFINITION
\} . . . DEPENDS ON P
END \$' OF DERIVATIVE'
TERMT (T.GE.TSTOP)
END \$' OF DYNAMIC'
TERMINAL
CALL LOG
$\mathrm{P}=\mathrm{P}+\mathrm{PDL}$
IF (P. LE. PMX) GO TO L1
END \$' OF TERMINAL'
END \$' OF PROGRAM'
The run-time control cards will be

PREPAR T, list -
SET FTSPLT $=$.TRUE.
START
PLOT Y1, Y2, etc.
Ensure the independent variable is the first variable on the PREPAR list and then set FTSPLT (fly back trace suppression on plots) .TRUE.. This signals the plot program to lift the pen when the variable recorded on channel one of the PREPAR list is less than its previous value. At the same time, the symbol character is
bumped. Printer plots, of course, do not need to lift the pen, but the character change means it is a lot easier to pick out the curves for separate runs. Remember each entry from the INITIAL section into the DYNAMIC section will reset the independent variable to its initial value. Single runs can be easily generated, either by setting the maximum value (PMX) to the minimum value

SET PMX = PMN
or by making the increment very large
SET PDL $=1.0 \mathrm{E} 100$

8.2 PHASE AND GAIN PLOTS

It is often required to determine phase and gain characteristics of a model that is being forced by a sine wave. With this system, the excitation frequency can be varied logarithmically and the phase and gain characteristics determined and plotted as a function of this frequency. First of all, let us establish a name W for frequency. This will be swept from minimum (WMN) to maximum (WMX) by using a geometric progression with multiplier KW ($=1.2$ to 1.5).
Example:

PROGRAM PHASE AND GAIN

INITIAL

$$
\mathrm{W}=\mathrm{WMN}
$$

L1. . CONTINUE
END \$ ' OF INITIAL’
DYNAMIC
DERIVATIVE
$\}$ MODEL
END \$ OF DERIVATIVE’
TERMT(. . .)
END \$' OF DYNAMIC’
TERMINAL
PW $=$ ALOG10(W)
CALL LOG
$\mathrm{W}=\mathrm{W} * \mathrm{KW}$
IF (W.LE.WMX) GO TO L1
END \$ ${ }^{\text {O }}$ OF TERMINAL’
END \$‘ OF PROGRAM.
The frequency will be varied geometrically and PW is calculated for the x -axis of the plot to be made - the actual scale will then be logarithmic.

Now to find the phase and gain. Assume that we inject our signal into the equation for the variable F, and want to know the gain and phase between F and the output variable X , i.e.,

$$
\frac{X}{F}=G(j \omega)
$$

The in-phase (P) and quadrature (Q) components will be given by

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{W}}{\pi} \int_{\mathrm{TS}}^{\mathrm{T}} \mathrm{X} \sin (\mathrm{WT}) \mathrm{dt} \\
& \mathrm{Q}=\frac{\mathrm{W}}{\pi} \int_{\mathrm{TS}}^{\mathrm{T}} \mathrm{X} \cos (\mathrm{WT}) \mathrm{dt}
\end{aligned}
$$

where the integration is taken over any complete cycle.
The trick is to start the integration after sufficient time has elapsed so that the initial transients have decayed away and then just integrate over a complete cycle. This can be done by logic within either the DYNAMIC or DERIVATIVE sections and it's usually easier to set the communication interval to force the full cycle integration. The phase of the window chosen is immaterial relative to the drive sine wave - it's only necessary to integrate over whole cycles.

This sketched out technique requires a complete simulation run for each point i.e. the model code cycles from TERMINAL to INITIAL every time a new frequency point has been calculated. Another way of generating frequency response in a single run is described in section nine of Appendix A. While the implementation described there is fairly complicated, it reduces somewhat the time spent for settling which is wasted CPU seconds and also allows more direct control of the phase accuracy calculated.

8.3 SUMMARY OUTPUT

It is often useful to obtain a complete list of all simulation variable values in order to document the state of the simulation. Setting NDBUG $=1$ gives a picture at the very first derivative evaluation but we have found that this is not as useful as a picture obtained at the end of the run. In a final value debug dump, initial conditions are still available in the initial condition arrays but all other variables document the termination condition.

In order to easily obtain this final value listing, incorporate the following code in the TERMINAL section i.e.

TERMINAL

LOGICAL DUMP \$ CONSTANT DUMP = .TRUE.
IF (DUMP) CALL DEBUG

END \$' OF TERMINAL'

The call to subroutine DEBUG gives the picture but it's important to have it under the control of a logical variable that can be set at run-time in order to turn the output on or off.

8.4 IMPULSE AND STEP RESPONSE

Common methods used to check simulation models are the determination of the response to impulses and steps in the control variables. In most cases it is not necessary to use special operators as these forcing functions can usually be modelled by parameter changes.

An actual impulse is of infinite height and zero time width and so is impossible to generate directly. The effects however are felt at all integrators the impulse is fed to, and result in a unity jump in the output of these
integrators. The easiest way to implement this jump in practice is to apply a value to the integrator initial condition which models receiving the impulse immediately prior to time equals zero. When the simulation program starts to execute it will then follow a solution trajectory in response to this hypothetical impulse.

As an example consider a pendulum model so

```
OMEGA = INTEG(-G*SIN(THETA)/L,OMEGAZ)
THETA = INTEG(OMEGA, THETAZ)
```

An impulse in force or momentum transferred to the pendulum ball at $T=O$ is modelled by specifying a non-zero value for the angular rate initial condition OMEGAZ. This may need some calculation since there are equations governing momentum transfer. These would apply if for example we struct the pendulum bob with a mallet and would correctly be placed in the INITIAL section.

If the impulse is applied at times other than $\mathrm{T}=\mathrm{O}$, then the integral equation must be modified to add in the net integrated impulse or

$$
\text { OMEGA }=\operatorname{INTEG}\left(-\mathrm{G}^{*} \operatorname{SIN}(\text { THETA }) / \mathrm{L}, 0.0\right)+\text { DLOMEG }
$$

Now the variable DLOMEG (delta OMEGA) is added in and becomes the initial condition on OMEGA (since the INTEG has an initial condition of zero). In this configuration we change DLOMEG and since it is always added to the state variable or output of the INTEG operator, OMEGA will jump discontinuously when this happens. If DLOMEG has been changed it must be reset in the INITIAL section prior to the start of each run. It itself becomes an effective state variable. Most cases can be handled by using the initial condition but when true impulses are applied during the simulation run, then the added variable becomes necessary (see the aspirin example in section 12 of Appendix A)

Step responses are a different excitation technique, usually handled by adding a constant (initialized to zero) at a summing junction but often loops must also be broken. A typical requirement is to examine the response of a missile - pitch rate, pitch angle and accelerometer reading - to a step in fin deflection. This would normally be applied at time equals zero and the dynamic response recorded. The trouble here is that a simple change of initial condition on the fin angle integrator is not sufficient since after the model starts, the fin deflection will change due to the dynamics built into the actuator model. The key now is to break the outer loop and prevent this fin motion and the ease whereby this can be done depends somewhat on the actual fin dynamics model itself. A simple fin model is a first order lag with a typical time constant of 5 to 50 msec , so motion can easily be stopped by setting temporarily the time constant to 1.0 E 30 . This very large value ensures that the output will remain constant irrespective of what the input does. Alternatively there may be a gain between torquer and velocity integrator which can be made zero, so ensuring zero derivatives or a constant output.

For these types of test cases it is important that model parameter values be given symbolic names, preset by CONSTANT statements. The symbolic name enters these into the ACSL dictionary and the CONSTANT statement is just a preset so values changed won't be changed back as they would if they were set via an assignment statement. It is bad practice to specify numbers within the code sequence, since no name can be assigned to the value and so the value itself is always fixed, requiring a re-edit of the model definition code in order to effect any changes.

As an example, with a first order lag fin model with a time constant of 20 msec we have two choices
a) REALPL ($\mathrm{DL}=0.020$, DLC, DLIC)
b) CONSTANT TACT $=0.20$

```
REALPL(DL = TACT, DLC, DLIC)
```

The second form is far better since now we can change the variable TACT at run-time by SET commands. For step responses we would use

```
SET TACT \(=10 \mathrm{E} 30\), DLIC \(=-0.010\)
```

START
which would generate the response for a fixed fin deflection of minus ten milliradians.

8.5 EXTERNALLY DEFINED VARIABLES

It is sometimes necessary to suppress the message relating to undefined variables which will be generated if names are found that never appear on the left hand side of an equals sign. This happens with external FORTRAN subroutines that are communicating with the ACSL program via the dollar sign (\$) in column one and described in section 1.5. In order to tell the ACSL system that they are calculated and at the same time enter the name in the ACSL model dictionary, just mention them in a dummy PROCEDURAL block which can be placed anywhere in the program.

Consider variables XF, YF and ZF which we know to be defined elsewhere. Add the following two lines

PROCEDURAL (XF, YF, ZF =)

END
which says that it is known that the variables XF, YF and ZF are defined somewhere. In this we assume that sorting problems are handled separately. Remember there is no check that the inside of a PROCEDURAL block agrees with the input/output list stated on the header and while it can be a useful feature, care is necessary in its use in actual simulation programs.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A ACSL EXAMPLE PROGRAMS

A number of sample problems have been programmed and run using the ACSL simulation system. In all cases the input consisted of two files or sets of cards. The first describes the model under examination and the second is the run-time executive driver. In most cases the model can be considered as being described in parallel, i.e., there is no necessity to have variables calculated prior to their use. The translator will rearrange the program until it is in correct sequence for execution. On the other hand, the run-time executive is definitely sequential and the input is a sequence of commands that tell the model what to do next. At least a START card is necessary to exercise these models.

All the output from these programs has been designed to fit on standard A size paper (eight and a half by eleven) where possible, for ease of reproduction. Normally the full width of the line printer is available (13") but we have restricted the use of this with the exception of line printer plots since reducing the grid size to 50 by 50 increases the coarseness, decreasing significantly the quality of the picture. The plots therefore have been produced on a 100 by 100 grid and the page reduced by 47% for publication.

The listings produced from the OUTPUT command are sized to fit on the terminal where the size is controlled by the ACSL system variable TCWPRN (terminal character width for print out). When this is changed to 72 , the output will fit on an 8.5 inch wide sheet. The low volume or display output is at the same time routed to logical unit nine (SET DIS=9) leaving the high volume output on logical unit six, the output of which was used to make the figures. These logical unit assignments are machine type specific and are described in the addenda for a particular installation. The figures were made on a CYBER 175, NOS operating system.

1. LIMIT CYCLE

The equations

$$
\begin{aligned}
& \dot{x}=y+K \dot{x}\left(1-x^{2}-y^{2}\right) / \sqrt{x^{2}+y^{2}} \\
& \dot{y}=-x+K y\left(1-x^{2}-y^{2}\right) / \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

where

$$
x(0)=x z ; y(0)=y z
$$

describe a limit cycle in the xy plane. The limit cycle is a circle of radius 1.0. That is, no matter what initial conditions are imposed on x and y (except $x=y=0$), $x^{2}+y^{2} \rightarrow 1$ as $t \rightarrow \infty$

Assume that plotted time histories of x and y are required for t running from 0 to 10 in steps of 0.2 sec. Printed output need only be listed every 1.0 sec.

The coding for this problem is shown in Figure A1-1 which establishes the base model. Line 7 defines the root sum square value SQ as a named item so that it can be listed and plotted. Execution time is also saved by calculating the common subexpression once.

The next three cards specify the integration equations. Line 13 specifies the termination condition (TERMT). The final time, TF, specified in the constant statement is given as slightly less than ten. If it's exactly ten an extra step will be taken since equality of floating point numbers is never exactly obtained. The value of T obtained by summing many small increments will in general be slightly less than the exact value.

The run-time control cards follow - separated from the model description in the batch run by an end of record card ($7 / 8 / 9$ punch). First comes the output statements that determine what is to be listed (Figure

```
        *********ALIVANCEII CONTINUOUS SIMULATION LANGUAGE*********
    ACSL TRANSLATOR UEFSION 1 LEVEL 6F 81/07/10. 09.35.19. PAGE 1
PROGRAM LIMMT CYCLE
```



```
    CONSTANT XZ = 0.5 , YZ = 1.0
    CONSTANT K=0.2,TF}=9.9
    CINTERVAL CINT =0.2
```



```
    SQ =SQRT(X**2 + Y**2)
    "------------------------------ISOLATE COMMON FACTOF'"
    KK = (1.0 - SQ**2)/SQ
```



```
    X = INTEG( Y + K*X*KKK, XZ)
    Y = INTEG(-X + K*Y*К゙K, YZ.)
    "----------------------------mEFINE STOFFING CONIITION"
    TERMT(T .GE. TF)
ENN *" OF PROGRAM *
    1.718 CP SECONIS 2056 TAELE SFACE USEI 3 TABLE MOUES
SF'AFE
SET TITLE = "LIMIT CYCLE FRORLEM"
S TCWFRN=72,IIIS=9 $* FORCE 3 COLUMN OUTFUT WIITHH *
OUTFUT T,X,Y,SQ,"NCIOUT"=S $"IEFINE LIST TO EE FRINTEII IURING RUN"
FREFAR T,X,Y,SQ $"IEFINE LIST TO BE SAVEN FOR LATER USE"
GTART
FLOT X,Y,SQ $"PLOT AS FUNCTION OF TIME"
PLOT "XAXIS"=X,Y $"PHASE FLANE FLOT"
SET NFXPPL=60,NGXPFL=12 *"SQUARE UF' FHASE FLLANE FLOT"
FLOT Y $"ASSUMES XAXIS IS LAST VARIABLE EXPLICITLY IEFINEI"
SPARE
STOF
```

Figure A1-1. Listing of Limit Cycle Model and Executive Command Cards

ACSL RUN-TIME EXEC UEFSION 1 LEVEL 6M 81/07/10. 09.35.55. FAGE 1.

SFARE
ACCUMULATEI CF TIME 6.011 SEC. ELAFSED CF TIME 6.011 SEC.
SET TITLE = "LIMIT CYCLE FRORLEM"
S TCWFRN=72, 1 IS $=9$ \$ FORCE 3 COLUMN OUTFUT WIITH "
OUTFUT $T, X, Y, S Q, " N C I O U T "=5$ *"DEFINE LIST TO EE FRINTEI IURING RUN" FREFAR T,X,Y,SQ ${ }^{\text {F"DEFINE LIST TO BE SAUEI FOR LATER USE" }}$ START

To.
SQ 1.11803399
T 1.00000000
SQ 1.07761050
T 2.00000000
SQ 1.05136673
T 3.00000000
$x-0.32732337$
$x-0.99128128$
$\gamma-0.25178710$
T 4.00000000
$x-0.74193795$
Y 0.69293307
SQ 1.01519858
$T 6.00000000 \times 0.18130838 \quad Y 0.99375825$
SQ 1.01016246
T 7.00000000
SQ 1.00680071
T 8.00000000
SQ 1.00455355
T 9.00000000
SQ 1.00305005
$\begin{array}{rr}T & 10.0000000 \\ \text { SQ } & 1.00204348\end{array}$
$T 10.0000000$
S0 1.00204348
$\times 0.50000000$
$\times 1.07143048$
$\times 0.65941072$
Y-0. 81887087

SQ 1.02275868
T 5.00000000
$\times 0.93107118$
$\times 0.82357251$
Y-0. 57520097
$x-0.03897837$
Y-1. 00229241
$x-0.86359260$
$Y-0.50823121$
\$"Flot as FUNCTION OF TIME:

Figure A1-2. Run-time Control and Output Stream of Limit Cycle Models

Figure A1-3. Plot Resulting from Last Command on Figure A-2 for Limit Cycle Model

Figure A1-4. Plot Resulting from Last Command Figure A-3

Figure A1-5. Phase Plane Plot of Figure A-4 with Axes Squared

A1-2) during the run. The qualifier 'NCIOUT' is set to five to indicate output is only to occur every five communication intervals. Then START initiates the run and produces the listing. The next command is PLOT which produces the page plot shown in Figure A1-3. As can be seen, the root sum square value SQ tends to 1.0. A phase plane plot follows (Figure A1-4) where y is plotted against x. Note the distortion of the circle to an ellipse because the printer characters are longer than they are wide (ratio of 10:6). Next the x -axis had been changed by

```
SET NPXPPL = 60, NGXPPL = 6
```

(number of points in the x direction for printer plots). The grid is now square and the plot circular (Figure A1-5). Note the second plot does not specify the x -axis variable - the last one used is assumed.

Other values of the constants could have been tested by following this plot card with further SET statements followed by another START.

2. SPRING

A spring supporting a mass with a viscous damper attached can be modelled by a linear second order differential equation. The equation is derived by writing the expression for the force acting on the mass and then using Newton's Law (force equals mass times acceleration) to calculate the acceleration. If x is the linear displacement of the spring, the spring restoring force is -Ax lbs , where A is the spring constant ($\mathrm{lbs} / \mathrm{ft}$), and the viscous damping is proportional to the velocity and opposing it or $-\mathrm{K} \dot{x}$ lbs, where K is the coefficient of the viscous friction in $\mathrm{lbs} /(\mathrm{ft} / \mathrm{sec})$. If W is the weight in lbs attached to the spring, then the mass is W / g slugs where g is the acceleration due to gravity. With this we can express Newton's Law so or:

$$
\frac{W}{g} \ddot{x}=W-K \dot{x}-A x
$$

where W , the weight, is the force due to gravity tending to extend the spring. Dividing both sides of the above equation by W / g we obtain the expression for the highest derivative or:

$$
\ddot{\mathrm{x}}=(\mathrm{W}-\mathrm{K} \dot{\mathrm{x}}-\mathrm{Ax}) /(\mathrm{W} / \mathrm{g})
$$

Integrating this twice leads to the two statements:

$$
\begin{aligned}
& \dot{\mathrm{x}}=\int \ddot{\mathrm{x}} \mathrm{dt} \\
& \mathrm{x}=\int \dot{\mathrm{x}} \mathrm{dt}
\end{aligned}
$$

Figure A2-1 shows the ACSL model definition statements that represent the dynamics of the mass when it is released. Note the alternate way of obtaining time by integrating a constant one. This is useful if it becomes necessary to change the initial condition on time. The run-time drive cards are shown in Figure A2-2 and output listings in Figure A2-3 through A2-6. At the bottom of Figure A2-4 the plot is set up with a specified Y-axis scale factor and Figure A2-5 shows the resulting limited plot. Out of bounds points are brought back to the edge of the plot with no attempt made to interpolate for correct intersection with the edge. Beware that the slope of the curve as it approaches the limit condition will therefore be incorrect.

The communication interval was defined in the model definition section to be 0.02 seconds and with a run time of 4 seconds this will save 201 data points. Since the x -axis size is a hundred points, two data points will be available for plotting in each x -axis box. When they fall in different y -axis boxes, the two points are shown on the same vertical line - see Figure A2-4 -, but this is only an artifact of the coarse plotting medium. When the rates of change are slow enough, the two points will coalesce into a single point as shown at the extrema of the curves.

3. CONTROL LOOP

This program was chosen to illustrate how MACROS are used to represent transfer functions from a system block diagram. The problem is the design of a lead-lag controller for a second order plant that has
*********ALUANCET CONTINUOUS GTMULATTON LANGUAGE*********


```
FROGRAM SFRTNG
MERTVATTUE
    ".,.,
    " A MASS FROM TNTTTAL CONGTTTONS OF zFEO"
    CINTERUAL. CTNT =0.02
    # (......................................................NEFTNE PRESET VARTABIFS"
    CONSTANT XTC=0.0, XOTC=0.0, W=1.0
            , K=0.02 , A=1.0 , 0= 32.2
            , TSTF=3.99
```



```
                            VARTABLE:
    TTME =- INTEG(1.0, 0.0)
    X0M! =:\W --- K゙#X@ -- A*X)/(W/G)
    "..................................................NTEGRATE ACCEL FOR UELOCITY ANO POSTTTONA
    xom =:= INTEG(xmm, xore)
    X == TNTEG(XM , XIC )
```



```
    TERMT(T.GF.TSTF)
ENI &" OF חERIVATIVE *
ENO $" OF FROGRAM"
```

Figure A2-1. Listing of Model Defintion for Spring Damping Problem

```
GET THTLE: =- "SFRTNG MAMFTNG FROBLEM"
S TCUFFN=72, XTS=9 $" FORCE 3 COLUMN OUTFUT WTWTH "
OUTFUT TTME, XOM, XO, X, "NCTOUT"=20
FREFAR XOM, XI,TIME:X
STAET
RANGE "ALL"
FLOT "XAXIS" =% TME क" SET TTME AS X-AXTS FOR SUBSEQUENT FLOTS"
Flot X, XG &" USE AUTOMATIC SCALTNG"
PLOT X, "HT"=1.0, "LO"=0.0, XI
Plot "XAXIS":=XI, X %" FHASE FlaNE Flot"
srof
```

Figure A2-2. Run-time Drive Commands to Exercise Spring Damping Problem

```
SET TITLE = "SPRING DAMPING PROELEM"
S TCWPRN=72,DIS=9 %" FORCE 3 COLUMN OUTPUT WINTH *
OUTPUT TIME;XDD,XD,X,"NCIOUT"=20
PREPAR XID,XII,TIME,X
START
```

TIME 0 X 0 .

TIME 0.40000000 $\times 1.52486284$

TIME 0.80000000 $\times 1.18166762$

TIME 1. 20000000 $\times 0.38969003$

TIME 1.60000000 $\times 1.54707775$

TIME 2.00000000 $\times 0.85545031$

TIME 2. 40000000 $\times 0.73999060$

TIME 2.80000000 $\times 1.40461313$

TIME 3.20000000 $\times 0.74518210$

TIME 3.60000000 $\times 0.97431479$

TIME 3.99200000 $\times 1.233458 .47$

XDD 32.2000000 XD 0

X010-19.3714113 XII 3.83668940
xin-3. 06640990

XOD 18. 4264342

XIII-18. 3865897

XDD 6. 46987709
$\mathrm{xn01} 6.92302052$

XDII-12. 7990980
$x 0119.06683251 \quad x 0-1.33803765$
x01-0. 32094098
x010-6.92515695
X1 1.78261606
$x 0-0.91 .957557$

```
FANGE "ALL"
XロII-27.0956534 XII-4. 35499524
TIME 0 . \(X 0\) 1.83607297
PLOT "XAXIS" = TIME \$" SET TIME AS X-AXIS FOR SUBSERUENT PLOTS" PLOT \(X, X I \quad{ }^{\prime \prime}\) USE AUTOMATIC SCALING"
```

Figure A2-3. Run-time Control Card and Output Stream - Spring Damping Problem

Figure A2-4. Plot with Automatic Scale Factor Selection - Spring Damping Problem

Figure A2-5. Forced Off-Scale Plot by Specifying Y-Axis Scale Factor for X-Spring Damping Problem

Figure A2-6. Phase Plane Plot - Spring Damping Problem
a measurement device containing a first order lag (real pole). Figure A3-1 shows the system block diagram. Constants in the model are as follows:

$$
\begin{array}{ll}
\mathrm{T}_{1}=0.020 \mathrm{sec} & \mathrm{~B}=0.200 \mathrm{sec} \\
\mathrm{~T}_{2}=0.005 \mathrm{sec} & \mathrm{~K}_{1}=\text { to be determined } \\
\mathrm{T}_{3}=0.002 \mathrm{sec} & \mathrm{~K}_{2}=0.5 \\
\mathrm{~A}=0.012(\mathrm{sec})^{2} & \mathrm{~K}_{3}=1.0
\end{array}
$$

The model definition is shown in Figure A3-2 and the run-time drive sequence in Figure A3-3. In the model definition, the communication interval (CINT) is defined to be 5 msec , a step in input is applied at 20 msec (TZ) and the transient is allowed to run to the stop time (TSTP) of 499 msec or 100 recorded data points. In the model listings, the transfer function operators, REALPL, CMPXPL and LEDLAG are embedded in the right hand side expressions. This is acceptable when the output is a single numeric quantity and in fact these can be nested to any depth desired. An alternate form is available for stand alone use if the operator is known to be a MACRO as follows for the three lines calculating XM, X and XP respectively.

```
REALPL (XM \(=\) TA3, K3*X, 0.0)
CMPXPL (X = A, B, K2*XP)
LEDLAG (XP = TA1, TA2, K1*E, 0.0)
```

This form of the MACRO invocation is sometimes preferable since it restricts generation of dummy names (or those starting with Z0 ...). In changing to the above form we have used the property of linear operators that pre and post multiplication by scalars are equivalent.

In the run-time drive commands (Figure A3-3) the OUTPUT and PREPAR lists are specified and a procedure GO defined. The card images between the PROCED . . . END are saved and not executed. Then two runs are made using the procedure now as a new command, the first with K1 equals to 100.0 and the second 10.0. Each 'GO' invokes the START/PLOT sequence saved in the procedure. Figures A3-4 through A3-7 show the output stream generated as a result of the run-time drive commands. Notice that when the commands within the procedure are echoed back a trailing dollar sign (\$) is appended.

Figure A3-1. Control Loop Problem Block Diagram

```
FFOGRAM LOOF
    | .....................................................WEFTNE FRESET UARTABLES"
    CONSTANT K1=50.0, K2=0.5, K3=1.0, % 
    , TSTF=0.499, TAL=0.0%0, TAZ = 0.005
    , TA3=0.00%, A =0.012, B=0.200
    , Tz=0.02
    CTNTERVAL CINT =0.0OS
    "...................................................OUTFUT OF FTRST ORWEF LAG IS MEASUREMENT:
    XM =:= K゙3*REALPLL(TA3, X, 0.0)
    "..........................................................FORCTNG FUNCTTON*
    XC = STEF(TZ)
    E:=XC -." XM
```



```
    X = K冗*CMFXFL(A, B, XF, O.0, O.0)
    "................................................................CONTROLLEEF OUTFUT"
    XF =: Kl*IEMLAG(TAL, TAW, E, O.O)
    "...............................................ECTFY TERMMNATION CONOTTTON"
    TERMT(T.GE.TSTF)
ENI: $" OF FROGRAM "
```

Figure A3-2. Listing of Control Loop Model Definition

```
SET TITLE = "CONTROL LOOF FRORLEM"
S TCUFFN=72, IIS=9 &" FORCE 3 COLUMN OUTFUT WTOTH "
OUTFUT T, XC,E,XF,X, "NCTOUT"=:10
FREFAR T,XC,E,XF,X,XM
PFOCEE GO
START
"FORCE SAME SCALES FOR COMMANO ANM MEASUREG -.- FTRGT VARTABIE TS REFNCE:
FLOT X,XC,XM,"SAME",E
ENH क" OF FROCEIURE "
    "MAKE TWO RUNS ANG FRODUCE FLIOTS OF EACH"
SET K1=100.0 $ 00
SET K1=10.0 $ 60
GTOF
```

Figure A3-3. Run-time Drive Commands for Control Loop Problem

```
SET TITLE =: "CONTFOL LOOF FFORLEM"
S TCWFKN=72, IIS=9 $" FOKCE 3 COLUMN OUTFUT WIMTH "
OUTFUT T, XC,E,XF,X, "NCTOUT"=10
FFEFAK}T,XC,E,XF,X,X
FROCEM GO
STAK'T
"FORCE SAME SCAIES FOF COMMANM ANI MEASUFEI -. FTFST UAFTAEIE IS FEFNCE"
FILOT X,XC,XM,"SAME",E
ENII क" OF FROCELIURE "
"MAKE TWO FEUNS AND FFORUCE FILOTS OF EACH"
SET KL=100.0 $ 60
STAFT歺
\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] \\
\hline T & 0.05000000 \\
\hline XF'- & -79.0815517 \\
\hline T & 0.10000000 \\
\hline XF' & 4. 53840650 \\
\hline \(T\) & 0.15000000 \\
\hline XF' & 2.64982182 \\
\hline
\end{tabular}
    T0.20000000
XF 1.88110551
    T 0.25000000
XF 1.96034782
    T 0.30000000
XF 1.96161406
    T 0.35000000
XF= 1.96072193
    T 0.40000000
XF: 1.96078106
    T 0.4%000000)
XF 1.96078520
    T 0.49950000
XF. 1.96078427
```

$\times 0$
E 0 .
$\times 0$.
$\times C 1.00000000$
$\times 1.36474747$
$\times 0$ 1. 000000000
$\times 0.94349680$
$\times 1.00000000$
$\times 0.98019850$
$\times 11.00000000$
$\times 0.98078639$
$\times 0.1 .00000000$
$\times 0.98036255$
$\times 01.00000000$
$\times 0.98039061$
$\times 1.00000000$
$\times 0.98039258$
XC. 1.00000000
$\times 0.98039214$
$\times 1.00000000$
$\times 0.98039215$
$\times 1.00000000$
$\times 0.98039216$

E 0.01960785
$E-0.34243054$

E 0.06252934

E 0.01896207

E 0.0 .1921891

E 0.01 .964535

E 0.01960870

E 0.01960740

E 0.0 .1960787

E 0.01960784

```
                            x 0.98039216
"FOFCE GAME SCALES FOF COMMANI ANI MEASUFEE … FTFST UAKTABLE IS FEFNCE" \(\$\)
```


Figure A3-4. Run-time Drive Commands and Output Stream of Control Loop Problem

Figure A3-5. Plot of Input Step, XC, Output, X, and measurement, XM, to Same Scales with Error, E, for Control Loop Problem

```
GET K1=10.0 $ GO
START$
```

$\begin{array}{rr}\mathrm{T} & 0 . \\ \mathrm{XF} & 0 .\end{array}$
T 0.05000000
XF 6.00718267
T 0.10000000
XF 1.07926131
T 0.1 .5000000
XF- -0.03417260
T 0.20000000 XF 0.80350815

T 0.25000000 XF 1.67195084

T 0.30000000
XF 1.94272303
T 0.35000000
XF' 1.83522449
T 0.40000000
XF 1.68335989
T 0.45000000
XF 1.62368836
T 0.49950000
XF 1.63462643
X 1.63462643

$x C$	0.
x	0.

XC 1.00000000
$\times 0.26483287$
XC 1.00000000
$\times 0.78064589$
XC 1.00000000 E 0.02168535
$\times 0.98055897$
XC 1.00000000
$\times 0.94077047$
$\times \mathrm{C} 1.00000000$
$\times 0.85305345$
$\begin{array}{rr}\times C & 1.00000000 \\ \times \quad 0.81153849\end{array}$
XC 1.00000000
$\times 0.81366126$
xC 1.00000000
$\times 0.82809089$
XC 1.00000000
$\times 0.83631791$
$\times 1.00000000$
$\times \quad 0.83684777$
E 0.75834817

E 0.23491640

E 0.05569507

E 0.14405774

E 0.18779721

E 0.18684210

E 0.17242946

```
"Force same scales for command and measuren - fifst variable is refnce" PLOT X, XC,XM, :SAME",E
```

Figure A3-6. Second Run - Control Loop Problem
stop

Figure A3-7. Plot of Step, Output and Error for Second Run - Control Loop Problem

4. PILOT EJECTION STUDY

The purpose of this investigation is to determine the trajectory of a pilot ejected from a fighter aircraft in order to ascertain whether he will strike the vertical stabilizer of the aircraft. Several combinations of aircraft speed and altitude will be investigated since the drag on the pilot, causing his relative horizontal motion with respect to the aircraft, is a function of air density and velocity (squared). The ejection system is devised so that it causes the pilot and his seat to travel along rails at a specified exit velocity, V_{E}, at an angle, θ_{E}, backward from vertical. The seat becomes disengaged from the rails at $\mathrm{Y}=\mathrm{Y}_{1}$. This first phase of the ejection is illustrated in Figure A4-1. Once the pilot and seat combination leaves the rails, it follows a ballistic trajectory which can be determined; however, since it is the relative motion of the pilot with respect to the aircraft (which is assumed to fly level at constant speed) that is important, we can formulate our equations to obtain this trajectory directly. This phase of the ejection is shown in Figure A4-2.
The governing equations are:

$$
\begin{aligned}
\dot{\mathrm{X}} & =\mathrm{V} \cos \theta-\mathrm{V}_{\mathrm{A}} & & \\
\dot{\mathrm{Y}} & =\mathrm{V} \sin \theta & & \\
\dot{\mathrm{~V}} & =0 & & 0 \leq \mathrm{Y}<\mathrm{Y}_{1} \\
& =\frac{-\mathrm{D}}{\mathrm{M}}-\mathrm{g} \sin \theta & & \mathrm{Y} \geq \mathrm{Y}_{1} \\
\dot{\theta} & =0 & & 0 \leq \mathrm{Y}<\mathrm{Y}_{1} \\
& =-(\mathrm{g} \cos \theta) / \mathrm{V} & & \mathrm{Y} \geq \mathrm{Y}_{1} \\
\mathrm{D} & =\frac{1}{2} \rho \mathrm{C}_{\mathrm{D}} \mathrm{SV}^{2} & &
\end{aligned}
$$

Two cases will be run, viz:
Case 1: $\mathrm{V}_{\mathrm{A}}=900 \mathrm{ft} / \mathrm{sec}$

$$
\rho=2.3769 \times 10^{-3} \text { slugs } / \mathrm{ft}^{3}(\text { sea level })
$$

Case 2: $\mathrm{V}_{\mathrm{A}}=500 \mathrm{ft} / \mathrm{sec}$

$$
\rho=2.3769 \times 10^{-3} \text { slugs } / \mathrm{ft}^{3}(\text { sea level })
$$

Constants (for all cases)

$$
\begin{array}{ll}
\mathrm{m}=7 \text { slugs } & \mathrm{g}=32.2 \mathrm{ft} / \mathrm{sec}^{2} \\
\mathrm{C}_{\mathrm{D}}=1 & \mathrm{~S}=10 \mathrm{ft}^{2} \\
\mathrm{Y}_{1}=4 \mathrm{ft} & \mathrm{~V}_{\mathrm{E}}=40 \mathrm{ft} / \mathrm{sec} \\
\theta_{\mathrm{E}}=15 \mathrm{deg}(=15 / 57.3 \mathrm{rad}) &
\end{array}
$$

The initial values of V and θ (pilot's initial velocity vector at moment of leaving cockpit rails) are given by:

$$
\begin{aligned}
& \mathrm{V}(0)=\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{E}} \sin \theta_{\mathrm{E}}\right)^{2}+\left(\mathrm{V}_{\mathrm{E}} \cos \theta_{\mathrm{E}}\right)^{2} \\
& \theta(0)=\tan ^{-1}\left[\frac{\mathrm{~V}_{\mathrm{E}} \cos \theta_{\mathrm{E}}}{\mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{E}} \sin \theta_{\mathrm{E}}}\right]
\end{aligned}
$$

Figure A4-1. First Phase of Ejection

Figure A4-2. Space Trajectories, Vehicle and Pilot

$$
X(0)=Y(0)=0
$$

A run is to be terminated when any one of these conditions occurs:
$\mathrm{X} \leq-60 \mathrm{ft}$ (pilot beyond vertical stablizer)
$\mathrm{Y} \geq 30 \mathrm{ft}$ (pilot well above 12 ft high tail)
$t \geq 4.0 \mathrm{sec}$
Print $\mathrm{t}, \mathrm{V}, \dot{\mathrm{V}}, \theta, \mathrm{X}$, and Y every 0.01 sec
Plot X versus Y
Plot X, Y, and V versus t
The coding for this example is given in Figure A4-3 with comments as follows. A procedural is defined to calculate the switch YGEI (Y greater than or equal to one). Note that the initial conditions on the pilot's velocity VIC and flight path THIC are calculated in the initial section. They must not be calculated in the derivative section since the initial condition table is transferred to the state table before the derivative section is evaluated. The terminate condition of X less than -60 ft or Y greater than 30 ft or time greater than 4 sec is placed in the DYNAMIC section to be interrogated every communication interval.

The output stream from running the model is shown in Figure A4-4 through A4-8. We have not separately listed the run-time drive cards since they are echoed as part of the normal output stream. In Figure A4-4, after establishing the title, the OUTPUT and PREPAR lists are defined and the first run is made (START) using the default parameter values defined in the model definition or aircraft velocity of $900 \mathrm{ft} / \mathrm{sec}$. Output values are listed during the run every five communication intervals or 0.05 sec . The run stops at 0.44 seconds since x has become more negative than the minimum specified or -60 ft . The first plot produces time histories, where the x -axis variable is T , and then the trajectory plot with the x -axis taken as X , the relative distance of the pilotalong the aircraft from the cockpit, negative towards the tail. At 60 ft . the pilot just clears the 12 ft . high tail. Note that this plot specifies 'XLO' $=\mathrm{XMN}$ or -60 ft . so that the plot runs from this value to zero. If the XLO subcommand had not been used, normal rounding would have caused the scales to run from - 100 to zero, so wasting 40% of the plotting area.

In Figure A4-7, a second run is set up with a debug print out at the derivative evaluation with T equal to or greater than 0.1: The output rate is reduced to every ten communcation intervals or 0.1 sec but the same list is maintained: The aircraft speed is changed to $500 \mathrm{ft} / \mathrm{sec}$ and the model run again.

The debug output is obtained by using the ACTION command which is read as: When the independent variable ('VAR') is 0.1 take a value ('VAL') of 1 and store it into a location ('LOC') called NDBUG. The printout following the START card has the normal listing at the time equal to 0.0 and 0.1 (note the reduced frequency) and then all the variables in the model definition are listed out by the debug operation since the ACTION has made NDBUG positive. The time is actually at 0.101 sec which means that T was 0.0999999999999 rather than 0.1 at the previous integration step. The order of the list is system variables (described in more detail in Section 7), state variables with their associated derivatives and initial conditions, followed by all the rest of the problem variables in alphabetical order.

Since the ACTION statement changed the system variable NDBUG to one, only one debug list is written out and the run continues normally from that point with output every 0.1 seconds. The plot of the second run, Figure A4-8, shows the pilot now clearing the tail by 5 ft . at the lower velocity.

```
FROGFAM EJECTION
```

INITIAL


```
ENI $" OF INITIAL "
```

MYNAMIC
OERIVATIVE

$\mathrm{X}=\mathrm{INTEG}(U * \operatorname{COS}(\mathrm{TH})-\mathrm{UA}, 0.0)$
$Y \quad=\operatorname{INTEG}(U * S I N(T H), 0.0)$

$\cup=$ INTEG(YGEi*(-I/MASS - G*SIN(TH)), VIC)
TH $=$ INTEG(YGE1*(-G*COS(TH)/U), THIC)

$\mathrm{n}=0.5 * \mathrm{RO}=\mathrm{Cn} * 5 * \cup * * 2$

" CONSTRAINEI TO GUIIE FAILS. THIS OFEFATION IS EETTEF IONE BY -.. "

* YGE1 $=\operatorname{RSW}(Y . G E . Y 1,1.0,0.0)$
" BUT IS SHOWN HERE TO IUEMONSTRATE USE OF A FROCELURAL ELOCK * FROCEIURAL (YGE1 $=Y, Y 1$)
YGE1 $=1.0$
$\operatorname{IF}(Y . L T . Y 1)$ YGE1 $=0.0$
ENI *" OF FROCEIURAL *
ENI \$" OF nERIVATIUE "

TERMT (X.LE. XMN . OR. Y.GE.YMX . OR. T.GE.TMX)
END \$" OF IIYNAMIC "
ENI *" OF FROGRAM "

Figure A4-3. Listing of Model Definition Section for Pilot Ejection Problem

```
SET TITLE = "FILOT EJECTION"
S TCWFFN=72,IIS=9 $" FORCE 3 COLUMN OUTFUT WIHTH *
OUTFUT T,TH,V,X,Y, I,"NCIOUT"=5
PREFAR T,TH,V,X,Y
START
```

To.	TH	0.04340252	U	890.486592
$\times 0$.		0 .	II	9424.00882
T 0.05000000	TH	0.04340252	V	890.486592
X-0.51760084	Y	1.93186163	I	9424.00882
T 0.10000000	TH	0.04340252	U	890.486592
$x-1.03520168$	Y	3.86372327	II	9424.00882
T 0.15000000	TH	0.04167638	\checkmark	832.328907
$x-2.92272617$	Y	5.70253371	II	8233.24182
T 0.20000000	TH	0.03967529	U	777.339784
$x-7.74560503$	Y	7.33859116	II	7181.29398
T 0.25000000	TH	0.03753729	v	729.161781.
$x-15.1368159$	Y	8.79210784	II	6318.71416
T 0.30000000	TH	0.03526236	v	686.603725
$x-24.7874576$	Y	10.0801944	II	5602.64656
T 0.35000000	TH	0.03285045	v	648.737032
$x-36.4412100$	Y	11.2170486	II	5001.70754
T 0.40000000	TH	0.03030154	V	614.827136
X-49.8830398	Y	12.2145814	1	4492.48846
T 0.44000000	TH	0.02816375	V	590.148541
$x-61.8005731$	Y	12.9191282	0	4139.07780

Figure A4-4. Output Stream for Pilot Ejection Study

Figure A4-5. Time Plot - Pilot Ejection Study

Figure A4-6. Trajectory Plot - Pilot Ejection Study
"SET UF FOR IEEUG LIST OF ALL VARIABLES WHEN T = 0.1 " ACTION "UAK" = 0.1, "UAL" = 1, "LOC" = NIIBUG OUTFUT "NCIOUT"=10 \$" SAME OUTPUT LIST,LOWER RATE "
" LIST OF COMMANLIS ON ONE CARII "
SET UA $=500.0$ \$ STAFT $\$ \operatorname{SET}$ IIS $=9$ \$ FLOT "XAXIS" $=X$, "XLO" = XMN, Y T0. TH 0.07874502 U 491.170015 $X 0$ Y X . II 2867.11166
$\mathrm{T} 0.10000000 \quad$ TH $0.07874502 \quad$ V 491.170015
$\begin{array}{lll}X-1.03520168 & Y & 3.86372327\end{array} \quad$ II 2867.11166

Figure A4-7. Set Debug Printout, Run and Plot - Pilot Ejection Study

Figure A4-8. Last Trajectory - Pilot Ejection Study

5. TEMPERATURE DISTRIBUTION ALONG A RADIATING FIN

The only practical way of rejecting heat from a power plant operating in outer space is by thermal radiation. If the "working fluid" of the power plant passes through tubes, an efficient radiating surface could be devised by placing many tubes side by side. This would maintain the entire surface at the highest possible temperature. Such a system, though, is highly vulnerable to being punctured by a meteor fragment or some other particle, and this could lead to the loss of the vital working fluid.

A less efficient but also less vulnerable arrangement is shown in Figure A5-1. The number of tubes has been reduced and the space between the tubes has been filled by a fin of rectangular cross section. We want to determine the temperature profile across the fin for various tube spacings, fin thicknesses, fin material, etc. The temperature profile, in turn, can be used to calculate the efficiency of the radiating system. Keep in mind that this is really a problem in static temperature distribution. Time is not a factor because steady state conditions throughout the system are assumed.

5.1 Assumptions

Two views of the radiating fin are shown in Figure A5-2. In terms of this figure, the pertinent assumptions are as follows:

1) Steady-state conditions have been established.
2) Heat is transferred out of the fin only by radiation through a nonabsorbing medium.
3) Thermal properties of the material are constant.
4) There is no heat conduction in the y direction.
5) Heat loss from the two exposed side edges is small enough to consider the edges as being insulated.
6) Temperature is effectively constant across the fin thickness, 2 H , at all values of x which implies 2 H $\ll \mathrm{W}, 2 \mathrm{H} \ll \mathrm{L}$
These assumptions reduce the problem to mathematical formulation for one-dimensional steady-state heat transfer under combined radiation and conduction.

5.2 Mathematical Formulation

Consider the heat balance for an element strip shown in Figure A5-3 where the width is W , half thickness is H , and length is $\Delta \mathrm{x}$. The local rate of heat conduction through the cross-sectional area 2 HW at position x is given by Fourier's equation to be

$$
\mathrm{q}_{\mathrm{x}}=-\left.\mathrm{K}(2 \mathrm{HW}) \frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}}
$$

where K is the thermal conductivity of the material.
The rate of heat conduction out of the segment is

$$
\mathrm{q}_{\mathrm{x}}+\Delta \mathrm{x}=-\left.\mathrm{K}(2 H W) \frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}+\Delta \mathrm{x}}
$$

The rate of heat lost by radiation is the difference, namely

$$
\Delta q=-K(2 H W) \quad\left[\left.\frac{d T}{d x}\right|_{x}-\left.\frac{d T}{d x}\right|_{x+\Delta x}\right]
$$

Figure A5-1. A Radiating Surface Using Tubes and Fins

Figure A5-2. Geometry of the Radiating Fin

Figure A5-3. Heat Balance for an Elemental Strip

This can also be expressed by means of the Stephan-Boltzman law for heat radiation, considering both the top and bottom surfaces of the element;

$$
\Delta \mathrm{q}=\sigma \epsilon\left(\mathrm{T}^{4}-\mathrm{T}_{\mathrm{S}}^{4}\right)(2 \mathrm{~W} \Delta \mathrm{x})
$$

where

$$
\begin{aligned}
& \sigma=\text { Stephan-Boltzman constant for the material } \\
& \epsilon=\text { emissivity of the material } \\
& \mathrm{T}=\text { temperature of the segment, in }{ }^{\circ} \mathrm{R} \\
& \mathrm{~T}_{\mathrm{S}}=\text { temperature of the surroundings, in }{ }^{\circ} \mathrm{R}
\end{aligned}
$$

The heat balance equation, then becomes

$$
-\mathrm{K}(2 \mathrm{HW})\left[\left.\frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}}-\left.\frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}+\Delta \mathrm{x}}\right]=\sigma \epsilon\left(\mathrm{T}^{4}-\mathrm{T}_{\mathrm{S}}^{4}\right)(2 \mathrm{~W} \Delta \mathrm{x})
$$

Dividing both sides by $-\mathrm{K}(2 \mathrm{HW}) \Delta \mathrm{x}$ and inverting the order on the left side gives:

$$
\frac{1}{\Delta \mathrm{x}}\left[\left.\frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}+\Delta \mathrm{x}}-\left.\frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}}\right]=\frac{\sigma \epsilon}{\mathrm{KH}}\left(\mathrm{~T}^{4}-\mathrm{T}_{\mathrm{s}}^{4}\right)
$$

In the limit, as $\Delta x \rightarrow 0$, the left side becomes the second derivative of T with respect to x, so that the final equation becomes

$$
\frac{\mathrm{d}^{2} \mathrm{~T}}{\mathrm{dx}^{2}}=\frac{\sigma \epsilon}{\mathrm{KH}} \quad\left(\mathrm{~T}^{4}-\mathrm{T}_{\mathrm{S}}^{4}\right)
$$

5.3 Initial Conditions and Parameters

Since Equation A5-1 is a second order differential equation, appropriate initial conditions must be specified for the temperature and the temperature gradient at $\mathrm{x}=0$. While the initial temperature is known, (the temperature where the fin joins the tube) the initial temperature gradient is not known. However, it is clear from the symmetry of the arrangement that the temperature gradient at the midpoint between tubes where $\mathrm{x}=\mathrm{L}$ is zero. Thus, the problem falls in the category of a two-point boundary value problem that must satisfy these conditions:

$$
\begin{aligned}
& \mathrm{T}(0)=2000^{\circ} \mathrm{R} \\
& \left.\frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}}=\mathrm{L}
\end{aligned}
$$

A complete list of variables and parameters, along with suitable units, is as follows:

$$
\begin{array}{ll}
\mathrm{T}=\text { Temperature } & { }^{\circ} \mathrm{R} \\
\mathrm{x}=\text { Distance } & \mathrm{ft} \\
\sigma=0.173 \times 10-8 & \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\mathrm{o}} \mathrm{R}^{4}\right) \\
\epsilon=0.9 & \\
\mathrm{~K}=25 & \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\left({ }^{\circ} \mathrm{R}\right)
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{H}=0.00125 & \mathrm{ft} \\
\mathrm{~L}=0.25 & \mathrm{ft} \\
\mathrm{~T}_{\mathrm{S}}=0 & { }^{\circ} \mathrm{R}
\end{array}
$$

Notice that the temperature of the surroundings, T_{s}, has been taken to be at absolute zero for this example.

5.4 Solution

A solution is considered to be successful if

$$
\left|\frac{\mathrm{dT}}{\mathrm{dx}}\right| \leqslant 0.2 \quad \text { when } \mathrm{x}=\mathrm{L}
$$

The current run is terminated and a new run started if:

1) T exceeds its initial value by one percent or more.
2) T goes negative.
3) $\frac{d T}{d x}>0.2$ when $x=L$

A new estimate of DTDXZ is computed using:

$$
\begin{aligned}
& \text { DTDXZ }=\text { DTDXZ }-0.07 * \operatorname{DTDX}(x=L) \\
& \text { new } \quad \text { old }
\end{aligned}
$$

where $\operatorname{DTDX}(\mathrm{x}=\mathrm{L})$ is the final value of the temperature gradient. One case is to be run with an initial temperature of $2000^{\circ} \mathrm{R}$ and an estimated temperature gradient of $-20,000{ }^{\circ} \mathrm{R} . / \mathrm{ft}$.

The listing of the model definition section is shown in Figure A5-4. Note that the terminal section checks the final value of temperature slope and if not within the specified tolerance recycles to the initial section for another run with a new value of initial slope. The independent variable is specified to be the variable X and the initial condition is set to $1.0 \mathrm{E}-10$ to give it a lead on the round off error.

The call to subroutine LOG forces an OUTPUT operation and resets the counter for the "NCIOUT" divisor so that the last value of the run will always be listed.

The output stream is shown in Figure A5-5 through A5-12. After the START, the first three iterations find the intermediate temperature is more than 1 percent greater than the starting value, so triggering the terminate (TERMT) condition. For the fourth and subsequent iterations the x variable gets to 0.25 and now the final value of $\mathrm{dt} / \mathrm{dx}$ is slowly reduced until at iteration number ten the value is -0.153 , well within the ERROR tolerance of 0.2. A more detailed printout (PRINT) using data saved on the PREPAR list is started in Figure A5-7 and which goes on to Figure A5-11. Note the use of the flyback trace suppression flag FTSPLT which when true will resynchronize the line count to zero when the independent variable (first variable on the PREPAR list) steps back to the initial condition. Once the iteration has converged, a second START Figure A5-11 - redoes the last run, since the initial condition on temperature slope (DTDXZ) is still the same. This makes sure that the PREPAR list data base only has one run to be plotted, which shows, in Figure A5-12, the temperature gradient (DTDX) and temperature (T) plotted against distance (X) along the fin. It is often easier and more cost effective merely to repeat the last run of an iteration rather than making complicated arrangements to save each run separately, before it's known that the convergence criteria have been satisfied. Plotting after the first START card would have shown the parametric set of curves as the iteration proceeded, since the PREPARed file doesn't get rewound between runs on cycling from TERMINAL to INITIAL sections. In this case the overstrikes cause rather an unattractive plot and don't provide much information, since it's the final profile that is needed.

FROGKAM FAMTATING FIN

INITTAL

$\mathrm{N} \quad=0$
I.. I. . CONTTNUE
$N=N+1$ \$" EUMF RUN COUNT "
ENO \&" OF TNITTAI.."
 MEFIUATIUE

॥ ...
" NOTE T IS NOW TEMF NOT TIME:"
$T \quad=$ TNTEG(IITMX, TZ)
mTIX $=$ INTEG(SB*EF* (T**A … TS**A)/(K゙*H), uTnXZ)
n ... SFECTFY TERMINATTON CONUTTTON"
TEFMT (X. GE.L. OR. T. GE. I. OIWTZ .OF. T.L.T. O. O)
ENI \$" OF IIERIUATTUE "
TERMINAL

- ...FORCE OUTFUT AT ENM OF EUERY SWEEF *

CAL.I. L.OG
" …….. TF CONUEFGED OR TOO MANY TFIES"
IF ($(A B S(I T I X)$. LT. ERFOR $)$. OR. N. GT. IO) GO TO L.
. ..FTNII NEW GUESS FOR TNITIAL.. TEMF RATE"
IITIXZ $=$ IITIXZ \cdots GATN*MTMX

60 TO L 1
L.2. CONTINUE:

ENI *" OF TEFMINAL. *
ENA $\$$ " OF PROGRAM "

Figure A5-4. Listing of Model Definition Section for Radiating Fin Problem

ACSI RUUNTTME EXEC VEFSTON I IEUEL GM 81/07/10. 09.36.09. FAGE I

Figure A5-5. Run-time Commands and Output Stream from Radiating Fin Problem
$\times 0.14750000$ nTMX-5823. 09994
$\times 0.19750000$ IITIX-5723. 23787
$\times 0.24675000$ IITIXX-5720.17206
$\times 0.04750000$ ntrix-9110.73249
x 0.09750000 IITIXX-5244. 32007
$\times 0.14750000$ nirnx-4011.22327
$\times 0.19750000$
nitnx-3607. 81982
$\times 0.24750000$
IITRX-350.t. 62433
x 0.25000000 nTIIX--3499.68229
$x 0.04750000$ nTrix -8656.36174
x 0.09750000
$\operatorname{IITIX}-4396.61310$
$\times 0.14750000$
nTmx-2704.41.990
$\times 0.19750000$
ITIIX-1.840.86108
$\times 0.24750000$
ritux-1329.91836
X 0.25000000
nitrix-1309.90090
$\times 0.04750000$
uTIXX-9485. 25438
$\times 0.09750000$
IITIXX-4068. 36337
$x 0.14750000$
atmx-21.66.72613

T 568.948130
IITIIXZ-25893. 3885
T 281.268091
uTnXZ-25893.3885
$\mathrm{T}-0.47550353$
IITIIXZ-25893. 3885
T 1288.78802
nTrixZ--25492.9765
T 949.223751
IUTIXXZ-25492.9765
T 723.295020
IUTIXXZ-25492.9765
T 534.780029
IITIIXZ-25492.9765
T 357.711010
IITIXXZ-25492.9765
T 348.959417
araxz-25492.9765
T 1304.26264
nruxz-25247.9987
T 996.832602
IITIUXZ-25247.9987
T 824. 629724
mrmxz-25247.9987
T 713.083960
ITmXZ-25247.9987
T 634.803277
uTnXZ-25247.9987
T 631.503590
uTHXZ-252.247.9987
T 1310.06695
uTMXZ-25156.3056
T 1014.99813
ITTIXZ-25156. 3056
T 864.120545
ITTIXZ-25156. 3056
N
N
$N \quad 5$
N
N
N
N
$N \quad 6$
N

N

N $\quad 7$
$N \quad 7$
$\mathrm{N} \quad 7$

N

N $\quad 7$

N $\quad 8$
N
N

5

5

6

6

6

6

6

7

7

7

9

6

Figure A5-6. Output Stream from Radiating Fin Problem
$\times 0.19750000$ nT0X-1033.46037
$\times 0.24750000$
$\operatorname{mitmx}-168.016381$
$\times 0.25000000$
$\operatorname{ritax}-127.276801$
$\times 0.04750000$ $\operatorname{ITHX}-8468.5982 \mathrm{I}$
$\times 0.09750000$
$\operatorname{IIT} \operatorname{II}-4036.13740$
X 0.14750000
uTrxx-212.90756
$\times 0.19750000$
$\operatorname{ritnx}-949.677376$
$\times 0.24750000$
urax - 39.8412710
$\times 0.25000000$
$\operatorname{mrnx} 3.69604386$
$\times 0.04750000$
$\operatorname{IITIX}-8469.08197$
$\times 0.09750000$
$\operatorname{IITIX}-4037.07406$
$\times 0.14750000$
MTIXX-2114.47448
$\times 0.19750000$
ITIXX-952. 124666
X 0.24750000
$\operatorname{IITmX}-43.6068998$
$\times 0.25000000$
$\operatorname{mitrx}-0.15323730$
$\times 0.25000000$
$\operatorname{litax} \cdots(0.15323730$

T 795.914904
ITTIXZ-25156. 3056
T 756.432739
ITMXZ-25156. 3056
T 756.063639
IITIXX-25156. 3056
T 1310.63129
ITMXZ-25147.3963
$T 1016.66080$
UTMXZ.-251.47.3963
T 868.006407
nTMXZ-25147.3963
T 793.19711.4
$\operatorname{IITIXZ}-251.47 .3963$
T 768.933252
UTMXZ.-251.47.3963
T 768.988072
$\operatorname{ITr} \times 7-25147.3963$
T 1310.61489
uTHXZ-251.47.6550
T 1016.60960
$\operatorname{ITHXZ}-25147.6550$
r 867.893440
ITmXZ-25147.6550
r 792.985106
UTMXZ -25147.6550
T 768.568386
MTrIXZ - 25. 147.6550
T 768.513689
N
10
$\operatorname{ITHXZ}-25147.6550$
T 768.513689
nTraxz.-25147. 6550

G FTSFIT:=. T. \$" SYNCHFONTZE OUTFUT UTTH START OF EACH SWEEF *

I.. I. NE:	X	Ifrex	T	N	$\mathrm{mrax}=$
0	1. OOOE 10	$\cdots 20000.000$	2000.0000	1	$\cdots 20000.000$
5	0.0125000	-11950.188	1803.7801	1	$\cdots 20000.000$
10	0. 0250000	$\cdots 6209.1661$	1.691. 6472	1	$\cdots 20000.000$

Figure A5-7. Output Stream from Radiating Fin Problem

ACSL RUN-TIME EXEC UEFGTON 1 LEUEL GM 61./07/10. 09.36.09. PAGE RARIATTNG FIN PRORIEM

LTNE:	x	arime	T	N	uraxz
15	0.0375000	-1.436. 4184	1644.6516	1	$\cdots-90000.000$
20	0.0500000	31.25 .6462	1655.0886	1	--.20000.000
25	0.0625000	8146.5127	1724.6749	1.	--20000.000
30	0.0750000	14529.539	1864.3242	1	--20000.000
0	1. OOOE-10	--21461.760	2000.0000	2	--21461. 760
5	0.0125000	-13559.972	1784.6628	2	--21461. 760
10	0.0250000	-8190.9365	1650.671 .4	2	-21461.760
15	0.0375000	--4016.3286	1575.1924	2	--721461.760
20	0.0500000	--347.33759	1548.1848	2	--21461. 760
25	0.0625000	3280.2301	1566.3385	2	--21461.760
30	0.0750000	7313.5237	1631.8588	2	-21461.760
35	0.0975000	12375.511	1753.3970	2	--21461.760
40	0. 10000000	19621.831	1950.1666	2	--21461.760
0	1. OイOEE- - 10	--23025.327	2000.0000	3	--23025.327
5	0.0125000	-15278.621	1764.6382	3	--23025.327
10	0.0250000	-10299.154	1606.7887	3	--73025.327
$1:$	0.0375000	--6681.2732	1501.741 .4	3	--73025.327
20	0.0500000	--3799.7729	1436.7669	3	--23025.327
25	0.0625000	$-1.278 .3675$	1405.2621	3	--23025. 327
30	0.0750000	1129.9274	1404.3409	3	--73025.327
35	0.0875000	3637.9960	1.433 .9221	3	--.23025. $3: 7$
40	0.1000000	6489.7176	1.496 .7040	3	--23025.327
45	0.1125000	10037.549	1599.0140	3	--.23025.3\%7
50	0.1250000	1.4913 .851	1753.0901.	3	--23025. 327
55	0. 1375000	22426.033	1992.6161	3	--2025. $\% 7$
0	1. OOOE - 10	-24693. 341.	2000.0000	4	--24693. 341
5	0.0125000	-17108.433	1743.0743	4	--24693. 341
10	0.0250000	-1.2499.304	1560.1524	4	--24693. 341
15	0.0375000	--9424.8571	1424.2928	4	--24693. 341
20	0.0500000	--722.5452	1320.9377	4	--24693.341
25	0.0625000	-5550.1240	1241.5406	4	--24693. 341
3)	0.0750000	- 4214.3992	1180.7917	4	$\cdots 24693.341$.
36	0.0875000	-3097.9892	1135.2723	4	--24693. 341.
40	0.1000000	--2124.5781	1102.7492	4	$\cdots 24693.341$
45	0.1125000	--1240.9257	109t. 7856	4	--94693. 341
50	0.1250000	- 406.72519	1071.5209	4	--24693. 341.
55	0.1375000	411.73022	1071.5521.	4	--24693. 341
60	0.1500000	1246.1259	1081.8803	4	--24693. 341
65	0.1625000	2130.1939	1102.9113	4	--24693.341
70	0.1750000	3104.2982	11.35.5086	4	--24693. 341
75	0.1875000	4221.7835	1191. 1131.	4	--24693.341
80	0.2000000	5559.1505	1241.9639	4	--24693. 341
85	0.2125000	7234.1135	1321.4885	4	--24693.341
90	0.2250000	9440.4962	1425.0116	4	--24693.341.
95	0. 2375000	12521.82\%	1561.1057	4	--24693. 341
1.00	0. 2500000	17143.532	17744.3793	4	--24693. 341
0	1. 0 OOEE- 10	--25893. 389	2000.0000	5	--25893. 399
5	0.0125000	-18423.598	1727.5675	5	--25993. 389
1.$)$	0.0250000	--14072.089	1526.7101	5	--25893. 389
15	0.0375000	--11340.023	1369.1217	5	--58933.389
20	0.0500000	--9539.3127	1239.3712	5	-25893. 389
25	0.0625000	- 9316.0321	1129.2529	5	--25893. 389
30	0.0750000	--7470.9513	1.029 .9053	5	--25893. 389

Figure A5-8. Output Stream from Radiating Fin Problem

I. T. NE	x	armix	T	N	urrixz
35	0.0875000	--6883. 2429	940.41418	5	-25893. 389
40	0.1000000	-6475.9178	857.07643	5	--25893. 389
45	0.1125000	-6196.8071	777.98410	5	--25893. 389
50	0.1250000	-6009. 3789	701. 77561	5	--25893. 389
55	0.1375000	--5887. 1.889	627.47874	5	-25893. 389
60	0.1500000	$\cdots 81.0 .6989$	554.4061 .5	5	--25893. 389
65	0.1625000)	-5765. 3527	482.08202	5	--25893. 389
70	0.1750000	-5740.3654	410.18791.	5	--25893. 389
75	0.1875000	--5727.9112	338.52099	5	-25893. 389
90	0.2000000	-5722.5337	266.96091	5	--25893. 389
85	0.2125000	--5700.6689	195.44322	5	--25893. 389
90	0.2250000	-5720.2230	123.93842	5	--25893. 389
95	0.2375000	--5720.1727	52.436089	5	--25893. 389
)	1. OOOEF-10	--95492.976	2000.0000	6	--25492.976
5	0.0125000	-17984.320	1732.7409	6	--25492.976
10	0.0250000	-13548.681	1537.8585	6	-25492.976
15	0.0375000	-10706.228	1387.4808	6	-25492.976
20	0.0500000	--8779.8812	1266.4308	6	--25492.976
25	0.0625000	-7418.6188	11.65.6658	6	-25492.976
30	0.0750000	-6430. 3941	1079.4255	6	--25492.976
35	0.0875000	--5697.4259	1003. 8480	6	-25492.976
40	0.1000000	-5145.9343	936.23706	6	--25492.976
45	0.1125000	-4727.1782	874.64868	6	-25492.976
50	0.1250000	$\cdots 4407.7051$	817.64524	6	--5492.976
55	0. 1375000	-4163.7799	764.14214	6	-25492.976
60	0.1500000	$-3978.061 .9$	713.30881.	6	-25492.976
65	0.1625000	-3837.5517	664.50264	6	--25492.976
70	0.1750000	-3732.2844	617.22347	6	--25492.976
75	0.1875000	--3654.4787	571.081 .33	6	--25492.976
80	0.20000000	--3597.9696	525.77293	6	--5492.976
95	0.2125000	--3557.8247	481.06403	6	--25492.976
90	0.2250000	--3530.0784	436.77576	6	--25492.976
95	0.2375000	-3511.5450	392.77378	6	-25492.976
1.00	0.2500000	- 3499.6823	348.95942	6	--5492.976
0	1. OOOE - 10	--25247.999	2000.0000	7	--25247.999
5	0.0125000	--17716.071.	1735.9064	7	--25247.999
1.0	0.0250000	--13228.002	1544.6842	7	--25247.999
15	0.0375000	--1.0315.908	1398.7374	7	--25247.999
20)	0.0500000	--8307.5240	1.283 .0626	7	--25247.999
25	0.0625000	-6857. 3116	1188.7433	7	--25247.999
3)	0.0750000	--7771.9082	1110.1200	7	--35247.999
35	0.0875000	-4935. 7961	1043.4126	7	--95247.999
40	0.1000000	-4276.2819	985.99258	7	$\cdots 25247.999$
45	0.1125000	-3745.6431	935.97062	7	--55247.999
50	0.1250000	--3311.4293	691.95105	7	--2547.999
55	0.1375000	-2950.9094	852. 87870	7	--25247.999
60	0.1500000	--2647.7512	817.93989	7	--25247.999
65	0.1625000	--.2389.9584	786.49631	7	--5247.999
70	0.1750000	--2168.5485	758.03963	7	--25247.999
75	0.1875000	-1976.6906	732.15972	7	--25247.999
80	0.2000000	-1809.0654	708.52172	7	--5247.999
85	0.2125000	--1661.5577	686.84942	7	--5247.999
90)	0.2250000	-1530.8693	666.91279	7	--95247.999

Figure A5-9. Output Stream from Radiating Fin Problem

LINE	x	IITIX	T	N	nTIIXZ
95	0.2375000	-1414. 3626	648.51867	7	--25247.999
100	0.2500000	-1309.9009	631.50359	7	---25247.999
0	1. OOOE - 10	-25156.306	2000.0000	9	--25156.306
5	0.0125000	-17615.648	1.737 .0913	8	-25156.306
10	0.0250000	-13107.748	1547.2400	ξ	-25156.306
15	0.0375000	-10169.309	1402.9554	8	--25156.306
20	0.0500000	-8129.8790	1289.3028	9	--25156.306
25	0. 06255000	--6644.7443	11197.4186	9	-25156.306
30	0.0750000	-5520.9489	1121.6888	8	-25156.306
35	0.0875000	-4643. 1741	1058. 3755	8	-25156.306
40	0.1000000	-3939.8075	1004.8902	\%	--25156.306
45	0.1125000	-3360.1285	959.38361	8	--25156.306
50	0.1250000	-2874.6275	920.50009	8	-25156.306
55	0.1375000	--2459.4608	887. 22573	8	--25156.306
60	0.1500000	-2098.1317	858.78983	8	--25156.306
65	0.16250000	-1778.4262	834.59941	ξ	$\underline{-25156.306}$
70	0. 1750000	$-1.491 .0857$	814.19460	9	--25156.306
75	0.1875000	-1228.9278	797.21754	8	--25156.306
80	0.2000000	-986. 24658	783.39040	8	$\cdots 5156.306$
85	0.2125000	--758.39242	772.49970	9	--25156.306
90	0. 2250000	--541.46852	764.38512	8	--25156.306
95	0. 2375000	--332.10395	758.93154	8	-25156.306
100	0.2500000	-127.27680	756.06364	8	--25156.306
0	1. OOOEF-10	--25147.396	2000.0000	9	--25147.396
5	0.0125000	--17605.990	1737.2064	9	--25147.396
1.0	0.0250000	-13096.059	1547.4884	9	--25147.396
15	0.0375000	-10155.050	1.403. 3654	9	--25147.396
20	0.0500000	-8112.5823	1289.9095	9	--25147.396
25	0.0625000	-6624.0172	1198.2626	9	--25147.396
30	0. 0750000	--5496.4308	1122.8152	9	--251.47.396
35	0.0975000	-4614.5151	1059.8339	9	--25147.396
40	0. 1000000	-3905.6538	1006.7346	9	--251.47. 396
45	0.1125000	-3322. 1126	961.67243	9	--25147.396
50	0.1250000	-2831.3585	923.29651	9	--25147.396
55	0. 1375000	-2410.5157	990.59903	9	--25147.396
60	0.1500000	--2043.0452	862.81182	9	-25147.396
65	0. 1625000	-1716.6796	839.35103	9	$\cdots 25147.396$
70	0. 1750000	-1.422.0937	819.76269	9	--75147.396
75	0.1875000	-1152.0229	803.69674	9	--.25147.396
80	0.2000000	-900.66022	790.88431	9	--251.47.396
85	0.2125000	-663.23160	781.1229	9	--25147.396
90	0.2250000	--435.6865\%	774.26241	9	--.251.47.396
95	0.2375000	-214.46367	770.20382	9	--251.47.396
1.00	0.2500000	3.6960439	768.89807	9	--25147.396
0	1. 000 F	-251.47.655	2000.0000	10	--25147.655
5	0.0125000	-17606.173	1737.2030	10	--25147.655
10	0.0250000	-13096. 398	1547.4812	10	--251.47.655
15	0. 0375000	-10155.464	1403. 3535	10	--251.47.655
20	0.0500000	--8113.0847	1289.891 .9	10	--25147.655
25	0.0625000	-6624.6193	1198.2391.	10	--.251147.655
30	0.0750000	--5497.1432	1122.7925	10	--25147.655
35	0.0875000	--4615.3479	1059.7915	10	--35147.655
40	0.1000000	-3506.6175	1006.6811	10	-25147.655

Figure A5-10. Output Stream from Radiating Fin Problem

ACSL FUN TTME EXEC UEFSTON 1 LEUEL GM 91/07/10. 09.36.09. FAGE 7 RAOTATING FIN FROELEM

L. INE:	x	IITHX	T	N	urax	
45	0.1125000	-3323. 2179	961.60593	10	-25	655
50	0.1250000	-2832.6171	923.21525	10	--25	655
55	0. 1375000	-2411.9401	890.50001	10	--25	655
60	0.1500000	--2044.6493	\$62.69488	10	-25	655
65	0.1625000	-1718.4787	839.21285	10	--25	655
70	0.1750000	$-1.424 .1055$	819.60071	10	-25	655
75	0. 1875000	$-1.54 .2674$	803.50818	10)	--25	655
80	0.2000000	--903. 1.6074	790.66612	10	-2:	655
85	0.2125000	-666.01515	780.87109	10	-25	655
90	0.2250000	-438.78500	773.97449	10	--25	655
95	0.237500)	$-217.91 .490$	769.87501	10	--25	655
100	0.3500000	--0.1532373	768.51369	10	--25	655
STAFT	\$ " FE	EAT L.AST CA	E OF FREUTOUS			
	$\times 1.0000$	-- 10	T 2000.00000		N	1.
	armx-25147.	6550)	11x7-25147.6550			
	$\times 0.0500$	000	T 1289.89191		N	1.
	$\operatorname{rimax}-8.13 .0$	470	$11 \times 7 .-25147.6550$			
	$\times 0.1000$	0000	T 1006.68105		N	1.
	mrmx -3906.6	749	$4 \times 7 .-25147.6550$			
	$\times 0.1500$	0000	T 862.694885		N	1.
	nrux-2044.6	926	11x7-251.47.6550			
	$\times 0.2000$	0000	T 790.666118		N	1.
	$\operatorname{mrIx}-903.160$	736	axz--25147.6550			
	$\times 0.2500$	000	T 768.5136888		N	1
	$\operatorname{mrnx}-1532$	730	$1 \times 7 .-25147.6550$			
	$\times 0.2500$	000	T 768.513698		N	1.
	minx-0.1532	730	Mx7--25147.6550			

Figure A5-11. Output Stream from Radiating Fin Problem. Repeat of Last Converged Run

Figure A5-12. Plot of Temperature Profile and Gradient from Last Converged Run Radiating Fin Problem

6. AIRCRAFT ARRESTING GEAR SYSTEM

The system investigated here is designed to halt a moving aircraft that would otherwise overrun the end of a runway. It is similar in principle to the gear used on aircraft carriers. The problem was selected for this manual because it employs a function generator and input relays. The equations listed below describe the system, and its geometry is shown in Figure A6-1. A plot of the "water squeezer" damping function, $f\left(y_{3}\right)$, is also shown on the figure. The aims of the investigation are to determine the range of aircraft weights and speeds that can be accommodated without exceeding the working limits of the cables or the allowable piston travel. Here, just two cases are investigated involving different aircraft velocities.

Differential equations describing the acceleration of the three masses are:

$$
\begin{aligned}
& m_{3} \frac{d^{2} y_{3}}{d t^{2}}=f_{K 2}-f_{D} ; m_{2} \frac{d^{2} y_{2}}{{d t^{2}}^{2}}=w f_{K 1}-f_{K 2} \\
& m_{1} \frac{d^{2} x}{d t^{2}}=-2 f_{K 1} \sin \theta
\end{aligned}
$$

where the cable tension is given by:

$$
\begin{aligned}
& f_{K 1}= \begin{cases}k_{1}\left(y_{1}-2 y_{2}\right) & y_{1}>2 y_{2} \\
0 & ; y_{1} \leqslant 2 y_{2}\end{cases} \\
& f_{K 2}= \begin{cases}k_{2}\left(y_{2}-y_{3}\right) & y_{2}>y_{3} \\
0 & y_{2} \leqslant y_{3}\end{cases}
\end{aligned}
$$

Drag force from the water squeezer is given by

$$
f_{D}=F\left(y_{3}\right)\left(\frac{d y_{3}}{d t}\right)^{2}
$$

and geometrical constaints lead to

$$
\begin{aligned}
& y_{1}=\sqrt{\left(x^{2}+h^{2}\right)}-h \\
& \sin \theta=\frac{x}{h+y_{1}}=\frac{x}{\sqrt{\left(x^{2}+h^{2}\right)}}
\end{aligned}
$$

Constants for the problem are as follows:

$$
\begin{array}{ll}
\mathrm{m}_{1}=1400 \text { slugs } & \mathrm{k}_{1}=4550 \mathrm{lb} / \mathrm{ft} \\
\mathrm{~m}_{2}=45.28 \text { slugs } & \mathrm{k}_{2}=25,300 \mathrm{lb} / \mathrm{ft} \\
\mathrm{~m}_{3}=20 \text { slugs } & \mathrm{h}=125 \mathrm{ft}
\end{array}
$$

Initial conditions are given by:

$$
\begin{array}{ll}
\dot{y}_{3}(0)=0 & \mathrm{y}_{3}(0)=0 \\
\dot{y}_{2}(0)=0 & \mathrm{y}_{2}(0)=0 \\
\dot{\mathrm{x}}(0)=290 \mathrm{ft} / \sec (\text { Run } 1) & \mathrm{x}(0)=0 \\
=200 \mathrm{ft} / \mathrm{sec}(\text { Run } 2) &
\end{array}
$$

Figure A6-1. Aircraft Arresting Gear System

An arbitrary function of one variable is used for the squeezer drag coefficient.
$F\left(y_{3}\right)=A$ function of $y_{3}-$ The data points for the function are shown on the listing, Figure A6-1. Linear interpolation between points is desired.

This problem was programmed in the explicit mode with the INITIAL, DYNAMIC and DERIVATIVE regions being defined. The only reason is to show the use of standard FORTRAN output to write out the initial speed and case number at the beginning of each run. The DERIVATIVE section contains the descriptive equations modelling the system. The model definition listing is shown in Figure A6-2.

The cables can only transmit tensile forces and account must be taken of the fact that when the cable extension is negative, the force is zero. Expressing the force as proportional to the simple extension k_{2} (y_{2} y_{3}) is more representative of a spring. In the original formulation of this problem the function real switch operator RSW was used, i.e.

$$
\mathrm{FK} 2=\operatorname{RSW}(\mathrm{Y} 2 . \mathrm{GE} . \mathrm{Y} 3, \mathrm{~K} 2 *(\mathrm{Y} 2-\mathrm{Y} 3), 0.0)
$$

When the first argument is true, the second argument is returned, else the third. A more elegant way of accomplishing the same thing is to use the FORTRAN function DIM (q.v.) that returns the positive difference between the two arguments - if the difference is negative ($\arg 1$ minus $\arg 2$) the result is zero. The force equation then becomes

$$
\mathrm{FK} 2=\mathrm{K} 2 * \mathrm{DIM}(\mathrm{Y} 2, \mathrm{Y} 3)
$$

The damping coefficient, $\mathrm{f}\left(\mathrm{y}_{3}\right)$, was represented by a straight line approximation passing through 16 breakpoints (15 segments). A better fit to the given function could have been obtained by using more breakpoints.

Note the choice of termination conditions. The TERMT statement stops the problem after 10 sec , or when x reaches 1000 ft .

The run-time command sequence follows (Figures A6-3 through A6-7) that sets the TITLE and changes the grid spacing from the default value of ten to fifty. The effect can be seen on the clarity of the following plots. The integration step size had to be changed by the following statement (NSTP is the number of steps in a communication interval) so

SET NSTP $=100$
makes the step size 1 msec since the communication interval is set to 0.2 sec . The reason for this is the small time constant associated with the third mass; m_{3}, together with the nonlinearity - the function - that makes the program particularly susceptible to step size. The system becomes unstable when the step size is increased to 4 msec . A better way to control these types of models when using a fixed step algorithm is to set the maximum step size (MAXT) to control (i.e., SET MAX $=0.001$). In this case the step size will stay at this value (if NSTP $=1$) when the communication interval is changed, unless CINT is made less than MAXT, in which event the smaller value becomes the integration step size.

The next run was chosen to illustrate the two types of line plots available by setting both CALPLT and STRPLT to true. When system variable CALPLT true, the plot is shown in Figure A6-8. Here the axes are drawn side by side and all three plots occupy the same area. The strip chart plot (STRPLT true) is shown in Figure A6-9. Each curve occupies a separate slot, normally two inches by five inches, stacked in the order given from the bottom. Notice the addition of the XTAG string on both line plots, which adds a unit specification to the time variable, T, along the x -axis. Since PRNPLT is still true, the printer plot of Figure A6-7 is obtained at the same time. This plot could have been suppressed by making PRNPLT false.

```
            *********ARIUANCED CONTINUOUS GTMULATION LANGUAGE**********
ACSL. TRANSLATOR UERGION 1 LEUEL GFF 81/07/10. 11.25.52. FAGE 1
FROGRAM AIRCRAFT ARRESTING GEAR
```



```
INTTTAL
    NCASE = NCASE + % क"BUMF CASE NUMBER"
    SNOM
    I TNES(5)
    MRITE(6, 200) SFEENO, NCASE
200.,FORMAT(//20X, 17HATRCRAFT SFEEI -- ,FG.2,3X,GHRUN NO. ,I3//)
END $"OF INITIAL.*
OYNAMIC
DERIVATIUE
    YZMO =(FKO -...NO)/M3 COMPUTE SECONH DERIUATIVES*
    Y2HM =(2.O*FK1 - FK2)/M2
    XIII =-2.O*FK1*STH/M1
```



```
    Y3II = INTEG(Y3NH, 0.0)
    Y2N = INTEG(Y2HI, 0.0)
    XI = INTEG(XMO , SPEEN)
```



```
    Y3 =INTEG(YZNO, 0.0)
    Y2 = INTEG(Y2N, 0.0)
    X = INTEG(XN , 0.0)
```



```
                                    CAN NEUER GO NEGATTUE -- SO USE POSITTUE -
                                    CAN NEUER GO NEGATIUE
FK1 = K1*OIM(Y1, 2.O*YZ)
    FK2 = K2*HIM(Y2, Y3)
```



```
    FII= FYZ(YZ)*YZIO**2
```



```
    Y1. = S0RT(X**2 + H**2) ... H
    GTH = X/<H +YI)
ENII $"OF NERIVATIVE"
    *-----------mECIFY TERMINATION CONAITION"
    TERMT (T.GE.TSTF .OR. X.GE.XMX)
ENI *"OF IYNAMTC"
ENA क"OF PROGRAM"
```

Figure A6-2. Listing of Model Definition for Aircraft Arresting Gear Problem

```
SET TTTLE = "ATFCFAFT ARRESTING GEAF FRORLEM"
STCWFRN:7a, MTS=% &" FORCE 3 COLUMN OUTFUT WTMTH *
```



```
    , FK゙I, YI, "NCTOUT" =: 20
FREFAR T, X, XI, XIIL
SET NGXFFW=: 50, NGYFFL. =% 50, NSTF=:=100
SET SFEEW =: 200.0 क STAKT 事 FI..OT x, xM, xMIM
SET SFEEM =290.0 $ START
SET CALFLIT =. TFUE:. SW'YUFN ON CALOOMF FLOTS"
S STFFLT:= T., CAL..FLT= T.
FLOT "XTAG"=*(GEC)*,X,XN, XMO
STOF
```

Figure A6-3. Run-time Drive Commands for Aircraft Arresting Gear Problem

ACSL FUN．TIME EXEC VERSION 1 LEUEI．GM 81／07／10．11．26．29．FAGE 1.

SET TITLE＝＂AIRCRAFT ARRESTING GEAR FRORLEM＂
6 TCWFRN：＝72，ITS＝9 \＄＂FORCE 3 COLUMN OUTFUT WIXTH＂

FK゙L，Yi，＂NCIOUT＂＝ 20
FREFAAF T，X，XII，XII
SET NGXPFIL $=50$ ，NGYFPL $=50$ ，NSTF $=100$
SET SFEEI＝：200．0 \＄START \＄PLOT X，XI，XUI

AIRCFAFT SFEEN－ 200.00 FUN NO．I．

To．	Y3uno．	Y3010．
Y3 0.	FIO 0.	Y2anio．
Y200．	Y20．	Fk゙20．
Xrano．	XII 200.000000	$\times 0$ ．
Fk゙d O．	Y1． 0.	
T 2．00000000	Y3un－18．0123073	Y31145．9392902
Y3 96． 2945828	FII 7972．47469	Y2011－18．8087675
Y211 45．8334561	Y2 96．5954614	Fド2 7612．22854
X111－44．4263306	X01 99．1682231．	$\times 293.417443$
FK゙t 3390． 29379	Y：193．933942	
T 4．00000000	Y $31010-6.57593866$	Y30 20.9752641
Y3 159．436671	FII 246． 01876	Y20n－6．69116942
Y2n 20．9323673	Y2 158．529746	Fド2 2329．49998
X101－13．8850190	XII 43．5150304	$\times 424.248469$
FK゙1 1013．26192	Y1 317.280186	
T6．00000000	Y300－2．88914008	Y3n 12．1193707
Y 3 190．313460	FI 1055． 24285	Y20n－2．98049125
Y2n 12．1043815	Y2． 190.352885	FK゙っ 997．460045
X 1010.600098217	XII 24．9457250	$\times 490.111926$
FK゙．433．515700	Y1 380．80．1048	
T 8.00000000	Y3nnow 1.4571043	Y3117．98094072
Y3 209．944687	FII 528．472294	Y2010 1.45621945
Y2n 7.97479974	Y2 209.964422	FK2 499．298085
X00－3．01290723	X01 16．371．2078	$\times 530.447309$
FK1．216．680234	Y1． 419.976465	
T 10.0000000	Y 3 H0－0． 95442820	Y 30.5 .7361369
Y3 223．460384	FII 309．364524	Yan¢…0．9555226
Y2以 5．73175116	Y2 223．471897	FK2 291． 275960
X001－1．76086056	XII 11．7404810	\times 558．145554
Fk゙1 126．31355\％	Y1 446．971555	

Figure A6－4．Run－time Control and Output Stream for Aircraft Arresting Gear Problem

Figure A6-5. Plot of Displacement and its First and Second Derivatives for the Aircraft Arresting Gear Problem

```
ACSL RUN--TIME EXEC VERSTON I LEVEL GM
ATRCRAFT ARRESTING GEAR FROBLEM
```

SET SPEEN $=290.0$ © START

ATRCRAFT SFEFG -- 290.00 RUN NO. 2

To.	Y3niol	Y3I 0
Y3 0.	FIO.	Yenmo.
Y2no.	Y20.	FK2 0.
$\times \mathrm{x}$	$\times 1290.000000$	$\times 0$.
FKı 0	Y: 0.	
2.00000000	Y301-27.0599278	Y30145.5412403
$Y 3129.365976$	FO1 10784.8237	Y2mu-29.7708033
Y2. 44.9787007	Y2 128.770862	FK2 10243.6252
X011-60.0703751	$\times 103.2928294$	$\times 362.576923$
FKı 4447.80160	Y1 259.519263	
4.00000000	Y300-6.6.47531783	Y30118.5078865
Y3 185.758816	FI 2372.55899	Yemu-6.44294292
Y20 18.4579190	Y2 185.947474	FK2 2243.05264
x010-13.4898010	$\times 1380.0155459$	$\times 480.930277$
FK.1.975.660354	Y1 371909380	
6.00000000	Y301-2.51087770	Y30 10.3046452
Y3 213.274391.	F19 909.156899	Y20u-2.49626943
Y2n 10.2910500	Y2 213.308341.	FK2 858.939345
X010-5.18935943	X11 21.0974966	$\times 537.351282$
FK1 372.954133	Y1 426.698649	
8.00000000	Y300-1.24766712	Y3016.73035936
Y3 229.992031	FII 448.056336	Y201-1.24515397
Y20 6.72508436	Y2 229.908754	FK2 423.102993
x010-2.5589,1936	$\times 113.7553728$	X 571.343727
FK. 183.361211	Y: 459.957807	
T 10.0000000	Y3000-0. 70081981.	Y31 4.84281703
Y3 241.288925	Fi 256.286240	Y200-0.70950784
Y20 4.84067326	Y2 241.298501	FK2 242. 269844
X401-1.4689.1802	X019.98799079	$\times 594.623562$
FK1 105.071665	Y1 482.620095	

GET CALPLT = TRUE. \#"TURN ON CALCOMF PLOTS"
S STRFIT:. T., CALFIT=..T.
Flot "XTAG"="(SEC)", X, Xn, xMI

Figure A6-6. Second Run - Aircraft Arresting Gear Problem

Figure A6-7. Printer Plot to Match Line Plots in Next Two Figures

Figure A6-8. Line Plot Obtained with CALPLT = .TRUE. of Displacement, Velocity and Acceleration from the Aircraft Arresting Gear Problem

Figure A6-9. Line Plot Obtained with STRPLT $=$.TRUE. of Displacement, Velocity and Acceleration from the Aircraft Arresting Gear Problem

7. LONGITUDINAL STUDY

The equations describing the motion of an aircraft in three degrees-of-freedom in a longitudinal plane are given below:

Velocity

$$
\mathrm{m} \dot{\mathrm{~V}}=\mathrm{T} \cos \alpha-\mathrm{D}-\mathrm{W} \sin \gamma
$$

where

$$
\begin{aligned}
& \mathrm{m}=\mathrm{W} / 32.2 \text { slugs } \\
& \mathrm{D}=\mathrm{qSC} \\
& \mathrm{D} \\
& \mathrm{q}=0.5 \rho \mathrm{~V}^{2} \mathrm{lbs} / \mathrm{sq} \mathrm{ft} \\
& \mathrm{C}_{\mathrm{D}}=\mathrm{C}_{\mathrm{DO}}+\mathrm{C}_{\mathrm{D} \alpha^{\alpha}}+\mathrm{C}_{\mathrm{D} \sigma \epsilon}\left|\sigma_{\epsilon}\right|
\end{aligned}
$$

Flight Path

$$
\mathrm{mV} \dot{\gamma}=\mathrm{L}-\mathrm{W} \cos \gamma+\mathrm{T} \sin \alpha
$$

where

$$
\begin{aligned}
& \mathrm{L}=\mathrm{qSC}_{\mathrm{L}} \mathrm{lbs} \\
& \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{LO}}+\mathrm{C}_{\mathrm{L} a^{\alpha}}+\mathrm{C}_{\mathrm{L} \sigma \epsilon} \sigma_{\epsilon}+(\mathrm{c} / 2 \mathrm{~V})\left(\mathrm{C}_{\mathrm{L}} \dot{\dot{a}^{\dot{\alpha}}}+\mathrm{C}_{\mathrm{L}} \dot{\dot{\theta}^{\dot{\theta}}}\right)
\end{aligned}
$$

Pitch

$$
\mathrm{I}_{\mathrm{y}} \ddot{\theta}=\mathrm{M}
$$

where

$$
\begin{aligned}
& \mathrm{M}=\mathrm{qS} \mathrm{c}_{\mathrm{M}} \mathrm{ft}-\mathrm{lbs} \\
& \mathrm{C}_{\mathrm{M}}=\mathrm{C}_{\mathrm{MO}}+\mathrm{C}_{\mathrm{M} a^{\alpha}}+\mathrm{C}_{\mathrm{M} \sigma \epsilon} \sigma_{\epsilon}+(\mathrm{c} / 2 \mathrm{~V})\left(\mathrm{C}_{\mathrm{M} \dot{a}} \dot{\alpha}+\mathrm{C}_{\mathrm{M} \dot{\theta}} \dot{\theta}\right)
\end{aligned}
$$

Angle of Attack

$$
\dot{\alpha}=\dot{\theta}-\dot{\gamma}
$$

Position

$$
\begin{aligned}
& \dot{\mathrm{h}}=\mathrm{V} \sin \gamma \\
& \dot{\mathrm{x}}=\mathrm{V} \cos \gamma
\end{aligned}
$$

Constants

$$
\begin{array}{ll}
\mathrm{T}=2,000 \mathrm{lb} & \mathrm{~S}=6,000 \mathrm{ft}^{2} \\
\mathrm{I}_{\mathrm{y}}=27 \times 10^{6} \text { slug } \mathrm{ft}^{2} & \mathrm{~W}=500,000 \mathrm{lb} \\
\rho=0.0023 \text { slugs } / \mathrm{ft}^{3} & \overline{\mathrm{c}=30 \mathrm{ft}}
\end{array}
$$

Aerodynamic Coefficients

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{DO}}=0.14 & \mathrm{C}_{\mathrm{LO}}=1.1 & \mathrm{C}_{\mathrm{MO}}=0.05 \\
\mathrm{C}_{\mathrm{Da}}=0.63 / \mathrm{rad} & \mathrm{C}_{\mathrm{L} a}=5.2 / \mathrm{rad} & \mathrm{C}_{\mathrm{M} a}=0.2 / \mathrm{rad} \\
\mathrm{C}_{\mathrm{D} \sigma \epsilon}=0.003 / \mathrm{rad} & \mathrm{C}_{\mathrm{L} \sigma \epsilon}=0.36 / \mathrm{rad} & \mathrm{C}_{\mathrm{M} \sigma \epsilon}=1.4 / \mathrm{rad} \\
& \mathrm{C}_{\mathrm{L}} \dot{a}=2 / \mathrm{rad} / \mathrm{sec} & \mathrm{C}_{\mathrm{M} \dot{a}}=8 / \mathrm{rad} / \mathrm{sec} \\
& \mathrm{C}_{\mathrm{L}} \dot{\theta}=5.5 / \mathrm{rad} / \mathrm{sec} & \mathrm{C}_{\mathrm{M} \dot{\theta}}=22 / \mathrm{rad} / \mathrm{sec}
\end{array}
$$

Initial Conditions

$$
\begin{aligned}
& \mathrm{V}(0)=200 \mathrm{ft} / \mathrm{sec} \\
& \mathrm{~h}(0)=1500 \mathrm{ft} \\
& \theta(0)=0 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

This example was chosen to illustrate an iteration to establish correct initial conditions (trim) and solution of an implicit loop.

Values of $\theta(0), \gamma(0)$ and σ_{ϵ} are to be computed so that the aircraft is flying in a trimmed condition, i.e., the angular accelerations $\ddot{\theta}$, flight path rate $\dot{\gamma}$ and longitudinal acceleration V should all be zero. It is more usual to adjust throttle setting as thrust, T , to maintain a given flight path angle rather than the other way about.

This iteration is mechanized (see program listings, Figure A7-1 and A7-2) by choosing starting values in the INITIAL section for $\theta(0), \gamma(0)$ and σ_{ϵ} (zero seems good enough) and then in the DYNAMIC, after the first evaluation of derivatives, checking if a weighted mean square error

$$
\mathrm{E}=(\mathrm{V})^{2}+(20 \ddot{\theta})^{2}+(100 \dot{\gamma})^{2}
$$

is less than a maximum allowable error (0.1).
If not the initial guess is corrected by

$$
\begin{aligned}
& \gamma(0)=\gamma(0)+0.02 \dot{\mathrm{~V}} \\
& \theta(0)=\theta(0)-1.0 \dot{\gamma} \\
& \sigma_{\epsilon}(0)=\sigma_{\epsilon}(0)+2.0 \ddot{\theta}
\end{aligned}
$$

A more precise (and faster) iteration would calculate the derivative of the error vector ($\mathrm{V}, \gamma, \theta$) with respect to the control vector (γ, θ, σ) three by three Jacobian matrix resulting - say (J) is then inverted and the new control vector is given by

$$
\left(\gamma, \theta, \sigma_{\epsilon}\right)^{\mathrm{T}}=\left(\gamma, \theta, \sigma_{\epsilon}\right)^{\mathrm{T}}-\mathrm{J}^{-1(\dot{\mathrm{~V}}, \dot{\gamma}, \ddot{\theta}) \mathrm{T}}
$$

However, the simple iteration given suffices for this fixed example.
Once convergence has been satisfied, then the variable START is set false and the error check is never examined again. Note that in order to recompute the derivatives the program cycles from the DYNAMIC section back to the INITIAL section. The integration routine is set up and derivatives calculated at the transition from INITIAL to the DYNAMIC.

The other feature is the use of the IMPLicit operator to calculate angle-of-attack rate. Angle-of-attack rate is the difference between body rate and flight path rate. Flight path rate depends on lift which in turn is dependent on the coefficient C_{L}. This coefficient includes angle-of-attack rate so forming an algebraic or implicit loop. To avoid the sorting problem the IMPL operator is used so

$$
\dot{\alpha}=\operatorname{IMPL}(\dot{\theta}, 0.001,10, \text { ef, } \dot{\theta}-\dot{\gamma}, 0.01)
$$

This means take a first guess for $\dot{\alpha}$ to be $\dot{\theta}$ (body rate). Then iterate using Newton-Raphson until differences in successive values of $\dot{\alpha}$ are less than 0.000 . Try at most ten cycles and set ef (error flag) nonzero if this number is exceeded. This iteration is a time consuming business and has to be performed at each derivative evaluation. In this case it would have been much better to solve algebraically for α before writing the model equations - since the equations are linear, this would have been possible. On the other hand, if C_{L} had been given in functional form as a table, i.e., $\mathrm{C}_{\mathrm{L}}(\alpha, \dot{\alpha})$ then the implicit operator would have had to be used.

The output stream from executing the model is shown in Figure A7-3 through A7-7. Output is established at every ten communication intervals and a similar set of variables PREPARed for later plotting. The START initiates the run and the iteration is reported in the next eight lines of output during which the error, ERR, is reduced from 55.4 to 0.1. Then the run starts and the block of OUTPUT variables is written out every 0.5 seconds. At the end of the run (TMX $=6.49$ seconds), two PRINT statements are used in order to list selected variables, the first at every four communication intervals (0.2 seconds) and the second at every eight (0.4 seconds). At the bottom of Figure A7-5 a strip plot is set up (STRPLT=.T.); the scale factor is reduced to a half (PSFSPL=0.5); the x-axis length is increased to ten inches (XINSPL=10.0) and the distance between tick marks is increased to two inches (XTISPL $=2.0$). With the scale factor of a half that keeps the x -axis length to five inches but reduces the strip width to one inch, allowing seven variables to be stacked on one frame. The first PLOT command only changes the 'XHI' value and ensures that the plot will cover the full extent of the x-axis. The second PLOT actually draws the picture of Figure A7-8. If the first PLOT command had not been used, normal rounding would have made the x -axis run from zero to ten so wasting 35% of the area. Of course in this case the tick marks are not whole numbers but that's a user choice between the two ways of forming the plot. We would prefer maximum area utilization.

The last sequence compares the standard Runge-Kutta fourth order integration routine with the AdamsMoulton variable order, variable step. The OUTPUT list is cleared ('CLEAR') and reestablished as TIME, CIOITG (current integration order) and CSSITG (current step size) - printing out every thirty communication intervals. The SPARE \$ START \$ SPARE sequence runs the simulation with the default algorithm (IALG $=5$, Runge-Kutta fourth order) and shows an elapsed central processor time of about 6.57 seconds. Then IALG is changed to one (Adams-Moulton) and the program run again. The integration order rises to four and the step size to a maximum of 0.0601 seconds and since this is greater than the communication interval (0.05 seconds) it won't change from that value. Note that the actual step size will be equal to the communication interval value of 0.05 seconds, since these points are needed for data recording. The current step size variable CSSITG contains the step size the integration algorithm would like to take, in the absence of any other constraints such as an upcoming event or communication interval which may reduce it from this value. From the report at the end of the Adams-Moulton variable step run (Figure A7-6) it can be deduced that $\theta(\mathrm{TH})$ was the controlling integrator and the minus sign (-) indicates that the relative error never exceeded the absolute error specified. The allowable error was thus set at 0.0001 . From the elapsed time listed of about 0.73 seconds, the Adams-Moulton integrator was nearly ten times faster. At the bottom of Figure A7-6, the results of the Adams-Moulton integrator run are printed out at one second intervals to be compared with the same variables printed in Figures A7-4 and A7-5. Agreement is within two or three decimal places.

In Figure A7-7 the use of the command ANALYZ is shown which prints out the Jacobian and its eigen values. The largest eigen value is 0.82 per second, which implies a rather slowly varying system and in actual fact promises good results with integration step sizes of the reciprocal of this value or about one second, a further factor of twenty increase in solution speed. In this case the constant constraint on the step size is the data recording interval chosen to produce acceptable plots.

```
        *********ATIUANCED CONTINUOUS STMULATION LANGUAOE**********
```



```
FFOGRAM ATRCRAFT LONGITURTNAL STABTLTTY STUMY
INTTIAL.
    " ..............................................................-NEFINE ALI... FRESET VARIARLES"
```



```
    VARIABLEE TIME= =0.0
    LOGICAL START
    M.............................................NEEI MASS FROM WETGHT IN LES"
    MASS =W/G
    "..................................................GET TNITTAL GUES FOR INTTTAL CONOTTTONG'
    GAZ =0.0
    THZ =0.0
    Mz=0.0
    M-.........................................- STAKT WTLIL EE MADE TRUE WHEN ITERATION*
        " CONUERGEG"
        START = FALSE.
    I. . CONTINUE
ENO $"OF INITTAL.."
```



```
    " TRANSFERS ALLL TNTTIAL CONGTTTONS TO THE "
    " STATE VARTARIEES ANG EVAI UATES THE CORE *
IIYNAMTC
GERIVATIVE
```

```
* .............................................NTN DEFLECTION TS KICKEM TO EXCITE SYSTEM"
```

* ...NTN DEFLECTION TS KICKEM TO EXCITE SYSTEM"
MLE = 0.a*STEP(TZ) \& MLZ

```
MLE = 0.a*STEP(TZ) & MLZ
```



```
    CH = CNZ + CMALI*AL + CODE*ARS(MLE)
```

 CH = CNZ + CMALI*AL + CODE*ARS(MLE)
 "..TFT COEFFTCTENT"
 "..TFT COEFFTCTENT"
 CL_ =CLZ + CLAL*AL + CLDE*MLE + (CB/(2*U) * * CLAINALM
 CL_ =CLZ + CLAL*AL + CLDE*MLE + (CB/(2*U) * * CLAINALM
 + ClTII*(N)
 + ClTII*(N)
 "..IMNAMTC FRESSURE"
 "..IMNAMTC FRESSURE"
 QFP = 0.5*RO*U**2
QFP = 0.5*RO*U**2
"...IRAG ANI I. TFT*
"...IRAG ANI I. TFT*
| = QP*S*C!

```
| = QP*S*C!
```

Figure A7-1. Listing of Model Definition for Aircraft Longitudinal Study

```
        *********AIUANGEII CONTINUOUS STMUIIATTON IANGUAGE*********
ACSL. TRANGLATOF UEFSION I IEUEI. 6F 81/07/I3. 15.18.12. FAGE 2
\begin{tabular}{|c|c|}
\hline L． & \(=\) OF＊S＊CL． \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{GAM \(=\)（ \(1 .-W * C O S(G A)+\) T＊STN（AL）\() /(M A S S * U)\)} \\
\hline & ．－．．－－－－．．．．．ONGITUTINAL UELOCITY RATE＂ \\
\hline Un &  \\
\hline & －．－．．．．．FITCH MOMENT COFFFICTENT＂ \\
\hline C．M & ```
= CMZ + CMAL *AL. + CMOE*ILLE + (CF/(2*U))*(CMALI*ALIM
    + CMTIN(0)
``` \\
\hline & －－．－．FTCHTNG MOMENT＂ \\
\hline M & \(=\) QF＊S＊CA＊CM \\
\hline ＂ & FOF ITERATION＂ \\
\hline Qno & \(=M / T Y\) \\
\hline & －－－TMFITCTT LOOF FOK ANGLE OF ATTACK FATE \\
\hline AL． II & \\
\hline 0 & ＝－TNTUC（QD，QZ）\％＂PITCH FATE＊ \\
\hline TH & ＝INTEG（Q，THZ）\＄＂FTTCH ANGLE：＊ \\
\hline V & \(=\)＝INTUC（UA，UZ）\(\$^{\prime \prime}\) UELOCTTY＂ \\
\hline GA & \\
\hline H & \(=\) INTEG（U＊STN（GA），HZ）\＄＂HESGHT \\
\hline X & \(=\) INTEG（U＊COG（OA），XZ）\＆＂HORTZONTAL．UTSTANCE TFAUEIIEEA \\
\hline
\end{tabular}
#NN क"OF RERTUATTUE:"
 # ..TF TTEFRTTON CONUEFGETI"
 IF(START) QO TO XI
 n ...WETGHTEW ERROR FROM TRTM"
 ERFOFF=V[I**S + (20.0*QO)**2 + (100.0*GAM)**2
 " ...TF WITHTN TOILEFANCE:."
 START = ERFOR .IE. ERMX
```



```
 GAZ = GAZ + N゙さ*UII
 THZ = THZ + K゙こ*GAM
 \IIZ. = \ILZ + К゙3*QI
 * ...FRTNT ITERATION TNFOKMATTON*
 LINEG(1)名" TNFORM SYSTEM ABOUT TO FKINT ONE LTNE "
 FFINT 99, GAZ, THZ, MIZ, ERFOR
```



```
 "..EETURN TO INITTAL FEGTON TO REGTAKT"
 * THE INTEGRATTON ALGORTTHM*
 GO TO T1
II . . CONTINUE:
 "..-WXFFFSS STOFFING CRTTEFTA"
 TEFMT(TIME. GE.TMX)
ENAI क"OF MIYNAMCC"
ENII क"OF FROGRAM"
```

Figure A7－2．Listing of Model Definition for Aircraft Longitudinal Study

```
SET TITLE = "LONGITUNTNAL AIRCRAFT STAEIIITY GTUAY"
S TCUFRN=80 $" FORCE 3 COLUMN OUTPUT WIITH "
OUTFUT TIME, M, Q, UI, GAD, MLEE, X, U, TH, GA, AL,, EF, AL.M, NCTOUT"=10
FREFAR TIME, M, Q, UN, GAII, IILE, U, TH, GA, AL
SET NSTF= = 10
GTART
GAZ
TTME 0.50000000
 ur 0.1139906.1
 X 99.1287839
 6A-0.13324424
 ALM 2.4213E--04
 TTME 1.00000000
 UN 0.15529338
 X 198.291893
 6A-0.13252507
 Al.D-0.01760063
 TIME 1.50000000)
 un 0.32194985
 X 297.491969
 0A\cdots0.13405542
 AL_(1-0.02510101
 TIME 2.00000000)
 Ua 0.60696380
 X 396.734299
 9A-0.13852553
 Al.0
 TIME 2.50000000
 UII 0.99482728
 x 496.045171
 6A-0.14609914
 AL.m-0.02882471
 TTME 3.00000000
 UN 1.46906702
 X595.470475
 6A-0.15663296
 Al.01-0.02807999
```

6241E-01	IILEE	--. $3296 \mathrm{E}+00$	ERR	55.4
8499E--01	ILE	--. $3750 \mathrm{E}+00$	ERR	9.7
7919E-01.	TILE	--. $3789 \mathrm{E}+00$	ERR	2.5
$6226 \mathrm{E}-1.01$	[IILE	--. $3782 \mathrm{E}+00$	ERK	3.5
4547E-01	IIIE	--. 3780 EtO 0	ERF	2.9
3372E-01	MILE	-. $3785 \mathrm{E}+00$	ERR	1.4
276.1E-01.	MIIE	-. $3791 \mathrm{E}+00$	ERK	4
$2573 \mathrm{E}-0$	IILE	. $3796 \mathrm{E}+0$	EFR	

$$
M-4483 \cdot 15766 \quad 00
$$

$$
0 A(1-4.7903 E-04
$$

U 200.000000
AL. 0.15878051
MLEEOO. 37964391 TH 0.02573051. EF 0.

M-2709.32654	Q-6.5554F-05
GAD1-3.0769E--04	LIIE--0. 37964391.
( 200.056557	TH 0.02571276
A1. 0.15896699	EFFo.

```
\begin{tabular}{|c|c|}
\hline M 819443.768 & 0-0.01806435 \\
\hline GA@-4.6372E-04 & [11E-O. 27964391 \\
\hline V 200.119570 & TH 0.02093651 \\
\hline Al. 0. 15346158 & EF\% 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline M-588537.231 & (3-0.03097716 \\
\hline GA0-0.005676.5 & M \\
\hline (200.233657 & TH O.00849834 \\
\hline AI. 0.14255376 & EFFo. \\
\hline
\end{tabular}
AL. 0. 14255376 EFF 0 .
\begin{tabular}{|c|c|}
\hline M-425184.786 & 0-0.04027717 \\
\hline GAD1-0.01205182 & पIFE-0.27964391. \\
\hline \(\cup 200.461263\) & TH-0.00944102 \\
\hline AL. 0.12908451 & EFF 0 . \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline M-308869.266 & (3-0.0470.1386 \\
\hline GADM0.0.1819030 & MLE-- (). 27964391 \\
\hline V 200.857767 & TH-0.03135335 \\
\hline Al. 0.11474590 & EFFO. \\
\hline
\end{tabular}
AL 0.11474580 EFO
\begin{tabular}{|c|c|}
\hline M-225422.635 & (-0.0.0.191891 \\
\hline GADM0.02383991 & M E-M0.27964391. \\
\hline U 201.4704944 & TH?0.05615080 \\
\hline AL 0.10048216 & EFFO. \\
\hline
\end{tabular}
```

MIE …0.27964391.
. 0.5080

Figure A7-3. Run-time Drive Commands and Output Stream for Aircraft Longitudinal Study

ACSL RUN-TIME EXEC UERSION 1 LEUEL GM 81/07/13. 15.19.22. PAGE 2 I. ONGITUDINAL AIRCRAFT STABTLITY STUMY

TIME 3.50000000 Un 2.01355780 $\times 695.072274$ GA-ㅇ). 16981764
ALII-O. 02673479
TIME 4.00000000 UI 2.61327924 X 794.925011 GA-0. 18526832 ALLD-0.02523344

TIME 4.50000000 Un 3.25474200 $\times 895.112100$ GA-0.202581.48 ALIO-0. 02382766

TIME 5.00000000 UD 3.92621180 $\times 995.723088$ GA-0. 22136990 Al..11-0. 02264339

## M-165020. 639

 GAII-0.02876969U 202.338536
AL 0.08676447

M-120892.038
GAII-0.03289737
4203.493238

AL 0.07377233

M-88350. 2552
GADI-0.03622554
v 204.958763
AL 0.06151442

M-64151.8200
6AII-0.03881095
U 206.752971
AL 0.04990732
$M \cdots 46048.3669$
GAII-0.04074011
$V 208.838317$
AL 0.038826 .19

AL 0.038826 .19

GAI-0.042.11360
v 211. 372774
AL. 0.0281.3654

M-22335. 86.13
GAI-0.04303576
U 214.210737
AL 0.0 .1771313

Q-0.05550448 TILE-O. 27964391 TH-0.08305317 EF 0 .
(2-0.05813081 IIIE-O. 27964391
TH-0. 111149598 EF 0 .
(2-0.06005320
[IIE-O. 27964391
TH-0.14106705
EF 0 .

2-0.06145434
IILE-O. 27964391
$\mathrm{TH}-0.17146258$ EF 0.
(2-0.06246668
MUE-O. 27964391
TH-0.20245679
EF 0 .

Q-0.06318772
LUE-0.27964391
$\mathrm{TH} \cdots \mathbf{0} .23388084$ EF 0 .
a-0.06369065
[LLE-0. 27964391
$\mathrm{TH}-0.26560925$ EF 0 .

* MAKE COLUMN PRINT OF GELECTED VARIABLES FROM FREPAR l.IST *

PRINT "NCTFRN" $=4$, TIME, M, R, UII, GAII

I.INE	TIME	M	$Q$	Un	GAII
0	0	-4483. 1577	0.	0.1120971	-4.780E-04
4	0.2000000	-3691.5678	-3.020E-05	0.112988 .1	-4. O35E-04
8	0.4000000	-3012.0301	-5.497E-05	0.1136435	-3.377E-04
12	0.6000000	-1.072E+06	-0.0041394	0.1156370	0.0024458
16	0.8000000	-936967.82	-0.0.115693	0.1247060	0.0012126
20	1.0000000	-819443.77	-0.0180843	0.1552934	-4.637E-04
24	1.2000000	-717322.81	-0.0237472	0.2068592	-0.0024664
28	1. 4000000	-628518.65	-0.0287242	0.2786918	-0.0046991

Figure A7-4. Output Stream from Aircraft Longitudinal Study

LINE	TIME	M	0	vir	GAII
32	1. 6000000	-551229.33	-0.0330870	0.3699518	-0.0070821
36	1. 8000000	-483899.01	-0.0369151	0.4797075	-0.0095506
40	2.0000000	-425184.79	-0.0402772	0.6069638	$-0.012051 .8$
44	2.2000000	-373927.76	-0.0432326	0.7506856	-0.01.45433
48	2.4000000	--329128.86	-0.0458328	0.9098160	-0.0169912
52	2.6000000	-289923.07	-0.0481223	1.0832922	-0.0193691
56	2.8000000	--255568.70	-0.0501399	1. 2700565	-0.0216568
60	3.0000000	$-225422.63$	-0.0519189	1.4690670	-0.0238389
64	3.2000000	$-198931.41$	-0.0534885	1. 67933048	-0.0259047
68	3. 4000000	$-175617.33$	-0.0548739	1.8997806	-0.0278466
72	3.6000000	$-155068.31$	$\cdots 0.0560970$	2.1295392	-0.0296604
76	3.8000000	$-136928.80$	-0.0571771	2. 3676639	-0.0313440
80	4.0000000	$-120892.04$	-0.0581308	2. 6132792	-0.0328974
84	4.2000000	-106693. 28	-0.0.589727	2.8655533	-0.0343223
88	4.4000000	-94104.044	-0.0597154	3. 1236997	-0.0356217
92	4.6000000	-82927.073	-0.0603703	3. 3869786	-0.0367996
96	4.8000000	-72992.043	-0.0809470	3. 6546976	-0.0378608
100	5.0000000	-64151.820	$\cdots 0.0614543$	3.926211 .8	-0.0388110
104	5.2000000	-56279.255	-0.0618998	4.2009243	-0.0.396559
108	5.4000000	-49264.402	-0.0622902	4.4782854	-0.0404021
1.2	5.6000000	-430.12.123	-0.0626315	4.7577925	-0.0410559
116	5.8000000	-37440.018	-0.0629291	5.0389898	-0.04162.42
120	6.0000000	-32476.637	-0.0631877	5.3214623	-0.0421136
124	6.2000000	-28059.936	-0.0634116	5.6048448	-0.0425308
128	6.4000000	-24126.843	-0.0636046	5.9888103	-0.0429825


I.INE	TIME	TLE	TH	GA	${ }_{\text {AL }}$
0	0	--0. 3796439	0.0257305	-0. 1.330500	0.1587805
9	0.4000000	-0.3796439	0.0257188	-0.1332120	0.1589308
16	0.8000000	-0.2796439	0.0239144	-0.1326063	0.1565207
24	1. 2000000	-0.2796439	0.0167427	$-0.1328135$	0.1495563
32	1. 6000000	-0.2796439	0.0052940	-0.1347031	0.1399971
40	2.0000000	-0.2796439	-0.0094410	-0.1385255	0.1290845
48	2.4000000	-0.2796439	-0.0267104	-0.1443399	0.1176295
56	2.8000000	-0.2796439	-0.0459412	-0.15208.15	0.106.1403
64	3.2000000	-0.2796439	-0.0666948	-0.1616093	0.0949145
72.	3.6000000	-0.2796439	-0.0886336	-0.1727394	0.0841059
80	4.0000000	-0.2796439	-0.1114960	-0.1852683	0.0737723
88	4.4000000	-0.2796439	-0. 1350784	-0.1989889	0.0639104
96	4.8000000	-0. 2796439	-0.1592214	-0.2137009	0.0544796
104	5.2000000	-0.2796439	-0.1837990	-0.2292183	0.0454193
11.2	5.6000000	-0.2796439	-0.2087118	$-0.2453730$	0.0366612
120	6.0000000	-0.2796439	-0.2338808	-0.2620.174	0.0281365
128	6.4000000	-0.2796439	-0.2592434	-0.2790253	0.019781 .9

S STRFILT=. T., FRNFILT=.F., FSFSPL=0.5,XINSFI =10. 0, XTISPL $=2.0$
FLOT "XHI"=TMX \$" PLIOT NOTHING -- EUT ESTARLISH FULL RANGE FOR GCALE "
PLOT TH, AL, GA, GAD, Q, M, DLLE
" CHANGE OUTPUT LIST FOR TIME TRIAL EETWEEN RK4 ANO ADAMS-MOULTON * OUTFUT "CLEAR", TIME, CIOITG, CSSITG, "NCTOUT" $=30$
SF'ARE \$ START \$ SPARE
ACCUMULLATEN CF TIME
GAZ --.4719E-01 THZ
GAZ -. 8892E-01 THZ

. 259 SEC.	Elapsen	CF TIME		SEC.
$6241 \mathrm{E-O1}$	ILLE	$32965+00$	ERR	55.4
8499E-01	IILE	3750E+00	ERR	9.7

Figure A7-5. Output Stream from Aircraft Longitudinal Study

ACSL RUN TTME EXEC UEFSTON 1 LEUEL. GM
81/07/13. 15.19.20.
FAGE I. ONGTTUNTNAL AIRCFAFT STAEIIITTY STUKIY


COUNT OF TTMES STATE CONTROLLER STEF GTZE
MTNUS (…) FELE ERF AL.WAYS BEIOW ABS EFR

GA	FC	FATL.	0	ERKF	CONTROI.	15
H	PC	FATL	0	ERR	CONTROL.	O
0	PC	FATL.	0	ERER	CONTEOL.	7
TH	PC	FATI.	0	ERR	CONTROII.	$110-$
v	FC	FATI.	0	ERER	CONTROL	0
$X$	FC	FAll.	0	ERK	CONTROL.	10


FKTNT "NCTFRN":20, TTME, M, R, UM, OAL

1. TNE	TTME	M	0	Un	GAI
0	0.	--4483.1577	0	0.1120971	-4.7901:-04
20	1. 0000000	--81.8960.30	$-0.0180910$	0.1554642	-4.701E-04
40	2.0000000	-42.4940.72	$-0.0402911$	0.6075197	$-0.0120617$
60	3.0000000	-225297.56	$\cdots 0.0519262$	1. 46999101	-0.0238476
80	4.0000000	--120825.69	$\cdots 0.0581347$	2. 6143087	-0.0329036
1.00	5.0000000	$-64115.362$	$\cdots 0.0614564$	3.9273439	$-0.03891 .47$
120	6.0000000	-32456. 280	$\cdots 0.0631898$	5. 3226369	-0.0421155

Figure A7-6. Output Stream from Aircraft Longitudinal Study

ACSL RUN TTME EXEC UERSTON I LEUEL GM

stof

Figure A7-7. Output Stream from Aircraft Longitudinal Study

Don't be misled by the ratio of execution for Runge-Kutta to Adams-Moulton. The artifically small step size chosen arbitrarily for the RK4 algorithm unfairly penalizes the comparison. In actual tests with typical non-linear systems, the second order Runge-Kutta method (IALG=4) did best in terms of CP seconds per simulated second. The penalty is that the user must choose the step size, normally by experimentation, but sometimes by familiarity with the model. As mentioned above, a good rule of thumb is to make the integration step size (MAXT) equal to the smallest time constant in the model. Of course if the controlling time constants change significantly, then the variable step algorithms are called for. Stiff systems with fast initial transients should use integration algorithm two (IALG=2).


Figure A7-8. Strip Plot of Selected Variables from Aircraft Longitudinal Study

## 8. PHYSBE

A benchmark simulation model has been described* in order to demonstrate the different methods of solving simulation problems. Called PHYSBE, for physiological simulation benchmark experiment, this system models the blood flow around a human body, driven by two pumps - the right and left ventricles in the heart. Figure A8-1 shows the interconnection of the various components of the system which are to be considered as large bags or balloons that can be filled with blood. The characteristic is that the more blood that is forced in, the higher the pressure. Valves exist between the vena cava (VC) and the right ventricle (RV); the right ventricle and the lungs (LN); the lungs and the left ventricle (LV), and the left ventricle and the aorta (AO). These valves only allow blood flow in the forward direction.

The blood is driven around the loop by changing the compliance of the right and left ventricles as a function of time, so modeling the squeezing of the blood in the chambers by the heart muscle as it contracts and releases. Figure A8-2 shows this réciprocal compliance as a function of time; this function is repeated every second as the heart beats. Each lump contains mass balance and heat balance constraints which are described by the following equations.

The assumptions made are:

1) Physical parameters of the system are linear.
2) Blood flow within each area is influenced only by:
a) Inlet Pressure
b) Inflow Resistance
c) Compliance (Volume/Unit Pressure)
d) Outflow Resistance
e) Outlet Pressure
3) There is no resistance to blood flow within areas.
4) All endogenous heat will be absorbed by the blood and conducted by the blood.
5) Specific heat of blood and all body components is unity.
6) Temperature change within the arteries, ventricles, and great veins is negligible.

[^12]

Figure A8-1. Interconnection of Lumps to Form Blood Distribution System


Figure A8-2. Reciprocal Compliance or Spring Constant (Pressure per Unit Volume) for Heart Chambers

Figure A8-3 shows the schematic representation of the mass and heat flow within each lump. Note the XX is to be replaced by the two character mnemonic when referring to one of the nine individual lumps. The input flow rate is given by the pressure differential and input resistance

$$
\mathrm{FXXI}=\frac{\mathrm{PXXI}-\mathrm{PXX}}{\mathrm{RXXI}}
$$

Pressure in the bag is volume by compliance

$$
\text { PXX }=\frac{V X X}{C X X}
$$

Outlet flow rate is given by the pressure differential and output resistance

$$
\mathrm{FXXO}=\frac{\mathrm{PXX}-\mathrm{PXXO}}{\text { RXXO }}
$$

The blood volume is the integrated mass flow rate

$$
\mathrm{VXX}=\int_{0}^{\mathrm{T}}(\mathrm{FXXI}-\mathrm{FXXO}) \mathrm{dt}+\mathrm{VXXZ}
$$

Heat (enthalpy) flow in is
QXXI = FXXI * TXXI

Temperature is total enthalpy in lump by mass.
TXX = HXX/WXX

Heat flow out is
$\mathrm{QXXO}=\mathrm{FXXO}$ * TXX
Heat dissipated to surroundings

$$
\mathrm{QXXB}=\mathrm{K}^{*} \mathrm{AXXO}{ }^{*}(\mathrm{TXX}-\mathrm{TA})
$$

and an accumulated heat is

$$
H X X=\int_{0}^{T}(Q X X I-Q X X 0+Q X X E) d t+H X X Z
$$

Now the macro is implemented by defining the macro name and identifying the substitutable parameter, i.e.,

MACRO LUMP (X)
identifies X as a substitutable parameter.
To make up the input flow equation, the following statement is used ( $\rightarrow$ implies concatenation)

$$
\mathrm{F} \rightarrow \mathrm{X} \rightarrow \mathrm{O}=(\mathrm{P} \rightarrow \mathrm{X} \rightarrow \mathrm{I}-\mathrm{P} \rightarrow \mathrm{X}) / \mathrm{R} \rightarrow \mathrm{X} \rightarrow \mathrm{I}
$$

which means ' F ' concatenated with the argument, concatenated with an ' O ', etc. When the macro is invoked to describe the trunk, designated by TR

LUMP ('TR')
where the quotes imply the literal string TR which is not to be considered as a symbol.
The expansion of the macro for this invocation is shown in Figure A8-4.


Figure A8-3. Lump Definition - Mass and Enthalpy Balance


Figure A8-4. Main Invocation and Macro Expansion for Lump Associated with Head (HD)

The other macro used in the simulation is the valve so
MACRO VALVE (R, PO, PI, RZ)
which calculates a resistance R given outlet pressure, PO , inlet pressure PI, and valve open resistance, RZ. If the valve is closed the resistance will rise to a large value $\left(10^{20}\right)$ to effectively shut off flow.

This VALVE macro is defined as a PROCEDURAL block, or one whose order must not be changed. The list states that $R$, the resistance, is the output variable, and that this is calculated as a function of outlet pressure, inlet pressure and open resistance.

Action of the valve is defined by

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{RZ} ; & \mathrm{PO} \leq \mathrm{PI} \\
\mathrm{R}=10^{20} & \mathrm{PO}>\mathrm{PI}
\end{array}
$$

Invocation to calculate the resistance into the right ventricle is
VALVE (RRVI = PRV, PVC, RRVIC)
which expands as shown in Figure A8-5. This says that the input resistance to the right ventricle is RVIZ, if the pressure in the right ventricle PRV is less than the pressure in the vena cava, PVC. Otherwise, it is $10^{20}$ so preventing any backflow.

```
 VALVE(RRVI = PRV, PVC, RRVIZ)
PROCEDURAL(RRVI = PRV, PVC, RRVIZ)
RRVI = RRVIZ
IF(PRV.GT. PVC) RRVI=1.0E20
END
MACROEND
 VALVE(RRVO = PLN, PRV, RRVOZ)
PROCFJURAL(RRVO = PLN, PRV, RRVOZ)
RRVO = RRVOZ
IF(PLN.GT. PRV) RRVO=1.OE20
END
MACROEND
```

Figure A8-5. Macro and Macro Expansion for Inlet and Outlet Values in Right Ventricle

The program listing Figures A8-6 through A8-7 defines all the constants necessary to specify the system behavior. Since none of the heat flux constants were given in the problem definition they are set to zero, so the temperature equations are carried along to count in the time scale but don't calculate significant quantities. Since there is no feedback, the temperature merely goes along with the mass balance equation for the ride.

The compliance of the ventricles is the drive for the system that causes the heart to pump. The reciprocal compliance is given as a function of time that repeats every second and this is shown in Figure A8-2. Since the code order for calculating the compliance could have been important, it was bracketed in a PROCEDURAL block.

Then, the valves in the right and left ventricles (two in each lump) are defined.
The interconnections of each lump, Figure A8-1, define what the inlet and outlet pressures are. For the simple case of two elements in cascade, the outlet pressure is the effect of two resistances connected between two pressure sources.


$$
\begin{aligned}
& \text { PXXO }=\frac{\mathrm{PXX} * \mathrm{RYYI}+\mathrm{PYY} * \mathrm{RXXO}}{\text { RYYI }+ \text { RXXO }} \\
& \text { PYYI }=\text { PXXO }
\end{aligned}
$$

The aorta and vena cave are rather more difficult since the first feeds five other lumps and the second receives flow from the five. Writing down the flow balance - equivalent to Kirchoff's law - leads to the following for the aorta output pressure

$$
\mathrm{PAOO}=\frac{\frac{\mathrm{PAO}}{\mathrm{RAOO}}+\frac{\mathrm{PHD}}{\mathrm{RHDI}}+\frac{\mathrm{PAR}}{\mathrm{RARI}}+\frac{\mathrm{PLG}}{\mathrm{RLGI}}+\frac{\mathrm{PTR}}{\mathrm{RTRI}}}{\frac{1}{\mathrm{RAOO}}+\frac{1}{\mathrm{RHDI}}+\frac{1}{\text { RARI }}+\frac{1}{\text { RLGI }}+\frac{1}{\text { RTRI }}}
$$

and similarly for the vena cava inlet pressure

$$
\text { PVCI }=\frac{\frac{\mathrm{PVC}}{\mathrm{RCVI}}+\frac{\mathrm{PHD}}{\mathrm{RHDO}}+\frac{\mathrm{PAR}}{\mathrm{RARO}}+\frac{\mathrm{PLG}}{\mathrm{RLGO}}+\frac{\mathrm{PTR}}{\text { RTRO }}}{\frac{1}{\mathrm{RCVI}}+\frac{1}{\mathrm{RHDO}}+\frac{1}{\text { RARO }}+\frac{1}{\text { RLGO }}+\frac{1}{\text { RTRO }}}
$$

The nine lumps are defined by invoking the macro with the appropriate two character string and this ends the model definition included in a DERIVATIVE section. In the DYNAMIC section - interrogated every communication interval - is the termination condition and for four cycles the stop time TSTP is set at four. This completes the model description: the listing as shown took. 13.2 seconds to translate on a Control Data CYBER 173. The run-time commands used to exercise this model are shown listed in Figure A8-8 and the output stream generated in Figures A8-9 through A8-12. Prior to the START, the communication interval (CINT) is set to $20 \mathrm{msec}(0.020 \mathrm{sec})$, the NSTP divisor to one and the calculation interval or integration step specified via the maximum step size (MAXT) to be $10 \mathrm{msec}(0.010 \mathrm{sec})$. After the START the OUTPUT list is printed out every half second, since the "NCIOUT" multiplier is 25.

```
FROGRAM FHYSEE
INITIAL
MACRO LUMF(X)
 F_X_I =(P_X_I - P_X)/F_ X_I.
 F-N
 F_X_O}=(F,X-F_X_0)/F_X_
```



```
 Q X_I = F_X I*T X II
 TX=HX/WX
 Q X_O = F_X_O *T X
 Q X_口 = K*A X*(TX - TA)
 H_X = INTEG(Q_X_I - Q X O O + Q_X_E E - Q_ X_n, H_ X_Z Z)
MACRO ENII
MACRO VALUE(F, FO, FI, FZ.)
 FROCEIUURAL(R = FO, FI, FZ)
 F = FZ
 TF(FO.GT.FI) F=1.OESO
 ENI
MACRO EN[I
\begin{tabular}{|c|c|c|c|c|}
\hline constant & RAOT = 1.E-2 & \(\mathrm{FAOO}=1 . \mathrm{E}-2\) & CAO \(=1.01\) & , \(V A O Z=\) \\
\hline CONSTANT & RARI \(=5.15\) & RARO \(=10.0\) & CAR \(=4.25\) & , \(V A F Z=268.0\) \\
\hline CONSTANT & RHAT \(=2.58\) & \(\mathrm{FHOO}=5.0\) & CHI \(=1.21\) & , UHHIZ \(=68.0\) \\
\hline CONSTANT & FTEI \(=0.67\) & RTRO \(=1.42\) & CTF \(=34.0\) & UTFZ \(=2180\). \\
\hline CONSTANT & FILGI \(=2.58\) & RLIGO \(=5.00\) & CLG \(=11.1\) & UL.GZ \(=700.0\) \\
\hline CONSTANT & RUCI \(=1 . \mathrm{E}-2\) & RUCO \(=1 . \mathrm{E}-2\) & CUC \(=250.0\) & VUCZ \(=650.0\) \\
\hline CONSTANT & RLNI \(=1 . \mathrm{E}-2\) & RINO \(=0.1875\), & CLN \(=10.0\) & VLNZ \(=200.0\) \\
\hline CONSTANT & RRUTZ \(=0.0030\), & FRVOZ \(=0.0030\) & & \\
\hline CONSTANT & FLUIZ \(=0.0275\), & FLVUZ \(=0.0060\) & & \\
\hline CONSTANT & ULUZ \(=319.0\) & URUZ \(=120.0\) & & \\
\hline CONSTANT & AAO \(=0.0\) & \(W A O=1.0\) & QAOE= 0.0 & , HAOZ \(=0.0\) \\
\hline CONSTANT & AAF \(=3670.0\), & WAF \(=7000.0\), & QARE \(=0.0\) & , HARZ= 0.0 \\
\hline CONSTANT & AHII \(=1.400 .0\), & WHOI \(=4500.0\), & QHILE \(=0.0\) & , HHIIZ \(=0.0\) \\
\hline CONSTANT & ATR \(=6000.0\), & WTR \(=53000\). , & QTRE \(=0.0\) & , HTRZ \(=0.0\) \\
\hline CONSTANT & ALG \(=7000.0\), & WLG \(=18500\) & QLGE \(=0.0\) & HLGZ \(=0.0\) \\
\hline CONSTANT & AVC \(=0.0\) & WVC \(=1.0\) & OUCE \(=0.0\) & , HUCZ \(=0.0\) \\
\hline CONSTANT & \(A R V=0.0\) & WRVV \(=600.0\) & QRVE \(=0.0\) & , HRUZ \(=0.0\) \\
\hline CONSTANT & AL. N \(=50000\). & WLLN \(=1000.0\), & QLNE \(=0.0\) & HLINZ=0.0 \\
\hline CONSTANT & ALUV \(=0.0\) & WLU \(=600.0\) & QLUE \(=0.0\) & , HLUZ \(=0.0\) \\
\hline CONGTANT & QARI \(=0.0\) & QHan \(=0.0\) & QTRO \(=0.0\) & QLGI \(=0.0\) \\
\hline CONSTANT & QUCD \(=0.0\) & QRUU \(=0.0\) & QLNI \(=0.0\) & QLUA \(=0.0\) \\
\hline CONGTANT & QAOD \(=0.0\) & & & \\
\hline CONSTANT & \(K=0.01\) & \(T A=0.0\) & TSTF \(=3.99\) & \\
\hline CONSTANT & TMX \(=0.4\) & TMN \(=0.5\) & & \\
\hline
\end{tabular}
ENO $" OF INTTTAL."
IIYNAMIC
GERIVATIVE
 FROCEDUURAL (CFV,CL.U=T')
 TF= AMOM(T, 1.O)
 IF(TF.LE.TMX) CT =(CIMX--CIMN)*TF/TMX + CIMN
 TF(TF.GT.TMX .AND. TF.LE.TMN) CI =(CIMX-CIMN)*(TMN-TF)...
 /(TMN-TMX) + CIMN
 IF(TF.GT.TMN) CI= CIMN
 CRU = 1.O/CI क CLU = CFU
 ENII
```

Figure A8-6. Listing of Physiological Simulation Benchmark Experiment (PHYSBE) Model Definition

```
 *********ALIVANCED CONTINUOUS SIMULATION LANGUAGE*********
ACSL. TRANSLATOR UEFSION 1 LEUEL 6F 81/07/13. 15.16.01. F'AGE 2
 "UALUES IN RIGHT ANII LEFT VENTRICLES"
 UALUE (FRUI = FRU, FUC, RRUIZ)
 UALUE(RRVO = PLN, FFVV, FRUOZ.)
 UALVE{FLLUI = FILU, FLLN, FLUUZZ)
 UAL..VE(FLUO = PAO, FLUU, RLUOZ.)
 "IEFINE THE INTEFCONNECTIONS"
 "VENA CAUA FEEIIS RIGHT VENTRICLE"
 PVCO = (PUC*RRUI + PRU*RUCO)/(FFVI + FUCO)
 FRUI = FUCO $"RIGHT UENTRICLE"
 TRUI = TUC
 "RIGHT UENTRICLE FEEIS LUNGS*
 FFVO =(FFV*FLNI + PLN*FFUO)/(FLLNI + FFFUO)
 FLLNI = FRUO *"LUNG INFUTS"
 TL.NI =TFU
 "LUNGS FEEII LEFT UENTRICLE"
 FLNO =: (F'LN*FLLUI + F'LU*FLLNO)/(F'LUI + F'LNO)
 FLLUI = FLLNO $"LEFT UENTFICLE INFUTS"
 TLUI =: TLN
 "LEFT UENTFICLE FEEIS AORTA"
 FLUO =(FLLU*FAOI + FAO*RLUO)/(FAAOI + Fil..VO)
 FAOI = FLLUO $"AOFTA INFUTS"
 TAOI =TL.V
 "AORTA FEEIIS HEAII, ARMS, LEGS ANII TRUNK*
 FAOO =(FAO/FAOO + FHII/FHIII + FAF/FAFI + FLG/FLGI + FTF/RTFT)...
 /(1.O/RAOO + 1.O/FHKI + 1.O/FARI + 1.O/RLGT + 1.O/FTRT)
 FHIII =: FAOO क"HEALI TNFUTS"
 THIII = TAO
 FAFEI = FAOO $"AFMS INFUTS"
 TARI =: TAO
 FLGI = PAOO 串"LEG INFUTS"
 TLGI=TAO
 FTEI = FAOO $"TFUNK INFUTS"
 TTRI = TAO
 "UENA CAUA IS FETUFN FFOM HEAII, AFMS,LEGS ANII TFUNK"
 FUCT ={FUC/FUCI + FHM/FHLIO + FAR/FARO + FILG/FILGO + FTFR/FTFO)...
 /(1.O/RVCI + 1.O/FHMO + 1.0/FAFO + 1.O/FLGO + 1.O/FTRO)
 TUCI =(THL*FHTO + TAR*FARO + TLG*FLGO + TTF**FTFO)/FUEI
 FARO =FVUCI क FHIOO=FUCI $ FI..GO =FUCI & FTFO = FUCI
 " IEFINE EACH LUMMF"
 LUMF'("FU") क "FIGGHT UENTFITCLE"
 LUMF("LN") $ "LUNGS"
 LUMF("IUU") & "LEFT UENTFICLEE"
 I.UMF("AO") क "AOFTA"
 LUMF("AF") $ "ARMS"
 L.UMF("HII") क "HEALI"
 LUMF("TF") क "TFUNK゙"
 LUMP("LG") & "LEGS"
 L..UMF("VC") # "UENA CAVA"
ENNI $" OF IERIUATIUE "
 TERMT(T.GE.TSTF)
ENII क" OF IIYNAMIC"
 13.217 CF SECONIS T3649 TAELE SFACE USEN 1. TABLE MOUES
```

Figure A8-7. Listing of PHYSBE Model Definition

```
SET TITLE="FHYSTOLOGICAL STMULATION BENCHMARK EXFEETMENT (FHYSBE)"
G TCWFRN=72, OTS=9 क" FORCE 3 COLUMN OUTFUT WIRTH "
FREFAR T,FRU,FLN, FLU,FAO, FHL, FTR,FAR,FLG, FUC,FUCI
 ,FAOO, FARO, FHMO, FLGO, FLNO, FLUO, FRUO, FTRO, FUCO, CRU, CLU, CT
OUTFUT T, FRU, FLNN, FAO, FHO, "NCIOUT"=2S
SET CTNT:=0.O2,NSTF:=1,MAXT=0.010
STAFT
FFTNT "NCTFFN"=a,T,FRU,FLN,FLUO,FRUO
```



```
Flot FRUO, FLN, FRU
S CALFLT=, T.,GRWCFL=.T., FRNFLT=,T.,STRFLT=.F.
Fl.ot FRV, FLN
srof
```

Figure A8-8. Run-time Drive Commands to Exercise PHYSBE Model

After the simulation run a more detailed print out is obtained for two pressures, PRV and PLN, and two flows, FLV and FRV, every four communication intervals or every 80 msec . This runs through Figure A8-10. Next we obtain a strip chart plot by setting STRPLT true. The right ventricle flow and lung and right ventricle pressures are shown plotted in Figure A8-11. The grid was produced since GRDSPL was made true prior to the plot command. The next line (Figure A8-10) turns on normal line plots (CALPLT=.T.), asks for grid on these plots (GRDCPL=.T.), turns on print plots (PRNPLT=.T.) and turns off the strip plot (STRPLT=.F.). The following PLOT command produces the printer plot of Figure A8-12 and the line plot, actually on a Gould electrostatic plotter, of Figure A8-13.

ACSL RUN-TIME EXEC UERSION 1 LEUEL $6 M$ 81/07/13. 15.17.20. FAGE I.

SE:T TITLE="FHYSIOLOGICAL SIMULATION BENCHMARK EXFERIMENT (FHYSEE)" S TCWFFN=72, IIS=9 \$" FORCE 3 COLUMN OUTFUT WIITH " FREF'AR T, FKU, FLN, FLU, F'AO, FHH, FTK, FAK, FLGG, FUC, FUCI
, FADO, FARO, FHLIO, FLGO, FL.NO, FLUO, FFUO, FTRO, FUCO, CRU, CLU, CI OUTFUT T, FFV, FLN, FAO, FHI, "NCIOUT"=25
SET CINT $=0.02$, NSTF $=1$, MAXT $=0.010$
STAFT

To.
PAO 80.0000000
$T 0.50000000$
FAO 100.880641
T 1.00000000
FAO 74.2731870
T 1.50000000
PAO 99.1535674
T 2.00000000
FAO 73.5418443
T 2.50000000
FAO 98.2354651
T 3.00000000
PAO 73.0300194
T 3.50000000
PAO 97.8142421
T 4.00000000
PAO 72.6692007

FRU 1.59600000
FHI 56. 1983471
FRU 0.85086878
FHI 56.9120419
FRV 1.58567986
FHII 56.8334996
FRV 0.87358286
FHII 57.0084605
FRV 1.62192528
FHI 56.7579594
FRU 0.89433126
FHD 56. 9377607
FFV 1.65475157
FHII 56.5338005
FRV 0.91342323
FHO 56.6051521.
FFV 1. 68449157
FHI 56.2998931

FLLN 20.0000000

FLN 25.4171240

FLN 20.9539454

FLN 26.0932275

FLLN 21.4780036

FLN 26.7111711

PLN 21.9627005

FLN 27.2808804

FLN 22.4132055

FRINT "NCTFRN"=4, T,FRU,FLN,FLUO,FRUO

1. TNE	T	FRU	FILN	Fluo	FRUO
0	0	1. 5960000	20.000000	-7.576E-19	-1.840E-19
4	0.0800000	11.579815	19.828992	-4.612E-19	-8.249E-20
8	0.1600000	21.410190	19.912234	-1.701E-19	115.22742
12	0.2400000	25.903454	21.978930	267.24770	301.88644
16	0. 3200000	26.869540	24.074300	287.50230	215.01840
20	0.4000000	27.324480	25.476994	279.16393	142.11424
24	0.4800000	6.1052156	25.517478	-7.689E-19	-1.941E-19
28	0.5600000	0.9627592	24.817419	-9.213E-19	-2. $385 \mathrm{E}-19$
32	0.6400000	1. 1002612	24.046745	-8.629E-19	-2. 295E-19
36	0.7200000	1. 2256486	23. 307887	-8.146E-19	-2. 208E-19
40	0.8000000	1. 3401.452	22.599530	$-7.744 E-19$	-2.126E-19
44	0.8800000	1. 4448501	21.920415	-7. $410 \mathrm{E}-19$	-2.048E-19
48	0.9600000	1. 5407505	21.269336	-7.131E-19	-1.973E-1.9
$5 \%$	1. 0400000	6.5501247	20.766080	$-5.589 \mathrm{E}-19$	-1. $422 \mathrm{E}-19$
56	1. 1200000	1.6.469192	20.757570	-2.778E-19	-4.288E-20
60	1. 2000000	24.830554	21.463533	1. 2038419	259.00168
64	1. 2800000	27.213663	23.752947	281.51563	266.20886
68	1. 3600000	27.831076	25.516663	276.73555	178.03178

Figure A8-9. Output Stream from PHYSBE Model

ACSL. FUN-TIME EXEC UEFSTON 1 LEUEL GM 81/07/13. 15.17.20. FAGE 2 FHYSTOLOGICAL STMULATTON BENCHMAFK EXFEFTMENT (FHYSBE)

1. TNE	T	FFV	PLN	FLVO	FFVO
72	1. 4400000	17.074435	26.202923	-3.574E-19	-9.128E-20
76	1. 5200000	0.9124997	25.884333	-9.390E-19	-2.497E-19
80	1. 6000000	1. 0593256	25.070429	$-8.77 \mathrm{E}-19$	-2.401E-19
84	1. 6800000	1. 1930849	24.290124	-8.260E-19	-2.310E-19
88	1. 7600000	1. 3150978	23.542032	$-7.835 E-1.9$	-2.23E-19
92	1. 8400000	1. 4265501	22.824822	-7.482E-19	-2.140E-19
96	1.9200000	1. 5295069	23.137200	-7.187E-19	$-2.061 E-19$
100	2.0000000	1. 6219253	21.478004	-6.941E-19	-1.986E-19
104	2.0800000	1.1. 772357	21.265876	-4.146E-19	-9.494E--20
108	2.1600000	21.901368	21.275058	-1. 385E- - 19	48.177692
112	2. 2400000)	27.110493	23.155388	265.84205	304.23883
11.6	2. 3200000	28.236425	25.315120	276.68971	224.71582
120	2.4000000	28.727497	26.786136	268.98179	149.33546
124	2.4800000	6.4187495	26.827306	-7. 490E-19	-2.041E-19
128	2.5600000	1.0103165	26.073132	-8.985E-19	-2.506E-19
1.32	2.6400000	1. 1527750	25. 53196	-8.432E-19	-2.410E-19
136	2.7200000	1. 2825971	24.467109	-7.972E-19	-2.318E-19
1.40	2.8000000	1. 4010590	23.713473	-7.591E-19	-2. 231E-19
1.44	2.8800000	1. 5093069	22.990948	-7. 273E-19	-2. $148 \mathrm{E}-1.9$
1.48	2.9600000	1. 6083708	22.298251	-7.007E-19	-2.069E-19
1.52	3.0400000	6.8350133	21.753322	-5. $495 \mathrm{E}-19$	-1.492E-1.9
156	3. 1200000	17.185497	21.737983	-2.730E-19	-4.552E-20
160	3.2000000	25.947598	22.457848	2.6812666	268.44232
1.64	3.2800000	28.458590	24.843446	277.11008	278.08799
1.68	3.3600000	29.107288	26.687059	272.46705	186.17147
172	3. 4400000	17.857531	27.404736	-3. 527E-19	-9.547E-20
176	3.5200000	0.9535880	27.060560	-9.264E-19	-2.611E-19
1.80	3.6000000	1.1050721	26.202135	-8.656E-19	-2.510E-19
1.84	3.6800000	1. 2429967	25. 379148	-8.153E-19	-2.414E-19
188	3.7600000	1. 3687316	24.590135	-7.735E-19	-2.322E-19
192	3.8400000	1. 4835075	23.833694	-7.387E-19	-2. 235E-19
196	3.9200000	1.5884298	23.108481	-7.097E-19	-2. 152E-19
200	4.0000000	1.6844916	22.413205	-6.855E-19	-2.073E-19


FLOT FFUO, FLLN, FRU

FILOT FFVU, FIN

Figure A8-10. Output Stream from PHYSBE Model


Figure A8-11. Strip Plot of Right Ventricle and Lung Pressure and Right Ventricle Flow


Figure A8-12. Plot of Right Ventricle and Lung Pressures from PHYSBE Model


Figure A8-13. Line Plot of Right Ventricle and Lung Pressures from PHYSBE Model

## 9. PHASE AND GAIN

The accompanying program was put together to calculate and plot the phase and gain through the plant described by the following transfer function

$$
\frac{X}{Y}=G(s)=\frac{0.5 s+1}{0.03 s^{2}+0.1 s+1}
$$

The characteristics were to be obtained by forcing the model with a sine wave and determining the in-phase and quadrature components, from which gain and phase can be calculated. Changing frequency slowly allows successive points to be calculated until, at the end of a single run, the complete Bode plot can be generated. This method is a relatively expensive way to obtain frequency response and is almost never justified for linear systems. For a non-linear plant though, this method is the best one available and can be used to match bench tests on hardware with a sinewave generator. Care must be taken to choose the excitation amplitude correctly and also make sure the model is in steady state while the measurements are made.

The program listing is given in Figure A9-1 and A9-2 and should be followed through the following discussion. The basic action is to establish a separate DERIVATIVE block, which will repeat every cycle of the current frequency, and which examines the inphase and quadrature components of a full cycle integration. When the change in phase from cycle to cycle is small enough, the data point is recorded and the frequency changed so that another point can be calculated. In the program, the INITIAL section sets the first frequency, W , and phase, FI. The frequency is started at the maximum value and will be reduced geometrically by:

$$
\mathrm{W}=\operatorname{AMAX} 1\left(\mathrm{WMN}, K \mathrm{~W}^{*} \mathrm{~W}\right)
$$

so that the final logarithmic plot will have equally spaced points. For this application KW was defined to be 0.8 and the frequency sweep was from a maximum value (WMX) of 100.0 down to a minimum value (WMN) of 1.0. Next go to the second DERIVATIVE section listed in Figure A9-2 where the plant is defined - this is identified as DERIVATIVE CONTIN. First the name for the step size is defined (MAXTC) and set to zero to indicate that it is calculated elsewhere in the model. The frequency bounds, WMN and WMX, are specified together with the amplitude of the forcing function (XMAG) and the settling time (TSETTL=2.0). Since the plant is linear the value of the XMAG has no effect but for a real non-linear plant this value should be chosen to match the plant capability. The actual forcing function X is obtained from:

$$
\mathrm{X}=\mathrm{XMAG}^{*} \operatorname{SIN}\left(\mathrm{~W}^{*} \mathrm{~T}+\mathrm{FI}\right)
$$

where FI is a parameter used to ensure continuity of X , when the frequency W is changed. The model is defined by the transfer operator, TRAN, and numerator and denominator polynomials. The numerator coefficients are 0.5 and 1.0 ; the denominator coefficients $0.03,0.1$ and 1.0 . In addition we specify a maximum step size (MAXTZ) of 0.050 sec chosen conservatively from the plant roots of $(-1.5 \pm \mathrm{j} 6)$ and a minimum divisor (NSTPMN) of the period. This really says that no matter how fast the drive sine wave is, use a calculation interval of at least a tenth (NSTPMN=10) of the period. As the frequency get slower and slower, don't allow the step size to rise above MAXTZ $(=0.050)$. This is performed by the line in the DISCRETE section above which calculates MAXTC or:

## MAXTC $=$ AMIN1 (PERIOD/NSTPMN, MAXTZ)

The output ( Y ) of the plant is obtained using the TRAN operator which can be used to represent a general polynomial transfer function i.e.

$$
\mathrm{Y}=\operatorname{TRAN}(1,2, \mathrm{~A}, \mathrm{~B}, \mathrm{X})
$$

and then the in-phase $(\mathrm{P})$ and quadrature $(\mathrm{Q})$ components are obtained by multiplying the output $(\mathrm{Y})$ by $\operatorname{Sin}\left(\mathrm{W}^{*} \mathrm{~T}+\mathrm{FI}\right)$ and $\operatorname{Cos}\left(\mathrm{W}^{*} \mathrm{~T}+\mathrm{FI}\right)$ respectively and integrating.

Returning to the DISCRETE code of Figure A9-1, the first calculation is to obtain the change in the in-phase and quadrature components since the last cycle i.e.

$$
\begin{aligned}
& \mathrm{DLP}=\mathrm{P}-\mathrm{PP} \\
& \mathrm{DLQ}=\mathrm{Q}-\mathrm{QP}
\end{aligned}
$$

Since PP and QP are initialized to large numbers, the first time the difference will be large.
The termination condition (TERMT) is inserted in case a frequency is chosen such that the attenuation is too great for the machine precision. For 32 bit computers, EPM shold probably be set to 0.0001 which will still give room for nearly 80 dB attenuation. If the change from cycle to cycle in P and Q is less than the machine precision, the increments will be zero and the logarithm will fail further on in calculating the gain (GDBN). Once the increment has been calculated, the current values of $P$ and $Q$ are saved to become the previous values (PP and QP) next time. The phase and gain over the last cycle are calculated from

$$
\begin{aligned}
& \operatorname{PHASE}=\operatorname{ATAN}[\Delta \mathrm{Q} / \Delta \mathrm{P}] \\
& \operatorname{GAIN}=10.0^{*} \operatorname{LOG} 10\left[\left(\Delta \mathrm{P}^{2}+\Delta \mathrm{Q}^{2}\right)(\mathrm{W} / \pi)^{2}\right]
\end{aligned}
$$

If the new phase differs from the last phase by too much (nominally 0.1 degrees) then the data save operation is skipped. Similarly if a settling time (TSETTL) has not passed, another cycle is taken. If both these tests are passed then the phase, gain and frequency are transferred to separately named variables PDG, GDB and WFR which will be used for plotting. Next the frequency $W$ is decreased geometrically and the phase (FI) of the forcing function adjusted to give continuity in the output. This helps ensure a shorter settling time between frequency changes. The previous phase is set to a large number so that the integration over the first cycle will be rejected and lastly the data logging routine, LOG, is called in order to force an output and data recording action at this point. Recall that the communication interval CINT was set to 1000.0 in the beginning of the model definition with the intent that this will produce no output beyond the first time-equal-zero point. All the other output will be obtained every time LOG is called indicating a new frequency point is being recorded.

For all cases we then make the previous phase (PDGP) equal to the new phase (PDGN), ready for next time, recalculate the PERIOD and a new step size for the continuous section. These last two calculations only need to be done when the frequency changes but are put here in order to handle the initialization problem rather than repeat the code in the INITIAL section.

The output stream that results in exercising the model is shown in Figures A9-3. Note the frequency multiplier KW was changed to 0.9 from the nominal 0.8 in order to increase the point density to 23 per decade so producing smoother plots. The plot was modified to appear on both normal line plot (CALPLT=.T.) as well as the default printer plot using a logarithmic x -axis scale. With this logarithmic scale a minimum must be specified to avoid the rounding to zero which is expressed symbolically as the contents of WMN ( $=1.0$ $\mathrm{rad} / \mathrm{sec}$ ) i.e.

## PLOT 'XLOG, 'XLO’ = WMN, PDG, GDB

The resulting pictures are shown in Figures A9-4 and A9-5.
These plots were made in one simulation run stopping every so often to change the drive frequency to a new value. Examination of the last value of time showed that it needed 242 seconds of simulated time to complete the sweep, which explains why it is usually considered an expensive picture to obtain. Individual transient studies will be over in three or four seconds or so whereas this run needs effectively sixty transient runs.

TABLE A9-1. Comparison of Measured and Theoretical Gain (dB) and Phase (degree)

$\mathbf{W}$	GDBM	GDBT	PDGM	PDGT
90.00	-14.612	-14.617	-88.64	-89.14
31.38	-5.230	-5.232	-87.47	-87.37
10.94	5.916	+5.920	-77.47	-77.47
3.090	7.484	+7.484	+33.67	+33.67
1.000	1.188	+1.188	+20.68	+20.68

From an independent run with a listing of time, T , along with the frequency, phase and gain, it can be shown that the high frequency points can be obtained quickly. In fact it takes 35 seconds to sweep the frequency from 100 down to 10 radian/second and a further 186 seconds to go from 10 down to 1 radian/ second. The reason for this is that we must wait at least one complete cycle and at 1 radian/second each measurement is taking over six seconds.

One caveat is in order in running this type of program and that is errors caused by non-steady-state operating conditions. At low attenuations, the drive signal dominates in the P and Q integrators but when the plant attenuation becomes high, the residual motion excited by the start up transient or frequency switch can become important. An idea of the magnitude of the effect can be obtained by looking at the irregularity in the phase plot when the frequency is over 20 radians/second. The plot should theoretically be smooth and monatonic negative as the phase asymtotically approaches -90 degrees. In the output stream of Figure A9-3, the phase at 72.9 radians/second is given as -87.8 degrees but at the next frequency point of 65.6 it has gone back to -89.3. This change of 1.5 degrees in the wrong direction must be an artifact of the measurement implementation.

We have done an empirical study of this phenomenon and found that better results are obtained with heavier damped systems (shorter settling times) and certainly when the attenuation is relatively small. If problems occur, experimentation with the phase change error parameter (EPDG) can help or else add a fixed settling time after each frequency change so that the system has time to get to a steady state before the measurement is taken. As a test of the accuracy, we evaluated the theoretical gain and phase at five selected frequency points and the comparison is listed in Table A9-1. Note the phase error of half a degree at high frequencies. A second run is made with the allowable phase error EPDG changed to 0.01 (from 0.1 ). This forced slightly longer settling times so that the overall sweep time was 269 seconds (up from 242 seconds) and the measured phase at a frequency of 90 radians/second was now -89.07 degrees (theoretical is -89.14 degrees). The increased settling time was seen in that the measurement at $\mathrm{W}=100$ was available at 2.51 sec (was 2.01) and that at $\mathrm{W}=90$ was produced at 3.84 seconds (was 2.29). At lower frequencies, the tighter constraint had little effect since settling has occurred within the first cycle anyway.

## *********AIVANCEI CONTINUOUS STMULATION LANGUAGE********* ACSL TRANSIATOF UERGION 1 LEVEL GF 81/07/20. 13. 36.51. FAGE 1

 FROGRAM FHASE ANI GATN```
* ..............................................COMFUTE FHASE ANI GATN OF A GTVEN *
* TFANSFEF FUNCTTON GY INTEGRATTNG OUEF A COMPLETE CYCLE:
" CONTINUE TO INTEGRATE UNTTL PHASE CHANGE FFOM CYClE TO CYClE "
" IS LESG THAN GOME FRESET MINTMUM *
CINTERVAL CTNT =1000.0
NSTEFS NSTF=1
CONSTANT FIMN = 1.OE-30, FMMX = 1.OESO
```

TNTTTAL.

ENI क" OF INITIAL "
MEFIUATIUE IISCRETE

Figure A9-1. Model Definition Listing for Phase and Gain Study

```
    *********ADUANCEM CONTINUOUS STMULATTON LANGUAGE*********
ACSL TFANSLATOR VERSTON 1 LEVEL GF 81/07/RO. 13.36.51. FAGE 2
    TEFMT(W . LEE. MMN)
```



```
    FWG =% FOGN
    GME =GMEN
    WFR =W
```



```
    W = AMAXI(WMN, KW*W)
    "....................................................CALCUL...NTE NEW FHASE FOR CONTTNUTTY *
    " OF FORCTNG FUNCTION AT NEW FREQUENCY *
    FI =FI + T*(WFR ... W)
    u ..............................................NSSURE FREUIOUS FHASE SET TO FORCE AT *
    " LEEST TWO CYCLESG "
    FIIGN =: FMMX
    | .............................................................FORCE A MATA LOGGTNG ACTTON "
    CALL LOG
GKIFI. .CONTTNUE
    " ...........................................................FESET FFEUTOUS PHASE FOR NEXT TTME ,
    FRGF = FOGN
    "........................................................NECALCULATE NEW FEETOM ANW STEF STZE &
    FERTON =% 2.O*FT/W
    MAXTC = AMINI(FEFTOL/NSTFMN, MAXTXZ)
ENO &" OF FFOCEMURAL
    TEFMT(T .GT. TSTF)
ENO &" OF ORSCRETE *
MERTUATTUE CONTIN
```

```
MAXTERVAL. MAXTC ==0.0
```

MAXTERVAL. MAXTC ==0.0
CONSTANT WMN = 1.0 , WMX == 100.0
CONSTANT WMN = 1.0 , WMX == 100.0
CONSTANT XMAG =: 1.0 , TSETHI == 2.0
CONSTANT XMAG =: 1.0 , TSETHI == 2.0
X = XMAG*STN(W*T + FT)
X = XMAG*STN(W*T + FT)
|...NEFTNE MOMEL....
|...NEFTNE MOMEL....
FEAL. A(2), B(3)
FEAL. A(2), B(3)
CONSTANT A =0.5, 1.0 , B=0.03, 0.1. 1.0
CONSTANT A =0.5, 1.0 , B=0.03, 0.1. 1.0
CONSTANT MAXTXZ ==0.050, NSTFMN == 10.0
CONSTANT MAXTXZ ==0.050, NSTFMN == 10.0
Y == TRAN(1, 2, A, E, X)
Y == TRAN(1, 2, A, E, X)
*...NTEGRATE FOR IN..FHASE ANN QUAMRATURE COM"
*...NTEGRATE FOR IN..FHASE ANN QUAMRATURE COM"
F == INTEG(Y*GTN(W*T + FT), 0.0)
F == INTEG(Y*GTN(W*T + FT), 0.0)
Q =INTEG(Y*COS(W*T + FT). 0.0)
Q =INTEG(Y*COS(W*T + FT). 0.0)
ENM \&" OF CONTTNUOUS SECTTON *
ENA s" OF FROGRAM *

```

Figure A9-2. Model Definition Listing for Phase and Gain Study
```

S TTTLE="FHASE ANI GAIN OF A TRANGFEF FUNCTION"
SET TCWFFN=72 \$: FORCE OUTFUT WTOTH TO FTT ON FAGE "
OUTFUT WFR,GME, FMG
FREFAF WFF,GME,FHG,T, ILFF, IILQ
GET KW=0.9
START

```

WFR 0 .
WFR 100.000000
WFR 90.0000000
WFF 81.0000000
WFR 72.9000000
WFF 65.6100000
WFF 59.0490000
WFR 53.1441000
WFR 47.8296900
WFR 43.0467210
WFR 38.7420489
WFF 34.8678440
WFF 31.3810596
WFF 28.2429536
WFF 25.4186583
WFR 22.8767925
WFR 20.5891132
WFR 18.5302019
WFR 16.6771817
WFR 15.0094635
WFR 13.5085172
WFR 12. 1576655
WFR 10.9418989
WFF 9.84770902
WFF 8.86293812
WFF 7.97664431
WFR 7.17897988
WFR 6.46108189
WFR 5.81497370
WFR 5.23347633
WFR 4.71012870
WFR 4.23911583
WFR 3. 81520424
WFF 3.43368382
WFF 3.09031544
WFR 2.78128389
WFR 2.50315550
WFR 2. 25283995
WFF 2.02755596
WFR 1.82480036
WFR 1.64232033
WFF 1.47808829
WFR 1. 33027946
WFR 1.19725152
WFR 1. 07752637
WFR 1.00000000
WFR 1.00000000

GHE 0.
GHE-15.5339930
GחB-14.6119512
GHE-13.6880842
6nB-12.7655032
\(6 \mathrm{mb}-11.8405518\)
GNB-10.9121528
cne-9.97898569
\(0 \mathrm{OB}-9.04066204\)
6nE-8. 09906553
GHE-7. 15376933
G08.-6. 19762809
GRE-5.23020223
6018-4. 25508961
GOB-3. 25076861
GHE-2.25563316
GHE-1.2132. 2761
GחB-0. 15270019
GNE 0.98163307
GME 2.08723526
GIE 3. 29087721
GIB 4.56177919
GNE 5.91640044
GIE 7.39443458
GHE 8.95048332
GIE 10.6294689
GIN 12. 3176694
GLE 13. 7611058
GחB 14. 4616674
GNE 14.0973675
GHE 12.9260856
GLB 11. 4640791
GLE 10.0113195
GIB 8.675071 .97
GHE 7.48419450
GNE 6. 43282308
GNE 5.50769463
GNE 4.69641667
GOE 3.98711998
GNE 3.36962092
GIE 2. 83474951
GNE 2. 374111.94
GHE 1. 97983743
GIE 1.64446882
GOB 1. 36094389
GIIE 1. 18775786
GNE 1. 18775786

Fug 0.
FOG-89. 4828190 Fug 88.6436703 FWG-88. 1866592 FHG 87.8266695 FrGe. 89. 3292461. FWG-88.9555216 FWG-97. 8230158 FWG-88.7937635 FOG-88. 0034209 FWG-86. 7765993 PUG-87. 4969789 FDG-87. 4719048 FWG-86. 8380793 FNG 87.2079492 PWG-85.9499742 FOG FOG-94. 8512870 POG-84. 6636226 PUG-82. 9781036 FHG-81. 6269574 FOG-79. 8609486 FUG-77.4747302 FHG-74. 1437063 FIG -69.5784310 FUG -62.7842192 PWG-52. 8597177 FWG-38. 5498530 FHG-20. 4125257 FDG-2. 11206446 FHG 12. 3714693 FWG 22. 1337918 FOG 28. 2251367 PWG 31.8013975 FHG 33.6716777 FOG 34.3740970 FOG 34.2452681 FOG 33.5226479 FHG 32.3719701 Frig 30.9191840 PHG 29. 2622764 FWG 27. 4796699 FOG 25.6343745 FWG 23.7766047 FDG 21. 9455378 FHG 20.6805527 FHG 20.6805527
\(S\) CALPLT=. T., GRWCFL=. \(T\). PLOT "XLOG", "XLO"=WMN, FDG, GGE

Figure A9-3. Output Stream from Phase and Gain Model


Figure A9-4. Plot of Phase and Gain against Frequency in Radians/second


Figure A9-5. Line Plot of Phase and Gain against Frequency in Radians/second

\section*{10. MISSILE AIRFRAME MODEL}

This example was chosen to show the use of vector operators, vector integration and to demonstrate how other standard FORTRAN subroutines can be incorporated into a simulation model. It is the six degree-offreedom model of an uncontrolled ground-to-air missile with the simulation configured to produce transient responses to control surface deflections. For use in a missile system evaluation, the model would have to be extended to include a target, target sensor or seeker, guidance law and autopilot as well as expand the aerodynamic and motor descriptions. This model as it stands is complicated enough and any extensions describing actual hardware systems usually bear the burden of security classification.

In order to develop the missile model, we must define axis systems and the angles that transform between different frames. The axis system used in this model has the second or y-axis pointing up, and is found commonly in models developed for ground launched missiles (HAWK, PATRIOT). The other major school of thought orients the axes with third or z-axis pointing down, and this tends to be used by missile engineers who have graduated from airplane development. Models can be built in any system of axes, but for consistency, all frames in the simulation should become parallel when the orientation angles become zero.

For this example model, the reference or E frame has the E1 axis horizontal and down range, E2 or vertical (up) and E3 is crossrange, horizontal, out to the right to form a right hand set. The origin of the frame is normally on the ground but since we don't compensate the atmospheric density table look-up for ground altitude, in this case the origin is assumed to sit at sea level. All velocity and range vectors are normally expressed as components in this frame unless deliberately specified otherwise. The missile frame, shown in Figures A10-1 and A10-2 has M1 out of the nose along the center line, M2 along fin one (normally viewed vertically or up) and M3 out to the right along fin two. The two frames are connected by an euler sequence of rotations starting at the ground reference or E frame. \(\psi_{\mathrm{M}}\) (SIM) to the left about \(\mathrm{E} 2, \theta_{\mathrm{M}}\) (THM) up about the new three axis E3' followed by \(\phi_{\mathrm{M}}\) (FIM) about the new one axis which should now be M1 to align the two and three axes with M2 and M3. The control fin deflections are shown in Figure A10-1 in their positive sense - trailing edge right for fins one and three, trailing edge down for fins two and four.

Units adopted in the model are derived from the slug as the unit of mass, the foot as the unit of length and the second as the unit of time. Recently the US Department of Defense has begun to require metric sizing with models developed using kilogram, meter, second as the fundamental units. Most of the existing missiles however are sized in English units.

In developing the simulation model it is important that all units be consistent and fundamental, since over half of all simulation errors can be said to be the fault of unit misconceptions, either in the equations or in the constant values. It is strongly recommended that non-basic units such as degrees or gees be eliminated from the model equations (use radians for angles and feet/second squared or meters/second squared for acceleration): Variables can be transformed in the DYNAMIC section for output into auxiliary units but keep the internal scaling within the model consistent.

The simulation model definition code is listed in Figures A10-3 through A10-6. In the INITIAL section, the integration algorithm is specified as second order, fixed step (IALG \(=4\) ); the step size is 10 msec (MAXT \(=0.010\) ); the communication interval divisor is unity ( \(\mathrm{NSTP}=1\) ) and a communication interval of 20 msec is defined. A subroutine INIT(A) is called to pass the current stability derivative matrix, A , to the aerodynamic table generators. Normally the aerodynamic tables would be real data stored in the external subroutines and the INITIAL section would be concerned with launch angles, taking into account the position and velocity of a target.


Figure A10-1. Fin Deflection Direction and Missile or M Frame Definition


Figure A10-2. M Frame in Missile Showing Position Pitch Angle of Attack (Wind from Above)

\section*{*********AIIUANCEM CONTTNUOUS GTMULATION LANGUAGF********* \\ ACSI. TFANSI.ATOR UERSTON I LEVEL GF 8:1/O8/II. 17.46.5. FAGE I}

FROGRAM -- MISSTLE ATRFRAME MOMEL
".......................................................... GENERTC MTSSTLE ATFFRAME MOOFL IS "
" IEVEI OPEO UGTNG UECTORG FOR ALIL THREE UTMENSTONAL QUANTITTEG. *
" THIS MODFL WTLI RESFONG TO FTN WEFLECTIONG SO FEFRESENTTNG THE: "
" DFEN LOOF ATRFRAME RESFONGE ANG NEEGS A GEEKER, AUTOFTLOT, "
"ACTUATOR, MOTOR ANO TARGET MOLULE IN ORRER TO EVALUATE GUTMANCE" " EFFECTIUENESS *

INITIAL
```

ALGORTTHM TALG = 4
NSTEFS NSTF=1
CTNTEFVAL. CTNT =0.020

* ...FASS STAGTLTTY DERTUATIUE MATRTX TO THE *
" COEFFTCTENT GENERATTON GURROUTTNE *
CALL INIT(A)

```

ENO क" OF TNTTTAL.. "
GYNAMIC
GEEIUATIUE


Figure A10-3. Listing of Model Definition for Missile Airframe Simulation
```

 *********ADUANCEG CONTTNUOUS GTMUIATTON LANGUAGE*********
 ACSI. TRANSLATOR UERGTON 1 LEUEL GF 8I/OB/I% 17.4G.5%. FAGE ?

```

```

 * ...MAGNITURE OF MTSSTLE VELOCTTY *
 MUM = SQRT(LIOT(UM, UM))
    ```

```

 CALL MMK(ME = FTM, 1, THM, 3, STM, 2)
 * ...-...FOTATE UELOCTTY TO MISSTLE FRAME *
 CALL UECROT(UMM = UM, ME)

```

```

 ALL2 =- ATAN(--UMM(3)/VMM(1))
 ALB = ATAN(UMM(2)/VMM(1))

```

```

 MACH= =MUM/VS(FM(%))
 Q = 0.5*FO*MUM**2
 * .-...CALCULATE DAMFTNG RERTUATTUES*
FROCETURAL (CD == MUM, MACH, WM)
CH(I) = = 5*CLP(MACH)*E*WM(1)/MUM
CCUU = 0.5*CMQ(MACH)*CEAF/MUM
cm(2) = CCUU*um(2)
CO(3) = CCUU*WM(3)
ENO \$" OF PROCERURAI.. "
 * ...GET MOMENTS ANM FORCE AERO COEFFICTENTS *
" AND CORRECT LATERAI.. MOMENTS FOR SHIFT TN CENTRE OF GRAUTTY *
" POSITTON "
FROCEMURAL, (C = AL,2, AL.3, ML, MACH, MXCO, UXFEFF)
CALLL COEFF(C = ALZ, ALZ, [II, MACH)
C(2) = C(2) -.. (MXCG -.. MXREF)*C(6)/CHAR
C(3) =C(3) + (IXCCO -- KXREF)*C(5)/CEAF
ENN क" OF FROCEDURAL."

```

```

 EFFECTS ANO ROTATTON FATE MERTUATIUES *
    ```

Figure A10-4. Listing of Model Definition for Missile Airframe Simulation
```

 *********AIUANCEII CONTINUOUS SIMULATTON LANGUAOE*********
 ACSI. TRANSL..ATOR UERSION 1 LEUEI. GF 81/08/11. 17.46.5!. FAGE
3
FROCEDUURAL(NM, WMII = (A, C, CLI, WM, MASS, IXX, TYY)
NM(1) = (Q*S*C(4) + THFUST)/MASS
NM(2) = Q*S*C(5)/MASS
NM(3) = Q*S*C(6)/MASS
WMOI(1) = Q*S*E*(C(1) + C口(1))/IXX
WMII(2) = Q*S*CAAR*(C(2) + CI(2))/TYY + WM(1)*WM(3)
WMI(3) = Q*S*CEAR*(C(3) + CM(3))/TYY ... WM(1)*WM(2)
ENI \$" OF FROCERIURAL. "

```

```

 CALL TNUROT (NME = NM, ME)
    ```

```

 EAFTH FFAME ... NEEIG GRAUITY AOMING IN *
 FROCEIULIAL(UMII = NME, G)
UMM(t) = NME(1)
UMII(2) = NME(2)-E
UMD(3) = NME(3)
ENM \$" OF FROCERIUFAL."

```

```

 SIMN = (WM(2)*COS(FIM) ...WM(3)*STN(FIM))/COS(THM)
 " .-...NNTEGRATE FOR ALIL EULER ANGLES NOTE USE"
 OF UECTOR TNTEGFATOR FOR STNGLE ELEMENT "
 SIM =% TNTUC(STMO, STMIC)
 THM = INT:G(WM(2)*STN(FTM) + WM(3)*COS(FTM), THMTC)
 FIM = TNTEG(WM(I) -- STMI*GTN(THM), FIMTC)
 #..UECTOR INTEGRATE FOR ROTATIONAI. VELOCITY "
 WM = INTUC(WMG, WMIC)
 n ..TRANSI_ATIONAL UELOCTTY &
 UM = INTUC(UMG, UMTC)
 " ...TRANSLATIONAL.. FOSTTION ... NOTE THE MERTU... *
 " ATTUE VECTOR CANNOT BE A GTATE VECTOF (UELOCTTY) AS WELIL "
 CALIL XFEFE(FMM = UM, 3)
 FMM = INTUC(RMM, RMTC)
    ```

```

 "...GMFLIE UERSTON WITH ZERO THRUST SFFCTF... "
 " YING A BURNT OF GLTRE CONLITEON "
CONSTANT THFUST = 0.0 , MASS = 8.77
CONSTANT IXX = 8.77 , TYY = 361.8
CONSTANT MXCO = 10.2
ENA \$" OF RERTVATTUE "
" .. STOF ON EIAFSEM TTME -
CONSTANT TSTF $=1.99$
TEFMT(T. GE. TSTF)
ENQ \ddagger " OF OYNAMTC "
FNM क" OF FROERAM *

```

Figure A10-5. Listing of Model Definition for Missile Airframe Simulation


Figure A10-6. Listing of FORTRAN Routines Included in Model Definition of Missile Airframe Simulation

The DERIVATIVE section is split up into logically connected code sequences or modules that help in documenting the simulation. Modules assist in checkout since individual code sequences can be removed and assigned to individuals for verification, so splitting a simulation development task among a team. We have used Control Data's UPDATE utility to maintain modules as common decks for easy access and modification. The simulation model is then a simple DECK containing ACSL structure statements and CALLs to the appropriate module.

In the missile airframe module, vector arrays are specified, then constants followed by the code to compute the derivatives of the state variables. For this simplified case, the aerodynamic characteristics are determined by values in the five by six matrix A that contains the stability derivative coefficients. Function tables are defined for roll (CLP) and pitch/yaw (CMQ) damping as functions of Mach Number. The following discussion now references the code section that starts in the middle of Figure A10-4. First the missile velocity magnitude is obtained from:
\[
\mathrm{MVM}=\mathrm{SQRT}(\mathrm{DOT}(\mathrm{VM}, \mathrm{VM}))
\]
where VM is a three component vector velocity in the E frame. DOT is an external function that evaluates the dot product of two three component vectors. The next step is to form the direction cosine matrix ME, which is a three by three matrix that transforms vectors expressed in the E frame to components in the M frame. It can be calculated knowing the three angles \(\psi_{\mathrm{M}}, \theta_{\mathrm{M}}\) and \(\phi_{\mathrm{M}}\). A subroutine is available* MMK (matrix make) which is called so:

CALL MMK(A, NA, B, NB, C, NC, M)
which makes up a direction cosine matrix M that will transform between two axis systems that are connected by a rotation A about the NA axis, B about the NB axis and C about the NC axis. In the ACSL code the subroutine call is expressed

CALL MMK(ME = FIM, 1, THM, 3, SIM, 2)
which tells the sorter that ME is an output of the routine. For the FORTRAN program produced the translator will change the order of the arguments so that the outputs are on the right and ME will coincide with M of the above call.

The next step is to use this direction cosine matrix to obtain components of the missile velocity in the M frame from
\[
\underline{\mathrm{VM}}^{(\mathrm{M})}=[\mathrm{ME}] \underline{\mathrm{VM}}^{(\mathrm{E})}
\]

The subroutine VECROT does this rotation and is called so:
CALL VECROT (VMM \(=\mathrm{VM}, \mathrm{ME})\)
where again the order of the arguments will be inverted by the translator so that the actual FORTRAN call will be

\section*{CALL VECROT(VM, ME, VMM).}

A corresponding subroutine INVROT is used later on that performs the inverse rotation
\[
\underline{\mathrm{V}_{1}}=[\mathrm{ME}]^{-1} \underline{\mathrm{~V} 2}
\]
or
CALL INVROT (V1 = V2, ME \()\)

\footnotetext{
* The three dimensional geometry subroutines are provided in an optional library ULIB.
}

Lateral and vertical angles-of-attack are next calculated. The lateral angle-of-attack \(\alpha_{2}(=\mathrm{AL} 2)\) is the angle between M1 and the projection of the velocity vector on to the M1-M3 plane and is positive for a positive rotation from M1 to the wind vector about M2 (wind from left). Vertical angle-of-attack \(\alpha_{3}\) (=AL3) is the angle between M1 and the projection of the velocity vector on the M1-M2 plane and is positive for a positive rotation from M1 to the wind vector about M3 (wind from above). See Figure A10-2.
i.e., \(\begin{aligned} \alpha_{2} & =\tan ^{-1}\left[\frac{-\mathrm{VM}^{(\mathrm{M} 3)}}{\mathrm{VM}^{(\mathrm{M} 1)}}\right] \mathrm{rad} \\ \alpha_{3} & =\tan ^{-1}\left[\frac{\mathrm{VM}^{(\mathrm{M} 2)}}{\mathrm{VM}^{(\mathrm{M} 1)}}\right] \mathrm{rad}\end{aligned}\)

Atmospheric density ( \(\rho=\mathrm{RO}\) ) comes from the environment module calculated by
\[
\rho=\rho_{\mathrm{O}} \exp [\operatorname{LROF}(\mathrm{~h})] \text { slugs } / \mathrm{ft}^{3}
\]

Height \(h\) is the component of missile range along E2 or \(\mathrm{RM}(2)\), and the log density function is used to reduce the dynamic range of the function and so make the straight line interpolation over 10 kft increments more accurate. The airframe module computes dynamic pressure from
\[
\mathrm{q}=\frac{\rho \mathrm{V}^{2}}{2} \mathrm{lb} / \mathrm{ft}^{2}
\]

Mach number is obtained from the velocity of sound - function of altitude - and missile velocity so
\[
\mathrm{MACH}=\frac{\mathrm{MVM}}{\mathrm{VS}(\mathrm{~h})}
\]

Next dimensionless damping coefficients are obtained using normalized spin rates. The missile spin rate is expressed as a three component vector WM giving the rates as components resolved along the M1, M2 and M3 axes. The damping coefficient components of the total moment coefficients are now given ( \(\mathrm{P}, \mathrm{Q}\) and R are replaced in the model by \(\mathrm{WM}(1), \mathrm{WM}(2)\) and \(\mathrm{WM}(3)\) respectively):
\[
\begin{aligned}
& \mathrm{CD}(1)=\mathrm{C}_{\ell \mathrm{P}^{(\mathrm{MACH})}}\left(\frac{\mathrm{Pb}}{2 \mathrm{~V}}\right) \\
& \mathrm{CD}(2)=\mathrm{C}_{\mathrm{mQ}}{ }^{(\mathrm{MACH})}\left(\frac{\mathrm{Qc}}{2 \mathrm{~V}}\right) \\
& \mathrm{CD}(3)=\mathrm{C}_{\mathrm{mq}}(\mathrm{MACH}) \quad\left(\frac{\mathrm{Rc}}{2 \mathrm{~V}}\right)
\end{aligned}
\]

From symmetry, the pitch and yaw damping derivatives are assumed identical so \(\mathrm{C}_{\mathrm{m} \ell}\) is used instead of \(\mathrm{C}_{\mathrm{nR}}\). Note since the calculation is of array elements the calculations are embedded in a PROCEDURAL block that lets the system know that all values of the array CD are calculated within the block.

Next the aerodynamic coefficients - three moment and three force - are calculated using a subroutine. They can be evaluated as functions of the two angles-of-attack, \(\alpha_{2}\) and \(\alpha_{3}\), four fin deflections \(\delta_{1} \ldots \delta_{4}\) and Mach Number, seven variables in all. One of the objects of this exercise was to study the effect of different techniques in evaluating aerodynamic coefficients from full nonlinear tables of data to simple linear stability derivatives. For the case shown simple linear stability derivatives were used embedded in the (A) matrix passed to the COEFF subroutine in the INITIAL section (CALL INIT . . .). This (A) matrix is a five by six array having components

The effective roll, yaw and pitch fin control deflections \(\delta \mathrm{a}, \delta \mathrm{y}\) and \(\delta \mathrm{z}\) are obtained from
\[
\begin{aligned}
& \delta_{\mathrm{a}}=0.25\left(-\delta_{1}-\delta_{2}+\delta_{3}+\delta_{4}\right) \\
& \delta_{\mathrm{y}}=0.5\left(\delta_{1}+\delta_{3}\right) \\
& \delta_{3}=0.5\left(\delta_{2}+\delta_{4}\right)
\end{aligned}
\]

Figure A10-6 shows the implementation of subroutines COEFF and INIT to return the six component vector \(\underline{C}\) having elements.
\[
\begin{aligned}
& \mathrm{C}(1) \text { - rolling moment coefficient, about M1 } \\
& \mathrm{C}(2) \text { - moment coefficient about M2 } \\
& \mathrm{C}(3) \text { - moment coefficient about M3 } \\
& \mathrm{C}(4) \text { - force coefficient along M1 } \\
& \mathrm{C}(5) \text { - force coefficient along M2 } \\
& \mathrm{C}(6) \text { - force coefficient along M3 }
\end{aligned}
\]

Now the aerodynamic acceleration can be obtained and stored as components of the vector \(\mathrm{n}_{\mathrm{M}}\). Aerodynamic acceleration is that produced by aerodynamic forces and excludes gravity. This quantity is that which would be read by any on-board accelerometers.
\[
\left.\begin{array}{l}
\mathrm{n}_{\mathrm{M} 1}=\left(\mathrm{qS} \mathrm{C}_{\mathrm{X}}+\mathrm{THRUST}\right) / \mathrm{MASS} \\
\mathrm{n}_{\mathrm{M} 2}=\mathrm{q} \mathrm{~S} \mathrm{C} \\
\mathrm{Y} / \mathrm{MASS} \\
\mathrm{n}_{\mathrm{M} 3}=\mathrm{q} \mathrm{~S} \mathrm{C} \\
\mathrm{Z}
\end{array}\right) \text { MASS }
\]

The rate accelerations have gyroscopic terms in the equations when applied to a normal spinning rigid body.
Equations of motion of a conventional aircraft have the form (neglecting \(\mathrm{I}_{\mathrm{XZ}}\) ).
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{X}} \dot{\mathrm{P}}=\mathrm{qSb} \mathrm{C}_{\ell}+\left(\mathrm{I}_{\mathrm{Y}}-\mathrm{I}_{\mathrm{Z}}\right) \mathrm{QR} \\
& \mathrm{I}_{\mathrm{Y}} \dot{\mathrm{Q}}=\mathrm{q} \mathrm{Sc}_{\mathrm{c}} \mathrm{C}_{\mathrm{m}}+\left(\mathrm{I}_{\mathrm{Z}}-\mathrm{I}_{\mathrm{X}}\right) \mathrm{RP}
\end{aligned}
\]

Now for a missile having quadrant symmetry, the lateral moments of inertia are equal i.e.,
\[
\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{Z}}
\]
and in addition the long thin shape assures that the roll moment of inertia is small i.e.,
\[
\mathrm{I}_{\mathrm{X}} \ll \mathrm{I}_{\mathrm{Y}}
\]

Using this information the equations become
\[
\begin{aligned}
& \mathrm{I}_{\mathrm{X}} \dot{\mathrm{P}}=\mathrm{qSb}\left[\mathrm{C}_{\ell}+\mathrm{C}_{\ell \mathrm{P}}\left(\frac{\mathrm{~Pb}}{2 \mathrm{~V}}\right)\right] \\
& \mathrm{I}_{\mathrm{Y}} \dot{\mathrm{Q}}=\mathrm{qS} \overline{\mathrm{c}}\left[\mathrm{C}_{\mathrm{m}}+\mathrm{C}_{\mathrm{mQ}}\left(\frac{\mathrm{Q} \overline{\mathrm{c}}}{2 \mathrm{~V}}\right)\right]+\mathrm{I}_{\mathrm{Y}} \mathrm{PR} \\
& \mathrm{I}_{\mathrm{Y}} \dot{\mathrm{R}}=\mathrm{qS} \bar{c}\left[\mathrm{C}_{\mathrm{n}}+\mathrm{C}_{\mathrm{mQ}}\left(\frac{\mathrm{R} \overline{\mathrm{c}}}{2 \mathrm{~V}}\right)\right]-\mathrm{I}_{\mathrm{Y}} \mathrm{PQ}
\end{aligned}
\]

The translational accelerations are rotated from the missile frame (M) to the ground or reference frame (E) using subroutine INVROT which accomplishes
\[
\underline{N M}^{(E)}=[\mathbf{M E}]^{-1} \underline{N M}^{(M)}
\]

The velocity derivatives are obtained by including the acceleration due to gravity
\[
\begin{aligned}
\dot{\mathrm{V}}_{\mathrm{M}}{ }^{(\mathrm{E} 1)} & =\mathrm{N}_{\mathrm{M}}{ }^{(\mathrm{E} 1)} \\
\dot{\mathrm{V}}_{\mathrm{M}}{ }^{(\mathrm{E} 2)} & =\mathrm{N}_{\mathrm{M}}{ }^{(\mathrm{E} 2)}-\mathrm{G} \\
\dot{\mathrm{~V}}_{\mathrm{M}}{ }^{(\mathrm{E} 3)} & =\mathrm{N}_{\mathrm{M}}{ }^{(\mathrm{E} 3)}
\end{aligned}
\]

The angular rate derivative \(\dot{\psi}_{M}\) is obtained from the standard gimbal equation
\[
\dot{\psi}_{\mathrm{M}}=\left(\mathrm{Q} \operatorname{Cos} \phi_{\mathrm{M}}-\mathrm{R} \operatorname{Sin} \phi_{\mathrm{M}}\right) / \operatorname{Cos} \theta_{\mathrm{M}}
\]
and now the three angles are obtained by integrating the respective rates.
\[
\begin{aligned}
& \psi_{\mathrm{M}}=\operatorname{INTVC}\left(\dot{\psi}_{\mathrm{M}}, \psi_{\mathrm{MIC}}\right) \\
& \theta_{\mathrm{M}}=\operatorname{INTEG}\left(\mathrm{Q} \sin \phi_{\mathrm{M}}+\mathrm{R} \operatorname{Cos} \phi_{\mathrm{M}}, \theta_{\mathrm{MIC}}\right) \\
& \phi_{\mathrm{M}}=\operatorname{INTEG}\left(\mathrm{P}-\dot{\psi}_{\mathrm{M}} \operatorname{Sin} \theta_{\mathrm{M}}, \phi_{\mathrm{MIC}}\right)
\end{aligned}
\]

Note since the derivative is an expression, the operator INTEG must be used for \(\theta_{M}\) and \(\phi_{\mathrm{M}}\). Vector integration for \(\psi_{\mathrm{M}}\) works since the arguments can be considered as one component vectors. An extra assignment statement is saved since the derivative must be a unique name. The missile angular spin vector and velocity vector are integrated from the respective accelerations by the two lines:
\[
\begin{aligned}
& \mathrm{WM}=\mathrm{INTVC}(\mathrm{WMD}, \mathrm{WMIC}) \\
& \mathrm{VM}=\mathrm{INTVC}(\mathrm{VMD}, \mathrm{VMIC})
\end{aligned}
\]

The three elements of VM are transferred to the range derivative vector RMD so that the derivative has a unique name. For vector integration the derivative cannot be a state since it is allocated to the derivative block and the storage conflict would result. Now the three component range vector is declared to be the integral of the three component derivative or:
\[
\mathrm{RM}=\mathrm{INTVC}(\mathrm{RMD}, \mathrm{RMIC})
\]
which completes the specification of the airframe six degree of freedom module.
The last line describes the motor module - see bottom of page A10-5 - that specifies zero thrust and constant mass and inertias. In actual practice a motor model must compute thrust as a function of time from motor ignition and the varying mass, inertia and center of gravity position, all of which significantly effect flight characteristics.

The output stream from exercising the model is shown in Figures A10-7 through A10-14. Starting at Figure A10-7, the TITLE is established and then the PREPAR list defined. Fixed fin deflections of -0.01 radians are specified for fins two and four, so that the motion is in the vertical plane - missile nose tends to go up. After the START, conditions are established for strip chart plots (STRPLT = .T.), with grids (GRDSPL \(=\). T.), a half scale factor (PSFSPL \(=0.5\) ) and a longer x -axis ( \(\mathrm{XINSPL}=10.0\) ). This allows us to stack more variables on a page and the following PLOT command produces the response of Figure A10-8. The PRINT "ALL" command lists the numerical values which extends through the end of Figure A10-9. Next, the ANALYZ command is used to find a trim condition, and evaluate the Jacobian and the eigen values. Seven state variables (RM, VM and FIM) are frozen leaving five to be varied. The five roots are listed at the top of Figure A10-10, a real pole at -4.21 and double complex poles at \(-1.2 \pm 16.7 \mathrm{j}\). In order to see the trim condition found, the state variables are transferred back to the initial conditions by REINIT and then one pass through the code with debug output is ensured by setting the stop time (TSTP) to zero and the debug parameter (NDBUG) to one. The START produces the debug list which extends through Figure A10-11.

The next ANALYZ command evaluates the Jacobian of the full twelve by twelve state matrix with corresponding eigen values at the bottom of Figure A10-12. The last page of output shows moving the center of gravity to the rear (reference point forward) which models a launch or unburnt motor condition. The plot of the response is shown in Figure A10-14 with the matching eigen values listed in Figure A10-13. Note the response is more oscillatory and the dominant roots have become more unstable.

The last figure, Figure A10-15, shows the output obtained from the subroutine LISTD when a dictionary is prepared defining all the variables used in the model. The following statements were placed in the INITIAL section:

LOGICAL DICTN \$ CONSTANT DICTN \(=\).FALSE.
IF(DICTN) CALL LISTD(5)
DICTN \(=\). FALSE.
At run time DICTN was SET \(=\).TRUE. and the START card was followed by the dictionary definitions in alphabetical order. Note the indication at the end of the listing that shows definitions were not supplied for SIMIC and S. See Appendix B-3 for more details.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SET TTTEE"MTSSTLE LONGTUUTNAL WYNAMTCS"} \\
\hline \multicolumn{6}{|l|}{FREFAR T, NM, WM, AL 2 , AL \(3, ~\) UM, GTM, THM, FTM, MACH, \({ }^{\text {a }}\)} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{START} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{5 FRNFLT \(=\) F. , TCWFRN \(=72\)} \\
\hline \multicolumn{6}{|l|}{FILOT NM(2), UM (3), AIL \(3, \mathrm{VM}(2), \mathrm{THM}\)} \\
\hline \multicolumn{6}{|l|}{FRINT "NCIFRN" \(=5, \mathrm{~F}\) ALIL.} \\
\hline 1. TNE & T & \(N M(1)\) & NM(2) & \(N \mathrm{M}(3)\) & \(\operatorname{WM}(1)\) \\
\hline 0 & 0 & 0. & - 1.18 .473875 & 0. & 0. \\
\hline 5 & 0.1000000 & 0. & 75.759493 & 0. & 0. \\
\hline 10 & 0.2000000 & 0. & 112.71735 & 0 & 0. \\
\hline 15 & 0.3000000 & 0. & 68.11655 & 0. & 0. \\
\hline 20 & 0.4000000 & 0. & 57.548205 & 0. & 0 . \\
\hline 25 & 0. 5000000 & 0. & 77.826550 & 0. & 0. \\
\hline 30 & 0.6000000 & 0 & 79.953864 & 0. & 0 . \\
\hline 35 & 0.7000000 & 0. & 71.025331 & 0 & 0. \\
\hline 40 & 0.8000000 & 0. & 71.139716 & 0. & 0 . \\
\hline 45 & 0.9000000 & 0. & 74.920565 & ) & 0. \\
\hline 50 & 1. 0000000 & 0. & 74.409056 & 0. & 0. \\
\hline 55 & 1. 1000000 & 0. & 72.827707 & 0. & 0. \\
\hline 60 & 1.2000000 & 0. & 73.202458 & 0. & 0 . \\
\hline 6.5 & 1. 3000000 & 0. & 73.805978 & 0 & 0. \\
\hline 70 & 1. 4000000 & 0. & 73.544976 & 0. & 0. \\
\hline 75 & 1. 5000000 & 0. & 73.283640 & 0. & 0. \\
\hline 80 & 1.6000000 & 0. & 73.389862 & 0. & 0. \\
\hline 85 & 1. 7000000 & 0. & 73. 452074 & 0. & 0. \\
\hline 90 & 1.8000000 & 0. & 73.360048 & 0. & 0. \\
\hline 95 & 1. 9000000 & 0. & 73.302325 & 0. & 0 . \\
\hline 1.00 & 2.0000000 & 0. & 73.304638 & 0. & 0 . \\
\hline 1.. T. NE & WM(2) & WM (3) & Al.. 2 & Al. 3 & UM(1.) \\
\hline \(\bigcirc\) & 0. & 0. & 0. & 0. & 2154.8000 \\
\hline 5 & 0 & 0.0966540 & 0. & \(\cdots 0.0072943\) & 21.54 .7878 \\
\hline 10 & 0 ) & 0.0183467 & 0. & -0.0.10.156. & 2154.6730 \\
\hline 15 & 0 . & --0.0137568 & 0. & \(\cdots 0.0067039\) & 2154.5532 \\
\hline 20 & 0 . & 0.0234575 & 0. & --0.0058861. & 2154.4820 \\
\hline 25 & 0 . & 0.0328096 & 0. & \(\cdots 0.0074570\) & 2154.3843 \\
\hline 30 & 0 . & 0.0158099 & 0. & \(-0.0076227\) & 2154.2435 \\
\hline 35 & 0. & 0.0137948 & 0. & \(-0.0069321\) & 21.54 .0998 \\
\hline 40 & 0 ) & 0.0212874 & 0. & \(\cdots 0.00694 .19\) & 2153.9553 \\
\hline 45 & 0. & 0.0212679 & 0. & -0.007236.1 & 2153.7995 \\
\hline 50 & 0 & 0.0180595 & 0. & \(\cdots 0.0071977\) & 21.53 .6040 \\
\hline 55 & 0 . & 0.0184311 & 0. & \(-0.0070765\) & 2153.4087 \\
\hline 60 & 0 ) & 0.0197497 & 0. & \(-0.0071071\) & 2153.2016 \\
\hline 65 & 0 ) & 0.0194276 & 0. & -0.0071.555 & 2152.9780 \\
\hline 70 & 0 . & 0.0188892 & 0. & --0.0071369 & 2152.7398 \\
\hline 75 & 0. & 0.0190765 & 0. & \(-0.0071185\) & 2152.4887 \\
\hline 80 & 0 . & 0.0192722 & 0. & -0.0071227 & 2152.2239 \\
\hline 85 & 0 . & 0.0191557 & 0. & -0.0071355 & 2151.9445 \\
\hline 90 & 0. & 0.0190705 & 0. & \(-0.0071305\) & 2151.6511 \\
\hline 95 & 0. & 0.0191144 & 0. & \(-0.0071283\) & 2151.3442 \\
\hline 100 & 0. & 0.0191296 & 0. & \(-0.0071308\) & 2151.0233 \\
\hline
\end{tabular}

Figure A10-7. Run-time Commands and Output Stream for Missile Dynamics Evaluation


Figure A10-8. Strip Chart Plots of Missile Response to Fixed Fin Deflection - Norminal Centre of Gravity
\begin{tabular}{|c|c|c|c|c|c|}
\hline L. TNE & UM(2) & UM(3) & gim & THM & \\
\hline 0 & 0. & 0. & 0 . & 0. & 0. \\
\hline 5 & --0.9254375 & 0. & ) & 0.00686488 & 0. \\
\hline 10 & 6.3848135 & 0 & 0. & 0.0131193 & 0. \\
\hline 15 & 12. 319067 & 0. & 0 . & 0.0124215 & 0. \\
\hline 20 & 14.895778 & 0. & 0 . & 0.0127998 & 0. \\
\hline 25 & 18. 452335 & 0. & 0. & 0.0160218 & 0. \\
\hline 30 & 23. 326795 & 0 & 0 ) & 0.0184506 & 0. \\
\hline 35 & 27.626594 & 0. & 0 . & 0.0197565 & 0. \\
\hline 40) & 31.428341 & 0. & 0 . & 0.021531 .9 & 0. \\
\hline 45 & 35.531264 & 0. & 0 . & 0.0237317 & 0. \\
\hline E) & 39.909254 & 0. & 0. & 0.0256806 & 0. \\
\hline 55 & 43.935293 & 0. & 0. & 0.0274764 & 0. \\
\hline 60 & 48.000948 & 0. & 0. & 0.0293962 & 0. \\
\hline 65 & 52.135127 & 0. & 0. & 0.031 .3661 & 0. \\
\hline 70 & 56.283597 & 0. & 0. & 0.0332761 & 0. \\
\hline 75 & 60.397079 & 0 & 0. & 0.0351703 & 0. \\
\hline 80 & 64.504384 & 0 & 0. & 0.0370907 & 0. \\
\hline 85 & 68.622892 & 0. & 0. & 0.0390135 & 0. \\
\hline 90 & 72.738132 & 0 & 0. & 0.0409234 & 0. \\
\hline 95 & 76.344041 & 0. & 0. & 0.0428322 & 0. \\
\hline 100 & 80.947254 & 0. & 0. & 0.044745. & 0. \\
\hline
\end{tabular}

81/08/11. 17.47 .56. STEF IN FIN

GIM

FIM
0 O.

0068648
\(0.01 \% 4 \% 15\)
0.0127998
0.0160218
\(0.0197565 \quad 0\)
0.02373170
0.0256806
0.02939620.
0.03327610 .
\(0.0351703 \quad 0\)
0.03709070
0.04092340
\(\begin{array}{ll}0.0428322 & 0 . \\ 0.0447451 & 0 .\end{array}\)

MACH
4075. 4612 4075. \(43 \% 1\) \(4075.00 \% 0\) 4074.5168 4074.1274 4073.6431 4073. 0123 4072.3222 4071.5812 4070.7518 4069.8340 4068.8442 4067.7903 4066.6358 4065.4125 4064. 1131. 4062.7368 4061. 2825 4059.751 .1 4058. 1431 4056. 4583
ANALYZ "FREEZE" =RM, UM,FIM, "TRIM", "JACOE", "EEGEN"
NEW JACOBTAN EUALUATEII
ROW UECTOF NAMES

FACE NOMINAI. CG
\begin{tabular}{rrr}
0 & 2.0000000 & 4075.4612 \\
5 & 1.9999862 & 4075.4321 \\
10 & 1.9998917 & 4075.0020 \\
15 & 1.9998119 & 4074.5168 \\
20 & 1.9997713 & 4074.1274 \\
25 & 1.9997187 & 4073.6431 \\
30 & 1.9996478 & 4073.0123 \\
35 & 1.9995811 & 4072.3222 \\
40 & 1.9995178 & 4071.5812 \\
45 & 1.9994485 & 4070.7518 \\
50 & 1.9993745 & 4069.8340 \\
55 & 1.9992996 & 4068.8442 \\
60 & 1.9992229 & 4067.7803 \\
65 & 1.9991 .428 & 4066.6358 \\
70 & 1.9990599 & 4065.4125 \\
75 & 1.9999747 & 4064.1131 \\
80 & 1.9998870 & 4062.7368 \\
85 & 1.9997966 & 4061.2825 \\
90 & 1.9987037 & 4059.7511 \\
95 & 1.9996082 & 4058.1431 \\
100 & 1.99851 .01 & 4056.4583
\end{tabular}

GTM 1
MM(2) A

THM
WM(3)

709982
2
\%
WMri(3) 5

2
5
    MM(2) 4
        WMri(a) \(\quad 4\)
\(W M(1)\)

COLUMN UECTOR NAMES
WMin (2)
4
WMOI (I)

3

3

Figure A10-9. Output Stream from Missile Dynamics Evaluation


Figure A10-10. Output Stream (Eigen Values and Debug) from Missile Dynamics Evaluation

ACSL RUN TIME EXEC UEFGTON I LEUEL GM
81/08/11. 17.47.56.
FACE NOMTNAL. CG MTSSTLE LONGTTUOTNAI.. WYNAMTCS

\section*{STEF TN FTN}
\begin{tabular}{|c|c|}
\hline -0.00729669 & 0. \\
\hline 0.99997338 & 0. \\
\hline 0. & 1.00000000 \\
\hline NM 0. & 75.791 .4500 \\
\hline NME:-00.06302704 & 75.7894323 \\
\hline Q 4075.46122 & 10000175547 \\
\hline THFUST 0. & TSTF 0 \\
\hline -15.7229168 & 0. \\
\hline zo49g3 0. & 709994-2.10000000 \\
\hline 209986-0.19000000 & 2099870. \\
\hline 2099930 & 709994-6.3450\%000 \\
\hline ZZSEEM 5555555555 & ZZTI..XP' \\
\hline 709989-3. 80000000 & --2.00000000 \\
\hline --2.00000000 & --2. 2.10000000 \\
\hline 0.80000000 & 1.00000000 \\
\hline 2.00000000 & 709991-0.21000000 \\
\hline ‥0.20000000 & \(\cdots 0.19000000\) \\
\hline 2099920. & 0.90000000 \\
\hline 1.20000000 & 2.00000000 \\
\hline --6. 34502000 & --6.67084000 \\
\hline --7. 7.3995000 & \(\cdots 7.91851000\) \\
\hline --8.87953000 & --9.36448000 \\
\hline 7.099960. & 10000.0000 \\
\hline 30000.0000 & 40000.0000 \\
\hline 60000.0000 & 70000.0000 \\
\hline 90000.0000 & 209997.1186 .50000 \\
\hline 1036.40000 & 994.800000 \\
\hline 968.100000 & 968.100000 \\
\hline 977.600000 & 984.300000 \\
\hline 10000.0000 & 20000.0000 \\
\hline 40000.0000 & 50000.0000 \\
\hline 70000.0000 & 80000.0000 \\
\hline
\end{tabular}

ANALYZ "JACOR", "ETGEN" ROW VECTOR NAMES
\begin{tabular}{rr}
\(\operatorname{FIM}\) & 1 \\
\(\operatorname{VM}(3)\) & 4 \\
\(\operatorname{UM}(1)\) & 7 \\
\(\operatorname{WM}(1)\) & 1.0
\end{tabular}
\begin{tabular}{|c|c|}
\hline FM( 1 ) & 2 \\
\hline STM & 5 \\
\hline VM(2) & 8 \\
\hline WM(2) & 11 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\(\operatorname{FM}(2)\) & 3 \\
\(\operatorname{THM}\) & 6 \\
\(\operatorname{VM}(3)\) & 9 \\
\(\operatorname{UM}(3)\) & 12
\end{tabular}

COLUMN UECTOR NAMES
\begin{tabular}{|c|c|}
\hline Z09981. & 1 \\
\hline Fimil 3 ) & 4 \\
\hline UMOM(1) & 7 \\
\hline WMn(1) & 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline  & 2 \\
\hline STM0 & 5 \\
\hline UMK(2) & 8 \\
\hline WMO(2) & 11. \\
\hline
\end{tabular}
\begin{tabular}{lr} 
FMn(2) & 3 \\
Z09982 & 6 \\
UMM(3) & 9 \\
WMa(3) & 1.2
\end{tabular}


Figure A10-11. Output Stream from Missile Dynamics Evaluation
```

ACSL RUN-TIME EXEC UERSION 1 LEUEL GM 81/08/11. 17.47.56.
MISSILE LONGITUDINAL IYNAMICS STEP IN FTN

| 3 | 0 | 0 | 0. | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1.0000000 | 0. | 0 | |

 O. 0
 40.
 0. 0
 o.
 5 0.

| 6 | 0 | 0. | 0. | 0. | 0. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0. | 0. | 0. | 0. | 0. | |

7 0. 0. 1.739E-05 0. 0
-170.05392 -5.133E-04 0.0437463 0. 0.
0. 0
8 0. 0. 0.0.0023833 0. - 0. 0
12917.897 0.0703447 -5.9951.967 0. 0.
0. 0
9-18.475548 0.
0. 0. -12918.585
0. 0
O

| 10 | 0 | 0 | 0. | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0. | 0. | -4.20941 .46 |

11 -2.0192297 0
0. 0. -276.73213
--2.4097832 0.
0. -0.1284259 0.

| 12 | 0. | $5.760 E-19$ | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: |
| | 0.76 .72476 | $-1.700 E-17$ | 0.1284225 | 0. |
| 0.2 .4097832 | | 0. | | |

COMPLEX ETGEN UALUES IN ASCENOTNG OROER
lll
2 0. 0
3 1.2070E--14 0.
4 3.1692E-00 0
5-6.0184E-08 0.
6 -3.0912E-04 0.06794567
7 --3.0912E-04 --0.06794567
8 -4.20941.462 0.
9 -.4.20243747 16.5379930
10-4.20243747 -16.5379930
11. -4.20264954 -16.5381496
12-4.20264954 16.5381496
S IXXREF=10.7,TITLE(7)="AFT CG

```

Figure A10-12. Output Stream (Jacobian and Eigen Values) from Missile Dynamics Evaluation
```

ACSL FUNOTTME EXEO UERSTON I LEUE1. 6M G1/O8/11. 17.47.:6.
MTSGTLE LONGTTUOTNAL MYNAMTCG
STHMOC=0.0, TSTF=1.99
START
FIOOT NM(2),WM(3),AIZ3,UM(2),THM
ANAL..Y% "EIGEN"
COMFIEX ETGEN UALUEG IN AGCENGTNG OROEF
1 0. 0.
2 0. 0.
3-7.7439E--08 0.
4 7.3633E--08 0.
5 1.4193E-M5 0.
6 --9.1.656E"-05 0.039.39876
7-.9.1656E -.NG - 0.03939876
8 --4.20851876 0.
9-.-4.20152799 --24.8543608
10 -.-4.20152799 24.8543608
11. -4.20159641 24.8543850
12 -.-4.20159641 --24.8543850
sToF
ENI ITSGFI_A -... BGGI VEGTORG GENEFATEN INN % FLOT FRAMES.
I38% WORWS TAEILE SPACE USEI

```

Figure A10-13. Output Stream from Missile Dynamics Evaluation Forward Center of Gravity Position.


Figure A10-14. Strip Chart Plots of Missile Response to Fixed Fin Deflections - Aft Centre of Gravity
\begin{tabular}{|c|c|c|}
\hline A & FEEAL ( 30 ) & ARRAY OF AERORYNAMIC STABILITY REFIVATIUES \\
\hline AL. 2 & I & ANGLE OF ATTACK ABOUT *M2*, FOSITIUE WTNI FFOM ABOUE (FADI) \\
\hline Al. 3 & I & ANGLE OF ATTACK ABOUT *M \(3 *\), FOSITIUE FFOM FIGHT (FAII) \\
\hline B & 3.95000000 & CHAFACTEFISTIC SF'AN (FT) \\
\hline C & REAL.. (6) & ARFAY OF AEFO COEFFTCTENTS \\
\hline CBAF & 5.62000000 & CHAFACTEFISTTC CHORT (FT) \\
\hline ccuv & I & CHOKM OUER UELOCTTY (SEC) \\
\hline cor & FEAL. (3) & IAMFTNG UEFTVATTUE - - ITMENSTONIESS MOMENT IERTUATIUES \\
\hline CINT & 0.02000000 & COMMUNTCATION TNTERUAL (SEC) \\
\hline CL..F' & FEAL ( 10) & FOLL MAMFING COEFFICIENT \\
\hline CMQ & FEAL... (10) & FITCH ANG YAW HAMFTNG COEFFTCTENT \\
\hline atctum & T & WTCTIONAEY RUMF FLAG \\
\hline OI. & FEAL. ( 4) & FTN MEFLECTION (KADI) \\
\hline \(0 \times 6\) & 1.0.2000000 & CENTEE OF GFAUTTY FOSTTION, FOSTTTUE TO FEAK (FT) \\
\hline MXFEF & 9.60000000 & AEFOMYNAMIC FEFERENCE POTNT, FOSTTIUE TO FEAF (FT) \\
\hline FIM & I. & FOLI ANGLE OF MISSTIE OR *M* FRAME (FAAT) \\
\hline FIMTC & 0 & TNTTTAL CONTITTON ON *FTM* (RADI) \\
\hline \(G\) & 32.2000000 & GRAUITY ACCELERATION (FT/SEC** \\
\hline TA1... \({ }^{\text {a }}\) & 4 & TNTEGFATTON ALGOFITHM (TNTEGEF) \\
\hline TXX & 8.77000000 & FOLI TNEFTTA (SLUG-FT**2) \\
\hline IYY & 361.800000 & LATEFAL TNEFTTA (SLUG-FT**2) \\
\hline LFO & FEAL ( 20) & LOG ATMOSFHERIC UENSTTY \\
\hline MACH & 1 & MACH NUMEEF \\
\hline MASS & 8.77000000 & MTSSTLE MASS (SLUO) \\
\hline MAXT & 0.01000000 & MAXIMUM INTEGRATION STEF STZE (SEC) \\
\hline MINT & 1. OOOOE--10 & MINIMUM TNTEGFATION STEF SIZE (SEC) \\
\hline ME: & FEAL. ( 9) & MATEIX TO TRANSFOFM FFOM *E* FRAME TO *M* OF MTSSTLE FFAME \\
\hline MUM & I & MAGNITUNE OF *UM* (FT/SEC) \\
\hline NM & FEAL ( 3 ) & AEROLYNAMIC ACCELEFATION UECTOR OF MISSILE (FT/SEC**) \\
\hline NME & FEAL. ( 3) & COMFONENTS OF *NM* EXFFESSEI TN *E* FFAME (FT/SEC**2) \\
\hline NSTF & 1 & NUMEEF OF STEFS (NXT USEII) (INTEGEF) \\
\hline \(Q\) & I. & IYNAMIC FRESSURE (LES/FT**2) \\
\hline RM & REAL ( 3) & FANGE UECTOR FOR MISSTLE (FT) \\
\hline FMMI & FEAL... (3) & UERIUATIUE OF *FM* (M/SEC) \\
\hline RMIC. & FEEAL.. (3) & TNITIAL CONMTTION ON *FIM* (FT) \\
\hline 120 & I. & ATMOSFHERIC UENSITY (SLUG/FT**3) \\
\hline SIM & I. & YAW ANGLE OF MISSTLE (FADI) \\
\hline STM & I & DERIUATTUE OF *STM* (FAD/SEC) \\
\hline T & 0. & TNAEFENOENT UARTAELEE TTME (SEC) \\
\hline THM & I & MISSTLE PTTCH ANGLE (FATI) \\
\hline THMA & ****** & DEETVATTUE OF *THM* (FALI/SEC) \\
\hline THMIC & 0. & INITIAL. CONOTTION ON *THM* (RAII) \\
\hline THRUST & 0. & THFUST (LBS) \\
\hline TSTF' & 1. 99000000 & TTME STOF FOK STMULATTON (SEC) \\
\hline VIM & FEAL ( 3) & UELOCITY OF MISSTLE (FT/SEC) \\
\hline UMEI & FEAL.. (3) & ACCELEFATION OF MISSTLE (FT/SEC**2) \\
\hline VMTC & FEAL. ( 3 ) & INITTAL CONATTION ON *UM* (FT/SEC) \\
\hline UMM & FEAL. ( 3) & COMFONENTS OF *UM* TN *M* FFFAME (FT/SEC) \\
\hline US & FEEAL ( 20) & UELOCITY OF SOUNA (FT/SEC) \\
\hline WM & FEAL ( 3 ) & SFIN FATE VECTOR OF MTSSTLE (FAD/SEC) \\
\hline WMII & FEAL. ( 3) & MEFTVATTUE OF *WM* (FACI/SEC**2) \\
\hline WMIC & REAL ( 3) & INITIAL CONMTTION ON *WM* (FALI/GEC) \\
\hline xacitg & 0. & TEMFORARY INTTIAL CONITTITS ON *T* \\
\hline STMIC & 0. & * \\
\hline 9 & 13.9000000 & * \\
\hline
\end{tabular}

Figure A10-15. Dictionary Listing Produced from Subroutine LISTD in the INITIAL section

\section*{11. DISCRETE SAMPLED COMPENSATOR}

This example was chosen to illustrate the use of a DISCRETE section in modelling a sampled data system in which a control computer interacts with a continuous plant. The system block diagram is shown in Figure A11-1 where the plant is represented by a transfer function:
\[
\frac{1}{\mathrm{~s}(\mathrm{~s}+1)}
\]

This system can be visualized as a water level control problem where the valve controlling the flow into the tank has a one second time constant. An instantaneous level measurement, X , is assumed which is compared with a desired level \(\mathrm{X}_{\mathrm{C}}\) and the error sampled every tenth of a second. A digital controller is to be designed that takes the samples of level error \(E\) and outputs a command \(U\) to the valve so closing the loop. This control is taken to be a linear combination of the current error \(\mathrm{E}_{\mathrm{n}}\), the previous error \(\mathrm{E}_{\mathrm{n}-1}\), and the previous control \(\mathrm{U}_{\mathrm{n}-1}\). Expressed in Z-transform notation this becomes
\[
\frac{U}{E}=\frac{a_{0}-a_{1}{ }^{z-1}}{1-b_{1} z-1}
\]

In terms of equivalent lead/lag network, the \(a\) and \(b\) coefficients above can be written
\[
\begin{aligned}
& a_{o}=\frac{T_{\text {LED }}}{T_{\text {LAG }}} \exp \left(-\mathrm{T}_{\mathrm{S}}\left(1 / \mathrm{T}_{\text {LAG }}-1 / \mathrm{T}_{\text {LED }}\right)\right. \\
& a_{1}=\frac{T_{\text {LED }}}{T_{\text {LAG }}} \exp \left(-\mathrm{T}_{S} / \mathrm{T}_{\text {LAG }}\right) ; \mathrm{b}_{1}=\exp \left(-\mathrm{T}_{S} / \mathrm{T}_{\text {LAG }}\right)
\end{aligned}
\]
which gives unity steady state gain and reduces to a zero order hold when the lead and lag time constants are equal.

The program or model definition code to represent this plant and control system is shown in Figure A11-2. In this model we have made use of the multiple derivative section capability where different blocks of code can be given their own integration algorithm and step size.

In the INITIAL section the coefficients of the digital filter are calculated so that the controller response can be thought of in terms of equivalent lead/lag time constants. At the same time the discrete control (UD) and the previous error (EP) are initialized to zero. Since they are needed before they are calculated, they are effectively system state variables, though not obtained by integration.

In the continuous section, the plant is modelled by the one line:
\[
X=\operatorname{INTEG}\left(\operatorname{REALPL}\left(T A D, \mathrm{KU}^{*} \mathrm{U}\right), 0.0\right)
\]

The control (U) is selected to take either the discrete value (UD) or that produced by a continuous lead-lag compensator (UC) based on a switch DISC i.e.
\[
\mathrm{U}=\mathrm{RSW}(\mathrm{DISC}, \mathrm{UD}, \mathrm{UC})
\]
which will allow test at run time between the effect of the discrete or the continuous controller by changing the logical variable DISC from .FALSE. to .TRUE. Integration step size for this section will be 0.02 seconds, specified both by the communication interval (CINT) and by the global MAXT. The reason for such a comparatively short step is in order to record data during the sampling so that the discrete hold (sample interval 0.1 sec ) can be seen on the plots. The communication interval chosen gives five points for every sample, so squaring the corners when the control \((\mathrm{U})\) is plotted in Figures A11-4 through A11-6. If the communication interval had been increased to 0.1 seconds or more, the straight lines drawn between points would have masked the sampling action, though the simulation would still behave the same internally.

In the DISCRETE block, the step size is controlled by the INTERVAL statement which specifies the name of the controlling variable as TSAMP with a value of 0.1 seconds. The code will execute once a T equals zero and then once thereafter, every 0.1 seconds. Since the order of the code is important, it is bracketted by PROCEDURAL . . END statements which prevent the reordering of any code within the block. Notice that there is no input/output list on the PROCEDURAL statement since the entire DISCRETE section is made procedural. The input/output list is only necessary to ensure correct ordering relative to other statements within the same DISCRETE or DERIVATIVE section. Statements will never be reordered across a section boundary.

Within the PROCEDURAL block, the new control is calculated based on the previous control, previous error and current error or
\[
\mathrm{UD}=\mathrm{B} 1^{*} \mathrm{UD}+\mathrm{AO} \mathrm{O}^{*} \mathrm{P}
\]
and then the current error is transferred to the previous error by \(\mathrm{EP}=\mathrm{E}\). If we hadn't used the PROCEDURAL block, the EP assignment would have been moved in front of its use in the UD calculation so both E and EP would now contain the current error, when the new UD was calculated, not what was intended in the code.

With the use of the DISCRETE section, the continuous section is guaranteed to be at the sample time when the DISCRETE section code is executed, so the value of current error (E) used is that actually at the sample time: A new value of control is calculated that is immediately available to the continuous section for use over the next sample interval. This action models a control computer with no calculation delay. In actual practice, dedicated controllers are usually compute bound, sampling from the outside world, calculating the new control action through the sample period and transferring this value back to the continuous section at the same time that a new sample is obtained. Modelling this action requires modifying the control calculation, first assigning the next control to the output control and then calculating a new next control i.e.
\[
\begin{aligned}
& \mathrm{UD}=\mathrm{UDN} \\
& \mathrm{UDN}=\mathrm{B} 1 * \mathrm{UDN}+\mathrm{AO} * \mathrm{E}-\mathrm{A} 1^{*} \mathrm{EP}
\end{aligned}
\]

Now both UD and UDN are effectively state variables and so must be initialized.
The execution of the model as listed in Figure A11-2 is shown in Figure A11-3. The first run (START) is followed by a column PRINT of the numeric values and a line plot of the base-line response shown in Figure A11-4. Next the OUTPUT list is CLEARed and two more runs are made - first with a equivalent lead/lag ratio of 5:1 (see Figure A11-4) and then with a reduction of the loop gain from 5.0 to 1.0 (See Figure A11-5). Lastly the response of the continuous feedback compensator is obtained, using the same values of lead/lag time constants and gain, by setting the switch variable DISC to .FALSE. The response is shown in Figure A11-7.


Figure A11-1. Discrete Control System Block Diagram
```

 *********AMUANCFIG CONTTNUOUS STMUIATTON LANGUAGE*********
    ```

```

FFOGRAM OTSCRETE SAMFLEO COMPENSATOR
* ..MONFI...G A CONTTNUOUS FI_ANT WTTH ETTHER A \&
" CONTTNUOUS OF GTSCRETE FEEO GACK CONTROLIER WFAFFEG AROUNM TT. *
" FIANT GAN GE UTGUALIGEG AS A LEUEL CONTROLIFR USTNG UALUE "
" WTH STNGLE:...AG TTME:CONGTANT \& :" SECONM) "
IOGTCAL.. NTSC
CONSTANT KU =5.0 TAN = = 1.0
CONSTANT UTSC = .TFUE. , XC = 1.0
GONSTANT TLEO=0.5 TLAG=0.5
CONSTANT TSTP=4.9
INTTTAL
GINTERUAL. CTNT = 0.O2
NGTEFG NSTF=1
MAXTERUAL MAXT == 0.O20

```

```

 EI =E EXF(.-TGAMF/TIAG)
 AO = TLETWEXF(..TGAMF*(1.O/TLAG -.. I.O/TLEI))/TLAG
 AI = TLEOWEXF(\cdotsTSAMF/TLAG)/TLAG
 "NNTTAITSE FSEUWO STATE VARTAELES &
 UMO}=0.
 EF=0.0
 ENO \$" OF TNITTAL. *
GEFTUATIUE CONYTNUOUS
" ..NTT MOOII.... \&
X = TNTEG(REALFL..(TAM, K゙U*U), 0.0)
* .-.......-..CONTTNUOUS CONTFOL.. ACTTON \&
UC, LEEMAG(TLEM, TLAG, E)
E:=XC - - X
" ...CHOOSE MTGCRETE OR CONTTNUOUS CONTROI... *
U = RकW(atse, um, uc)
TEFMT(T .GE. TSTF)
ENO \$" OF CONTTNUOUS SECTTON "
MTGCRETE OTSCRT
INTERUAL TSAMF = 0.1
FROCEWURAL
\#..ITSCRETE CONTEOL. IS LTNEAF COMBTNATION OF'
" FFEU CONTROL, FREU FREOK ANO CURFENT ERK
UII = EIWUO + AO*E -.-AIWEF
|..CURKENT ERFOR BECOMES FREUTOUS EFROR *
EF =:"E
ENRI \#" OF FFROCERUNAAL "
ENO \$" OF ITSCRETE SECTTON *
ENO s" OF FROGRAM *

```

Figure A11-2. Model Definition Code for Discrete Sampled Compensator
```

S TITLE="IIISCFETE SAMFLEEI CONTROLLER",TITLE(S)="EASE CASE*
SETT TCWFRN=72 \$" FORCE 3 COLUMN OUTFUT FORMAT *
FFEFAR T,U,X,E
OUTFUT T,U,X, "NCIOUT"=50
STAFT

10	
T	1.00000000
T	2.00000000
T	3.00000000
T	4.00000000
	4.92000000

$U 0$.
$U-0.17060285$
$U-0.32541587$
$U 0.34323663$
$U-0.12205848$
$U-0.06463221$

```
\(\times 0\).
\(\times 1.30834973\)
\(\times 1.22638539\)
\(\times 0.67115330\)
X 1. \(157498 \% 8\)
\(\times\) 1. 05753083

FKINT "ALII.", "NCIFRN"=10
\begin{tabular}{|c|c|c|c|c|}
\hline 1.1 INE & \(r\) & U & \(x\) & \(E\) \\
\hline 0 & 0 & & 0 & 1. 0000000 \\
\hline 10 & 0.2000000 & 0.9758129 & 0.0930688 & 0.9069312 \\
\hline 20 & 0.4000000 & 0.7998402 & 0.3376226 & 0.6623774 \\
\hline 30 & 0.6000000 & 0.5032633 & 0.6683773 & 0.3316227 \\
\hline 40 & 0. 8000000 & 0.1565214 & 1. 0134606 & -0.0134606 \\
\hline 50 & 1. 0000000 & -0.1706028 & 1. 3083497 & -0.3083497 \\
\hline 60 & 1.2000000 & -0.4215391 & 1. 5065476 & \(-0.5065476\) \\
\hline 70 & 1. 4000000 & -0.5613530 & 1. 5855153 & -0.5855153 \\
\hline 80 & 1.6000000 & -0.5800839 & 1. 5474411 & -0.5474411 \\
\hline 90 & 1. 8000000 & -0.4910931 & 1. 4154223 & -0.4154223 \\
\hline 100 & 2.0000000 & -0.3254159 & 1. 2263854 & -0.2263854 \\
\hline 110 & 2.2000000 & -0.1236905 & 1.0224804 & -0.0224804 \\
\hline 120 & 2.4000000 & 0.0725356 & 0.8427189 & 0.1572811 \\
\hline 130 & 2.6000000 & 0.2284609 & 0.7163382 & 0.2836618 \\
\hline 140 & 2.8000000 & 0.3214041 & 0.6588552 & 0.3411448 \\
\hline 150 & 3.0000000 & 0.3432366 & 0.6711533 & 0.3288467 \\
\hline 160 & 3.2000000 & 0.2998426 & 0.7413469 & 0.2586531 \\
\hline 170 & 3.4000000 & 0.2081127 & 0.8487028 & 0.1512972 \\
\hline 180 & 3.6000000 & 0.0913604 & 0.9686219 & 0.0313781. \\
\hline 190 & 3.8000000 & -0.0257924 & 1.0776326 & -0.0776326 \\
\hline 200 & 4.0000000 & \(-0.1220585\) & 1.1574883 & \(-0.1574883\) \\
\hline 210 & 4.2000000 & -0.1828818 & 1.1977512 & -0.1977512 \\
\hline 220 & 4.4000000 & -0.2021441 & 1.1966035 & -0.1966035 \\
\hline 230 & 4.6000000 & -0.1821059 & 1.1599839 & -0.1599839 \\
\hline 240 & 4. & 18374 & 10994379 & -0.0994370 \\
\hline
\end{tabular}

3 CALFLT=. T., FRNFLT=.F., GFHCFL=:T.
FLIOT U,X
OUTFUT "ClEEAF"


" NOW COMF'ARE CONTINOUS CONTFOLLEEF "
\(\oint\) TITLE:="CONTINUOUS ANALOG FEEMBACK CONTFOLLER", MISC=: FALSE:
START
Fi...OT U, X
stof.

Figure A11-3. Output Stream from Execution of Discrete Sampled Compensator Model


Figure A11-4. Plot of Control and Level against Time for Base Case, Discrete Sampled Compensator


Figure A11-5. Plot of Control and Level against Time for Lead/Lag Ratio of 5


Figure A11-6. Plot of Control and Level against Time for Reduced Loop Gain, Final Design


Figure A11-7. Comparison using Continuous Lead/Lag Feedback Control

\section*{12. ASPIRIN DOSAGE EVALUATION}

This model follows mathematically the aspirin concentration level in the blood stream of a person taking variable doses at various preset times. A similar program would be used to determine the concentration of any drug which had an exponential decay. The example was chosen to show how discontinuities can be introduced into the simulation state variables without having to recompute the values of the output of integrators, a matter that has to be left to the integration routine. In actual fact there are no true discontinuities in the physical world and one should really consider the dynamics of the ingestion process - the passage through the stomach wall or, if injected, the velocity of the hypodermic piston. These effects, however, would normally be approximated in most simulations as discontinuities if their time of action is short compared with the overall period of interest.

The basic equation in the model is the exponential decay given by
\[
\frac{\mathrm{dC}}{\mathrm{dt}}=-\mathrm{RC}
\]
which says that the rate of change (decay) of concentration of (C) is proportional to the concentration. The constant of proportionality is a rate R .

Since the concentration can change suddenly as doses are taken, we need to add a term indicating the total dose. As an integral equation, the concentration can now be expressed as
\[
C=\int-R C d t+\Sigma D_{i}
\]

In the simulation model code this is written
\[
\text { BLOOD }=\text { INTEG }(- \text { RATE } * \text { BLOOD }, 0.0)+\text { TOTAL }
\]
where BLOOD is the concentration in grains and TOTAL contains the sum of the doses up until the current time.

The listing of the model definition section is shown in Figure A12-1 which defines two arrays, TDOS for the time of the dose and DOSE for the actual dose at the corresponding time. An integer index INDX is used to advance through the arrays. The arrays are preset so that a larger dose of the five tablets ( 25 grains) is given initially and only two hours are between the first and second doses. Eight hours lie between the fourth and fifth doses and the last effective dose is at thirty hours.

In the INITIAL section INDX is started at one to access the initial dose time and TOTAL, effectively a state variable, is set to zero. In the DERIVATIVE section the BLOOD and URINE levels are calculated, the URINE being the total amount excreted. The URINE rate is the opposite of the rate for BLOOD which means that what is removed from the bloodstream appears directly in the urine.

The dose time and dose accumulation is performed within a PROCEDURAL . . END block which is treated as a whole. Within the PROCEDURAL block, the current dose time TDOS (INDX) is tested against the independent variable time (T). If it's not time for a dose the rest of the block is bypassed. If the dose time is equalled or exceeded, the dose is added to total by
\[
\text { TOTAL }=\text { TOTAL }+ \text { DOSE(INDX) }
\]
and then the index is incremented by one, ready for the next dose.

In writing this type of simulation model there is an inclination to change the state variable itself i.e,
\[
\begin{aligned}
& \text { BLOOD }=\text { INTEG }(- \text { RATE*BLOOD }, 0.0) \\
& \text { BLOOD }=\text { BLOOD }+ \text { DOSE }(\text { INDX })
\end{aligned}
\]

This operation is illegal since the value in the state variable BLOOD is only a temporary copy of the actual state variable which is saved internally by the integration routine. Note if we convert the BLOOD integration to the expression form:

\section*{BLOOD \(=-\) INTEG (RATE*BLOOD, 0.0)}

BLOOD is no longer a state variable, it is now just the negative of the actual state variable (the output of the INTEG operator) which will be given a generated name Z0nnnn.

When we add TOTAL to the integration a similar transformation occurs so that BLOOD is no longer a state variable but now we can manipulate TOTAL in such a way that the answer comes out right.

The run-time output stream is shown in Figure A12-2. After the START a column PRINT is obtained to list numeric values and then a PLOT, the output of which is shown in Figures A12-3 and A12-4. The first figure shows the format for the strip plots (STRPLT = .T.) and the second for the standard line plots (CALPLT \(=. \mathrm{T}\). ) where all curves are superimposed. The actual plot line reads
PLOT TOTAL, ‘TAG’ = ‘+URINE’, URINE, ‘SAME’, ‘OVER', BLOOD

The tag string is used to add the extra label on the TOTAL axis, 'SAME' ensures identical scales and 'OVER' suppresses the now redundant axis for URINE.

The RATE parameter is changed to 0.28 and a second run made, followed by a PLOT. Only the strip plot is used in Figure A12-5 which shows the extra strip generated when 'OVER' was eliminated from the plot line. From the plot it can be seen that the higher decay rate has reduced the average blood level concentration.

The discontinuties introduced into TOTAL violate the restrictions on the state variables placed by most integration algorithms, i.e., the derivatives shall be continuous and differentiable. In practice, fixed step size algorithms step over these discontinuities very well with only minor differences in the calculated solutions when the step size changes. In the code we make no attempt to synchronize the discontinuity with the integration step so it can occur at any of the derivative evaluations that make up the step. This means that this particular step (which contains the discontinuity) will be in error but the answers will only be slipped a fraction of a step length. It is this requirement that dictates the integration step size. From the decay rate of the aspirin ( 0.14 or 0.28 ) step sizes of two or three hours would do quite well in integrating the differential equations. However, uncertainty in dose times of this much is too large an error. In the model, the step size is set (via MAXT) to 0.05 or 3 minutes to reduce the uncertainty which now seems tolerable in light of what we are trying to simulate.
```

 *********AIIVANCEII CONTTNUOUS SIMULATION LANGUAGE**********
 ACSL TFANSLATOR VERSION 1 LEEVEL 6F 81/07/13. 15.15.59. FAGE 1
    ```
```

FFOGRAM ASFIRIN IOSAGE TEST

```
```

FFOGRAM ASFIRIN IOSAGE TEST

```
```

 * GIUEN A HOSAGE HISTORY. USES EXFONENTIAL ELIMINATION RATE "
    ```
    * GIUEN A HOSAGE HISTORY. USES EXFONENTIAL ELIMINATION RATE "
    * WITH FIXEI TIME CONSTANT *
```

 * WITH FIXEI TIME CONSTANT *
    ```


```

 INTEGEF INAX , INMXMX
    ```
    INTEGEF INAX , INMXMX
    AFRAY [IOSE(9), TmOS(9)
    AFRAY [IOSE(9), TmOS(9)
    *-...-...--.---------mEFINE FRESET CONSTANT UALUES*
    *-...-...--.---------mEFINE FRESET CONSTANT UALUES*
    CONSTANT RATE = 0.14 , INIXMX =9
    CONSTANT RATE = 0.14 , INIXMX =9
        TSTOF=49.0
        TSTOF=49.0
CONSTANT HOSE = 25.0, 15.0, 15.0
CONSTANT HOSE = 25.0, 15.0, 15.0
                        ,15.0,15.0 , 15.0 \ldots
                        ,15.0,15.0 , 15.0 \ldots
                            ,15.0,15.0 ,0.0
                            ,15.0,15.0 ,0.0
CONSTANT THOS =0.0, 2.0, 6.0
CONSTANT THOS =0.0, 2.0, 6.0
                        , 10.0, 18.0 , 22.0
                        , 10.0, 18.0 , 22.0
                            , 26.0, 30.0 , 99.0
```

 , 26.0, 30.0 , 99.0
    ```


```

CINTERUAL CINT = 0.5

```
CINTERUAL CINT = 0.5
MAXTERVAL }\quad\mathrm{ MAXT =0.05
MAXTERVAL }\quad\mathrm{ MAXT =0.05
NSTEFS NSTF =1.
NSTEFS NSTF =1.
INITIAL
INITIAL
    *-....................-...-STAKT WITH FIFST HOSE,NONE PRESENT"
    *-....................-...-STAKT WITH FIFST HOSE,NONE PRESENT"
    AT BEGINNING"
    AT BEGINNING"
    INIIX = 1
    INIIX = 1
    TOTAL =0.0
    TOTAL =0.0
ENH $" OF INITIAL."
ENH $" OF INITIAL."
MIYNAMIC
MIYNAMIC
IEFIVATIUE
```

IEFIVATIUE

```


```

 BLOON = INTEG(-FATE*ELOON, O.O) + TOTAL
    ```
```

 BLOON = INTEG(-FATE*ELOON, O.O) + TOTAL
    ```


```

 URINE = INTEG(RATE*ELOON, O.O)
    ```
    URINE = INTEG( RATE*ELOON, O.O)
    "---.----.-.-.............-TEST FOR MOSE, BUMF TOTAL."
    "---.----.-.-.............-TEST FOR MOSE, BUMF TOTAL."
    FROCEIIURAL(TOTAL, INIXX = LOSE, TLOS)
```

 FROCEIIURAL(TOTAL, INIXX = LOSE, TLOS)
    ```


```

 TF(T.LTT. TMOS(INOX)) GO TO LI
    ```
        TF(T.LTT. TMOS(INOX)) GO TO LI
        ".....................--..-AMn NEW nOSE TO TOTAL."
        ".....................--..-AMn NEW nOSE TO TOTAL."
        TOTAL = TOTAL + NOSE(INIIX)
```

 TOTAL = TOTAL + NOSE(INIIX)
    ```


```

 INIIX = INMX + 1
    ```
        INIIX = INMX + 1
    L1..CONTINUE
    L1..CONTINUE
    ENI $" OF FFOCELUURAL.
    ENI $" OF FFOCELUURAL.
ENM क" OF LEETUATIUE"
ENM क" OF LEETUATIUE"
                "....................-STOF WHEN GIVEN LAST MOSE"
                "....................-STOF WHEN GIVEN LAST MOSE"
                TEFMT (INIIX.GT. INIIXMX .OR. T.GE.TSTOF)
                TEFMT (INIIX.GT. INIIXMX .OR. T.GE.TSTOF)
ENII $" OF IIYNAMIC"
ENII $" OF IIYNAMIC"
ENI $" OF FROGRAM"
```

ENI \$" OF FROGRAM"

```

Figure A12-1. Listing of Model Definition for Aspirin Dosage Evaluation
```

SET TITLE = "ASFIFTN MOSAGE TEST"
G TCWFKN=7% \&" FORCE 3 COLUMN OUTFUT WILITH "
S FRNFLT=,F., CALFFLT=.T.,STFFLTT=, T.,GFLSFL== T.
FFEFAF T, BLOOII, URINE, TOTAL, INHX
START
FFINT "NCIFFN"=5, "ALL."

1. TNE	T	ELOOOH	URTNE	rotal	INIX
0	0.	25.000000	0.	25.000000	2
5	2.5000000	31.619426	8.3805736	40.000000	3
10	5.0000000	22.281833	17.718167	40.000000	3
15	7.5000000	27.874691	27.125309	55.000000	4
20	10.000000	19.642963	35.357037	55.000000	4
25	12.500000	24.424815	45.575185	70.000000	5
30	15.000000	17.211877	52.788123	70.000000	5
35	17.500000	12.129004	57.870996	70.000000	5
40	20.000000	19.897147	65.102853	85.000000	6
45	22.500000	28.023507	71.976493	100.00000	7
50	25.000000	19.747832	80.252168	100.00000	7
5	27.500000	26.089011	88,910989	115.00000	8
60	30.000000	18.384615	96.615385	115.00000	8
65	32.500000	23.538073	106.46193	130.00000	9
70	35.000000	16.586999	113. 41300	130.00000	9
75	37.500000	11.688661	118.31.34	130.00000	9
$90)$	40.000000	8. 2368602	121.76314	130.00000	9
85	42.500000	5.8044173	124.19558	130.00000	9
90	45.000000	4.0903037	125.90970	130.00000	9
95	47.500000	2.8823883	127.11761	130.00000	9

*LOT TOTAL.."TAG"="+ UFINE", UFTNE,"SAME", "OUEF", BLOOR
MISFLLY FATE, TMOS, NOSE
RATE 0.14000000 THOS 0. 2.00000000
6.000000000
22.0000000)
99.0000000
15.0000000
15.0000000
0.
SET RATE=0.28,TTTLE(5)="FATE =0.28"
STAFIT
FIOOT TOTAL,UFTNE, "SAME", BLOOON
MISFLYY RATE, THOS, NOSE
FATE 0.28000000
6.00000000
22.0000000
99.0000000
15.0000000
15.0000000
O.

```
\(\operatorname{Tros} 0.2 .00000000\)
\(10.0000000 \quad 18.0000000\)
\(26.0000000 \quad 30.0000000\)
15.0000000
15.0000000
15.0000000
stof
stof

Figure A12-2. Output Stream from Aspirin Dosage Evaluation Study


Figure A12-3. Strip Plot of Blood Concentration, Total Dosage and Urine Elimination, Rate in 0.14


Figure A12-4. Line Plot of Blood Concentration, Total Dosage and Urine Elimination


Figure A12-5. Strip Plot of Blood Concentration, Urine Elimination and Total Dosage, Rate in 0.28

\section*{APPENDIX B \\ GENERAL PURPOSE UTILITY SUBROUTINES}

A number of general purpose subroutines have been developed and included in the system library.

\section*{1. AGET (name, a), APUT (name, a)}

Obtain the values from or put values into a variable array in either the user or system dictionary. Useful in a separate FORTRAN subroutine to obtain or return isolated values not passed through the calling sequence. Necessary in order to access values from the system dictionary. Arguments are:
name - Hollerith representation of dictionary name to be accessed, i.e. Direct Hollerith constant (3HDIS) or symbol preset to Hollerith constant.
a - array of size equal to or greater than that of 'name' - may be a scalar of dimension 1.
For AGET all elements of 'name' are returned in successive locations of ' \(a\) '. APUT works in the opposite direction and fills all positions of the array 'name' with the contents of successive locations of 'a'. Standard form of use would be

CALL AGET (6HNPXPPL, NPX)
CALL APUT(5HTITLE, NEWTTL)
where NEWTTL is dimensioned to contain at least 120 characters (12 words on CDC 6000/7000. 20 on UNIVAC 1100 and 30 on 32 bit hex machines IBM \(360 / 370\), SEL etc.). See RGET, IGET and VPUT for changing individual elements of an array.

NOTE: These functions require a full dictionary search and if placed in a loop executed every calculation interval will use an excessive amount of computer time.

\section*{2. BLDDCT (nHname, name, type, size)}

\section*{NITBLD (length)}

Build dictionary allows variables in other FORTRAN subroutines and COMMON blocks to be added to the ACSL dictionary. Since labelled COMMON block locations are defined at load or link-edit time, this operation must be performed once at the start of each simulation study. The typical requirement is to add variables (XVEL and IPNT are used in the example) that are in external common blocks (/USER/is used) that communicate between FORTRAN subroutines external to the ACSL simulation model definition. The actual number of variables and common blocks depends on the particular situation and can be large.

In order to add the example names to the dictionary, write a subroutine so

\section*{SUBROUTINE ADDNMS}

COMMON/USER/IPNT, XVEL
COMMON/ZZDCT/DUMMY(1000)
CALL NIT BLD(1000)
CALL BLD DCT(4HIPNT, IPNT, 2, 1)
CALL BLD DCT(4HXVEL, XVEL, 1,1 )
RETURN

\section*{END}
and call this from the pre-initial section of the ACSL model definition code i.e.

\section*{PROGRAM TO EXTEND DICTIONARY \\ CALL ADDNMS \$ ADD NAMES TO DICTIONARY' \\ INITIAL}

\section*{END \$ 'OF PROGRAM'}

Alternatively all the code can be placed in the main program and then use the P option on the translator to indicate it is user supplied.

In the ADDNMS subroutine, the external COMMON blocks can be referred to (no COMMON blocks can be included in the ACSL model definition). The dictionary COMMON block/ZZDCT/must be included and extended beyond the length established by the ACSL translator, which normally will size the dictionary to just fit all the names in the model definition ( 2 words per name in machines with six or more characters per word, 3 words per name for machines with 4 or 5 characters/word). In the example, the dictionary COMMON block is extended to a thousand words, which length is then communicated to the extension program via the NITBLD call. This must be present since the BLDDCT subroutine has no idea how much space is available at the end of the standard ACSL dictionary.

The actual calls to BLDDCT pass a Hollerith version of the new name, the name itself which really corresponds to the address in the COMMON block, and an integer indicating type and an integer indicating size. The types are one for REAL, two for INTEGER and three for LOGICAL. Size must be the array size if an array (product of dimensions if more than one) or one if 'name' is a scalar.

The action of BLDDCT is to search through the dictionary to the end and then add the entry corresponding to 'name', moving the dictionary terminator one block. An error is reported if 'name' is already in the dictionary or if the end of the dictionary would have to be extended beyond the length established by the call to NITBLD.

Once the name has been added to the dictionary, all run-time references can be made just like any other ACSL variable with the data being transferred to and from the external COMMON blocks

OUTPUT XVEL
DISPLY IPNT

All the ACSL run-time commands can be used to PLOT, PRINT, SET these variables rather than having to move everything into the main ACSL common block/ZZCOM/.

\section*{3. DEBUG}

A call to this routine will produce a debug list of all variables, excluding arrays greater than MALPRN (maximum array limit for print), on both PRN and DIS units. Described in Section 7 is the technique of setting NDBUG to a positive integer whereby a debug list is produced at the end of every derivative evaluation. While useful as a checkout tool, with large programs this action can produce an over-whelming amount of output. Selective output can now be obtained by

IF (logical condition) CALL DEBUG
included in the DERIVATIVE section. Including the statement
CALL DEBUG
in the DYNAMIC section produces the entire list at each communication interval and is synonymous with asking for the OUTPUT of all variables. Including

\section*{IF(DUMP)CALL DEBUG}
in the TERMINAL section is a useful artifice since all final values are displayed as well as the initial conditions for that run.

\section*{4. IGET(nHname,i) RGET(nHname,i)}

Obtain the value of a variable (integer \(=\) IGET, real \(=\) RGET) in the user or system dictionary. For use primarily for selecting elements of arrays since AGET and APUT should be used for scalars. Arguments are:
name - Hollerith representation of dictionary name to be accessed i.e. symbol preset to Hollerith constant or direct Hollerith constant (3HPRN)
i - integer constant or variable denoting element of array
Standard form of use would be

> WORD = IGET(5HTITLE, 4)

NOTE: These functions require a full dictionary search and if placed in a loop executed every calculation interval will use an excessive amount of computer time.

\section*{5. INTEG}

In order to provide flexibility in trying new and improved integration algorithms, it is possible to incorporate a user written routine via this subroutine (INTEG). Setting IALG=7 will transfer control to this routine at the beginning of every integration step. In order to write an effective INTEG routine, familiarity with the ACSL run-time routines ZZINTG, ZZRKIN, ZZMVM, ZZNITS and ZZNITA is essential.

\section*{6. LISTD (file)}

Provides a listing of the user dictionary and current variable values along with any explanation of variables supplied on the named file. Used mainly for reports, it requires preparing a dictionary with variable name and definition. The argument 'file' is an integer constant or variable defining a file containing the definitions or card images.
col 1-9 variable name, left justified
col 10 continuation indicator in sequence \(0,1,2,3\) etc.
col 11-80 definition
Standard form of invocation would be in the INITIAL or TERMINAL section on a switch

\section*{IF(LIST)CALL LISTD(5)}

LIST \(=\). FALSE.

Logical unit five is normally the input file so the dictionary would follow immediately behind the START card. The dictionary is terminated with a blank name field. When the definition must be continued beyond column eighty, continuations can be used which consist of a non-blank character in column ten. The name field in this case is ignored and just the extra definition is listed out. For convenience in ordering the initial dictionary repeat the name on each continuation card, numbering the cards in column ten \(0,1,2,3\) etc. Now a standard sort on columns one through ten will produce an alphabetical order with continuation cards in their correct place. Note that zero is used in column ten to start a continuation sequence and acts just like a blank.

The reason for using a zero is that in some computer systems blanks will collate after numbers rather than before.

When used with logical unit five, the dictionary definitions appear on the run-time drive file immediately after the START and the following card images will be read until a blank or end-of-file.

\section*{7. LOG}

This routine can force a data recording and output list from within the ACSL model definition or from any external FORTRAN subroutine.

CALL LOG
will reset the NCIOUT count of the OUTPUT statement, forcing a value listing. All the variables on the PREPAR list are recorded for later PRINTing or PLOTting.

\section*{8. RGET (nHname, i)}

Real get - - see IGET

\section*{9. SET (value, name, times)}

A useful subroutine that is provided primarily to initialize arrays and set all elements to a given value. Standard form of use is

CALL SET (v, x, n)
where the value of the expression \(v\) is placed into \(n\) locations of array \(x\). i.e.
\(\operatorname{CALL} \operatorname{SET}(0.0, \operatorname{ARR}(5), 3)\)
zeros the fifth, sixth and seventh elements of array ARR. No check is made to see whether these elements actually exist.

\section*{10. TIMER}

Program execution time can be estimated by use of this subroutine placed in the INITIAL, DYNAMIC or TERMINAL sections. The derivative evaluation routine is called one hundred times and the average central processing time used per evaluation reported. It must not be called from the DERIVATIVE section since it will then be activated recursively and the program will abort with an error message (TIMER CALLED FROM DERIVATIVE SECTION)
11. VPUT (name, i, value)

Place a value in a named variable in either the user or system dictionary. Arguments are:
name - a Hollerith constant or variable defining a name in either the user or system dictionary
i - the element number in the array
value - a constant, variable or expression that corresponds in type to the named variable
Standard form of invocation would be
CALL VPUT(5HARRAY, 4, DATE)
NOTE: This subroutine requires a full dictionary search and if placed inadvertently in a loop will use an excessive amount of computer time.

\section*{12. WEM (nH message, nchar)}

Error messages may be written using the ACSL standard output interface by this subroutine. Standard form of use is

CALL WEM(nH message of length n characters, n )
which will write an error message on both PRN and DIS logical units if different.

\section*{13. WRITG}

Write integration intermediate data. Primary use is in debugging the variable step integration routines (IALG \(=1\) or 2 ). The state history stacks and error tables are listed. Should normally be placed at the end of the DERIVATIVE section. Data is written on the logical unit number contained in system variable PRN. Standard form of invocation is:

\section*{CALL WRITG}

\section*{14. XFERB}

A transfer block routine is provided for moving arrays from one place to another. Useful for initialization instead of forming DO-loops. Standard forms of call are

CALL XFERB( \(\mathrm{x}, \mathrm{n}, \mathrm{y}\) )
CALL XFERB \((\mathrm{y}=\mathrm{x}, \mathrm{n})\)
which takes \(n\) elements from array \(x\) and moves them to array \(y\). No check is made to see whether these elements are contained in the arrays.

THIS PAGE INTENTIONALLY LEFT BLANK

\section*{APPENDIX C ACSL SYSTEM SYMBOLS}

Certain system constants can be changed if not used in the simulation model to allow greater flexibility. These names are generated by the first three characters to describe the action and the last three characters to describe the processor.
- PPL refers to printer plots
- CPL refers to line or Calcomp plots
- SPL refers to strip plots
- PLT refers to plotting in general
- ITG refers to integration
- PRN refers to printed outputs

These variables can all be changed by SET statements. The value set must agree in type - i.e., integer to integer, logical to logical, real or integer into real. The nominal value preset is given below the symbol.

\section*{1. Refers to Plots in General}

CALPLT Logical: Plot on the line plot device selected at load or link-edit time.

FTSPLT Logical: Flyback trace suppressed on plots. If a number of parametric (.FALSE.) runs have been made - by cycling between the INITIAL and TERMINAL sections - they can be plotted and if this variable is TRUE, plotting is suppressed and the symbol is incremented on flyback. The flyback is

Cont.
determined from the first variable on the PREPARe list. When the difference between successive values becomes negative it is assumed that a new run has started. Normally, the independent variable is made the first variable on the PREPARe list.

NPPPLT Integer: Number of plots per page used when invoking the PLOT 'ALL'
(3)

PRNPLT
(.TRUE.)

STRPLT
(.FALSE.)
command and controls the number of variables plotted per drawing.
Logical: Plot on printer
Logical: Plot on line device in strip chart form. Normally one variable per axis set stacked in reverse order to that on the command line.

\section*{2. Refers to Printer Plots}

CGDPPL Integer: Character for the grid in the printer plot. Set to be a period. Note, it can only be changed by knowing the character value as an integer, not by quoting.
NGXPPL Integer: Number of points between grid lines in the x-direction for printer plots. Nominal setting sets a grid of periods every twenty characters.
NGYPPL (10)

NPCPPL
(1)

NPXPPL (100)

NPYPPL (100)

Integer: Same as NGXPPL in y direction.
Integer: Number of points per character plotted on the printer: This feature can be used for placing time ticks on a phase plane plot, i.e.
\[
\begin{aligned}
& \text { SET DEFPLT }=\text {.TRUE. } \\
& \text { PLOT 'XAXIS' }=\mathrm{X}, \mathrm{Y} \\
& \text { SET DEFPLT }=. \text { FALSE., NPCPPL }=10 \\
& \text { PLOT 'XAXIS' }=\mathrm{X}, \mathrm{Y}, \text { 'CHAR' }=‘ * '
\end{aligned}
\]

The first plots Y against X using values recorded every communication interval but the output is deferred. The plot frequency is changed and the second plot is plotted over the first, with a different character so flagging every tenth point.
Integer: Gives number of points in the x direction for printer plots. For square plots make this six tenths of the \(y\) direction points.
Integer: Gives number of points in the y direction for printer plots. For narrow terminals this will be reduced to fifty.

\section*{3. Refers to Line or Calcomp Plots}

GRDCPL Logical: When set TRUE, draw grid lines from each tick mark on the axes. (.FALSE.)

LINCPL Logical: Draw lines between points for the line plots. The lines between (.TRUE.) points can be suppressed by making this variable .FALSE.. Note if both SYMCPL and LINCPL are false, nothing will be plotted.

NPCCPL Integer: Number of points per character on the line plots. In this case

PSFCPL (1.0)

SATCPL
(.FALSE.)

SYMCPL (.FALSE.)

TBRCPL (9600)

TTLCPL (.TRUE.)

XCICPL

XINCPL

XTICPL

YCICPL

YINCPL

YTICPL
a symbol is written every ten points plotted. Used for time ticks on phase plane plots.
Real: Plot scale factor for line plots. The overall size of the plot, including axes and lettering can be made smaller (or larger) by changing this factor.
Logical: Suppress axis text. Allows the axes and tick marks to be drawn but suppresses all numbers and labels for speed in repetitive plots.
Logical: Plot symbols on the curve. Characters will be centered over the point and will correspond to the normal FORTRAN character set. Special symbols can be obtained as follows:

which correspond to asking for special characters such as 'CHAR' \(=\) ' \(\%\) '. The actual characters available are installation dependent so see local addendum. If symbols are plotted for every point, they are usually over-written and confused (so see item NPCCPL).
Integer: Baud rate of channel to line plot device. Normally needed for Tektronix plotters. Note must be set before the first PLOT command when the plot device is initialized.
Logical: Title on line plots. The full 120 character title array is written at the top of each plot in three lines of forty characters each. The last line overlaps into the plot area. Since most of TITLE is not often used, trailing blanks in TITLE may result in fewer than three lines being written.
Real: X-axis cross position. Position on x -axis (in inches) where last y -axis is positioned.
Real: X -axis length in inches for line plots.

Real: X -axis tick increment in inches for line plots.

Real: Y cross inches for line plots. This dimension is where the x -axis is drawn on the page. Normally at the bottom, it can be raised up to ten inches. Negative values will send the plotter into limit.
Real: Y-axis length in inches for line plots.

Real: Y-axis tick increment in inches for line plots.

\section*{4. Refers to Strip Plots}

GRDSPL Logical: Draw grid lines from each axis tick on strip chart plots.
(.FALSE.)

LINSPL Logical: Draw lines between points on strip chart plots.
(.TRUE.)

NPCSPL Integer: Number of points per character or symbol on strip chart plots.
(10)

PSFSPL Real: Plot scale factor for the strip chart plots.
(1.0)

SATSPL Logical: Suppress axis text. Allows the axes and tick marks to be drawn but (.FALSE.) suppresses all numbers and labels for repetitive plots.

SYMSPL Logical: Plot symbols on the curve. The symbols will correspond to those (.FALSE.) given for SYMCPL.

TTLSPL Logical: Draw a title over the strip plots. Three lines of forty characters (.TRUE.) each.

XCISPL Real: X-axis cross position. Position on x -axis (in inches) where y -axis

XINSPL is placed.
(5.0)

XTISPL Real: X-axis tick increment in inches for strip chart plots.
(1.0)

YASSPL Real: Y-axis separation between successive axes stacked vertically.
(0.5)

YCISPL Real: Y-axis cross position. Position on \(y\)-axis (in inches) where the \(x\)-axis
YINSPL

YTISPL Real: Y-axis tick increment in inches for strip chart plots.

\section*{5. Refers to Print Data}

HVDPRN Logical: High volume data to display unit. Ensures all data written on PRN (.FALSE.) unit is also copied on the DIS unit if different.

MALPRN Integer: Maximum array length. For debug output all arrays were normally (10) listed. In order to control the amount of output, this variable was added that suppresses listing of the contents of any array longer than this value. The last element only will be listed to show that it is present and to indicate the array length.
TCWPRN Integer: Terminal character width. Controls the line width of any data written (132) on the display (DIS) logical unit. For basically interactive machines such as DEC VAX/11 the default is changed to 72.

\section*{6. Integration Control}

CIOITG Integer: Current integration order. Calculated by the program it may be (. . .)

CSSITG
(. . .)

MXOITG Integer: Maximum order. The maximum order of the integration algorithm

NRWITG
(.FALSE.)

TSMITG
(.FALSE.)

WESITG
(.TRUE.) OUTPUT or PREPARed so that the integration order may be followed when using one of the variable order, variable step integration routines (IALG \(=\) 1 or 2 ).
Real: Current step size. Calculated by the program it may be OUTPUT or PREPARed so that the actual integration step size may be followed as explained previously (CIOITG). may be specified between 1 and 6 when using the variable order, variable step integration routines.
Logical: No rewind. When this flag is true the data file containing the value of all the variables on the PREPARe list is not rewound immediately after a START. Data from sequential runs is then accumulated rather than being written on top of the previous data, thereby erasing it.

\section*{7. General}

CMD
(5)

DIS
(0)

PLT
(9)

PRN
(6)

NDBUG Number of derivative evaluations that will have DEBUG output tied to them.

Integer: Logical unit from which run-time commands are read. May only be five, six or nine on Control Data computers. See local installation guide.
Integer: Logical unit on which display data is written out on. Output from DISPLY, RANGE and OUTPUT commands. Allowed values depend on machine and installation.

Integer: Logical unit for line plot output (when CALPLT is .TRUE.). Device and installation dependent - see local installation guide.

Integer: Logical unit on which high volume data is written out. All data written on unit DIS is echoed on unit PRN if different. In addition printer plots and PRINT command output are only written on this file. Allowed values depend on machine and installation.

RRR Integer: Logical unit on which intermediate data is written out. Allowed values depend on machine and installation.

TITLE (blank)

Hollerith: Up to 120 characters may be set into this array which is listed at the top of each page. Hollerith data must be quoted.

\section*{APPENDIX D QUICK REFERENCE GUIDE FOR ACSL OPERATORS}

Tables D-1, D-2 and D-3 list the operators available in the model definition section, the run-time executive commands and the system constants.

Throughout the model definition operators, \(\mathbf{X}\) is a real expression, \(\mathbf{J}\) is an integer expression. An expression can be a signed or unsigned constant, a variable or array name, or any combination formed into a legal expression.

TABLE D-1. Summary of ACSL Model Definition Statements
\begin{tabular}{|c|c|}
\hline Statement & Explanation \\
\hline ```
ABS (x)
\(\operatorname{ACOS}(\mathrm{x})\)
AINT(x)
ALGORITHM IALG \(=5\)
ALOG(x)
ALOG10(x)
AMAX0(j1, j2 . . .)
AMAX1(x1, x2 . . .)
AMIN0(j1, j2 . . .)
AMIN1(x1, x2 . . .)
\(\operatorname{AMOD}(\mathrm{x} 1, \mathrm{x} 2)\)
ARRAY \(\mathrm{v}(1,2,3), \ldots\)
ASIN(x)
ASSIGN k TO m
ATAN(x)
ATAN2( \(\mathrm{y}, \mathrm{x}\) )
BCKLSH(ic, dl, x)
BOUND (ll, ul, x)
CALL name
CINTERVAL CINT \(=0.1\)
```

$\operatorname{CMPXPL}(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{icl}, \mathrm{ic} 2)$ \& | Absolute value |
| :--- |
| Arc-cosine; result in radians |
| Integer part of real expression x |
| Define integration algorithm |
| Natural logarithm |
| Logarithm to base ten |
| Real maximum of integer expressions, j_{i} |
| Maximum of given string of expressions, x_{i} |
| Real minimum of integer expressions, j_{i} |
| Minimum of given string of expressions, x_{i} |
| Remainder when x 1 is divided by x 2 |
| Specifies up to three dimensions |
| Arc-sin; result in radians |
| Used before a GO TO m branch |
| Arc-tangent-result in radians |
| Angle in radians between x -axis and point (x, y) |
| Backlash or hysteresis |
| Limit expression x to be between lower and upper limits |
| Invoke subroutine |
| Define name and value for communication interval $y=\frac{1}{\mathrm{ps}^{2}+q s+1} ; \dot{\mathrm{y}}(0)=\mathrm{ic} 1 ; \mathrm{y}(0)=\mathrm{ic} 2$ |

\hline
\end{tabular}

Cont.

TABLE D-1. Summary of ACSL Model Definition Statements-Continued

Statement	Explanation
COMMENT	Enclose statement in quote for comment
CONSTANT d $=\mathrm{a}$	Set constant d to value a
CONTINUE	Do nothing - usually labelled
$\cos (\mathrm{x})$	Cosine of expression x in radians
DBG'i'	Translator debug feature
DBLINT(x, xd = ic, dd, dic, $\ell \ell, \mathrm{u} \ell)$	Double integrator with limit
$\operatorname{DEAD}(\ell \ell, \mathrm{u} \ell, \mathrm{x})$	
DELAY (x, ic, tdl, nmx)	Delay expression x through fixed time tdl
DERIVATIVE	Begins block evaluating state variable derivatives
DERIVT(ic, x, T)	Differentiate expression x : WARNING should not be used unless absolutely necessary
DIM $\left.\mathrm{x}^{\text {1, }} \mathrm{x} 2\right)$	Difference (x1-x2)if positive, else zero
DISCRETE	Begins block representing a DISCRETE event
DO $1 \mathrm{j}=1$, n	Start of DO-loop
DYNAMIC	Begins section entered every communication interval
END	Must complete each section, block or PROCEDURAL
EQUIVALENCE(mv, v)	Equivalence names to same location
ERRTAG ERR	Defines name for variable to indicate integration error
EXP(x)	Natural exponent of expression x
$\operatorname{EXPF}(\mathrm{ic}, \tau, \mathrm{on})$	Rise and fall between 0.0 and 1.0 on exponential with time constant
$\operatorname{FCNSW}\left(\mathrm{p}, \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$	Function switch
FORMAT(. . .)	Format description for READ, WRITE or PRINT statements
GAUSS(m, s)	Normally distributed random variable, given mean, m, and standard deviations.
GAUSI(j)	Initialize random number seed
GO TO 1	Transfer control to statement labelled 1
HARM(tz, w, p)	Output is $\sin \left(\mathrm{w}^{*}(\mathrm{~T}-\mathrm{tz})+\mathrm{p}\right)$); $\mathrm{T} \geq \mathrm{tz}$ else 0.0
IABS(j)	Absolute value of integer expression j

TABLE D-1. Summary of ACSL Model Definition Statements-Continued

Statement	Explanation
IDIM(j1, j2)	Integer positive difference of integer expression j1 and j2
IF(lexpr) statement	If logical expression, lexpr is .TRUE., execute statement
IMPL(yz, e, m, efl, f(y), yd)	Solves implicit equation $\mathrm{f}(\mathrm{y})=\mathrm{y}$
INITIAL	Begins section executed at beginning of every run - after each START command
INT(x)	Integer part of real expression x
INTEG(xd, xic)	Integrates derivative xd given initial value xic
INTEGER	Defines type (and size) for variables, functions (and arrays)
INTVC(xd, xic)	Integrates vector derivative xd given initial value vector xic. State, derivative and initial condition may be names only - arrays must be same size
$\operatorname{ISIGN}(\mathrm{j} 1, \mathrm{j} 2)$	Absolute value of integer expression j 1 times a sign of integer expression j 2
$\operatorname{LEDLAG}(\mathrm{p}, \mathrm{q}, \mathrm{x}, \mathrm{ic})$	$\frac{y}{x}=\frac{p s+1}{q s+1} ; y(0)=i c+p x / q$
LIMINT(yd, ic, $\ell \ell, \mathrm{u} \ell)$	Limited integrator
LINES(i, 'TOF')	Inform top-of-page manager i lines are about to be written. Optional 'TOF'
LOG	Forces data recording action when called as subroutine
LOGICAL	Defines type (and size) of variables, functions(and arrays)
LSW(p, tv, fv)	Logical or integer switch
MACRO	Begins macro definition
MAX0(j1, $22 \ldots$)	Maximum of integer expression j1, j2
MAX1(x1, x2 . .)	Integerized maximum of real expression $\mathrm{x} 1, \mathrm{x} 2$
MAXTERVAL MAXT $=$ $1.0 \mathrm{E}+10$	Defines name and value of maximum calculation interval
MERROR X=0.001,	Defines allowed relative error for state variables
MIN0(j1, j2 . . .)	Minimum of integer expressions $\mathrm{j} 1, \mathrm{j} 2 \ldots$
MIN1(x1, x2 . .)	Integerized minimum of real expressions $\mathrm{x} 1, \mathrm{x} 2 \ldots$
$\begin{aligned} & \text { MINTERVAL MINT = } \\ & 1.0 \mathrm{E}-10 \end{aligned}$	Defines name and value of minimum calculation interval
$\operatorname{MOD}(\mathrm{j} 1, \mathrm{j} 2)$	Remainder when integer expression j 1 is divided by integer expression $\mathbf{j} 2$

TABLE D-1. Summary of ACSL Model Definition Statements-Continued

Statement	Explanation
MODINT(yd, ic, $\ell 1, \ell 2$)	Moded integrator
NSTEPS NSTP $=10$	Define name and value of number of steps (calculation intervals) in a communication interval - overridden by MAXT and MINT
$\mathrm{OU}(\tau, \mathrm{m}, \mathrm{s})$	Band limited white noise, mean m , standard deviation, s : break frequency $2 \pi / \tau \mathrm{Hz}$
OUTPUT(v1, v2 . . .)	Record values of v_{i} each communication interval
PREPAR(v1, v2 . . .)	Save values of v_{i} on prepare file, each communication interval
PRINT n, L	Print list L according to FORMAT n. Precede with LINES(i)
$\begin{aligned} & \text { PROCEDURAL }(\mathrm{y} 1, \mathrm{y} 2= \\ & \mathrm{x} 1, \ldots) \end{aligned}$	Begins block whose order is to be maintained. The block will be placed before statements using the y_{i} and after those calculating the x_{i}
PROGRAM text string	First card of model definition deck. No dollar sign in text.
$\operatorname{PTR}(\mathrm{x}, \mathrm{y}=\mathrm{r}, \theta)$	$\mathrm{x}=\mathrm{r} \cos \theta ; \mathrm{y}=\mathrm{r} \sin \theta$
PULSE(tz, p, w)	
QNTZR(p, x) RAMP(tz)	
READ n, L	Read list L according to FORMAT n
REAL	Define type (and size) of variables, functions (and arrays). Assumed default for all names in program.
$\operatorname{REALPL}(\mathrm{p}, \mathrm{x}, \mathrm{ic})$	$\frac{y}{x}=\frac{1}{p s+1} \quad y(0)=i c$

Cont.

TABLE D-1. Summary of ACSL Model Definition Statements—Continued

Statement	Explanation
RESET(a)	Used in INITIAL section to transfer initial condition array to state array. Argument must be 'EVAL' or 'NOEVAL'
RSW (p, tv, fv)	Real switch
$\mathrm{RTP}(\mathrm{r}, \theta=\mathrm{x}, \mathrm{y})$	$\mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} ; \theta=\operatorname{ATAN} 2(\mathrm{y}, \mathrm{x})$
SAVE	Save current macro tables on the macro file
SCALE(dmn, dmx $=$ ymn, ymx)	Convert ymx and ymn to scales on plots
SIGN(x1, x2)	Absolute value of expression x 1 , times sign of x 2
SIN(x)	Sine of expression $\mathrm{x}-\mathrm{x}$ in radians
SQRT(x)	Square root of expression x : Error if negative
STEP(tz)	
TABLE name, n , d/list/	Define arbitrary function of n variables, dimensions d - breakpoints and function values given in list
TAN(x)	Tangent of expression $x-x$ in radians
TERMINAL	Begins section entered at termination of a run
TERMT(lexpr)	Identifies run termination condition; forces transfer to TERMINAL section when logical expression, lexpr, is .TRUE.
$\operatorname{TRAN}(\mathrm{nn}, \mathrm{nd}, \mathrm{qn}, \mathrm{qd}, \mathrm{x})$	Transfer function: $n \mathrm{n}$ is ORDER of numerator; nd is ORDER of denominator, nn and nd must be integer constants, qn and qd are arrays of coefficients of s for numerator and demoninator, high order coefficient first
UNIF (ℓ, u)	Uniform random number distributed between lower, 1, and upper, u.
UNIFI(j)	Initialize seed for random number generator - changes same seed as GAUSI
$\begin{aligned} & \text { VARIABLE } \mathrm{T}=0.0, \\ & \mathrm{TSC}=0.0 \end{aligned}$	Defines name and initial condition on independent variable
XERROR X $=1.0 \mathrm{E}-4$	Define allowed absolute error for state variable
ZHOLD (ic, p, x)	Output is x if p is .TRUE., last value output if .FALSE.
$\mathrm{ZOH}(\mathrm{x}, \mathrm{ic}, \mathrm{tz}, \mathrm{dt}, \mathrm{i})$	Periodic hold every dt seconds starting at tz

TABLE D-2. Summary of ACSL Run-Time Executive Commands

Command	Subcommands	Explanation
ACTION		Schedule action Independent Variable (when) Value (what) Data location (where) Clear action list
ANALYZ	$\begin{aligned} & \text { 'FREEZE' = } \\ & \text { 'EIGVEC' = } \\ & \text { 'EIGPER' = } \\ & \text { 'DISPLY' = } \\ & \text { 'LIST' = } \\ & \text { 'RMSEMX' = } \\ & \text { 'NITRMX' = } \\ & \text { 'FRACMX' = } \\ & \text { 'FRACDL' = } \\ & \text { 'TRIM' } \\ & \hline \end{aligned}$	Hold value of state variables listed Calculate eigen vectors along with eigen values Calculate eigen finder performance List all output on display (DIS) unit List details of trim iteration Specify allowable error for trim convergence Specify maximum number of iterations during trim Specify maximum fractional change during trim Specify fraction of Newton-Raphson step taken during trim iteration Initiate the trim iteration Calculate and list the system Jacobian Calculate system eigen values
CONTIN		Continue to integrate
DISPLY D		Display values of named variables
END		Completes PROCEDure definitions
MERROR		Establish relative errors for given state variables
OUTPUT	$\begin{aligned} & \text { 'NCIOUT' = } \\ & \text { 'CLEAR' } \end{aligned}$	Schedule names on list to have values listed during run Number of communication intervals between output Clear output list
PLOT	$\begin{aligned} & \text { 'ALL' } \\ & \text { 'CHAR' = } \\ & \text { 'HI' }= \\ & \text { 'LO' = } \end{aligned}$	Printer and/or line plots and/or strip plots Plot all variables on prepare file Use given character for plot Specify upper y-axis value Specify lower y-axis value

Cont.

TABLE D-2. Summary of ACSL Run-Time Executive Commands-Continued

Command	Subcommands	Explanation
	$\begin{aligned} & \text { 'TAG' = } \\ & \text { 'LOG' } \\ & \text { 'OVER' } \\ & \text { 'SAME' } \\ & \text { 'XAXIS' = } \\ & \text { 'XHI' = } \\ & \text { 'XLO' = } \\ & \text { 'XTAG' = } \\ & \text { 'XLOG' } \end{aligned}$	Specify y-axis character tag string Use logarithmic scale for y -axis Overplot - no axis drawn Same scales for variables to left Specify X-axis variable Specify right-most x-axis value Specify left-most x-axis value Specify x -axis character tag string Use logarithmic scale for x -axis
PREPAR	'CLEAR'	Schedule names on list to have values saved on prepare file during run Clear prepared list
PRINT	$\begin{aligned} & \text { 'NCIPRN' }= \\ & \text { 'ALL' } \end{aligned}$	Select names on PREPARe list to have values listed in column form Number of communication intervals between print lines Print all variables on PREPARe file
PROCED		Define beginning of procedure block. Terminated by END.
RANGE	$\begin{aligned} & \text { 'ALL' } \\ & \text { 'IHI' = } \\ & \text { 'ILO' = } \\ & \text { 'IVAR' = } \end{aligned}$	Print maximum and minimum values of selected variables on PREPAREe list Determine range for all variables on PREPARe list High value for independent variable Low value for independent variable Define independent variable
REINIT		Reinitialize initial conditions to current state
RESTOR		Restore data area from any named file 'fn'
SAVE		Save data area on a named file 'fn'
SET(S)		Set values of constants
SPARE		Links to FORTRAN subroutine of that name: Library routine gives central processor time used and that elapsed since last call
START		Start simulation run
STOP		Terminate simulation study
XERROR		Establish absolute errors for given state variables

TABLE D-3. Executive System Variables

Name	Default	
CALPLT	. FALSE.	Draw line plots
CGDPPL	0	Character for grid - printer plots
CIOITG	\ldots	Current integration order - integration control
CMD	5	Logical unit executive commands are read from
CSSITG	\ldots	Current step size - integration control
DEFPLT	. FALSE.	Defer output of plot
DIS	6	Logical unit for display output
FTSPLT	. FALSE.	Flyback trace suppression (channel 1) for all plots
GRDCPL	. FALSE.	Grids on line plots
GRDSPL	. FALSE.	Grids on strip plots
HVDPRN	. FALSE.	High volume display
LINCPL	. TRUE.	Draw lines between points - line plots
LINSPL	. TRUE.	Draw lines between points - strip plots
MALPRN	10	Maximum array length printed by debug
MXOITG	6	Maximum integration order
NDBUG	0	Debug listing forced if greater than zero
NGXPPL	20	Number of points between grid lines in x direction
NGYPPL	10	Number of points between grid lines in y direction
NPCCPL	10	Number of points between characters - line plots
NPCSPL	10	Number of points between characters - strip plots
NPPPLT	3	Number of plots per page - 'ALL' plots
NPXPPL	100	Number of points in X direction - printer plots
NPYPPL	100	Number of points in Y direction - printer plots
NRWITG	. FALSE.	No rewind of RRR file before run STARTs
PLT	9	Logical unit number for plot output
PRN	6	Logical unit number for high volume output
PRNPLT	.$T R U E$.	Draw printer plots
PSFCPL	1.0	Plot scale factor - line plots
PSFSPL	1.0	Plot scale factor - strip plots
RRR	8	Logical unit for prepare file - raw run record file
SATCPL	. FALSE.	Suppress axis text - line plots

TABLE D-3. Executive System Variables-Continued

Name	Default	Explanation
SATSPL	.FALSE.	Suppress axis text - strip plots
STRPLT	.FALSE.	Draw strip plots
SYMCPL	.FALSE.	Plot symbols on line plots - every NPCCPL points
SYMSPL	.FALSE.	Plot symbols on strip plots - every NPCSPL points
TBRCPL	9600	Terminal baud rate for graphics
TCWPRN	132	Terminal character width
TITLE	BLANK	Array of 120 characters printed at page top
TSMITG	. FALSE.	Two sided matrix evaluation of Jacobian
TTLCPL	. TRUE.	Draw title on line plots
TTLSPL	. TRUE.	Draw title on strip plots
WESITG	. TRUE.	Write error summary - integration control
XCICPL	0.0	X-axis crosses in inches - line plots
XCISPL	0.0	X-axis crosses in inches - strip plots
XINCPL	5.0	Length of X-axis in inches - line plots
XINSPL	5.0	Length of X-axis in inches - strip plots
XTICPL	1.0	X-axis tick increment - line plots
XTISPL	1.0	X-axis tick increment - strip plots
YASSPL	0.5	Y-axis separation - strip plots
YCICPL	0.0	Y-axis crosses in inches - line plots
YCISPL	1.0	Y-axis crosses in inches - strip plots
YINCPL	5.0	Length of Y-axis in inches - line plots
YINSPL	2.0	Length of Y-axis in inches - strip plots
YTICPL	1.0	Y-axis tick increment - line plots
YTISPL	1.0	Y-axis tick increment - strip plots

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E EXAMPLE CONTROL CARDS

This manual is accompanied by a separate booklet or addenda that gives a detailed description of how to use ACSL within the particular operating environment of your computing system. Since operating system commands differ from manufacturer to manufacturer, and even within competing groups from the same manufacturer, it is impossible to describe the details for all machines. As far as the ACSL program is concerned, it is machine transportable and models defined on one machine should produce the same results when run on another. Of course, numerical precision will vary somewhat. The main difference the user must be aware of is the characters per word when SET-ting individual elements of the TITLE array.

In order to provide some idea of how the program is actually run, this section shows the command sequence or deck set up when running under the NOS operating system with a CDC 6000 or CYBER 70 machine.

1. Batch Operation

Your job card
ACCOUNT (your account number, password)
CHARGE (charge number)
GET (ACSL/UN = ACSLSYS)
ACSL ($\mathrm{I}=\mathrm{INPUT}, \mathrm{PLT}=\mathrm{UNI}$)
SAVE (PLFILE)
7/8/9 - end of record
ACSL model definition program
7/8/9 - end of record
AACSL run-time control cards
6/7/8/9 - end of information
This sequence will exercise the model under the command of the run-time drive cards, producing output on the line printer. Any line or strip plots will be written on an intermediate plot file (PLFILE) for later processing by UNIPOST

2. Terminal Operation

Log on - enter account number, then password
charge(your charge number)
get(acsl/un=acslsys)
acsl(i=model)
?set prn=9
etc $\{$ ACSL run-time commands
?end lol
route $($ print, $\mathrm{dc}=\mathrm{pr})$
bye
This sequence will exercise the model, the definition statements for which have been prestored on file 'MODEL'. Low volume data will be presented on the terminal, high volume being disposed of to a local line printer as the last operation.

APPENDIX F ACSL ERROR MESSAGES

The following lists the error messages that can be produced during the translation phase of the program together with amplification and possible causes.

1. ACSL Translator Error Messages

BAD BREAKPOINT SPEC

The number of arguments specified in the TABLE statement is not 1,2 or 3 or the number of breakpoint integers given does not correspond with the number of arguments.

BAD FUNCTION DATA COUNT

The number of data items in the TABLE statement (between slashes) does not add up to the total length expected - product of dimensions plus sum of dimensions.

CONFLICTING DATA TYPE

The identifier indicated in the error message is being used in a way that conflicts with an earlier usage. Some examples are:

1) Attempt to use a label as a variable
2) Using the variable in two different type declarations
3) Using "States" or "ICs" in logical or integer typing statements
4) Using duplicate "ICs" in separate INTEG statements

CONFLICTING LABEL NAME

The identifier indicated in the error message is either a variable being used as a statement label, or a previously defined label.

DIMENSIONS ALREADY SET

Attempt to define the dimensions of a previous dimensioned array.

EQUIVALENCE ERROR

Usually caused by not realizing the special place occupied by the first variable in the EQUIVALENCE list which is used, in the ACSL sense, as a primary variable. This variable must always appear first on the list for any subsequent EQUIVALENCE statements into the same array. Another cause is equivalencing the same secondary variable to two different primary variables. System variables such as CINT, MAXT, state, derivative and initial condition variables must be given as primary variables

ILLEGAL BLOCK COMBINATION

An ACSL block delimiter (PROGRAM, INITIAL, END, etc) was encountered, out of the proper sequence.

ILLEGAL DERIVATIVE DEFINITION

Derivative arrays are not allowed except in INTVC statements.

INSUFFICIENT REGION FOR TRANSLATION

Insufficient field length for ACSL to attempt translation. Always fatal. Increase memory region parameter and resubmit job.

INTEG NOT IN SORT BLOCK

Integration statements must be in a DERIVATIVE block (an implicit PROGRAM . . . END structure is synonymous with a DERIVATIVE block) rather than the INITIAL, DYNAMIC or TERMINAL section. Usually caused by an END mismatch which terminates a block inadvertently. May also be caused by an integration statement inside a PROCEDURAL . . . END block nested to level two or higher.

MACRO ARGUMENT ERROR

Error in the macro definition and attempting to invoke the macro, or the computed argument number for the main argument is less than " 1 " or greater than the original number of arguments.

MACRO NOT DEFINED

Attempt to use a macro which has not been defined. The syntax of the statement indicates a macro is present but the macro is not found in the macro file.

MACRO NOT INVOKED

Attempt to use an "ASSIGNED" variable when variable was not defined in an ASSIGN statement.

MACRO STATEMENT ORDER ERROR

During macro expansion: No standard value for an unspecified macro argument, or an attempt to use the dimensions of an undimensioned argument.

MISSING DERIVATIVE STATEMENT

An INTEG statement is missing for some element of a state array.

. AULTIPLY DEFINED SYMBOL

The named variable has previously been assigned a value in this sort block or derivative section.

NO RIGHT SIBLING

Internal ACSL system error during syntax analysis. Report to system staff with example.
NO TABLE SPACE LEFT
Insufficient field length for ACSL to continue running. Usually caused by the use of a large number of variables in a large program. Can also be caused by arithmetic loops encountered in statement sorting. An increase in field length of 10 K should be more than sufficient in most cases. Always fatal.

OUTSIDE TABLE LIMIT

A system error in the ACSL translator. Report to system staff with example.

PARAMETER NOT FOUND

Attempt to assign a standard value to a variable other than one of the main arguments in a MACRO definition.
PROC. ENDED INCORRECTLY
An ACSL block delimiter, other than "END", was found inside a "PROCEDURAL" block.

PREMATURE END OF FILE

An end of file was encountered on the translator input file before the logical end of the ACSL source program was found. Implies an incomplete program or a missing END statement.

TABLE ALREADY DEFINED

The table name has already been used in another context prior to the current table definition. Either as a simple variable, another TABLE definition or simple use. TABLE functions must be defined before
their first use since otherwise the translator cannot distinguish the use from normal FORTRAN functions.

TOO MANY CHARACTERS

The truncated identifier, indicated by the message, contains more than 6 characters. Translation continues with the truncated version of the identifier.

TOO MANY ENDS

Statements remain on the input file after the final END of the ACSL program. The remaining statements are listed but not processed. Implies that too many END statements were included in the program, or that statements were misplaced, or that FORTRAN routines are included with the source deck but don't start with SUBROUTINE, FUNCTION, INTEGER FUNCTION, etc.

UNSORTABLE STATEMENT BLOCK

An arithmetic loop was encountered during sorting, and is listed below the message. The statements will not appear on the compile file, but the statements which depend on this block will.

VARIABLE NOT DIMENSIONED

The variable indicated in the error message is being used as an array without being declared as such by an ARRAY, DIMENSION or other such typing statement.

WRONG DIMENSIONS

Attempt to use an array with more than 3 subscripts.

2. RUN-TIME ERROR MESSAGES

Run-time error messages produced by the ACSL executive processing the model drive cards, are as follows:

CAN-T FIND ARRAY ELEMENT IN name

A reference has been made to a particular array element that doesn't exist or has already been deleted once before by a preceding FREEZE.

CAN-T FIND name

The 'name' does not appear in the dictionary or in the case of PLOT, PRINT or RANGE commands, might not have been included on the PREPAR list.

CAN-T SATISFY ERROR CRITERION

The integration algorithm has decided it needs to take a step smaller than MINT to keep the largest error within bound. Must be acknowledged with ERRTAG (q.v.) or the simulation run will stop.

CANNOT TRIM WITH DELAY FUNCTION

An attempt has been made to use the TRIM subcommand of ANALYZ. The Jacobian is in error if DELAY functions are used in the model.

CONSTANT COLUMN - NUMBER IS n
In trying to invert the Jacobian, a constant column has been identified and indicated by numeric value into the list of unfrozen state variables. Usually the result of keeping a state variable in the iteration that has no influence on any other part of the model.

CONSTANT ROW - NUMBER IS n

In trying to invert the Jacobian, a constant row has been identified. Usually the result of keeping a state variable in the iteration with a constant (may be zero) derivative.

END OF COMMAND FILE ENCOUNTERED

An end of file has been sensed on the file identified by logical unit CMD. The simulation study is terminated and control reverts to the operating system.

ERROR AFTER name

Some sort of syntax error has been determined after the given 'name' appears on the command card image. Trying to specify NCI by a real number (2.0 for example): 'CHAR' value as a logical for instance.

ERROR IN EIGEN ANALYSIS ROUTINE

ERROR NUMBER IS n

An error was made in trying to determine the eigen values of the Jacobian matrix. See error listing for eigen analysis routine actually used.

FILE LENGTH TOO SHORT

The RESTORe command found the data block did not match the user block length. Usually caused by attempting to RESTORe a file SAVEd from a previous translation run. Changes to the ACSL program will invalidate previous assignments.

FILE NAME SHOULD BE QUOTED

The argument for the SAVE/RESTORe commands should be a valid file name in quotes, i.e.
SAVE 'JOE'
File names should start with a letter and contain no more than six characters (letters or digits)

ILLEGAL COMMAND WORD

The command word starting the statement is not in the standard list nor is it the name of any PROCEDure established.

ILLEGAL DATA TYPE FOLLOWING name

Something is wrong with the command following the symbol 'name' and before any following symbol.
INDEPENDENT VARIABLE CHANGED IN JACOBIAN EVALUATION name
A state variable has been modified inside the DERIVATIVE section used to calculate the Jacobian. Since the Jacobian evaluator uses numerical perturbation of the unfrozen state variables, any other modification will invalidate the calculation.

INSUFFICIENT AREA FOR DELAY FUNCTION

The array length specified in one of the DELAY functions is too small to accommodate all the data points needed. Usually produced when the model goes through a region requiring a very small step size.

INSUFFICIENT DATA

The statement is terminated when data was expected.

JACOBIAN DETERMINANT ZERO, CAN-T TRIM

The TRIM subcommand of ANALYZ has found that the Jacobian has a zero determinant so the Newton-Raphson iteration can't proceed. Using FREEZE prior to the TRIM can usually eliminate the offending state.

LINE PLOT LIBRARY NOT LOADED

An attempt has been made to make line plots (PLOT with CALPLT true) without instructing the loader or link-edit program to substitute the appropriate device driver. See local addendum for devices available and JCL or system control cards required.

LINEAR ANALYSIS ROUTINE NOT LOADED

An attempt has been made to use the run time command ANALYZ without ensuring that the routines are present to handle the command. Due to infrequent usage, the normal default is to omit the routines that handle the ANALYZ command in order to save memory and load time. See local addendum for JCL required to instruct the loader or link-editor to link in the appropriate modules.

LIST DOESN'T CONTAIN name

One of the ANALYZ subcommands is looking for a variable in a list. For instance FREEZE can only apply to state variables.

NAME ALREADY DEFINED

In using LISTD to process a set of dictionary definitions, the same variable name has appeared twice. Usually caused by omitting continuation digits from column ten (10) for long definitions.

NAME ALREADY IN DICTIONARY

In using BLDDCT to extend to the ACSL dictionary an attempt was made to add a name already present in the dictionary.

NAME FOR PROCEDURE NOT GIVEN OR ILLEGAL

The procedure name is not of the correct form following the PROCED command.

NAME MUST PRECEDE DATA

A data item is given before a name has been established to store the value in, i.e.
SET A $=2.0$ is alright
but SET $2.0=$ A is wrong
NAME OR ELEMENT NOT ON PREPAR LIST - name
One of the commands that refers to the PREPAR list (PLOT, PRINT, RANGE, etc) has a variable name or array element in the list that was not included in the original PREPAR command i.e. PREPAR $\mathrm{Y}(2), \mathrm{Y}(3)$ followed later by PLOT $\mathrm{Y}(1)$.
NEED A NAME FIRST
Modifiers to one of the plot variables refer to a preceding symbol. If no symbol is given it is an error, i.e..

PLOT 'LO' $=0.0{ }^{\prime} \mathrm{HI}$ ' $=5.0, \mathrm{Y} 1$ is incorrect

NO MORE TABLE SPACE, MAX LENGTH USED IS i

The run time table space manager has run out of space and the simulation study must be aborted. Frequently associated with using the stiff integration algorithm which needs 2 N squared words, where N is the number of the state variables. See local addendum for mechanism to increase table space at run-time.

NO SPACE LEFT IN DICTIONARY FOR name

In attempting to extend the user dictionary with BLDDCT, the common block space designated for the dictionary has been filled and no more names can be added. Length may not have been established with NITBLD. Extend the length of the dictionary common block/ZZDCT/ in the user supplied main program.

NO USER SUPPLIED INTEGRATION ROUTINE

An attempt has been made to use integration algorithm seven (IALG $=7$) without supplying a subroutine INTEG to handle the integration.

REFERENCE OUT OF LIMIT OF ARRAY name

An array element is referred to that is outside the declared size of the array. In a SET command sequential data items go into succeeding slots of an array. Each is checked to make sure the array bound is not exceeded, i.e., if A is an array of size five, the following

SET A(3) $=1.5,2.5,5.0,6.0$
would produce this message since the 6.0 is to be stored in $\mathrm{A}(6)$.

REFERENCE TO NON-STATE VARIABLE name

An attempt has been made to specify error tolerances with XERROR or MERROR for a variable that is not a state variable. Check names in state list from debug output.

RESCALE NOT IMPLEMENTED

Reference has been made to the old ACSL system symbols RSCCPL, RSCPPL or RSCPLT that were supposed to cause dynamic rescaling within a plot. This feature was eliminated at level 6 M .

STEP SIZE TOO LARGE. STATE - n

A zero determinant has been found in trying to invert the matrix ($\mathrm{I}+\mathrm{hA}$) in the stiff integration algorithm. Should never happen but may be fixed by reducing the allowable step size.

SYNTAX ERROR X $=\mathrm{Y}++\mathrm{Y}$

The statement is repeated and the line of asterisks stops where the first syntax error occurred.
TAG TOO LONG AFTER name
A TAG string on a PLOT command has too many characters. Actual number allowed will depend on machine type but all machines will accept twenty (20) character messages.

TOO MANY ITERATIONS, CAN-T CONVERGE

The TRIM sub-command of ANALYZ has failed to converge within the specified number of iterations. Either increase the numbers of iterations (NITRMX), reduce the convergence criteria (RMSEMX) or decrease the step (FRACDL). Use REINIT to hold on to any gains obtained with the current iteration.
TYPE CONFLICT ON STORE INTO name
The data does not agree with the predetermined type of 'name'. Logical data can only be .TRUE. (.T.) or .FALSE. (.F.). Integers are allowed into reals, but all other combinations are illegal.

X-AXIS SCALES INCORRECT FOR LOG PLOTS

Y-AXIS SCALES INCORRECT FOR LOG PLOTS on name
The scale values are either negative or zero when making logarithmic plots. Usually the LO value must be specified since the normal rounding will change the LO axis marker to zero.

ZERO PIVOT ELEMENT FOUND AT STATE INDEX n

In using TRIM within ANALYZ, a zero determinant has been found when trying to invert the Jacobian. This message identifies the row number at which the zero pivot element first showed up and can sometimes be correlated to a state variable having a degenerate relationship with the rest of the model.

INDEX

ABS 4-2
Arc-Tangent 4-6,4-7
Absolute Error at Runtime 5-6
Absolute Errors 4-34
Absolute Per Step Error 4-34
Absolute Value 4-2,4-24
Accumulated CP Time 5-12
ACOS 4-3
ACSL Examples A-1
ACSL PROGRAM Card 4-41
ACSL Program Flow Diagram 3-2
ACSL Statements 4-1
ACTION 5-2
Adams-Moulton 4-3
Addition 2-4
AGET B-1
AINT 4-3
Aircraft Longtdnl Motion A-51
Airframe Stability A-51
Algebraic Loop 4-25
ALGORITHM 4-3
ALL Subcommand 5-8,5-9,5-10
ALOG 4-4
ALOG10 4-5
Alphanumeric Labels 2-3
AMAX0 4-5
AMAX1 4-5
AMIN0 4-5
AMIN1 4-5
AMOD 4-5
ANALYZ 5-2
Append a Sign (SIGN, ISIGN) 4-45,4-31
APUT B-1
Arbitrary Functions 4-46
Arc-Cosine 4-3
Arc-Sine 4-6
Arresting Gear Example A-41
Arithmetic Operators 2-4
ARRAY 4-5
Array GET B-1
Array Indices at Run Time 5-1
Array Initialization (SET) B-4
Array Put B-1
ASIN 4-6
Aspirin Dosage Example A-112
ASSIGN 4-6
ASSIGN (MACRO) 6-4
Assignment Statement 4-6
ATAN 4-6
ATAN2 4-7
Axis Crossing Point C-3,C-4
Axis Lengths C-3,C-4
Axis Tick Mark Increment C-3,C-4
Backlash 4-7
Band Limited White Noise 4-37
Batch Operation E-1
Baud Rate C-3
BCKLSH 4-7
BLDDCT B-1
Block Descriptor Names 4-15
Block Transfer (XFERB) B-5
Boolean Operators 2-5
BOUND 4-8
Branch Between Sections 3-3
Branch Statement (GO TO) 4-23
Calculated Flags 3-3
CALL 4-8
CALPLT C-1
Central Processor Usage 5-12
Centralized Integration 4-27
CGDPPL C-2
Data Statements 4-11
CHAR Subcommand 5-7,5-8
DBG 4-11
C-2
Character for Grid (CGDPPL) DBLINT 4-12
5-7
Character for Printer Plots 4-12
C-3
Characters on Line Plots Dead Space 4-12
7-1
Checkout4-8C-5
CIOITGA-62Circulatory System Model
CLEAR Subcommand 5-6,5-9,5-2
CMD C-5CMPXPL4-10
1-4Coding Line, Model Definition
Coding Procedure 1-4
Column Print 5-10
Command Sequences (PROCED) 5-10Comments4-10,5-5
Common Block in FORTRAN Routine 1-5Communication Interval Divisor4-37
Communication Interval 4-8,1-5
4-10
Complex Pole6-1,6-82-1,4-115-5
4-11
CONTINUE5-5Continue Previous RunE-1
A-74-11Cosine Function4-11CSSITGC-5Current Integration OrderC-5
Current Step Size (Monitor) C-5
Damped OscillationA-7
Data Logging 4-33
Data Logging Subroutine Call (LOG)B-3
Data Move (XFERB) B-5
Data Recording Interval 4-8
DEBUG B-2
Debug Print Out 7-2
Debug Subroutine Call B-2
Debugging 7-1
Defer Plots (DEFPLT) C-1
DEFPLT C-1
DELAY 4-13
Denominator Polynomial 4-49
DERIVATIVE 4-14
Derivative Operator 4-16
DERIVT 4-16
Dictionary Extension B-1
Dictionary for a Model B-3,A-94
Dictionary Listing B-3
Differences, ACSL to FORTRAN 2-1
Differentiation, Approximate 4-16
DIM 4-17
Dimension 4-5
DIS C-5
DISCRETE 4-17
Discrete Compensator Example A-104
Discrete Interval 4-29
Display Data Value 5-5
DISPLY 5-5
DISPLY Subcommand 5-3
DIVIDE (MACRO) 6-4
Division 2-4
DO Statement 4-19
Dot Product MACRO 6-8
DYNAMIC 4-19
Eigen Performance 5-3
EIGEN Subcommand 5-3
Eigen Value/Vectors 5-3
EIGPER Subcommand 5-3 4-3
5-3 GO TO STATEMENT EIGVEC Subcommand 5-3 4-23
END 5-5,4-20 GRDCPL C-2
EQUIVALENCE 4-20
GRDSPL C-4
Equivalenced Variable 4-20
Grid on Line Plots C-2
Error Messages F-1
Grid Separation, X-axis C-2
ERRTAG 4-21
Estimated Error 5-6,4-34
Euler Integration 4-3
EVAL 4-43
Event List 4-15
EXIT (MACRO) 6-5EXP4-21
EXPF 4-21
Explicit Structure 3-1
Exponential (EXP) 4-21
Exponential Forcing Functn (EXPF) 4-21
Exponentiation 2-42-4Expressions4-22FCNSW
4-43
First Order Lag
C-1
Fly Back Trace Suppression
4-22
FORMAT
FORTRAN PRINT 4-31
FORTRAN READ 4-31
1-5
FORTRAN Subroutines4-31FORTRAN WRITE
FRACDL Subcommand 5-4
FRACMX Subcommand 5-45-4Fractional Change During Trim5-3Freeze State Variables
FREEZE Subcommand 5-3
C-14-33,4-224-46Functions of 1,2 or 3 Variables4-234-22GAUSS
Gaussian Noise (OU or GAUSS) 4-37,4-22
Grid Separation, Y-axis C-2
HARM 4-24
Harmonic Forcing Functn (HARM) 4-24
Heart-Lung Model A-62
Heat Flow A-28
HI Subcommand 5-7
High Volume Data to Terminal C-4
Hold Mode (MODINT) 4-36
Hollerith Constants 2-2
HVDPRN C-4
Hysteresis 4-24
I/O Statements 4-30
IABS 4-24
IDIM 4-25
IF Statements 4-25
IGET B-3
IHI Subcommand 5-10
ILO Subcommand 5-10
IMPL 4-25
Implicit or Algebraic Loops 4-25
Impulse Response 8-3
INCREMENT (MACRO) 6-4
Independent Variable 4-51
Independent Variable for Range 5-10
INITIAL 4-27
Initial Condition Expression 4-28
Initial Conditions 4-27
Initialize Noise Generators 4-23
Input Statements 4-30,5-11
INT 4-27
INTEG (Subroutine) B-3
INTEG (ACSL Operator) 4-27
INTEGER 4-29
List Dictionary (LISTD) B-3
Integer Absolute Value 4-24
Integer Positive Difference 4-25
Integerization of Real Argument 4-27
Integration 4-27.
Integration Algorithms 4-3
Integration Debug B-5
Integration Step Size 4-10
Integration, Rules on Intvc 4-30
Integration, Rules on Integ 4-28
Interactive Operation E-2
INTERVAL 4-29
INTVC 4-30
Inverse Cosine 4-3
Inverse Sine 4-6
ISIGN 4-31
Iterations for Trim 5-4
IVAR Subcommand 5-10
JACOB Subcommand 5-2
Jacobian 5-2
Job Processing 1-1
Labels 2-3
Language Elements 2-1
Language Features 1-1
Laplace Operator, S 4-49
Lead-Lag Compensator 4-31
LEDLAG 4-31
LIMINT 4-32
Limit 4-8,4-12,4-32C-2
4-32
Line Count With FORTRAN Write
C-1
Line Plots (CALPLT)
4-42
Linear Ramp
4-32
LINES
C-2
Lines Between Points on Line Plots
C-4 LINSPL
A-1,1-2
Limit Cycle
LIST Subcommand 5-3
LISTD B-3
LO Subcommand 5-7
LOC, Subcomand of Action 5-2
LOG 4-33
LOG Subcommand 5-7
Logarithm Base 10 (ALOG10) 4-5
Logarithmic Scaling 5-7
LOGICAL 4-33
Logical Expressions 2-5
Logical Switch 4-33
Logical Unit for Command Stream C-5
Logical Unit for Display C-5
Logical Unit for High Volume Output C-5
Lower Limit 4-8,4-32,4-12
LSW 4-33
MACRO 6-1,4-34
Macro Arguments 6-1
MACRO ASSIGN 6-4
MACRO Calls 6-10
MACRO CONTINUE 6-5
MACRO DECREMENT 6-4
MACRO Definitions 6-1
MACRO Descriptions 6-1
MACRO Directives 6-6,6-3
MACRO DIVIDE 6-4
MACRO Examples 6-7
MACRO EXIT 6-5
4-32 4-32
Limited Integrator MACRO Header 6-2MACRO GO TO6-5
MACRO IF 6-6
MACRO INCREMENT 6-4
MACRO Language 6-1
MACRO MULTIPLY 6-4
MACRO Primary Arguments 6-2
MACRO PRINT 6-6
MACRO REDEFINE 6-6
MACRO RELABEL 6-7
MACRO Secondary Arguments 6-2
MACRO STANDVAL 6-7
MAIN VARIABLE 4-20
MALPRN C-4
Mass-Spring-Damper Model A-7
Matrix Integration 4-30
MAX0 4-34
MAX1 4-34
Maximum Array Length for Debug C-4
Maximum Integration Step Size 4-35
Maximum Integration Order C-5
Maximum of Integer Arguments (AMAX0) 4-5
Maximum of Real Arguments (AMAX1) 4-5
MAXTERVAL 4-34
MERROR 4-34
MIN0 4-35
MIN1 4-35
Minimum Integration Step Size 4-35
Minimum of Integer Arguments (AMIN0) 4-5
Minimum of Real Arguments (AMIN1) 4-5
MINTERVAL 4-35
Missile Airframe Example A-84
MOD 4-36
Moded Integrator (MODINT) 4-36
Model Coding 1-4
Model Execution (START) 5-12
Model Split, Derivative Sections 4-14
MODINT 4-36
Modulus of Real Arguments (AMOD) 4-5
Multiple Derivatives 4-14
Multiplication 2-4
MULTIPLY (MACRO) 6-4
MXOITG C-5
Natural Logarithm (ALOG) 4-4
NCIOUT Subcommand 5-6
NCIPRN Subcommand 5-9
NDBUG C-5
NGXPPL C-2
NGYPPL C-2
NITBLD B-1
NITRMX Subcommand 5-4
No Rewind Flag C-5
No Sort Action (PROCEDURAL) 4-40
NOEVAL 4-43
NOISE 4-37,4-22
NPCCPL C-3
NPCPPL C-2
NPCSPL C-4
NPPPLT C-2
NPXPPL C-2
NPYPPL C-2
NRWITG C-5
NSTEPS 4-37
Number of Plots Per Page C-2
Number of Points For Grid C-2
Number of Points in Y Direction C-2
Number of Points in X Direction C-2
Number of Points Per Character C-2,C-3
Numerator Polynomial 4-49
Operate Mode (MODINT) 4-36
Operators 4-1
Ornstein-Uhlenbeck Process (OU) 4-37
OU 4-37
OUTPUT 5-6,4-39
OUTPUT at End of Run 8-3
Output Communication Rate 5-6
Output Lines Written (LINES) 4-32
Output List Defined in Model 4-39
Over Plot 5-8
OVER Subcommand 5-8
PAGE 4-39
Page Control (PAGE and LINES) 4-39
Parameter Sweep 8-2
Phase and Gain Example A-76
Phase Plane Plot A-5
PHYSBE Example A-62
Physiological Simulation A-62
Pilot Ejection Example A-19
PLOT 5-7
Plot Scale Factor C-3,C-4
PLT C-5
Points per Character on Line Plots C-3
Polar to Rectangular 4-41
Position Limit (DBLINT) 4-12
Positive Difference (DIM) 4-17
Precision 2-1
Predictor Corrector 4-3
PREPAR 5-9,4-39
PREPAR List Change Rule 5-7
PRINT 5-9,4-40
Printer Plot, Points on X-Axis C-2
Printer Plot, Points on Y-Axis C-2
Printer Plots, Points per Character C-2
Printer Plots (PRNPLT) C-2
PRN C-5
PRNPLT C-2
PROCED 5-10PROCEDURAL4-40
PROGRAM 4-41
Program Execution Time (TIMER) B-4
Program Flow 3-1
Program Output3-3
Program Sorting 3-3
PSFCPL C-3PSFSPLC-4
PTR4-414-41PULSE
4-41
Pulse Train (PULSE)
4-42
QNTZR 4-42
Quantization (QNTZR)Quick Reference GuideD-1Radiating Fin ExampleA-28
RAMP 4-42
Random Number Seed 4-22
Random Numbers 4-22,4-51
RANGE 5-10
Raw Run Record File C-6
READ 4-43
REAL 4-43
Real Integerization (AINT) 4-3
Real Pole (REALPL) 4-43
Real Switch (RSW) 4-33
REALPL 4-43
Rectangular to Polar 4-44
REDEFINE (MACRO) 6-6
REINIT 5-11
Reinitialize State Variables 5-11
RELABEL (MACRO) 6-7
Relational Expressions 2-5
Relational Operators 2-4
Relative Errors 4-34
Remainder With Real Arguments (AMOD) 4-5
Reserved Names 1-4
RESET 4-43
Reset Mode (MODINT) 4-36
Residual for Trim 5-3
RESTOR 5-11
Restore User Data Area 5-11
RGET B-3
RMSEMX Subcommand 5-3
Round Scale Factors 4-45
RRR C-6
RSW 4-33
RTP 4-44
Runtime Output 5-6
Runge-Kutta Integration 4-27,4-3
Runtime Command Format 5-1
Runtime Commands 5-1
Runtime Procedures 5-10
Runtime Value Assignment 5-11
Same Scale Factors on Plots 5-8
SAME Subcommand 5-8
Sampled Data A-104
Sampler Macro Example 6-7
SATCPL C-3
SATSPL C-4
SAVE 5-11,4-45
Save User Data Area 5-11
SCALE 4-45
Scale Factors for Plots 5-8,4-43
Second Order Transfer Function 4-10
SET (Runtime Command) 5-11
SET (Subroutine) B-4
SIGN 4-45
SIN 4-46
Sine Function 4-46
Sinusoidal Forcing Functn (HARM) 4-24
Sorting 3-3
SPARE 5-12
Spring Example A-7
SQRT 4-46
Square Root Function 4-46
Standard Value for MACRO Arogs 6-7
STANDVAL (MACRO) 6-7
START 5-12
State List 4-29
State Transfer 4-43
State Transition Matrix 4-4
State Variables 4-27
Statement Order 4-2
Statement Separator 1-4,4-11
Steady State Deermination 5-2
STEP 4-46
Step Responses 8-3
Stiff Integration 4-3
STOP 5-12
Strip Chart Plot (STRPLT) C-2
STRPLT C-2
Subroutine Argument Order 4-8
Subroutine Call 4-8
Subscripted Variables 2-2
Subtraction 2-4
Summary ACSL Operators D-1
Summary Runtime Commands D-6
Summary System Symbols D-8
Suppress Text on Plot Axes C-3,C-4
Switch 4-33,4-22
Symbol Table 3-3
Symbols on Plots C-3,C-4
SYMCPL C-3
SYMSPL C-4
Syntax Error Indicator 7-1
System Symbol Access B-1
System Symbols C-1
TABLE 4-46
Tag Strings on Plots 5-7,5-8
TAN 4-48
Tangent of an Angle 4-48
TBRCPL C-3
TCWPRN C-4
Temperature Distribution A-28
TERMINAL 4-48
Terminal Baud Rate C-3
Terminal Operation E-2
Terminal Width C-4
TERMINAL-INITIAL Iteration A-28
Terminate Statement (TERMT) 4-48
TERMT 4-48
Time Constant 4-4,4-43
TIMER B-4
TITLE C-6
Title on Line Plots C-6
Top-of-Form 4-32
TRAN 4-49
Transfer Block (XFERB) B-5
Transfer Function Macro Listing 4-50
Transfer Function Representation 4-49
Translator 1-1
Transport Delay 4-13
TRIM Subcommand 5-2
TSMITGC-5TTLCPL
TTLSPL C-4
Two Sided Jacobean Evaluation C-5
Type Statements 4-494-51
UNIFI 4-23
Uniform Random Number (UNIF) 4-51
Upper Limit 4-8,4-43,4-12
User Defined Subroutine (SPARE) 5-12
User Integration Routine (INTEG) B-3
VAL Subcommand 5-2
Value Get B-1,B-3
Value Put B-1,B-4
VAR Subcommand 5-2
VARIABLE 4-51
Variable Delay 4-13
Variable Step Size Algorithm 4-3
Variables 2-2
Variables Undefined 7-1
Vector Form 4-5
Vector Integration 4-30
Vector Integrator Restrictions 4-30
VPUT B-4
WEM B-4
WESITG C-5
Whole Part (AINT) 4-3
WRITE 4-51
Write Error Messages (WEM) B-4
C-3 X-Axis Logarithmic Scaling 5-7
Write Error Summary
Write Error Summary C-5 C-5
Write Integration Data (WRITG) B-5
Write Integration Error Summary C-5
WRITG B-5
X-Axis Low Value 5-7
X-Axis Specification 5-7
X-Axis Subcommand 5-7
XCICPL C-3
XCISPL C-4
XERROR 4-34
XFERB B-5
XHI Subcommand 5-7
XINCPL C-3
XINSPL C-4
XLO Subcommand 5-7
XLOG Subcommand 5-7
XTAG Subcommand 5-7
XTICPL C-3
XTISPL C-4
Y-Axis High Value 5-7
Y-Axis Logarithmic Scaling 5-7
Y-Axis Low Value 5-7
YASSPL C-4
YCICPL C-3
YCISPL C-4
YINCPL C-3
YINSPL C-4
YTICPI C-3
YTISPL C-4
Zero Order Hold 4-51
ZHOLD 4-51
ZOH 4-52

[^0]: * The basic structure follows the specification established by the Technical Committee on Continuous System Simulation Languages and under the auspices of Simulation Councils, Inc. (SCi) in SIMULATION 9 (Dec. 1967) pp 281-303.

[^1]: * The system uses labels starting at 99999 and works downwards. Labels with too high a value should not be used, else a conflict may result.

[^2]: * To use this form, you must be familiar with the implementation of each of the operators defined in the language - i.e. whether MACRO or function subroutine. It only works for single line MACROS if at the end of a DO-loop.

[^3]: * For more information see subroutine DIFSUB in "Numerical Initial Value Problems in Ordinary Differential Equations" C.W. Gear, Prentice-Hall, N.J. 1971 pp 150 et seq.

[^4]: * Normally if the system variable TSMITG (two sided matrix evaluation, integration control) has its default value .FALSE., the states are only perturbed in the negative direction.

[^5]: * See the vector integration operator INTVC for another way to solve matrix differential equations.

[^6]: * See DBLINT operator for double integration, acceleration to displacement with limited displacement.

[^7]: * Use of CONTIN at run-time defines the start of a new run in this sense since the integration routine has to be reinitialized.

[^8]: * For two examples of this type of macro use, see the example program, PHYSBE; Section 8 of Appendix A.

[^9]: * Arguments at invocation time are delimited by commas or an equals sign.

[^10]: * See PHYSBE example program in Section 8 of Appendix A.

[^11]: * See addendum for a description of the local control card sequence and options.

[^12]: * McLeod, J., "PHYSBE: A Physiological Simulation Benchmark Experiment", SIMULATION 1. pp. 324-329, 1966.

