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MACSYMA , 1
1 Introduction

MACSYMA (Project MAC's SYmbolic MAnipulation System) is a large computer
programming system written in LISP [Mn1] used for performing symbolic as well as
numerical mathematical manipulations. It is being developed by the Mathlab Group
of the MIT Laboratory for Computer Science (formerly Project MAC).

With MACSYMA the user can differentiate, integrate, take limits, solve
systems of linear or polynomial equations, factor polynomials, expand functions in
Laurent or Taylor series, solve differential equations (using direct or transform
“methods), compute Poisson series, plot curves, and manipulate matrices and
tensors. MACSYMA has a language similar to ALGOL-60 to permit the user to
write his own programs for transforming symbolic expressions.

This manual is intended to be a complete reference for the principal features
of MACSYMA as of the date shown on the cover. It is not meant to be a tutorial
nor does it discuss all of the issues involved in the efficient manipulation of
algebraic expressions. New features under development are, for the most part,
not mentioned.

The user who is unacquainted with certain concepts of computer programming
may find this document difficult on first reading. The novice will benefit by first
reading the MACSYMA Primer [Mo5S] and An Introduction to ITS for the MACSYMA
User [Lewl] This document serves as both a reference manual and as a user’s
manual. When it is used as a user’s manual, any sections not of interest should be
skipped. Sections which may be passed over on first reading are indicated by the
symbol [] around the section number.

It is recommended that this manual be re-read from time to time after the
user has worked with MACSYMA so that certain parts which were unclear on
prior readings will be better understood in the context of increased familiarity
with the system.

In a programming system such as MACSYMA there are often many ways to go
about solving a given problem as well as many constraints and frustrations which
must be dealt with. Some ways will not succeed due to space or time constraints
and others may work but may be unnecessarily slow. Frequently a better
understanding of the computer facilities will lead to a reformulation of the problem
lending itself to a much improved solution. For some insight into the subject see
(A1, Mol, Mo2]. '
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1.1 Logging in and out

MACSYMA is implemented on DEC PDP-10 computers which use the ITS
operating system and on Honeywell 6180 computers using the Multics operating
system. The following section concerns the protocol for usage on the PDP-10 at
MIT known as the MC (MACSYMA Consortium) machine. Appendix | of this manual
concerns the use of MACSYMA on Multics. '

A user may gain access to the PDP-10 computer at MIT by (1) finding a
terminal connected to it or (2) finding one on which he can dial to it over pubiic
telephone lines or (3) logging into it over the ARPA network. Once this is done
the user should be communicating with the ITS time sharing system. To login he
should type a control-Z (depressing the control key while typing the letter 2)
which loads in DDT [Lew1] (the top level system program). Then he should type
:LOGIN followed by a space and his user name. (All system commands, i.e. those
which begin with a colon, are terminated by a carriage return). At this point the
user can start up any of several system programs available (PEEK, TECO, etc.) by
typing a : followed by the name of the program. In particular :MACSYM loads in
and begins execution of MACSYMA. After printing some descriptive information,
including the version number, MACSYMA prints (C1) which means that it is ready
to accept input from the user. The entire sequence is -shown below with the

computer’s output indented. “char 1 means the control key is to be held down
while the next character char is typed.

MC ITS nnnn CONSOLE 11 FREE 2
MC ITS nnnn DDT mmm

:LOGIN SMITH

:MACSYM
This is MACSYMA vvv

1. The user should note that there is a separate character, *, which is often used
for exponentiation (as in line (C1) below). Although the two characters print in
the same way the user should have no difficulty distinguishing between them. In
the example, the "~5" could not be "control-5" since the context strongly
indicates exponentiation.

2. nnnn represents a version number which changes from time to time; ii identifies
the console.

3. Not printed on console
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(C1) NROOTS(2xX"5-X+5,-4,8);

(01) 1
~Z
44130)  .CALL 44154 (IOT)
: LOGOUT

MC ITS nnnn CONSOLE i1 FREE

In line (C1) the user has typed a command which asks for the number of
realroots between -4 and 8 of a quintic polynomial. In line (D1) MACSYMA has
printed the answer. The ~Z causes an exit from MACSYMA to DDT after which the
system typed ".CALL 44154 (I0T)" (meaning that MACSYMA was waiting for input
when interrupted). Typing :LOGOUT causes the system to delete all the user’s
jobs (in this case MACSYMA was the only job) and to log him out of ITS. When
the user finishes he should always log the console out before he leaves.

1.2 General information

Command lines to MACSYMA are strings of characters representing
mathematical expressions involving equations, arrays, functions, and programs.
Extra spaces, tabs, and all carriage returns are ignored (except when these occur
in quoted strings). '

Command lines are terminated by " or "8" (dollar sign). A ";" causes the
command line to be evaluated: and the result displayed. The terminator "8" causes
the command line to be evaluated but the result is not displayed.

When typing command lines, depressing the "rubout” or "delete” key deletes
the previous character (on hardcopy devices and displays which cannot backspace,
the deleted character is echoed). By typing "control-K" , the user obtains a copy
of the current command line free of any echoed erasures. The two characters ??
delete the whole command line, and cause the line number to be redisplayed.

The command (input) lines are indexed by labels of the form "(Ci)" where i is
incremented with each new command line typed by the user. Similarly, the results
of computations are also indexed. There are two types of output lines. The
ordinary output line is indexed by a label of the form "(Di)" ; thus, usually the ith
input-output pair will be (Ci)-(Di). Sometimes,however, a computation produces
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several intermediate results (for example, several solutions to an equation); it is
convenient to be able to reference these intermediate lines of output. They are
indexed by labels of the form "(Ej)" where j is incremented by one for each
intermediate line. For example,

(C1) SOLVE(X*2 + BxX + C, X);

2
SQRT(B -4C) + B
(E1) X = = comoocmommmoconeos
‘ 2
2
B - SQRT(B - 4 C)
(E2) - X = = seccmcccncacccceae
: 2
(02) . [E1, 2]

Note that there is no line D1 since intermediate results were produced and
thus the line index was incremented. The general pattern of indexing is of the
form

Ci, Ei,Ei+1,...,Ej, Dj .

A command line may refer to the results of any previously indexed line (even
if it was not displayed) through the use of the line labels. For example, the user
might say SUBSTITUTE(7,B,E2); which would substitute 7 for B in the expression
E2 above. The immediately preceding D-line is conveniently referenced by the
symbol "%".

If the input line contains a syntax error, it will be reprinted and the location
of the error will be indicated as closely as possible by a special string, +++$+++ .

From a C-line, the user in need of assistance can type:

SEND(message) which will send your message to some MACSYMA system
programmer who is logged in at that time. If no approriate recipient is
available, the message will be sent to MACSYMA’s mail file where it will be
seen and will be answered. If the message consists of more than one word,
then message must begin and end with double quotes.
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- BUG(message) sends a bug note to MACSYMA. If more than one word, message
must begin and end with. double quotes.

MAIL(message) sends mail to MACSYMA using the syntax above.

DESCRIBE(command) takes as argument any MACSYMA command and prints out
the relevant portion of the MACSYMA manual.

EXAMPLE(command) gives examples (in DEMO mode) of the use of selected
functions in MACSYMA.

PRIMER() provides an on-line primer for the novice including an introduction to
MACSYMA syntax, assignment and function definition, and the simplification
commands.

PPN PRPY 7 R SR, |
1.3 Levels of Control

When :MACSYM is typed, a LISP system extended with MACSYMA programs is
loaded into main memory from auxiliary storage. Special top level programs read
in, evaluate, simplify, and display the user’s expressions. All of the functions to
be presented in subsequent sections are actually LISP programs which, when they
are called, may invoke many other LISP programs in a process that is invisible to
the user.

Switching between DDT, MACSYMA, and the LISP system in which it is
embedded is accomplished by typing the following characters:

_ Control-" typed while in MACSYMA causes LISP to be ente‘red The user can
now type any LISP S-expression and have it evaluated. Typing (CONTINUE) or °G
(control-G) causes MACSYMA to be re-entered.

~Z causes an immediate exit to DDT. If one is already in DDT then ?? is
printed. At thic point the user can run some other program like PEEK or TECO
[Lewl]. When in DDT, typing :CONTINUE causes the current job to be resumed.
(:JOB MACSYM should be typed first if the user wishes to re-enter a MACSYMA
which is not the current job). :
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1.4 Miscellaneous Information

Files in the ITS system have two names each of at most 6 characters. They
are referenced by giving the two names as well as the device (default is DSK) and
the directory name where the file resides (default is the same as the user’s login
name). A > sign may be used for the second file name and stands for the name
which is the largest numerically if there exists a file with the given first name and
a numeric second name; otherwise, the > sign represents the "greatest™ name in
an alphanumeric sense. A < sign may be similarly used for the "least” name.

Any of the four descriptors (1st name, 2nd name, device, user) may be
omitted and either the default or the value given in a previous command (if there
was one given) will be used.

For those without a disk directory of their own, the one named USERS is
available. When placing a file on this directory the user should indicate in some
manner (such as by the first file name) the name of the user who created it.

There is a special mail file on the ITS system for holding comments from users
which are of general interest and for listing changes to MACSYMA which occur
from time to time. The DDT command :MAIL MACSYM followed by a carriage return
and text terminated by a control-C is used to place comments in this mail file. The
user’s login name and time of message are added automatically. (Control-D may
be used to cancel this or any other DDT command prematurely). If the user
encounters any bugs in MACSYMA then he should report these in MACSYMA mail.
Mail may also be sent to other users by using the :MAIL command followed by the
user’s login name. If the user has received mail the message --MAIL-- will
appear on his console after he logs in. Typing a space will cause the mail to be
printed. The DDT command :PRMAIL MACSYM is used to print out the MACSYMA
mail file. The user should do this occasionally to be informed of changes to the
system and of other users’ comments. :PRMAIL may also be used to print out any
user’s mail by following it with the user’s login name. Control-S may be used to
silence the printout. In addition, the command :PRINT MACSYM;UPDATE > may be
used to print a file describing updates to MACSYMA since the last version of the
manual. The update file should be checked regularly so the user can be informed
of changes to MACSYMA.

For further information on DDT commands see [Lewl]. Typing :? will list the
commands with a brief description. In particular, one command worth noting is
:KILL which kills the current job.



MACSYMA 1.4 Miscellaneous Information 7

An Introduction to ITS for the MACSYMA User [Lewl] and the MACSYMA
Primer [Mo5] are very useful to the novice.
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2 MACSYMA’s Data Types and Statement Types

This section describes the kinds of expressions MACSYMA permits and their
meanings. Chapters 5 and 6 should be referred to where necessary in order to
clarify the examples presented. Default values of options are indicated in square
brackets, [...]

2.1 Numbers

Numbers are integers, rational numbers, floating point numbers, or "bigfloats".
Integers consist of a string of digits not containing a period; rational numbers are
the quotient of two integers and are written as numerator/denominator; floating
point numbers are written as in FORTRAN, i.e. strings of digits containing a period
and optionally followed by an integer exponent beginning with the letter E; and
bigfloats are written exactly like floating point numbers except using the letter B
rather than E (the B must be included to indicate a bigfioat). Negative numbers
begin with a minus sign. There is no limit on the number of digits in an integer or
rational number but non-zero floating point numbers must have absolute value
between .14E-38 and 1.7E38 and are limited to approximately 8 digits precision.
This is the hardware limitation of the computer. Bigfloats may have any number of
digits. The default precision is 16 but the user can change this by setting the
FPPREC[16] to an integer representing the desired precision.

-17253733574534 6.023E23 -1.6E-19
37.567834987250832568B-98 3.14159 227

-3354665557331/66724255465544 - .780

2.2 Names

Names are used to designate variables, functions, and arrays. A name
consists of a string of letters (which may include %) and digits. It may also include
other characters but these must be preceded with a \ when typed in. Names can
be of any length and must begin with a letter (unless the leading character is a \).
Lower case letters may be typed, but they are normally converted into the
corresponding upper case letters. '
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%PI EPSILON_ X10Y30ISASTRANGENAME  \xSPECIAL
2.3 Quoted Strings

A string of characters of any length may be constructed by enclosing the
string in quotation marks. To include a quotation mark, semicolon, or dollar sign in
the string it is necessary to precede it with a \ when typed in. Quoted strings
are useful as messages (such as those giving instructions for entering data) or in
as descriptive titles for printed data.

Certain names that are reserved because of their function as keywords
(operators or delimiters) are listed in Appendix II. If these are used out of their
normal context they must be quoted.

"INPUT AMOUNT IN \$* "RIEMANN’S \"ZETA\" FUNCTION‘
2.4 Atomic Variables and Assignment

A name which may be assigned an arbitrary value is a variable. A variable
might or might not be subscripted (see 2.6.2). A non-subscripted variable is
designated as an “atomic variable”. Atomic variables are assigned values by
writing the name of the variable followed by a : followed by an expression’
representing the value to be assigned to the variable. A variable can be assigned
a new value at any time. The value of a variable can be a number, a matrix, a
list, or any MACSYMA expression. If a variable is not assigned a value then it just
represents itself. There are many variables which have already been assigned
values. These are called "MACSYMA" variables or options. They are provided in
order to give the user some control over the way in which MACSYMA performs
its operations. The user should choose names other than these for his variables.
The index to this manual distinguishes these "MACSYMA" variables and options
with a colon (":") between the variable and its default value. In the text of the
manual, the default value is indicated with square brackets as in the next
sentence. MYOPTIONS[[]] is a MACSYMA variable---an “infolist" (see
8.1)---which is a list of all the MACSYMA options ever reset by the user.

Some simple examples of assignment follow. (The comments in parentheses
are only for the reader’s benefit and are not actually typed to or by MACSYMA.)
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Note that MACSYMA automatically assigns labels Ci to the user’s input lines and Di
to the output lines. These labels behave as assigned variables and can be
referenced by the user."

line label expression comment

(C1) A:168 (integer)

(C2) ) LAMBDA: -3/378% (rational number)

(C3) X:D1; (X is assigned the value of D1)

(D3) 16

(C4) , RHO:SIGMA; (since SIGMA has no value at this
time RHO is assigned the symbol SIGMA)

(D4) : SIGMA ,

(CH) SIGMA: .0058 (floating point)

(C6) RHO; (RHO stil1l has its old value since

(D6) SIGMA it hasn’t been reassigned a new one)

Since the value assigned may be any expression it may in particular be
another assignment and therefore multiple assignments are permitted. Thus
A:B:C:X+1 assigns X+1 to A, B, and C.

It is important to note that the expression assigned to the variable is not re-
copied. Only a pointer to the expression is assigned. Thus in the above example,
only one copy of X+1 is created.

The MACSYMA variable VALUES (see 8.1) gives a list (see
2.7) of all the user’s atomic variables which have been bound (i.e. have
been assigned values).

The assignment operator :: assigns the value of the expression on its right to
the value of the quantity on its left, which must evaluate to an atomic variable or
subscripted variable (sec. 2.6.2). Thus continuing with the above examples:

(C7) RHO::LAMBDAS (Note that the :: causes the value of
(C8) SIGMA; LAMBDA, i.e. -3/37, to be assigned to
(D8) -3/37 the value of RHQ, i.e. SIGMA.)

(C9)  VALUES;
(D9) [A, LAMBDA, X, RHO, SIGMA]
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2.5 Mathematical Operators

Mathematical expressions are constructed by using the following operators
and also functions (see 26). The usage and priorities from highest to
lowest are: : '

Operator Name Symbo1 Usage
factorials LI postfix
exponentiation xk or ~ infix
non-commutative an infix
exponentiation '
non-commutative . infix
multiplication .
div/sn mult/pn /! x infix
negation - prefix
add’n  subt’/n + - infix

if an operator is referred to out of context it must be enciosed in quotation
“marks. '

EXPT is used to display exponentiation when the base or exponent become
unwieldy.

! is the factorial which is the product of all the integers from 1 up to its
argument. Thus 5! = 1+£2«3+4+5 = 120. The value of the option FACTLIM[-1]
gives the highest factorial which is automatically expanded. If it is -1 then all
integers are expanded.

I'" stands for double factorial which is defined as the product of all the
consecutive odd (or even) integers from 1 (or 2) to the odd (or even) argument.
Thus 8! is 2x4+6x8 = 384.

Period is used for non-commutative product. It must be preceded and
followed by a space when any ambiguity can arise with respect to floating point
numbers. Non-commutative exponentiation is used in the usual sense that M~"2
means M . M.

Operators of equal priority are performed left to right. Parentheses can be
used to change the order of evaluation. Also functional application has the highest
priority. Thus SIN(A#X"Y/Z!)*2 means (SIN(A+(X"Y)/(Z!)))"2
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The operands may be any MACSYMA expressions whose values are the
correct types of data. Note that every statement in MACSYMA yields a value
even if the value is only a trivial one.

MACSYMA has no restriction on the mixing of modes of operands. Integers,
rationals, floating point numbers, and bigfloats may be freely intermixed in an
expression; when conversions are necessary, the priority of conversion is in the
order of the types just mentioned. If floating point numbers or bigfloats of
differing precision are combined in a operation, they will be converted to floating
point or bigfloat numbers of the current precision by padding with zeroes or by
dropping off low order digits and rounding.

Floating point underflow will return 0.0 unless the MACSYMA variable
ZUNDERFLOWI[TRUE] 1 is FALSE in which case an error will be signaled.

2.6 Functions and Arrays

2.6.1 Functions

A function is written as a name followed by the arguments to the function
separated by commas and enclosed in parentheses. The arguments may be any
MACSYMA expressions.

A function of a fixed number of arguments can be defined in MACSYMA by
using the := operator. The left side of a function definition consists of the name
of the function followed by the list of formal parameters enclosed in parentheses.
The right side consists of the function body. When a function is called, the formal
parameters will be bound to the actual arguments, any free variables in the
function body will take on the values which they have at the time of the call, and
the function body will be evaluated. It is permissible to define functions which are
recursive to an arbitrary depth. Care should be taken when passing an expression
which contains a variable with the same name as a formal parameter to a function
~etined with that formal parameter as circularity could result when it is evaluated
(see 3.2).

The MACSYMA variable FUNCTIONS is a list of all user defined non-
subscripted functions.

1. The square brackets enclose default options
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The MACSYMA function DISPFUN may be used to display the definition of a
function (see 10).

(Cl) F(X):=X"2+Y$

(C2) F(2);

(D2) Y + 4.
(C3) Y:78

(C4) F(2); ,
(D4) 11

(C5) 6(Y,Z):=F(Z)+3xY;
(D3) 6(Y, Z) :=F(Z) + 3 ¥
(C6) G(2xY+Z,-.5);
(D6) 3(Z+14) +«7 +14.25
(C7) FUNCTiONS;
(D7) (F(X), &(Y, 2)]
The example involving the function G above requires some explanation. In

going from C6 to D6 the following occurs:

(1) The arguments to G are. evaluated giving Z+14 and -.5 (Y has the value
7).

(2) G is then invoked and has its formal parameters bound. Y to Z+14 (the
first argument) and Z to -.5 (the second argument). The evaluation of G then
causes F to be invoked on the argument -.5

(3) F has its formal parameter X bound to -.5 and returns the result of the
evaluation X2+Y with the current bindings which gives Z+14.25

(4) The evaluation of G continues with 3+Y which yields 3%(Z+14). This is
added to the result from (3) and returned.
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2.6.2 Arrays

Arrays enable one to refer to a collection of elements by using a single name.
An element of an array is referred to by a subscripted variable which is a name
followed by a list of subscripts enclosed in square brackets. Arrays in MACSYMA
are of two typesl - declared or undeclared. Declared arrays are similar to
FORTRAN arrays. The user declares the number of dimensions and indicates the
maximum value of each subscript. The system then allocates space for the entire
array. To declare an array the user types:

ARRAY(name, diml, dim2, ..., dimk)

This sets up a k-dimensional array. A maximum of five dimensions may be used.
The subscripts for the ith dimension are the integers running from O to dimi. If
the user assigns to a subscripted variable without declaring the corresponding
array, an undeclared array is set up.

Undeclared arrays, otherwise known as hashed arrays (because hash coding is
done on the subscripts), are more general than declared arrays. The user does
not declare their maximum size, and they grow dynamically by hashing as more
elements are assigned values. The subscripts of undeclared arrays need not even
be numbers. However, unless an array is rather sparse, it is probably more
efficient to declare it when possible than to leave it undeclared. The ARRAY
function can be used to transform an undeclared array into a declared array.

Array elements can be assigned values explicitly with the : operator or
implicitly by means of an associated function, and the values assigned may be any
MACSYMA expression. To understand implicit assignment we must understand
what MACSYMA does when asked to evaluate a subscripted variable. MACSYMA
first evaluates the subscripts left to right. Then it does an array access to see if
the requested array element already has a value. If it does, the value is returned. -
If it does not, MACSYMA checks to see whether the array has an associated
function (see below). If not, the subscripted variable (with the subscripts
evaluated) is returned. (This is standard MACSYMA practice - if there is no value
for a variatle, the variable itself is returned when an evaluation is done.) If there .
is an associated function, the parameters of the function are bound to the given

1. For efficient translation, the user can also inform MACSYMA of arrays all of
whose elements are of a single type, e.g. INTEGER,BOOLEAN,FLOAT. (see
10.8).
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subscripts, and the function body is evaluated. The value of the function call is
stored in the appropriate array element and returned. Note that once an element
is computed by the associated function it is stored so that next time it is needed
it will not be recomputed. A consequence of this is that unless the user uses the
KILL, REMVALUE, or REMARRAY functions (sec. 10.3) to kil an array
element or the entire array, the associated function will never be called a second
time on the same arguments. Thus the user should be aware that even if he
redefines the associated function, those values which already exist will stay
around. Of course individual array elements can be changed by assignment at any
time.

These associated functions are defined with the := operator. Their definition
looks exactly the same as ordinary function definitions, except  that the
parameters in the left side of the definition are enclosed in brackets instead of
_parentheses. :

In order to use a subscripted variable as a single entity without it being an
array and without ever assigning a value to it, it should be prefixed by an
apostrophe o avoid it being confused with a non-subscripted variable of the same
name. For example SUBST(O,W,W+W[0]).

The MACSYMA variable ARRAYS is a list of all the arrays that have been
allocated, both declared and undeclared.

DISPFUN (see 10.2) may be used to display the definition of an array
associated function.

ARRAYINFO (see 8.1.1) may be used to find out whether an array is
declared or undeclared, how large it is, how many subscripts it has, and which
elements have values in the case of an undeclared array.

(Cl) A[N]J:=NxA[N-1]8
(C2) A[0]:18

(C3) A[5];
(D3) 120

(C4) A[N]:=N$

(C5) A[6];
(D5) 6
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(Note that the definition in C4 is being used because A[6] has no value up to this
time.)

(C6) A[4];
(D6) 24

(Since A[4] was assigned a value as a result of A[5] being computed, the new
definition is not used.) '

If one is going to define a recursive function which is to be called several
times then if may be more efficient to use an array with an associated function for
initialization. The reason is that once an element is computed it is stored and thus
need not be computed again whereas with a non-subscripted function, each
recursive call may cause a repeat of a past computation.

2.6.3 Lambda Notation

The LAMBDA notation is used for unnamed functions in order to indicate the
correspondence between the variables of the function and the arguments which
are to be substituted for them. It is useful when one desires to pass functional
arguments to other functions or when one wants to apply a function just once
without having to define it with :=.

(Cl) F:LAMBDA([X,Y,Z],X"2+4Y~2+41°2);

2 2 2
(D1) LAMBDA([X, ¥, Z], Z +Y + X )
(C2) F(1,2,A);
. 2
(D2) ' A +5

MACSYMA also permits operators to be used in a functional notation;
however, in order not to get a syntax error they must be surrounded by "s.

(C3) "+*(1,2,A);
(D3) A+ 3
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[2.6.4] Subscripted Functions (Arrays of Functions)

It is possible for the value of an array element to be a lambda expression.
Thus if the assignment F[1J:LAMBDA([X],X"2+1) were performed, then F[1] could
be used in the ordinary prefix functional sense with its arguments following in
parentheses, e.g. F[1]}(3) would yield the value 10. There is an alternative syntax
available for assigning a lambda expression tc an array which introduces the
notion of a "subscripted function”. In the above case one could also type
F[1](X):=X"2+1 and this would be entirely equivalent. Other elements of the array
could be assigned different lambda expressions (or any MACSYMA expressions).
If there is an algorithm for computing the different functions to be stored in an
array on the basis of the subscripts alone, then one may use an associated
function. For example, F[K]:=LAMBDA([X],X"K+1). Again an alternative syntax of
FIK](X):=X"K+1 may be used. The left side of the definition consists of the
function name followed by the subscripts, enclosed in brackets, followed by the
arguments, enclosed in parentheses. The subscripts (which are not evaluated at
definition time) must be either all numeric or all symbolic. Note that subscripted
functions are treated exactly like arrays so all of the information in sec. 2.6.2
applies. In particular when a subscripted function is referenced, the element is
immediately retrieved and applied to its arguments if it exists; ctherwise it is
computed (this time only) and then applied. Consequently, two. evaluations of the
definition are performed. Thus consider the definition F[K](E):=COEFF(E,X,K) and
the call F[2](3+X"2-1). Although the user may have thought that this would
return the coefficient of X2 in 3*)(2-1, i.e. 3, it will return 0. The reason is that
F[2] is first computed by evaluating the definition yielding 0, since E has not been
bound at this time. Note that F[KJ(E):= SUBST(K,’J,XCOEFF(E,X,J))) would return
the desired result as would F(K,E):=COEFF(E,X,K). Thus the user should be clear
about the distinction between subscripted functions (a type of array) and ordinary
functions. Also a subscripted function should not be redefined without KILL’ing or
REMARRAY’ing it first; otherwise the elements which have already been stored
will be used.

The ARRAYS[[]] list (see 2.6.2) also includes subscripted functions.

The function ARRAYINFO (see 8.1.1) may also be used on subscripted
functions.

(C1) TENI(X):=RATSIMP(2xX«T[N-1](X)-T[N-21(X))$
This generates the Chebyshev polynomials.

(C2) T[0o](X):=18
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(C3) T[1J(X):=XxS$
(ca) TLa)(Y);

(D4)

®
-
[
[«
-€
+
o

(C5) G[N](X):=SUH(EV(X),I,N,N+Z)'
(C6) H(N,X):=SUH(EV(X).I,N.N+2)3
(€7) 6[2)(1°2);

(D7) . 3 Iz

(C8) H(2,1°2); _
(08) 29

The following illustrates a definition for the Legendre polynomials.
(C9) P[N](X):=RATSIHP(1/(2“N*N!)*DIFF((X*Z-I)“N,X,N))O
(Cl10) O(N,X):=RATSIHP(1/(2‘N*N!)tDIFF((X‘Z-l)“N.X.N))‘

(C11) pr2];

2
. 3X -1
(D11) LAMBDA([X], =<-===-= )
2
(C12) P[2](VY+1);
¥ 4
3(Y+1) -1
(D12)  dedeecceccees
2
(C13) Q(2,Y+1);
2
3Y +6Y+2
(D13) meecececcceee
2

(C14) P[2]1(5);
(D14) : 37

MACSYMA
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(Cl15) Q(2,5);
5 . .
attempt to differentiate wrt a number

[2.6.5] Additional Information About Functions

In order to pass a function as an argument to another function you need only
give its name in the argument list of the call. It may then be used in the called
function by following the name of the corresponding formal parameter with a
parenthesized list of arguments. Subscripted functions (see 2.6.4) are passed by
giving the name followed by the subscripts in brackets. Arrays can be passed by
giving the name of the array in the argument list and they can be referenced by
subscripting the corresponding formal parameter.

When passing names of functions or arrays one must take care that there is
no atomic variable with the same name which is bound because then that value
rather than the name will be passed. In this case the name should be preceded
by a’ (see 3.2) to prevent it from being evaluated.

In order to assign to a formal parameter of a function so that the
corresponding actual parameter gets changed (and remains changed) when the
function is exited, then the :: operator rather than the : operator should be used.
(C7) FII,INX,Y):=X"I + Y~J;

I J
(D7) F (X, Y) :=X + Y
. I, J

(C8) G(FUN,ARG1,ARG2):=PRINT(FUN," APPLIED TO *",ARG1," AND ™,
ARG2," IS ",FUN(ARG1,ARG2))S

(C9) G(F[2,1],SIN(%PI),2xA);

2
LAMBDA([X,Y],Y+X ) APPLIED TO 0 AND 2 A IS 2 A

(D9) : 2 A
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2.7 Lists .

Lists are ordered sets of elements which can be any MACSYMA expressions.
They are written enclosed in brackets with elements separated by commas. If the
value of a variable is a list, its elements may be obtained or assigned to by
subscripting as with arrays. In certain cases lists are treated like vectors (row or
column matrices). (see 2.8) Lists are sometimes used as arguments to
MACSYMA functions (e.g. MATRIX, SOLVE, etc). Chapter 8 describes
functions for many list operations such as deleting elements, selecting an element,
reversing a list, etc.

(Cl1) [x*2,Y/3,-2]8

(C2)  x[1i}ex;

3
(D2) X
(C3) [A,D1,D2];
FA | 3
(03) [An[xo'l-zllxl
3

2.8 Matrices

A matrix is a 2-dimensional ordered set of elements. It is represented
internally using a list of lists all of the same length which stand for the rows of
the matrix. Matrices may be constructed by using the function MATRIX whose
arguments are lists representing the rows of the matrix. (The functions
ENTERMATRIX and GENMATRIX may also be used to construct a matrix (see
6.4).)

The operators +, -, *, and / may be used betweer two matrices and take
effect elementwise. (A matrix minus itself gives the zero matrix of the same
size) They may also be used between a scalar and a matrix and the scalar will be
operated on with each element of the matrix. 1

1. In MACSYMA a scalar is an expression free of lists, matrices, and any atoms
declared NONSCALAR.
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Matrix multiplication is signified by using the dot operator (non-commutative
product). Raising a matrix to a power (multiplying it by itself) is accomplished by
use of the ~" operator. That is, MM is equivalent to M*~"2. The inverse of a
matrix may be obtained by using a negative exponent, i.e. M™"-1.

If the switch LISTARITH[TRUE] is TRUE then

1) Lists will behave arithmetically: they can be added to one
another, etc.

2) In' matrix operations they can be used as row or column vectors
and will be converted to such when necessary.

An element of a matrix may be referenced by subscripting the matrix as with
arrays but the same name should not be used to stand for both a matrix and an
array.

There are many functions for operating on matrices as well as many options
which can be set to give the user much flexibility and control over matrix
operations (these are described in sec. 6.4). If a matrix is too wide to be
displayed all at once, it is displayed column by column or as a list of lists.

(Cl) N:MAIRIX([A,0],[8,l]);

(A O]
(01) ( ]
(8 11
(C2) M[1,13xx;
S {2 ]
(02) [Aa o]
[ ]
[AB A}
(C3) MaN; -
(2 ]
(A 0]
(D3) ( ]
{2 ]
(s 1]

(C4) M.M;
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[ 2 ]
(D4) [ A 0]
O ]
[LAB+B 1]
(C5) D2-D4+1;
(1 1]
(D5) ( ]
(1-8 A}
(C6) M~-1; :
DIVISION BY ©
(C7) N~~-1;
[ ]
( - o3
[ A )|
(D7) ¢ S |
[ 8 ]
=--1]
L A ]
(C8) [x,Y].m;
(08) [BY+AX Y)

2.9 Equations

An equation is formed in MACSYMA simply by using an equal sign between
any two expressions. Equations may be added or subtracted, and they may be
muitiplied or divided by any expression. They may be operated on just as any
MACSYMA expression can be and may serve as arguments to functions.

(C1) X+1=Y~28
(C2) X-1=2%Y+18
(C3) Dl1+D2Z;

(D3) . 2X=Y +2VYe+1l
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(C4) D1/Y;
X+1
(0a)  eeee- =Y
Y
(CS) 1/%;
Y 1
(D5) ceee- =z -
' X+1 Y

[2.10] IF Statement

The IF statement is used for conditional execution. The syntax is
IF condition THEN expressionl ELSE expression2.

The result of an IF statement is expression! if condition is true and expression2 if
it is false. expressionl and expression2 are any MACSYMA expressions (including
nested IF statements), and condition is an expression which evaluates to TRUE or
FALSE and is composed of relational and logical operators which are as follows:

Operator name Symbol = Type
greater than > relational infix
equal to =,EQUAL " "

not equal to # : .-

less. than < "

greater than >=

or equal to ..

less than <=

or equal to "

and AND iogical infix
or OR "

not NOT logical prefix

The relational operators all have equal priorities which are less than the
priorities of the arithmetic operators and greater than that of the logical
operators. The priority of NOT is greater than that of AND which is greater than
that of OR. The difference between "=" and EQUAL is discussed in sec.
7.1. :
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it the ELSE clause is omitted, this will be the same as if ELSE FALSE were
specified. In order to have several expressions evaluated after the THEN or ELSE
clauses, the expressions may be enclosed in a compound statement (see
2.11) but care should be taken to return the desired value. The switch
PREDERROR[TRUE] determines the action taken if a clause is not universally true
or universally false (see 7.1).

(C1) FIB[NJ:= IF N=1 OR N=2 THEN 1
ELSE FIB[N-1]J+FIB[N-2]8

(C2) FIB[1]+FIB[2];

(02) 2
(C3) FIB[3];
(D3) 2
(C4) FIB[S5];
(D4) 5

(C5) ETA(MU,NU):= IF MU=NU THEN MU
ELSE IF MUDNU THEN MU-MU
ELSE MU+NUS

(C6) ETA(5,6);
(D6) 11

(C7) ETA(ETA(7,7),ETA(1,2));
(D7) 4
(C8) IF NOT 5>=2 AND 6<=5 OR 4+1>3 THEN A ELSE B;

(D8) A
[2.1 l_] Compound Statements

In order to execute a sequence of statements in a context where a single
statement is permitted then the user may group these statements into a
compound statement by separating them with commas and enclosing the whole
group in parentheses. The value of a compound statement is the value of the last,
statement in the grop.
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Compound statements are also useful for grouping together a sequence of
related calculations when a computation cannot easily be expressed in a single
MACSYMA statement.

(C1) IF X=Y THEN (X:X+1, Y:Y-1)
ELSE (S:0, FOR I:1 THRU X DO (S:S+F(I), Y:Y-G(Y)))$

[2.12] Program Blocks

Blocks in MACSYMA are somewhat analogous to subroutines in FORTRAN or
procedures in ALGOL or PL/L Blocks are like compound statements but also
enable the user to tag statements within the block and to assign “"dummy"”
variables to values which are local to the block. The syntax is:

BLOCK([ V1, ... vk], statementl,.., statement))

where the vi are atomic variables which are local to the BLOCK and the
statements are any MACSYMA expressions. If no variables are to be made local
then the list may be omitted.

A block uses these local variables to. avoid conflict with variables having the
same names used outside of the block (i.e. global to the block). In this case, upon
entry to the block, the global values are saved onto a stack and are inaccessible
while the block is being executed. The local variables then are unbound so that
they evaluate to themselves. They may be bound to arbitrary values within the
block but when the block is exited the saved values are restored to these
variables. The values created in the block for these local variables are lost.
Where a variable is used within a block and is not in the list of local variables for
that block it will be the same as the variable used outside of the block.

In order to save and restore other local properties besides VALUE, namely
ARRAY (except for complete arrays - (see 10.8)), FUNCTION,
DEPENDENCIES, ATVALUE, MATCHDECLARE, ATOMGRAD, CONSTANT, and

NONSCALAR1 (see 8.1), the function LOCAL should be used inside of the
block with arguments being the names of the variables (see 10.6).

The value of the block is the value of the last statement or the value of the

1. All of these properties except for FUNCTION are related more closely to the
use of the name as a variable rather than as a function
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argument to the function RETURN which may be used to exit explicitly from the
block. The function GO may be used to transfer control to the statement of the
block that is tagged with the argument to GO. To tag a statement, precede it by
an atomic argument as another statement in the BLOCK. For example:
BLOCK( [X]X:1,LOOP,X:X+1,..,GO(LOOP),..). The argument to GO may be any
expression which evaluates to a tag. For example GO(IF X>Y THEN PLACE1 ELSE
COMPUTEPLACE(X)). One cannot use GO to transfer to a tag in a BLOCK other
than the one containing the GO.

Blocks typically appear on the right side of a function definition but can be
used in other places as well. :

(cl) HESSTIAN(F ) :=BLOCK([DFXX,DFXY,DFXZ,DFYY,DFYZ,DFZZ],
DFXX:DIFF(F,X,2),DFXY:DIFF(F,X,1,Y,1),
OFXZ:DIFF(F,X,1,Z,1),DFYY:DIFF(F,Y,2),
‘DFYZ:DIFF(F.Y,l.Z.l).DFZZ:DIFF(F.Z.Z).
DE]ERNINANT(HATRIX([DFXX,DFXY.DFXZ],[DFXY.DFYY.DFYZ].

[DFXZ,DFYZ,DFZ2])))s

(C2) HESSIAN( X*3-3xAxXxYRI+Y*3);

3 2 3 23
(D2) -S54 A XYZ-54A Y -54A X

(C3) suBsT(1, Z,QUOTIENT(X,-54%A"2));
3 3
(D3) X +AYXeY

The above example computes the Hessian of a cubic curve (the Folium of
~ Descartes) which turns out to be invariant under this transformation, i.e. the resuit
is of the same form.

The example below illustrates the saving and restoring of values described at
the beginning of this section.

(C4) F(X):=BLOCK([Y], LOCAL(A), Y:4, A[Y]:X, DISPLAY(A[Y]))S
(C5) v:28 |

(C6) A[Y+2]:08
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(C7) F(9);
A =9
4
(D7) . DONE
(C8) A[Y+2];
(D8) ‘ (]

If LOCAL(A) had not been uséd, the value on line D8 would have been 9.
[2.13] The DO Statement

The DO statement is used for performing iteration. Due to- its great
generality the DO statement will be described in two parts. First the usual form
will be given which is analogous to that used in several other programming
languages (FORTRAN, ALGOL, PL/l, etc); then the other features will be
mentioned. )

[2.13.1] Commonly Us'ed Forms
There are three variants of this form that differ only in their terminating

conditions. They are:

(a) FOR variable : initial-value STEP increment
THRU /imit DO body

(b) FOR variable : initial-value STEP increment
WHILE condition DO body

(c) FOR variable : initial-value STEP increment
UNLESS condition DO body

(Alter.natively; the STEP may be given after the termination condition or limit. )

The initial-value, increment, limit, and body can be any expressions. To
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iterate over several statements, the body can be made into a compound statement
(see 2.11) or a BLOCK (see 2.12). The condition is as in the IF statement. If the
increment is 1 then "STEP 1" may be omitted.

The execution of the DO statement Proceeds by first assigning the initial-
value to the variable (henceforth called the control-variable). Then: (1) If the
control-variable has exceeded the limit of a THRU specification, or if the condition
of the UNLESS is TRUE, or if the condition of the WHILE is FALSE then the DO
terminates. (2) The body is evaluated. (3) The increment is added to the control-
variable. The process from (1) to (3) is performed repeatedly until the
termination condition is satisfied. One may also give several termination conditions
in which case the DO terminates when any of them is satisfied.

In general the THRU test is satisfied when the control-variable is greater than
the /imit if the increment was non-negative, or when the control-variable is less
than the /imit if the increment was negative. The increment and limit may be non-
numeric expressions as long as this inequality can be determined. However,
unless the increment is known to be negative (i.e. is a negative number) at the
time the DO statement is input, MACSYMA assumes it will be positive when the
DO is executed. If it is not positive, then the DO may not terminate properly.

Note that the /imit, increment, and termination condifion are evaluated each
time through the loop. Thus if any of these involve much computation, and yield a
result that does not change during all the executions of the body, then it is more
efficient to set a variable to their value prior to the DO and use this variable in
the DO form.

The value normally returned by a DO statement is the atom DONE, as every
statement in MACSYMA returns a value. However, the function RETURN (see
2.12) may be used inside the body to exit the DO prematurely and give it any
desired value. Note however that a RETURN within a DO that occurs in a BLOCK
will exit only the DO and not the BLOCK. Note also that the GO function may not
be used to exit from a DO into a surrounding BLOCK.

The control-variable is always local to the DO and thus any variable may be
used without affecting the value of a variable with the same name outside of the
DO. The control-variable is unbound after the DO terminates.

(Cl1; FOR A:-3 THRU 26 STEP 7 DO LODISPLAY(A)S
(E1) A= -3
(E2) A= 4
(E3) A =11
(E4) A =18
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(ES) A =25

The functidn LDISPLAY generates intermediate labels; DISPLAY does not.

(C6) S:08 '

(C7) FOR I:1 WHILE I<=10 DO S:S+I;
(D7) DONE

(c8) §; ,

(D8) 55

Note that thé condition in C7 is equivalent to UNLESS | > 10 and also THRU 10

(C9)  SERIES:18%
(C10) TERM:EXP(SIN(X))$
(C11) FOR P:1 UNLESS P>7 DO
(TERM:DIFF(TERM,X)/P,
SERIES:SERIES+SUBST(X=0, TERM)x*X"P)$
(C12)  SERIES; '
7 6 5 4 2
(D12) X X X X X
IR IS TG B BT AR LTI 3 SF 3 |
96 240 15 8 2

which gives 8 terms of the Taylor series for eSin{X),

(C13) POLY:0$
(C14) FOR I:1 THRU 5 DO
FOR J:I STEP -1 THRU 1 DO
POLY:POLY+IxX"J$

(C15) POLY;

5 4 3 2
(D15) 5X +9X +12X + 14X + 15X
(C16) GUESS:-3.08

(C17) FOR I:1 THRU 10 DO (GUESS:SUBST(GUESS,X, .5%(X+10/X)),
IF ABS(GUESS~2-10)<.00005 THEN RETURN{GUESS));

(D17) - 3.1622807
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This example computes the negative square root of 10 using the Newton-
Raphson iteration a maximum of 10 times. Had the convergence criterion not been
met the value returned would have been "DONE".

[2.13.2] Additional Forms of the DO Statement

Instead of always adding a quantity to the control-variable one may
sometimes wish to change it in some other way for each iteration. In this case
one may use "NEXT expression” instead of "STEP increment”. This will cause the
control-variable to be set to the result of evaluating expression each time
through the loop.

(C1) FOR COUNT:2 NEXT 3xCOUNT THRU 20
DO DISPLAY(COUNT)S

COUNT = 2
COUNT = 6
COUNT = 18

As an alternative to FOR variable:value ..DO... the syntax FOR variable FROM
value ..DO.. may be used. This permits the "FROM value” to be placed after the
step or next value or after the termination condition. If "FROM valye”.is omitted
then 1 is used as the initial value.

Sometimes one may be interested in performing an iteration where the
control-variable is never actually used. It is thus permissible to give only the
termination conditions omitting the initialization and updating information as in the
following example to compute the square-root of 5 using a poor initial guess.

(Cl) X:1000

(C2) THRU 10 WHILE X#0.0 DO X:.5%(X+5.0/X)8
(C3) X;

(D3) 2.236068

'f it is desired one may even omit the termination conditions entirely and just
give "DO body™ which will continue to evaluate the body indefinitely. in this case
the function RETURN (see 2.11) should be used to terminate execution of the DO.
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(C1) NEWTON(F,GUESS):=BLOCK([ NUMER,Y],LOCAL(DF),NUMER:TRUE,
DEFINE(DF(X),DIFF(F(X),X)),
DO (Y:DF(GUESS), IF Y=0.0 THEN ERROR(
"DERIVATIVE AT",GUESS," IS ZERO"),
GUESS : GUESS-F(GUESS)/Y,
IF ABS(F(GUESS))<5.0E-6 THEN RETURN(GUESS)))$

(C2) SQR(X):=X~2-5.08

(C3) NEHTON(SQR,]OOO);
(D3) | . 2.236068

(Note that RETURN, when executed, causes the current value of GUESS to be
returned as the value of the DO. The BLOCK is exited and this value of the DO is
returned as the value of the BLOCK because the DO is the last statement in the
block.)

One other form of the DO is avaiiabie in MACSYMA. The syntax is:
'FOR variabie IN list [end-tesls] DO body
The members of the list (see 2.7) are any expressions which will successively
be assigned to the variable on each iteration of the body. The optional end-tests
can be used to terminate execution of the DO; otherwise it will terminate when
the list is exhausted or when a RETURN is executed in the body. (In fact, list may

be any non-atomic expression, and successive parts are taken.)

(C1) FOR F IN [LOG, RHO, ATAN] DO LDISP(F(1.0))$

(E1) 0
(E2) ~ RHO(1)

‘ %P1

(E3) -=-

4

(C4) EV(E3,NUMER);

(D4) 0.78539816
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[2.14] Syntax Extension

It is possible to add new operators to MACSYMA (infix, prefix, postfix, unary,
or matchfix with given precedences), to remove existing operators, or to redefine
the precedence of existing operators. Details may be found in Appendix II.
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3 What a Serious User Should Know

Usually the user need not be concerned with the internal workings of
MACSYMA, but some knowledge of the representation of expressions and of the
way in which they are evaluated, simplified, and displayed should be acquired in
order to use MACSYMA more easily, efficiently, and effectively.

3.1 Representation

After an expression is read by MACSYMA it is automatically translated (i.e.
lexically scanned and parsed) to a LISP "internal” form. This is the form in which
MACSYMA’s programs deal with expressions. Initially the translated expression is
in "general” form but certain functions convert this to other forms.

(1) The general form represents non-atomic expressions as LISP lists whose
first element is the main operator of the expression and whose remaining
elements are the operands also represented in this form. Thus, after
simplification, 2+X+3/4 is represented essentially 1 as (PLUS (RAT 3 4) (TIMES 2
X)). F(X)-LOG(X) is represented as (PLUS (F X) (TIMES -1 (LOG X))). Any
expression which MACSYMA deals with can be represented in this form.

(2) Canonical Rational Expressions constitute a second kind of
representation which is especially suitable for expanded polynomials and rational
functions (as well as for partially factored polynomials and rational functions when
RATFAC[FALSE] is set to TRUE, (see 6.5)). In this CRE form an ordering
of variables (from most to least main) is assumed for each expression.
Polynomials are represented recursively by a list consisting of the main variable
followed by a series of pairs of expressions, one for each term of the polynomial.
The first member of each pair is the exponent of the main variable in that term
and the second member is the coefficient of that term which could be a number or
a polynomial in another variable again represented in this form. Thus the principal
part of the CRE form of 3xX"2-1 is (X 2 30 -1) and that of 2&#XsY+X-3 is (Y 1
(X 12) 0(X1 10 -3) assuming Y is the main variable, and is (X 1(v12010
-3) assuming X is the main variable. "Main"-ness is usually determined by reverse
alphabetica! order.

The "variables” of a CRE expression needn’t be atomic. In fact any

1. Ignoring the flags MACSYMA places on operators



34 3.1 Representation MACSYMA

subexpression whose main operator is not + - & / or ~ with integer power will be
considered a "variable” of the expression (in CRE form) in which it occurs. For
example the CRE variables of the expression X+SIN(X+1)+2+SQRT(X)+1 are X,
SQRT(X), and SIN(X+1). If the user does not specify an ordering of variables by
using the RATVARS function (see 6.5) MACSYMA will choose an alphabetic
one. : : ,

In general, CRE’s represent rational expressions, that is, ratios of polynomials,
where the numerator and denominator have no common factors, and the
denominator is positive. The internal form is essentially a pair of polynomials (the
numerator and denominator) preceded by the variable ordering list.

If an expression to be displayed is in CRE form or if it contains any
subexpressions in CRE form, the symbol /R/ will follow the line label.

(3) An extended CRE form is used for the representation of Taylor series.
The notion of a rational expression is extended so that the exponents of the
variables can be positive or negative rational numbers rather than just positive
integers and the coefficients can themselves be rational expressions as described
above in (2) rather than just polynomials. These are represented internally by a
recursive polynomial form which is similar to and is a generalization of CRE form,
but carries additional information such as the degree of truncation.

As with CRE form, the symbol /T/ follows the line label of such expressions.

(4) When RATFAC[FALSE] is TRUE,expressions are brought into partially
tactored form: numerator and denominator are relatively prime products of
recursively constructed primitive polynomial kernels. Kernels at the same level
within numerator and denominator may not be relatively prime. In the future,
kernels may be further specified to be square-free.

(5) Another internal form is used to represent Poisson series. This
specialized representation of trigonometric series is described in section
6.6. - - .

3.2 Evaluation

After MACSYMA parses a command line the expression is evaluated and
simplified and the result is displayed. Often the two-phase process of evaluation
and simplification is referred te simply as "evaluation.” In this section though, we
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use the word "evaluation™ to refer only to the evaluation stage proper and not to
the simplification stage.

MACSYMA expressions consist of numbers, variables, function calls, and
operators. When an expression is read by MACSYMA the parsing program
translates it into LISP preserving the order and the result is the value of the
current C line. The evaluation phase proceeds by building up an expression which
is similar in form to the input expression, but has certain substitutions. The
evaluator is recursive, and calls itself on all sub-expressions.

When the evaluator sees a name, it checks to see whether the name has a
value assigned to it. If there is a value, that value is returned by the evaluator. If
there is no value assigned to the name, the evaluator just returns the name itself.
(For the means of assigning values to names refer to 2.4. For a description of the
evaluation process as applied to subscripted names see 2.6.2). Note that
problems could arise if a variable is bound to an expression containing an
occurrence of that variable since each time the variable is evaluated, the entire
expression is substituted for each occurrence of the variable. For example if Y

-y

has the value [X,Y,Z] and if the value of Y is evaiuated the resuit is [X,[X,Y,Z],Z].

MACSYMA distinguishes between two types of functions - nouns and verbs.
Most functions in the system, including all user-defined functions, are initially
considered to be verb-type. Undefined functions and some system functions are
considered to be noun-type. When the evaluator sees a function call, it evaluates
the arguments to the function (unless that function is of a type which doesn’t have
its arguments evaluated, e.g. BATCH; for a list of such functions see Appendix Vi).
Then, if the function is verb-type, the evaluator applies the function to the
evaluated arguments and returns the value of the function. For noun-type
functions the evaluator returns an expression identical to the function call, except
that the arguments are replaced by their evaluations.

The user can explicitly declare a name to be noun-type by using the
DECLARE function (see 8.1.1). 1 For example, the function INTEGRATE
normally tries to integrate its first argument. After the command
DECLARE(INTEGRATE,NOUN) is given however, INTEGRATE will not perform the
integration. Sometimes the user may give a verb function arguments which it is
not equipped to deal with. In certain cases the verb function will return the noun
form of itself. If this was because of some undefined functions in the expression,

1. The noun-ness applies to. both the function use and array use of the name.
Note that nounifying a function name F doesn’t affect occurrences of F that
existed before F was nounified.
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which the user defines at a later time, he can cause the noun-form to be re-
evaluated at that time by giving the label of that line followed by the name of the
unevaluated function separated with a comma as arguments of the function EV
(see 6.1). For example:

(C1) DIFF(XxF(X),X);

_ d
(01) X (-- F(X)) + F(X)
' dX

(€2) FEX):=SIN(X)S

(C3) EV(bl.DIFF);
(D3) SIN(X) + X COS(X)

Here we see that the expression returned by the evaluator is similar to the
input expression. The basic difference is that names which have values are
replaced by their values and verb-type function calls are replaced by the resuit
of applying the function to its arguments.

MACSYMA has several special operators which give the user some control
over the evaluation process. The single-quote operator ’ has the effect of
preventing evaluation. Thus an expression preceded by a single-quote evaluates
to that expression. A special case is the evaluation of a function call where the
name of the function is preceded by a quote as in °F(X). In this instance the quote
causes the function to be treated as though it were noun-type.

To simply prevent evaluation of F(X) without converting F to a noun, use
(F(X)). '

The quote-quote operator, ’ ° , causes an extra evaluation to occur. It is best
considered as a macro character. Inputting an expression preceded by a quote-
quote has exactly the same effect as inputting the result of evaluating and
simplifying the expression. In other words when an inputted expression contains a
sub-expression which begins with a quote-quote that sub-expression is replaced
in the input string by the result of evaluating and simplifying the expression
following the quote-quote. This occurs at the time an expression is parsed. In
the case of evaluating a function call with a ” preceding the name of the function
(i.e. ”F(x) ), the ” causes the function to be treated as if it were verb-type.
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(C1) X;
(D1) X
(C2) X:3%

(C3) X;
{D3) 3

(c4) “X; .
(D4) _ X

(C5) F(X):=X"2;
(DS) | F(X) := X

(C6) “F(2);

(06) F(2)
(C7) EV(%,F);

(07) 4
{C8) 7{F{2});

(D8) : F(2)
(C9) “7%;

(atom means evaluate the atom’s value)
(D9) ] , 4
((CIO) DECLARE(INTEGRATE.NOUN)S A

(C11) INTEGRATE(Y~Z,Y);

» {
(D11) IYoDY
]

37
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(C12) “7INTEGRATE(Y*2,Y);

(012) -

(C13) F(Y):=DIFF(Y¥xLOG(Y),Y,2);

(D13)" F(Y) := DIFF(Y LOG(Y), Y, 2)
(Cl14) F(¥):=77(DIFF(YxLOG(Y),Y,2));
. 1
(D14) F(Y) := -
Y
(C15) C14;
1
(015) F(Y) := -
Y

(Notice that the input expression has been changed due to the use of * *.) ‘

Referring to line (C14) above, suppose one wished to define the function F(Y)
as DIFF(Y+*LOG(Y),Y,)) within another function G(I) where the | in the definition of
F(Y) is to be replaced by the argument to G when G is called.

G(N:=BLOCK(...,F(Y):="(DIFF(Y+LOG(Y),Y,)),..) will not do the job because the
” operator will cause the differentiation to be carried out at parse time and thus
either an error will result (if | is unbound) or the current global value of | will be
used rather than the value of the argument to G when it is called. Omitting the ”
is also not desirable in this example because that would force the differentiation
to be done each time F is called rather than at the time it is defined. To remedy
this one may use the command '

DEFINE(function(arguments),body)

which is like function(arguments):="body but causes the evaluation of body to
occur at the time DEFINE is evaluated. Thus
G(N:=BLOCK(...,DEFINE(F(Y),DIFF(Y+LOG(Y),Y,)),..) will work properly. DEFINE may
also be used for subscripted functions.
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3.3 Simplification

The simplifier takes the output of the evaluator and tries to make it smaller
and more manageable, using some built-in algebra. Unless the user takes some
special action (like setting the special variable SIMP to FALSE (see 6.1)),
MACSYMA will never output an unsimplified expression. The simplifier re-orders
expressions in order to obtain a standard form and the result is the value of the
current D line. Thus A+B+C or C+A+B or C+B+A if input, will all result in the
same internal form, (PLUS A B C) which displays as C + B + A . The simplifier also
changes the SQRT function to exponentiation to the 1/2 power and removes the
difference and quotient operators from the expression by converting X-Y to X+(-
1)£Y and X/Y to XsY~1,

Roughly speaking, the simplifier orders expressions on the basis of their
subexpressions being ordered first. Variables are ordered alphabetically i.e., from
A to Z. Constants (%E, %P, %l and any atoms DECLAREd CONSTANT) ‘come before
variables and numbers come before constants. Finally, functions are ordered
according to their argumentsl, and according to their names in case their
arguments are the same. Thus Y+2+A+X-%Pl would become (PLUS (TIMES -1 %Pl)

The user should be aware that the line between evaluation and simplification
is not clear-cut. For instance, SIN is a noun-function When the evaluator sees
SIN(O), it returns SIN(O). However, the simplifier notices this special case and
changes this expression to 0. So simplification will sometimes obscure the
difference between noun and verb functions.

[Mo1] mentions these and many other matters dealing with simplification.

1. Comparing first arguments first, second arguments second, etc.
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4 Miscellaneous Hints and Facilities

Care should be taken in cases where an expression containing % is re-
evaluated since the value of % changes each time a new line is computed. This is
shown in the following example.

(C1) (X+Y)*38
(C2) DIFF(%,X);

(D2) '
(C3) Y:X~2+18
(Ca) ~--c2;
(D4) 2 X

3 (Y +X)

In line C4 the user may have intended to re-evaluate C2 thinking that the %
still referred to D1 while it actually referred to D3. Note the use of the * ’
operator to re-evaluate a previous expression. (see 3.2)

The following interrupt characters typed while holding down the control key
have special functions. They may be typed at any time--- even in the middle of a
command line---and take effect immediately.

~ (control-shift-N on some terminals) - enters top-level LISP after resetting
all locally bound variables and breaking out of all functions. It is not possible to
continue an interrupted calculation after a control-*, but typing (CONTINUE) will
return to MACSYMA.

A - makes a breakpoint in MACSYMA and suspends the computation. At this
point the user is in a MACSYMA break loop. If a user function was being
executed at the time of the break, its values may be printed or changed. Aside
from this, it is almost like being at top-level MACSYMA. To exit and resume the
computation type EXIT; (see 10.1).

X - quits a computation started while in a control-A break without quitting
the top-level computation.

1 - (control-shift-M on some terminals) prints the time used so far in a
computation (without interrupting it).

K - reprints the current input line. This is useful when many rubouts have
obscured the line (on hardcopy devices).
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Y - gets the last command string.
L - clears the screen on display consoles and reprints the current line.

W - stops printout at the console while the computation continues. ( if the
user is connected to MACSYMA via the ARPA network, printout will not stop until
the Arpanet buffer is emptied.) The switch TTYOFF[FALSE] if set to TRUE also
stops the printout. This is useful for temporarily turning off the display for
functions which might generate a lot of printing like BATCH. Setting the switch to
FALSE causes printing to be resumed.

V - resumes printout at the console turned off by control-W.

G - aborts a computation and returns control to top-level MACSYMA. This is
like control-" immediately followed by {CONTINUE) and is useful for breaking out
of infinite loops or for terminating a computation prematurely.

H - (backspace on some consoles) makes a "breakpoint” in MACSYMA, enters
LISP, and prints the time used in the current computation. Control-H does not
reset any values. Altmode (or Escape) P (for proceed) followed by a space will
return to MACSYMA and resume the computation. Control-B also performs this
function in NEWIO MACSYMA.

D - causes garbage collection statistics to be printed out each time a garbage
collection takes place {Mn1]. See Chapter 16.

C - stops printout of garbage collection statistics turned on by controi-D.

Two of the many MACSYMA variables or options mentioned later on are of
special interest and will be described here. .

(1) The value of LINEL gives the number of characters which are printed on a
line. It is initially set by MACSYMA to the line length of the type of terminal
being used (as far as is known) but may be reset at any time by the user. The
user may have to reset it in DDT with :TCTYP as well. See [Lewl]

(2) If the variable SHOWTIME[FALSE] is TRUE then the computatlon time will
be printed automatically with each output expression.

Sometimes when a user gives a command line the message "... being loaded”
will be printed. This means that a function being used in the command line and/or
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the associated programs are not in the initially loaded MACSYMA but are being
loaded in now via the dynamic loader. Infrequently used or inessential functions
are not initially loaded into MACSYMA in an effort to save space.

When in LISP typing (CONTINUE) or control-G will return to MACSYMA. .

MACSYMA provides the facility for the user to have an initialization file which
gets loaded automatically before line (Cl) is printed. If the user has a directory
then the file should be named MACSYM (INIT). Otherwise he may place the file
whose first file name is his login name and whose second file name is MACSYM on
the directory called (INIT). This file must be in the format for the LOADFILE
function (see 10.4), i.e. it must contain LISP code. It may be created via the
SAVE function (see 10.4) or by translating a BATCH file (see 10.8).

A user who knows LISP should note that preceding a name with a ? causes
the corresponding LISP atom to be invoked. For example, ?FIXP(4.2); returns
FALSE, where FIXP is the name of a LISP system function.
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5 Predefined Constants and Functions

5.1 Constants

A number of common mathematical constants have special names in MACSYMA;
%E - the base of the natural logarithms.

’/.F_‘i - the transcendental number n.

%l - the square root of -1.

INF - real positive infinity.

MINF - real minus infinity.

INFINITY - complex infinity, an infinite magnitude of arbitrary phase angle.l
TRUE - the Boolean constant, true. (T in LISP)

FALSE - the Boolean constant, false. (NIL in LISP)

5.2 Functions

All of the functions mentioned below take one argument (shown as X) unless
stated otherwise. The default values of MACSYMA variables whlch affect certain
functions are given in brackets with the function.

1. The infinity symbols have meaning only for certain functions, for example, LIMIT,
INTEGRATE, SUM.
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5.2.1 Simple Functions

ABS(X) - absolute value of X

ABSBOXCHAR[!] is the character used to draw absolute value signs
around expressions which are more than a single line high.

FLOAT(exp) - converts integers, rational numbers and bigfloats in exp to floating
point numbers.

BFLOAT(X) - converts all numbers and functions of numbers to bigfloat numbers.
Setting FPPREC[16] to N, sets the bigfloat precision to N digits. If
FLOAT2BF[FALSE] is FALSE a warning message is printed when a floating
point number is converted into a bigfloat number (since this may lead to loss
of precision).

ENTIER(X) - largest integer < X.

SIGNUM(X) - if X<O then -1 else if X>0 then 1 else 0. If X is not numeric then a
~simplified but equivalent form is returned. For example, SIGNUM(-X) gives
-SIGNUM(X). ‘

POLYSIGN(X) - same as SIGNUM but always returns a numerical result by looking
at the numerical factor of the highest degree term in X.

MIN(XI, X2, ..) yields the minimum of its arguments (or returns a simplified form if
some of its arguments are non-numeric).

MAX(X1, X2, ..) yields the maximum of its arguments (or returns a simplified form
if some of its arguments are non-numeric). :
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5.2.2 Miscellaneous Functions

SQRT(X) - the square root of X. It is represented internally by X"(1/2). Also see
ROOTSCONTRACT in section 6.1.1.

RADPRODEXPAND[TRUE] - if TRUE will cause nth roots of factors of a
product which are powers of n to be pulled outside of the radical, e.g.
SQRT(16%X"~2) will become 4+X only if RADPRODEXPAND is TRUE.

ISQRT(X) - takes one integer arg and returns the “integer SQRT" of its absolute
value.

EXP(X) - the exponential function. It is represented internally as ZE~X.

DEMOIVRE[FALSE] - if TRUE will cause %E~[A+B#%l] to become
ZE~A+(COS(B)+%I1+SIN(B)) if B is free of %l. A and B are not expanded.

%ZEMODE[TRUE] - when TRUE ZE~[%Plx%1¢X] will be simplified as follows:
it will become COS(%PI+X)+%ISIN(%PI+X) if X is an integer or a multiple of
1/2, 1/3, 1/4, or 1/6 and thus will simplify further. For other numerical X it
will become %ZE~[%Plt%l+Y] where Y is X-2t«k for some integer k such that
ABS(Y)<1. If 4EMODE is FALSE no simplification of %E~[%Pls%IxX] will take
place.

ZENUMER[FALSE] - when TRUE will cause %E to be converted into
2.718.. whenever NUMER is TRUE. The default is that this conversion will
take place enly if the exponent in ZE~X evaluates to a number.

LOG(X) - the natural logarithm.
LOGEXPAND[FALSE] - if TRUE will cause LOG(A/B) to become LOG(A)-
LOG(B) and LOG(A#B) to become LOG(A)+LOG(B). This does not effect
LOG(AB) which always becomes B+LOG(A).

LOGSIMP[TRUE] - if FALSE then no simplification of %E to a power
containing LOG’s is done.
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LOGNUMER[FALSE] - if TRUE then negative floating point arguments to
LOG will always be converted to their absolute value before the log is taken.
If NUMER is also TRUE, then negative integer arguments to LOG will also be
converted to their absolute value.

The LOGCONTRACT command (see 6.1.1) “contracts” expressions containing
LOG.

PLOG(X) - the principal branch of the complex-valued natural logarithm with -%PI
<X < +%PI.

GLOG(X) - the generalized logarithm, i.e. all branches. This is sometimes used by
the definite integration package. '

BINOMIAL(X, ¥) - the binomial coefficient X+(X-1)+..#(X-Y+1)/YL If X and Y are
integers, the binomial coefficient is actually computed. If Y or X-Y is an
integer, the binomial coefficient is simplified to a polynomial.

RANDOM(X) - returns a random integer between 0 and X-1. If no argument is

given then a random integer between -235 and 235.1 is returned. If X is
FALSE then Qhe random sequence is restarted from the beginning.

FIB(X) - the Xth Fibonacci number with FiB(0)=0, FIB(1)=1, and FIB(-N)=(-
1){N+D)yp IB(N). PREVFIB is FIB(X-1), the Fibonacci number preceding the last
one computed. ' -

GENFACT(X, Y, 2) is the generalized factorial of X which is: X#(X-2Z)+(X-
2+Z)x. . #(X-(Y-1)%2). Thus, for integral X, GENFACT(X,X,1)=X! and
GENFACT(X,X/2,2)=X1

GAMMA(X) - the gamma function. GAMMA(D=(I-1)! for | a positive integer.
GAMMALIM[1000000] controls simplification of the gamma function for

integral and rational number arguments. |f the absolute value of the argument
's not greater than GAMMALIM, then simplification will occur. Note that the
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FACTLIM switch (see 2.5) controls simplification of the result of GAMMA of an
integer argument as well.

BETAC(X, Y) - same as GAMMA(X)*GAMMA(Y)/GAMMA(X+Y)
ERF(X) - the error function, whose derivative is: 2*EXP(-X"2)/SQRT('/.PI).
EULER(X) - gives the Xth Euler number for integer X.

BERN(X) - gives the Xth Bernoulli number for integer X.
ZEROBERN[TRUE] if set to FALSE excludes the zero BERNOULLI
numbers.
ZETA(X) - gives the Riemann zeta function for certain integer values of X.
PSI(X) - derivative of LOG(GAMMA(X)).

-5.2.3 Trigonometric Functions

This section outlines the way in which trigonometric functions are called in
MACSYMA; for more information on the simplification of trigonometric functions and
expressions, the user should read Section 2 of the MACSYMA Primer [Mo5].

Circular Functions
SIN, COS, TAN, COT, SEC, CSC

Inverse Circular Functions

ASIN, ACOS , ATAN, ACOT , ASEC , ACSC
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ATAN2(Y,X) - yields the value of ATAN(Y/X) in the interval -%P! to 4P
Hyperbolic Functiohs
SINH, COSH , TANH , COTH, SECH , CSCH
Inverse Hyperbolic Fi Iunctions
ASINH , ACOSH ,ATANH » ACOTH , ASECH, ACSCH

TRIGSIGN[TRUE] - if TRUE permits simplification of negative arguments to
trigonometric functions. E.g., SIN(-X) will become -SIN(X) only if TRIGSIGN is TRUE.

EXPONENTIALIZE[FALSE] - if TRUE will cause all circular and hyperbolic
functions to be converted to exponential form.

LOGARC[FALSE] - if TRUE will cause the inverse circular and hyperbolic
functions to be converted into logarithmic form

Examples
(C1) SIN(%PI/12)+TAN(X%PI/6);
' %*PI 1
(D1) SIN(=-=) ¢ =cceeun
12 SQRT(3)

(C2) EV(%,NUMER);
(D2) 0.8361693

(C3) BETA(1/2,2/5);

2
SQRT(%PI) GAMMA(-)
5
(03)  eeececcemee
9
GAMMA(--)
10

(C4) EV(%,NUMER);
(D4) , 3.6790924
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(C5) DIFF(ATANH(SQRT(X)),X);
(D5)  memeeeeeomoooooe-

2 SQRT(X) (1 -.X)

(C6) SOLVE(X*2+10%5&X+1);

SOLUTION

(€6) _ X = - SQRT(2499999999) - 50000
(E7) | X = SQRT(2499999999) -A50000
(D7) | (€6, E7]

(C8) E7,NUMER;
(D8) V X = 2.9296875E-3

(C9) BFLOAT(E7); '
(D9) X = - .99999997473787528-5

(C10) FPPREC:258
(C11) SIN(.580);

(011) .479425538604203000273287980

The trigonometric simbliﬂcation routines use declared information in some
simple cases. Declarations about variables are used as follows, e.g. '
(C5) DECLARE(J, INTEGER, E, EVEN, O, 0DD)$
(C6) SIN(X + (JxE + 1/2)x%PI)$
(D6) COS{X)

(C7) SIN(X + (O + 1/2)x%PI);

(D7) .= COS(X)
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A complex expression is specified in MACSYMA by adding the real part of the
expression to %l times the imaginary part. Thus the roots of the equation
X"2-8+X+13=0 are 2+3+%l and 2-3sY).

Examples |

(Cl1) (SORT(-4)+SQRT(2.25))*2;

2

(1) (2 XI + 1.5)
(C2) EXPAND(X);

6.0 XI - 1.75

(C3) EXPAND(SQRT(22%I)):

(D3) *XI +1

Note that simplification of products of complex expressions can be effected
by expanding the product, Simplification of quotients, roots, and other functions of
complex expressions can usually be accomplished by using the REALPART,
IMAGPART, RECTFORM, POLARFORM, ABS, CARG functions (see 6.2.3).
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6 MACSYMA Functions and Variables

Following is a list of all MACSYMA functions divided into functional classes.
MACSYMA variables which affect the operation of some functions are described
under the appropriate function with their default value in brackets. These are
sometimes referred to as MACSYMA options.

6.1 General Purpose Functions
6.1.1 Evaluation and Simplification Functions

"EV(exp, argl, .., argn) is one of MACSYMA’s most powerful and versatile
commands. It evaluates the expression exp in the environment specified by
the argi. This is done in steps, as follows:

(1) First the environment is set up by scanning the argi which may be as
follows:

SIMP causes exp to be simplified regardless of the setting of the switch
~ SIMP which inhibits simplification if FALSE.

NOEVAL suppresses thé evaluation phase of EV (see step (4) below).
This is useful in conjunction with the other switches and in causing exp to be
resimplified without being reevaluated.

EVAL causes an extra post-evaluation of exp to occur. (See step (5)
below.)

- INFEVAL leads to an "infinite evaluation" mode. EV repeatedly evaluates
an expression until it stops changing. To prevent a variable, say X, from
being evaluated away in this mode, simply include X="X as an argument to EV.
Of course expressions such as EV(X,X=X+1,INFEVAL); will generate an infinite
loop. CAVEAT EVALUATOR.

EXPAND causes expansion.
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EXPAND(m,n) causes expansion, setting the values of MAXPOSEX and
MAXNEGEX to m and n respectively. (see the EXPAND function below)

DETOUT causes any matrix inverses computed in exp to have their
determinant kept outside of the inverse rather than dividing through each
element.

DIFF causes all differentiations indicated in exp to be performed. (see
the DIFF function below.)

DERIVLIST(var1,..,vark) causes only differentiations with respect to the
indicated variables.

FLOAT causes non-integral rational .numbers to be converted to floating
point.

NUMER causes some mathematical functions (including exponentiation)
with numerical arguments to be evaluated in floating point (see 5.2.1). it
causes variables in exp which have been given numervals (see 8.1.2) to
be replaced by their values. It also sets the FLOAT switch on.

PRED causes predicates (expressions which evaluate to TRUE or FALSE)
to be evaluated.

NOUNS converts all nouns occurring in exp to verbs.

E where E is an atom declared to be an EVFLAG (see 8.1.1) causes
E to be bound to TRUE during the evaluation of exp. :

V:expression (or alternatively V=expression) causes V to be bound to the
value of expression during the evaluation of exp. Note that if V is a
MACSYMA option, then expression is used for its value during the evaluation
of exp. If more than one argument to EV is of this type then the binding is
done in parallel. If V is a non-atomic expression then a substitution rather
than a binding is performed.

E where E is a function name declared to be an EVFUN (see 8.1)
causes E to be applied to exp. '

Any other function names (e.g. SUM) cause evaluation of occurrences of
those names in exp as though they were verbs (see 3.2).
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In addition a function occurring in exp (say F(args)) may be defined locally
for the purpose of this evaluation of exp by giving F(args):=body as an
argument to EV.

If an atom not mentioned above or a subscripted variable or subscripted
expression was given as an argument, it is evaluated and if the result is an
equation or assignment then the indicated binding or substitution is performed.
If the result is a list then the members of the list are treated as if they were
additional arguments given to EV. This permits a list of equations to be given
(e.g. [X=1, Y=A%+2] ) or a list of names of equations (e.g. [E1,E2] where E]
and E2 are equations) such as that returned by SOLVE. (see 6.3)

The argi of EV usually may be given in any order but since they are
picked up left to right the order may influence the result. This is strictly true
of substitution equations which are handled in sequence, left to right, and
EVFUNS which are composed, e.g. EV(exp,RATSIMP,RECTFORM) is handled as
RECTFORM(RATSIMP(exp)). The SIMP, NUMER, FLOAT, PRED, and INFEVAL
switches may also be set locally in a block, or globally at the "top level” in
MACSYMA so that they will remain in effect until being resel. Setling
INFEVAL:TRUE locally will cause ali evaluations occurring via explicit calls to

[e ¥ H P
.

EV to be done "infinitely

If exp is in CRE fdrm (see 3.1) then EV will return a result in CRE form
provided the NUMER and FLOAT switches are both FALSE.

(2) During step (1), a list is made of the non-subscripted variables
appearing on the left side of equations in the argi or in the value of some argi
if the value is an equation. The variables (including subscripted variables) in
the expression exp are replaced by their giobal values, except for those
appearing in this list. Usually, exp is just a label or % (as in (C2) below), so
this step simply retrieves the expression named by the label, so that EV may
work on it.

(3) If any substitutions are indicated by the argi, they are carried out
now.

(8) The resulting expression is then re-evaluated (unless one of the argi
was NOEVAL) and simplified according the the argi. Note that any function
calls in exp will be carried out after the variables in it are evaluated and that
EV(F(X)) thus may behave like F(EV(X)).

(5) If 6ne of the argi was EVAL, steps (3) and (4) are repeated.
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Examples

(Cl1) SIN(X)+COS(Y)+(V+1)**2+’DIFF(SIN(V),V);

d | 2
(DI) COS(Y) + SIN(X) + --SIN(W) + (W + 1)
dw
(C2) EV(%,SIN,EXPAND,DIFF,X=2,Y=1);
2
(D2) COS(W) + W + 2 W+ COS(1) + 1.90929742

An alternate "top level” syntax has been provided for EV, whereby one
may just type in its arguments, without the EV(). That is, one may write
simply exp,argl,.,argn. (This is not permitted as part of another expression,
i.e. in functions, blocks, etc.). exp,RESCAN is equivalent to EV(exp).

(C4) X+Y, X:A+Y,Y:2;
(D4) Y+A+2

(Notice the parallel binding process)
(C5) 2x%xX-3xY=38$
(C6) -3xX+2xY=-48%

(C7) SOLVE([D5,D6]);

solution
(E7) Yz -
’ 5

} 6
(E8) . X= -

5
(D8) [E7, E8]
(C9) D6,D8;
(D9) -4 = -4
(C10) X+1/X > GAMMA(1/2);
1

(D10) X+ =) SQRT(XPI)

X
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(C11) %,NUMER,X=1/2;
(D11) 2.5 > 1.7724539

(C12) %,PRED; :
(012) TRUE

UNKNOWN(exp) returns TRUE iff exp contains an operator or function not known
to the built-in simplifier.

EXPAND(exp) causes products of sums and exponentiated sums to be multiplied
out, numerators of rational expressions which are sums to be split into their
respective terms, and multiplication (commutative and non-commutative) to be
distributed over addition at all levels of exp. For polynomials one may wish
use RATEXPAND which uses a more efficient algorithm (see below).

Terms in exp whose exponent is less than MAXNEGEX[1000] or greater
than MAXPOSEX[1000] will not be EXPANDed. However, -

EXPAND(exp,p,n) expands exp, using p for MAXPOSEX and n for
MAXNEGEX. This helps the user control how much and what kinds of
expansion are to take place.

EXPON[O] - the exponent of the largest negative power which is
automatically expanded (independent of calls to EXPAND). For example if
EXPON is 4 then (X+1)*+(-5) will not be automatically expanded.

EXPOP[0] - the highest positive exponent which is automatically
expanded. Thus (X+1)#x3, when typed, will be automatically expanded only if
EXPOP is greater than or equal to 3. If it is desired to have (X+1)##n
expanded where n is greater than EXPOP then executing EXPAND((X+1)#%n)
will work only if MAXPOSEX is not less than n.

(C1) (1/(X+4Y)%x4-3/(Y+Z)nx3)sx2;

(01) (--mmmeee = mmmeee-- )

(Y +X) (Z +Y)
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(C2) EXPAND(%,2,0);

(D2) SERRLLEETTETTERRR AJREETEEEE AJREEEEEEE

(Y+X) (Z+Y) (Z+Y) (Y+X)
(C3) EXPAND(A.(B+C.(D+E)+F));

(D3) A.F+A.C.E*A.C.D+A.B

RATEXPAND(exp) expands exp by multiplying out products of sums and
exponentiated sums, combining fractions over a common denominator,
cancelling the greatest common divisor of the numerator and denominator,
then splitting the numerator (if a sum) into its respective terms divided by
the denominator. This is accomplished by converting exp to CRE form (see
3.1) and then back to general form.

RATEXPAND[FALSE] - if TRUE will cause CRE expressions to be fully
expanded when they are converted back to general form or displayed, while
if it is FALSE then they will be put into a recursive form. (see RATSIMP
below)

RATDENOMDIVIDE[TRUE] - if FALSE will stop the splitting up of the
terms of the numerator of RATEXPANDed expressions from occurring.

KEEPFLOAT[FALSE] if set to TRUE will prevent floating point numbers
from being rationalized when expressions which contain them are converted
to CRE form. '

GCD[EZ] if FALSE will prevent the greatest common divisor from being
taken when expressions are converted to CRE form. This will sometimes
speed the calculation if geds are not required. (cf. the function GCD in
6.5) '

(C1) RATEXPAND( (2%X-3xY)xx3);

3 2 2 3
(D1) ~27Y +54XY -36X Y+8X

(€2) (X-1)7(X+1)ax2+1/(X-1);
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X -1 1

(D2) T eeecese- * cosme

‘ -2 X-1

(X +« 1)
(C3) EXPAND(D2);
X 1 1

(D3) = emememeecccc o ccccmmcmeee- + —eee-

2 2 X -1

(C4) RATEXPAND(D2);

(D4)  emececccemenen 4 cmeemeeeeeoeeen

X +X =X=1 X +X =X-1

RATSIMP(exp) "rationally” simplifies (similar to RATEXPAND) the expression exp
and all of its subexpressions including the arguments to non-rational functions.
The result is returned as the quotient of two polynomials in a recursive form,
i.e. the coefficients of the main variable are polynomials in the other
variables. Variables may, as in RATEXPAND, include non-rational functions
(e.g. SIN(Xxx2+1) ) but with RATSIMP, the arguments to non-rational functions
are rationally simplified. Note that RATSIMP is affected by some of the
variables which affect RATEXPAND.

RATSIMPEXPONS[FALSE] - if TRUE will cause exponents of expressions
to be RATSIMPed automatically during simplification.

RATSIMP(exp,v1,..,vn) enables rational simplification with the specification of
variable ordering as in RATVARS.
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(C1) SIN(X/(X"2+4X))=XE~((LOG(X)+])a%2-LOG(X)#x2);

2 2
X - LOG (X) + (LOG(X) + 1)
(D1) SIN(---=--) = XE
2
X +X
(C2) RATSIMP(%);
: : | . 2
(D2) © SIN(----- ) = XEX
X+l

(C3) ((X~l)**(#/2)-(X+l)*SORT(X-I))/SQRT((X-I)*(X*I));

3s2
(X - 1) - SQRT(X - 1) (X + 1)
(D3) R
SQRT(X - 1) SQRT(X + 1)

(C4) RATSIMP(X);

(D4) ' R
SQRT(X + 1)

(C5) Xwx(A+1/A),RATSIMPEXPONS : TRUE;

(D5) X

RADCAN(exp) simplifies exp, which can contain logs, exponentials, and radicals, by
converting it into a form which is canonical over a large class of expressions
and a given ordering of variables; that is, all functionally equivalent forms are
mapped into a unique form. For a somewhat larger class of expressions,
RADCAN produces a regular form [Fa2]. Two equivalent expressions in this
class will not necessarily have the same appearance, but their difference will
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be simplified by RADCAN to zero. For some expressions RADCAN can be
quite time consuming.. This is the cost of exploring certain relationships
among the components of the expression for simplifications based on factoring
and partial-fraction expansions of exponents.

RADPRODEXPAND[TRUE] when set to FALSE will inhibit certain
transformations: . RADCAN(SQRT(1-X)) will remain SQRT(1-X) and will not
become %I SQRT(X-1). RADCAN(SQRT(X2-2¢X+1)) will remain SQRT(X2-2+¢X +
1) and will not be transformed to X-1. '

(c1) (LGG(X**ZOX)-LOG(X))**AILOG(X+1)**(A/2);

2 A
(LOG(X + X) - LOG(X))
(01) Someeseemmeeeieceeeaes
. A2
LOG(X + 1)
(€2) RADCAR(X);
' Ar2

(D2) . LOG(X + 1)

(C3) LOG(A**(Z*X)+2*A**X+1)/I.OG_(mx-»l);

2 X X
LOG(A +2A +1)
(D3) = ceceecccmcceaea.
X
LOG(A + 1)
(C4) RADCAN(%);
(D4) 2

(C5) (XExckX-1)/(%Esx(X/2)+1);

(D5) e

' (CG) RADCAN(%);
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X/2

L'e s =
. =

P
<o
(4]

.
—t

COMBINE(exp) simplifies the sum exp by combining terms with the same
denominator into a single term.

MULTTHRU(exp) multiplies a factor (which should be a sum) of exp by the other
factors of exp. That is exp is fl¥f2+..#fn where at least one factor, say fi, is
a sum of terms. Each term in that sum is multiplied by the other factors in
the product. (Namely all the factors except fi). MULTTHRU does not expand
exponentiated sums. This function is the fastest way to distribute products
(commutative or noncommutative) over sums. Since quotients are
represented as products (see 3.3) MULTTHRU can be used to divide sums by
products as well. '

MULTTHRU(expl, exp2) multiplies each term in exp2 (which should be a sum or
an equation) by expl. If expl is not itself a sum then this form is equivalent
to MULTTHRW(expI+expd). '

(C1) X/(X-Y)ax2-1/(X-Y)-F(X)/(X-Y)2x3;

(Dl) - esces= ¢ moccocne o coccecass
(X-Y) (X-Y)

(C2) MULTTHRU((X-Y)xx3,%);

2
(D2) =X -Y) + X (X-Y)-F(X)
(C3) RATEXPAND(DZ2);

2

(D3) - Y + XY - F(X)

(C4) ((A+B)xx]10%Skk2+2xAxBxS+( AxB )acx2 ) /( AxBxSacx2 ) ;
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10 2 2 2

(B +A) S +2ABS+A B
(D4) e ceecccccccana-
2
ABS
(C5) MULTTHRU(%);
10
| 2 AB (B +A)
(D5) - 4 vem § meccmee
: S 2 AB
_ S
(notice that (B+A)#+10 is not expanded)
(C6) MULTTHRU(A.(B+C.(D+E)+F));
{D6) A.F+A.(C.(E+D))+A.B

(compare with similar example under EXPAND)

XTHRU(exp) combines all terms of exp (which should be a sum) over a common
denominator without expanding products and exponentiated sums as RATSIMP
does. XTHRU cancels common factors in the numerator and denominator of
rational expressions but only if the factors are explicit. Sometimes it is
better to use XTHRU before RATSIMPing an expression in order to cause
explicit factors of the gcd of the numerator and denominator to be canceled
thus simplifying the expression to be RATSIMPed.

(Cl) ((X+2)**ZO-Z*Y)/(X+Y)*#20+(X+Y)**-19-X/(X+Y)**20;

(D1) ' seereccre - scececesen ¢ wccccccccenceas
19 20 20
(Y +£ X) (Y + X) (Y + X)

(C2) XTHRU(X);
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(D2)  rmeeeeemacaan

PARTFRAC(exp, var) expands the expression exp in partial fractions with respect
to the main variable, var. Each power of a different denominator will be
represented by only a single term (i.e. the decomposition is not “"complete”).
The algorithm employed is based on the fact that the denominators of the
partial fraction expansion (the factors of the original denominator) are
relatively prime. The numerators can be written as linear combinations of
denominators, and the expansion falis out.

(C1) 2/(X+2)-1/(X+1)=-X/(X+1)ax28
(C2) RATSIMP(X);

(02) | e eeeceenam

(C3) PARTFRAC(%,X);

(03)  eeeeeeeee- Q-

FACTOR(exp) factors the expression exp, containing any number of varlables or
functions, into factors irreducible over the integers. :

FACTOR(exp, p) factors exp over the field of integers with an element adjoined
whose minimum polynomial is p.

FACTORFLAG[FALSE] if FALSE suppresses the factoring of integer
factors of rational expressions.
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DONTFACTOR may be set to a list of variables with respect to which
factoring is not to occur. (It is initially empty). Factoring also will not take
place with respect to ‘any variables which are less important (using the
variable ordering assumed for CRE form) than those on the DONTFACTOR list.
(see 6.5)

SAVEFACTORS[FALSE] if TRUE causes the factors of an expression
which is a product of factors to be saved by certain functions in order to

speed up later factorizations of expressions containing some of the same
factors.

- BERLEFACT[TRUE] if FALSE then the Kronecker factoring algorithm will
be used otherwise the Berlekamp algorithm, which is the default, will be used.
(see [Bel, Wa4))

INTFACLIM[1000] is the largest divisor which will be tried when
factoring a bignum integer. If set to FALSE (this is the case when the user
calls FACTOR explicitly), or if the integer is a fixnum (i.e. fits in one machine
word), complete factorization of the integer will be attempted. The user’s
setting of INTFACLIM is used for internal calls to FACTOR. Thus, INTFACLIM
may be reset to prevent MACSYMA from taking an inordinately long time
factoring large integers. '

GCFACTOR(n) factors the gaussian integer n over the gaussians, i.e. numbers of
the form a + b i where a and b are rational integers. Factors are normalized
by making a and b non-negative. '

(C1) FACTOR(2%x63-1);

; 2
(01) .73 127 337 92737 649657 7

(C2) FACTOR(Zaox2x(X+2%Y)-4%X-8xY);
(02) (2Y+X) (Z-2)(Z+2)
(C3)  Xwk2kYak2+2kXKYH0K2+YHK2 - X#K2 = 2%X~1 ;

2 2 2 2 2
(03) XY +2XY +Y =X -2X-1

(C4) DONTFACTOR:[X]$
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(C5) FACTOR(D3/36/(Yxx2+2xY+1));

2 .

(X #2%X+1)(Y-1)

(05)  emeemeeececceee————-
36 (Y + 1)

(C6) FACTOR(%Emxx(3xX)+1);

X 2 X X
(D6) (%E + 1) (%€ - % +1)
(C7) FACTOR(Xack4+1,Axx2-2);

-2 2
(D7) (X +AX+1)(X -AX+1)

MACSYMA

When FACTOR is applied to integers, note that the value returned by
FACTOR when used in other computations may not lead to a simplified resuit.
Using D1 above, the user can check that D1 + 1; will not return 263

FACTORSUM(exp) tries to group terms in factors of exp which are sums into
groups of terms such that their sum is factorable. It can recover the result of

EXPAND((X+Y)24(Z+W)2) but it can’t recover EXPAND{((X+1)24(X+Y)2)

because the terms have variables in common.

(C1) (X+1)x((U+V)*2+Ax(W+Z)"*2),EXPAND;

2 2 2 2

(D1) AXZ +AZ +2AWXZ+2ANZI+AN Xe+V X

2 2 2 2
+2UVX+U X+AW 2V +2U0UV+U

(C2) FACTORSUM(X); .
-2 2
(02) (X + 1) (A(Z+W) +(Va+U))
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FACTOROUT (exp,varl,vard,.) rearranges the sum exp into a sum of terms of the

form f(varl,var2,.)+g where g is a product of expressions not contammg the
vari’s and f is factored.

Another technique of factoring complex expressiohs uses the function
SCANMAP (see Chapter 8).

SQFR(exp) is similar to FACTOR except that the polynomial factors are "square-
free.” That is, they have factors only of degree one. This algorithm, which is
also used by the first stage of FACTOR, utilizes the fact that a polynomial has
in common with its nth derivative all its factors of degree > n. Thus by takmg
gcds with the polynomial of the derivatives with respect to each variable in
the polynomial, all factors of degree > 1 can be found.

(C1) SQFR(4%X#ckd+A4%Xwx3=3IkXak2-4%X-1);

. 2 2
(p1) (X - 1) (2x+1)

GFACTOR(exp) factors the polynomial exp over the Gaussian integers (i. e. with
SQRT(-1)- = %l adjoined). This is like FACTOR(exp,Ax+2+1) where A is %l

(C1) GFACTOR(Xxcx4-1);
(01) (X = 1) (X + 1) (X + XI) (X = %¥I)

GFACTORSUM(exp) is similar to FACTORSUM but applies GFACTOR instead of
FACTOR.

IRREDUCIBLE(exp) returns exp flagged as being irreducible, i.e. it doesn’t factor.
Exp must be a sum. If FACTOR is ever called on an expression marked as
irreducible it returns immediately. For example, if the value of H is a large
expression which the user knows to be irreducible and the expression G#H is
to be factored (where the value of G is arbitrary) then
FACTOR(G+IRREDUCIBLE(H)) is faster than FACTOR(GxH). '
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PARTITION(exp, var) returns a list of two expressions. They are (1) the factors
of exp (if it is a product) or the terms of exp (if it is a sum) which don’t

contain var and, (2) the factors or terms which do.

(C1) PARTITION(2xAxXxF(X),X);

(D1) [L2A, XF(X)]

(C2) PARTITION(A+B,X);

(D2) [A+B, 0]

LOGCONTRACT((exp) recursively scans an exp, transforming subexpressions of the
form al*LOG(bl) + a2+LOG(b2) + c into LOG(RATSIMP(b1”al * b2"a2)) + ¢

(C1) .2x(AxLOG(X) + 2xAxL0G(Y))$

(C2) LOGCONTRACT(%);
. 2 4

(03) A LOG(X Y )

ROOTSCONTRACT(exp) converts products of roots into roots of products. For
example, ROOTSCONTRACT(SQRT(X)*Y~(3/2)); gives SQRT(X+Y~3). Currently
it only knows about rational number exponents whose denominators are 2,

but extension to other roots will follow.

6.1.2 Sums and Products

SUM(exp, ind, lo, hi) performs a summation of the values of exp as the index ind
varigs from /o to hi. If the upper and lower limits differ by an integer then
each term in the sum is evaluated and added together. Otherwise the
summand is evaluated with the index of summation unbound and (if SIMPSUM

[FALSE] is TRUE) the result is simplified. This simplification may sometimes
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be able to produce a closed form. If SIMPSUM is FALSE or if 'SUM is used,
the value is a sum noun form which is a representation of the sigma notation
used in mathematics.

Sums may be differentiated, édded, subtracted, or muiltiplied with some
automatic simplification being performed.

CAUCHYSUM[FALSE] when TRUE causes the Cauchy product to be used
when multiplying sums together rather than the usual product. In the Cauchy

product the index of the inner summation is a function of the index of the
outer one rather than varying independently.

GENINDEX[I] is the alphabetic prefix used to generate the next variable
of summation when necessary.

GENSUMNUM[O0] is the numeric suffix used to generate the next variable
of summation. If it is set to FALSE then the index will consist only of
GENINDEX with no numeric suffix.

(C1) SIMPSUM:TRUES
(C2) SUM(Ixx2+2%x1,I,0,N);
3 2

N+1 2N +3N +N
(D2) 2 T -1

(C3) SUM(3xx(-I),I,1,INF);
(D3) -
’ 2

(C4) SUM(I%2,I,1,4)xSUM(1/1%2,1,1,INF);

2
(D5) 5 %PI
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NUSUM(exp,var,low,high) performs indefinite summation of exp with respect to
var using a decision procedure due io RW. Gosper. exp and the potential
answer must be expressible as products of nth powers, factorials, binomials,
and rational functions.

UNSUM(fun,n) is the first backward difference fun(n) - fun{n-1).

(Cl) G6(P) :=P#4“N/BINOHIAL(2*N,N);
' N
' ’ P4
(D1) 6(P) :2 ~evececccmnanaa.
BINOMIAL(2 N, N)

(C2) G(N"4);

(D2) e———————-

BINOMIAL(2 N, N)
(C3) NUSUM(D2,N,0,N); , :
4 3 2 N

2(N+1) (63N + 112N + 18N -22N+3)4 2
(D3) ittt et b L L DL LT LR
693 BINOMIAL(2 N, N) 3117
(C4) UNSUM(%,N);
4 N
N 4

(0a) e
BINOMIAL(2 N, N)

PRODUCT (exp, ind, lo, hi) gives the product of the values of exp as the index ind
varies from /o to hi. The evaluation is similar to that of SUM. No
simplification of products is available at this time.

(C1) PRODUCT(X+Ix(I+1)/2,1,1,4);

(D1) (X' +# 1) (X + 3) (X+6)(X+ 10)
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6.1.3 Differentiation and Integration Functions

DIFF(exp, v1, nl, v2, n2, ..) differentiates exp with respect to each vi, ni times.
If just the first derivative with respect to one variable is desired then the
form DIFF(exp,v) may be used. If the noun form of the function is required
(as, for example, when writing a differential equation), *DIFF should be used
and this will display in a two dimensional format.

DERIVABBREV[FALSE] if TRUE will cause derivatives to display as
subscripts.

DIFF(exp) gives the "total differential”, that is, the sum‘ of the derivatives

of exp with respect to each of its variables times the function DEL of the
variable. No further simplification of DEL i; offered.

(C1) DIFF(EXP(F(X)),X,2);

2
. F(X) d F(X) d C2
(D1) %E (--- F(X)) + %E (-- F(X))
' ' 2 dX

dax '

(C2) DERIVABBREV:TRUES

(C3) “INTEGRATE(F(X,Y),Y,6(X),H(X));
- H(X)

(D3) F(X, Y¥) dY

T b b YN

6(X)
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/
[
(D4) I F(X, Y) dY + F(X, H(X)) H(X) - F(X, 6(X)) &(X)
] X X X
/

DEPENDS(funIistl,varlistl,!unlistZ,varlist2,...) declares functional dependencies for
variables to be used by DIFF. DEPENDS([F,G],[X,Y1,[R,S],[UV,W]U,T) informs
DIFF that F and G depend on X and Y, that R and S depend on UV, and W, and
that U depends on T. The arguments to DEPENDS are evaluated. The
variables in each funlist are declared to depend on all the variables in the
next varlist! A funlist can contain the name of an atomic variable or array. in
the latter case, it is assumed that all the elements of the array depend on all
the variables in the succeeding varlist. Initially, DIFF(F,X) is O; executing
DEPENDS(F,X) causes future differentiations of F with respect to X to give
DF /DX or Yy (if DERIVABBREV:TRUE). :

(C1) DEPENDS([F,G].[X,Y]1,[R,S1,[U,V,¥W],U,T);
(D1) (F(X, Y), &(X, Y), R(U, V, ¥), S(U, v, W), (T)]

(C2) DEPENDENCIES;
(p2) ' [F(X, Y), &(X, ¥), R(U, v, W), S(U, V, W), U(T)]
(C3) DIFF(R.S,U);

dR ds
(D3) - .S+R . --
du av

Since MACSYMA knows the chain rule for symbolic derivatives, it takes
advantage of the given dependencies as follows:

(C4) DIFF(R.S,T);

dR du ds dv
(D4) (== -=) . S+ R . (== --)
dv d7 du dv

If we set

1. In this command, lists of length one can be typed in directly as atoms.
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(C5) DERIVABBREV:TRUE;
(D5) ‘ TRUE

then re-executing the command C4, we obtain

(C6) 7“C4;
(D6) (R U).S+R. (S U)
urT urT

To -eliminate a previously declared dependency, the REMOVE command
can be used. For example, to say that R no longer depends on U as declared
in Cl, the user can type REMOVE(RDEPENDENCY). This will eliminate all
dependencies that may have been declared for R.

(C7) REMOVE(R,DEPENDENCY);
(D7) DONE

(C8) 7“C4;
- (D8) ' R.(S U)

CAVEAT: DIFF is the only MACSYMA command which uses DEPENDENCIES
information. The arguments to INTEGRATE,LAPLACE,etc. must be given their
dependencies explicitly in the command, e.g,, INTEGRATE(F(X),X).

GRADEF(f(x1, .., xn), gl, .., gn) defines the derivatives of the function f with

respect to its n arguments.. That is, dffdxi = gi, etc. If fewer than n
gradients, say i, are given, then they refer to the first i arguments of £ The
xi are merely dummy variables as in function definition headers and are used
to indicate the ith argument of £ All arguments to GRADEF except the first
are evaluated so that if g is a defined function then it is invoked and the
result is used.
Gradients are needed when, for example, a function is not known explicitly
but its first derivatives are and it is desired to obtain higher order
derivatives. GRADEF may also be used to redefine the derivatives of
MACSYMA’s predefined functions (e.g. GRADEF(SIN(X),SQRT(1-SIN(X)+£2)) ). It
is not permissible to use GRADEF on subscripted functions.
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GRADEFS is a list of the functions which have been given gradients by
use of the GRADEF command.

PRINTPROPS([1,f2,..), GRADEF) (see 8.1.1) may be used to display
the gradefs of the functions f1,f2,.

REMOVE([f1,72,..),GRADEF) may be used to eliminate the GRADEF
property from the functions f1,/2,...

(C1) DEPENDS(Y.*)S
(C2) GRADEF(F(X,Y),Xxx2,6(X,Y))$

(C3) DIFF(F(X,Y),X);
avy 2
(03) 6(X, ¥) -- + X
dax

(CA) GRADEF(J(N,Z), “DIFF(J(N,Z),N),
RATSIMP(J(N-1,Z)-N/I%xJ(N,Z)))8

(CS5) DIFF(J(2,X),X,2);

2
J(0, X) X -3J3(1, X) X+ 62, X)
(D5) -

(The example above computes the second derivative of a Bessel function
of order two. A subscripted function e.g. J[N], could not have been used
because a gradient for it cannot be defined using GRADEF.)

GRADEF(a,v,exp) may be used to state that the derivative of the atomic variable
a with respect to v is exp. This automatically does a DEPENDS(a,v). For
examples, see example 2 of Appendix Iil.

PRINTPROPS([a1,a2,.,ATOMGRAD) (see 8.1.1) may be used to
display the atomic gradient properties of al,a2...
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REMOVE([aI a2,...;,ATOMGRAD) may be used to ehmmate the ATOMGRAD
property from al,a2,...

INTEGRATE(exp, var) integrates exp with respect to var or returns an integral
expression (the noun form) if it cannot perform the mtegratlon Roughly
speaking three stages are used:

(1) INTEGRATE sees if the integrand is of the form F(G(X))+DIFF(G(X),X)
by testing whether the derivative of some subexpression (i.e. G(X) in the
above case) divides the integrand. If so it looks up F in a table of integrals
and substitutes G(X) for X in the integral of F. This may make use of
gradients in taking the derivative. (If an unknown function appears in the
integrand it must be eliminated in this stage or else INTEGRATE will return
the noun form of the integrand.)

(2) INTEGRATE tries to match the integrand to a form for which a specific
method can be used, e.g. trigonometric substitutions.

(3) If the first two stages fail it uses the Rlsch algonthm. (see [Mo2,
Mo4))

CAVEAT: INTEGRATE knows only about explicit dependencies.

INTEGRATE(exp, var, low, high) finds the definite integral of exp with respect to
var from low to high. Several methods are used,including direct substitution
in the indefinite integral and contour integration (see [Wa3)). Improper
integrals may use the names INF. for positive infinity and MINF for negative
infinity. 1If an integral "form" is desired for manipulation (for example, an
integral which cannot be computed until some numbers are substituted for
some parameters), the noun form ’INTEGRATE may be used and this will

- display with an integral sign.
ABCONVTEST[FALSE] when TRUE causes INTEGRATE to test for absolute
convergence.

The function LDEFINT uses LIMIT (see 6.1.3) to evaluate the indefinite
integral at the lower and upper limits.

Sometimes during integration the user may be asked what the .sign‘ of an
expression is. Suitable responses are PQOS; , ZERO; , or NEG; . (see
7.1)



74 6.1.3 Differentiation and Integration Functions MACSYMA

(C1) INTEGRATE(SIN(X)ax3,X);

3
CoS (X)

(D) = eeeceea - COS(X)
3

(C2) INTEGRATE(X#kA/(X+1)ax(5/2),X,0,INF);
IS A+ 1 POSITIVE, NEGATIVE, OR ZERO?

POS;
"IS- 2 A - 3 POSITIVE, NEGATIVE, OR ZERO?

NEG;
3
(D2) BETA(A ¢+ 1, - - A)
2

(C3) GRADEF(Q(X),SIN(X#x2));
(03) : X)

(C4) DIFF(LOG(Q(R(X))).X);

d 2
(-- R(X)) SIN(R (X))
daX
(D4) C cceceeecceamccea——-
Q(R(X))
(C5) . INTEGRATE(X,X);
(D5) LOG(Q(R(X)))

RISCH(exp, var) integrates exp with respect to var using the Risch algorithm.
This currently handles the cases of nested exponentials and logarithms which
the main part of INTEGRATE can’t do. INTEGRATE will automatically apply
RISCH if given these cases. ‘

ERFFLAG[TRUE] - if FALSE prevents RISCH from introducing the ERF
function in the answer if there were none in the integrand to begin with.
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(C1) RISCH(X*2xERF(X),X);

2 2
- X X 3 2
%E (%E  SQRT(%PI) X ERF(X) + X + 1)

3 SQRT(%PI)
(C2) DIFF(%,X),RATSINP;

2
(02) | X ERF(X)

75

CHANGEVAR(exp, f(x,y),y,x) makes the change of variable given by f(x,y) = O in all
integrals occurring in exp with integration with respect to x; y is the new

variable.

(C1) “INTEGRATE(X%ExxSQRT(AxY),Y,0,4);

SQRT(A) SQRT(Y)

(D1) (XE ) oY

(C2) CHANGEVAR(D1,Y-Z*2/A,Z,Y);

2 SQRT(A)

(04)  emmememeemcceeeeeee-
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LIMIT(exp, var, val, dir) tinds the limit of exp as the real variabie var approaches
the value val from the direction dir. Dir may have the value PLUS for a limit
from above, MINUS for a limit from below, or may be omitted (implying a two-
sided limit is to be computed).. For the method see [Wa3] LIMIT uses the
following special symbols: INF (positive infinity) and MINF (negative infinity).
On output it may also use UND {undefined), IND (indefinite but bounded) and

" INFINITY (complex infinity).
LHOSPITALLIM[4] is the maximum number of times L’Hospital’s rule is
used in LIMIT. This prevents infinite looping in cases like
LIMIT(COT(X) /CSC(X),X,0). '

TLIMSWITCH[FALSE] when true will cause the limit package to use
Taylor series when possible. '

(C1) LIMIT(XxLOG(X),X,0,PLUS);.
(01) °

(C2) LIMIT((1+X)xx(1/X),X,0);
(02) . %

(C3) LIMIT(XE#xX/X,X,INF);
(03) INF

(C4) LIMIT(SIN(1/X),X,0);

(D4) IND

TLIMIT(exp, var,val,dir) is just the function LIMIT with TLIMSWITCH set to TRUE.

LDEFINT (exp,var,low,high) yields the definite integral of exp by using LIMIT to
evaluate the indefinite integral of exp with respect to var at the upper limit
high and at the lower limit fow.
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TLDEFINT (exp, var,low,high) is just LDEFINT with TLIMSWITCH set to TRUE.

RESIDUE(exp, var, val) computes the residue in the complex plane of the
expression exp when the variable var assumes the value val. The residue is
the coefficient of (var-val+#(-1) in the Laurent series for exp.

(Cl) RESIDUE(S/(Sax2+Axx2),S,Ax%I);

(o1) -
- 2

(C2) RESIDUE(SIN(AXX)/X»x4,X,0);

(D2) - .-

ODE2(diffeq,depvar,indvar) solves ordinary differential equations,diffeq, of first or
second order. The dependent and independent variables are specified as the
second and third arguments. When successful ODE2 returns either an explicit
or implicit solution for the dependent variable. The symbol %C is used to
represent the constant in the case of first order equations and %K1,%K2
represent the constants for second order equations. If for some reason ODE2
cannot obtain a solution, it returns FALSE, sometimes printing an error
message to the user.

(C1) X~2%x“DIFF(Y,X) + 3%XxY = SIN(X)/X;

2 dY . SIN(X)
(01) ' X == 43XYs= ---g--
dX X
(C2) ODE2(%,Y,X);
) %XC - COS(X)
(D2) : Y& ceccncnnne.
3
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6.2 Part Selection and Substitution

The functions in this section are used to extract or replace parts of
expressions.

6.2.1 The Part Functions

The Part functions make it possible to reference or replace any part of any
MACSYMA expression. A part of a displayed expression is referred to by a set
of indices which are non-negative integers. For example, in exponentiation the
base is considered part 1 and the exponent part 2. In a quotient the numerator is
part 1 and the denominator part 2. In a sum or product the ith term or factor is
part i. In any expression the main operator is part 0. For -X the Oth part is -, for
A”B it is 7, for DIFF(F(X),X) it is DIFF, etc. Note that unary minus is considered an
operator.

In MACSYMA the user has some control of the way in which expressions are
displayed. The ordering of factors in a product or terms in @ sum may be changed
by the user (see 105, 6.5). The ordering of parts in the displayed
form of an.expression may differ from the ordering in the internal representation

of the expression.

PART(exp, nl, .., nk) deals with the displayed form of exp. It obtains the part of
exp as specified by the indices nl,..,nk. First part nl of exp is obtained, then
part n2 of that, etc. The result is part nk of .. part n2 of part nl of exp.
Thus PART(Z+2+Y,2,1) yields 2. PART can be used to obtain an element of a
list, a row of a matrix, etc. ,

- (C1) X+Y/Zxx2;

. Y :
(D1) -+ X
2
b4
(C2) PART(D1,1,2,2);
(D2) : 2

(C3) “INTEGRATE(F(X),X,A,B)+X;
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8
,.
T
(03) I F(X)dX + X
]
/
A
(C4) PART(X,1,1);

(D4) ; F(X)

INPART(exp,nl,..,nk) is similar to PART but works on the internal representation
of the expression (see 3.3) rather than the displayed form and thus may be
faster since no formatting is done. Care should be taken with respect to the
order of subexpressions in sums and products (since the order of variables in
the internal form is often different from that in the displayed form) and in
dealing with unary minus, subtraction, and division (since these operators are
removed from the expression). PART(X+Y,0) or INPART(X+Y,0) yield +, though
in order to refer to the operator it must be enclosed in "s. For example ...IF
INPART(DS,0)="+" THEN ...

(C1l) X+YeWxZ;
(D1) WZ+Ys)X
(C2) INPART(D1,3,2);

(02) z
(C3) PART(D1,1,2);

(D3) z

(C4) “LIMIT(F(X)sxG(X+1),X,0,MINUS);
GIX + 1)
(D4) LIMIT  F(X)
X ->0-

(C5) INPART(%,1,2);
(D5) 6(X + 1)
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6.2.1 The Part Functions MACSYMA

PrORM(exp) relurns the exiernai representation of exp (wrt its main
operator). This should be useful in conjunction with PART which also deals
with the external representation. Suppose EXP is -A . Then the internal
representation of EXP is "+"(-1,A), while the external representation is "-"(A).
LENGTH(EXP) gives 2, while LENGTH(DISPFORM(EXP)) gives 1. MAP(F,EXP)
gives F(-1)xF(A), while MAP(F,DISPFORM(EXP)) gives -F(A).
DISPFORM(exp,ALL) converts the entire expression (not just the top-level) to
external format. For example, if EXP:SIN(SQRT(X)), then FREEOF(SQRT,EXP)
and FREEOF(SQRT,DISPFORM(EXP)) give TRUE, while
FREEOF(SQRT,DISPFORM(EXP,ALL)) gives FALSE.

NOUNIFY(f) returns the noun form of the function name £ This is needed if one

wishes to refer to the name of a verb function as if it were a noun. Note
that some verb functions will return their noun forms if they can’t be
evaluated for certain arguments. This is also the form returned if a function
call is preceded by a quote.

(C6) IS(INPART(D4,0)=NOUNIFY(LIMIT));

(D6) TRUE

VERBIFY(f) returns the function name fin its verb form.

BOX(exp) returns exp enclosed in a box. The box is actually part of the

expression. BOX(exp,/abel) encloses exp in a labeled box. /abel is a name
which will be truncated in display if it is too long. Simplification will occur
within and outside of a BOXed expression but simplifications which require
interactions across the box boundary will not take place.

BOXCHAR["] - is the character used to draw the box in this and in the
DPART and LPART functions.

DPART(exp, nl, .., nk) selects the same subexpression as PART, but instead of

just returning that subexpression as its value, it returns the whole
expression with the selected subexpression displayed inside a box. The box
is actually part of the expression.
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- (C1) DPART(X+Y/Zxx2,1,2,1);

Y
(1) -+ X
2.
nunan
] z L]

LPART(/abel, exp, nl, .., nk) is similar to DPART but uses a labeled box. A labeled
box is similar to the one produced by DPART but it has a name in the top
line. .

REMBOX(exp, arg) removes boxes from exp according to arg If arg is
UNLABELED then all unlabeled boxes are removed. If arg is the name of
some label then only boxes with that label are removed. If arg is omitted
then all boxes labeled and unlabeled are removed.

6.2.2 The Substitution Functions

SUBST(s, b, ¢) substitutes a for b in c. b must be an atom or a complete
subexpression of ¢. For example, X+Y+Z is a complete subexpression of
2+(X+Y+Z) /W while X+Y is not. When b does not have these characteristics,
one may sometimes use SUBSTPART or RATSUBST (see below).
Alternatively, if b is of the form e/f then one could use SUBST(asf,e,c) while
if bis of the form exx(1/f) then one could use SUBST(ax+f,e,c). The SUBST
command also discerns the XY in X7(-Y) so that SUBST(A,SQRT(X),1/SQRT(X))
yields 1/A.

a and b may also be operators of an expression (enclosed in "'s) or they may
be function names. If one wishes to substitute for the independent variable
in derivative forms then the AT function (see below) should be used.

SUBST(eql,exp) or SUBST([eql,..,eqk],exp) are other permissible forms.
The egi are equations indicating substitutions to be made. For each equation,
the right side will be substituted for the left in the expression exp.
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For expressions in CRE representation (see 3.1), SUBST, like many of
MACSYMA’s general simplification commands, works on the RATDISREPed form
of the expression. -

EXPTSUBST[FALSE] if TRUE permits substitutions such as Y for %E++X in
ZEx+(AxX) to take place. '

(C1) SUBST(A,X+Y,X+(X+Y)2x2+Y);

2
(D1) Y+X+A
(C2) SUBST(-%I,%I,A+BxXI);

(D2) A -%1B

(Note that C2 is one way of obtaining the complex conjugate of -an
expression.) The following examples illustrate the difference between
substitution (as performed by SUBST) and binding (as performed by EV).

(C3) %PIxR,%PI:~-XI;
%PI improper value assignment

(C4) SUBST(X=0,DIFF(SIN(X),X));
(D4) 1
(C5) DIFF(SIN(X),X),X=0;

0
attempt to differentiate wrt a number

(C6) MATRIX([A,B],[C,D]);

>
]

(D6)

- -
(2]
@
d od o

(c8) SUBST("['.HATRIX,’){‘
(D8) [[A, B], [C, D]]
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RATSUBST (3, b, c) substitutes a for bin c. b may be a sum, product, power, etc.
RATSUBST knows something of the meaning of expressions whereas SUBST
does a purely syntactic substitution. Thus SUBST(AX+Y,X+Y+2) returns
X+Y+Z whereas RATSUBST would return Z+A.

RADSUBSTFLAG[FALSE] if TRUE permits substitutions such as U for
SQRT(X) in X.

(C1) RATSUBST(A,XxY"2, X 4xY*8+X"~4xY"3);

: o 3 4
(01) AX Y+A

(C2) 1 + COS(X) + COS(X)*2 + COS(X)~3 + COS(X)"4;
4 3 2
(D2) COS (X) + COS (X) + COS (X) + COS(X) + 1

(C3) RATSUBST(1-SIN(X)"2,C0S(X)*2,%);
4 2 2 .
(D3) SIN (X) + COS(X) (2 - SIN (X)) - 3 SIN (X) + 3

SUBSTPART(x, exp, nl, .., nk) substitutes x for the subexpreésion picked out by
the rest of the arguments as in PART. It returns the new value of exp.

x may be some operator to be substituted for an operator of exp. In this
case it is enclosed in "s.

(C1) 1/(Xx~2+2);

(01) [
2
X +2
(C2) SUBSTPART(3/2,%,2,1,2);
1
(02)  eeeeees
3/2
X +2

(C3) AxX+F(B,Y);
(D3) A X+ F(B, Y)
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(C4) SUBSTPART("+%,%,1,0);
(D4) X+ F(B, Y) +A

(CH) X*2 + X + 18
(C6) SUBSTPART("[",%,0);

(D6) [x, X, 1]

SUBSTINPART(x, exp, nl, ..) is like SUBSTPART but works on the internal
representation of exp.

(C1) X.“DIFF(F(X),X,2);

2
' d

(D1) X . (=== F(X))
' 2

daX
(C2) SUBSTINPART(D‘Z.Z.Z);

2

(D2) X.D0

(C3) SUBSTINPART(F1,F[1](X+1),0);

(D3) - FI(X + 1)
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Additional Information

If the last argument to a Part function is a list of indices then several
subexpressions are picked out, each one correspondung to an index of the list.
Thus PART(X+Y+Z,[1,3)) is Z+X.

" PIECE holds the last expression selected when using the Part functions.
It is set during the execution of the function and thus may be referred to in
the function itself as shown below.

If PARTSWITCH[FALSE] is set to TRUE then END is returned when a
selected part of an expression doesn’t exist, otherwise an error message is
given.

(Cl)  27%Yaok3+54%XkYaok2+36%Xaok2xY+Y+8xXnok3+X+1 ;

3 2 2 3
{(D1) 27.Y +54 XY +36X Y+Y+8X +X+1

(C2) PART(D1,2,[1,3]);

2
(02) 54 Y

(C3) SQRT(PIECE/54);
(D3) Y

(C4) SUBSTPART(FACTOR(PIECE),D1,[1,2,3,5]);

3
(04) (3Y+2X)+YeXel
{C5) 1/X+Y/X-1/2;
1 Y 1
(DS5). - - b -4 -
Z X X

(C6) SUBSTPART(XTHRU(PIECE),%,[2,3]);
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Y+l 1
(D6) ' coces o -
o X 4

ATVALUE(form, list, value) énables the user to assign the boundary value value to
form at the points specified by /ist.

(C1) ATVALUE(F(X,Y),[X=0,Y=1],Axx2)$

The form must be a function, #viv2.) , or a derivative,
DIFF(f(v1,v2,..),vi,ni,vj,nj,..) in which the functional arguments explicitly appear
(ni is the order of differentiation with respect vi).

The list of equations determine the "boundary” at which the value is
given; list may be a list of equations, as above, or a single equation, vi = exp.

The symbols @1, @2,.. will be used to represent the functional variables
v1,v2,.. when atvalues are displayed.

PRINTPROPS([71, 12..], ATVALUE) will display the atvalues of the
functions f1,f2,.. as specified in previously given uses of the ATVALUE
function. (see 81.1) If the list contasins just one element then the
element can be given without being in a list. If a first argument of ALL is

* given then atvalues for all functions which have them will be displayed.

AT(exp, list) will evaluate exp (which may be any expression) with the variables
assuming the values as specified for them in the list of equations or the single
equation similar to that given to the ATVALUE function. if a subexpression
depends on any of the variables in list but it hasn’t had an atvalue specified
and it can’t be evaluated then a noun form of the AT will be returned which
will display in a two-dimensional form.

(C1) ATVALUE(F(X,Y),[X=0,Y=1],Ax%2);

‘ 2
(D1) . A

(C2) ATVALUE(“DIFF(F(X,Y),X),X=0,Y+1);

(02) 2+l
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(C3) PRINTPROPS(ALL,ATVALUE);
. : : ]

D ]
--- F(01, 82)! =02+ 1
Del |
181 = 0
2
F(0, 1) = A
(D3) ‘ DONE
(C4) DIF?(4*F(x.Y)**Z-U(X,Y)t*Z.X);
d d
(D4) - 8 F(X, Y) (-- F(X, Y)) - 2 U(X, Y) (-- U(X, Y))
ax - dX
{C5) AT(%,{X=0,¥=1]);
]
2 d i
(D5) 16 A -2 U0, 1) ( -- U(x, Y)! )
(1) 4 !
IX=0, Y=1

6.2.3 More Functions for Part Extraction

LISTOFV-ARS(exp) yields a list of the variables in exp.
LISTCONSTVARS[FALSE] if TRUE will cause LISTOFVARS to include %E,
%Pl, %1, and any variables declared constant (see 8.1) in the list it
returns if they appear in exp. The default is to omit these.
(C1l) LISTOFVARS(F(X[1]+Y)/Gxx(2+A));

(D1) [X[1], Y, A, 6]
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COEFF(exp, v, n) obtains the coefficient of vi+n in exp. n may be omitled if it is
1. v may be an atom, or complete subexpression of exp e.g, X, SIN(X),
A[l+1], X+Y, etc. (in the last case the expression (X+Y) should occur in exp).
Sometimes it may be necessary to expand or factor exp in order to make v
explicit. This is not done automatically by COEFF.

(C1) COEFF(2xAxTAN(X)+TAN(X)+B=5xTAN(X)+3,TAN(X));
(D1) 2A+1=5

(C2) COEFF(Y+XaXExkX+1,X,0);
(02) Yel

RATCOEF(exp, v, n) returns the coefficient, C, of the expression vitn in the
expression exp. n may be omitted if it is 1. C will be free (except possibly
in a non-rational sense) of the variables in v. If no coefficient of this type
exists, zero will be returned. RATCOEF expands and rationally simplifies its
first argument and thus it may produce answers different from those of
COEFF which is purely syntactic. Thus RATCOEF((X+1)/Y+XX) returns
(Y+1)/Y whereas COEFF returns 1. RATCOEF(exp,v,0) is currently the same
as RATSUBST(O,v,exp). Therefore if v occurs to any negative powers,
RATCOEF should not be used. Since exp is rationally simplified before it is
examined, cozfficients may not appear quite the way they were envisioned.

(C1) S:AxX+BxX+58
(C2) RATCOEF(S,A+B);

(D2) X

BOTHCOEF (exp, var) returns a list whose first member is the coefficient of varin
exp (as found by RATCOEF if exp is in CRE form otherwise by COEFF) and
whose second member is the remaining part of exp. That is, [A,B] where
exp=Axvar+B.
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(C1) ISLINEAR(EXP,VAR):=BLOCK([C],
C:BOTHCOEF(RAT(EXP,VAR).VAR).
IS{FREEOF(VAR,C) AND C[1]#0))8

(C2) ISLINEAR((Rack2-(X-R)%x2)/X,X);

(02) TRUE

ISOLATE(exp, var) returns exp with subexpressions which are sums and which do
not contain var replaced by intermediate expression labels (these being
atomic symbols like E1, E2, ..). This is often useful to avoid unnecessary
expansion of subexpressions which don’t contain the variable of interest.
Since the intermediate labels are bound to the subexpressions they can all be
substituted back by evaluating the expression in which they occur.

EXPTISOLATE[FALSE] if TRUE will cause ISOLATE to examine exponents
of atoms (like %E) which contain var.

(C1) (A+B)*4x(1+Xx(2xX+(C+D)"2));

(o1) - (B + A)‘ (X (2 X+ (D+ c)z) +1)
©(€2) ISOLATE(%,X);
3
(e2) . (D + C)
| 4
(E3) (8 + A)
(D3) S E3 (X (2 X + E2) + 1)
(C4) RATEXPAND(D3)$
(C5) EV(%);
4 2 4 2 4

(D5) 2 (B+A) X +(B+A) (D+C) X+ (B+A)

(C6) (A+B)x(X+A+B) 2xEXP(X"2+AxX+B);
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2
Z X +AX+B
(D6) (B +A) (X+B+A) XE
(C7) ISOLATE(X,X),EXPTISOLATE:TRUE;
(E7) Be+A
8
(E8) XE
2
: 2 X +AX
(0D8) E7 E8 (X + E7) XxE

PICKAPART(exp,depth) will assign E labels to all subexpressions of exp down to
the specified integer depth This is useful for dealing with large expressions
and for automatically assigning parts of an expression to a variable without
having to use the Part functions.

(C1) INTEGRATE(1/(X~3+2),X)$

(C2) PICKAPART(D1,1);

1/3
. LOG(X ¢+ 2 )
(E2)  ceecccceee-
2/3 -
32
1/3
2%X-2
[}/ U TCERE— )
1/3
2  SQRT(3)
(E3) T ———
2/3
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(E4)

(D4)

6.2.3 More Functions for Part Extraction

E4 + E3 + E2

91

REVEAL(exp,depth) will display exp to the specified integer depth with the length
of each part indicated. Sums will be displayed as SUM(n) and. products as

PRODUCT(n) where n is the number of sub,
Exponentials will be displayed as EXPT.

(C1) INTEGRATE(1/(X*3+2),X)8

(C2) REVEAL(%,2);

(D2)

(C3) REVEAL(D1,3);

(03)

PRODUCT(3) + PRODUCT(3) + PRODUCT(3)

6 3

EXPT LOG EXPT LOG
- ceecmca- + EXPT EXPT ATAN # =----c--

parts of the sum or product.

NUMFACTOR(exp) gives the numerical factor multiplying the expression exp
which should be a single term. If the ged of all the term coefficients in a sum
is desired the CONTENT function (see 6.5) may be used.

(Cl) GAMMA(7/2);

(01)

15 SQRT(%PI)

(C2) NUMFACTOR(X)

(02)
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be necessary to expand exp since this is not done automatically by HIPOW.
Thus HIPOW(Y%£3+X*£2+X+Y*+4X) is 2.

LOPOW(exp, v) gives the lowest exponenl of v which explicitly appears in exp.
Thus LOPOW((X+Y)*£2+(X+Y)x+AX+Y) is MIN(A,2).

DERIVDEGREE(exp, dv, iv) finds the highest degree of the derivative of the

dependent variable dv with respect to the mdependent variable iv occumng
in exp.

(C1) “DIFF(Y,X,2)+’DIFF(Y,Z,3)s2+ DIFF(Y,X)sXex28
(€2) DERIVDEGREE(X,Y,X);
(02) 2

The next several functions deal with complex varisbles. The user should
note the followir_tg conventions.

1) all variables are assumed to take on real values exclusively;

2) all functions are assumed to be real-valued;

3) the complex argument is maintained in the half-open interval
(-x,7] whenever possible; ,

4) the argument of O is (arbitrarily) assumed to be O, although
normally the user need not worry about this, since OsXE~(%I+0) is
simplified to 0;

5) trigonometric functions are normally assumed to take on
their principal values.

REALPART(exp) gives the real part of exp. REALPART and IMAGPART will work

on expressions involving trigonometic and hyperbolic functions, as well as
SQRT, LOG, and exponentiation.
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IMAGPART (exp) returns the imaginary part of the expression exp.

The real or imaginary part of an expression of the form 'ZN, where Z is not
purely real, will be algebraic if n <= MAXPOSEX; otherwise, for compactness,it will

be expressed as ABS(Z)N + COS(N+ARG 2) or ABS(Z)N # SIN(N+ARG 2).

RECTFORM(exp) returns an expression of the form A + B«%l, where A and B are
purely real.

POLARFORM(exp) returns R+4E~(%I«THETA) where R and THETA are purely real.
CAVEAT: Simplification of algebraic and transcendental functions of a complex

variable may give rise to apparent factors, %. For example, SQRT(-C+D) may be
transformed to %I*SQRT(C-D).

CABS(exp) returns the complex absolute value (the complex modulus) of exp.

CARG(exp) returns the argument (phase angle) of exp. Due to the conventions
and restrictions (described above), principal value cannot be guaranteed.

(C1.) RECTFORM{SIN(2x%I+X));
(D1) COSH(2) SIN(X) + %I SINH(2) COS(X)

(C2) POLARFORM(%); )
2 2 2 2
(D2) SQRT(COSH (2) SIN (X) + SINH (2) cos (X))

%I ATAN2(SINH(2) COS(X), COSH(2) SIN(X))
%XE
(C3) RECTFORM(LOG(3+4x%I));

(D3) LOG(5) + %I ATAN2(4,3)
(C4) POLARFORM(%);

2 2 %I ATAN2(ATAN2(4, 3), LOG(S5))
(D4) SQRT(LOG (5) + ATANZ (4, 3)) %E
(C5) RECTFORM((2+3.5%%I)".25),NUMER;
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(D5) 0.36825881 %I + 1.36826627
(C6) POLARFORM(D5);

0.26291253 %I
(D6) 1.416957 %E

LHS(eqn) returns the left side of the equation eqn. If eqn is not an equation, then
LHS(egn) = egn

RHS(eqgn) returns the right side of the equation egn. If egn is not an equation,
then RHS(egn) = 0.

NUM(exp) obtains the numerator, expl, of the rational expression exp =
expl/exp2.

DENOM(exp) returns the denominator, exp2, of the rational expression exp
expl/exp2.

The above two commands do not alter the internal representations of
expressions and have the desirable property that for all expressions
NUM(exp) /DENOM(exp) is the same as exp.

FIRST(exp) yields the first part of exp which may result in the first element of a
list, the first row of a matrix, the first term of a sum, etc. Note that FIRST
and the foliowing two functions work on the form of exp which is displayed
not the form which is typed on input. If the variable INFLAG[FALSE] is set
to TRUE however, these functions will look at the internal form of exp. Note
that the simplifier re-orders expressions (see 3.3). Thus FIRST(X+Y) will be
X if INFLAG is TRUE and Y if INFLAG is FALSE. (FIRST(Y+X) gives the same
results).

REST(exp, n) yields exp with its first n elements removed if n is positive and its
last -n elements removed if n is negative. If nis 1 it may be omitted. Exp
may be a list, matrix, or other expression. If INFLAG:TRUE the internal form
of exp will be used.
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LAST(exp) yields the last part (term, row, element, etc) of the exp. |If
INFLAG:TRUE the internal form of exp will be used.

DELETE(expl, exp2) removes all occurrences of expl from exp2 Expl may be a
term of exp2 (if it is a sum) or a factor of exp2 (if it is a product).

(Cl) DELETE(SIN(X),X+SIN(X)+Y);

(D1) Y+ X

LENGTH(exp) gives the number of parts in the internal form of exp. For lists this
is the number of elements, for matrices it is the number of rows, and for
sums it is the number of terms. However for products it may not always
yield the number of factors that would be displayed because of the fact that
-E is represented internally as -1+*E and A/B is represented internally by

- AxB7(-1). (cf. DISPFORM)

NTERMS(exp) gives the number of terms that exp would have if it were fully
expanded out and no cancellations or combinations of terms occurred. Note
that expressions like SIN(E), SQRT(E), EXP(E), etc. count as just one term
regardiess of how many terms E has (if it is a sum).
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6.3 SOLVE and Related Functions

The following functions obtain the roots of equations or yield information
concerning the roots. :

NROOTS(poly, low, high) finds the number of real roots of the real univariate
polynomial poly in the half-open interval (low,highl The endpoints of the
interval may also be MINF,INF respectively for minus infinity and plus infinity.
NROOTS(poly) is equivalent to NROOTS(poly,MINF,INF). The method of Sturm
sequences is used. (see Heindel in [A1])

(C1) POLY1:Xwx10-2xXxx4+1/28

(C2) NROOTS(POLY1,-6,9.1);

RAT REPLACED 0.5 BY 1/2 = 0.5

(D2) ' 4

REALROOTS(poly, bound) finds all of the real roots of the real univariate
polynomial poly within a tolerance of bound which, if less than 1, causes all
integral roots to be found exactly. The parameter bound may be arbitrarily
small in order to achieve any desired accuracy. The first argument may also
be an equation. REALROOTS(poly) is equivalent to
REALROOTS(poly,ROOTSEPSILON). ROOTSEPSILON[1.0E-7] is a real number
used to establish the confidence interval for the roots.

(C1) REALROOTS(Xwk5+X+1,5.0E-6);

: . 395773
(E1) . X2 = covaeua
: 524288
(D1) (E1]
(C2) E1,FLOAT;
(D2) X = - 0.75487709

(C3) PART(C1,1);

(D3) : X +X+1
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(C4) %,D2;
(D4) 1.50687992E-6

ALLROOTS(poly) finds all the real and complex roots of the real polynomial poly
which must be univariate and may be an equation. For complex polynomials

an algorithm by Jenkins and Traub is used;! for real polynomials the algorithm
used is due to Jenkins.2 The flag POLYFACTOR[FALSE] when true causes

ALLROOTS to factor the polynomial over the real numbers if the polynomial is
real, or over the complex numbers, if the polynomial is complex.
(C1) (2%X+1)a0k3=13.5%(Xxx5+1);

3 5
(D1) (2X+1) =13.5(X +1)

(CZ) ALLROOTS(%);

= - 1.0157555

»

1con
\tey

(E3) X = 0.829675

(€4) X = - 0.96596254 XI - 0.40695072
(ES) X = 0.96596254 %I - 0.40695972
(€6) X=1.0

(D6) [E2, Es. E4, ES5, E6]

LINSOLVE([expl, exp2, ..}, [varl, vard, ..]) solves the list of simultaneous linear
equations for the list of variables. The expi must each be linear in the
variables and may be equations. LINSOLVE does no error checking to assure
linearity. -

1. Algorithm 419, Comm. ACM, vol. 15, (1972), p. 97

2. Algorithm 493, TOMS, voal. 1, (1975), p.178.
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If GLOBALSOLVE[FA
SOLVEd for will be' set to the

TRUE then variables which are

s
of the set of simultaneous equations.

~ad

~
v

BACKSUBST[TRUE] if set to FALSE will prevent back substitution after
the equations have been triangularized. This may be necessary in very big
problems where back substitution would cause the storage capacity to be
exceeded.

(C1) X+Z=Y$
(C2) 2%AxX-Y=2xAxx2$
(C3) V-2xz=28

(C4) LINSOLVE([D1,D2,D3],(X,Y,Z]),6LOBALSOLVE : TRUE;

SOLUTION

(E4) X:A+1
(Es) , Y:2A
(E6) Z:A-1
(D6) [E4, ES, E6]

ALGSYS([expl, exp2, ..], [varl, var2, ..]) solves the list of simultaneous
polynomials or polynomial equations (which can be non-linear) for the list of
variables. The symbols %R1, %R2, etc. will be used to represent arbitrary
parameters when needed for the solution. In the process described below,
ALGSYS is entered recursively if necessary.

The method is as follows:
(1) First the equations are FACTORed and split into subsystems.

(2) For each subsystem Si, an equation £ and a variable var are selected
(the var is chosen to have lowest nonzero degree). Then the resultant of £
and £ with respect to var is computed for each of the remaining equations £j
in the subsystem Si. This yields a new subsystem S7% in one fewer variables
(var has been eliminated). The process now returns to (1).
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(3) Eventually, a subsystem consisting of a single equation is obtained. If
the equation is multivariate and no approximations in the form of floating
point numbers have been introduced, then SOLVE is called to find an exact
solution, 3 ~

If the equation is univariate and is either linear, quadratic, or bi-
quadratic, then again SOLVE is called if no approximations have been
introduced. If approximations "have been introduced then if the switch
REALROOTS[TRUEJ:TRUE, the function REALROOTS is called to find the real-
valued solutions. If REALROOTS:FALSE then ALLROOTS is called which looks
for real and complex-valued solutions. If ALGSYS produces a solution which
has fewer significant digits than required, the user can change the value of
ALGEPSILON[108] to a higher value.

(4) Finally, the solutions obtained in step (3) are re-inserted into
previous levels and the solution process returns to (1).

The user should be aware of severa! caveats.

When ALGSYS encounters a multivariate equation which already contains
floating point approximations, then, presently, it does not attempt to apply
exact methods to such equations and prints the message: ALGSYS CANNOT
SOLVE---SYSTEM TOO COMPLICATED.

Interactions with RADCAN can produce large or complicated expressions.
In that case, the user may vse PICKAPART or REVEAL to analyze the solution.
Occasionally, RADCAN may intraduce an apparent %l into a solution which is
actually real-valizd. To prevent the omission of pcssible solutions, the user
may prefer to set REAOiLY[ "RUE]:FA SE.

(Cl) X+Z-Y8$

(C2) X+BxYxZ -A$

(C3) X*2+CxZ -D;

(C4) ALGSYS([D1,D2,031,[X,Y,Z]);

(D4) (]

3. The user should realize that SOLVE may not be able to produce a solution
or if it does the solution may be a very large expression.
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(C5) X+Z-Y~28

(C6) ALGSYS([D1,D2,053,[X,Y,Z]);
B-A . A-1

(D6) [(X = -==-- , Y=1, 7= ----- J,[X=A,¥Y=0,2=-A]]
B -1 B -1

(C7) XfB*Y*ZtX ~AS

(C8) ALGSYS([D1,D5,07],[X,Y,Z]);

2
SQRT(B -4 AB+2B+1)+8B+1
(08) [[X = -==--cccecccccccrcnnmnccnccccnncan- , Y= 1,
28
- 2
SQRT(B + (2 -4A)B+1)+(1-2A)B+1
l = - secececccccccccrccecaccrerscracescaccacone. -1
2 2
BSQRT(B + (2-4A)B+1)+8B +8
2 .
- SQRT(B - 4AB+28B+1)+8B+1
[X = =------cceccrcmcmenconcccccacccccconn , Y=1,
28
2
SQRT(B + (2 -4A)B+1)+(2A-1)8-1
l] = - --==ceessemceremmccccecccmemsercncscascsnooe 1.
2 2

B SQRT(B + (2-4A)B+1)-B -8B

[(X=A, Y=0,2=-A]]

SOLVE(exp, var) solves the algebraic equation exp for the variable var and
returns a list of solution equations in var. If exp is not an equation, it is
assumed to be an expression to be set equal to zero. Var may be a function
(e.g. F(X)), or other non-atomic expression except a sum or product. It may
be omitted if exp contains only one variable. Exp may be a rational
expression, and may contain trigonometric functions, exponentials, etc.
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' The following method is used:

Let E be the expres§ion and X be the variable. If E is linear in X then it
is trivially solved for X. Otherwise if E is of the form AxXstN+B then the
result is (-B/A)+x(1/N) times the Nth roots of unity.

If E is not linear in X then the gcd of the exponents of X in E (say N) is
divided into the exponents and the multiplicity of the roots is multiplied by N.
Then SOLVE is called again on the result.

If E factors then SOLVE is called on each of the factors. Finally SOLVE
will use the quadratic, cubic, or quartic formulas where necessary.

In the case where E is a polynomial in some function of the variable to be
solved for, say F(X), then it is first solved for F(X) (call the result C), then
the equation F(X)=C can be solved for X provided the inverse of the function
F is known.

BREAKUP[TRUE] if FALSE will cause SOLVE to express the solutions of
cubic or quartic equations as single expressions rather than as made up of
several common subexpressions which is the defauit.

. MULTIPLICITIES[NOTZSETAYET] - will be set to a list of the
multiplicities of the individual solutions returned by SOLVE, REALROOTS, or
ALLROQTS.

SOLVEFACTORS[TRUE] - if FALSE then SOLVE will not try to factor the
expression. The FALSE setting may be desired in some cases where factoring
is not necessary.

SOLVERADCAN[FALSE] - if TRUE then SOLVE will use RADCAN which
will make SOLVE slower but will allow certain problems containing
exponentials and logs to be solved.

When SOLVing polynomials with large integer coefficients, it may be
useful to reset INTFACLIM.

SOLVE([eql, .., eqn], [v1, .., vn)) solves a system of simultaneous (linear or non-
linear) polynomial equations by calling LINSOLVE or ALGSYS and returns a list
of the solution lists in the variables. In the case of LINSOLVE this list would
contain a single list of solutions. It takes two lists as arguments. The first list
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(eqi, i=1,.,n) represents the equations to be soived; the second iist is a iist
of the unknowns to be determined. If the total number of variables in the
equations is equal to the number of equations, the second argument-list may
be omitted. For linear systems if the given equations are not compatible, the
message INCONSISTENT will be displayed; if no unique solution exists, then
SINGULAR will be displayed. DISPFLAG[TRUE] when set to FALSE within a
BLOCK will inhibit the display of output generated by the Solve functions
called from within the BLOCK.

SOLVETRIGWARN[TRUE] if set to FALSE will inhibit printing by SOLVE of the
warning message saying that it is using inverse trigonometric functions to
solve the equation, and thereby losing solutions.

SOLVEDECOMPOSES[TRUE] if TRUE, will induce SOLVE to use
POLYDECOMP (see below) in attempting to solve polynomials. 4

PROGRAMMODE[FALSE] when TRUE will inhibit SOLVE from printing E-
labels and will force SOLVE to return its answers explicitly as elements in a
list. :

SOLVEEXPLICIT[FALSE] if FALSE, inhibits SOLVE from returning implicit
solutions i.e. of the form F(x)=0.

(C1l) SOLVE(ASIN(COS(3xX))=(F(X)-1),X);

Solution
%P1
(E]) x 8 eos
6
The roots of
(E2) F(X) = 1
(D2) [El,E2]
(C3) SOLVERADCAN:TRUES
(C4) SOLVE(5%xxF(X)=125,F(X));
(D4) F(X) = 3

(C5) [AxXkxk2-Yxx2=12,XxY-X=2]

4. Under certain circumstances (e.g. if there is a variable in the exponent),
the implicit "solution” may quite complex
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(D5)

6.3 SOLVE and Related Functions

2 2
[aX -Y =12, XY-X=2] .

(C6) SOLVE(DS,[X,Y]);

(p6) (LY

X

- 0.15356758,

- 1.733752], [Y=2.0, X = 2.0]]

(C7) SOLVE(X"3+AxX+1,X);

. 3 .
SQRT(4 A + 27)
(E7).  eecccccccceee-
6 SQRT(3)
11/3
(€8) (€7 - -}
2
SOLUTION
%I SQRT(3) 1
(mmemmeeeen - -) A
%I SQRT(3) 1 2 2
(E9) X = ( = =-=eceeeen - =) EB = sececocccccmmanaas
2 2 3 €8
%I SQRT(3) 1
R -) A
%I SQRT(3) 1 2 2
(E10) X = (-=cc-emcee - N = J
2 2 3 E8
A
(Ell) X a EB - oceowe
3E8
(D11) [E9, E10, El1]

103



YBECO ‘P(pury,var returns & list
that poly = $1(f2(...fn( van...)). Ther
more polynomials excepting linear fi.

of p
i

01)
$

1.
1yno
no

aimiai

o othe

$
er

6.3 SOLVE and Related Functions

(i
d

MACSYMA

\ varmcs vaf), lﬁ\ var” such
ecomposition which involves



MACSYMA . 105
6.4 The Matrix Functions

Matrix multiplication is effected by using the dot operator, ".", which is also
convenient if the user wishes to represent other non-commutative algebraic
operations (see 6.4.1). The exponential of the . operation is "~ .

Thus; for a matrix A, A.A = A*~2 and, if it exists, A*~-1 is the inverse of A.
The operations +,-%,%+% are all element-by-element operations; all operations
are normally carried out in full, including the . (dot) operation. Many switches

exist for controlling simplification rules involving dot and matrix-list operations
(see below).

ENTERMATRIX(m, n) allows one to enter a matrix element by element with
MACSYMA requesting values for each of the msn entries.
(C1) ENTERMATRIX(2,1);
ROW 1 COLUMN 1 X+Y/2;
ROW 2 COLUMN 1 34;

MATRIX-ENTERED

[
i
(D1) . T
[
1

MATRIX(rowI,"..., rown) defines a rectangular matrix with the indicated rows.
Each row has the form of a list of expressions, e.g. [A, X+2, Y, 0] is a list of
4 elements.

GENMATRIX(array, i2, j2, il, jI) generates a matrix from the array using
array(il,j1) for the first (upper-left) element and array(i2j2) for the last
(lower-right) element of the matrix. If jl=il then j1 may be omitted. If
jl1=il=1 then il and jl1 may both be omitted. If a selected element of the
array doesn’t exist a symbolic one will be used.
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(C1) H[I,Jd):=1/(1I+J-1)8

(C2) GENMATRIX(H,3,3);

11
4] .

-]
3)
[ ]

‘ o113

(D2) (- -]
2 3 4)

[ ]

(1113

-]
3 & 5}

~
[
N 1 e

COPYMATRIX(M) creates a copy of the matrix M. This is the only way to make a
copy aside from recreating M elementwise. Copying a matrix may be useful
when SETELMX is used (see below). :

COPYLIST(L) creates a copy of the list L.
ADDROW(M,/) appends the row given by the list / onto the matrix M.
IDENT (n) produces an n by n identity matrix.

DIAGMATRIX(n, x) returns a diagonal matrix of size n by n with the diagonal
elements all x. An identity matrix is created by DIAGMATRIX(n,1), or one may
use IDENT(n). 4 "

EMATRIX(m, n, x, i, j) will create an m by n matrix all of whose elements are zero
' except for the i,/ element which is x.
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MATRIXMAP(fn, M) will map the function fn onto each element of the matrix M,

SETELMX(x, i, j, M) changes the ij element of M to x The altered matrix is

returned as the value. The notation Mi,j}:x may also be used, altering M in a
similar manner, but returning x as the value.

COEFMATRIX([eql, ...}, [varl, ... J) the coefficient matrix for the variables varl,...
of the system of linear equations eql,..

AUGCOEFMATRIX(feql, ..}, [varl, .. J) the augmented coefficient matrix for the
variables varl,. of the system of linear equations eql,.. This is the
coefficient matrix with a column adjoined for the constant terms in each
equation (i.e. those not dependent upon varl,...).

(C1) [2&X-{A-1)%Y=5%8, AXX+BxV+C=0 J}

COL(M,) gives a matrix of the ith column of the matrix M.
ROW(M, i) gives a matrix of the ith row of matrix M.

SUBMATRIX(mI, .., M, nl, ..) creates a new matrix composed of the matrix M
with rows mi deleted, and columns ni deleted.

MINOR(M, i, j) computes the i,j minor of the matrix M. That is, M with row 7 and
column j femoved. '
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ECHELON(M) .produces the echelon form of M. That is, M with elementary row
operations performed on it such that the first non-zero element in each row
in the resulting matrix is a one and the column elements under the first one in
each row are all zero.

(C3) ECHELON(D2); (D2 is as aboye)

[ A-1 58 ]
[ - - - )
[ 2 2 ]
(D3) ( )]
[ : 2C+5A8 ]
(O o eececccccans ]
[ 2 ]
. 28+A -A)

TRIANGULARIZE(M) produces the upper tmngdar form of the matrix M which
needn’t be square.

(C4) TRIANGULARIZE(D2);

[2 1+A 58 ) |
(D4) [ ]
[ 2 ]
[0 2B+A -A -2C-5A8]

RANK(M) computes the rank of the matrix M. That is, the order of the largest
non-singular subdeterminant of M.

(C5) RANK(D2);
(05) 2
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DETERMINANT (M) computes the determinant of M by a method similar to Gaussian
elimination. The form of the result depends upon the setting of the switch
RATMX (see below). There is a special routine for dealing with sparse

determininants which can be used by settmg the switches RATMX:TRUE and
SPARSE:TRUE.

NEWDET(Mn) also computes the determinant of M but uses the Johnson-
Gentleman tree minor algorithm [Gel]l M may be the name of a matrix or
array. The argument nis the order; it is optional if M is a matrix.

CHARPOLY (M, var) computes the characteristic polynomial for M with respect to
var. That is, DETERMINANT(M - DIAGMATRIX(LENGTH(M),van).

(C2) A:MATRIX([3,1],[2.41);

[3 1]
(D2) ' t 1
[z 4]
(C3) CHARPOLY(A,LAMBDA); .
2
(D3) LAMBDA - 7 LAMBDA + 10
(C4) SOLVE(X);
SOLUTION
(E4) ' LAMBDA = 2
(ES) LAMBDA = §
(D5) | | (E4, ES]
(C6) X:MATRIX([X11,[X21);
‘ [(X1]
(06) t 1]
‘ [x2] .
(C7) A.X-LAMBDA%X,ES;
[ X2 -2X1 ]
(D7) [ ]

[ -X2+2Xl1]
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(c .
(D8) : X2-2X1=0

(C9) Xlxk2+X2%x2=1;
_ 2 2
(09) X2 +X1 =1

(Cl0) SOLVE([08.09],[X1.X2]);
(010) [.[XZ = - 0.89442714, X1 = - 0.44721357],

(X2 = 0.89442714, X1 = 0.44721357])

Options Relating to Matrices
Note: MX stands for Matrix and SC stands for Scalar

By resetting the options LMXCHAR and RMXCHAR (with the defaults [ and ]
respectively), the user can specify the delimiters used in the display of matrices.

RATMX[FALSE] - it FALSE will cause determinant and matrix addition,
subtraction, and multiplication to be performed in the representation of the matrix
elements and will cause the result of matrix inverse to be left in the
representation of the matrix elements. If it is TRUE, the 4 operations mentioned
above will be performed in CRE form and the result of matrix inverse will be in
CRE form. Note that this may cause the elements to be expanded (depending on
the setting of RATFAC) which might not always be desired.

LISTARITH[TRUE] - if FALSE causes any arithmetic operations with lists to
be suppressed; when TRUE, list-matrix operations are contagious causing lists to
be converted to matrices yielding a result which is always a matrix. However,
list-list operations should return lists.

DETOUT[FALSE] - if TRUE will cause the determinant of a matrix whose
inverse is computed to be kept outside of the inverse. For this switch to have an
effect DOALLMXOPS and DOSCMXOPS should be FALSE (see below). Alternatively
this switch can be given to EV which causes the other two to be set correctly.

DOALLMXOPS[TRUE}] - if TRUE all operations relating to matrices are carried
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out. If it is FALSE then the setting} of the following switches govern which
operations are performed. :

DOMXMXOPS[FALSE] - if TRUE then all matrix-matrix or matrix-list
operations are carried out (but not scalar-matrix operations); if this switch is
'FALSE they are not. : -

DOSCMXOPS[FALSE] - if TRUE then scalar-matrix operations are performed.

DOSCMXPLUS[FALSE] - if TRUE will cause SCALAR + MATRIX to give a

matrix answer.

" SCALARMATRIXP[TRUE] - if TRUE causes a square matrix of dimension one
{when produced as a result of a computation) to be converted to a scalar (i.e. its
only element).

SPARSE[FALSE] - if TRUE and if RATMX:TRUE then DETERMINANT will use
special routines for computing sparse determinants.

6.4.1 The Dot Operator

In some applications one would like to work with expressions that contain
variables which are to behave like matrices (e.g. are non-commutative). The
variables may be declared to be non-scalar by using the DECLARE function (sect.
6.12). After the expressions are manipulated into a particular form then perhaps
actual matrices will be substituted for them. Several options are provided in
order to control how MACSYMA treats such expressions. (The options are
checked for and utilized by MACSYMA in the order in which they are presented
here). ‘

In the following discussion A, B, and C are any expressions, and SC is a scalar
expression (i.e. one free of lists, matrices, and any atoms declared non-scalar).

DOTASSOC[TRUE] - when TRUE causes (A.B).C to simplify to A(B.C)

DOTSCRULES[FALSE] - when TRUE will cause A.SC or SC.A to simplify to
SC*A and A.(SC*B) to simplify to SC+(A.B)

DOTCONSTRULES[TRUE] - is similar to DOTSCRULES but with constants
instead of scalars.
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DOTEXPTSIMP[TRUE] - when TRUE causes A.A to simplify to A~°2
DOTDISTRIB[FALSE] - if TRUE will cause A.(B+C) to simplify to AB+A.C
(C1) DECLARE([MI1 ,HZ,M:&],NONSCALAR)S
(€C2) (1-LxM1).(1-LxM2).(1- =L*M3),DOTCONSTRULES : TRUE , EXPAND ;
(D2) - LM3+LH2 -LM3-LM2+LM.LM3
- LML (LM ..LH3)+'LH1 -LM2-LN+1
(C3) %,DOTSCRULES:TRUE; |

2 ' 2
(D3) - LM3+L (M2.M3)-LM2+L (M1 .M3)

3 o 4
=L (Ml . (M2 .M3))+L (M1 . M2) = LMl + ]

(C4) RAT(%,L);
3
(D4)/R/ - (M1 . (M2 . M3)) L + (M2 . M3+ M . M3

2
+ ML . M2)L +(-M3-M2- Ml) L+ 1
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6.5 Functions for Rational Expressions

A rational expression is the quotient of two polynomials. MACSYMA provides
a special internal representation (called CRE for canonical rational expression form
- (see 3.1) ) which can be used for rational expressions (and polynomials as
special cases) and which requires less storage than the general representation. In
addition CRE mariipulations are usually faster. Therefore it may be desirable to
use these whenever the problem of interest can be expressed largely in terms of
polynomials or rational expressions. The symbol /R/ following the line label in the
display of an expression indicates that either the expression is in CRE form or
that some subexpression of it is.

CRE form is "contagious” in that any time a CRE expressson is added to or
multiplied by another compatible expression, the result is in CRE form. Thus by
initially multiplying by RAT(1) one can force his entire calculation to be done in
CRE form. However, if CRE are mixed into an expression containing general forms
e.g. SIN(RAT(X#x2)), such that the result is not totally in CRE form, then the result
is automatically converted into general representation.

Some functions (e.g. RATSIMP, FACTOR, etc) use CRE form internally in the
implementation of their algorithms. This fact however is usually transparent to
the user. '

RATVARS(varl, var2 ., varn) forms its n arguments into a list in which the
rightmost variable varn will be the main variable of future rational
expressions in which it occurs, and the other variables will follow in
sequence. |f a variable is missing from the RATVARS list, it will be given
lower priority than the leftmost variable varl. The arguments to RATVARS
can be either variables or non-rational functions (e.g. SIN(X)).

The variable RATVARS is a Ilst of the arguments which have been given to
this function.

RAT(exp, vl, .., vn) converts exp to CRE form by expanding and combining all
terms over a common denominator and cancelling out the greatest common
divisor of the numerator and denominator as well as converting floating point
numbers to rational numbers within a tolerance of RATEPSILON[2.0E-8]. The
variables are ordered according to the vI,.,vn as in RATVARS, if these are
specified. RAT does not generally simplify functions other than + , - v /e
and exponentiation to an integer power and it does not deal with equatlons
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whereas RATSIMP does handle these cases. Note that atoms (numberc and
names) in CRE form are not the same as they are in the general form. Thus

RAT(X)-X results in RAT(0) which has a different internal representation than
0N

.

RATFAC[FALSE] when TRUE invokes a partially factored form for CRE
rational expressions. During rational operations the expression is maintained
as fully factored as possible without an actual call to the factor package. This
should always save space and may save some time in some computations.
The numerator and denominator are still made relatively prime, for example

RAT((X"2 -1)"4/(X+1)*2); yields (X-1)*4x(X+1)"2),
but the factors within each part may not be relatively prime.

RATPRINT[TRUE] if FALSE suppresses the printout of the message
informing the user of the conversion of floating point numbers to rational
numbers.

KEEPFLOAT[FALSE] if TRUE prevents floating point numbers from being
converted to rational numbers. 1

BF TORAT[FALSE] controls the conversion of bfloats to rational numbers.
If BFTORAT:FALSE, RATEPSILON will be used to control the conversion (this
results in relatively small rational numbers). If BFTORAT:TRUE, the rational
number generated will accurately represent the bfloat.

(Also see the RATEXPAND and RATSIMP functions. sec. 6.1.1)

(Cl) ((X-Z*Y)**4/(X**2-4*Y**Z)**241)#(Y+A)t(Z*Y+X)

7 (A%Yaon2+Xax2 ) ;
4
(X -2Y)
(Y+A) (2Y+X) (--ccemcanann +1)
2 22
(X -4v)
(D1] e cccceeee——eee
4 2
4Y + X

1. As with all other switches, various MACSYMA algorithms may override the
setting of this switch if they are unable to operate in that mode.
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(C2) RAT(%,Y,A,X);

(D2)/R/ C emmmmeeas

RATDISREP(exp) changes its argument from CRE form to general form. This is
sometimes convenient if one wishes to stop the "contagion®, or use rational
functions in non-rational contexts (see the example at the beginning of this
section). Most CRE functions will work on either CRE or non-CRE
expressions, but the answers may take different forms. |f RATDISREP is

- given a non-CRE for an argument, it returns its argument unchanged.

TOTALDISREP(exp) converts every subexpression of exp from CRE to general
form. If exp is itself in .CRE form then this is identical to RATDISREP but if
not then RATDISREP would return exp unchanged while TOTALDISREP would
"totally disrep” it. This is useful for ratdisrepping expressions e.g,, equations,
lists, matrices, etc. which have some subexpressions in CRE form.

NUM(exp) obtains the numerator of the rational expression exp.

_ DENOM(exp) returns the denominator of the rational expression exp.

The above two commands do not alter the internal representations of
expressions and have the desirable property that for all expressions
NUM(exp)/DENOM(exp) is the same as exp. This is not true of the following two
commands which return expressions in CRE form.

RATNUMER(exp) obtains the numerator of the rational expression exp. If exp is
in general form then the NUM function should be used instead, unless one
wishes to get a CRE result.

RATDENOM(exp) obtains the denominator of the rational expression exp. If exp
is in general form then the DENOM function should be used instead, unless
one wishes to get a CRE resuit. : ‘ '
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RATWEIGHT(v!, wi, .., vn, wn) assigns a weight of wi to the variable vi. This
causes a monomial-to be replaced by O if its weight exceeds the value of the
variable RATWTLVL [FALSE] (for the default value FALSE no truncation
occurs). The weight of a monomial is the sum of the products of the weight
of a variable in the term times its power. Thus the weight of 3tv1+:+2+v2 is
2+wl+w2. This truncation occurs only when multiplying or exponentiating
CRE forms of expressions.

| RATWEIGHTS[[]] returns a list of weight assignments, as does RATWEIGHT();
KILL(..,RATWEIGHTS), SAVE(..,RATWEIGHTS) eliminate and save weight
assignments ((see 10.3)(see 15.3)).

(C5) RATWEIGHT(A,I,B,I);
(DS) ) [[Bp l]v [A’ l]]

(C6) EXP1:RAT(A+B+1)$

(C7) %xx2;

_ 2 2 .
(D7)/R/ B +(2A+2)B+A +2A+1
(C8) RATWTLVL:1S8
(C9) EXPlxx2; :
(D9)/R/ 2B+2A+1

HORNER(exp, var) will convert exp into a rearranged representation as in
Horner’s rule, using var as the main variable if it is specified. Var may also
be omitted in which case the main variable of the CRE form of exp is used.
HORNER sometimes improves stability if expr is to be numerically evaluated..
It is also useful if MACSYMA is used to generate programs to be run in
FORTRAN (see STRINGOUT - 10.9) '

(c1) 1.0E-20%X"2-5.5%X+5.2E20;

: 2
(01) 1.0E-20 X - 5.5 X + 5.2E420
(c2) HORNER(%,X),KEEPFLOAT : TRUE ;
(D2) ' X (1.0E-20 X - 5.5) + 5.2E+20

(C3) D1,X=1.0E20;
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ARITHMETIC OVERFLOW

(C4) D2,X=1.0E20;
(D4) 6.9999999E+19

FASTTIMES(pl, p2) multiplies the polynomials p! and p2 by using a special
algorithm for muitiplication of polynomials. They should be multivariate, dense,
and nearly the same size.- Classical multiplication is of order N+M where N
and M are the degrees. FASTTIMES is of order MAX(N,M)+%1.585.

The rest of the functions in this section return their results in general
representation only if all of their principal arguments are in that form. if any

of their principal arguments are in CRE form then the result is returned in
CRE form.

DIVIDE(p!I, p2, varl, .., varn) computes the quotient and remainder of the
polynomial pl divided by the polynomial p2, in a main polynomial variable,
varn. The other variables are as in the RATVARS function. The result is a

list whose first element is the quotient and whose second element is the
remainder.

(C1) DIVIDE(X+Y,X-Y,X);
(D1) . (1, 2 Y]

(C2) DIVIDE(X+Y,X-Y);
(02) [-1,2X]

(Note that Y is the main variablé in C2)

QUOTIENT(p!, p2, varl, ..) computes the quotient of the polynomial p! divided by
the polynomial p2

REMAINDER(pI, p2, varl, ..) computes the remainder of the polynomial p! divided
by the polynomial p2.
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CONTENT(pl, varl, .., varn) returns a list whose first element is the greatest
common divisor of the coefficients of the terms of the polynomial p! in the
variable varn (this is the content) and whose second element is the
polynomial p! divided by the content.

(C1) CONTENT(2%XxY+4xXtx2xYxx2,Y);

(01) [2%xX, 2xXxYax2+Y].

GCD(pl, p2, varl, ..) computes the greatest common divisor of p! and p2 The
flag GCD[EZ] determines which algorithm is employed. Setting GCD to
EZRED, or MOD selects the EZGCD [Mo6], reduced, or modular [Br1]
algorithm, respectively. If GCD:FALSE then GCD(p1,p2,var) will always return
1 for all x. Many functions (e.g. RATSIMP, FACTOR, etc.) cause gcd’s to be
taken implicitly. For homogeneous polynomials it is recommended that
GCD:RED be used. To take the gcd when an algebraic is present, e.g.
GCD(X"2-2+SQRT(2)#X+2,X-SQRT(2)); , ALGEBRAIC must be TRUE and GCD
must not be EZ

EZGCD(p!, p2, ..) gives a list whose first element is the g.cd of the polynomials
pl,p2.. and whose remaining elements are the polynomials divided by the
gcd This always uses the EZGCD algorithm (not recommended for
homogeneous polynomials).

MOD(p) converts the polynomial p to a modular representation with respect to the
current modulus which is the value of the variable MODULUS.

If MODULUS[FALSE] is set to a positive prime p, then all arithmetic in
the rational function routines will be done modulo p. That is all integers will
be reduced to less than p/2 in absolute value (if p=2 then all integers are
reduced to 1 or 0). This is the so called "balanced” modulus system, e.g. N
MOD 5=-2,-1,0,1,0r 2

RESULTANT(pI, p2, var) computes the resultant of the two polynomials pl and
p2, eliminating the variable var. The resultant is a determinant of the
coefficients of var in p! and p2 which equals zero if and only if pl and p2
have a non-constant factor in common.
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MODBRESULT[FALSE] if TRUE causes the modular resultaht algorithm to
be used, otherwise the reduced (which is the default) will be used (see
[Col). :

(C1) RESULTANT (A%Y4+Xaok2+1, Yaok2+XxY+B, X) ;

4 3 ' 2 2
(D1) Y +AY +(2B+1)Y +B

RATDIFF(exp, var) differentiates the rational expression exp (which must be a
ratio of polynomials or a polynomial in the variable var) with respect to var.
For rational expressions this is much faster than DIFF. The result is left in
CRE form. However, RATDIFF should not be used on factored CRE forms; use
DIFF instead for such expressions.

(C1) (4xX#cx3+10%X=-11)/(Xxx5+5);
3
4X +10X-11
(D1) rccemceeaa ———

(C2) MODULUS:38

(C3) MOD(D1);

(D3) ' —meme—ecccccom—ae

(C4) RATDIFF(D1,X);

(04) e B —
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6.5.1 Algebraic integers

An algebraic integer is a solution of a univariate monic polynomial equation
with integer coefficients. Examples of algebraic integers are 2+3+%l, SQRT(7), and
67(1/3)-5%(1/7). In addition to the factorization of polynomials over the ring of
integers with an algebraic integer adjoined, MACSYMA provides simplification of
expressions involving algebraic integers by representing them in a canonically
simplified form, in which there are no radicals in the denominators of fractions.

TELLRAT(polyl,..,polyn) adds to the ring of algebraic integers known to
MACSYMA, the elements which are the solutions of the univariate, . monic
polynomials polyj (integer coefficients). MACSYMA initially knows about %l
and all roots of integers. TELLRAT() returns a list of the polynomials given to
TELLRAT. To SAVE or KILL all of one’s TELLRATs, just do SAVE
(..,TELLRATS,..) or KILL(..,TELLRATS,..). To undo a TELLRAT(p(X)), simply do
TELLRAT(X).

ALGEBRAIC[FALSE] must be set to TRUE in order for the simplfication of
algebraic integers to take effect. '

RATALGDENOM[TRUE] if TRUE allows rationalization of denominators
wrt. radicals to take effect. To do this one must use CRE form in algebraic
mode.

(C1) ALGEBRAIC:RATALGDENOM:TRUES
(C2) RATDIS(E):=RATDISREP(RAT(E))S
(C3) 10%(1+%I)/(3°(1/3)+%kI);

10 (XI + 1)
(D3) C eeeceasesess

(C4) RATDIS(X):;
' 2/3 173
(D4) (4 %I +2)3 + (4 -2%)3 -4 % -2
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(C5) TELLRAT(A"2+A+1)8
(C6) A/(SQRT(2)+SQRT(3))+1/(AxSQRT(2)-1);

(D6) ceececrecconn 4 —ceemcececccncca-
SQRT(2) A - 1 SQRT(3) + SQRT(2)

(C7) RATDIS(%);
(7 SQRT(3) - 10 SQRT(2) + 2) A - 2 SQRT(2) -1

6.5.2 Functions for Extended Rational Expressions

An extended rational expression is a truncated power series with rational
functions for coefficients ( as generated by TAYLOR). The truncation capability
(RATWEIGHT,RATWTLVL) described above {see 6.5) is ulilized by extended CRE
forms as well as by CRE forms. :

TAYLOR(exp,[varl,pti,ordl ][ var2pt2,ord2]..) returns a truncated power series
in the variables vari about the points pti, truncated at ordi. For further details
see 6.7.

PSEXPAND[FALSE] if TRUE will cause extended rational function
expressions to display fully expanded. (RATEXPAND will also cause this.) If
FALSE, multivariate expressions will be displayed just as in the rational
function package. If PSEXPAND:MULTI, then terms with the same total degree
in the variables are grouped together.

SRRAT(exp) con\}erts exp from extended rational form to CRE form, i.e. it is like
RAT(RATDISREP(exp)) although much faster.

(c1) ‘ TAYLOR(1 + X, [X, 0, 31);

(D1)/7/ 1 +#X+ .
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(C2) 1/%;
: 2 3
(b2)/1/ l=-X+X =X ¢ ...
(C3) TAYLOR(1 + X +Y+ 17, [X 0, 3], v, 1, 2],
' (z, 2, 11); '
(D3)/71/ ' 4+ (2 -2)+ (Y- 1) e X+ ...

(C4) 1/%;
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1 -2 1 -2 '
(DA)/T/ = = ===== & (= == & ==-o- +...)((Y-1)
4 16 16 32 ' "
1 3(-2) 2
+ (- = =memmee-- +...)((r-1)
64 256

[6.6] Poisson Series Functions

123

A Poisson series is a finite sum where each term has the form pxtrig(q)
where “"trig" is either SIN or COS . Usually, p is a polynomial with rational number
or floating point coefficients, or a general MACSYMA expression. The argument q
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is a linear combination of no more than 6 variables, whose names are literally U, V,
W, X, Y, and Z. (These restrictions are not vital, but apparently present no
difficulty in usual applications. They could be altered easily).

Conversion to a Poisson series expands all products or powers of sines
and/or cosines into sums. In order to display the result, it is usually necessary to
convert an expression in Poisson encoding into general MACSYMA representation
using the OUTOFPQIS function, or to print it using the PRINTPOIS function.

POISSIMP(A) converts A into a Poisson series for A in general representation.
INTOPOIS(A) converts A into a Poisson enéoding.

OUTOFPOQIS(A) converts A from Poisson encoding to general representation. If A
is not in Poisson form, it will make the conversion, i.e. it will look like the
result of OUTOFPOIS(INTOPOIS(A)). This function is thus a canonical simplifier
for sums of powers of SIN's and COS’s of a particular type.

PRINTPOIS(A) prints a Poisson series in a readable format In common with
OUTOFPOIS, it will convert A into a Poisson encoding first, if necessary. -

POISTIMES(A, B) is functionally identical to lNTOPOIS(AtB).

POISTRIM() is a reserved function name which (if the user has defined it) gets
applied during Poisson multiplication. It is a predicate function of € arguments
which are the coefficients of the U, V,., Z in a term. Terms for which
POISTRIM is TRUE (for the coefficients of that term) are eliminated during
multiplication. ‘

POISPLUS(4, B) is functionally identical ta INTOPOIS(A+B).

POISEXPT(A, B) (B a positive integer) is functionally identical to INTOPOIS(A++B).
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POISDIFF (A, B) differentiates A with respect to B. B must occur only in the trig
arguments or only in the coefficients.

POISINT(A, B) integrates in a similarly restricted sense (to POISDIFF). Non-
periodic terms in B are dropped if B is in the trig arguments.

POISSUBST(A, B, C) substitutes A for Bin C. C is a Poisson series.
(1) Where B is a variable U, V, W, X, Y, or Z then A must be an expression
linear in those variables (e.g. 6+U+4xV).

(2) Where B is other than those variables, then A must also be free of
those variables, and furthermore, free of sines or cosines.

POISSUBST(A, B, C, D, N) is a special type of substitution which operates on A
and B as in type (1) above, but where D is a Poisson series, expands COS(D)
and SIN(D) to order N so as to. provide the resuit of substituting A+D for B in
C. The idea is that D is an expansion in terms of a small parameter. For
egample, POISSUBST(U,V,COS(V),E,3) results in COS(U)#(1-E2/2) - SIN(U)*(E-
E©/6). .

POISMAP(series, sinfn, cosfn) will map the functions sinfn on the sine terms and
cosfn on the cosine terms of the poisson series given. sinfn and cosfn are
functions of two arguments which are a coefficient and a trigonometric part of
a term in series respectively.

(Cl) PFEFORMAT:TRUES
(C2) (2%A*2-B)%COS(X+2%xY)-(AxB+5)xSIN(U-4xX);
(D2) - (A B + 5) SIN(U - 4 X)

2
+ (2A -B)COS(2 Y + X)

(C3) POISEXPT(%,2)8
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(C4) PRINTPOIS(D3);

2 .
(A -B) (-AB-5)SIN(-2Y~-5X+U)

2 .
(ZA -8) (- AB-5)SIN2'Y -3 X+ V)

2
-1/2 (-AB-5) €COS(2U - 8 X)

2 2 2
1/2 (2A -8) +1/2(-A8B-5)

2 2
172 (2 A -8B) COS(4 Y +2X)

(D4) DONE
(C5) POISINT(D3,Y)s
(C6) POISSIMP(X);

: 4 2
(D6) 1/8 (2 A - B)

2
SIN(A Y+ 2X)-1/2(2A -B)(~-AB-5)

2
COS(2 Y -3 X+U)+1/2(2A -B)(-AB-5)

COS( -2Y-5X4+U)
(C7) OUTOFPOIS(SIN(X)~5+COS(X)"5);
(D7) 1/16 SIN(5 X) + 1/16 COS(5 X) - 5/16 SIN(3 X)

+ 5/16 COS(3 X) + 5/8 SIN(X) + 5/8 COS(X)

One or two finai points: the coefficients in the arguments of the trig
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functions must fit in a pre-arranged domain. Initially this is set to [-15,16]
but can be set to [-2"1+1, 217 by the variable POISLIM[5]. This should
not be done in the middle of a calculation. Also, it is possible to define the’
coefficient arithmetic to be almost anything. The user (probably in
conjunction with a LISP-MACSYMA programmer) must define the programs
needed to add, multiply, substitute, encode and decode the coefficients. The .
encoding for +1 and -1 and a program to test for O (zero), completes each
package. These packages are available for coefficients being CRE form,
polynomials with floating point coefficients, and polynomials with rational
number coefficients, in addition to the default general MACSYMA form.

If all coefficients of trig terms are desired in CRE form, the user should
LOADFILE(POIS3,FASL,DSK,MACSYM) and
LOADFILE(RATPOI,FASL,DSK,MACSYM). Only those variables on the RATVARS
list can be used in the coefficients. In many instances this is a much more
efficient technique in terms of speed.

6.7 Tayior Series

TAYLOR(exp, var, pt, pow) expands the expression exp in a truncated Taylor
series (or Laurent series, if required) in the variable var around the point pt.
The terms through (var-pfstpow are generated. |f exp is of the form
f(var)/g(var) and g(var) has no terms up to degree pow then TAYLOR will try
to expand g(var up to degree 2xpow. If there are still no non-zero terms
TAYLOR will keep doubling the degree of the expansion of g{var) until
reaching powx2+xn where n is the value of the variable TAYLORDEPTH[3]

If MAXTAYORDER[TRUE] is TRUE, then during algebraic manipulation of
(truncated) Taylor series, TAYLOR will try to retain as many terms as are
certain to be correct.
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(C1) TAYLOR(SQRT(1+AxX+SIN(X)),X,0,3);

2 2
(R+1)X (A +2A+1)X
(D1)/R/ 1 % =ccccomme o eeeecccccccanan
2 8
3 2 3
(3A +9A +9A-1)1X
4 ceccccccccncccccecean ceeme b L.
48
(C2) %»e2;
' 3
X
(D2)/R/ 1¢(A+ 1) X0 ...,
6

(C3) PRODUCT((XxxI+1)ax2.5,1,1,INF)/(Xsx241);

(03) ceeeeccccene —————

(C4) TAYLOR(%,X,0,3),KEEPFLOAT: TRUE;

2 3
(D4)/R/ 1.0 + 2.5 X+ 3.375X +6.5625X + . ..
(C5) TAYLOR(1/L06(1+X),X,0,3);
2 3
1 1 X X 19 X
{DS}/R/ " h - ee e e e,

X 2 12 24 720
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Multivariate Taylor Series Expansions

For multivariate functions, there are several Ways of obtaining Taylor series
expansions. If the variables are truly independent and all singularities involve
only one variable at a time then the expansion may be done as follows:
TAYLOR(exp, varl, ptl, ordl, var2, pt2, ord2,.)

or -

TAYLOR(exp,[varl,ptl,ordl }[var2pt2ord2]..)
Naturally the two techniques may be intermixed.
However, if the variables are interdependent or singularities involving some

of the variables together can occur then the following scheme is to be used:

TAYLCR(exp, [varl, vard, . ..} pt, ord) where each of pt and ord may be
replaced by a list which will correspond to the list of variables. that is, the
nth items on each of the lists will be associated together.

The user should be warned that this scheme uses the RATWTLEVEL scheme
implicitly whenever the variables are expanded to different orders. In this case
the user must not be trying to use RATWTLEVEL simultaneously.

Internally this is done in the following manner; for each X; substitute

Xj ----- > TniVVp
" Then a term like X2 Y3 Z would become
T2 n+3n,+n, le W23 W,

and truncation is done on T. The W variables as well as T are not seen by the
user. The following are examples of the various modes of Taylor expansions.

(C5) TAYLOR(SIN(X+Y),X,0,3,Y,0,3);



130 - 6.7 Taylor Series N ‘ MACSYMA

3 2 2 3 2 3
Y Y X vX Yy X } 4
(D5)/R/ Y= cod X o ccom o e ¢ meven = oe
6 2 2 12 6
2 3
Y. X
® cceee * ...
12
(C6) TAYLOR(SIN(X+Y),[X,Y],0,3); '
3 2 2 3
X 237X +3Y XeoV
(D6)/R/ YoX o e- - ccsccsses ¢ , , .,
)
(Cc7) TAYLOR(1/SIN(X+Y),X,0,3,Y,0,3);
. . 2 3
D T S X X X
(D7)/R/ | *d e e ccpepecccedr, .,
Yy 6 2 6 3 4
4  § Y
(c8) TAYLOR(1/SIN(X+Y),[X,Y],0,3);
| X+ Y
(DB)/R/  <ee-- * emvee
XeoY 6
3 2 2 3
7X +21YX +21YX + 7Y
$ mecccrwccccccrrcnsvcacacancvosnes L
360

If one wants to handle asymptotic expansions a facility exists to some extent.
It may be invoked as follows.

TAYLOR(exp, [x,pt,ord ASYMP] will give an expansion of exp in negative powers
of (x-pf). The highest order term will be

(x - pt)-dl’d
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Thg ASYMP is a syntactic device and not to be assigned to; for example, one
types TAYLOR(F(X),[X,0,4,ASYMP]).

If the user is expanding polynomials he may specify a truncation level of INF in
which case the expansion will never truncate. :

DEFTAYLOR(function, exp) allows the user to define the Taylor series (about 0)
of an arbitrary function of one variable as exp which may be a poiynomlal in

that variable or which may be given implicitly as a power series using the
SUM function. -

In order to display the information given to DEFTAYLOR one can use
POWERSERIES(F(X),X,0). (see below).

~(C1) DEFTAYLOR(F(X), X**Z+SUH(X**II(2**I:I'**2).
1,4,INF));
(1) ‘ (F]

(c2) TAYLOR(%EMSQRT(.F(X))EX,0,4);
2 3 4
X 3073 X 12817 X

(D2)/R/ 1 #X 4 == ¢ ceceen- 4 ceeeone- + ...
2 18432 307200

TAYLORINFO(exp) returns FALSE if exp is not a Taylor series. Otherwise, a list
of lists is returned describing the particulars of the Taylor expansion. For
example,
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(C3) TAYLOR((1-Y~2)/(1-X),X,0,3,[Y,A,INF]);
2 2 :
(D3)/R/ 1 - A -2 A (Y --A) - (Y -A)
2 ' 2
+(1-A -2A(Y-A)-(Y-A))X
2 2 2
+ (1 -A -=2A(Y-A)-(Y-A))X
2 .' 2 3
+(1-A ~2A(Y-A)-(Y-A))X
* .. . |

(C4) TAYLORINFO(D3);
(04) (LY, A, INF], [X, 0, 3])

POWERSERIES(exp, var, pt) generates the general form of the power' series
expansion for exp in the variable var about the point pt (which may be INF
for infinity). In cases in which POWERSERIES is unable to expand exp the
TAYLOR function may give the first several terms of the series.

VERBOSE[FALSE] - if TRUE will cause comments about the progress of
POWERSERIES to be printed as the execution of it proceeds.
(C2) VERBOSE:TRUES
(C3) POWERSERIES{LOG{SIN(X)/{1-X*2)),X,0);
CAN’T EXPAND J

LOG(X - 1)
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SO WE WILL TRY AGAIN AFTER APPLYING THE RULE:

d
/ -- (X -1)
[ dx
LOG(X = 1) = T =cmeuee dx
1 X-1
/
CAN’T EXPAND
LOG(SIN(X))
SO WE WILL TRY AGAIN AFTER APPLYING THE RULE:
d
/ -- SIN(X)
[ ox
LOG(SIN(X)) = I ---=-=- dx
1 SIN(X)
/
"IN FIRST SIMPLIFICATION WE HAVE RETURNED:
/ /
L {1
I COT(X) dX - I ===-- dX - LOG(X + 1) + LOG(- 1)
] 1X-1
! /

IS 1I2 ZERO OR NONZERO?
ZERO;
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TRYING TO DO A RATIONAL FUNCTION EXPANSION OF

USING A SPECIAL RULE FOR EXPRESSIONS OF FORM

M -N
(A+ CVARR )
HERE WE HAVE
| (N=1,A=-1,C= 1, W= 1)
INF
ssz==z I3 2 13 13+ 1
\ (-1 2 BERN(2 I3) LOG(X) X
D e P )
/ (2 13)! 13 + 1
I3 =0

INF
sz=3 12 12
\ (-1) Xx
+(>  ececccdne.a. ) + LO6(-1)
/ 12 -
ETE8
12 = }

6.8 Trigonometric Simplification

TRIGEXPAND(exp) expands trigonometric and hyperbolic functions of sums of
angles and of multiple angles occurring in exp. For best resuits, exp should
be expanded. To enhance user control of simplification, this function expands



MACSYMA 6.8 Trigonometric Simplification 135

only one level at a time, expanding sums of angles or multiple angles. To
obtain full expansion into sines and cosines immediately, set the switch
TRIGEXPAND:TRUE.

A TRIGEXPAND[FALSE] if TRUE causes expansion of all expressions
containing SINs and COSs occurring subsequently.

HALFANGLES[FALSE] - if TRUE causes half-angles to be simplified away.

(C1) X+SIN(3%xX)/SIN(X), TRIGEXPAND=TRUE,EXPAND;

: 2 2
(D1) - SIN (X) + 3 COS (X) + X
(C2) TRIGEXPAND(SIN(10xX+Y));
(D2) COS(10 X) SIN(Y) + SIN(10 X) CoS(Y)

TRIGREDUCE(exp, var) combines products and powers of trigonometric and
hyperbolic SINs and COSs of var into those of muiltiples of var. It also tries to
eliminate these functions when they occur in denominators. If var is omitted
then all variables in exp are used. Also see the POISSIMP function (6.6).

(C4) TRIGREDUCE(D1);
(D4) 2 COS(2 X) + X+ 1

The trigonometric simplification routines will use declared information in
some simple cases. Declarations about variables (see 10.8) are used as
follows, e.g.

(C5) DECLARE(J, INTEGER, E, EVEN, O, ODD)$
(C6) SIN(X + (E + 1/2)x%PI)$

(D6) COS(X)

(C7) SIN(X + (0 + 1/2) %PI);

(07) : - COS(X)
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There are a number of ways the user may also explicitly invoke identities
~such as sinZ(x) + cosZ(x) = 1. The simplest methed is substitution

(c8) D1;
| | 2 2
(08) = SIN (X) + 3 COS (X) + X
(C9) %,SIN(X)2=1-C0S(X)~2;
: 2
(09) 4COS (X) + X -1

Often one wishes to recognize that sin‘(x) can be transformed using the same
rule. For this one needs the added power of RATSUBST.
(C10) RATSUBST(l-COS(X)*Z.SIN(X)‘Z.SIﬂ(X)‘l);
4 2
(D10) . COS (X) - 2 COS (X) + 1

In general RATSUBST will perform a RATSIMP (and thus an expansion) as well
as apply the substitution. One can similarly use the LETSIMP and DEFRULE
commands together with additional declarations to define more intricate rules.

Although not as powerful as RATSUBST, the TELLSIMP cemmand enables the
automatic application of a rule.
(C11) TELLSIMP(SIN(X)~2,1-COS(X)~2)8

(C12) (SIN(X)+1)*2;

2
(D12) (SIN(X) + 1)
(C13) EXPAND(X);
‘ 2
(D13) ) 2 SIN(X) - COS (X) + 2-

(Cl4) SIN(X)~2;
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| 2
(D14) _ 1 - COS (X)

6.9 Laplace Transforms

LAPLACE(exp, ovar, Ivar) takes the Laplace transform of exp with respect to the
variable ovar and transform parameter Ivar. Exp may only involve the
functions EXP, LOG, SIN, COS, SINH, COSH, and ERF. It may also be a linear,
constant coefficient differential equation in which case ATVALUE (see 6.2.2)
of the dependent variable will be used. These may be supplied either before
or after the trarsform is taken. Since the initial conditions must be specified
at zero, if one has boundary conditions imposed elsewhere he can impose
these on the general solution and eliminate the constants by solving the
general solution for them and substituting their values back. exp may also

~ invoive convoiution integrais. Functionai reiationships must be expiicitiy
represented in order for LAPLACE to work properly. That is, if F depends on
X and Y it mast be written as F(X)Y) wherever F occurs as in

LAPLACECDIFF(F(X,Y),X),X,S).
(C1) LAPLACE(XExx(2xT+A)xSIN(T)aT,T,S);
A
2% (S5- 2)
(] )

((s-2) +1)

(C2) LAPLACE(DELTA(T-A)*SIN(B*T),T,S);
'Is. A positive,negative or zero?
POS;

-AS
(D2) SIN(A B) %E
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ILT(exp, Ivar, ovar) takes the inverse Laplace transform of exp with respect to
Ivar and parameter ovar. exp must be a ratio of polynomials whose
denominator has only linear and quadratic factors. By using the functions
LAPLACE and ILT together with the SOLVE or LINSOLVE functions the user can
solve a single differential or convolution integral equation or a set of them.

(C1) ~INTEGRATE(SINH(A%X)xF(T-X),X,0,T)+BxF(T)=Tax2;
T

2

(01) (SINH(A X) F(T - X)) DX + B F(T) = T

G\,—JH""\

(C2) LAPLACE(X,T,S);

A LAPLACE(F(T), T, S) 2

(D2) = ccccrenccccncccccace- + B LAPLACE(F(T), T, §) = --
z z . ’ 3 .

S -A ' S

(C3) LINSOLVE([%],[“LAPLACE(F(T),T,5)]);

SOLUTION
2 2
2SS -2A
(E3) ~ LAPLACE(F(T), T, S) £ =-cccececmcccccccncs
5 2 3
BS +(A-A B)S
(D3) [E3]

(C4) ILT(E3,S,T);
Is AB (AB - 1) positive, negative, or zero?

POS;
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2
SQRT(A) SQRT(AB - B) T
2 COSH(==-=mnmemmmcccccnnncconas )
8
(D4) F(T) = - —-cccecocceccmmmmmccccccncaaes
A
2
AT 2
$ commcan & cecccccccccccccncs
AB-1 3 2 2

Laplace‘ Transforms of Special Functions

The following function for taking Laplace transforms of Special Functions is
available in MACSYMA. The user must type LOADFILE(SPECFN,LISP,DSK,SHARE);
to load in the special routines. Since the latter take up a great deal of space, it
is recommended that these computations be carried out in a fresh MACSYMA.

LAPINT (exp,ovar) takes the Laplace transform of exp with respect to the variable
ovar. exp may involve ‘

1) Special Functions of linear or quadratic argument muitiplied by

a) arbitrary powers of the argument, or
b) trigonometric and exponential functions of linear argument

2) Products of two Special Functions of linear or quadratic argument
taken from only one of the following groups:

a) Any kind of Bessel, Modified Bessel, or Hankel functions,
b) Orthogonal polynomials,
¢) Confluent Hypergeometric Functions

In this second category, factors of type 1a or 1b are also permitted.
The basic method is to rewrite the expression in terms of Generalized

Hypergeometric Functions (GHF), apply a general formula for taking the
Laplace transform of GHF’s, and then, if possible, present the resuit in terms
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of elementary functions or "common" Special Functions. For further details,
see Symbolic Laplace Transforms of Special Functions [Av]

(C1) T7(1/2)%GAMMAINCOMPLETE(1/2,A%T )=XE~(-PxT);

: 1 -PT
(D1) GAMMAINCOMPLETE(-, A T) SQRT(T) XE
2
(C2) LAPINT(%,T);
%P1 2
(02) T e
3/2 A 3/2 3/2 A 3/2
2(P+A) (1 - —ocen ) (P+A) . (1 - --omm )
P+A PeA

(C3) TH(1/72)%I[11(2%A(1/2)%T~(1/2) )&XE~(-PxT);
| -PT
(D3) J (2 SQRT(A) SQRT(T)) SQRT(T) XE
1

(C4) LAPINT(X,T);

- A/P
: SQRT(A) XE
(D4) | S
2
P
(C5) T~2xI[ 1 J(AXT)xXE~(-PaT);
. 2 -p7
(DS) - J(AT)T %
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(C6) LAPINT(%,T);

(06) | eccecesccacees

(C7) T~(372)%Y[1](A%T)%XEA(-T);
3/2 -1
(07) _ Y(AT)T %

1
(C8) LAPINT(X,T);

15 %I SQRT(2) P (- ==) (====== = 1)
(D8)  eeccmemmmeeeececee- meeeecccccccccaccaa.
8 SQRT(XPI) (A + 1) ((A +1) - 1)

6.10 Combinatorial Functions

MINFACTORIAL(exp) examines exp for occurrences of two factorials which differ
by an integer. It then turns one into a.polynomial times the other.

(C1) NY'/(N+1)!;

on

(C2) MINFACTORIAL(X);

(02 e |
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FACTCOMB(exp) tries to combine the coefficients of factorials in exp with the
factorials themselves by converting, for example, (N+1)+N! into (N+1)!.

SUMSPLITFACT[TRUE] if set to FALSE will cause MINFACTORIAL to be
applied after a FACTCOMB.

(C1l) (N+1)"BxN!"B;

8 8
(D1) (N+1) N
(C2) FACTCOMB(X);
8

(01) . (N + 1)!

MAKEFACT (exp) transform.s,occurrences of binomial,gamma, and beta functions in
exp to factorials.

MAKEGAMMA(exp) transforms occurrences of binomial,factorial, and beta functions
in exp to gamma functions.

BERNPOLY(v, n) generates the nth Bernoulli polynomial in the variable v.

6.11 Continued Fractions

CF(exp) converts exp into a continued fraction. exp is an expression composed
of arithmetic operators and lists which represent continued fractions. A
continued fraction a+1/(b+1/(c+..)) is represented by the list [a,b,c,..]J. a,b,c,.
must be integers. Exp may also involve SQRT(n) where n is an integer. In
this case CF will give as many terms of the continued fraction as the value of
the variable CFLENGTH[1] times the period. Thus the default is to give one
period.
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CFDISREP(list) converts the continued fraction represented by list into general
representation.

(CI) CF([l.Z,-3]+[l.-2,l]);'

(D1) i, 1,1,2]
(C2) CFDISREP(%);

1

(02) 1 ¢ cecmccen-

, : 1

l 4 cocee

1

1+ -

2

CFEXPAND(x) gives a matrix of the numerators and denominators of the next-to-
last and last convergents of the continued fraction x.

(C1) (CFLENGTH:4, CF(SQRT(3));

(o1) (. 1,2,1,2,1,2,1,2)
(C2) CFEXPAND(%);
(265 97]
(b2) ! ]
' (153 56]
(C3) D2[1,2])/D2[2,2],NUMER;

(D3) 1.73214285

6.12 Number-Theoretic Functions

PRIME(n) gives the nth prime. MAXPRIME[489318] is the largest number
accepted as argument.
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DIVSUM(nk) adds up all the factors of n raised to the kth power. |f only one
argument is given then k is assumed to be 1.

TOTIENT(n) is the number of integers less than n which are relatively prime to n.
Also n - DIVSUM(n,0) + 1.

JACOBI(p,q) is the Jacobi symbol of p and q

QUNIT(n) givés the principal unit of the real quadratic number field SQRT(n)
where n is an integer, i.e. the element whose norm is unity. This amounts to
solving Pell’s equation A++2-mBs+2=1.

(C1) QUNIT(17);
(01) SQRT(17)+4

(CZ)- EXPAND(Xx(SQRT(17)-4));

(D2) 1
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7 Declaring and Using Mathematical Information

The commands in this chapter deal with the communication, use, and
manipulation of mathematical information about objects and functions in MACSYMA.
Taken as a whole, this information comprises MACSYMA’s relational data base.
Facts take the form of either "predicates” or "features™. A predicate is a well-
formed. formula ‘consisting of a relation and its arguments, e.g. A>B, or is a
composition of predicates using the logical operators NOT, AND, and OR.
Alternatively, certain facts about mathematical objects and functions can be
expressed more naturally as "features”, i.e. unary predicates. For example, one
can say that a certain constant is an INTEGER or that a function is INCREASING.
Any feature, e.g. the linearity of F, can also be expressed as a predlcate via the
relation KIND, as in KIND(F,LINEAR). :

7.1 Declaring and Assuming

The predicates and features communicated to MACSYMA with the ASSUME
and DECLARE commands may be tested with IS and FEATUREP and removed with
FORGET and REMOVE. The facts in the relational data base are used by the
simplifier and several commands, like SIGN, the IF statement, and INTEGRATE
(certain integrations require sign information). MACSYMA has a rudimentary
inference capability enabling limited deductions from the data base. It excels at
taxonomic deductions, e.g. KIND(NEVEN) implies KIND(N,INTEGER), and simple
expression comparisons, e.g. X<0 and KIND(N,EVEN) imply Y2+xN>0. The only sort
of inequality information used by the inference mechanism at the moment are
relations between variables and other variables and numbers.

The operator "=" is a total relation that holds between two expressions if
and only if the expressions are syntactically identical. It is not a mathematical
comparison. Thus, IS((X+1)"2=X"2+2+X+1) would return FALSE. The relation
EQUAL, on the other hand, is a mathematical comparison of its two arguments. A
predicate involving EQUAL is true if and only if its arguments are mathematically
equivalent in light of the current data base. Thus, IS(EEQUAL((X+1)"2,X"2+2+X+1))
would return TRUE. The operators ">", ">=", "<", and "<=" are also mathematical
comparisons.

MACSYMA currently recognizes and uses the following features of objects:
EVEN, ODD, INTEGER, RATIONAL, IRRATIONAL, REAL, IMAGINARY, and COMPLEX.
The useful features of functions include: INCREASING, DECREASING, ODDFUN (odd
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function), EVENFUN (even function), COMMUTATIVE (or SYMMETR!C),
ANTISYMMETRIC, ASSOCIATIVE.

ASSUME(predl, pred2, ..) first checks the specified predicates for redundancy
and consistency with the current data base. If the predicates are consistent
and non-redundant, they are added to the data base; if inconsistent or
redundant, no action is taken. ASSUME returns a list whose entries are the
predicates added to the data base and the atoms REDUNDANT or
INCONSISTENT where applicable. ASSUME also accepts lists of predicates as
arguments.

FORGET(predl, pred2, ..) removes the specified predicates froni the data base.
Note that it does not guarantee that equivalent facts are removed. FORGET
also accepts lists of predicates as arguments. :

DECLARE(al, f1, a2, 12, ..) declares each ai to have the corresponding feature #i
'DECLARE(F, INCREASING) s in all respects equivalent to
ASSUME(KIND(F INCREASING)). The ai and f may also be lists of objects or
features. '

REMOVE(al, 11, a2, 12, ..) removes eéch feature fi from the corresponding object
ai. The ai and fi may also be lists of objects or features.

IS(pred) attempts to determine whether the specified predicate is provable from
the facts in the current data base. IS returns TRUE if the predicate is true
for all values of its variables consistent with the data base and returns
FALSE if it is false for all such values. Otherwise, its action depends on the
setling of the switch PREDERROR[TRUE] IS errs out if the value of
PREDERROR is TRUE and returns UNKNOWN if PREDERROR is FALSE.

FEATUREP(a,f ) attempts to determine whether the object a has the feature f on
the basis of the facts in the current data base. If so, it returns TRUE, else
FALSE.

(C1) DECLARE(J,EVEN)S

(C2) FEATUREP(J, INTEGER);
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(D2) TRUE

SIGN(exp) attempts to determine the sign of its specified expression on the basis
of the facts in the current data base. It returns one of the following answers:
POS (positive), NEG (negative), ZERO, PZ (positive or zero), NZ (negative or
zero), PN (positive or negative), or PNZ (positive, negative, or zero, i.e.
nothing known).

(C3) ASSUME(A>=B,B>=C,C>=D,D>=A); .
(D3) . [A>B,B>C, C> D, D> A]

(C4) SIGN(B-C); ;
(D4) ZERO

(C5) DECLARE(K, INTEGER,L,0DD,F,INCREASING)S

{C6) ASSUME({X>0);
(D6) [x >o0]

(C7) F(X+3xY (L+24%K+1))-F(0);

L+24K+ 1
(D7) F(3 Y + X) - F(0)
(C8) SIGN(%);
(D8) POS

ASKSIGN(exp) first attempts to determine whether the specified expression is
positive, negative, or zero. If it cannot, it asks the user the necessary
questions to complete its deduction.] The user’s answer is recorded in the
data base for the duration of the current computation (one "C-line"). The
value of ASKSIGN is one of POS, NEG, or ZERO.

The following function, when applicable, gives the user relational information.
However, it does NOT use the data base.

1. If the user wishes to look at the expression more closely before replying, the
variable ASKEXP is set to it. Typing control-A results in a MACSYMA break (see
4); the user may now analyze the expression in order to give an appropriate
answer.
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ZEROEQUIV(exp,var) tests whether the expression exp in the single variable var
is equivalent to zero. It returns either TRUE, FALSE, or DONTKNOW. For
example ZEROEQUIV(SIN(2+X) - 2#SIN(X)*COS(X),X) returns TRUE and
ZEROEQUIV(ZE~X+X,X) returns FALSE. On the other - hand
ZEROEQUIV(LOG(A+B) - LOG(A) - LOG(B),A) will return DONTKNOW because
of the presence of an extra variable. The restrictions are:

(1) Do not use functions that MACSYMA does not know how to differentiate
and evaluate.

(2) If the expression has poles on the real Ime, there may be errors in the
result (but this is unlikely to occur).

(3) If the expression contains functions which are not solutions to first order
differential equations there may be incorrect results.

(4) The algorithm uses floating-point evaluation at randomly chosen points
using a corresponding "epsilon” for carefully selected subexpressions This is
always somewhat hazardous, although the algonthm ‘tries to minimize the
potential for error.

7.2 Contexts

The context mechanism makes it possible for a user to bind together and
name a selected portion of his data base, called a context. Once this is done, the
user can have MACSYMA assume or forget large numbers of facts merely by
activating or deactivating their context. Any atom can be a context, and the facts
contained in that context will be retained in storage until the user destroys them
individually by using FORGET or destroys them as a whole by using KIiLL to
destroy the context to which they belong.

FACTS(context) returns a list of the facts in the specified context.

ACTIVATE(cont!, cont2, ..) causes the facts in the specified contexts contk to be
added to the current data base.
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DEACTIVATE(contl, cont2, ...) causes the facts in the specified contexts contk to
be removed from the current data base, unless specified by some other
active context. : '

CONTEXT[GLOBAL]. Whenever a user assumes a new fact, it is placed in the
context named as the current value of the variable CONTEXT. Similarly,
FORGET references the current value of CONTEXT. To add or delete a fact
from a different context, one must bind CONTEXT to the intended context and
then perform the desired additions or deletions. The context specified by the
value of CONTEXT is automatically activated. All of MACSYMA’s built-in
relational knowledge is contained in the default context GLOBAL.

CONTEXTS[[]] is a list of the currently active contexts, not including the
value of CONTEXT.

(C9) CONTEXT:CON1$
(C10) DECLARE(M,INTEGER)S

(C11) FEATUREP(M,INTEGER);

{Dil) TRUE
(C12) CONTEXT:CONZS

(C13) FEATUREP(M, INTEGER);
(D13) FALSE

(C14) DECLARE(N, INTEGER);.
(D14) ' DONE

(C15) CONTEXT:CON1S$

(C16) FEATUREP(M,INTEGER);
(D16) TRUE

(C17) FEATUREP(N, INTEGER);
(D17) FALSE

(C18) ACTIVATE(CONZ)S$

(C19) FEATUREP(N,INTEGER);
(D19) TRUE
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(C13) CONTEXTS;
(D13) , [CON2]

LOCAL(al, a2, ..) causes the external facts about the objects al, a2 .. to be
forgotten for the duration of the enclosing BLOCK, independent of context.
Any facts assumed about al, a2 .. within the BLOCK containing the LOCAL
will be forgotten upon exit, again independent of context.

(C14) DECLARE(P, INTEGER)S

(C15) BLOCK(LOCAL(P),PRINT(FEATUREP(P.INTEGER)),ASSUHE(P.IRRATIONAL))S
FALSE '

(C16) FEATUREP(P, INTEGER);
(D16) ‘ TRUE

(C17) FEATUREP(P,IRRATIONAL);
(D17) FALSE
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8 List Handling and LISP-like functions

APPLY((function, list) gives the result of applying the function to the list of its
arguments. This is useful when it is desired to compute the arguments to a
function before applying that function. For example, if L is the list [1, 5,
-10.2, 4, 3], then APPLY(MIN,L) gives -10.2. APPLY is also useful when
calling functions which do not have their arguments evaluated if it is desired
to cause evaluation of them. For example, if FILESPEC is a variable bound to
the list [TEST, CASE] then APPLY(CLOSEFILEFILESPEC) is equivalent to

- CLOSEFILE(TEST,CASE). In general the first argument to APPLY should be
preceded by a ’ to to make it evaluate to itself. Since some atomic variables
have the same name as certain functions the values of the variable would be
used rather than the function because APPLY has its first argument evaluated
as well as its second.

FUNMAKE(name,[argl,.,argn]) returns name{argl,..,argn) without calling the
function name.

ARRAYMAKE(name,[il,i2,..]) returns name{il,i2,...}

MAP(fn, expl, exp2, ..) returns an expression whose leading operator is the same
as that of the expi but whose subparts are the results of applying fn to the
corresponding subparts of the expi. Fn is either the name of a function of n
arguments (where n is the number of exp) or is a LAMBDA form of n
arguments.

MAPERROR[TRUE] - if FALSE will cause all of the mapping functions to
(1) stop when they finish going down the shortest expi if not all of the exp/
are of the same length and (2) apply fn to [expl, exp2,..] if the expi are not
all the same type of object. If MAPERROR is TRUE then an error message will
be given in the above two instances.

One of the uses of this function is to MAP a function (e.g. PARTFRAC)
onto each term of a very large expression where it ordinarily wouldn’t be
possible to use the function on the entire expression due to an exhaustion of
list storage space in the course of the computation.
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(C1) MAP(F,X+AxY+BxZ);

(D1) , F(B Z) + F(A Y) + F(X)
(Cc2) MAP(LAHBDA([U],PARTFRAC(U.X))-X/(X‘3+4tX‘2¢5¥X02));
1 X
(02) ) R )
' X+ 2 2
(X + 1)

(D3) +1
X+l

(C4) MAP("=",[A,B],[-.5, 3,2.5]);
MAP IS TRUNCATING. o
. (D4) . [A=-.58=3)

MAPATOM(expr) is TRUE if and only if expr is treated by the MAPping routines a
as an “"atom”, 'a unit. "Mapatoms” are atoms, numbers (including rational
numbers), and subscripted variables.

MAPLIST(fn, expl, exp2, ..) yields a list of the applications of fn to the parts of
the expi. This differs from MAP(fnexpl,exp2,.) which returns an expression
with the same main operator as expi has (except for simplifications and the
case where MAP does an APPLY). Fnis of the same form as in MAP.

FULLMAP(fn, expl, ..) is similar to MAP but it will keep mapping down all
subexpressions until the main operators are no longer the same. ,
The user should be aware that FULLMAP is used by the MACSYMA simplifier
for certain matrix manipulations; thus, the user might see an error message
concerning FULLMAP even though FULLMAP was not explicitly called by the
user. '

(C1) A+bxCS
((;2) FULLMAP(E,%); |

(02) 6(B) G(C) + 6(A)
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(C3) MAP(G,Dl1);

(D3) G(B C) + 6(A)

FULLMAPL(fn, listl, ..) is similar to FULLMAP but it only maps énto lists and
matrices :

(C1) FULLMAPL("+",[3,[4,5]],[[A,1],[0,-1.51]);

(D1) ([A + 3, 4], [4, 3.5]]

SCANMAP(function,exp) recursively applies fuﬁction to exp. This is most useful
when "complete” factorization is desired, for example:

(C1) EXP:(A*2+2xA+1)xY + X"28

(C2) SCANMAP(FACTOR,EXP);
2 2
(02) ' (A+1) Y+X

Note the way in which SCANMAP applies the given function FACTOR to
the constituent. subexpressions of exp; if another form of exp is presented to
SCANMAP then the result may be different. Thus, D2 is not recovered when
SCANMAP is applied to the expanded form of exp:

(C3) SCANMAP(FACTOR,EXPAND(EXP));
: 2 2
(D3) A Y+2AY+Y+ X

Here is another example of the way in which SCANMAP recursively
applies a given function to all subexpressions, including exponents:

~ (C4) EXPR : UxV~(AxX+B) + C$

(C5) SCANMAP(“F, EXPR);
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F(F(F(R) F(X)) + F(B))
(D5) F(F(F(U) F(F(V) )) + F(C))

APPEND(IistI,' list2, ..) returns a single list of the elements of list! followed by
the elements of list2,.
(Ccl) Appenoi[v+x,o.-3.21.[2.5£zo.x1);

(D1) _ (v+X, 0, -3.2, 2.5E20, X]

CONS(exp, list) returns a new list constructed of the element exp as its first
element, followed by the elements of Jist.

ENDCONS(exp, list) returns a new list consisting of the elements of /ist followed |
by exp.

MEMBER(exp, list) returns TRUE if exp occurs as a member of /ist (not within a
member). Otherwise FALSE is returned.

REVERSE(list) reverses the order of the members of list (not the members
themselves).

The functions FIRST, REST, LAST, DELETE, LENGTH (6.2.3) also work on lists.

Examples

(C1) UNION(X,Y):=IF X = [] THEN Y ELSE
IF MEMBER(T:FIRST(X),Y) THEN UNION(REST(X),Y)
ELSE CONS(T,UNION(REST(X),Y)$

(C2) UNION([A,B,1,1/2,Xxx2],[-¥ax2,A,Y,1/2]);
| 2 2 1

(D2) (X, 1,B, -X,A Y, -]
2



MACSYMA 8 List Handling and LISP-like functions 155

In this example T is assigned the value of FIRST(X) in the call to MEMBER
and is referenced later in CONS(T,UNION(...)).

(C3) BERNPOLY(X,5);

4 3
5. §X 5 X X
(03) X = meee & eem - -
2 3 6
(C4) MAPLIST(NUMFACTOR,%);
' 5 5 1
(04) [lv T T Ty < ']
2 3 6
(C5) APPLY(MIN,%);
5
(D5) - -

[8.1] Property Specification Functions

The functions in this section are used to specify properties for atomic
variables. A property is a piece of information which may be utilized during the
user’s session with MACSYMA. MODEDECLARE (sec. 10.8) is one example
of a property specification function. Also, the subsequent section deals with
functions for pattern matching and includes the function MATCHDECLARE. As
these are somewhat complicated they are described in other sections. However,
along with DECLARE (see below) and other functions, they all perform the task of
setting up information which is used later.

For most types of properties there exists a name which is an indicator of that
property. For example the command GRADEF(F(X),SIN(X++2)); causes F to receive
a "gradef" property of LAMBDA([X],SIN(X++2)). (The indicator is GRADEF and the
property is the lambda expression).

The presence of some properties is signified merely by the presence of the
indicator and requires no additional information. These indicators are known as
flags. For example %l has associated with it the flag CONSTANT. We can also
speak of "constant™ as being a property of %l.
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There are three principal operations which are needed by the user in dealing
with properties. He must be able to set up the property, to display it, and to
remove it. Also he may sometimes want to know what properties he set up in his
MACSYMA. There are several lists (known as information lists) which contain all
of the atoms that possess a particular property. Moreover, the value of the
variable INFOLISTS is a list of the names of all of the information lists in
MACSYMA. These are:

LABELS - all bound C,D, and E labels.
VALUES - all bound atoms (set up by :, =:, or functional binding).
FUNCTIONS - all user defined functions (set up by f(x):=..).

ARRAYS - declared and undeclared arrays (set up by :, i, or a[x):=.)

MYOPTIONS - all options ever reset by the user (whether or not they get
reset to their default value). '

RULES - user defined pattern matching and simplification rules (set up by
TELLSIMP, TELLSIMPAFTER, DEFMATCH, or, DEFRULE)

ALIASES - atoms which have a user defined alias (set up' by the ALIAS,
ORDERGREAT, ORDERLESS functions or by DECLAREing the atom a NOUN).

DEPENDENCIES - atoms which have functional dependencies (set up by the
DEPENDS or GRADEF functions).

GRADEFS - functions which have user defined derivatives (set up by the
GRADEF function).

PROPS - atoms which have any property other than those mentioned above,
such as atvalues, matchdeclares, etc. as well as properties specified in the
DECLARE function.

In addition to these information lists similar lists may be generated by the
function PROPVARS(prop) which yields a list of those atoms on the PROPS list
which have the property indicated by prop. Thus PROPVARS(ATVALUE) will yield
a list of atoms which have atvalues.
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8.1.1 Functions for Handling MACSYMA Properties

DECLARE(al, f1, a2, f2, ..) gives the atom ai the flag fi. The a’s and f’s may also
be lists of atoms and flags respectively in which case each of the atoms gets
all of the properties. The possible flags and their meanings are:

CONSTANT - makes ai a constant as is %Pl

NONSCALAR - makes ai behave as does a list or matrix with respect to
_the dot operator. (see 6.4.1)

NOUN - makes the function ai a noun so that it won’t be evaluated
‘automatically. (see 3.2)

ALPHABETIC - adds ai to MACSYMA’s alphabet (initially A-Z,%). Thus,
DECLARE("_",ALPHABETIC) enables NEW_VALUE to be used as a name.

EVFUN - makes ai known to the EV function so that it will get applied if
its name is mentioned. Initiai evfuns are FACTOR, TRIGEXPAND,
TRIGREDUCE, - BFLOAT, RATSIMP, RATEXPAND, RADCAN, and
LOGCONTRACT.

EVFLAG - makes ai known to the EV function so that it will be bound to
TRUE during the execution of EV if it is mentioned. Initial evflags are FLOAT,
PRED, SIMP, NUMER, DETOUT, EXPONENTIALIZE, DEMOIVRE, KEEPFLOAT,
LISTARITH, TRIGEXPAND, SIMPSUM, ALGEBRAIC, RATALGDENOM,
FACTORFLAG, and LOGEXPAND.

BINDTEST - causes ai to signal an error if it ever is used in a
computation unbound (see Chapter 19).

ARRAYINFO(a) returns a list of information about the array a. For hashed arrays
it returns a list of "HASHED", the number of subscripts, and the subscripts of
every element which has a value. For declared arrays it returns a list of
"DECLARED", the number of subscripts, and the bounds that were given the
the ARRAY function when it was called on a '

(c1) B[1,X]:18
(C2) ARRAY(F,2,3)8
(C3) ARRAYINFO(B);
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(D3) [HASHED, 2, [1, X]]
(C4) ARRAYINFO(F);

(D4) [DECLARED, 2, [2, 3]]

PROPERTIES(a) will yield a list showing the names of all the properties associated
with the atom a. -

PRINTPROPS(a, i) will display the property with the indicator / associated with the
atom a. a may also be a list of atoms or the atom ALL in which case all of the
atoms with the given property will be wused For example,
PRINTPROPS([F,GJ,ATVALUE). PRINTPROPS is for properties that cannot
otherwise be displayed, i.e. for ATVALUE,ATOMGRAD,GRADEF, and
MATCHDECLARE.

REMOVE(al, pl, a2, p2, ..) removes the property pi from the atom ai. A/ and pi
may also be lists as with DECLARE. P/ may be any property e.g. FUNCTION,
MODEDECLARE, etc. It may also be TRANSFUN implying that the translated
LISP version of the function is to be removed. This is useful if one wishes to
have the MACSYMA version of the function executed rather than the
translated version. Pi may also be OP or OPERATOR to remove a syntax
extension given to ai (see Appendix ll). If ai is "ALL" then the property
indicated by pi is removed from all atoms which have it. Unlike the more
specific remove functions (REMVALUE, REMARRAY, REMFUNCTION, and
REMRULE) REMOVE does not indicate when a given property is non-existent;
it always returns "DONE". .

8.1.2 Functions for Handling Users’ Properties

PUT(3, p, i) associates with the atom a the property p with the indicator i This
enables the user to give an atom any arbitrary property.

QPUT(a, p, i) is similar to PUT but it doesn’t have its arguments evalhated.
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GET(a, i) retrieves the user property indicated by i associated with atom a or
returns FALSE if a doesn’t have property i.

(C1) PUT(%E, TRANSCENDENTAL,TYPE);
(D1) _ TRANSCENDENTAL
(C2) PUT(%PI, TRANSCENDENTAL,TYPE)S

(C3) PUT(%I,ALGEBRAIC,TYPE)S
(C4) TYPEOF(X) := BLOCK([Q], IF NUMBERP(X) THEN RETURN(ALGEBRAIC),
, ‘ IF NOT ATOM(X) THEN RETURN(MAPLIST(TYPEOF, X)),
Q : GET(X, TYPE),
IF Q=FALSE THEN ERROR("NOT NUMERIC") ‘ELSE Q)$

(C5) TYPEOF (2%XE+XxXPI);

NOT NUMERIC
QuIT
(C6) TYPEOF (2xX%E+%PI);

(D6) [[ALGEBRAIC, TRANSCENDENTAL], TRANSCENDENTAL ]

REM(3, i) removes the property indicated by i from the atom a.

NUMERVAL(varl, expl, var2, exp2, ..) declares vari to have a numerical value of
expl which is evaluated and substituted for the variable in any expressions
in which the variable occurs if the NUMER flag is TRUE. (see the EV function,
sec. 6.1.1). ;
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9 Pattern Matching and Related Functions
[9.1] Type Testing Functions

ATOM(exp) is TRUE if exp is atomic (i.e. a number or name) else FALSE. Thus
ATOM(5) is TRUE while ATOM(A[1]) and ATOM(SIN(X)) are FALSE. (Assuming
A[1] and X are unbound.) )

SUBVARP(exp) is TRUE if exp is a subscripted variable, for example A[l}'

CONSTANTP(exp) is TRUE if exp is a constant (i.e. composed of numbers and %P,
#E, %l or any variables bound to a constant or DECLAREd constant (see 8.1.1)
else FALSE. Any function whose arguments are constant is also considered to
be a constant.

NONSCALARP(exp) is TRUE if exp is a nbn-scalar, i.e. it contains atoms declared
as non-scalars (see 8.1), lists, or matrices.

INTEGERP(exp) is TRUE if exp is an integer else FALSE.

EVENP(exp) is TRUE if exp is an even integer. FALSE is returned .in all other
cases.

ODDP(exp) is TRUE if exp is an odd integer. FALSE is returned in all other cases.
FLOATNUMP(exp) is TRUE if exp is a floating point number else FALSE.

BFLOATP(exp) is TRUE is exp is a bigfloat number else FALSE.
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NUMBERP(exp) is TRUE if exp is an integer, a rational number, a floating point
number or a bigfloat else FALSE.

RATNUMP(exp) is TRUE if exp is a rational number (includes integers) else
FALSE. . ‘

LISTP(exp) is TRUE if exp is a list else FALSE.
MATRIXP(exp) is TRUE if exp is a matrix else FALSE.
RATP({exp) is TRUE if exp is in CRE or extended CRE form else FALSE.

F’REEOF(xI, x2, .., exp) yields TRUE if the xi do not occur in exp and FALSE
otherwise. The x/ are atoms or they may be subscripted names, functions

(e.g. SIN(X) ), or operators enclosed in "s. They may also be lists of these
objects . :

(Acn FREEOF(Y,SIN(X+2xY));
(D1) FALSE
(c2) FREEOF(COS(Y).'*',SIN(Y)+COS(X));

(02) ' . TRUE
[9.2] General Pattern Matching Functions

The pattern matching functions permit the user to test expressions for
combinations of syntactic and semantic patterns and to automatically have
variables set to parts of expressions which fit the patterns. This enables one to
transform an expression as well as to see if it fits a pattern.

It is also possible to add simplification rules which apply to user or system
defined functions or operators. In order to choose the particular rule which
applies, a pattern match must usually be performed on the operands of the
expression which is to be simplified.
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MATCHDECLARE(patternvar, predicate, ..) associates a predicate with a pattern
variable so that the variable will only match expressions for which the
predicate is not FALSE. (The matching is accomplished by one of the
functions described below). For exampie after
MATCHDECLARE(Q,FREEOF(X,ZE)) is executed, Q will match any expression
not containing X or %E. If the match succeeds then the variable is set to the
matched expression. The predicate (in this case FREEQOF) is written without
the last argument which should be the one against which the pattern variable
is to be tested. Note that the patternvar and the arguments to the predicate
are evaluated at the time the match is performed.

The odd numbered argument may also be a list of pattern variables all of
which are to have the associated predicate. Any even number of arguments
may be given.

For pattern matching, prédicates refer to functions which are either
FALSE or not FALSE (any non FALSE value acts like TRUE).

MATCHDECLARE(var,TRUE) will permit var to match any expression.

PRINTPROPS([v1,v2,..MATCHDECLARE) (see 8.1.1) will display the
matchdeclare properties of the variables v1,v2..

TELLSIMPAFTER(pattern, replacement) defines a replacement for pattern which
the MACSYMA simplifier uses after it applies the built-in simplification rules.
The pattern may be anything but a single variable or a number.

TELLSIMP(pattern, replacement) is similar to TELLSIMPAFTER but places new
information before old so that it is applied before the built-in simplification
rules. The pattern may not be a sum, product, single variable, or number.
RULES is a list of names having simplification rules added to them by
DEFRULE, DEFMATCH, TELLSIMP, or TELLSIMPAFTER.
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(C1) MATCHDECLARE([XX,A,B],TRUE);
(D1) DONE

(cz)

TELLSIMP(D[ XXJ(A,B),B(XX)xDIFF(A(XX),X)-A(XX)xDIFF(B(XX),XX));
RULE PLACED ON SUBVAR .

(D2) [ SUBVARRULE1, FALSE]

SUBVARRULE]1 is the name assigned to the TELLSIMP rule from (0343.
(C3) DLZI(X,Y);
(03) S V(D) X(2) - X(Z) ¥(Z)

X z

Another example of the use of TELLSIMP is shown in the following:

(C4) 070;
0”0 HAS BEEN GENERATED

To override such default simplification, the user can use the following
paradigm:

(C5) BLOCK([SIMP]J,SIMP:FALSE,TELLSIMP(070,1));

RULE PLACED ON xx
(D5) . [*«RULE1, SIMPEXPT]

(C6) 070;
(D6) : ' - 1

(C7) REMRULE( "#x", "soxRULEL");
(D7) [ SIMPEXPT ]

DEFMATCH(progname, pattern, parml, .., parmn) creates a function of n+l
arguments with the name progname which tests an expression to see if it can
‘match a particular pattern. The pattern is some expression containing pattern
variables and parameters. The parms are given explicitly as arguments to
DEFMATCH while the pattern variables (if supplied) were given implicitly in a
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previous MATCHDECLARE function. The first argument to the created
function progname, is an expression to be matched against the "pattern” and
the other n arguments are the actual variables occurring in the expression
which are to take the place of dummy variables occurring in the “pattern”.
Thus the parms in the DEFMATCH are like the dummy arguments to the
SUBROUTINE statement in FORTRAN. When the function is "called” the actual
arguments are substituted. For example:

(C1) NONZEROANDFREEOF(X,E):= IF E#0 AND FREEOF(X,E)
THEN TRUE ELSE FALSES

(IS(E#0 AND FREEOF(X,E)) is an equivalent function definition - see sec.
8.1.1.

(C2) MATCHDECLARE(A.NONZEROANDFREEOF(X).B.FREEOF(X))8
(C3) DEFMATCH(LINEAR,AxX+B,X)$

This has caused the function LINEAR(exp,varl) to be defined. It tests
exp to see if it is of the form Atvarl+B where A and B do not contain var!
and A is not zero. DEFMATCHed functions return (if the match is successful)
a list of equations whose left sides are the pattern variables and parms and
whose right sides are the expressions which the pattern variables and
parameters matched. The pattern variables, but not the parameters, are set
to the matched expressions. If the match fails, the function returns FALSE.
Thus LINEAR(3+Z+(Y+1)+Z+Y%+2,2) would return [B=Y#x2, A=Y+4, X=2Z]. Any
variables not declared as pattern variables in MATCHDECLARE or as
parameters in DEFMATCH which occur in pattern will match only themselves
so that if the third argument to the DEFMATCH in (C4) had been omitted, then
LINEAR would only match expressions linear in X, not in any other variable.

A pattern which contains no parameters or pattern variables returns
TRUE if the match succeeds. ‘

(C1) MATCHDECLARE([A,F], TRUE)S

(C2) CONSTINTERVAL(L,H):=CONSTANTP(H-L)$
(C3) MATCHDECLARE(B,CONSTINTERVAL(A))$
(ca) MArcuDECLAR;(x,Amn)s |

(C5) BLOCK(REMOVE(INTEGRATE,LINEAR),
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DEFMATCH(CHECKLIMITS, ~INTEGRATE(F,X,A,B),
DECLARE( INTEGRATE,LINEAR))S

(C6) ~INTEGRATE(SIN(T),T,X+%PI,X+24%PI)$
(C7) CHECKLIMITS(X);
(57) [B=X+2%I, A=X+%I, X=T,
F = SIN(T)]
(C8) “INTEGRATE(SIN(T),T,0,X)$
' (C9) CHECKLIMITS(%);

(D9) FALSE

DEFRULE(rulename, pattern, replacement) defines and names a replacement rule
for the given pattern. If the rule named rulename is applied to an expression
(by one of the APPLY functions below), every subexpression matching the
pattern will be replaced by the replacement. All variables in the replacement
which have been assigned values by the pattern match are assigned those
values in the replacement which is then simplified. The rules themselves can
be treated as functions which will transform an expression by one operation
of the pattern match and replacement. If the pattern fails, the original
expression is returned.

APPLY1(exp, rulel, .., rulen) repeatedly applies the first rule to exp until it fails,
then repeatedly applies the same rule to all subexpressions of exp, left-to-
right, until the first rule has failed on all subexpressions. Call the result of
transforming exp in this manner exp’. Then the second rule is applied in the
same fashion starting at the top of exp’.. When the final rule fails on the final
subexpression, the application is finished.

APPLY 2(exp, rulel, .., rulen) differs from APPLY1 in that if the first rule fails on
a given subexpression, then the second rule is repeatedly applied, etc. Only
if they all fail on a given subexpression is the whole set of rules repeatedly
applied to the next subexpression. If one of the rules succeeds, then the
same subexpression is reprocessed, starting with the first rule.
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MAXAPPLYDEPTH[10000] is the maximum depth to which APPLYl and
APPLY2 will delve. .

APPLYBl(exp, rulel, .., rulen) is similar to APPLY1 but works from the "bottom
up” instead of from the "top down" That is, it processes the smallest
subexpression of exp, then the next smallest, etc.
MAXAPPLYHEIGHT[10000] - is the maximum height to which APPLYB1 will
reach before giving up.

[9.3] Pattern Matching for Rational Expressions

LETSIMP(exp) will continually apply the substitution rules previously defined by
the function LET (see below) until no further change is made to exp.

LET(prod, repl, predname, argl, arg2, .., argn) defines a substitution rule for
LETSIMP such that prod gets replaced by repl. prodis a product of positive
or negative powers of the following types of terms:

(1) Atoms which LETSIMP will search for literally unless previous to
calling LETSIMP the MATCHDECLARE function is used to associate a predicate
with the atom. In this case LETSIMP will match the atom to any term of a
product satisfying the predicate.

(2) Kernels such as S.IN(X), N!, F(X,Y), etc. As with atoms above LETSIMP
will look for a literal match unless MATCHDECLARE is used to associate a
predicate with the argument of the kernel.

A term to a positive power will only match a term having at least that
power in the expression being LETSIMPed. A term to a negative power on
the other hand will only match a term with a power at least as negative. In
the case of negative powers in "product”™ the switch LETRAT must be set to
TRUE (see below).

If a predicate is included in the LET function followed by a list of
arguments, a tentative match (i.e. one that would be accepted if the predicate
were omitted) wiil be accepted only if predname{arg!’,...,argn’) evaluates to
TRUE where arg’ is the value matched to argi. The argi may be the name of
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any atom or the argument of any kernel appearing in prod. repl may be any
rational expression. If any of the atoms or arguments from prod appear in
repl the appropriate substitutions will be made.

LETRAT[FALSE] when FALSE, LETSIMP will simplify the numerator and
denominator of expr independently and return the resuit. Substitutions such
as NI/N goes to (N-1)! will fail. To handle such situations LETRAT should be
set to TRUE, then the numerator, denominator, and their quotient will be
simplified in that order.

These substitution functions allow you to work with several rule
packages at once. Each rule package can contain any number of LETed rules
and is refered to by a user supplied name. To insert a rule into the rule
package name, do LET([prod,repl,pred,argl,..},name). To apply the rules in
rule package name, do LETSIMP(expr, name). The function
LETSIMP(expr,namel,name2,..) is equivalent to doing LETSIMP(expr,namel)
followed by LETSIMP(%,name2) etc. :

There is a default rule package name which is assumed when no other
name is supplied to any of the functions. Whenever a LET includes a rule
package name the defauit rule package is made to look like that rule package.

REMLET (prod, name) deletes the substitution rule, prod --> repl, most recently

defined by the LET function. If name is supplied the rule is deleted from the
rule package name. REMLET() and REMLET(ALL,name) delete all substitution
rules from the default rule package. |f name is supplied the rule package,
name, is also deleted.
If a substitution is to be changed using the same product, REMLET need not
be called, just redefine the substitution using the same product (literally) with
the LET function and the new replacement and/or predicate name. Should
REMLET(product) now be called the original substitution rule will be revived.

LETRULES(name) and LETRULES() display the rules in the default rule package and
the rule package, name, respectively. Note that the function LETRULES(name)
will set the default rule package to the rule package, name.

(Cl) MATCHDECLARE([A1,A2],TRUE)S
(C2) ONELESS(X,Y):=IS(EQUAL(X,Y-1))$

(C3) LET(AI1xA2!,Al',ONELESS,AZ,Al);
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(D3) Al A2! --> Al! WHERE ONELESS(A2, Al)
(C4) LETRAT:TRUES

(C5) LET(A1!/AL,(AI-1)!);
0 > (AL - 1)1

(C6) LETSIMP(NsM!x(N-1)!/M);

(06) ' (M - 1)! N!

The user should be aware that simplification rules for differential operators
can be specified using MACSYMA’s pattern-matching commands.

Consider a function F(X). To inform MACSYMA that F depends on X, the
user must type DEPENDS(F,X); (otherwise, DIFF(F,X) will return 0). We will
assume that this has been done and that DERIVABBREV has been set to TRUE
in the following example.

Now suppose that the function F(X) satisfies some constraint, say that
the d’Alembertian of f(x) is zero:

02 f(x) = 0.

in a curved space, this may take the form:

(C4) -2x(DIFF(F,X)xX +2)
x(Lx(DIFF(F,X)"3)%X"2
+(4xDIFF(F,X,2)+4x(DIFF(F,X)"2) )xX+BxDIFF(F,X));
3 2 2
(D4) -2 (F X+2) ((F) LX +(4F +4 (F))X+8F)
X ' X X X X X

One can solve for the second-order term:
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(C5) SOLVE(%,DIFF(F,X,2));

Solution . ‘
3 2 2
(F) LX «+4(F) X+8F
X X X
(ES) F E - c-cereccccccccencccacacnncoan
' A XX 4 X
(0s5) . - (ES]

which can be restated as a simplification rule:

(C6) LET(DIFF(F,X,2),RHS(ES));

(D6) (F -=> RHS(ES))
X X

Then a relatively complicated expression such as

4 2 3 ' 3 2
(DIO) ((F) L X +(8BF F L+8(F) L)X
X X XX X

2 _
+((F) (12L+16) +16F )X+ 32F)
X X X X

2 2
IX((F) LX +4F X+ 4))
X X
can be simplified using the LETSIMP command:

(C11) FACTOR(LETSIMP(%));

(D11) | -(F) L
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10 Utility, Input-Output, and Display Functions

[10.1] Debugging Functions

The functions in this section permit the user to examine his MACSYMA
environment and to obtain debugging information. Further detail is given in section
12.0.

TRACE(hameI, name2, ..) gives a trace printout whenever the functions
mentioned are called. TRACE() prints a list of the functions currently under
TRACE. :

UNTRACE(namel, ...) removes tracing incurred by the TRACE function. UNTRACE()
removes tracing from all functions.

REMTRACE() removes the tracing facilities from MACSYMA thus freeing up some
storage. They will be reloaded when TRACE is used again.

DECLARE([varl, var2, ..], BINDTEST) causes MACSYMA to give an error message
whenever any of the vari occur unbound in a computation.

BREAK(argl, ...) evaluates and prints its arguments then enters a MACSYMA break
loop.

Options and Variables
%% is the value of the last computation performed while in a (MACSYMA-
BREAK).
DEBUGMODE[FALSE] if TRUE causes MACSYMA to enter a MACSYMA break

loop whenever a MACSYMA error occurs. If DEBUGMODE:ALL then the user may
examine BACKTRACE for the list of functions currently entered.
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REFCHECK[FALSE] if TRUE causes a message to be printed each time a
bound variable is used for the first time in a computation.

PREDERRCR[TRUE] - if TRUE causes a message to be printed whenever the
predicate of an IF statement or an IS function fails to evaluate to either TRUE or
FALSE. ‘

SETCH=CK'FALSE] - if set to a list of variables (which can be subscripted)
will cause a printout whenever the variables, or subscripted occurrences of them,
are bound (with : or :: or function argument binding). The printout consists of the
variable and the value it is bound to. SETCHECK may be set to ALL or TRUE
thereby including all variables.

SETCHECKBREAK[FALSE] - if set to TRUE will cause a (MACSYMA-BREAK)
to occur whenever the variables on the SETCHECK list are bound.

BACKTRACE (when DEBUGMODE:ALL has been done) has as value a list of all
functions currently entered. (see Chapter 19).

10.2 Functions for Displaying

DISPFUN(f1, f2, ..) displays the definition of the user defined functions f1, f2, ...
which may also be the names of array associated functions, subscripted
functions, or functions with constant subscripts which are the same as those
used when the functions were defined. DISPFUN(ALL) will display all user
defined functions as given on the FUNCTIONS and ARRAYS lists except
subscripted functions with constant subscripts.

DISPRULE(rulename) will display a rule with the name rulename as was given by
DEFRULE, TELLSIMP, or TELLSIMPAFTER or a pattern defined by
DEFMATCH. For example, the first rule modifying SIN will be called
" SINRULE]. (see 9.2)

DISPLAY(expl, exp2, ..) displays equations whose left side is expi unevaluated,
and whose right side is the value of the expression centered on the line.
This function is useful in blocks and FOR statements in order to have
intermediate results displayed. The arguments to DISPLAY are usually atoms,
subscripted variables, or function calls. (see the DISP function below.)
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(C1) DISPLAY(B[1,21]);

(D1) DONE

LDISPLAY{expl,exp2,...) is like DISPLAY but also generates intermediate labels.

DISP(expl,exp2, ..) is like DISPLAY but only the value of the arguments are
displayed rather than equations. This is useful for complicated arguments
which don’t have names or where only the value of the argument is of
interest and not the name.

LDISP(expl,exp2,..) is like D!SP but also generates intermediate labels.

PRINT(expl, exp2, ..) evaluates and displays its arguments one after the other
"on a line" starting at the leftmost position. If expi is unbound or is preceded
by a single quote or is enclosed in "s then it is printed literally. For example,
PRINT("THE VALUE OF X IS "X). The value returned by PRINT is the value of
its last argument. No intermediate lines are generated.

DISPTERMS(exp) displays its argument in parts one below the other. That is,
each term in a sum or factor in a product is displayed separately. This is
useful if exp is too large to be otherwise displayed. For example if P1, P2, ...
are very large expressions then the display program may run out of storage
space in trying to display Pl1+P2+.. all at once. However,
DISPTERMS(P1+P2+...) will display P1, then below it P2, etc. When not using
DISPTERMS, if an exponential expression is too wide to be displayed as A++B
it will appear as EXPT(A,B) (or as NCEXPT(A,B) in the case of A""B).

REVEAL(exp,depth) will display exp to the specified integer depth with the length
of each part indicated. Sums will be displayed as SUM(n) and products as
PRODUCT(n) where n is the number of subparts of the sum or product.
Exponentials will be displayed as EXP.
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(C1) INTEGRATE(1/(X"3+2),X)8

(C2) REVEAL(%,2);

(D2) PRODUCT(3) + PRODUCT(3) + PRODUCT(3)
(C3) REVEAL(D1,3}; : |
EXPT LOG EXPT LOG
(03) R — + EXPT EXPT ATAN 4 =--ce-e-
6 3

PLAYBACK(arg) "plays back” input and output lines. If arg=n (a number) the last
n expressions (Ci, Di, and Ei count as 1 each) are "played-back”, while if arg
is omitted, all lines are. If arg=INPUT then oniy input lines are played back. If
arg=[m,n] then all lines with numbers from m to n inclusive are played-back.
If m=n then [m] is sufficient for arg. Arg=SLOW places PLAYBACK in a slow-
mode similar to DEMO’s (as opposed to the "fast” BATCH). This is useful in
conjunction with SAVE or STRINGOUT (see below) when creating a
secondary-storage file in order to pick out useful expressions. If arg=TIME
then the computation times are displayed as well as the expressions.
arg=NOSTRING displays all input lines when playing back rather than
STRINGing them. If arg=GRIND then the display will be in a more readable
format. One may include any number of options as in
PLAYBACK([5,10]},20,TIME,SLOW).

STRING(exp) converts exp to MACSYMA’s linear notation (similar to FORTRAN’s)
just as if it had been typed in and puts exp into the buffer for possible
editing (in which case exp is usually Ci) (see sec. 14.2). The STRING’ed
expression should not be used in a computation.

STRINGOUT(args) will output an expression to a file in a linear format.
STRINGOUT([filespec]),..,FUNCTIONS,..) puts all the user’s function definitions
in the specified file. (see 10.4)
GRIND[FALSE] if TRUE will cause the STRING, STRINGOUT, and PLAYBACK
commands to use "grind" mode instead of "string” mode. For PLAYBACK,
"grind” mode can also be turned on (for processing input lines) by specifying
GRIND as an option.
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GRIND(arg) prints out arg in a more readable format than the STRING command. |t
returns a D-line as value.

FORTRAN(exp) converts exp into a FORTRAN linear expression in legal FORTRAN
with 6 spaces inserted at the beginning of each line,continuation lines,and *%
rather than ~ for exponentiation. When the option FORTSPACES[FALSE] is
TRUE, the FORTRAN command fills out to 80 columns using spaces.

FORTMX(name,matrix) converts a MACSYMA matrix into a sequence of FORTRAN
assignment statements of the form
nameli,j)= <the ij matrix element>

DESCRIBE(function) prints out the portion of the MACSYMA manual describing the
function. o

EXAMPLE(function) does a DEMO of relevant examples involving function.

10.3 Functions for Freeing Storage

REMOVE(args) will remové some or all of the properties associated with variables
or functions. (see 8.1)

REMFUNCTION(f1, f2 ..) removes the user defined functions fI,f2.. from
MACSYMA. If there is only one argument of ALL then all functions are
removed.

REMVALUE(namel, name2, ...) removes the values of user variables (which can be
subscripted) from the system. If name is ALL then the values of all user
variables are removed. Values are those items given names by the user as
opposed to those which are automatically labeled by MACSYMA as Ci, Di, or
Ei.



MACSYMA 10.3 Functions for Freeing Storage 175

REMARRAY(namel, nameZ2, ..) removes arrays and array associated functions and
frees the storage occupied. If name is ALL then all arrays are removed. it
may be necessary to use this function if it is desired to redefine the values in
a hashed array.

REMRULE(function, rulename) will remove a rule with the name rulename from the
function which was placed there by DEFRULE, DEFMATCH, TELLSIMP, or
TELLSIMPAFTER. If rule-name is ALL, then all rules will be removed. (see
example in 9.2)

KiLL(argl, arg2, ..) eliminates its arguments from the MACSYMA system. If argi is
a variable (including a single array eiement), function, or array, the designated
item with all of its properties is removed from core. If argi=LABELS then all
input, intermediate, and output lines to date (but not other named items) are
eliminated. If argi=CLABELS then only input lines will be eliminated; if
argi=ELABELS then only intermediate E-lines will be eliminated; if
argi=DLABELS only the output lines will be eliminated. If argi is the name of
any of the other information lists (the elements of the MACSYMA variable
INFOLISTS), then every item in that class (and its properties) is KiLLed and if
argi=ALL then every item on every information list previously defined as well
as LABELS is KilLLed. If argi=a number (say n), then the last n lines (i.e. the
lines with the last n line numbers) are deleted. If argi is of the form [m,n]
then all lines with numbers between m and n inclusive are killed. Note that
KILL(VALUES) or KilLL(variable) will not freeup the storage occupied unless
the labels which are pointing to the same expressions are also KiLLed. Thus
if a large expression was assigned to X on line C7 one should do KILL(D?7) as
well as KILL(X) to release the storage occupied.

KILL(ALLBUT(name!,..,namek)) will do a KILL(ALL) except it will not KILL
the names specified.

KILL removes all properties from the given argument; thus KILL{(VALUES)
will kill all properties associated with every item on the VALUES list. KILL
always returns the value "DONE" even if the named item doesn’t exist (see
8.1).

The "REMOVE" functions (REMVALUE,REMFUNCTION,
REMARRAY,REMRULE) remove a specific property. These functions return a
list of names or FALSE (if the specific argument doesn’t exist).
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MACSYMA options may not be KiLLed. The user may do RESET() (see
10.6) to reset all options to their default values.

The error message "NO CORE - FASLOAD" results when either too many
FASL files have been loaded in or when allocation level has gotten too high.
Note that once this occurs, KiLLing expressions will not help. In either of
these cases, no amount of killing will cause the size of these spaces to
decrease. Killing expressions only causes some spaces to get emptied out
but not made smaller.

10.4 Functions Which Reference Disk Files

LOADFILE(fnl, fn2, DSK, directory) loads a file as designated by its arguments.
This function may be used to bring back quantities that were stored from a
prior MACSYMA session by use of the SAVE or STORE functions. If DSK and
directory are omitted then the last directory seen (initially the same as the
user’s login name or USERS if the user has no file directory) will be used. If
DSK and directory are omitted, fn2 may also be omitted if fnl > is to be
loaded in (where > follows the conventions of ITS’s file system). Fnl fn2
must be a file of LISP functions and expressions, not of MACSYMA command
lines, in which case BATCH or DEMO is to be used. (See Chapter 14).

DELFILE(file-specification) will delete the file given by the file-specification.

BATCH(file-specification) reads in and evaluates MACSYMA command lines from a
file. (see Chapter 14). :

DEMO(file-specification) same as BATCH but pauses after each command line and
continues when a space is typed. (see Chapter 14).

BATCON(argument) continues BATCHing in a file which was interrupted A(see
14.:4), '
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WRITEFILE(DSK, directory) opens a file for writing.

APPENDFILE(filenamel, filename2, DSK, directory) is like
WRITEFILE(DSK,directory) but appends to the file whose name is specified by
the first two arguments. A subsequent CLOSEFILE will delete the original file
and rename the appended file.

CLOSEFILE(filenamel, filename2) closes a file opened by WRITEFILE and gives it
the name filenamel filename2. Thus to save a file consisting of the display of
all input and output during some part of a session with MACSYMA the user
issues a WRITEFILE, transacts with MACSYMA, then issues a CLOSEFILE. The
user can also issue the PLAYBACK function after a WRITEFILE to save the
display of previous transactions. (Note that what is saved this way is a copy
of the display of expressions not the expressions themselves). To save the
actual expression in internal form the SAVE function may be used. The
expression can then be brought back into MACSYMA via the LOADFILE
function. To save the expression in a linear form which may then be
BATCHed in later, the STRINGOUT function is used. (see below)

STRINGOUT (file-specification, Al, A2, ..) outputs to a file given by file-
specification ([filenamel filename2,0SK, directory]) the values given by
AlLLA2.. in a MACSYMA readable format. The file-specification may be
omitted, in which case the default values will be used. (see 152 - C)
The Af are usually C labels or may be INPUT meaning the value of all C labels.
Another option is to make Ai FUNCTIONS which will cause all of the user’s
function definitions to be strungout (i.e. all those retrieved by DISPFUN(ALL)).
Ai may also be a list [mn] which means to stringout all labels in the range m
through n inclusive. This function may be used to create a file of FORTRAN
statements by doing some simple editing on the strungout expressions. The
FORTRAN[FALSE] should be set to TRUE, however, to cause exponentiation
to be strung as #* rather than as ~, as well as to effect other FORTRAN-like
changes. Alternatively, the function FORTRAN can be used (see 10.2)

SAVE(args) saves quantities described by its arguments on disk and keeps them in
core also. (see 15.3). _
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STORE(args) same as SAVE but doesn’t retain quantities in core. (see 15.3).

FASSAVE(args) is similar to SAVE but produces a FASL file in which the sharing of
subexpressions which are shared in core is preserved in the file created.
Hence, expressions which have common subexpressions will consume less
space when loaded back from a file created by FASSAVE rather than by
SAVE.

UNSTORE(namel, ..) brings the named expressions into core that were stored
away by use of the STORE function in the current MACSYMA. (see
15.3).

RESTORE(file-specification) reinitializes all quantities filed away by a use of the
SAVE or STORE functions, in a prior MACSYMA session, from the file given by
file-specification without bringing them into core. (see 15.4).

REMFILE() removes files created by the secondary storage scheme in the
MACSYMA under use (see 15.2). REMFILE(ALL) does what REMFILE()
does and in addition deletes any files which have been created by the SAVE
or STORE functions but which have not been assigned names by the user.

[10.5] Ordering Functions

Aside from declaring a variable to be constant or using options like
POWERDISP (see below), the only other way in which a user can alter the
ordering of parts of an expression is to set up special aliases for variables which
cause them to be alphabetically less than or greater than any other variables.
Functions which do this are described below. This technique requires care
because although the names have been aliased, they display with their original
name. Aside from the input/output phase the two names represent two different
symbols and thus expressions which contain both the original name and the alias
will not be simplified as the user desires. This is shown in the examples below.
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ORDERGREAT(VI, .., Vn) sets up aliases for the variables VI, .., Vn such that
Vi > V2> ..> Vn> any other variable not mentioned as an argument.

ORDERLESS(V1, .., Vn) sets up aliases for the variables VI, .., Vn such that
V1 < V2 < .. < Vn < any other variable not mentioned as an argument.
Thus the complete ordering scale is:

numerical constants < declared constants <
< firsf argument fo ORDERLESS < ... < last argument to ORDERLESS <
< variables which begin with A < ... < variables which begin with Z <
< last argument to ORDERGREAT < ... < first argument to ORDERGREAT.

ORDERGREATP(expl,exp2) returns TRUE if exp2 precedes expl in the ordering
induced by the variabie ordering described above.

ORDERLESSP(expl,exp2) returns TRUE if expl! precedes exp2 in the ordering
induced by the variable ordering described above.

UNORDERY() removes the aliases created by the last use of the above ordering

commands. ORDERGREAT and ORDERLESS may not be used more than one
time each without calling UNORDER.

(C1) Axx2+BxX;

2
(D1) BX+A
(C2) ORDERGREAT(A);
(D2) | DONE
(C3) Axx2+BxX;
_ 2
(D3) A +BX

(C4) %-D1;
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(D4) | A -A

(C5) UNORDER();
(D5) [A]

SORT(list,optional-predicate) sorts the list using a suitable optional-predicate of
two arguments (such as "<" or ORDERLESSP). If the optional-predicate is not
given, then MACSYMA’s built-in ordering predicate is used.

10.6 Miscellaneous Functions

TIME(Di1, Di2, ...) gives a list of the times in milliseconds taken to compute the D

LOGOUT() causes the user to be logged out and all jobs deleted. This is useful
when it is desired to BATCH in a file and have the terminal logged out

automatically when the computations are finished. (Equivalent to ~Z and
:LoGoutm) :

QUIT() kills the current MACSYMA but doesn’t affect the user’s other jobs.
- (Equivalent to “Z and KILL).

READ(stringl, ...) prints its arguments, then reads in and evaluates one expression.
For example: A:READ{"ENTER THE NUMBER OF VALUES™.

READONLY(stringl,..) prints its arguments, then reads in an expression (which in
contrast to READ is not evaluated).

DEFINE(f(x1, ..), body) is equivalent to f(x1,.):="body but when used inside
functions it happens at execution time rather than at the time of definition of
the function which contains it. (see 3.2)
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LOCAL(v1, vZ2, ..) causes the variables vi,v2,.. to be local with respect to all the
properties in the statement in which this function is used (see 2.12). LOCAL
may only be used in BLOCKs, in the body of function definitions or LAMBDA
expressions, or in the EV function and only one occurrence is permitted in
each.

ERROR(argl, arg2, ...) will evaluate and print its arguments and then will cause an
error return to top level MACSYMA or to the nearest enclosing ERRCATCH.
This is useful for breaking out of nested functions if an error condition is
detected, or wherever one can’t type control-G. _
ERRORFUN[FALSE] - if set to the name of a function of no arguments will
cause that function to be executed whenever an error occurs. This is useful
in BATCH files where the user may want his MACSYMA killed or his terminal
logged out if an error occurs. In these cases ERRORFUN would be set to QUIT
or LOGOUT. .

ERRCATCH(expl, exp2, ...) evaluates its arguments one by one and returns a list
of the value of the last one if no error occurs. If an error occurs in the
evaluation of any arguments, ERRCATCH "catches”™ the error and immediately
returns [] (the empty list). This function is useful in BATCH files where one
suspects an error might occur which would otherwise have terminated the
BATCH if the error weren’t caught.

CATCH(expl,.,expn) evaluates its arguments one by one; if the. structure of the
expi leads to the evaluation of an expression of the form THROW(arg), then
the value of the CATCH is the value of THROW(arg). This "non-local return”
thus goes through any depth of nesting to the nearest enclosing CATCH.
There must be a CATCH corresponding to a THROW, else an error is
generated. If the evaluation of the expi does not lead to the evaluation of
any THROW then the value of the CATCH is the value of expn.

(C1) G(L):=CATCH(MAP(LAMBDA([X],
IF X<0 THEN THROW(X) ELSE F(X)),L))$

(c2) 6([1,2,3,7]);
(D2) [F(1), F(2), F(3), F(7)]

(D3) - 3
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The function G returns a list of F of each element of L if L consists only
of non-negative numbers; otherwise, G "catches” the first negative element of
L and "throws" it up.

THROW(/(exp) evaluates exp and throws the value back to the most recent CATCH.
THROW is used with CATCH as a structured nonlocal exit mechanism.

BREAK(argl, ..) will evaluate and print its arguments and will then cause a
(MACSYMA-BREAK) at which point the user can examine and change his
environment. Upon typing EXIT; the computation resumes. (see Chapter
19) ' ’

RESET() causes all MACSYMA options to be set to their default values.

%TH(i) is'the ith previous computation. That is, if the next expression to be
computed is D(j) this is D(j-/). This is useful in BATCH files or for referring
to a group of D expressions. For example, if SUM is initialized to O then FOR
I:1 THRU 10 DO SUM:SUM+%TH(I) will set SUM to the sum of the last ten D
expressions.

CONCAT(argl, arg2, ..) evaluates its arguments and returns the concatenation of
their values resulting in a name or a quoted string (see 2.2 and 2.3) the type
being given by that of the first argument. Thus if X is bound to 1 and D is
unbound then CONCAT(X,2)="12" and CONCAT(D,X+1)=D2.

GETCHAR(3, i) returns the ith character of the quoted string or atomic name a.
This function is useful in manipulating the LABELS list.

STATUS(arg) will return miscellaneous status information about the user’s
MACSYMA depending upon the arg given. Permissible arguments and results
are as follows:

TIME - the time used so far in the computation.
DAY - the day of the week.

DATE - a list of the year, month, and day.
DAYTIME - a list of the hour, minute, and second.
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RUNTIME - accumulated cpu time times the atom "MSEC".

REALTIME -the real time (in sec) elapsed since the user started up his
MACSYMA.

WRITEFILE - a list of the device and username for the current writefile
or an empty list if no WRITEFILE has been done.

LOADFILE - a list of the first file name, second file name, device, and
username for the current BATCH, DEMO, or LOADFILE function.

FILE - alist of the current first file name and second file name.

UNIT - a list of the current device and username.

ALARMCLOCK(argl, arg2, arg3) will execute the function of no arguments whose
name is arg3 when the time specified by argl and arg2 elapses. If argl is
the atom "TIME" then arg3 will be executed after arg2 seconds of real-time
has elapsed while if argl is the atom "RUNTIME" then arg3 will be executed
after arg2 milliseconds of cpu time. If arg2 is negative then the arg! timer is
shut off.

LABELS(char) takes a char C,Dor E as arg and generates a list of all C-labels,D-
iabeis, or E-iabels, respectively. (if you've generated many E-labels via
SOLVE, then FIRST(REST(LABELS(C))); reminds you what the last C-label was.)

ALIAS(newnameI, oldnamel, newname2, oldname2, ...) provides an alternate name
for a (user or system) function,variablearray,etc. Any even number of
arguments may be used. :

[10.7] Options and Variables for /0, Status, and Display

GRIND[FALSE] if TRUE will cause the STRING, STRINGOUT, and PLAYBACK
commands to use "grind” mode instead of "string” mode. For PLAYBACK, “grind”
mode can also be turned on (for processing input lines) by specifying GRIND as an
option. :

SHOWTIME[FALSE] - if TRUE causes MACSYMA to print the cpu time taken
by each computation. This figure does not include 1/O time except in the case of
the time given at the end of running a batch file. By setting SHOWTIME:ALL, in
addition to the cpu time MACSYMA now also prints out (when not zero) the
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amount of time spent in garbage collection (gc) in the course of a computation.
This time is of course included in the time printed out as "time=".

(It should be noted that since the "time=" time only includes computation time
and not any intermediate display time, and since it is difficult to ascribe
“responsibility” for gc’s, the getime printed will include all gctime incurred in the
course of the computation and hence may in rare cases even be larger than
"time=").

LASTTIME - the time to compute the last expression in milliseconds
presented as a list of "time” and "gctime" . '

OPTIONSET[FALSE] - if TRUE, MACSYMA will print out a message whenever
a MACSYMA option is reset. This is useful if the user is doubtful of the spelling
of some option and wants to make sure that the variable he assigned a value to
was truly an option variable.

NOLABELS[FALSE] - if TRUE then no labels will be bound except for E lines
generated by the solve functions (sect. 6.3). This is most useful in the "BATCH"
mode where it eliminates the need to do KILL(LABELS) in order to free up
storage. .

BF TRUNC[TRUE] causes trailing zeroes in non-zero bigfloat numbers not to
be displayed. Thus, if BFTRUNC:FALSE, BFLOAT(1); displays as
1.00000000000000080. Otherwise, this is displayed as 1.080.

EXPTDISPFLAG[TRUE] - if TRUE, MACSYMA displays expressions with
negative exponents using quotients e.g,, X++(-1) as 1/X.

ZEDISPFLAG[FALSE] - if TRUE, MACSYMA displays %ZE to a negative
exponent as a quotient, i.e. 4E*-X as 1/%4E*X.

SQRTDISPFLAG[TRUE] - if FALSE causes SQRT to display with exponent 1/2.

PFEFORMAT[FALSE] - if TRUE will cause rational numbers to display in a
linear form and denominators which are integers to display -as rational number
multipliers.

DISPFLAG[TRUE] - if set to FALSE within a BLOCK (see 2.12) will inhibit the
display of output generated by the solve functions (see 6.3) called from within the
BLOCK. Termination of the BLOCK with a dollar sign, 8, sets DISPFLAG to FALSE.



MACSYMA  10.7 Options and Variables for i/0, Status, and Display 185

LOADPRINT[TRUE] - governs the printing of messages accompanying loading
of files. The following options are available: TRUE means always print the
message; 'LOADFILE means print only when the LOADFILE command is used;
"AUTOLOAD means print only when a file is automatically loaded in (e.g. the
integration file SIN FASL); FALSE means never print the loading message.

NOUNDISP[FALSE] - if TRUE will cause NOUNs to display with a single quote.
This switch is always TRUE when displaying function definitions.

POWERDISP[FALSE] - if TRUE will cause sums to be displayed with their
terms in the reverse order. Thus polynomials would display as truncated power
series, i.e., with the lowest power first.

BOTHCASES[FALSE] - if TRUE will cause MACSYMA to retain lower case
text as well as upper case. Note, however, that the names of any MACSYMA
special variables or functions must be typed in upper case.

STARDISP[FALSE] - if TRUE will cause multiplication to be displayed
explicitly with an * between operands.

DSKGC{FALSE] - if TRUE will cause user defined values, functions, arrays,
and line labelled expressions to be automatically stored on disk whenever the
system determines that the available in-core space is getting low (see also
15.2).

LABELS - alist of C, D, and E lines which are bound.

INCHAR[C] - the alphabetic prefix of the names of expressions typed by the
user.

LINECHARI[E] - the alphabetic prefix of the names of intermediate displayed
expressions. '

OUTCHAR[D] - the alphabetic prefix of the names of outputted expressions.

LINENUM - the line number of the last expression.

CURSOR[_] is the prompt symbol of the MACSYMA editor, DEMO function,
PLAYBACK(SLOW) mode, and (MACSYMA-BREAK). (see chapters 13 and
19).

GENINDEX[!] -the alphabetic prefix of the index of summation for generated
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sums. (The values of GENINDEX and of the above four variables may be any
number of characters though the default is a single character.)

IBASE[10] - the base for inputting numbers.

BASE[10] - the base for display of numbers.

LINEL - the length of the printed line on the terminal. Also used for plotting
(see Chapters 17 and 18).

PLOTHEIGHT - the height of the area used for plotting (see Chapters
17 and 18). 4

VERSION[267] - is the version number of MACSYMA. This could be useful if
the user wants to label his output.

INFOLISTS is the list of all the information lists which are in MACSYMA:
[LABELS,VALUES,FUNCTIONS,ARRAYS,MYOPTIONS,PROPS,ALIASES, RULES.
GRADEFS,DEPENDENCIES]

Initially, all these information lists are empty. As the user proceeds with his
computation, he may examine these lists when necessary.
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[10.8] Functions for Translation and Compilation

MODEDECLARE(y!, model, y2, mode2, ..) is used to declare the modes of
variables and functions for subsequent translation or compilation of functions.
Its arguments are pairs consisting of a variable yi, and a mode which is one of
BOOLEAN, INTEGER, NUMBER, RATIONAL, FLOAT, POLY (for polynomial), or
CRE (for expression in CRE form). Each yi may also be a list of variables all
of which are declared to have modei.

If yiis an array, and if every element of the array which is referenced in the
function has a value then ARRAY(yi, COMPLETE, dl1, d2, ..) rather than
ARRAY(yi, dl, d2, ..) should be used when first declaring the bounds of the
array. If all the elements of the array are of mode INTEGER (FLOAT), use
INTEGER (FLOAT) instead of COMPLETE. Also if every element of the array is
of the same mode, say m, then MODEDECLARE(COMPLETEARRAY(y#),m)) should
be used for efficient translation. Also numeric code using arrays can be made
to run faster by declaring the expected size of the array, as in:

MODEDECLARE(COMPLETEARRAY(A[10,10)),FLOAT)
for a floating point number array which is 10 x 10.

Additionally one may declare the mode of the result of a function by
using FUNCTION(F1,F2,.) as an argument; here F1,F2,. are the names of
functions. For example the expression,

MODEDECLARE([FUNCTION(F 1 ,F2,...),X],POLY,Q,COMPLETEARRAY( Q),FLOAT)

declares that X and the value returned by F1,F2,.. are polynomials and that Q
is an array of floating point numbers. MODEDECLARE is used either
immediately inside of a function definition (see below) or at top-level for
global variables.

OPTIMIZE(exp) returns an expression that produces the same value and side
effects as exp but does so more efficiently by avoiding the recomputatlon of
common subexpressions. OPTIMIZE also has the side effect of "collapsing” its
argument so that all common subexpressions are shared.
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(c1)

(D1)

(c2)

(02)

TRA
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DIFF(%,X,2);

OPTIMIZE(%);
‘ ' 2 Y+ T2
BLOCK([T1, 72, 73, T4), T1 : Y+ X, T2 : X, T3 : % .

1 - 4XT3 2713

T4: ==, 4T2T4T3+2T473 - ceocmuam 4 -==-)
T1 o 2 3
T1 71

NSLATE(f1, 12, ..) translates the user defined functions f1,12,... from the
MACSYMA language to LISP (i.e. it makes them EXPRs). This results in a gain
in speed when they are called. The functions should include a call to
MODEDECLARE at the beginning when possible in order to produce more
efficient code. For example:

F(X1,X2,...):=BLOCK([vl,v2,... J,MODEDECLARE(v]1,model,v2,mode2,...), .. .)

where the X1,X2,. are the parameters to the function and the vl,v2,. are
the local variables. The names of translated functions are added to the
PROPS lists (see 8.1). Functions should not be translated uniess they are
fully debugged.

TRANSLATE(FUNCTIONS) or TRANSLATE(ALL) means translate all
functions.

TRANSLATE[FALSE] - If TRUE, causes automatic translation of a user’s
function to LISP. Note that translated functions may not run identically to the
way they did before translation as certain incompatabilities may exist
between the LISP and MACSYMA versions. Principally, the RAT function with
more than one argument and the RATVARS function (see 6.5) should not be
used if any variables are MODEDECLAREd CRE.
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SAVEDEF[TRUE] - if TRUE will cause the MACSYMA version of a user
function to remain when the function is TRANSLATEd. This permits the
definition to be displayed by DISPFUN and allows the function to be edited. If
SAVEDEF is FALSE, the names of translated functions are removed from:the
FUNCTIONS list.

TRANSRUN[TRUE] - if FALSE will cause the interpreted version of all
functions to be run (provided they are still around) rather than the translated
version.

TRANSBIND[TRUE] - if TRUE removes global declarations in the local
context. This applies to variables which are formal parameters to functions.

One can translate functions stored in a file by giving TRANSLATE an
argument which is a file specification. This is a list of the form
[fn1,fn2,DSK,dir] where fnl fn2 is the name of the file of MACSYMA functions,
and dir is the name of a file directory.

Such a file may contain declarations involving DECLARE,MODEDECLARE, or
MATCHDECLARE in addition to the function definitions. The file should not
use %, since % is not maintained when the translated file is loaded.

The result returned by TRANSLATE is a list of the names of the functions
TRANSLATEd. In the case of a file transiation the corresponding element of
the list is a list of the first and second new file names containing the LISP
code resulting from the translation. This will be fnl LISP on the disk
directory dir. The file of LISP code may be read into MACSYMA by using the
LOADFILE function (see 10.4).

COMPFILE([filespec]f1,f2,..) will translate (if necessary) and write out MACSYMA
function definitions and other expressions into a disk file which can be read
into the compiler. The filespec (optional) specifies the file to be written. The
default for users with a directory is CMPFIL > and the standard MACSYMA
default file for other users. The file written contains declarations used by
the compiler. When COMPGRIND[FALSE] is TRUE the function definitions are
pretty-printed. The remaining arguments are atomic function names.
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11 Tensor Manipulation

MACSYMA implements symbolic tensor manipulation of two distinct types:
explicit tensor manipulation and indicial tensor manipulation.

Explicit tensor manipulation means that tensors are represented as arrays or
matrices; tensor operations such as contraction or covariant differentiation are
carried out by actually summing over repeated (dummy) indices---by explicitly
performing operations on the appropriate tensor components stored in an array or
matrix.

Indicial tensor manipulation is implemented by representing tensors simply as
functions of their covariant and contravariant indices; tensor operations such as
contraction or covariant differentiation are represented by manipulating the
indices themselves rather than the components which they refer to.

These two approaches to the question of treating differential, algebraic and
analytic processes in the context of Riemannian geometry have various advantages
and disadvantages which reveal themselves only through the particular nature and
difficulty of the user’s problem. However, one should keep in mind the following
characteristics of the two implementations:

Explicit Tensor Manipulation (ETENSR)

i) The standard representation of tensors and tensor operations
explicitly in terms of their components makes ETENSR easy to use:
specification of the metric and the computation of the induced tensors
and invariants is straightforward.

ii) Although all of MACSYMA’s powerful simplification capacity is at
hand, a complex metric with intricate functional and coordinate
dependencies can easily lead to expressions whose size is excessive
and whose structure is hidden.

Indicial Tensor Manipulation (ITENSR)

1) Because of the special way in which tensors and tensor
operations are represented in terms of symbolic operations on their
indices, expressions which in the explicit representation would be
unmanageable can be greatly simplified by contraction and reduction to a
“cancnical” form (for symmetric tensors). In this way the structure of a
large expression may be more transparent.
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i) On the other hand, because of the the special .indicial
representation in ITENSR, in some cases the user must be careful about
the specification .of the metric, function definition, and the evaluation of
differentiated "indexed" objects.

These two tensor manipulation packages, ETENSR and ITENSR, are available to
the MACSYMA wuser on the SHARE directory (see 12). To use the
functions in these files, the user can load them in by doing

LOADFILE(ETENSR,FASL,DSK,SHARE); --- for explicit tensor hanipulation.
LOADFILE(ITENSR,FASL,DSK,SHARE); --- for indicial tensor rhanipulation

Both of these packages enable the user to specify a metric and compute the
basic quantities of interest---Christoffel symbols, Riemann curvature tensor,
curvature invariants---in the study of Riemannian manifolds. These routines were
written primarily for research in gravitation theory; however, they may also be of
some use in other areas of physics where Riemannian geometry is applied.

11.1 Explicit Tensor Manipulation

TSETUP() automatically loads the ETENSR. package and presents several options
which are self-explanatory. First the user chooses the kind of metric to be
used---whether it will be one of the standard metrics already stored in some
file, or a power-series approximation, or some new metric to be specified
(perhaps only a slight modification of a metric already defined). After the
metric has been specified, a number of simplification options are provided
which govern the rational simplification and factoring of the tensor
components to be computed. The particular quantity to be computed can then
be indicated; the user can say whether the results (some of which may be
quite lengthy) are to be immediately displayed or not.

Here is a sample protocol:
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(C2) TSETUP();

DO YOU WANT |

1 - TO CONSIDER A METRIC IN THE SPECIAL METRIC FILE?

2 - TO APPROXIMATE A METRIC WITH A POWER SERIES?

3 - TO ENTER A NEW METRIC?

TYPE 1 OR 2 OR 3

3;

SPECIFY THE COORDINATES AS A LIST OF FOUR ELEMENTS

[R, THETA,PHI,T];

DO YOU WANT

1 - TO SPECIFY A DIAGONAL METRIC?

2 - TO CHANGE A COMPONENT IN A PREVIOUSLY DEFINED
METRIC?

3 - TO SPECIFY A GENERAL (SYMMETRIC) METRIC?

TYPE 12 OR 3

1;

ENTER DIAGONAL MATRIX
(1, 1]

-EXP(M);

(z, 2]

-R*23

(3, 3]
~R*2xSIN(THETA)*2;
{4, 4]

EXP(N);

INDICATE THE KIND OF SIMPLIFICATION YOU WANT

1 - RATIONAL SIMPLIFICATION ONLY

2 - FACTORING AND RATIONAL SIMPLIFICATION
3 - EXPANSION

TYPE 1 2 OR 3

2;

At this point the user has the option of computing various quantities which
are described below.
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CHRISTOF(arg) computes the Christoffel symbols of both kinds; the arg,
determines which results are to be immediately displayed. The Christoffel
symbols of the first kind are stored in the array LCS[I,J,K]. If the argument to
CHRISTOF were LCS, all the non-zero values of LCS[I,J,K] would be displayed.

The Christoffel symbols of the second kind (Mixed Christoffel Symbols)
are given by the array MCS[I,JK]; in the example below, the argument MCS
was given resulting in the immediate display of all the non-zero mixed
Christoffel symbols.

(C3) CHRISTOF(MCS);

M
R
(E3) MCS z --
1,1, 1 2
1
(E4) MCS = -
' 1, 2,2 R
1
(E5) MCS = -
: 1, 3,3 R
N
R
(€6) MCS - = --
1, 4, 4 2 _
-M
(E7) MCS =-% R
2, 2,1
: COS(THETA)
(E8) MCS E mmemceee-
2, 3, 3 SIN(THETA)
-M 2
(€9) MCS = - % R SIN (THETA)
: 3, 3,1 :
(E10) : MCS = - COS(THETA) SIN(THETA)
3, 3, 2
N-N
%E N
, _ R
(E11) MCS Z eemccccce-
~ 4, 4, 1 2

(D11) DONE



194 11.1 Explicit Tensor Manipulation MACSYMA

MOTION(dis) gives the geodesic equations of motion corresponding to a given
metric. They are stored in the array EM[I]. If the argument dis is TRUE then
these equations are displayed.

RICCICOM(dis) This function first computes the contravariant components LR[l,J] of
the Ricci tensor (LR is a mnemonic for "lower Ricci”). Then the mixed Ricci
tensor is computed using the covariant metric tensor. If the value of the
argument to RICCICOM is TRUE, then these mixed components, RICCI[I,J] (the
index | is covariant (down) and the index J is contravariant (up) ), will be
displayed directly. Otherwise, RICCICOM(FALSE) will simply compute the
entries of the array RICCI[l,J] without presenting the results.

(C13) RICCICOM(TRUE);
(E13) RICCI

- M 2
%E ((2 N +(N) -M N)R-4H)

(E14) RICCI 2 - meecmccccccsccccccccccconmaanan
2, 2 2

*E ((M -N)R+ 2% -2)

(E15) RICCI

3, 3 2
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(E16) RICCI

a, 4
-M ' 2
%E ((2 N +(N) -M N)R+4N)
RR R R R : R
4 R

(D16) DOKE

NTERMSRCI() returns a list of pairs, whose second elements give the number of
terms in the RICCI component specified by the first elements. In this way, it
is possible to quickly find the non-zero expressions and attempt simpiification.

LRICCICOM(dis) computes the covariant components LR[l,J] of the Ricci tensor. If
the argument diis is TRUE, then the non-zero components are displayed.

EINSTEIN(dis) computes the Einstein tensor once the Christoffe! symbols and Ricci
tensor have been obtained. Again, if the argument evaluates to TRUE, then
the non-zero values of the Einstein tensor G[l,J] will be displayed.
'RATEINSTEIN:TRUE will perform rational simplification on these components; if
FACRAT:TRUE then the components will also be factored.

NTERMSG() gives the user a quick picture of the "size” of the Einstein tensor. It
returns a list of pairs whose second elements give the number of terms in the
components specified by the first elements.

Of course a detailed examination of the structure of the Einstein components
can be made using the powerful simplification, factoring and extraction functions
available in MACSYMA (see 6.1.1,6.2.3).

SCURVATURE() returns the scalar curvature (obtained by contracting the Ricci
tensor) of the Riemannian manifold with the given metric.
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RIEMANN(dis) computes the Riemann curvature tensor from the given metric (the
Christoffel symbols should be obtained first using CHRISTOF). If dis is TRUE,
the non-zero components R[I,J,K,L] will be displayed. All the indicated indices
are covariant. As with the Einstein tensor, various switches set by the user
controi the simpiification of the Riemann components. If RATRIEMAN:TRUE,
then rational simplification will be done; if FACRAT:TRUE then each of the
components will also be factored.

(C27) RIEMANN(TRUE);

MR
: R
(E27) ’ R B o wove
1, 2,1, 2 2
2
M R SIN (THETA)
R .
(E28) n ® © swcece adadedel DL LD T
1, 3,1, 3 2
N N 2 N
-2% N % (N) +n %X N
: RR R R R
(E29) R T wevecces ---00.-----------'. ------ csew
1,4, 1, 4 4 -
| " -n2 2
(€30) R = - (XE - 1) % R SIN (THETA)
2, 3,2, 3
N-N
XE N R
' R
(53]) . R 8 ®» cocncnce LT Y

2, 4, 2, 4 2
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N-M 2
%E N R SIN (THETA)
: R
(E32) R 2 - cccrcevemccsscncvonnenan
3, 4,3, 4 2
(D32) DONE
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RAISERIEMANN(dis) réturns the contravariant components of the Riemann
curvature tensor as array elements UR[l,JK,L] These are displayed if dis is

TRUE.

RINVARIANT() forms the scalar invariant obtained
R[LJ,K,LJxUR[I,J,K,L].

(C34) RINVARIANT();

M 2 2 4
(D34) XE  ((4 (N ) +(4(N) -4H N)IN + (N)
R R R R R RR R
3 2 2 4 2 2 2
-2M (N) +#(M) (N))R +(B(N) +8(N))R
R R R R R R
2 M M 4
+ 16 %E - 32 % + 16)/(4 R )

contracting

WEYL(dis) computes the Weyl conformal tensor. If the argument dis is TRUE, the

non-zero components W[l JK,L] will be displayed to the user.

these components will simply be computed and stored.

Otherwise,
If the switch

RATWEYL is set to TRUE, then the components will be rationally simplified; if

FACRAT is TRUE then the results wiil be factored as well.
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DSCALAR(function) computes the d’Alembertian of the scalar function.

(C41) DEPENDS(FIELD,R);

(D41) (FIELD(R)]

(C42) DSCALAR(FIELD);"

(D43)

-M
%€ ((FIELD N - FIELD M+ 2 FIELD ) R + 4 FIELD )

DALEM(field,i,j) computes the d’Alembert'an of the i,j - component of the rank 2
tensor field
YT(f,m,n) computes the m,n component of the Yilmaz tensor defined by
tm" = ~23pfaD 3Mp? - (1/208,72K1,0 311, M
+ omfant - (1/28 3y,

where f is the trace of f, b and repeated indices are summed. This reduces
to the Newtonian stress-energy tensor.
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[11.2] Indicial Tensor Manipulation

In ITENSR a tensor is represented as an "indexed object” . This is a function
of 3 groups of indices which represent the covariant, contravariant and derivative
indices. The covariant indices are specified by a list as the first argument to the
indexed object; the contravariant indices are specified by a list as the second
argument. If the indexed object lacks either of these groups of indices, then the
empty list, [], is given as the corresponding argument. For example,

G([mu,nul(D
represents an indexed object called G which has covariant indices mu,nu and no
contravariant or derivative indices. '

The derivative indices, if they are present, follow as additional arguments to
the (symbolic) function representing the tensor. They are usually not explicitly
specified by the user but are created in the process of differentiation with
respect to some coordinate variable. A derivative index is not the coordinate
variable itself, but rather the coordinate index. These indices are appended as
-additional arguments to the function representing the tensor. Since it is assumed -
that ordinary differentiation is independent of the order in which it is carried out,
the derivative indices are sorted alphabetically. This canonical order makes it
possible for MACSYMA to recognize that, for exampie, T([muJ,[nu},i,j) is the same
as T([mu][nu],ji). Differentiation of an indexed object with respect to some
coordinate whose index does not appear as an argument to the indexed object
would normally yield zero since MACSYMA would not know that the tensor
represented by the indexed object might depend implicitly on the corresponding
coordinate. This has been remedied by modifying the existing MACSYMA function
DIFF so that in the tensor package it assumes that all indexed objects depend on
any variable of differentiation unless otherwise stated. This makes it possible for
the summation convention to be extended to derivative indices.

To specify that an indexed object is independent of all coordinate variables, it
is specified a constant by using the DECLARE function (see 8.1). Usually,
DIFFCW([L{LJIDK) results in W([][I,J],K); if the command DECLARE(W,CONSTANT)
had previously been given, the result of the differentiation would be O.

The following functions are available in the tensor package for manipulating
indexed objects. At present it is assumed that all tensor indices are completely
symmetric.

In what follows, general indexed objects will be denoted tensor,
tensorl,tensor2,.. . The letters L1,L2,. denote lists which are arguments to
indexed objects. Optional arguments are enclosed in angle brackets. .
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SHOWTEN(exp) will display exp with the indexed objects in it shown having
covariant indices as subscripts,contravariant indices as superscripts. The
derivative indices will be displayed as subscripts, separated from the
covariant indices by a comma.

COMPONENTS(tensor,exp) permits one to assign an expression exp giving the

values of the components of tensor. These are automatically substituted for
the tensor whenever it occurs with all integer indices.
The tensor must be of the form T([..][..]), which can specify a covariant
(second list empty), contravariant (first list empty), or mixed (neither list
empty) tensor. exp can be a matrix, an-array or any expression (except a
single variable) involving other tensors.

If exp is a matrix, then tensor must have exactly two indices. If it is an
array, then exp and tensor must have the same number of indices. |f exp is
some other expression involving tensors, then it must have the same free
indices as tensor. This expression will be used even if the indices are not
integers.

(C1) COMPONENTS(G([I,J1,[1),MATRIX)S

(C2) COMPONENTS(G([1,[9,K]),ARRAY)S

(C3) COMPONENTS(E([I],[9]),6([I.K])=H([].[K,J]))8

Thus, the various covariant, contravariant, and mixed components of the same
tensor (for example, G above) can be specified using COMPONENTS several

times. The appropriate: components will be chosen when required in a -
computation.

INDEXED(tensor) must be executed before assigning components to a tensor for
which a built in value already exists as with CHR1, CHR2, RIEMANN.

REMCOMPS(tensor) unbinds all values from tensor which were assigned with the
COMPONENTS function.
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INDICES(exp) returns a list of two elements. The first is a list of the free indices
in exp (those that occur only once); the second is the list of dummy indices in
exp (those that occur exactly twice).

RENAME(exp, <count>) returns an expression equivalent to exp but with the
dummy indices in each term chosen from the set [#1, #2,..], if the optional
second argument is omitted. Otherwise, the dummy indices are indexed
beginning at the value of count. Each dummy index in a product will be
different; for a sum, RENAME will try to make each dummy index in a sum the
same. In addition, the indices will be sorted alphanumerically.

DUMMY(i1,i2,..) will set each index i1,i2,.. to name of the form #n where n is a
positive integer: This guarantees that dummy indices which are needed in
forming expressions will not conflict with indices already in use.

COUNTER[1] determines the numerical suffix to be used in generating the ,
next dummy index. The prefix is determined by the option DUMMYX[].

DEFCON(tensorl,<tensorZ tensor3>) gives tensorl the property that the
contraction of a product of fensori and fensor2 results in tensor3 with the
appropriate indices. If only one argument, tensorl, is given, then the
contraction of the product of tensor! with any indexed object having the
appropriate indices (say fensor) will yield an indexed object with that
name,i.e.tensor, and with a new set of indices reflecting the contractions
performed.

For example, if METRIC: G, then DEFCON(G) will implement the raising and
lowering of indices through contraction with the metric tensor.

More than one DEFCON can be given for the same indexed object; the
latest one given which applies in a particular contraction will be used.

CONTRACTIONS is a list of those indexed objects which have been given
contraction properties with DEFCON.

DISPCON(tensor1,tensor2,..) displays the contraction properties of the tensori as
were given to DEFCON. DISPCON(ALL) displays all the contraction properties
which were defined.
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REMCON(tensor1,tensor2,..) removes all the contraction properties from the
tensori. REMCON(ALL) ‘removes all contraction properties from all indexed
objects. '

CONTRACT((exp) carries out all possible contractions in exp, which may be any
well-formed combination of sums and products. - This function uses the
information given to the DEFCON function. Since all tensors are considered to
be symmetric in all indices, the indices are sorted into alphabetical order.
Also all dummy indices are renamed using the symbols #1,#2,.. to permit the
expression to be simplified as much as possible by reducing equivalent terms
to a canonical form. For best results exp should be fully expanded.
RATEXPAND (see 6.1.1) is the fastest way to expand products and powers of
sums if there are no variables in the denominators of the terms. The
TAKEGCD switch should be FALSE if gcd cancellations are unnecessary.

CANTEN(exp) reduces exp to a canonical form and simplifies the expression as
much as possible by renaming and permuting dummy indices. The expression
exp must be fully expanded.

As an example of the kind of simplification this function achieves, consider the
following sum of tensor "monomials™:

(c4) P([1,9,5,V],[M,N,Q1,V)*PL([Q,T],[R,S1)xP2([R,L,M,N,U],[1,3,K]) +
PZ([L.N.U].[R.".I.J.K])*P([H.I.J.V].[N-Q.S].V)*Pll([R.S..Q.T].[])‘
(C6) SHOWTEN(D4);
RMIJK NQS MNQ RS IJK
(E6) P2 P - P +P ' n P2
LNU MIJVWV RSQT IJSVWV QT RLMNU
(D6) | E6

Recall that all these indexed objects are assumed to be completely symmétric
in their indices. The function RENAME renames the dummy indices:



MACSYMA 11.2 Indicial Tensor Manipulation 203

(C7) SHOWTEN(RENAME(D4))$

#6 #7 #8 2 #3 K f4 #5
(E7) P P2 P1
£1 #2 #3 #5,#1 #4 #6 F7 L U #8 T

#3 #4 #8 #2 45 #6 #7 K
+ P Pl P2
FLESH#6 #7841 #2443 44T 48 LU

but is not able to notice that by a sequence of raising and lowering
operations, the original expression can be transformed into

(C8) SHOWTEN(CANTEN(D4))$

- K IJMN QRS
(E8) Z P2 4 . Pl
IJLMNRU QSV,V T

METRIC(G) specifies the metric by assigning the variable METRIC:G; in addition,
the contraction properties of the metric G are set up by executing the
commands DEFCON(G), DEFCON(G,GKDELTA).

CHR1(i,j,k}) yields the Christoffel symbol of the first kind
(Bik,j * Bjki " Bijk 12
The variable METRIC must be assigned the name of a function (which can be
either defined or unde}fined); in the above example, METRIC:g.

CHR2(i,/1,[k)) yﬁelds the Christoffel symbol of the second kind.

CHR2([i,j}[K] = gks CHRl([i.i;é])
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LC(L) is the permutation (or Levi-Civita) tensor which yields 1 if the list L
consists of an even permutation of integers, -1 if it consists of an odd
permutation, and O if some indices in L are repeated.

KDELTA(L'I,L2) is the generalized Kronecker delta function. LI and L2 are lists of
indices of the same length.

a) If L1 and L2 have a single member, say L1=[a] and L2=[b]. Then

1) if the index a is identical to the index b and they are non-
" numeric, the value of the function KDELTA is the value of the
variable DIMENSION[4] ;

2) if a and b are numeric then the value of the function is 1 if they
are equal, else 0;

.3) otherwise the noun form of KDELTA.
b) If L1=[al,a2] and L2=[b1,b2] Then the value of the function is

KDELTA([al],[bl })*KDELTA([a2],[b2])
- KDELTA([a1],[b2])=KDELTA([a2],[b1])

o) If L1 and L2 have more than two indices the resuit generalizes.

RIEMANN(/,/,k1[/) yields the Riemann curvature tensor in terms of the Christoffel
symbols of the second kind (CHR2).

Suppose the name specified by the value of METRIC corresponds to a tensor

which has been given some structure via the COMPONENTS command above;

in order to evaluate an expression involving the Riemann tensor and

mcorporate this given structure of the metric exphcutly into the result, the
ser can simply do expressionEVAL.

Consider the following example involving a metric, G, expressed in terms of
the rank two tensors, P and E. First, the covariant and contravariant forms of
the metric are specified:
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(C9) COMPONENTS(G([M,N1,[ D),

E(CM,N3,LD) + Le(2xP(L 3,0 1)#E(LM,N], [ 1)-4=P([M,N1,[ 1))
L 2x(2%P([ 1,0 1)"2#E([M,N1,[ ) |
- 8xP([1,[ 1)«P([M,N],[ 1)+8+P([H],[Q1)=P([Q,N].[ 1)))8

(C10) COMPONENTS(G([],[M,N]),

ECCI.IM,ND) - Lx(2xP(L 3,0 1)%ECT 1, [M,N1)-4sP(L 1, [N.NT))
+ L 2x(2xP([ 1,0 1) 2¢E([ 1,[M,N])
- 8xP([ 1,[ 1)+P([ J,[M,N1)+8+P([ J,[M,Q1)*P([Q].[N])))$

(C11) SHOWTEN(G([A,B],[]))$
2 Q 2
(EI1)L (8P P -8PP +2P E )+L(2PE -4P )
A QB AB AB AB AB

+ E
" AB
(C12) SHOWTEN(6([1,[R,S1));

2 RQS RS  2RS RS . RS
(E12)L (8P P -8PP +2P E )-(2PE -4P )L
Q . A

RS
(C13) (RATVARS(L),RATWEIGHT(L,1),RATWTLVL:2)$

The above metric is an expansion to second order of the Yilmaz exponential
metric

G = E.eZ*L*(I.P - 2*3)

where L is an expansion parameter, P is a rank two tensor field viewed as a
matrix whose components are PRS and whose trace is P.

To second order, the covariant and contravariant forms of the metric
should be mutually inverse. As an example of the contraction and
simplification functions CONTRACT,CANTEN one can verify this as follows:



206 11.2 Indicial Tensor Manipulation MACSYMA

(C14) SHOWTEN(EX:CONTRACT(RATEXPAND(G([M,R],[1)x6([]1,[R.N]))))8

N N2 oA 1N 2
(E14) KDELTA +16P L P -16P - P L
* M 1N #1 M

Because RATWTLVL:2, the product of the expansions is truncated; the second
order terms are actually equal and should cancel. Using a canonical form, the
function CANTEN makes the appropriate simplification which enables the last
two terms to be compared and cancelled:

(C16) SHOWTEN(CANTEN(EX));
N

(E16) KDELTA
]

The Ricci tensor is easily expressed in terms of the Riemann tensor,

using the Einstein summation convention:
(C18) RICCI:RIEMANN([I,J,K],[K]S
(C19) %,EVALS
(C20) EXP1:CONTRACT(RATEXPAND(RICCI))S
(C21) SHOWTEN(FACTOR(EXP1))S

#1 #1 #2
(E21) - (2 P - -2E P

J,#1 I IJ,#1 #2

1 #2 #1

+ P E E + 2P )L
,#1 #2 IJ I,#1 J
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DIFF(exp,v1,nl,v2n2,.) is the usual MACSYMA differentiation function; it takes
the derivative of exp wrt vI nl times, wrt v2 n2 times, etc. For the tensor
package, the following modifications have been incorporated:

1) the derivatives of any indexed objects in exp will have the variables
vi appended as additional arguments. Then all the derivative indices will be
sorted.

2) the vi may be integers from 1 up to the value of the variable
DIMENSION[4]. This will cause the differentiation to be carried out wrt the
vith member of the list COORDINATES which should be set to a list of the
names of the coordinates, e.g, [xy,22t] . If COORDINATES is bound to an
atomic variable, then that variable subscripted by vi will be used for the
variable of differentiation. This permits an array of coordinate names or
subscripted names like X[1], X[2],.. to be used. If COORDINATES has not
been assigned a value, then the variables will be treated as in 1) above.

COVDIFF(exp,v1,v2,..) yields the covariant derivative of exp with respect to the
variables vi in terms of the Christoffel symbols of the second kind (CHR2). In
order to evaluate these, one can use exp, eval or EV(exp,CHR2).

UNDIFF(exp) returns an expression equivalent to exp but with all derivatives of
indexed objects replaced by the noun form of the DIFF function with
arguments which would yield that indexed object if the differentiation were
carried out. This is useful when it is desired to replace a differentiated
indexed object with some function definition and then carry out the
differentiation by saying EV(...,DIFF}.

LORENTZ(exp) yields exp replacing by zero those indexed objects which have a
derivative index identical to a contravariant index. This imposes the Lorentz
condition.

MAKEBOX(exp) will display exp in the same manner as SHOWTEN; however, any
teénsor d’Alembertian eccurring in exp will be indicated using the symbol [].
For example, [JP([M],[N]) represents G([1,[1,J]))+P([M},[N],\,J).



208 11.2 Indicial Tensor Manipulation MACSYMA

ZERO(tensor) will give tensor a property such that the
command FLUSH(expression) will, in expression, replace by zero all
occurences of the tensor involving derivative indices.
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12 The SHARE Directory

The SHARE directory contains programs, information files, etc. which are
considered to be of interest to the MACSYMA community. Most files on SHARE;
are not part of the MACSYMA system per se and must be loaded individually by
the user, e.g. LOADFILE(ITENSR,FASL,DSK,SHARE);. Many files on SHARE; were
contributed by MACSYMA users, and all MACSYMA users are encouraged to do so.

Names for files on SHARE; should be chosen as appropriate. However, the
contributor will probably want to follow the conventions discussed here. A
contributor will probably create some but not all of the following files. Examples
may be seen on the SHARE directory.

1) NAME > is the file name of the MACSYMA BATCHable programs. The >
sign indicates a numeric second filename whlch is increased whenever a new
version is created.

2) NAME LISP is the file name of the LISP code for the programs contained in
the file NAME >  This file is loaded into MACSYMA nsina LOADFILE It was
obtained by using the TRANSLATE command or was written directly in LISP by the
contributor.

3) NAME FASL is the file name of the FASL (fast-loadable) version of NAME
LISP, and was produced from NAME LISP by using the LISP compiler. it is loaded
into MACSYMA using the LOADFILE command.

4) NAME USAGE is the name of the documentation file for the programs in
NAME >. It describes how the programs are used, inputs, outputs, options,
warnings, error messages, etc. It may mention the algorithms behind the programs,
references, and whatever else the user should know. It should certainly indicate
who programmed the routines, especially his login name. If the NAME USAGE file
does not exist, this information should be given in NAME > or elsewhere.

5) NAME DEMO is the name of the demonstratton file which may be used in
DEMOing NAME > or NAME LISP.

6) NAME OUTPUT may be used to store sample output obtainéd from running
NAME > on some examples or from DEMOing the NAME DEMO file.

7) Other file names may be used for information files providing some
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information on some aspect of the MACSYMA system or for describing some
MACSYMA utility or for notes on some MACSYMA issues, etc.

The SHARE > file is an index to the SHARE directory and is intended to
contain a short note on each of the programs on the SHARE directory. It should
be updated by the SHARE; contributor as appropriate.

Any comments or questions about the use of the SHARE directory should be
sent to JPG.

12.1 Simplification for ABS and SIGNUM

The file  SHARE;ABSIMP > contains MACSYMA pattern-matching rules that
extend the built-in simplification rules for the ABS and SIGNUM functions. Among
other things, use is made of global relations established with the built-in ASSUME
function or by declarations such as DECLARE(M,EVEN, N,0DD) for even or odd
integers. UNITRAMP and UNITSTEP functions are also defined in terms of ABS
and SIGNUM. These routines were written by David Stoutemyer.

[12.2] Array Manipulation
The file ARRAY FASL provides various utility functions for handling arrays.

LISTARRAY(array) returns a list of the elements of a declared array. the order is
row-major. You will get garbage if any of the elements have not been
defined yet.

FILLARRAY (array,list-or-array) fills array from list-or-array. If array is a floating-
point (integer) array then list-or-array should be either a list of floating-point
(integer) numbers or another floatmg—pomt (integer) array. If the dimensions
of the arrays are different array is filled in row-major order. If there are not
enough elements in list-or-array the last element is used to fill out the rest
of array. If there are too many the remaining ones are thrown away.
FILLARRAY returns its first argument.
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REARRAY (array,diml, ... ,dimk) can be used to change the size or dimensions of an
array. The new array will be filled with the elements of the old one in row-
major order. If the old.array was too small, FALSE, 0.0 or O will be used to
fill the remaining elements, depending on the type of the array. The type of
the array cannot be changed.

ARRAYAPPLY (array,[subl, ... ,subk]) is like APPLY except the first argument is an
array.

These routines were written by Charles Karney.
[12.3] Solving Differential Equations by Laplace Transforms

DESOLN LISP contains a routine, written by Richard Bogen, for solving
differential equations or systems of them by using Laplace transforms. The call is:

DESOLVE([eql,..,eqn][varl,.,varn]) where the egs are differential equations in
the dependent variables varl,.,varn. The functional relationships must be
explicitly indicated in both the equations and the variables. For example

(C1) /DIFF(F,X,2)=SIN(X)+’DIFF(G,X);
(C2) “DIFF(F,X)+X*2-F=2x’/DIFF(G,X,2);

is not the proper' format. The correct way is:

(€3) “DIFF(F(X),X,2)=SIN(X)+/DIFF(G(X),X);
(C4) “DIFF(F(X),X)+X*2-F(X)=2%/DIFF(G(X),X,2); )

The quotes are not necessary since DIFF will return the noun forms
anyway.

The call is then DESOLVE([D3,D4],[F(X),G(X)];

If initial conditions at O are known, they should be supplied before calling
DESOLVE by using ATVALUE.

(Cl11) “DIFF(F(X),X)=/DIFF(G(X),X)+SIN(X);
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| D 0
(011) -- F(X) = == 6(X) + SIN(X)
: DX DX
(C12) “DIFF(G(X),X,2)=/DIFF(F(X),X)-COS(X);
2 .
D D
(D12) --- 6(X) = -- F(X) - COS(X)
2 DX
- DX
(C13) ATVALUE(”DIFF(6(X),X),X=0,A);
(D13) A

(C14) ATVALUE(F(X),X=0,1);
(D14) . 1

(C15) DESOLVE([D11,D012],[F(X),6(X)]);

X X
(D16) [F(X)=A %E - A+l, 6(X) = COS(X) + AXE - A+ 6(0) - 1]

/% VERIFICATION x/
(€17) [D11,D12],D16,DIFF;
X X X ' X
(D17) [AXE =AX%XE, AXE - COS(X) = A%E - COS(X)]

12.4 Exterior Calculus of Differential Forms

The exterior calculus of differential forms is a basic tool of differential
geometry developed by Elie Cartan and has important applications in the theory of
partial differential equations. The present implementation is due to F.B. Estabrook
and HD. Wahlquist. The program is self-explanatory and can be accessed by
doing : '

BATCH([CARTAN,START,DSK,SHARE],ON)

which will give a description with examples.
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The next six sections describe programs written by David Stoutemyer.

12.5 Vector Analysis

The file VECT > contains a vector analysis package, VECT DEMO contains a
corresponding demonstration, and VECT ORTH contains definitions of various
orthogonal curvilinear coordinate systems.

The vector analysis package can combine and simplify symbolic expressions
including dot products and cross products, together with the gradient, divergence,
curl, and Laplacian operators. The distribution of these operators over sums or
products is under user control, as are various other expansions, including
expansion into components in any specific orthogonal coordinate systems. There
is also a capability for deriving the scalar or vector potential of a field.

To establish indeterminatel, indeterminate2, ... as vector entities, type
DECLARE([indeterminatel, indeterminateZ2, ...], NONSCALAR) $
Vectors can also be represented as lists of components.

" "

is the dot-product operator, "~" is the cross-product operator, GRAD is
the gradient operator, DIV is the divergence operator, CURL is the curl or rotation
operator, and LAPLACIAN is DIV GRAD.

Most non-controversial simplifications are- automatic.. For additional
simplification, there is a function which can be used in the form

VECTORSIMP( vectarexpressioﬁ)

This function employs additional non-controversial simplifications, together with
various optional expansions according to the settings of the following global flags:

EXPANDALL, EXPANDDOT, EXPANDDOTPLUS
EXPANDCROSS, EXPANDCROSSPLUS, EXPANDCROSSCROSS
EXPANDGRAD, EXPANDGRADPLUS, EXPANDGRADPROD

EXPANDDIV, EXPANDDIVPLUS, EXPANDDIVPROD



214 12.5 Vector Analysis MACSYMA

EXPANDCURL, EXPANDCURLPLUS, EXPANDCURLCURL
EXPANDLAPLACIAN, EXPANDLAPLACIANPLUS, EXPANDLAPLACIANPROD

All these flags have default value FALSE. The PLUS suffix refers to employing
additivity or distributivity. The PROD suffix refers to the expansion for an
operand that is any kind of product. EXPANDCROSSCROSS refers to replacing
p~(g~r) with (p.r)*q-(p.q)+r, and EXPANDCURLCURL refers to replacing CURL CURL
p with GRAD DIV p + DIV GRAD p. EXPANDCROSS:TRUE has the same effect as
EXPANDCROSSPLUS:EXPANDCROSSCROSS:TRUE,  etc. -Two  other flags,
EXPANDPLUS and EXPANDPROD, have the same effect as setting all similarly
suffixed flags true. When TRUE, another flag named
EXPANDLAPLACIANTODIVGRAD, replaces the LAPLACIAN operator with the
composition DIV GRAD. All of these flags are initially FALSE. For convenience, all
of these flags have been declared EVFLAG.

For orthogonal  curvilinear  coordinates, the global variables
COORDINATESI[[X,Y,2]], DIMENSION[3], SF[[1,1,1]}, and SFPROD[1] are set by the
function invocation

SCALEFACTORS(coordinatetransform)

Here coordinatetransform evaluates to the form [[expressionl, expression2, ...],
indeterminatel, indeterminat2, ...], where indeterminatel, indeterminate2, etc. are
the curvilinear coordinate variables and where a set of rectangular Cartesian
components is given in terms of the curvilinear coordinates by [expressionl,
expression2, ..]. COORDINATES is set to the vector [indeterminatel,
indeterminate2, ..}, and DIMENSION is set to the length of this vector. SF[1],
SF[2], .., SF [DIMENSION] are set to the coordinate scale factors, and SFPROD is
set to the product of these scale factors. Initially, COORDINATES is [X, Y, Z],
DIMENSION is 3, and SF[1]=SF[2]=SF[3]=SFPROD=1, corresponding to 3-
dimensional rectangular Cartesian coordinates.

To expand an expression into physical components in the current coordinate
system, there is a function with usage of the form

EXPRESS(expression)

The result uses the noun form of any derivatives arising from expansion of the
wactor differential operators. To force evaluation of these derivatives, the built-
i EV function can be used together with the DIFF evflag, after using the built-in
OEFPENDS function to establish any new implicit dependencies.
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The scalar potential of a given gradient vector, in the current coordinate
system, is returned as the result of POTENTIAL(givengradient)

The calculation makes use of the global variable POTENTIALZEROLOC[0], which
must be NONLIST or of the form [indeterminatej=expressionj,
indeterminatek=expressionk, ..], the former being equivalent to. the nonlist
expression for all right-hand sides in the latter. The indicated right-hand sides
are used as the lower limit of integration. The success of the integrations may
depend upon their values and order. POTENTIALZEROLOC is initially set to O.

The vector potential of a given curl vectar, in the current coordinate system,
is returned as the result of

VECTORPOTENTIAL(givencuri)

POTENTIALZEROLOC has a similar role as for POTENTIAL, but the order of the
left-hand sides of the equations must be a cyclic permutation of the coordinate
variables. -

EXPRESS, POTENTIAL, and VECTORPOTENTIAL can have a second argument
like the argument of SCALEFACTORS, causing a corresponding invocation of
SCALEFACTORS before the other computations.

12.6 Dimensional Analysis

The file DIMEN > contains functions for automatic dimensional analysis, and file
DIMEN DEMO contains a demonstration. Usage is of the form

NONDIMENSIONALIZE(list of physical quantities)

The returned value is a sufficient list of nondimensional products of powers of
the physical quantities. A physical relation between only the given physical
quantities must be expressible as a relation between the nondimensional
quantities. There are usually fewer nondimensional than physical quantities, which
reduces the number of experiments or numerical computations necessary to
establish the physical relation to a specified resolution, in comparison with the
number if all but one dependent physical variable were independently varied.
Also, the absence of any given physical quantity in the output reveals that either
the quantity is irrelevant or others are necessary to describe the relation.
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The program already knows an extensive number of relations between
physical quantities, such as VELOCITY=LENGTH/TIME. The user may over-ride or
supplement the prespecified relations by typing

DIMENSION({equation or list of equations)

where each equation is of the form indeterminate=expression, where expression
is a product or quotient of powers of none or more of the indeterminates
CHARGE, TEMPERATURE, LENGTH, TIME, or MASS. To see if a relation is already
established type

_ -GET(indeterminate, "DIMENSION);

The result of NONDIMENSIONALIZE usually depends upon the value of the
global variable %#PURE, which is set to a list of none or more of the indeterminates
ELECTRICPERMITTIVITYOFAVACUUM, BOLTZMANNSCONSTANT, SPEEDOFLIGHT,
PLANCKSCONSTANT, GRAVITYCONSTANT, corresponding to the relation between
charge and force, temperature and energy, length and time, length and momentum,
and the inverse-square law of gravitation respectively. Each included relation is
used to eliminate one of CHARGE, TEMPERATURE, LENGTH, TIME, or MASS from
the dimensional basis. To avoid omission of a possibly relevant nondimensional
grouping, either include the relevant constant in ZPURE or in the argument of
NONDIMENSIONALIZE if the corresponding physical effect is thought to be relevant
to the problem. However, the inclusion of unnecessary constants, especially the
latter three, tends to produce irrelevant or misleading dimensionless groupings,
defeating the purpose of dimensional analysis. As an extreme example, if all five
canstants are included in ZPURE, all physical quantities are already dimensionless.
%PURE is initially set to ’[ELECTRICPERMITTIVITYOFVACUUM,
BOLTZMANNSCONSTANT], which is best for most engineering work. “PURE must
not include any of the other 3 constants without also including these 2.

[12.7] Analytic Optimization

We now describe a package for finding the stationary points of a multivariate
objective function, either unconstrained or subject to equality and/or inequality
constraints.

RELEVANT FILES: OPTMIZ > is a MACSYMA batch file containing the functions and
option settings for optimization. OPTMIZ DEMO is a MACSYMA batch file
demonstrating various ways of using the optimization functions. OPTMIZ OUTPUT is
a text file iisting OPTMIZ DEMO together with the output that it produces when
executed.
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To use this package from a MACSYMA, first type BATCH(OPTMIZ, ">*, DSK,
SHARE) Then the following command is available: :

STAP(OBJECTIVE, LEZEROS, EQZEROS, DECISIONVARS)

OBJECTIVE is an expression denoting the objective function or the label of
such an expression. LEZEROS is a list. of expressions which are constrained to be
less than or equal to zero. Use [] if no such constraints. EQZEROS is a list of
expressions which are constrained to equal zero, or the label of such a list. Use
[] if there are no such constraints. DECISIONVARS is a list of the decision
variables or the label of such a list. One may use [] if all variables in objective
and constraintsare decision variables. For convenience, brackets may be omitted
from one-expression lists, and trailing [] arguments may be omitted.

ROOTSEPSILON may affect the accuracy of results computed by SOLVE and
REALROOTS within STAP. The default value of 1.0E-7 for this MACSYMA global
variable is as small as practical for pdp single-precision floating-point arithmetic.
Larger values save cpu time.

The class of functions that may be used and the practical limitations on the
number of decision variables and constraints is primarily dependent upon the
capabilities of the built-in SOLVE function, which is still under development.

[12.8] Variational Optimization

This section describes how to use a MACSYMA v,ariatiorial optimization
package to analytically solve problems from the calculus of variations and the
maximum principle, including optimal control.

To use this package in a MACSYMA, first type BATCH(OPTVAR,™", DSK,
SHARE) or LOADFILE(OPTVAR, LISP, DSK, SHARE).

To derive the Euler-Lagrange equations for a calculus-of-variations problem,
type '

EL(F, YLIST, TLIST)

F is an expression or the label of an expression for the integrand of the
stationary functional, augmented by Lagrange multipliers times the integrands of
any isoperimetric constraints and/or differential expressions constrained to equal
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zero.” The multipliers should be written as functions of the independent variables
in the latter case. :

YLIST is a list of the dependent variables, or the label thereof.
TLIST is a list of the independent variables, or the label thereof.

For convenience, square brackets may be omitted from 1-element lists. EL
 displays one or more E-labeled equations, then returns a list of the E-labels.
These equations are the Euler-Lagrange equations, perhaps together with first
integrals corresponding to conservation of energy andfor conservation of
momentum. The former will contain a constant of integration K[0], whereas the
latter will contain constants of integration K[l], with positive |. The latter will
immediately follow the corresponding Euler-Lagrange equation.

OPTVAR DEMO or OPTVAR OUTPUT illustrates some ways that the resulting
differential equations may be solved analytically.

To derive the Hamiltonian and auxiliary differential equations for an optimél
control problem, type

HAM(ODES)

ODES is a list of the first-order differential equations that govern the state
variables. Each differential equation must be of the form

‘D(Y,T) = EXPRESSION

where Y is one of the dependent variables, T is the independent variable, and
EXPRESSION depends upon the independent, dependent, and control variables.

HAM displays two or more E-labeled expressions, then returns a list of the
E-labels. The first expression is the Hamiltonian, and the other expressiona are
the auxiliary diferential equations, together with their general solutions, AUX[I] =
K[I], whenever the Ith differential equation is of the trivial form *D(AUX[I],T) = O.
The K[!] are undetermined constants of integration.

HAM is directly suitable for the autonomous time-optimal problem. Other
groblems may be converted to this form by introducing extra state variables, as
described in most optimal-control texts or in the report referenced in OPTVAR
QUTPUT and OPTVAR DEMO.
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[12.9] Qualitative Analysis

QUAL > contains MACSYMA functions for qualitative analysis of an expression,
QUAL DEMO contains a demonstration, and QUAL OUT contains the output from
executing the demo.

To use the functibns do ALLOC(2); LOADFILE(STOUTE,">",DSK,MRG);
BATCH(QUAL, ">", DSK, SHARE);

Top-level usage is of the form QUAL(<expression>, <variables>)

where <expression> is any given expression, <variable§> is a given indeterminate
or list of indeterminates. !f omitted, this argument defaults to all of the
indeterminates in the first argument.

QUAL returns a list of E-labels of displayed equations, each of the form
{property name> = {property value)

where <property name> is one of the second-level function names below, and
<property value> is the value returned by that function. These second-level
functions may also be used directly.  Usage is of the form

REVELATION(<expression>, <minimum), {maximum));
BOUNDS(<expression>);

SLOPES(<expression>, <variables));
CURVATURE(<Cexpressiond>, <variables));
SYMMETRY(<expression>, <variables));
PERIODS(<expression)>, <variables));
ZEROSANDPOLES(<expression>, <variables));
STATIONARYPOINTS(<expression>, <variables));
LIMITS(<expression)>, <variables>);

where <expression>, <variables>, and their defaults are as for QUAL.

[12.10] Units Conversion

The file UNITS > contains assignments for automatic conversion to MKS metric
units. Usage example: 5¢FT + METER + CM; simplifies to 2.534+METER .



220 12.10 Units Conversion MACSYMA

Erroneously dimensionally inhomogeneous expressions are revealed by
uncollected terms. For example, 5+FT + SECOND; does not simplify to one term.

The supplied conversions comprise a rather complete set, but it should be
clear how to supplement them or produce an analagous set for conversion to
other units.

[12.11] The Eigen Package

The BATCH file EIGEN > contains .a package of functions is written in top-
level MACSYMA. Its purpose is to compute right eigenvectors, right unit
eigenvectors, eigenvalues, and similarity transforms. NOTE: This package
currently will not handle systems with multiple eigenvalues. Implementation of this
capability will await the ability to handle multiple roots from SOLVE.

EVEC1(M,mumodes) computes right eigenvectors of the matrix M, given the
eigenvalues mu; mu is a one dimensional array of the eigenvalues of M
modesx is the order of the system EVECI returns a list of lists which are
the eigenvectors; i.e, it returns a list of sublists, each of which contains the
components of an eigenvector.

EVEC2(M,mu,modes) is exactly the same as EVEC1 except that it constructs the
list of eigenvectors differently from EVECI. It is a toss-up as to which is
faster. '

INPROD(x,y) computes the real inner product of two lists (not vectors). This inner
product is the sum of the products of the respective components of the lists.
The two lists used as arguments to INPROD must be of the same length.

UEVEC(M,mu,modes) computes the unit eigenvectors of the matrix M. That is, the
eigenvectors are of unit length as defined by INPROD(x,x). UEVEC merely
calls evecl to compute the eigenvectors, and then calls INPROD to compute
the length of each eigenvector in turn and divides by this length. UEVEC
returns a list of vectors (not lists) which are the unit eigenvectors. Since
UEVEC calls EVEC1, the eigenvalues mu (defined as in EVEC1) must be
distinct. “
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EVALS(mat,lambda) computes the eigenvalues of the matrix mat and stores them
in the one dimensional array /ambda. It returns the value "done”. The array
lambda must be set up as an array before the call to EVALS. Also, this
function will not handle multiple eigenvalues.

SIMTRAN(mat) is the function which computes the similarity transformation
mentioned above. it merely calls the other functions such as EVALS, UEVEC,
etc. to determine the eigenvalues and right unit eigenvectors. For a
symmetric matrix with distinct eigenvalues, the matrix formed by taking the
unit eigenvectors as columns is an orthogonal matrix, as is its transpose. Thus
if Ais the original symmetric matrix (with distinct eigenvalues) and Q is the
orthogonal matrix constructed as above, and QT is the transpose of Q, then

QT+A+Q =D

where D is the diagonal matrix with the eigenvalues of A on the diagonal.
SIMTRAN takes the matrix mat and fills the global array /ambda with the
eigenvalues of mat. It also fills the globally defined matrices Q and QT with
the matrices Q and QT as described above.

The array /ambda and the matrices Q and QT must exist as an array and
matrices (presumably loaded with dummy info) before the call to SIMTRAN.
The matrix mat should not have multiple eigenvalues for the reasons
mentioned in previous comments.

[12.12] Elimination by Resultants

ELIM LISP coﬁtains a program, written by Richard Bogen, for eliminating
variables from equations (or expressions assumed equal to zero) by taking
successive resultants. the call is:

ELIMINATE([eql,eq2,.,eqn][v1,v2,..,vk])

This returns a list of n-k expressions with the k variables v1,...,vk eliminated.
First vI is eliminated yielding n-1 expressions, then v2 is, etc. If k=n then a
single expression in a list is returned free of the variables vI,..,vk. In this case
SOLVE is called to SOLVE the last resultant for the last variable. If there are
floating point numbers in the input expressions then KEEPFLOAT:TRUE should be
done so as not to have them rationalized in taking the resultant.
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EXAMPLE
(C5) .5%X"4+YxX+Z;
: 4
(D5) Z+XY+0.5X
(C6) 3xX+5%Y-Z-1; - '
(D6) ~Z+5Y+3X-1
(C7) ZI72+4X"2-Y72+5; .
' ‘ 2 2 2
(D7) T -Y+X +5

(C8) ELIMINATE([D7,D6,D5],1Y,Z]),KEEPFLOAT:TRUE;

| 8 6 s 4 3 2
(D8) [150.0 X - 375.0 X + 50.0 X + 275.0 X + 100 X + 550 X

+ 1400 X + 3100]
[12.13] Integration of Special Forms
INTSCE LISP contains a routine, written by Richard Bogen, for integrating
products of sines,cosines and exponentials of the form
EXP(AxX+B )%xCOS{CxX ) NxSIN(CxX)"M
The call is INTSCE(expr,var) expr may be any expression, but if it is not in

the above form then the regular integration program will be invoked if the switch
ERRINTSCE[TRUE] is TRUE. If it is FALSE then INTSCE will err out.

12.14 Integral Equations

The following package was written by Richard Bogen based on some routines
of David Stoutemeyer. It is still an experimental version, untransiated and
uncompiled at present.

To load the package, do BATCH(INT, EQN,">",DSK,RAB).
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CAVEAT: To free some storage, a KILL(LABELS) is included in this file.
Therefore, before loading the integral equation package, the user should give
names to any expressions he wants to keep.

The usage is very simple. The main function is called IEQN. It takes five
arguments though only the first one is required. If trailing arguments are omitted
they will default to preset values which will be announced.

Two types of equations are considered. An integral equation of the second
kind is of the form:

8(X)

Y~

(03) P(X) = Q(X, P(X), W(X, U, P(X), P(U)) dU)

N et

A(X)

An integral equation of the first kind is of the form:

B(X)

(D4) W(X, U, P(U)) dU = F(X)

TNl B YN

A(X)

The unknown function in these equations is P(X) while QW,A, and B are given
functions of the independent variable. Although these are the general forms, most
of the solution techniques require particular forms of Q and W.

. The techniques used are:
For SECONDKIND equations:
FINITERANK: for degenerate (or separable) integrands.
DIFFEQN: reduction to differential equation.

TRANSFORM: Laplace Transform for convolution types.
FREDSERIES: Fredholm-Carleman series for linear equations.
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TAILOR: Taylor series for quasi-linear variable-limit equations.
NEUMANN: Neumann series for quasi-second kind equations.
COLLOCATE: collocation using a power series form for P(X)
evaluated at equally spaced points.

For FIRSTKIND equations:

FINITERANK: for degenerate integrands.

DIFFEQN: reduction to differential equation.

ABEL: for singular integrands.

TRANSFORM: see above

COLLOCATE: see above

FIRSTKINDSERIES: |terat|on technique smular to Neumann series.

Also, .differentiation is used in certain cases to transform a FIRSTKIND into a
SECONDKIND. _

The calling sequence is

IEQN(ie,unk, tech,n,guess) where ie is the integral equation; unk is the unknown
function; tech is the technique to be tried from those given above (tech =
FIRST means: try the first technlque which finds a solution; tech = ALL means:
try all applicable techniques); n is the maximum number of terms to take for
TAYLOR, NEUMANN, FIRSTKINDSERIES, or FREDSERIES (it is also the maximum
depth of recursion for the differentiation method); guess is the initial guess
for NEUMANN or FIRSTKINDSERIES.

Default values for the 2nd thru 5th parameters are:

unk: P(X), where P is the first function encountered in an
integrand which is unknown to MACSYMA and X is the variable
which occurs as an argument to the first occurrence of P found
outside of an integral in the case of SECONDKIND equations, or
is the only other variable besides the variable of integration in
FIRSTKIND equations. If the attempt to search for X fails, the
user will be asked to supply the independent variable;

tech: FIRST;

ml;

guess: NONE, which will cause NEUMANN and FIRSTKINDSERIES
teco use F(X) as an initial guess.

The value returned by IEQN is a list of labels of solution lists. The solution
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lists are printed as they are found unless the variable IEQNPRINT[TRUE] is
set to FALSE. These lists are of the form

[SOLUTION, TECHNIQUE USED, NTERMS FLAG]

where FLAG is absent if the solution is exact. Otherwise, it is the word
APPROXIMATE or INCOMPLETE corresponding to an inexact or non-closed
form solution, respectively. If a series method was used, NTERMS gives the
number of terms taken (which could be less than the n given to IEQN if an
error prevented generation of further terms).

For examples, do BATCH(INTEXS,™",DSK,RAB) which will load an array called
EQ with about 43 sample integral equations. Then try IEQN(EQ[1]),
IEQN(EQ[30],P(X),ALL), for instance.

12.15 Numerical Techniques

(12.15.1] Numerical Integration

ROMBER is a program for Romberg numerical integration written by Richard
Fateman. The calling sequence is ROMBERG(%,a,b,/im)

where f is a function name (elsewhere, f(x):= .., returns a number which must be
floating), a and b are limits of integration, and lim is a limit (e.g. 1.0e-4) for the
accuracy of the answer. ROMBERG computes upper and lower bounds on the
integral, and goes through -a maximum of 10 iterations to satisfy limit. if limit is
unsatisfied, then it prints error message. It is much better than Simpson’s rule,
and is handier in terms of usage. it may be loaded by

BATCH(ROMBER, ">",DSK, SHARE)
Also on ROMBER > is Simpson’s rule, called by SIMPSON(Y,a,b,n)

where n is number of subdivisions, which had better be an even integer. for
SIMPSON,; f, a, and b, (and maybe n), need not be numbers.

To integrate the exponential function from O to 1 to a tolerance of 1.0E-4,
try ROMBERG(?exp,0,1,1.0E-4); . The time taken is 18 msec (0.018 sec). If one
uses G(X):=EV(ZE”“X,NUMER) instead, and does ROMBERG(g,0,1,1.0E-4); the time is
still only 150 msec.
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[12.15.2] Fast Fourier Transforms

The following describes some FFT routines written by Tom Knight. To load
the routines do LOADFILE(FFT,FASL,DSK,SHARE); The basic functions are: FFT(Fast
Fourier Transform), IFT (Inverse Fast Fourier Transform).

These functions perform a (complex) fast fourier transform on either 1 or 2
dimensional FLOATING-POINT arrays, obtained by: ARRAY(array,FLOAT,diml); or
ARRAY(array,FLOAT,dim1,dim2); for 1d arrays diml must equal 2"-1, and for 2d
arrays diml=dim2=2"-1 (i.e. the array is square). (Recall that MACSYMA arrays
“are indexed from a O origin so that there will be 2" and (22 arrays elements in
the above two cases.)

The calling sequence is:
FFT(real-array,imag-array)

IFT(real-array,imag-array)

The real and imaginary arrays must of course be the same size. The transforms

are done in place so that real-array and imag-array will contain the real and

imaginary parts of the transform.
Other functions included in this file are:

POLARTORECT (magnitude-array,phase-array) converts and magnitude phase
arrays into real/umagmary form putting the real part in the magnitude array
and the imaginary part into the phase array

RECTTOPOLAR(real-array,imag-array) undoes POLARTORECT

(the above 4 functions return a list of their arguments)
[12.15.3] Roots of Equations by Interpolation

The file INTPOL FASL, created by Charles Karney, contains the function
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INTERPOLATE(func,x,a,b) which finds the zero of func as x varies. The last two

args give the range to look in. The function must have a different sign at
each endpoint. If this condition is not met, the action of the of the function is
governed by INTPOLERROR[TRUE]). If INTPOLERROR is TRUE then an error
occurs, otherwise the value of INTPOLERROR is returned (thus for plotting
INTPOLERROR might be set to 0.0). Otherwise (given that MACSYMA can
evaluate the first argument in the specified range, and that it is continuous)
INTERPOLATE is guaranteed to come up with the zero (or one of them if
there is more than one zero). :
The accuracy of INTERPOLATE is governed by INTPOLABS[0.0] and
INTPOLREL[0.0] which must be non-negative floating point numbers.
INTERPOLATE will stop when the first arg evaluates to something less than or
equal to INTPOLABS or if successive approximants to the root differ by no
more than INTPOLREL * <one of the approximants>. The defaults values of
INTPOLABS and INTPOLREL are 0.0 so INTERPOLATE gets as good an answer
as is possible with the single precision arithmetic we have. The first arg may
be an equation. The order of the last two args is irrelevant. Thus

INTERPOLATE(SIN(X)=X/2,X,%PI,.1):
is equivalent to
INTERPOLATE(SIN(X):X/Z,X,.l.%PI);
The method used is a binary search in the range specified by the last two
args. When it thinks the function is close enough to being linear, it starts
using linear interpolation. ‘

An alternative syntax has been added to interpolate, this replaces the
first two arguments by a function name. The function MUST be TRANSLATEd

or compiled function of one argument. No checking of the result is done, so
make sure the function returns a floating point number.

F(X):=(MODEDECLARE(X,FLOAT),SIN(X)-X/Z.O);

INTERPOLATE(SIN(X)-Xlz,X,O.l,%PI) time= 60 msec
INTERPOLATE(F(X),X,0.1,%PI); time= 68 msec
TRANSLATE(F);

INTERPOLATE(F(X),X,0.1,%PI); time= 26 msec

INTERPOLATE(F,0.1,%PI); timez 5 msec
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[12.15.4] Special Functions

The file BESSEL FASL contains routines for computing numerical values for
various special functions. If they are given non-numeric arguments they return
themselves. .

Bessel Functions

The following functions compute Bessel functions of integer order for real
arguments.

JO(X) returns the value of the zeroth order Bessel function at X,

J1(X) returns the value of the Bessel function of first order at X

JN(XN) returns the Nth order Bessel function. In addition it sets up an array
JARRAY of N+1 elements, (numbered from O to ABS(N)) such that JARRAYJ[I]
gives the value of the I'th order Bessel function with argument X. (If N < O
then JARRAY(I] gives the (-I)’th Bessel function).

Modified Bessel Functions
The following functions compute the Modified Bessel Functions | of integer
orders for real arguments.

10(X) returns the value of the modified Bessel function of zeroth order.

11(X) returns the value of the modified Bessel function of first order.

INCX,N) works the same way as JN(X,N), except that the array is called IARRAY.

Since the modified Bessel function blows up like EXP(ABS(X)) at infinity, they
cannot be evaluated directly for ABS(X) > 83 (due to overflow). The following
functions avoid this problem:
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GO(X) returns IO(X)*EXP(-ABS(X)).'
G1(X) returns 11(X)*EXP(-ABS(X)).
GN(X,N) returns IN(X,N)*EXP(-,AQS(X)). The array generated by GN is called

GARRAY. :

Complex Bessel Function of positive fractional order

BESSEL(ZA) returns the Bessel function J for complex Z and real A
an array BESSELARRAY is set up such that BESSELARRAY[I
ENTIER(A)K2)

0.0 . Also
= J[I+A-

2
]
AIRY(X) returns the Airy function Ai of real argument X

Plasma Dispersion Function, NZETA(Z).

This function is related to the complex error function by

NZETA(Z) = %IxSQRT(%PI)%EXP(-Z"2)%(1-ERF( -%Iti) )

NZETA(Z) returns the complex value of the Plasma Dispersion Function for
complex Z

NZETAR(Z) returns REALPART(NZETA(Z)).

NZETAI(Z) returns IMAGPART(NZETA(Z)).

Normal distribution function

GAUSS(MEAN,SD) returns a random floating point number from a normal
distribution with mean MEAN and standard deviation SD
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[12.15.5] Polynomial Zeros

REALZERO(poly,anything) is a program to isolate zeros of a polynomial based on
the Collins-Loos differentiation algorithm. The 2nd argument,currently ignored,
is reserved for some “epsilon® . To access it, one must
LOADFILE(eb,lap,dsk,rjf)$ ) BATCH(COLLIN,™>",DSK,RJF)$,
TRANSLATE(ISOLATE,RR)S. It seems to be slower than REALRQOTS for a
similar task (occasionally uses NROOTS, though it needn’t).
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13 The MACSYMA Editor

13.1 Introduction

The major features of the editor are its concise commands (few alphabetic
characters), its varied assortment of commands, concatenation of commands as in
TECO (the PDP-10 file editor), mnemonics for command names (or== you know
them, R means "move in the Reverse direction” ; B means "move to the Bottom" ),
and compatibility with TECO as to command names (in the case of C,DFG,lIJ,
K, L, R, and S).

13.2 Entering the Editor

At any time while the user is inputting a command line to MACSYMA, he may
enter. the input-stream editor by typing "altmode™ or "escape”, henceforth
denoted by <8>. The editor is given the string of characters typed so far in the
current input line. In the case of a detected syntax error, upon typing <g>1 the
entire previous command string will be given to the editor. Alternatively,
<control>-Y also retrieves the previous command string (even if other characters
have already been typed in the current C-line). Thus, the previous command line
is readily available for editing without retyping it.

When MACSYMA detects a syntax error in an input line, the error message
sometimes displays the offending expression to help the user pinpoint the source
of error. This is inconvenient if the expression is large, especially when the user
has a slow terminal. Gradually this scheme is being replaced by a scheme that
does not display the offending expression, but rather sets ERREXP to it, and
prints out the error message followed by the message "ERREXP contains the
offending expression"”.

One may also request the editor to edit or modify a previously accepted input
line by using the STRING function in MACSYMA. Typing STRING(Ci) will restore
the expression labeled as Ci as the current input string. This enables the user to
modify it by then immediately typing <8>. For a simpler method, see the MYV
command below.

1. <8> must be the first character typed on the next command line. Any other
character (except "space”) causes the edit buffer to be emptied.
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Al the commands to the editor reference a cursor (displayed as an
underscore or back-arrow, depending on the console) which is displayed within or
at either end of the string of characters currently being edited (called the "input
string” from now on). The value of the variable CURSOR determines what
character is used (see 10.7).

The editor accepts a command string which must be terminated by <§><8>. A
command string is any concatenation of one or more legal commands which will be
processed in left-to-right order. Display of the input string occurs at the end of
the processing of each command string. <$> is used to enter the editor, to exit
from the editor (as <§><$>), and to terminate insert or search substrings.
Otherwise, spurious <8>’s are ignored. Rubouts (the rubout or delete key on the
console) may be used at any point prior to command termination to delete the last
character typed in. ?? deletes the entire command. At any point prior to command
termination, the user may type a <control>K, and the editor will reprint the
characters of the command typed so far. -

Occasionally, one gets a syntax error because of omitting characters from the
end of a command (especially right parentheses). By typing <8><§><$>
immediately, as the first 3 characters of the next input line, the last command will
be automatically reproduced on the current input line at which point one can
supply the missing characters or rubout erroneous characters. For example:

(C1) (((X+1)%X+2)xX+38
(((X+1)xX+2)xX+ 3 o8en
SYNTAX ERROR

PLEASE REPHRASE OR EDIT

(C1) <%

(X411 )%X+2 )xX+3

<8>C8>

(C1) (((X+1)xX+2)xX+3 )xX+48

(In the above line the user typed the
characters after the 3)

13.3 A Description of the Commands

Some commands may be prefixed by an integer (represented below by "n")
which usually may be positive or negative; although it may be zero as well in the
case of K, L, and W; and it must be non-negative in case of W. The default value
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of nis +1. Except in the case of R, if n is positive the commands operate toward
the right of the cursor, if n is negative they operate toward the left. | and S are
two of the few commands which may be followed by other characters, namely the
characters which constitute the insert or search strings. An error message will be
printed if an illegal command substring is encountered or if any command substring
fails. In case of such error, the processing of the current command string will be
terminated at that point, with the offending command substring indicated.

Command Mnemonic  Action

Commands which move the cursor
nC Character  moves the cursor past n characters.

nR | Reverse moves the cursor past n characteré in the reverse
direction (nR = -nC).

Jor T Jump to Top moves the cursor to the beginning of the input}string.
B or ZJ Bottom moves the cursor to the end of the input string.
nL Line moves the cursor to the right of the nth carriage return

(OL moves left); e.g., L moves to the next line.

nSstring<§> moves the cursor to the right (left if n is negative) of
the nth occurrence of "string” in the input string.

nS . Search repeats the last S command given.

) or ] Move moves the cursor right from the current position over
the next balanced pair of parentheses (or brackets).

(or[ Move similar to ) or ] but moves left.

Commands which delete characters

nD Delete deletes n characters, and saves them in the "save-
register” (see the G command below).
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nK Kill

deletes all the characters through the nth carriage return
(OK kills left), and saves them in the "save-register";

- e.g., K deletes the remainder of this line.

M) or M]  Delete

M( or M[ Delete

nFRstring<$>

similar to ) or ] but deletes the characters moved over
and saves them in the "save-register"”.

similar to M) or M] but moves left.

deletes the next n occurrences of string. (This command
is a special case of the FR command below and can be
used in this way only when it is the last argument in the
command string).

Commands which insert characters

Istring<$> Insert

G Get

nFRstring1<8>string2<$>

inserts the characters "string” at the current cursor
position.. The cursor is positioned at the right of the
inserted text. If no argument is given then the string of
the last | command which had one is used.

inserts at the current cursor position the characters
deleted by the last use of D, K, or M. Thus G may be
used in combination with D or K to move characters from
one place to another in the input string; or to recover
from an accidental use of D or K. There is only one
“save-register".

replaces the next n occurrences of stringl by string2. If
nis 1 it may be omitted. nFR given with no string
arguments uses those from the last FR given which had

them. : '

MFRstring1<8>string2<8> replaces all occurrences of stringl by string2.

YVname<8> Yank value

YFname<$8> Yank function

puts into the editing buffer, the value of the argument
whose name is given, if a label or the name of a user
variable, at the current cursor position leaving the
cursor at the end of the inserted string.

puts into the editing buffer the definition of
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the user function whose name is given (as with YV). If
the name is followed by a list of subscripts in brackets,
then the named subscripted function is brought into the
buffer. This command provides an alternative to
DISPFUN and STRING (see 10.2).

Note: If the YV or YF commands are prefixed by the letter M then the editor will

clear the buffer before yanking, and also will leave the cursor at the head of the
edit string when done.

Commands which control display of results

P Print simply reprints the input string. This is useful in case of
console problems.

nW Window controls the window size of the display, which is the
maximum number of characters displayed on each side of
the cursor. This is useful in case of slow consoles and
large input strings. OW will cause only the cursor to be
displayed. Once set the window size remains at that
setting until it is reset. V View restores the display to
full view, which is the normal mode (affected only by W).

Q Quit exits the editor without reprinting the just edited string.

<8><8> will exit from the editor and is also the command string terminator.
Two examples of legal command strings are 4C3DIFO0<8><8> and
-25BAR<8>3R<$8><8>. The first moves right over four characters, deletes the
next three characters, and inserts FOO. The second searches from the current
pointer position to the beginning of the text for the second occurrence of BAR
then moves left over three characters.

Example
(1) x:18
(C2) NATRIX([A,43,[-1,A/2]);
(02) NATRIX([A, 4], [- 1, 1/2 A])

(C3)<8>



236 13.3 A Description of the Commands

_NATRIX([A,4],[-1,A/2])
DIMCS (S

M_ATRIX([A,41,[-1,A/2])

12CD<8><8>

MATRIX([A,41,[_1,A/2]) ,
<$><8> (In the line below the user typed the ;)
(C3) MATRIX([A,4]1,[1,A72]);

(A 4 ]
(D3) [ ]

[1 1/2A)
(C4) CHARPOLY(%,X);
(04) (A-1)(1/2A-1) - 4

(C5)<8>
_CHARPOLY(%,X)

S%<$>-DID3CEICI“ <)<

CHARPOLY(D3,”_X)

<8><8> (in the line below the user typed the ;)
(C5) CHARPOLY(D3,”X);

(DS) (A-X)(1/2A-X) -4

MACSYMA
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14 Batch Functions

14.1 Introduction

The Batch set of functions in MACSYMA, namely BATCH, DEMO, and BATCON
(mnemonic for BATch CONtinue), provide a facility for executing command lines
stored on a disk file rather than in the usual on-line mode. This facility has
several uses, namely to provide a reservoir for working command lines, for giving
error-free demonstrations, or helping in organizing one’s thinking in complex
problem-solving situations where modifications may be done via the PDP-10 TECO
file editor.

A batch file consists of a set of MACSYMA command lines, each with its
terminating ; or 8, which may be further separated by spaces, carriage-returns,
form-feeds, and the like. The BATCH and DEMO functions have both a simple and
more complicated format, which are described below.

14.2 The Simple Format

BATCH(filenamel, filename2, DSK, directory)

(The same function format holds for DEMO as well.) The arguments to BATCH
(or DEMO) in this format specify the file which is to be batched. Here, each file is
specified by two filenames of at most six characters each, the device the file is
on ( which is normally DSK), and the wuser file directory. Eg
DEMO(TAYLOR,DEMO,DSK,DEMO) calls for "demonstrating” (see below) the file
TAYLOR DEMO on the DEMO disk directory. Latter arguments to the BATCH or
DEMO functions may always be omitted if they are known from previous file-
manipulating functions.

The BATCH function calls for reading in the command lines from the file one at
a time, echoing them on the user console, and executing them in turn. Control is
returned to the user console only when serious errors occur or when the end of
the file is met. Of course, the user may quit out of the file-processing by typing
control-G at any point (see 4) .

DEMO differs from BATCH only in that it pauses after the execution of each
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command line, waiting for the user to type a space which tells it to go on. If the
user types any other character, file-processing will then terminate, giving control
over to the user console. (The user may actually continue processing from the
file at any time - see the BATCON function below.)

14.3 The More Complicated Format

BATCH([fnl, fn2, DSK, directory], <delay-switch>, <index-specification>)
The ar.guments to BATCH or DEMO in this mode are as follows:
The first argument is the file specification (as above), enclosed in brackets.

The second argument, the delay-switch, may be answered by ON or OFF (the
default if it is omitted). This switch has to do with the temporary inability of LISP,
the system underlying MACSYMA, to have more than one input file open at a time.
If in the course of batching in a file of command lines, execution of a function
forces a second file to be input, this would ordinarily cause an error. However,
setting the delay-switch to ON causes the entire batch file to be read in before
execution of it begins, thus preventing the error. The default for the delay-
switch is OFF, as the circumstance described above is not frequent, it takes some
time to read in a batch file, and one may always continue batching via the
BATCON function. As soon as the inability of LISP is removed, this switch will no
longer be needed.

The index-specification is given by one or two arguments, the possibilities
being: (In the following, m and n are positive integers.)

(i) m. This indicates that processing is to begin with the mth command line in
the file. Thus, the default for the index-specification is 1.

(ii) m, n This indicates that only the mth command line through the nth
command line are to be processed.

(iii) a variable (say FOO). FOO must be non-numeric and neither TRUE nor
FALSE. This causes file-processing to begin at FOO&& (see 14.5) and
continue until the end of the file. This makes it unnecessary to count command
lines as required by (i) above.

(iv) variable (say FOQ), continue-flag. The continue-flag is either ON (the
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default, and unnecessary) or OFF. If OFF, this enables one to separate a batch file
into subfiles by prefixing a command line in the file with FOO&&. By using FOO as
the index-specification, one may execute only that subfile which begins with FQO
and ends with some other variable&&, or the end of file. If the continue-flag is
ON, this causes mode (iv) to operate as (iii) above.

One can see that BATCH(TAYLOR,DEMO,DSK,DEMO) and
BATCH([TAYLOR,DEMO,DSK,DEMO], OFF, 1) are equivalent.

14.4 The BATCON Function

The BATCON function is used to continue or change the last BATCH or DEMO
function, without it being necessary to mention again BATCH or DEMO, the file
specification, or the setting of the delay-switch. Of course, if one wishes to
change any of these, a new call to BATCH or DEMO is required.

The possible arguments to BATCON are as follows:
(i) a number

(ii) numberl, number2

(iii) a variable

(iv) variable, continue-flag

They are all as in 83. The numeric arguments may involve the variable
- BATCOUNT[0] which is set to the number of the last expression BATCHed in from
the file. Thus BATCON(BATCOUNT-1) will resume BATCHing from the expression
before the last BATCHed in from before. One other mode is possible:

(v) skip-flag. The skip-flag is useful if an error has occurred while batching,
or if the user wishes to interject command lines from the console while in DEMO-
mode and then to continue processing from the file. The skip-flag may be either
TRUE or FALSE. If FALSE, this indicates that processing is to continue with the
last command line attempted (supposedly edited, in case of error); if TRUE, this
indicates that processing is to continue with the next (untried) command line in the
file.
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(1) Comments may be added to batch files at any point, and will, of course, be
treated as such when batching in the file. A comment is any string beginning with
/* and ending with %/ as in PL/I.

(2) Any command line in a batch file may begin with variable&&. This labels
that command line so that the file can be partitioned into subfiles. If not in a
subfile mode, this prefix will be treated as a comment.

(3) When using the batch functions, it is inconvenient to keep track of which
Di label MACSYMA will assign to a computation; yet later command lines often
need to refer to an earlier computation. One way to get around this, of course, is
for the user to explicitly label some of his command lines. A function %ZTH is also
provided, such that %TH(i), where i is positive, refers to the result of the ith
previous command line. E.g, %TH(1) and the variable % both refer to the same
computation. ,

(4) When BATCHing in several files it is possible for one file to
unintentionally cause an error to occur in a subsequent one by duplication of
names or settings of options. If the variable BATCHKILL[FALSE] is TRUE
however, then the effect of all previous BATCH files is nullified because a
KILL(ALL) and a RESET() will be done automatically when the next one is read in.
If BATCHKILL is bound to any other atom then a KILL(BATCHKILL) will be done.
(The default value of BATCHKILL is FALSE meaning to do nothing.)

(5) While BATCHing in a file which takes a lot of time to process the user
may leave his terminal unattended. If an error occurs he may want some special
action to be taken automatically. By setting the option ERRORFUN to the name of
a function of no arguments one can have that function executed when any error
occurs. Useful functions are QUIT and LOGOUT. However in the case of LOGOUT
the user should also set the switch TTYOFF to TRUE to prevent his job from
hanging up in the case it tries to output to the terminal (see 4). In addition if a file
has been opened for writing, then a command to close it should be executed
before the LOGOUT. Also, the user may wish to set DYNAMALLOC[FALSE] to
TRUE (see 16) so that his job will not hang if additional storage space is
needed

If the user is executing a function of his own and would like to signal an error
he can use the functions ERROR and ERRCATCH (see 10.6).
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(6) If the user does not have a directory of his own then he can use the one
called USERS to store his files. He should identify them as his in some fashion
such as using his login name for the first file names.

(7) The DEMO file directory contains many demonstration files whlch may be
helpful to the user in learning to use MACSYMA.
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15 Secondary Storage Functions

15.1 Introduction

There are two different reasons for wanting to use secondary storage while
running a MACSYMA. Sometimes the user’s intermediate expressions are large,
and it is impossible to complete the job if all the intermediate expressions are
kept in main memory. In this case the user would like to have his intermediate
expressions written automatically onto the disk, in order to free main memory. On
the other hand, some users would like to save some expressions onto the disk so
that they can be read back into a future MACSYMA at a later time. In this case
the user would like to specify certain expressions to be stored and to name the
disk file where they are to be stored. MACSYMA offers the user two secondary
storage schemes. The user may ask to have his expressions automatically filed
away onto the disk, or he may, by means of the SAVE and STORE functions,
exercise explicit control over the storage of expressions. These latter functions
give the user more power and flexibility at the expense of a greater effort. It is
expected that the user whose only concern is to run a big job which would not
run without using secondary storage will use the automatic storage scheme, while
the user who wishes to save expressions for use in later MACSYMAs will use the
SAVE and STORE functions.

15.2 Automatic Storage of Expressions ‘

A - How to use it

To activate the automatic storage scheme the user merely sets the
MACSYMA option DSKUSE[FALSE] to TRUE. From this point on labelled
expressions will be written out periodically onto the disk. (A labelled expression
is one which is referred to by a line label, e.g. D4, C7, E12) Once an expression
is written onto the disk it will no longer reside in main memory and most of the
main memory storage taken up by it will be released. When the user attempts to
retercnce an expression which has been stored onto the disk, MACSYMA will
retrieve the correct value from the disk file. In this scheme expressions are
copied periodically onto the disk whenever there are enough to write out (see
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FILESIZE). An alternative heuristic to use in order to free some storage is to
write out all labelled expressions, values, functions, and arrays whenever the
garbage collector finds that space is getting low. This is the purpose of the
DSKGC function (see 10).

If the user is dealing with large expressions then his storage limit may be
exceeded before FILESIZE expressions have been generated. In this case the
DSKGC method should be used. If this situation does not occur and if the user
prefers to have some control over how many expressions are saved in each file
then the other scheme should be used.

B - Cleaning up the disk

The automatic storage scheme will in general cause several disk files to be
created, which are of no further value after the user has finished running his
current MACSYMA. There is a function called REMFILE, which will delete all the
files created by the automatic storage scheme. Thus if the user does not want
these files to stay around, he should execute REMFILE() before leaving MACSYMA.
REMFILE will only delete files created in the same MACSYMA to which the
REMFILE function is given. In order to delete files created in previous uses of
MACSYMA it is necessary to use the DELFILE function (see 10).

C - Options

The user may specify how often. files are written, how large they are, what
they will be named, and what gets stored in them, or he may accept the default
values for all these. The following MACSYMA options are relevant.

FILENAME - The value of this variable is the first name of the files which are
generated by the automatic disk storage scheme. The default value is the first

three characters of the user’s login name concatenated with a three-digit random
number (e.g. ECR864)

STORENUM - The value of this variable, an integer, is the second name of the
last file written. Each time a file is written, this value is first increased by 1, so
it must always be an integer. It is initially set to 0.

FILESIZE - The value of this variable is the number of expressions written
into each file. The default value is 186.
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DEVICE - The value of this variable is the default device. It is initialized to
DSK. '

UNAME - The value of this variable is the default sname. It is initialized to
the user’s login name, if he has a disk directory, and to USERS otherwise. UNAME
determines to what directory disk files will be written.

DIREC - may be used as an alias for UNAME.

DSKALL - If TRUE will cause values, functions, arrays, and rules to be written
periodically onto the disk in addition to labelled expressions. TRUE is the default
value whereas if DSKALL is FALSE then only labelled expresions will be written.

15.3 Explicit Storage of Expressions

15.3.1 Use of the storage functions

The functions SAVE, STORE, and FASSAVE allow the user to explicitly state
that certain expressions should be written onto the disk. These functions also
allow him to specify the file into which these expressions should be written.
They allow the user to store away arrays, function definitions, rules, and any
other type of information. The main purpose of these functions is to allow the
user to save expressions onto the disk so that they can be read into future
MACSYMAs.

SAVE and STORE are identical in all respects but one. When an expression is
STOREd it is both written onto the disk and removed from main memory. (When
the expression is referenced, of course, the correct value is retrieved from the
disk.) When an expression is SAVEd, it is written onto the disk but not removed
from main memory. The only difference between these two functions is their
effect on main memory storage.

FASSAVE is similar to SAVE but produces a FASL file in which the sharing of
subexpressions which are shared in core is preserved in the file created. hence,
expressions which have common subexpressions will consume less space when
loaded back from a file created by FASSAVE rather than by SAVE. The user
should note that FASSAVE files are not as flexible as SAVE files since the
RESTORE function (see below) cannot be applied to them. Also if the user’s
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MACSYMA is already near maximal allocation, FASSAVE , which uses a
considerable amount of space and time in doing its job, may not work, whereas
SAVE still might. '

SAVE, STORE, FASSAVE take any number of arguments. If the first argument
is a list it is assumed to be the.file specification (e.g. [fnl, fn2, DSK, directory]).
In accordance with the standard options for file specifications, the latter
arguments may be omitted from the list and the defaults will be assumed. If the
first argument is not a list, the expressions will be written into a file with the
default filename. The value of the MACSYMA variable FILENAME is the default
first filename, and the value of the MACSYMA variable FILENUM is the default
second filename. The value of FILENUM is increased by 1 each time a file is
written, so its value must always be an integer. FILENUM is initially 0. The value
of DEV is the default device, and the value of UNAME is the default username.

All arguments to SAVE or STORE, except possibly the first, must be one of
the following:

(1) The name of an "information list" (see 8.1). SAVE(VALUES) will not cause
MACSYMA options (e.g. SHOWTIME, RATPRINT, etc) to be saved. Also ALIASES

42 11

will be automatically saved with every use of the SAVE function if they exist.

(2) ALL When this atom is an argument every quantity associated with any
information list is written.

(3) [m,n] when this list is given as an argument, every label whose line
number lies between m and n inclusive gets written.

(4) When any other atom is an argument, it must be either an array, a
function, or have a value. It gets written onto the disk.

(5) A=B The effect is similar to the case where the argument is just B, i.e. B
gets written onto the disk. The only difference shows up if the file is read into
some future MACSYMA. In that case, the expression which is referred to as "B"
in the present MACSYMA will be referred to as "A" in the future MACSYMA. For
example, suppose the user wishes to save some expression, say D7, for use in a
future MACSYMA. He can execute STORE([FOO, BAR], YESTERDAYSD7 = D7). D7
is now stored onto the disk. When he comes back the following day and load in a
fresh MACSYMA he merely executes LOADFILE(FOO, BAR, DSK, ECR) and the
variable YESTERDAYSD7 will take on the value which D7 had yesterday. This
renaming however has no effect on the present MACSYMA, where D7 must still be
referred to as "D7". Note that if a SAVEd or STOREd file contains labelled
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exprassions they may conflict with expressions having the same label in the
MACSYMA into which the file is loaded. For example if D9 is in a file which is
loaded into a MACSYMA then it would replace the D9 which was already in the
MACSYMA (if there was a D9 generated), or it would itself be replaced by DS
when the new D9 was generated. To avoid this difficulty the user should give
labelled expressions a name as described in (4) above. He could also set
LINENUM in the new MACSYMA or save it from the old one so that line numbers
wouldn’t conflict.

The user should note that each use of the SAVE or STORE function will cause
exactly one file to be written, regardiess of the number of arguments the function
is given.. .

REMFILE(TRUE) will perform REMFILE() (see 15.2 - B) and in addition will
delete files created by SAVE or STORE which haven’t been assigned names
explicitly by the user.

Certain MACSYMA variables (i.e. LINENUM, FILESIZE, etc.) are used to
communicate to the MACSYMA system that certain options are in effect, or to tell
the system to use certain values. These variables should not be STOREd (though
they may be SAVEd), since the system programs will not be able to correctly
retrieve their values from the disk. In general, one should not attempt to STORE
variables whose purpose is to provide information to the system (i.e. MACSYMA
options).

15.3.2 Retrieval of expressions stored on disk

1 -'In the MACSYMA you are using

Expressions which are written onto the disk using the SAVE function also
reside in main memory, so the notion of retrieving them from the disk in the
present MACSYMA is not applicable. Expressions written onto the disk using
STORE, however, no longer reside in main memory. When such expressions are
referenced the system will always retrieve the correct value from the disk.
When a STOREd array is referenced, the array will be brought back to main
memory. Functions and values will be read from the disk correctly, but will not be
returned to main memory. If the user wants to bring an expression back to main
memory he may use the function UNSTORE. This function takes any number of
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arguments. Each argument must be an atomic variable, and if this atomic variable
refers to an expression which is stored onto the disk, the expression is returned
to main memory. Of course, when an expression is UNSTOREd, either by the user
or by the system (as happens when STOREd arrays are accessed), a copy of the
expression still remains on the disk in the assigned file.

2 - In future MACSYMAs

Files created by SAVE and STORE can be loaded into future MACSYMASs
using the- LOADFILE function. This will set up in main memory all those
expressions which were written into the file. Some of the expressions will have
different names than they had in the MACSYMA where they were created, if the
renaming option (i.e. arguments of the form A=B) of the STORE or SAVE function
was used. Also, unless the FASSAVE scheme was used, expressions will generally
take up more space than they did in the MACSYMA where they were created, as
sharing among common subexpressions will be Jost.

15.4 Saving a MACSYMA Overnight

Often a user in the middle of his work would like to save everything onto the
disk so he can go home and resume work tomorrow. When the user decides to
save the state of his MACSYMA, he should execute for example:
SAVE([fn1,fn2,DSK,directory],ALL)

This will write all his lines, arrays, functions, values, rules, and aliases (if he
has created any), and the current value of LINENUM into a single disk file named
“fnl fn2 (where these may be any names given by the user). Of course, the user
should choose names for his files which are unique. If he does not have his own
directory then he should use the USERS directory and his login name for the first
file name. If the automatic storage scheme was in effect he should now execute
REMFILE(); to delete useless files from the disk. When the user comes back the
next day he should load a fresh MACSYMA and execute one of the following two
functions:

LOADFILE(fnl, fn2, DSK, directory);

or RESTORE(/nl, fn2, DSK, directory);
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The first command will cause all expressions to be loaded into the present
MACSYMA. Whereas all the expressions may have fit into the MACSYMA in which
they were generated, they may not fit into a new MACSYMA, because common
subexpressions originally shared will not be shared in a new MACSYMA. However
if the OPTIMIZE function is used (see 6.2.3), then some sharing of common
subexpressions may be .obtained. The RESTORE function does not cause the
expressions to be loaded into main memory but does permit them to be accessed
when needed. (This is as though STORE had been used on the information) Thus
it should be used if it is not desired to bring all the expressions into main memory
at the same time. '
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In the LISP system in which MACSYMA resides, the space requirements of the
user’s programs and data may be increased during the execution of the programs.
This is in contrast to static storage allocation systems in which the storage is
completely allocated before the programs are executed and consequently the
storage requirements must be completely known before execution time and cannot
be changed during program execution. If they exceed the capacity of the memory
space that has been allocated for them, the programs will not be allowed to run.

With our LISP system, a certain amount of space is initially allocated, the
programs are started running, and the amount of space utilized changes during

execution. If at some point the limit of available space is exceeded, program
execution will be terminated.

This LISP divides up the available memory spaces into several portions on the
basis of what kind of data they will contain.

BPS - (binary program space) for compiled functions and arrays.
FIXNUM - for integers which fit into one machine word.

FLONUM - for floating point numbers.

BIGNUM - the first word of numbers bigger than one machine word.
SYMBOL - for atomic symbols.

ARRAY - for array indicators.

LIST - for anything else not in the other spaces, e.g. uncompiled functions,
symbolic expressions, etc.

PDL - for several kinds of pushdown lists.

When a MACSYMA is started up, each space is initially allocated some fixed
amount. These spaces will grow as the user interacts with MACSYMA, each
particular space growing as the user causes more objects to be created which
reside in that space. For example, executing a command line which causes an out-
of-core file to be loaded mainly increases BPS and LIST space. Also new labelled
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expressions are created every time a command line is executed and these occupy
LIST space. Push down lists are used to store variables, return addresses, and
other information related to the function calling mechanism.

When a space (except for BPS and the PDLs) is used up, a process is
initiated called "garbage collection” which attempts to free up storage so it can be
reused rather than trying to increase the size of the spaces. In very simple terms,
it marks every word in a particular storage space which is still being utilized and
then links up the unmarked words (termed "garbage™ on a chain to be used to
store subsequently created data. If this chain is not of a certain assigned minimal
size, a special allocation routine is invoked. At this point several possibilities can
occur, among which is the possiblity of increasing the size of the spaces. Before
these are described however, there is something to be mentioned which the user
should take note of. The initial allocations (later to be referred to as “level O
allocations”) are quite reasonable. Many problems run quite well using these
allocations. If the user’s problem does not run due to running out of storage, most
often this is due to one of the following circumstances and not to the insufficiency
of the allocations:

(1) The user has organized his problem poorly, thereby either not solving
the problem he intended to solve, biting off too much in too short a time, or
creating intermediate expression swell of perhaps incredible proportions. He
should get a feel for the size of all of his expressions and the behavior of
MACSYMA’s functions on them.

(2) The user is retaining expressions in core that are useless to him.
Since MACSYMA maintains a complete history of the user’s session, it does
not release the storage occupied by the user’s data unless explicitly
instructed to do so. This can be accomplished in several ways. One way is by
using the functions KILL, REMVALUE, REMFUNCTION, and REMARRAY (see
10.3) which unbind an item from the expression it represents thus freeing up
the storage occupied by the expression to be reclaimed on the next garbage
collection. It is recommended that the user give a name to all labelled
expressions which he wishes to keep around for a time, and then periodically
do a KILL(LABELS). He should also KILL. functions and arrays which he no
longer needs. Killing a name will not accomplish much unless the labelled
expression (D line) at which the assignment was done is also KiLLed because
the two symbols are holding onto the same expresson.

If the above approach is unacceptable because the (intermediate or final)
expressions which the user needs occupy a lot of storage, he can store them
on the disk (kill the corresponding label if any) and have them retrieved when
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needed. This can be accomplished in the following two ways (see Chapter
15). '

The STORE function can be used to explicitly transfer expressions from
main memory to disk. These will be brought back into main memory each time
they are referenced. Since the process of retrieving an expression from a
large file may be rather time consuming, the user can use the UNSTORE
function to bring an expression back to main memory and keep it there.
However, in general an UNSTOREd expression will occupy more space then it
originally did because several copies of common subexpressions will be
created. These were originally represented by pointers to a single copy.

Another way to transfer expressions to the disk is by using the automatic
storage mechanism. This will cause expressions to be STOREd automatically
in an effort to conserve space. As with the explicit use of the STORE
function, the expressions will be retrieved by MACSYMA when they are
referenced. There are two heuristics which MACSYMA uses to decide when
to store expressions. One is to STORE all values, functions, arrays, and
labelled expressions whenever available space becomes low. This is the
purpose of the DSKGC functicn. The other heuristic is to periodically STORE a
fixed number of labelled expressions whenever that many get created above
a minimum number which are to be kept around. The user can utilize this
option by setting the switch DSKUSE to TRUE. In addition if DSKALL is TRUE,
then all values, functions, and arrays will be written at this time as well.

(3) A recursive infinite loop has occurred because of a bug in either the
user’s code or in MACSYMA’s code. Such a loop would cause storage spaces
to grow indefinitely if possible. It may be difficult for the user to recognize
that this situation has occurred, as opposed to a real need for more space,
yet such a situation can cause havoc to any dynamic allocation scheme. By
typing a control-D the user will be informed whenever a garbage collection
occurs and a printout such as the following will occur:

;GC DUE TO ... SPACE

32729[33%] LIST, 1935[94%] FIXNUM, 511[99%] FLONUM,
; 509[99%] BIGNUM, 629[15%] SYMBOL,

; 480[93%4] ARRAY WORDS FREE

The numbers before the name of each space give the number of words of
that space which are available. The percentages refer to the ratio of the
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‘available amount of space compared to the total amount (used plus unused).
This may be of some help in determining whether the user’s computation is
doing what he expected. Typing a control-C will turn off this g.c. printout.

If the user feels that he is not in one of the above situations and that there is
a real need for more space, he can avail himself of the following scheme:

When a space, e.g. LIST is exhausted, MACSYMA will print:

You have run out of LIST space
Do you want more?
~ Type ALL; NONE; a level-no.; or the name of a space;

At this point the user can type a control-A and enter a (MACSYMA-BREAK).
He can then follow any of the procedures mentioned in (2) above. After getting
out of the break by typing EXIT; he can then type OK; which indicates that the
user believes he has freed up enough space thus making reallocation unnecessary.
If he is wrong, he will get the above message again. He can also reply with the
name of a space, i.e. one of FIXNUM, FLONUM, BIGNUM, SYMBOL, or ARRAY which
will cause the size of that space to be expanded. If he replies with LIST or ALL
then not only will list space be increased, but so will every other space. This is
because if he needs more list space, then he probably needs more of the other
spaces as well. Replying LIST also increments the "allocation level” by one.
There are 5 equi-spaced levels of allocation, ranging from the initial level O to
ievel 4. The user can also boost his MACSYMA up to that particular level of
allocation immediately by replying with that level number.

At level 4 the maximal allocation possible on the computer is just about
exhausted so that there is no higher level. Also, the amount of core space
devoted to the allocatible storage spaces is obviously .inversely proportional to
the number and size of out-of-core files which are loaded in. If many out-of-core
files are loaded in, allocation level 4 will not even be attainable. The user may
wish for this reason alone to continue now and then with a fresh MACSYMA. If
the user’s computation exceeds this level of storage it will error out with the
message "..STORAGE CAPACITY EXCEEDED". Since the size of the spaces can’t be
decreased, it is important not to increase them unless it is necessary.

If the user knows initially that his problem will require much space, the
function ALLOC is provided. ALLOC takes any number of arguments which are the
same as the replies to the "run out of space” question above. It increases
allocations accordingly.
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Lastly, if he is running a MACSYMA disowned, or for other reasons wishes
storage space to be increased automatically as needed without having any
questions asked, the user may set the switch DYNAMALLOC [FALSE] to TRUE
which will allocate additional space whenever necessary.

Like the other spaces BPS and the PDLs cannot be decreased. BPS will
continue to grow until the MACSYMA runs out of address space so caution should
be exercised in causing out-of-core files to be loaded. For example, once the
integration file is loaded into the user’s MACSYMA it is there to stay even if he
no longer uses it. The allocation .of the PDLs is. sufficiently large, so that if they
are ever caused to overflow it is probably due to a recursive infinite loop in the
user’s programs.
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.17 Simple Plotting Functions

The MACSYMA functions PLOT,PARAMPLOT,GRAPH, and MULTIGRAPH produce
character plots of specified functions and sets of data points. (They can also be
used to produce output files for plotting on the Calcomp plotter or XGP attached
to the PDP-10 used by the Artificial Intelligence Group). The format of these
functions and the variables used by the corresponding routines are described
below: '

. Variables
LINEL - width of graphing area in terms of nurbber of characters.
PLOTHEIGHT - height of graph in terms of number of characters.
XAXISIFALSE] - if set to TRUE will cause the Y=0 axis to be displayed.

YAXIS[FALSE] - if set to TRUE will cause the X=0 axis to be displéyed.
Formats for PLOT and PARAMPLOT

PLOT(F(x), x, low, high) - plots the expression F(x) over the domain low < x <
high. ' ‘

PLOT(F(x), x, low, high INTEGER) - as above, but plots F(x) only for integer
values of x. :

PLOT(F(x), x, [xl, x2, x3, .., xn]) - plots the function F(x) for the values
x1,%x2,x3,...,xn. o

The first argument to PLOT may also be a list of functions rather than just a
single function. This permits several functions to be plotted on the same set of
axes. Three optional final arguments may also be given. They are: (1) an X axis
label (quoted string or name), (2) a Y axis label, and (3) a list of plotting
characters used for the given function(s) enclosed in "s. (Note also that if a
special symbol such as ; , 8 , etc. is used it must be preceded by a \.) An * will
be used to plot any functions which are not given a particular plotting character.
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PARAM_PLOT(fI(t),fZ(t),t,lo»mhigh) plots the plane curve f(t) = ( f1(t) , f2(t) ) with
parameter t. The syntax is basically like that of plot. For example,

PARAMPLOT(COS(T), SIN(T),T,0,2¢4P1)
plots a circle. Also several curves may be presented at the same time by using

the followmg syntax
- h1(Y], [fAt), g2(V), .., h2(t)], & low, high, [list of
= (f1,£2), g(t) =

PARAMPLOT([fI(Y), gl(t), .
plotting . characters]) - plots the plane curves f(t)
(g1,g2),..,h(t) = (h1,h2) using the specmed plotting characters or the default

"+". For example,

PARAMPLOT([COS(T),COS(T)+7],[SIN(T) SIN(T)],
7,0,2x%PI,["€"])

plots two circles. _
The user may wish to TRANSLATE or COMPFILE (see 10.8) the functions to

be plotted as they might b be evaluated many times.
Formats for GRAPH and MULTIGRAPH:
, yn)) - Graphs' the two sets of data

GRAPH([x1, x2, x3, .., xn}, [yl, y2, y3, .
points.

GRAPH([[x1, y1], [x2 y2j .. [xn, yn])) - Graphs the points specified by the list
of coordinate pairs.

GRAPH(xset, [ysetl, yset2,., ysetn]optional-args) - allows graphing of one x-
domain with several y-ranges; e.g. GRAPH([0,1],[[0,1],[1,2]),["&"].

MULTIGRAPH([ [xsetl, ysetl], .., [xseln, ysetn] ], optional-args) - allows the user
to produce a scatter-graph involving several x-domains each with a single y-

range; e.g. MULTIGRAPH([ [[0,1],[0,1]], [[3,4}[1,2]] },("&"D
The three optional final arguments mentioned above under 'PLOT may also be

used with GRAPH and MULTIGRAPH.
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The plot produced by the above functions is a character plot on a coordinate
system defined by axes along the minimum x and y values of the plot. The x and y
coordinates are independently scaled to optimally use the specified graphing area.
Note that this may distort the shape of the graph e.g, a circle could become an
ellipse. The origin of the graph (left-hand corner) is given on the graph by the
values of XORG and YORG; the computed increments (= one character) are given
by the values of XDELTA and YDELTA and the maximum X and Y values are given
by XMAX and YMAX. The axes are labeled with the number sequence
0,2,4,6,8,0,2,4,.. as an aid in counting the number of increments from the origin.

When a graph is completed, the user must type a single character (on non-

printing consoles), such as space or carriage return, to return control to
MACSYMA.

Examples
(C1) XAXIS:YAXIS:TRUES

(C2) PLOT([1/(X~2+1),%X*2-1],X,-2,2,[8]);
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(C2) POLARPLOT(RHO,NUMBREV):=BLOCK([THETA, LIMIT, X, Y, P, NUMER,
RATPRINT], NUMER:TRUE, RATPRINT:FALSE, THETA:0.0, X:Y:[1,
LIMIT:724NUMBREV, FOR I:1 THRU LIMIT DO
( P:RHO(THETA), X:CONS(PxCOS(THETA),X),
Y:CONS(PxSIN(THETA),Y), THETA:THETA+XP1/36.0),
GRAPH(X,Y,X,Y))$ " -

(C3) XAXIS:YAXIS:FALSES

(Ca) F(T):=4-COS(8.0/3.0&T)8
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(C5) POLARPLOT(F,3)%
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18 Complex Plotting and Graphics---PLOT2

18.1 Introduction

This is a description of the functions contained in the following 6 files:

APLOT2 > ARC CFFK, TEKPLT > ARC CFFK, PLOT3D > ARC CFFK

WORLD > ARC CFFK, PRINT > ARC CFFK, IFFUN > ARC CFFK.
They will be loaded yp as needed when most of the functions below are used.
However to- get the "complete” PLOT2 environment,
LOADFILE(PLOT2,LISP,DSK,SHARE) is recommended. This loads in complete
AUTOLOAD properties for the functions described below. The effect of loading
this file will be to cause the PLOT2 package to be automatically loaded when you
need it. If you use PLOT2 regularly, you should consider including PLOT2 LISP DSK
SHARE in your MACSYM (INIT) file; it will take up neglegible room in your
MACSYM.

The capabilities of the routines described here include plotting of .several
curves on a single graph, plotting several graphs in different positions on the
screen, saving plots, replotting plots with different scales without having to
recompute any points, plotting of 3 dimensional surfaces, plotting of user defined
dashed lines and symbols.

The devices supported are: the Tektronix 4010 and 4013, the Imlac PDS 1

and PDS 4 (using ARDS graphics conventlons), the XGP and the Gould line-printer
(at MIT) and printing and display consoles in a "preview” mode.

18.2 Two-Dimensional Plotting

PLOT2(y-exprs,variable, vaf-range,optianals-args) plots y-exprs on the y axis as
variable (the x axis) takes on values specified by var-range.
y-exprs can take one of two forms:

i) expr plots a curve of éxpr against variable

ii) [exprl,exprd, .. ,expri, .. ,exprn] plots n curves of expri
against variable. expri gets evaluated in the context
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FLOAT(EV(expri,variable=value = gotten  from var-range,
NUMER)). It is an error if this doesn’t result in a floating point
number. :

var-range can have the following forms:

i)‘ low,high, where low and high evaluate to numbers. low may
be either greater or less than high. variable will take on
CALCOMPNUM values equally spaced between /ow and high.

Note that the first argument will be evaluated at /ow
first e.g. PLOT2(1/XX,-1,-3); calculates 1/(-1.0) before
1/(-3.0). This will only make a difference if the
computation of the first arg changes a variable which
changes the value returned by subsequent computation.
Whether or not low < high, min{/ow,high) will be on the left

~ of the plot.

i) low,highINTEGER. As in i), except variable will take on all
integer values between fow and high inclusive.

i) [vall,val2, .., vain] . variable takes the values specified by
the list :

iv) arrayname where arrayname is the name of a declared
floating-point  one-dimensional. array (i.e. declared by
ARRAY(arraynameFLOAT, max-index);). variable takes the
values from arrayname[0] thru arrayname{max-index] (max-
index is the maximum index of arrayname

optional-args can be any of the following:
i) X-Label, Y-Label or Title descriptor
ii) Line type descriptor
iii) FIRST, SAME and LAST .
iv) POLAR, LOG, LINLOG, LOGLIN

The optional arguments may appear in any order. The rule for evaluation of
the optional args is as follows. If the argument is atomic it gets evaluated.
The resulting arguments are the ones that get used.

If you want to plot more than 3-4 curves on the same plot investigate
using the NOT3D option to PLOT3D (see 18.4)
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Examples
PLOT2(SIN(X),X,-%PI,%PI); plots sin(X) against X as.X takes on
CALCOMPNUM values between -%PI to X%PI
PLOTZ(X!,X,OEG.INTEGER); plots X! as X takes integral values

between 0 and 6
F(X):=SQRT(X); '
PLOT2(F(X),X,[-2,3,100.12]); plots F(X) as X takes the values in the
values in the list
PLOT2([X+1,X*2+1],X,-1,1); plots 2 curves on top of each other

PLOT2(y-funs, var-range,optionals-args) is the alternative form for PLOT2. y-funs
must be a function of one argument or a list of functions of one argument.
The functions must be either translated or compiled functions which return a
floating point number when it is given floating point arg (or integer arg if the
INTEGER arg to PLOT2 is given). This form of PLOT2 acts as though you had
given a argument to the y-funs, and also specified that argument as the
variable in the form above. E.g. PLOT2(F,-2:2); acts like PLOT2(F(X),X,-2,2);
This is supposed to provide a quicker evaluation of the first arg and for that
reason NO checking is done on the result. If the wrong kind of number is

returned, the resulting plot will not be meaningful.

TRANSLATE : TRUE ;

F(X) :=(MODEDECLARE (X, FLOAT), EXP(-XX));
PLOT2(F,-2,2);

PLOT2(F,[-2,-1,0,1,2]);
ARRAY(V,FLOAT,10);

FOR I FROM 0 THRU 10 DO V[I]:FLOAT(IsI);
PLOT2(F,V);

GRAPHZ(x-Iists,y-Iists,optianal-args) plots points specified by the first x-lists and
y-lists. The format for x-lists can be one of ‘ ‘ ‘

i) [x-ptl,x-pt2, .. x-pti, .. X-pln] where x-pti evaluates to a
number _

i) arrayname where arrayname is the name of a declared one-
dimensional array of floating point numbers
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iii) 2d-arrayname where 2d-arrayname is the name of a
declared two-dimensional array of floating point numbers (i.e.
by ARRAY(2d-arrayname, FLOAT, max-row-index,max-col-
index);) :

iv) [x-listl,x-list2, .. x-listi, .. x-listk}] where x-listi can have
the form of either i) or ii).

The format of y-lists is similar. The format of optional-args is the same as
for PLOT2. : _ .

 Note that GRAPH2 performs .the same job as the MACSYMA function -
MULTIGRAPH and that GRAPH2 is thus slightly incompatible with GRAPH FASL.

PARAMPLOT 2(x-exprs,y-exprs,variable,var-range,optional-args) plots x-exprs as
the x coordinate against y-exprs as the y coordinate.

The format for the first two arguments is the same as that for the first
argument to PLOT2. Thus if x-exprs is [x-exprl, x-exprd, .. x-expri, .. ,X-
exprn] and y-exprs is [y-exprly-expr2, .. ,y-expri, .. ,y-exprk], then
max(n,k) curves will be plotted. They will be (assuming n > k):

x-exprl vs. y-exprl, .. x-exprk vs. y-exprk,
x-expr(k+1) vs. y-exprk, .. ,x-exprn vs. y-exprk

The format for the.remaining arguments is the same as for PLOT2.

PARAMPLOT2(x-funs.y-funs,var-range,optional-args) efficiently evaluates its first
2 arguments in the same way that the alternative form of PLOT2 works.

Examples

TRANSLATE : TRUE; _ causes automatic translation
F(X):=(MODEDECLARE(X,FLOAT),COS(X));

G(X) :=(MODEDECLARE(X,FLOAT),SIN(X));

PARAMPLOT2(F,G,0,2%x%PI); plots F(x) vs G(x) as x goes from 0 to 2x%PI

 PARAMPLOTZ(SIN(T),COS(T),T,0,2%%PI);

plots sin(T) for the x-axis and cos(T) for the y-axis as T takes on CALCOMPNUM
(see 18.2) values between 0 and 2+#%Pl. (If EQUALSCALE is TRUE this draws a
circle)) '



264 18.2 Two-Dimensional Plotting MACSYMA

CALCOMPNUM[20] is the number of points PLOT2 and PARAMPLOT2 plot when
given the Jow,high type of variable range. The default if you load up
PLOT2,LISP,DSK,SHARE is 20, which is sufficient for trying things out. 100 is a
suitable value for a final hard copy.

18.3 What to Type When PLOT2 has Finished Plotting

When a plot is finished the bell on your terminal will be dinged. (In fact, this
happens only if WAIT is TRUE and if you're plotting on the terminal) The plotting
function is now waiting for you to type something before it exits and prints the
next C-Label on your nice plot. It does nothing with most characters; they are
left to be part of the next C-Line. However, the following characters are read
and interpreted specially.

space exits the plotting function.
return clears the screen and then exits.

tab causes the previous plot to be replotted.
This is useful if the. line is noisy, or, in conjunction with control/-A if
various plotting parameters need to be changed.

linefeed sends out a hardcopy signal. '
At present this can only be used to generate hardcopy on the
Tektronix hardcopy unit or on the Gould line-printer.

rubout names the plot.
PLOT2 types out "Enter name of plot” you reply plotname; this is
identical to typing a space instead of a rubout, followed by
NAMEPLOT(plotname);.

control-A :
This is not really read by the plotting function, but enables you to
enter a control-A break and change various options, before typing
tab to have the plot replotted. Make sure the plot has finished
before you type this.

PLOTBELL[TRUE] when FALSE inhibits the dinging of the bell.

While your plot is coming out your terminal is in a rather strange state (e.g. not
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echoing characters). Thus it is OK to type ahead to MACSYMA, but the ONLY way
you should interrupt the plot is with contro/-~. E.g. do not use contro/-A until the
plot has finished. :

18.4 Three-Dimensional Plotting

PLOT3D(z-exprs,x-var,var-range,y-var,varl -range,optional-args) makes a 3-.
dimensional plot of z-exprs against x-var and y-var. The plot consists of
curves of y-exprs against x-var (the x coordinate) with y-var (the y
coordinate) held fixed. Perspective is used and curves further away from the
viewer have those parts of them which are hidden by the closer curves
removed.

The format of y-exprs is the same as for PLOT2. The context of evaluation
is FLOAT(EV(exprix-var=value gotten from var-rangey-var=value gotten
from var1-range,NUMER)).

The format for var-range and varl-range is the same as for PLOTZ2
except that if varl-range is of the form low,high then y-var will take on
CALCOMPNUM1 values.

The format of optional-args is the same as for PLOT2 except that
additional options NOT3D, \3D, CONTOUR are available.

PLOT30D(z-funs,var-range,varl-range,optional-args) is analogous to the alternative
form for PLOT2. z-funs must be a function or list of functions of 2 arguments,
which must return a floating point argument when given floating point (integer,
if the INTEGER argument is used for either var-range or varl-range)
arguments. The functions must be translated or compiled. If you expect to
make several 3D plots this form is recommended. :

A simple example is

TRANSLATE : TRUE; causes automatic translation
G(X,Y):=(MODECLARE(X,FLOAT),EXP(~XxX-YxY)); defines a funtion G
PLOT3D(G,-2,2,-2,2); plots it
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GRAPH3D(x-lists,y-lists,z-listsoptional-args) takes 3 arguments (GRAPH2 takes 2)
and interprets them as lists of x, y, and z points which it uses to draw lines
using the 3d transformations. It can be used to add lines (e.g. axes) to your
3D plot. The hidden line routines are not used.

NOT3D

In this section we describe the option NOT3D. As an example, consider
PLOTSD(SIN(X)+A.X.F%PI,xPI.A.[-2,3.4,6].N0T3D)

which plots sin(X)+A for X from -%Pl to %Pl (CALCOMPNUM[20] points) and A
taking the values in the list. This is equivale_nt to:

ﬁLOTZ([SIN(X)-Z,SIN(X)*S,SIN(X)+4,SIN(X)+6],X.-%PI,XPI) ‘
but requires less typing.

The additionai NOT3D argument to PLOT3D, causes exactiy the same points as
in the bare PLOT3D to be calculated. Instead of plotting a 3-dimensional
representation of the data, the data is plotted in a 20 one. Specifically 1 20
curve of z vs. x for each y value, and so is a convement way to plot several
curves on the same plot.

PERSPECTIVE, REVERSE, VIEWPT, and CENTERPLOT
The following options govern the type of perspective view given.

PERSPECTIVE[TRUE], if FALSE causes a non-perspective view to be taken.
This is equivalent to extending the viewing position out to infinity along a line
connecting the origin and VIEWPT.

REVERSE[FALSE], if TRUE cause a left-handed coordinate system to be
assumed.

VIEWPT and CENTERPLOT determine the perspective view taken. They are
defaulted to be unbound. VIEWPT may be set to a list of 3 numbers and gives
the point from which the projection should be made. CENTERPLOT may likewise
be set to a list of 3 numbers and gives a point on the line of sight. The

projection will be made onto a plane perpendicular to a line joining VIEWPT and
CENTERPLOT.
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If VIEWPT and CENTERPLOT are unbound (the default) then they will be
chosen as follows: the extreme values of the coordinates are determined. This
gives the two points min: [xmin,ymin,zmin], max:[xmax,ymax,zmax]. CENTERPLOT is
chosen as (min+max)/2, and VIEWPT is chosen as max+3+(max-min). The view is
then one in which the z axis is vertical, the x axis is increasing towards you to
the left and the y axis is increasing towards you to the right.

If CENTERPLOT is FALSE then the old type of perspective view will be given
(like setting the x and z components of CENTERPLOT to the corresponding
components of VIEWPT). , .

18.5 Using the XGP from PLOT2

To get plots out on the XGP, simply do PLOTMODE(XGP, ..) where ... is the
correct plot mode for your terminal (i.e. GR for Grinnell TV’s, T for Tektronix, or D
for character dispiay terminais like VT52’s). Then you can use iinefeed at the end
of the display of a plot, or HARDCOPY(); to cause a hardcopy to be submitted to
the XGP (it is processed by the Gouid spooier first). if MIT-AIl is up and the
queuing for the XGP is successful, you will receive a message from the XGP
spooler when your plot is printed. If MIT-Al is down, your plot will be processed
into an XGP scan file, .GLPT; > SCN, and the Gould spooler will send you a
warning message telling you that MIT-Al is down. You must copy the SCN file to
MIT-Al yourself when MIT-Al comes up and queue it by doing

:XGP ;SCAN AI:dir;x SCN

where dir is the directory on MIT-Al to which you copied the files (use MACSYM;
if you don’t know of any other directory to use).

If you use the NAMEFILEZ command instead of HARDCOPY or linefeed, you can
print the plot file later by doing

:GTPL dir;fnl fn2/a/o[x]

where dir, fnl, fn2 are the directory, first file name, and second file name of the
plot file stored with NAMEFILE. PLOTLFTMAR[128] and PLOTBOTMAR[320]

1. The computer at the MIT Al Lab

2. NAMEFILE(filespec) simply copies the PLOT2 scratch file to filespec
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adjust the bottom margin and left margin for the XGP plots. These default to

values3 such that the plots will fit comfortably on an 8 1/2 x 11 page. |

There are many other features of PLOT2 (such as three-dimensional and

contour plotting) which the user can learn about by reading SHARE;PLOT2 USAGE

and SHARE;PLOT2 RECENT. As an example, consider
(PLOTMODE(XGP,D).HINDOH:[100,900.0,950])3
(CALCONPNUH:CALCONPNUHI:40.VIEUPT:[-30.-20.5])8

PLOT3D((X“3+Y‘4-0.2#X)#EXP(-X‘2-Y“2)+0.3#EXP(-(X-1.225)‘2-Y‘Z),
X.-3.3.Y.-3.3);_

NAMEFILE(PLOT, TEST,DSK,CFFK);

The resulting plot is shown on the next psge

3. Whose units are given in increments of 1/200 th of an inch



MACSYMA 18.5 Using the XGP from PLOT2 269




270 MACSYMA
" 19 Debugging in MACSYMA

When the user’s command lines, especially functions and BLOCK programs, do .
not do what is expected or generate errors, MACSYMA offers several debugging
alternatives: '

(1) The user may trace function calls by typing TRACE(funl,fun2..), where
the funi are either MACSYMA or user-defined functions. This will cause a printout
of the function name and its arguments each time it is entered, and of the function
name and the value it returns each time it is exited. A count which is the level of
recursion is also printed. Usually, this is all the tracing power the user will need,
although MACSYMA offers the full capabilities of the LISP tracing package including
conditional and breakpoint tracing. This will not be described here - for
information see [Mn1] MACSYMA uses trace-syntax very similar to that of LISP.

To check which functions are currently under trace, the user may type
TRACE(). To remove tracing of functions use UNT! RACE(funl,fun2,.). To untrace
all previously traced functions type UNTRACE(). Since the TRACE package takes
up some of the user’s workspace in core, when finished with it the user should
type REMTRACE(). It can always be reloaded again if necessary.

(2) The assignment of variables can be traced by setting the variable
SETCHECK to a list of variables (which can be subscripted). When a variable on
the list is bound (either with : or :: or function argument binding) then a message
== variable "SET TQ" value -- will be printed. If the variable SETCHECKBREAK is
set to TRUE then a (MACSYMA-BREAK) will be caused each time a variable on the
SETCHECK list is bound.

(3) By setting the variable REFCHECK[FALSE] to TRUE, the user will be
informed when each of his variables which has a value comes up for evaluation for
the first time during the course of a computation. This has a dual purpose. The
user will be informed of evaluations he may not have been aware of which are
the result of assignments he made long ago. It also gives him a sort of
chronological trace of his computations which may be helpful in finding out where
an error has occurred. ' :

(4) By setting the variable PREDERROR to TRUE, the user will be informed of
predicates of IF-THEN-ELSE statements which failed to evaluate to either TRUE or
F

ALSE. :

(5) The user may have variables which he intends not to use purely
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symbolically, i.e. they are to have values all the time. By typing
DECLARE([varl,var2,.],BINDTEST) MACSYMA will give the user an error
whenever any of the vari appear in a computation unbound. To remove a
BINDTEST declaration, the user may use the function REMOVE. (see 8.1)

(6) When an error occurs in the course of a computation, MACSYMA prints
out an error message and terminates the computation. At times the user may find
it helpful to investigate the environment at the place of the error. To do so, type
DEBUGMODE:TRUE or DEBUGMODE:ALL and repeat the computation. This enters a
special debugging mode which will "break” or pause when an error occurs. This
mode may be terminated by typing DEBUGMODE:FALSE. When an error occurs in
debugging mode, (ERROR-BREAK) is -printed. MACSYMA is then waiting for the
user to type something. He may type any command line just as if he were at "top
level”. The command lines will be evaluated in the environment of the error. If
the user had done DEBUGMODE:ALL, he may now type BACKTRACE; and
MACSYMA will print out a backtrace, which is a list of the function calls the user
is currently in together with the arguments they were called with, ordered from
most recent to earliest i.e., when reversed, this list shows a trace beginning from
the initial function and ending at the last call entered including only those function
calls from which the user still has not exited. To exit from the MACSYMA error-
break and return to "top-level”, type EXIT;.

The user may also enter the error-break at any point, by typing control-A or
by executing the function BREAK (see 10.6). This will simply cause his
computation to pause, while he investigates at will. %% refers to the last
computed result while in the MACSYMA break. % still refers to the last resuit
computed at top-level. Upon typing EXIT; the computation will resume. [f he
wants to quit a computation begun in a control-A break without quitting the top-
level suspended computation, the user can type control-X.

During a break one may type TOPLEVEL;, This will cause top-level
MACSYMA to be entered recursively. Labels will now be bound as usual.
Everything will be identical to the previous top-level state except that the
computation which was interrupted is saved. The function TOBREAK() will cause
the break which was left by typing TOPLEVEL; to be re-entered. |f TOBREAK is
given any argument whatsoever, then the break will be exited, which is equwalent
to typing TOBREAK() immediately followed by EXIT;.

" In the following example, an attempt is made to define a function ROOT which
finds an approximate root to an expression using Newton-Raphson iteration.
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(Cl1) ROOT(F.V):=BLOCK([VAL,FUN.DER].DER:DIFF(F.V).VAL:0.0.
TEST,FUN:SUBST(VAL,V,F),IF ABS(FUN)<5.0E-7 THEN
RETURN(VAL),DER :SUBST(VAL,V,DER),VAL:VAL-FUN/DER,
GO(TEST))S

(C2) NUMER:TRUES

(C3) F:SIN(%PIxX)-%PIx(X-1)8

(C4) ROOT(F,X);

3.3116898E+8 ARG TOO BIG FOR ACCURACY - SIN

(C5) DEBUG:TRUES

(C6) DEBUGMODE : TRUES

{C7) ~7C4;

F has value

V has value

VAL has value

FUN has value

DER has value

3.3116898E+8 ARG TOO BIG FOR ACCURACY - SIN

_(ERROR-BREAK)

VAL ;

1.0541436E+8

_DER;
- 2.98023224E-8

_TRACE(SUBST)$
~7rca;

{The n)umericai vaiue of %Pi is present below due to NUMER being set to TRUE
above. .
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ENTER SUBST [0.0, X, SIN(3.1415927 X) - 3.1415927 (X - 1)]

EXIT SUBST: 3.1415927

ENTER SUBST [0.0, X, 3.1415927 COS(3.1415927 X) - 3.1415927]

EXIT SUBST: - 2.98023224E-8 _

ENTER SUBST [1.0541436E+8, X, SIN(3.1415927 X) - 3.1415927 (X - 1))

[ R P R VP

3.3116898E+8 ARG TOO BIG FOR ACCURACY - SIN

try again

(This message is due to an error-break occurring within another error break.)

_EXIT;
EXITED FROM THE BREAK

(c8) <$>
_r7c4
MYFROOTC$)<$)>

(The user uses the MYF command of the MACSYMA editor to insert the definition
of ROOT into the edit buffer. The editor is then used to insert an IF statement to
test for DER being close to 0. The actual editing work is not shown.)

(C8) ROOT(F,V):=BLOCK([VAL,FUN,DER],DER:DIFF(F,V,1),VAL:0.0,
TEST,FUN:SUBST(VAL,V,F),IF ABS(FUN)<5.0E-7 THEN
RETURN(VAL),DER:SUBST(VAL,V,DER),IF ABS(DER)<5.E-8
THEN ERROR("DERIVATIVE IS ZERO"),VAL:VAL-FUN/DER,
GO(TEST))S

(C9) UNTRACE():
(D9) | [SUBST]

(C10) DEBUG:FALSES
(C11) “-c4;

DERIVATIVE IS ZERO
QUIT (This is due to the ERROR function being executed.)
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Appendix | - Multics MACSYMA -

MACSYMA is also implemented on the Multics operating system which runs on
Honeywell Series 60 machines (the 68/80 in particular). It is the same MACSYMA
as on the ITS system; the only differences that exist are due to the interaction of
the LISP in which the MACSYMA is imbedded with a different operating system.
Since this manual is mainly written for using a MACSYMA on ITS, one has to be
aware of these differences if one is to use the manual while using a MACSYMA on
Muittics. -

Procedures for logging in and out will not be given here. It is assumed that if
one has access to a Multics one will either know the procedures for logging in or
will be able to obtain adequate documentation in order to learn how to do so.

1) To use a MACSYMA on a Multics one simply invokes the “macsyma”
command. However since this command may not be in one’s default search rules, it
may be necessary to link to the command or to refer to it by its full pathname.
For example, on the Multics at MIT, the full pathname of the command is
">udd>ap>library>macsyma”.

When the command is invoked, the MACSYMA system is loaded and prompts
the user in the standard manner.

2) All input must end with a newline (return) after the semi-colon or dollar-
sign is typed.

3) The terminator character for the editor is “"&" instead of altmode.

4) Control characters are not entered in the manner described in the rest of
this manual but are instead entered by the conventions of the Multics
implementation of LISP. This is done by using the “attention” or "break™ button on
the console followed by the letter of the alphabet for the control character you
want, followed by a newline character. i.e. when you hit the attention key, the
system will type "CTRL/", and you should respond by typing the appropriate
character. If you want a control-Z, for example, you would type the letter "Z"
followed by a newline. The various control characters have the same meaning as
cn ITS MACSYMA. The only one that is different is control-Z which rather than
"returning” to a monitor level instead calls a new invocation of the monitor at a
higher ievei i.e. it is the same thing as a normai Muitics quit signai. A “start”
command will start the macsyma moving again.
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5) There are two different ways of referring to files in the Multics hierarchy.
MACSYMA commands that take file names as arguments can be given the Multics
file name enclosed in double quotes as a single argument. An alternative form of
reference is one that maps the ITS way of referring to files with four arguments
into a reasonable Multics filename. Thus: :

(cl) batch("random.demo");

(cl) batch(">udd>Project>IRNurd>random.demo®);
{(cl) batch(random,demo); :

(c1) batch(random,demo,dsk, ">udd>Project>IRNurd");

would all refer to the same file if the current working directory were
">udd>Project>JRNurd".

(6) To use the Multics plotting package, set the variéble MULTGRAPH to
TRUE. ‘ :
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Appendix Il - A MACSYMA Grammar Primer

The concepts MACSYMA deals with are primarily mathematical, and its
grammar has been designed to reflect this emphasis by making the representation
of expressions as natural as possible. All the usual mathematical operators are
predefined, and MACSYMA commands are expressed exclusively in functional
notation. In addition, MACSYMA provides a flexible syntax extension capability for
users who require additional operators.

For the purposes of this appendix, the internal representation of a MACSYMA
expression can best be described in terms of function calls. All expressions. are
represented as appropriately nested function calls; all actions are the result of
function evaluations. This primer is intended to ‘introduce the reader to
MACSYMA’s syntax and and syntax extension capabilities and to help him utilize
these features most effectively in syntactically expressing the semantics of the
job he wants done.

It is assumed here that the reader is already familiar with the rules of
formation for lexemes, i.e. integers, real numbers, atoms, and strings. At present
these rules are somewhat confusing and should be mastered before proceeding
(see 2.3) .

The Parser

When a user types a string of characters té MACSYMA, it is first broken up
into lexemes by a lexical-scanning program. For example the input "IF X>0 THEN
X ELSE -X" becomes (IF X > O THEN X ELSE - X). This sequence of lexemes is
then passed to an "extended operator precedence parser with types” and
converted into MACSYMA’s internal representation, i.e. suitably nested function
calls. In this case, the result would be as follows:

. “l F"( "> "( xpo) pxp"- ”( X))

Such functional notation is always legal MACSYMA syntax, and it will be used
throughout this appendix; as above, to represent the meaning of varicus syntactic

constructions. '



MACSYMA Il A MACSYMA Grammar Primer 277

Every lexeme in MACSYMA is either an "operator”, a “"delimiter”, or an
"operand”. The operators and delimiters taken together are sometimes referred
to as the "keywords" of MACSYMA. With each operator is associated a specific
parsing function which prescribes how its arguments are to be selected from the
input. Thus, for example, the arguments of an infix operator like ">" are to be
found, one to the left and one to the right of the operator. The resulting internal
representation is a function call of the operator on its arguments. For example, in
the sentence above, ">" has as arguments "X" and "0", and the internal
representation of "X>0" is ">"(X,0).

‘A delimiter is a reserved lexeme used by certain operators to mark their
arguments. A delimiter may not be used as an operand but has no special parsing
function associated with it. In the sentence above, "THEN" and "ELSE” are
delimiters, used by the operator "IF" to mark its second and third arguments.

An operand is a lexeme with no special parsing properties. All lexemes,
unless otherwise specified, are operands. Operands serve as the arguments of
operators to form function calls which may then in term serve as arguments to
other operators. In the example sentence, "X" and "0" are operands; ">"(X,0), X,
and "-"(X) also appear as operands to the operator "IF". Note that any operator
may be used as an operand by enclosing it in double quotes, e.g. INFIX("&").

The process of parsing is one of recognizing the operators, delimiters, and
operands in a sequence of lexemes and correctly identifying the arguments to the
operators in order to construct the function nesting implicit in the sequence.
There are only seven types of operators in MACSYMA, most of which should be
familiar to mathematicians. These seven types are described below.

PREFIX OPERATORS

A PREFIX operator is one which signifies a function of one argument, which
argument. immediately follows an occurrence of the operator. Some examples are:

NOT TRUE means "NOT" (TRUE)

- A | means "-" (A).

This resembles the‘ usual functioﬁal notation except that the parentheses

surrounding the argument are here unnecessary. Of course any expression may
be embedded to arbitrary depth within another as in the following.
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NOT NOT TRUE means “"NOT" ("NOT" (TRUE)) = TRUE

POSTFIX OPERATORS

POSTFIX operators like the PREFIX variety denote functions of a single
argument, but in this case the argument immediately precedes an occurrence of
the operator in the input string.

31 means " (3)

AN means "II" (A)

INFIX OPERATORS

lNFIX operators are used to denote functions of two arguments, one glven
before the operator and one after. Agam some examples:

A™2 means A" (A2

3*3>10 means " (" (3,3), 10)

A variation of the INFIX operator is the NARY.

NARY OPERATORS

An NARY operator is used to denote a function of any number of arguments,
each of which is separated by an occurrence of the operator.

AxB:C ~ means "+" (A,BC) .

A>B AND TRUE AND C<D means “AND"(">"(A,B),TRUE,"<"(C,D))

are all examples of NARY operators.

SPECIAL OPERATORS
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NARY operators are useful for functions whose arguments are in one way or
other homogeneous. For other functions of many arguments, special forms are
required. A familiar example is the conditional statement.

IF A>2 THEN A-1 ELSE A means "IF*(">"(A,2),"-"(A,1),A)

Here the operator "IF" denotes a function of three arguments; the first is
found immediately after the "IF"; the others are introduced arguments signalled by
the occurrence of the delimiters associated with "IF", namely "THEN" and "ELSE".
. Once again, delimiters are not in themselves operators but are merely used by .
operators to mark introduced arguments. Using a delimiter out of the context of
the operators for which it was defined will result in a syntax error.

Another example of an operator with introduced arguments is the iteration
statement. Here the delimiters precede their defining operator.

FOR T FROM 2 STEP 3 THRU 10 UNLESS A>10 DO PRINT(A)

In this example each of the indicated segments contributes an argument to the
"DO” function. It happens that in MACSYMA any of these arguments may be
omitted, or if given they can be given in any order. Thus the following are all
legal, though not necessarily equivalent, sentences.

THRU 10 DO S:5°2
FOR I FROM 2 THRU 5 DO PRINT (A[I])
THRU 5 UNLESS A>1000 DO A:A!

When arguments are omitted as above or like the "ELSE” argument of the "IF"
operator, the corresponding "holes” are filled with predetermined default values.
These are listed in the dictionary below. Also the "DO" statement has some
additional flexibility. The "STEP" argument can be replaced by a "NEXT"
expression which denotes what the iteration variable is to be set to on each pass
~ thru the loop rather than the value by which it is to be incremented; and there
are permitted- arbitrarily many "WHILE" or "UNLESS" clauses as termination
conditions. Some examples with answers:

THRU 3 DO PRINT (A)
A
A

A

DONE
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FOR I STEP 2 THRU 3 DO PRINT (I)
1 " '
3

OONE
FOR I NEXT I+2 UNLESS I>3 DO PRINT (I)
| .
3

DONE

'NOFIX OPERATORS

NOFIX operators are used to denote functions of no arguments. The mere
presence of such an operator in a sentence will cause the corresponding function
to be evaluated. :

QUIT means "QUIT" ()
LOGOUT _.means “"LOGOUT" ()

Care should be taken in using these operators; however, since they tend to
look much like variables but semantically are very different.

MATCHFIX OPERATORS

MATCHFIX operators are used to denote functions of any number of
arguments which are passed to the function as a list. The arguments occur
between the main operator and its "matching” delimiter. For example:

DA B C(] means D" (ABC)

‘A legal sentence in MACSYMA is a correct sequence of operators from these
seven categories and their operands. By “"correct” here we mean that due
respect has been shown the type of the operator, e.g. not giving two arguments
to a PREFIX operator, and that the two sole grammatical rules in the language
have not been violated. These ruies concern the "binding powers™ of MACSYMA’s
keywords and the "parts of speech” legal in each argument slot.



MACSYMA Il A MACSYMA Grammar Primer 281

BINDING POWERS

The binding powers of keywords are used to resolve ambiguities of argument
association such as that in the following example.

- 2331

Is this "-"("I"(233)) or ""("-"(233)); or, in other words, which operator gets
the operand "233" and which, the resulting function call? It is a convention in
MACSYMA that the keyword with the higher binding power gets the disputed
argument and the other is then applied to the result. In this case, the "left binding
power” of "I" (160) is greater than the "right binding power" of "-" (100); and so
"233" is associated with "!" and the resulting function call becomes the argument
for "-". ‘

Each keyword must possess a left and a right binding power to resolve such
conflicts. Some of these numbers are superfluous, such as the left binding power
of a prefix operator; and in such cases the binding power is arbitrarily taken to be
200. Currently the range of binding powers is 0 to 200.

- PARTS OF SPEECH

From natural language the notion of "part of speech” should be familiar.
MACSYMA also has parts of speech and constraints on which parts of speech are
legal in various contexts. Whereas binding powers are necessary to resolve
ambiguities af argument assignment, parts of speech exist solely to detect
unintentional syntax errors.

Every operator possesses a part of speech constraint on each of
its argument slots. Any operand filling a slot must satisfy the
associated constraint, or a syntax error will result.

There are only three parts of speech predefined in MACSYMA, namely EXPR,
CLAUSE, and ANY. An EXPR is essentially a mathematical expression; a CLAUSE, a
mathematical predicate or a command. Thus "A+B" is an EXPR but not a CLAUSE;
and "A+B>2" is a CLAUSE but not an EXPR. The part of speech ANY is used to
signify objects which may be either CLAUSEs or EXPRs, such as "F(X)". The parts
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of speech required by MACSYMA’s predefined operators are listed in the
dictionary below.

SYNTAX EXTENSION

- While MACSYMA’s syntax should be adequate for most ordinary applications,
it is possible to define new operators or eliminate predefined ones that get in the
user’s way. The extension mechanism is rather straightforward and should be
evident from the examples below. : -

(C1) PREFIX("DDX")$
(C2) DDX Y8 means *DBX"(Y)
(C3) INFIX(*"<-")8

(C4) A<-DDX Y8 means | "¢-%(A,"DDX"(Y))

An appreciation of the concepts and rules introduced in this primer should be
all that is necessary to use the syntax extension capabilities successfully. The
only form of syntax extension available is the definition of new operators. For
each of the types of operator except SPECIAL, there is a corresponding creation
function that will give the lexeme specified the corresponding parsing properties.
Thus "PREFIX("DDX")" will make "DDX" a prefix operator just like "-" or "NOT".
Of course, certain extension functions require additional information such as the
matching keyword for a matchfix operator. In addition, binding powers and parts
of speech must be specified for all keywords defined. This is done by passing
additional arguments to the extension functions. If a user does not specify these
additional parameters, MACSYMA will assign default values. The six extension
functions with binding powers and parts of speech defaults (enclosed in brackets)
are summarized below. '
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PREFIX(operator, rbp[180], rpos[ANY], pas[ANY])'

POSTFIX(operator, Ibp[180], Ipos[ANY], pos[ANY))

INFIX(operator, Ibp[180], rbp{180], Ipos[ANY], rpos[ANY}, pos[ANY))

NARY(operator, bp[180], argpos[ANY], pos[ANY))

NOFIXIoperator(pos[ANY]I)

MAfCHFIX(operaton' mafch, argpos[ANY], pos[AN_Y])

The defaults have been provided so that a user who does not wish to
concern himself with parts of speech or binding powers may simply omit those
arguments to the extension func_tions. Thus the following are all equivalent.
PREFIX("DDX",180,ANY,ANY)S$

PREFIX("DDX",180)$
PREFIX("DDX")$

It is also possible to remove the syntax properties of an operator by using
the functions REMOVE or KILL. Specifically, "REMOVE("DDX",0P)" or "KILL("DDX™)"
will return "DDX" to operand status; but in the second case all the other
properties of "DDX" will also be removed.

The following is an example of syntax extension to permit the use of set
notation. : :

(Cl) MATCHFIX("{","}")$
(C2) INFIX("|")8

(C3) {XIX>0}; '
(D3) {XI1x>0}

(C4) {X|X<2};
(D4) {xix<2}

(C5) INFIX(".U.")8

- (C6) INFIX(".I.")$
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Now assuming the functions ".U." and ".." have been appropriately defined as
union and intersection, the following interaction can occur.

(C7) D3.U.D4;
(07) UNIVERSE

(c8) D3.1.D4; , -

(08) {XIX>0 AND X<2)

(c9) (1,2,3})8
(C10) {(3,4,5}s

(C11) D9.V.D9.I1.D10;
(D11) {3}

Line Cl11 was parsed as ((D9.U.D9)..D10) whereas the usual convention
would call for the alternate parsing (DQU(DQIDlO)), which would have resulted in
:1,2,3} as value. The problem here is that the default binding powers for “.U."
and "l" are identical; so the parser associates them in left to right order. To
obtain the usual parsing, the syntax definitions in lines C5 and C6 must give ".I."
higher left binding power than ".U.”s right binding power as in the following.

(C12) INFIX(".U.*,100,100)$

(Cl13) INFIX(".I.',IZO,IZO)C

(Cl14) D9.U.D9.1.D10;
(D14) {1,2,3)

(C15) REMOVE(".U.",OPERATOR)S

(Cl6) D9.U.D1O;

Syntax error

D9 .U. xxx8xxx D10
Please rephrase or edit

A DICTIONARY OF MACSYMA’S KEYWORDS

The following is a list of all the keywords in MACSYMA, categorized with
espect to type With each keyword is given the information _hecessary to
ecreale Ilb bymacuc behavior. The abbreviations le, rbp, lpos ’ rpos ’
"bp", ana "pos” stand for “left binding power", rlght binding power”, left part of
speech”, "right part of speech”, "binding power”, and "part of speech”. The

-
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reader should consult the text of this primer to understand the significance of

these parameters. It should also be noted that some lexemes, like "-", have two
syntactic types.

b4

NOT

i

*%

AR .

>V Vv
n

i
>

Ibp

160
160

lbp

80
140
130
180
180
180

80

80
80
80
80

135

140

PREFIX OPERATORS
rbp . rpos
190 ANY
190 ANY
100 EXPR
100 EXPR
70 CLAUSE
POSTFIX OPERATORS
| lpos
EXPR
EXPR
INFIX OPERATORS
~ Ipos rbp rpos
ANY 80 ANY
EXPR 139 EXPR
ANY 129 ANY
ANY 20 ANY
ANY 20 ANY
ANY 20 ANY -
EXPR 80 EXPR
EXPR 80 - EXPR
EXPR 80 EXPR
EXPR 80 EXPR
EXPR 80 EXPR

EXPR 139 EXPR
ANY 134 ANY

. pos

ANY
EXPR
EXPR
CLAUSE

pos

EXPR
ANY

pos
CLAUSE
EXPR
ANY
ANY
ANY
ANY
CLAUSE
CLAUSE
CLAUSE
CLAUSE
CLAUSE
EXPR
ANY
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NARY OPERATORS

bp - argpos pos

120 EXPR EXPR

100 EXPR EXPR

10 ANY - ANY
100 EXPR EXPR

120 EXPR EXPR

60 CLAUSE CLAUSE

50 CLAUSE . CLAUSE

SPECIAL OPERATORS

ibp ~ Ipos rbp rpos pos

200 ANY MATCHFIX for right arg ANY

200 ANY MATCHFIX for right arg ANY

200 25 ANY ANY

FOR optional ’

FROM optional

IN optional

STEP or NEXT optional

THRU optional

WHILE any number of occurrences

UNLESS any number of occurrences

200 45 CLAUSE ANY

THEN

ELSE optional

MATCHFIX OPERATORS
match argpos ' pos
) ANY ANY

ANY ANY

MACSYMA
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ELSE
FOR

IN
NEXT
STEP
THEN
THRU
UNLESS
WHILE

FROM

888788888~

o
©

30
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Ibp
5
30

30
30

DELIMITERS

rbp

25

200
95
95
45
95
25
95
45
45

rpos
ANY

- ANY

EXPR
ANY
ANY
EXPR
ANY
EXPR
CLAUSE
CLAUSE

287
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Appendix lll - llustrative Examples

This appendix shows a complete interaction with MACSYMA. Three examples
are given. First an ordinary second-order differential equation is solved by two
methods. (1) by using pattern matching and solving the characteristic equation and
(2) by using Laplace transforms. The second example shows the conversion of an
expression from one coordinate system to another and the third example shows a
truncated power series solution of a differential equation.

Example 1

(Cl) BATCH(SOLDER,DEMO,DSK,DEMO);

(C2) /x THE FOLLOWING ROUTINE RETURNS THE HOMOG.-PART SOLN.
TO ZND ORDER LINEAR DIFF/L EQNS. WITH CONST. COEFFS. =/

MATCHDECLARE([B,C],RATNUMP)S

MATCOM FASL DSK MACSYM BEING LOADED
LOADING DONE

(C3) MATCHDECLARE(F,FREEOF(U))$
(C4) ALIAS(D,DIFF)S

(C5) DEFMATCH(SOLDE,’D(U.X,Z) + Bx/D(U,X) + CxU = F,U,X)$
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(C6) SOLDER(EQN,U,X) :
BLock([8,C,F,DISC, Rl RZ,ALPHA,BETA],
IF SOLDE(EQN,U,X) = FALSE THEN RETURN(FALSE),
DISC: B2 - 4xC, ALPHA: -B/2,
IF DISC=0 THEN RETURN(%E‘(ALPHA*X)*(Al+A2*X)),
BETA: SQRT(DISC)/2,
IF DISC > 0
- THEN (R1: ALPHA + BETA, R2: ALPHA - BETA,
RETURN(AL1xXE~(R1xX) + A2x%E~(R2xX)))
ELSE (BETA: SQRT(-1)xBETA, -
: RETURN(XE*(ALPHAxX) % (AlxCOS(BETA%X)
: ¢ AZxSIN(BETAxX)))))s

(C7) /% AN EXAMPLE - THE METHOD OF UNDETERMINED COEFFS. FOR
OBTAINING THE PARTICULAR SOLN. AS WELL x/

DE: “D(Y,X,2) - “D(Y,X) - 6%Y = SIN(X);.

2

DY oy
(D7) “e- - =--6V= SIN(X)

-2 DX

0X
(C8) YH(X) := 7/(SOLDER(%,Y,X));

-2X 3 X

(08) YH(X) := A2 %E .+ Al %E
(C9) YP(X) =

BIxSIN(X) + B2#COS(X)$

(C10) Y6(X) := YH(X) + YP(X)$

' (C11) PLUGIN: EV(DE,DIFF,EXPAND, Y=YP(X));

(DT1) B2 SIN(X) - 7 BI SIN(X) - 7 B2 COS(X)
- B1 COS(X) = SIN(X)

(C12) EQN1: COEFF(PLUGIN,SIN(X));

(D12) - B2 -78Bl=1
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(C13) EQN2: COEFF(PLUGIN,COS(X));
(D13) -782-81=0
(C14) GLOBALSOLVE: TRUES

(C15) SOLN: LINSOLVE([EQNI.EQNZ].[.BI.BZ]);

SOLUTION
‘ 7
(E15) ' Bl : - --
50
| , 1
(E16) B2 : --
. 50
(D16) [E15, E16]
(C17) Y6(X);
| 7 SIN(X)  COS(X) 3x -2X
(017) - meeeea- + cmmeee + Al XE ¢ A2 XE

(C18) /x PLUGGING IN INITIAL CONDITIONS OF Y(0)=1
AND Y7(0)=0 =/

EQN1: YG(0) = 1; .
1
(D18) A2 + Al 4 - = ]
| 50

(C19) DIFF(YG(X),X):

SIN(X) 7 COS(X) 3 X -2x
(D19) - ==mien o ceeeeee- +3ALXE -2A2%
50 50
(C20) EQN2: EV(X,X=0) = 0;
7

(D20) -2A2+3Al---:=0
, 50
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(C21) SOLN: LINSOLVE([EQN1,EQN2],[A1,A2]);

SOLUTION
' _ | 21
(E21) Al : --
' Y
: 14
(€22) A2 : --
o ‘ _ 25
(p22) [E21, E22]
(€23) Y6(X);
| _ 33X -2
7 SIN(X) COS(X) 21 XE 14 % |
(D23) - mmeeeee- I A
S0 50 50 25
(C24) /x RESETTING OF OPTIONS =/
GLOBALSOLVE: FALSES'
(025) BATCH DONE

(C26) "SOLUTION BY LAPLACE TRANSFORMS"S
(€27) SUBST(Y(X),Y,DE);
2
D D
(027) === ¥(X) = == Y(X) - 6 Y(X) = SIN(X)
o 2 X o
DX
(C78) [ATVALUE(Y(X),X=0,1), ATVALUE(“DIFF(Y(X),X),X=0,0)];

(D28) (1, 0]
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(C29) LAPLACE(D29,X,S);
LAPLAC FASL DSK MACSYM being loaded

loading done

2
(D29) S LAPLACE(Y(X), X, S) - S LAPLACE(Y(X), X, S)

: 1
= 6 LAPLACE(Y(X), X, S) =S+ 1 8 cccuuu
2
S +1
(C30) LINSOLVE([X],[“LAPLACE(Y(X),X,S)]);
Solution '
3 2
S -8 +8 .
(E30) LAPLACE(Y(X), X, S) = ==ce-cccccccccaccenen.
4 3 2
$ -5 -5S -S-6
(D30) ' [E36)
(C31) ILT(E30,S,X);
3X -2X
7 SIN{X) COS(X) 21 %E - 14 %E

(D31)  Y(X) = = ==ec-cu- 4 mmeeee 4 memeeee- R
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Example 2

(C1) BATCH(C2CYL,DEMO,DSK,DEMO);

(C2) /x CONVERSION OF THE LAPLACIAN FROM CARTESIAN COORDS. TO
CYLINDRICAL COORDS. =/

/x CAUSE DERIVATIVES TO DISPLAY WITH SUBSCRIPTS =/
DERIVABBREV:TRUES |

(C3) /» ORDER X,Y, AND Z SO THEY ViLL BE GROUPED NICELY =/
ORDERLESS(Z,Y,X)$

(C4) /% U(X,Y,Z) BECOMES U(R,T,Z) IN CYLINDRICAL COORDINATES
R STANDS FOR RHO AND T FOR THETA x/

DEPENDS(U.(R.T.Z])S

(C5) /= INPUT THE TRANSFORMATION RULES FROM THE
CARTESIAN SYSTEM TO THE CYLINDRICAL SYSTEM =/

GRADEF(R, X, X/R)$

(C6) saAbEF(R.v.'v/R)s
(C7) GRADEF(T,X,-Y/R"2)$
(C8) GRADEF(T,Y,X/R"2)$

(C9) /x SET EXPOP TO CAUSE PARENTHESIZED EXPRESSIONS
TO BE EXPANDED AUTOMATICALLY x/

EXPOP:18
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(Cl0) /x NO\J JUST INPUT THE LAPLACIAN IN CART. COORDS.,
AND LET THE CHAIN RULE DO ITS THING =/

DIFF(U,X,2)+DIFF(U,Y,2)+DIFF(V,Z,2);

2 2 2 2 2 2
X v Y u X v Y u 20 X v YU
TT TY RR RR R ] R
010) ~—vcewe- * . . ¢ reon = monen = coce= ¢ U
4 4 2 2 R 3 3 Z2
R R . R R [ R

(C11) SUBST(RA2<X*2,¥°2,%);

v v
T ]
(011) ceee s 4=V
| 2 RR R 212
R

(D12) : BATCH DONE

MACSYMA
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Example 3

The following differential equation:

T*4+B(T)"3+DIFF (B(T).f;2)+( 1-K«T*2)¢B(T)*4-T~4=0
is known to have a solution of the form: ‘ '
B(T)=T+A3+T*3+A5+T 5+.+A1 14T 1 1+..
valid for small T. The problem is to find the coefficients A3 through A1l as
functions of K. We use RATWEIGHT and RATWTLVL to truncate on powers of T
above 14. (This problem originated in "Bessel Functions for Large Arguments” by

Goldstein and Thaler, in Math. Tables and Other Aids to Computation, (now calied
Mathematics of Computation) Xii, no. 61, p.18, January 1958)

(C3) EQ:T~4xB(T)~3xDIFF(B(T), T,2)+(1-KxT~2 )*B(_T)“‘-T’%;

9 .
4 3 D 2 4 4
{D3) T B(T) (-==B(T)) ¢ (1 -KT)B(T)-T
2 .
oT o

C4) TRIAL:T+SUM(A[2%I+1aT~(2xI+1),1,1,5);
11 9 7 5. 3
(D4) A T +A T +A T +A T +A T +7
11 9 7 5 3
" (C5) POWERDISP:TRUES
(C6) RATWEIGHT(T,1)$

(C7) RATWTLVL:148
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(C8) EQ,B(T)«TRIAL,DIFF;

. 3 ] 7 .
08 -T 4T (BRA Te20R T +42A T +72RA T +118R T)
'3 . s 7 9 1

-3 S 7 ] 113
(T+A T A T «A T 4R T +«R T
3 3 7 9 1

. 2 3 3 7 S 1na
P U -KTIM+A T +RA T +A T +A T +h T
3 s 7 ] 1

a .
(C9) EXPANDEDEQ:RAT(%,T);
6 2 : 8
(D9)/R/ (4 A -K)T +(6A +6A +4A -4A K)T
3 ' 3 3 5 3

2 3 2 10
+ (18A +4A +(20+12A)A +4A +(-6A -4A)K)T
3 3 3 5 7 - 3 ]

3 4 2 2 :
+(I1BA +A +(78A +12A )A +6A +(42+12A)A +4A
3 3 '3 3 5 5 3 7 9

3 .
+(~-4A -12A A -4RA)K)T
3 3 5 7

12

23 2
+(96A +4A )A +(60+12A)A
.3 3 5 3 5

4
+ (6 A
-3

2 .

+ (14 A +12A +12A)A +(72+12A)A +4A
3 3 5 7 3 9 11
4 2 2 » 14

+(-A -12A A -6A =-12A A -4A)XK)T
3 3 5 5 3 7 9

(C10) COEFF(EXPANDEDEQ,.T,6);

(D10)/R/ . 4A -K
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3
(Cl1) ANS3:SOLVE(%,A[3]);
Solution
(E11) A =-
3 4
{D11) [E11]
(C)Z) COEFF (EXPANDEDEQ, T,8);
. 2
(D12)/R/ 6A ¢+6A +4A -434A7A K
3 3 5 3

(C13) %,ANS3;

2
| -32A -12K+5K
. 5
(D13)/R/ . emcccccccccccmmee————-
' 8
(C14) SOLVE(%,A[5]);
Solution
| -12K+ 5K
(E14) . A = ccccocccoamaan
, 5 32
(D14) [E14]

(C15) /= ETCx/

FOR I:3 THRU 11 STEP 2 DO
COEFFICIENT[ I]:COEFF(EXPANDEDEQ,T,I+3)$

(C16) FOR I:3 THRU 11 STEP 2 DO
(SOL[I]:ANS:SOLVE(COEFFICIENT[I],A[I]),
FOR J:I+2 STEP 2 THRU 11 DO

COEFFICIENT[J]:EV(COEFFICIENT[J].ANS))8.

(C21) RATEXPAND:TRUES

297
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(C22) FOR I:3 THRU 11 STEP 2 DO PRINT(RATSIMP(EV(SOL[I])))$

K
(A =-]
3 4
2
3K 5K
[A = - -4 =enc]
5 8 32
F 4 S ]
15K 37K 15 K
(A = -oon o oomen ¢ oeen ]
7 8 32 128
2 3 4
315 K 1821 K 611 K 195 K
TA =2 = ccc-e ¢ cccccne = ecee ce § woces -]
9 16 128 256 2048
2 3 4 5
2835 K~ 2223 K 29811 K 4199 K 663 K -
[A = ccccen o cccccen § ccee- “es & sescces ¢ wemses]

11 8 8 512 1024 8192
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Appendix IV - Gloésary For The Programming Novice

algorithm - a method, specified with' sufficient precision to be programmed for a
computer, to resolve any one of a well-defined glass of problems.

arguments - the expressions which are the values of the formal parameters when
a function is called.

assignment - the process of associating a value with a variable.

atomic - (in the sense of high level programming languages) cannot be broken
down into smaller parts, e.g. a number, a string, or a name.

binding - the process of assigning values to the formal parameters in a function
definition or to the local parameters in a block in such a way that, upon
exit from the function or block, the previous values of the parameters
are restored.

bound variable - a variable which has been assigned a value (see binding).

break point - a point at which a computation is temporarily suspended-and control
: returned to the console, permitting the user to explore the state of the
computation.

bug - an error in a program caused by improper coding which may be due to
unanticipated types of arguments being given to the program, faulty logic,
etc. .

command line - the input line typed to MACSYMA, terminated by ; or 8.

constant - any number or atomic symbol whose value does not vary, or an
. expression made up only of such quantities.

CRE form - canonical rational expression form. This is one of the several internal
representations of MACSYMA expressions (see 4.1). It is especially
suitable for rational expressions (polynomials or ratios of polynomials). It
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is also contagious in that whenever any expression is added to or
multiplied by a CRE form the resuit will be in CRE form.

DOT - originally a program used for debugging of other programs but modified in
ITS to include the functions of a monitor.

default value - the initial value of a vari_able' before any assignments to it.

evaluation - the process of replacing variables and function calls in an expression
by their values. :

expansion - the transformation of a product of sums into a sum of products by
applying the distributive laws.

expression - a syntactically legal sequence of characters composed of constants,
variables, functions, and operators.

flag - a variable whose value is usually either TRUE or FALSE, e.g. NUMER.

formal parameters - the atomic variables appearing in the function header (the
. left-hand side of a function definition).

hashing - a method of storing sparse vectors and arrays through the use of a
function, which for given arguments produces a-number in a range of
possible values.

indicator - the name of a property, e.g. GRADEF.

internal representation - the representation of MACSYMA expressions in LISP.

ITS - the time sharing system used on the PDP-10 at Project MAC.

LISP - a list processing programming language used extensively in non-numerical
applications. The LISP in which MACSYMA resides is called MACLISP.

local parameters - atomic variables which are bound within a function or block.

property - a piece of information known about or associated with a variable.
Some specific properties are used in MACSYMA for simplification and
evaluation, e.g. the GRADEF property for SIN.

property list - for a given variable, the set of all properties associated with the
variable.
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quoted string - a sequence of characters enclosed in quotation marks, used as a
comment, message, etc.

rational expression - a polynomial or the ratio of two polynomials. Sometimes
used as a synonym for CRE form. A

scalar - an expression which is not (or is assumed not to be) a list or matrix.

semantics - rules for determining the meaning of any legal (syntactically correct)
sentence in a language. , .

simplification - the process of reducing the "complexity” of an expression (relative
to some criterion or measure) by applying known (or assumed) relations
in the form of rules which transform the original expression into an
"equivalent” one. '

string - a sequence of characters consisting of digits, letters, special characters
(8,%,4) or break characters (space,tab).

subscripted function - a type of array each of whose elements is a function
expression.

subscripted variable - a variable, e.g. A[0], in subscripted form.

switch - a variable which can take on only a small number of values (usually just
two). It is used to determine which branch of a condition to follow.

syntax - rules for determining whether a sequence of characters is a legal
sentence in that language. If not, then a parsing error results. In
MACSYMA, the rules are implemented as a parsing procedure which
converts an input string into MACSYMA’s internal representation.

terminator - a character which signals the end of a sequence of characters. In a
MACSYMA command line the terminators are semi-colon and dollar sign.

variable - an atomic symbol. A variable that evaluates to a value is an assigned
variable. If no value has been assigned to a variable, the variable itself
is returned as the result of evaluation.
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Appendix VI - MACSYMA Functions and Argument Evaluation

Most MACSYMA functions, including all user-defined functions,1 are processed
by MACSYMA’s evaluator in a straightforward manner: the arguments to the
function are evaluated (left-to-right), the function is applied to the evaluated
arguments, and then the result is returned.

However, there are two classes of functions which are not subsumed under
this sirple scheme. In the first class, some or all of the arguments are NOT
evaluated. This class includes

ALIAS ALLOC APPENDFILE ARRAY BATCH BATCON CLOSEFILE
COMPFILE DECLARE DEFINE DELFILE DEMO DISPFUN DISPLAY
FASSAVE GRADEF KILL LABELS LOADFILE LOCAL MATCHDECLARE
MODEDECLARE PLAYBACK QPUT REMARRAY REMFILE REMFUNCTION
REMOVE REMRULE REMVALUE RESTORE SAVE STORE STRING STRINGOUT
TIME TRACE TRANSLATE UNSTORE UNTRACE WRITEFILE

There is another class of functions which control the evaluation of their
arguments; "control” involves the order of evaluation of the arguments as well as
their form. For example, order of evaluation is important in SUM,PROD, and the
plotting functions; on the other hand, the EV command takes advantage of the
structure of the arguments as well. This class includes

CATCH ERRCATCH EV FORTRAN FORTMX FULLMAP FULLMAPL
GRIND PROD SUBSTINPART SUBSTPART SUM

and the plotting functions.

In addition, certain MACSYMA "operators” (see Appendix ll) do not evaluate
some of their arguments, such as ™", "i=", ™". On the other hand, MACSYMA
constructs such as BLOCK, the various forms of DO and logical operators such as
AND,OR, IF..THEN...ELSE control the evaluation of their arguments.

1. More flexibility for user-defined functions will soon be available
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%%: [1170, 271

% []140, 271

%E: []1 39, 43
%EDISPFLAG: [FALSE] 184
%“EMODE: [TRUE] 45
ZENUMER: [FALSE] 45
%:[]139, 43

%PI: []1 39, 43

ATH (i) 182¢

ABCONVTEST: [FALSE] 73

ABS (X) 44x , 50, 210

ABSBOXCHAR: [1] 44

ACQS 47

ACOSH 48

ACOT 47

ACOTH 48

ACSC 47

ACSCH 48

ACTIVATE (contl, cont2, ...) 148«

ADDROW (M,}) 106%

AIRY (X) 229«

ALARMCLOCK (argl, arg2, arg3)
183«

ALGEBRAIC: [FALSE] 120, 157

ALGEPSILON: [108] 99

ALGSYS ([expl, exp2, ...}, [varl,
var2, ...J) 98%

ALIAS 156, 183+

ALIASES: [] 156

ALLOC 252

ALLROOTS (poly) 97+

ALPHABETIC 157

APPEND (listl, list2, ..) 154«

APPENDFILE (filenamel, filename2,
DSK, directory) 177+

APPLY (function, list) 151«

APPLY1 (exp, rulel, ..., rulen) 165+

APPLYZ2 (exp, rulel, ..., rulen) 165+

APPLYBI1 (exp, rulel, .., rulen) 166+

ARRAY (name, diml, dim2, ..., dimk)
14«

ARRAYAPPLY (array,[subl, ... ,subk]))
211%

ARRAYINFO 15, 17, 157%

ARRAYMAKE (name,[i1,i2,..]) 151%

ARRAYS:[] 15,17, 156,171

ASEC 47

ASECH 48

ASIN 47

ASINH 48

ASKEXP: [] 147

ASKSIGN (exp) 147+

ASSUME (predl, pred2, ...) 146+

AT (exp, list) 86%

ATAN 47

ATAN2 (Y,X) 48+

ATANH 48

ATOM (exp) 160+

ATVALUE (form, list, value) 86+ ,
137

AUGCOEFMATRIX ([eql, ...}, [varl,
..)) 107+

BACKSUBST: [TRUE] 98

BACKTRACE: [] 171

BASE: [10] 186

BATCH 42, 173, 176%, 237, 238+,
239, 240

BATCHKILL: [FALSE] 240

BATCON (argument) 176% , 237, 238,
239

BATCOUNT: [0] 239

BERLEFACT: [TRUE] 63

BERN (X) 47«

BERNPOLY (v, n) 142+

BESSEL (Z,A) 229+

BETA (X, Y) 47«

BFLOAT (X) 44« , 157

BFLOATP (exp) 160#



BFTORAT: [FALSE] 114
BFTRUNC: [TRUE] 184
BINDTEST 157

BINOMIAL (X, Y) 46«

BLOCK ([v1, ... vk], statementl,...,

statementj) 25+ , 28, 31, 270

BOTHCASES: [FALSE] 185
BOTHCOEF (exp, var) 88+

BOX (exp) 80%

BOXCHAR: ["] 80

BREAK (argl, ..) 170+, 1821, 271
BREAKUP: [TRUE] 101 :
BUG (message) 5+

CABS (exp) 93%

CALCOMPNUM: [20] 264 , 266

CANTEN (exp) 202+

CARG 50, 93¢

CATCH (expl,...,expn) 181%

CAUCHYSUM([FALSE] 67

CENTERPLOT: [] 266

Cr (exp) 142x

CFDISREP (list) 143«

CFEXPAND (x) 143+

CFLENGTH: [1] 142

CHANGEVAR (exp,f(x,y),y,x) 75%

CHARPOLY (M, var) 109+

CHRi ({i,j,k] 203+

CHR2 ([i,j1,[k] 203%

CHRISTOF (arg) 193«

CLOSEFILE (filenamel, filename2)
177+

COEFF (exp, v, n) 88¢

COEFMATRIX ([eql .} [varl, ..)
107+

COL (M,i) 107%

COMBINE (exp) 60«

COMPFILE ([filespec]fl,f2,.) 189+,

255
COMPGRIND: [FALSE] 189

MACSYMA

COMPONENTS (tensor,exp) 200%
CONCAT (argl, arg?, ...) 182«
CONS (exp, list) 154+

CONSTANT 157

CONSTANTP (exp) 160+
CONTENT (pl, varl, .., varn) 118%
CONTEXT: [GLOBAL] 149
CONTEXTS: [[]] 149

- CONTINUE 5, 41

CONTOUR: [] 265
CONTRACT (exp) 202+
COPYLIST (L) 106+
COPYMATRIX (M) 106+
COS 47

COSH 48

COT 47

COTH 48

COUNTER: [1] 201
COVDIFF (exp,v1,v2,.) 207%
CSC 47

CSCH 48

CURL 213

'CURSOR: [_] 185, 232

DALEM (field,,j) 198+

DEACTIVATE (contl, cont2,..) 149%

DEBUGMODE: [FALSE] 170

DECLARE 35, 111, 146%, 1574,
1704, 199

DEFCON (tensorl,<tensor2 tensor3>)
201+

DEFINE (function{arguments),body) -
38+, 180«

DEFMATCH 156, 163+, 171, 175

DEFRULE 156, 165¢, 171, 175

DEFTAYLOR (function, exp) 131%

DELETE (expl, exp2) 95+ , 154

DELFILE (Me-specmcatlon) 176+,
243 ‘

DEMO 173, 176+, 237, 238, 239
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DEMOIVRE: [FALSE] 45, 157
DENOM (exp) 94+ , 115%
DEPENDENCIES: [] 156
DEPENDS

. (funlist1,varlist1,funlist2,varlist2,..)
70% , 156
DERIVABBREV: [FALSE] 69
DERIVDEGREE (exp, dv, iv) 92«
DERIVLIST 52 .
DESCRIBE (command) 5% , 174+
DESOLVE ([eql,....eqn)[varl,.,varn])
21 1%
DETERMINANT (M) 109+
DETQOUT 52
DETOUT: [FALSE] 110, 157
DEVICE: [] 244
DIAGMATRIX (n, x) 106%
DIFF 52, 69%, 207«
. DIMENSION (equation or list of
equations) 216«
DIMENSION: [4] 204
DIREC: [] 244
DISP (expl,exp2, ..) 172%
DISPCON (tensorl,tensor2,..) 201%
DISPFLAG: [TRUE] 102, 184
DISPFORM (exp) 80+
DISPFUN 13, 15, 171%
DISPLAY (expl, exp2,..) 1712
DISPRULE (rulename) 171%
DISPTERMS (exp) 172%
DIV 213 |
DIVIDE (pl, p2, varl, .., varn) 117+
DIVSUM (n,k) 144«
DO 27, 30, 31
DOALLMXOPS: [TRUE] 110
DOMXMXOPS: [FALSE] 111
DONTFACTOR: [] 63
DOSCMXOPS: [FALSE] 111
DOSCMXPLUS: [FALSE] 111

DOTASSOC: [TRUE] 111
DOTCONSTRULES: [TRUE] 111
DOTDISTRIB: [FALSE] 112 -
DOTEXPTSIMP: [TRUE] 112
DOTSCRULES: [FALSE] 111
DPART (exp, nl, ..., nk) 80%
DSCALAR (function) 198+
DSKALL: [] 244 '
DSKGC: [FALSE] 185, 243
DSKUSE: [FALSE] 242
DUMMY (il,i2,..) 201+
DUMMYX: [#] 201
DYNAMALLOC: [FALSE] 240

ECHELON (M) 108+

EINSTEIN (dis) 195+

EL (F, YLIST, TLIST) 217+

ELIMINATE
([eql,eq2,....eqn}[v1,v2,..,vk])
221+«

EMATRIX (m, n, x, i, j) 106%

- ENDCONS (exp, list) 154+

ENTERMATRIX 20, 105+

ENTIER (X) 44+

ERF (X) 47+

ERFFLAG: [TRUE] 74

ERRCATCH (expl, exp2, ...) 181%
ERREXP: [] 231

ERRINTSCE: [TRUE] 222

ERROR (argl, arg2, ..) 181%
ERRORFUN: [FALSE] 181 , 240
EULER (X) 47+

EV (exp, argl, ..., argn) 51« , 82, 157
EVAL 51 '

EVALS (mat,lambda) 221+

EVEC! (M,mu,modes) 220+
EVEC2 (M,mu,modes) 220+
EVENP (exp) 160+

EVFLAG 157

EVFLAG: [] 52



iv

EVFUN 157

EXAMPLE (command) 5+ , 174#
EXP (X) 45%

EXPAND 51 , 55%

EXPON: [0] 55
EXPONENTIALIZE: [FALSE] 48 , 157
EXPOP: [0] 55

EXPRESS (expression) 214«
EXPT 11

EXPTDISPFLAG: [TRUE] 184
EXPTISOLATE: [FALSE] 89. .
EXPTSUBST: [FALSE] 82
EZGCD (pl, p2, ..) 118+

FACRAT: []1 195, 196, 197
FACTCOMB (exp) 142«
FACTLIM: [-1] 11

FACTOR (exp) 62+, 157
FACTORFLAG: [FALSE} 62, 157
FACTOROUT (exp,varl,var2,.) 65+
FACTORSUM (exp) 64+

FACTS (context) 148+

FALSE: [] 43

FASSAVE (args) 178+, 244
FASTTIMES (pl, p2) 117+
FEATUREP (af ) 146%

FFT (real-array,imag-array) 226+
FIB (X) 46%

FILENAME: [] 243

FILESIZE: [] 243, 246
FILLARRAY (array,list-or-array) 210%
FIRST (exp) 94x , 154

FLOAT (exp) 44+ , 52
FLOAT2BF: [FALSE] 44

FLOAT: [] 157 ,
FLOATNUMP (exp) 160%

FLUSH (expression) 208%

FOR 27, 30

FORGET (predl, pred?, ..) 146%
FORTMX (name,matrix) 174%

MACSYMA

FORTRAN (exp) 174« , 177
FORTRAN: [FALSE] 177
FORTSPACES: [FALSE] 174
FPPREC: [16] 8, 44

FREEQF (x1, x2, .., exp) 161%
FULLMAP (fn, expl, ...) 152¢
FULLMAPL (fn, listl, ...) 153¢
FUNCTIONS: [] 12, 156, 171

- FUNMAKE (name,argl,...,argn]) 151%

GO (X) 229«

G1 (X) 229+

GAMMA (X) 46+

GAMMALIM: [1000000] 46

GAUSS (MEAN,SD) 229« _

GCD (pl, p2, varl, ..) 118+

GCD: [EZ] 56,118

GCFACTOR (n) 63«

GENFACT (X, Y, Z) 46%

GENINDEX: [I] 185

GENINDEX[I] 67

GENMATRIX 20, 105«

GENSUMNUM[0] 67

GET (a, i) 159#

GETCHAR (a, i) 182%

GFACTOR (exp) 65+

GFACTORSUM {(exp) 65+

GLOBALSOLVE: [FALSE] 98

GLOG (X) 46+

GN (X,N) 229+

GO 26, 28

GRAD 213

GRADEF (f(x1, .., xn), g1, .., gn) 71%,
72%, 156

GRADEFS: [] 156

GRAPH ([x1, x2, x3, ..., xn}, [yl, y2,
v3, .., yn)) 255+

GRAPH2 (x-losts,y-hsts,optlonal-args)
2622
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GRAPH3D (x-lists,y-lists,z-
listsoptional-args} 266+

GRIND (arg) 174+

GRIND: [FALSE] 173, 183

HALFANGLES: [FALSE] 135
HAM (ODES) 218«
HIPOW (exp, v) 92%
HORNER (exp, var) 116%

10 (X) 228%

11 (X) 228+

IBASE: [10] 186

IDENT (n) 106% -

IEQN (ie,unk,tech,n,guess) 224+

IEQNPRINT: [TRUE] 225

IF 23

IFT (real-array,imag-array) 226+

ILT (exp, lvar, ovar) 138+

IMAGPART 50, 93+

INCHAR: [C] 185

INDEXED (tensor) 200«

INDICES (exp) 201+#

INF: [] 43,73

INFEVAL 51

INFINITY: [] 43

INFIX (operator, 1bp[180], rbp{180]},
Ipos[ANY], rpos[ANY], pos[ANY])
- 283 '

INFLAG: [FALSE] 94

INFOLISTS: [] 156, 175, 186

INPART (exp,nl,..,nk) 79+

INPROD (x,y) 220%

INTEGERP (exp) 160#

INTEGRATE {exp, var) 73+, 74

INTERPOLATE (func,x,a,b) 227#

INTFACLIM: [1000] 63

INTOPOIS (A) 124+

INTPOLABS: [0.0] 227

INDEX

INTPOLERROR: [TRUE] 227
INTPOLREL: [0.0] 227
INTSCE (expr,var) 222«
IRREDUCIBLE (exp) 65%

IS (pred) 146+

ISOLATE (exp, var) 89+
ISQRT (X) 45«

JO (X) 228«

J1 (X) 228+
JACOBI (p,q) 144«
JN (X,N) 228«

KDELTA (L1,L2) 204+«
KEEPFLOAT: [FALSE] 56 , 114, 157
KiLL 15, 17, 175¢

LABELS {(char) 183«

LABELS: [] 156, 185

LAMBDA 16

LAPINT (exp,ovar) 139%

LAPLACE (exp, ovar, lvar) 137+

LAPLACIAN 213

LAST (exp) 95+, 154

LASTTIME: [] 184

LC (L) 204+

LDEFINT 73, 76#

LDISP (expl,exp2,..) 172«

LDISPLAY (expl,exp2,..) 172+

LENGTH (exp) 95« , 154 .

LET (prod, repl, predname, argl,
arg?, .., argn) 166+

LETRAT: [FALSE] 167

LETRULES (name) 167+

LETSIMP (exp) 166+

LHOSPITALLIM[4] 76

LHS (eqn) 94«

LIMIT 73, 76+

LINECHAR: [E] 185

LINEL: [] 41, 186, 254



LINENUM: [] 185, 246

LINSOLVE ([expl, exp2, ...}, [verl,
var2, ..]) 97%

LISTARITH: [TRUE] 21 , 110, 157

LISTARRAY (array) 210#

LISTCONSTVARS: [FALSE] 87

LISTOFVARS (exp) 87«

LISTP (exp) 161+%

LMXCHAR: [] 110

LOADFILE 42, 176%, 189, 245

LOADPRINT: [TRUE] 185

LOCAL 25, 150+, 181% . -

LOG (X) 45%

LOGARC: [FALSE] 48

LOGCONTRACT 46 , 66+, 157

LOGEXPAND: [FALSE] 45, 157

LOGNUMER: [FALSE] 46

LOGOUT () 180+, 240

LOGSIMP: [TRUE] 45

LOPOW (exp, v) 92+

LORENTZ (exp) 207+

LPART (label, exp, nl, .., nk) 81%

LRICCICOM (dis) 195%

MAIL (message) 5%
MAKEBOX (exp) 207+
MAKEFACT (exp) 142«
MAKEGAMMA (exp) 142+
MAP (fn, expl, exp2, ...) 151%
MAPATOM (expr) 152%
MAPERROR: [TRUE] 151
MAPLIST (fn, expl, exp2, ...) 152¢
MATCHDECLARE (patternvar,

- predicate, ..) 162%
MATCHFIX (operator, match,

argpos[ANY], pos[ANY]) 283«

MATRIX 20, 105%
MATRIXMAP (fn, M) 107%
MATRIXP (exp) 161%
MAX (X1, X2, ...) 44«

MACSYMA

MAXAPPLYDEPTH: [10000] 166
MAXAPPLYHEIGHT: [10000] 166
MAXNEGEX: [1000] 55
MAXPOSEX: [1000] 55
MAXPRIME: [489318] 143
MAXTAYORDER: [TRUE] 127
MEMBER (exp, list) 154+
METRIC (G) 203+

" METRIC: [] 203

MIN (X1, X2, ..) 44+

MINF: [] 43, 73

MINFACTORIAL (exp) 141%

MINOR (M, i, j) 107+

MOD (p) 118+

MODEDECLARE (y1, model, y2,
mode2, ...) 187+ :

MODRESULT: [FALSE] 119

MODULUS: [FALSE] 118

MOTION (dis) 194«

MULTIGRAPH ([ [xsetl, ysetl } -
[xsetn, ysetn] ], ophonal-args)
255+

MULTIPLICITIES: [FALSE] 101

MULTTHRU (exp) 60+

MYOPTIONS: [[]] 9, 156

NARY (operator, bp[180],

" argpos[ANY], pos[ANY]) 283+
NEWDET (M,n) 109+
NOEVAL 51
NOFIX|operator (pos[ANY]|) 283*
NOLABELS: [FALSE] 184
NONDIMENSIONALIZE (list of physical

quantities) 215«

NONSCALAR 157
NONSCALAR: [] 20
NONSCALARP (exp) 160+
NOSTRING 173
NOT3D: [] 265, 266
NOUN 157
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NOUNDISP: [FALSE] 185

NOUNIFY (f) 80+

NOUNS 52

NROOTS (poly, low, high) 96%

NTERMS (exp) 95+

NTERMSG () 195%

NTERMSRCI () 195%

NUM (exp) 94+, 115%

NUMBERP (exp) 161#

NUMER 52

NUMER: [] 157, 159

NUMERVAL (varl, expl, var2, exp2,
..) 159 .

NUMFACTOR (exp) 91#

NUSUM (exp,var,low,high) 68+

NZETA (2) 229+

NZETAI (2) 229%

NZETAR (Z) 229%

ODDP (exp) 160%

ODEZ2 (diffeq,depvar,indvar) 77%

OFF: [] 238

ON: [] 238

OPTIMIZE (exp) 187+, 248

OPTIONSET: [FALSE] 184

ORDERGREAT 156, 179«

ORDERGREATP (expl,exp2) 179«

ORDERLESS 156 , 179«

ORDERLESSP (expl,exp2) 179«

OUTCHAR: [D] 185

OUTOFPOIS (A) 124«

PARAMPLOT (f1(t),f2(1),t,low,high)
255%

PARAMPLOT2 (x-exprs,y-
exprs,variable,var-range,optional-
args) 263+

PART (exp, nl, .., nk) 78+

PARTFRAC (exp, var) 62«

PARTITION (exp, var) 66%

vii

PARTSWITCH: [FALSE] 85

PERSPECTIVE: [TRUE] 266

PFEFORMAT: [FALSE] 184

PICKAPART (exp,depth) 90%

PIECE: [] 85 :

PLAYBACK (arg) 173+, 183

PLOG (X) 46+ -

PLOT (F(x), x, low, high) 254%

PLOT2 (y-exprs,variable,var-
range,optionals-args) 260+ , 262«

PLOT3D (z-exprs,x-var,var-range,y-
var,varl-range,optional-args)
265+

PLOTBELL: [TRUE] 264

PLOTBOTMAR: [320] 267

PLOTHEIGHT: [] 186 , 254

PLOTLFTMAR: [128] 267

POISEXPT (A, B) 124+

POISINT (A, B) 125+#

POISLIM[5] 127

POISMAP (series, sinfn, cosfn) 125+¢

POISPLUS (A, B) 124+«

POISSIMP (A) 124x

POISSUBST (A, B, C) 125#

POISTIMES (A, B) 124+

POISTRIM () 124+

POLARFORM 50 , 93+

POLARTORECT (magnitude-
array,phase-array) 226x

POLYDEQOMP (poly,var) 104+

~ POLYFACTOR: [FALSE] 97

POLYSIGN (X) 44+

POSTFIX (operator, Ibp[180],
Ipos[ANY], pos[ANY]) 283+

POTENTIAL (givengradient) 215+

POWERDISP: [FALSE] 185

POWERSERIES (exp, var, pt) 132+

PRED 52

PRED: [] 157
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PREDERROR: [TRUE] 24, 146,171,
270

PREFIX (operator, rbp[180],
rpos[ANY], pos[ANY]) 283+

PRIME (n) 143«

PRIMER () 5% .

PRINT (expl, exp?2, ..) 172«

PRINTPQOIS (A) 124«

PRINTPROPS (a, i) 158+

PRODUCT (exp, ind, lo, hi) 68%

PROGRAMMODE: [FALSE] 102

PROPERTIES (a) 158+

PROPS: [] 156 |

PROPVARS (prop) 156%

PSEXPAND: [FALSE] 121

PSI (X) 47«

PUT (a, p, i) 158%

QPUT (a, p, i) 158%

QUAL (<expression>, <variables>)
219+

QUIT () 180« , 240

QUNIT (n) 144+

QUOTIENT (pl, p2, varl, ..) 117

RADCAN (exp) 58+, 157
RADPRODEXPAND: [TRUE] 45, 59
RADSUBSTFLAG: [FALSE] 83
RAISERIEMANN (dis) 197+
RANDOM (X) 46+

RANK (M) 108«

RAT (exp, vi, .., vn) 113+ .
RATALGDENOM: [TRUE] 120, 157
RATCOEF (exp, v, n) 88%
RATDENOM (exp) 115#
RATDENOMDIVIDE: [TRUE] 56
RATDIFF (exp, var) 119%
RATDISREP (exp) 115+
RATEINSTEIN: [] 195
RATEPSILON: [2.0E-8] 113

-,
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RATEXPAND (exp) 56+, 114, 157
RATEXPAND: [FALSE] 56

RATFAC: [FALSE] 34, 114
RATMX: [FALSE] 110

RATNUMER (exp) 115+

RATNUMP (exp) 161%

RATP (exp) 161%

RATPRINT: [TRUE] 114

~ RATRIEMAN: [] 196 :

RATSIMP (exp) 57+, 61, 114, 157

RATSIMPEXPONS: [FALSE] 57

RATSUBST (g, b, c) 83+

RATVARS (varl, var2, ..., varn) 113¢

RATVARS: [] 113

RATWEIGHT (v1, wl, ..., vn, wn)
116% :

RATWEIGHTS: [[]] 116

RATWEYL: [] 197 .

RATWTLVL : [FALSE] 116

READ (stringl, ..) 180+

READONLY (stringl,..) 180%

REALONLY: [TRUE] 99

REALPART 50, 92#

REALROOTS (poly, bound) 96+

REALROOTS: [TRUE] 99

REALZERO (poly,anything) 230+

REARRAY (array,diml, ... ,dimk) 211%

RECTFORM 50, 93+

RECTTOPOLAR (real-array,imag-
array) 226+ :

REFCHECK: [FALSE] 171 , 270

REM (a, i) 159+

REMAINDER (pl, p2, varl, ..) 117«

REMARRAY 15, 17, 175«

REMBOX (exp, arg) 81

REMCOMPS (tensor) 200+
REMCON (tensor] tensor2,.) 202+

REMFILE () 178+ , 243, 247
REMFUNCTION.(f1, f2, ) 174+ , 175

REMLET (prod, name) 167+
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REMOVE (al, f1, a2, f2,..) 146¢,
158%, 174%, 271
REMRULE (function, rulename) 175%
REMTRACE () 170+, 270
REMVALUE 15, 174+, 175
RENAME (exp, <count>) 201%
RESET () 182«
RESIDUE (exp, var, val) 77+
REST (exp, n) 95« , 154
RESTORE (file-specification) 178+ ,
248
RESULTANT (pl, p2, var) 118«
"RETURN 26 , 28, 30
REVEAL (exp,depth) 91, 172«
REVERSE (list) 154«
REVERSE: [FALSE] 266
RHS (eqgn) 94x
RICCICOM (dis) 194+
RIEMANN (dis) 196%-, 204+
RINVARIANT () 197+
RISCH (exp, var) 74«
RMXCHAR: [] 110
ROMBERG (f,a,b,lim) 225%
ROOTSCONTRACT 45, 66%
ROOTSEPSILON: [1.0E-7] 96
ROW (M, i) 107«
RULES: [] 156 , 162

SAVE 42, 173, 177«, 242, 244, 247

SAVEDEF: [TRUE] 189

SAVEFACTORS: [FALSE] 63

SCALARMATRIXP: [TRUE] 111

SCALEFACTORS
(coordinatetransform) 214+

SCANMAP (function,exp) 153%

SCURVATURE () 195%

SEC 47

SECH 48

SEND (message) 4+ ,

" SETCHECK: [FALSE] 171

ix

SETCHECKBREAK FAL»SE] 17t

SEFELMX {x, i, J A Iﬁh RS

SHOWTEN (exp) 200+ :

SHOWTIME: [FALSE] 41 , 183

SIGN (exp) 147+ '

SIGNUM (X) 44« , 210

SIMP 51

SIMP: [] 157

SIMPSON (f,a,b,n) 225+

SIMPSUM: [] 157

SIMTRAN (mat) 221+

SIN 47

SINH 48 -

SOLVE 53, 100#, 101+%

SOLVEDECOMPOSES: [TRUE] 102

SOLVEEXPLICIT: [FALSE] 102

SOLVEFACTORS: [TRUE] 101

SOLVERADCAN: [FALSE] 101

SOLVETRIGWARN: [TRUE] 102

SORT (list,optional-predicate) 180%

SPARSE: [FALSE] 111

SQFR (exp) 65%

SQRT (X) 45+, 144 |

SQRTDISPFLAG: [TRUE] 184

SRRAT (exp) 121#

STAP (OBJECTIVE, LEZERQOS,
EQZEROS, DECISIONVARS) 217+

STARDISP: [FALSE] 185

STATUS (arg) 182«

STORE (args) 178« , 242, 244

STORENMM: [] 243

STRING (éxp) 173+, 183, 231

STRINGOUT 116,173, 177+, 183

SUBMATRIX (m1, .., M, nl, ,.) 107%

SUBST (a, b, ¢) 81+%

SUBSTINPART (x, exp, nl, ...) 84%

SUBSTPART (x, exp, nl, ..., nk) 83%

SUBVARP (exp) 160%

SUM (exp, ind, lo, hi) 66%

SUMSPLITFACT: [TRUE] 142
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TAN 47
TANH 48
TAYLOR

(exp,[varl,ptl,ord1][var2,pt2,ord2],.)

121+, 127+, 129+, 130¢
TAYLORDEPTH: [3] 127
TAYLORINFO (exp) 131%
TELLRAT (polyl,...,polyn) 120%
TELLSIMP 156, 162+, 171,175
TELLSIMPAFTER 156 , 162+, 171,

175
THROW (exp) 182«
TIME (Dil, Di2, ...) 180%
TLDEFINT (exp,var,low,high) 77+
TLIMIT (exp,var,val,dir) 76%
TLIMSWITCH[FALSE] 76
TOPLEVEL: [] 271
TOTALDISREP (exp) 115%
TOTIENT (n) 144«
TRACE (namel, name?2, ..) 170%
TRANSBIND: [TRUE] 189
TRANSLATE (f1, f2,..) 188+, 255
TRANSLATE: [FALSE] 188
TRANSPOSE (M) 108+
TRANSRUN: [TRUE] 189 =,
TRIANGULARIZE (M) 108%
TRIGEXPAND (exp) 134+, 157
TRIGEXPAND: [FALSE] 135, 157
TRIGREDUCE (exp, var) 135+, 157
TRIGSIGN: [TRUE] 48
TRUE: [] 43
TSETUP () 191%
TTYOFF: [FALSE] 41
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UEVEC (M,mu,modes) 220«
UNAME: [] 244

UNDIFF (exp) 207%
UNITRAMP 210

UNITSTEP 210 _
UNKNOWN (exp) 55+
UNLABELED: [] 81
UNORDER () 179+

* UNSTORE (namel, ..) 178+

UNSUM (fun,n) 68+
UNTRACE (namel, ...) 170%

VALUES: [] 10, 156 _

VECTORPOTENTIAL (givencurl) 215+

VECTORSIMP (vectorexpression)
213% '

VERBIFY (f) 80+

VERBOSE: [FALSE] 132

VERSION: [267] 186

VIEWPT: [] 266

WEYL (dis) 197«
WRITEFILE (DSK, directory) 177+

XAXIS: [FALSE] 254
XTHRU (exp) 61%

“YAXIS: [FALSE] 254

YT (f,mn) 198+

ZERO (tensor) 208%
ZEROBERN: [TRUE] 47
ZEROEQUIV (exp,var) 148«
ZETA (X) 47«
ZUNDERFLOW: [TRUE] 12

3D: [] 265
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