STRESS: A Reference Manual

A Problem-Oriented Computer Language
for Structural Engineering

STRESS: A Reference Manual

A Problem-Oriented Computer Language
for Structural Engineering

The Department of Civil Engineering
Massachusetts Institute of Technology

Steven J. Fenves
Robert D. Logcher
Samuel P. Mauch

Massachusetts Institute of Technology
Cambridge, Massachusetts

The M.L.T. Press ""|||

Copyright (c) 1965
by

The Massachusetts Institute of Technology

All Rights Reserved

Library of Congress Catalog Card Number: 65-13830

Printed in the United States of America

PREFACE

Work on STRESS began in the Fall of 1962 under the direction of Pro-
fessor S. J. Fenves of the University of Illinois, who was a visiting mem-
ber of the M.I. T. faculty during the year 1962-1963. The project staff
included Professor R. D. Logcher, Professor S. P. Mauch, Mr. K. F.
Reinschmidt, and Mr. R. L. Wang. In the Fall of 1963 the project was
placed under the general supervision of Professor J. M. Biggs with
Professors Logcher and Mauch directly in charge of the programming
effort. During the ensuing period important contributions were made to
the debugging of the system by Professor Z. M. Elias, Mr. R. V. Good-
man, Miss S. C. Finkelstein, Mr. S. G. Mazzotta, Mr. J. R. Roy, and
Mr. A. C. Singhal.

The STRESS project has been partially supported from a major grant
for the improvement of engineering education made to M.I. T. by the
Ford Foundation. Additional support was provided by Project MAC, an
M.I.T. research program, sponsored by the Advanced Research Project
Agency, Department of Defense, under Office of Naval Research, Con-
tract No. Nonr-4102(01). Reproduction in whole or in part is permitted
for any purpose of the U.S. Government. The work was done in part at
the M.I.T. Computation Center, and the aid and support of the Center
and its personnel are gratefully acknowledged.

Although the STRESS processor has been extensively tested by M.I. T.
personnel, no warranty is made regarding the accuracy and reliability
of the program and no responsibility is assumed by M.I. T. in this con-
nection.

S. J. Fenves
R. D. Logcher
January 1965 S. P. Mauch

CONTENTS |

INTRODUCTION

1.

GENERAL DESCRIPTION OF SYSTEM
I.1 Organization of the System

1.2 Processor Organization

1.3 Memory Usage

DYNAMIC MEMORY ALLOCATOR

2.1 General Features of the Memory Allocator
Program Allocation

Memory Use for Data

Codewords and Array Words
Reorganization Process

Programming with the Allocator

M.I. T. FMS Conventions

LANGUAGE TRANSLATION

3.1 Nature of Input Data

3.2 Specifications for Subprogram MATCH
3.3 Translation with MATCH

3.4 User Modification of Language

METHOD OF SOLUTION

4.1 The Network Concept

4.2 Local Releases
4.2.1 Member releases
4.2.2 Fixed-end forces
4.2.3 Joint releases

4.3 Implementation in Processor

S AS TR S G SR AT AV)
N oMWY

DESCRIPTION OF PARAMETERS, CODEWORDS, AND

ARRAYS
5.1 Organization of Parameters and Codewords
5.2 System Parameters

5.2.1 Parameters pertaining to program status

5.2.2 Parameters controlling core storage
5.2.3 Parameters controlling tape storage
5.2.4 Miscellaneous

vii

42
42
43
43
45
46
46

viii

5.3

5.4

Problem Parameters

5.3.1

5.3.2
5.3.3
5.3.4
5.3.5
5.3.6

Type descriptors

Basic size descriptors
External size descriptors
Derived size descriptors

Counters
Optional array indices
5.3.7 Miscellaneous
Codewords
5.4.1 Titles
5.4.2 Input joint data
5.4.3 Input member data
5.4.4 Optional member input data
5.4.5 Load input data
5.4.6 Computed member properties
5.4.7 Computed structure properties
5.4.8 Computed load data
5.4.9 Miscellaneous

6. DESCRIPTION OF SYSTEM COMPONENTS
General Organization
Input Phase: Phase Ia

6.1
6.2

oo
oW

6.5

6.6

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Array status during input
Error flagging

Data storage

Selective output
Termination

Checking Phase: Phase Ib
Execution Phase: Phase II

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Link 2
Link 3
Link 4
Link 5
Link 6

General Coding Conventions

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
Book
6.6.1
6.6.2
6.6.3

Clearing of arrays

Packing and unpacking routines
Matrix multiplication routines
Organizations of the program links
Address computations in FORTRAN
Allocation of arrays

keeping System for the Solution of Equations

The bookkeeping system
Elimination of support joints
Solution for the free-joint displacements

7. EXTENSION OF THE SYSTEM
Member Geometry Output

7.1

Contents

46
46
46
47
47
48
48
48
49
49
49
50
52
52
54
55
56
57

58
58
59
60
60
61
62
63
63
65
65
66
66
67
68
69
69
70
70
70
71
71
72
72
75
76

78
78

Contents

7.2 Joint Coordinate Computation

7.3 Member Loads in Global Coordinates
7.3.1 Input requirements for the new statement
7.3.2 Implementation
7.3.3 Programming changes required

7.3.4 Subroutine GLOMLD

Appendix A. FLOW CHARTS
Over-All Logical Chart
Over-All Execution Flow Chart
Main Link 1

Subroutine PHASIA
Subroutine LISTS
Subroutine MEMDAT
Subroutine SIZED
Subroutine JTDAT
Subroutine READ
Subroutine MATCH
Subroutine DPRINT
Subroutine SELOUT
Subroutine ANSOUT
Subroutine PHASIB
Subroutine RESTOR
Subroutine SAVE
Subroutine ITEST
Subroutine ICNT
Subroutine CLEAR(NAM)
Subroutine PRERR
Subroutine PRER2
Allocator
Subroutine DEFINE
Subroutine ALOCAT
Subroutine RELEAS
Subroutine REORG
Subroutine SSLAD
Subroutine STER
Subroutine DUMP
Subroutine FILES
Subroutine DUMPER
Subroutine PACKW
Main Link 2
Subroutine MEMBER
Subroutine MRELES
Subroutine MEMFOD
Subroutine FIXM
Subroutine COPY
Subroutine CARRY
Subroutine PERMUT

ix

81
84
84
86
86
87

91
93
94
95
96
105
106
109

110

112
114
117
120
122
124
129
130
131
132
133
134
135
136
138
140
141
142
144
144
145
146
148
149
150
151
153
156
158
159
160
161

Contents

Subroutine BUGER 162
Subroutine MAMUL 163
Subroutine UNPCK 164
Main Link 3 165
Subroutine LOADPC 166
Subroutine LOADPS 168
Subroutine MDISTN 169
Subroutine MEMBLD 170
Subroutine CASE2 172
Subroutine JDISPL 173
Subroutine JTLOAD 174
Subroutine LSTOR 175
Subroutine LINEAR 176
Subroutine EFVDTL 177
Subroutine STICLD 178
Subroutine TRAMAT 179
Main Link 4 184
Subroutine TRANS 185
Subroutine ATKA 186
Subroutine JRELES 187
Subroutine STEP2 188
Subroutine MATRIP 189
Subroutine STEP5 190
Subroutine FOMOD 194
Subroutine ADRESS 195
Subroutine TTHETA 197
Subroutine MAPROD 198
Main Link 5 199
Subroutine SOLVER 200
Subroutine MAPRDT 203
Main Link 6 205
Subroutine BAKSUB 206
Subroutine AVECT 208
Subroutine COMBLD 209
Subroutine NEWADR 210
Subroutine STATCK 211
Subroutine DEFSUP 212
Appendix B. PROGRAM LISTING 215

Appendix C. SEQUENTIAL LISTING OF PARAMETERS AND
CODEWORDS 383

STRESS: A Reference Manual

INTRODUCTION

STRESS (STRuctural Engineering System Solver) is a program-
ming system for the solution of structural engineering problems
on digital computers. This manual contains the description of
the STRESS processor system as presently (April 1964) imple-
mented on the IBM 7094 computer at the M.I. T, Computation
Center. The purpose of the manual is to provide the information
necessary for the implementation of the STRESS processor on
other computer systems, and for the inclusion of additional capa-
bilities in processors already implemented.

This manual serves as a complement to STRESS: A User's
Manual,! A thorough familiarity with the User's Manual is recom-
mended before attempting to implement or expand the system.

It is assumed that the person planning to implement or change
the system is an experienced FORTRAN programmer. Knowledge
of assembly language programming and monitor operation will be
helpful in implementing STRESS for special monitors and other
machines..

One of the primary objectives in the development of the STRESS
system has been the ease of expansion and modification of the sys-
tem., Expansions can be accomplished by the incorporation of
additional input statements and corresponding subroutines, so that
the system can be dynamically maintained with components added,
modified, or replaced to reflect the individual requirements of a
particular organization. It has been intended that such changes
need not require the services of experienced systems program-
mers but can be readily accomplished by programmers now en-
gaged in the development and maintenance of conventional special-
purpose programs.

This manual consists of seven chapters. Chapter 1l contains a
general description of the system in terms of the organization of
the processor and usage of memory. Chapter 2 describes in
detail the dynamic memory allocation algorithm used by the sys-
tem. The method of input translation is discussed in Chapter 3.

1S, J. Fenves, R, D. Logcher, S. P. Mauch, and K. F,
Reinschmidt, STRESS: A User's Manual, The M.I. T. Press,
Cambridge, Mass., 1964,

2 Introduction

The general method of indeterminate analysis is described in

Chapter 4, Chapter 5 gives the function of all parameters and
arrays in the system, Chapter 6 describes the complete sys-

tem as currently implemented. Finally, in Chapter 7 guidelines
and examples are presented for the incorporation of possible
additional components of the system.

Chapter 1

GENERAL DESCRIPTION OF SYSTEM

This chapter gives an introductory description of the STRESS
processor system necessary for the understanding of the details
described in the succeeding chapters. Specific aspects covered
are the organization of the system, the internal functioning of the
processor, the use of memory by the system, and the method of
storing data.

1.1 Organization of the System

The organization of the STRESS Language, described in the
User's Manual, reflects one of the initial specifications set by
the authors, namely, that the language used should closely re-
semble the accepted terminology of structural engineering. The
organization of the system, thatis, the processor which acts on
the input statements to produce the specified results, was dic-
tated by two additional specifications: first, that the system be
highly flexible in order to handle the widest possible range of
structural problems; and second, that the system be easily under-
stood, so that modifications on the system could be easily per-
formed by persons who are not primarily systems programmers.
Only experience in actual use will determine how successfully
these specifications have been met.

With the last of these specifications in mind, the most widely
available programming language, namely, FORTRAN II, has been
used almost exclusively in the development of the system, even
where considerably greater sophistication could have been achieved
through symbolic programming. Symbolic coding has been re-
stricted primarily to a function subprogram used for input de-
coding, and to the subroutines dealing with dynamic memory allo-
cation, It is believed that these subroutines need not be changed
for any IBM 709-7090-7094 system. However, they must be re-
programmed for any computer that differs from the 7094 in word
format or length, internal representation of alphanumeric charac-
ters, or access to secondary storage (tapes or disks), and for

4 General Description of System

use with any other compiler.

In planning the STRESS system, the authors have intended to re-
strict themselves to the development portion alone, and to leave
the implementation of the system for particular machine and mon-
itor requirements to interested outside parties. This decision is
reflected in the organization of the system and the contents of this
manual in two ways.,

First, the system as described in this manual was not intended
to be ready to run on any arbitrary large-scale digital computer.
The system was written for the particular equipment configuration
directly available to the authors, namely, the IBM 7094 computer
at the M, I. T. Computation Center operating under the MIT- FMS
monitor. The system does not possess the general flexibility in
terms of interaction with a monitor, tape units assignments, etc.,
that would be necessary for a fully implemented system. Provi-
sions have been made for certain flexibility, but such provisions
were not considered a primary objective in the development.

Second, the system described in this manual is the end product
of the development phase, and no attempt has been made to ''clean
up'' the programs. As a consequence, the program listings con-
tain certain inconsistencies in nomenclature, as well as a few
logical branches, calling parameters, etc., which have become
obsolete, but which have not been removed. Finally, there are
many provisions for potential extensions of the system that are
not currently implemented.

This manual should therefore be considered essentially a prog-
ress report on the current status of the project. The authors in-
tend to continue developing the system, and hope that interested
organizations will do the same.

1.2 Processor Organization

As presently implemented, STRESS contains the core of a com-
prehensive system for the solution of structural engineering prob-
lems, and there is ample room for the development of compo-
nents which precede, parallel, or follow those presently in the
system. The capabilities and limitations of the present version
of STRESS are described in Chapter 1 of the User's Manual.

The general flow of the process will be described in detail in
Chapter 6. Essentially, the processor consists of three phases:

1. Phase la performs the input functions, that is, the decoding
of statements and the storage of parameters, data, and
logical flags., This phase handles the input both for an ini-
tial problem description and for modifications on subsequent
reruns.,

Memory Usage 5

2. Phase Ib performs the editing, diagnostic, and compiling
functions,

3. Phase II performs the actual execution of the operations
specified or implied by the input statements.

Phase Ia is terminated after a SOLVE or SOLVE THIS PART
statement is decoded. This statement also initiates Phase Ib,
If the diagnostic of Phase Ib is successful, Phase II is automati-
cally initiated. Upon completion of Phase II, control again trans-
fers to Phase Ia. At this point, several possibilities exist, de-
pending on the order of the statements following the SOLVE THIS
PART statement:

1. a FINISH statement terminates processing of a job, The
system is ready to accept the next job in sequence.

2, a SELECTIVE OUTPUT and one or more PRINT statements
cause the output of the data specified by the statements in
an interpretive fashion,

3. a MODIFICATION statement initiates action for the accept-
ance of modifications to the problem previously analyzed.

The normal process, then, consists of cyclical alternations of
Phases Ia, Ib, and II until all the modifications have been proc-
essed. After the FINISH statement, the system again returns to
Phase Ia. Thus, an arbitrary number of separate problems can
be handled in sequence,

The internal organization of the processor is built upon the
CHAIN subroutine of FORTRAN II. Phases Ia and Ib, as well as
the procedures for handling all normal and error returns from
Phase II comprise the first link. The various subroutines of the
execution phase are grouped into the subsequent links according
to their logical order. Wherever a bifurcation of paths exists,
the link currently in high- speed storage determines which chain
link is to be called in next., The detailed description of the sys-
tem components making up the various links is given in Chapter 6.

1.3 Memory Usage

The usage of memory adopted for the STRESS processor was
dictated by three considerations: (a) that there should be no arbi-
trary size limitations on the problems to be solved, (b) that core
memory be used as efficiently as possible, and (c) that large
problems be conveniently handled without sacrificing the efficiency
of solving small problems.

To illustrate these points, consider the storage of the stiffness
matrices of the members in the structure. A FORTRAN state-
ment DIMENSION ST(6,6, 100) would reserve 3600 locations to

6 General Description of System

store the stiffness matrices of 100 space frame members. How-
ever, if the flexibility method were specified, this storage would
have to be EQUIVALENCEd to another array, or would be unused.
Furthermore, if a particular problem were a plane truss, only 4
of the 36 elements of a matrix would be involved, yet there would
be no way of using the remaining 32 elements per matrix, or in-
creasing the number of members that could be handled. Finally,
if the system were designed primarily for large problems — with,
say, only one stiffness matrix in high-speed storage at a time _
smaller problems, which could fit all at once in core, would be
heavily penalized,

The dynamic memory allocation algorithm was incorporated in
the system to overcome these objections. In this scheme, all
data pertaining to the problem being run are organized into arrays.
The size of the arrays is completely determined from the input
data for the problem. In the example just cited, the array of
stiffness matrices is of size NB*JF *XJF, where NB, the number
of members, is specified by the NUMBER OF MEMBERS state-
ment, and JF, the number of degrees of freedom, is determined
from the TYPE statement.

The entire high- speed memory, with the exception of a small
area used for parameters and the area occupied by the current
program link, is considered as a pool available for the storage
of arrays. Furthermore, the secondary storage (scratch tapes)
is considered as a logical extension of the high- speed storage.
Thus, the programmer writing a subroutine only has to define
the size of the arrays he will generate, allocate the arrays he
will need at any particular stage, and, prior to returning control
to the calling program, release the arrays no longer needed. The
allocation system will insure that all allocated arrays are in core,
and supply a reference for addressing the elements of an array.

The dynamic memory allocation system is described in detail
in Chapter 2. Admittedly, the use of this system removes a
major programming facility of FORTRAN, that is, direct and
multiple subscripting of arrays. However, the versatility and
efficiency gained more than compensate for the small amount of
additional programming.

The organization of memory is illustrated schematically in
Figure 1.1, Two of the areas, '"Current Program Link' and
""Pool," have been described in Sections 1.2 and 1.3, The modi-
fied CHAIN program used in the system automatically sets the
address of the bottom of the pool to the location immediately above
the highest location used by the program link, The four areas at
the top of memory are

1. Working area. These 108 locations can be used as working
storage by the subroutines. In general, no information is
transmitted through these locations from one subroutine to
the next.

Memory Usage

2.

System parameters. This area of memory holds all param-

eters that indicate the status of the system, and that are
essentially independent of the size and type of problem

being handled.
Problem parameters. These parameters completely de-

scribe the problem being handled, and are used by essen-
tially all subroutines.
Codewords. These parameters are associated with the data

arrays described previously. Each array has an associated

codeword, which completely describes the status of the

array.

Working area 108,

System parameters 504,

Problem parameters 42,

Array codewords 100,

Pool

Current
program
link

Figure 1.1. Schematic layout of memory.

The function of all parameters and the makeup of each array
are described in detail in Chapter 5.

Chapter 2

DYNAMIC MEMORY ALLOCATOR

This chapter describes the memory allocation procedure used
in the STRESS system. The procedure is designed both to pro-
vide the flexibility needed in operating on a multitude of data ar-
rays of varying sizes and to enable the programmer to gain access
to the arrays with relative ease.

2.1 General Features of the Memory Allocator

The principal features of the memory control scheme are as
follows:

1. Only the amount of storage needed for an array is used,
as specified by the data.

2, All use of tape is automatic and need not concern the pro-
grammer,

3. Tape is used only when memory requirements exceed the
available core space.

4. Space used by arrays not needed at any stage during proc-
essing is automatically available for other use.

In order to have this flexibility, the programmer must accept
the following disadvantages:

1. Numerous calls to the memory control routines are needed
to provide and control arrays.

2. Use of reference words is needed to gain access to the ar-
rays.

3. Some sacrifice in multiple and automatic subscripting is
required.

Memory control consists of automatic arrangement of programs
and data in primary and secondary storage. The arrangement of
programs in STRESS is made at development or compilation time
by lumping series of subroutines into blocks. These blocks are
called into use under program control. The IBM-FMS CHAIN
subroutine is used to load program links in core memory. The

Program Allocation 9

special data-control routine that has been written for STRESS
uses in a flexible manner the rest of core for data arrays.

2.2 Program Allocation

All data which are used by more than one subprogram, or are a
function of problem size, are placed in COMMON storage, that is,
outside the part of core that contains programs. The core stor-
age available for data consists of all the space that is not used by
program. Figure 2.1 shows the arrangement of core in detail,

TOP BOTTOM
LOCATION LOCATION REMARKS
ONITOR USE o
_ MONITOR 77462
WORKING 77461
STORAGE
PARAMETERS
CODEWORDS 77006
; 77005
S}?own in < ARRAY
Figure 1.1
POOL
PRGM BR+1
PRGM BR Obtained from (143),
PROGRAM
L 144
143 Program break in
PRGM BR decrement of (143)g
MONITOR USE 0

Figure 2.1, Core layout.

Locations 0 to (143); are used by the FORTRAN monitor, as well
as (77462)g to (77777)g. Programs are loaded upward from (144)g,
and COMMON storage is allocated downward from (77461)g. It
should be recalled that FORTRAN II stores arrays downward,
needing the highest location word address as a reference (base
address).

The highest location used by programs, called the program
break (PRGM BR), is a variable function of the programs in core
at any particular time. At running time the program blocks are
brought into core from tape with the CHAIN subroutine. Each

10 Dynamic Memory Allocator

chain link is an executable set of programs, with a main program,
and library subroutines; the chain link is logically terminated
either with a call to EXIT or to CHAIN for loading another link.
Parts of core not containing program are not destroyed as a re-
sult of reading a new program link into core.

At setup time the program blocks are placed on tape by the
IBM BSS loader. CHAIN control cards, giving the link number
and tape drive, delineate the links. All the programs after a
CHAIN card are loaded into core together with their required
library routines, thereby satisfying all transfer vector require-
ments. The loader then writes two records per link on the tape.
The first record is for identifying and reading the link, and the
second is the program itself. The first record contains three
words: the first word includes the link and tape numbers for
identification; the second is a data channel instruction for read-
ing the program link; and the third is the transfer instruction to
the entry point of the main program. The data-channel instruc-
tion contains the number of words in the program record, start-
ing from (143)g, and can be used to calculate the program break
for a link before it is brought into core. The program record is
an image of core from location (143)g to the program break as it
exists after completion of the loading function.

The CHAIN subroutine is used to read a link into core. This
routine operates in the following manner. It first reads a three-
word record from the tape and compares the first word with the
arguments of its calling sequence. If this comparison fails, the
program record is skipped and the next three-word record checked.
When the link is found, the other two words are placed into a
small link-reading program, and this program is moved to the
portion of core above COMMON, Control is then transferred to
this reader, which reads in the program link and itself transfers
control to the entry point of the main program of the link.,

Both the loader and the CHAIN program are designed to use
only the monitor scratch tapes, B2, B3, and A4, This implies
that the CHAIN tape would be formed every time a job were to be
run. This would, however, waste more than 3 minutes of 7094
time for each run. Forming the tape infrequently and reusing the
CHAIN tape would therefore become a necessity. Reusing this
tape on a monitor tape drive might inconvenience or restrict
usage, so that modifications to the CHAIN subroutine would have
to be made to enable a tape to be read from another tape drive.

It was considered feasible to alter the CHAIN subroutine, but not
the loader. Therefore, the CHAIN tape is formed on one drive
(A4) using the loader, and it is executed on another drive (A5)
employing a special version of CHAIN which disregards the tape
number in the calling sequence when selecting the drive, using
only the drive designated for execution (A5), A very short starter

Memory Use for Data 11

program, calling CHAIN for the first link, and a copy of the
special version of CHAIN are sufficient to start execution on
drive A5. No chain control cards are used with this starter deck.

Noting the contents of the first word of the identifying record
on the CHAIN tape, the user must be cautioned in writing his
calls to the CHAIN program, both within the links and in the
starter program. The identifying word is formed by the loader
and therefore contains the drive number on which the link was
formed (A4). The calls to CHAIN for link N must be CALL
CHAIN(N,A4) even though another tape drive will be used.

The dynamic memory allocation routine makes it possible to
use all available core for data arrays. A problem exists in as-
suring that data arrays are not overwritten by program when
bringing in a link longer than the previous link. There are two
system parameters set and used by the allocation routines that
are related to this condition. These are NT, the bottom of the
pool for the link in core, and NL, the next location down from the
top of the pool to be assigned for an array. (See Section 5,2.2.,)
A new value of NT must be found for the new block of programs,
and this value checked against NL. If the new NT is greater than
NL, the next link will overlap data. A memory reorganization is
needed to eliminate the overlap by compacting memory towards
the top of core. (See Section 2,5.)

Since a check for overlap of program and data must be done
before a program link is read into core, and the size of the link
is not known until its identification record is read into core, this
check must be performed in the CHAIN subroutine, This modi-
fication has been added to the subroutine and is needed in all links,
It is not needed, however, in the starter version since memory
has not yet been used, .

During debugging reuse of the tape on another drive may not be
important., By making only the data-overlap modification to
CHAIN, STRESS will operate using drive A4, This tape may also
be restarted with a main program of CALL CHAIN(1, A4), taking
the subroutine from the library. The subroutine FILES (see Sec-
tion 2.6) normally uses tapes Bl, B2, B3, and A4 for scratch
tapes. For this use FILES must then be changed for execution
with the chain tape on A4, say by changing the scratch tape from
A4 to A5,

2.3 Memory Use for Data

If a program is to use core memory in a flexible manner so as
not to restrict the program to a fixed arrangement of memory,
the programming system must resort to indirect addressing and
control functions. In the operating programs indirect addressing

12 Dynamic Memory Allocator

and control must be done with FORTRAN statements., It is this
specification which determines the manner of memory use,

The control function in FORTRAN can be specified by CALL
statements to the memory supervisor, In order to use an array
the programmer must

1. Define necessary parameters about an array.
2. Specify a need for an array,
3. Signify completion of the need for an array.

These operations can be put in any order, so long as there is a
define operation first. The FORTRAN calls are described in
Section 2. 4.

The only means of indirect addressing available with FORTRAN
is in the use of subscripts. An array position can be specified by
a subscript referenced to a fixed location (base address). The sub-
script is understood to refer always to the fixed location, so that
its use is independent of what preceded or follows its reference.
This subscript is a variable that is controlled by the STRESS al-
locator. Its value may change as a result of the memory-control
process, but its treatment as a variable reference does not alter
the array referencing. This subscript, however, requires direct
referencing, so that it must also be assigned to a particular (fixed)
location.

In order that individual subprograms be independent of changes
in memory usage, their references (base addresses) must not
change location because of additional references in other subpro-
grams. For this reason the subscript reference is given a fixed
location independent of other referencing, namely, the top of
COMMON. A single-subscripted array is given this reference -
(U equivalenced with IU) and any array is referenced by its sub-
script as belonging to U (or IU for integer quantities). The array
references are assigned a particular fixed location for each array
in an area near the top of COMMON which will not be used for the
arrays themselves, For a newly added array, a reference word
is added to the COMMON statements of subsequent subprograms
and to the list of COMMON usage (see Chapter 5). The subscripts
of U do not start with 1, but with some variable, set by an initia-
tion CALL START in order to locate all arrays below this fixed-
assignment location area of COMMON,

The fixed location area at the top of COMMON is referred to in
almost all subroutines in the processor. Thus use of this area
must be consistent., For convenience, the area has been sepa-
rated into blocks of words with each block containing words used
for different purposes. It must be noted, however, that these
are not restrictions on groups of words, since any use can be
made of a location as long as it is consistent throughout all the
programs. Figure 2.1 shows the division of storage.

The first 108 words are set aside as a working storage for

Codewords and Array Words 13

temporary use by small components of the processor. This area
can be used, for example, for small multiple- subscripted arrays.
The COMMON statements correspond to the usage for a particular
subroutine and are different in other subroutines, This area does
not have the same computational meaning in different parts of the
processor and therefore its value cannot be considered available
between the parts.

The remaining fixed locations in COMMON have the same mean-
ing between the parts, as enumerated in Chapter 5. Although
separated into three parts — system parameters, problem param-
eters, and codewords — intermixing is permissible. The only
functional difference is that restoration of an initial problem
specification (reading a MODIFICATION OF FIRST PART state-
ment) returns the information in the initial problem specification
to the locations from TOP (77272)g to the value of NL at a stage
near the end of Phase Ib. A few system parameters then are not
restored to the first-part status.

2,4 Codewords and Array Words

Array usage and control involves more than merely a subscript.
The word layout of FORTRAN II, however, allows the use of the
reference word for more than just storing subscripts., Therefore,
the reference word, designated a codeword, is used to store al-
most all the information about an array. All FORTRAN sub-
scripting is performed using only the decrement of the word, All
computation of subscripts for an array uses only one codeword
and positive integer constants and variables. The only require-
ment on the arrangement of the codeword outside the decrement
would then be that the sign be plus when the codeword is used for
subscript computations.

s|1l]2]3 17118 |19 |20 21 35

Plqg F r u | v N

Figure 2.2, Codeword schematic.

Each codeword consists of one memory word utilizing the full
36 bits of the word, and each contains almost all the necessary
information about the array that it references. Figure 2.2
shows the location of the information packed into the codeword.
The symbols indicate variables set by one or more of the mem-
ory organization processes. The letter F is used for subscripting
and may be altered as a result of the memory-control process.
The value of F is set by the allocator so that if the codeword is

14 Dynamic Memory Allocator

s|1]|2]3 17 | 18-20| 21 35
s |{u|v NifM=0 M

Figure 2,3. Array word schematic.
added to the subscript of an element in the array the result will
be the subscript of that element in U or IU, The U(F) is the word

before the start of the array.

Table 2.1. Meaning of Memory-Control Variables

Bit
Symbol Word Position Meaning
N Codeword 21-35 Array size, number of storage
locations
P Codeword s Position: + when in core
- when not in core
(either on tape or not
yet used)
q Codeword 1 Redefinition
indicator: 1 if array was rede-
fined while on tape
0 if not
T Codeword 18 Array content: 0 if data
1 if codewords
s Array word s Release status: + needed
- released
u Codeword 19 Core retention priority: 0 low
Array word 1 1 high
v Codeword 20 Erase status: 0 can be erased
Array word 2 1 must be saved
F Codeword 3-17 Reference: Location-core (p = +)
array subscript
2-17 Location-tape (p = =)

array file number

M Array word 21-35 Backreference: Address of the
codeword of as-
sociated array

J Subarray number: J = 0 corre-
sponds to code-
word array

Reorganization Process ' 15

For the memory-reorganization process it is necessary to sup-
ply a referencing from the array to the codeword as well. This
is termed the backreference and is placed in a word, called the
array word, at U(F). It exists only for an array in core or, if
an array has been moved, for a hole in memory. Figure 2.3
shows the form of the array word, If M = 0, no backreference
exists, Then the decrement contains the size of the array that
was in the hole, Thus, for an array of size N, N + 1 words are
used in core with the array word occupying the highest location,
U(F), and the IP word, U(F +1). Table 2.1 defines all symbols
used in the codewords and array words.

For many types of data, the number of arrays needed is a func-
tion of the problem size. These arrays are then really subarrays
of a single array. All the subarrays together could be considered
as a single array, but this implies that all subarrays would be in
core when one of them is needed. This would overly restrict
capacity. Alternatively, each subarray could be assigned a code-
word and referenced individually., Since the fixed-location area
of COMMON is not appropriate for this, the codewords for the
subarrays must themselves constitute an array., This corre-
sponds to a second level of indirect addressing and is the limit
provided for with the present allocator,

2,5 Reorganization Process

As space for arrays are requested by programs using calls to
the control routines, arrays are placed in sequence down from
the top of the array data pool (N1) with NL, the next available
space, updated each time, The symbol NT is the bottom of the
pool. At the time an array of size N is needed, if NT + N > NL,
then that array will not fit into core with its present arrangement.
A memory reorganization must take place in order to fit the ar-
ray into core,

The form of reorganization is the simplest consistent with the
form of data, that is, a compaction of all needed (not released)
arrays toward the top of the pool. All low-priority arrays not
needed are put on tape or erased. High-priority arrays will be
put on tape only if their space is needed to fit the array desired.
Since the compaction process overwrites the top of the pool,
it is ordered to proceed from the top of the pool downward,
dealing with the arrays in the order they exist in core. This
requires that the reorganization process deal with the arrays
first and reference the codewords since the codewords are
altered by the process. The array word provides the refer-
ence to the codeword and contains information used only for

16 Dynamic Memory Allocator

an array in core, namely, the release status s.

2.6 Programming with the Allocator

The FORTRAN CALL statements that are used in the programs
to control memory can now be described, For examples we will
consider two codewords, NAME and MEMB, where NAME refers
to a single array and MEMB to a group of N arrays, that is, sec-
ond-level arrays. Because of the integer computations performed,
all codewords must have FORTRAN integer names. In usage, the
codeword and the array become synonymous.

Initialization of the allocator is accomplished with the entry

CALL START(TN,NCW,NMAX)

(TN and NMAX are no longer meaningful), where NCW is the num-
ber of words contained in the fixed-location area, that is, above
the array data pool. The word START is presently called whenever
the STRUCTURE statement is translated and NCW is set at 300.
These 300 words still contain about 60 unused words, Initializa-
tion consists of zeroing the NCW words, which process effec-
tively zeroes the data pool by destroying references, and setting
the top (N1), bottom (NT), and next available location (NL = N1)

of the pool. The word NT is set from PRGM BR in location (143)g.

Definition of the array is accomplished with the order,

CALL DEFINE(NAME, N, r, u,v)

where NAME is the array name appearing in COMMON
N is the array size
r,u,v are either 0 or 1 as defined in Table 2. 1.

If the codeword is zero, this array has not been used before in
the problem. For this case, p is set to minus and N,r,u, and v
are put into the codeword. If the codeword is not zero, one of
three processes is carried out: If p is minus, q is set to 1 and
N, r,u, and v are put in the codeword, If p is plus and N is un-
changed, r,u,v are put into the codewords. If p is plus and N is
changed, the array is moved to the current bottom of the pool
(NL); appropriate references are changed; N, r, u, and v are put
into the codeword; and the array is either truncated or extended,
with the extension zeroed. A single exception is that if the array
is the bottom array in the pool, it need not be moved., Itis im-
portant to note that redefinition may change F and, since moving
is a function of NT and NL, may even cause a memory reorganiza-
tion, changing F in many codewords,

Array need is specified by the call

CALL ALOCAT (NAME)

Programming with the Allocator 17

If p is minus and F in the codeword NAME is zero, the array has
not been used. In this case, space is allocated, the array word
formed with a plus sign, F placed in the codeword, and the array
zeroed. If p is plus, the array is in core, so only s in the sign
of the array word is set to plus, If p is minus and F not zero,
the array is on tape and is automatically brought from tape into
core and the references established. If q was not zero, the ar-
ray is read from tape differently and either truncated or the ex-
tension zeroed. If there is insufficient space in core for the ar-
ray, a reorganization takes place before the array is allocated.

The array is now ready for use in core. To set the Ith element
of the array equal to A or IA, the following statements are re-
quired:

IJ=NAME+I

U(1J7)=A or IU(1J)=IA (2.1)

When an array is temporarily or permanently not needed, this
information can be specified with the call

CALL RELEAS(NAME)
or
CALL RELEAS(NAME, u, v)

With this call the sign of the array word is set to minus and u and
v placed in the array word. If u and v are given in the calling
sequence, the codeword is also updated.

For second-level arrays, referencing must still be done through
fixed-location codewords at the first level, Control operations
must be performed on the first-level or codeword array as well
as the data subarrays. The variable J indicates the subarray
number, referenced by the Jth codeword in the codeword array.
Operations on the codeword array are indicated by J = 0. The
corresponding calls are

CALL DEFINE(MEMSB, J, N, r, u, v)
CALL ALOCAT(MEMB, J)
CALL RELEAS(MEMB, J)
or
CALL RELEAS(MEMB, J, u, v)

In order to define a subarray MEMB, J, the codeword array
MEMB, 0 must have been previously defined with N = J and allo-
cated since the subarray definition operates on the words of the
codeword array. Note that r = 1 can only be used for J = 0.

When the codeword array and a desired subarray are in core,
(allocated), subscript references for the 1th element in the Jth
subarray are computed as follows:

IJ=MEMB+J
IK=IU(1J)+I (2.2)
A=U(IK) or IA=IU(IK)

18 Dynamic Memory Allocator

As shown in Statements 2.1, IJ is the subscript of the word in
the first-level array, or, in this case, the subscript of the code-
word for the data array. The codeword for the Jth data array is
then IU(1J), so that the second and third of Statements 2.2 become
equivalent to 2.1,

It must be noted that any array allocation or redefinition may
require a memory reorganization at the time the allocator is
called. Since F's for all arrays in core change during a reorgan-
ization, all needed subscripts must be recomputed after a CALL
ALOCAT or a redefining CALL DEFINE., In other words, sub-
scripts cannot be carried beyond these call statements, Efficient
organization can compensate for this restriction,

Additional restrictions implicit in the memory process are

1. The entire operation of altering codewords must be done
only by calls to the allocator routines. This restriction
arises from the interrelation of codewords and arrays. A
codeword, for example, may not be set equal to zero to
erase an array in core since the codeword is referenced
during a memory reorganization from the array.

2. All calls to the allocator routines must reference the code-
word directly, not a dummy temporary variable. This is
necessary because the allocator routines alter the code-
words and need the codeword address from the calling se-
quence for backreferencing.

Although a data array might be zeroed by setting each of its
elements equal to zero, it might also be zeroed as follows:

CALL DEFINE(NAME,O0,0,0,0),
and if previously released, then,

CALL ALOCAT(NAME)
CALL DEFINE(NAME, N, 0, 0, 1)

Redefinition for an array on tape involves changing the codeword
and placing the flag q used for reading the array into core. If

the array is on tape, the second of two successive redefinitions
overwrites the first, which therefore has no explicit effect on the
array elements, If the array is in core, both redefinitions pro-
vide for explicit actions, the first truncating the array, the second
extending it and zeroing the extension. The allocation is to assure
that the array is in core, so that the two redefinitions have explicit
effects. Second-level data arrays can also be zeroed by either re-
definition or by setting their elements to zero, but since a code-
word implies referencing outside itself, a codeword array can only
be zeroed by redefinition. The redefinition process will eliminate
the references. It should be noted that such a zeroing of a code-
word not only zeroes the second-level arrays but requires their
redefinition.

M,I. T. FMS Conventions 19

An additional routine helpful for debugging will give an image
of an array in all internal forms: octal, floating point, FORTRAN
integer, and BCD. It is entered with

CALL DUMP(NAME)
or

CALL DUMP(MEMB, J)

Subprograms must, however, be recompiled after debugging to
eliminate the intermediate dumps.

All tape handling is done in a single small FORTRAN subroutine
called FILES, FILES contains logical tape numbers used for
scratch tapes and computes the tape to be used from the file num-
ber, Some attempt is made to keep from having very short rec-
ords on the tapes: through a form of buffering in the subroutine,
files less than 254 words are combined into files of approximately
this length.

In order to compute tape numbers and record numbers on the
tape from the file number, a maximum number of files per rec-
ord had to be set (at present it is 20). With four scratch tapes,
the formulas for computing an internal tape number and record
number for file L are

L -1 L -
NIT = 20 +1-4(80>

L-1

80

where NIT is an internal tape number and NIR a FORTRAN rec-
ord number on the tape. If the number of scratch tapes are to

be changed, the only changes in FILES would involve the two

arithmetic statement functions (Equations 2,3). For N scratch
tapes, Equations 2,3 become

L-1 L-1
NIT =—=53 +1'N<N><zo)

L -1
MR =N %20 !

(2. 3)

NIR = + 1

(2.4)

using integer arithmetic. The internal-external tape correspond-
ence (NTAPE) would also have to be altered, and the limit on the
tape initiation loop changed.

2.7 M,I, T. FMS Conventions

Logical-physical correspondence of tapes differs widely with
installations. Logical tape numbers are used in only two sub-
programs in STRESS: FILES and DUMIO., The tape correspond-

20 Dynamic Memory Allocator

ence in the present system is shown in Table 2,2, Scratch tapes
are Bl, B2, B3, and A4, Input is A2 and output, A3, These can
be easily changed to suit any monitor system,

Table 2.2. M.,I. T. Tape Correspondence

Logical 2 4 5. 6 7 8 9
Physical A3 A2 Bl B2 B3 A4 A5

All STRESS BCD output is programmed with FORTRAN PRINT
statements, and input with the equivalent of the READ statement.
Output occurs from numerous programs, but input occurs only
from subroutine MATCH. (See Chapter 3.) The M.I. T. library
routines interpret the PRINT and READ statements as WRITE
OUTPUT TAPE 2 and READ INPUT TAPE 4, To avoid extensive
changes of source programs and recompilation for use with the
IBM library routines, a dummy routine DUMIO is added which
contains the entries to the PRINT and READ subroutines. The
action for each entry is to place the appropriate logical unit num-
ber in the accumulator and transfer to the corresponding tape
routine., This method also has the advantage of localizing tape
references.

Chapter 3

LANGUAGE TRANSLATION

The form of data input to the STRESS processor differs greatly
from most other computer programs. Format and ordering re-
strictions have been almost eliminated but are replaced by the
need to program explicitly the language translation. This chapter
describes the method of data input and translation used in STRESS
and gives some examples of how input flexibility can be pro-
grammed,

3.1 Nature of Input Data

The input technique used in the STRESS processor treats input
in a logical rather than physical form yet allows input in its gen-
eral sense to be programmed in FORTRAN, For this purpose a
single FAP subroutine has been written to process input fields
logically and provide information about the input that can be
used by the FORTRAN program to control further processing and
data storage.

The nature of input does not require the rigidity of the FORMAT
statements needed with FORTRAN, It is more logical to have the
input form follow the same rules that govern natural language.
The logical rather than the physical composition of the data can
be interpreted during input as an alternative to FORMAT state-
ments., The fact that a group of characters starts with a letter
is sufficient to recognize a word. Similarly, a number indicates
numerical data; a decimal point distinguishes a floating-point
number from an integer; and a blank or a comma after a group
of characters indicates the end of the group.

Input to STRESS deals with three types of information: BCD
words, floating-point numbers, and integers. Each of these
requires a separate form of conversion from card form to inter-
nal representation. Each implies different types of actions by
its presence, A number is a data item to be stored, and an inte-
ger normally signifies where the number is to be stored. A word

21

22 Language Translation

can be data to be stored, information about the type of data, or
more generally information about the input process. In most
cases, a word in BCD form has no meaning to an algebraic proc-
essor, and its meaning must be determined from some dictionary,
The simplest form of dictionary, used in STRESS, consists of a
list of acceptable words., The position of a word in a dictionary
characterizes its identity and is a logical quantity which can be
used for further computations.

With the input process controlled by decoding input fields,
statements may be processed in an arbitrary order. The amount
of data used for control is generally small. The input process
has, in its simplest form, a tree structure, with decoding of
statements proceeding up the tree. In this simple form each
branch is programmed separately to perform its operations,
process the input, and continue up the tree.

Character manipulation required by the free-field format can
be done only in a symbolic language. A single subroutine, written
in FAP, performs all input functions to the processor. The pro-
gram reads a full card (72 columns) into a buffer in BCD form.
This buffer can then be searched for logical fields, thatis, groups
of characters separated by a blank, comma, or the start or end
of the card. For numbers, the appropriate conversion from BCD
to binary can then be performed, The BCD word itself can be re-
turned or it can be compared to a dictionary,

3,2 Specifications for Subprogram MATCH

The function-type subprogram MATCH is designed to be easily
usable with FORTRAN for operations on logical input fields. The
translation of a field identifies its form and meaning. Branching
on translated words can then be accomplished in FORTRAN with
the "computed GO TO' statement, with the control variable de-
termined from the position of the translated word in the dictionary
list.

The subprogram MATCH is used by a FORTRAN translation pro-
gram with the following form and argument definitions:

I=MATCH(J, K, M)

where:
M is the operation code.
I is the result code.

For

0, read next logical field.

1, start a new card, read first logical field.

2 or 3, read the next number, skipping letters.
4, skip one logical field (word).

ERREK

Specifications for Subprogram MATCH 23

M = 5, determine buffer reference address.

For M =0,1, or 4, J is a dictionary list name. The next logical
field is isolated and if the field is a word, it is compared with
the words in list J for correspondence. If the field is a number,
it is converted. For M = 5, J is the subscript of U locating the
buffer. The Ith word in the 12- word buffer can then be referenced
as U(J+I) for printing or saving.

The symbol K represents the location where the results are
stored. The form of the result depends on the value of I, that is,
the form of the logical field, as follows:

1 Form of Field Form of Results in K
1 6 consecutive blanks unchanged
2 integer number FORTRAN integer form
3 floating number floating- point form
4 word, not found in list J BCD form of first 6
characters of word
5 word, found in list J FORTRAN integer for word
location in list J
6 the word DO or DITTO unchanged

For I =3 and 4, floating-point FORTRAN names are needed
for operations on the results, so that K must be equivalenced
with a floating- point variable, say BK. If a word is found, only
the first six characters are used.

Two fixed-location symbols are provided to designate two dif-
ferent card types. An "*'' in card column l designates a comment
card, which is echo printed, but otherwise ignored. A "$'" in
card column 1 designates the card as a continuation of the pre-
vious card. The usual test for the end of a statement is a check
for I = 1. If the logical fields on a card carry beyond column 66,
I=1 is determined by finding no $ in column 1 of the next card.
On the other hand, if M = 1 (read a new statement) is specified
and a $ is found in column 1, this signifies a continuation error.
To mark this error, Iis set to 4 and K contains in BCD the word
"$ERROR."

The form of the lists can be specified most efficiently in FAP.
Their form, however, is sufficiently easy to understand, so that
a programmer should have no difficulty altering them. The form
of a typical list in FAP is

ENTRY LISTN
LISTN DEC 10 (number of words in list)
BCI 1, 0OWORDI
BCI 1, OWORD2
BCI 1, WORDI10

END

24 Language Translation

For words of length six letters or more in the list, the word in
the list is started following the comma. For words of less than
six characters, leading zeroes are used so that the sum of zeroes
and characters equals six. Since the list name is a subroutine
name, and it is used as an argument in the calling sequence to
MATCH, the list name must appear on a FORTRAN F card in the
subroutine using the list. The F card performs the function of
placing the named variable location in the transfer vector list
rather than in variable storage.

MATCH gives an echo print of each card as it is read. Error
messages associated with the translation of a statement can be
printed when detected and will therefore appear directly below
the statement in error for easy association.

3.3 Translation with MATCH

Although MATCH provides a general input capability, versatile
translation requires extensive logical programming. Virtually
any type of input can be performed. Input to the STRESS proc-
essor can be separated into three types: words to direct the
translation process, words to identify the data, and finally the
data. The last two types might also perform the function of the
first. The data might be a code number constructed as a function
of the input words, or integer decimal numbers.

The translation process consists of identifying a logical field,
operating on it according to its type and value, and branching
to some appropriate point to continue. For example, a series of
about 15 statements at the start of subroutine PHASIA read the
first field in a new statement. The input specifications allow a
series of decisions depending on the outcome. If six consecutive
blanks are detected, the next logical field in the statement is
examined as if it were the first. This follows from the specifica-
tion that a statement can be started anywhere on a card. In order
that blank cards be allowed, it is necessary to count the number
of words of blanks. Integer numbers as a first word are accept-
able only if the statement follows a tabular header or another
table entry. A table indicator (ITABLE) can then be used for
branching. Starting a statement with a decimal number is an
error, as is a word not contained in a list LISTl of acceptable
first words. A word found in the list is used for branching. The
tabular mode is terminated as soon as a word is found starting
a statement. The word position is saved for possible later ref-
erence, as detection of DO or DITTO causes branching on the
last branch saved. In the following program illustrating this in-
put specification for starting statements, statement numbers in
the 90's are used for printing error messages.

Translation with MATCH 25

C START NEW CARD
10 J=0
IX=0
M=1
C READ FIRST FIELD

11 I11=MATCH(LIST1,K,M)
GO TO (12,14,97,94,16,17),11

C BLANK FIELD, TRY AGAIN
12 IX=IX+1
M=0
IF(IX-12) 11,10, 10 R
C INTEGER-SAVE AS JOINT OR MEMBER NUMBER
14 J=K
C IF IN TABULAR MODE, GO TO JOINT OR
c MEMBER INPUT
IF(ITABLE-1) 98,100, 200
C STOP TABULAR MODE
16 ITABLE=0
C SAVE BRANCH NUMBER
K 1=K
C BRANCH TO CONTINUE PROCESSING

17 GO TO (100, 200,...),K1

The first word in a statement defines at least partially the state-
ment type. The branch on K1 goes to program parts that decode
the appropriate types of statement. In order to keep the '"computed
GO TO'" statements from getting too long, the dictionary is divided
into several lists according to the association of possible words
in a translation process. All permissible first words appear in
LIST1. There is another list for possible third words in the
NUMBER statement. The second word in the NUMBER statement
is skipped using M=4 in the call to MATCH.

The subroutine READ is used to read much of the numeric and
alphabetic member and joint data. Alphabetic information is
formed into a code computed from the positions of the words in
the list used. Whenever a set of words representing a code is
translated, the code is stored in an array LABL and a storage
counter tabulating the number of codes incremented. When a
decimal number is read, it is temporily stored in an array BETA
and another storage counter incremented. The entry in the array
LABL identifies the numeric data for the corresponding elements
in the array BETA. The elements in LABL can be used for stor-
ing the corresponding elements of BETA in a data array. The
label numbers in LABL(K) are computed to give the position in
the data array for storage of the Kth element of BETA, which is
stored in an array, for example, NDUM, by

J=NDUM+LABL(K)
U(J)=BETA(K)

26 Language Translation

If labels are not given, the array LABL is filled with a sequential
set of numbers, thus giving the alternative of fixed-order or iden-
tified data (see Section 2.7 in STRESS: A User's Manual). For
alphabetic data, the codes in the array LABL are the input re-
sults, which can then be further processed.

As an example, consider the translation of the data or labels
FORCE X, FORCE Y, FORCE Z, MOMENT X, MOMENT Y,
and MOMENT Z. Assume LIST6 is made up as follows:

ENTRY LISTé
LIST6 DEC 5

BCI 1,00000X
BCI 1,00000Y
BCI 1,00000z
BCI 1,0FORCE
BCI 1, MOMENT
END

The following set of statements will place code numbers 1 through
6 for the labels in the order just given above:

10 1J=0
L=0
12 I1=MATCH(LIST6, K, 0)
GO TO (30, 100, 200, 300, 14, 95), 11
14 GO TO (20, 20,20,16,18),K
16 1J=0
GO TO 12
18 1J=3
GO TO 12
20 L=L+1
LABL(L)=IJ+K
GO TO 12
30 Subsequent processing

Note that a series of 6 blanks is used to determine completion.
Then L. shows the number of labels formed. In addition, flexi-
bility in input form is produced: the words FORCE and MOMENT
need not be repeated to form labels, so the user could write
FORCE X Y Z. Obviously, the preceding program segment places
in sequence the code numbers for any arbitrary sequence of labels.

3.4 User Modification of Language

Any modification of the STRESS processor by users will most
likely involve modifications of the input phase. A series of pos-
sible types of modifications is briefly discussed. Sample exten-
sions of the processor are given in Chapter 7.

User Modification of Language 27

The easiest type of modification consists of changes in the vocab-
ulary. If a firm is used to particular terms and wishes to re-
tain them, only the appropriate entries in the dictionary lists need
be changed. For convenience all the lists are included in a single
subroutine with multiple entries. By threading through the input
programs in the statement-translation phase, the place can be
found where the word to be changed is read. This place will dis-
close which list is used; the word to be changed can be located
in this list. Only the subprogram of the list need be recompiled
(reassembled).

To add a new statement type, the first word in the new state-
ment must be added to LIST1 and a branch to its decoding added
to the branch on first words. If the decoding will use parts of
other decoding routines, appropriate logical constants may have
to be introduced for branching. The new decoding portion may
consist of a series of calls to MATCH, looking and testing on
certain forms of logical fields and storing data for subsequent
processing. Existing translation programs can serve as a guide
to writing new parts.

If new arrays are needed for data storage or subsequent proc-
essing, their names (codewords) must be included in the COM-
MON statements in the subroutines referring to the names. Loca-
tions in COMMON already used are enumerated in Chapter 5.
Appropriate array definition and allocation are required before
storage of data. The definition function may require an additional
statement of the size-descriptor type. The array should be re-
leased while not needed.

To add additional branches on existing statement types, the
procedure is similar to new statement types, but branching is
deferred to later word translation. For additional size descrip-
tors, size-descriptor names have to be added to the list. If the
statement form is not different from the other size descriptors,
then the translation process is unchanged. At present all branch-
ing on processes necessitated by translation of a NUMBER state-
ment is done in the subroutine SIZED. A new branch must then
be added in the subroutine SIZED to perform the processes re-
quired by the translation.

Chapter 4

METHOD OF SOLUTION

The present STRESS program performs the static, linear anal-
ysis of elastic lumped-parameter structures. This structural
analysis problem involves the setting up and the solution of a set
of linear algebraic equations. The present chapter discusses the
mathematical formulation of the structural analysis problem as
it is implemented in the STRESS processor. The formulation is
presented in matrix notation: only rectangular Cartesian space
coordinates are used. A prereading of A Network Topological
Formulation of Structural Analysis'" by S. J. Fenves and F. H.
Branin, Jr.,!is essential to understanding this chapter.

4.1 The Network Concept

At present STRESS performs structural analysis solely by the
stiffness method, treating the displacements as unknowns. This
is no restriction on the class of problems than can be handled.
Since certain structural forms could be analyzed more efficiently
by the flexibility method, it is hoped that this alternative method
will be implemented in the system as well, Many of the solution
steps could be used as presently programmed.

The computational procedure of the structural analysis in
STRESS is based on a network interpretation of the governing
equations, the principal feature of which is the clear segmenta-
tion in processing of the geometrical, mechanical, and the topo-
logical relationships and properties of the structure. This allows
a concise and systematic computational algorithm that is equal-
ly well applicable for different structural types such as plane or
space structure, pinned or rigid member connections.

In "A Network Topological Formulation of Structural Analysis,"

1S, J. Fenves and F. H. Branin, Jr., "A Network Topological
Formulation of Structural Analysis," J. Struct. Div., ASCE,
ST4, 483 (August 1963).

28

The Network Concept 29

a detailed description of this formulation is given for the homo-
genous structural type (that is, either all members rigidly con-
nected or all members pinned). Only a summary of important
relationships is therefore reproduced here.

A somewhat more detailed description of the procedure used
to include local force releases (for example, hinges, rollers)
for members and support joints is given in Section 4. 2.

One essential difference of procedure used in the STRESS proc-
essor from that in Fenves and Branin's paper should be pointed
out: for reasons of numerical accuracy the single global-coordi-
nate system has been replaced by a series of joint-coordinate
systems, all oriented in the same direction but each having its
own origin at a joint. The only effect of this on the general for-
mulation is that the transformation T of stiffnesses from local
to global (joint) coordinates involves only a rotation and that the
entries of the incidence matrix A become [-7],[I],[0] rather than
[-1], [1],[0]. The submatrix [7] is the displacement translation ma-
trix in joint coordinates from the start to the end of the member.The
origin of each member-coordinate system is located at the end
of the member. All quantities referring to member coordinates
are indicated with a superscript asterisk.

We now consider a linear elastic structure consisting of slender
members connecting the joints of the structure.

The statement of the problem is given as follows:

Given: 1. A structure that determines the topological

matrix A and the geometric transformations
T and T™' between member and joint coordi-
nates. The branch-node incidence matrix A
is defined as follows: the element (submatrix)
ajjis [-7], [1], or [0],depending on whether
the ith branch (member) is positively, nega-
tively, or not connected to joint j.

2. The primitive-flexibility or stiffness matrices
F* or K* of all the members in member coordi-
nates, or the necessary mechanical and geo-
metrical properties of the members, so that
F and/or K*can be computed. :

3. The applied member distortions U* in mem-
ber coordinates and the applied joint loads p'
in joint coordinates. STRESS accepts a larger
class of input loads, all of which are processed
into equivalent contributions to U™ and P'.

Find: The induced member forces R* and distortions V*
such that in joint coordinates
1. KV =R (4.1)

2. A'lR=P (4.2)

30 " Method of Solution

where the following relationships hold:

u = Au' (4. 3)

V=U+u (4. 4)

R=P+p (4. 5)
where U = applied member distortions

V = induced member distortion

R = induced member forces

u' = joint displacements
u = total member distortion
P = applied member forces
p = total member forces

We now introduce the joint displacements u' as variables

V=U+ Auw (4. 6)
R = KV = KU + KAu' (4.7)
P' = A'R = A'kU + AfKAu (4.8)

This is the governing set of linear algebraic equations, which is
solved for u' /

ut = (A'kA) (P - AfkU) (4.9)

After we have found u', backsubstitution gives the induced mem-
ber distortions and forces as

v

U+ Au' = A(A'KA) ' P+ (1 - A(ATKA) 'ATK)U
(4. 10)

R = KV (4.11)

i

4.2 Local Releases

The formulation given by Equations 4.1 through 4. 11 assumes
that the structure is homogenously connected in the sense that
all members have rigid connections to the joints in the directions
compatible with the structural type. (For a frame this means
rigid connections in all directions, and for a truss a rigid axial
connection.)

If a structure deviates locally from this standard condition it
must be so stated by specifying releases. A release is associ-
ated with a particular force component and implies that this
component is independent of the deformations of the structure
(that is, it is prescribed). A joint release relates to a reaction
component at a support joint, and a member release relates to
a member-force component at a given point along the axis of the
member.

4.2.1 Member releases. The load-deflection relationship for
the unreleased member in local-member coordinates is

Local Releases 31

* * %k
R =K V (4.12)

For the released member we assume that a given set of com-
ponents of the member-force vector R, at R is prescribed to
be zero (any fixed value could be used, but generally would not
be meaningful). We consider here only the cases where the origin
of the release system is located either at the start A or at the end
B of the member. The procedure described could be extended to
include releases within a member. Such cases can, however,
always be reduced into the situation where R is either at A or B
by introducing a fictitious joint at R.

Figure 4.1. Member and member-release coordinates.

The release conditions are assumed to be given in the member-

release coordinate system x;,xé, x3' shown in Figure 4.1, which

is related to the member coordinate system at B by

e

v'r

Trvr
(4. 13)
R*

-1t
(Ty) Ry

where T, is the transformation matrix between the member- and
the release-coordinate system. The subscripts r refer to the
release system. We derive an equation of the type of Equation 4.12
that is valid for the released member. Equations 4.13 are
written in the release systems as '

R, = K;Vy (4. 14)

32 Method of Solution

where
t. %
K =T KT (4.15)
T r r
we define
o t, -
V=Av =AYy (4.16)
r r
R=AR_ ’ (4.17)
where
~ ﬁl]
[’ .1
R =[5 (4.18)
and
=M
A= [E] (4.19)
is a permutation matrix and is orthogonal; that is,
Poat (4.20)
from Equations 4. 16 and 4. 14
®=AR =AK vV = AK A'¥ (4.21)
T rr r

(%) -[ﬁ Jxctnflagh - (X:) (4.22)
2 ~
. (Z) .23
22 VZ

xR

R Kn

=) S~

(3) = |z
The definitions of K;j...K,, are implied by Equations 4 22 and’
4,23, Solving Equation 4.23 for Rl while eliminating Vz gives

~ ~ ~ A~ 1~ ~
Ry = (Kp - KiKp, Kp)Vy (4. 24)
If back permutation is effected, we get for R,

t, ~ ~N o~ e~
Ry = Ay (Kyy - KoKy, 1K21)A1Vr (4. 25)

Equation 4. 25 is the modified load-deflection relationship for the
released member in released coordinates, The inverse trans-
formations of Equation 4. 13 brings us back to member coordi-
nates.

st

3k -1t t,~ N oy -1 -1 x
R =(T,.) Ay (Kyy - KipKpp Kp) T 7 - V (4.26)

or

Local Releases 33

*

—%_ %
R =K YV

where
_* -1 t ~ ~ ~ -1 -
K = (0T,) (Ky - KoKy, Ko)A T (4. 27)

The effective stiffness for the released member is K.

If releases are prescribed at both ends of the member, the
procedure just described can be applied serially to the two re-
lease groups.

If a number of such release groups is given such that an un-
stable member is implied, this fact will become automatically
apparent, in that the matrix K;, will be singular if the releases
that are about to be incorporated would render the member un-
stable,

4.2,2 Fixed-end forces. The prescribed releases not only
affect the member stiffness but also the fixed-end force vectors
resulting from applied member loads.

Figure 4.2. Definition of fixed-end force vectors.

We next describe a procedure to compute the modified fixed-
end forces. The stiffness of the member without releases is K*
and the corresponding fixed-end force vectors are R’Z and vg .
(Figure 4.2). We assume that Rp has been computed from

%k % %k
Ry =K vy (4. 28)

where v; is the cantilever deflection vector at end B resulting
from the applied loads. From statics

34 Method of Solution

* -1 %

RA=FCA-T RB (4.29)
where FgA is the cantilever force vector at A resulting from the
given loads.

It is immediately clear from the definition of K* and R¥ that in
the case where there is a release at B only we obtain

RY - kST 4. 30
B TB'B (4. 30)
RY - F T RY 4. 31
A~ Fcar B (4. 31)

The case where the member start A is released only can be
handled by analogy if KA and VA are available.

If both ends of the member have released force components, a
special procedure is necessary because then the deflection vec-
tor vp does not correspond to the actual support conditions of the
member at A, Ask

We assume that KB, RB, and RA are the stiffness matrix and
force vectors at B and A, respectively, reflecting the releases
at B but not those at A,

Ak A%k %

Ry = Kpvp (4. 32)

A
Then due to the release at A the forces RR will change by ARK:

AR
_ *® Al _ A] SIpF Lt g tya Al
AR, = AARA—(AR)_ [——IAZ T KT (A A== (4. 33)

A2 VA2
Let
A% 1A% -1t
KA- T KBT) (4. 34)

The permutation matrix for the releases at Ais A, If v pp and
ARpp refer to the released directions at A, we have

VA1=0

AR, = -AZRA (4. 35)

The final fixed-end forces become

—% A%

R, = RA+AR
RY - F TR 4. 36)
B~ "CB- A (4.

Rewriting Equation 4. 33 in partitioned form and solving it for
Al by elimination of Vg We find

Local Releases 35

Ak t Ask t\~ 1 A %
.._A .
AR, 1KAA, (AZKAA2> AR, (4. 37)
or
e t Ak t\-1
A A A A
AR*—At Ral —(AtlAt) 15a Z(ZKA 2> Az IQ*(4 38)
A~ AR B | -A AV

If we define

I, = AItAl

" =0 A, =1-1 ' (4. 39)
It follows that

—% 1 Asx ¢t Ax £\-1 A%

Rp=1 [R (AZKAAZ > AZ]RA (4.40)
I_{E can then be found from statics. It follows that

% —% %

RB =K vB+ TQFCA (4.41)
where

—% Ak ~ A%

K =T[I' - I'KAAthzz 'A,) KATt (4. 42)

By using the definition of I' one can prove that Expression 4,42
is equal to Expression 4.42a, which shows that the first term of
Equation 4.41 is the same as expression 4. 26,

-2k /* ~ o /*

K = T[I' - '"Ka0,'Ry "N R AT T (4. 42a)
Also

Q =1"+ ARLE,, A, (4. 42b)
where %12 and Rzz are given by

~ A *x

Rz = A,K A, (4.43)

~ A%*

It is noted that all matrix operations involving multiplication with
parts of a permutation matrix can be carried out on the computer
by inspection rather than by actual multiplication.

4,2.3 Joint releases, The term joint release as defined here
applies to support joints only, It differs from a member release
at the same point (if more than one member is incident to this
joint) in that the joint release requires only that the sum of all
member forces from all the members and external applied loads

in the released direction be zero. Each individual member may
still carry forces in this direction (Figure 4, 3).

36 Method of Solution

Member Releases at Joint Release
Support Joint

Figure 4.3, Distinction between member and joint releases,

The stiffness formulation for the complete structure, including
support joints is

]
Ky, Ki (u_' - (3) (4. 45)
Ky Ky [\ T P'

where &' and P! are the displacements and joint forces at the sup-
port joints, The elements of the stiffness matrix are defined as

K}, = A'kA
K}, = A'KA
21 i (4. 46)
K}, = AtKA
Kj, = A'KA

In Equation 4,46, A refers to the portion of the augmented in-
cidence matrix involving free joints,? while A refers to the portion

Free Joints aAtxa AtK_K u! P
I ISR N SN P I
Support |Ztpa |ZX'kE| |3 B
Joints
S l — L. J S

Figure 4.4. Modified structural stiffness matrix,

involving support joints., This partitioning of the structural ma-
trix can be represented as is shown in Figure 4.4,

We apply a permutation to Equation 4,45 such that the equations
associated with the released directions are moved to the bottom

ZSee Fenves and Branin, op. cit.

Local Releases 37

and also rotate the equations in the coordinate system of the joint
releases by

G = (AR)G' (4.47)
P
where A is the (orthogonal) permutation matrix and R is the

rotation matrix RgQs from the release system to the joint-
coordinate system. We define

Q = (AR) = [%:] (4. 48)
=1
u

e (4. 49)
Up2

where u.Pl are the prescribed joint displacements at support joints
in nonreleased directions,

ﬁl
15' = 2l = ng' (4.50)

P2

YOn

Here P'PZ is prescribed and represents the applied joint forces
at released supports in released directions. We can now further
partition Equation 4,45 by introducing Expressions 4.49 and 4.50:

Ky Ky, Kyl ' P'
Ko Koo Ka|l 05, |=[o (4.51)
Ky K Kj IT'1:,?_ 13'132
where
Ky = A'KA
Kz = szt = AtKEUHR)t
Ky = Ky' = A'KA(A,R)"
Kg = Kyt = A\ RATKA(A,R)
Ky, = A,RA'KA(A,R) (4.52)
Solving (4.51) for u' by elimination of G'Pl’ we obtain
w = (4.53)

where

A = Ky - KgKss 'Ky (4.54)

38 Method of Solution

1

- -1 =
P#' = P' - KpKss Po, - (Kiz - KpKss Kg) U] (4. 45)

Pl
Replacing 15'132 and 1=1'Pl by the corresponding quantities in joint
coordinates, we arrive at

-1 = - =
P = P! - Ki3Ky; ARB' - (K, - KpKss 'Ks)A,Ra! (4. 56)

Equation 4,56 describes the effective joint loads ' on the free
joints, including the forces applied in the direction of released
support components and the displacements in the direction of un-
released support components,

4.3 Implementation in Processor

The methods outlined in Sections 4,1 and 4,2 are well suited
for application to a digital computer program., They allow a gen-
eral program to be written in concise form and the data to
be stored efficiently, The same program can handle different
types of structures, and only the minimum of needed informa-
tion is stored. For example, only the nonzero elements of the
incidence matrix A or the stiffness matrix A'KA are stored,
and, where possible, logical submatrices of up to 36 elements
are stored only symbolically as a single binary bit. (See also
Section 6.5.7.)

The whole solution process thus becomes literally a sequence
of file-processing operations; that is, a given array of numbers
is operated on to generate a new array, then further operations
are done on this new array, etc., The solution process (execution
phase) can be summarized in these steps:

1. Generate a table of member stiffness matrices for the
nonreleased structure, This is done by computing first
the member flexibility F (F* = cantilever deflection due
to a unit-force vector at the end of the cantilever) and then
obtain the stiffness as

where K* is stored in KMKST,

2. If there are any member releases, the K* table is modified
to K¥ according to the procedure given in Section 4.2 for
member releases.

3. From the raw data for the loads, for each loading condition
the total equivalent force vectors P' and P' are generated,
comprising the load vectors for the governing joint-equilib-
rium equations, STRESS accepts five different types of
input loads:

Implementation in Processor 39

a, Joint loads
b. Member-end loads
c. Member loads within the member
d. Member distortions
e, Support-joint displacements
In the kinematically determinate structure (which is
considered during step 3) the different load types give con-
tributions to various data arrays kept internally. These
arrays are the following: the member-end loads at the start
and the end of the members, P% and P~ (arrays KPPLS
and KPMNS); the member distortions U (array KUV); and
the effective joint loads P' and P' at the free joints and at
the support joints, respectively (arrays KPPRI and KPDBP).
The mathematical representation of the processing steps
required for the different load types are shown as follows:

a. Joint loads _
Store directly in P! or P!,
b. Member-end loads
Convert the given member-load components from mem-
ber coordinates to joint coordinates.,
Add contribution to Pt and/or P~
Compute contribution to P! as
(5
= ’
=1

t
At = -é:—
A
C. Member loads

Compute equivalent member-'end forces and proceed as
in b,
d. Member distortions U™
Rotate to joint coordinates at end joint,
Add contribution to U,
Compute contribution to P

B = APt

=l

i

+
P = KU
Compute contribution to P

!

P' = A'PF = A'kU

e. Support-joint displacement u'
Compute resulting member distortions

U= K(-(-)-) and add these to U,
u!

Contributions to P¥:

40 Method of Solution

P = ku = k&2
!

Contributions to P':

— — + — — —
B = AP = A'KU = AtKA<£)

u!

4, Rotate all member stiffnesses to joint coordinates of the
member-end joints,
—%_t
K=RK R
where K is stored in table form in the second-level array
KSTDB.

5. Generate the structural stiffness AtKA from the incidence
table A and the stiffness table K. A'KA is stored in the ar-
rays KDIAG and KOFDG, using the arrays IFDT and IOFDG
as bookkeeping arrays, Only nonzero elements of the lower
left half of matrix A'’KA are stored in KOFDG.

6. If there are joint releases, the stiffness tables KDIAG,
KOFDG, IOFDG, IFDT (AtKA), and the load vectors
KPPRI (P') are modified according to the procedure of
Section 4.2 for joint releases, If there are no free joints,
this operation yields all displacement components at the
released supports.

7. If there are any free joints, solve the final governing joint-
equilibrium equations for the free-joint displacements u',
reflecting member as well as joint releases, The resulting
u'! are stored in KPPRI,

8. Backsubstitution, From the free- and the support-joint
displacements compute the induced member distortions
and member-end forces according to Equations 4,10 and
4.11 and add them to the contributions in the kinematically
determinate structure,

The detailed execution of the individual steps is described in
Section 5 of Chapter 6, as well as in the flow charts of the corre-
sponding programs, :

All data arrays, such as the displacement vector u' or the
member stiffnesses K are arranged in storage (either in core
or in secondary storage) in table form, either as first-level or
second-level data arrays, using the procedures described in
Chapter 2, The matrix operations as they appear in the formu-
lation of the problem can thus be done largely by bookkeeping and
inspection, rather than formally. For example, the matrix A
is stored only as two incidence tables giving the start and end
joint of each member (JPLS, JMIN). Similarly, the "matrix prod-
uct' A'KA is not formally computed but is formed by bookkeeping.

Implementation in Processor 41

First, only the nonzero submatrices on the diagonal of the com-
plete matrix K are stored in a second-level data array KSTDB,
The lower left half of the matrix A'KA is then formed by means
of one loop on the members, adding the proper member stiffness
once to the diagonal stiffness submatrices and once to the off-
diagonal stiffness submatrix corresponding to the joints which
the member connects. Thus even for structures for which the
storage for the complete matrix At KA would require many times
the capacity of the IBM 7094 core, the actual storage requirement
during the formation of A'KA, by bookkeeping, never exceeds a few
hundred machine words, and the computer time used for the com-
putation is a fraction of that required by a formal multiplication,
Similar methods are applied in all phases of the total process,
for example, for the operations required due to local-member

or joint releases as well as during the solution of the stiffness
equations and backsubstitution,

Since all operations are performed a member or a joint at a
time, all procedures are applicable to all structural types. Only
the three subroutines dealing with the computation of member
flexibilities, member fixed-end forces, and output actually dis-
tinguish between the structural types, In all other subroutines,
the operations are completely generalized using variable length
loops of the form DO N I=1,JF, where JF is the number of de-
grees of freedom for the structural type considered,

Chapter 5

DESCRIPTION OF PARAMETERS, CODEWORDS, AND ARRAYS

In this chapter, a detailed description is given of the system
parameters, problem parameters, and codewords comprising
the fixed storage of the system. As described in Chapter 3, the
codewords controlling the data arrays are synonymous with the
arrays themselves. Therefore, the makeup of the data arrays
is presented in terms of the codewords.

5.1 Organization of Parameters and Codewords

The (300) 1 locations from TOP+l through TOP+300 (see Sec-
tion 5.2) are assigned fixed functions in the STRESS system, -as
follows:

Number of Words Absolute Addresses Function
(Octal)l
108 77461 — 77306 Working storage
50 77305 — 77224 System parameters
42 77223 - 77152 Problem parameters
100 77151 — 77006 Codewords

The working area is available for direct subscripted operations,
and normally does not contain information carried from one sub-
routine to the next. This portion will not be discussed further.

The remaining 192 locations are reserved for parameters and
codewords. Not all of this space is used at the present time, nor
are all existing parameters and codewords needed by every sub-
routine. In order to maintain the proper COMMON allocations,
dummy filler arrays SYSFIL, PROFIL, and CODFIL of appro-
priate dimensions are used in the subroutines.

The actual assignment of parameters and codewords followed
the chronological development of the system, and is therefore

'We assume TOP = (77462)g to conform with the FMS Monitor
on the 7094.

42

System Parameters 43

not in a very logical order. In the following detailed description,
an attempt was made to group parameters in a logical order. For
quick reference, the parameters and codewords are tabulated by
location in Appendix C.

5.2 System Parameters

The following parameters describe or control the status of the
system and are essentially independent of problem size.

5.2.1 Parameters pertaining to program status

Name

Address

CHECK

77305

Description

- Solution consistency parameter, used in Phase

1. The 36 bits of CHECK are used as consist-
ency flags. Flags not present (bit = 0) at end
of Phase IB indicate an input error and cause
a diagnostic to be printed. If the flagis pres-
ent (bit = 1), the consistency is satisfied. The
significance of the bits in terms of the error
message printed is given in the following list,

Code
Bit number of
position error Message

35 15 NUMBER OF JOINTS NOT
SPECIFIED

34 16 NUMBER OF SUPPORTS
NOT SPECIFIED

33 17 NUMBER OF MEMBERS
NOT SPECIFIED

32 13 NUMBER OF LOADINGS
NOT SPECIFIED

31 19 TYPE OF STRUCTURE
NOT SPECIFIED

30 20 METHOD OF SOLUTION
NOT SPECIFIED

29 21 PRINTING OF RESULTS
NOT YET POSSIBLE

28 35 NO LOADS SPECIFIED

27 28 NUMBER OF JOINTS
GIVEN NOT EQUAL
TO THE NUMBER
SPECIFIED

26 30 NUMBER OF MEMBERS

NOT EQUAL TO THE
NUMBER SPECIFIED

44

Name Address
(continued) (continued)

5.2.1 (continued)
CHECK (continued)

Description of Parameters, Codewords, and Arrays

Description
(continued)

Code
number of
error

Bit
position
(continued) (continued)

Message
(continued)

25 31

24 32

23 33

22 34

21

20 10

11

19

18

14

17 29

16

18

15 26

NUMBER OF MEM-
BER PROPERTIES
GIVEN NOT EQUAL
TO THE NUMBER
SPECIFIED

UNACCEPTABLE
STATEMENTS
PRESENT

STRUCTURAL DATA
INCORRECT

LOADING DATA
INCORRECT

MODIFICATION
NOT ACCEPT-
ABLE

JOINT NUMBER
GREATER THAN
THE NUMBER
SPECIFIED

MEMBER NUMBER
GREATER THAN
THE NUMBER
SPECIFIED

LOADING NUMBER
GREATER THAN
THE NUMBER
SPECIFIED

NUMBER OF SUP-
PORTS GIVEN
NOT EQUAL TO
THE NUMBER
SPECIFIED

NUMBER OF LOAD-
INGS GIVEN NOT
EQUAL TO THE
NUMBER SPECI-
FIED

METHOD SPECIFIED
NOT AVAILABLE

System Parameters 45

Name Address Description
(continued) (continued) (continued)

5,2,1 (continued)

INORM 77303 Overflow index
= 0 normal operating mode
= 1 if memory overflow occurred
ISCAN 77301 Mode index
= 1 if normal solution mode
= 2 if scanning mode
ISUCC 77274 Error indicator
= 1 if solution is still successful
= 2 if solution has failed
ISOLV 77302 Indicator for the stage of solution success-
fully completed
1 System is entered
2 PHASIB
3 MEMBER
4 MRELES
5 LOADPC
6 TRANS
7 ATKA
=8 JRELES
9 FOMOD
10 SOLVER
IMOD 77277 Mode index for modifications
= 1 no modifications
2 changes
3 additions
4 deletions

noi

w - un

IRST 77261 Modification entry, structural data (set
by Phase Ia, but not used)

IRLD 77260 Modification entry, load data

IRPR - 77257 Modification entry, printing

ICONT 77275 Index for stage of modifications

]

0 if single solution
N if Nth solution (N- 15t modification)
IPRG 77262 Print request parameter
= 1 if print requested (selective output)
= 0 otherwise

1]

5.2.2 Parameters controlling core storage

NMAX 77304 Pool size available in core

TOP 77272 Address contains address of top of
COMMON+1, thatis, (77462)

N1 77271 Top of pool = TOP - 301,5- In Address

NL 77270 Next available storage location to be

assigned

46 Description of Parameters, Codewords, and Arrays

Name Address Description
(continued) (continued) (continued)

5.2.2 (continued)

NT 77267 Bottom of pool
NREQ 77266 Additional memory space required for
last memory request to ALOCAT

5.2.3 Parameters controlling tape storage

NXFIL 77276 Initial data file number
LFILE 77264 Next file number to be used
TN 77265 Scratch-tape logical number last used
NTAPE 77256 Five scratch-tape logical numbers
to
77252
NXFILE 77251 Five scratch-tape position numbers,
to indicating number of files on each
77245 scratch tape NTAPE

5.2.4 Miscellaneous

TOLER 77263 Tolerance limit. Relative discrepancy
allowed between the member length
internally computed from joint coordi-
nates and the sum of lengths of subseg-
ments in a variable member, as speci-
fied under member properties.

5.3 Problem Parameters

The parameters in this group describe the problem currently
being processed by the system.

5.3.1 Type descriptors

IMETH 77214 Method of solution code
= 1 for stiffness method
= 2 for flexibility method

ID 77220 Identification for structural type
= 1 for plane truss

2 for plane frame

3 for plane grid

4 for space truss

5 for space frame

5.3.2 Basic size descriptors

NB 77222 Number of bars (members) in the struc-
ture
NJ 77223 Number of joints in the structure

Problem Parameters

Name Address
(continued) (continued)

5. 3.2 (continued)

NDAT 77221
NFEJS 77212
JF 77217
NCORD 77215
NLDS 77213
NLDSI 77164
NMR 77206
NJR 77205

47

Description
(continued)

Number of support joints
Number of free joints (= NJ-NDAT)
Number of degrees of kinematic freedom
at a joint
= 2 for plane truss
3 for plane frame, plane grid, or
space truss
6 for space frame
Number of coordinate directions
= 2 for planar structures
= 3 for spatial structures
Number of loading conditions
Number of independent loading conditions
Total number of member-release com-
ponents
Total number of joint-release components

5.3.3 External size descriptors

MEXTN 77167

JEXTN 77170

LEXTN 77166

Highest external member number:
MEXTN, JEXTN, and LEXTN control
the sizes of all input-oriented arrays
associated with members, joints, and
loadings, respectively, Initially (dur-
ing the original problem, ICONT = 0)
they are set equal to NB, NJ, and
NLDS. On succeeding modifications,
they are reset to the highest external
number encountered during reading.
Every loop operating on input-oriented
data must have these parameters as
limits and must include a test for non-
existing members, joints, and loadings,
respectively.

Highest external joint number (see
MEXTN)

Highest external loading number (see
MEXTN)

5.3.4 Derived size descriptors

NSQ 77216
NSTV 77211

NMEMV 77210

JE*JF: size of submatrices

= JE*NFJS: length of a vector having JF
components at each free joint
JE*MEXTN: length of vector having JF
components per member

48 Description of Parafneters, Codewords, and Arrays

Name Address Description
(continued) (continued) (continued)

5.3.4 (continued)

NDSQ 77203 = NJR*NJR: size of matrix K;;in Equa-
tion 4,51

NDJ 77202 = JF*NDAT: length of a vector having JF
components at each support

NFJS1 77176 = NFJSt1l: internal number of first sup-
port joint

5,3.5 Counters

JJC 77175 Number of free joints given

JDC 77174 Number of support joints given

JMIC 77173 Number of member-incidence statements
given

JMPC 77172 Number of member-property statements
given

JLD 77171 Highest loading number

JLC 77165 Current loading condition number (for
modifications)

NLDG 77156 Number of loading conditions given

5.3.6 Optional array indices

IPSI 77207 Code for table of Beta angles
= 1 if any member has a Beta angle

given

. = 0 if no Beta angles are given

IYOUNG 77163 Young's modulus indicator
= 0 if no E values given
= 1 if E given for each member
#0 #1, E value to be used for all mem-

bers

ISHEAR 77162 Shear modulus indicator, similar to
IYOUNG

IEXPAN 77161 Coefficient of thermal expansion indicator,

» similar to IYOUNG

IDENS 77160 Member density indicator, similar to

IYOUNG

5.3.7 Miscellaneous

ISODG 77204 Number of member-force components
set in Phase Ia.

IXX 77201 Position of subarray KMEGA for current
member with release at start of mem-
ber

NPR 77200 Current number of subarrays KMEGA

set by MRELES, used by FIXM

Codewords 49

Name .= Address Description
(continued) (continued) (continued)

5. 3.7 (continued)

NBB 77177 Current number of submatrices KOFDG
“ (= NB up to subroutine JRELES, may
be larger than NB after JRELES and
SOLVER)
NBNEW 77157 Current defined length of codeword array
of KOBDG (see also NBB)

5.4 Codewords

The codewords in this group control the data arrays used by
the system. The makeup and function of the codewords are dis-
cussed in Chapter 3. The makeup of each data array is described
in this section in connection with the codeword controlling the
array. An asterisk after the location indicates a second-level
array.

5.4.1 Titles

NAME 77151 12-word array containing the structure
identification name in BCD
MODN 77140 12-word array containing the modifica-

tion name in BCD

5.4.2 Input joint data

JTYP 77101 Joint type array, JEXTN long. Joint
types are as follows:
= 0 joint does not exist

1l free joint

i

= 2 support
= 3 deleted (changed to zero in PHASI1B)
JEXT 77106 External joint table NJ long. JEXT(J)

contains the external joint number cor-
responding to the internal joint number
J.

JINT 77105 Internal joint table, JEXTN long., JINT(J)
contains the internal joint number cor-
responding to the external joint J.

KXYZ 77150 Joint-coordinate table, 3*JEXTN long.
Coordinates XY Z of each joint stored
in order by external joint number,

KJREL 77147 Joint-release codes. First word: num-
ber of joints released, NR. Succeeding
groups of 5 words per released support
joint: external joint number, release

50 Description of Parameters, Codewords, and Arrays

Name Address Description
(continued) (continued) (continued)

5.4.2 (continued)

KJREL (continued) code, 3 angles in decimal degrees.

1 NR number of released joints

J external joint number

Release Code

o oW
D
-

Words 2 through 6 are repeated for
each released support joint. The re-
lease code is given in Bits 12 through
17, (This is the same form used for
member-release code.)

Force X release = 1 in Bit 17
Force Y release = 1 in Bit 16
Force Z release = 1 in Bit 15

Moment X release = 1 in Bit 14
Moment Y release = 1 in Bit 13
Moment Z release = 1 in Bit 12

KATR 77074 Kt matrix, It contains NJ data arrays
referenced by internal joint number.
Each data array contains the signed
member numbers of all members inci-
dent to that joint,

1 NBRI| Number of incident
branches NBR
2 SIZE | Array size = 5<—_5->_I:i)+ 142
N\
3 Ml

Member numbers inci-

dent on joint J: positive
4 M2 F if J is start, negative if
J is end of member.

NBRI+2 | M,

5.4.3 Input member data

JPLS 77146 Incidence table, MEXTN long. It contains
tains the external joint number of the

Codewords

Name Address
(continued) (continued)

5.4.3 (continued)

JPLS (continued)

JMIN 77145
MTYP 77144
MEMB T7142%
MTYPI 77100

Bit Position

51

Description
(continued)

joint at the start (plus end) of the member.

Similar to JPLS, but contains the joint
number at the end (minus end) of the
member,

First-level array, MEXTN long. Each
word contains data concerning the mem-
ber type and is made up as follows:

Content

S—5 Member-constraint code
6—11 Member-release code
for start of member | same as
12 — 17 Member-release code | for KIREL
for end of member
18 — 23 IMLOT
24— 29 N = length of data array MEMB
for this member
30— 35 Not used
S 56 17 18 2324 29 30 35
MEMB |MEMBER
CONSTR|RELEASES|IMLOT N
CODE
IMLOT N Member Type
0 - Member deleted
1 6 Prismatic (A, Ay’ Ay, Iy, Iy,
I, stored in MEMB)
2 NSQ STIFFNESS GIVEN
3 NSQ FLEXIBILITY GIVEN
4 7*NS VARIABLE N = NS*7. MEMB
contains Ay, Ay, Ay, I, L,
I,, L for each segment.
NS is the number of seg-
ments.,
5 = STEEL

Second-level array, MEXTN data arrays.
Each array is N words long, where N
depends on the member type (see MTYP),

First-level array, MEXTN long, similar
to MTYP., The word is made up as
follows:

52 Description of Parameters, Codewords and Arrays

Name Address Description
(continued) (continued) {continued)

5.4.3 (continued)

MTYPl (continued) Bit Position Content
S—-5 Not used
6— 17 I = order number for data array

KMEGA for this member.
KMEGA(I) is the KMEGA ar-

ray pertaining to this member.
18 — 35 Not used

5.4.4 Optional member input data

KPSI 77143 Member rotation table, MEXTN long. It
contains the Beta angles for each mem-
ber (zero length if no Beta angles are
specified).

KYOUNG 77072 Table of Young's moduli for each mem-
ber, MEXTN long if IYOUNG = 1;
otherwise zero length,

KSHEAR 77071 ‘Table of shear moduli for each member.
MEXTN long if ISHEAR = 1; otherwise
zero length,

KEXPAN 77070 Table of coefficients of thermal expansion
for each member, MEXTN long if
IEXPAN = 1; otherwise zero length.

KDENS 77067 Tables of densities or unit weights for
each member. Length MEXTN if
IDENS = 1; otherwise zero length.

5.4.5 Load input data

LINT 77073 Internal loading numbers. Loading con-
ditions are assigned sequential num-
bers during input. To eliminate deleted
and combination (that is, dependent)
loading conditions, internal numbers
are also assigned in PHASIB, where
the parameter NLDSI is also assigned.
The relation between the two sequences
of loading numbers is given by:

LINT(J)=JC where 1 <= J < LEXTN
, and JC=1, NLDS
MLOAD 77076% Member-load data arrays, MEXTN data
\ arrays (see LOADS).

JLOAD T77075% Joint-load data arrays. JEXTN data ar-

rays (see LOADS),

Codewords 53

Name Address Description
(continued) (continued) (continued)

5.4.5 (continued)

LOADS 77141% Load data-reference arrays., LEXTN
data arrays containing headerwords,
the loading name in BCD and cross-
reference words to each joint and merm:-
ber load (in MLOAD and JLOAD) belong-
ing to this loading condition,

The relation and makeup of the MLOAD, JLOAD, and LOADS

arrays are now shown,

JLOAD (JA)
or MLOAD (JA) LOADS(JC)
3 17 317 31 35
NKPL 1 1|[LTYP [NLD|[IPRNT
NBL 2 2 NLS
BLOCK 1 3 3|Name for loading con-
2 LABELS followed dition JC (12 BCD words)
by N-2 data words
N words for each
load on this joint
or member, 14
Each block contains 15 LABEL 1
2 labels and N-2 1 label word per load
data words. " |lin this condition ref-
erencing JLOAD(JA)
NDEX LC : |IIIz]|D -—JPL of MLOAD(JA)
ILD+14|Label ILD
N BLOCK IBL ' NDEX IPL| JA
¥ 3 17 35
BLOCK NBL
<—NKPL NLD+14 LABEL NLD
NDEX N Load Type
1 8 Joint load
3 14 Member-end load
4 8 Member distortion
2 6 Member load
5 8 Joint displacement

NLD = Number of loads in loading condition

NLS = Number of words available for labels

NBL = Actual number of loads. First word of load block zero if the
load is deleted and is not counted.

54 Description of Parameters, Codewords, and Arrays

Name Address Description
(continued) (continued) (continued)

5.4.5 (continued)

LTYP = Loading condition type (0 = deleted, 1 = independent, 2 =
dependent)
N = Length of block including a two-word label
J = Load direction, Only applicable for member loads,
J=1 FORCEX
FORCE Y
FORCE Z
MOMENT X
MOMENT Y
MOMENT Z
K = Load type (1l = concentrated, 2 = uniform, 3 = linear). Only
applicable for member loads.
JA = Joint or member number
JC = External loading number
NDEX = load type

0 H

l |
oUW

5.4.6 Computed member properties

KS 77137 First-level array, (NCORD+1) words per
member, Unsigned length followed by
signed projections of member length
(plus to minus joint) for each member.
Total length MEXTN*(NCORD+1).

Length

AX,

1

2

3] AX, [Member 1
4| AX;

(I-1)*(NCORD+1)+1 |Length

+2| aX,
+3| AX, | Member I

Only if space
+4| AX; |Structure
(NCORD=3)

KMKST 77136* Local-member stiffness table, containing
each member stiffness (or flexibility)
matrix in local-member coordinates,
MEXTN data arrays, each NSQ long.

KSTDB T7135% Member stiffness table, containing

Codewords 55

Name Address Description
(continued) (continued) (continued)

5.4.6 (continued)

KSTDB (continued) member stiffnesses in global coordi-
nates. NB data arrays, each NSQ long.
KMEGA 77103% Second-level array, NPR data arrays,
NPR = total number of members with
releases at the start. Auxiliary arrays
(JF*JF) set up in MRELES- FIXM.,
Used in LOADPC-LSTOR.

5.4.7 Computed structure properties

KDIAG 77113% Structure stiffness table, containing the
diagonal stiffness submatrices. NJ
data arrays, each JEXJF.

KOFDG T7112% Structure stiffness table, containing the
nonzero off-diagonal (JF*JF) subma-
trices in the lower triangle of ATKA,
according to IOFDG. NB data arrays
up to JRELES. Redefined NBB long
in JRELES and SOLVER.

IOFDG 77111% Address and position table for the non-
zero submatrices of AtKA, One data
array per joint (or row of AtKA), Each
data array contains
lst word: Address: current defined

length of array = LDE
Decrement: current number
of entries for existing sub-
matrices in this row = LCU
2nd word to (LCU+1): 1 word per exist-
ing submatrix
in this row,
Address: order position of
submatrix itself in KOFDG
table
Decrement: column order
of submatrix

IOFC 77077% Logical transpose of IOFDG., One data
array per column of AtKA (only free-
joint portion). One word per nonzero
submatrix in that column stored the
same way as words 2 to (LCU+l) in
IOFDG., IOFC, however, does not have
the leader word with LDE and LCU,
Arrays are generated during forward

56

Name

Description of Parameters, Codewords, and Arrays

Address Description

(continued) (continued) (continued)

5.4.7 (continued)

IOFC (continued) sweep of SOLVER and used in backward

IFDT

MEGAO

sweep of SOLVER,

77104*% Logical table for A'KA, Each off-diagonal
submatrix of the lower half of AKA is
represented by a single binary bit,
Each data array of IFDT is 200 words
long and can thus represent 200%36 =
7200 submatrices., Bits are stored
from right to left by columns in each
word representing AtKA, A 1-bit re-
presenting an existing submatrix and
a 0-bit a nonexisting matrix, For ex-
ample, a 1l bit in the last position of
the first word of IFDT(l) means that
A'KA has a nonzero submatrix row 2,
column 1. Thus the IFDT table can be
used only to determine whether or not
a certain submatrix is present or not.
Information as to where that submatrix
is stored is contained in IOFDG,

77107% Auxiliary matrix if joint releases are
present. Dimensions of flexibility.
NDAT data arrays, each JF*NDAT*JF
long. Only those data arrays are allo-
cated that have at least one nonzero
element. Each data array represents
JF rows.

5.4.8 Computed load data

KPPLS

KPMNS

KUV

KPPRI

77133% Member-end force matrix in global coordi-
nates, containing the force vector in
each member at the start (plus end).
NLDS data arrays, each MEXTN*JF,

T7132% Similar to KPPLS, but for the end (minus
end) of the members.

77131*% Member-distortion matrix in global co-
ordinates, containing the distortions
V for each member. NLDS data arrays,
each MEXTN*JF,

77130 Effective joint-load matrix, containing
the external loads P' applied to each
free joint. After SOLVER it contains
the solution displacements., NLDS*NFJS.

Codewords 57

Name Address Description
(continued) (continued) (continued)

5.4.8 (continued)

KR T7127% Statics check matrix, Contains the ap-
plied loads at the free joints and the
support-joint reactions as obtained
from backsubstitution if a statics check
is requested, NLDS second-level ar-
rays, each NJ*JF long.

KPDBP 77102 Effective support-joint load matrix P)
containing P! after FOMOD, and g'
after DEFSUP (if there are support
releases). Length JF*NDAT*NLDS,
If there are no joint releases, it con-
tains zeros after BAKSUB, with length
JEF*NDAT.

5.4.9 Miscellaneous

KSAVE 77126 Number of words used to store the initial
data specifications after the first
SOLVE THIS PART, (This is not a
codeword referring to an array.)
KSRTCH 77125 Scratch-array codewords
to
77114

Chapter 6

DESCRIPTION OF SYSTEM COMPONENTS

In this chapter, a general description of the program compo-
nents is given, The description serves primarily as a guide in
studying the detailed flow charts and program listings in the Ap-
pendices A and B, For the convenience of persons intending to
modify the system, the important coding conventions used in the
system are also summarized in this chapter.

6.1 General Organization

Because of its size, the STRESS system has been partitioned
both functionally and physically. The functional partition con-
sists of the three phases of the processor:

1, Phase Ia — reading and decoding of input
2., Phase Ib— consistency checks and compilation
3, Phase II — execution

The physical partitioning of the system is accomplished by
separating the system into program links, which are loaded,
one at a time, in memory by the modified CHAIN subroutine
described in Section 2.2. At the present, the processor is
broken up into six links. The first link contains Phases Ia and
Ib, and Links 2 through 6 make up the execution phase. If
it were desired to make more core storage available for data,
the system could conveniently be broken into ten program links.

In addition to Phases Ia and Ib, the first link contains the pro-
cedures for the error returns from all execution links, as well
as the normal return from the last (backsubstitution and output)
link., Finally, this link also contains the programs for SELEC-
TIVE OUTPUT and PRINT DATA procedures.

The general flow of the computation process is shown in the
Over-All Flow Chart, Appendix A (page 93). The normal opera-
tional mode of the system treats the input in a two-level loop.
The outer loop cycles on the independent problems in the input

58

Input Phase: Phase Ia 59

batch, and is terminated when the input file is exhausted. Each
independent problem, or job, is initiated by a STRUCTURE state-
ment and terminated when a SOLVE or FINISH statement is proc-
essed. The number of problems that can be handled in succession
is not limited. For each individual problem, the normal process
consists of an inner loop sequentially through Phases Ia, Ib, and
II until all modifications have been processed, A problem without
modifications obviously involves just one cycle through the inner
loop. Again, the number of modifications for a given problem is
not limited.

The normal process of the inner loop can be interrupted by one
of the following three occurrences:

1. A consistency error in Phase Ib, signifying that the prob-
lem (or the modification being processed) is not executable;

2, A fatal error in the execution phase; or

3. A memory overflow at any stage of the computation.

When any one of the three possibilities occurs, identifying
messages are printed out and control is transferred to the first
link, The system then is automatically placed in the scanning
mode. In this mode, any remaining statements pertaining to the
problem being processed are scanned only for possible input er-
rors, but no further execution takes place. The scanning mode
is terminated either when the SOLVE or FINISH statements are
encountered, or when the STRUCTURE statement of a new prob-
lem is read.

The diagnostic information printed after an interruption identi-
fies the type of interruption that has occurred, and, in the case
of a consistency or execution error, the problem statement can
be corrected and resubmitted. At the present, there is no auto-
matic procedure available to further partition data arrays and/or
program segments in case of a memory overflow.

The general logic of the execution phase is shown in the Over-
all Execution Flow Chart, Appendix A (page 94). It can be seen
that, whenever a logical choice exists, the program link in core
memory determines the next link to be called.

In the succeeding three sections, the operation of the three
functional phases are described in greater detail.

6.2 Input Phase: Phase Ia

PHASI]A is called from the main program of Link 1 and con-
trols all statement input. (A familiarity with Chapters 2, 3, and
5 will help the reader understand this section: Chapter 3 de-
scribes the structure of the input programs, while Chapter 5
lists the form of data storage.) Data storage is concerned with

60 “ Description of System Components

the following scalars and arrays defined in Chapter 5:
Scalars Arrays

iD NAME
IMETH MODN
NB JTYP
NJ KXY Z
NDAT KIJREL
NLDS JPLS
JMIN
MTYP
MEMB (second-level)
KPSI
KYOUNG
KSHEAR
LOADS
MLOAD } (second-level)
JLOAD

In addition numerous scalars are used for logical control during
input and counters for consistency checking. Since input for ini-
tial specification and modification is handled by the same program,
ICONT and IMOD are important branching scalars.

6.2.1 Array status during input. In order that the processor
not be limited greatly by problem size, a dynamic memory-con-
trol system is used. It is desired then that during inputting only
the arrays needed at any one point in the process be allocated and
not released. For convenience, however, a few arrays are left
in an allocated status during input. They are KXYZ, JPLS, JMIN,
KPSI, JTYP, and the codeword arrays of MLOAD, JLOAD, and
LOADS. All other arrays are allocated when needed and imme-
diately released.

With an initial problem specification, these arrays cannot be
allocated until the appropriate size descriptors, the NUMBER
statements, are read. In addition to defining and allocating these
arrays, subroutine SIZED (the subroutine called for by a NUM-
BER statement) defines KJREL, MTYP, and others. With a
MODIFICATION OF LAST PART, these arrays are allocated as
soon as the MODIFICATION statement is read. For MODIFICA-
TION OF FIRST PART, the machine status prior to the release
of these arrays is restored.

6.2.2 Error flagging. A single word, CHECK, is used to re-
cord the errors of commission and omission. Each bit in this
word (only 21 bits are presently used) corresponds to an error,
with the error indicated with the bit set to zero. Boolean state-
ments are used to either ""mask' out bits or '"or' in bits. Upon
reading the STRUCTURE statement, all commission-error bits

Input Phase: Phase Ia 61

are set to one,

If an error is detected during input, the inputting program ter-
minates statement translation and branches to the appropriate
point to mask out the corresponding bit in CHECK and print an
identifying error message below the statement echo print (shown
as "SEP" for''set error parameter' in the flow charts). Conversely,
upon detection of a statement considered required for solution a
bit is "or'd" into CHECK (shown as SCP for ''set check parameter"
in the flow charts) during translation., PHASILB adds to CHECK
during its consistency checking and analyzes the word for accu-
mulated errors.

6.2.3 Data storage. ID is computed from the words in the
type statement. The numbers used in the computation are the
word positions in the dictionary as returned by function MATCH.
Similarly IMETH is set after translating the METHOD statement.
Subroutine SIZED may be entered after reading a NUMBER state-
ment or during modification upon encountering a number, joint,
or loading number higher than any previously encountered. When
entering from a NUMBER statement during an initial problem
specification, the number is stored and arrays defined and al-
located, When so entering during modification, the only action
performed is to store the number unless that number is greater
than its corresponding maximum number counter (that is, MEXTN
to NB), in which case redefinition of arrays is also performed
and the maximum counter set to the number.

During joint, number, and loading data input, input counters
are incremented during initial input and additions modification.
JJC is incremented for free joints, JDC for support joints, JMIC
for member incidences, JMPC for member properties, and NLDG
for loading conditions. For change modification, the two counters
that might change are JJC and JDC and then only if the joint type
is changed. For deletions, the appropriate counter is decremented.
For a member deletion, both JMIC and JMPC are reduced. At pres-
ent the programs do not check for numbering commission errors
before altering the counters. An example would be the specifica-
tion of two joints with the same numbers, Program changes for
this additional error detection are minor. ‘

Storage of data in the arrays NAME, MODN, JTYP, KXYZ,
JPLS, JMNS, and MTYP are performed in a straightforward
manner. Part of MTYP is specified from the member properties
and part from member releases, With no ordering restrictions
desirable, the parts are treated separately by either packing
parts separately or treating the word logically., KJREL is re-
defined five words longer for every new released joint. When
joint releases are specified, the array is searched to determine
if releases at that joint have already been specified. If not, a
new five-word group is appended for an initial specification or

62 Description of System Components

additions. The release code is then logically treated with the
appropriate word. The logical treatment is for initial specifica-
tion or additions

B U(LJ)=U(IJ)+A

where the B specifies a Boolean statement, U(IJ) is the word
where the code is stored, A is the newly specified code, and "+"
is the ""OR'" operator. For changes, the operation is

B U(1J)=(U(1J)*Mask)+A

where '"*'"' is the "AND'" operator and the mask deletes all possible
releases. For deletions, the operation to eliminate the specified
components is

B U(1J)=-(-U(1J)+A)

where "-" is the "COMPLEMENT!" operator. In addition to joint
releases, member releases and tabulate codes in the LOADS ar-
rays are so treated: the masking in the changes modification is
necessary to preserve the other parts of the storage word in these
latter cases.

Member properties and load data (including distortions and dis-
placements) are stored independently of the structural type. All
of these data are read in subroutine READ and stored temporarily
in an array together with an array for label numbers. The label
numbers give the position in the subarray MEMB for the data
pieces for prismatic members. For variable-segment properties,
the label number gives the position in the group of words for the
segment, with seven words reserved for each segment.

Storage of load data is performed in a similar fashion in sub-
routine READ. The label numbers refer to positions for the data
in a load block appended on the subarray of MLOAD or JLOAD.

A cross-reference system is established with the subarray of
LOADS so that the loads can be referred to during modification
by loading conditions.

Modification of load, joint, or member data by changes super-
imposes specified quantities on the original data after locating
the data position in the case of loads. For deletion of loads, the
reference word in the array LOADS and the first word in the load
data block are set to zero, thereby erasing the load block. Addi-
tions operate as initial data input.

6.2.4 Selective output. The selective-output mode can be
used to print previously calculated results in an interpretive
manner. A solution upon which to operate must be available, so
that all print requests must follow a SOLVE THIS PART and pre-
cede a MODIFICATION OF FIRST PART if given.

The SELECTIVE OUTPUT statement initiates this mode by
setting IMOD=2, that is, CHANGES modification. This parameter

Checking Phase: Phase Ib 63

has been so set in order to use the program part under LOADING
to read the loading condition number upon which to operate with-
out requiring additional programming. The program part used
for the branch on PRINT reads and retains an index for a word
designating an output type and calls subroutine SELOUT for each
joint or member number encountered.

Subroutine SELOUT sets parameters for the printing of results
performed by subroutine ANSOUT. SELOUT retains information
on the previous output request and determines what titles should
be printed. If the loading condition changes, the structure name,
the modification name, if any, and the loading title are printed,
The table heading is printed if the request type has changed, and
the joint-status label is printed if the joint type has changed.
These last two are printed in ANSOUT, but the logical param-
eters for the printing are set in SELOUT.

6.2.5 Termination. The input phase is exited for any of the
following reasons:

1. Reading a SOLVE or SOLVE THIS PART when not in the
scanning mode.

2. Reading a SOLVE when in the scanning mode.

3. Reading a FINISH statement.

For the first case, processing continues with PHAS1IB. After
the return from PHASIB the process immediately returns to the
main program of Link 1. This main program checks whether to
proceed with execution, terminate the problem, or enter the
scanning mode, which returns to PHAS1A., The scanning mode
is not terminated with a SOLVE THIS PART, only a SOLVE or
FINISH. A problem is terminated after scanning by returning
to the main program, that is, ISCAN=2. The FINISH statement
simulates this form of termination by setting ISCAN=2 and re-
turning to the main program.

A modification counter, ICONT, is incremented when SOLVE
THIS PART isread, or itis set to zero for SOLVE,

An interruption of processing may also occur as a result of a
memory overflow. This return, regardless of its logical location
in the processor, enters the start of the main program in Link 1.
If the overflow occurred during input (ISOLV=1) or after a SOLVE
THIS PART (ICONT#0) additional input for the problem may
still remain to be processed. For this case the scanning mode
is also entered.

6.3 Checking Phase: Phase Ib

Subroutine PHAS1B controls and performs the input-consistency
checking and compilation function of the processor. These two

64 Description of System Components

tasks are not, however, physically separated in the programs.

Joint processing involves three operations in one loop on all
joint numbers, performed if the joint-input counters correspond
to the NUMBER specification. The first operation is to prepare
two tables of internal- external number correspondence. Inter-
nally, all support- joint numbers are greater than the number of
free joints (NJ-NDAT). The internal numbers are assigned for
support joints starting with NJ to NJ-NDAT+1 in the order they
are encountered in the loop on sequential external numbers., Free-
joint numbers are assigned from 1 to NJ-NDAT. For all existing
joints that have loads applied to them, the load type for each load
block is checked, For a free joint, joint displacements (INDEX=
5) specified at the joint constitute an input error. Conversely,
joint loads (INDEX=1) specified at a support are not permissible
unless the joint has been released in the direction of the load.
In this latter case, a check is made of the array KJREL to see
if the joint has been given some releases. If so, no error is
flagged, but no check is made on the correspondence of the re-
lease and load directions. For joints deleted during the last in-
put specification (JTYP=3), all loads on the joints are erased as
well as their references in LOADS. A check is made to assure
that no joint releases are given at a free joint.

Member processing primarily performs the implicit deletions.
The incidences of each member are checked., If in error, the
error is flagged. If one of the joints has been deleted, the mem-
ber is deleted by zeroing its type and erasing its properties. For
deleted members any existing loads are erased as well as the
references in LOADS. The member counters are checked against
the NUMBER specification after all implicit deletions have been
performed.

Processing of the loading condition consists only of a check on
the number given and the assignment of internal numbers, in a
manner analogous to the internal joint numbers, for independent
and dependent loading conditions. The bit pattern in CHECK is
compared with a mask and all noncorrespondence causes an ap-
propriate error message to be printed by subroutine PRERR as
given in Section 5.1, If no errors were detected, the processing
proceeds.

After the first specification with SOLVE THIS PART (ICONT=1)
the input data are saved for later specification of MODIFICA -
TION OF FIRST PART. This is done by creating a file with an
image of the pertinent data in core at this time. All data from
the location of TOP down to the next location available in the pool
are saved. No information is lost if a memory reorganization
has occurred during input since all file numbers of data on tape
are less than the file number of the saved image and are refer-
enced in the image. The restoration of this condition consists

Execution Phase: Phase II 65

of simply reading this file back into core and rewinding all scratch
tapes to make their position references consistent.

Many arrays are defined at this point. For all but two of these
the sizes will not change during execution. The number of sub-
arrays of KOFDG will be NB at the end of the generation of the
structural stiffness matrix A'KA and the codeword array is de-
fined as NB long at this stage. The number of elements in the
subarrays of IOFDG will also grow during the solution of the equa-
t1ons but the number needed up to the end of the generation of
A'KA is determined from the incidence. As the incidence tables
for the joints are compiled by members, the maxima of the inci-
dences are counted for each joint. The subarrays of IOFDG are
then defined to this length plus a small amount for expansion for
free joints,

6.4 Execution Phase: Phase II

The execution phase consists of Links 2 through 6, and operates
as described in Sections 6.4.1 through 6.4.6.

6.4.1 Link 2

l. MEMBER. See also flow chart for MEMBER (page 151).
Generates all member stiffnesses K* = KMKST in member
coordinates. Loops on members 1 to MEXTN. Raw data
(properties of cross sections, flexibility matrix, or stiff-
ness matrix) are obtained from MEMB, If stiffness is given,
KMKST is filled directly. If flexibility is given, it is di-
rectly inverted and stored into KMKST. If cross-section
properties are given, MEMFOD computes F* and MEMBER
computes K* = F*~1 Trusses are handled on a separate
branch because their stiffness or flexibility in member co-
ordinates has only one component and is therefore singular.
If a singular flexibility matrix for a frame is encountered
because not enough member properties have been given or
because a singular flexibility matrix has been specified,
the member is geometrically unstable (no stiffness matrix
exists). This is considered a fatal error: a message is
printed for each unstable member and processing of this
problem is terminated upon return to the main program.

2. MRELES. See flow chart for MRELES (page 153). If there
are any member releases (NMR#0), MRELES modifies the
stiffnesses KMKST corresponding to the released members
and stores them back in KMKST.

A loop on members is 1n1t1ated and for each released
member (Check MTYP) K* is modified according to the
procedure of Chapter 4: first for the releases at the end

66 Description of System Components

of the member (if any), and then for those at the start., If
a member is so released that it becomes geometrically
unstable, a singular stiffness matrix K,, will result. The
illegal combination of releases is detected and an error
message is printed. Such errors are treated as fatal
(ISUCC set to 2), but all members are checked for illegal
releases before execution is terminated upon return to the
main program of Link 2. If a member is released at the
start, an auxiliary submatrix that appears during the re-
lease process is later needed in the load processor when
the fixed-end forces on the member are modified for the
prescribed releases. (See Section 4.2.) These matrices
are stored in a second-level array KMEGA. KMEGA mat-
rices are stored only for members released at their start,
and a member-to- KMEGA correspondence table is kept in
MTYPI.

6.4.2 Link 3. LOADPC. See flow charts for LOADPC and
LOADPS (pages 166 and 168) and Section 4.3. This link proc-
esses the raw data for loads into contributions to member dis-
tortions, member forces, and joint loads in the kinematically
determinate system, taking into account member releases.
LOADPC is the monitor routine, with a loop on members (1 to
MEXTN) and one on joints (1 to JEXTN)., For each nondeleted,
loaded nmiember or joint, all corresponding load data in MLOAD
or JLOAD are allocated and control is transferred to LOADPS
which monitors the processing of one MEMBER or JOINT for all
loads in all load conditions. This method of processing is con-
venient because all load raw data are stored by joint and member.
However, it may require the repeated allocation and release of
the resulting internal arrays KUV, KPPLS, and KPMNS, because
these are partitioned by loading condition.

No fatal errors can result in LOADPC. Nonfatal errors are
detected in MEMBLD if member loads are prescribed on mem-
bers for which the flexibility or stiffness matrix were given as
direct input. In such cases it is not possible to compute fixed-
end forces due to loads acting between the end joints of the mem-
ber. A message indicating this incompatibility is printed and the
particular load is ignored.

6.4.3 Link 4

1. TRANS. See flow chart for TRANS (page 185). Subroutine
TRANS rotates all member stiffnesses K* (reflecting mem-
ber releases) from local-member coordinates into joint
coordinates with origin at the end joint of the member. A
single loop on members (1 to MEXTN) with a call to TRAMAT
and MATRIP inside the loop makes up the subroutine, The
rotated member stiffnesses K are stored in KSTDB.

Execution Phase: Phase II 67

2. ATKA. See flow chart for ATKA (page 186). Subroutine
ATKA generates the logical tables for the structure stiff-
ness matrix A'KA (KDIAG, KODFG, IFDT, IOFDG) by
bookkeeping from the incidence tables A (JPLS, JMIN) and
the primitive stiffnesses K (KSTDB). If in the modification
mode, the data arrays of IFDT, IOFDG, and KDIAG are
first cleared. The tables representing the structural stiff-
ness are generated by a loop on members (1 to MEXTN)
and by adding to KDIAG, KOFDG, IFDT, and IOFDG the
proper contributions in the rows and columns corresponding
to the start and end joint of the (nondeleted) member., All
tables are generated disregarding all effects of possible
joint releases prescribed. Only the lower left half of AtKA
is generated and stored.

3. JRELES. See flow charts JRELES through STEP5 (page 187).
This set of subroutines is called only if there are joint
releases (NJR#0). JRELES is the monitor routine to
modify the tables generated in subroutine ATKA accord-
ing to the theory of Chapter 4, to reflect the effect of
joint releases, Subroutine FOMOD does the corresponding
modification on the effective joint loads ¢P'. This pro-
cedure eliminates all kinematic -unknowns associated with
support joints. (Joints are internally arranged so that
support joints are numbered last.) In the case where
all joints are support joints the auxiliary array stored
in KPDBP by FOMOD represents the displacements of
the support joints and is the solution to the governing
equations.

All formal matrix operations implied by the equations
of the procedure outlined in Chapter 4 are done by book-
keeping. Only those operations (multiplications of submat-
rices) are performed for which both submatrices are not
zero matrices. Also, all arrays, such as AR, (AR)t etc.,
are stored in logical tables. This results in an efficient
processing. The only operation which is done formally is
the inversion of the auxiliary matrix K;;. Subroutine STEP5
which performs the actual modification of A'KA using the
auxiliary array MEGAO is called only if there are any free
joints (NFJS#0). Itis noted that if no members connect
any two support joints the auxiliary arrays K;; and MEGAO
are hyperdiagonal and the necessary operations are greatly
simplified,

6.4.4 Link 5. SOLVER. See flow chart for SOLVER (page
200). Subroutine SOLVER solves the governing joint stiffness
equations for the free-joint displacements. The method used is
the Gauss elimination procedure for a symmetric system, oper-
ating on submatrices of order JF as elements, rather than on

68 Description of System Components

scalars. Apart from certain subsections of the bookkeeping sys-
tem (IOFDG, IFDT, IOFC) the maximum amount of data required
in core at any one time consists of three submatrices of order
JF, plus the total load vector g¢'. This vector could also be par-
titioned into second-level arrays, preferably by joints. This
would result in an improvement of speed and capacity for large
problems, say NFJS larger than 200.

All the required operations are determined by the bookkeeping
system, and only the required multiplications of submatrices are
actually performed. The process consists of a forward sweep
during which logically a triangular matrix is generated, and a
backward sweep proceeding from the last free joint upward and
solving successively for the displacements of the free joints,
Since during the backward sweep the operations are on columns
of the lower triangular matrix, the bookkeeping arrays IOFDG,
representing rows, are completely released and corresponding
column arrays IOFC are generated as rows of the system are
eliminated during the forward sweep. Since new arrays in
KOFDG, which were zero in the original matrix A'KA, are gen-
erated during the solution process, the bookkeeping arrays IFDT,
IOFDG, and the codeword array of KOFDG must constantly be
updated as new arrays are generated. Also the codeword array
must be redefined with larger length. This redefinition is done
in increments depending on the size and the connectivity of the
structure. Data arrays of IOFDG must also be redefined for
greater length., These same problems of updating and redefining
arrays are also present in JRELES, since the modification of
AKA for joint releases can also imply new elements in KOFDG.

6.4.5 Link 6. BAKSUB. Subroutine BAKSUB is the monitor
subroutine for the process of backsubstitution (solving for induced
member distortions and member forces from the known joint dis-
placements) and printing of answers in tabular form. The induced
member distortions and member forces are directly added to the
components of the kinematically determinate system, computed,
and stored in LOADPC (see also Section 4,3). At the same
time a statics check is performed by summing all member forces
at each joint. A comparison of these sums (stored in KR) with
the applied joint loads provides a useful check on the numerical
accuracy (round-off errors) of the solution,

The whole process is accomplished by a first outer loop on ex-
ternal loading conditions (1 to LEXTN), and a second inner loop
on members (1 to MEXTN)., For each member and independent
loading condition, the member distortions are obtained by vec-
torially subtracting the displacements of its end joints, then
rotating them into member coordinates. The induced member-
end forces are then obtained by premultiplying these distortions
by the member stiffness K*., These operations are done in sub-

General Coding Conventions 69

routine AVECT. Note that the local stiffness table K* was com-
puted in Link 2 and was not used after subroutine TRANS until

the time of backsubstitution. During the intervening processing,
the KMKST arrays are in a released status and could have been
dumped on tape if the memory space was needed for other infor-
mation., The array is allocated again in BAKSUB and completely
released after BAKSUB. The statics check is performed by a
call to STATCK in the outer loop after completion of the loop on
members. If the loading condition is a combination, a call to
COMBLD is made instead of the entry to the inner loop, COMBLD
takes the proper linear combinations of all total member distor-
tions, member forces, joint displacements, and reactions (statics
check KR) of the corresponding independent loading conditions.
All these independent loading conditions are already processed

at the time when the combination is treated. This is the reason
why combination loadings can be dependent only on previously
specified conditions. The last step inside the outer loop is a
series of calls to ANSOUT. Such a call is made for each group

of requested tabulated results for each loading condition. A max-
imum of four calls per loading condition in the case of a TABU-
LATE ALL request (member forces, member distortions, joint
displacements, reactions) is made.

6.5 General Coding Conventions

The following conventions adhered to throughout the systerm are pre-
sented for the convenience of persons intending to modify the system.

6.5.1 Clearing of arrays. Since Phase Ia resets all codewords
to zero for every new problem but not for a modification, data
arrays can be assumed to contain zero only for new problems.
This makes it necessary in various places to clear certain data
arrays during execution phase if in the modification mode (for
example, IOFDG, KDIAG in ATKA), Clearing is done by a state-
ment of the form CALL CLEAR (NCODWD), where NCODWD is
the codeword name of the data array to be cleared. No codeword
array should be cleared in this way, as this would destroy the
reference system for any future reorganization.

Second-level data arrays are cleared as follows:

ICDWD2=ICDWDI1+I
CALL CLEAR (IU(ICDWD2))

The array name is ICDWDI1. Subroutine CLEAR sets the array
elements to zero if the array is in core, or erases the file num-
ber if the array is on tape. The latter action makes the array
appear unused, and its elements will therefore be set to zero
upon allocation,

70 Description of System Components

6.5.2 Packing and unpacking routines. For a number of pur-
poses information about members, joints, loads, etc., is packed
into various portions of the 36-bit machine word. Packing and
unpacking functions have been written in FAP but can be called
by FORTRAN to pack or unpack. Two such routines are used in
the processor for storage according to various arrangements
within the word. The two routines are PACKW,UPACW and
PADP, UPADP.

1. PACKW,UPACW packs or unpacks the FORTRAN integers
I, K, J, L, M into or from U(IA) according to the following
figure:

PACKW (U(1A), I, K, J, L, M)
S12 17 23 29 35

I K J L M

2, PADP, UPADP packs or unpacks the FORTRAN integers
I, J, K into or from U(IA)
PADP (U(14),1,7J,K)
S12 17 35
I J K

See the listings of these routines for the format of the packed
data.

6.5.3 Matrix multiplication routines., The execution phase
uses four different service subroutines that perform matrix mul-
tiplication according to different conventions. These subroutines
are all written in FORTRAN. Their efficiency could be increased
by rewriting them in FAP.

MAMUL (Y, T,A,JS,JT,JJ) used by MRELES

MATRIP (K1, K2, NT) used by TRANS, ATKA, BAKSUB
MAPROD (N1, N2,N3,N4,1Z,JF,IND) used by JRELES
MAPRDT (N1, N2, N3, N4,1Z, JF, NP) used by SOLVER

6.5.4 Organization of the program links, Each link has a
short main program that performs the calling of main subroutines,
updating of the solution stage counter ISOLYV, and testing for solu-
tion failure (ISUCC). Each link also contains the basic service
subroutines, that is, START, PRER2, CLEAR, CHAIN, etc.

The master subroutines in each link, that is, the first level of
subroutine below the main program, generally perform the fol-
lowing functions:

1, Allocate needed arrays
2. Operation (generally, a series of loops on members and/or

General Coding Conventions 71

joints), with various calls to lower level subroutines
3. Release arrays no longer needed in the next operation

Typical examples of such master subroutines are LOADPC,
MRELES, MEMBER, etc,

Additional calls to ALOCAT and RELEAS occur at lower-level
subroutines, especially with respect to second-level data ar-
rays only temporarily needed, even within one link, (Example:
KOFDG, IOFDG in SOLVER.,)

6.5.5 Address computations in FORTRAN. Each subroutine
contains the array names U and IU at the beginning of its com-
mon list (if any) and an equivalence statement for U and IU. This
places both U and IU at the top of common starting at (77461)y and
any data in the variable pool (or the first-data area) can be ref-
erenced as an element in the one-dimensional array U (for floating-
point data) or IU (fixed point). This is possible because FORTRAN
does not check whether the subscripts of an array exceed the size
of the corresponding dimension statement. All data in the vari-
able pool are therefore referenced as U (IADR) or IU (IADR)
where IADR will usually be computed from codewords.

6.5,6 Allocation of arrays. Caution must be exercised when
temporarily needed arrays are allocated. It must always be re-
membered that any call ALOCAT (or a redefinition of an array)
could cause a memory reorganization to take place, depending
on the size and makeup of the particular problem. Therefore
any array subscript that is computed from a codeword, such as
I=MTYP+JM, IA=IU(I), must be assumed to be destroyed by either
an allocation or a redefinition of an array; that is, no such ad-
dress computations can be ''carried past' an allocation or re-
definition. This frequently requires that an address be recom-
puted after such allocations. For example, if the second-level
data array MEMB(I) is used in a loop on I, the codeword array
will usually be allocated and released before and after the loop,
respectively, but the allocation and release of the Ith data array
must be done inside the loop. Because of this allocation inside
the loop, it is not only necessary to compute the address of the
data array anew each time but also the address of the codeword
array itself, since the allocation of the Ith data array could re-
locate both the codeword array and the data arrays. Thus the
following sequence must be used:

CALL ALOCAT (MEMB, 0)
DO 100 I=1, MEXTN
CALL ALOCAT (MEMB, I)
I1=MEMB+I
11=IU(I1)
C GET NTH WORD OF ITH ARRAY

72 Description of System Components

IADR=I1+N
WORD=U(IADR)
c NECESSARY OPERATIONS ON WORD
100 CALL RELEAS (MEMSB,])
CALL RELEAS (MEMB, 0)

6,6 Bookkeeping System for the Solution of the Equations

6.6.1 The bookkeeping system. The linear structural analysis
problem for elastic lumped-parameter systems involves the solu-
tion of a set of simultaneous algebraic equations for the unknown
joint displacements U' if the stiffness approach is used, These
equations are of the form:

AU = P A= AtKA (6.1)

Even though advantage is taken of symmetry and only the lower
half of A'KA is stored, for larger structures it is not possible to
store the complete matrices A and @' in core at one time. These
matrices must be blocked into smaller arrays, operated on se-
quentially, and those parts that are currently not needed for com-
putation stored in secondary bulk storage if necessary (for ex-
~ample, magnetic tape)., The form and size of the matrix A de-
pends on the connectivity of the structure and the number of kine-
matic degrees of freedom. For each free joint there exist JF
degrees of freedom (JF = 2, 3, or 6 depending on the structure
type). Itis convenient to consider the submatrices of order JF
in o as basic elements, since there is one such diagonal stiffness
submatrix for every joint in the structure. Also one submatrix
exists in one half of J off the diagonal for every member in the
structure. These off-diagonal submatrices appear in o in the
rows and columns corresponding to the end joints of the member.
All submatrices of fcorresponding to two joints that are not
connected by a member are zero. Most structures have a rela-
tively sparse stiffness matrix; that is, most of the off-diagonal
submatrices are zero, It is, therefore, efficient to store only
those elements of # that are known to be nonzero. Information
for status and referencing of the off-diagonal submatrices is
stored in three second-level arrays, IFDT, IOFC, and IOFDG;
the submatrices themselves are stored in two second-level ar-
rays, KDIAG and KOFDG.

All diagonal submatrices are stored in a second-level array
KDIAG, ordered by internal joint number; that is, the Iﬂ'l subar-
ray of KDIAG contains the diagonal submatrix of A for the Ith
internal joint. A similar table, KOFDG, contains all the nonzero,
off-diagonal submatrices for the lower half of /£, This means
that initially there will be NB(=number of members) subarrays
in KOFDG. Since this table KOFDG does not directly tell where

Bookkeeping System for the Solution of the Equations 73

in the matrix /A any particular submatrix is located, additional
bookkeeping tables must Be kept. Since it is convenient to keep
as large a portion as possible of the logical makeup of A in core,
an array IFDT (see Section 5.4) is used in which each off-diagonal
submatrix below the diagonal is represented by one binary bit.
Thus, one 36-bit word can contain the information about 36 sub-
matrices (of 4, 9, or 36 words each) whether or not the subma-
trix is nonzero. A zero submatrix is represented by a zero bit,
a nonzero matrix, for which there is an array in KOFDG, by a
one bit. This array, IFDT, is used during the solution of the
equations to determine whether a matrix corresponding to a given
pair of joints is present or not. If such a submatrix is found to
exist, it still must be located within the table KOFDG, This in-
formation is stored in the second-level arrays IOFDG. One sub-
array exists for each hyperrow (a hyperrow consists of JF scalar
rows corresponding to one joint), that is, for each joint of the
structure. Each array contains one word per nonzero, off-diag-
onal submatrix below the diagonal in that hyperrow. This word
contains in the decrement the hypercolumn number, where the
submatrix is located, and in the address part the position of the
submatrix within the KOFDG table. Thus, the off-diagonal sub-
matrix corresponding to row J and column K (J > K) is addressed
at several stages as follows:

1. Find out whether the submatrix exists: M=2,
CALL ADRESS (J, K, NAD, M)

ADRESS will look up the bit picture in IFDT. If the bit corre-
sponding to column K, row J is 1, ADRESS returns the posi-
tion of the corresponding array in KOFDG in NAD by using
IOFDG; if not, NAD=0 is returned. The fourth argument is an
operation code for ADRESS. If the array exists, it can then
be referenced by

KF=KOFDG+NAD

so that

N=IU(KF)
U(N+1) is the element (1, 1) of the subarray.

2. Add a submatrix: M=0.

ADRESS will place a bit in the bit picture corresponding to
column K and row J.

3. Search a column for the next nonzero array: M=1 and 4.
ADRESS will scan the bit picture of the column K from any po-
sition in KOFDG corresponding to the first nonzero subarray.
Row J will give the hyperrow number at which the nonzero sub-
array is found. None exists if NAD=0. For M=1, the column
is scanned to J=NFJS; for M=4, to J=NJ.

74 Description of System Components

4. Determine the number of subarrays in a column: M=3,
ADRESS will count the number of 1 bits in the hypercolumn K
and return the result in NAD.

A simple structure is given in Figure 6.2, and Figure 6.1
shows the makeup of the various arrays before the reductions
of the equations for the simple structure.

JOINT 1 2 3 4 5

1 KDIAG(1)

2 KOFDG(2) | KDIAG(2)

3 0 KOFDG(3) | KDIAG(3)

4 KOFDG(1) 0 0 KDIAG (4) V
5 0 KOFDG(4) 0 0 KDIAG(5)| JF

e JF —>| }

Figure 6. 1. Schematic for matrix K for structure of Figure 6. 2.
1 ® O

Sy et

Figure 6.2. Sample structure,

The array IFDT consists of only one second-level array 200
words long. Since the structure is very small, its stiffness
matrix image has only one nonzero word, which is made up as
follows (see Section 5.5):

S12 26 30 35
0001010101

4|3 2 1 hypercolumn nr

-

There are 5 arrays IOFDG, 1 each for hyperrows 1, 2, 3, 4,
and 5; IOFDG(1l) is of zero length.

S 17 35 S 17 35
Used length Defined 1 2
IOFDG(2) -1 length

Leader word Word for KOFDG(2)

Bookkeeping System for the Solution of the Equations 75

S 35
IOFDG(3) Leader word 2 3
Word for KOFDG(3)
IOFDG(4) | Leader word | 1] 1]
IOFDG(5) | Leader word I 2] 4 |

The submatrix number in KOFDG is the same as the member
number as a result of the order of operations in forming 5f .

6.6.2 Elimination of support joints. If any support-joint re-
leases are given, the displacements associated with the released
components are eliminated from the equations in the joint-release
subroutines (JRELES) according to the method of Section 4.2. 3,
so that during the actual solution (subroutine SOLVER) only the
free joints must be considered. The elimination of the unknowns
at the released supports involves the modification of all off-diago-
nal submatrices that correspond to those members running be-
tween free joints connected to the same released support joint

Figure 6.3. Modification of the structural stiffness due to
joint releases.

and those diagonal matrices that correspond to the same free
joints. If no member exists between such joints, the elimination
procedure will result in a new submatrix corresponding to a fic-
titious member., For example, the elimination of the release
joint 4 in Figure 6. 3 would change the diagonal stiffness for joints
1, 2, and 3, and the off-diagonal stiffness of member 4; a new
stiffness matrix corresponding to a fictitious member between 1
and 2, and 1 and 3 would be created.

If, during the solution, new off-diagonal matrices are created,
KOFDG and the bookkeeping arrays IFDT and IOFDG must be
updated and expanded for the new array. The codeword array of
KOFDG and the data arrays of IOFDG change their length as the

76 Description of Systemm Components

elimination proceeds. For efficiency these length changes are

by blocks. Each time a new element is needed, the defined length
of the array must be checked against the required length and, if
necessary, the array must be redefined with a greater length,

6.6.3 Solution for the free-joint displacements. The solution
of the linear algebraic equations for the free-joint displacements
ul

AbpA w = g (6.2)

is done in subroutine SOLVER. The matrices #'and At%A al-
ready reflect the effect of joint and member releases, if any, A
modified Gauss-elimination procedure for symmetrical systems,
consisting of a forward and a backward sweep, is used. (See
flow chart for SOLVER in Appendix A, page 200.) Instead of
eliminating the scalar rows one row at a time by operating on
scalar quantities, SOLVER operates on matrices, thus eliminating
a number of rows at a time. At present all operations are done
on joint submatrices of order JF; that is, elimination during the
forward sweep is done on sequential joint members (JF scalar
rows at a time). Thus, if a joint stiffness submatrix is desig-
nated by ajj and the load subvectors by c;, during elimination of
joint k, proper multiples of the hyperrow k are subtracted from
all hyperrows n > k, according to the following formulas:

-1
2hi 7 %ni T %nk%kk Pk (6. 3)

-1
“a” %n” %nkPkk Sk (6.4)

for all integers n,i

k < n =< NFJS (6.5)
k<i=<n (6.6)

This procedure leads to implicit zero off-diagonal submatrices
in the complete hypercolumn k., The forward sweep consists of
three nested loops. The outermost loop is on k, the hyperrow
being eliminated. A call to ADRESS searches in IFDT to find the
next existing submatrix in column k, starting at row n + 1 (the
first time n = k). If such a submatrix is found at a new row n,

a search is made in column k (k < i < n), which is equivalent to

a search in row k between k and n. For each nonzero matrix k,i
found (via calls to ADRESS), Formula 6.3 is applied to change the
corresponding submatrix apj in row n. During the process of
altering row n, IOFDG(n) is used to find the position of anj in
KOFDG. Thus during the forward sweep, data arrays of IOFDG
must be allocated and released in the second of the three nested
loops. However, during the backward sweep they would have to
be allocated in the innermost loop, because the operations for the

Bookkeeping System for the Solution of the Equations 77

backward sweep proceed row by row from the diagonal to the right
(or therefore by column from the diagonal down). For large prob-
lems this would cause a prohibitive number of memory reorgani-
zations. For this reason the arrays IOFDG are totally released
successively during the forward sweep, and corresponding arrays
IOFC are created for the backward sweep (see Section 5.5 for
IOFC). These arrays contain essentially the information of
IOFDG in transposed form; that is, they are arranged by column
below the diagonal, rather than by row.

During the forward sweep an upper triangular matrix is formed.
The backward sweep is therefore only a successive computation
of unknown subvectors of u' for one joint at a time, starting with
the last joint, NFJS, and proceeding upwards., As the displace-
ments are computed, they are stored in the array KPPRI in place
of the previously stored joint-load vectors. The operations to be
performed to compute the displacements of joint n are as follows:

NEJS
a'u'=¢' (6.7)
. ni i n
i=n
where a;ﬁ and c;l are the reduced submatrix n,i and load subvec-

tor n at the end of the forward sweep., Since during the backward
sweep all u! are already known for n < i < NFJS, the nth subvec-
tor becomes

. ' NFJS
! 1 1
N N . Z ®ni% (6.8)
i=n+1l

At the time of the backward sweep, all nonzero submatrices a;ﬁ
are listed sequentially in the bookkeeping array IOFC(n). Thus,
only one such array must be allocated (and released) per free
joint during the backward sweep.

Chapter 7

EXTENSION OF THE SYSTEM

Extension and modification of the STRESS processor will gen-
erally involve three considerations: translation and data input;
storage of input and generated data; and the position in, and con-
trol of, the process. Each of these aspects has been treated sep-
arately in the preceding chapters. The following examples are
given to illustrate the procedure used in extending the system.
The reader should note how the existing process is analyzed and
followed to the point of modification, how the modification is in-
serted, and how the modification interacts with the memory-usage
procedure,

7.1 Member Geometry Output

This first example illustrates the ease of insertion of additional
output requests, It is assumed that we required an additional
statement of the form

PRINT GEOMETRY
or
TABULATE GEOMETRY

which is to generate an output table of the form

MEMBER START END LENGTH PROJEC- TANGENTS
NUMBER JOINT JOINT TIONS (RISES)

The required output can be provided directly in Phase Ia, pro-
vided that at the time the new statement is encountered, the num-
ber of joint-coordinates input (JJC + JDC) equals the number of
joints specified (NJ), and the number of member-incidences input
(JMIC) equals the number of members specified (NB). If the above
two cases do not hold, the request cannot be processed.

Examination of the listing of subroutine PHAS]A shows that in
processing both the TABULATE statements (program statement 400
et seq.) and the PRINT statements (program statement 1700 et
seq.) we use LIST2 for further input decoding, LIST2 contains

78

Member Geometry Output 79

eight words at the present (DISPLA, DISTOR, REACTI, FORCES,
DATA, ALL, MEMBER, and JOINT — see listing of LISTS)., We
therefore add a ninth word, GEOMET, and change LIST2 accordingly:

LISTZ DEC 9
BCI 9,...GEOMET

With this change, a return from MATCH with K = 9 will occur
whenever the word GEOMETRY is encountered.

In order to accommodate the new alternative, the following two
changes must be made:

a. Replace statement 402 by

402 IF(K-5)420,1720,4021
4021 IF(K-9)430,1712,1712

b:. Replace statement 1701 by

1701 IF(K-5)1702,1720,1711
1711 IF(K-9)1700,1712,1712

The processing of the request can then be continued with a state-
ment 1712, The processing starts by checking for the scan mode
and for whether the request can be satisfied. If it can be, a CALL
is made to a new subroutine GEOPR and the output is advanced

to a new page through a CALL to subroutine PRERR. If the tests
fail, an identifying message is printed. In either case, control
returns to Statement 10 to read a new input statement. The proc-
ess therefore can be specified as follows:

1712 GO TO (1713,10) ISCAN
1713 IF (JMIC-NB) 1716,1714,1716
1714 IF(JJC+JDC-NJ) 1716,1715,1716
1715 CALL GEOPR
CALL PRERR(1)
GO TO 10
1716 PRINT 1717
1717 FORMAT (44 DATA INCOMPLETE, REQUEST CANNOT
1BE PROCESSED)
GO TO 10

The new subroutine GEOPR can now be completed. The sub-
routine will have to deal with four arrays: the coordinate table
KXYZ, the incidence tables JPLS and JMIN, and the member-type
table MTYP, The latter is needed to check for members that
may have been deleted (MTYP=0). Since the subroutine is called
from PHASIA, all arrays needed except MTYP are already allo-
cated. In a subroutine called during the execution phase, it may
not be assumed that this condition holds, and any arrays needed
must be allocated at the beginning of the subroutine and released
just prior to returning to the calling subroutine.

80 Extension of the System

In order to avoid overflow when a member is nearly perpendic-
ular to one of the coordinate axes, the convention will be made
that if cot 6; < 1', the output for tan @; will be the constant
9999. 9999 with the sign of tan 6;.

The following listing of the program should be studied carefully,

especially with regard to the use and significance of the subscript
notation.

SUBROUTINE GEOPR

DIMENSION D(3), T(3)

DIMENSION U(2),...

COMMON U, IU,...,NB, NCORD,...,KXYZ,JPLS,
JMIN, MTYP,...

The latter two statements should be duplicated from PHASIA,

CALL ALOCAT (MTYP)
10 IF(NCORD-2) 11,11,12
11 PRINT 13
GO TO 20
12 PRINT 14
13 FORMAT (title for planar structures)
14 FORMAT (title for space structures)
20 DO 100 M=1, MEXTN
NTYP=MTYP+M
NPLS=JPLS+M
NMIN=JMIN+M

The addresses of the MP entry in the corresponding arrays are

NTYP, NPLS, and NMIN. A check for nonexisting members can
now be made.

IF(IU(NTYP))30, 100, 30
30 IPLS=IU(NPLS)
IMIN=IU(NMIN)

The joint numbers of the two joints incident of member M are
IPLS and IMIN,

KPLS=KXY Z+(IPLS-1)*3
KMIN=KXY Z+(IMIN-1)%*3

The starting (base) addresses in the coordinate table of the co-
ordinates of the two joints are KPLS and KMIN plus one.

SPAN=0, 0
40 DO 50 I=1, NCORD
KPI=KPLS+I
KMI=KMIN+I
D(I)=U(KMI) -U(KPI)
50 SPAN=SPAN+D(I)*D(I)

The addresses of the Ith coordinates of the two joints are KPI and

Joint Coordinate Computation 81

KMI; D(I) is therefore the projection of the member length on the
Ith axis,

SPAN = SQRTF(SPAN)
TEST=0.0002909%*SPAN
60 DO 70 I=1, NCORD
IF(ABSF(D(I))- TEST)61, 62,62
61 T(I)=SIGNF(9999. 9999, D(I))
GO TO 70
62 T(I)=D(I)/SPAN
70 CONTINUE
80 PRINT 81, M, IPLS, IMIN, SPAN, (D(I), I=1, NCORD),
1(T(I), I=1, NCORD)
81 FORMAT (311,7F15.4)
100 CONTINUE
CALL RELEASE(MTYP)
RETURN
END

This completes the modification of the system.

7.2 Joint Coordinate Computation

In many applications, it is convenient to define some joint co-
ordinates as a function of previously defined coordinates. As an
example, the programming additions will be described to include
a joint defined by the intersection of two lines defined by two pairs
of joints. The input specifications for this addition might be the
new statement

JOINT J (ON) INTERSECTION J1 J2 J3 J4

where the word ON may be included or omitted. The two lines
are defined by J1 to J2 and J3 to J4. Any additional descriptive
words may be added before the four additional joint numbers,
The tabular form would have the header JOINT INTERSECTIONS,
The defining joints must all have been previously given. The
joint J is assumed to be free unless the word S or SUPPORT f{fol-
lows the last joint number. Two possible errors would have to
be detected: either one of the joints has not been given, or the
two lines do not intersect.

The word JOINT is translated by PHAS1A, which then trans-
fers to JTDAT for further translation. All of the following
changes apply to subroutine JTDAT only and should be studied
in conjunction with the listing of that subroutine. JTDAT starts
by reading an integer or a word given in LIST3. The words ON
and INTERSECTION need to be added to LIST3, with the action
on detecting ON being to read the next word and the action on
detecting INTERSECTION, to transfer to statement 2180.

82 Extension of the System

In LISTS the statements for LIST3 become

LIST3 DEC 8
BCI 6,0..
BCI 1,00000N
BCI 1,INTERS

The statement 202 is used to skip superfluous words, and should
be changed to read

202 GO TO (203,203,203,203,203,200,200,203), 12

Statement 209 transfers on the branch number for reading the
rest of the statement. This is changed to read

209 GO TO (210,220,230,230,250,96,96,2180), K2

When statement 209 is reached, J has been read and stored. With
a tabular header, K2 has been set when the header is translated,
and J read in PHAS1A. Otherwise, J is read in JTDAT.

Two existing arrays will be needed in this program addition,
JTYP and KXYZ. The reader should refer to Section 5. 3 for
their meaning and storage form. The element in JTYP corre-
sponding to a joint number must be nonzero if the joint has been
defined. Four integers must follow in the translation process.
The reading of these numbers and checking for nonexisting joints
is accomplished by

2180 DO 2182 1J=1,4
I3=MATCH(0, K, 2)
IF(13-2)94,2181, 94

2181 L=JTYP+K
IF(IU(L))2182, 47,2182

2182 LABL(LJ)=K

The joint numbers are stored in LABL for processing.
Numbering the points in the order of input and defining the
direction cosines of line 1-2 as 1, m,;, and n,;, and of line 3-4
as l,, m,, and n,, the condition that an intersection exists!is

(miny - mon;)(x3 - x3) + (01, - nly)(ys - v1)
+ (Lym, - £,my)(25 - 2;) = 0

The distance from point 1 to the intersection is given by

(x3-)2+ (y3- y) 24 (25 - z)%- 1 €o(x5 - x1) + ma(ys - y1)+ na(z; - Zl)}z

(mn,- m,ny) 2+ (nyf,- nply) %+ (£ ym,- £,m))?

'D, F. Gregory, A Treatise on the Application of Analysis to
Solid Geometry, Whittaker, Simpkin, and Bell, London, 1852,

)=

Joint Coordinate Computation 83

If the denominator equals zero, the lines are parallel, The direc-
tion cosines can be computed by

DIMENSION DRCS(3,2)
DO 2185 I=1,2
DIST=0.
DO 2183 II=1, 3
IK=KXY Z+(LABL(2%I)- 1)%3+II
IL=KXY Z+(LABL(2%I- 1)- 1)*3+1I
DRCS(II, I)=U(IK)- U(IL)
2183 DIST=DIST+DRCS(II, I)** 2
DIST=SQRTF(DIST)
DO 2184 II=1, 3
2184 DRCS(II, I)=DRCS(II, I)/DIST
2185 CONTINUE

Coordinate differences used in the formula are computed by

DIMENSION DIFF(3)

DO 2186 1=1, 3

IK=KXY Z+(LABL(3)-1)%3+4I

IL=KXY Z+(LABL(1)-1)%3+4I
2186 DIFF(I)=U(IK)-U(IL)

The intersection test and the parallel test can be calculated together:

SUM=0.

DIN=0.

DIST=0.

DO 2187 I=1,3

IK=XMINF(I, 6- 2%I)+1

IL=(3%I*I- 13%1+16)/2
TEMP=DRCS(IK, 1)*DRCS(IL, 2)

1- DRCS(IK, 2)*DRCS(IL, 1)
SUM=SUM+DIF F(I)*DIF F(I)
DIN=DIN+TEMP*TEMP

2187 DIST=DIFF(I)+TEMP
IF(ABSF(DIST)- 1, E-5)2188, 2188, 46
2188 IF(ABSF(DIN)-1.E-5)46,46,2189
2189 R=SQRTF((SUM-(DRCS(1,2)*DIFF(1)+DRCS(2, 2)
1*DIFF(2)+DRCS(3, 2)*DIF F(3))** 2)/DIN)

Computing and storing the coordinates is done by

IK=KXY Z+(LABL(1)- 1)*3
IL=KXY Z+(J- 1)*3

DO 2190 I=1, 3

H=IK+I

IJ=IL+1I

84 Extension of the System

2196 U(1J)=U(II)+R*DRCS(I, 1)
GO TO 210

The existing joint-coordinate translation portion can be used to
read the joint type and increment the counters since no decimal
data follow the last joint number, and no data are to be stored.
The last transfer then is to statement 210,

Additional statements for error messages are needed. An er-
ror message specifying that an expected integer is not found is
included in PRERR with flagging of CHECK and printing of the
message already programmed in PHAS1A,

The error-return code from JTDAT need only be extended in
PHASIA to include this error with NE=11, Additions to JTDAT
at the end might be

94 NE=11
GO TO 10
47 PRINT 9
B CHECK=CHECK*777777773717
GO TO 10
9 FORMAT (53H THE USE OF DATA FOR AN
1UNDEFINED JOINT IS ATTEMPTED)
46 PRINT 8
B CHECK=CHECK*777777767777
GO TO 10
8 FORMAT (42H LINES CONNECTING JOINTS DO
INOT INTERSECT)

The masking of CHECK shown is for unacceptable statements and
for incorrect structural data. The GO TO statement in PHASIA
following statement 200 should read

GO TO (103 48’ 90’ 913 92: 93’ 98’ 99: 96’ 97! 94)’ NE

7.3 Member Loads in Global Coordinates

7.3.1 Input requirements for the new statement. This exam-
ple illustrates the programming steps required to implement in
the STRESS processor programs a new command that specifies
member loads in the global-, rather than a member-, coordinate
system.

Such a command is convenient in cases where member loads are
acting in a coordinate system that is not parallel to the member-
coordinate system of that member, such as vertical loads on an
inclined roof beam shown in Figure 7.1.

To implement this capability it is only necessary to generalize
the already available statement for member loads. The present
statement is of the form

Member Loads in Global Coordinates 85

M FORCE }Y(CONCENTRATED}
UNIFORM w W_L, L
)Z({LINEAR A B A B
MOMENT Y
z

where it is assumed that the direction label X, Y, or Z refers
to the member-coordinate system of member M.

&r

Figure 7., 1. Member load in global correspondence.

To implement the desired altered statement we make the fol-
lowing convention: if (and only if) the direction label refers to
the global coordinate system, an additional word "GLOBAL'"is
given after the direction label. Thus the altered command be-
comes

M FORCE X LOBAL) (CONCENTRATED
Y UNIFORM w, wW_L, L

Z LINEAR A B AB
MOMENT X

Y

zZ

For the example shown in the figure, the command to specify the
vertical load would then be

3 FORCE Y GLOBAL UNIFORM -1.0 60. 150.

86

It

Extension of the System

is noted that the distances (L = 60.) and (Lg = 150.) still re-

fer to the distance along the member axis. This feature, how-
ever, is convenient for uniform loads extending over the entire
member (Lp = LB = 0.).

7.3.2 Implementation. The following procedure of implemen-

tation will be used:

1. In input phase a flag is set if a member load refers to global
coordinates. All other raw data are stored as if the load had
been in member coordinates.

2, When processing the member loads in subroutine LOADPC
and LOADPS, the flag bit stored is checked. If it is present,
the given loads are rotated into the corresponding compo-
nents in member coordinates, and the normal load processor
routines are called for each nonzero component.

The components are obtained by matrix multiplication with
the rotation matrix R between global and member coordi-
nates.

3. In the PRINT DATA mode (subroutine DPRINT) the fact that
a load is in global coordinates is printed. This is done by
checking the corresponding flag,

7.3.3 Programming changes required. In this section frequent

re

ference will be made to specific parts of source programs of

the STRESS processor. The listings and flow charts for these

pr

ograms are included in the appendices of this manual.

a. Input phase. During the member-load reading, a special
branch must be allowed after reading the direction label to
check whether the next word is GLOBAL. This is done by al-
tering subroutine READ as follows: a 38th branch is added to
statement 105 going to a new statement 2000 (word 38 in LIST5
is now " GLOBAL"),

105 GO TO(l106,...,2000),K
2000 NGLOB=1
GO TO 100

The packing statement before statement 150 is used to store
the flag NGLOB into an unused portion of the load descriptor
word

CALL PACKW(IU(1J) ,NGLOB,N,LABL(1),LABL(2), 0)
NGLOB=0

This stores the flag into the prefix of the second headerword
of the load block for the raw data belonging to this member
load. (See Section 5.4.5.)

In addition subroutine LIST5 must be changed to read as fol-
lows:

Member Loads in Global Coordinates 87

LIST5 DEC 38
BCI 9,00...

BCI 950en
BCI 8,...
BCI 8,...

BCI 3,...00IZDISTOR
BCI 1, GLOBAL
END

b. Execution phase. The only changes required are in the
member-load processor subroutines;
Additional statements are required in subroutine LOADPS
to unpack and check the flag NGLOB set in READ, If the mem-
ber load is in global coordinates (NGLOB=1), a special newly
written subroutine GLOMLD is called to rotate the given loads
into member coordinates and call MEMBLD for each component.
The required changes in subroutine LOADPS are (a) state-
ment after statement 4, change to

CALL UPACW(U(NLS), NGLOB, N, J, K, B)

and (b) before statement 206, replace ' GO TO 30" by

IF(NGLOB)2000, 30,2000
2000 CALL GLOMLD
GO TO 149

Subroutine GLOMLD must be newly written and monitors the proc-
essing of the member load under consideration on member JM,

7.3.4 Subroutine GLOMLD. The following special cases are
to be considered.

Trusses: Since member forces on trusses must be in the
member x direction, such forces can only be
given in global coordinates if the member is
parallel to one of the global axes. If such a
load is specified so that force components nor-
mal to the member axis result, only the com-
ponent in the member-axis direction will be
considered. Moment components will be neg-
lected.

Plane frame: Moment components of prescribed member
loads can only act around the Z (or z) axis.
Plane grid: Force components of prescribed member loads
can only act along the Z (or z) axis.

The flow chart for subroutine GLOBLD is shown in Figure 7. 2.
The following conventions are used in the subroutine:

J = load direction in member coordinates
(J=1,2, 3 means force x,y, z, respectively)

88

Extension of the System

(J=4,5,6 means moment x, Y, 2, respectively)
F = applied force in global coordinates

A listing of the subroutine follows.

C

C

10

20

22

21

30

32

31

40

42
900

53

FORTRAN PROGRAM FOR GLOMLD

SUBROUTINE GLOMLD

COMMON STATEMENT MUST AGREE WITH
MEMBLD

COMMON U, IU, Y, T...

DIMENSION...

EQUIVALENCE...

CALL TRAMAT (JM,2)

SAVE RAW DATA (INTENSITIES) IN TEMP

TEMPI1=U(NLS+1)

TEMP2=U(NLS+2)

JTE=J

JKS=1

J=1

GO TO (10,20, 30,10,40)ID

TRUSSES

ICN=1

GO TO 900

PLANE FRAME

IF(J-6)21,22,22

IF J=6 MZ IS GIVEN, GLOBAL=LOCAL

ICN=1

GO TO 900

ICN=2

GO TO 900

PLANE GRID

IF(J-3)31, 32, 31

ICN=1

GO TO 900

ICN=2

J=4

JTE=J-3

SHIFT COMPONENTS BY 3 SINCE MOMENT

IS GIVEN

GO TO 900

SPACE FRAME

ICN=3

IF(J-3)900, 900, 42

J=4

DO 950 I=1,ICN

U(NLS+1)=TEMP1*T(JKS,JTE)

IF(K-2)54,54,53

U(NLS+2)=TEMP2*T(JKS, JTE)

Member Loads in Global Coordinates 89

K=3 MEANS LINEAR LOAD, 2 INTENSITIES
GIVEN
NLS IS A POINTER TO RAW DATA UNDER
CONSIDERA TION
54 CALL MEMBLD(U(JC+1))
NDEX=2
CALL LSTOR
J=J+1
950 JKS=JKS+1
C RESTORE RAW DATA IN MLOAD
U(NLS+1)=TEMP1
U(NLS+2)=TEMP2
RETURN
END

oNoNeNe!

Call TRAMAT (JM, 2)
to get rotation matrix Q into array T
® Branch on
structure type

Truss Space Frame Plane Frame Plans Grid

Force
or
Moment
?

Moment Moment Force

Compute force
component in
the x direction.
J=1
ICN=1

EN =1 i %ﬂj{ }

ICN =2

oop I >ICN
I=1, ICN

\ I =ICN

Call MEMBLD Restore
row data

Figure 7.2. Flow chart for new subroutine GLOMLD.

We shall not discuss here the changes in subroutine DPRINT
that are necessary to differentiate between global and member
coordinates for the member loads on the output. They would
merely consist of one check of the corresponding bit NGLOB,
and a corresponding message or label on the output.

Appendix A

FLOW CHARTS

OVER-ALL LOGICAL FLOW CHART

START

Initialize for
normal operation

Structure

*

Read and ana-
lyze a statement

Typical

Branch on

statement
type

Initialize for
new problem

Finish
decoding

Y

Process

Process

[

Consistency
checks (Phase
Ib)

Yes

Execute
(Phase II)

Yes

2

Correct
,—-—b Console [~ = statement [
Print -
message Set flag
Solve

}
¥

Yes

93

Time sharing

Batch mode

Restore
normal

Print
diagnostic

message

[]

Set to scan

used

Print time

Print
message

e

Y

OVER-ALL EXECUTION FLOW CHART

TRANS

PHASIA
ISOLV =1

PHASIB

Any joint
release

ISUCC = 2

95

MAIN LINK 1

Print
memory-overflow

Yes

message

Problem
failed in
execution

_

Print part
completed

Print
execution-deleted

message

Problem
completed

ISCAN = 2

Call STOPCL
to get time

P
r

PHASIA

Call PRER2;
print time used

N

96

SUBROUTINE: PHASIA
TYPE: FORTRAN

ARGUMENTS: None

Main Link 1

DESCRIPTION OF ARGUMENTS: Subroutine PHASIA controls the input
phase of STRESS. It reads in all STRESS statements, decodes the alpha-
betic data and sets appropriate parameters, and stores the numeric data.

CALLS:

PRERR, MATCH, MEMDAT, JTDAT, SIZED, DEFINE,

ALOCAT, START, UPADP, RELEAS, PHASIB, SELOUT, DPRINT

CALLED BY: MAIN LINKI

O—

Read a logical

new statement

Set to read

field

@’Branch on type of field

Floating Number

or Word Not in

List

7

| sep |

Word DITTO Integer
[save x |

Branch
on word

Subroutine PHASIA

Member Joint Number

Read number
type

Call MEMDA) Call JTDAT)

Tabulate

T
416,

Form code

Call DPRINT

Addition Deletions

Modification
type
?

)]

Save Add code Erase old code, Delete code
code to loading add new code to from loading
condition loading condition| |condition

B
4
A

97

98

Main Link 1

Modification
?

Modification Changes
type? Deletions *
Number of Read
loadings given Addition loading
number
Call SIZED to
increase maximum
counter if needed
Initialize | < Changes Alodification
array in
LOADS Deletions
Independent

Combination
Read field 1

y
Loop on loads IX > NLD
i IX =1, NLD
IX =NLD y
Alter load-| Load Erase
type code present? loading
combination
Y

€es

A
Structure O Method

Call START

Initialize
problem

Store title

SCP: Set check parameters

Subroutine PHASIA

Other

Other

Other

Read field

Plane

Space

Truss

Set truss
member
freedom

| -

Frame

Grid

Set JF on
1D

odification

permissible
?

Scanning
?

Set member
| freedom = JF

99

100 Main Link 1

Modification Changes Additions Deletions

? % 9

[IMoD =2] |IMOD =3]

Rpad second field I

Part

[Allocate needed
Call RESTOR, input arrays

r J SEP

Solve

Xes

statement been give

Read third

Problem
specification
incorrect

Increment
part counter

No

Scanning
?

Call PHAS1B Yes

Return

Subroutine PHASIA 101

Stop Selective

o

Set IMOD = 2
to read load-
ing number

Call EXIT

Branch on type

Word Not in
Blank Integer Floating number Dictionary Word DITTO

Ex

=P . Yes

No

Yes

Call DPRINT

Space new page

Constants

Deletions
modification

Read field

Branch on type

SEP

102

Blank

Integer

Has name of
constant been
given?

number > maximum

Floating
Number

Word Not

Call SIZED

Redefine con-~

stant array

Y

Allocate and
release array;
set value

Main Link 1

DITTO

Branch on e
word

Set value in
problem
parameter

Words

Set subscript;
redefine array

eters = 1

Set all elements

of array to value
and problem param-

Print error
message

\

®

Subroutine PHASIA

C

Loa

SEP

Blank

Release LOADS
array

Print error

[

Delete loading
factor

Loading

= combination

ombine

given?

ding type

103

Coordinate
Computer

Check

Call chain

g

in
*Not yet
released

Loading
number O.K.

LOADS array
large enoug

Addition

Increase size

Read field

Branch on
type

N4 -N

Has
loading
number been
given?

LOADS array
large enough
?

Increase size
Store number

!

104

Integer

Scan for
loading

number

available
?

Deletions

Loading
number give

Set flag

Temporarily
store value

Main Link 1

Py-F

Store

value

Set loading number
to zero in LOADS

Subroutine LISTS

105

SUBROUTINE: LISTS

TYPE: FAP

ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine LISTS consists of ten lists of
words (each list available under its own entry point) that are used as a
dictionary by subroutine MATCH. MATCH compares an inputted word
with a specified list (entry points: LIST1, LIST2, etc.). The first six
letters only are used.

CALLED BY: All translating routines

ENTRY POINT

WORDS

LIST1

LIST2

LIST3
LIST4
LIST5

LIST6

LIST7
LISTS8
LISTI10
LIST11

MEMBER, JOINT, NUMBER, TABULA, LOADIN, STRUCT,
METHOD, TYPE, MODIF1, CHANGE, ADDITI, DELETI,
SOLVE, STOP, FINISH, SELECT, PRINT, CONSTA,
COMBIN, COORDI, CHECK

DISPLA, DISTOR, REACTI, FORCE, DATA, ALL,
MEMBER, JOINT

COORDI, RELEAS, LOADS, LOAD, DISPLA, NUMBER
JOINT, MEMBER, SUPPOR, LOADIN

X, Y, Z, FORCE, MOMENT, DISPLA, ROTATI, A, I, END,
START, CONCEN, UNIFOR, LINEAR, P, W, WA, WB,

LA, LB, S, F, SUPPOR, FREE, AREA, INERTI, L, LENGTH,
STEEL, BETA, AX, AY, AZ, IX, 1Y, I1Z, DISTOR

FROM, GOES, NUMBER, INCIDE, PROPER, RELEAS,
CONSTR, DISTOR, LOAD, LOADS, PRISMA, STIFFN,
FLEXIB, VARIAB, STEEL, END

PRISMA, STIFFN, FLEXIB, STEEL, VARIAB
ALL, BUT, E, G, CTE, DENSIT

FIRST, LAST, PART

PLANE, SPACE, TRUSS, FRAME, GRID

106

SUBROUTINE: MEMDAT

TYPE: FORTRAN
ARGUMENTS: None

Main Link 1

DESCRIPTION OF PROGRAM: Subroutine MEMDAT controls the read-

ing and storage of input data that deal with members.

CALLS: MATCH, READ, ICNT, DEFINE
CALLED BY: PHASIA

Deletions
modifications

No

No

Integer

Tabular

mode

Read field

Branch on field type

Floating Number or
Word Not in List

|SEP|

‘ Return ’ :

Dictionary Word

No Member

Set I Table
e Branch on word

number given

Subroutine MEMDAT

From, GOES,
Properties Number
Zero-header SEP
storage

Incidences, Releases,

Constraints, Load Prismatic, Variable
Stiffness, Flexibility

Distortions, End Loads

e Return

From, Goes,
Incidence

Read two
integers

odification

No

Additions

Increment
counter

Store
incidences

Deletions

©

Constraints,
Releases

Call READ

Decrea

counter;

erase t

and prop-

erties

se

ype

Store code
by mode type

P

107

D

Branch on
word

Loads,

Distortions End Properties

Call READ

6
je——— Read field | [Read sie1a]

Set index

Branch on
property

Ezp types

A

A

Stiffness,

Prismatic Flexibility Steel Variable
ol
o
Read (JF)? floating num- Call READ ®
bers and store in tempo- Number
Call READ
- rary array of segments pre-
A
Read Beta-angle if given
and store in Beta-angle
array or temporary array Read integer
depending on whether there
is a header or not
Header
?
|
Store data Header Yes Yes
and set gate >
Test No
header \ Set segment
gate flag
\ (Retu':rnj Store data in proper-
No ties array
data Store header| :
data { Read field to
skip
[Store Beta if given .
Store state- in header
ment data
Additions " Modification “Deletions
Initial type?
Increment mem-
b : Changes
er properties
counter
l Store data in
properties
\ array z
Store type in- “y 8
formation; set E.
Beta-angle Call READ
flag if given c
e
o]
I N Store data 1n ~
b properties —
array

Subroutine SIZED 109

SUBROUTINE: SIZED
TYPE: FORTRAN
ARGUMENTS: J, K, L

DESCRIPTION OF ARGUMENTS:
Argument L gives the type of input statement being processed:
L = 1: Indicates that there is a NUMBER statement during the initial
data input or during the CHANGES mode of MODIFICATION;
L = 2: Indicates that during MODIFICATION a joint member or load-
ing is greater than JEXTN, MEXTN, or LEXTN.

J L Calling SIZED from statement K
1 1 NUMBER OF JOINTS Number of joints
2 JOINT COORDINATES Number of a joint
2 1 NUMBER OF MEMBERS Number of members
2 MEMBER INCIDENCES Number of a member
2 MEMBER PROPERTIES Number of a member
3 1 NUMBER OF SUPPORTS Number of supports
4 1 NUMBER OF LOADINGS Number of loadings
2 LOADING HEADER Highest loading number

DESCRIPTION OF PROGRAM: Subroutine SIZED defines and allocates,
or redefines during MODIFICATION, the various arrays (whose sizes are
functions of size statements) used to store input data; it also sets the cor-
responding size parameters.

CALLS: DEFINE, ALOCAT
CALLED BY: PHAS1A, MEMDAT, JTDAT

Define and allo-
cate arrays

> -

110 Main Link 1

SUBROUTINE: JTDAT
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine JTDAT controls the reading

and storage of input data that deal with joints.
CALLS: MATCH, READ, ICNT, DEFINE, SIZED
CALLED BY: PHASIA

D
O = 0 (word JOINT read) = 2 (in tabular mode)
> ~¢ ~—
Read next
logical field
Branch on
type of field
Floating-Point
Fixed Point Word in List DITTO 6 Blanks Number or Word

Not in List

@

Restore
last word

Deletions
mode

=0)J #0

(this was a header)\/
Y

ITABLE = 2

A
| Call SIZED SEP

< B) Branch on last

word read

Subroutine JTDAT

Loads

Displacements Number

Set index

‘ Call READ

Y

Coordinates

\

Increment counter
of number of free
or support joints

Set JTYP

Store coordinates

Modify counters
Change JTYP
Change coordinates
as requested by
MODIFICATIONS
On DELETIONS,
delete any releases

111

Releases

Call READ

Modification

Increment the counters|
of the number of re-
leased joints and the
number of releases

Set up KJREL for
joint J

Store joint releases in
KJREL

Store joint Thetas in
KJREL if given

-

As directed,
modify
The counters
The release
code in KJREL
The Thetas

112 Main Link 1

SUBROUTINE: READ

TYPE: FORTRAN

ARGUMENTS: 1IG, J

DESCRIPTION OF ARGUMENTS: Argument IG indicates the type of data

to be read.

I1IG = 1 2 3

Joint coordinates

Member properties Releases Loads

Argument J conveys the joint or member number for the data to be read.
If J is not given, the data is in a tabular header.

DESCRIPTION OF PROGRAM: Subroutine READ reads data, given with
or without labels, of the type indicated by IG and stores them in two col-
umns: one column contains the numerical data and the other contains a
code that indicates the label associated with each piece of data. Subrou-
tine READ compacts the release code for releases. For loads it places
the data in appropriate parts of the arrays MLOAD and JLOAD and refer-
ences these data in the array LOADS. Subroutine READ also alters this
loading information for any type of MODIFICATION.

CALLS: MATCH, UPADP, DEFINE, PADP, ALOCAT, RELEAS
CALLED BY: MEMDAT, JTDAT

Subroutine READ 113

Read next
logical field

Branch on
field type

Fixed-Point Floating-Point
Number Number

© (%) ()

Set parameter
to remember
label for DITTO

A Label DITTO 6 Blanks

Recall parameter

S M
tore set by last label

Generate
sequential labels

Branch on IG

Store code
in label array

]

@

Modification
mode

Compute re~
lease code

from labels ' I

Define MLOAD
or JLOAD at
second level

Additions

Modification

hanges or

Store data from
Find indicated
column of data .
. load on joint or
using column of
member

code for position
labels in MLOAD
or JLOAD

Deletions

Modification

Erase load
jind reference

: !

Return

114 Main Link 1

FUNCTION: MATCH
TYPE: FAP Function
ARGUMENTS: I, LIST, K,M

DESCRIPTION OF ARGUMENTS:

I: Function result indicating kind of logical field encountered or nature
of contents of K

—

Field

Field is six blanks

K contains a fixed-point number

K contains a floating-point number

K contains word not found in the indicated LIST

K contains the position of the word in the indicated LIST
Field contains '""DO" or '"DITTO"

Oy U1 W W N -

M: Specifies operation to perform

Operation

Read next logical field

Read the first logical field of a new card
2, 3 Read only a number (skip letters)

4 Skip a logical field and read the next one

5 The location of the buffer is placed in LIST

.—aog

LIST: Unless M = 5, LIST indicates the dictionary name

Subroutine MATCH 115

Read next
card

Continuation
card ?

é Branch on M

Store word
in K; set

Read New M=0
CardM =1 Next Field

Strip blanks|

No

Read next
card

Letter
or number
?

blanks

Continuation
card

Set
K = $ERROR
I=4

Store word position
in K; setI=5

Store word in K;
@ set I=4

Store status

116 Main Link 1

Buffer
Skip Field Address
M=4 M=5

Compute buffer
subscript address
and store in first
argument

Skip blanks

Number
M=2,3

Skip field

Neither

Read and ig-
nore remain-

ing digits

group con-
sidered
?

Convert
number to
binary integer

Continuation
card

Set
sign

Set
I = 2 for fixed-
point number
I = 3 for floating-
point number

Store number
in K

Subroutine DPRINT

SUBROUTINE: DPRINT
TYPE: FORTRAN
ARGUMENTS: None

117

DESCRIPTION OF PROGRAM: Subroutine DPRINT prints out in tabular
form the structural and loading data associated with the state of the prob-
lem at the time DPRINT is called.

CALLS: ALOCAT, UPACW, RELEAS

CALLED BY: PHASIA

Print out struc-
ture name and
number of modi~
fication

!

Determine struc-
ture type from ID
and print it out

!

Print out number
of joints, mem-
bers, supports,
and loadings

Is
the number of No
joints equal
to zero?

J > JEXTN

¥

Print out
joint table
heading

Are
there any
joint releases

Print out tab-
ular headings

Loop on NR
joints

Print out the
joint number,
the releases,
and the Theta
angles

Looping
completed

Print
SUPPORT

Loop on all
joints

J =1, JEXTN

J = JEXTN

Print
coordinates

118

Main Link 1

the number
of members
equal to
zero?

Print out
table headings

Loop on all
members
M =1, MEXTN

M > MEXTN

there any M < MEXTN

member releases

member exist

Print
table head-

ing |

Print incidence,
type, properties,
and Beta angle

Loop on all
members
M =1, MEXTN

M > MEXTN

M <MEXTN

release code

A

Compute FORMAT
and print components

y

Print out the values of E,

G, coefficient of thermal

expansion, and density if
given

Subroutine DPRINT

Yes

the number
of loads equal to

Loop on all
loading con-
ditions L = 1,

zero?

A

Return I.JEXTN
= LEXTN
Yes
deleted
Print title
and tabula-
tion requests
Combination Loading Independent
type
) Loop on
Tabulate load- N> NLDS loads
ing condition \ M =1, NLDS
percentage !
\ N =NLDS

Determine and
print out load

type

)

Print from MLOAD
or JLOAD the data
values, including
form and direction
for member loads

120 Main Link 1

SUBROUTINE: SELOUT
TYPE: FORTRAN
ARGUMENTS: JLX, IZ, NUM

DESCRIPTION OF ARGUMENTS:

Symbol JLX is the external loading number

Symbol IZ indicates the kind of results that will be printed out from
this loading condition.

1Z | Information Wanted

1 Member forces

2 Joint loads and support reactions
3 Member distortions

4 Joint displacements

Symbol NUM is the number of a joint or member about which this in-
formation is desired.

DESCRIPTION OF PROGRAM: Subroutine SELOUT reallocates the re-
sult arrays necessary for ANSOUT to print out the information for the
joint or member.

CALLS: ALOCAT, UPACW, RELEAS, ANSOUT
CALLED BY: PHASIA

Allocate LEXT, LOADS

LOADS(JLX); unpack
first word of LOADS(JLX)

Is
loading
present

Deleted

Ii{elease LOADS(JLX)]

Find internal number é

corresponding to JLX
and set JLI = JLX

present JLX

equal to JLX of the

last time through

SELOUT
?

Print structure name
and modification name
if it exists

L

es

é Branch on IZ

Subroutine SELOUT

Allocate MTYP,
JPLS, JMIN,
KPPLS, KMNS

Allocate JINT,
KR

Allocate MTYP,
KUV

Find
KPPLS(JLI
and
KMNS(JLI)

Find KP(JLI |

l Find KUV(JLI) |

Deleted

121

Allocate JINT,
KPDEP, KPPRI

Support

joint releases

IHOP = 2

Is
the desired
information the same as
it was the last time this
point of the program
was reached?

IHOP =1

Call ANSOUT

Release all
arrays that
could have
been allocated

O—

Return

1:
2:

JTP = 3 -~ Joint type

Transfer on print code

IHOP

1z = 2,4

Has

joint type

changed
?

IHOP = JTP + 4

support

free

122 Main Link 1

SUBROUTINE: ANSOUT
TYPE: FORTRAN
ARGUMENTS: 1Z,NUM, IHOP

DESCRIPTION OF ARGUMENTS:
IZ: Printing code
IZ = 1: Print member forces
IZ = 2: Print joint loads and support reactions
IZ = 3: Print member distortions
IZ = 4: Print joint displacements
NUM: Selective printing code
NUM = 0: Print all quantities
NUM > 0: Print only selective output
IHOP: Heading code.
Member IHOP = 1: Print heading
Results IHOP = 2: Do not print heading
IHOP = 3—+6: Not set, not used
(~ IHOP = 1: Print heading, print support-joint label
IHOP = 2: Print heading, print free-joint label
IHOP = 3: Do not print heading or label; print
support-joint output
IHOP = 4: Do not print heading or label; print
free=-joint output
IHOP = 5: Do not print heading, print support-joint
label
6: Do not print heading, print free-joint label

Joint
Results

_ IHOP

DESCRIPTION OF PROGRAM: Subroutine ANSOUT prints solution quan-
tities for one type and loading condition. Array addresses are computed
in calling program.

CALLED BY: SELOUT, BAKSUB

Subroutine ANSOUT

Print MEMBER
FORCES head-

ing
Y

Check for struc-
ture type being ana-
lyzed and print mem-=
ber-force headings
accordingly

Print MEMBER
DISTORTIONS
heading

P

123

Print
JOINT
heading

1

w

Check for structure
type being analyzed

ing member-distor-
tion headings

and print correspond-

Print support-reaction
headings according to
structure type being
analyzed

Print total
output

>

No Yes
Print one Print total
member output
output

Selective
output

Test if joint-
status head-
ing should be
printed

!

Print one
joint out-
put
y

Print total
output

No

Selective
output

i

Test if joint-
status head-
ing should be
printed

1

Print one
joint out-
put

1

<>

ot =

Print JOINT
DISPLACE-
MENTS head-
ing

Print joint-displace-
ment table headings
according to structure
type being analyzed

Print one
member
output

L .®

124 Main Link 1

SUBROUTINE: PHASIB
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: This subroutine checks the consistency
of input data. It defines, allocates, and releases various arrays that will
be used in Phase II and forms the joint incidence matrices and internal-
external joint and loading tables.

CALLS: DEFINE, ALOCAT, UPADP, PRER2, RELEAS, ITEST, PRERR,
SAVE

CALLED BY: PHASIA

Initialization

Does

the number of

free and support joints

agree with the number

inputted
?

Set check
parameter

J:

Define, clear,
and allocate
JINT and JEXT

l

First joint

Subroutine PHASIB 125

Repeat for all
joint members
J=1, JEXTN

J >JEXTN :®

J = JEXTN

No Does

joint exist

Store correspondence
in JINT and JEXT

Any
loads
o

No

Repeat for
all loads

Erase R ¢ f
JLOAD epeat for
array all loads

Is
load type
allowable

Erase load
reference

Released
support joint

Print error
message

126 Main Link 1

Loop on all
member numbers
=1, MEXTN

I = MEXTN

incident joints
given and allowable
?

Print error
message

Active >
Gelete member messa.ge)
Subtract releases
Erase properties
Decrease counters
No e
Eras
Repeat for all MLI,-OAL}) -
loads array

Erase
load
reference

Subroutine PHASIB

Member

count check

JJC =NB
?

Checked

Member

properties check

JMPC =NB
?

there any No

loads
?

the number
of loadings given

equal to actual number
of loadings
?

Define and
allocate LINT

Repeat for all

loading conditions
L=1, LEXTN

Set internal
number to

Set internal
number counting

Combined

Deleted

down from

A zere NLDS
: Independent
Set internal
number count-
ing up
i L i
sCp

Set parameters

127

128 Main Link 1

Did
solution
succeed

ISUCC =1
ISOLV = 2

Is
first
solution with SOLV

THIS PART
?

Save the

initial data No

Print error
message

)

Release most
input arrays
+ [xsucc =2

Define first- and se-
cond-level execution
arrays allocating and
releasing codeword

arrays

Loop for
all members
I=1, MEXTN

|

Define second-
level arrays of
IOFDG based on

‘ Store incidence incidences
by internal
joints
-

Increment inci-
dence counters
(temporary

IOFDG) for maxi-
mum incidence

‘ Return)

Subroutine RESTOR 129

SUBROUTINE: RESTOR
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine RESTOR returns to core the

input data of the initial specification of the problem for a MODIFICATION
OF FIRST PART and rewinds the scratch tapes.

CALL: FILES
CALLED BY: PHASIA

Call FILES
to read initial
problem data

Rewind scratch
tapes and initialize
file number

130 Main Link 1

SUBROUTINE: SAVE
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine SAVE stores on tape all of the
input data of the problem when called.

CALLS: UPADP, FILES
CALLED BY: PHASIB

Obtain NL NL is the next available
from storage storage location in
COMMON

[KSAVE = 774625 - NL| KSAVE is the number

of words used for prob-

' lem data storage

Call FILES

to store data
on tape

< Return)

Subroutine ITEST 131

SUBROUTINE: ITEST
TYPE: FAP
ARGUMENTS: A,B,L,I

DESCRIPTION OF ARGUMENTS:

logical word to be tested

Mask used in testing

If 0, no diagnostic printing

Set by ITEST

I =0 if A matches B
=1ifA+#B

DESCRIPTION OF PROGRAM: Argument A is logically matched against

B. If all bits of A match B, Iis set to 0. If any bits do not match, PRERR
is used to print (L + K)th error message, where K = bit position of A in
error (K is counted from the right of A).

CALLS: PRERR
CALLED BY: PHASIB

S

‘ Return)

132 Main Link 1

FUNCTION: ICNT

TYPE: FAP

ARGUMENT: I

DESCRIPTION OF ARGUMENTS: The word I contains the release codes,

DESCRIPTION OF PROGRAM: Function ICNT counts the number of joint
or member releases on a single support joint or member.

CALLED BY: PHASIB

Count the bits
in the decrement

|
Result in
accumulator

‘ Return >

Subroutine CLEAR (NAM) i 133

SUBROUTINE: CLEAR(NAM)

TYPE: FAP

ARGUMENT: NAM

DESCRIPTION OF ARGUMENT: A codeword

DESCRIPTION OF PROGRAM: Subroutine CLEAR is called if an array
must be set to zero before the next use.

CALLED BY: Many programs

Codeword
previously defined

Y

No

-:N o
Y

Set array tape
file number to
zero; ALOCAT
will clear array

Zero array when used
elements *

134 Main Link 1

SUBROUTINE: PRERR
TYPE: FORTRAN
ARGUMENTS: J

DESCRIPTION OF ARGUMENTS: Argument J determines which one of
the 36 error messages contained in PRERR is to be printed out.

DESCRIPTION OF PROGRAM: Subroutine PRERR prints one message
with no numerical information.

CALLED BY: PHASIA, ITEST

th
Print 1
message

)

Return

Subroutine PRER2 135

SUBROUTINE: PRER2
TYPE: FORTRAN

ARGUMENTS: J,N,A

DESCRIPTION OF ARGUMENTS:
J: Indicates which one of the 18 error messages is to be printed
N and A: Parameters printed in the message

CALLED BY: PHASIA, READ, PHASIB, etc.

e Branch on J

Print out ith
error mes-
sage using N
and/or A

[
Return

136 Main Link 1

Allocator: Pertaining to Subroutines START, DEFINE,
ALOCAT, RELEAS, REORG, FILES, DUMP, DUMPER,
SSLAD, STER.

The dynamic memory allocation used in this process is accomplished
with a small series of subroutines. The majority of these routines are
coded in FAP and are grouped into a single subroutine with multiple en~
tries, which are ALOCAT, DEFINE, RELEAS, REORG, START, and
DUMP. Routine REORG is called from other parts of the allocator (that
is, in the FAP subroutine) or from the modified library routine CHAIN
if the next program link would overlay data. Other portions of this FAP
routine are called by more than one of the entries and therefore are shown
in separate flow charts. They are SSLAD and STER.

Two FORTRAN routines are also part of the allocator: FILES for tape
handling and DUMP for printing intermediate dumps.

The allocator routines may be called from any program.

SUBROUTINE: START
TYPE: FAP
ARGUMENTS: NT, NCW, NMAX

DESCRIPTION OF ARGUMENTS:
NT: Not used
NCW: Size of the fixed arrays and codewords
NMAX: Size of the space available for arrays in Link 1

DESCRIPTION OF PROGRAM: Subroutine START initializes storage of
arrays.

CALL: FILES
CALLED BY: PHASIA

Subroutine allocator

Initialization

Clear space
for fixed arrays
and codewords

)

Store scratch
tape number

|

Compute and store the

location of the start of

the space available for
arrays

Store the address of the

first free location avail-

able for arrays in the
location called NL

\

Store in the calling se-
quence NMAX the length
of space available

Y

Initialize
tape

\

Store the address of the
end of space available for
arrays in NT

)

Return

137

138 Main Link 1

SUBROUTINE: DEFINE

TYPE: FAP

ARGUMENTS: NAME,J,N,R,U,V
DESCRIPTION OF ARGUMENTS:

NAME: Indicates codeword to be considered

J: Present only if the array is second level and indicates the secondary
codewords to be considered

N: Size of the array associated with the codeword

R: Indicates whether the array is codeword or data

U: Indicates whether or not the array is of ordinary preference

V:

Indicates whether in a memory reorganization the array must be
erased or saved

DESCRIPTION OF PROGRAM:

Subroutine DEFINE sets up codewords for
arrays.

If the array exists, is in core, and if the size is altered, DEFINE
moves the array to the bottom of the data. If a second-level array is be-

ing redefined as a first-level array, DEFINE destroys the data-array back-
references.

CALLS: SSLAD, STER, REORG

Second-level

odify calling
sequence

Buildup codeword
from N, R, U,V and
call it TEMP~

!

TEMP set to in-
dicate array not
in core

Is
codeword
zero

Array
in core

Store file num-
ber in TEMP

@‘____

Indicate a redefinition
has occurred with the
array on tape

Replace codeword with
TEMP

Restore calling
sequence if
necessary

{ Return ’

Signify second-level
array while TEMP indi-

codeword

Erase the backreferences in
the data arrays if necessary

cates a first-level

this the last
array allocated

he new array
exceed the free

Restore and alter
calling sequences
if necessary

new array
smaller
?

Second-leve:

[Place zeroes
in additional
space

Destroy backrefer-
lences of extra data

Place zeroes
in additional
space

arrays

Restore and alter
calling sequences
if necessary

new array
larger
7

Second-level

Destroy back-
references of
extra data arrays

Fove the array; createl

the new array world

Place codeword decrement
in TEMP; replace the code-
word with TEMP

Y

Second-level

[Update backreferences

in the data arrays

Alter old array word to
show size of unused block

|

Place in decrement of
codeword the distance

from top of common
to the arra

Redefine the
next available

space in pool

140 Main Link 1

SUBROUTINE: ALOCAT
TYPE: FAP
ARGUMENTS: NAME,J

DESCRIPTION OF ARGUMENTS:
NAME: Refers to a codeword
J: Present only if the array is second level and indicates which of the
secondary arrays is to be considered

DESCRIPTION OF PROGRAM: Subroutine ALOCAT sets aside space for

the array whose codeword is given, zeroes this space if used for the first
time, or restores the array to needed status in core.

CALLS: REORG, ALOCAT, STER, SSLAD, FILES

Codeword

Second-level

—

FReorganize memory
[dumping on tape

array in core

word array
?

Call ALOCAT
to allocate the
codeword array

Array

released
?

No

here space

larrays no longer A
in core for the

needed; restore
calling sequence

Place address of codeword of second-
Change

if it was altered level array being allocated in the call-

released status

ing sequence

[Place back- Indicate if
reference in array was re-!
irst word defined while
farray on tape

Store in the

codeword the

address of the

start of array *
Restore call-

ing sequence
Clear array

if it was al-
tered

Subroutine RELEAS 141

SUBROUTINE: RELEAS
TYPE: FAP
ARGUMENTS: NAME,J,u,Vv

DESCRIPTION OF ARGUMENTS:
NAME: The codeword
J: Present only if the array is second level and indicates which of the
secondary arrays is to be considered
u: Indicates whether or not the array is of ordinary preference
v: Indicates whether the array is to be erased or saved in a memory
reorganization

DESCRIPTION OF PROGRAM: Subroutine RELEAS alters the codeword
if u and v are given. It also modifies the array word to show that the array
is not needed.

CALLS: SSLAD, STER

Initialize

Areuandv
explicitly given?

Array

on tape
?

Yes

Place new
value of

u and v in
codeword

L

Modify array
word to show
released status

-

Restore calling
sequence if it
was modified

(Return,

142 Main Link 1

SUBROUTINE: REORG
TYPE: FAP
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine REORG compacts data in core
memory toward the top, erasing arrays that are no longer needed and
placing on tape those not presently needed.

CALLS: FILES, CHAIN
CALLED BY: CHAIN, ALOCAT, DEFINE

Locate start
of pool

This array is
erasable; add
array size plus
one to length of
arrays not neede

rdinary

[Preferred

Add array size plus
one to length of pre-
ferred arrays

Is
Yes here an-
other array to be

considered

there be enough
space after ordinary
release arrays are on
tape and erasable
arrays are re-
leased

placing pre-

ferred arrays on tape

give enough space
?

Memory
overflow
Call CHAIN

Modify pro-
gram so pref-
erence is
ignored

Y

Subroutine REORG 143

Unless data array
is on tape change
backreferences in
array word

Preferred

Ordinary

Define next avail-
able free space in
the pool

Array
erased'or placed

on tape
?

Erased

Erase
reference

Code=
ord or data
array

Unless the data

arrays are on tape,
place array size in
array word and

erase backreference|
Modify code- Store array
word to show cize in array
atréy on tape ord
Write array Erase back-
on tape reference

1 y

codeword of

Change code-
word to show
array is on

tape

Write array
on tape

Take next
Define start array word
of unused
ool .

144 Main Link 1

SUBROUTINE: SSLAD
TYPE: FAP
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine SSLAD computes the address
of a second-level array and places it in the calling sequence of the calling
program.

CALLED BY: DEFINE, ALOCAT, RELEAS

Store codeword |
location

Determine ad-
dress of second-
level array

Place this ad-
dress in the first
argument of call-
ing sequence

1

SUBROUTINE: STER
TYPE: FAP
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine STER restores codeword ad-

dress in calling sequence when the calling sequence has been altered by
SSLAD.

CALLED BY: DEFINE, ALOCAT, RELEAS

Restore code-
word address

to calling se-
quence

I

Place zeroes in stor-
age location indicating
the restoration

Subroutine DUMP 145

SUBROUTINE: DUMP
TYPE: FAP
ARGUMENTS: NAME,J

DESCRIPTION OF ARGUMENTS:
NAME: The codeword
J: Present only if the array is second level and indicates which of the
secondary arrays is to be considered

DESCRIPTION OF PROGRAM: Subroutine DUMP prints the array which
has the codeword NAME, J.

CALLS: ALOCAT,RELEAS, DUMPER

Bring the array
into core

No

the array
second-level?

second-level
array in

/
Call DUMPER
to print the array

146 Main Link 1

SUBROUTINE: FILES
TYPE: FORTRAN
ARGUMENTS: NOP, NT, NFILE, NCOUNT, ARRAY

DESCRIPTION OF ARGUMENTS:
NOP: Indicates which operation is to be performed

NOP Operation
1 Initialize tape
2 Write an array on tape
3 Read an array from tape
4 Read an array that has been redefined
5 Empty buffer

NT: Tape number

NFILE: File number

NCOUNT: Size of the array to be written or the expected size of the
array to be read

ARRAY: Location in core to or from which the data is taken

DESCRIPTION OF PROGRAM: Subroutine FILES transmits information
between core and tape.

CALLS: CHAIN

Initialize

Set
parameters

Rewind tapes

array first file
in record

Read

Array
in buffer

array larger
than buffer
?

Read tape
into array

Read
correct

Print error
message

No

)

Read array
into buffer

Find position of
array in buffer

Zero extra
elements

fit into buffer

Branch on
operation

will
this array

more than buf-

Write

Write buffer

for buffer
?

Store array
in buffer

Position
tape

Dump buffer
on tape

Empty
Buffer

Position
tape

Write buffer

on tape

umber capa-
city exceeded

No

SHATIIA 9uUPnoIgng

A

148 Main Link 1

SUBROUTINE: DUMPER
TYPE: FORTRAN
ARGUMENTS: K, N, LOCW

DESCRIPTION OF ARGUMENTS:
LOCW: Codeword about which array information is desired
N: Number of pieces of information wanted
K: Index to the array

DESCRIPTION OF PROGRAM: Subroutine DUMPER prints in floating
point, fixed point, BCD, and octal each word of the array requested.

Print DUMP of array as-
sociated with codeword at
location LOCW

Print headings for listing:
floating, fixed, BCD, octal

)
Print each word of the array
in floating point, fixed point,
binary coded digit, and octal

@

Subroutine PACKW

SUBROUTINE: PACKW

149

The following packing and unpacking programs are combined into one
subroutine.

1.

ENTRY: PACKW

TYPE: FAP

ARGUMENTS: A,1,J,K,L,M
DESCRIPTION OF PROGRAM:

Word A is set to zero

Then Bits 15, 16, 17 of I=>-Bits S, 1, 2 of A
Bits 3to 17 of J— Bits 3to 17 of A
Bits 12to 17 of K— Bits 18 to 23 of A
Bits 12to 17 of L, = Bits 24 to 29 of A
Bits 12to 17 of M = Bits 30 to 35 of A

ENTRY: UPACW

TYPE: FAP

ARGUMENTS: A,I,J,K,L,M
DESCRIPTION OF PROGRAM:

Bits S, 1, 2 of A - Decrement of 1
Decrement of A= Decrement of J
Bits 18 to 23 of A > Decrement of K
Bits 24 to 29 of A - Decrement of L
Bits 30 to 35 of A= Decrement of M

ENTRY: PADP

TYPE: FAP

ARGUMENTS: A,LJ,K
DESCRIPTION OF PROGRAM:

Word A is set to zero

Then Bits 15, 16, 17 0ofI=S, 1, 2 of A
Decrement of J =~ Decrement of A
Decrement of K—> Address of A

ENTRY: UPADP

TYPE: FAP

ARGUMENTS: A,IL J,K
DESCRIPTION OF PROGRAM:

Decrement of A~ Decrement of J
Address of A~ Decrement of K
S, 1, 2 of A—> Decrement of 1

150

(Call LINK1)

Member:

NMR:
MRELES:
ISUCC=1:

MAIN LINK 2

Call MEMBER

ISOLV = 4
Call LINK3

Stiffness matrices at minus end of members are computed
in member coordinates

\ 4

Number of member releases
Modifies stiffness matrices of released members

Successfully processed

Subroutine MEMBER 151

SUBROUTINE: MEMBER
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: For every member, this subroutine com-
putes its stiffness matrix considering it cantilevered and using local-mem-
ber coordinates at the minus end. The stiffness matrix is either taken
directly from input or is obtained from the inversion of the flexibility ma-
trix, which is either set up by subroutine MEMFOD or taken from input
directly.

CALLS: ALOCAT, PRER2, MEMFOD, XSIMEQF
CALLED BY: MAIN LINK2

Allocate codewords for joint coor-
dinates, incidence tables, member
type, member components, and mem-
ber stiffness table

|

Check input of Young's modulus and
shear modulus for all members; call
PRERZ2 if error found

1

Repeat for all \ IM > MEXTN
members

IM = 1, MEXTN

JM = MEXTN Release codewords for
joint coordinates, inci-
dence tables, member
type, member arguments,
and member stiffness
table

Yes

Tnember deleted

Identify location of member in stiff- Return
ness table and in member properties.
Locate external joint number on which
current member is incident

Compute length of mem-
ber; initialize stiffness
matrix array Y

152 Main Link 2

Get value of E and G/E
for current member

Branch on member type

Prismatic Variable EI Stiffness Given Flexibility Given

&) & o

Call MEMFOD to
compute centilever
flexibility coefficients

Is
structure

a truss
?

No

Yes
Yes Call XSIMEQF to
invert; if singular Directly invert
Find stiffness call PRER2 Store stiffness flexibility value
directly value directly and store in ar-
in array Y ray Y

Store stiffness matrix of member by

rows in member stiffness table, re-

ferred to by codeword KMKST, packed
form

Release reference to member prop-
erties for correct member

©

Subroutine MRELES 153

SUBROUTINE: MRELES
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: This subroutine modifies the stiffness
matrix of each member at minus end (in local- member coordinates) into
an effective stiffness matrix to account for releases at one or both ends
of the member. Also FIXM is called, for a positive start release, to
transform fixed- end forces to right end of member.

CALLS: ALOCAT, DEFINE, COPY, CARRY, MAMUL, FIXM, PERMUT,
PRERZ2, BUGER

CALLED BY: MAIN LINK2

lDefine and allocate arrays]

/ Repeat for all members\ M > MEXTN Release all code-

E "\ M=l MEXTN) > words allocated

Is the member
released?

Find length of member I

Call COPY to put
stiffness in Y

154 Main Link 2

Identify release type l

Is structure

a truss?

Is only plus end
released?

-—@

Shift release code

Call PERMUT

Is T an identity
. matrix?

Any plus-end
releases?

®_—> Yes
\

CCall CARRY to generate T)

Call MAMUL

Call MAMUL

Are all directions
released?

Has plus end been
processed?

Both ends Plus end

Type of release?

[

Minus end Call FIXM)

Call PRER2

{Call COPY to set stiffnesD‘

Put stiffness back into
KMKST

B Y

ISuCC = 2

Subroutine MRELES 155

|

Invert member stiffness
associated with released
direction Y., by direct

‘ division

Call BUGER to invert stiffness
associated with released directions

Call COPY

Yes Error No

T

)

Modify member stiffness in
array Q. (Q= Yec - YerYer 'Yrc)

Call PRER2 ’

Processing plus end

Call FIXM ’

3= Put T into array Q

Call PERMUT to set up
ermutation matrix

Is T an identity
matrix?

Set length negative to set up
AB for transformation

r: Number of released directions for member
c: Number of degrees of freedom minus r

156 Main Link 2

SUBROUTINE: MEMFOD
TYPE: FORTRAN
ARGUMENTS: STOP, SP, IFOD

DESCRIPTION OF ARGUMENTS:
STOP: Distance of applied load from left end of member or length of
member
SP: Array containing section properties for all segments of member
being considered
IFOD: Operation code

DESCRIPTION OF PROGRAM:

IFOD = 1: Program computes cantilever flexibility coefficients of a
nonprismatic straight member as well as of a prismatic
member (from MEMBER).

IFOD = 2: Program computes cantilever deflections at right end of a
member because of applied concentrated load (from
MEMBLD).

CALLS: PRER2
CALLED BY: MEMBER, MEMBLD

If error in input of
segment length, call
PRER2; then cor-
rect length of last
segment

|

e Repeat to@for each
segment 1 = 1, NS

Compute SLS; SLS is
either length of current
segment or distance
from left end of current
segment to concentrated
load, whichever is the
smaller

Branch é
on structure type

Subroutine MEMFOD

157

Truss Plane Truss Plane Grid Space Frame
— = ——
L L2 L L2 L]
x 0 0 37 +-I-_IT 0 3T e 0 0 0 0 0
x . y y X
L L L L 1L} L L?
T = =t 0 = 0 + = 0 0 0 —
2
3T, HAY i HI_ 31 ' HA 21,
L3 L L2
1.2 L L2 L T=1]0 0 =
0 51 I -3 0 T 31 HA 0 ZIy
‘ — 7 p— 0 0 0 L 5 0
HI
X
2
0 0 L o = o0
' ' 21 I
\ , y Y
L L
0 T 0 0 0 I—z_j
A z

Transform deflection coef-
ficients to right end of mem-=
ber and store in Y

Concentrated
load on current seg-
ment ?

Find deflection coefficients
at right end of member under
Yes transformed load and store in Y

Divide deflection coefficients
by Young's modulus

158 Main Link 2

SUBROUTINE: FIXM
TYPE: FORTRAN
ARGUMENTS: IC, MREL, JM

DESCRIPTION OF ARGUMENTS:
IC: Number of nonreleased components
MREL: Release code
JM: Number of member

DESCRIPTION OF PROGRAM: This subroutine generates the transforma-
tion matrix to transform the fixed- end forces at the left end of a member
to the right end of the member for the case in which either the left end of
the member is released or both ends are released.

CALLS: DEFINE, ALOCAT, CARRY, COPY, UNPCK, MAMUL, RELEAS

CALLED BY: MRELES

Allocate and define next array
for fixed- end force modifications

Is Set up force-transformation
this a total Yes matrix from left end to right
released end of member
?
No

Compute Yo (Y, ")t which
is stored by rows

¥

Compute ACtYCI-(le-‘l)tAr and
store in Y, where T contains per-|
mutation matrix A. Finally
(ArtAr) is added to the above and
is stored in Y

i Call UNPCK to identify release
directions. Unpermutate array
Y

Set up force-transformation matrix TAB
and carry out, by MAMUL, TpopQ where
2 =AY (Y™) A + ALPAL and store
in array with codeword KMEGA

I

Release codewords previously
allocated in subroutine

r: Number of released directions for member
¢: Number of degrees of freedom minus r

Subroutine FIXM 159

SUBROUTINE: COPY
TYPE: FORTRAN
ARGUMENTS: A, B, JF, IX, ICM

DESCRIPTION OF ARGUMENTS:
A, B: Square matrices that are transferred or copied
JF: Size of square matrices A and B
IX: Integer that controls purpose of subroutine
ICM: Either codeword that locates storage of copied array or integer
that indicates array to be copied

DESCRIPTION OF PROGRAM:
IX = -2: Array A is filled with unit matrix.
IX = -1: Array A is added columnwise to one-dimensional array U
such that U(ICM + 1) = A(1,1) + U(ICM + 1), etc.

IX = 0: Array A is filled with zeroes.

IX = 1: If ICM >0, the one-dimensional array U is transferred by
columns into array A such that A(l, 1) = U(ICM + 1), etc.
If ICM = 0, the array B is transferred into corresponding
locations in the array A.

IX = 2: Array A is transferred by columns to one~-dimensional array

U such that U(ICM + 1) = A(1, 1), etc.
CALLED BY: MRELES, MAMUL, PERMUT

160 Main Link 2

SUBROUTINE: CARRY
TYPE: FORTRAN
ARGUMENTS: ID, JF, SS

DESCRIPTION OF ARGUMENTS:
ID: Identification of structure type
JF: Size of force-transformation matrix (for example, 6 if space
frame, etc.)
SS: Length of member

DESCRIPTION OF PROGRAM: This program generates the force-trans-
formation matrix T, which transforms the generalized force vector at the
minus end of a member to a statically equivalent force vector at the plus
end of the member.

CALLED BY: MRELES, LSTOR

This subroutine generates the following types of transformation matrix:

Plane Truss Space Truss
T = [l 0] 1 0 o
0 1 T=1|0 1 0
0 o 1
Plane Frame Plane Grid
1 0 0 1 0 o0
T=]0 1 0 T = 0 1 0
0 -SS 1 -SS 0 1

SEace Frame

1 0 0 0 0 0
0o 1 0 0 0 0
r.]0 o 1 0 0 o0
0 0 0o 1 o0 o
0 0 -SS 0 1 0
0 -ss 0 o0 0 1

Subroutine PERMUT 161

SUBROUTINE: PERMUT
TYPE: FORTRAN
ARGUMENTS: MREL, JF, ID

DESCRIPTION OF ARGUMENTS:
MREL: Release code
JF: Size of permutation matrix T
ID: Identification of structure type, which is changed to 0 if T is
not identity matrix

DESCRIPTION OF PROGRAM: This program sets up a permutation ma-
trix T that, when it premultiplies a matrix A, will upon descending from
top row by row shift the rows corresponding to released directions to the
bottom of the matrix, followed upwards by subsequently released rows.

CALLS: COPY
CALLED BY: MRELES

Call COPY to
clear T array

Call UNPCK to specify
presence of release for
each direction I

Repeat for
all I
I1=1,JF

I>JF

/

‘ Return ’

No

Set T(K,I) =1 for
current Ith row to

Set T(J,I) =1 for remain in place.
current Ith row If T is not identity
to be shifted to matrix, set ID =0
Jth row

J=J-1

K: Current row I minus number of released rows
J: Final row JF minus number of previously released rows

162 Main Link 2

SUBROUTINE: BUGER
TYPE: FAP
ARGUMENTS: N1, JQIl, JQ2, NTP, N2, N3, NV

DESCRIPTION OF ARGUMENTS:
NIl: Maximum size of array to be inverted
JQ1 = JQ2: Number of rows in square array to be inverted
NTP: Codeword for matrix to be inverted
N2: Refers to elements of unit matrix
N3: Scale factor by which determinant of NTP is multiplied

NV: One-dimensional erasable array, at least JQI elements
in length

DESCRIPTION OF PROGRAM: Subroutine BUGER sets up calling sequence
for XSIMEQF, which gives the inversion of the stiffness matrix (that is,

Srr°l where this is the part of the stiffness matrix corresponding to the
released direction r).

CALLS: XSIMEQF
CALLED BY: MRELES, JRELES, SOLVER

Subroutine MAMUL 163

SUBROUTINE: MAMUL
TYPE: FORTRAN
ARGUMENTS: Y, T, A, JS, JT, JJ

DESCRIPTION OF ARGUMENTS:
Y, T, A: Program does matrix multiplication T - Y - A where sizes of
arrays are: T: JT X JS
Y: JSX JS
A: JX X JT
JJ: Operation code

DESCRIPTION OF PROGRAM:
JJ = -1: Matrix multiplication TY
JJ = 0: Matrix multiplication TYAT
JJ = 1: Matrix multiplication TTYA
Result of matrix multiplication is stored in array Q. Subroutine COPY
is called to copy contents of A into array Y.

CALLS: COPY
CALLED BY: MRELES

164 Main Link 2

SUBROUTINE: UNPCK

TYPE: FAP

ARGUMENTS: MM, I, ID
DESCRIPTION OF ARGUMENTS:

MM: Release code for member being considered
I: 1 to JF, specifies direction of release in member word (JF: num-
ber of degrees of freedom)
ID: Structure type

DESCRIPTION OF PROGRAM: This program considers bits 12-17 of the
release code MM. It returns MM # 0 if release is in the Ith direction.
Bit b of word MM corresponds to direction I, where I =18 - b,

Truss Grid | Plane Frame | Space Frame
Type of Release I b |I |Db I b I b
F 1 117 1 17 1 17
X
F 2 16 2 16
y
F 1417 3 15
z
M 2 |16 4 14
x
M 3115 5 13
y
M 3 15 6 12
z

CALLED BY: PERMUT, FIXM

165

MAIN LINK 3

ISOLV =5

5
(Call LINK4)

166 Main Link 3

SUBROUTINE: LOADPC
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: Subroutine LOADPC monitors the proc-
essing of loads. Processing is done by members and by joints. LOADPC
checks for the presence of a member (or joint) and for the presence of

loads on existing members and joints. For each existing load LOADPS is
called.

CALLS: ALOCAT, DEFINE, CLEAR, RELEAS, LOADPS
CALLED BY: MAIN LINK3

Allocate code-
word arrays

Clear joint-
load arrays

Repeat for
M > MEXTN / __ —

all members
M=1,MEXT

M = MEXTN

Is
current member
deleted
?

Release array names of
Young's modulus, shear
modulus, and those for
member loads and prop-
erties

(" Call UPACW to unpacj

7 \release code of members

Allocate codewords for
joint type, joint loads,
and internal joint num-
bers

member
released at
start?

Allocate KMEGA for
this member; get
member length

Call LOADPS
to process loads

Subroutine LOADPC

Repeat J > JEXTN
for all joints >
J=1, JEXTN /

J = JEXTN

A

Obtain internal
joint number for
current joint

Allocate current
A joint load data
JLOAD(J)

Call LOADPS to
find resultant
joint loads

Release load da-
ta for this joint
JLOAD(J)

Release all arrays
defined and allocated
at the start at this
subroutine

Return

167

168 Main Link 3

SUBROUTINE: LOADPS
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: For any loading type, that is, joint loads,
member loads, member distortions, member-end loads or joint displace-
ments, this subroutine compacts load data for all loadings on a member

or joint into PL (and also into PR if there are applied member-end loads).
These load data are then processed for the given loading type, to finally
find resultant joint loads with ends of member considered completely fixed.

CALLS: UPADP, UPACW, ALOCAT, JTLOAD, MEMBLD, MDISTN,
JDISPL, CASE 2, RELEAS, LISTOR

CALLED BY: LOADPC

- / Repeat to @ for all \No more load blocks
o “_load blocks 1 to NBL _~

Locate joint-load or member-load
data for current nondeleted load
block; call UPADP to identify

loading condition and type

Call UPACW to assign size of load
block and type and direction of load

Allocate member-end force and
member-distortion vectors for
current loading condition

Return

Is
current load a
member load

Allocate member proper-
ties, Call MEMBLD to
find fixed-end member

forces
Store load row data for
current load in PL
current load a
member-end load ? 1
Store loads at right end
of member into PR after
change; put PR into PL
and -PL into PR (Loading type?)
¥ Call LSTOR to
Call CASE2 to Joint loads Joint displacements| | Member distortions| | transfer forces
obtain external| |Call JTLOAD Call JDISPL Call MDISTN at end of mem-
load at each ber to joints
free joint
|1 \) \

_@__<_L5et index for start of next load blockJ

Subroutine MDISTN 169

SUBROUTINE: MDISTN

TYPE: FORTRAN

DESCRIPTION OF PROGRAM: If member distortions are given for mem-
ber JM, subroutine MDISTN adds these to KUV for member JM, then
multiplies given distortion by member stiffness K* to get contribution
to KPPLS, KPMNS, and KPPRI (or KPDBP). Product of K* and distortion
is fixed-end force at minus end and is stored in PR (for CASE2). Quanti-
ty -PR is translated over member to get plus-end force vector, temporar-
ily stored in PL.

CALLED BY: LOADPS

(Enter)

Add member distortion to KUV for member JM]

Y
Multiply distortion by local stiffness KMKST.
Store in PR, PR is now fixed-end force at mi-
nus end except for modification for start release
in LSTOR

l___—_, ----- —

Set PL. = -PR

Translation
of -PR over
member axis
to get PL

Trusses

Not truss

for translation of forces
over member

PRI il u

Y

(Return)

|

I

|

I

I

|

Modification of PL(4, 5, 6) v |
I

J

———————

. 170 ‘ Main Link 3

SUBROUTINE: MEMBLD
TYPE: FORTRAN
ARGUMENTS: SP

DESCRIPTION OF ARGUMENTS: The array SP contains section proper -
ties for all segments of member being considered.

DESCRIPTION OF PROGRAM: For a typical member, treating it as a can-
tilever fixed at the left end, this program computes cantilever forces at the
left end of the member and cantilever deflections at the right end of the
member under two types of loading:

1. Concentrated load

2. Uniform or linear loading
These loads may be applied along the X, Y, or Z local-coordinate axes of
the member,

CALLS: UPACW, PRERZ2; STICLD, MEMFOD, EFVDTL, LINEAR

CALLED BY: LOADPS

Call UPACW to unpack
load data for member

Call PRER2 if member
type incorrectly specified

Y

Store Young's modulus,
and shear modulus ratio

Y

Delete load directions J
if plane grid or plane
frame

Concentrated
-

Uniform or
linear

Call STICLD to compute
cantilever forces at left
end of member

Call MEMFOD to compute

cantilever deflections at
right end of member

Call EFVDTL to compute
left and right fixed-end
forces for member

‘ Return ’

Reassign dimensions of
loading on member

Call STICLD to compute
cantilever forces at left
end of member

Subroutine MEMBLD

Compute axial de-
formation for each
segment,

Call EFVDTL

i
®

Call LINEAR which com-
putes cantilever deflections
at right end E of member
with support at A, due to
uniform or linear loading
on a segment

If load commences at point A, a
distance SB from C, compute

deflections due to force Vp and
moment Mpa on cantilever length
CA. Transform these deflections
to right end E of member and add
them to deflections previously
computed in LINEAR and for

171

other previous segments

l€«—— Current Segment — g

If the current segment is the first
where the loading commences, or
if the right end of this segment is
to the left of the point where the
load commences, compute deflec-
tions due to force Vp and moment
Mp. on cantilever of length AD.
Transform these deflections to E
and add them to previous deflec-
tions

C

I)Ma
V 4

!

Va

Yes @

o
Divide all deflections
by Young's modulus

\
Call EFVDTL to com-
pute right and left fixed-
end forces for member

A B
[p| ‘Mp F
Y
VD
le—— Current Segment ___.'
Symbols:

Point A:

Left end of load or at left end

of current segment, which-
ever is further to the right

Point B: Right end of load or at right
end of current segment,
whichever is further to the
left

Point C: Left end of current segment

Point D: Right end of current segment

Point E: Right end of member

172 Main Link 3

SUBROUTINE: CASE2 (J1,J2)
TYPE: FORTRAN
ARGUMENTS: J1, J2

DESCRIPTION OF ARGUMENTS:
J1: Subscript of variable U, gives location of plus-end load vector PL
J2: Subscript of variable U, gives location of minus-end load vector PR
JM: Member number

DESCRIPTION OF PROGRAM: Subroutine CASE?2 is called for all types
of loads except joint loads. Arrays PL and PR contain member-end forces
due to the '""load'" at entry to CASE2. It adds the necessary components to
KPPLS, KPMNS, KPPRZ, KPDBP, from PL, PR. Arrays PL and PR,
which are in member coordinates, must be rotated to get contributions to
KPPRI, KPDBP,

CALLS: TRAMAT
CALLED BY: LOADPS, LSTOR

Call TRAMAT

Compute address for member-end
forces KPMNS, KPPRI, KPDBP

!

[Add force in PR to KPMNS |

I

Rotate PR to global coordinate
and add to KPPRI or KPDSP for

minus joint

[Subtract forces in PL from KPPLSJ

Rotate to global coordinates and
subtract from KPPRI or KPDBP
for plus joint

Subroutine JDISPL 173

SUBROUTINE: JDISPL
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: This routine processes prescribed joint
displacements (for support joints, in nonreleased directions). By using
the transpose of the incidence table (array KATR), subroutine JDISPL
computes contributions to the member distortions KUV for all members
incident to this joint. Using the stiffness matrix for each member, this
routine obtains the corresponding fixed-end forces KPPLS and KPMNS
(reﬂecting given member releases).

CALLS: ALOCAT, TRAMAT, LSTOR, RELEAS
CALLED BY: LOADPS

./ Do@for all >

" \incident members

Positive
incidence

Call TRAMAT

Translate displace-
ment to minus end

) B]

Rotate displacement (= member distortion)
into member coordinates; call TRAMAT

;

Multiply member distortion by member
stiffness K* (KMKST) to get force at minus
end (KPMNS); store in temporary area PR

1 }

Translate PR over member to get force at
plus end (KPPLS); store temporarily in PL

Call LSTOR

A

174 Main Link 3

SUBROUTINE: JTLOAD
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: This routine stores contributions to the
effective joint-load vectors P' and P' (arrays KPPRI and KPDBP) for
free and (released) support joints, respectively.

CALLED BY: LOADPS

Check if current internal
joint number (JM)is higher
than the number of free
joints (NFJS)

Is JM - NFJS > 07

Yes

Support
joint

4

A
. Add loading data array PL
édd loading data array PL into support load wvector
into KPPRI KPDBP
Aad

Subroutine LSTOR 175

SUBROUTINE: LSTOR
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: This subroutine modifies the fixed-end
force vectors for members with releases prescribed at the plus end

(start), using the auxiliary matrix KMEGA. saved by MRELES (see Sec-
tion 4.2). The fixed-end force vectors are temporarily stored in V, W,

CALLS: CASE2
CALLED BY: LOADPS, JDISPL

start released

Set force vector at start,
V(I), to zero, and force
vector at end, W(I), equal
to cantilever force

Member distortion
or joint displacement

Allocate KMEGA and modify
minus-end force for start L 4
release Rp = Rg + Q « F¢y

}

By statics compute modified
fixed-end force at the start

‘ Call CASE2 to store fixed-
end forces
A 4

(Return)

176

SUBROUTINE: LINEAR
TYPE: FORTRAN
ARGUMENTS: SL, CC

DESCRIPTION OF ARGUMENTS:
SL: Length from left end of member to right end of segment being

considered

Main Link 3

CC: Length from left end of member to left end of uniform or linear
load on segment being considered

DESCRIPTION OF PROGRAM: This subroutine computes deflections
and rotations at right end of a segment under uniform or linear loading

and transforms to the right end of the member.

The values computed

are cantilever deflections, and the fixed support is taken either at the
left end of the uniform or linear load or at the junction of the previous
segment, whichever is further to the right.

CALLS: PRER2
CALLED BY: MEMBLD

Define arithmetic statement functions
equal to cantilever deflections and ro-
tations at right end of a segment under
uniform or linear loading

Compute value of uniform or linear
load at point B

{

Compute length of uniform or linear
loading from point A to point B
Compute length from point B to right
end of member

Compute axial deformation
due to loading distributed
axially along AB

of member

L

Compute the deflections and
rotations at B for the canti-
lever AB with support at A
and transform to right end

Typical example:

Symbols:

Point A: Left end of load or at left end of current segment, whichever is

: 2 <
Call PRER?Z if wrong
direction is given for load

Current
segment

further to the right

Point B: Right end of load or at right end of current segment, whichever

is further to the left

Subroutine EFVDTL 177

SUBROUTINE: EFVDTL
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: This program computes right-end force
vectors (assumed as acting on member) for a member by multiplying the
member stiffness matrix by the cantilever deflections vector. Finally,
left-end force vectors are calculated by statics.

CALLED BY: MEMBLD

(Enter)

A 4

Transfer the member stiffness
matrix K* into the array Y

Multiply K* by cantilever deflec-
tions vector to obtain right-end
force vector PR

A

Transform right-end force vector
to left end of member

Yy

Compute left-end force vector PL
of member by subtracting the above
transformed right-end force vector
from the left-end cantilever force
vector

y
(Return)

178 Main Link 3

SUBROUTINE: STICLD
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: For a cantilever fixed at the left end, this
program computes by statics the cantilever forces at the left end of the
member resulting from the applied loading, which may be concentrated,
uniform, or linear.

CALLED BY: MEMBLD

Enter

Concentrated Uniform or linear

A A

Consider concentrated load Calculate total load and con-
as cantilever reaction at left sider as cantilever reaction
end of member at left end of member

Is
structure Yes Yes
a truss

Is
structure

a truss
?

 Z
7

§ \ 4
Compute cantilever moment Compute cantilever moment
at left end of member due to at left end of member due to
concentrated load uniform or linear load

Y
N

’
(Return ’

Subroutine TRAMAT ' 179

SUBROUTINE: TRAMAT
TYPE: FORTRAN
ARGUMENTS: JM, JT

DESCRIPTION OF ARGUMENTS:
JM: Member number
JT: Operation code
JT = 1: Form translation matrix only, minus node to plus node
JT = 2: Form rotation matrix only, global to local

DESCRIPTION OF PROGRAM: TRAMAT computes the force translation
or force rotation matrix for member JM. The matrix is formed using
the array KS (member length and projections of member axes on global
axes AX, AY, AZ). The matrix is stored into T(I, J) located at 77415.

The vector rotation matrix from global X, Y, Z coordinates to member
local x,vy,z coordinates may be thought of as the product of two rotation
matrices, R' and R. The R matrix rotates the global axes first into an
intermediate X', Y', Z' system with B = 0, and the R' matrix rotates the
intermediate system (through an angle B) into the local coordinates,

The rotation matrix from global to intermediate coordinates will be de-
veloped first. Consider a directed member of length L from plus to minus

- +
Ax = x() _x) o

AY = Y(‘) - Y(+)
(+) - X

(-) (+) 7
AZ =2V -2 N/

2D>

joints with projections of AX, AY, AZ in the X, Y, Z global frame. These
are shown positive as are the two angles {; and §,. The X' intermediate
axis is along the member from plus to minus joints; the Y' axis lies in
the plane of X' - Y, directed such that its projection on the Y axis is pos-
itive. All systems are orthogonal. The unsigned projected length in the
X - Z plane is

D = + V(aX)? + (AZ)?

180 Main Link 3

The angle y; may have any value between 0 and 360 degrees; the angle |,
has limits:

~90° < Y, < + 90°

If the member is perpendicular to the X - Z plane (D = 0), a special case
arises that will be considered later.

With these definitions, the member is considered to rotate about the Y
axis in the general case. For plane structures, {, is identically zero and
the member rotates about the Z axis.

The elements of R are direction cosines. Any element R;; is the cosine
of the angle between the ith intermediate axis and the jth global axis.

For example, the first column of R may be thought of as the projections
of a unit vector in the X direction on the X', Y', Z' axes:

v
Yl
1
Z' = -sin
Y' = -cos |, sin |, 2!
= X
X! = cos Y, cos Y,
~ ¥,
Y ~
. ~
~
~
Z
Projection of unit vector in Y direction on X', Y!, Z' axes:
X' = sin {,
Y' = cos y,
Z' = 0 » X

Subroutine TRAMAT 181

Projection of unit vector in Z direction on X', Y', Z' axes:

Z' = cos

Y' = -sin §, sin §, A Y /

X' = sin Y, cos {,
Xl
Zl
T X
L) Yy
Vvt = RV
where
X! X
Vi = 4Y", V=1{Y
z! zZ
and
Ccos Yy cos Y, sin |y, sin {; cos y,
R = | -cos {; sin , cos i, -sin {; sin ¢,
-sin 0 cos Y

The rotation from intermediate to local coordinates is merely a plane
rotation of the Y', Z' axes through the angle B3:

yAl

Yy
B
Yl
v=R!'-V!
where
X X1
v=1{y}, VI = (Y

182 Main Link 3

and
1 0 0
R' =10 cos f3 sin B
0] -sin B cos fB
Since
Vi =RV, v=R'-V!
then
v=R''"R-V=% 'V
and
cos Y, cos Y, sin Y, sin y; cos Y,
R =|(-cosy;sind,cosP - siny; sinPB) cosy,cosP (-siny; siny,cosP +cos Y, sinf)

(cos §; siny, sinP - sin §; cosB) (-cos P, sinP) (sin Y, sin Y, sinP + cos Y, cosP)

In general (consistent with the limits on {; and {;,)

cos ; = %{- (sign of AX)
sin {; = -ADE (sign of AZ)

(always positive)

o

cos Yy, =

sin {, = éL-Y— (sign of AY)

For the special case D = 0 (member perpendicular to the X - Z plane),
$ = 0, y, = £90, therefore

cos y; = +1, sin ; = 0, cos , = 0, sin |, = éLz

For plane structures, ¢ = 0, f = n-90° n = 0, £1, *2, £3,

Subroutine TRAMAT 183

Enter

| Clear T(1,J) = o]

Skew translation
matrix along
member axis

cos B cos B =1
sin B sin B =0
‘L Y — ¥

Plane
structure

AZ =0

Check for special
cases of member
orientation

¥

Fill nonzero elementsJ

Return

184

MAIN LINK 4
Call TRANS and
rotate stiffnesses
ISOLV = 6
Call ATKA and assemble
structural stiffness

ISOLV = 7

Call JRELES and
handle joint releases

\%
IISOLV =10 Call LINK5
(Call LINKS6)

Subroutine TRANS 185

SUBROUTINE: TRANS
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: This subroutine rotates the local member
stiffness matrix into global (joint)coordinates. It obtains the rotation ma-
trix from TRAMAT and uses subroutine CLEAR to initialize the data ar-
rays of KSTDB where the member stiffness in global coordinates is stored.

CALLS: CLEAR, TRAMAT, MATRIP, RELEAS
CALLED BY: MAIN LINK2

LAllocate arrays]

v
‘ Do @ for all mem-
bers M = 1, MEXTN

Allocate stiffnesses KMKST
and KSTDB; clear KSTDB

v
3
1 Call TRAMAT for
rotation matrix
v
Call MATRIP to
rotate stiffness

[Release stiffnes sesj]

< A

[Release ar rast

186 Main Link 4

SUBROUTINE: ATKA
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine ATKA generates the lower right
half of the structural stiffness matrix A'KA from the member stiffnesses
in (end) joint coordinates and the miember-incidence tables, Using a loop
on member stiffnesses the diagonal stiffnesses are successively added to
KDIAG, and off-diagonal stiffnesses are stored in KOFDG, The symbolic
connections by matrix arrays IFDT and IOFDG are generated.

CALLS: ALOCAT, MATRIP, TRAMAT, RELEAS
CALLED BY: MAIN LINK2

Clear all data arrays
KDIAG and KOFDG
(stiffness arrays)

Do@
L =1, MEXTN

—-

|

Get stiffness.
Get internal
joint members
JP, IM

!

Add stiffness to diagonal elements
of joints JM and JP (for joint JP
must translate over member length)

Store stiffness in KOFDG corresponding
to row of larger joint member and col-
umn of smaller joint number

on stored stiffness elements

Pack IOFDG and IFDT for information—l

Subroutine JRELES 187

SUBROUTINE: JRELES
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: This routine controls the modification of
stiffness matrix A TKA for the effect of support-joint releases.

CALLS: ALOCAT, DEFINE, TTHETA, UNPCK, STEP2, BUGER, PRERZ,
RELEAS, STEPS5.

CALLED BY: MAIN LINK3

Check joint
release information;
is J r%leased

Yes

Compute the transformation matrix from re-
leased coordinates at a support joint to global
coordinates; unpack release data and generate
matrix AR (product of permutation and hyper-
diagonal rotation matrices)

A

Call STEP2 to pre- and postmultiply
the structural stiffness matrix by
AR and store the product in Kj;

Invert Kgj No Yes 1/U (K33 + 1)
via BUGER inversion

Inversion

successful
?

Call PRER2 No
ISUCC = 2

Compute 2, and store into MEGAO]

Yes
NFJS =0 >

?
No

Call STEPS5; the submatrices of stiffness matrix
are modified to include the joint releases

(Return)

188 Main Link 4

SUBROUTINE: STEP2
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine STEP2 performs the matrix
triple product (A, R)AYKA(A, R)t = K33 by bookkeeping. The structural
stiffness matrix AR is stored in KV in packed form by JRELES. Its
product K33 is the structural stiffness matrix associated with released
support-joint components.

CALLS: MAPROD, DEFINE, ALOCAT, RELEAS
CALLED BY: JRELES

—— Do () K= 1, NJR >
¥

Find I(K) from
Table KV

!
——— Do (®) J =1, NJR >
v

Find IP(J) from
Table KV

On diagonal
use KDIAG

Off diagonal

use KOFDG

| <

v
Call MAPROP to perform matrix
_pé'od=uct Ksp 1P = (M2R)K 1 *
AKAL 1P *(A2R)5, 1p

B

A

Subroutine MATRIP 189

SUBROUTINE: MATRIP
TYPE: FORTRAN
ARGUMENTS: K1, K2, NT

DESCRIPTION OF ARGUMENTS:

K1: Subscript for pool-variable U or IU; position of first element of
matrix T with respect to U(0)

K2: Subscript for pool-variable U or IU; position of first element of
resultant product with respect to U(0)

NT: Operation code
NT = 1: Transpose premultiplier
NT = 2: Transpose postmultiplier

DESCRIPTION OF PROGRAM: Subroutine MATRIP performs the triple
matrix product of order JF as follows (JF = 2, 3 or 6):

NT =1: U(K2)=Tt:-U[K1)-T

NT = 2: U(K2)=T - U(K1) - Tt
The matrix T is always located at U(73) and is dimensional T(6, 6), not
packed. However, U(K1l) and U(K2) are packed to JF X JF.

A A
Transpose the premultiplier Transpose the postmultiplier
matrix result = U(K2) = matrix result = U(K2) =
TT - UK1) - T U(K2) = T - U(K1) - TT
> <

9
(Return)

190 Main Link 4

SUBROUTINE: STEP5
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: It modifies the free-joint structural stiff-
ness A'KA as affected by joint releases, does the product AtKA (220) AtKA,
and subtracts the result from A'KA,

CALLS: ADRESS, ALOCAT, DEFINE, UPADP, PADP, RELEAS
CALLED BY: JRELES if there are free joints.

1P) —JMS(J) —=K

-
54
D-
——

AtKA

JMS: J - NFJS
I: IP - NFJS

Subroutine STEP5

Is A'KA hyperdiagonal?
If yes, need only con-
sider I = JMS

)

e

Y

K= K+1|

K=1, NFJS

Qllocate (KDIAG,KD
)
J =NFJS + 1,NJ

No

Call ADRESS

there any
nonzero elements

in column K of
A'KA below

Y
Allocate
KOFDG(J, K)
Q,(IMS)

191

192

Main Link 4

there any elements
in A'KA in column M
and below row IP

Yes in row IP!
IP= IP'
I

|
A

?

element
(IP, M) nonzero
in A'KA

already existing

Allocate
KOFDG

| Moaify KDIAG | Define and al-
locate KOFDG

Modify KDIAG

Y

A

Do product ATKA * Qg * ;tKA and
subtract from KOFDG(M, K) if
M # K or from KDIAG(K)if K= M

Subroutine STEP5 193

Yes No

l Release KOFDG(M, K)

—.>_¥_<__J

Release
KOFDG(IP,M)
IOF DG(IP)

Release
Qo(IMS)
KOFDG(J, K)
IOFDG(J)

 :Loop v

Release KDIAG(K) |

194 Main Link 4

SUBROUTINE: FOMOD
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: For every loading condition this sub-
routine modifies the joint-load matrix or computes support-joint displace-
ments, If there are no free joints, it computes displacements of released-
support joints and stores the result in array KPDBP., If there are free
joints, FOMOD modifies the joint-load array KPPRI to account for the
joint releases,

The subroutine calls ADRESS to obtain off-diagonal elements of the
stiffness matrix of the structure and calls MAPROD to perform the double
matrix product to obtain the external joint-load matrix to be added to KPPRI,

CALLS: ALOCAT, ADRESS, MAPROD, RELEAS
CALLED BY: MAIN LINK4

Do @ for all independent>

loading L. = 1, NLDSI

Compute product 4 ° E'(L);
store in scratch array NSCR5
(P' = KPDBP)

v

Put array NSCR5 back into
KPDBP

Subtract from KPPRI(I) the
product AtKA*NSCR5 mod-
ification of free-joint loads

&

Subroutine ADRESS 195

SUBROUTINE: ADRESS

TYPE: FAP

ARGUMENTS: N, I, NP, IT
DESCRIPTION OF ARGUMENTS:

N:
I:
NP:

IT:

1.

2.

Number of the row under consideration in matrix KtKK
Number of the column under consideration in matrix AtKA

Subscript obtained in routine ADRESS which is used to find code-
word for off-diagonal stiffness matrix of member joining N-I
Operation code, determining the operations carried out by routine
ADRESS. Each operation is defined in the description of pro-

gram,

DESCRIPTION OF PROGRAM: Subroutine ADRESS performs five differ-
ent functions depending on IT:

IT = 0:

IT = 1:

Place a bit into IFDT corresponding to submatrix AtKA(N,D)
N >1I= 1. This function does not allocate IOFDG.
Determine which submatrix [A'KA (K,I), NFJS = K> N>
I = 1], in the It column of Atra starting at the Nt row,
is the first nonzero submatrix encountered at or below the
N row. The routine returns the row number K (in N) and
its position in KOFDG (in NP). If there are no nonzero ele-
ments in that column below row N, NP = 0. Routine allo-
cates IOFDG(K). The absence or presence of a nonzero
submatrix is determined by the absence or presence, re-
spectively, of a bit in the corresponding bit picture IFDT
of the joint stiffness matrix. This bit picture is arranged
by columns and is stored in words of IFDT, which is a
second-level array, each data array being 200 words in
length, Subroutine ADRESS will allocate and release the
data arrays of IFDT as needed but does not do anything to
the codeword array.

Array IOFDG(K) represents the structure of the row K
of ATKA below the diagonal, indicating the position of non-
zero subarrays. Since the data arrays of IOFDG are de-
fined in blocks, the first word in each data array contains
two pieces of information:

a, The decrement contains the current number of non-

zero submatrices in row K below the diagonal.

b. The address part contains the defined length of

IOFDG(K).,
Succeeding words also contain two pieces of infor-
mation:

a. The decrement contains the column position of the

submatrix in A'KA,

b. The address contains the position of the submatrix in

ROFDG.

196

Main Link 4

3, IT =2: Determine whether a bit is present in position N, I, If not,

return NP = 0.

If it is, call ALOCAT IOFDG(N), RETURN,

NP=NUMBEROF SUBMATRIX N, IINKOFDG. Do not touch
Nor I.
4, IT = 3: Determine how many bits are present in column I. Return
the number in NP. There is no allocation of IOFDG.
5. IT = 4: Same operation as IT = 1 except search goes to row NJ, not
NFJS.

CALLS: ALOCAT, RELEAS

CALLED BY: DEFSUP, FOMOD, STEP5, SOLVER

IT=0

()

IT=1,2

NMAX = NFJS

Initialization

Place a bit in IFDT
array which corre-
sponds to the subma-
trix of A'KA in the
Nth row and Ith col-
umn

Branch on

IT = 4

®)

NMAX = NJ

operation type

Allocate the Nth
array of IOFDG

|

IT =3

()

Count num-
ber of bits

NP = position of sub-
matrix in KOFDG

Allocate the NtB
array of IOFDG

»

Which
operation

in column I

L2

Store results
in NP

y

(Return ’

r

Subroutine TTHETA 197

SUBROUTINE: TTHETA
TYPE: FORTRAN
ARGUMENTS: KJND, ID, JF

DESCRIPTION OF ARGUMENTS:
KJIND: Subscript used for finding joint-release information. First
word of array contains number of joints with releases.
ID: Structural-type identification number
JD: Number of degrees of freedom

DESCRIPTION OF PROGRAM: Subroutine TTHETA computes the rota-
tion matrix from released coordinates to global-coordinate axes for a
released support. Subroutine COPY is used to clear Q and the transforma-
tion matrix is stored in Q(6, 6) which starts in U(73). The transformation
matrix is obtained for any structural type.

CALLS: COPY
CALLED BY: JRELES

(Enter)

y
Clear Q using sub-
routine COPY

y

Complete direction
cosines between axes

3

Store rotation matrix in
Q according to structural
type ID; matrix is packed
to JF*JF elements within
Q(6, 6)

Y
(Return)

198 Main Link 4

SUBROUTINE: MAPROD
TYPE: FORTRAN
ARGUMENTS: N1, N2, N3, N4, IS, JF, IND

DESCRIPTION OF ARGUMENTS:
U(N1): First element of premultiplier A
U(N2): First element of second matrix in triple product B (B is square
matrix)
U(N3): First element of postmultiplier C
U(N4): First element of resultant matrix D
IS: Number of rows in A equal number of columns in C
JF: Number of rows in A equal size of B
IND: Operation code

DESCRIPTION OF PROGRAM: Subroutine MAPROD performs matrix
double or triple product, depending on IND:

IND = 0: U(N4) = U(N4) + U(NI) - U(N2) - U(N3); D=D+A - B-C
[I1S x 1S] = [IS X JF] X [JF X JF] X [JF X IS]
IND = 1: U(N4) = U(N4) + U(N1) X U(N2)t - U(N3); D=D + ABtC

[IS x IS] x [IS x JF] x [JF x JF] x [JF X 18]
IND = 2: U(N4) = U(N4) + U(N2) X U(N3); D=D+B - C
[JF x 1S] = [JF x JF] X [JF X 18]
IND = 3: U(N4) = U(N4) + U(N2) Xx U(N3)t; D=D+B - Ct
[JF x JF] = [JF X JF] x [JF X JF]
U(N4) = U(N4) + U(N2)!' X U(N3); D=D+Bt. C
[JF xIS] = [JF x JF] X [JF X IS]

IND

i
W

All matrices are stored by columns in one-dimensional arrays. The
resultant matrix product is added to the matrix located at U(N4).

CALLED BY: STEP2, FOMOD

<&
®

IND = 0 IND =1 IND = 2 IND = 3 IND = 4

Compute Compute Compute Compute Compute

D=D+A-B:C||D=D+ABtC||D=D+B :C||D=D+B - Ct||D = D+B!C
) ¥ v y y

199

MAIN LINK 5

(Enter >

y

(_call SOLVER)

Call LINKI1

(' call LINK6)

200 Main Link 5

SUBROUTINE: SOLVER
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine SOLVER solves the joint-
equilibrium equations for the displacements of all free joints.

This subroutine uses a modified Gaussian elimination procedure (for-
ward and backward sweep) operating on submatrices as elements. The
matrix A'KA is assumed symmetric, and only the lower diagonal matrix
is treated.

Method of storage: KU' = P!

1. Diagonal submatrices K: KDIAG, second-level arrays (one subma-

trix for each joint.)

2, Off-diagonal submatrices of K: KOFDG, second-level arrays (one
matrix per nonzero submatrix). These submatrices are ordered
by member for all initial submatrices and consecutively for all
submatrices as they are defined during elimination.

3. Effective applied joint loads P': KPPRI, first-level arrays in-
cluding all joint loads for all loading conditions. They are ordered
by loading condition.

4. Bookkeeping systems:

a. IOFDG: Coded representation of the off-diagonal elements,
second-level arrays (one datum per row of A'KA.) Only non-
zero elements are stored. Decrement contains column order.
Address contains position in KOFDG of the corresponding sub-
matrix,

b. IOFC: Used in the backward sweep of SOLVER, It contains the
same information (except first word of each array) as IOFDG,
but the information is by columns. IOFDG is released during
forward sweep.

c, IFDT: A second-level array (200 words per array) with rep-
resentation of complete left lower half of A'KA, one binary bit
per submatrix. Bit is 1 if submatrix (I, K) exists; bit is 0 if it
does not exist, The storage order is by column, column 1 first,
In each word bits are ordered from right to left,

5. Displacements U' are stored in KPPRI after SOLVER.

K — 1
T NFJS

1 | Joints

Ne——— —— — — & —

l NFJS Joints

Subroutine SOLVER 201

Do@
K =1, NFJS

Invert KDIAG(K)

|Define and allocate IOFC(K)]

Do

N =N+1, NFJS

Call ADRESS and search
Kth column of IFDT for
next nonzero element (N, K)
starting at row N

Modify diagonal
element; store
it in Y

Subtract Y- Kth row
from n + 1P row

Define and allo-
cate the element

LModify load vector sl

©

202

L =1, NLDSI/

Get new elements

5 ©
K]l = I, NFJS

KPPRI = KPPRI - KOFDG * KPPRI
(K1) (K1) (K1,KI) (KI)

LE
For all load conditions multiply

the inverse of diagonal subma-
trices with modified loads

| Obtain displacementsl

Main Link 5

Subroutine MAPRDT 203

SUBROUTINE: MAPRDT
TYPE: FORTRAN
ARGUMENTS: NI, N2, N3, N4, 1Z, KF, INP

DESCRIPTION OF ARGUMENTS:
U(N1): First element of premultiplier A
U(N2): First element of matrix B (square)
U(N3): First element of postmultiplier C
U(N4): First element of resultant matrix D
IS = IIZI = number of rows in A = number of columns in C
KF: Number of columns in A = size of B
IND = IINPI = operation code.

DESCRIPTION OF PROGRAM: Subroutine MAPRDT performs triple or
double matrix multiplication of arrays whose U subscripts are N1, N2,
and N3, Whether this multiplication is triple or double is determined by
the operation codes.

IND = 1 Dg=A*B-C

IND = 2 D,=A-Bt:-C

IND =3 Dyg=B-C

IND = 4 D,=B - Ct

IND = 5 D, =Bt C
The matrix D, is first stored in a working area. Whether D, is either
directly stored in D, added to D, or subtracted from D is determined by
the signs of IZ and INP,

1. Iz <0 INP >0 D =D+ D,
2. 1z <0 INP =0 D = D - D,
3. 1z =0 INP =0 D = -D,
4, 1z = 0 INP >0 D = D,

CALLED BY: SOLVER

Compute values of constants
for operation of the program
1s=|1z|, JF=KF, IND= |INP|

>

e Branch for each
value of IND

204

Main Link 5

IND =1 IND = 2 IND = 3 IND = 4 IND = 5
Compute Compute Compute Compute Compute
D=aA.B.C|lD=A-BT.C|lD=B-C{|D=B-CT||D=BT.C
) v | v v

Subtract
c=-1.0

F—I

Add or subtract the re-
sult D to contents of

U(N4)
v

Subtract
c=-1.0

v

Clear U(N4) and
store result with
negative sign in

U(N4)

>0

A 4

Store result
in array
U(N4)

I

205

MAIN LINK 6

(Enter)

y

Call BAKSUB
Backsubstitution

Call LINKI1

206 Main Link 6

SUBROUTINE: BAKSUB
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: Subroutine BAKSUB monitors the back=-
substitution process, that is, the computation of member distortions,
member forces, support reactions, and applied joint loads from the in-
duced joint displacements and the prescribed loading components. It
also controls the printing of the requested output via subroutine ANSOUT.

CALLS: ALOCAT, COMBLD, CLEAR, STATCK, DEFSUP, DEFINE,
NEWADR, UPACW, AVECT, ANSOUT

CALLED BY: MAIN LINK6é

Enter
Any Yes Any Yes Call
joint :elease free joints DEFSUP
No No

|Allocate arrays]

Clear KR arrays for
unbalanced joint loads|
(statics check)

Do @
for all external load conditions
JLX = 1,NLDS

Loading
deleted

Modifications

A

Independent
Call NEWADR to get
subscripts of arrays

Subroutine BAKSUB

joint releases

or free joints

o
for all members
M =1, MEXTN

Call NEWADR
to recompute
subscripts

Yes

reorganization
taken place?

Call AVECT to
compute dis-
tortion, forces

Call STATCK to
compute unbal-
anced forces

X
for all print requests
I=1,4

Request

I present
?

Print titles

Call ANSOUT

Release arrays

Return

207

208 Main Link 6

SUBROUTINE: AVECT
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: Subroutine AVECT performs the actual
backsubstitution process for all members of one (independant) loading con-
dition. From joint displacements induced member distortions are com-
puted and added to KUV. From the induced member distortions the induced
member-end forces are obtained by multiplication with the member stiff-
ness KMKST. These induced member forces are added to KPMNS for the
minus end and to KPPLS for the plus end.

CALLS: TRAMAT
CALLED BY: BAKSUB

Get addresses of displacements of
end joints of member (in KPPRI for
free joints and in KPDBP for sup-
port joints)

¥
Call TRAMAT (JM, 1) translation
matrix over member
v
Distortion = -U'- + T . U't in
global coordinates
v
[Rotate distortion to local coordinates
v
Add distortion to KUV for current
member

Multiply induced distortion by stiff-
ness KMKST to get induced minus-
end force

Add forces to KPMNS pool]

v

Translate induced force at minus
end to plus end

l Add plus-end force to KPPLS poolJ

Subroutine COMBLD 209

SUBROUTINE: COMBLD
TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM: Subroutine COMBLD computes the final
member distortions, joint displacements, member-end forces and unbal-
anced joint loads for a dependent loading condition by combining the pre-
viously computed answers for previously processed loading conditions
according to the specified linear combination.

CALLED BY: CLEAR, ALOCAT, NEWADR, RELEAS, UPADP

Clear arrays for member forces
KPPLS, KPMNS, joint displace-
ments KPPRI, KPDBP and mem-
ber distortions KUV for this load-
ing condition JLX

DO @ for all loading conditions
involved I = 1, NLS

FAC = factor for this

loading I
) DO @for all members
M =1, MEXTN
A l

Add to member forces (KPPLS, KPMNS)
and member distortions (KUV) of loading
JLX, FAC times the member force; and
distortions of loading I, respectively

DO © for all free joints
‘ J =1, NFJS

A

Add FAC times joint displacements
of loading I to those of loading JLX

Any joint
releases

J > NDAT

LOOP for all support
joints J = 1, NDAT

J = NDAT

Add FAC times joint displacements
of loading I to those of loading JLX

-
&

210 Main Link 6

SUBROUTINE: NEWADR
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: Subroutine NEWADR recomputes ad-
dresses of arrays used in BAKSUB and COMBLD after a memory re-

organization or at the beginning of process. Arrays concerned are
KPPLS, KPMNS, KPPRI, KPDBP, KUV, KR.

CALLED BY: BAKSUB, COMBLD

(Enter >

4

Compute addresses for
KR, KUV, KPPLS,
KPMNS, KPPRI

Joint releases No
4
Address for KPDBP is
KPDBP zero vector

1

4

' Y
(Return)

Subroutine STATCK 211

SUBROUTINE: STATCK
TYPE: FORTRAN

DESCRIPTION OF PROGRAM: STATCK sums all member-end forces at
each joint (for each member incident to that joint) and stores the sum in
array KR for the current loading condition. These sums represent the
unbalanced joint loads as computed from the member-end forces. Mem-
ber-end forces for each member are first rotated into joint coordinates.

CALLS: TRAMAT
CALLED BY: BAKSUB

(Enter)

4
Do @ for all members
M =1, MEXTN

Member
deleted?

LGet end joints I

v
Call TRAMAT for 1
rotation matrix

Rotate member forces
for both ends to joint
coordinates and add
them to KR

212

SUBROUTINE: DEFSUP

TYPE: FORTRAN
ARGUMENTS: None

DESCRIPTION OF PROGRAM:

Main Link 6

Subroutme DEFSUP computes the effect

of the free joint displacements u on the support joint displacements u'
at released support joints, if there are any free Jomts and released sup-

ports.

where 5”' and u' reflect the effects of all types of loads.

i = {P' - Atkay')

The total displacements at support joints are

2

CALLED BY: BAKSUB

=
a

KPDBP
...K- - .NLDS

NDJ
(=NDAT+JF)

AtKA

The part Qo_@
of u' is computed by FOMOD and stored in KPDBP. Subroutine DEFSUP

computes QyAtKAu' and subtracts from KPDBP. The subscripts for the
product are (L I)%(1, J)*(J).

KPPRI
CALLS: ALOCAT, ADRESS, RELEAS.
DIAGRAM USED FOR COMPUTING INDICES
B % ETkA
KPDBP MEGAO KOFDG
. ..K---NLDS 1--- (I-NFJS-1)--NDAT 1--- J- NFJS
! NFJS
. +1
. K2l .N..JF
= — - - 1..M.. JF 1 1
Li| || L M
: IF
NJ
NDJ NDJ
Address: Address: Address:
KPDBP+ MEGAO+(I-NFJS-1)NDJ*JF K2+(N-1)JF+M
(K-1)NDJ+L +(M-1)NDJ+L

Address:
KPDBP+(K-1)NDJ+L
K=1, NLDS

L=1,NDJ

I=NFJS+1,NJ
M=1,JF
L=1,NDJ

N=1,JF
M=1,JF

u'

KTEM
1...K.--NLDS

NFSJ

(NFJS*JF=NSTV)

Address:
KTEM+(K-1)NSTV+(J-1)JF-
K=1, NLDS

J=1, NFJS

N=1,JF

Subroutine DEFSUP 213

@—»(Do @ 1=1, NDJ>

Is row I of
A'KA zero

LCU = number of
nonzero elements
in Ith row of AtKA

Y
———>-<Do ©i1=1, LCU>

A
Pick element KOFDG
in A'KA

Y
DO (© for all loadings
JLD = 1, NLDSI
—»LDO © L=1,nD5)

Multiply 2,(L, I) by
A'KA(1,7)*KPPRI(J)
and subtract from
KPDBP(L)

C

[Release arrays

Appendix ' B
PROGRAM LISTING

217

CLA TQoP ALOCQ472
sus NL ALOCO0473
* FAP ALOCCO00
- DYNAMIC MEMORY ALLOCATOR, VERSION III, 9-12-63 LOGCHER ALOCCO0O01
* CHAIN VERSION...13 SEPTEMBER 1963
* REVISION OF DECEMBER 31,1963
COUNT 800
LBL ALOCHN 0004
ENTRY START ALOCO004
ENTRY DEFINE ALOCO005
ENTRY RELEAS ALOCQO006
ENTRY ALCCAT ALOCGOQ7
ENTRY DuUMP ALGCcQos8
ENTRY REORG ALOCO0009
START SXA IR1S,4 ALOCO0O010
SXA IR1S+1,1 ALOCOO11
CLA» 244 ALOCGO12
ADD ONE
PBX 01 ALOCQO13
ST2 U+l,l ALOCOQO16
TIX #=1,1,1 ALOCGO17
cLaA *=-2 00018
STA ToP 0g0o19
CLA= 1,4 ALOCCO020
STO TN ALOCCO21
CLS# 244 ALOCQ022
ARS 18 ALOCO0023
ADD T0P ALOCCO24
STC N1 ALOCCO25
CLA 99 ALOCO0026
ADD ONE ALOCO0027
ARS 18 ALOCCO28
STA NT 0C029
STA 99 ALOCCO030
SSM ALOCCO31
ADD N1 ALOCGO32
ALS 18 ALOCCO33
STO# 344 ALOCCO34
CALL FILES,ONE,TN,FN,ONE,TOP INITIATE FILE TAPE ALOC0035
CLA N1 ‘ ALOCCO36
STO NL INITIATE MEMORY ALLOCATION NO. ALOCCO37
IR1S AXT *n,4 ALOCCO038
AXT LATRY ALOCQ039
TRA 4y4 ALOCCO040
REORG SXA REORGF,1 ALOCCO41
SXA REORGF+1,4 MEMORY REORGANIZATION ROUTINE ALOCCO42
STZ NONEED ALOC0043
STz NPERF ALOCCO44
CLA N1 ALOCCO45
STA ADD1 DETERMINE AVAILABLE MEMORY ALOCQ046
STA ADD2 ALOCGO47
ADD1 LXA #ny] ALOCCO48
TXL NBR,s1,0 ALOCCO49
ADD2 CAL« s ALOCCO50
ADD =1 ALOC0O51
STA N SIZE OF ARRAY PLUS MEMORY WORD ALOCCO52
CLA» ADD2 MEMORY WORD (FIRST WORD IN ARRAY)ALOCGCOS53
TPL CONTU NEEDED ALOCCO54
ALS 1 ALOCO0055
PBT ALOCCO56

218

ORDN

CONTU

DUMPR

SAV

Savl

ADD3

ADD4

ADDS
FNNUM

ENDTS

TRA
CLA
ADD
STO
TRA
cLA
ADC
STC
CLA
ANA
SuB
STA
STA
CAS
TRA
CLA
ADD
sus
sus
sus
™I
CLA
STA
CLA
ST0
STO
STA
STA
STA
STA
STA
STA
CLA=
TPL
STA
NZT
TRA
ALS
PBT
TRA
TRA
ALS
PBT
TRA
CLA=
ANA
TNZ
XEC
STA
ANA
SSM
STO=
TSX
CLA
ORS#
CLA
suB
sus
CAS
TRA

ORDN ORDINARY ARRAY ALOC00S7
N PERFERRED ARRAY ALOC0O058
NPERF ALOCGOS9
NPERF ALOCGO60
CONTU ALOC0061
N ALOC0062
NONEED ALOCG063
NGNEED ALOCCO64
ADD1 ALOC0065
=0000000077777 ALOCO066
N ALOCG067
ADD1 ALOCCO68
ADD2 ALOC0069
NL ALOC0070
ADD1 TEST ANOTHER ARRAY ALOCCO71
NL ALOCCOT2
NCNEED ALOCO0073
NT ALOCOO074
NREQ ALOCGO75
PERFT ALOCOO076
SAV ALOC0077
SAV1 ALOCGO78
N1 DUMP AND COMPACT USING ORDINARY DALOCCOT9
NNL ALOCGO80
K ALOC0081
ADD3 ALOC0082
ADD4 ALOCCO83
ADDS ALOC0084
ADD6 ALOC008S
ADD7
ERASE ALOCCO86
ADD3 ALOCCO87
MOVR NEEOED, MOVE UP IN MEMORY ALOC0088
N ALOCO0089
N ALOCC090
NBROP NO BACK REFERENCE FOR DATA,PROCEDALOCC091
1 ALOC0092

ALOC0093
42 ALOCGCO94
MOVR MOVE PERFERRED ARRAYS ALOCC095
1 ALOC0096

ALOC0097
ERASE ALOC0098
s ALOCO100
=0000000400000 ALOCO101
DPSLF ALOC0102
ADD3 ALOCC103
N ALOCO104
=0000000777777

ALOCO105
e ALGCCC106
WFT,4 WRITE FILE CONSISTING OF ARRAY ALOCO107
FN NEXT FILE NUMBER ASSIGNED ALOCO0108
%
K ALOCC110
N ALOCO111
=1 ALOCO112
NL ALOCO113
DUMPR+2 ALOCO114

REORGF

FIVE
WFT

STARR
WTT

NBR

PERFT

NBRDP

ERASE

ERSLBR
ADD6

NOP
CALL
CLA
ST0
AXT
AXT
TRA
ocTt
SXA
LXA
SXD
CLA
sus
STA
TSX
TSX
TSX
TSX
TSX
TSX
AXT
TRA
CAL»
ARS
ADD
STA
TRA
ADD
TMI
cLA
STA
TRA
CLA
PAX
ZET
TSX
CLA
STO
TSX
TSX
TSX
CLA=
ARS
STA
TRA
CAL*
ANA
SSM
XEC
STA
ANA
TNZ
TRA
LXA
CLA
T™I
PDX
ALS
SSM
ST0

FILES,FIVE,ONE,ONE,ONE,ONE

NNL

NL
#u,]
g4
11"
5000000
WTT,4
N'4
NCOUNT, 4
K

=1
STARR
$FILES,4
TWO

TN

FN
NCCOUNT
*n
*#y4
144
ADD2
18

=1

N

ORDN
NPERF
*+4
SAVi-1
SAV1
DUMPR
1'4

4
STORE
STER,1
ONE
INORM
$CHAINy 4
ONE
FOUR
ADD3
18

N
FNNUM
%

=0coco00777717

ADD4

N
=000000040C000
ERSLBR

FNNUM

Nsl

i,]

%45

’4

18

U+lys

219

ALOCO115
ALOCO116
ALOCO117
ALOCO118
ALOCO119

ALOCO120
ALOCO121
ALOCO122
ALOCO123
ALOCO124
ALOCO125
ALOCC126
ALOCO127
ALOCC128
ALOCC129
ALOCC130
ALOCO131
ALOCO0132
ALOCO133
ALOCO134
ALOCO135
ALOCO136
ALOCC137
ALOCC138
ALOCG139
ALOCC140
ALOCC141
ALOCO142
ALOCO143
ALOCO1l44
ALOCO145

“ALOCOQ146

ALCCC1l47
0149
C150
Cl51
G152
0153

ALOCO149

ALOCQ150

ALOCO151

ALOCO152

ALOCCLS53

ALOCCL155
ALOCOL156
ALOCOL57
ALOCC158
ALOCGOL59
ALOCOL160
ALOCOlel
ALOCO162
ALOCOLl63
ALOCOl 64
ALOCO165
ALOCOl66
ALOCGLe7

220

DPSLF

LP

LGooP

ERSL

MOVR

ADD7

Mav

TIX
TRA
XEC
ALS
STD
AXT
TXH
CLA=®
™I
PDX
STA
SXA
ANA
TZE
CLA
susB
STO
CLA=
ANA
SSM
STO+
TSX
CLA
ORS#
CLA
ALS
SSM
STO=
TXI
CLA
STA
TRA
CLA
ALS
SSM
STC
CAL#
ANA
SSM
STC=
TRA
CLA
suB
ALS
STD=
XEC
STA
LXA
SXD
AXT
CLA
STA
CLA
STA
CAS
TRA
TRA
TXH
CLA
STO

ERSLBR+1,1,1
FNNUM

ADD3

18

LP

1,1
LCOP+1,1, %%
ADD6

LaooP

14

N

Kb
=0C€00C00100000
ERSL

TQP

K

K

ACD6
=0000000777777

ADD6
WFT,4
FN
ADDé
N

18

K
LPy1,1
ADD3

K
ADD3+3
N

18

U+l,4
ADD6
=00000007777127

ADD6
Laorp
TGP
NNL
18

*n
ACC3
N

N'l
#49,1
0,1

K

*+7
NNL
*#+6

K

42
MOVCT
244 ,] 0
#%g1
#%,]1

ALGCCl68
ALOCO169
ALOCC1l70

ALOCO172
ALOCCLT73
ALOCC174
ALOCGL7S
ALOCO176
ALOCCL77
ALOCCLT78
ALCCO179
ALOCG180
ALOCC181
ALOCO182

ALOCQL183

ALOCC185
ALOCO186

ALOCC188
ALOCO189
ALOCO190
ALOCO191
ALOCO192
ALOCO193
ALOCO194
ALOCO195
ALOCO196
ALOCOLS7
ALOCGl98
ALOCO1S9
AL0CC2¢CO

ALOCO202
ALOCOQ2C3
ALOCC2C4
ALOCC205
ALOC0206
ALOCC207

ALCOCG209
ALOCOQ210
AL0OCQ211
co212
ALOCO213
ALOCO214
00215
ALOCG216
0C217

ALOCC218
ALOCG219
ALOCC220

MOVCT

UPDSL

LASCW

PTERR

ALOCAT

X1
CLA
STA
STA
CLA=
ANA
TNZ
CLA
sus
sus
STO
TRA
CAL=
PAX
CLA
STA
cLA
TMI
PDX
PXA
SSM
ABD
STA
TIX
TRA
CLA
STA
SXA
TSX
TSX
TSX

TSX
AXT
TRA
PZE
SXA
STz
CLA
STA

CAL*
STA
ANA

TNZ

CLA=
TLZE
TPL

CLA

STO
sus
sus
CAS
TRA

#-341,1
NNL
uPDSL
=+1

'Y
=0000000400000
uPDSL
NNL

N

=1

NNL
FNNUM
.

vl

NNL

4]
s8]
*#4+6

04

o1

NNL

U+l 4
LASCH,1,1
MOVCT

1,4

#+8

*45,4
$PRER2,4
=017000000
ONE

*43
8.4

CHA2-3

CHA2-1,1
NREQ

=2

CHA2

1,4
NREQ
=0000000400000

SLCWAL

1,4
PTERR
CLREL

NL

K

NREQ
=1

NT
OKFILE

221

ALOCO221
ALOCO0223
ALOCC224
ALOC0225
ALOCO0226
ALOCO227
ALOCO228
ALOCO0231
ALGCO0233
ALOCC235
ALOCO0236
ALOC0237
ALOCO238
ALOCO239
ALOCO0240
ALOCO0241
ALOCC242
ALOCO0243

FIRST ARGUMENT OF CALLING IN AC

UNDEFINED CODEWORD ADDRESS

CALL ERROR PRINTING ROUTINE

ERROR MESSAGE NUMBER

ARGUMENT NECESSARY FOR PRER2 BUT NOT USED

HERE

TRANSFER TO SEQUENCE FOR RETURN FROM ALOCAT

SPACE FOR CODEWROD ADDRESS

CUIR1) STORED IN RETURNING SEQUENCE ALCCO244

CLEAR THIS LOCATION ALOCO245

PLACE A 2 IN THE RETURNING SEQUENCE TC ALOCOQ246

INDICATE RETURN FROM ALLOCATION TO

LEVEL ARRAY

PLACE THE CODEWORD ITSELF IN THE AC ALOCO248

THE SIZE OF THE ARRAY IS STORED HERE ALOC0249

TEST BIT 18 TO DETERMINE IF AN ARRAY OF ALOCO0250
CODEWORDS OR OF DATA

SINCE AC NOT ZERO, IT IS A SECOND LEVEL ALOCO251
ARRAY. GO TO STATEMTN SLCWAL

PLACE CODEWORD IN THE AC ALOCO0252
IF CODEWRD IS ZERO, TRANSFER TO ERROR ALOCO0253
IS THE CODEWORD POSITIVE OR NEGATIVE ALOCO0254
POSITIVE MEANS THE ARRAY IS IN CORE

CODEWORD IS NEGATIVE AND THE ARRAY IS ALOCO0255

ON TAPE OR BEING ALOCATED FOR THE FIRST TIM

E. PLACE THE LOCATION OF POOL IN THE AC

START OF THE POOL IN THE AC

STORE THIS VALUE IN LOCATION CALLED K ALOCO256

SUBTRACT THE AMOUNT PLUS ONE OF THE SPACE AL0C0257

REQUIRED TO DETERMINE A NEW START OF POCL ALOCO258

COMPARE WITH LOCATION OF BOTTOM OF POCL ALOCO0259
MEMORY AVAILABLE ALOCO260

222

»

OKFILE

INALC

CHA2
LCONT

OPEN

NOP
SXA
TSX
AXT
ZET

TSX

TRA
STO
CLA#
ANA
ST0
TZE
CAL®
ANA
TNZ
CLA
STO
CLA
suB
ALS
STD=
CLA
ANA
SLwW#

CLA#
ANA
SLwWs
SXA
LXA
SXD
CLA

suB
STA
TSX

TSX
TSX
TSX
TSX
TSX
AXT
LET
TSX
AXT
TRA
CLA
ADD

TRA
CLA
SuB
ALS
STD#

: ALOCO261

42,4 THERE IS NO SPACE AND A REORGANIZATION OF ALOCC262
REORG 4 MEMORY IS NECESSARY. ALOC(C263
8,4 ALOCO0264
STORE HAS THE CALLING SEQUENCE BEEN ALTERED FOR

SECOND LEVEL ARRAYS

REUQIRED IF A SECOND LEVEL ARRAY EXISTS
STER,1 IT HAS THE TRANSFER RESTORES THE CALLING

SEQUENCE AND PLACES ZEROS IN LOCATION STOR
ALOCAT+4 ALOCATE THE SPACE ALOCO0265
NL STORE THE NEW LOCATION OF THE START OF POOLALOCOQ266
1+4 PLACE CODEWORD IN THE AC ALOCO267
=0177777000000 HAS THE CODEWORD BEEN ALCCATED BEFORE
FILE YESy STORE THE DECREMENT IN LOCATION FILE ALOCC2
OPEN ALOCO0269
1,4 PLACE THE CODEWORD IN THE AC

=020C000000000 HAS THE ARRAY BEEN REDEFINED WHILE ON TAPE
LCONT

THREE NO OPERATION NUMBER FOR NO SIZE CHANGE

MCNT

ToP COMPUTE SUBSCRIPT OF U TO START OF ARRAY ALDCO271
K AND PLACE IN CODEWORD DECREMENT ALOC0272
18 ALOCO0273
1,4 ALOCOQ274
1,4 PLACE THE LOCATION OF THE CODEWORD IN THEACALOCO0275
=0000000077777 ERASE ALL BUT ADDRESS ALOCO0276
K STORE LOGICALLY AT THE HEAD OF THE ARRAY ALOCO0277

AS A BACK REFERENCE
E FIRST WORD OF THE ALLOCATED ARRAY

1,4 SET S AND 2 BITS OF CODEWORD TO ZERO ALOCG278
=0077777777717

1,4 ALOCO280
CHA2-4,4 STORE C({IR4) ALOCO0281
NREQy 4 PLACE IN IR4 THE SIZE OF THE ARRAY ALOC(C282
NCOUNT, 4 C{IR4) PLACED IN DECREMENT OF NCOUNT ALOCO0283
K LOCATION OF FIRST WORD OF THE ARRAY PLACED ALOCOZ284

IN THE AC

=1 SUBTRACT ONE FROM THE ADRESS ALOCC285
46 STORE THIS SIX LOCATION FROM HERE ALOCO0286
$FILES,4 GO TO SUBROUTINE WHICH HANDLES TRANSMISSIONALOC(0287

OF INFORMATION TO AND FROM TAPE
THE FCLLOWING ARE THE ARGUMENTS OF THE SuB.

MCNT INDICATES WHICH OPERATION TO BE DONE ALOCO288
N SCRATCH TAPE NUMBER ALOCO0289
FILE TAPE FILE NUMBER ALOCO0290C
NCOUNT SIZE OF THE ARRAY OR EXPECTED SIZE ALOCO0291
LA LOCATION OF FIRST WORD OF ARRAY ALOC0292
g4 RESTORATICON OF INDEX REGISTER 4 ALOCO0293
STORE HAS THE CODEWORD BEEN RESTORED ALOCO0294
STER,1 NO RESTORE IT ALOCG295
#x,1 YES RESTORED. NOW RESTORE IR1 ALOCO0296
8,4 RESTORE IR4 AND RETURN TO CALLING SUBROUTINALOCO0297
THWO
TWO A FOUR FOR OPERATION NUMBER FOR FILES

IMPLYING POSSIBLE SIZE CHANGE
INALC-1 GO TO THAT WHICH PRECEDES CALLIN G OF FILES
TGoP PLACE 77462 IN THE AC (ARRAY IN CORE) ALOCO0298
K SUBTRACT ENTERING START OF POOL ALOCG299
18 SHIFT ADDRESS INTO DECREMENT ALOCO300

1.4 STORE IN DECREMENT OF CODEWGCRD ALOCO301

SLCWAL

*
*
&

SVCNT

CHAR

CLREL

DEFINE

CAL*
STO=
CLA
ANA
SLWs

NZT
TRA
LXA
cLA

STA
sTZ
TIX
TRA
CLA#

TZE
SXA
CLA#
TM™I
PDX
CLA
TPL
CLA
STO
LXA
TSX
TSX
TSX
AXT
TSX

CLA
STA
CLA=
STA

TMI
PDX
CLA

ssp
STO
TRA
CLA
ARS
LAS
TRA
TRA
CLA
STA
CLA+
ARS
ADD*
ARS

223

144 MAKE SIGN POSITIVE TO INDICATE NOT RELEASEDALOCO0302
154 ALOCO303
1,4 PLACE ADDRESS OF CODEWORD IN AC ALOCO304
=0000000077777 ERASE ALL BUT ADDRESS ALOCO0305
K STORE LOGICALLY IN THE FIRST WORD OF ALLOCAALOCO306
TED ARRAY
NREQ IS THE ARRAY OF ZERO LENGTH ALOCG307
CHA2-3 YES GO TO RETURN SEQUENCE ALOCOQ308
NREQy1 NO. PLACE SIZE OF ARRAY IN IRl ALOCO309
K PLACE THE LOCATION OF THE FIRST WORD OF THEALOCO310
ARRAY IN THE AC
T3] ALOCO311
#u,] ZERO THE ARRAY OF LENGTH GIVEN BY C{NREQ) ALOCO0312
#-141,1 ALOCO313
CHA2-3 GO TO RETURNING SEQUENCE ALOCO314
244 THIS IS A SECOND LEVEL ARRAY9 PLACE IN THEALOCG315
AC THE SECOND WORD OF THE CALLING SEQUENCE
THIS NUMBER INDICATES WHICH ARRAY CONNECTED
WITH THE CODEWORD IS BEING ALLOCATED
CHAR IF IT IS ZERO {THE CODEWORD ARAY),TRANSFER ALOCO316
SVCNT-1,4
1+4 PLACE CODEWORD IN THE AC ALCCO317
44 TRANSFER IF C(AC) ARE NEGATIVE
21 DECREMENT OF AC INTO IR1
U+l,1 PLACE FIRST WORD OF ARRAY IN AC
SVCNT
1,4 PLACE ADRESS OF CODEWORD IN AC ALOCOQ324
%43 STORE IN IN THE CALLING SEQUENCE FOLLOWING ALOCO0325
CHA2-1,1)
ALOCAT,4 CALL ALOCAT TO ALLOCATE THE ARRAY ALOC(Q326
L2 LOCATION CF CODEWORD ALOCO0327
ZERQ PLACE A ZERO AS SECONLC WORD OF CALLING SEQ ALOCGC328
RR G RESTORE IR4 ALOCO0329
SSLAD,1 STORE CODEWORD AND PLACE A NEW VALUE IN ITSALOCO0330
LOCATION
=3 ALOCO0331
CHA2
1,4 PLACE THE CODEWORD IN THE AC ALOCG333
NREG STORE THE ACDRESS PORTION WHICH SHOULD BE TALOCO334
HE SIZE OF THE ARRAY IN LOCATION NREQ
CHAl+1 A NEGATIVE SIGN MENAS FILE ON TAPE. TRNSFERALGCC335
PTERR IF CODEWORD IS ZERO, TRANSFER TO ERROR ALOCO0336
s 1 C(AC) NON-ZERO AND ARRAY IS IN CORE,PLACE ALOCO0337
DECREMENT OF AC IN IR1 i
U+l,1 CLEAR AC AND PLACE IN IT THE FIRST WORD OF ALOCO0338
THE ARRAY
SET THE SIGN POSITIVE TO INDICATE IN CORE ALOCG339
U+l,1 STORE IN THE FIRST WORD OF THE ARRAY ALOCC340
CHA2-3 GO TO RETURNING SEQUENCE ALOCO0341
6,4 ALOCO0342
15 00343
=074000 CC344
42 ALOCGC345
SECCW ALOCO0346
=6 ALOCG347
T
244 N ALOCO0349
15 ALOCO0350
S5e4 U ALOCO0351
1 ALOCC352

224

CONTA

FRSTCW

LGRR
LGR
SAM

SAMZ

ADD#
ARS
ADD#
ARS
SSM
STG
CLA*
ANA
TZE
CLA=
TPL
STD
sTP
CAL
ORS
CAL
SLWs
SXA
ZET
TSX
AXT
TRA
CLA®
TZE
SXA
TSX
AXT
CLA
STA
CLA=
ARS
ADD=
ARS
ADD=
ARS
ADD+
TRA
PZE
PZE
CLA=
SXA
SXA
ANA
TZE
CLA»
PDX
PAX
PXA
SSM
ADD
STA
CLA
™I
PDX
ALS
SSM
STO
TIX
LXA
CLA

444
1
3,4
1

TEMP
ly4
=0177777000000
ENT
le4
TESTR
TEMP
TEMP
=0600000000000
TEMP
TEMP
1+4
*+3,1
STORE
STER,1
LAERY
R4
2.4
FRSTCHW
#+2,1
SSLAD,1
%, 1
=7

T

3.4

15

694

1

5'4

1

494
CCONTA

1'4

SAMR, 4
SAMR+1,1
=0000000400000
SAMZ

1,4

l4

v 1

14

Tare
*+]1
#e,]
*+5
'4
18

U+l,4
#-691y1
SAMR, 4
1,4

ALOCO353
ALOCO0354
ALOCO0355

ALOCC360
ALOCO361
ALOCO362

ALOCO0367
ALOCO368
ALCCO369
ALOCO370
ALOCO0371

ALOCO374
ALOCO0375
ALOCO376
ALOCO0377
ALOCC378
ALCCO0379

ALOCO381
ALOC0382
ALOCO0383
ALOCO384
ALOCO0385
ALOCO386
ALOCO0387
ALOCO0390

ALOCO0392
ALOCO393
ALOCC394

00395
ALOCO396
ALOCO0397
ALOCO398
ALOCO0399
AL0OCQ4CO
ALOCO0401
ALOCC402
ALOCG403

. ALOCO0404

ALOCQ405
ALOCC406
ALOCO0407
ALOCO0408
ALOCO0409

SAMR

TESTR

USEN

MOVER

MVR

STA
TSX
TSX
AXT
AXT
TRA
ERA
ANA
STQ
TNZ
CLA=
ANA
SLHW
CAL
ANA
STO
sus
ST0
TNZ
CAL=
ANA
ACL
STOs=
TRA
SXA
CAL*
ARS
ANA
SSM
ACC
sus
sus
SuB
TZE
CLA
SuB
SuUB
T™MI
CLA
™I
PAX
CLA
SuB
STA
ST2
TIX
LXA
CAL»
ARS
ANA
SSM
ADD
STA
STA
CLA
STA
CLA
ST0
TIX
CLA

*42

$CLEARy4

* %

*E .4

#,]

TESTR+4

TEMP
=0000000400000
LGRR

SANM

114
=0000000077777
NCLD

TENMP
=g0cgoococorr777
NNEW

NCLD

LGR

MCVER

1"'
=0C77777000000
TEMP

1,4

ENDR

USNEW-2,1

1,4

18
=0006000077777

TopP
NCLD

NL

NCLD

*+]1

8,1

#=1,1,1

NCLC,1

1"’

18
=00C¢CCco0077717

Tce

47

*+3

NL

42

L2 PR
sy]
#-2,1,1

225

ALOCOQ410
ALOCC411

0C412
ALOCO413
ALOCC414

ALOCC415
ALOCO416
ALOCO417
ALOCO419
ALCCC420
ALOCO0421
ALOCG422
ALOCO0423

ALOCO0424
ALOCO425
ALOCO0426
ALOCQ427
ALOC(428
ALOCO0429
ALOCC430
ALCCC431
ALOCO0432
ALOCG433
ALOCC434
ALOCC435
ALOCOQ436
ALOCGC437
ALOCC438
ALOCO0439
ALOCG440
ALOCO441
ALOCC442
ALOCQ443

ALOCQ446
ALOCC447
ALOCC448
ALOCO0449
ALOCC450
ALOCC451
ALOCC452
ALOCO0453
ALOCO0454
ALOC0455
ALOCO0456
ALOCO0457
ALOCG458
ALOCC459
ALOCC460
ALOCO461
ALOCG462
ALOCO463
ALOCC464
ALOCO465
ALDCO466

226

CHNL

USNEW

RECRGI

REIR

NOMOV

STC»
CLA#
STZ=
ALS
SSM
STO=
ALS
STD=
cLA
TNZ
CLA»
ANA
TLE
NZT
TRA
SXA
LXA
CLA
STA
CLA
TM™MI
PDX
PXA
SSM
ADD
STA
TIX
AXT
CLA
sus
Sus
STO
AXT
TRA
CAL%
ANA
TZE
TSX
LXA
TRA
SXA
cLA
STO
TSX
AXT
CLA
TZE
TSX
TSX
CLA=
TPL
TRA
CAL*
ANA
TZE
CLA
TPL
TSX
CLA
ADD

NL
1,4
-3
18

=6

18

1,4

LGRR
CHNL

1.4
=04CCCC0
CHNL
NCLD
CHNL
CHNL-1,4
NCLD,1
NL

#+]

*%,1

%+6

,‘9

=04C0000
242
DTRYBR, 1
NNEW,1
MVR
REIR,4
NNEW
NREGQ
RECRG,4
84
STCRE
#+3
STER,1
SSLAD,1
1'4
MVR-10
ENDR-6
1.4
=0400000
*+4

LGR

#42
DTRYBR,s1
NL

=1

ALOCC467
ALOCO0468

ALOCC469
ALOCC470
ALOCO471
ALOCO0474
ALOCC475

ALGCQ476
ALOCG4T7
ALOCC4T78
ALOCC479
ALOCC480
ALCCO481

ALOCC482
ALDCC483
ALOCO484
ALCOCO485
ALOCC486
ALOCC487
ALOCC488

ALOCQ489
ALOCC49¢C

ALOCG492

DTRYBR

DTLP

DTLOP

ZENM

RELEAS

STA
sus
sus
ADD
CAS
NCP
TRA
CLA
SuB
STO
SXA
TSX
AXT
CLA
TZE
TSX
TSX
CLA*
TMI
TRA
SXA
SXA
CLA=
PAX
SXD
PDX
PXA
SSM
ADD
STA
CLA
ADD
PAX
TXH
CLA
™I
PDX
ST2Z
ALS
SSM
STO
TXI
AXT
AXT
TRA
STA
CLA
Sus
™I
PAX
STZ
TIX
TRA
SXA
CAL»
ANA
TNZ
cLA
STA
CLA

RELEAS-3
=1

NNEW
NCOLD

NT

ZENM
NNEW
NOLD

NREQ
#4244
REORG 4
844
STORE

43
STER,1
SSLAD,1
1,4
ENT-4
NOMOV+6
ODTLOP+1,1
DTLOP+2,4
1,4

DTLOP+1,1 %%
*a,1

oTLCP

"'

U+l,4

18

U+l,4
DTLP,1,1
8,1
"%, 4

1,1

NL |
NNEW
NGLD
USEN

s 1

®#n,l
*#=1y1,1
USEN
IR11,1
1,4
=0000000400000
SECL

=3

A34

=4

CALL RELEAS({NAME) OR

CALL RELEAS(NAME,U,V) OR
CALL RELEAS(SLNAME,J) OR
CALL RELEAS({SLNAME,J,U,V)

227

ALOCC493
ALOCOQ494
ALOCO0495
ALOCO0496
ALOCQ497
ALOCO498
ALOCO0499
ALGCG5C0
ALOCOC501
ALOCO0502
ALOCO503

ALOCOS504

ALOCO505

ALOCO506
ALOCC507
ALOCC508
ALOCG509
ALOCO510
ALOCGC511
ALOCCS12
ALOCO513

228

A23

A24

A3%

SXRT

IR11
RETN
ONEAR

SECL

FIRSTL

Dump

STA
CLA
STA
STA
STA
CLA
ARS
LAS
TRA
TRA
TRA
CLA=
TPL
XEC
XEC
TRA
CLA*
ALS
ADD#
ARS
ST0
CAL+
ANA
ACL
SLine
ALS
AXT
SXA
SSM
sTc
CAL®
PDX
CAL
STP
ZET
TSX
AXT
TRA
AXT
CLAs
TMI
ALS
TRA
CLS#
TLE
TSX
CLA
STA
CLA
STA
CLA
TRA
CLA
STA
CLA
STA
CLA«
TPL
CLA
STA

SXRT-1
=2

A23
A24
ONEAR
#%e4
15
=074000
ONEAR
*+2
ONEAR
1,4
A24
SXRT-1
SXRT
IR11-2
e, 4

1

LE XYY

3

NNEW
144
=071717177477777
NNEW
1,4

18
®yl

RETN,1

NNEW
1+4

s 1
NNEW
U+l,1
STORE
STER,1
a%,1
L2 XY
wa,l
144
A24-2
18
SXRT
214
FIRSTL
SSLAD,1
=4

A34

=5
SXRT-1
=3
A23-3
=2
RETDU
1,4
CwiLoC
1"'
CONTB
1.4
*+9

ALOCGC514
ALOCO515
ALOCOS516
ALOCO517
ALOCO518
ALOCO519

00520

00521
ALOCO0522
ALOCO0523
ALOCO0524
ALDC0525
ALOCO526
ALOCO0527
ALOCO0528
ALOCO529
ALOCC530
ALOCO531
ALOCO0532
ALOCO0533
ALOCC534
ALOCO0535
ALOCO0536
ALOCO0537
ALOCO0538
ALOCO0539
ALOC0540
ALOCO541
ALOCO0542
ALOCO543
ALOCQ544
ALOCO0545
ALOCO546
ALOCO547
ALOCO0548
ALOCO0549
ALOCO550
ALOCO0551
ALOC0552
ALOCO0553
ALOCC554
ALOCOQ555
ALOCOS556
ALOCO0557
ALOCO558
ALOCO559
ALOCO560
ALOCO561
ALOCC562
ALOCO563
ALOCO564
ALOCO0565
ALOCC566
ALOCO0567
ALOCOS568
ALOCO0569
ALOCO570
ALOCC571
ALOCO572
ALOCO0573

cwiLoC

CONTB

RETDU
SECLD

SSLAD

STER

STORE

FN

K

N
NONEED
NPERF
NNL

CLA
STA
STA
SXA
TSX
TSX
NOP
TSX
TSX
NOP
AXT
CLAs
ANA
TNZ
sTZ
CLAs
STD
ALS
STD
SXA
CALL
AXT
TRA
CLA
STA
CLA®
TZE
CAL=
ANA
ADD=
ARS
SSM
ADD
STA
CLA=
TPL
CLA
TRA
CLA
STO
CAL»
ANA
ADD#
ANA
ARS
SSM
ADD
STA
TRA
CLA
STO
STZ
TRA
PZE
PZE
PZE
PZE
PLE
PLE

- PLE

244

*#45

=47

47,4
ALCCAT,4
L X3

* e
RELEAS+4
an

*n

e, 4
CWLCC
=00000004000C0
SECLD
TEMP
cwWLoc
TEMP

18

NCOUNT
RETCU-1,4

DUMPER, TEMP,NCOUNT, CWLOC

%, 4

L Y

=3

RETDU

244

CONTB+2

1'“
=0077777000000
2+4

18

Torp

CWLGC

CWLOC

CONTB+2

CWLGC

DUMP+7

1.4

STORE

1,4
=0077777000000
244
=0077777000000
18

TapP
1,4
1,1
STORE
1+4
STORE
1,1

229

ALOCO574
ALOCO575
ALOCG576
ALGCCS5T77
ALOCO578
ALOCO579
ALOCC580
ALOCO581
ALOCO0582
ALOCO583
ALOCG584
ALOCC585
ALOCO586
ALOCO587
ALOCO588
ALOCO0S589
ALOCO59¢C
ALOCO591
ALOCO0592
ALOCC593
ALOCOC594
ALOCO0595
ALGOCO596
ALOCO0597
ALOCO598
ALOCO0539
ALOCQ6CO
ALOCC60L
ALOCC602

ALOCO6C3
ALOCO0604
ALOCO6CS
ALOCQ6C6
ALOCQ6Q7
ALOCG608
ALOCC609
ALOCO610
ALCCC611

ALOCG612

ALOCC613
ALOCO614
ALOCC615

ALOCQ616

ALOCC617
ALOCO0é618
ALOCO0619
ALOCC620
ALOCC621
ALGOCQ622
ALOCOQ623
ALOCQC624
ALOC0625
ALOCO0626
ALOCOQ627
ALOCC628
ALGC0629
ALOCO630
ALOCO0631
ALOCGC632

230

NOLD

NNEW

NCOUNT
TEMP
FILE
MCNT
ZERC
ONE
TWO
THREE
FOUR

INORM
0P
N1

NL
NT
NREQ
N

*
*

CFILEA
c

10

11
12

19

21
22

234

230
23

PLE
PZE
PZE
PZE
PZE
PZE
PLZE
ocT
ocT
ocT
ocr
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
END
LISTS
LABEL

000001000000
000062000000
000003000000
00€004000000
110

Pt ot kot ot o D)

ALOCQ633
ALOCOQ634
ALOCO0635
ALOCO636
ALOCC637

ALOCO638

ALOCO0639

TWO ALOCC640
ALOCC641

0647

0648

0649

TOP OF COMMCN PLUS ONE ALOCO643
TOP OF POOL ALOCC644
NEXT MEMORY LOCATION TO BE ASSIGNALGOCO645
BOTTOM OF PGOL ALOCOQ646
ALOCC647

SCRATCH TAPE FOR FILING ALOCC648
ALCCO0649

5 ROUTINE FOR READING AND WRITING FILE TAPES 1-17-64 LOGCHER -A5
REVISED VERSION FOR PROCESSOR — CHAIN TAPE USED AS SYSTEM TAPE A5
SUBROUTINE FILES(NOP,TN,NFILE,NCOUNT,ARRAY)

COMMON U, ISCAN,ISUCC,FIL,LFILE,FIL2,NTAPE,NXREC

CIMENSION ARRAY(100),Ul112),FIL{7),FIL2(5),ISCAN(5)

DIMENSION NTAPE(5),NXREC(5),BUF(254),LBUR{254)

EQUIVALENCE (BUF,LBUR)

XNTFIL)=((L-1)/720+¢1)—-(4=((L-1)/ 80))

XNRNF (L) =

(L-1)/80 +1

XLFNF(L)=((L-1)/20)%20+21
XFIBF(L)=L-20+((L-1)/20})
GO TO (10420430530,19),N0OP

SCRATCH TAPES USED NOW

NTAPE(1l)=
NTAPE(2)=
NTAPE(3)=
NTAPE(4)=
LFILE=1

NBUF=0

Do 11 I=1
NT=NTAPE(
NXREC(I)=
REWINC NT
RETURN

DUMP BUFFER ON TAPE AND RETURN

NS1=3
IF(NBUF)1

5
6
7
8

4
1)
1

2,412,234

ARE B1,

IF(NCOUNT-252)231,231,21

IS BUFFER
IFINBUF)2
NS1=1

EMPTY BUF
NIT=XNTF(
NT=NTAPE(
NIR=XNRNF

EMPTY
5425,22

FER
LFILE-1)
NIT)
(LFILE-1)

IF(NIR-NXREC(NIT))23,24,26

PRINT 1,L
60 TO 12

FILE

B2, B3, A4

25

29
26

240

27

236

30
33

37
31

60
32
35

45

231

FORMAT(39HLIERROR IN TAPE WINDING FOR WRITING FILE,16])
WRITE TAPE NT,(BUF{I),1=1,254)
NBUF=0

LFILE=XLFNF(LFILE-1)
NXREC(NIT)=NXREC(NIT)+1

GO TO (255235,13)4NS1
NIT=XNTF(LFILE)

NT=NTAPE(NIT)

NIR=XNRNF{LFILE)

NS2=2
IF(NIR-NXREC(NIT))23,27,240
NS2=1

FORWARD SPACING ROUTINE

REAC TAPE NT,NOLD
NXRECINIT)=NXREC{NIT)+1

GO TO (230,29,37)4NS2

WRITE ARRAY CON TAPE - IT EXCEEDS BUFFER SIZE
WRITE TAPE NT,LFILE,NCOUNT,{ARRAY{I),I=1,NCOUNT)
NFILE=LFILE

LFILE=XLFNF(LFILE)
NXREC(NIT)=NXREC(NIT)+1
IF{65400-LFILE)14,12,12

PRINT 15

INORM=1

CALL CHAIN(1,4)
FORMAT(50H1TAPE CAPACITY EXCEEDED. PROBLEM CANNOT CONTINUE.)
WILL ARRAY FIT IN BUFFER

IF (NBUF+NCOUNT-252)232,232,233
NO - EMPTY BUFFER

NS1=2

GO TO 234

IS THIS THE FIRST FILE
IF(XFIBF(LFILE)-1)235,237,235
YES - DUMP BUFFER IF NON EMPTY AND -235- PUT ARRAY IN BUFFER
IF(NBUF)235,235,233

NO - 235 - PUT ARRAY IN BUFFER
IBUF=NBUF+2

LBUR(IBUF-1)=LFILE
LBUR(IBUF)=NCOUNT

D0 236 I=1,NCOUNT

I1=1IBUF+I

BUF({11)=ARRAY(I)

NBUF=1I1

NFILE=LFILE

LFILE=LFILE+]

GO 10 12

LB=XFIBF{NFILE)-1
IF(LBUR(L1)-NFILE+LB)33,74,33
NIR=XNRNF (NFILE)
NIT=XNTF{NFILE)

NT=NTAPE(NIT)

NS2=3
IF(NIR-NXREC(NIT))31,35,240
N=NXREC(NIT)-NIR
IF(NXREC(NIT)/4-N)145+45,60

D0 32 I=1,N

BACKSPACE NT

NXREC(NIT)=NIR+1
IF(NOP-3)22,36,40

REWIND NT

232

NXREC(NIT)=1
GO 10 37
36 IF(NCOUNT-252)70,70,38
38 READ TAPE NT,NCLDyN, (ARRAY{I),I=1,NCOUNT)
IF{NFILE-NCLD)44,12444
44 PRINT 2,NFILE
ISUCC=2
ISCAN=2
CALL CHAIN(1,4)
70 READ TAPE NT,{(BUF(I),1=1,254)

14 NBF=2
IF(LB)44,77,78
78 DO 71 I=1,L8
71 NBF=NBF+2+LBUR(NBF)
17 IF(LBUR(NBF)-NCOUNT)75,72,72
72 0O 73 I=1,NCOUNT
J=NBF+I
73 ARRAY(I1)=BUF(J)
GO TO 12
15 N=N+1

D0 76 I=N,NCOUNT
76 ARRAY(I)=0.0
NCOUNT=N-1
GO T0 72
40 IF(XFIBF(NFILE)-1)44,41,70
41 READ TAPE NT,NCOLD,N
BACKSPACE NT
IF(NCOUNT-N)38,38,42
42 N=N+1
DO 43 I=N,NCCUNT
43 ARRAY(1)=0.0

NCOUNT=N-1
GO 70O 38

2 FORMAT(25H1TAPE READING ERRUR, FILE,16)
END

* LIST8

* LABEL

CDUMPER ALLOCATOR VERSION I DUMPER
SUBROUTINE CUMPER({K,N,LOCW)
COMMON U, U
DIMENSION U(100),IU(100)
EQUIVALENCE (U,IU)

PRINT 1,LO0CW

PRINT 2
CO 10 I=1,N
J=K+I
10 PRINT 3,UCJ),IU(J),U(I)ULJ)
RETURN
1 FORMAT (52H1DUMP OF ARRAY ASSOCIATED WITH CODEWORD AT LOCATION ,O0
15)
2 FORMAT (12H- FLOATING, 6Xy SHFIXED,6X,3HBCD,6X,5HOCTAL)
3 FORMAT (El4.4,19,A10,014)
END
» FAP
COUNT 80
LBL PACKW

PACKING AND UNPACKING ROUTINES FOR STRESS VERSION 3 JULY 24,1963
ENTRY PACKHW
ENTRY UPACW
ENTRY PACP

ENTRY UPADP

#SUBROUTINE PACKW({AyIysJsKsLsM)

#STRESS
S.Jd.
*PACKS
#S5,1,2
#3-17

#18-23
#24-29
*30-35
PACKW

PROGRAMMING SYSTEM

FENVES, 3/22/63
I3d,KyeL,M INTO A
I

J

K

L

M

STZ=» 1,4
CLA 244
ALS 15
STP= 1,4
CLA= 3,4
STD= 1.4
CLA= 444
ANA M2
ARS 6
QRS+ 1,4
CLA# 5+4
ANA M2
ARS 12
ORS*» 1+4
CLA# 644
ANA M2
ARS 18
ORS#= 1+4
TRA Tyr4

#SUBROUTINE UPACW{A,I,JsK,L M)
#S.J.FENVES 3/22/63

#UNPACKS A ORIGINALLY PACKED BY PACKHW

UPACW CAL= 144

STl 244

STZx 354

STZ= b4

STZ= 544

STZ= 694

STD#= 3.4

ARS 15

STD# 244

CAL#% 1,4

ANA MASK

ALS 6

STD= 444

ANA MASK

ALS 6

STD# 554

ANA MASK

ALS 6

STD» 614

TRA Tr4
MASK OCT 000000777777
M2 oCcT 0000770C00C0
*= SUBROUTINE PADP{A,I,J+K)
R.D. LOGCHER 7/24/63
= PACKS I INTO PREFIX OF A
%+ PACKS J INTO THE DECREMENT OF A
PACKS K INTO THE ADDRESS OF A

PADP

CLA® 2+4

233

CLEAR A

STORE I

STORE J

STORE K

STORE L

STORE M

A TO ACCUMULATOR

STORE J

I TGO DECREMENT
STORE I

A TO AC

CLEAR LEFT HALF
K

STORE K

STORE L

STORE M

234

STZs 1,4
ALS 15
STP= le4
CLA= 3,4
STD» 1,4
CLA® 444
ARS 18
STA= 1.4
TRA 5.4
SUBROUTINE UPADP(A,I,J,+K)
R.D.LOGCHER 24/7/63
%+ UNPACKS WORD GENERATED BY SUBROUTINE PADP
= | FROM PREFIX OF A
#= J FROM DECREMENT CF A
K FROM ADDRESS OF A
UPADP CLA* 1,4
STZs« 2,4
STZ= 3,4
STZ= 444
STD# 3:4
ALS 18
STD# be4
CAL= 1'4
ARS 15
STD= 244
TRA Se4
END
- FAP
COUNT 200
SST
= 32K 709/7090 FORTRAN LIBRARY 9CHN
* 32K 709/7090 FORTRAN LIBRARY MIT VERSION. MARCH 28,1962
TTL MCNITCR CHAIN ROUTINE / 9CHN FOR STRESS III PROCESSCR
* ALL CARDS SEQUENCE NUMBERED WITH MI ARE ONLY FOR MIT MONITOR
* ALL CARDS SEQUENCE NUMBERED WITH STRES ARE FOR STRESS PROCESSOR
LBL STCHAS STR
* MAY 16 1963 REVISED FOR TSS BACKGROUND
* AUG 22 1963 = REVISED FOR 7094
» NOV 20 1963 = REVISED FOR STRESS 111 STR
L JAN 15 1964 = REVISED FOR STRESS III PROCESSOR TAPE ON A5 STRE
ENTRY CHAIN
CHAIN LTM
EMTM 7094
ENB =0400000 DISABLE EVERY TRAP BUT CLOCK 7094
SXA *42,4
XEC# $(TES)
AXT "R, 4
CLA= 1,4
STD CHHWRD
CHA AXT 1093,4 SET FCR
SXA XA3+1,4 A5
TXI #+4]1,94,-448 IRC = 1205 OCTAL
AXT 44,2
SXA CHWRD,2
AXT 2048,2
PXD 0,2
GRS XCI+8 SET 5L
ALS 1
ORS XCI+16 SET A

CLM

CHAICOQ10
CHAICQ20
CHAIQOQ30

MICHAICO040

CHAICCS0

ESCHAI0060
MICHAIGGT0
MICHAICOT1
ESCHAIQ072
SCHAI0GQ76
CHAICO080
CHAI0090
MICHAIG092
MICHAIC094
CHAIG120
CHAIO0130
CHAI10140
CHAICL50
CHAIC180
CHAIC490
CHAI0500
CHAIO510
CHA10520
CHAIC530
CHAI0540
CHAI0550
MICHAIC560
CHAI G570
MICHAI0580
CHA10590

CHAB

CHC

LbQ
SXA
SXA
SXA
TXI
SLQ
SXA
STP
SLQ
sTP
STP
SXA
STpP
SLQ
STP
STP
sTp
AXT
AXT
CLA
STO
TXI
TIX
TEFA
AXT
CLA
TCOB
RDS
RCHB
TCoB
TRCB
TEFB
LXA
TXH
TXH
AXT
SXA
sus
TNZ
CLA
STO
STA
CAL
ERA
PDX
TXH
TZE
CLA
STO
LXD
PXA
ADD
STO
ZET
TRA
sus
TMI
STC
TSX
cLA

XXA
CHD,4
XLA,4
CHE+3,4
#+]1,4,416
CHC+2
CHC+3,4
CHC+4
CHC+5
CHC+6
CHC+7
XLCy4
XLC+1
XLD
XLD+1
XLD+2
CHC-1
XL(O)-XLA+1,1
0,2
XLA,2
eXLA,2
*#+192,-1
#=3,1,1
*+]1

5,1
CHWRD

*

-
CHSELL
*

CHD

CHE
LBL,y2
®#429294
#43,2,1
4,2
LBL,2
LBL

CHC
LKRCW
«XLZ
«XL(0)
PROG
XG0

»1
«XXA,1,0
«XXA
PROG
«XGO
«XLZ,y1
el

=160
TEMP
INORM
»+5

NL

*+3
NREGQ
$REORG, 4
TEMP

TCOA

235

CHAIG600

AC=PREFIX +0R-,MQ=TC0O AC=2202,2203,1204 BSCHAIC610

B8SR
REW
SET IRC FOR BIN

RTB
RCH
TCO
TRC
TEF
RTB
RCH
TCO
TRC
SCH
TEF
MOVE
LOADER TO UPPER

cwvdPwWN

ANY TAPE EXCEPT 2 OR 3 MAKE 4

IS THIS THE CORRECT LINK
NOT THIS ONE

CONTROL WORD FOR READING LINK

MAKE SURE 3RD WORD IS TRA TO SOMEWHERE
IF NOT, COMMENT BAD TAPE

TRANSFER TO LINK

CHAIC620
CHAIC630
CHAIC640
MICHAIQ645
MICHAIQC650
MICHAIC660
MICHAIQ670
MICHAIG680
MICHAIGC69C
CHAIC7CO
CHAIC710
CHAIG720
CHAICT730
CHAIC740
CHAIC750
CHAIQ760
CHAIC770
CHAIC780
CHALQ790
CHAIO8CO
CHAIC810
CHAIG820
CHAIC830
CHAI0840
MICHAIC845
CHAI(C850
CHAIQ860
CHAIC870
CHAIC880
CHA1089C
CHAIC9GO
CHAICS10
CHAICS20
CHAICS30
CHAI(0940
CHAI0950
CHAIC960
CHAICS70
CHAIQ980
MICHAIC985
CHAICSSO
CHAI1CCO
CHAI1010
CHAI1020
CHAI1030
CHAI1C40
CHAI1050
STRESCHAIL051
STRESCHAI1052
STRESCHAI1053

STRESCHAI1055
STRESCHAI1056
STRESCHAI1057
STRESCHAI1058
STRESCHAI1059
STRESCHAI1060

236

TEMP
CHD

CHE

NGD

CHWRD
TCO8B
CHSEL1
LKRCW
PROG
CHSEL2
CoMm1

XLA

XXA

XXAl

XXA2

i1

XLs
12

3

XLC

XLD

STO
AXT
TRA
PZE
BSRB
TIX
TRA

TRA
STZ
REWA
TRA
LXA
SXD
TCOA
WTDA
RCHA
TRA=
PZE
TCOB
IORT

I0RT
BCI
REM
BSRA
107
NOP
TIX
TCOA
WTDA
RCHA
TCOA
WPDA
RCHA
TCOA
REWA
REWA
REWB
REWB
REWB
HTR
ENK
TQP
BSFA
RTBA
RCHA
TCCA
RTBA
TCOA
RTBA
TRA
REM
RDS
RCHB
TCOB
TRCB
SCHB

NT
5,1
«XLC

®#
CHC+1,1,1
«XXA
CHAIN

NGD SECOND EGCF NO GOOD
CHAIN

(3]

CHC
XA3+1,1
COM1+3,1
*

PRTAPE
CHSEL2
$EXIT

*

LBL,»3

COMly,7

Ty1 LINK NOT ON TAPE . JOB TERMINATEC.

1] REDUNDANCY, TRY AGAIN

«XLCyl,y1l

o« XXA

PRTAPE COMMENT BAD TAPE
o« XLX

«XXAl

«XCIL
« XXA2

REPEAT JOB
1 READ IN 1 TO CS

1 GO TO SIGN ON

e READ IN LINK
«XLZ
«XLD
«XLA
«XSCH

CHAI1C061
CHAI1070

CHAI1080
CHAI1090
CHAIL1l00
CHAIll10
CHAI1120
CHAIL130
CHAI1140
CHAI1150
CHAIL1160
CHAIL170
MICHAILL7S5
CHAI1180
CHAI1190
CHAIl200
CHAI1210
CHAI1220
CHAT1230
CHAI1240
CHAL1250
CHAI1260
CHAIl1270
CHAI1280
CHAI1290
CHAI1300
CHAIl1310
CHAI1320
CHAIL1330
CHAI1340
CHAI1350
CHAI 1360
MICHAIL365
CHAI1370
CHAI1390
MICHAI14CO
CHAIl470
CHAI1480
CHAT 1490
CHAI1500
CHAI1510
MICHAIL1520
CHAI1530
CHAI 1540
CHAI1550
CHAI1560
CHAIL1570
MICHAI1575
CHAI1580
MICHAI1l585
CHAILlS590
CHAI16G0
CHAILl610
CHAL1620
CHAIL1630
CHAI 1640
CHAI1650
CHAI1660

XLD1
XGO

XCI

XA3

XLX
XCIL
XLY

XLz
XSCH
AL (0)

PRTAPE

<XLA
« XXA
«XXAl
«XXA2
.21

- XLB
.22

.13

«XLC
«XLD
- XLD1
< XGC
< XCI

+XA3
« XL X
< XCIL
< XLY
+XLZ
«XSCH
«XL(0)

INORM
NL

NT
NREQ

LAC
CLA=
STD
TXI
TXH
TRA
REM
ocT
ocTy
ocT
ocT
acT
ocT
acy
ocT
ocT
ocT
ocTt
ocT
BCI
BCI
IORT
10CT
ioce
TCH
I0ORT
PZE
PZE
REM
EQU
COMMCN
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
COMMCN
COMMON
COMMON
COMMON
COMMON
END
LISTS8
LABEL

«XSCH,2
«XL(0)

«XLD1

e XLD1l+41,2,%#
e XXAy2,0

28

000100001200,0
0000004C0000,0
000200000000,0
000000004004,0
0004410C0440,0
04100C000100,0
000C0C010000,0
200032100002,0
1006600C0010,0
000030510100,0
000302005254,0
351441000402,0
1,1 BAD

1,

eXA3,,2
«XCIy,24

0543

0

[T TE 1)

3

0

o X+2

« XLA+4
«XXA+3
«XXA1+3
«XXA246
oll44
+XLB+2
2242
«21343
«XLC+2
«XLD+6
«XLD1+2
«XGO+1
«XCI+24
«XA3+2
o XLX+1
«XCIL+1L
«XLY+2
oXLZ+1
«XSCH+1
110

11

1

1

1

SUBROUTINE PRER2(JyN,sA)

WAS
OK,

SL
8L
7L
6L
5L
4L
3L
2L
1L
oL
11L
12L

RECORD READ IN UP TO PROGRAM BREAK

G0 TO THE LINK

COL 6=1,2
CHANNEL A,B
COL 7=2+3,4
TAPE NO.

BAD XX DEPRESS
KEY S TO RERUN

237

CHAI1670
MICHAI1680
CHAI1690
CHAIL1700
CHAILT10
CHAILl720
CHAIL1730
MICHAILl740
MICHAI1750
MICHAILT60
MICHAIL1770
MICHAIL780
MICHAILl790
MICHAI1800
MICHAI1810
MICHAIl1820
MICHAIL830
MICHAI1840
MICHAI1850
CHAI1860
CHAI1870
CHAI 1880
MICHAI1890
CHAIlS10
CHAIL1920
CHAI1930
CHAI1940
CHAI1950
CHAI1960
CHAI1970
CHAI1980
CHAI1990
CHAI2CCO
MICHAIZ2010
CHA12020
MICHAI2025
MICHAI2030
MICHAI2033
MICHAI2036
MICHAI2040
CHAI2050
CHAI2060
CHAIL12070
CHAIZ2080
MICHAIZ2090
CHAI21C0
CHAIZ110
MICHAIZ2120
CHAI2130
CHAI2140
CHAI2150
STRESCHAIZ2161
STRESCHAI2162
STRESCHAIZ2163
STRESCHAI2164
STRESCHAI2165
CHAIZ2170

238

DIMENSION IT(4),BETA(7),BUFA(B5),8(8),SYSFIL(32),PROFIL{27),

1 ARRFIL(14),U(5),IU(5)
COMMON U, IU, INDEX,IT,BETA,BUFA,B,JJC,JNMC,JLD,
1 CHECK,NMAX, INCRMy ISOLV, ISCAN,Y11I,IM0ODyJJJJSICONTISUCC,IMERG,
2 TOPyN1,NLyNT,NREQ)TN,LFILE,SYSFIL,NJ,NB,NDAT,ID,JFsNSQ,NCORD,
3 IMETH, NLDS,NFJS,NSTV,NMEMV, IPSI,NMRyNJR,PROFIL yNAME,KXYZ,KJIREL,

4 JPLS»JMINyMTYP,KPSI,MEMB,LOADS,MODN,KS,KMKST,KSTDB,KATKA,KPPLS,

[aXaKg]

801
2

802
3

803
4
500
804
5

805
6

806
7

807

808
9

809
10

810
11

811
12

812

813 FORMAT (15H LOAD ON MEMBER ,15,18H LOADING CCNDITICON
1 34H INCOMPATIBLE WITH STRUCTURE TYPE.)
PRINT 814,

14

5 KPMNS KUV oKPPRI JKRyKSAVE, KSRTCHyARRFILyJEXT

EQUIVALENCE{U, IU, INDEX), (IT,IU(2),U(2))

KENNETH F.

REINSCHMIDT,

ROOM 1-255, EXT. 2117
STRESS.+.STRUCTURAL ENGINEERING SYSTEM SOLVER

VERSION IIl.es13 AUGUST 1963
GO TO (192939495969 7+859910,11912513,14,15516417,18,19),J

PRINT 801N
60 T0 500

FORMAT (7TH MEMBER,I5,29H SINGULAR FLEXIBILITY MATRIX.

PRINT 8024sN
GO TO 500

FORMAT (46H OVERFLOW INVERTING FLEXIBILITY MATRIX,
PRINT 803,N,A

GO TO 500

)

MEMBER, I5,1H.)

FORMAT (26H COMPUTED LENGTH OF MEMBER,I5,38H NOT EQUAL TO THE SUM

1CF THE SEGMENTS.

PRINT 804,N
RETURN

FORMAT (1OH TIME USED 41649H SECONDS.)

PRINT 805,.N
GO TO 500

FORMAT (7H MEMBER, I5929H UNSTABLE,

PRINT 806,N
GO TO 500

FORMAT (5H PARTy15,22H OF PROBLEM COMPLETED.

PRINT 807
GO TO 500

+65,28H SEGMENTS HAVE BEEN DELETED.

TGO MANY RELEASES.

)

)

)

FORMAT (48H STRUCTURE FOUND UNSTABLE DUE TO JOINT RELEASES.)

CALL ALOCAT(JEXT)

NN=JEXT+N
NN=TU(NN)

PRINT B8084NN,A
CALL RELEAS(JEXT)

GO

FORMAT(6H JOINT,I5,13H

T0 500

PRINT 809,A

GO

T0 500

FORMAT (11H THE WORD #,A6,23Hs CANNOT BE TRANSLATED.

PRINT 810,N,A

GO TO 500
FORMAT (5H

THE

PRINT 81l14N,yA

GO TO 500

FORMAT (4H THE +15931H TH SEGMENT HAS BEEN ALTERED TO

PRINT 812,N,A

GO 'TO 500

IS UNSTABLE.,G12.4)

)

113,22HTH LOAC CATA FOR JOINT,I[4,15H ARE INCORRECT.)

»G15.5)

FORMAT (51H MEMBER TYPE AND LOAD TYPE ARE INCOMPATIBLE, MEMBER ,

GO TO 500

1 15,104 LOAD TYPE
13 PRINT 813,N,A

NsA

1G5,

8

1
8

*
*
*
L
*

ok ok ko ok R kR ko ok ok ok % N Ak

GO TO 500

14 FORMAT (62H MODULUS OF ELASTICITY (OR SHEAR MODULUS) NOT GIVEN FOR
LMEMBER,I5,14H VALUE USED IS,615.5)

15 PRINT 815,A '

GO 10 500

815 FORMAT (47H ALLOCATION OF UNDEFINED CODEWORD IN LOCATIGON ,05)

16 PRINT 816,NyA
GO TO 500

816 FORMAT(13H JOINT NUMBER,I5,25H FOR INCIDENCES OF MEMBER,15,16H DOE
1S NOT EXIST.)

17 PRINT 817.N
G0 TO 500)

817 FORMAT{14H MEMBER NUMBER,15,61H IS DELETED AS A RESULT OF DELETION
1 OF ONE OF ITS END JOINTS.)

18 PRINT 818,A,NsNyA
GO TO 500

818 FORMAT(21H LOADING COMBINATICON I4,25H INCLUDES LOAD CONDITION 4,3
184 WHICH IS NOT SPECIFIED YET.EFFECT OF I4,4H ON I4,16H WILL BE DE
2LETED)

9 PRINT 819,N
G0 TO 500

19 FORMAT (6H JCINT,I5,69H IS A FREE JOINT. RELEASES SPECIFIED FOR I
1T ARE THEREFCRE INCORRECT.)
END

FAP
MODIFIES 9/24/63 FOR CLOCK ENABLED AFTER TRAPPING CON REG RUNS
(TME) MERWIN C043-25
CLOCK MODIFIED FEB. 3, 1964 FOR STRESS FOR USE WITH CHAIN

LOCATION CNTRL MOVED TO LOWER COMMON - 175
LBL STINME
COUNT 220

AUGUST 27,1962
ENTRY (TINE)
ENTRY TIMER

ENTRY JOBTM

ENTRY RSCLCK
ENTRY STOPCL
ENTRY KILLTR
ENTRY TIMLFT
ENTRY RSTRTN

ENTRY (FRM7)
RSCLCK«+o.RESET CLOCK TO TIME,,ZERO,,
STOPCL GIVES BACK TIME SINCE LAST RSCLCK.
JOBTM GIVES BACK TIME SINCE START OF JOB.
TIMER SETS CLOCK TO ACT LIKE ALARM CLOCK.
KILLIR RESETS ALARM CLOCK BEFORE IT GOES OFF.
TIMLFT GIVES BACK TIME LEFT FOR JOB TO RUN.
RTNRST RETURN TO INTERRUPTED PROGRAM

WITH MACHINE CONDITIONS RESTORED AS OF
LAST INTERRUPT

CALLING SEQUENCE...CALL RSCLCK

CALLING SEQUENCE...CALL STOPCL(I)

CALLING SEQUENCE... CALL TIMLFT(I)

CALLING SEQUENCE...CALL TIMER(I,STMT)

CALLING SEQUENCE...CALL KILLTR

CALLING SEQUENCE...CALL JOBTM(I)

CALLING SEQUENCE...CALLRSTRTN

239

FRM7C0CO
FRM7CCO1
FRM7C010

FRM7C030
FRM7G040
FRM7C050
FRM7C060
FRM7C070
FRM7C080
FRM7C090
FRM7C1CO
FRM70110
FRM70120
FRM7C130
FRM7C140
FRM7C150
FRM70160
FRM70170
FRM7C180
FRM70190
FRM70200
FRM7C210
FRMTC220
FRM70230
FRM70240
FRM70250
FRM70260
FRM70270
FRM70280
FRM70290
FRM7C3C0
FRM70310
FRM7(G320

240

* REGISTERS IN LOWER CORE FRM7C330
* 7 TIR CLKL FRM7G340
CLKL STL CLKIND FRM70350
#* TTR= 6) FRMT70360
#*CLKINC FRM7C370
*JOBTIM FRM70380
FRM70390
CLKRD SYN 5 FRM70400
CLKLOC SYN [} FRM7C410
CLKTRA SYN 7 FRM70420
CNTRL SYN 75 OLD TIME LEFT. BASE POINT
LSTSET SYN 716
TMLEFT SYN 17
(JBTM) SYN 91 FRM70430
JOBTIM SYN {JBTM) FRM70440
(CKIN) SYN 92 FRMT7C450
CLKIND SYN (CKIN) FRM7C460
* FRM70470
* (TIME) FRM70480
{TIME) SYN - FRM70490
SXA TM2,1 FRMT7G5CO
™l CAL CLKRD FRM70510
STZ CLKRD FRM70520
COM FRM70530
STO TMLEFT FRM70540
STO LSTSET FRM70550
ANA =071717177 FRM70560
CRA STRT FRM70570
LXA NTBL, 1 FRM7C580
SLW TMTBL,1 FRM70590
TXI #+1y19-1 OPCOGCE VARL.FIELD FRM70600
SXA NTBL,1 FRM70610
CAL TRA7 FRMT0620
SLwW CLKTRA FRM70630
CAL TMLEFT FRM70640
COM FRM70650
STC CLKRD FRM7C660
NZT CLKIND 1LFRMT0670
TTR ™2 2FRM70680
CALL EXIT 3FRM70690
M2 AXT eyl FRM70700
TTR 1,4 FRM70710
TRA7 TTR FROM7 FRM70720
STRT PON 0+0,GOMCN VECTOR ENTRY FOR JOB TIME UP. FRM70730
* FRM70740
* GOMCN SETS CLOCK INCICATOR NON-ZERO AND THEN TO EXIT. FRM70750
* FRMT70760
GOMON STL CLKIND FRM70770
TTR S$SEXIT FRM7C780
- FRM70790
AR A RN R R R AR RS R R R R R R R R R R AR AR BRI A SRR A SRR BRANER BB R RN FRM70800
* JOBTM FRM70810
* CALLING SEQUENCE... TSX JOBTM,4 FRM70820
* PZE TIMEX RESULT IN DECR. FRMT70830
* (TXH) RESULT IN ADDR. FRM70840
» FRM70850
JOBTM SYN L FRM70860
CAL CLKRD FRM70870
COM FRM7C880

STO TMET FRM70890

241

CAL 1y4 FRM709C0

STP PRFX FRM70910

CLA JOBTIM FRM7C920

sus TMLEFT FRM70930

ACD LSTSET FRM70940

SUB TMET FRM70950

NZT PRFX FRMTC960

ALS 18 FRM7C970

STCO» l¢4 FRM70980

TTR 244 FRM70990

TMET TEMPORARY FRMT71CCO

R R AR B ER SRR RN R R R B AR R RN A N AR AR RN SRR RN R R RN R RN RSN R R R e e nFRMT1010
* TIMLFT FRM71020
* CALLING SEQUENCE«+.TSX TIMLFT,4 FRM71030
* PZE LEFT RESULT IN DECR. FRMT71040
* (TXH) LEFT RESULT IN ADDR. FRMT1050
* FRM71060
TIMLFT SYN - FRM71070
SXA TML1,4 FRMT71080

TSX JCBTM,4 FRMT1090

TXH RUNR FRM71100

TML1 AXT x4 FRM71110

CAL 154 FRM71120

STP PRFX FRMT71130

CLA JCBTIM FRM71140

suse RUNR FRM7115C

NZT PRFX FRM71160

ALS 18 FRM71170

STO= 114 FRM71180

TIR 244 FRM71190

RUNR PZE FRM712C0

AR R R AR NSRS AR AR AN R R RN NN R R T RSN AN R R R R RN NA R RN AN E AR RN RN n e nFRMT 1210
* FRM71220
R RN AR AR R AR R BN AR R AR E SRR AR RN R AR R AR AN R R R AR AR RS RN RSB AR R RN sann s FRMT7]1230
* RSCLCK FRM71240
* CALLING SEQUENCE...TSX RSCLCK,y4 FRM71250
RSCLCK SYN * FRM71260
SXA RSC1l,4 FRM71270

TSX JCBTM,4 FRM71280

TXH CNTRL FRM71290

RSC1 AXT R4 FRM71300

TTR 1y4 FRM71310

= STOPCL FRM71320
* CALLING SEQUENCE...CALL STOPCL(J) FRM71330
- FRM71340
STOPCL SYN - FRM71350
SXA STP1,4 FRM71360

TSX JOBTM,4 FRMT71370

TXH NEWT FRM71380

STP1 AXT w4 FRM713S$0

CAL 144 FRM71400

STP PRFX FRM71410

CLA NEWT FRM71420

SusB CNTRL FRMT71430

NZT PRFX FRM71440

ALS 18 0=FORTRAN TYPE FRMT1450

STO» 1+4 NCON-ZERO=MAC TYPE FRM71460

TTR 214 FRM71470

NEWT FRM71490

R R R R NE R R E RN NN R AR R RN B R R AR AR AR AR RS RN RS RN R R R R AR AR E RN RGN R R RR AR R R aFRMTL5C0

242

x ok o ok ok X

*

TIMER

CLK1

CLK2

CLK3

CLK4
CLK5

SMLR

CLK6

SYN
SXA
CAL
sTP
CAL=
NZT
ARS
SLW

LXA
TXL
SX0
CAL
STZ
Com
XCL
XCA
ADD
STO
AXT
CLA
sus
STC
TXI
TXH
CAL
ANA
ALS
GRA
SLW

LXA
SXD
SXD
AXT
CAL
ANA
LAS
TRA
NGP
TRA
TXI
TXH
L0Q
STQ
TRA

LbQ
CAL
SLW
TRA
CAL

TIMER
CALLING SEQUENCE«+«CALL TIMER(I,N)
e+« EXECUTE TIMER.(A,B)
WHERE I GIVES TIME IN 60THS OF SECOND FOR CLOCK TO RUN
BEFORE ALARM. N CONTAINS LOCATION WHERE CONTROL IS SENT
AFTER ALARM CLOCK GCES OFF.
»
CLK10,1
1s4
PRFX
144 TIME INTERVAL IN SECONDS
PRFX
18 O=FORTRAN. NON-ZERO=MAD
NEWINT TIME INTERVAL IN 60THS OF A SECOND
CCOMPUTE ELAPSED TIME FROM LAST READING
NTBL,1 NO. OF OPENINGS IN TABLE
CLK10,y1,0 TABLE FULL
CLK2,1
CLKRD
CLKRD

-TIME LEFT IN AC
LSTSET LAST SETTING-TIME LEFT
TMUSED =TIME USED IN 60THS OF SECOND.
Nyl
TMTBL,1 DECREASE TIME LIMITS
TMUSED ON ALL ENTRIES
TMTBL,1 IN THE TABLE
#+1,1,-1
CLKLylyun
214 PICK UP LGCATION
=0777177
18 TO TRANSFER TO WHEN CLOCK GOES OFF
NEWINT
TEMP
SEARCH FOR PROPER PCSITION IN TABLE.
NTBL,1
CLKS,1
CLKS8,1
Nyl
TMTBL,1
=0717117117
NEWINT
CLKé4

SMLR

#+1,1,-1

CLK3,1, %%

TEMP IF NEW INTERVAL IS LESS
TMTBL,1 THAN REST THAT ARE

CLK9 IN THE TABLE

FOUND A LARGER VALUE. INSERT NEW VALUE
IN TABLE AND PUSH DOWN THE REST.
TMTBL,1

TEMP

TMTBL,1

CLK7

TMTBL,1

FRM71510
FRM71520
FRM71530
FRM71540
FRM71550
FRMT1560
FRM71570
FRM71580
FRM71590
FRM71600
FRM71610
FRMT1620
FRM71630
FRMT71640
FRM71650
FRM71660
FRMT1670
FRM71680
FRMT1690
FRMT1700
FRM71710
FRM71720C
FRM71730
FRMT1740
FRM71750
FRMT176C
FRMT1770
FRM71780
FRM71790
FRM71800
FRM71810
FRM71820
AFRM71830
FRM71840
FRM71850
FRM71860
FRM71870
FRM71880
FRM71890
FRM719C0
FRMT1910
FRMT1620
FRMT1930
FRM71940
FRM71950
FRM71960
FRM71970
FRM71980
FRM71S90
FRM720C0
FRM72010
FRM72020
FRM72030
FRM72040
FRMT72050
FRM72060
FRM72070
FRM72080
FRMT72090
FRMT72100

243

STQ TMTBL,1 FRM72110

XCL FRM72120

CLK7 TXI #4+4l41,-1 FRM72130

CLK8 TXH CLKG6yl,nn FRMT72140

STQ TMTBL,1 FRMT72150

CLK9 TXI #+1,1,-1 FRM72160

SXA NTBL,1 FRM72170

- SET CLOCK FOR NEW VALUE FRM72180
CLA TMLEFT - FRMT72190

sus TMUSECD FRM722C0

suB CLKRD FRM72210

STO TMLEFT ADJUST TOTAL TIME COUNT FRM72220

XCL LOWEST INTERVAL IN MQ FRMT72230

ANA =07771777 FRM72240

SLW LSTSET FRMT72250

COoM FRMT72260

STO CLKRD RESET C{5) TO NEW VALUE FRM72270

CLK10 AXT LA TR FRM72280

TRA 344 EXIT FRM72290

TMUSED FRM723CO0
NEWINT FRMT2310
TEMP FRMT72320

PRF X FRM72330

N EQU 10 FRM72350

TMTBL BES N FRM72360

NTBL PZE N. FRM72370

AR R R R AR AR R R AR R SRR R R R R R R RN R AR E RN SR AR AR B ASRE R AR e R A FRMT2380
* KILLTR FRM72390
* CALLING SECUENCE...CALL KILLTR FRM72400
* KILLS LAST TIMER ALARM CLOCK SETTING FRMT72410
* EXCEPT IF LAST SET FOR J0OB TIME SETTING. FRM72420
* FRMT2430
KILLTR SYN * FRM72440
‘ SXA CL1,l FRM72450

LXA NTBL, 1 FRMT72460

TXI #+1,1,1 FRMT72470

CAL TMTBL,1 FRM72480

sTp PRFX FRM724S50

ZET PRFX FRM725C0

TRARTN TTR RTN FRM72510
ST2 KILLOV FRM72520

TNO 42 FRM72530

STL KILLOV FRMT72540

CAL CLKRD FRMT72550

cOM FRMT72560

XCL FRM72570

XCA FRM72580

ADD LSTSET FRM72590

sT0 LSTSET FRM726C0

CAL TRARTN FRM72610

ALS 18 FRMT72620

STD TMTBL, 1 FRM72630

NZT KitLov FRMT72640

T0V 4] FRMT72650

LXA CL1,1 FRM72660

TTR FROM7 TREAT AS IF TRAP FROM 7. FRMT726170

KILLOV FRM72680
* FRM72690
- JOB TIME SETTING CANNCT BE KILLED. FRM727C0
RTN LXA CL1,1 FRM72710

244

TTR

*

144

FRM72720
FRM72730

AR R R R R R SRR R AR SRR R NS R E R R R R E RSN SRR R TR AR AR RS RS RR AR B ER AR R RN FRMT2T740

*

*

RSTRTN SYN
CAL
ALS
ctLa
ALS
ORA
NZT
TOV
L0Q
LXA
LXA
LXA
TTR=

RSTRTIN
CALLING SEQUENCE...CALL RSTRTN
»

.

2

SPQ

2
LOGAC
OVFL
#+1

MC
CL1,1
CL2,2
CL4,4
6

FRM72750
FRM72760
FRM72770
FRM72780
FRM72790
FRM72800
FRM72810
FRM72820
FRM72830
FRM72840
FRM72850
FRM72860
FRM72870
FRM72880
FRM72890

RN RS RS RS R R R AR A R AR AR AR E R R R B R SRR R F AR B R R R TR R AR BER RS AR AR AR e FRMT29C0

*
»
-
*

(FRM7) SYN

FROM7 SYN

SXA

SXA

SXA

STz

STQ

SLW

ARS

STO

TNO

STL

LXA

X1

CAL

PDX

SXA

ALS

PBT

TTR

TTR

SXA

SXD

AXT

CLKL CLA

sus

STO

TXI

CLKM TXH

ANA

SLW

CLA

SuB

ST0

CAL

SLW

COM

EXTERNAL REGISTERS REFERENCED
CLKRD 5
ENTRY FROM 7 AFTER CLOCK HAS GONE OFF.

*

-

CL1,1

CL2,2

CL4,4

OVFL

MC

LOGAC SAVE LOGICAL ACCUMULATOR
2

SPQ

42

OVFL

NTBL,1

#+1,1,1

TMTBL,1

0,2 SET TRANSFER
TRAD,2 LOCATION.

2

*42

CLKN GO TO MONITOR SETTING. DONT RESET CLOCK

NTBL,1

CLKM,1

Nyl

TMTBL,1 REVISE PREVIOUS

LSTSET ENTRIES IN THE TABLE.

TMTBL,1

#4l,1,-1

CLKLyl,n#

=07771777 USE LAST ENTRY IN TABLE

NEWINT FOR NEW SETTING

TMLEFT REVISE TOTAL TIME

LSTSET LEFT FOR JOB.

TMLEFT

NEWINT UPDATE LSTSET AND

LSTSET CHANGE SETTING OF
LOCATION 5 TO NEXT

FRM72910
FRM72920
FRM72930
FRM72940
FRM72950
FRM72960
FRM72970
FRM72980
FRM72990
FRM73000
FRM73010
FRM73C20
FRM73C30
FRM73040
FRM73050
FRM73060
FRM73070
FRM73080
FRM73090
FRM731C0
FRM73110
AFRM73120
BFRM73130
CFRM73140
DFRM73150
FRM73160
FRM73170
FRM73180
FRM73190
FRM73200
FRM73210
FRM73220
FRM73230
FRM73240
FRM73250
FRMT73260
FRM73270
FRM73280
FRM73290
FRM73300
FRM73310

CLKN

CcLl
cL2
CL4
TRAD
OVFL

SPQ
LOGA
MQ

LI R I

(SPH)
(CSH

TwWO
FOUR

-
»
*
CMAIN
[S

15

34
35
36

40

STO CLKRD ENTRY IN THE TABLE.
RESTORE MACHINE CONCITIONS
SYN * A
ALS 2 TURN ON OVERFLOW LIGHT
CLA SPQ
ALS 2 RESTORE +, Qs AND S
ORA LOGAC
NZT QVFL
Tov =+]1
LoQ MQ
RCT
AXT we,] RESTORE INDEX REGISTERS
AXT g2
AXT #%,4
TTIR e
c
END
FAP
DUMMY INPUT-CUTPUT ROUTINE FOR IBM MONITOR
CHANGES PRINT STATEMENT 7O WRITE OQUTPUT TAPE 2
CHANGES READ STATEMENT TO READ INPUT TAPE 4
LBL DUMIC
ENTRY (CSH)
ENTRY (SPH)
CLA TWO
TRA#® ${STHM)
) CLA FGUR
TRA# ${TSHM)
[s[on } 200C€000
ocT 40CCGCO
END
LIST8
SYMBOL TABLE
LABEL
176
TRESS III 6 LINK CHAIN VERSICN

DIMENSION Y(646),T(6,6),Q(6,6),U(36),IU(36),SYPA(40),FILLI5)
COMMON UsT9Q,CHECK ,NMAX, INORM, ISOLV,ISCAN, [TI1,IMOD, ILINK,ICONT,
1ISUCC,SYPAyNJ,NB,NDAT,IDyJFyNSQ,NCORDy IMETH,NLDSyNFJS,NSTV
2 yNMEMV 3 IPSTIyNMRyNJRy ISODGyNDSQsNDJ»SDJyNPRyNBByNFJIS1,4J4JC+JDC,
3JMIC,JMPC,JLD s JEXTN,MEXTN,LEXTN, JLCoNLDSI, IYOUNG,ISHER, IEXPAN,
4IDENS,NBNEW,FILL,
SNAME s KXYZ s KJREL 3 JPLSy JMINSMTYP,KPSI,MEMB,
6LOADS, INPUT KSyKMKST KSTDB,KATKASKPPLSoKPMINyKUVyKPPRI,KRsKMK,
TKVyK33,LA2R 5 LA2RT,NV oNTP 4NSCR7,NSCR8yNSCRI,NSCR10,KDIAG,KOFD
8G,IOFDG, LDNMyMEGAO s JEXTy JINT KUDBP yKMEGAyKPDBP yJTYP, MTYP1,KBsMLOAD
94 JLOAD yKATRyLEXTyKYOUNG,KSHER, KEXPAN,KDENS
EQUIVALENCE(U(L1),IU(L1),Y(L1))

IF{INORM)33,15,33

IF(ISOLV-1)40,36,75

CALL PRERR(2)

IF(ISOLV-1)36,36,35

IF(ICONT)36,10,36

CALL PRERR(3)

ISCAN=2

CALL PHAS1A

245

FRM73320
FRM73330
FRM73340
FRM73350
FRM73360
FRM73370
FRM73380
FRM73390
FRM734C0
FRM73410
FRM73415
FRM73420
FRM73430
FRM73440
FRM73450
FRM73460
FRM73470
FRM73480
FRM73490
FRM73500
FRM73520

246

50
60
15
78

80
85

82

ISCAN=ISCAN

GO TO {50,10),ISCAN
ISUCC=1SucC

GO T0 (70,60),1ISUCC
IF{ICONT)36410,36
CALL CHAIN{(2,A4)
ISuCC=1IsuccC

GO TO (80,78),ISuUCC
CALL PRERR(S)

GO 7O 60
IF(ICONT)85,82,85
CALL PRER2(6,ICONT,0)
GO T0 40

CALL PRERR{6)

CALL STOPCL(ITIME)
ITIME=ITIME/60

CALL PRER2(44ITIME,0.)
GO 1O 40

END

LIST8

LABEL

CPHAS1A VERSION 3 PHAS1A FENVES - LOGCHER - MAZZOTTA JAN 17, 1964

TI®ETEN

o0

11

12

13

14

10

SUBROUTINE PHASLA

DIMENSION LABL(12),BETA(85),SYSFIL(27),PRBFIL{3),CWFIL{49),U(99),
11U(2)

CIMENSION B(6)

COMMON UoTUsA,TAy)LABL 4BETA K, ITABLE,JyNE,ITS,IBy IS, 1L, INDEX,IN,
1CHECK yNMAXy INORM, ISOLV, ISCAN,II1,IMOD,JJJJ, ICONT,ISUCC,IMERG,TOP,N
21,NLyNT,NREQsTNyLFILE,TOLER, IPRG,IRST, IRLD, IRPR,SYSFIL,
3NJyNB,NDAT, 1D, JF,NSQyNCORD 9 IMETHsNLDSyNFJSsNSTV,NMEMV, IPSTNMRyNJR
449 1SODGyNDSQyNDJ, IPDBP, IUDBP,NBByNFJS1,JJCyIDCyIMIC,IMPC,ILDyJEXTN,
SMEXTNyLEXTNyJLCyNLOSI,IYOUNGs ISHEAR, IEXPAN, IDENS y INNN,NLDG

COMMON JTSTAB,PRBFIL,

ONAME s KXYZyKJRELy JPLSy JMIN,MTYPKPS1 4 MEMB yLOADS yMODN,KS,KMKST,KSTODB
TsKATKA KPPLS g KPMNS KUV o KPPRIyKRyKSAVE)KS19KS24KS3,KS44KS5,KS6,KST,y
8KSByKS9,KS1OyKDIAG+KOFDGyKAD+LOADNy MEGAD, JEXT JINT ,KUDBP KMEGA,
IKPDBPy JTYPyMTYP1,KByMLOAD, JLOAD»KATR,LINT,KYOUNG ,KSHEAR,KEXPAN

COMMON KDENS,CWFIL

EQUIVALENCE(U,IUyA, TA)»(UL2)9IU(2),LABL)»{U(14),BETA)4{U(99)+K,BK)

LIST14LIST2,LIST4,LIST7,LIST8,LIST10,LISTLL

8(1)=000000C00001L

B(2)=CC00CC0CC002

B8(3)=CC0000000004

B(4)=0C0000C00010

B{6)=000000CCC0O17

FFLAG=C.

CALL PRERR(1)

FIRST WORD

X=0

T
=]

I1=MATCH(LISTL KM}

GO TO (12914+97+96415,16),11
IX=1X+1

IF{IX-12) 13,10,10

M=0

GO T0 11

J=K

IF(1TABLE-1) 98,100,200

15

16
17

o000

100

301

302
304
305

[gNaRsNal

400
401

402
430
B420

403
404
4041

405
B407

409
410

411

K1=K

GO TO 17

IF(K1-4) 17417,95

ITABLE=0

GO 10 (100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,140
10,1500,1600,1700,1800,1900,2000),K1

MEMBER

SECOND WORD FOR MEMBER

CALL MEMDAT

NE=NE

GO TO(10,48,87+91992+96,97998,99,85,95,94,90),NE

SECONC WORD FOR JOINT

CALL JTDAT

NE=NE

GO TO(10+48990991492+93,98,99,96,97),NE

FIRST WORD NUMBER
I2=MATCH(LIST4,K ,4)

GO TO (99,98,97,96,3C1,95),12
K2=K

I3=MATCH(O,4K ,2)

GO TO (99,302,97996,994495),13
K3=K

GO TO (305,10),ISCAN

K4=1

CALL SIZED{K2yK3,K4)

IF(K4-2) 10,90,90

FIRST WORD TABULATE

READ WCOROS

FLAG=0.0

I12=MATCH(LIST2,K,0) .
GO TO (403,985974+96 4402+95),12
IF(K-5)420,1720,430

RESULTS REQUESTED
IF({K-61401,420,401
FLAG=FLAG+B(K)

GO TO 401

PROCESS REQUESTS

GO TO (404,10),ISCAN

IFUICONT) 4041,405,4041

IRPR=1

CALL ALOCAT(LOADS,JLC)

60 70 (91 ,411,410,415),1M0D
NORMAL k
IF{JLC)410,407,409
FFLAG=FFLAG+FLAG

GO TO 10

CALL ALOCAT(LOADS,JLC)
JS=LOADS+JLC

JT=IU(JS)+1

U{JT)=U(JTI+FLAG

GO 70 421

CHANGE

JS=LCADS+JLC

JT=IU{JS)+1
CIIT)I=(UJIT)*TTT7TTTT7T700000) +FLAG

247

248

GO TO 421

C CELETE

415 JS=LOADS+JLC
JT=1U(JS)+1

B UGJT)==(=-(U(JT))I+FLAG)

421 CALL RELEAS(LOADS,JLC)
GO TO 10

c

C LOADING

500 GO TO (524,10),ISCAN
524 IF(ICONT) 501,502,501
501 GO TO (91,506,511,506),IMOD
502 IF(NLDS) 503,86,503
503 JLD=JLD+1
IF (JLD-NLDS) 504,504,85
504 CALL DEFINE(LOADS,JLDy2440,5G,y1)
CALL ALOCAT(LOADS,JLD)
NLDG=NLDG+1
L=L0OADS+JLD
IK=IUu(L)+1
8 UTIK)=U{IK)+FFLAG+100000000GCO
IU(IK+1})=10
I2=MATCH(LIST1,K,0)
IF(12-5)513,520,513
520 IF(K-19)513,521,513
521 TIU(IK)=TU(IK)+32768
513 IK=1IK+1
00 505 IX=1,12
M=IK+IX
NM=KBUF+IX
505 IU(M)=IU(NM)
JLC=JLD
530 CALL RELEAS{LOADS,JLC)
GO TO 10
506 12=MATCH({0,K,2)
IF(12-2) 85,507,85
507 JLC=K
IF(IMOD-2)508, 10,508
508 CALL ALOCAT(LOADS,JLC)
L=LCADS+JLC
IK=IU(L)+1
CALL UPADP{U(IK)LTYP,NLD,A)
IU(IK)=0
IF(LTYP-2)522,523,522
522 D00 510 IX=1,NLD
M=L0OADS+JLC
M=JU(M)+14+IX
IF(IU(M)) 509,510,509
509 CALL UPADP(IU{(M),INDEX,IPL,JA)
GG 70 (5091,5092,5092,5092,5091), INDEX
5091 CALL ALCCAT(JLOAD,JA)
CALL RELEAS(JLOAD,JA)
LL=JLOAD+JA
GG T0 5093
5092 CALL ALOCAT{MLOAD,JA)
CALL RELEAS(MLOAD,JA)
LL=MLCAD+JA
5093 LM=JU(LL)+2
IU(LM)=TU(LM)-1
LM=JUILL)+IPL

249

IU(LM) =0
510 CONTINUE
523 CALL CEFINE(LOADS,JLC,1,0,0,1)
NLDG=NLDG-1
GO 710 530
511 JLD=JLD+1
IF(JLO-LEXTN) 504,504,512
512 CALL SIZED(4,JLD,2)
GO TO 504

STRUCTURE

[aNaNaXal

STORE PROBLEM TITLE
600 CALL RSCLCK
CALL START(5,301,NMAX)
IMOD=1
ISCAN=1
ISOLv=1
I=MATCH(KBUF,0,5)
CALL CEFINE(NAME,12,0,0,1)
CALL ALOCAT(NAME)
DO 601 I=1,12
JS=NAME+]I
JT=KBUF+I
601 ULJS)I=UlJIT)
CALL RELEAS(NAME)

c INITIAL CHECK
B CHECK=0000067741C0
GO T0 10
C
C METHOD
C
C READ SECOND WORD AND SET IMETH

700 [2=MATCH(LIST7,K,0)

GO TO (99,98,97996,701,95),12
701 GO TO (96,702,703,96,96),K
702 IMETH=1

GG T0O 704
703 IMETH=2
C TESTS
704 GO TO (706+90,90,90),IMOD
B706 CHECK=CHECK+00000000C040

GO 70 10

TYPE

(X aNa Kl

READ TWO WORDS AND FIND TYPE, SET NCGRD,JF
800 I2=MATCH(LIST11,K,0)

GO TO (99,98,97,96,801,95),12
801 ISODG = O

GO TO (802,803,964,96,96),K

802 JT=0
NCORD=2
GO TO 804

803 JT1=3
NCORD=3

804 I3=MATCH(LIST11,K,0)

GO TO (99+98+97996,805495)4+13
805 GO TO (96496,806,807,808),K
806 JT=JT+1

250

IS0DG =1
GO 710 809
807 JT=4T+2
GO TO 809
808 JT=JT+3
809 GO TO (810,811+811+8114812,89),47

810 JF=2
GO T0 813
811 JF=3
GO TO 813
812 JF=6
C TESTS
813 GO TO (820,814,90,90),1IMOD
c CHANGE TEST TO BE INSERTED HERE

814 GO TO 820
820 GO TO (821,10),ISCAN
821 ID=JT

IF (IS0ODG) 823,822,823
822 ISODG = JF
823 NSQ=JFsJF

B CHECK=CHECK+00000000C020
GO TO 10
C
C MODIFICATICN
c
c READ THIRD WORD, TEST, CALL RESTORING SUBROUTINE

900 I2=MATCH(LIST1G,K,4)

GO TO (99,98,97+96,901+95),12
901 GO TO (903,10),ISCAN
903 GO TO (904,905,96),K

c FIRST-RESTORE
904 CALL RESTOR
IRST=1
GO TO 906
c LAST-REALLOCAT

905 CALL ALOCAT({KXYZ)
CALL ALOCAT(JPLS)
CALL ALOCAT(JMIN)
CALL ALOCAT(KPSI)
CALL ALOCAT(JTYP)
CALL ALOCAT(MLCAD,O)
CALL ALOCAT(JLOCAD,0)
CALL ALOCAT(LCADS,0)
IRPR=0
IRST=C
IRLD=0C

C © STORE NAME

306 I=MATCH(KBUF,0,5)
CALL DEFINE(MODN,12,0,0,1)
CALL ALOCAT(MODN)
CO 907 I=1,12
JS=MODN+1
JT=KBUF+1

907 U(JS)=UlJT)
CALL RELEAS(MGDN)

ISOLvV=1
GO 70 10
C
c MODIFIERS
c

[gEaNaNal

(o] [aXaKal

1000

1100

1200

1300
1310

1311
1301
1302
1303
1304
1308

1305
1306

1400

1500

1600

1700
1701
1702

1720
1721

1704
1703

1800
1807
1808
1801

1802

CHANGE
IMOD=2
GO 70O 10
ADDITICN
IM0D=3
GO TO 10
DELETION
IMOD=4
GO TO 10

SOLVE

READ THIRD WORD
IF(ISOLV-1) 1310,1311,1310
IsucC=2

GG TO 1308
I12=MATCH(LIST1GCsK,4)

GO 70O (1302,1301,1301,1301,1305,1301),12
ERROR INTERPRETED AS BLANK
CALL PRERR(7)

GO TO (1303,1308),ISCAN
ICONT=0

CALL PHAS1B

RETURN

SCLVE THIS PART

GO TO (1301,1301,1306)+K
ICONT=ICONT+1

GO TO (1304,+10),ISCAN

sTGP

CALL EXIT

PROBLEM FINISHED, RETURN AND END
ISCAN=2

GO TO 1308

CUTPUT MODE

IMaD = 2

GO T0 10

SELECTIVE PRINTING

I2 = MATCH(LIST2,K,0)

GO TO (10,1704,97,96,1701,17C0),12
IF(K-5)1702,1720,1700

K2=5-K

IF(KPPRI)1700,88,170C

PRINT DATA

GO TO (1721,10),ISCAN

CALL CPRINT

CALL PRERR(1)

GO 7O 10

GO TO (1703,17GC0),ISCAN

CALL SELOUT(JLC,K2,4K)

GC T0 1700

CONSTANTS

IF(IMCD-4)18C7,90,90

IM=0

I2 = MATCH(LIST8,K,0)

GO 70 (10,1830,1801,96,1802,1808),12
VALUE = BK

GO TO 1808

GO TO (1803,1804,1806,1806,1806,1806),K

251

252

1803 U(IJ) = VALUE
GO TO 1808
1804 GO TO (1841,1808), [SCAN
1841 CALL ALOCAT(U(IM))
CALL RELEAS(U(IM))
DO 1805 I = 1,MEXTN
IL = TUCIM)+I
1805 U(IL) = U(1J)
WiId = 1
G0 TO 1808
1806 IJ = K+188
IM = 1J+57
CALL DEFINE(U(IM) yMEXTN,Q,0,1)
GO TO 1808
1830 IF(IM) 98,98,1831
1831 GO TO (1832,1808),1SCAN
1832 IF(K-MEXTN) 1835,1835,1833
1833 IF(ICONT) 1834,1836,1834
1834 CALL SIZED(2,K,2)
CALL CEFINE(U{IM),MEXTN;0,0,1)
1835 CALL ALOCAT(U(IM))
CALL RELEAS{U(IM))
Wwirg = 1
IL = TUCIM)+K
ULIL) = VALUE
GO TO 1808
1836 CALL PRERR(31)
GO TO 1808
c COMBINATION LOADING
1900 IF{JLC) 1912,86,1912
1912 GO TO (1901,101), [SCAN
1901 CALL ALOCAT(LOADS,JLC)
L=LOADS+JLC
IK=IU(L)+1
CALL UPADP(U(IK),LTYP,NLD,A)
IF (LTYP-2)84,1902,84
1902 IF(ICONT)1925,1903,1925
1903 IT=0
18=0
1907 12=MATCH(LIST11,K,0)
GO TO (1920,1904,1908,1907,1907,1907),12
1904 IF(JLC-K) 1950,1950,1953
1950 CALL PRER2(18,JLC,K)
IF(IB-IT) 1951,1951,1952
1951 12=MATCH(LIST11,K,0)
GO TO (1920,1904,1907,1951,1951,1951),12
1952 18=1B-1
GO T0 1907
1953 IT=1T+1
Iw=IT
1911 NLS=TU(IK+1)
IF (2% {NLD+IL)-NLS)1906,1906,19C5
1905 NLS=NLS+10
IU{IK+1)=NLS ,
CALL DEFINE{LOADSJLC;NLS#14,0,0,1)
L=LOADS+JLC
IK=IU(L)+1
IF(IB-1T)19064+1906,1909
1906 IS=IK+12+2%(NLD+IT)
IULIS)=K

253

GO TO 1907
1908 IB8=IB+1
IF(IB-1T)1909,1909,1910
1909 IS=IK+13+2=(NLD+IB)
U(IS)=8K
GO TO 1907
1920 IUCIK)=IULIK)+IT
1921 CALL RELEAS{LOADS,JLC)
G0 7O 10
1910 IL=1IB
GO 1O 1911
1925 GO 10O (91,1937,1903,1937),1IM0D
1937 HOLD=C
1926 12=MATCH(LIST11,K,0)
GO TO (1921,1927,1933,1926,1926,1926),12
1927 DO 1928 I=1,NLD
IT=1K+12+2+]
IF({K-TU(IT))1928,1939,1928
1928 CONTINUE
1939 IF(IMOD-2)91,1929,1932
1929 IF(HOLD)1931,1930,1931
1930 IHOLD=2
GO TO 1926
1931 IHOLD=1
ULIT+1)=HOLD
GC TO 1926
1932 IutIT)=0
GO TO 1926
1933 IF(IHOLD-2)1935,1934,1935
1934 U(IT+1)=BK

GO TO 1926
1935 HOLD=8K
GO TO 1926
c CHECK JOINT STABILITY
C SET PARAMETER

2000 JTsSTAB=1

IF(ICGNT) 2001,10,2001
2001 GO 1O (91,10,10,2002),IMOD
2002 JTSTAB=0

GO 10 10
c
C ERROR MESSAGES PRINTED WITH SUBRCUTINE PRERR
99 I=14
GO T0{(50,50,50,10),IMOD
98 I=9
GO T0 50
97 I=12
GO TO S0
96 CALL PRER2(9,0,8BK)
48 1=7
GO TO 50
95 1=8
GO TO 50
94 1=10

B50 CHECK=CHECK#777777773717
51 CALL PRERRI(I)
GO TO 10
93 1=30
B CHECK=CHECK#777777677777
GO TO 51

254

32

91

90

B52

89

86

85

87

88

84

LIST1

LIST2
LIST3
LIST4

LISTS

LISTé6

LIST?

I=31

CHECK=CHECK*T77T771757177177

GO 70 51
I=11
GO 70 52
1=29

CHECK=CHECK*777777737777

GO TO 51
1=13

CHECK=CHECK#7777777617717

GO T0 51
I=18

CHECK=CHECK=*777777377777

GO 70O 51
I=32

CHECK=CHECK#7771771775717177

GO TO 51
I=33

CHECK=CHECK*77777777115177

GO TO 51
=21
GO TQ0 51
=28

CHECK=CHECK®*777777757777

GO TO 50
END
FAP
LBL
COUNT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
DEC
8CI
BCI
BCI
DEC
BCI
DEC
BCI
DEC
BCI
DEC
BCI
BCI
BCI
BCI
BCI
DEC
BCI
BCI
DEC
BCI

LISTS

20 :

LISTL

LIST2

LIST3

LIST4

LISTS

LIST6

LIST7

LIST8

LIST10

LISTI1

20
9,MEMBEROJOINTNUMBERTABULALOADINSTRUCTMETHODOOTYPEMODIFI
94CHANGEADDITIDELETIOSOLVEOOSTOPFINISHSELECTOPRINTCONSTA
2,COMBINOCHECK

8

8,DISPLADISTORREACT IFORCESOODATAOOOALLMEMBEROJOINT

6

6+COORDIRELEASOLOADSOOLOADDISPLANUMBER

4

44 JOINTSMEMBERSUPPORLOADIN

37
9,00000X00000Y0C000ZOFORCEMOMENTDISPLARGTATI00000A000001
9,000ENDOSTARTCONCENUNIFORL INEAROOGCOPOCOOOWOO00WAOQGCHB
8,C000LA0000LBO0000SO00COFSUPPOROOFREEQCAREAINERTI
8+0CC00LLENGTHOSTEELOOBETAGOO0AXO000AYOO00AZ0000IX
3,00001Y0000IZDISTOR

16

9,00FROMOOGOESNUMBER INCIDEPROPERRELEASCONSTRDISTORCOLOAD
7,0L0ADSPRISMASTIFFNFLEXIBVARIABOSTEELOGOEND

5

5,PRISMASTIFFNFLEXIBOSTEELVARIAB

LIST
LISTL
LIST1
*

-
CMEMD

1¢0
101
102
103

104
105

106
107

108

114

115
116
117
118

109

110

255

8 DEC 6
8C1I 65000ALLOCOBUTO000CECOOCOOGCOOCTEDENSIT
G DEC 3
BCI 3,0FIRSTOOLASTOOPART
1 DEC 5
BCI 5+0PLANEOSPACEOTRUSSOFRAMEGOGRID
END
LISTS
LABEL
AT OF PHAS1A STRESS III FENVES-LOGCHER-MAZIOTA NOV. 19,1963

SUBROQUTINE MEMDAT

CIMENSION LABL(12),BETA(85),SYSFIL(27),PRBFIL(6),CWFIL(49),U(99),
11u(2)

COMMON UsIUgAyIA LABL,BETA K, ITABLEyJoyNE,ITS, 1B,y IS,IL,INDEX,IN,
1CHECKyNMAXy INORMy ISOLV 4 ISCAN,I11,IMOD»JJJJ,ICONT,ISUCC,IMERG,TOP,N
213NLyNTyNREQy TNy LFILE, TOLER,IPRG,IRST,IRLD,IRPRySYSFIL,y"
3NJoNByNDATyIDyJFyNSQGyNCORDyIMETH NLDSyNFJSNSTV,NMEMV,IPSI NMR,NJR
491SODGyNDSQC,NDJ,IPDBP,IUDBP,NBByNFJS14yJJCyJDCyIMIC,JIMPC,JILD,JEXTN,
SMEXTNyLEXTN,JLCyNLDSI,IYOUNGy ISHEAR,IEXPAN, ICENS,PRBFIL,

O6NAME ¢ KXYZ 3y KJRELy JPLSy JMINyMTYP,KPSI,MEMB,LOACS 4MODN,KS,KMKST ,KSTDB
T+KATKA KPPLS yKPMNS y KUV KPPRI KRy KSAVE s KS1,KS29KS39KS4,KS59KS69KS Ty
BKSB3KS9,KS10,KDIAG,KOFDG,KAD,LOADN,MEGAO ,JEXT,JINT ,KUDBP 4KMEGA,
IKPDBPyJTYPyMTYP1,KByMLOADy JLOADyKATR,LINT,KYOUNG ,KSHEAR y KEXPAN

COMMON KDENS,CWFIL

EQUIVALENCE(U,IU,A,IA),(U(2),IU(2),LABL)»(U(14),BETA),{U(99),K,BK)

DIMENSION IHOLD(12),HOLD(64)

LIST5,LIST6,LISTIL

NE=1

IF(ITABLE-1) 100,115,96

I2=MATCH(LIST6,K,0)

GO TO (1281,101,97,96,102,104),12

J=K

GO 1O 100

IF{K-3) 103,100,103

K2=K

IF{J)114,105,114

ITABLE=1

JIB=0

NSS=0

KN=K2

GO 10 {99,99,99,10,106,10,10,10,10,10,158,158,158,158,158,10),K2

00 107 1I=1,12

IHOLD(I)=0

CC 108 I=1,64

HOLD{(I)=0.

JHOLD=C

GO TO 100

J18=0

NSS=0

KN=K2

IF(J-MEXTN) 118,118,116

IF(ICONT) 92,92,117

CALL SIZEDI(24J,2)

GO 70(120,120,96,120,109,1304131,150,151,151,158,158,158,158,158,
1 154),KN

I2=MATCH(LIST6,4K,0)

GO TO (99,98,97,96,110,158),12

K2=K

IF(K-10) 96,96,158

MEMBER INCIDENCES

256

120
121
122
123

124
125

126

127

1281
128

130
131
132

1320
133
134
135
136

137

138

145
B143

Bl44

146

150

151
152

153

I3=MATCH(0yK3,2)

IF(13-2) 128,121,96
I13=MATCH(0,K4,2)

IF(I3-2) 99,122,96

GO TO (123,10),ISCAN
IF(ICONT) 126,124,126
JMIC=JMIC+1

14=JPLS+J

IU(1J)=K3

1J=JMIN+J

IU(1J)=K4

G0 70 10

IRST=1

GO 70 (91,125,124,127),IMOD
JMIC=JMIC~1

JMPC=JMPC-1

CALL ALOCAT(MTYP)
1J=MTYP+J

Iut1J1=0

CALL RELEAS(MTYP)

CALL DEFINE(MEMByJ9090+0,0)
GO 7O 10

IF(J) 128,10,128

GO TO (99+99+99,127), IMOD
MEMBER RELEASES AND CONSTRAINTS
IX=1

GO TO 132

IX=2

16=2

CALL READ(IG,J)

IF(ITS) 98,1320,98

GO T0(133,10),ISCAN
IF(IG) 134,448,134
IF(K2-6) 97,136,135
IA=1A#4096

CALL ALOCAT(MTYP)

CALL RELEAS(MTYP)
IF(ICONT) 138,137,138
NMR=1

IJ=MTYP+J

UITJ)=U(TJ)+A

GO T0 10

IRST=1

GO TO (91,1455137,146),IM0OD
IF(IX-1) 99,143,144
UlIJ)=Ul1J)=770000777777
GO TO 137
UCTJ)=UlTJ)=00T7777771727
GG TO 137

IJ=MTYP+J
UGTJ)==(=(U(1J))+A)

GO T0 10

MEMBER DISTORTIONS AND LOADS
INDEX=4

GO TO 152

INDEX=2

16=3

CALL READ(IG,J)

GO TO (153,10),ISCAN
IF(IG) 10,48,10

154

155

158

160

1600
161

162
163
164
165
166
1651
1653

1654
1652

1665
167

1671

1672

1673
1674
1675
1676

1677

1678
1679

170

171
172

173
174

INDEX = 3

IF (ITABLE-1) 155,152,155
I3 = MATCHI(LIST6,K,0)

GO TO 152

MEMBER PROPERTIES
IMLOT=K2-10

16=1

GO TO (160,170,170,180,19G),IMLOT
CALL READ(IG,J)

IF(ITS) 98,16C0,98

IF(IG-4) 162,161,162

K2=15

GC TO 158

N=6

GO 7O (163,1C),ISCAN

IF(IG) 164,48,164
IF(ITABLE-1) 1665,165,85
IF(J) 167,166,167

CO 1651 I=1,I8
HOLD(I)=BETA(I)

IF(IL) 1654,1653,1654

ILt=12

DO 1652 I=1,IL
IHOLD(I)=LABL(I)

JiB=IB

GO TO 10

JIB=0

CALL CEFINE(MEMByJyNs0,40,1)
CALL ALOCAT(MEMB,J)
L=MEMB+)

IF(JIB) 1671,1675,1671

CO 1674 1I=1,JI8B
IF(IHOLD(I)-7) 1672,1673,1673
IJ=THOLD(I)+IU(L)
UtIJ)=HOLOI(I)

GC 7O 1674

1J=KPSI+J

UlIJ)=HOLD(I)

CONTINUE

IF(IB) 1676,199,1676

00 1679 1=1,1I8
IF(LABL(I)=7) 1677,1678,1678
TJd=LABL{I)+IUu(L)
U(IJ)=BETA(I)

GC TO 1679

1J=KPSI+J

U(IJ)=BETA(I)

CONTINUE

GO TO 199

N=NSQ

D0 171 KKI=1,NSQ
[3=MATCH(LIST5,K,0)

GO TO (179,98,171,170,172,172),13
BETA(KKI)=BK
14=MATCH(0,K,0)

GO TO (179,98,173,96994,95),14
IF(J) 174,175,174

L=KPSI+J

uiL)=8K

GO TO 170

257

258

175

179
1793

1791

1792

180
184

187
181
186
1861
185

182

1821
1822

1828
1823

1824
1841

1825

1826
1827

183
1831

1830
1832
1833
1834

1829

HOLD(1)=8BK

JHOLD=2

GO TO 170

IF{J) 1793,10,1793

CALL DEFINE(MEMB,J,NSQs0,0,1)
CALL ALOCAT(MEMB,J)
L=MEMB+J

CO 1791 I=1,NSC

IJ=TU(L)+I]

ULIJ)=BETA(I)

IF(JHOLD-2) 199,1792,199
L=KPSI+J

U(L)=HOLDI(1)

GO 7O 199

STEEL SECTION

VARIABLE SECTICN
IF(NSS)185,184,185
I3=MATCH(LIST114K,2)
IF(13-2)187,181,94
IF(ITABLE)S9,99,10

IF(J) 1861,186,1861

NSS=1

NS=K

I3=MATCH(LIST11,K,0)

N=7#NS

IF(J) 182,160,182

CALL CEFINE{MEMB,JyNy0,0,1)
CALL ALOCAT(MEMB,J)
L=MEMB+J

IF(ITABLE-1) 183,1821,183
IF(JIB) 1822,1831,1822
NM=JIB/NS
IF(NM-7)1828,1828,87

1=0

IF{IHOLD(1)-8) 1824,1823,1824
IJ=KPSI+J

U(IJ)=HOLD(1)

I=1

IF(NM) 1841,1831,1841

00O 1825 IJK=1,NS

DO 1825 KK=1,NM

IIT=KK+I
IJ=THOLOD(IIT)+IU(L)+7=({1JK-1)
IK=KK+NM#{ [JK-1) +1I
UlIJ)=HOLD(IK)

IF(I) 1831,1826,+1831
IF(JIB-NM#NS) 1831,1831,1827
1J=KPSI+J

Uu(IJ)=HOLD(JIB)

GO TO 1831

JIB=0

CALL READ(IG,J)

IF(ITS) 98,1830,98

GO T0(1832,10),ISCAN

IF(IG) 1833,48,1833

IF(IB) 1834,199,1834
NM=IB/NS
IF(NM-7)1829,1829,87

1=0

IF(LABL(1)-8) 1836,1835,1836

1835

1836
1842

1837

1838
1839

190

191
199

1991

1992
1993

1994
10
48
87
91
92
96
97
98
99
85
95
94

90

IJ=KPSI+J
UIJ)=BETA(1)

I=1
IF(NM)

IIT=KK

TJ=LABL{IIT)+IU(L)+7=(1JK-1)
IK=KK+NM# (IJK-1)+I]
ULTIJ)=BETA(IK)

199,1838,199
IF(IB-NM=NS)
IJ=KPSI+J

IF(I)

I8=18B

U(IJ)=BETA(IB)
GO TC 199

IG=1

CALL READ(IG,J)

PRINT 191

GO TO 199

FORMAT(35H STEEL SECTIONS CANNCT YET BE READ.)

IRST=1

GO T0(1991,1992,1991,90), IMOC
JMPC=JMPC+1

1993,1G,1993

CALL RELEAS{MENMB,J)

CALL ALOCAT(MTYP)

IF(J)

1842,199,1842
00 1837 IJK=1,NS
CO 1837 KK=1,NM

+1

L=MTYP+J

CALL PACKW(A,0,U(L),IMLOT,N,Q)

u(L)=A

CALL RELEAS{MTYP)

L=KPSI

IF(U(L))1994,10,1994

IPsi=1
RETURN
NE=2
GC 710
NE=3
GO T0
NE=4
GO 710
NE=5
GO TO
NE=6
GO TO
NE=7
GO TO
NE=8
GO 70
NE=9
GO T0
NE=10
GO TO
NE=11
GO 1O
NE=12
GO TO
NE=13
GO TO
END

+J

10

199,199,1839

259

260

*
*

CJTDA

200

101
201

202
203
204
205
206
207

208
209

210

2110
211
212
213

214
215

2151
2152

2153
2154

2156
2155
216

LISTS8

LABEL
T OF PHAS1A STRESS III FENVES-LOGCHER-MAZZOTA NOV. 19,1963

SUBROUTINE JTDAT

DIMENSION LABL{12),BETA(85),SYSFIL(27),PRBFIL{(6),CWFIL(49),U(99),
1Iut2)

COMMON U,TU,A,TA,LABL,BETA K, ITABLE,JsNE,ITS,IB, [S,IL,INDEX,IN,
1CHECK , NMAX y INORM, ISOLVy ISCAN,I11,1IM0DyJJJJs ICONT ,1SUCC,IMERG,TOP,HN
21 oNLyNT,NREQsTNoLFILE,TOLER,) IPRG,IRSTy IRLD,IRPR,SYSFIL,
3NJoNByNDAT s IDy JFyNSQyNCORDy IMETHyNLDSyNFJISyNSTV,NMEMV, IPST ¢4NMRyNJR
491SO0DGyNDSQ,NDJ, IPDBP, IUDBPyNBBsNFJS1,JJCsIDC,JIMIC,JMPC,JILD,JEXTN,
SMEXTN) LEXTNy JLCyNLDSI s IYOUNGs ISHEAR,IEXPANy ICENS,PRBFIL,
6NAME s KXYZ y KJREL y JPLSy JMIN,MTYP KPSI ,MEMB,LOACS yMODN,KS,KMKST,KSTOB
ToKATKA s KPPLS o KPMNS 9 KUV o KPPRI yKRyKSAVE) KS19KS29KS39KS43KS5,KS64KS Ty
BKSB9yKS99KS10+KDIAG,KOFDG,KAD,LOADN, MEGAO,JEXT, JINT,KUDBP,KMEGA,
IKPDBP,JTYP,MTYP1,KByMLOAD, JLOADyKATR,LINT,KYOUNGKSHEAR ; KEXPAN

COMMON KDENS,CWFIL

EQUIVALENCE(U»IUyAsTA) 9 (U(2),IU(2),LABL) »(U(14),BETA),(U(99),K,BK)

LIST3

NE=1

IF(ITABLE-1) 200,996,206

I12=MATCH{LIST3,K,0)

GO TO (101,201,97,96,202,204),12

GO TO (99,99,99,2170),1IM0D

J=K

G0 TO 200

GO TO (203,203+4203,5203,203,200),K

K2=K

IF(J) 93,205,2C6

ITABLE=2

GO TO 10

IF{J-JEXTN) 209,209,207

IF(ICONT) 93,93,208

CALL SIZED(1+J,2)

GO TO (210+220+230+230,4250+96),4K2

JOINT COORDINATES
1G=1

CALL READI(IG,J)
IF(ITS) 98,2110,98
L=JTYP+J

IF(ICONT) 216,211,216
IF(IS-1) 212,212,214
JJC=JJC+1

ULy =1

G0 T0 2151

JDC=JDC+1

=2

STORE COORDINATES
IF(3 -18) 2152<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>