
matic problem which will strongly influence coming pro-
gramming languages. Not only will conversational fea-
tures be essential, there may even be a trend back from all
too sophisticated language systems to the simple pointing
with a light-pen. Pointing has always been one of the
safest ways to convey information.

We come back to Wittgenstein and his principle of
speaking clearly or not speaking at all. Since we know that
it is the computer which we can make speak arbitrarily
clearly, we possibly should try to let the computer speak
more and more and to restrict the human user in the
practical situation to point at YES or NO, or some more
equally simple choices, while the computer talks. This may
sound like science fiction today, but it could really be true
that one day this will become the central application of
pragmatics around the computer.

REFERENCES

1. PEIRCE, C. S. Collected Papers• Harvard Press, Cambridge,
Mass. Vol. 1-6, 1931-1935.

Philosophical Writings. (J. Buchler, Ed.). Routledge
and Kegan Paul, London, 1940; or Dover Publications, New
York, 1955; 368 pp.

2. BOCttENSKI, I. M. A History of Formal Logic. U. of Notre
Dame Press, Notre Dame, Indiana, 1961; pp. 99-100.

3. MORRIS, C. Foundations of the theory of signs. In Interna-
tional Encyclopedia of Unified Science, Vol. 1, No. 2, Uni-
versity of Chicago Press, Chicago, 1938.

4. - - . Signs, Language, and Behavior. G. Braziller, New York,
1955.

5. BOLTZMANN, L. Vorlesungen ueber Gastheorie, 1. Theil,
Paragraph 6. Mathematische Bedeutung der Groesse H,
J. A. Barth, Leipzig, 1895, pp. 38-42.

6• SHANNON, C.E. A mathematical theory of communication.
Bell System Tech. J. 27 (1948), 379-433; 623-656.

7. KRAFT, V. Der Wiener Kreis. Springer Verlag, Vienna, 1950.
8• WITTGENSTEIN, L. Tractatus Logico-Philosophicus. First

Print in German, 1921; in English: Routledge and Kegan
Paul, London, 1922.

9. SCHLICK, M. Gesammelte Aufsaetze. Gerold and Co., Vienna,
1938.

10. FEIGI~, H. Logical empirism. InTwentieth Century Philosophy
(D. D. Runes, Ed.), Philosophical Library, New York, 1943,
pp. 373-416.

11. CARNAP, R. The Logical Syntax of Language. First print in
German, 1934; in English: Harcourt Brace and Co., New
York, 1937.

12. - - . Introduction to Semantics• Harvard University Press,
Cambridge, Mass., 1942.

13. Formal Language Description Languages (T. B. Steel, Jr., Ed.).
Proc. of the IFIP Working Conf., Vienna, 1964; North Hol-
land, Amsterdam 1966.

14. GORN, S. Some basic terminology connected with mechanical
languages and their processors• Comm. ACM 4 (1961), 336-
339.

15. - - . Mechanical pragmatics: a time motion study of a mini-
ature mechanical linguistic system. Comm. ACM 5 (1962),
576-589.

1 6 . - - . Semiotic relationships in ambiguously stratified lan-
guage systems. Presented at the Internat. Colloq. for Al-
gebraic Linguistics and Automata Theory, Jerusalem, 1964.

17. MARTIN, R.M. Towards a Systematic Pragmatics--Studies in
Logics. North Holland, Amsterdam, 1959.

Programming Semantics for Multiprogrammed
Computations

Jack B. Dennis and Earl C. Van Horn
Massachusetts Institute of Technology, Cambridge, Massachusetts

The semantics are defined for a number of meta-instructions
which perform operations essential to the writing of programs
in multiprogrammed computer systems. These meta-instructions
relate to parallel processing, protection of separate computa-
tions, program debugging, and the sharing among users of
memory segments and other computing objects, the names of
which are hierarchically structured. The language sophistica-
tion contemplated is midway between an assembly language
and an advanced algebraic language.

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimas, California, August 1965.

Work reported herein was supported by Project MAC, an MIT
research program sponsored by the Advanced Research Projects
Agency, Department of Defense, under Office of Naval Research
Contract Number Nonr-4102(01). Reproduction in whole or in
part is permitted for any purpose of the United States Govern-
ment•

V o l u m e 9 / Number 3 / March, 1966

I n t r o d u c t i o n

An increasing percentage of computation activity will
be carried out by multiprogrammed computer systems.
Such systems are characterized by the application of com-
putation resources (processing capacity, main memory,
file storage, peripheral equipment) to many separate but
concurrently operating computations.

We can cite three quite different examples of multipro-
grammed computer systems to illustrate their diversity of
application. The American Airlines SABRE passenger
record system couples ticketing agents at dispersed offices
to a central data file [1]. The computer support systems of
NASA provide real time control and monitoring of manned
space flights [2]. The Project MAC time-sharing system
permits research workers closer interaction with the powers
of automatic computation [3]. Although these are all on-
line systems, multiprogramming techniques have also been

C o m m u n i c a t i o n s o f t h e ACM 143

used successfully in systems that perform computations on
an offiine, job-shop basis.

We review some of the distinctive properties of a multi-
programmed computer system (MCS), and then introduce
some concepts and terminology that have proven useful ill
studying the properties of multiprogrammed computa-
tions. As we proceed, we define a number of meta-in-
structions tha t embody powers mostly absent from con-
temporary programming languages, but essential to the
implementation of computation processes in an MCS.
These powers relate to (1) parallel processing, (2) naming
objects of computation, and (3) protection of computing
entities from unauthorized access. The character of these
meta-instructions is such that they might form part of a
language intermediate in sophistication between an as-
sembly language and an advanced algebraic language for
an MCS. In fact, the semantics of these meta-instructions
could be incorporated in the definition of an intermediate
language that might be employed at some stage in the
translation of a more advanced language.

We do not claim completeness for the set of meta-
instructions to be described. Additional operations will
prove necessary in practice for a specific MCS. In particu-
lar, no means is discussed whereby an object computation
may advise the supervisor of special scheduling or alloca-
tion requirements. Also, conventions for dynamic control
of segment length have been omitted.

Properties of Mul t iprogrammed Computer Systems

Five properties of multiprogrammed computer systems
are important to the present discussion.

(1) Computation processes are in concurrent operation
for more than one user. A multiprogrammed computer
System is generally the creation of many individuals work-
ing in part toward a common objective and in part for
private goals. A successful MCS must include mechanisms
for preventing undesired interference among computations.

(2) Many computations share pools of resources in a
flexible way. In consequence, the individual planner of a
computation need not be concerned about efficiently using
a certain fixed amount of memory and processing capacity
which would otherwise go to waste. Resources not used by
one computation are available to other concurrent compu-
tations.

(3) Individual computations vary widely in their de-
mands for computing resources in the course of time.

An MCS must have mechanisms (explicit or implicit)
through which a computation may request and release re-
sources according to need. Where many computations are
active, which are not closely coupled in their demands for
resources, the peak demands of some computations will
coincide with the slack demands of others. As the number
of computations in the system is increased, the instan-
taneous total demand for resources will hover closer to
the sum of the individual average demands. Therefore,
the amount of physical resources required in such an MCS
is governed by the average demand over all computations
rather than by the sum of their peak demands.

144 Communications of the ACM

(4) Reference to common information by separate com-
putations is a frequent occurrence.

In an MCS it is advantageous to allow information to
be common among computations proceeding for different
users to avoid needless duplication of procedures and data.
Also, communication among separately planned com-
putations is essential to many MCS objectives. Further-
more, the sharing of a peripheral device by several com-
putations is sometimes required.

(5) An MCS must evolve to meet changing require-
ments.

An MCS does not exist in a static environment. Chang-
ing objectives, increased demand for use, added functions,
improved algorithms and new technologies all call for
flexible evolution of the system, both as a configuration of
equipment and as a collection of programs.

To meet the requirements of flexibility of capacity and
of reliability, the most natural form of an MCS is as a
modular multiprocessor system arranged so that proces-
sors, memory modules and file storage units may be added,
removed or replaced in accordance with changing require-
ments [4].

Concepts and Terminology

Segments. The smallest unit of stored information that
is of interest in the present discussion is called a word. An
ordered set of words grouped together for purposes of
naming is called a segment. A segment is created at some
point in time and has a definite length (which may vary
with time) at any instant of its existence.

Any reference by a computation to data or procedure
information is specified by a word name, w = [i, a], con-
sisting of the index number i of the segment containing the
desired word and a word address a giving the position of the
word within the segment. The index number may be
thought of as an abbreviation for the name of the segment.
The correspondence between an index number and a name
is established by meta-instructions which will be defined
subsequently.

In the programming examples (which are written ill a
pseudo-ALGoL format) variable identifiers, array identifiers
and labels will stand for word names. Word names are
written here as [i, a] only when the index number must be
explicitly mentioned.

The concept of segment has influenced the design of a
commercial computer (the Burroughs B5500), an experi-
mental machine [5] and one military system (the Bur-
roughs D825). The use of segments in software systems is
discussed by Greenfield [6], Holt [7] and others. The design
of addressing mechanisms for MCS's is discussed by
Dennis [8]. A fuller implementation of these concepts in a
machine organization has been discussed by Glaser,
Couleur and Oliver [9], and interesting work in a similar
direction is in progress at the M I T Lincoln Laboratory
[10], IBM [11] and is continuing at Burroughs [12].

Protection. In an MCS, a computation must be denied
access to memory words and other objects of computation
unless access is authorized. In particular, it seems natural

Volume 9 / Number 3 / March, 1966

to implement memory protection on a segment basis. Thus,
we think of a computat ion as proceeding within some
sphere of protection [13] specified by a list of capabilities or
C-list for short. Each capability in a C-list locates by
means of a pointer 1 some computing object, and indicates
the actions tha t the computat ion may perform with re-
spect to tha t object. Among these capabilities there are
usually several segment capabilities, which designate seg-
ments tha t may be referenced by the computat ion and
also give, by means of access indicators, an indication of
the kind of reference permitted:

X executable as procedure including internal read references
for constants.

R readable as data but not executable.
XR executable as procedure and readable as data.
RW readable and writeable as data.
XRW executable as procedure and readable and writeable as

data.

Other types of capability are also permit ted in the C-list
of a computation, and are introduced in the discussion as
appropriate. Every capability contains an ownership
indicator (O for owned, 1N for not owned). Computat ions
have broad powers with respect to owned computing ob-
jects, through mechanisms to be described. In the case of
an owned segment, for example, a computat ion may
delete the segment, and grant or deny other computat ions
access to the segment.

During the execution of a computation, capabilities
will frequently be added to and deleted from the C-list
defining its sphere of protection through the use of recta-
instructions to be described in later sections. The linear
subscript of a capability within a C-list is called its index-
number. I t is through the use of the index number tha t the
capability is exercised by processes. For example, a seg-
ment is referenced by giving the index number of the seg-
ment in a word name. We assume tha t the allocation of
these index numbers is carried out by the system (i.e., the
supervisor program) during the execution of an object
computation.

Processes. We consider tha t the system hardware com-
prises one or more processors, which we can identify as
being distinct from the main memory, the file storage de-
vices and the inpu t /ou tpu t devices. Each processor is
capable of executing algorithms tha t are specified by se-
quences of instructions. A process is a locus of control
within an instruction sequence. Tha t is, a process is tha t
abstract enti ty which moves through the instructions of a
procedure as the procedure is executed by a processor.

In a physical computer system a process is represented
by the information tha t must be loaded into a processor in

The term "pointer" is used here because of its familiarity to
most workers. The permanent representation of a pointer should
not be a hardware address in the machine (main or auxilary
storage), as it is essential that the entire naming structure be
independent of physical device addresses if reallocation of storage
media is to be feasible. The authors suggest the association of a
unique code (called an effective name in [13]) with each computing
entity (segment, directory, etc.), which is assigned at the time the
entity is created.

order to continue execution of the successive instructions
encountered by the process. We call this set of information
the state word of the process, and note tha t it must not only
contain the accumulator words, index words and the word
name of the next instruction to be executed, but must also
indicate the C-list applicable to the computat ion to which
the process belongs.

A process is said to be running if its s tate word is con-
tained in a processor which is running. A process is called
ready if it could be placed in execution by a processor if one
were free. Running and ready processes are said to be
active. A process tha t is not active is suspended and is
awaiting activation by an external event, such as the com-
pletion of an i/o function.

Computations. Loosely speaking, a computat ion may
be thought of as a set of processes tha t are working to-
gether harmoniously on the same problem or job. More
precisely, we define a computation to be a set of processes
having a common C-list such tha t all processes using tha t
same C-list are members of the same computation.

Notice tha t two processes having separate C-lists are
always members of separate computations, even though
these C-lists might describe the same set of capabilities.
Notice also tha t there exist one-to-one correspondences
among computations, spheres of protection and C-lists;
each computat ion operates within the restrictions of a
unique sphere of protection tha t is specified by a unique
C-list. The relationship among these entities is shown
schematically in Figure 1.

C-LIST

,••.... SEGMENT
CAPABILITY

• .~.-----'---"-,SEGMENT
CAPABILITY

: Z

CESS\~
I

/
\ PROCESS /
\ /

, \ /

COMPUTATION

F~G. 1. A computation

Principals. The ordinary notion of a user of an MCS is
of an individual who requests computing service from an
MCS, or who interacts with a time-shared MCS from a
console. We generalize this notion by defining the t e rm
principal to mean an individual or group of individuals to
whom charges are made for the expenditure of system
resources. In particular a principal is charged for resources
consumed by computations running on his behalf. A pr im
eipal is also charged for retention in the system of a set of
computing entities called retained objects, which may be
program and data segments, for example. The structure
and identification of these retained objects is discussed in
a later paragraph.

We can clarify our notion of a principal by giving some
examples. Each individual user of the MAC time-sharing
system acts as a principal, since he is able to utilize system
resources to achieve any personal goal--restr ic ted only by

Volume 9 / Number 3 / March, 1966 Communications of the ACM 145

an accounting of his expenditure of basic resources. He
may create, modify and delete segments of procedures and
data solely according to his personal objectives. In the
MAC system we also find principals consisting of groups
of individuals. Such a group principal might be responsible
for the maintenance of a system of procedures that solves a
certain class of mathematical problems (e.g., matrix opera-
tions or statistical analysis). Another group principal might
have cognizance over a programming language system
including editing routines, compiling routines and de-
bugging aids. Still a third principal might oversee the
common procedures of an extensive design project involv-
ing the cooperative effort of many people.

In the ease of an airline information processing system,
the agents do not participate as principals but simply com-
municate with a set of procedures that enable them to per-
form well defined interrogations of and operations on a
centrally stored data base. In such a system, a principal
might consist of a team of system planners and program-
mers responsible for the success of a single aspect of the
system's mission. Examples of such separate aspects are
passenger records, aircraft scheduling and accounting.

In the ease of computer support for a manned space
flight, separate principals could be responsible for different
aspects of the mission--guidance during propulsion,
tracking while in orbit, orbital computation, medical
data processing, etc.

T h e S u p e r v i s o r

The term supervisor is used here to denote the combina-
tion of hardware and software elements tha t together im-
plement a core of basic computer system functions around
which all computations performed by the system are con-
structed. For present purposes we suppose that the core of
functions includes mechanisms for (1) allocation and
scheduling of computing resources, (2) accounting for and
controlling the use of computing resources, and (3) im-
plementing the recta-instructions.

We do not inquire in the present paper as to the internal
workings of the supervisor required to perform the above
functions. Instead it is our aim to point out the essential
features of the interface between the supervisor and user
processes which operate in lower spheres of protection.
However, it is helpful to think in more concrete terms
about how the supervisor accomplishes some of its func-
tions.

The Process List. Specifically, let the process list be a
data structure within the supervisor, with an entry for
each process existing in the system. Entries are created in
and removed from this list by various recta-instructions
and by other mechanisms that will be described. Each
entry can hold the state word of its corresponding process,
as well as accounting and scheduling information.

As mentioned before, each process is either running,
ready or suspended.

Allocation and Scheduling. At any time segments of
information will be distributed among a hierarchy of

storage devices (core, drum, disk and tape, for example)
with that information most relevant to the on-going
computation processes located in the more accessible
media. With each computation there is associated a set of
information to which it requires a high density (in time)
of effective reference. The membership of this working set
of ilfformation varies dynamically during the course of the
computation. The supervisor's problem is to decide how
information (segments) should be distributed in the
storage hierarchy and how the queue of active processes
should be disciplined to make most effective use of system
resources in accomplishing the MCS mission.

Accounting and Control. We suppose the charges for
the expenditure of computation resources associated with
the execution of a process are assigned to the principal tha t
was responsible for the creation of the process. We also
assume that each principal is given an allotment of
resources, and that appropriate action is taken by the
supervisor if this allotment is exceeded.

P a r a l l e l P r o g r a m m i n g

Basic Primitive Operations. The basic primitive opera-
tion of parallel programming is implemented by the meta-
instruction

fork w;

as suggested by Conway [14] where w is a word name. A
f o r k meta-instruction initiates a new process at the
instruction labeled w. The newly created branch process is
par t of the same computation as its creator or main
process; tha t is, it is associated with the same C-list. A
process tha t has completed a sequence of procedure steps
is terminated by the meta-instruetion

qui t

after which the process no longer exists and its state word
is discarded from the process list. A set of primitives for
parallel programming must include a mechanism whereby
one process may be continued just when all of a certain
set of processes have completed. All tha t is required is a
procedure step that will decrement a count and test for
zero. We use the instruction

jo in t, w;

which is essentially Conway's join instruction. Here t is the
word name of the count to be decremented and w is the
word name of an instruction word to be executed if the
count becomes zero as indicated in Figure 2. I t is essential
tha t the three references to the count t not be separated in
time by references to t from other processes. This require-
ment is indicated by the dashed box in the Figure 2 and is
readily achieved in practice by combining the two actions
into one machine instruction that is completed with a
single reference to the count word.

In describing algorithms involving parallel processes, it is
convenient to declare certain quantities as private to a
process. For this purpose the declaration

private x ;

146 Communica t ions of the ACM Volume 9 / Number 3 / March, 1966

T: =T- l]

°

~0

b . l >
FIG. 2.

7

GO TO [> = = W

The jo in procedure step

means tha t the quant i ty named x is to exist only so long as
the process executing the declaration exists; tha t is,
pr ivate data is lost when a process quits. At a fo rk the
values of any quantities declared private to the main
process are assigned as values of corresponding quantities
of the branch process. In practice, the state word of a

lock w;
process is the natural representation of pr ivate data. I f .. .
there is more data declared pr ivate than can be represented . . .
in the state word, the system must create a segment for ...
pr ivate data which is copied at each fo rk and lost upon unIock w;

reaching a quit.
Lockout. A provision whereby two processes may

negotiate access to common data is a necessary feature of
an MCS. Suppose a certain data object (which might be a
word, an array, a list structure, a portion or all of a seg-
ment) may be updated asynchronously by several proces-
ses, which are perhaps members of different computations.
Updat ing a data structure frequently requires a sequence
of operations such tha t intermediate states of the data are
inconsistent and would lead to erroneous computat ion if
interpreted by another process.

The lockout feature proposed here presumes tha t all
computat ions requiring access to the data object are well
behaved. If it is desired to protect the data object from
destructive manipulation by an untrus tworthy computa-
tion, routines with protected entry points as described
later in this paper must be employed.

We associate with the data object a one-bit lock in-
dicator tha t is accessible to all processes requiring use of begin
the data object. Two meta-instructions are introduced
tha t operate on the lock indicator w.

lock w;

The effect of the lock meta-instruction is given in Figure
3a. The lock bi t is set to one just when the data object has
been found unlocked by all other processes. Again, as
indicated by the dashed box, the two references to w must
not be separated by references to w from other processes.
The meta-instruction

unlock w;

resets the lock indicator to zero as in Figure 3b.

b

~A

b)

FIG. 3. Lock and u n l o c k meta- instruct ions

The use of these meta-instructions would typically be:

update sequence for data object
associated with lock indicator w.

In practice the execution t ime of a typical update
sequence is quite small and the chance tha t a process will
hang up oll a lock instruction will be very low. However, a
process may be removed from execution if a processor is
preempted by a higher priority computation. Thus, a data
object could remain locked for a substantial t ime if such
preemption occurred between a l o c k / u n l o c k pair. Then
hangup of other processes interrogating tha t lock indicator
could be highly probable. A solution to this problem is to
inhibit interruption of a process between execution of a
lock and execution of the following u n l o c k . Of course,
this requires tha t a t ime limit be set on the separation of
l o c k / u n l o c k pairs.

An example. An elementary example of parallel
programming tha t illustrates the use of these recta-
instructions is the following program tha t evaluates tha t
dot product of two vectors A and B.

real array All :n] , B[l :n] ;
Boolean w; real S; integer t;
private integer i;
t := n;
for i := 1 s t e p 1 u n t i l n do

fork e;
quit;
e:
subs tance :

end;

begin private real X;
X := A[i] X B[i];
lock w;
S : = S + X ;
unlock w;
jo in t, r;
qui t ;

e n d ;

V o l u m e 9 / N u m b e r 3 / M a r c h 1966 C o m m u n i c a t i o n s o f thc ACM 147

Obviously, this computation is too trivial for parMlel
programming to be of practical interest. If the algorithm
expressed by the statement labeled substance, instead of
being a simple multiplication, involved the operation of a
large, complex system of procedures (e.g., the compilation
of a segment of procedure), the notation of parallel process-
ing as used above would allow several instances of that
algorithm to be in simultaneous execution, thus more
effectively utilizing the presence of its procedure informa-
tion in main memory.

Input /Output . A basic power of computations in an
MCS is the ability to commnnicate with peripheral (input/
output) devices. Two classes of communication have
evolved in terms of implementation in present day com-
puter systems. In the simpler class a process requests the
transmission of a unit of information (word or fraction of a
word) to or from a peripheral device and waits in suspended
status until the information is transmitted before con-
tinuing. (A processor, as contrasted with the process, may
be executing other processes during the wait interval,
however.) This form of implementation is appropriate for
low data-rate situations, and also where a close inter-
action between the computation and the peripheral
devices is required (e.g., quick response to brief inquiries
from a remote console).

In the second form of input /ou tput operation, a se-
quence of interactions between memory (i.e., a segment)
and the peripheral device occurs in response to an initia-
tion signal from a process. The process remains suspended
until all interactions between memory and the peripheral
device have been completed.

In either case a principal characteristic of the input /
output operation is the elapse of time between initiation
and completion. This input~output wait is generally long
compared with the instruction execution time of a typical
central processing unit. For present purposes we do not
distinguish further between these two forms of input /
output operations, and call both by the term i /o function.

Since peripheral devices are part of the physical re-
sources of a computer system, the use of i /o functions must
be restricted to computations authorized to do so. I t is
natural to consider an i/o function as representing another
class of capability tha t may be entered in the C-list tha t
defines a sphere of protection. This capability is then
exercised by the metadnstruction

execute i / o f u n c t i o n i;

where i is the index number of an i /o function capability
in the C-list of the computation. Performance of this
procedure step by a process causes initiation of the i /o
function represented by the i th entry of the C-list. The
process then becomes suspended and remains so until the
i /o function has completed. I t then becomes active again
to perform subsequent procedure steps.

Particular stress has recently been placed on ability to
specify computations that may compute in parallel with
input /ou tput operations. Within the scheme presented

148 C o m m u n i c a t i o n s o f t h e ACM

here, this goal is easily achieved through the execution of
f o r k meta-instructions prior to the execution of i /o func-
tions.

Motivation for Parallelism. The motivation for en-
couraging the use of parallelism in a computation is not so
much to make a particular computation run more ef-
ficiently as it is to relax constraints on the order in which
parts of a computation are carried out. A multiprogram
scheduling Mgorithm should then be able to take advan-
tage of this extra freedom to allocate system resources
with greater efficiency.

Moreover, the notation of parallel programming is a
natural way of expressing certain frequently occurring
operations of computations running in an MCS. Suppose,
for example, we wish to program a computation to receive
messages from any of a number of user consoles, where
the messages are to arrive in some unknown and arbitrary
order, and it is not known whether some consoles will ever
send messages. Let listen(i, j) be an i n t e g e r p r o c e d u r e '
tha t waits for a message to be received from console i and
writes the message in the segment with index number j.
The value of listen is set to the number of symbols in the
message. Let analyze(i, j , n) be a p r o c e d u r e which scans
a message of n symbols received from console i and written
in segment j, and takes whatever action is necessary in
response to the content of the message. Then the message-
receiving computation described above may be program-
med as follows.

b e g i n pr ivate i n t e g e r i;
for i := 1 s tep 1 u n t i l m do

fork e ;
qu i t ;

e: b e g i n in t eger j, n;
j := create s e g m e n t RW;
n := listen (i, j);
analyze (i, j, n);
qui t ;

end;
end;

The c r e a t e s e g m e n t meta-instruction introduces a
segment capability into the C-list of a computation and is
discussed in a following section.

I n f e r i o r S p h e r e s o f P r o t e c t i o n

I t is useful to think of a computation's sphere of protec-
tion as having been established by another computation,
tha t is, by the action of a process operating within another
sphere of protection. A major reason for taking this view
concerns the debugging of programs in some programming
language system (PLS). However, other uses of this
concept are also possible.

In connection with program testing (debugging),
suppose that the processes of a PLS are carried out, as for
any object computation, within some sphere of protection
A. These processes must have access to all of the user's
computing objects pertinent to the program under test,
as well as to the procedure segments of the PLS. Since the
program under test is likely to be faulty, it is desirable to

Vohune 9 / Number 3 / March, 1966

protect both the user's permanent objects, and any
objects created by the PLS on his behalf from uninten-
tional use or destruction by the procedure being debugged.
To allow the processes under test to be operated within a
sphere of protection distinct from the one effective for the
PLS, we define several meta-instructions.

i := create sphere w; Append an owned inferior sphere capa-
bility to the C-list with index number
i. The word name w is the return point
for exceptional conditions, as ex-
plained later.

The process executing this recta-instruction operates in
a sphere we call the superior of the created sphere. Once
in possession of an inferior sphere capability (Figure 4), a
process may grant some of its capabilities to the inferior
sphere by the following recta-instruction.

i : = g r a n t O | XR | j 'k;

XRW

Grant capability j to inferior sphere k with index lmmber i.
Here j and k are index numbers in the current C-list, and

i is an index number in the inferior C-list.

The granted capability is entered in the C-list of inferior
sphere /c and may be a segment capability, i/o function
capability, entry capability or directory capability. En t ry
and directory capabilities are discussed in laterparagraphs.
The braces mean that one of the strings within them must
be selected to form part of the meta-instruetion. Here X
stands for the null string. The string O indicates that the
inferior sphere is to have ownership powers with respect
to the granted capability. The other strings can be used
only if j is the index number of a segment capability. In
this ease the capability is passed down with restricted
access authority. For example,

i := grant X j, k;

grants authority to execute the segment but not to read

C-LIST /..--~-- ~ \\

/ / I

[SEGMENT Jc"-.. "~ '~ - - ~ /
I \ eo .OT T,O.

FIG. 4. Control of an inferior computation

it, write it or exercise ownership of it. The g r a n t recta-
instruction cannot be used to pass a capability that is not
implied by a capability present in the higher sph.ere.

start i, w; Initiate a process at instruction word name w
within inferior sphere i.

The new process commences with no private data, that is.
a zero state word except for the instruction word name w.

Exceptional Conditions. Next we ask what should
happen if a process operating in an inferior sphere en-
counters an exceptional condition, that is, a procedure step
requiring intervention by a higher level before the object
process may continue in a sensible manner. Some excep-
tional conditions call for action by the supervisor. These
include the following:

(1) Fault. A fault is a clear indication of hardware
malfunction. A memory parity error is a good example.
The supervisor is responsible for correct operation of
processor and memory units.

(2) Resource excess. A resource excess occurs if a process
invokes resources in an amount exceeding the allotment
to the principal responsible for its computation.

(3) Addressing snag. An addressing snag occurs when
a process generates a valid address, but the desired infor-
mation is either not in main memory or a reference
mechanism has not been set up. The supervisor must move
the desired information into main memory from file
storage and set up the neeessa~T linkage.

Other exceptional conditions should be acted upon by
the superior computation of the process in trouble, since
only the procedures which established the process know
how these conditions should be interpreted. These excep-
tional conditions are as follows.

(1) Sphere violation. A sphere violation occurs if a
process refers to a capability that does not exist in the C-
list of its computation, or makes invalid use of a capability
(attempts to write in a segment for which only the execu-
tion capability is authorized, for example). A sphere viola-
tion also takes place if a reterenee is made beyond the
limits of a segment.

(2) Halt instruction. A h a l t means "terminate this
process and notify superior" as contrasted with q u i t
which means "terminate this process and forget it."

(3) Breakpoint instruction. A b r e a k p o i n t is substi-
tuted for other instructions by a debugging program in
order to conduct a breakpoint analysis of a program under
test. A b r e a k p o i n t has the same effect as h a l t except
that a different indication is presented to the superior
procedure.

(4) Undefined instruction. A processor generates this
condition when it is called upon to execute an undefined
operation code.

(5) Arithmetic contingencies. Such events as "divide
check" call for action by a superior procedure when not
explicitly handled by the inferior computation.

In any of these events, the process in which the excep-
tional condition occurred becomes suspended, and a new

Volume 9 / Number 3 / March 1966 Communications of the ACM 149

process is initiated in the superior sphere at the instruction
word specified when the inferior sphere was created. The
new process starts with two pieces of private data: a
number indicating the reason for the interruption, and an
index number of an owned suspended proees~ capability
tha t is appended to the C-list of the superior sphere at the
time of interruption. This capabili ty allows the superior
computat ion to have ~ccess to the state word of the
process in which the exceptional condition occurred. The
following meta-instructions are defined with respect to a
suspended process capability:

f e t c h s t a t u s i, w; Fetch the state word of suspended process
i and write at word name w.

s e t s t a t u s i , w; Set the state word of suspended process i
according to information at word name
'W.

c o n t i n u e i ; Reactivate suspended process i and delete
from the C-list.

Notice tha t the s e t s t a t u s meta-instruction must disallow
a change in certain critical par ts oi the state word of the
suspended process. For example, the superior sphere must
not be able to cause the state word of the suspended
process to point to a different C-list.

A debugging procedure needs primitive commands which
allow it to "pick up the pieces" after a computat ion under
test has malfunctioned. The following meta-instructions
are useful under these circumstances:

s t o p]% Suspend all processes operating in inferior
sphere k.

Execution of this meta-instruction causes each active
process in inferior sphere/~ to be suspended. Corresponding
to each inferior process a suspended process capabil i ty is
created in the C-list of the superior sphere. Also, a process
in the superior sphere is initiated to correspond to each
inferior process, just as though the inferior process had
encountered an exceptional condition.

Capabili ty j in the C-list of inferior sphere i can be
examined by the meta-instruction

examine i, j, w;

The information contained in the capability is copied
into several words start ing at word name w.

If the inferior computat ion has clogged its C-list with
unneeded capabilities, the superior computat ion can
remove them with

u n g r a n t i , j ;

which erases capabil i ty j f rom the C-list of inferior sphere i.

P r o t e c t e d E n t r y P o i n t s

An impor tant class of situations arises when a peripheral
device is operated or a data object is manipulated on be-
half of several concurrent computations. Examples of this
situation are:

(1) A control routine for transferring messages between
user computat ions and remote terminals of a given class.
Frequently, a system of remote terminals is coupled to a

central processing system through a single i /o function
(rather than one per terminal device).

(2) A routine which updates a data base and may be
called asynchronously by many separate user computa-
tions.

The planning of such a routine 2 requires tha t cMling
computat ions be protected from each other. I f A and B
are two computat ions using the routine S, it must not be
possible for a malfunction of A's processes to cause in-
correct execution of B's procedures. Clearly, neither A
nor B should be able to modify the conlmon data D used
by S. Furthermore, A and B nmst be forced to initiate
operation of S at a proper entry point, for erroneous
transfer of control to an arbi t rary instruction of S is likely
to cause meaningless modification of the common data D.
However, if D is to be writ ten by S, then the processes
executing S must have in their C-lists the capabili ty to
write in segment D as well as the capabil i ty to execute any
instruction of S.

I t follows tha t a modification or change of C-list must
accompany transfer of control to S. A mechanism for
accomplishing such restricted use of a procedure we cM1 a
protected entry point.

The mechanism we describe supposes tha t a process
calling the protected procedure executes it in a distinct
sphere of protection R, returning to the original sphere of
protection A upon completion. The change of association
of process with C-list implied here is accomplished by the
e n t e r meta-instruct ion which requires an additional
capability, the entry. An entry capabili ty is created by the
owner of a protected procedure through the use of the
meta-instruct ion

h := c r e a t e e n t r y w, n;

where h is the index number in the creator 's C-list of the
created capability. Here w is the word name [i, a], and i
must be the index number in the creator 's C-list of an
owned procedure segment. The entry capabili ty thus
created authorizes calls to be made to the word names
it, a] through [i, a+n] inclusive. Also included in the entry
capabili ty is a pointer to the C-list of the creating com-
putation. Once created, the entry capabili ty can be copied
into the C-lists of other computations, using mechanisms
to be described.

The entry to and exit from a protected procedure is
depicted schematically in Figure 5. To enter a protected
procedure a process gives

e n t e r j , r, k;

where j is the index number of an entry capability. The
cMling process is suspended, and a new process is created.
The C-list of this new process will be the C-list specified
by the entry, with the addition of two new capabilities.
One is a suspended process capabil i ty pointing to the state
word of the calling process, and the other is a duplicate of
the capability having index k in the caller's C-list. The
index numbers of these capabilities are reported as pr ivate

Introduced as a "protected service routine" in [4].

150 Communications o f t h e ACM Volume 9 / Nunlber 3 / March, 1966

data in the state word of the new process. The new process
is set to begin execution at word name [i, a+r] , where i
and a are quantities specified in the entry, as mentioned
above. Notice that i is an index number with respect to
the new C-list, not that of the caller, and also that r must
satisfy 0 _< r < n, where n is also specified in the entry.
The remainder of the new state word is set equal to the
corresponding parts of the caller's suspended state word.
Finally the new process is made active. The protected
procedure thus given control can use the f e t c h s t a t u s ,
se t s t a t u s and c o n t i n u e recta-instructions to communi-
cate with the caller and reactivate his calling process
whenever this is appropriate.

The capability transmitted to the protected computa-
tion (represented by index lc above) can not only be a seg-
ment capability, i /o function capability or entry cap-
ability, but can also be a directory capability. As described
in the next section, a directory consists of a collection of
capabilities. Thus the e n t e r meta-instruction provides a
quite general, yet reasonably efficient, facility for passing
to the protected procedure the capabilities that it needs
to perform its service for the caller.

D i r e c t o r i e s a n d N a m i n g

Until now, the discussion has been covering those aspects
of an MCS that deal with the active performance of
computing tasks for the benefit of the system's users. Now
consider the fact that in most MCS's, even if no active
computing is taking place, each principal of the system is
still represented passively in the system by a set of re-
tained objects. Every retained object is either a seg-
ment, an i/o function, an entry or a directory. Here we

PROCESS LIST

PROCESS
ENTRY

C -,_._L I S,_.T,_ ~ C-LIST\

_ _ _

cE2pTAR~' L ITY I / ~APAB'L'TY I

FiG. 5. Entry to and exit from a protected procedure

are letting the segment play a role which has been as-
cribed to something called a.file in many MCS's, particu-
larly in the MAC system. In the present formulation, a
file is simply a long-lived segment.

Sharing of Retained Objects. The possibility of rapidly
and automatieMly controlling the sharing among win-
eipals of retained objects, chiefly procedure and data
segments, is one of the main characteristics that dis-
tinguishes the MCS from other types of computing systems
[3]. The importance of sharing is testified to by the fact
that the file manipulating machinery of the MAC system
has recently undergone a major revision, motivated in
part by a desire to facilitate such sharing [15].

Besides being useful to individual users who wish to
borrow each others routines, a sharing mechanism is also
useful to a group of users who wish to reference certain
segments in common. Such segments might be a set of
library routines or a set of procedures making up a pro-
gramming language system. I t is natural to think of these
segments as being owned by a principal associated with
the group of users as a whole. A mechanism (such as the
one to be described) is required for permitting an indi-
vidual user to gain access to the directory of the group
principal.

Desiderata for Names. Through the capabilities in
their C-lists, computations can, among other things,
manipulate retained objects. In performing these manip-
ulations, the processes of a computation nmst specify
information that unambiguously distinguishes each
object of interest from all other retained objects in the
computing system. Such information constitutes the name
of the object.

Retained objects are created and deleted arbitrarily,
and any particular object may remain in existence for an
arbitrarily long time. There are two reasons why the name
of an object can never be changed by the system through-
out the objeet's entire existence. First, if a name is changed,
then all usages of that name that are embedded in other
objects (e.g., segments) within the system must be up-
dated. This alternative may be dismissed as being entirely
impractical in a large MCS. The second reason why the
system nmst leave all names unchanged is that every
retained object is frequently referred to directly by people.
People are used to thinking in terms of iuvariant names;
to find that yesterday's " X " is suddenly today's " Y "
would be disconcerting.

Another requirement which human usage places on the
names of objects is that they should be Mphanumeric and
have mnemonic significance. Each principal should be
able to choose freely the names by which he will identify
the objects he retains, without regard to the choices of
names made by other principals.

Ambiguous Names. If the names of two different
objects have been freely chosen by two different prinei-
pals, those names may possibly be identical. When this
common string of characters is generated subsequently by
a process, the computer system will not be able to deter-

Volume 9 / Number 3 / March, 1966 Communications of the ACM 151

mine which of the objects is being designated. Such a
string of characters is said to form an ambiguous name.

The problem of ambiguous names also manifests itself
in more traditional, non-multiprogrammed computing
environments when groups of independently written sub-
programs are to be combined into one large program. One
author has called for "an orderly corpus of symbology"
designed to prevent name conflicts before they occur [16].
Others have offered a solution based on the loading-time
definition of each subprogram's symbolic interface with
its enviromnent [17].

The most straightforward way of eliminating the
possibility of name ambiguities within an MCS is to restrict
each principal in his choice of names; a principal can be
required to begin every one of the names of his objects
with a string of caracters tha t constitutes his principal
name. The remainder of the name of an object, its chosen
name, may then be freely selected by the principal re-
taining the object. This method of preventing name con-
filets has been employed in the MAC time-sharing system
[18].

False Names. In order to conserve storage, it is
reasonable to embed within a procedure segment only the
chosen names of the objects being refererlced, with the
understanding that the computer system can supply the
principal name because it knows which principal initiated
the process that is executing the procedure segment. Even
if a principal has a complex program consisting of many
procedure segments, each containing references to the
others, the above scheme still insures that when the
author principal operates the program the system will
always supply the correct principal name to augment the
chosen names embedded within the segments.

A serious problem arises, however, if this program is
shared with a second principal and this principal at tempts
to execute the program. Intersegment references will
evoke the name of the second principal, rather than that of
the author. The names thus formed will be false names,
because they will designate objects that are very different
from those intended by the author. Such names will often
designate no existing object at all, but occasionally they
may designate objects of the second principal that are
unrelated to the borrowed program.

Preview. The problem arises of simultaneously realiz-
ing the following four goals: (1) to avoid the creation of
ambiguous names, (2) to provide reasonable freedom for a
principal to choose some portion of the names of his
objects, (3) to allow intersegment references to consist of
parts of names rather than full names, and (4) to permit
sets of objects to be shared without invalidating internal
references.

The solution we propose stipulates that each reference
to an object be derived from a partial name relative to
some directory of objects, together with the index number
of a capability pointing to tha t directory. Moreover, we
allow the directories of the system to be organized into a
hierarchical structure, as suggested by Daley and Neuman
[19].

This approach has two major advantages:
(1) A whole subhierarchy of objects can be communi-

cated among several computations or principals by passing
a single pointer to the head directory of the subhierarchy.

(2) I t is easy to design the MCS so that programs can be
shared without the possibility that false names will be
generated by their execution.

In the following paragraphs we define the proposed
naming structure and introduce the meta-instructions
necessary for computing within its framework.

Directories. A directory is a set of items, each being an
association between a name component and a capability
which points to a segment, i /o function, entry or another
directory. Recall that each capability includes an owner-
ship indicator (O for owned, N for not owned), and that a
segment capability includes an indication (R, W, X or a
combination) of the type of reference permitted. Each
item of a directory also contains an access indicator (P
for private, F, for free). The interpretation of these
indicators in directories is explained below.

Associated with each principal is exactly one directory
called a root directory, which stands at the head of a
hierarchy of the principM's retained objects. We Mlow
perhaps many items to point to the same object, and in
consequence, an object may be accessible through the
directory structure from different root directories.

Ownership. A principM always owns his root directory.
Otherwise, an object is owned by a principal just if that
principal owns a directory in which there exists an item
with an O indicator that points to the object. Thus, a
principal owns an object if and only if there is a loath
through the directory tree from his own root directory to
the object such that each node of the path contains an O
indicator.

When the supervisor creates a computation on behalf of
a principal, it always places in the C-list of such a com-
putation a directory capability with an O indicator that
points to the principal's root directory. The principal is
then said to own this computation and each of its processes.
These processes are then permitted to exercise powers of
ownership with respect to objects owned by the principal.

Using the Directory Structure. The powers of a computa-
tion with respect to the directory structure are embodied
in meta-instructions as follows. We suppose that any
process has at least one entry in its C-list giving it a
directory capability.

x)

j : = acquire [RWxRw~R i i, (name component};

Here i is the index number of a directory capability. This
directory is searched for an association with (name
component}, the corresponding capability is entered into
the C-list of the computation to which the running process
belongs, and its index number is reported as j. Capability
j is tagged O if and only if directory i is tagged O in the

152 Communications of the ACM Volume 9 / Number 3 / March, 1966

DENNIS

FORTRAN /"OX x VANHORN
~\ N / EX ~ ~ERIMENT N / ' ~

MATRIX'/\ CIRCUIt/THEORY </ENNiSEXP~

o /

/ I n \ MAXPROD Z / \
' MU ~ ~TIPLY / N / l d ~

\ / MATMULT / ~.

SEGMENT
FIG. 6. A directory structure

C-list, and the capability being loaded is tagged O in
directory i. A sphere violation results if the capability
referenced is tagged P in the directory item and directory
capability i is not owned (i.e., contains an N indicator).
In the case of a segment, the type of reference permitted
may be changed from that permitted in the directory item,
but, an a t tempt to enlarge the class of reference permitted
to a nonowned segment is also deemed a sphere violation.

r e l e a s e i ;

Remove the capability with index number i from the C-
list of the running process.

Ownership of an object implies the ability to modify it,
delete it, and grant access to the object by other principals.

place {FP} i, (name component), j;

Here i must be the index number of an owned directory
capability. An item is inserted in directory i associating
the capability having index number j with <name com-
ponent}.

remove i, (name component}

The item associated with (name component} in owned
directory i is removed from the directory.

Creation and Deletion of Retained Objects. Segments,
entires and directories can come into existence upon
execution of the following recta-instructions.

x

'segment #R ;

i := c r e a t e X R ~
e n t r y w, n;
dire etory;

A capability pointing to the created object is entered into
the C-list of the process with an O indicator, and its index
number is reported as i. Note that a name is not associated
with the object at the time of its creation, but only when
an entry is made for it in some directory by means of a
p l a c e recta-instruction.

This illustrates the point that names are a convenience
for principals. Different names may be convenient for
different principals, and no name need be assigned unless a
principal may need to select that object from the directory

structure at a later time. Thus for example, segments may
be created by computations for temporary storage pur-
poses without affecting the directory structure.

The owner of a segment, entry or directory can cause it
to cease to exist by using the following recta-instruction:

d e l e t e i, (name component};

The owned object pointed to by the capability associated
with (name component) in directory i is deleted so that it
has no further existence. Any at tempts to exercise cap-
abilities pointing to a deleted object are treated as sphere
violations.

The r e l e a s e and r e m o v e meta-instruetions differ from
d e l e t e in that the former recta-instructions simply remove
capabilities from C-lists and items from directories,
respectively, while the object itself continues its existence
if there are other capabilities and items pointing to it.

We suppose then that the existence of a segment, entry
or directory extends from its time of creation until either
specifically de le te ' ed by its owner or until r e l e a s e ' e d
from all C-lists and remove ' ed from all directories. This
convention yields the possibility of having a retained
object with no owner. This seems quite reasonable be-
cause the following situation may occur frequently. An
obsolete subroutine segment S is r emove ' ed from the
directories of a library principal L but remains in use by
principals A, B and C. The segment was previously owned
by L, but now has no owner. The existence of S continues
just until A, B and C have abandoned use of it. Since we
assume there can be no more than one owner of an object,
the only alternatives are to assign ownership to one of A,
B or C (but how do we choose?), or to generate separate
copies of S for each sharing principal.

The Structure of Names. Since every computation
initially has in its C-list at least one root apex directory
capability, it is clear that by giving a series of acquire ' s , a
computation can make its way through the directory
structure along any path, as long as it knows the correct
series of name components to use. A series of name com-
ponents leading from a directory to an object is called the
partial name of the object with respect to that directory.

Because of the structure of the directories, an object
can have many names, as well as many partial names with
respect to any directory. For example, the direetolT
structure in Figure 6 shows a particular segment, owned
by the principal FORTRAN, which has the following
n a n l e s :

FORTRAN, MATRIX, MULTIPLY
DENNIS, EXPERIMENT, SUBROUTINES, MATMULT
DENNIS, CIRCUITTHEORY, MAXPROD
VANHORN, DENNISEXP, SUBROUTINES, MATMULT

Notice that the item named D E N N I S E X P within the
root directory VANHORN points to the directory whose
full name is DENNIS , E X P E R I M E N T .

Sharing Mechanisms. Two mechanisms to allow the
sharing of retained objects are described here. One mecha-
nism gives blanket authori ty to all computations within the
system to a c q u i r e the shared object. The other mechanism

Volume 9 / Number 3 / March 1966 Communications of the ACM 153

allows the owner of an object to specifically authorize each
instance of its sharing.

The recta-instruction

i := l i n k (principal name};

inserts into the C-list at index i a nonowned directory
capability pointing to the root directory named <principal
name}. Using the acqu i r e recta-instruction, a computa-
tion can thus gain access to any object in the directory
structure of any principal, provided that the directory
items leading from the principal directory to the object all
contain F indicators.

Any more selective sharing mechanism requires an
explicit interaction between the borrower and the lender.
We propose that the shared capability be passed between
the C-lists of two computations that interact via the e n t e r
meta-instruction.

A typical interaction might proceed as follows. The
lender first creates a free entry capability in one of its
directories. The borrower then uses l i nk and a c q u i r e to
place this entry capability in its C-list. The borrower next
creates a special enti ty in its C-list, called a receiver, by
means of the meta-instruction

i := r ece ive ;

Finally the borrower exercises the entry obtained from the
lender by using e n t e r . Parameters passed as private data
provide to the lender the index i of the receiver in the
borrower's C-list, as well as information identifying the
capability desired to be borrowed.

The lender is thus given control, and proceeds to verify
the right of the borrower to obtain the capability re-
quested. In particular, the lender may wish to verify that
the borrower computation is in fact owned by a certain
principal. For this purpose the lender uses the meta-
instruction

s := o w n e r j ;

where j is the index in the lender's C-list of the suspended
process capability generated by the e n t e r operation, and
s is a string giving the principal name of the owner of the
suspended process.

Having completed its verification, the lender then
acqu i re ' s into its own C-list the owned capability it
wishes to transmit. If this capability has index k, the meta-
instruction

t r a n s m i t j , i, k;

replaces receiver i in the C-list of suspended process j
with the owned capability k, giving it an N tag.

Having modified the borrower's C-list, the lender then
returns control to the borrower with c o n t i n u e . At this
point the loan is complete; the borrower may now exercise
the capability and p lace it in one of his own directories.

An Example: Using a Programming System. Suppose a
user wishes to use a programming system PS. The retained
objects (procedure segments, directories, entries, etc.),
of PS are on file in the hierarchical organization already

c) C-LIST
!

O)

/ / / ~ ~ ~tDiRECTORY
! / / ~ b) ~ t DIRECTORY

DIRECTORIES , ' ~
/\

DIRECTORIES
OF PS

Fro. 7. Using a programming sys tem

outlined (Figure 7b). The user has his objects organized
in a private hierarchy (Figure 7a). If the use of PS is only
desired for one user, then it is appropriate for an owned
item in the user's directory structure to point to the
directory structure of PS. If it is desired to make PS
available to many or all principals at an installation, it is
appropriate to place the directory hierarchy of PS under a
principal of its own or as a subhierarehy within the domain
of a common programming system principal. In either case,
a computation for a user involving retained objects both
of his own and of the PS would be carried out in the follow-
ing manner:

(1) The user initiates a process which acquires access
capabilities for the two hierarchies of directories--one for
his own files and one for P S - - b y executing the necessary
sequence of meta-instructions. Suppose these capabilities
have index numbers i and j respectively.

(2) PS is called with i and j as parameters. PS does all
addressing within the directory structure relative to the
roots of their trees represented by entries i and j of the C-
list (Figure 7).

Acknowledgments. We are indebted to Project MAC
and the Compatible Time-Sharing System for the oppor-
tuni ty to make observations that have motivated nmch
of the content of this paper. Our notion of the capability
list stems from the "program reference table" idea first
used in the Burroughs B5000 system. The value of du-
plicating private data at a fo rk was pointed out by H.
Witsenhausen in an unpublished memorandum.

R E F E R E N C E S

1. DESMONDE, W. H. Real-Time Data Processing Systems:
Introductory Concepts. Prent ice-HMl, Englewood Cliffs,
N. J., 1964.

2. HAMLIN, J . E . A generM descr ipt ion of the Na t iona l Aero-
naut ics and Space Admin i s t r a t ion real t ime comput ing
complex. Proc. ACM 19th Nat . Conf., Phi lade lphia , 1964,
pp. 2-1 to 2-22.

3. FANO, .l~. M. The MAC system: the computer u t i l i ty ap-
proach. IEEE Spectrum 2 (Jan. 1965), 56-64.

4. DENNIS, J. B., AND GLASEE, E. The s t ructure of on-line in-
fo rmat ion processing systems. In fo rma t ion Systems Sci-
ences: Proc. Second Cong., Spa r t an Books, Bal t imore ,
1965, pp. 1-11.

154 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 3 / M a r c h 1966

5. ILIFFE, J. K., AND JODEIT, J. G. A dynamic storage alloca-
tion scheme. Comput. J. 5 (Oct. 1962), 200-209.

6. GREENFIELD, M. N. FACT segmentation. AFIPS Conf.
Proc. 21, Spartan Books, Baltimore, 1962, pp. 307-315.

7. HOLT, A.W. Program organization and record keeping for
dynamic storage allocation. Comm. ACM 4 (Oct. 1961),
422-431.

8. I)ENNIS~ Z. B. Segmentation and the design of multipro-
grammed computer systems. J. ACM 12 (Oct. 1965), 589-602.

9. GLASER, E., COULEUR, J., ANn OLIVER, O. System design
of a computer for time-sharing applications. AFIPS Conf.
Proc. 28, Spartan Books, Baltimore, 1965, p. 197-202.

10. FORGIE, J .W. A time- and memory-sharing executive pro-
gram for quick-response, on-line applications. AFIPS Conf.
Proc. 28, Spartan Books, Baltimore, 1965, p. 599-609.

11. COMFORT, W.T. A computing system design for user service.
AFIPS Conf. Proe. 28, Spartan Books, Baltimore, 1965, p.
619-626.

12. McCuLLOUGH, J. D., SPEIERMAN, K. H., AND ZURCHER, F. W.
A design for a multiple user multiprocessing system. AFIPS
Conf. Proc. 28, Spartan Books, Baltimore, 1965, p. 611-617.

13. DENNIS, Z. B. Program structure in a multi-access com-
puter. Tech. Rep. No. MAC-TR-11, Proj. MAC, MIT,
Cambridge, Mass., 1964.

14. CONWAY, M. A multiprocessor system design. AFIPS Conf.
Proc. 24, Spartan Books, Baltimore, 1963, pp. 139-146.

15. CRISMAN, P. (ED.) The Compatible Time-Sharing System: A
Programmer's Guide. MIT Press, Cambridge, Mass., 2d ed.,
1965, sec. AD. 2.

16. HoslEn, W. A. Pitfalls and safeguards in real-time digital
systems with emphasis on programming. IRE Trans. EM-8
(June 1961), 99-115.

17. McCARTHY, J., COR~ATO, F. J., AND DAGGETT, M.M. The
linking segment subprogram language and linking loader.
Comm. ACM 6 (July 1963), 391-395.

18. MIT COMPUTATION CENTER. The Compatible Time-Sharing
System: A Programmer's Guide. MIT Press, Cambridge,
Mass., 1st ed. 1963.

19. DALE¥, R. C., AND NEUMAN, P. G. A general purpose file
system for secondary storage. AFIPS Conf. Proc. 28, Spar-
tan Books, Baltimore, 1965, p. 213-229.

The Structure of Programming Languages
Bertram Raphael

Stanford Research Institute, Menlo Park, California

(Abstract Only and Discussion)

The following are identified as major components of every
programming language: (1) the elementary program state-
ment, (2) mechanisms for linking elementary statements to-
gether, (3) the means by which a program can obtain data
inputs. Several alternative forms of each of these components
are described, compared and evaluated. Many examples,
frequently from list processing languages, illustrate the forms
described.

Elementary program statements usually take the form of
commands, requirements, or implicit specifications. A command
is an imperative statement that commands the action to be
taken. A requirement describes the effect to be achieved
without saying anything about the actions to be taken. An
implicit specification is similar to a requirement, but the pro-
grammer must understand what actions will be taken to achieve
the desired effect.

Presezlted at an ACM Programming Languages and Prag-
matics Conference, San Dimas, California, August, 1965.

Subroutines may be entered explicitly, by execute call, or
by function composition. Explicitly called subroutines generally
require special linkage conventions. An execute subroutine call
is syntactically indistinguishable from a basic instruction of the
programming language. Function composition is a convenient
alternative to the explicit call.

The three principal ways of getting inputs for routines are
(1) by referring to the data itself, (2) by referring to the data
by a "name", and (3) by referring to it implicitly by means of
variables or functions. Names are useful entry points into
permanent data structures, but can be error-causing distrac-

tions in other contexts.
The author discusses advantages, disadvantages, and

factors influencing the choice of a form of component for a
language. He concludes by suggesting the evolution of pro-
gramming languages toward one which will permit all the
most convenient ways of structuring programs, organizing sys-
tems, and referencing data.

Volume 9 / Number 3 / March, 1966 Communica t ions of the ACM 155

