
The Essential Guide to
Microsoft Visual J++ 6.0

Microsoft~

Visual. J+-f 6.0
Programmer's Guide

Microsoft Press

Microsoft~

Visual
J++TM 6.0

Programmer's
Guide

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual Studio Core Reference Set / Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-884-8
1. Microsoft Visual BASIC. 2. BASIC (Computer program language)

I. Microsoft Corporation.
QA76.73.B3M5598 1998
005.26'8--dc21

Printed and bound in the United States of America.

I 2 3 4 5 6 7 8 9 WCWC 3 2 1 0 9 8

Distributed in Canada by ITP Nelson. a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

98-6655
CIP

Microsof't Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

ActiveMovie, ActiveX, IntelliSense. JIDirect, Microsoft, Microsoft Press, MS-DOS, Visual Basic,
Visual C++, Visual J++, Visual SourceSafe, Win32. Windows, and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editors: Anne Taussig. John Pierce

Part No. 097-0001983

Contents

Introduction Getting Started with Visual J++ 6.0. .. xxv
Creating a WFC Application. .. xxv

Modifying Your Application. .. xxv

Building and Running Your Application .. xxvi

Debugging Your Application. xxvi

Packaging Your Application. xxvi

Part 1 Getting Started with Visual J++ 6.0 .. 1

Chapter 1 Creating Projects. .. 3
Directory-Based Projects. .. 4

Creating a Windows Application with WFC. .. 5

Modifying the Form in the Forms Designer .. 6

Building and Running the Application. .. 7

Creating a Windows Application with the Application Wizard .. 7

Building and Running the Application. .. 9

Creating a Dynamic HTML Application. .. 10

Viewing Code in the Text Editor ... " 11

Building and Running the DHTML Application " 11

Creating a COM DLL ... " 12

Adding Code in the Text Editor .. " 12

Building the DLL .. " 13

Importing the DLL ... " 13

Creating a Control .. " 15

Viewing Code in the Text Editor ... " 16

Modifying the Control in the Forms Designer. " 16

Building the Control .. " 17

Adding the Control to a Form .. 17

Creating a Console Application. .. 18

Adding Code in the Text Editor. .. 19

Building and Running the Application. .. 19

Programmer's Guide iii

Contents

Creating an Applet. .. 19

Viewing Code in the Text Editor .. 20

Building and Running the Applet ... 21

Creating an Empty Project .. 21

Creating a Multiproject Solution. .. 23

Building a Multiproject Solution .. 24

Setting the Startup Project. .. 24

Managing Projects with Project Explorer. .. 25

Choosing the Project View .. 25

Opening a File .. 26

Miscellaneous Files. .. 27

Adding a File ... 27

Adding a File that Resides in the Project Directory Structure .. 28

Adding a Folder .. 29

Adding a Folder that Resides in the Project Directory Structure .. 29

Moving or Copying a File or Folder. .. 30

Renaming a File or Folder. .. 31

Removing a File or Folder. .. 31

Displaying All Files in the Project Directory Structure. .. 32

The Project Filter .. 32

Setting Project Options. .. 33

Setting Launch Options. .. 33

Setting Compiler Options .. 34

Creating Custom Build Rules .. 35

Setting the Classpath. .. 36

Setting COM Classes .. 37

Importing a Visual 1++ 1.1 Project 38

Chapter 2 Designing Forms. .. 39
Creating a Form. .. 40

Managing the Toolbox ... 41

Adding Controls to a Form. .. 42

Adding an Event Handler. .. 43

Formatting Forms. .. 44

Modifying the Form Layout Behavior .. 45

Setting Properties with the Properties Window. .. 46

iv Programmer's Guide

Contents

Creating Menus for Forms .. 46

Adding and Modifying a Menu .. 47

Context Menus. .. 49

Adding ToolTips to Controls on a Form .. 50

Code Generation .. 50

Chapter 3 Editing Code. .. 51
Managing Files with the Text Editor. .. 51

Splitting a Window in the Text Editor .. 51

Viewing a File in Full-Screen Mode. .. 52

Finding and Replacing Text in a Single File. .. 52

Finding Text in Multiple Files. .. 53

Finding Matching Delimiters. .. 54

Navigating with Bookmarks .. 54

Selecting a Box of Text. .. 55

Writing Code with Statement Completion .. 56

EnablinglDisabling Statement Completion Options in the Text Editor 56

Creating Statements with Word Completion. .. 57

Selecting an Overloaded Method. .. 59

Selecting Methods from a Member List .. 60

Building an Argument List with Parameter Info. .. 61

Finding Errors with Dynamic Syntax Checking .. 62

EnablinglDisabling Dynamic Syntax Checking Options in the Text Editor 63

Updating Class Outline from the Text Editor " 64

Adding Items to Class Outline from the Text Editor " 64

Adding lavadoc Comments to Source Files " 66

Managing Code with Class Outline. " 68

Refreshing Class Outline. .. 69

Navigating to a Definition. " 69

Modifying a Class Declaration " 69

Adding a New Declaration ... " 71

Adding Declarations for Interface Methods .. 73

Deleting a Definition ... " 73

Moving or Copying a Definition " 73

Overriding a Method .. 74

Setting a Breakpoint. .. 74

Programmer's Guide v

Contents

Modifying Components with the WFC Component Builder 75

Adding and Deleting Properties. .. 75

Adding and Deleting Events .. 77

Browsing Packages and Libraries with the Object Browser .. 78

Viewing Classes and Members .. 78

Viewing Class and Member Information. .. 79

Viewing Definitions .. 79

Viewing Hidden Members. .. 79

Selecting Packages and Libraries. .. 80

Grouping and Sorting Classes and Members. .. 81

Chapter 4 Accessing Data. .. 83
Running the Data Form Wizard. .. 84

Database Type Step .. 84

Database Step ... 85

Connect Information Step .. 85

Form Step .. 86

Record Source Step. .. 87

Record Source Relation Step. .. 88

Control Selection Step. .. 88

SUllllllary Step .. 89

Retrieving a Set of Records. .. 89

Binding Data with the DataBinder Control ... 90

Binding Data with the DataGrid Control .. 92

Accessing Column Properties .. 92

Adding, Removing, and Rearranging Columns .. 93

Formatting Data. .. 93

Navigating Records ... 95

Chapter 5 Introducing Wizards and Builders. .. 97

Chapter 6 Debugging Applications .. 99
The Debugging Process .. 100

Basic Debugging Procedures. .. 100

Entering Command-line Arguments. .. 100

Displaying the Debug Toolbar. .. 101

Setting Breakpoints. .. 101

Setting a Breakpoint Before Starting the Debugger .. 101

Setting a Breakpoint from the Breakpoints Dialog Box. .. 102

vi Programmer's Guide

Contents

Examining Information with Debug Windows .. 102

Viewing Information in the Auto Window .. 102

Viewing Information in the Locals Window .. 103

Viewing Information in the Watch Window .. 104

Viewing Information in the Immediate Window .. 106

Viewing Information in the Threads Window .. 107

Viewing Information in the Call Stack Window. .. 110

Viewing Information in the Running Documents Window .. 111

Stepping Through the Code. .. 111

Debugging a WFC Application. .. 112

Debugging a Console Application. .. 113

Debugging a Multithreaded Application .. 114

Multithreaded Beverages Application .. 114

Coffee and Tea Source Code. .. 115

Debugging a Multi-Process Application. .. 116

Debugging a COM Object. .. 116

Using an Active Server Pages (ASP) Debugging Client. .. 117

Preparing the Environment for Debugging a Java Server-Side Component 118

Starting a Java Server-Side Component Debugging Session. .. 118

Using an Executable Debugging Client .. 119

Using the Microsoft Transaction Server (MTS). .. 119

Debugging a Java Applet .. 120

Debugging an Applet Running in JVIEW. .. 120

Debugging an Applet Running in Internet Explorer. .. 120

Chapter 7 Packaging and Deploying Projects. .. 121

Chapter 8 Managing Projects with Source Code Control. .. 123

Chapter 9 Compiling Applications with JVC .. 125
Description of JVC Syntax. .. 125

Compiling with JVC.EXE .. 126

JVC Command Files. .. 127

CLASSP ATH Environment Variable. .. 127

JVC Command-Line Options. .. 129

/cp - Set CLASSPATH Option (JVC) .. 129

/cp:o - Display CLASSPATH Option (JVC). .. 130

/cp:p - Prepend CLASSP ATH Option (JVC) .. 130

/d - Output Directory Option (JVC). .. 131

Programmer's Guide vii

Contents

ID - Define Conditional Compilation Symbol. .. 131

Ig - Generate Debugging Information Option (JVC) .. 132

Ig:I- Generate Line Number Information Option (JVC). .. 132

Ig:t - Generate Debug Tables Option (JVC) .. 133

Inologo - Suppress Copyright Banner. .. 133

Inowam - Suppress Warning Messages .. 133

Inowrite - Compile Only Option (JVC) .. 134

10 - Enable Optimizations Option (JVC) .. 134

10:1 - Inline Methods Optimization Option (JVC). .. 135

10:J - Optimize Bytecode Jumps Option (JVC). .. 135

Iref - Recompile Referenced Classes .. 136

Iverbose - Display Compiler Messages Option (JVC) .. 136

Iw - Set Warning Level Option (JVC) .. 137

Ix - Disable Language Extensions Option (JVC) .. 138

I? - Online Help Option (JVC). .. 138

Chapter 10 Viewing Applications with JVIEW and WJVIEW. .. 139
Viewing Applications with JVIEW .. 139

Description of JVIEW Syntax. .. 139

Running JVIEW.EXE. .. 140

JVIEW Command-Line Options. .. 141

la - Applet Viewer Option (JVIEWIWJVIEW) 141

Icp - Set CLASSPATH Option (JVIEWIWJVIEW). .. 143

Icp:a - Append CLASSPATH Option (JVIEWIWJVIEW) 143

Icp:p - Prepend CLASSPATH Option (JVIEWIWJVIEW) 144

Id: - System Property Option (JVIEWIWJVIEW) .. 145

Ip - Pause Viewer Option (JVIEWIWJVIEW). .. 146

Iv - Class Verification Option (JVIEWIWJVIEW) .. 146

I? - Online Help Option (JVIEWIWJVIEW). .. 147

Viewing Applications with WJVIEW .. 147

Description ofWJVIEW Syntax .. 148

Running WJVIEW.EXE .. 148

WJVIEW Command-Line Options ... 149

viii Programmer's Guide

Contents

Part 2 Programming with Visual J++ .. 151

Chapter 11 Introduction to WFC Programming. .. 153
Getting Started with Controls and Templates. .. 154

Starting with a Form. .. 154

Adding Controls. .. 155

Adding Menus. .. 155

Adding Code. .. 155

A Sample Walkthrough. .. 156

Creating the Application Using Visual J++. .. 158

Starting and Stopping an Application. 162

Anatomy of a Visual J++ Form Template. .. 162

Handling Events. .. 164

Implementing a Modal Dialog Box .. 165

U sing a Message Box as a Modal Dialog Box. .. 165

Implementing File Dialog Boxes and File I/O. .. 166

Sample Walkthrough Summary. .. 167

Code Listings .. 168

MyNotepad.java. .. 168

NewDialog.java. .. 172

Chapter 12 WFC Programming Concepts. .. 175
WFC Packages .. 176

Working with the Visual Components ofWFC. .. 177

Windows Visual Components .. 178

The Control Class. .. 178

Using Forms. .. 179

Overview of WFC Controls. .. 180

Accessing Graphical Services .. 182

Dynamic HTML Visual Components. .. 183

Handling Events in WFC .. 183

Localizing Your Application. .. 186

Using WFC Application Services .. 187

Starting and Quitting an Application .. 187

Handling Application Events. .. 188

Programmer's Guide ix

Contents

Accessing System Information. .. 188

Windows Registry Information. .. 189

Locale Information .. 190

Time Information .. 190

Performing Clipboard and Drag-and-Drop Operations. .. 190

Implementing a Drop Source. .. 191

Implementing a Drop Target .. 192

Using Java Threads with WFC .. 193

Mixing Java and Win32 Threading Models. .. 194

Creating and Exiting a Thread .. 194

Using Thread Storage. .. 200

Working with Thread Exceptions. .. 200

Chapter 13 WFC Control Development .. 201
Writing WFC Controls. .. 201

Creating a Basic Control. .. 202

Defining a Control. .. 202

Adding a Control Description. .. 203

Providing Functionality for Class Events. .. 203

Working with Window Handles. .. 205

Threading in WFC Controls. .. 206

Defining Control Properties. 207

Creating and Exposing a Property. .. 207

Alignment Property Example. .. 208

Specifying Custom Property Attributes. .. 212

Specifying Dynamic Default Values and Property Persistence. .. 214

Creating a Custom Properties Value Editor. .. 216

Working with Control Events 219

Capturing User Interaction with a Control. 219

Creating a Custom Event. .. 220

Providing Property Change Notification 226

Customizing a Control .. 228

Determining the Control's Display .. 228

Adding a Bitmap for a Control. .. 234

Creating Control Customizers 234

x Programmer's Guide

Contents

U sing Controls. .. 239

Registering a Control .. 239

Working with a Control in a Host Application. .. 241

Creating Composite WFC Controls. .. 242

Creating a Control Project. .. 242

Designing the Layout of the Control .. 243

Adding a Custom Property with the WFC Component Builder. .. 244

Adding Code to Property Methods. .. 245

Adding Events with the WFC Component Builder .. 246

Overriding the UserControl's Methods. .. 247

Adding Code to Overridden Methods. .. 247

Adding Code to the add Method. .. 247

Adding Code to Control-Related Methods. .. 248

Adding Code to the remove Method. .. 249

Adding Code to the setText Method. 249

Adding Methods to the Control .. 250

Adding Code to the Constructor .. 251

Building the Control. .. 251

Debugging the Control. .. 252

Adding the Control to the Toolbox. .. 252

Adding a Form to the Project. .. 252

Adding the Control to the Form. .. 253

Adding Controls to the GroupCheck Control. .. 253

Creating Event Handlers .. 253

Building and Testing the Control .. 254

Chapter 14 Programming Dynamic HTML in Java. .. 255
Quick Start .. 256

Using the initForm Method. .. 258

Understanding the DhElement Class. 258

Working with Containers .. 259

Handling Events .. 261

Using Dynamic Styles. .. 262

Understanding Style Inheritance. .. 263

Working with Dynamic Tables .. 264

Data Binding to Tables. .. 265

Programmer's Guide xi

Contents

U sing the com.ms. wfc.html Package on a Server .. 267

ASP-Based Approach. .. 268

HTML-Based Approach .. 269

Chapter 15 Graphical Services. .. 273
Creating a Graphics Object. .. 273

Explicit Graphics Object Creation. .. 274

Implicit Graphics Object Creation. .. 274

Retrieving a Graphics Object. .. 275

Graphics Object Scope. .. 275

Maintaining the Bounding Rectangle. .. 276

Performing Handle-Based Operations .. 277

The Graphics Object Coordinate System .. 278

Setting the Coordinate Origin .. 279

Mapping Logical Coordinates to Device Coordinates. .. 280

Drawing Text. .. 280

Setting Text Color .. 281

Using the Font Object. .. 281

Creating a Font Object .. 282

Setting the Font on a Graphics Object. .. 282

Enumerating Fonts. .. 282

Using Pens 283

WFC Pen Object. .. 283

Setting the Pen on a Graphics Object .. 285

Using Brushes. .. 286

Brush Origin .. 286

Logical Brush Types. .. 286

WFC Brush Object. .. 287

Creating a Brush Object " .. 289

Setting the Brush on the Graphics Object .. 289

A Brush Object Example. .. 290

Drawing Bitmaps. .. 294

Shrinking and Expanding Images. .. 295

Rendering Images Transparently .. 295

Raster Operations. .. 296

Drawing Shapes. .. 297

Lines .. 297

xii Programmer's Guide

Contents

Rectangles. .. 297

Rectangle Operations .. 298

A Rectangle Example .. 298

Chords. .. 300

Arcs .. 300

Arc Angles .. 301

Bezier Splines .. 302

Chapter 16 Building and Importing ActiveX Controls. .. 303
Building ActiveX Controls. .. 303

Defining a WFC Control as a COM Object. .. 304

Packaging the Control in a COM DLL. .. 304

Building the Project. .. 305

Registering the COM DLL .. 305

Testing the Control in Microsoft Visual Basic. .. 306

Importing ActiveX Controls. .. 307

Registering a Control .. 307

Creating a WFC Project .. 308

Importing an ActiveX Control. .. 308

Adding the Control to a Form .. 309

Setting the Control's Properties. .. 309

Building the Project. .. 310

Chapter 17 Building and Importing COM Objects. .. 311
Building COM Objects. .. 311

Creating a Project. .. 312

Adding Code to the Class .. 313

Defining a Class as a COM Class .. 314

Packaging the Project as a COM DLL .. 315

Building the Project .. 315

Importing COM Objects. .. 316

Creating a Project. .. 316

Importing a COM Object .. 317

Adding Code to Access the COM Object. .. 317

Building and Running the Project .. 318

Programmer's Guide xiii

Contents

Chapter 18 Data Binding in WFC 319
Simple Data Binding .. 320

Bindable Properties. .. 320

Property Change Notifications. .. 320

DataBinder Component ... 321

Complex Data Binding. .. 322

dataSource and dataMember Properties .. 322

Complex Bound Components in Visual J++ 323

Chapter 19 Writing Windows-Based Applications with J/Direct 325
Message Box Example. .. 325

JlDirect Call Builder. .. 326

Setting JlDirect Call Builder Options .. 327

Quick Syntax Reference. .. 328

Syntax for @dll.import .. 328

Syntax for @dll.struct. .. 329

Syntax for @dll.structmap. .. 330

How Data Types are Marshaled. .. 330

Quick Reference. .. 330

Basic Scalar Types .. 332

Chars .. 333

Booleans .. 333

Strings. .. 333

Passing a String to a DLL Function. .. 333

Receiving a String from a DLL Function 334

Arrays ... 336

Structures. .. 336

Correspondence Between Types Inside Structures. .. 338

Nested Structures .. 339

Fixed-Size Strings Embedded Within Structures. .. 340

Fixed-Size Scalar Arrays Embedded Within Structures. .. 340

Structure Packing. .. 341

Understanding the Relationship Between @dll.struct and @com.struct 341

Pointers. .. 342

Return Value Pointers .. 342

Raw Pointers ... 343

xiv Programmer's Guide

Contents

Polymorphic Parameters .. , 344

Declaring the Parameter as Type Object : . .. 345

Overloading the Function .. 345

Comparison Between the Two Methods .. 346

Callbacks. .. 346

Declaring a Method that Takes a Callback .. 346

Invoking a Function that Takes a Callback. .. 347

Restrictions on Types Accepted by the Callback Method. .. 347

Associating Data with a Callback. .. 348

The Lifetime of a Callback .. 348

Embedding a Callback Inside a Structure. .. 348

Invoking OLE API Functions. .. 349

OLE Mode Syntax. .. 349

Comparison of Win32 Functions with OLE Functions. .. 349

Comparing Win32 Code to OLE Code. .. 350

Invoking OLE Functions. .. 350

How OLE Mode Works .. 350

Passing and Receiving Strings from OLE Functions 351

Passing GUIDs (and lIDs and CLSIDs) .. 351

Passing VARIANTs. .. 352

Passing COM Interface Pointers .. 352

Aliasing (Method Renaming) .. 352

Linking by Ordinal .. 353

Specifying @dll.import for an Entire Class. .. 354

How the VM Chooses Between ANSI and Unicode .. 355

Calling the ANSI Version of a DLL Function. .. 355

Calling the Unicode Version of a DLL Function. .. 356

Calling the Optimal Version of a DLL Function .. 356

Obtaining the Error Code Set by a DLL Function. .. 357

Dynamically Loading and Invoking DLLs. .. 358

Comparing JlDirect to Raw Native Interface. .. 359

Security Issues. .. 360

Trusted Versus Untrusted Classes. .. 360

Security Checkpoints for J/Direct Method Calls. .. 361

Security Checks at Link Time .. 361

Security Checkpoints for JlDirect Structures. .. 363

Security and the com.ms. win32 Classes. .. 363

Programmer's Guide xv

Contents

Error Messages .. 364

java.lang.SecurityException [class.method]. .. 364

java.lang.IllegaIAccessError. 364

java.lang.SecurityException. .. 365

java.lang.NoClassDefFoundError. .. 365

com.ms.security.SecurityExceptionEx 366

Troubleshooting Tips ~ .. 366

UnsatisifiedLinkError When Calling a Method. .. 366

Getting SecurityException When Calling a DLL Method or Using an
@dll.struct Class. .. 367

StringBuffers Truncated on Return From DLL Function. .. 367

Syntax Errors Within @dll Directives. .. 367

Compiler Cannot Find the com.ms.dll Package .. 367

@dll Directives Do Not Work on Applets (or Only Works Within the Microsoft
Visual J++ Environment) .. 367

Using JlDirect Makes Class Untrusted .. 368

JlDirect Throws a ParameterCountMismatchError After Calling a Native Function. 368

JlDirect Does Not Unload a DLL. .. 368

Appendix A Errors and Warnings ',' .. 369
Compiler Error JOOOI .. 369

Compiler Error J0002 .. 369

Compiler Error J0004 .. 369

Compiler Error J0005 .. 369

Compiler Error J0006 .. 370

Compiler Error J0007 .. 370

Compiler Error JOOI0 .. 370

Compiler Error JOOll .. 370

Compiler Error J0012 .. 371

Compiler Error J0013 .. 372

Compiler Error J0014 .. 372

Compiler Error J0015 .. 373

Compiler Error J0016 .. 373

Compiler Error J0017 . ; .. 374

Compiler Error J0018 .. 374

Compiler Error J0019 .. 375

Compiler Error J0020 .. 375

Compiler Error J0021 .. 375

xvi Programmer's Guide

Contents

Compiler Error J0022. .. 376

Compiler Error J0023 .. 376

Compiler Error J0024. .. 377

Compiler Error J0025. .. 377

Compiler Error J0026. .. 378

Compiler Error J0027 .. 378

Compiler Error J0028. .. 378

Compiler Error J0029. .. 379

Compiler Error J0030. .. 379

Compiler Error J0031 .. 379

Compiler Error J0032. .. 380

Compiler Error J0033. .. 380

Compiler Error J0035. .. 381

Compiler Error J0036. ~ .. 381

Compiler Error J0037 .. 381

Compiler Error J0038. .. 382

Compiler Error J0040. .. 382

Compiler Error J0041 .. 383

Compiler Error J0042. .. 383

Compiler Error J0043 .. 384

Compiler Error J0044. .. 384

Compiler Error J0045 .. 385

Compiler Error J0046. .. 385

Compiler Error J0048. .. 386

Compiler Error J0049 .. 386

Compiler Error J0051 .. 387

Compiler Error J0053 .. 387

Compiler Error J0056. .. 387

Compiler Error J0057 .. 388

Compiler Error J0058. .. 388

Compiler Error J0059. .. 388

Compiler Error J0060. .. 389

Compiler Error J0061 .. 390

Compiler Error J0062. .. 390

Compiler Error J0063 .. 391

Compiler Error J0065 .. 391

Compiler Error J0066. .. 392

Compiler Error J0067 .. 392

Programmer's Guide xvii

Contents

Compiler Error J0068 .. 393

Compiler Error J0069 .. 393

Compiler Error J0072 .. 393

Compiler Error J0074 .. 394

Compiler Error J0075 .. 394

Compiler Error J0076 .. 395

Compiler Error J0077 .. 395

Compiler Error J0078 .. 396

Compiler Error J0079 .. 396

Compiler Error J0080 .. 397

Compiler Error J0081 .. 398

Compiler Error J0082 .. 398

Compiler Error J0083 .. 399

Compiler Error J0084 .. 399

Compiler Error J0085 .. 400

Compiler Error J0086 .. 400

Compiler Error J0087 .. 400

Compiler Error J0089 .. 401

Compiler Error J0090 .. 401

Compiler Error J0091 .. 402

Compiler Error J0092 .. 402

Compiler Error J0093 .. 402

Compiler Error J0094 .. 403

Compiler Error J0095 .. 404

Compiler Error J0096 .. 404

Compiler Error J0097 .. 404

Compiler Error J0098 .. 405

Compiler Error JO 1 00 .. 405

Compiler Error JO I 01 .. 406

Compiler Error JOI02 .. 407

Compiler Error J 0103 .. 407

Compiler Error JOI04 .. 408

Compiler Error JO 1 05 .. 408

Compiler Error JO 1 06 .. 409

Compiler Error JO 1 07 .. 409

Compiler Error JO 1 08 .. 410

Compiler Error JO 1 09 .. 410

Compiler Error JO 11 0 .. 411

xviii Programmer's Guide

Contents

Compiler Error JO 111 .. 411

Compiler Error J0112. .. 412

Compiler Error JO 113 .. 412

Compiler Error JO 114 .. 413

Compiler Error JO 115 .. 413

Compiler Error JO 116. .. 414

Compiler Error JO 117 .. 414

Compiler Error J0120. .. 414

Compiler Error J0121 .. 415

Compiler Error J0122. .. 415

Compiler Error J0123 .. 416

Compiler Error JO 124. .. 417

Compiler Error J0125. .. 417

Compiler Error J0126 .. 418

Compiler Error J0127 .. 419

Compiler Error J0128. .. 419

Compiler Error J0129 .. 419

Compiler Error J0130. .. 420

Compiler Error J0131 .. 420

Compiler Error J0132. .. 421

Compiler Error J0133. .. 421

Compiler Error J0134. .. 421

Compiler Error J0135 .. 422

Compiler Error J0136. .. 422

Compiler Error J0138. .. 423

Compiler Error J0139. .. 423

Compiler Error J0140. .. 423

Compiler Error J0141 .. 424

Compiler Error J0142. .. 424

Compiler Error J0143. .. 425

Compiler Error J0144. .. 426

Compiler Error J0145 .. 426

Compiler Error J0146. .. 427

Compiler Error J0147 .. 427

Compiler Error J0148. .. 427

Compiler Error J0150. .. 428

Compiler Error J0151 .. 429

Compiler Error J0152. .. 429

Programmer's Guide xix

Contents

Compiler Error J0158 .. 430

Compiler Error J0159 .. 430

Compiler Error JO 160 .. 430

Compiler Error J0161 .. 430

Compiler Error J0162 .. 431

Compiler Error J0163 .. 431

Compiler Error J0164 .. 431

Compiler Error J0165 .. 432

Compiler Error J0166 .. 432

Compiler Error J0167 .. 433

Compiler Error J0168 .. 433

Compiler Error JO 169 .. 434

Compiler Error J0170 .. 434

Compiler Error J0173 .. 434

Compiler Error J0175 .. 435

Compiler Error J0176 .. 435

Compiler Error JO 189 .. 436

Compiler Error J0191 .. 436

Compiler Error JO 192 .. 436

Compiler Error J0193 .. 437

Compiler Error J0194 .. 437

Compiler Error J0195 .. 437

Compiler Error JO 196 .. 438

Compiler Error JO 197 .. 439

Compiler Error JO 198 .. 439

Compiler Error JO 199 .. 440

Compiler Error J0200 .. 440

Compiler Error J0201 .. 441

Compiler Error J0202 .. 442

Compiler Error J0203 .. 442

Compiler Error J0204 .. 443

Compiler Error J0205 .. 444

Compiler Error J0206 .. 444

Compiler Error J0207 .. 445

Compiler Error J0208 .. 445

Compiler Error J0209 .. 446

Compiler Error J0210 .. 446

Compiler Error J0214 .. 446

xx Programmer's Guide

Contents

Compiler Error J0215 .. 447

Compiler Error J0216 .. 447

Compiler Error J0217 ... , 447

Compiler Error J0218 .. 448

Compiler Error J0219 .. 448

Compiler Error J0220 ... , 448

Compiler Error J0221 , 449

Compiler Error J0222. .. 449

Compiler Error J0223 .. 450

Compiler Error J0224. .. 450

Compiler Error J0225 .. 451

Compiler Error J0226 .. 451

Compiler Error J0227 .. 452

Compiler Error J0228. .. 453

Compiler Error J0229 .. 453

Compiler Error J0230 ... , 453

Compiler Error J0231 , 454

Compiler Error J0232 ... , 454

Compiler Error J0233 .. 455

Compiler Error J0234. .. 455

Compiler Error J0235 .. 456

Compiler Error J0236 ... , 456

Compiler Error J0237 .. 457

Compiler Error J0238 ... , 458

Compiler Error J0239 ... , 458

Compiler Error J0240. .. 459

Compiler Error J0241 .. 459

Compiler Error J0242. .. 459

Compiler Error J0243 .. 460

Compiler Error J0244. .. 460

Compiler Error J0245 .. 461

Compiler Error J0246. .. 461

Compiler Error J0247 .. 461

Compiler Error J0248 .. 462

Compiler Error J0249. .. 462

Compiler Error J0250. .. 463

Compiler Error J0251 .. 463

Compiler Error J0252 '.' 464

Programmer's Guide xxi

Contents

Compiler Error J0253 .. 464

Compiler Error J0254 .. 464

Compiler Error J0255 .. 465

Compiler Error J0256 .. 465

Compiler Error J0257 .. 466

Compiler Error J0258 .. 466

Compiler Error J0259 .. 467

Compiler Error J0260 .. 467

Compiler Error J0261 .. 468

Compiler Error J0262 .. 468

Compiler Error J0264 .. 469

Compiler Error J0265 .. 470

Compiler Error J0266 .. 470

Compiler Error J0267 .. 471

Compiler Error J0268 .. 471

Compiler Error J0269 .. 471

Compiler Error J0270 .. 472

Compiler Error J0271 .. 473

Compiler Error 10272 .. 473

Compiler Error 10273 .. 474

Compiler Error 10274 .. 474

Compiler Error 10275 .. 475

Compiler Error 10500 .. 475

Compiler Warning 15001. .. 475

Compiler Warning 15002. .. 476

Compiler Warning J5003. .. 476

Compiler Warning J5004 .. 476

Compiler Warning J5005 .. 476

Compiler Warning J5006 .. 477

Compiler Warning J5014. .. 477

Compiler Warning J5015. 477

Compiler Warning J5016 .. 478

Compiler Warning J5018 .. 478

Compiler Warning J5019 .. 479

Compiler Warning J5020 .. 479

Compiler Warning J5021. .. 479

Compiler Warning J5022 .. 480

Compiler Warning J5023 .. , .. 480

xxii Programmer's Guide

Contents

Compiler Warning J5024 .. 480

Compiler Warning J5500 .. 480

COM Registration Errors (Visual J++). .. 481

Windows EXE/COM DLL Packaging Errors (Visual J++) 482

Appendix 8 Conditional Compilation. .. 485
The #if, #elif, #else, and #endif ConditionalDirectives. .. 486

The #define Conditional Directive. .. 487

The #Undef Conditional Directive. .. 488

The #error Conditional Directive. .. 489

The #warning Conditional Directive. .. 489

Conditional Methods .. 490

Conditional Directives .. 491

Appendix C Reserved Words (Keywords) .. 493
abstract. .. 493

boolean. .. 494

break .. 494

byte ... 495

case. .. 495

catch. .. 496

char ... 496

class. .. 496

continue .. 497

default .. 498

delegate .. 498

do ... 499

double .. 499

else. .. 500

extends. .. 500

false. .. 501

final. .. 501

finally. .. 501

float. .. 502

for. .. 502

if .. 502

implements .. 503

import .. 503

Programmer's Guide xxiii

Contents

instanceof .. 504

into .. 504

interface .. 504

long ... 505

multicast. .. 505

native .. 505

new .. 506

null .. 506

package. .. 506

private. .. 507

protected. .. 507

public .. 507

return .. 507

short ... 508

static ... 508

super ... 508

switch .. 509

synchronized .. 510

this. .. 510

throw .. 511

throws .. 511

transient .. 512

true. .. 512

try. .. 512

void ... 514

volatile .. 514

while ... 514

Index ... 515

xxiv Programmer's Guide

INTRODUCTION

Getting Started with Visual J++ 6.0

Microsoft Visual J++ is an integrated Windows-hosted development tool for Java
programming. Visual J ++ allows you to create, modify, build, run, debug, and package
an application, all within a single environment.

Visual J++ 6.0 introduces the Windows Foundation Classes for Java (WFC). This new
application framework accesses the Microsoft Windows API, enabling you to write
full-featured Windows applications with the Java programming language. WFC also
wraps the Dynamic HTML object model implemented in Internet Explorer 4.0, which
allows you to dynamically manipulate HTML on both the client and the server.

Creating a WFC Application
When you create a Windows application with WFC, your project contains alorm that
is the main window of the application. You can then add WFC controls to the form to
design the graphical user interface.

For a step-by-step example that shows how to create, build, and run a simple WFC
application, see "Creating a Windows Application with WFC," in Chapter 1, "Creating
Projects."

For information about other types of Visual J++ projects, see Chapter 1, "Creating
Projects." For information about importing a project from Visual J++ 1.1, see "Importing a
Visual J++ 1.1 Project," in Chapter 1, "Creating Projects."

Modifying Your Application
Once you have created an application, you can:

o Use the Forms Designer to modify your form. The RAD features of the Forms
Designer allow you to quickly drop controls onto your form, configure their properties,
and add event handlers.

• Use Class Outline and the Text editor to modify your code. Class Outline provides a
dynamic view of the contents and structure of your Java classes, and can assist you in
adding methods and member variables. The Text editor supports IntelliSense features,
such as Statement Completion, to help you write code.

• Use the WFC data controls and components to access data from your form. WFC uses
ADO to retrieve data and perform simple data binding.

Programmer's Guide xxv

Introduction

Building and Running Your Application
When you build your application, any compilation errors appear in the Task List. After
you correct these errors, you can run your application from within the development
environment.

Debugging Your Application
Although your application may compile without errors, it may not run as expected. The
process of finding and fixing logic and run-time errors is known as debugging. Using the
integrated debugger, you can set breakpoints to step through your code, one statement at
a time, and view the values of variables and properties.

Other features of the integrated debugger include multiprocess debugging, remote
debugging, and integration between Java and script.

Packaging Your Application
When you have finished modifying and debugging your application, you can package it
into an .exe or .cab file and deploy it to the Web.

xxvi Programmer's Guide

PAR T 1

Getting Started with Visual J++ 6.0

C HAP T E R

Creating Projects

A project is a collection of files that make up an application. In Visual J++, projects are
directory-based, which means the project is defined by the files in the project directory
structure on the hard disk.

Visual J++ provides several code templates to help you create a project. A template
consists of a skeleton Java class that provides the basic code framework. Using these
templates, you can create the following types of projects:

• Windows application You can write full-featured Windows applications
using the Windows Foundation Classes for Java (WFC). Your Java class extends
com.ms.wfc.ui.Form, and you can use the RAD features of the Forms Designer
to modify your form. Visual J++ also provides the Application Wizard to create
Windows applications.

• Dynamic HTML application You can use the WFC classes to program in
Dynamic HTML. Your Java class extends com.ms.wfc.html.DhDocument.

• COM DLL You can create a Java class, package it into a COM DLL, and use it
in any application that supports COM.

• Control You can create your own control using WFC. Your Java class extends
com.ms.wfc.ui.UserControl and can be modified in the Forms Designer.

• Java console application A console application has no graphical user interface.
You can use the nongraphical classes in either WFC or the Java API to develop
your application.

• Java applet An applet is launched from an HTML page. Your Java class extends
java.applet.Applet, and typically uses the classes defined in the java.awt package.

You can also create an empty project without using any of the code templates.

A Visual J++ project is associated with a .vjp file, which tracks certain project settings.
Each project is then contained within a solution. A solution can contain a single project
or multiple projects, and is identified by an .sln file. For information about adding multiple
projects to a solution, see "Creating a Multiproject Solution," later in this chapter.

In addition to creating a new project, you can:

• Manage your project with Project Explorer

• Set project options

• Import a project from Visual J++ 1.1

Programmer's Guide 3

Part 1 Getting Started with Visual J++

Directory-Based Projects
In Visual J++, projects are directory-based, which means the project is defined by the files
in the project directory structure on the hard disk. For example:

• Adding a file or folder to the project adds the item to the project directory structure
on the hard disk.

• Adding a file to the project directory structure through the file system adds the file to
the project, provided the file type is specified in the project filter. Visual J++ uses a
filter to determine which types of files typically belong to a Java project. For more
information, see "The Project Filter," later in this chapter.

• Adding a folder to the project directory structure through the file system adds the
folder to the project. All files in the folder, whose types are specified in the project
filter, are added to the project as well.

• Moving or copying a file or folder within the project moves or copies the item on
the hard disk, and vice versa.

• Renaming a file or folder in the project renames the item on the hard disk, and
vice versa.

Note When removing a file or folder from the project, you can choose to leave
the item on the hard disk or completely delete it.

For more information about directory-based projects, see "Different Project Models
in Source Code Control," in the Visual Studio online documentation.

In addition to the relationship between the project structure and the file system, the
hierarchy of Java packages in the project directly maps to a hierarchy of folders in the
project (or file system). In Project Explorer, you can choose to display your project in
one of two views:

• Directory view (the default view) displays a hierarchical list of all project subfolders,
according to the project directory structure on the hard disk. Each Java package in the
project is displayed as a subfolder.

• Package view displays project subfolders as Java packages, in a flat list. Note that
package view displays only .java files and the folders that contain .java files. Each
folder that is displayed is listed by its fully-qualified package name. The project node
itself is considered the default package.

For more information about setting the view in Project Explorer, see "Choosing the
Project View," later in this chapter.

4 Programmer's Guide

Chapter 1 Creating Projects

Creating a Windows
Application with WFC

Using WFC, you can create Windows applications with the Java programming language.
You can also use the RAD features of the Forms Designer to quickly drop controls onto
your form, configure their properties, and add event handlers.

Note Before you use the following procedure to create a Windows application,
close any projects that you may already have open. (On the File menu, click
Close All.)

To create a Windows application with WFC

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Applications.
Then select the Windows Application icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A file with the default name of
Forml.java has been added to your project.

Note Renaming this file in Project Explorer does not rename the associated class
in the source code, and vice versa. You must manually change all instances of the
old name. (Note that you can create an empty project and then add a form with
the Form template. This two-step process allows you to name the form before it
is created.)

When you use the Windows Application template, your Java class extends
com.ms.wfc.ui.Form. To view the source code in the Text editor, right-click Forml.java
in Project Explorer and click View Code on the shortcut menu. Program execution begins
with the rna in method. The code in the in it F 0 rrn method represents the modifications
you make in the Forms Designer.

Programmer's Guide 5

Part 1 Getting Started with Visual J++

Modifying the Form in the Forms Designer
The following procedures show how to add controls to your form in the Forms Designer.
This example populates a list box whenever a button is clicked.

To add controls to the form

1. To open your form in the Forms Designer, double-click Forml.java in Project
Explorer.

2. In the Toolbox, select the WFC Controls tab. (If the Toolbox is not displayed,
click Toolbox on the View menu.)

3. To add a list box to your form, click the ListBox control in the Toolbox and then
click the form.

4. To add a button to your form, click the Button control in the Toolbox and then
click the form.

To set the property of a control

1. Select the Button control on the form to show its properties in the Properties
window. (If the Properties window is not displayed, click Properties Window
on the View menu.)

2. Find the button's text property and change the value to Add Item.

To add an event handler

1. You can also use the Properties window to add handlers to the events of controls.
Click the Events toolbar button in the Properties window to display the events for
the Button control.

2. Find the click event and enter addItemClick for the name of the method that will
handle the event. When you press ENTER, the Text editor opens to an empty event
handler named add I temCl i ck.

3. Inside the definition of the addItemCl i ck event handler, add the following line
of code:

listBoxl.addItem("New string."):

For more information about modifying your code in the development environment,
see Chapter 3, "Editing Code."

6 Programmer's Guide

Chapter 1 Creating Projects

Building and Running the Application
When you use the Windows Application template, an .exe file named ProjectName.exe
is automatically created when you build your project.

To build and run your application

1. On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in the
Text editor to the error.) Correct the errors and rebuild your application.

2. To run the application from the development environment, click Start on the Debug
menu. To run the application from the command line, simply run the .exe file.

3. Click the Add Item button. A line of text appears in the list box.

4. To close the application, click the Windows Close button located in the upper-right
comer of the form.

For more information about using the Forms Designer and creating WFC applications,
see Chapter 2, "Designing Forms," and Chapter 11, "Introduction to WFC Programming."

Creating a Windows Application
with the Application Wizard

The Application Wizard automatically generates a Windows application using WFC and
provides the option of binding your form to the fields in a database. You can also specify
the packaging options for your project.

Note Before you run the Application Wizard, close any projects that you may already
have open. (On the File menu, click Close All.)

To create a Windows application with the Application Wizard

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Applications.
Then select the Application Wizard icon.

3. In the Name box, enter a name for your project.

Programmer's Guide 7

Part 1 Getting Started with Visual J++

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open.

6. In the Welcome step, you can choose a profile from the drop-down list. (If the profile
you want to use is not listed, click the ellipsis button (..•) to locate and open that
profile.) For more information about profiles, see Chapter 5, "Introducing Wizards
and Builders."

7. Click Next to specify the application type:

• Select Form Based Application to generate a Windows form-based application.

• Select Form Based Application with Data to generate a Windows application
containing a data-bound form. This option launches the Data Form Wizard to walk
you through the process of specifying a database and the fields you want to bind.

8. Click Next to specify the features that you want to add to your form:

• Menu The wizard adds a predefined menu bar.

• Edit The wizard adds an Edit control that fills the entire client area of the
window; the Edit control is used to create a simple "Notepad" application.

• Toolbar The wizard adds a toolbar with predefined buttons.

• Status Uar The wizard adds a status bar.

9. Click Next to specify the type of source code comments:

• Javadoc Comment The wizard adds Javadoc comments to all classes and their
members. These comments provide useful information about the code that has been
generated.

• TODO Comment The wizard adds TODO comments in sections of the code that
can be modified or where code should be added to enhance the application. You
can also view TODO comments in the Task List window.

• Sample Functionality Comment The wizard adds comments for the code it
inserts. These comments provide information about what the code is intended to do,
and indicate which code was automatically generated by the wizard.

8 Programmer's Guide

Chapter 1 Creating Projects

10. Click Next to specify the packaging options:

• Class files The wizard will not put the project into a package file of any type.
Select this option if you want to use a method other than packaging for distributing
your application.

• EXE file When your project is built, an .exe file is created. Select this option if
you want to create a single file that can be used to run your application. (This is the
default option.)

• Cabinet (CAB) file When your project is built, a .cab file is created. A .cab file
is a compressed file that contains all of the important information for your project.
Select this option if you plan to distribute your project through the Internet.

• Deploy to (URL) You can define a URL to deploy your application to. Specify
the URL in the edit box.

11. Click Next to view the summary for your application:

o To review your settings, click View Report. To save the report, click Save in the
View Report dialog box.

• To save your settings to an existing profile, select the profile from the drop-down
list. To save your settings to a new profile, click the ellipsis button (•.•) to specify
a file name. (For more information about profiles, see Chapter 5, "Introducing
Wizards and Builders.")

12. Click Finish to create the project. Your application is opened in the Forms Designer.

Building and Running the Application
After you build your application, you can run it from the development environment.

To build and run your application

1. On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in
the Text editor to the error.) Correct the errors and rebuild your application.

2. To run the application from the development environment, click Start on the
Debug menu.

3. To close the application, click the Windows Close button located in the upper-right
comer of the form.

For more information about creating Windows applications, and for a simple example that
shows how to modify a form in the Forms Designer, see "Creating a Windows Application
with WFC," earlier in this chapter.

Programmer's Guide 9

Part 1 Getting Started with Visual J++

Creating a Dynamic
HTML Application

WFC wraps the Dynamic HTML (DHTML) object model that is implemented in Internet
Explorer 4.0. When you use the Code-Behind HTML template to create a DHTML
application, your Java class extends com.ms.wfc.html.DhDocument and is hosted on an
HTML page as a COM object. Using the other classes in the com.ms.wfc.html package,
you can manipulate elements on the HTML page.

Note Before you use the following procedure to create a DHTML application,
close any projects that you may already have open. (On the File menu, click
Close All.)

To create a DHTML application

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Web Pages.
Then select the Code-Behind HTML icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A Java source file with the default name
of Class1.java has been added to your project, as well as an HTML page named
Pagc1.htm.

Note Renaming the Class l.java file does not rename the associated class in the
source code, and vice versa. You must manually change all instances of the old
name. (Note that you can create an empty project and then add a class with the
Class template. This two-step process allows you to name the class before it is
created; however, the Class template does not provide the basic code framework
for a DHTML class.)

10 Programmer's Guide

Chapter 1 Creating Projects

Viewing Code in the Text Editor
The Code-Behind HTML template already provides some sample functionality. You can
view this sample code in the Text editor.

To view the sample code in your DHTML class

o To view the source code, double-click Class1.java in Project Explorer.

The i nit Form method is used for initializing your code, including binding elements
in your class to existing elements on the HTML page, and creating new elements. The
sample implementation binds a DhText object called boundText to an existing element
on Pagel.htm «SPAN i d-bi ndText>Bound Text</SPAN». This is accomplished by
first calling boundText. set! 0 ("bi ndText") and then calling setBoundEl ements.

The sample implementation also adds a new DhText object to the document using the
setNewEl ements method.

For information about modifying your code in the development environment, see
Chapter 3, "Editing Code."

Building and Running the DHTML Application
Because Class 1 is to be hosted as a COM object on an HTML page, your project must
be packaged into a .cab file. By using the Code-Behind HTML template, a .cab file
named ProjectName.cab is automatically created when you build your project.

Once you have built your project, you can launch the associated HTML page from
the development environment or simply open the HTML page in your browser.

To build and run your DHTML application

1. On the Build menu, click Build. Any compilation errors or messages appear in
the Task List. (Double-clicking an error in the Task List moves the insertion point
in the Text editor to the error.) Correct the errors and rebuild your application.

2. To run the applet from the development environment, click Start on the Debug
menu. Internet Explorer is launched and Pagel.htm displays the elements from
your DHTML class.

For more information about using DHTML, see Chapter 14, "Programming Dynamic
HTML in Java."

Programmer's Guide 11

Part 1 Getting Started with Visual J++

Creating a COM DLL
When a Java class is packaged into a COM DLL, it can be used by any application that
supports COM. All public methods defined in your class are exposed through a COM
interface.

Note Before you use the following procedure to create a COM DLL, close any
projects that you may already have open. (On the File menu, click Close All.)

To create a COM DLL

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Components.
Then select the COM DLL icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A file with the default name of
Class1.java has been added to your project.

Note Renaming this file does not rename the associated class in the source code, and
vice versa. You must manually change all instances of the old name. (Note that you
can create an empty project and then add a class with the Class template. This two-step
process allows you to name the class before it is created; however, the Class template
does not provide the basic code framework for a COM DLL.)

Adding Code in the Text Editor
To view the source code that was generated, double-click Classl.java in Project Explorer.
The @com. reg; ster directive specifies a GUID for your class. You can also add the
onCOMRegi ster method to your class, which is automatically invoked when the DLL
is registered; you can use this method to perform additional registration, such as creating
any custom registry keys needed by the DLL.

The following procedure shows how to add a constructor and create a method that displays
a message box.

12 Programmer's Guide

Chapter 1 Creating Projects

To add code to your class

• Inside the class declaration, add the following code:

public Classl()
{

}

public void showDialog()
{

com.ms.wfc.ui .MessageBox.show("Hello, World!", "COM");

For more information about modifying your code in the development environment,
see Chapter 3, "Editing Code."

Building the DLL
When you build your project, a DLL and type library (named ProjectName.dll and
ProjectName.t1b, respectively) are automatically created and registered on your computer.

To build the DLL

• On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in the
Text editor to the error.) Correct the errors and rebuild your project.

Importing the DLL
Once your DLL is registered, it can be used by any application that supports COM. The
following procedures show how to import your DLL into another Visual J++ project.
This example creates a WFC form that invokes the showDi al og method whenever the
form is clicked.

To create a WFC application

1. Close your DLL project by clicking Close All on the File menu.

2. To create a new project, click New Project on the File menu. On the New tab, expand
the Visual J++ Projects folder, and click Applications. Then select the Windows
Application icon.

3. In the Name box, enter a name for your project. In the Location box, enter the path
where you want to save your project, or click Browse to navigate to the folder.

4. Click Open. In Project Explorer, expand the project node. A file with the default
name of Forml.java has been added to your project.

Progralllllll:r's Guide 13

Part 1 Getting Started with Visual J++

To import the DLL

1. In Project Explorer, right-click the name of the new project. Point to Add on the
shortcut menu and then click Add COM Wrapper.

2. The COM Wrappers dialog box lists the type libraries that are registered on your
computer. Select the name of the DLL project that you had previously created.

3. Click OK.

The DLL is imported into your new project as a sub folder containing two .java files:
Class I.java and Class I_Dispatch.java. Class 1 implements the Class I_Dispatch interface,
which exposes the public methods of the Class 1 object in the DLL. To access these
methods, use a Class I_Dispatch object to instantiate Classl. This is demonstrated in the
following procedure.

To modify the WFC form

1. In Project Explorer, expand the project node. Double-click Forml.java in Project
Explorer to open it in the Forms Designer.

2. Click the Events toolbar button in the Properties window to display the events for the
form. (If the Properties window is not displayed, click Properties Window on the
View menu.)

3. Find the click event and enter form Click for the name of the method that will handle
the event. When you press ENTER, the Text editor opens to an empty event handler
named formCl i ck.

4. Go to the beginning of the file and add the following import statement:

import DLLProjectName.*:

where DLLProjectNamc is the name of the DLL project that you imported.

5. Inside the FormI class definition, before the constructor, declare a Class I_Dispatch
interface object:

Classl_Oispatch c:

6. In the FormI constructor after the / /TODD comment, instantiate Class 1 through the
Class I_Dispatch object:

c = new Classl():

7. Inside the defintion of the f 0 rmC 1 i c k method, invoke the s h owO i a log method
of Class 1 through the Class I_Dispatch object:

c.showDialog():

14 Programmer's Guide

Chapter 1 Creating Projects

To build and run the WFC application

1. On the Build menu, click Build. (If you receive any compilation errors or messages,
correct the errors and rebuild your application.)

2. To run the application, click Start on the Debug menu.

3. Click the form. A message box appears that displays "Hello, World!"

4. To close the application, click the Windows Close button located in the upper-right
corner of the form.

For more information about creating COM objects, see Chapter 17, "Building and
Importing COM Objects." For more information about WFC applications, see "Creating
a Windows application with WFC," earlier in this chapter.

Creating a Control
Using WFC, you can create your own controls. A control created with WFC extends
com.ms.wfc.ui.UserControl, which in turn extends com.ms.wfc.ui.Form; this allows
you to use the Forms Designer to create the control's user interface.

Note Before you use the following procedure to create a control, close any projects
that you may already have open. (On the File menu, click Close All.)

To create a control

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Components.
Then select the Control icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your projec.:t, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A file with the default name of
Controll.java has been added to your project.

Note Renaming this file does not rename the associated class in the source code,
and vice versa. You must manually change all instances of the old name. (Note that
you can create an empty project and then add a control class with the Control template.
This two-step process allows you to name the control before it is created.)

Programmer's Guide 15

Part 1 Getting Started with Visual J++

Viewing Code in the Text Editor
To view the source code that was generated, right-click Controll.java in Project Explorer
and click View Code on the shortcut menu. The code in the; n; t Form method represents
the modifications you make in the Forms Designer. The nested class C 1 ass In f ° specifies
the properties and events of your control. (To modify the Cl ass Info, you can use the WFC
Component Builder.)

Note that the lavadoc comments for the Controll class provide information about how
to expose your class as an ActiveX control. For more information, see "Setting COM
Classes," later in this chapter.

Modifying the Control in the Forms Designer
The following procedures show how to use the existing WFC controls to design your
control. This example adds an edit box and a horizontal scroll bar to your control;
whenever the scroll bar is scrolled, the edit box displays the scroll bar's current position.

To add existing controls to your control

1. To open your control in the Forms Designer, double-click Controll.java in Project
Explorer.

2. In the Toolbox, select the WFC Controls tab. (If the Toolbox is not displayed, click
Toolbox on the View menu.)

3. To add an edit box to your control, click the Edit control in the Toolbox and then
click your control's design surface.

4. To add a horizontal scroll bar to your control, click the HScrollBar control in the
Toolbox and then click your control's design surface.

5. Position the edit box in the upper-left comer of your control's design surface, and
move the scroll bar below the edit box. (To reposition an item, select and drag it
with the mouse.)

6. Resize your control's design surface around the edit box and scroll bar to eliminate
extra space. (To resize the design surface, select it and drag the resize handles.)

To add an event handler

1. Click the Events toolbar button in the Properties window. (If the Properties window
is not displayed, click Properties Window on the View menu.)

2. To display the events of the scroll bar, either select the scroll bar on your control's
design surface or select the name of the scroll bar object from the drop-down list in
the Properties window.

16 Programmer's Guide

Chapter 1 Creating Projects

3. Find the scroll event and enter displayPosition for the name of the method that will
handle the event. When you press ENTER, the Text editor opens to an empty event
handler named di spl ayPosi ti on.

4. Inside the definition of the dis play Pos it i on event handler, add the following line
of code:

edit1.setText("Position - " + HScrollBar1.getValue(»;

For more information about modifying your code in the development environment, see
Chapter 3, "Editing Code."

Building the Control
When you build your project, your control is automatically made available to the Toolbox.

To build the control

• On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in the
Text editor to the error.) Correct the errors and rebuild your control.

To add the control to the Toolbox

1. Right-click the Toolbox and click Customize Toolbox on the shortcut menu.

2. Click the WFC Controls tab and select the name of your control.

3. Click OK.

Adding the Control to a Form
To use your control, you can add it to a WFC form.

To add a form to your project

1. In Project Explorer, right-click the name of your project. Point to Add on the shortcut
menu and then click Add Form.

2. Select the Form icon.

3. In the Name box, enter a name for the Java class.

4. Click Open. A file with the default name of Forml.java has been added to your
project and is opened in the Forms Designer.

To add your control to the form

1. Find your control in the Toolbox. To scroll through the list of controls, you can click
the up and down arrows on the Toolbox tabs.

2. Click your control in the Toolbox and then click the form to add the control.

Programmer's Guide 17

Part 1 Getting Started with Visual J++

To build and run the form

1. On the Build menu, click Build. (If you receive any compilation errors or messages,
correct the errors and rebuild your project.)

2. To run the form, click Start on the Debug menu.

Note Because you are running your project for the first time, and because your
project contains two .java files, the Project Properties dialog box is displayed.
On the Launch tab, select the Default option and specify that Forml should load
when the project runs. Click OK. (For more information about project properties,
see "Setting Project Options," later in this chapter.)

3. Click the ends of the scroll bar in your control. The edit box displays the current scroll
position.

4. To close the form, click the Windows Close button located in the upper-right comer
of the form.

For more information about creating WFC controls and applications, see Chapter 13,
"WFC Control Development," and Chapter 11, "Introduction to WFC Programming."

Creating a Console Application
A console application has no graphical user interface. You can use the nongraphical
classes in either WFC or the Java API to develop your application.

Note Before you use the following procedure to create a console application, close
any projects that you may already have open. (On the File menu, click Close All.)

To create a console application

1. On the File menu, click New Project.

2. On the New tab, expand the Visual.J++ Projects folder and click Applications.
Then select the Console Application icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A file with the default name of
Classl.java has been added to your project.

Note Renaming this file does not rename the associated class in the source code,
and vice versa. You must manually change all instances of the old name. (Note that
you can create an empty project and then add a class with the ClassMain template.
This two-step process allows you to name the class before it is created.)

18 Programmer's Guide

Chapter 1 Creating Projects

Adding Code in the Text Editor
To view the source code that was generated, double-click Class1.java in Project Explorer.
Program execution begins with the rna; n method.

To add code to the application

• In the Text Editor, add the following code after the IITOOO comment inside the rna in
method:

String str = "The quick brown fox jumped over the lazy yellow dog.";

System.out.println("The string is: " + str);
System.out.println("The length of the string is: "+ str.length());
System.out.println("The substring from positions 10 to 20 is: " +

str.substring(10,20));
System.out.println("The uppercase string is: "+

str.toUpperCase());

For more information about modifying your code in the development environment,
see Chapter 3, "Editing Code."

Building and Running the Application
After you build your application, you can run it from either the development environment
or from the command line.

To build and run your application

1. On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in the
Text editor to the error.) Correct the errors and rc\mild your applet.

2. To run the application from the development environment, click Start on the Debug
menu.

3. To run the application from the command line, use JVIEW. At the command prompt,
type j vi ew Cl ass 1 from the directory location of your project.

Creating an Applet
An applet runs from within an HTML page, and is created with the classes in the Java API.
Your applet must extend java.applet.Applet, and typically uses the classes in the java.awt
package to provide a graphical user interface.

Note Before you use the following procedure to create an applet, close any projects
that you may already have open. (On the File menu, click Close All.)

Programmer's Guide 19

Part 1 Getting Started with Visual J++

To create an applet

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder and click Web Pages.
Then select the Applet on HTML icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of your project appears in Project Explorer.

6. In Project Explorer, expand the project node. A Java source file with the default name
of Appletl.java has been added to your project, as well as an HTML page named
Pagel.htm.

Note Renaming the Appletl.java file does not rename the associated class in the
source code, and vice versa. You must manually change all instances of the old
name. (Note that you can create an empty project and then add a class with the
Class template. This two-step process allows you to name the class before it is
created; however, the Class template does not provide the basic code framework
for an applet.)

Viewing Code in the Text Editor
The Applet template already provides some sample functionality. You can view this
sample code in the Text editor.

To view the sample code in the applet

1. To view the source code, double-click Appletl.java in Project Explorer. Program
execution begins with the ; n; t method.

2. The; n; t method simply calls; n; tForm and usePagePa rams. Use Class Outline to
locate the; nit Form method:

• If Class Outline is not displayed, point to Other Windows on the View menu and
click Document Outline.

• Expand your class in Class Outline and double-click; n; tForm. The insertion point
immediately moves to the; n; tForm method.

3. The; n; tForm method initializes the background and foreground colors, and adds
a java.awt.Label control to the applet.

4. In Class Outline, double-click usePageParams. This method retrieves the value of
the <PARAM> tags from the associated HTML page, and sets the background color,
foreground color, and label text to these values. If usePagePa rams is unable to retrieve
the <PARAM> values, then default values are used.

20 Programmer's Guide

Chapter 1 Creating Projects

For information about modifying your code in the development environment, see
Chapter 3, "Editing Code."

Building and Running the Applet
After you build your applet, you can launch the associated HTML page from
the development environment or simply open the HTML page in your browser.

To build and run your applet

1. On the Build menu, click Build. Any compilation errors or messages appear in the
Task List. (Double-clicking an error in the Task List moves the insertion point in
the Text editor to the error.) Correct the errors and rebuild your application.

2. To run the applet from the development environment, click Start on the Debug menu.
Internet Explorer is launched and Page1.htm displays the applet.

Note To run the applet without an HTML page, you can use JVIEW from the
command line. At the command prompt, type jvi ew fa Appl etl from the directory
location of your project. When the f a option is specified, the Applet Viewer is
launched to display your applet.

Creating an Empty Project
When you create a project in Visual J++, you can use one of the code templates, run the
Application Wizard, or create an empty project. When you use the code templates or the
wizard, your Java source files use the default names, such as Forml.java or Class1.java.
Renaming the file does not automatically rename the associated Java class in the code, and
vice versa; you must manually change all instances of the old name. However, creating an
empty project provides the flexibility of initially naming your Java source files when you
add them.

Note Before you use the following procedure to create an empty project, close
any projects that you may already have open. (On the File menu, click Close All.)

To create an empty project

1. On the File menu, click New Project.

2. On the New tab, click the Visual J++ Projects folder. Then select the Empty
Project icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. Your project appears in Project Explorer and contains no files.

Programmer's Guide 21

Part 1 Getting Started with Visual J++

To add a form or control to the project

1. In Project Explorer, right-click the name of your project. Point to Add on the
shortcut menu and then click Add Form.

2. To add a WFC form, select the Form icon. Your Java class extends
com.ms.wfc.ui.Form. (You can also select the Data Form Wizard icon to
automatically generate a data-bound form.)

3. To add a control, select the Control icon. Your Java class extends
com.ms.wfc.ui.UserControl.

4. In the Name box, enter a name for the Java class.

5. Click Open.

For more information about WFC forms, and for a simple example that shows how
to modify a form, see "Creating a Windows Application with WFC," earlier in this chapter.

To add a Java class to the project

1. In Project Explorer, right-click the name of your project. Point to Add on the shortcut
menu and then click Add Class.

2. To add an empty Java class, select the Class icon. (You can later modify this class
to create a COM DLL, a Dynamic HTML application, or an applet.)

3. To add a Java class that contains a main method (such as to create a console
application), select the ClassMain icon.

4. In the Name box, enter a name for the Java class.

5. Click Open.

To add an HTMl page to the project

1. In Project Explorer, right-click the name of your project. Point to Add on the shortcut
menu and then click Add Web Page.

2. Select the Page icon to add an HTML page.

3. In the Name box, enter a name for the page.

4. Click Open.

To import a COM Dll into the project

1. In Project Explorer, right-click the name of your project. Point to Add on the shortcut
menu and then click Add COM Wrapper.

2. In the COM Wrappers dialog box, select the type library that you want to import.

22 Programmer's Guide

Chapter 1 Creating Projects

3. Click OK.

Note By default, when you create a project with the Empty Project icon, your project
will not be packaged when you build it. However, if you are creating a Windows
application with WFC, you may want to package your project into an .exe file that
can be run from the command line; if you are creating a COM DLL, you need to
package your project into the DLL format. For more information, see Chapter 7,
"Packaging and Deploying Projects."

Creating a Multiproject Solution
Each project you create is contained within a solution, and a solution can contain multiple
projects.

Note Before you use the following procedure to create a multiproject solution, close
any projects that you may already have open. (On the File menu, click Close All.)

To create the first project in the solution

1. On the File menu, click New Project.

2. On the New tab, expand the Visual J++ Projects folder, and click Applicntions.
Then select the Windows Application icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

5. Click Open. A collapsed view of the project appears in Project Explorer.

Note Because no project (or solution) was open when you created the Windows
application project, the new project is created in a new solution.

To add another project to the solution

1. With the first project open, click New Project on the File menu.

2. On the New tab, expand the Visual J++ Projects folder and click Web Pages.
Then select the Code-Behind HTML icon.

3. In the Name box, enter a name for your project.

4. In the Location box, enter the path where you want to save your project, or click
Browse to navigate to the folder.

Programmer's Guide 23

Part 1 Getting Started with Visual J++

5. Because there is a solution that is currently open, you have two options:

• Close current solution Closes the current solution and creates the project
in a new solution.

• Add to current solution Keeps the current solution open and simply adds
the new project to it.

6. Select the Add to current solution option and click Open. A collapsed view of
the project appears in Project Explorer.

Building a Multiproject Solution
When you create a multiproject solution, you can build either a single project within
the solution or all projects in the solution.

To build a single project in the solution

1. In Project Explorer, select the name of the project you want to build.

2. On the Build menu, click Build ProjectName.

To build all projects in the solution

• On the Build menu, click Build Solution.

When you build the entire solution, typically each project is built in the order that it was
added to the solution. However, if one project depends on another project to be built first,
you can explicitly change the build order.

To change the build order of the projects in the solution

1. In Project Explorer, right-click the name of the solution, and click Property Pages
on the shortcut menu.

2. The Build Order tab in the Property Pages dialog box displays the current build
order. To change the order of a project, select the project name, and click one of the
Move buttons.

3. Click OK when you have finished changing the build order of the projects.

Setting the Startup Project
When you create a multiproject solution, the first project that was added is set as the
startup project and appears in bold font in Project Explorer. The startup project is the
project that runs when you click Start on the Debug menu.

To change the startup project

1. In Project Explorer, right-click the project that you want to set as the startup project.

2. On the shortcut menu, click Set as Startup Project.

24 Programmer's Guide

Chapter 1 Creating Projects

Managing Projects
with Project Explorer

The Project Explorer window displays the items that belong to the open project(s). In
Visual J++, projects are directory-based. Each file and folder in the project corresponds
to a file and folder on the hard disk. Adding a file to the project adds the file to the project
directory structure on the hard disk, and vice versa. Note, however, that you can remove
a file from the project without removing it from the hard disk.

By default, Project Explorer is automatically opened when you create or open a project.
To manually open Project Explorer, click Project Explorer on the View menu.

Choosing the Project View
A Java package is essentially a folder in your Java project. The hierarchy of Java
packages in a project maps to a hierarchy of folders in the file system. Because of this
relationship, Project Explorer provides two ways to view your Java project: directory
view and package view.

Directory view, the default view, displays a hierarchical list of all project subfolders,
according to the project directory structure on the hard disk. Each Java package in the
project is displayed as a subfolder. Package view displays project subfolders as Java
packages, in a flat list. Note that package view displays only .java files and the folders
that contain .java files. Each folder that is displayed is listed by its fully qualified package
name. The project node itself is considered the default package.

The following diagram shows the same project in both directory view and package view:

Directory View

[Si Solution 'ProjectExplorer' (1 project)

B··· ~ rpi~J~.s~I]
~ .. n. @l Application 1 ,java

Boo, E5J PackageA
, ~ Class1.java

1···.. l!i Page1.htm
B··· E5J PackageB

~ ~ Classrvlain1,java

B··· E5J PackageC
1... .. ~ Interface1.java

Package View

~ solution 'ProjectExplorer' (1 project)
: ~;'''~ .. ';.'''~'' El·· IEP ProjecU;

j r~lAppli~~tion1 ,java

B··· €5l PackageA
! L ... ~ Class1.java

B··· E5J PackageA,PackageB
I L.. .. ~ Classrvlain1.java

B··· E5J PackageA,PackageB,PackageC
L ... ~ Interface1.java

For more information about the relationship between Java packages and the file system,
see "Storing Packages in a File System" in the Java Language Specification.

Programmer's Guide 25

Part 1 Getting Started with Visual J++

To view the project in package view

• On the Project menu, click Package View, or click the Package View button in
Project Explorer. Only the project's .java files, and the folders (packages) that contain
them, are displayed. (If a non-Java source file is currently open, then it remains
displayed in Project Explorer.)

Note The structure of files and folders displayed in package view is based on the
location of the .java files, not the location of the built .class files. Therefore, if the
package statements in the .java files do not match their location on the hard disk,
package view will not accurately display the packages in your project.

To view the project in directory view

• On the Project menu, click Directory View, or click the Directory View button
in Project Explorer. All files and folders in the project are displayed.

By default, Project Explorer does not display any nonproject files and folders that reside
in the project directory structure on the hard disk. However, if the project view is set to
directory view, you can display these items by clicking the Show All Files button in
Project Explorer. Note that in package view, this button is disabled. For more information
about nonproject items that reside in the project directory structure, see "Displaying All
Files in the Project Directory Structure," later in this chapter.

Opening a File
You can use Project Explorer to open the files in your Java project. Each file is associated
with a source editor. If the file supports graphical editing, then it is also associated with a
graphical editor.

To open a file In Its source editor

• In Project Explorer, right-click the name of the file, and click View Code on the
shortcut menu. You can also click the View Code button in Project Explorer.

To open a file in its graphical editor

• If the file supports graphical editing, right-click the name of the file in Project
Explorer, and click View Designer on the shortcut menu. You can also click the
View Designer button in Project Explorer. (If the file does not support graphical
editing, neither the button nor the menu command is available.)

Tip Double-clicking the name of the file opens it in the default editor for that file
type. For example, double-clicking a WFC form opens it in the Forms Designer.

For information about adding files to your project, see the next section, "Adding a File."

26 Programmer's Guide

Chapter 1 Creating Projects

Miscellaneous Files
To open a file that is not part of the open project, use the Open File command on the
File menu. Project Explorer lists the file under the Miscellaneous Files node. Once a
nonproject file is listed under Miscellaneous Files, you can simply double-click it in
Project Explorer to reopen it.

Note that if you remove a file from the project, it still resides in the project directory
structure. However, you must still use the Open File command to open the file, since
the file no longer belongs to the project. For information about removing files, see
"Removing a File or Folder," later in this chapter.

Adding a File
When you add a file to your project, it is included in the project's build process. Adding
a file to a Java project also adds the file to the project directory structure on the hard disk:

• Creating a new file in the project creates a new file on the disk.

• Adding a file that already exists on the disk copies the file to the appropriate location
in the project directory structure.

Note Some files may reside in the project directory structure without belonging
to the project. For example, removing a file from the project still leaves the file in
the project directory structure. This file can be added back to the project in its same
location on the disk.

You can add a file to the top-level project or to a specific folder. For information about
adding folders to the project, see "Adding a Folder," later in this chapter.

To add a file to the project

1. In Project Explorer, select the project or folder node that will contain the file.

2. On the Project menu, click Add Item.

3. To create a new file, click the New tab in the Add Item dialog box.

• In the left pane of the dialog box, select a file category. In the right pane, select
the type of file you want to add, based on the selection in the left pane.

• In the Name box, type a name for the file. For information about valid Java file
names, see "Identifiers" in the Java Language Specification.

• Click Open. Note that when you add a new .java file, Visual J++ automatically
inserts the proper package statement into the file. (If you add a .java file to the
project node itself, no package statement is inserted, since the project node is
considered the default package.)

Programmer's Guide 27

Part 1 Getting Started with Visual J++

4. To add an existing file, click the Existing tab in the Add Item dialog box.

• Find and select the file you want to add. You can select multiple files from the
same folder by using the SHIFT or CTRL keys.

• Click Open. Note that when you add an existing .java file, you must manually
change its package statement to reference the new package. (Note that the project
node itself is considered the default package.) If a file's package statement does
not map to the folder it resides in, the output directory structure will not match
the source directory structure when you build the project.

When a single file is added to the project through Project Explorer, it is automatically
opened in its default editor. When multiple files are added at the same time, no file is
opened. For information about opening files, see "Opening a File," later in this chapter.

Note If a file is added to the project directory structure through the file system, it is
automatically added to the project if its file type is specified in the project filter. The
file is then displayed in Project Explorer, but not opened. For more information about
the project filter, see "Displaying All Files in the Project Directory Structure," later in
this chapter.

Adding a File that Resides in the
Project Directory Structure
If a file does not belong to the project, but it already exists in the project directory
structure, you can simply add it to the project in that same location.

To add a file that already resides in the project directory structure

1. Set the project view to directory view by clicking the Directory View button in Project
Explorer. Only directory view allows you to see the nonproject files that reside in the
project directory structure. For more information about views, see "Choosing the
Project View," earlier in this chapter.

2. If the nonproject files are not currently displayed, click the Show All Files button
in Project Explorer to show all files in the project directory structure.

3. Right-click the name of the file that you want to add to the project. Note that you
cannot add a file if its folder is not in the project. For information about adding the
folder, see "Adding a Folder that Resides in the Project Directory Structure," later
in this chapter.

4. On the shortcut menu, click Add To Project. The file is added to the project, but not
opened. For information about opening files, see the previous section, "Opening a File."

5. To hide any remaining nonproject files, click the Show All Files button again.

For more information about nonproject files that reside in the project directory structure,
see "Displaying All Files in the Project Directory Structure," later in this chapter.

28 Programmer's Guide

Chapter 1 Creating Projects

Adding a Folder
When you add a new folder to your project, a corresponding folder is created on the
hard disk. In a Java project, a folder is essentially a Java package. In Project Explorer's
directory view, all packages are displayed as project subfolders. In package view,
subfolders are displayed as Java packages. For more information about views, see
"Choosing the Project View," earlier in this chapter.

Note A folder may reside in the project directory structure without belonging to
the project. For example, removing a folder from the project still leaves the folder
in the project directory structure. This folder can be added back to the project in its
same location on the disk.

To add a new folder (package) to the project

1. In Project Explorer, right-click the project or folder node that will contain the
new folder.

2. On the shortcut menu, click New Folder.

3. In the Add Package/Folder dialog box, type the name of the new folder. This name
must be a valid Java package name. For information about valid names, see
"Identifiers" in the Java Language Specification.

4. Click OK.

Once you have created a folder, you can add files to it. For information about adding files,
see "Adding a File," earlier in this chapter.

Note If a folder is added to the project directory structure through the file system, it
is automatically added to the project and displayed in Project Explorer. All files in the
folder, whose types are specified in the project filter, are added to the project as well.
For more information about the project filter, see "Displaying All Files in the Project
Directory Structure," later in this chapter.

Adding a Folder that Resides in
the Project Directory Structure
If a folder does not belong to the project, but it already exists in the project directory
structure, you can simply add it to the project in that same location.

To add a folder that already resides in the project directory structure

1. Set the project view to directory view by clicking the Directory View button in Project
Explorer. Only directory view allows you to see the nonproject items that reside in the
project directory structure. For more information about views, see "Choosing the
Project View," earlier in this chapter.

Programmer's Guide 29

Part I Getting Started with Visual J++

2. If the nonproject items are not currently displayed, click the Show All Files button
in Project Explorer to show all files and folders in the project directory structure.

3. Right-click the name of the folder that you want to add to the project.

4. On the shortcut menu, click Add To Project. The folder and all subfolders and files
contained within the folder are added to the project. (Only those files whose types are
specified in the project filter are added.)

5. To hide any remaining nonproject items, click the Show All Files button again.

For more information about the project filter and about nonproject items that reside in the
project directory structure, see "Displaying All Files in the Project Directory Structure,"
later in this chapter.

Moving or Copying a File or Folder
When you move or copy a file or folder in your Java project, the file or folder on the hard
disk is also moved or copied. Moving or copying a folder also moves or copies all project
files in the folder.

Important When moving or copying a .java file to a different folder, you must
manually change its package statement to reference the new package. (Note that the
project node itself is considered the default package.) Similarly, if you move a folder
within the project, you must manually change the package statement of each .java file
in the folder. If a file's package statement does not map to the folder it resides in, the
output directory structure will not match the source directory structure when you build
the project.

When moving or copying items, Project Explorer follows the rules of the file system.
For example, you cannot move a folder into any of its subfolders.

To move or copy a file or folder in the project

1. In Project Explorer, right-click the name of the file or folder to be moved or copied.

2. To move the item, click Cut on the shortcut menu; to copy the item, click Copy.

3. Right-click the new folder or the project node that will contain the file or folder.

4. On the shortcut menu, click Paste.

Note If a file or folder is moved er copied through the file system, it is automatically
moved or copied within Project Explorer. However, you must still ensure that the
package statements in the .java files are correct.

You can also copy files and folders by dragging them in Project Explorer. Note that
drag-and-drop operations in Project Explorer only copy the source items. In directory
view, you can drag either a single folder or any set of files. In package view, you can only
drag files. For more information about views, see "Choosing the Project View," earlier in
this chapter.

30 Programmer's Guide

Chapter 1 Creating Projects

Renaming a File or Folder
When you rename a file or folder in your Java project, the file or folder on the hard disk
is also renamed.

Important When renaming an item in your project, you must be careful to manually
change all references to the old name. For example, Java requires a public class to have
the same name as its source file. Therefore, if you rename a .java file, you must also
rename the associated public class, and vice versa.

Note that if you rename a folder, you must change the package statement of each .java
file in the folder. If a file's package statement does not map to the folder it resides in,
the output directory structure will not match the project directory structure when you
build the project.

To rename a file or folder in the project

1. In Project Explorer, right-click the name of the file or folder to be renamed.

2. On the shortcut menu, click Rename.

3. Type the new name, and press Enter. This name must be a valid file or package
name. For information about valid names, see "Identifiers" in the Java Language
Specification.

Note If a file or folder is renamed through the file system, it is automatically renamed
in Project Explorer. However, you must still change all references to the old name.

Removing a File or Folder
When you remove a file from your Java project, the file is no longer built with the project;
however, the file still remains in the project directory structure on the hard disk. When you
remove a folder, the folder and all of its files are removed from the project, but they are
still left on the hard disk.

You can also choose to actually delete the file or folder from both the project and the
hard disk.

Note Removing or deleting a .java file does not automatically remove or delete the
associated .class file (if it exists). However, you can display the .class file in Project
Explorer and then manually remove or delete it.

To remove a file or folder from the project

1. In Project Explorer, right-click the name of the file or folder to be removed.

2. On the shortcut menu, click Remove From Project.

Programmer's Guide 31

Part 1 Getting Started with Visual J++

To delete a file or folder from the project and the hard disk

1. In Project Explorer, select the name of the file or folder to be deleted.

2. Press DELETE.

Note If an item is deleted through the file system, it is automatically deleted from
the project and removed from Project Explorer.

Project Explorer provides the option of displaying the items you have removed from
your project. For more information, see the next section, "Displaying All Files in the
Project Directory Structure." For information about adding a removed file or folder back
to the project, see "Adding a File" and "Adding a Folder," earlier in this chapter.

Displaying All Files in the
Project Directory Structure

Files and folders may reside in the project directory structure without belonging to
your project:

• Removing a file or folder from a Java project still leaves it on the hard disk.

• Files whose types are not in the project filter may not be added to the project.
For more information, see the next section, "The Project Filter."

In Project Explorer's directory view, you have the option of displaying all files and
folders that reside in the project directory structure, even if they do not belong to the
project. The icon for each item denotes whether it currently belongs to the project.

To toggle the display of non project items in the project directory structure

1. Set the project view to directory view by clicking the Directory View button
in Project Explorer. Only directory view allows you to see the nonproject items
that reside in the project directory structure. For more information about views,
see "Choosing the Project View," earlier in this chapter.

2. Click the Show All Files button in Project Explorer.

For information about adding a nonproject file or folder to the project, see "Adding a File"
and "Adding a Folder," earlier in this chapter.

The Project Filter
Visual J++ uses a project filter to determine which types of files typically belong to a Java
project. The project filter is an inclusive filter, meaning that the extensions in the filter
identify valid project files. The following extensions are included in the project filter:

• .java

• .asp, .htm, .html

32 Programmer's Guide

• .bmp, .gif, .ico, .jpeg, .jpg

• .avi, .au, . wav

• .doc, .rtf, .txt, .ppt, .wri, .xls

• .bat, .cur, .reg, .snd, .tlb, .urI

When a file is added to the project directory structure from outside the Visual J++
environment, the project filter is used to determine whether the file actually belongs
to the project.

Important When you add a file within the Visual J++ environment, the file is
always added to the project, regardless of its file type.

Setting Project Options

Chapter 1 Creating Projects

Visual J++ provides a number of options that allow you to configure your application for
debugging, optimize your project's compiled output, expose classes within your project
as COM objects, and specify the paths for your class's dependencies. You can find all of
these options in the <.Project> properties dialog box (where <Project> is the name of your
currently selected project). You can display these options by clicking the Project menu and
selecting the <.Project> Properties menu command.

Setting Launch Options
Before a project can be compiled in Visual J++, you need to define the project file that
will be loaded first and used as the entry point of the application. You can select this file
by either choosing it from a list of available project files, which uses a default program and
command line, or select a custom program and command line. For most applications, the
default program and command line arguments are sufficient. Specifying a custom program
and command line are usually used when you need to define a custom command line to
pass to your application when it is run within Visual J++. You can also use the custom
program option when you are developing a WFC control or COM DLL that needs to be
tested from a separate program.

To select the build configuration

1. On the Project menu, click <.Project> Properties (where <Project> is the name of the
project that is currently selected in the Project Explorer).

The <.Project> Properties dialog box appears.

2. Select the Launch tab.

3. In the Configuration drop-down list, choose the build configuration for which you
want the Launch tab settings to apply.

Programmer's Guide 33

Part 1 Getting Started with Visual J++

To choose the entry point file with default program and command line

1. On the <.Project> Properties dialog box, click Default to enable the default options.

2. In the When project runs, load drop-down box, select the name of the file you wish
to use as the entry point to your application. The following are the types of files that
can be displayed in the list:

• Any Java classes that have a main method defined.

• HTML files.

• Java classes that extend java.lang.Applet.

The Program text box identifies the program that will launch your application, based
on the type of file selected from the entry point list. The Arguments text box shows
command line arguments that are to be passed when the program runs.

3. If the file selected from the entry point list is a Java source file, you can select the
Launch as a console application check box to run your application with JView
instead of WJView. JView displays all output from your application in a console
window, while WJView displays all output in the Output Window.

To choose the entry point file and define a custom program and command line

1. On the <Project> Properties dialog box, click Custom. By default, the Program and
Argument text boxes contain the same project file, program, and arguments that are
defined in the Default section.

2. In the Progrnm text box, enter a new program name to run or modify the existing
program name.

3. In the Arguments text box, enter a new list of arguments to usc or modify the existing
arguments list. The default arguments supplied also include the name of the project file
that will be used as the entry point.

Note If you want to configure a different entry point file for a debug build versus a
release build of your project, you can use the Configuration drop-down list to specify
the new settings .

. Setting Compiler Options
Visual J++ provides a number of compiler options to help optimize compiled output and
to assist in the debugging process of an application. The Compile tab of the <.Project>
Properties dialog box provides a way to set these options. Most of the options provided
in this dialog box are check boxes that you can set to enable or disable a feature. For
information each of the options in the dialog box, click the Help button located in the
dialog box.

34 Programmer's Guide

Chapter 1 Creating Projects

If you want to specify conditional compilation symbols to be used when compiling
your code, you can define them using the options on the Compile tab. Enter conditional
compilation symbols into the Conditional compilation symbols box and separate
each entry with a comma. For more information on setting symbols and conditional
compilation, see Appendix B, "Conditional Compilation."

In addition to the compiler options that can be changed in the dialog box, you can also
define additional compiler options that are passed to the compiler after the other options
have been passed. You can specify additional compiler options by entering them in the
Additional compiler options text box. Each option should be separated by a space.
For more information on available compiler options, see "JVC Command-Line Options" in
Chapter 9, "Compiling Applications with JVC."

Another compilation setting that you can specify in the Compile tab is the Output
Directory. This box allows you to specify a directory in which the project's compiled files
are to be placed. If your project has any packages defined within it, Visual J++ creates
those packages in the output directory and compiles any source files in those packages.
You can use this setting to specify a location for a debug or release build of your project.
By default, this box is left empty; thus, all project output is placed in the project directory.

Note The Configuration list allows you to have different settings for release and
debug builds of your project. You can use this feature to specify specific compiler
settings and the output directory for each configuration of your project. An All
Configurations setting is also available to make changes global to all configurations
of your project.

Creating Custom Bllild Rules
Depending on the type of project you are working with, you may need to have certain tasks
completed prior to and after building your project. The Custom Build tab of the <Project>
Properties dialog box allows you to specify commands that are to be executed before or
after building a project. There are two text boxes on this tab - Pre-build and Post-build.
The format of the commands entered into these text boxes should be identical to the
commands used in a batch file (such as Autoexec.bat).

To add pre-build or post-build commands

1. On the Project menu, click <Project> Properties (where <Project> is the name of the
project that is currently selected in the Project Explorer).

The <Project> Properties dialog box appears.

2. Select the Custom Build tab.

3. In the Configuration drop-down list, choose the build configuration for which you
want the Custom Build tab settings to apply.

Programmer's Guide 35

Part 1 Getting Started with Visual J++

4. Select the Pre-build command(s) box if you want to specify commands that will occur
before your project is built. Select the Post-build command(s) box if you want to
specify commands that will occur after your project has been built.

5. Enter the commands you wish to specify for the selected build command type.
Only one command should be specified on each line of the text box. When entering
commands into the text box, you can use standard batch commands to specify
conditions under which the·commands should execute.

Setting the Classpath
In order to utilize Java packages in your projects, it is important that the packages be
available on the Classpath. The Classpath is a path the compiler uses to find packages that
you reference in your projects. You can add a package to the Classpath by either adding it
to your Autoexec.bat file, if you are running Microsoft Windows; or to the environment
settings if you are running under Microsoft Windows NT. The following is an example of
a Classpath entry:

SET CLASSPATH=%PATH%;C:\MYPACKAGE;

You may want to have a path added to the Classpath for your Java project. The Classpath
tab of the <.Project> Properties dialog box allows you to add and remove paths that are
related to your project.

To display the Classpath tab

1. On the Project menu, click <.Project> Properties (where <.Project> is the name of the
project that is currently selected in the Project Explorer).

The <.Project> Properties dialog box appears.

2. Select the Classpath tab.

3. In the Configuration drop-down list, choose the build configuration for which you
want the Classpath tab settings to apply.

To add a path to the project specific Classpath

1. On the <Project> Properties dialog box, click the New button.

The Extended Project-specific Classpath dialog box appears.

2. Enter the path that you wish to add to your project's Classpath. If the path you define
does not exist, Visual J++ will ask you if you want to add the path regardless of the
path's existence.

3. Click OK.

The path is added to the list of paths.

36 Programmer's Guide

Chapter 1 Creating Projects

Note If you have multiple projects open in Visual J++, you can merge all the
project-specific Classpaths into a consolidated "solution-specific" Classpath.
To do this, click the Merge all Project-specific Classpaths in Solution check box.

To delete a Classpath from the list, select the Classpath in the list and then click Delete.
You can also use the Up or Down buttons to change the order of the Classpaths in the list.

Setting COM Classes
Exposing a class as a COM class is a way of creating powerful and reusable applications.
By selecting a class as a COM class, the class and its public methods can be accessed from
other applications and programming languages. The COM Classes tab of the <Project>
Properties dialog box allows you to specify which public classes in your project should
be exposed as COM classes. Once a class has been defined as a COM class, Visual J++
creates a type library for your project's COM classes so that it can be accessed by other
applications and registered as a COM object in the system registry.

The COM Classes tab also allows you to use an existing type library to expose your
project's classes or to create class templates for existing type libraries or embedded
COM object ActiveX controls. A COM template allows you to use Java source code to
implement COM components that are described in type libraries or pre-existing COM
components. If you have a type library or COM component that you wish to implement
using Java, you can select the type library or COM component from the list and Visual J++
will build the template code in your project. You can then implement each of the methods
provided by the templates, and compile to create a COM component.

To make a class in your project a COM class

1. On the Project menu, click <.Project> Properties (where <Project> is the name of the
project that is currently selected in the Project Explorer).

The <.Project> Properties dialog box appears.

2. Select the COM Classes tab.

Note Any settings made in the COM Classes tab of the <Project> Properties
dialog box are not affected by changes in the build configuration settings in the
Configuration list.

3. In the COM Classes tab, click Automatically generate Type Library.

4. Place a check mark next to the class you wish to make a COM class.

5. By default, Visual J++ creates a type library file based on the name of the project.
To change this and other information related to the type library, such as the library
name, description, help file, and help context ID, click Options. This displays the Type
Library Options dialog box where you can modify the information for the type library.

Programmer's Guide 37

Part 1 Getting Started with Visual J++

To use an existing type library

1. On the COM Classes tab, click Use existing Type Library and then click Select.

The COM Templates dialog box appears.

2. From the list of Installed COM Components, locate and place a check mark next
to the type library you wish to use. If the type library is not registered in your system
registry, you can click Browse to select the type library you wish to use.

3. Click OK.

Visual J++ creates a package directory in your project directory and also creates the
template classes in the new package directory.

Importing a Visual J++ 1.1 Project
You can open and use Java projects created with Visual J++ 1.1 in the new Visual J++ 6.0
development environment. The following procedure provides the steps for converting
these files.

Caution Before importing your Visual J++ 1.1 project, it is important that you
understand the new project structure. The new project structure is directory-based in
contrast to the file-based structure of Visual J++ 1.1. This change in project structure
means that every file that exists in the root directory of your project and all directories
below the project root directory are automatically included as part of your project. You
can remove files from a new project with the Remove From Project item on Project
Explorer's shortcut menu. If you remove an item from a project, you can add it back
to the project by using the Add To Project item on Project Explorer's shortcut menu.
However, when you delete a file from a project, it is physically deleted from the
directory and cannot be recovered from the development environment, but may be
recoverable from the Recycle Bin.

To import a Visual J++ 1.1 project

1. On the File menu, click Open Project.

The New Project dialog box appears.

2. Click the Existing tab, and locate the root directory of the Visual 1++ 1.1 project you
want to import.

3. Click the root directory of Visual 1++ 1.1 project.

4. In the New Project dialog box, click Import Project Folder.

Your imported Visual J ++ 1.1 project appears in the Project Explorer.

5. In the Project Explorer, expand your project's folder to view the files in your project.

Your project is now ready for you to modify, build, and run.

38 Programmer's Guide

CHAPTER 2

Designing Forms

The Forms Designer provides you with a dynamic way to visually create forms for your
applications. You can tum a two-dimensional form into source code that is based on
the Windows Foundation Classes for Java (WFC). The Forms Designer contains Rapid
Application Development (RAD) features, such as code generation and code completion,
that provide quick syntax analysis, debugging information, and other tools for:

o Creating a form and specifying the alignment and formatting without having to
write Java code.

o Managing the Toolbox containing WFC, ActiveX, and custom controls.

o Adding controls to a form by dragging WFC and ActiveX controls onto it.
The Forms Designer generates the appropriate Java source code.

o Adding event handlers to controls.

o Formatting forms to position and size your forms and controls by dragging their
handles and objects visually without having to write Java code.

o Setting properties with the Properties window without having to write Java code.
Properties include form elements such as color, size, position, and font.

o Creating menus for your form through the addition of a single WFC control.

o Code generation synchronization for visual representation of code changes and
form views.

o Writing or modifying Java code for a form and viewing the results in the Forms
Designer.

o Authoring WFC controls for your forms.

Programmer's Guide 39

Part 1 Getting Started With Visual J++

Creating a Form
You can add a form to your application through the Project menu.

Objects that include components and controls can be dragged from the Toolbox to the
form. The form is persisted as a block of source code that defines an instance of the
WFC Form class. The default Form class contains:

• A constructor that invokes the initForm method.

• A set of instance variables, one for each item on the form.

• An initForm method that specifies the default properties for the items. You can
change these defaults by setting item properties.

The Forms Designer generates this code based on values set in the Properties window
for each control and the form itself. Be careful when modifying the initForm method,
because the Forms Designer also reads this code when displaying the form. Also, avoid
conditionals, such as if, while, and switch statements, and component methods. If you
modify the initForm code, restrict changes to properties that begin with set, and restrict
values to constants. Do not use variables to set values.

For example:

Correct setS; ze(10, 100);

Incorrect x-10; y - 100; setSize(x,y);

To create a form

1. Open an existing project, or create a new project.

2. In Project Explorer, select the name of your project.

3. On the Project menu, click Add Form.

4. In the Add Item dialog box, click either the New or Existing tab. For this example,
click the New tab.

5. In the Add Item dialog box, click the Form icon.

This template creates a class capable of hosting controls.

6. In the Name box, edit the name of the class file. The default name is Forml.java.

7. Click Open.

The form window is displayed, showing the form surface.

The form is automatically opened in design mode if you are creating a new form from
a template.

If the Forms Designer is not currently active, use the following procedure to open it.

40 Programmer's Guide

Chapter 2 Designing Forms

To view the form in the Forms Designer

• On the View menu, click Designer.

-or-

Double-click the node in the Project Explorer, or right-click the form file name,
and then click View Designer on the context menu. Your form now appears in the
Forms Designer.

By default, controls are aligned to the form grid. Set grid options using the Tools
command on the Options menu. Form properties can be directly modified in the
property page for the form.

The Toolbox contains WFC Controls and can include other tabs containing ActiveX
and custom controls.

Once you have the basic form template, you are ready to add controls to it.

Managing the Toolbox
The Forms Designer includes a Toolbox of default controls. The default control types are
divided by tabs. You can add custom tabs to the Toolbox and add custom controls to any
of the tabs.

To add objects to the Toolbox

• On the Tools menu, click Customize Toolbox.

-or-

Paste an item that has been copied to the Clipboard into the Toolbox.

-or-

Drag selected scraps of code or text from the Text editor into the Toolbox and then
drag them into other files or windows where you want to use them.

Note Only components that extend com.ms.wfc.core.Component and have the
ShowlnToolbox attribute set (this is set to true by default) are displayed.

To organize your tools, you can:

• Copy a Toolbox item from one tab to another tab by pressing CTRL and dragging the
selected item to the new tab.

• Move a Toolbox item from one tab to another tab by dragging the selected item to the
new tab.

Note If you try to move a nonremovable item, dragging it to a new tab will copy it
to the new tab instead of moving it.

Programmer's Guide 41

Part 1 Getting Started With Visual J++

You can add and customize Toolbox tabs by:

• Clicking Add Tab on the context menu when you right-click the Toolbox to create
tabs for customized groupings.

• Rearranging items on a tab and rearranging the tabs by dragging them to the location
you want.

• Clicking the tab label and typing the new name description text of items or by using
Rename Item on the context menu.

To view Toolbox objects as a list

• Right-click the Toolbox to display the context menu, and then click List View.
This displays the contents of the active tab in the Toolbox in a list format. This list
contains the icons and descriptive information associated with the active Toolbox tab.

To view Toolbox objects as icons

• Right-click the Toolbox to display the context menu, and then clear the List View
check box. This displays the contents of the active tab in the Toolbox as icons only.

To delete objects from the Toolbox

• Select the item to be deleted, and press DELETE.

To recover a deleted control

1. Right-click the Toolbox to display the context menu, and then click Customize
Toolbox.

2. In the Customize Toolbox dialog box, click the WFC Controls tab.

3. In the WFC Controls tab, click the check box for the control you want to add.

Adding Controls to a Form
You can add controls to your form in design mode by selecting them from the Toolbox.

To add a control

• In the Toolbox, click the control you want to add to your form and drag it onto your
form. The control appears on your form in its default size.

-or-

In the Toolbox, double-click the control to add it to the center of your form. The control
appears on your form in its default size. You can then drag it to the desired location.

Note When a control is placed onto a form at design time, only the class name for
the control is added. Code for the control is not generated until you close the form. If
you modify an existing control in the Toolbox, you must close and reopen the form
or reload the project so that the form picks up the updated class files for the control.

42 Programmer's Guide

Chapter 2 Designing Fonns

To resize a control

• Select the control you want to resize, and resize it with the sizing handles.

Note You can also use SHIFf + arrow keys to size the control.

To add event handler templates to a control

• Double-click a form or control to generate a method for the default event of the
form or control. The event handler method is created in the Form class.

Note You can also add event handlers through the events view in the
Properties window.

Adding an Event Handler
You can use the Forms Designer to create event handlers. An event handler is a routine
in your code that determines which actions to perform when an event occurs, such as
the user's clicking a button.

For example, the event handler for the mouseDown event provides a mouseEvent object
that allows you to determine which mouse button was pressed, where the mouse was
positioned on the form, and which keys on the keyboard were pressed during the click.

You can add an event handler using the events view in the Properties window. A handler
for the default event can also be added by double-clicking. Moreover, you can assign an
existing handler to the events of other controls if the signatures of the events are the same.

To add an event handler using the events view of the Properties window

1. Click the control (such as a button control) or form you want an event handler
created for.

2. In the Properties window, click the events view button (indicated by a thunderbolt
symbol).

3. In the list of available events, click an event (for example, click).

4. In the box to the right of the event name, type the name of the handler (for example,
MyButton_click), and press ENTER.

A code template is generated in your code similar to the following:

private void MyButton_click(Object sender, Event e) {

In this example, sender is the source of the event and e is an Event object that provides
information about the event.

, Programmer's Guide 43

Part 1 Getting Started With Visual J++

To add a handler for the default event

• Double-click a form or control to generate a handler method for the default event of
the form or control.

-or-

In the events view in the Properties window, double-click the event to create the
handler for the default event.

To use to the same handler for events shared by multiple controls

I. In the events view in the Properties window, click an event for the first control.

2. In the box to the right of the event name, type the name of the handler, and press
ENTER.

3. On the form, select the second control.

4. In the Properties window, click the same event for the second control.

5. Click the drop-down arrow to view a list of existing handlers for this type of event.

6. Select the name of the event handler. Only the existing handler is used. No new
templates are created in the code.

Formatting Forms
You can format objects you have placed on your form using the location properties for
the form, the grid options on the Tools menu, and various options on the Format menu.

To change a control's location properties

1. Click the control you want to change.

2. On the View menu, click Properties Window.

3. In the Properties window, double-click the location property to expand the node.

4. Enter the x and y coordinate properties for your control.

Note You can also change the location programmatically by setting the x and y

location properties.

To set grid options

I. On the Tools menu, click Options.

2. In the Options dialog box tree-view area of your project, double-click Forms
Designers, and then click WFC.

You can use this dialog box to set the defaults for displaying the grid, the grid height
and width in pixels, and to toggle alignment to the grid.

44 Programmer's Guide·

Chapter 2 Designing Forms

To format controls on a form, you can use the options on the Format menu to:

• Align controls.

• Make multiple controls the same size.

• Size to grid.

• Adjust horizontal and vertical spacing.

• Adjust the front-to-back order.

• Lock controls in place.

To align two controls on a form

1. Click the first control (this control becomes the reference), and then press the
CTRL key and click the second control.

2. On the Format menu, point to Align, and then click Lefts.

The second control aligns with the left edge of the first control.

Note Controls can be stacked on top of each other.

Modifying the Form Layout Behavior
With the Forms Designer, you can define the behaviors of controls that are placed on your
form. For example, you can anchor a label control at the top of the form using the anchor
property, or you can modify the docking behavior of your form.

To anchor the control within the form

1. Place the control on the form.

2. Click the control so that the control's properties appear in the Properties window.

3. In the Properties window, double-click the anchor property.

4. In the Anchor editor, click the cross bars to enable and disable anchoring between
the control and the form edge.

To modify docking behavior

1. Place the control on the form.

2. Click the control so that the control's properties appear in the Properties window.

3. In the Properties window, double-click the dock property.

4. In the Docking editor, click the bars to enable and disable docking for the control.
Click None to disable docking.

Note The control is automatically resized to fit the boundaries of the docked edge.

Most controls can be docked to the edges of a form or can be made to fill the entire form.

Programmer's Guide 45

Part 1 Getting Started With Visual J++

Setting Properties with the
Properties Window

Properties are attributes that define how a control appears and runs at run time. Each form
and each control have an associated custom property page. Modifying the properties in
the page (the Properties window) affects the code that is generated for the control in the
initForm method. Properties include the appearance, behavior, and position for the control.
The background color, enable and disable state, show state, font, default size and position,
and so forth, can be set in the Properties window for the form.

To edit the properties of a control or form

1. On the form, click the control you want to edit; or to edit the form, click the
form itself.

The property page associated with the selected control is displayed in the
Properties window.

2. In the Properties window, select the property for the control that you want to
modify. For example, select the font property to change the font style for the name
on a button control.

Note If you select multiple controls, a custom property page appears that displays
only the common properties.

Complex properties lise common dialog boxes and editors for:

• Text input - size and strings (in-place string edit changes appear in real-time)

• Combo box selection - cursors, enumerators and Booleans

• Font picker - common dialog box for selecting font characteristics

• Color picker - common dialog box with a palette for color selection

• List items - window for creating initial list items

• Anchor and Dock editors - for setting position behavior

Click the node of compound properties to access subproperties.

Creating Menus for Forms
You can create main menus and context menus using the menu controls provided by the
Forms Designer.

46 Programmer's Guide

Chapter 2 Designing Forms

Adding and Modifying a Menu
If you want your application to provide a set of commands to users, menus offer a
convenient and consistent way to group commands and an easy way for users to access
them. The menu bar appears immediately below the title bar on the form and contains one
or more menu titles. When you click a menu title (such as File), a menu containing a list of
menu items appears. Menu items can include commands (such as New and Exit), separator
bars, and submenu titles. Each menu item the user sees corresponds to a menu control
property you define. Multiple menus can be added to one form.

To add a menu to your form

1. Under WFC Controls in the Toolbox, double-click the MainMenu control.

Note You can also select the MainMenu control and drag it onto your form.

The MainMenu control is inserted onto your form, and the default location for the first
item on the menu bar is displayed. Two visual markers (Type Here) appear directly to
the right and below to signify the next available editing location.

Note By default, the MainMenu property for the form is set to MainMenul.

2. Type the name of your first menu caption in the default location text box.
(For example, type File to add the File menu.)

The menu caption is added to your menu, and the default location text box moves
to the next menu caption location. Continue typing yom menu captions until all
your captions are complete.

Forms can have several menu items, such as File/Save and File/Savei\s, that change
depending on the state of the application. Menus can be enabled or disabled, checked
or unchecked, made visible or hidden using properties for each menu item.

If you want to change the main menu used by a form, you change the menu property for
the form to a different menu name, for example, mainMenu2.

You can add access keys to your menu. Access keys provide a way for the user to access
the menu using only the keyboard. An access key corresponds to an underlined letter on
the menu.

To add access keys to a menu

1. Click the menu caption in which you want to add an access key.

2. Place the cursor immediately before the letter in the caption box that you want to be
your access key letter and type an ampersand (&). For example, on the File menu,
click File, place your cursor before the "F" in File, and then type an ampersand.
You can also edit the caption title through the Text property for the menu item.

Shortcut keys add accessibility to your menus. A shortcut key is a keyboard combination,
such as CTRL+C for copy, that invokes a particular command.

Programmer's Guide 47

Part 1 Getting Started With Visual J++

To add a shortcut key to a menu item

1. Click to the immediate right of the menu item caption to which you want to add a
shortcut key. A drop-down list appears.

2. Select a key combination from the drop-down list.

-or-

In the Properties window, click the shortcut property and select a key combination.

To remove a shortcut key

1. Select a menu item.

2. Set the shortcut property to none.

At times, you may want to give users various commands that they can apply to the
application. For example, there may be several available toolbars in an application.
The user can select which toolbar will be displayed by clicking the toolbar name on
the menu, and a check mark appears next to the toolbar name.

To enable check marks on a menu

1. Select a menu item.

2. Click to the immediate left of the menu item name. A check box apears.

-or-

In the Properties window, click the checked property.

To move a menu

1. Select the desired menu item icaption.

2. Drag the menu caption to the new position.

The menu caption moves and snaps to place. Other menu captions that are affected
by this change are moved as appropriate.

Note Moving top-level menu captions moves all submenus as well. Submenus are
not displayed during the move~

To modify a menu caption

1. Click the menu caption you want to modify.

2. In the text box containing the menu caption, make any necessary changes.

Separator bars are used in menus to add a distinct line between groups of commands.

To create a menu separator bar

1. Click the menu caption that is above the location where you want to add a
separator bar.

48 Programmer's Guide

Chapter 2 Designing Fanns

2. Press the HYPHEN (-) key, and then press ENTER.

A separator bar appears directly below your menu caption.

-or-

Click the right mouse button, and then click Insert Separator on the context menu.

Separator bars can be moved and deleted in the same manner as menu captions.

To delete a menu item from your form

• Right-click the menu item caption you want to delete, and click Delete on the
context menu.

Note To delete the entire menu, select each menu caption and press DELETE,
or click the MainMenu control you want to delete and press DELETE.

Confirmation on deletion occurs only on menu captions with submenus.

To edit the name associated with a menu item

1. Click the right mouse button over a menu item.

2. Click Edit Names to toggle the Edit Names mode for the menu.

3. Click on and edit the name associated with the menu item you wish to modify
(for example, menuIteml).

Context Menus
Context menus can be associated with controls on your form. These menus appear when
the user right-clicks the control.

To add a context menu to a form

1. Under the WFC Controls in the Toolbox, double-click the COlltextMenu control.

Note Use any of the methods to add a control to a form. You can also select the
ContextMenu control in the Toolbox and drag the control onto your form.

2. To enter design mode, double-click the ContextMenu control.

To assign a context menu to a control

1. Click the control you want to assign a context menu to.

2. In the Properties window, add the name of the context menu to the contextMenu
property. By default, the first context menu is named contextMenul.

Context menu controls can be edited in the same way as MainMenu controls. For more
information, see the previous section, "Adding and Modifying a Menu."

Programmer's Guide 49

Part 1 Getting Started With Visual J++

Adding· ToolTips to Controls
on a Form

ToolTips are text strings that appear as you "hover" over a control with the mouse pointer.
In Visual J++, a separate WFC control enables ToolTip functionality for controls on the
form. The time, delay, and other properties can be set using the property page for each
control on the form.

To add ToolTips to controls

1. In the WFC Toolbox, add a ToolTip control to your form.

2. Edit the property for each control to add the desired text.

Code Generation
Visual J++ synchronizes visual representation of code changes and form views
(code generation from visual layout) in both directions. Information about which
methods (and classes) are being modified is formatted into the source code. Similarly,
modifications to the source code are sent to the Forms Designer.

The two-way editing does not simultaneously modify source code and visual layout.
The code that is lIsed to create the visual layout is disabled while the Forms Designer is
in use. The layout is stored as code when the Forms Designer window is closed or the
form is saved. Editing of the entire initForm function is locked until the Forms Designer
window is closed.

Edits in the Forms editor are not serialized as code until you click Save on the File menu,
or when the Forms editor is closed.

You can use the Forms Designer to edit classes that adhere to the following syntax:

class isEditable extends [UserControl. Form. Design Page] (

}

}

Container components = new Container(this);
private void initForm() {

[form initialization code goes here]

The initialization code must adhere to certain parsing rules:

• Initialization code must reside in the initForm function.

• No conditional code will be parsed (no if, while, or switch statements).

50 Programmer's Guide

CHAPTER 3

Editing Code

Visual J++ provides several ways to create, modify, and manage your project's code.
The topics and procedures in this section give you hands-on experience to help you
explore the Text editor, Class Outline, WFC Component Builder, and Object Browser.

Managing Files with the Text Editor
The development environment includes an integrated Text editor to manage, edit, and
print source files. Most of the procedures for using the editor will seem familiar if you
have used other Windows-based text editors. In addition, Visual J ++ has enhanced the
Text editor with several new timesaving features such as statement completion, dynamic
syntax checking, and two-way interaction between the Text editor and Class Outline­
these are just a few of the services IntelliSense provides for Visual J++ developers.

Splitting a Window in the Text Editor
To split the Text editor's window

1. Point to the splitter box at the top of the vertical scroll bar.

2. When the pointer changes to a window-sizing cursor, drag the splitter bar to the
position you want.

To return to a single window

• Double-click the splitter bar.

To move or copy text between parts of a long document

1. Split the window into two panes.

2. Display the code you want to move or copy in one pane.

3. Display the destination for the code in the other pane.

4. Select and drag the code across the splitter bar to the destination pane.

Pr9grammcr's Guide 51

Part 1 Getting Started with Visual J++

Viewing a File in Full-Screen Mode
To begin or end full-screen mode

• On the View menu, click Full Screen.

Finding and Replacing Text in a Single File
To find text in a single file

1. Move the insertion point to the location in your file where you want to begin
your search.

2. On the Edit menu, click Find and Replace.

The Find tool window appears.

3. In the text box next to the Find button, type the search text.

You can also use the drop-down list to select from a list of your previous
search strings. .

4. From the Look In combo box, select Current Document.

5. To begin your search, click Find.

This highlights the first occurrence of your search item.

6. To continue searching, click Find.

To replace text in a single file

1. Move the insertion point to the location in your file where you want to begin
your search.

2. On the Edit menu, click Find and Replace.

The Find tool window appears.

3. In the text box next to the Find button, type the search text.

You can also use the drop-down list to select from a list of your previous
search strings.

4. From the Look In combo box, select Current Document.

5. In the text box next to the Replace button, type the replacement text.

52 Programmer's Guide

6. Click Replace.

The first occurrence of your search item is highlighted in the Text editor.

Note To replace all occurrences within the file, click Replace All.

7. Click Replace again.

This replaces the current selection and highlights the next occurrence of the
search item.

Finding Text in Multiple Files
To find text in multiple files

1. On the Edit menu, click Find and Replace.

The Find tool window appears.

2. In the text box next to the Find button, type the search text.

You can also use the drop-down list to select from a list of your previous
search strings.

3. From the Look In combo box, choose the types of files in which to search.

4. Click Browse, to display the Look In dialog box.

5. Highlight the top level folder in which to begin the search.

6. Click Add.

The name of the folder appears in the bottom text box of the Look In dialog box.

7. Click OK to return to the Find dialog box.

8. Click the Subfolders check box to include files in subdirectories of the previously
selected top-level folder.

9. To begin your search, click Find.

A list of files containing the search text appears in bottom window of the Find
dialog box.

10. Double-click an entry from the list.

An editor window containing the file opens with the line containing the scarch tcxt
selected.

Chapter 3 Editing Code

Programml!r's Guide 53

Part 1 Getting Started with Visual J++

Finding Matching Delimiters
Source code is often grouped using delimiters such as 0, {}, [], and <>. These groupings
are called levels. The editor understands nested levels, and matches the correct delimiter
even if the level spans several pages and contains many levels within it. The editor's
functionality allows you to jump quickly between the start and end of a level.

To find a matching delimiter

1. Place the insertion point immediately before or after any delimiter.

2. Press the keyboard shortcut, CTRL+].

The insertion point moves forward or backward to the matching delimiter. Choosing
the command again returns the insertion point to its starting place. If a matching
delimiter cannot be found, the insertion point does not move.

Navigating with Bookmarks
You can set bookmarks to mark frequently accessed lines in your source file. Once a
bookmark is set, you can use menu or keyboard commands to move to it. You can remove
a bookmark when you no longer need it.

To set a bookmark

1. Move the insertion point to the line where you want to set a bookmark.

2. On the Edit menu, click Bookmarks and then choose Toggle Bookmark from the
cascading menu.

-or-

Press the Toggle Bookmark keyboard shortcut, CTRL + K, CTRL + K.

A light blue rectangle appears in the margin next to the line selected if you have
enabled your editor to display margins.

To navigate to the next bookmark

• On the Edit menu, click Bookmarks and then choose Next Bookmark from the
cascading menu.

-or-

Press the Next Bookmark keyboard shortcut, CTRL+K, CTRL+N.

54 Programmer's Guide

To navigate to the previous bookmark

• On the Edit menu, click Bookmarks and then choose Previous Bookmark from the
cascading menu.

-or-

Press the Previous Bookmark keyboard shortcut, CTRL+K, CTRL+P.

To remove a bookmark

1. Move the insertion point to the line where a bookmark exists.

2. On the Edit menu, click Bookmarks and then choose Toggle Bookmark from the
cascading menu.

-or-

Press the Toggle Bookmark keyboard shortcut, CTRL+K, CTRL+K.

The light blue rectangle disappears from the margin.

To remove all bookmarks

Chapter 3 Editing Code

• On the Edit menu, click Bookmarks and then choose Clear All Bookmarks from the
cascading menu.

-or-

Press the Clear All Bookmarks keyboard shortcut, CTRL+K, CTRL+L.

Selecting a Box of Text
You can select a box of text, also known as a column block of text, to perform cut, copy,
delete, indent, and unindent operations.

To enable box selection of text

1. On the Tools menu, click Options to display the Options dialog box.

2. Expand the Text Editor node of the tree view in the Options dialog box.

3. Expand the Per Language node and select Java.

4. In the Settings group of options, select the Box Selection radio button.

To select a box of text

1. Point to the beginning of the text you want to select.

2. Hold down the left mouse button and move the mouse to highlight a box of text.

When you release the left mouse button, a box of text is selected and is available for
cut, copy, delete, and indent operations.

Note To cancel the selected box of text, click the left mouse button.

Programmer's Guide 55

Part 1 Getting Started with Visual J++

Writing Code with
Statement Completion

Visual J++'s Statement Completion saves you time by doing the reference look-up work
for you. Statement Completion automatically displays member lists and parameter
information that gives you a list of classes, members, and method signatures, that are
relevant within the context of the current .java source file.

To introduce you to the Statement Completion features, this scenario will show you how
to build statement(s) with the java. 1 ang. Stri ng and java. 1 ang. System classes. After
you've built your project and run the application, the program will display a message in the
console window provided by JVIEW. This scenario includes the following procedures:

• EnablinglDisabling Statement Completion Options in the Text Editor

• Creating Statements with Word Completion

• Selecting an Overloaded Method

• Selecting Methods from a Member List

• Building an Argument List with Parameter Info

Note This scenario was created with the Visual J++ Console Application template.
You may complete the following procedures with any .java source code file in any
Visual J++ project. If you would like to create a console application to complete
this scenario, please see "Creating a Console Application" in Chapter 1, "Creating
Projects," and follow the steps to create and open a project before proceeding.

EnablinglDisabling Statement Completion
Options in the Text Editor

Within the development environment, you can enable or disable Statement Completion's
Auto list members and Parameter information options.

To enable Statement Completion options

1. On the Tools menu, click Options to display the Options dialog box.

2. From the tree view in the leftmost pane of the Options dialog box, expand the Text
Editor and then the Per Language nodes by clicking the plus ("+") sign next to
these nodes.

3. Select Java to display the Text EditorlPer Language/Java property page.

56 Programmer's Guide

4. In the Statement Completion group of this property page, click the check boxes for
Auto list members and Parameter information to enable these options.

Visual J++ enables Statement Completion's Auto list members and Parameter
information by default.

Note Clearing the check box for Auto list members or Parameter information
disables the respective option.

Creating Statements with Word Completion
For the examples in this topic, Word Completion provides visual clues when you're
typing the name of String and System classes, and creating a new String object. Word
Completion is available for any Visual J++ project.

Note The code examples in the following scenario were created with a Visual J++
Console Application project. If you would like to create a Console Application
project to complete this scenario, see "Creating a Console Application" in Chapter 1,
"Creating Projects," and follow the steps to create and open the project before
proceeding.

To select an item from a list provided by the Word Completion feature

1. On the View menu, click Project Explorer to open Project Explorer.

2. In Project Explorer click the plus ("+") sign to the left of your project's name to
expand your project.

3. Highlight the .java file containing your project's mil1 n () mcthod (Class I.java by
default), and select View Code from the shortcut menu.

Visual J++ opens the Text editor and loads your .java filc. Thc file is now ready
for editing.

4. To get Word Completion assistance for the Str1 ng class, type an "s" between the
braces of the application's rna in () method and leave the cursor to the right of this
letter.

Chapter 3 Editing Code

Tip Notice the red squiggly line drawn under the letter. Since an "s" has no
significance within the context of this program, IntelliSense gives a visual clue
for the syntax error. For morc information about visual editing clues, see "Finding
Errors with Dynamic Syntax Checking," later in this chapter.

5. On the Edit menu, click Complete Word to display a list box of classes and other
elements recognized by IntelliSensc.

Tip You can use the keyboard shortcut, CTRL+SPACE, instead of selecting the
Complete Word option on the Edit menu, to display this list box.

Programmer's Guide 57

Part 1 Getting Started with Visual J++

6. With the list box still displayed, type a "T" after the "s" of the statement you're
building in your .java file.

Statement Completion now selects StackOverflowError in its list - the first element
that starts with an "ST" in the context of this program.

7. Now type an "R" after the "ST" in your statement and Statement Completion moves
the highlight bar to String in the list box.

8. Press the Tab bar to insert Stri ng into the statement you're building.

Pressing the Tab bar or any other non-alphanumeric key, such as a period or opening
parenthesis, places the selected item into a statement at the location of the insertion
point.

Tip Instead of typing the letters until Statement Completion finds the element
you need, you can use the up and down arrows to highlight your selection.

To select a class name after the new operator

1. Continue to build the statement by typing the following code after S t r i n g:

[String] myStr = new

2. Type a space after new and Statement Completion automatically displays a list of
class names available within the scope of your program.

3. Type "STR", or enough letters of "String" to select the String item from the list.

4. Press Tab and String is inserted after new.

Your statement should look like this:

String myStr - new String

To continue building the statement that displays a line of text, you'll need a constructor for
the new String object. See the next section, "Selecting an Overloaded Method," for a
procedure that selects a Stri ng constructor with Statement Completion's Parameter Info
option.

If you know how to partially spell the name of the class or item, use the following
procedure to speed up the process of typing and selecting the correct spelling and
capitalization.

To finish typing a word using the Word Completion feature

1. In your .java file, move the cursor to a new line and type "SY."

2. Press CTRL+SPACE (the Word Completion keyboard shortcut).

Statement Completion completes the word, System, and inserts it into your code since
it is the only item that begins with an "SY." If more than one item starts with these
letters, Statement Completion displays a list box.

58 Programmer's Guide

Selecting an Overloaded Method
This example uses Statement Completion to help you select an overloaded constructor
method for the Stri ng class.

Chapter 3 Editing Code

Note If you have completed the steps of "Creating Statements with Word Completion"
continue working through the following procedure. If not, take a few minutes and
complete the procedure before selecting an overloaded constructor method for the
Stri ng object.

Before proceeding, make sure you have loaded a .java file into the Text editor that contains
the following code:

String myStr = new String

To select an overloaded method for a class

1. With the insertion point immediately after the last "Stri ng" in the statement, type an
opening parenthesis, "(".

A pop-up window appears displaying the signature of one of the constructor methods
for the String class. The spin control on the left side of this window indicates how
many overloaded constructor methods (11) are available for the String class and which
one is being displayed (1).

Note For methods and constructors that are not overloaded, this list box is
replaced by the Parameter Info text box. See Building an Argument List with
Parameter Info for an example that uses the Parameter Info feature.

2. Click anywhere on the spin control to display the signatures of the other String
constructor methods until you find one that takes a Stri ng argument.

In this example, constructor number 11 of 11 meets this criteria.

3. After the opening parenthesis, type "Hello Worl d!"):.

Your completed statement should look like this:

String myStr .,. new String("Hello World!"):

Statement Completion also displays a class's public methods and fields. To display a
member list for the Stri ng object, sec the following section, "Selecting Methods from
a Member List."

Programmer's Guide 59

Part 1 Getting Started with Visual J++

Selecting Methods from a Member List
This example uses Statement Completion's Member list feature to help you select a
method of the S t r i n 9 class. You may also use this procedure to select class member
variables from the Member list.

Note If you have completed the steps of Creating Statements with Word Completion
and Selecting an Overloaded Method, continue with the following procedure. If not,
take a few minutes and work through those procedures before selecting a method for
the Stri ng class.

Before proceeding, make sure you have loaded a .java file into the Text editor that contains
the following code:

String myStr = new String("Hello World!"):

To select a class member from the Members List

1. On a new line, type:

i f(mystr.

2. When you type the "." (dot operator) after myStr, Statement Completion displays a list
of the methods belonging to the St ri ng class.

Tip If you do not get a member list after you type the dot operator, select List
Members from the Edit menu or use the keyboard shortcut, CTRL+J. If this
continues to happen, make sure you've enabled the Statement Completion feature.

3. Type "equalsI" to highlight the St ri ng class's equa 1 s I gnoreCa se method in the
Members List.

4. Press Tab to insert the equal s IgnoreCase method after the dot operator for myStr.

Both lines of your code should look like the following:

Stri ng myStr = new Stri ng("Hell 0 Worl d!"):
if(myStr.equalsIgnoreCase

To continue building the next statement with Statement Completion's Parameter Info
feature, see Building an Argument List with Parameter Info.

60 Programmer's Guide

Chapter 3 Editing Code

Building an Argument List with Parameter Info
This example uses Statement Completion's Parameter Info feature to display information
for a method's argument.

Note If you have completed the steps of "Creating Statements with Word
Completion," "Selecting an Overloaded Method," and "Selecting Methods from a
Member List," continue with the following procedure. If not, take a few minutes and
work through those procedures before selecting a method for the S t r i n 9 class.

Before proceeding, make sure you have loaded a .java file into the Text editor that contains
the following code:

String myStr = new String("Hello World!"};
if(myStr.equalsIgnoreCase

To select build an argument list with Parameter Info

1. Continuing to build the if statement, type an opening parenthesis, "(", immediately
aftermyStr.equalsIgnoreCase.

Parameter Info displays the method's declaration with the single parameter
(String pI) in a bold-type font.

Note In this case, the method has only one parameter (String pI). If you select
a method that takes more than one argument, IntelliSense displays argument
types and positions within the method declaration. When you type the opening
parenthesis after the method's name, IntelliSense bolds the first argument. As
you add commas between the arguments, IntelliSense bolds the type and position
information for the next argument that's needed to complete the method's call.

Tip If you do not get a pop-up window with parameter information after you type
the opening parenthesis, select Parameter Info from the Edit menu or use the
keyboard shortcut, CTRL+SHIFf +1. If this continues to happen, make sure you've
enabled the Statement Completion feature.

2. After the opening parenthesis, complete the statement by typing:

"hello world!"}}

The completed if statement should look like the following:

if(myStr.equalsIgnoreCase("hello world!"}}

Programmer's Guide 61

Part 1 Getting Started with Visual J++

3. Using the Statement Completion's Word Completion, Member List, and Parameter
Info options, complete this example by adding the following code after the closing
parenthesis of the i f statement:

{

System.out.println("The strings are the same.");
}

else
{

System.out.println("The strings are different.");
}

return;

4. Build the program.

5. In the Text editor, place the cursor on "return" (the last statement of this program's
code). Click the right mouse button and select Run To Cursor from the shortcut menu.

6. View the following results in JVIEW's console window:

The strings are the same.

Finding Errors with
Dynamic Syntax Checking

Visual J++ also provides dynamic syntax checking to assist you when you're writing
code within the Text editor. In addition to the information Statement Completion provides,
you receive visual clues in the form of red squiggly lines and error tips as you build your
program's statements.

As you begin typing within a .java file, red squiggly lines appear under code elements,
such as class names, member names, and symbols. When you see a red squiggly line,
IntelliSense is telling you your code, as it is currently written, has syntactic errors. As
you continue typing, the red squiggly lines may disappear as you finish the statement -
depending upon the correctness of the completed statement.

For each syntax error marked with a red squiggly line, a task related to the syntax error will
appear in the Task List. This provides a list of items that you'll need to correct before you
compile your program.

62 Programmer's Guide

To get error tips and error help from a red squiggly line

1. Rest the cursor over the red squiggly line.

IntelliSense displays an Error Tip that best suits the context of your source code.
On occasion, the tip will simply be "Syntax Error."

Tip If you do not see a red squiggly line under obvious syntax errors, make sure
you've enabled the options that support dynamic syntax checking.

Chapter 3 Editing Code

2. While resting the cursor over a red squiggly line, click the right mouse button to access
the shortcut menu.

3. From the shortcut menu, select Error Help to get online help for the error identified
by the red squiggly line.

See "Creating Statements with Word Completion," earlier in this chapter, for an example
that demonstrates the use of red squiggly lines.

Enabling/Disabling Dynamic Syntax Checking
Options in the Text Editor

Within the development environment, you can enable or disable the editor's dynamic
syntax checking options.

To enable dynamic syntax checking options

I. On the Tools menu, click Options to display the Options dialog box.Ehh

2. From the tree view in the leftmost pane of the Options dialog box, expand the
Text Editor node by clicking the plus ("+") sign next to it.

3. Select Java Tasks to display the property page for Tasks and Error display.

4. In the Tasks group of this property page, click the check box for Check syntax
as you type.

5. In the Error Display group of the property page, click the check box for
Underline syntax errors as you type.

Visual J++ enables these dynamic syntax checking options by default.

Note Clearing the check box for Check syntax as you type or Underline syntax
errors as you type disables the respective option.

Programmer's Guide 63

Part 1 Getting Started with Visual J++

Updating Class Outline
from the Text Editor

Visual J++ uses IntelliSense to dynamically update the Class Outline tree view of your file
whenever you add a method, member variable, or class to an existing .java source file from
the Text editor. If you wish to add a Javadoc comment to your code, IntelliSense creates
a comment block and then displays the comment in Class Outline's Javadoc pane.

Adding Items to Class Outline
from the Text Editor

Although Visual J++ provides Class Outline and WFC Component Builder to help you add
methods, member variables, properties, events, and classes to a project, you can also add
these to your project by typing the code directly into your .java file from the Text editor.
When you add the code for new classes and class members to a .java file, IntelliSense
immediately displays the appropriate icon for the new class or class member in your
project's Class Outline.

The following procedure demonstrates the dynamic updating of Class Outline when a new
class and method is added to a source file from the Text editor.

Note The code examples in this and the following topic, Adding Javadoc Comments
to Source Files, were created with a Visual J++ Console Application project. You
may use any existing Visual J++ project to reproduce the results of these scenarios.
If you want to create a Console Application project for the following procedures, see
"Creating a Console Application" and follow the steps to create and open the project
before proceeding.

To add a new class to Class Outline from the Text editor

1. In Project Explorer, click the plus ("+") sign to the left of your project's name to
expand your project.

2. Double-click the filename or icon of the .java file containing your project's rna in ()

method (Class 1 .java by default).

Visual J++ opens the Text editor and loads your .java file. The file is now ready
for editing.

3. On the View menu, click Other Windows and select Document Outline from the
cascading menu.

Class Outline appears with a collapsed tree view of your file.

64 Programmer's Guide

4. From within the Text editor, after the closing brace of the class definition for C 1 ass 1 ,

add the following code to your .java source file:

class Greeting
{

}

5. In Class Outline, notice that a new class icon has been added to the tree view of your
project's file for the Greeti ng class you've just created.

Chapter 3 Editing Code

Note When you use the Text editor to move the insertion point in the source file,
Class Outline does not indicate which definition has been navigated to. To synchronize
Class Outline with the source file, right-click the declaration in the Text editor and
click Sync Class Outline on the shortcut menu.

To add a new method to Class Outline from the Text editor

1. In Class Outline, expand the Greet i ng class to display the icons for Superclasses and
Inherited Members.

2. From within the Text editor, add the following code after the opening brace of the
Greeti ng class:

public static String hello()
{

}

String strGreet = new String("Hello World!"):
return strGreet:

3. In Class Outline, notice a new method icon has been added to your projcct for the
he 110 () method you've just created.

Note When you use the Text editor to move the insertion point in the source
file, Class Outline does not indicate which definition has becn navigated to.
To synchronize Class Outline with the source file, right-click the dedaration in
the Text editor and click Sync Class Outline on the shortcllt menu.

4. To test the hell o() method of the Greeting class, add the following code to your
application's rna in () method:

Systern.out.println(Greeting.hello()):
return:

5. Build the program.

6. In the Text editor, place the cursor on "return" (the last statement of this program's
code). Click the right mouse button and select Run To Cursor from the shortcut menu.

7. View the following results in JVIEW's console window:

Hello World!

To add a Javadoc comment to the new hell o() method, see the next section, "Adding
Javadoc Comments to Source Files."

Programmcr's Guidc 65

Part 1 Getting Started with Visual J++

Adding J avadoc Comments to Source Files
Below your file's tree view in Class Outline is a Iavadoc pane. If a class, method, or
member variable has 1 avadoc comments, the comments appear in this pane. When
you add a 1 avadoc comment to your code, IntelliSense displays the first sentence of
the comment in the Iavadoc pane whenever you highlight a class, method, or member
variable name in Class Outline.

The following procedure explains how to add a Iavadoc comment to a method; however,
you follow the same steps to add Iavadoc comments to classes and member variables.

Note This procedure uses a Console Application project and adds to the code created
in the scenario that updates items in Class Outline. If you have not completed the steps
that add a G r e e tin 9 class and he 11 0 () method to a basic Console Application, take
a few minutes and follow the steps in the previous section, "Adding Items to Class
Outline from the Text Editor," before continuing.

To add a Javadoc comment to a method

1. In Project Explorer, click the plus ("+") sign to the left of your project's name to
expand your project.

2. Double-click the filename or icon of the .java file containing your project's rna in ()
method (Classl .java by default).

Visual J++ opens the Text editor and loads your .java file. The file is now ready for
editing.

3. On the View menu, click Other Windows and select Document Outline from the
cascading menu.

Class Outline appears with a collapsed tree view of your project.

4. In Class Outline, expand the Greet i ng class to display the icons for Superc1asses,
Inherited Members, and the he 1 1 0 () method.

5. From within the Text editor, type the opening characters for a Iavadoc comment, 1**,
above the he 11 0 () method declaration in your source file.

IntelliSense creates a Iavadoc comment block by inserting the closing characters for
a Iavadoc comment, * I, into your code.

66 Programmer's Guide

6. After the opening characters of the Javadoc comment block, type the following:

/** The he11o() method is a static method that takes
* no arguments and returns a String object to the
* calling method. The value returned will always
* be "Hello World!".
*/

7. In Class Outline, highlight the he 110 () method.

Notice that the first sentence of the comment you've just added appears in the
J avadoc pane.

When you are creating J avadoc comments for your classes, methods, and member
variables, you may want or need to add one or more Javadoc fields to a comment.
IntelliSense displays a list of Javadoc fields available in Visual J++. The following
procedure adds an author field to the J avadoc comment created above.

To add an Javadoc field to a Javadoc comment

1. In Project Explorer, click the plus ("+") sign to the left of your project's name to
expand your project.

2. Double-click the filename or icon of the .java file containing your project's rna in ()
method (Class1 .java by default).

Visual J++ opens the Text editor and loads your .java file. The file is now ready for
editing.

3. In the hell o() method's Javadoc comment, after the last sentence but before the
closing Javadoc characters, * /, type an @ sign.

IntelliSense displays a list box of valid Javadoc comment fields.

4. Double-click "author" in the list box.

The word "author" is inserted into your Javadoc comment after the @ sign.

5. Type your name after@author.

Your finished Javadoc comment should look like this:

/** The he11o() method is a static method that takes
* no arguments and returns a String object to the
* calling method. The value returned will always
* be "Hello World!".
* @author Mary Doe
*/

Chapter 3 Editing Code

Programmer's Guide 67

Part 1 Getting Started with Visual J++

Managing Code with Class Outline
The Class Outline window lists all classes, interfaces, and delegates defined in a .java
source file. All imported classes, and all classes that are contained within the file's
package, are also listed. Whenever you open a .java file in the Text editor, Class Outline
automatically displays the information for that file.

Class Outline shows the following details for each class:

• The superclass, as well as all other classes in the inheritance hierarchy

• The members that are inherited from the superclass, as well as from the other classes in
the inheritance hierarchy

• Any interfaces that the class implements

• Any initializer blocks defined in the class

• Any nested or member classes contained within the class

• Any nested interfaces contained within the class

• The methods and member variables defined by the class

When an item is selected in Class Outline, any associated lavadoc comments are displayed
in the lower pane of Class Outline.

Using Class Outline, you can:

• Navigate to a definition in the source file

• Modify a class declaration in the source file

• Add a new declaration to the source file

• Add declarations for interface methods in the source file

• Delete a definition from the source file

• Move or copy a definition in the source file

• Override a method inherited from the superclass

• Set a breakpoint on a method

Class Outline is available whenever you open a .java file in the Text editor, and by default,
it is tab-linked with the Toolbox. If you close Class Outline, you can later reopen it by
pointing to Other Windows on the View menu and clicking Document Outline.

68 Programmer's Guide

Refreshing Class Outline
In most cases, the items displayed by Class Outline are automatically synchronized
with the associated declarations in the source file; for example, if you change the name
of a method in your class, the method name is immediately updated in Class Outline.
However, you must manually refresh Class Outline if you change the declaration of
an inherited method. Class Outline does not automatically update the list of inherited
members.

To refresh Class Outline, right-click the Class Outline window and click Refresh on
the shortcut menu.

Navigating to a Definition
You can use Class Outline to quickly move the insertion point to a specific definition
in your source file. If the definition resides in another .java file (such as the definition
of an inherited method), and if that source file is available on your computer, then the
file is opened and the insertion point is moved to the definition. If the source file is not
available, then the Object Browser is opened.

To navigate to a definition

1. In Class Outline, right-click the item whose definition you want to navigate to.

2. On the shortcut menu, click Go to definition.

-or-

Double-click the item in Class Outline.

Chapter 3 Editing Code

Note When you use the Text editor to move the insertion point in the source file,
Class Outline does not indicate which definition has been navigated to. To synchronize
Class Outline with the source file, right-click the declaration in the Text editor and
click Sync Class Outline on the shortcut menu.

Modifying a Class Declaration
Using Class Outline, you can easily modify the general attributes of a class.

To modify a class declaration

1. In Class Outline, right-click the name of the class you want to modify.

2. On the shortcut menu, click Class Properties.

Programm(!r's Guide 69

Part 1 Getting Started with Visual J++

3. Select an access modifier from the Access drop-down list. Nested (or inner) classes
can be declared as public, protected, private, or default (package). Non-nested classes
can be declared as public or default. For information about nested classes, see "Inner
Classes" in the Java Language Specification.

4. Select additional modifiers, such as abstract, final, or static. (Only nested classes can
be declared as static.)

5. To insert lavadoc comments for the class, enter the comment text in the Javadoc
comment box.

6. If you are exposing your class as a WFC component, select Include WFC Component
Support (Classlnfo) to insert a ClassInfo class. (This option is only available for
non-nested classes.) ClassInfo is used to describe the properties and events of the
component.

7. To expose your class as a COM object, select COM Class. When this option is
selected, the @com.register directive is inserted to register your class as a COM class,
making it accessible to other applications that support COM. (The COM Class option
is only available for non-nested classes.)

8. To add Microsoft Transaction Server support to your class, select Enabled under
MTS Support. (This option is only available for non-nested classes.) Note that
because transaction support is only valid for COM classes, enabling MTS support
also selects the COM Class option. You can then select one of the following options
from the drop-down list:

• Required The component requires an MTS transaction for its work.

• RequiresNew The component requires a new MTS transaction for its work.
(A new transaction is created, even if one already exists.)

• Supported The component works regardless of whether a transaction is provided
byMTS.

• NotSupported The component supports neither MTS transactions nor the
MTSAPI.

The @com.register and @com.transaction directives are automatically added to your
class. For more information about Microsoft Transaction Server, see "Getting Started
with Microsoft Transaction Server," in the Visual Studio online documentation,
Platform SDK.

9. Click OK to apply your changes.

Note If you use the Text editor to modify a class declaration, Class Outline is
automatically updated to show the changes.

70 Programmer's Guide

Chapter 3 Editing Code

Adding a New Declaration
You can use Class Outline to add a method or member variable to a class, or to add a new
class to your .java file.

Note If you use the Text editor to add a declaration, the item is automatically added
to Class Outline.

To add a new method

1. In Class Outline, right-click the name of the class that will define the method. On the
shortcut menu, click Add Method.

2. In the Add Method dialog box, enter the name of the method in the Method
Name box.

3. Select a return type from the Return Type drop-down list, or enter your own return
type.

4. To add method parameters, click the ellipsis (•..) button under Parameters:

• In the Edit Parameter List dialog box, select a parameter type from the Type
drop-down list or enter your own type. In the Name box, enter the name of the
parameter.

• Click Add to add the parameter.

o Repeat this process for each method parameter. Note that to delete a parameter that
you have already added, you can select the parameter from the list and click Delete.
To insert a parameter between two existing parameters, select the parameter after
which the new parameter is to appear. When you click Add, the new parameter is
inserted before the parameter you selected.

• Click OK when you have finished adding all parameters.

5. Select an access modifier from the Access drop-down list. Methods can be declared as
public, protected, private, or default (package).

6. Select additional modifiers, such as abstract, final, static, synchronized, or native.

7. To insert lavadoc comments for the method, enter the comment text in the Javadoc
comment box.

8. Click Add to insert the method declaration into your file. Class Outline is
automatically updated to display the new method.

Programmer's Guide 71

Part 1 Getting Started with Visual J++

To add a new member variable

1. In Class Outline, right-click the name of the class that will define the member variable.
On the shortcut menu, click Add Member Variable.

2. In the Add Member Variable dialog box, enter the name of the member variable in
the Member Variable Name box.

3. Select a data type from the Data Type drop-down list or enter your own data type.

4. Select an access modifier from the Access drop-down list. Member variables can be
declared as public, protected, private, or default (package).

5. Select additional modifiers, such as static, final, volatile, or transient.

6. To initialize the member variable, enter a value in the Initial Value box.

7. To insert 1 avadoc comments for the member variable, enter the comment text in the
Javadoc comment box.

8. Click Add to insert the member variable into your file. Class Outline is automatically
updated to display the new member variable.

To add a new class

1. To add a nested class, right-click the name of the containing class in Class Outline.
To add a top-level class, right-click any class or the Class Outline window itself.

2. On the shortcut menu, click Add Class.

3. In the Add Class dialog box, enter the name of the class in the Class Name box.

4. To make this class a nested (or inner) class of the class that is selected in Class Outline,
select the Create a nested class option. For information about nested classes, see
"Inner Classes" in the Java Language Specification.

5. Select an access modifier from the Access drop-down list. Top-level classes can be
declared as public or default. Nested classes can be declared as pUblic, protected,
private, or default (package).

6. Select additional modifiers, such as abstract, final, or static. (Only nested classes can
be declared as static.)

7. To insert lavadoc comments for the class, enter the comment text in the Javadoc
comment box.

8. Click Add to insert the class declaration into your file. Class Outline is automatically
updated to display the new class.

72 Programmer's Guide

Adding Declarations for Interface Methods
Using Class Outline, you can automatically insert method declarations for the interfaces
that your class implements.

To add declarations for interface methods

1. In Class Outline, expand the Implemented Interfaces node.

2. Right-click the name of the interface, and then click Add Method Stubs on the
shortcut menu.

Chapter 3 Editing Code

Class Outline adds a declaration for each method in the interface. You can then define your
implementation.

Deleting a Definition
Using Class Outline, you can quickly delete a definition from your .java file.

To delete a definition

1. In Class Outline, right-click the item to be deleted.

2. On the shortcut menu, click Delete. The definition is removed from the source file.

Note If you use the Text editor to delete a definition, the associated item in Class
Outline is automatically removed.

Moving or Copying a Definition
Using Class Outline, you can easily move or copy the definition of a method, member
variable, or class.

To move or copy a definition

1. In Class Outline, right-click the name of the item that you want to move or copy.

2. To move the item, click Cut on the shortcut menu; to copy the item, click Copy.

3. Right-click the item that indicates where you want to insert the definition:

• To insert a method or member variable definition at the end of a class, right-click
the name of the class.

• To insert a method or member variable definition before another item within a
class, right-click the name of that item.

• To insert a class definition, right-click the name of another class in the file before
which you want to insert the definition.

Programmer's Guide 73

Part 1 Getting Started with Visual J++

4. On the shortcut menu, click Paste.

Note If you use the Text editor to move or copy a definition, the associated item in
Class Outline is automatically moved or copied.

Overriding a Method
Class Outline displays all the methods that a class inherits from its superclass as well as
from the other classes in the inheritance hierarchy. Using Class Outline, you can quickly
add a definition to override an inherited method.

Note You cannot override a method that is marked as static or final.

To override an inherited method

1. In Class Outline, expand the Inherited Members node of the class. This node displays
both methods and member variables; however, only methods can be overridden.

2. Right-click the method that you want to override. On the shortcut menu, click
Override method.

3. A declaration for the method is inserted into the .java file, where you can add your
implementation.

Setting a Breakpoint
You can use Class Outline to quickly set a breakpoint on a method for use in the integrated
debugger.

To set a breakpoint

1. In Class Outline, right-click the method that you want to set a breakpoint on.

2. On the shortcut menu, click Insert Breakpoint. To verify that a breakpoint was set,
double-click the method in Class Outline to go to the definition in the source file.
Observe that a breakpoint glyph appears in the margin.

3. To clear the breakpoint, right-click the method and click Remove Breakpoint on the
shortcut menu.

For more information about breakpoints and debugging, see Chapter 6, "Debugging
Applications."

74 Programmer's Guide

Modifying Components with
the WFC Component Builder

The WFC Component Builder is a tool that assists you in adding properties and events
to your WFC-based components. This builder adds the necessary member variables and
methods to your code and modifies your component's ClassInfo class.

Use the WFC Component Builder to:

• Add and delete properties

• Add and delete events

Chapter 3 Editing Code

For more information about WFC, see Chapter 11, "Introduction to WFC Programming,"
and Chapter 12, "WFC Programming Concepts." For more information about the wizards
and builders included with Visual J++, see Chapter 5, "Introducing Wizards and Builders."

Adding and Deleting Properties
Using the WFC Component Builder, you can easily add and delete property definitions in
your WFC-based components. A property is typically associated with a private member
variable that holds the current property value. Your component then provides public
get<.PropertyName> and set<.PropertyName> methods to retrieve and set the value of the
member variable. (A read-only property does not have an associated set<.PropertyName>
method.) For more information about WFC properties, see Chapter 12, "WFC
Programming Concepts."

When you add a property with the WFC Component Builder, the associated member
variable and methods are added to your class. The builder also adds the property
information to your component's ClassInfo class. ClassInfo allows information about
your component to be publicized in a property browser, such as the Properties window.

Note If your component does not contain a ClassInfo definition, the WFC Component
Builder inserts one into your class.

When you delete a property with the WFC Component Builder, the associated Classlnfo
entry, member variable, and methods are automatically deleted from your class.

To open the WFC Component Builder

1. Open your component's source file in the Text editor.

2. In Class Outline, right-click the name of your class, and then click WFC Component
Builder on the shortcut menu.

Programmer's Guide 75

Part 1 Getting Started with Visual J++

To add a property

1. In the Properties pane of the WFC Component Builder, click Add.

2. In the Property Name box, type the name of the property.

3. In the Data Type drop-down list, select a data type. (You can enter a class type that is
not in the list if the class is on the classpath or available in the Java Package Manager.)

4. In the Category drop-down list, you can optionally select a category. Categories allow
you to group related properties in the Properties window.

5. Type any description text in the Description box. Property descriptions are displayed
in the Properties window.

6. To make the property read-only, select Read-only Property. (A set<.PropertyName>
method will not be added to your class.)

7. To add the associated member variable, select Declare Member Variable. The
Associated Member Variable box displays the name for the member variable.

S. Click Add.

9. To add another property, repeat the previous steps. (When adding or deleting multiple
items in the WFC Component Builder, periodically click Apply to ensure your changes
are saved.)

10. Click OK to close the WFC Component Builder.

To delete a property

1. In the Properties pane of the WFC Component Builder, select the property you want
to delete.

Note Deleting a property deletes all associated methods, member variables, and
Classlnfo information. Any code that you have added to the methods will be lost.
However, you can undo multiple levels of deletion from the Text editor, after the
WFC Component Builder is closed. On the Edit menu, click Undo for each deleted
item that you want to restore.

2. Click Delete.

3. To delete another property, repeat the previous steps. (When adding or deleting
multiple items in the WFC Component Builder, periodically click Apply to ensure
your changes are saved.)

4. Click OK to close the WFC Component Builder.

76 Programmer's Guide

Adding and Deleting Events
Using the WFC Component Builder, you can easily add and delete event definitions
in your WFC-based components. Because an event uses a delegate to invoke
its event handler, your component provides public addOn<EventName> and
removeOn<EventName> methods to add and remove the delegate. Your component
also defines a protected on<EventName> method that triggers the event. For more
information about WFC events, see Chapter 12, "WFC Programming Concepts."

When you add an event with the WFC Component Builder, the associated methods and
the member variable for the delegate are automatically added to your class. The builder
also adds the event information to your component's ClassInfo class. ClassInfo allows
information about your component to be publicized in a property browser, such as the
Properties window.

Chapter 3 Editing Code

Note If your component does not contain a ClassInfo definition, the WFC Component
Builder inserts one into your class.

When you delete an event with the WFC Component Builder, the associated ClassInfo
entry, delegate, and methods are automatically deleted from your class.

To open the WFC Component Builder

1. Open your component's source file in the Text editor.

2. In Class Outline, right-click the name of your class, and then click WFC Component
Builder on the shortcut menu.

To add an event

1. In the Events pane of the WFC Component Builder, click Add.

2. In the Event Name box, type the name of the event.

3. In the Type drop-down list, select an event type. (You can enter a type that is not in the
list if classes named <.EventType> and <E'ventType>Handler are on the classpath or
available in the Java Package Manager.)

4. In the Category drop-down list, you can optionally select a category. Categories allow
you to group related events in the Properties window.

5. Type any description text in the Description box. Event descriptions are displayed in
the Properties window.

6. Click Add.

7. To add another event, repeat the previous steps. (When adding or deleting multiple
items in the WFC Component Builder, periodically click Apply to ensure your changes
are saved.)

8. Click OK to close the WFC Component Builder.

Programmer's Guide 77

Part 1 Getting Started with Visual J++

To delete an event

1. In the Events pane of the WFC Component Builder, select the event you want to delete.

Note Deleting an event deletes all associated methods, delegates, and ClassInfo
information. Any code that you have added to the methods will be lost. However,
you can undo multiple levels of deletion from the Text editor, after the WFC
Component Builder is closed. On the Edit menu, click Undo for each deleted item
that you want to restore.

2. Click Delete.

3. To delete another event, repeat the previous steps. (When adding or deleting mUltiple
items in the WFC Component Builder, periodically click Apply to ensure your changes
are saved.)

4. Click OK to close the WFC Component Builder.

Browsing Packages and Libraries
with the Object Browser

The Object Browser provides a convenient way to view the contents of Java packages and
COM libraries. You can quickly browse Java or COM-based components without actually
adding them to your project, even if you don't have the source code for these components.

Using the Object Browser, you can:

• View the classes and members contained in the packages and libraries

• Select the packages and libraries to be browsed

• Filter the classes and members

• Group and sort the classes and members

To open the Object Browser, point to Other Windows on the View menu and click
Object Browser.

Viewing Classes and Members
The Object Browser provides two lists for viewing the classes and members in a package
or library. The primary list can display either classes or members (or both). When a class
is selected from the primary list, its members are displayed in the dependellt list; when a
member is selected from the primary list, all classes containing that member are displayed
in the dependent list.

78 Programmer's Guide

To set the Object Browser view

1. To toggle whether classes are displayed in the primary list, right-click the Object
Browser and click Show Classes on the shortcut menu. You can also click the
Show Classes button on the Object Browser's command bar.

2. To toggle whether members are displayed in the primary list, right-click the Object
Browser and click Show Members on the shortcut menu. You can also click the
Show Members button on the command bar.

To help distinguish classes from members, classes appear in bold. Note that by default,
the Object Browser groups the items in the primary list into their respective packages
or libraries, which also appear in bold. To toggle whether these items are grouped
by packages and libraries, right-click the Object Browser and click Group by
Packages/Libraries on the shortcut menu. You can also click the Group by
Packages/Libraries button on the command bar.

Viewing Class and Member Information
You can use the Object Browser to obtain specific information about the classes and
members in a package or library:

• When a class or member is selected in the Object Browser, the lower description
pane displays information about the item and supports hyperlinking to other classes,
packages, and libraries.

• When a class node is expanded, the following subnodes are displayed (when
applicable):

• Implemented Interfaces, which lists all interfaces implemented by the class.

• Subclasses, which lists all classes that extend the class.

• Superclasses, which lists all classes in the inheritance hierarchy.

• When a Java method is displayed in the dependent list, its signature is included.
(The signatures for COM methods are not displayed.)

Viewing Definitions

Chapter 3 Editing Code

If the source code for a package or library is available on your computer, you can navigate
to a class or member definition from the Object Browser. Select the item and then right­
click the Object Browser. On the shortcut menu, click View Definition .

. Viewing Hidden Members
The Object Browser can show any hidden members of COM libraries. To toggle the
display of hidden members, right-click the Object Browser and click Show Hidden
Members on the shortcut menu. Hidden members appear in gray text.

Programmer's Guide 79

Part 1 Getting Started with Visual J++

Selecting Packages and Libraries
By default, the Object Browser only displays the packages and libraries that can be
referenced from the current solution, which include all packages in the solution, the
packages installed by the Java Package Manager (JPM), and the packages on the
classpath. You can also add additional packages and libraries to the Object Browser.

To select the packages and libraries to be browsed

1. Right-click the Object Browser and click Select Current PackageslLibraries on the
shortcut menu. You can also click the Select Current PackageslLibraries button on
the Object Browser's command bar.

2. The Select PackageslLibraries dialog box shows the packages and libraries that are
available for browsing. The Solution node lists the Java projects that belong to your
solution. The Other Libraries and Packages node contains the following subnodes:

• COM Libraries, which lists all COM components and type libraries that are
available for browsing.

• Java Installed Packages, which lists all packages that are on the classpath or have
been installed by the JPM.

• Other Java Packages, which lists other packages that are available for browsing
but are not on the c1asspath and have not been installed by the JPM.

3. Select the packages and libraries that you want displayed in the Object Browser, and
clear the items that you want removed. A package or library will be displayed in the
Object Browser only if all of its parent nodes are also selected. (By default, selecting
an item automatically selects all parent nodes.) A node that is selected with a gray
checkmark indicates that some - but not all- of its child items arc selected.

Tip The easiest way to identify which packages and libraries will be displayed in
the Object Browser is that these items appear in bold.

4. To add items to the COM Libraries and Other Java Packages nodes, click Add.

• To add COM components and libraries, click the COM Libraries tab in the
Add New PackageslLibraries dialog box. All components and libraries that are
currently registered on your computer are listed. (To register another component or
library and add it to the list, click Browse to locate the file.) Select the components
and libraries you want to add, and click OK.

• To add other Java packages, click the Other Java Packages tab in the Add New
PackageslLibraries dialog box. Click Browse to locate the file containing the
package. After the package has been added to the list, click OK.

80 Programmd s Guide

Chapter 3 Editing Code

Important Adding COM components or other Java packages to the Object
Browser simply allows you to browse the components or packages. To actually
use a COM component in your project, you must import it. For information on
how to do this, see "Importing COM Objects" in Chapter 17, "Building and
Importing COM Objects."

To use a Java package from your project, you must add it to the classpath. For
information about the classpath, see "CLASSP A TH Environment Variable" in
Chapter 9, "Compiling Applications with JVC," and see "Setting the Classpath"
in Chapter 1, "Creating Projects."

5. Click OK to apply your selections.

The items that you select for browsing in the Select Packages/Libraries dialog box may
persist after you close the Object Browser:

• The packages and libraries that you select under the Other Libraries and Packages
node will persist per user, per computer. For example, if you create a new solution
on the same computer, the same selected set of packages and libraries under Other
Libraries and Packages will be displayed by the Object Browser. However, if another
user logs onto the computer, a different set of packages and libraries may be initially
selected.

• The projects that you select under the Solution node will not persist after you close the
solution. The next time you reopen the solution, all Java projects in the solution will be
selected by default.

Grouping and Sorting Classes and Members
The Object Browser allows you to group or sort classes and members by access or by type.
By default, no grouping or sorting is applied.

To group or sort classes and members

1. Right-click the Object Browser and click Grouping and Sorting on the shortcut menu.
You can also click the Grouping and Sorting button on the Object Browser's
command bar.

2. To group or sort classes, select a group category from the drop-down list in the Classes
section:

o To group classes by their access level, select Group by Class Access. Public
classes are grouped into the Public Types category; non public classes arc grouped
into the Package Types category, since they are only accessible from the packages
they belong to.

o To group classes by their types, select Group by Class Type.

o To remove class groupings, select <No Grouping>.

Programlller's Guide 81

Part 1 Getting Started with Visual J++

3. If classes are grouped, you can change the order of the group categories. Select
a category from the list and click the up arrow button or the down arrow button.

4. To group or sort members, select a group category from the drop-down list in the
Members section:

• To group members by their access level, select Group by Member Access.

• To group members by their types, select Group by Member Type.

• To remove member groupings, select <No Grouping>.

5. If members are grouped, you can change the order of the group categories. Select
a category from the list and click the up arrow button or the down arrow button.

6. To display the names of the group categories in the Object Browser, select Group
with headers in main list.

Note The group headers only apply to the primary list in the Object Browser.
For example, suppose you have grouped members but the Object Browser is
viewing only classes in the primary list. When a class is selected and its members
are displayed in the dependent list, the members are grouped but the actual group
headers arc not included. For information about viewing classes and members in
the primary and dependent lists, see "Viewing Classes and Members," earlier in
this chapter.

7. Click OK.

82 Programmer's Guide

CHAPTER 4

Accessing Data

Using the design tools and wizards, you can easily access data in Visual J++. By adding
the WFC data controls to your form in the Forms Designer, you can quickly configure
how data is retrieved and displayed. You can also run the Data Form Wizard to generate
a data-bound form automatically.

Visual J++ provides controls to access data through ActiveX Data Objects (ADO), the data
programming model for WFC applications. The core ADO objects include the Connection,
Command, and Recordset objects, which allow you to connect to a database and retrieve
a set of records. ADO also provides the DataSource component, which combines the
functionality of the Connection, Command, and Recordset objects.

Note The Toolbox in the Forms Designer provides only a DataSource control; the
Connection, Command, and Recordset objects can be used only in code. For information
about programming with the ADO objects, see the "ADO Tutorial (VJ++)" in the
Visual Studio online documentation, Microsoft ActiveX Data Objects.

ADO supports simple data binding through the DataBinder component. This component
binds a field from a Recordset or DataSource component to the property of a WFC
control. Visual J++ also provides complex data-bound controls, such as the DataGrid
and DataNavigator controls, that interact directly with a recordset. For more information
about data binding, see Chapter 18, "Data Binding in WFC."

To access data on a form, you can either run the Data Form Wizard or perform the
following steps in the Forms Designer:

• Retrieve a set of records

• Bind the data with the DataBinder control or the DataGrid control

• Navigate the records

For more information about ADO, see "Getting Started with ADO 2.0" in the
Visual Studio online documentation, Microsoft ActiveX Data Objects. For information
about the COM-based data access options available with Visual Studio, see "Choosing the
Right Data Access Technology," in the Visual Studio online documentation.

Programmer's Guide 83

Part 1 Getting Started with Visual J++

Running the Data Form Wizard
U sing the Data Form Wizard, you can automatically generate a form that is bound to the
fields in a database. The Data Form Wizard retrieves data through ADO and supports
Microsoft Access .mdb files and databases that can be accessed through ODBC.

To launch the Data Form Wizard

1. To add a data-bound form to your application with the Data Form Wizard, right-click
the project or folder node in Project Explorer that will contain the form.

2. On the shortcut menu, point to Add and then click Add Form.

3. In the Add Item dialog box, select the Data Form Wizard icon

4. In the Name box, enter a name for your form.

5. Click Open.

Note The Data Form Wizard is also launched when you create anew, data-based
application with the Application Wizard.

6. In the Introduction step of the Data Form Wizard, you can select a profile in the
drop-down list. (If the profile you want to use is not listed, click the ellipsis button (•••)
to open that profile.) For more information about profiles, see Chapter 5, "Introducing
Wizards and Builders."

7. Click Next to specify the database type.

Database Type Step
In the Database Type step of the Data Form Wizard, you specify the format of your
database.

To specify the database format

1. Select the Access option for any Microsoft Access .mdb file. Click Next to specify the
database file.

2. Select the ODBC option to access a database through ODBC, such as an ISAM
database (dBase, FoxPro, or Paradox) or a remote data source (SQL Server or Oracle).
Click Next to specify the ODBC connection information.

Note Although you can use the Microsoft Access ODBC driver to connect to an
Access database, selecting the Access option provides better performance.

84 Programmer's Guide

Chapter 4 Accessing Data

Database Step
If you selected the Access format in the Database Type step of the Data Form Wizard,
then the Database step allows you to specify the .mdb file.

To specify the .mdb file

1. In the Database name box, enter the full path and name of the .mdb file, or click
Browse to locate the file.

2. Click Next to specify details about the form to be created.

Connect Information Step
If you selected the ODBC format in the Database Type step of the Data Form Wizard, the
Connect Information step allows you to specify the ODBC information, such as a data
source name (DSN), database, and driver.

The following procedures show different ways of connecting to a database through ODBC.

To connect to a database using a DSN that you have created

1. In the DSN drop-down list, select the name of your ODBC data source. (To create a
data source, use the ODBC icon in the Windows Control Panel.)

2. If a user ill and password are associated with this data source, enter the information
in the UID and PWD boxes, respectively.

To connect to a database using a generic DSN

1. In the DSN drop-down list, select the name of the generic data source, such as
FoxPro Ii'i1es.

2. In the Database box, enter the full path and name of the database file.

To connect to a database using a specified driver

1. In the Database box, enter the full path and name of the database file.

2. In the Driver drop-down list, select the driver you want to use, such as Microsoft
FoxPro Driver (* .dbf).

To connect to a full server database

1. In the UID and PWD boxes, entcr the associated user ID and password, respectivcly.

2. In the Database box, enter the name of the database.

Programmer's Guide 85

Part 1 Getting Started with Visual J++

3. In the Driver drop-down list, select the driver you want to use, such as SQL Server
or Oracle.

4. In the Server box, enter the name of the server.

Once you have specified the connection information, click Next to specify details about the
form to be created.

Form Step
In the Form step of the Data Form Wizard, you specify the name of the data-bound form
as well as the layout of the form.

To specify form details

1. To change the name of the form, edit the text in the Form name box.

2. Under Form layout, select one of the following options:

• Single record (Default) The form displays one record at a time. Each non­
Boolean field in the database is bound to an Edit control; Boolean fields are bound
to CheckBox controls. A Label control is associated with each bound control and
displays the name of the field.

• Grid (Datashcct) The form displays multiple records in a DataGrid control.

• MasterlDetaii The form displays data from two related tables (or queries),
typically having a one-to-many relationship. The form displays one record at a time
from the master table and multiple records from the detail table in a DataGrid
control.

3. Under Database Connection, select one of the following options:

• Controls (Default) The form uses an ADO DataSource control to access your
database. The DataSource control is compatible with the Forms Designer; if you
want to change the property settings of this control after the wizard creates the
form, you can make the modifications in the Forms Designer. (The DataSource
control is a nonvisual control that is displayed only when your form is in design
view; it is not displayed when your form is run.)

• Code The form uses the ADO Connection and Recordset components to access
your database. These components are not supported by the Forms Designer; they
can be used only in code.

4. Click Next to specify the record source for the bound controls.

86 Programmer's Guide

Chapter 4 Accessing Data

Record Source Step
In the Record Source step of the Data Form Wizard, you select the fields that you want to
bind to the controls on the form.

Note If you selected the Masterilletaillayout in the Form step, the Data Form Wizard
provides Master Record Source and Detail Record Source steps. First use the
following procedure for the Master Record Source step; then click Next and repeat
the procedure for the Detail Record Source step.

To specify the bound fields

1. In the Record source drop-down list, select the name of a table that contains the fields
you want to bind. (When defining a master record source in a Masterilletail form
layout, select the table whose records are uniquely identified by the common field.
For the detail record source, select the related table.)

2. The Available fields list contains the fields in the specified table. The Selected fields
list contains the fields that will be bound to your form, in the order they are listed. Use
the following buttons to move fields between the two lists:

Button Description

> Moves the selected field in the Available Fields list to the Selected Fields list.
The selected field will be bound to a control on the form.

» Moves all fields from the Available Fields list to the Selected Fields list.
All fields will be bound to controls on the form.

< Moves the selected field in the Selected Fields list to the Available Fields list.
The selected field will not be bound to a control on the form.

« Moves all fields from the Selected Fields list to the Available Fields list.
No field will be bound to a control on the form.

Note The Data Form Wizard cannot bind fields that have a binary data type.

3. To change the order of the bound fields, select the field in the Selected Fields list and
click the up arrow button or the down arrow button.

4. To sort the data that will be displayed by the form, select a field in the Column to sort
by drop-down list.

5. If your form layout is Single record or Grid (Datasheet), click Next to add additional
controls to the form.

-or-

If your form layout is Masterilletail and you have finished choosing the master and
detail record sources, click Next to specify the master/detail relationship.

Programmer's Guide 87

Part 1 Getting Started with Visual J++

Record Source Relation Step
If you selected the MasterlDetaillayout in the Form step of the Data Form Wizard,
the Record Source Relation step allows you to specify the one-to-many relationship
between the master and detail record sources.

To specify the master/detail relationship

1. In the Master list, select the related field. This field should uniquely identify each
record in the master record source.

2. In the Detail list, select the related field.

3. Click Next to add additional controls to the form.

Control Selection Step
In the Control Selection step of the Data Form Wizard, you can select the additional
controls that you want to appear on the form. Any code that is required by these controls
is automatically added to your form.

To add additional controls

1. Under Available controls, select the controls you want to add:

Control

Add button

Delete button

Update button

Refresh button

Close button

Data navigator

Description

Allows the user to add new records to the database.

Allows the user to delete records from the database.

Updates the database with the changes that have been made
on the form.

Refreshes the form with the latest data from the database.

Allows the user to close the form.

Allows the user to navigate through the records.

2. Click Next to view the summary for the form.

88 Programmer's Guide

Chapter 4 Accessing Data

Summary Step
In the Summary step of the Data Form Wizard, you can save and review your wizard
settings.

To save and review the wizard settings

1. To save your settings to an existing profile, select the profile in the drop-down list.
To save your settings to a new profile, click the ellipsis button (...) to specify a file
name. (For more information about profiles, see Chapter 5, "Introducing Wizards
and Builders.")

2. To review your settings, click View Report. To save the report, click Save in the
View Report dialog box.

3. Click Finish to add the form to your project.

The Data Form Wizard provides a quick start to creating a form with controls bound to the
fields in a database. To bind data without the wizard, you can directly use the DataBinder
control or the DataGrid control.

Retrieving a Set of Records
Visual J++ provides the DataSource control to access data in the Forms Designer.
This control allows you to connect to and query a database to retrieve a set of records.

Note To retrieve a recordset in code, you can also use the Connection, Command, and
Recordset components. The Forms Designer, however, supports only the DataSource
component. For information about programming with the ADO components, see the
"ADO Tutorial (VJ++)" in the Visual Studio online documentation, in Microsoft
ActiveX Data Objects.

To retrieve data with the DataSource control

1. In Project Explorer, double-click the name of your form to open it in the Forms
Designer.

2. In the Toolbox, click the WFC Controls tab. Click the DataSource control in the
Toolbox, and then click your form to add the control.

Note Because the DataSource control only retrieves data and does not display it,
the control is not visible when you run your form.

3. To connect to the database, set the connectionString property of the DataSource
control:

• Select the DataSource control on the form.

o In the Properties window, click the connectionString property, and then click
the ellipsis (.••) button to open the Data Link Properties dialog box.

Programllll!r's Guilil! 89

Part 1 Getting Started with Visual J++

4. To access a named ODBC data source:

• Click the Provider tab and select Microsoft OLE DB Provider for ODBC
Drivers.

• Click the Connection tab. In step 1, select Use data source name and select
your data source in the drop-down list. In step 2, you can enter the user name
and password, if needed.

-or-

To access a Microsoft Access .mdb file directly without using ODBC:

• Click the Provider tab and select Microsoft Jet 3.51 OLE DB Provider.

• Click the Connection tab. In step 1, enter the full path and file name of your
database, or click the ellipsis (•••) button to browse for the file. In step 2, you
can enter the user name and password, if applicable.

5. Click OK to establish the database connection.

6. To query the database, set the commandText property of the DataSource control
to an SQL string. For example, to retrieve all records from a table called Products,
enter Select * from Products.

7. To make the recordset updateable, set the lockType property to Optimistic.

Now that YOll have retrieved a recordset, you must bind it with the DataBinder control
or the DataGrid control.

Binding Data with the
DataBinder Control

The DataBinder control binds a field from a recordset to the property of another control.
When a property is bound, it is automatically set to the value of the field in the current
record. The following procedures show how to bind the text property of an Edit control.

To associate the OataBinder control with a recordset

1. Add a DataSource control to your form to retrieve the data. For information on how
to do this, see the previous section, "Retrieving a Set of Records."

2. Add an Edit control and a DataBinder control to the form.

Note Like the DataSource control, the DataBinder control is not displayed
when the form is run, because it only manages the binding and docs not actually
display data.

90 Programmer's Guide

Chapter 4 Accessing Data

3. Select the DataBinder control on the form and set its dataSource property:

• In the Properties window, click the dataSource property.

• In the drop-down list, select the name of the DataSource control.

The bindings property of the DataBinder control identifies the bindings that have been
currently defined. You can set this property using either the control's property page or its
bindings editor.

To create the bindings using the property page

1. Select the DataBinder control on the form. In the Properties window, click the
Property Page toolbar button.

2. In the Data Field drop-down list of the property page, select the name of the data field
to be bound.

3. In the Control drop-down list, select the name of the Edit control.

4. In the Property drop-down list, select the text property.

5. Click Add. The text property is now bound to the data field.

6. To add other bindings, repeat the process. Click OK when all bindings have
been added.

To create the bindings using the bindings editor

1. Select the DataBinder control on the form. In the Properties window, click the
bindings property and then click the ellipsis (•••) button.

2. To add a binding in the bindings editor, click Add. (For each binding you want to add,
click Add.)

3. Click OK.

4. In the Properties window, expand the bindings property. Each binding is listed by its
index, which indicates the order in which the binding was added. (The index of the first
binding is 0.)

5. To define the binding, expand its indexed entry.

6. Click ficldName. In the drop-down list, select the name of the data field to be bound.

7. Click target. In the drop-down list, select the name of the Edit control.

8. Click propertyName. In the drop-down list, select the text property.

Once you have created the bindings, you can add a DataNavigator control to the form to
navigate the records. You can also apply a data format to bindings that display numerical,
date, or Boolean values.

For more information about the DataBinder control and for related programming
examples, see "DataBinder Component" in Chapter 18, "Data Binding in WFC."

Programmer's Guide 91

Part 1 Getting Started with Visual J++

Binding Data with the
DataGrid Control

The DataGrid control binds fields from a recordset and displays the data in a series of rows
and columns. The control is automatically populated when you set its dataSource property
to a DataSource control.

The data that is displayed in the DataGrid control is always synchronized with the data in
the recordset, and vice versa. The cursorType and lockType properties of the record set
determine whether the data dynamically reflects the data in the database, and whether the
data in the recordset can be changed.

To bind the DataGrid control to a recordset

1. Add a DataSource control to your form to retrieve the data. For information on how to
do this, see "Retrieving a Set of Records," earlier in this chapter.

2. Add a DataGrid control to the form.

3. Set the DataGrid control's dataSource property:

• In the Properties window, click the dataSourcc property.

• In the drop-down list, select the name of the DataSource control.

Note that the DataGrid control displays live data in design view. The current record in the
recordset is identified by a marker in the grid's corresponding row's header. To quickly
navigate through the rows in the grid, you can add a DataNavigator control to the form.

For information about using the DataGrid control in code, see "DataGrid Control" in
Package com.ms.wfc.data.ui in Microsoft Visual J++ 6.0 WFC Library Reference, Part 1,
in the Microsoft Visual J++ 6.0 Reference Library.

Accessing Column Properties
By setting the DataGrid control's properties in the Properties window, you can quickly
configure its appearance and functionality. Each column in the grid also has its own set
of properties, which you can access from the grid's properties.

To access the properties of a column

1. In the Properties window, expand the DataGrid control's columns property. Each
column is listed by its index in the grid, which indicates the order in which the column
is displayed. (The index of the first column is 0.)

2. To display the properties of a column, expand its indexed entry.

92 Programmer's Guide

Chapter 4 Accessing Data

By default, that DataGrid control contains a column for each field in the underlying
recordset, and the columns are ordered according to the fields in the recordset. However,
you can easily add, remove, and rearrange columns after the DataGrid control has been
created. You can also apply a data format to columns that contain numerical, date, or
Boolean values.

Adding, Removing, and Rearranging Columns
The DataGrid control provides a columns editor to add, remove, and rearrange the columns
in the grid. By default, each field in the underlying recordset is bound to a column in the
grid, and the columns are ordered according to the fields in the recordset.

To add, remove, and rearrange columns in the grid

1. To open the columns editor, click the DataGrid control's columns property in the
Properties window. Then click the ellipsis (.•.) button.

2. To add a column, click Add.

Note The column that is added is initially unbound. To bind the column, set its
boundFieldN arne property to the name of a field in the recordset. (For information
about how to access column properties, see the previous section, "Accessing
Column Properties.")

3. To remove a column, select the column in the list and click Remove.

Note If you simply want to hide the column temporarily rather than completely
remove it from the grid, set its visible property to false.

4. To rearrange columns, select the column you want to move and click Up or Down.

5. Click OK when you have finished adding, removing, or rearranging columns.

Formatting Data
When you bind data with the DataBinder control or the DataGrid control, you can
format the display of numerical, date, and Boolean values. Each binding managed by a
DataBinder control, and each column in a DataGrid control, has a dataFormat property
that allows you to specify the format.

To access the dataFormat property

1. If you are using a DataBinder control, expand its bindings property in the Properties
window.

-or-

If you are using a DataGrid control, expand its columns property in the Properties
window.

Programmer's Guide 93

Part 1 Getting Started with Visual J++

2. Each binding or column is listed by its index, which specifies its order within the
parent control. (The index of the first binding or column is 0.)

3. Expand the indexed entry of the binding or column you want to format, and then click
dataFormat.

To format numerical values

1. Set the dataFormat property to NumberDataFormat.

2. Expand dataFormat, and then set the format property to a numerical format string.
For information about possible format strings, see "NumberDataFormat.setFormat," in
Package com.ms.wfc.data in Microsoft Visual J++ 6.0 WFC Library Reference, Part 1
in the Microsoft Visual J++ 6.0 Reference Library.

To format date (or time) values

1. Set the dataFormat property to DateDataFormat.

2. Expand dataFormat. To specify the date format, click the format property and select
one of the following values in the drop-down list:

Format

Long

Short

Time

Custom

Description

The dates are formatted using the Long Date setting in the Regional
Settings section of the Windows Control Panel. (The default setting
for a long date appears as Monday, March 9, 1998.)

(Default) The dates are formatted using the Short Date setting in the
Regional Settings section of the Windows Control Panel. (The default
setting for a short date appears as 3/9/98.)

The times are formatted using the Long Time setting in the Regional
Settings section of the Windows Control Panel. (The default setting
for a long time appears as 2:45:05 P.M.)

The dates or times are formatted using a custom format. Set the
customFormat property to the custom format string. For information about
possible format strings, see DateDataFormat.setCustomFormat, in Package
com.ms.wfc.data.ui in Microsoft Visual J++ 6.0 WFC Library Reference,
Part 1, in the Microsoft Visual J++ 6.0 Reference Library.

Note The setting of the customFormat property is applied only when the format
property is set to Custom. If the format property is set to Short, Long, or Time,
any setting for the custornFormat property is ignored.

94 Programmer's Guide

Chapter 4 Accessing Data

To format Boolean values

1. Set the dataFormat property to BooleanDataFormat.

2. Expand dataFormat and set the following properties:

• false Value Specifies the string to be displayed when the value is false.
The default string is False.

• nullValue Specifies the string to be displayed when the value is null.
The default string is (null).

o trueValue Specifies the string to be displayed when the value is true.
The default string is True.

Navigating Records
The DataNavigator control allows you to change the current record in a recordset. Use
the DataNavigator control in conjunction with another data-bound control, such as the
DataBinder control. The DataBinder control binds a property of another control to a field
in a recordset. This property obtains data from the recordset's current record, which is
initially the first record. To move to another record, use a DataNavigator control that is
bound to the same recordset.

To navigate a recordset with the DataNavigator control

1. Add a DataSource control to your form to retrieve the data. For information on how to
do this, see "Retrieving a Set of Records," earlier in this chapter.

2. Use a DataBinder control and an Edit control to bind data from the recordset associated
with the DataSource control. For information on how to do this, see "Binding Data
with the DataBinder Control," earlier in this chapter.

3. Add a DataNavigator control to the form.

4. Set the DataNavigator control's dataSource property to the name of the DataSource
control.

5. Use the buttons on the DataNavigator control to navigate the data:

Button Navigation Direction

«

<

>

»

Move to the first record.

Move to the previous record.

Move to the next record.

Move to the last record.

For information about using the DataNavigator control in code, see "DataNavigator
Control," in Package com.ms.wfc.data.ui in Microsoft Visual J++ 6.0 WFC Library
Reference, Part 1, in the Microsoft Visual J + + 6.0 Reference Library.

Programmer's Guide 9S

CHAPTER 5

Introducing Wizards and Builders

Visual J++ provides several wizards and builders to help you develop your applications.
A wizard adds a new file to your project by guiding you through a series of steps. Each
step contains Back and Next buttons to navigate through the steps. The Cancel button
cancels all settings you've made and closes the wizard. The Finish button accepts the
selections you've currently entered and uses the default settings for any remaining steps.
(The Finish button is available once you make enough choices for the wizard to complete
the task.)

Note When you run a wizard, you can typically save your settings to a projile.
The next time you run the wizard, you can load this profile to reuse the settings.

While a wizard creates a new file through a step-by-step process, a builder assists you in
modifying the existing files in your project. Visual J++ provides the following wizards
and builders:

Wizard or Builder Description

Application Wizard Automatically creates a WFC application containing a form.
You have the option of binding the form to the fields in a
database. For more information, see "Creating a Windows
Application with the Application Wizard," in Chapter 1,
"Creating Projects."

WFC Component Builder Modifies your WFC components by adding and removing
properties and events. For more information, see "Modifying
Components with the WFC Component Builder," in Chapter 3,
"Editing Code."

Data Form Wizard Automatically generates a form that is bound to the fields in a
database. The Data Form Wizard supports Microsoft Access
.mdb files and databases that can be accessed through ODBC.
For more information, see "Running the Data Form Wizard,"
in Chapter 4, "Accessing Data."

JIDirect Call Builder Inserts Java definitions for the Win32 API functions into your
code, along with the appropriate @dll.import tags. For more
information, see "JIDirect Call Builder," in Chapter 19, "Writing
Windows-Based Applications with JIDirect."

Programmer's Guide 97

CHAPTER 6

Debugging Applications

When syntax errors occur in your code, the Visual J++ compiler alerts you to these
errors by displaying a message that indicates that your application was not successfully
updated, and by displaying a list of errors in the Visual J++ task list.

However, often the errors that occur within your code are not language syntax errors,
but are instead errors in logic - infinite loops, for example. To address bugs like these,
you use the features supported by the Visual J++ debugger.

See "Basic Debugging Procedures," later in this chapter, to learn more about using
the integrated debugger with Visual J++ projects. These procedures show you how
to set breakpoints, step through code, view run-time values of member variables,
and much more.

The online documentation also provides scenarios that have been created to show
you how to use the debugger's features with specific types of Visual J++ projects.
Details for recreating example projects can be found throughout the procedures in
the following scenarios:

• Debugging a WFC Application

• Debugging a Console Application

• Debugging Multithreaded Applications

• Debugging a Java COM Object

• Debugging a Java Applet

. Programmer's Guide 99

Part 1 Getting Started with Visual J++

The Debugging Process
Visual J++ debugging support includes breakpoints, break expressions, watch expressions,
thread control, and exception handling. You can also step through your code one statement
or method at a time and view the values of variables and properties.

There are no magic tricks to debugging, and there is no fixed sequence of steps that
works every ti'me. Basically, debugging helps you understand what's happening when
your application runs. Debugging tools give you a snapshot of the current state of your
application, including:

• The appearance of your application's user interface

• Values of member variables, expressions, and properties

• Active method calls

Basic Debugging Procedures
After you have debugged several applications, you'll find certain tasks may apply
to debugging almost any program.

Entering Command-line Arguments
When using an executable that requires startup arguments to debug, you can type these
arguments at the command line, or from within the development environment.

The following explains how to use the Custom options in the environment's Launch tab
of the project's Properties dialog box. The Properties dialog box for an open project can
be accessed from the Project menu.

To enter command-line arguments

1. From Project Explorer, double-click a .java file to load it into the Text editor.

2. On the Project menu, click <Project name> properties to display the Properties
dialog box.

3. On the Launch tab, click the Custom radio button.

The Custom options on this tab provide a place to enter the command line arguments
for your application.

4. In the Arguments text box type the information you want to pass to your program.

For example, if your program accepted a date in the format ofMM DD YY,
July 10, 1997 would be entered as 7 10 1997.

100 Programmer's Guide~

Chapter 6 Debugging Applications

Note The Arguments text box may have some viewer options displayed. If you
have a specific reason to change these preset options, do so now and enter the date
after them.

Now you are ready to debug your application. Setting a breakpoint before starting the
integrated debugger is one way to start this process.

Displaying the Debug Toolbar
You can access the debugger's most commonly used commands and windows through
the Debug Toolbar.

To display the Debug Toolbar

• On the View menu click Toolbars and then select Debug.

Setting Breakpoints
A breakpoint designates a location in your code at which process execution is stopped to
allow you to examine the process's code, variables, and (in some cases) register values.
In addition, you can, as necessary, make changes to your code, and then continue or
terminate process execution.

This section explains how to set breakpoints.

Setting a Breakpoint Before Starting the Debugger
After you have created and built your Visual J++ project, you can set breakpoints in your
code. A breakpoint designates a location in your code at which the code temporarily stops
executing so that you step through your code line by line, examining variable values,
examining application behavior. Where a bug occurs in your application, you can set a
breakpoint that enables you to halt your program just before the unexpected behavior
occurs.

To set a breakpoint and start the debugger

1. With your source code file open in the editor, place the cursor on any executable code
in your application, applet, or component.

2. Click the right mouse button and select Insert Breakpoint from the shortcut menu.

A solid red circle is placed in the margin of the editor indicating a breakpoint was set
on the statement you just selected.

3. On the Debug menu, click Start or use the keyboard shortcut, F5.

The program runs and stops (breaks) just before it executes the line on which you've
set the breakpoint. The yellow arrow in the margin indicates the next statement to be
executed.

Programmer's Guide 101

Part 1 Getting Started with Visual J++

When your program is in break mode, you can:

• Set another breakpoint

• Examine one or more debug windows to view the values of your program's member
variables.

To resume the debugging session

• On the Debug menu, click Continue.

-or-

Press the keyboard shortcut, F5 to run to the next breakpoint.

-or-

Press F11 to step into the next statement.

To end the debugging session

• On the Debug menu, click End.

For more information about how to end a debugging session, see "Ending a Debugging
Session" in the Visual Studio online documentation.

Setting a Breakpoint from the Breakpoints Dialog Box
Up to this point, you have been adding and removing breakpoints by selecting options
from the shortcut mcnu. You can also disable and enable breakpoints as well as change
a breakpoint's propcrties from this same menu. The integrated debugger also provides a
Breakpoints dialog box that gives you even more control to manage your application's
breakpoints.

Examining Information with Debug Windows
The following subjects discuss the debug windows separately and incIlIllc the purpose of
each window. In these subjects you will also find specific procedures for accessing and
using each debug window.

Viewing Information in the Auto Window
The Auto window displays the values of all variables within the scope of currently
executing methods. Where the Locals window shows variables for a single thread, the
Auto window shows variables for all threads. This window allows you to learn about
the changes to a variable that may be caused by code executing on a different thread.
A variable remains visible as long as it is in scope, reflecting any changes to its value.
When the variable goes out of scope it is removed from the Auto window.

102 Programmer's Guide

Chapter 6 Debugging Applications

The Auto window is updated only when execution is suspended. For example, the Auto
window is updated when you add a new watch variable, when you change the value of a
variable, or when you switch between decimal and hexidecimal modes from the shortcut
menu. Values that have changed since the last suspension are displayed in red.

To display the Auto window

• On the View menu, click Debug Windows, and then select Auto.

-or-

Press the key combination, CTRL+AL T +A.

-or-

Click the Auto button on the Debug toolbar.

To copy a variable from the Auto window to another window

• Drag a selected variable to the Immediate window or the Watch window.

To change the value of a variable

• Click a value and edit it.

To view or hide class member variables and array elements

o Expand or collapse class and array member variables to view or hide their elements.

See "Navigation Keyboard Shortcuts for the Auto, Locals, and Watch Windows," later
in this chapter, for additional information on how to move around in these windows,
and expand and collapse class member variables and array elements.

See "Viewing Variables in the Auto Window," in the Visual Studio online documentation,
for more information about the Auto debug window.

Viewing Information in the Locals Window
The Locals window displays the class member variables and their values for each method
in the current stack frame. As the execution switches from method to method, the contents
of the Locals window changes to reflect the local variables applicable to the current
method.

The Locals window contains fields for the Name, Value, and Type for each member
variable. The value of a given variable will be displayed after it has been declared in your
program. If a variable is not in scope when you display the Locals window, a message
appears in the Value field next to the variable's name. You will need to step through more
code before you'll see values for these variables. The Locals window is updated only when
execution is suspended. Values that have changed since the last suspension arc displayed
in red.

Programmer's Guide 103

Part 1 Getting Started with Visual J++

To display the Locals window

• On the View menu, click Debug Windows, and then select Locals.

-or-

Press the key combination, CTRL+ALT +L.

-or-

Click the Locals button on the Debug toolbar.

To change class information in the Locals window

• From the drop-down list box at the top of the Locals window, select another class.

Note When you've defined more than one class for your program, you may
want to see values for variables in all these classes. The Locals window always
displays the member variables for the class that contains your program's entry
point (rna in () or i nit (»). Once you've either stepped into or stopped on a
breakpoint in a different class, use the drop-down list box at the top of the
Locals window to select this class and view its member variables.

To copy a variable from the Locals window to another window

• Drag a selected variable to the Immediate window or the Watch window.

To change the value of a variable

• Click a variable to edit its value.

To view or hide class member variables and array elements

• Expand or collapse class and array member variables to view or hide their clements.

See "Navigation Keyboard Shortcuts for the Auto, Locals, and Watch Windows," later
in this chapter, for additional information on how to move around in these windows
and expand, and collapse class member variables and array elements.

See "Viewing Local Variables in the Locals Window," in the Visual Studio online
documentation, for more information about the Locals debug window.

Viewing Information in the Watch Window
The Watch window allows you to monitor the values of variables, properties, and
expressions at run time. Many debugging problems aren't immediately traceable to a single
statement, so you may need to use a watch expression to observe the behavior of a variable
or expression throughout a procedure.

The development environment automatically monitors the watch expressionsyou define.
When the application enters break mode, these watch expressions appear in the Watch
window, where you can observe their values.

104 Programmer's Guide

Chapter 6 Debugging Applications

To display the Watch window

• On the View menu, click Debug Windows, and then select Watch.

-or-

Press the key combination, CTRL+ALT+W.

-or-

Click the Watch button on the Debug toolbar.

The Watch window keeps track of member variables that may change at various times or
locations in an application.

To add a watch expression at design time or in break mode

• Drag an expression or variable from the Text editor, the Locals window or Immediate
window to the Watch window.

To change the value of a variable

• Click a variable to edit its value.

To view or hide class member variables and array elements

o Expand a class or array member variable to view their elements.

• Collapse a class or array member variable to hide their elements.

See "Navigation Keyboard Shortcuts for the Auto, Locals, and Watch Windows," later
in this chapter, for additional information on how to move around in these windows,
and expand and collapse class member variables and array elements.

See "Inspecting Variables and Properties with the Watch Window," in the Visual Studio
online documentation, for more information about the Watch debug window.

Navigation Keyboard Shortcuts for the
Auto, Locals, and Watch Windows
You can use the following keys to view or hide member variables of a selected class or
array or to move around in the Auto, Locals, or Watch windows:

To

Collapse the member variables list

View the member variables

Toggle between hiding and viewing the variables

Move upward in the member variables list

Move downward in the member variables list

Use the

LEFT ARROW key

RIGHT ARROW key

ENTER key

UP ARROW key

DOWN ARROW key (continued)

Programmer's Guide 105

Part 1 Getting Started with Visual J++

(continued)

To

Move up an expanded list

Move down an expanded list

Use the

LEFT ARROW key

RIGHT ARROW key

Note You can change the size of a column by dragging the border of the column
header to the right to make the column larger or to the left to make it smaller.

Viewing Information in the Immediate Window
To view and change values, you use the Immediate window. You can evaluate any
expression, variable, or object in the window and see the value that is returned, or you
can see the effects of commands you enter (which must be in the language of the code
that is currently executing).

Once you're in break mode, you can move the focus to the Immediate window to
examine data. You can evaluate any valid expression in the Immediate window,
including expressions involving properties or variables. The currently active form
or class detcrmincs the scope.

To display the Immediate window

• On the View menu, click Debug Windows, and then select Immediate.

-or-

Press the key combination, CTRL+ALT +1.

-or-

Click the Immediate button on the Debug toolbar.

You can enter expressions into the Immediate window to display or change the value of
variables, properties, and expressions.

To add an expression or variable to the Immediate window

• Drag a variable or expression from the Text editor or from the Locals, or Watch
window into the Immediate window.

To evaluate an expression or variable in the Immediate window

1. In the Immediate window, move the insertion point to the variable or expression you
wish to evaluate.

Note To examine variables or expressions that contain scripting code, insert a
question mark, "? ," before the variable or expression to display its value.

106 Programmer's Guide

Chapter 6 Debugging Applications

2. Press Enter.

If, you select a variable for evaluation, the Immediate window will return its current
value; for expressions, the evaluated results are returned.

To execute a statement again

1. Move the insertion point back to the statement you want to execute again.

2. If you wish, you can edit the current statement to alter its effects.

3. Press ENTER.

To move around in the Immediate window

• Use the mouse or the arrow keys.

Tip Don't press ENTER unless you are at a statement that you want to execute.

See "Executing Commands and Evaluating Expressions in the Immediate Window," in the
Visual Studio online documentation, for additional information on the Immediate debug
window.

Viewing Information in the Threads Window
For multithreaded applications, the Threads window allows you to change the current
thread of execution or view the threads in any attached process. The contents of the other
debugging windows change to reflect the selected thread. For more information, see
"Threads Window" and "Controlling Threads," in the Visual Studio online documentation.

Displaying the Threads Debug Window
To display the Threads debug window

• On the View menu, click Debug Windows, and then select Threads.

-or-

Press the key combination, CTRL+ALT+H.

-or-

Click the Threads button on the Debug toolbar.

Observing Thread Activity in the Threads Debug Window
The application example for this procedure creates two threads in the rna in () method and
displays output to a JVIEW console window. This procedure refers to code created in the
"Multithreaded Beverages Application." If you'd like to create this project to complete
the following exercises, do so now. You may also use the following procedure to observe
thread activity of any multithreaded application.

Programmer's Guide 107

Part 1 Getting Started with Visual J++

To observe thread activity in the Threads debug window

1. Set a breakpoint in the Coffee class on the following statement:

System.out.println("I Like Coffee" + " " + i);

2. Set a breakpoint in the Tea class on the following statement:

System.out.println("I Like Tea" +" "+ i);

3. In Class I 's rna in () method, place the insertion point on the following statement:

Coffee m_Coffee = new Coffee(); //creates Coffee object

4. Click the right mouse button and select Run To Cursor from the shortcut menu.

S. When your application enters break mode, open the Threads debug window.

Notice the rnai n () thread is currently the only thread running in this window.

6. Press F5 to run to the breakpoint set in the Coffee class.

More information appears in the Threads debug window to identify the names,
location in the code, and suspension status for the application's three threads, main,
Thread-O, and Thread-I. The yellow arrow indicates which thread is currently
running, in this case it is Thread-O of Coffee. run (). Notice the rna in () method's
thread is no longer running, because it has passed control to the threads of the Coffee
and Tea classes.

Note Although this scenario suggests the Coffee thread will be the first thread
to run, this may not always be the case. The operating system will ultimately
determine the processing order of the threads in a given application unless there
are statements in the code to specify conditions under which to create and run a
new thread.

7. Press Fll to execute the current statement.

8. Switch to JVIEW's console window and the following output appears:

I Like Coffee 0

9. Press FS to run to the breakpoint set in the Tea class.

10. Press Fll to execute the current statement and the following output appears in
JVIEW's console window:

I Like Tea 0

108 Programmer's Guide

Chapter 6 Debugging Applications

11. Continue pressing F5 and Fll alternately until one of the following output statements
appears in JVIEW's console window:

I Like Coffee 9

-or-

I Li ke Tea 9

Notice when a thread is destroyed information about that thread no longer appears in
the Threads debug window.

In the process of observing each of your application's threads, you may observe that a
particular thread's behavior is not what you had expected. To isolate a given thread by
suspending other threads, see the next section, "Suspending and Resuming Threads from
the Threads Debug Window."

Suspending and Resuming Threads from the
Threads Debug Window
The application example for this procedure creates two threads in the rna i n () method and
displays output to a JVIEW console window. This procedure refers to code created in the
Multithreaded Beverages Application. If you'd like to create this project to complete the
following exercises, do so now. You may also use the following procedures to suspend
and resu~e the threads of any multithreaded application.

To suspend a thread

1. Set a breakpoint in a statements that execute after your application's threads have been
created. In this procedure's example, breakpoints are set in the Coffee class on the
following statement:

Systern.out.println("I Like Coffee" + " " + i);

-and-

in the Tea class on the following statement:

System.out.println("I Like Tea" + " " + i);

2. On the Debug menu, click Start, or press the keyboard shortcut, F5 to run your
application, and start the debugger.

3. When your application enters break mode, open the Threads debug window.

Note The operating system will ultimately determine the processing order of the
threads in a given application unless there are statements in the code to specify
conditions under which to create and run a new thread.

4. In the Threads debug window, highlight one of the threads. For this example,
highlight Thread-l of Tea.run.

Programmer's Guide 109

Part 1 Getting Started with Visual J++

5. Click the right mouse button, and select Suspend from the shortcut menu.

Notice the Suspension Count for Thread-l changes from 0 to 1.

6. Continue to run your application with at least one of the threads suspended by pressing
the F5 or FII keys.

If you are using the application created for this procedure, you'll see that only the
output from the non-suspended thread appears in JVIEW's console window.

At some point in the debugging of a multithreaded application you may want to restart
the suspended thread. Follow these steps to resume a suspended thread:

Note This procedure requires that you have:

• Opened the Threads debug window

• Have suspended a thread in this window

To resume a suspended thread

1. In the Threads debug window, highlight a suspended thread. For this example,
highlight Thread-l of Tea.run.

2. Click the right mouse button, and select Resume from the shortcut menu.

Notice the Suspension Count for Thread-l changes from 1 to O.

Viewing Information in the Call Stack Window
The Call Stack window displays a list of all active procedures or stack frames for
the current thread of execution. Active procedures are the uncompleted procedures
in a process.

To display the Call Stack window

• On the View menu, click Debug Windows, and then select Call Stack.

-or-

Press the key combination, CTRL+ALT +C.

-or-

Click the Call Stack button on the Debug toolbar.

To change the active thread from the Call Stack window

• Change the active thread by selecting it from the threads list.

See "Viewing the Call Stack," in the Visual Studio online documentation, for information
about the specific elements of this window.

110 Programmer's Guide

Chapter 6 Debugging Applications

Viewing Information in the Running Documents Window
The Running Documents window displays a list of documents that are currently loaded
into the process you are running. For example, if you add an HTML frameset to your
project, the Running Documents window shows you which pages are currently loaded
in the browser.

To display the Running Documents window

• On the View menu, click Debug Windows, and then select Running Documents.

-or-

Press the key combination, CTRL+ALT +R.

-or-

Click the Running Documents button on the Debug toolbar.

To open a document from the Running Documents window

• Double-click on a document to open it in an editor.

To view or hide documents within the top-level documents

o Expand or collapse the list to see or hide the pages or documents within the top level
documents.

Stepping Through the Code
The application example for this scenario accepts a date passed from the command line
and converts it to a Julian calendar date. The application used in this scenario was built in
"Creating a Console Application" in Chapter 1, "Creating Projects." If you'd like to create
this project to complete the following exercises, do so now.

You have entered a date for conversion, stopped on a breakpoint you've set, and used the
debug windows to examine some of your program's variables. You have an idea of what
the problem may be, but you'd like to step through the statements of your code to get a
better understanding of what's really happening. The following procedure shows you how
to trace through your program's execution.

To step through your program when in break mode

1. Place the cursor in the margin next on the line of code where you would like to begin
stepping through your code.

Tip Choose a line that will be executed before the application ends.

2. If you are following the scenario for debugging a Console application, place the cursor
next to the following code:

for(int nCount=l; nCount < m_nMonth; nCount++)

Programmer's Guide 111

Part 1 Getting Started with Visual J++

3. Click in the margin.

A red dot appears in the margin indicating the line on which the breakpoint was se~.

4. Press F5 and the debugger runs your application and breaks on your new breakpoint.

The yellow arrow in the margin points to the next instruction to be processed.

5. Continue to step through your program by pressing FII, paying attention to the line of
code being executed and information displayed in any open debugging windows.

In the open debug windows, values for member variables display in red whenever these
values change. If you're following the debugging scenario for a Console application,
continue stepping through your application's source code until the values for
m_nDayOfYear and nCount change to red in the open debug windows.

For more information about stepping through your program's code with the debugger,
see "Stepping Through Code to Trace Execution," in the Visual Studio online
documentation.

To terminate the debugging session

• On the Debug menu, click End.

For more ways to stop a debugging session, see "Ending a Debugging Session,"
in the Visual Studio online documentation.

When your program enters break mode, you may want to set another breakpoint or
examine one or more Debug Windows to view the values of your program's member
variables.

See "Basic Debugging Procedures," earlier in this chapter, for additional information
on using the features of the integrated debugger.

Debugging a WFC Application
If you've created a Windows Foundation Classes for Java (WFC) application and noticed
peculiar behavior when it runs, these procedures will help you debug your application.

Note The application example for this scenario was built in "Creating a Windows
Application with WFC," in Chapter I, "Creating Projects." If you'd like to create this
project to complete the following exercises, do so now.

The application in this scenario accepts a calendar date and converts it to a Julian date.
Once the date's been entered, you'll set a breakpoint and start debugging the application.
You'll also examine the value of some member variables with the debugger's windows.
Although there may be references to specific code statements in the Julian Date
Conversion application, you can substitute code from your application and still find
the procedures in this scenario helpful.

112 Programmer's Guide

Chapter 6 Debugging Applications

After you've entered the date you want converted to a Julian date, see "Setting a
Breakpoint Before Starting the Debugger," earlier in this chapter, to begin the
debugging session.

When execution of your application stops on a break point, view current values for
your application's member variables in the Auto, Locals, Watch, and Immediate debug
windows. This gives you a snapshot of what's happening with your program up to the
place where it entered break mode.

Now that you've had a chance to look at the state of your program up to where it entered
break mode, you may want to set another breakpoint, and then continue stepping through
the code.

This concludes the scenario for debugging a WFC application. See "Basic Debugging
Procedures," earlier in this chapter, for additional information on using the features of
the integrated debugger.

Debugging a Console Application
If you've created a Java console application and noticed peculiar behavior when it runs,
these procedures will help you debug your application.

Note The application example for this scenario was built in "Creating a Console
Application," in Chapter 1, "Creating Projects." If you'd like to create this project to
complete the following exercises, do so now.

The application in this scenario accepts a calendar date passed from the command line and
converts it to a Julian date. Once the date's been entered, you'll set a breakpoint and start
debugging the application. You'll also examine the value of some member variables with
the debug windows. Although there may be references to specific code statements in the
Julian Date Conversion application, you can substitute code and member variables from
any application and still find the procedures in this scenario helpful.

Running the application requires that a date be entered from the command line before
this program runs. The steps in the procedure for "Entering Command-line Arguments,"
earlier in this chapter, shows you how to pass this information to the application from the
development environment's Launch tab. After you've entered command-line arguments
for your program, see "Setting a Breakpoint Before Starting the Debugger," em'lier in this
chapter, to begin the debugging session.

When execution of your application stops on a break point, view current values for
your application's member variables in the Auto, Locals, Watch, and Immediate debug
windows. This gives you a snapshot of what's happening with your program up to the
place where it entered break mode.

Programmer's Guide 113

Part 1 Getting Started with Visual J++

Now that you've had a chance look at the state of your program up to where it entered
break mode, you may want to set another breakpoint, and then continue stepping through
the code.

This concludes the scenario for debugging a console application using the Julian Date
Conversion application. See "Basic Debugging Procedures," earlier in this chapter,
for additional information on using the features of the integrated debugger.

Debugging a Multithreaded Application
A process is a collection of virtual memory space, code, data, and system resources,
while a thread is code that is to be serially executed within a process. A processor executes
threads, not processes, so each 32-bit application has at least one process and one thread.
Prior to the introduction of multiple threads of execution, applications were all designed
to run on a single thread of execution.

If you have created a multithreaded application or component and noticed peculiar
behavior when it runs, you may need to debug the code running on a specific thread to
find the source of the problem. The procedures is this scenario are designed to show you
how to use the debug Threads window in conjunction with setting breakpoints and viewing
information in other debug windows.

If you do not have an application that supports mUltiple threads and would like to
walk through the following procedures, complete the procedures in the next section,
"Multithreaded Beverages Application," that create a multithreaded console application.

Multithreaded Beverages Application
The following scenario creates an console application that supports two threads.
The application consists of three classes: Classl, Coffee, and Tea. Class! contains the
application's rna in () method and code to start two threads - one to run the code for
the Coffee class and one for the Tea class.

To create a multithreaded console application

1. On the File menu, click New Project to display the New Project dialog box.

2. Expand the folders for Visual J++ Projects and then Applications.

3. Single-click the Console Application icon.

4. In the Name text box, type a unique name for your project.

5. In the Location text box, enter or Browse to the location where you want to save
your project.

114 Programmer's Guide

Chapter 6 Debugging Applications

6. Click Open and your project appears in Project Explorer.

7. In Project Explorer, expand your project's icon and double-click on the
Classl.java file.

Your .java file is now loaded in the Text editor and ready for modifications.

To add the Coffee and Tea classes to Class1.java file

1. At the end of the file, after C 1 ass l' s closing brace, "{", enter the code found in the next
section, "Coffee and Tea Source Code."

2. Between the braces of Class l' s rna in () method, insert the following code:

Coffee rn_Coffee = new Coffee();
rn_Coffee.start();
new Tea().start();

I/creates Coffee object
//creates thread for Coffee object
//creates Tea object and its thread

Coffee and Tea Source Code
The following code snippet supports the creation of the multithreaded beverages
application. The following Coffee and Tea classes extend the Thread class which
allows them to run on separate threads.

class Coffee extends Thread
{

}

public void run()
{

}

for(int i = 0; i < 10; i++)
{

}

Systern.out.println("I Like Coffee" + " " + i);

yield();

class Tea extends Thread
{

}

public void run()
{

for(int i - 0; i < 10; i++)
{

}

Systern.out.println("I Like Tea" + " " + i);
yield();

Programmer's Guide 115

Part 1 Getting Started with Visual J++

Debugging a Multi-Process Application
A process is a collection of virtual memory space, code, data, and system resources, while
a thread is code that is to be serially executed within a process. A processor executes
threads, not processes, so each 32-bit application has at least one process and one thread.
Prior to the introduction of multiple threads of execution, applications were all designed
to run on a single thread of execution. Processes communicate with one another through
messages, using RPC to pass information between processes. There is no difference to
the caller in a call coming from a process on a remote machine, and a call from another
process on the same machine.

When you are debugging an application that requires more than one process to run, you
may want to watch activity across all processes. The following procedure shows you how
to select a different process when your are debugging your application.

To select a process from the Threads debug window

1. Open the Threads debug window.

2. From the drop-down list box at the top of the Threads window, select the process you
want to observe.

Once you have selected a process to debug see "Basic Debugging Procedures," earlier in
this chapter, for specific procedures for:

• Displaying the Debug Toolbar

• Setting Breakpoints

• Examining Information with Debug Windows

• Stepping Through the Code

• Debugging a Multithreaded Application

Debugging a COM Object
A Component Object Model (COM) server is a dynamic-link library (DLL) or executable
file that implements one or more classes, each of which implements one or more
inteifaces. A COM interface is a group of semantically related functions, and all access
to an object's capabilities occurs through the various interfaces that the object supports.

Debugging a COM server differs considerably from debugging an executable or an applet,
primarily because a COM server is not intended to run as a stand-alone application.
Instead, it exists to provide services to clients. Such clients can be either executable files,
Active Server Pages (ASP), or other dynamic-link libraries.

116 Programmer's Guide

Chapter 6 Debugging Applications

Consequently, to debug a COM server, you'll typically load the project into Visual J++,
and then configure the Visual J++ environment to launch your debugging client. Next,
you'll set breakpoints in your object code, so that when the Visual J++ environment starts
your debug client, the execution of your object code will stop at a specified point. After a
breakpoint is triggered, you can step through your server object code, just as you would if
you were debugging an executable or an applet.

The approach that you take to debugging your object depends primarily on two factors:
the types of debugging clients that will access your object's services, and the environment
in which your object is designed to operate.

This section explains three approaches that you can take to debugging a COM server.
These approaches are distinguished from one another based on the client type. Subjects
covered include:

• Using an Active Server Pages (ASP) Debugging Client. An object designed
specifically to be used in the Active Server Pages environment is typically referred
to as a server-side component. This section explains how to debug a server-side
component that uses an ASP client. For more detailed instructions about debugging
script, see "The Script Debugging Process," in the Visual InterDev online
documentation.

• Using an Executable Debugging Client. This section explains how to configure the
Visual J++ environment to launch the executable program that will use your object's
services.

• Using the Microsoft Transaction Server (MTS). Debugging an MTS component
involves the interaction of the MTS itself and of a debugging client. This section
explains how to debug an MTS-enabled component.

U sing an Active Server Pages (ASP)
Debugging Client

Before you can begin to debug a server-side component, make sure you have:

• Created an ASP to run your server-side component.

o Installed Microsoft Internet Information Server (lIS) on your computer or on a
Web server, where lIS is configured for debugging a Java server-side component.

• Deployed your component to liS.

• Internet Explorer (version 4.0 or later).

This scenario uses the project built in "Creating a COM DLL," in Chapter 1, "Creating
Projects." However, the following procedures provide information you'll need to prepare
any server-side component for debugging.

Programmer's Guide 117

Part 1 Getting Started with Visual J++

Preparing the Environment for Debugging a
Java Server-Side Component

To prepare the environment for debugging a Java server-side component

1. On the Tools menu, click Options and highlight the Debugger node in the tree view
of the Options dialog box.

The property page for Debugger options appears.

2. In the Java and Script sections of this property page, select the option to Attach to
running program.

3. Reboot your machine to enable these options.

4. Start Internet Explorer and point the browser to your project's .asp page at the
http:// server location where you've deployed your Java server-side component.

The contents of your .asp page appear in the Web browser.

After you have configured lIS and prepared the Visual J++ environment, you are now
ready to begin the debugging of your Java server-side component.

Starting a Java Server-Side Component
Debugging Session

To debug a Java server-side component

1. Start Visual J++.

2. On the File menu, click Open Project.

3. On the Existing tab of the Open Project dialog box, select your server-side
component project.

4. In Project Explorer, expand your project's node, and double-click your component's
.java file to load it into the Text editor.

5. On the Debug menu, click Processes to display the Processes dialog box.

6. In the Processes section of the dialog box, select Microsoft Active Server Pages.

7. Click Attach.

This puts your project in run mode and loads the debugger.

8. From within the Text editor, set a breakpoint within a public method of your
component's class.

9. From Internet Explorer, set a breakpoint after the script calls the server-side
component in your .asp page.

118 Programmer's Guide

Chapter 6 Debugging Applications

10. From Internet Explorer, click Refresh.

The scripting code calls the component and breaks on the line where you've set the
breakpoint.

The environment and your project are now ready for you to continue debugging your
component with the debugger's windows and general features for setting breakpoints,
stepping through code, and continuing after an error.

U sing an Executable Debugging Client
From within your server-side component project, you can specify and configure a debug
executable, an application that triggers a breakpoint within your component.

To configure a client executable

1. On the Project menu, click <Project Name> Properties, where <Project Name> is the
name of the currently loaded project.

2. On the Launch tab of the Properties dialog box, click Custom.

3. In the Program box, type the path to the executable that calls into your component.

4. In the Arguments box, type any arguments that you want to pass to the application
specified in the Program box.

5. Click OK.

6. In your component's class code, place your cursor at the location at which you want
to set a breakpoint.

7. On the Debug menu, click Start to launch the executable you specified as your
debug client.

When the Visual J++ debugger breaks into your component's code at the specified
breakpoint, you can use the debugger's step commands on the Debug menu (Step Over,
Step Into, and Step Out) to navigate your component's source.

Using the Microsoft Transaction Server (MTS)
If you design your component to support MTS transactions, you use both the MTS and
a client executable to debug your component's code.

To configure MTS debugging

1. On the Windows NT Server on which you have MTS installed, shut down the server
processes. To do this, right-click My Computer on the Windows NT desktop to
display a shortcut menu, and then click Shutdown Server Process.

2. In the Visual J++ environment, click the Project menu, then click <Project>
Properties, where <Project> is the name of your component project.

Programmer's Guide 119

Part 1 Getting Started with Visual J++

3. Click the Launch tab, and then click Custom.

4. In the Program box, type the path to the MTx.exe. By default, this executable resides
in your Windows NT System32 directory.

5. In the Arguments box, type /p:"MTS Package Name", where Package Name is the
name of the MTS package containing your component. Also, make sure that there are
no spaces in this argument.

6. Set a breakpoint in your component code.

7. On the Debug menu, click Start.

8. Manually start the client executable that calls into your component. When the client
calls into the section of code in which you've set a breakpoint, execution halts, and
you can step through your component code.

Debugging a Java Applet
Once you have started your applet in JVIEW or the Internet Explorer, see "Basic
Debugging Procedures," earlier in this chapter, for specific procedures to follow during
your debugging session.

Debugging an Applet Running in JVIEW
The environment and your project are now ready for you to continue debugging your
applet with the debugger's windows and general features for setting breakpoints, stepping
through code, and continuing after an error.

Debugging an Applet Running in Internet Explorer
The environment and your project are now ready for you to continue debugging your
applet with the debugger's windows and general features for setting breakpoints, stepping
through code, and continuing after an error.

120 Programmer's Guide

CHAPTER 7

Packaging and Deploying Projects

When you are ready to distribute your application, the Visual J++ development
environment includes all you need to package and deploy your projects.

You can package your Visual J++ project in any of the following output formats:

• COMDLL

• Self-extracting setup (.exe)

• Windows EXE

• Zip archive (.zip)

• Cabinet archive (.cab)

You can use the Output Format tab of the Project Properties dialog box to specify what
type of package you want to create when you build your project.

If you package your project as a cabinet archive file or as a self-extracting setup file, you
can sign the project for added security by clicking Advanced in the Project Properties
dialog box. (If you don't make changes here, cabinet files will be signed according to
the default authentication settings you specify in the Security section of the Options
dialog box.)

When you are ready to distribute your project, the Visual J++ development environment
allows you to deploy the project to Web sites and Web servers for testing and production.

Note You can set limited packaging and deployment options when you create a
project using the Application Wizard.

For detailed information about packaging and deploying projects, see the following topics
in the Visual Studio documentation:

• Solution Building and Packaging Concepts

• Solution Building and Packaging User Interface Reference

• Solution Building and Packaging Common Tasks

• Solution Deployment Concepts

• Solution Deployment Common Tasks

• Solution Deployment User Interface Reference

Programmer's Guide 121

CHAPTER 8

Managing Projects with Source
Code Control

The Visual J++ environment integrates source control systems (such as Visual SourceSafe)
into the Project Explorer and other menus and windows. You can use source control to
manipulate source file (item) locations and versions, set up your source control project
hierarchy to match your development directory tree, and more effectively manage team
projects by delaying additions, deletions, and renames to the source control database.
To learn more about using an integrated source control system to manage Visual J++
projects, see the following topics in the Visual Studio online documentation:

• Source Code Control Concepts

• Source Code Control Common Tasks

• Source Code Control User Interface Reference

Programmer's Guide 123

CHAPTER 9

Compiling Applications with JVC

JVC.EXE (JVC) is the Microsoft compiler for Java. By default, the compiler produces
(.class) files that run on any virtual machine for Java. However, JVC also builds
applications optimized for the Windows platform. See Chapter 19, "Writing Windows­
Based Applications with JIDirect," for more information about creating Windows
applications with Visual J++.

You may select your project's compiler options on the Compile tab of the project's
Properties dialog box; options may also be typed into the Additional compiler options
text box of the same tab. Access the Compile tab from the Project menu's Properties
dialog box. Each of the options on the Compile tab is described in "Setting Compiler
Options."

For an alphabetic reference of the JVC command-line options, see "JVC Command-Line
Options," later in this chapter.

Description of JVe Syntax
The JVC.EXE (lVC) command line uses the following syntax:

JVC [options] <filename>

The following table describes input to the lVC command.

Entry Meaning

option One or more lYC options. See "Setting Project Options" in Chapter 1,
"Creating Projects," and "lVC Command-Line Options," later in this
chapter, for more information.

filename

Note All options apply to all specified source files.

The name of one Of more source files. For more information about
valid filenames, sec "Filename Syntax," later in this section.

Programmer's Guide 125

Part 1 Getting Started with Visual J++

You can specify any number of options and filenames, as long as the number of characters
on the command line does not exceed 1,024 or the limit dictated by the operating system.

Note There is no guarantee that future releases of Microsoft Windows NT (version 4.0
and later) and Microsoft Windows 95 will have the same input limit of 1,024 characters
for the command line.

Any options you wish to pass to JVC must be supplied before the name of the .java file(s).

Filename Syntax

JVC recognizes the following filename syntax:

• JVC accepts files with names that follow FAT or NTFS naming conventions.

• Any filename can include a full or partial path.

A full path includes a drive name and one or more directory names. JVC accepts
filenames separated either by backslashes (\) or forward slashes (I).

A partial path omits the drive name, which JVC assumes to be the current drive.
If you don't specify a path, JVC assumes the file is in the current directory.

Note If a filename does not have an extension, JVC assumes the extension of .java
when it reads the file.

Compiling with JVC.EXE
You can use lVC.EXE (lVC) to compile specified .java source files into .class files that
are run by the virtual machine for Java. To check your code for syntax errors only, without
producing .class files, use the Inowrite option.

You can specify JVC options on the command line, or in the development environment.
If you are compiling your Java project from within the development environment, specify
the JVC options you wish to use in the Compile tab's Additional compiler options.
Access the Compile tab from the Project menu's Settings dialog box.

If you are compiling your Java project from the command line, place the JVC options
before the name of the .java file or files on the command line.

Order of JVC Options

Command-line options must appear before .java source file names on the JVC.EXE (JVC)
command line. JVC reads the command line from left to right processing options in the
order it encounters them. Each option applies to all files on the command line. If JVC
encounters conflicting options, it uses the rightmost option.

126 Programmer's Guide

Chapter 9 Compiling Applications with JVC

JVC Command Files
A command file, also referred to as a response file, is a text file that contains a list of
filenames you would otherwise type on the command line. JVC accepts a command file
as an argument on the command line. The command file allows you to compile multiple
source files.

The criteria listed below should be followed when using command files:

• A command file may contain only filenames.

o A command file must not invoke the JVC command.

• A command file must not contain any JVC compiler options.

A command file is specified by an "at" sign (@) followed by a filename; the filename can
specify an absolute or relative path.

CLASSPATH Environment Variable
The CLASSPATH environment variable specifies the system's default location for .class
files. Java compilers (JVC), application viewers (JVIEW and WJVIEW), and virtual
machines use the information stored in the CLASSPATH environment variable when
compiling and running Java programs. When compiling from the command line, use the
/cp:p and /cp:a to add information to the CLASSPATH environment variable.

Note The option settings for JVC, JVIEW, and WJVIEW apply only to the current
compilation and must be entered each time these tools run.

Setting the CLASSPATH environment variable from the command line changes it
permanently until the system shuts down. However, the /cp, /cp:p, and /cp:a options of
JVC, JVIEW, and WJVIEW can replace or modify the CLASSPATH environment
variable when compiling and viewing your Java programs.

Note The directories in the CLASSPATH environment variable are separated
by semicolons on a Microsoft Windows system.

The following syntax sets the CLASSPATH environment variable from the
command line:

SET CLASSPATH = <path>

Programmer's Guide 127

Part 1 Getting Started with Visual J++

CLASSPATH and the Java Package Manager (JPM)
When the VM installs, it registers information about all Java packages with the Java
Package Manager (JPM) and enters the following CLASSPATH values into the
HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM\Classpath registry key:

Windows 95

Window NT

C:\WIN95\java\classes\classes.zip; C:\WIN95\java\classes;.;

C:\ WINNT\java \classes\classes.zip; C:\ WINNT\java \classes;.;

When a Java programs runs, the VM searches for .class files by gathering information
from the following sources in the order listed:

1. Command-line provided paths

Note Use the /cp, /cp:p, and /cp:a options to specify CLASSPATH information
when running JVC, JVIEW, and WJVIEW.

2. The DevClasspath registry key

Note The DevClasspath registry key allows developers who are working on
packages to supercede packages that may be installed in the Java Package Manager's
(JPM) database. With this key, developers can build their packages into a specified
directory and JPM's installed packages will not shadow it. For more information
about the Java Package Manager, see the Java Package Manager documentation.

3. Java Package Manager (JPM) database

Note When your program runs from within the Visual J++ development
environment, the VM includes the information entered into the Java Packages tab
of Settings dialog box when searching for .class files. Access the Java Packages
tab from the Project menu's Settings dialog box. For more information on using
the Java Package Manager, see the Java Package Manager documentation.

4. The TrustedClasspath, TrustedLibsDirectory, Classpath, and LibsDirectory
registry keys

5. The CLASSPATH environment variable

128 Programmer's Guide

Chapter 9 Compiling Applications with JVC

JVC Command-Line Options
This subject is an alphabetic reference to all the JVC command-line options. These options
are listed in the following table.

If a command-line option can take one or more arguments, its syntax is shown under
a Syntax heading before its description. Click any option in the following table for
information on that option.

JVC Options Set from the Command Line

Icp - Set CLASSPATH Ig - Generate
Option Debugging Information

Option

Icp:o - Display
CLASSPATH Option

Icp:p - Prepend
CLASSPATH Option

Id - Output Directory
Option

Ig:l- Generate Line
Number Information
Option

/g:t - Generate Debug
Tables Option

Inologo - Suppress
Copyright Banner

/D - Define Conditional Inowarn - Suppress
Compilation Symbol Warning Messages

Inowrite - Compile
Only Option

Iverbose - Display
Compiler Messages
Option

10 - Enable Iw - Set Warning Level
Optimizations Option Option

10:1 - Inline Methods Ix - Disable Language
Optimization Option Extensions Option

10:J - Optimize I? - Online Help Option
Bytecode Jumps Option

Iref - Recompile
Referenced Classes

All options listed in this table may be typed into the Compile tab's Additional compiler
options text box. Access the Compile tab from the Project menu's Settings dialog box.
These options can also be used typed onto the command line before the source filenames.

/cp - Set CLASSPATH Option (JVC)
Syntax

/cp classpath

Use the /cp option to set the CLASSPATH information for the current compilation. Using
this option specifies the path where the JVC can find system and user-defined classes.
The virtual machine for Java uses the CLASSP ATH environment variable and the Java
Package Manager to find system classes. For more information on using the Java Package
Manager, see the Java Package Manager documentation in the Microsoft SDK for Java
documentation in the online documentation.

Note The directories in the CLASSP A TH environment variable are separated by
semicolons on a Microsoft Windows system.

Programmer's Guide 129

Part 1 Getting Started with Visual J++

Example

When compiling myClass.java on Windows NT (version 4.0 or later), the class path
might be:

JVC /cp x:.;x:\java\classes myClass.java

In this example lVC searches in and beneath the current directory and the
x: \j ava \cl asses directory for system and user-defined classes.

/cp:o - Display CLASSPATH Option (JVC)
This option prints the class path to standard output. This option is especially useful for
troubleshooting errors, such as "class not found," when compiling from the command line.

Example

The following example prints the class path to the screen:

JVC /cp:o

/cp:p - Prepend CLASSPATH Option (JVC)
Syntax

/cp:p path

This option prepends the information found in the CLASSPATH environment variable
and inserts a semicolon between directory paths. When multiple /cp:p options are entered,
the paths are concatenated.

Note The CLASSPA TH environment variable or the /cp option supply the location
of the .class files. For a full description of the CLASSPATH environment variable,
see "CLASSPATH Environment Variable," earlier in this chapter.

Example

The following command prepends the directory of myproj to the existing class path:

JVC /cp:p myproj

The following commands concatenate the directories, myproj 1 and myproj 2, and prepends
the resulting path to the existing CLASSPATH information:

JVC /cp:p myprojl /cp:p myproj2

130 Programmer's Guide'

Chapter 9 Compiling Applications with JVC

/d - Output Directory Option (JVC)
Syntax

/d directory

When compiling .java files, use the /d option to specify an output directory other than
the current directory for the .class files. If the directory does not exist, JVC will create it.
If this option is not specified, JVC will write the .class files to the directory containing
the corresponding .java files.

Example

The following command compiles the myCl ass. java file into a myCl ass. cl ass file and
writes this file into the c 1 ass d i r directory:

JVC Id c:\classdir myClass.java

Caution The virtual machine for Java depends upon specific directory locations
for .java classes based on the names of the Java packages that contain the .class files.
Using this option could cause execution to fail if the VM can't find the classes it needs
to run a Java program. For an explanation of how the VM searches for .class files,
see "CLASSPATH Environment Variable," earlier in this chapter.

ID - Define Conditional Compilation Symbol
Syntax

/D identifier

This option tells the compiler to consider the identifier as a defined symbol for conditional
compilation on all files being compiled. The symbol can be tested in a .java source file by
using the #if directive to test if a symbol is defined. See "Conditional Compilation" for
more information.

Example

The following command compiles the myClass.java file, with the WINDOWS and
DEBUG preprocessing symbols defined:

JVC ID WINDOWS ID DEBUG myClass.java

Programmer's Guide 131

Part 1 Getting Started with Visual J++

/g - Generate Debugging Information
Option (JVC)

Syntax

/g[-]

The Ig option generates all debugging information. No debugging options are set by
default. The effect of using the Ig option is the same as using the following options
together:

Option

/g:l

/g:t

Action

Generate line number information

Generate debug tables

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following command creates a .class file called myCl ass. cl ass that contains debugging
information:

JVC /g myClass.java

/g:l- Generate Line Number Information
Option (JVC)

Syntax

/g:l[-]

This option generates line numbers that are used when debugging a program. No
debugging options are set by default.

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following command instructs lVe to generate line-number information for the
resulting myC 1 ass. c 1 ass file:

JVC /g:l myClass.java

132 Programmer's Guide

Chapter 9 Compiling Applications with JVC

Ig:t - Generate Debug Tables Option (JVC)
Syntax

Ig:t[-]

This option generates debug tables that are used when debugging a program.
No debugging options are set by default.

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following command instructs JVC to generate debug-table information for the
resulting myCl ass. cl ass file:

JVC /g:t myClass.java

Inologo - Suppress Copyright Banner
Syntax

Inologo

When compiling files from the command line, this option suppresses the display of the
compiler version number and copyright information.

Example

The following command compiles the myClass.java file without displaying the compiler
copyright notice:

JVC /nologo myClass.java

Inowam - Suppress Warning Messages
Syntax

Inowarn

This option causes the compiler to not emit any warning messages, only error messages.

Example

The following command compiles the myClass.java file without displaying any warning
messages:

JVC /nowarn myClass.java

Programmer's Guide 133

Part 1 Getting Started with Visual J++

Inowrite - Compile Only Option (JVC)
Syntax

Inowrite

The Inowrite option tells JVe to compile a .java file and to suppress the writing of the
.class file. This option is useful for checking your source code for syntax errors only,
without producing .class files.

Example

The myC 1 ass. j a v a file is compiled, errors and warnings are reported, but no corresponding
myCl ass. cl ass file is produced:

JVC Inowrite myClass.java

10 - Enable Optimizations Option (JVC)
Syntax

10

The 10 option combines optimizing options to produce a more efficient program.
The effect of using this option is the same as using the following options together:

Option

10:1

10:J

Action

Optimize by inlining methods when appropriate.

Optimize bytecode jumps. Default optimization setting.

Note To disable any optimization option, use a dash (-) after the option on the
command line.

Example

The following command fully optimizes the code for the myCl ass. cl ass file that is
produced:

JVC 10 myClass.java

134 Programmer's Guide

Chapter 9 Compiling Applications with JVC

10:1 - Inline Methods Optimization
Option (JVC)

Syntax

10:1

The 10:1 option tells the compiler it may inline methods to produce more efficient code.
Code that is inlined does not have the overhead associated with a method call. Since there
is no mechanism in the Java language to request inlining of methods, use this option when
you want the compiler to inline your code.

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following example evaluates the source code in the my C 1 ass. j a v a file and inlines
methods where possible. The resulting myCl ass. cl ass file contains the optimized code:

JVC 10:! myClass.java

10:J - Optimize Bytecode Jumps Option (JVC)
Syntax

10:J

The 10:J option causes lVC to optimize the bytecode jumps in the compiled .class file.
This option tells the compiler to generate code that jumps to another place in the code.
This option is the compiler's default optimization setting.

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following example evaluates the source code in the myC 1 ass. j a v a file and optimizes
the bytecode jumps to produce more efficient code. The resulting myC 1 ass. c 1 ass file
contains the optimized code:

JVC 10:J myClass.java

Programmer's Guide 135

Part 1 Getting Started with Visual J++

fref - Recompile Referenced Classes
Syntax

Iref[-]

The option causes the compiler to check for a matching .java source file when loading
class information from a class file on the class path. If this option is set, whenever the
compiler is about to load class information from a .java class file, it checks for a presence
of a .java source file of the same base name in the same directory. If such a source file
is found, and the source file has a modification date later than that of the .java class file,
the .java source file is compiled instead of reading the .java class file.

If this option is not set, the compiler will always read the .java class file, regardless of
the presence of a source file.

This option is on by default when compiling from the command line; use Iref- to tum
it off. This option is off by default when compiling from the integrated development
environment.

Caution It is recommend that you do not tum this option on in the integrated
development environment; doing so may cause the build operation to fail to perform
as designed.

Example

The following command compiles the myclass.java files, and tells the compiler not to
recompile any referenced classes:

JVC /ref- myClass.java

fverbose - Display Compiler Messages
Option (JVC)

Syntax

Iverbose

This option instructs JVe to display all messages while compiling a file or project.
These messages give useful information about the progress of the compilation.

136 Programmer's Guide

Chapter 9 Compiling Applications with JVC

/w - Set Warning Level Option (JVe)
Syntax

twO
/wl
/w2
/w3
/w4
twx

These options control the output of warning messages produced by the compiler.
The compiler determines which warnings to display based upon their severity.
They affect only source files named on the command line.

Compiler warning message numbers begin with J5. The documentation describes
the warnings, indicates each warning's level, and indicates potential problems
(rather than actual coding errors) with statements that may not compile as you intend.

The meaning of these options is as follows:

Option

twO

/wl

/w2

/w3

/w4

twx

Description

Turns off all warning messages.

Displays severe warning messages.

Displays a less severe level of warning message than /w 1.
This is the default warning level setting.

Displays a less severe level of warning than /w2, including
use of methods with no declared return type, failure to put
return statements in methods with non-void return types,
and data conversions that would cause loss of data or precision.

Displays the least severe level of warning messages.

Forces warnings to errors. Any warning will cause the compiler
to emit an error and fail the compilation. This option can be
combined with one of the warning level options above.

Programmer's Guide 137

Part 1 Getting Started with Visual J++

Ix - Disable Language Extensions Option (JVC)
Syntax

/x[-]

The Visual J++ compiler supports the Java language specification. In addition, it may
offer a number of features beyond those required by this specification. These features are
available by default, but are not available when the Ix option is specified.

Use the Ix option if you plan to port your program to other environments. The Ix option
tells the compiler to treat extended keywords as simple identifiers and to disable the other
Microsoft extensions.

Note To disable this option, use a dash (-) after the option on the command line.

Example

The following command ignores any Visual J++ extensions used in the myCl ass. cl ass
file:

JVC Ix myClass.java

I? - Online Help Option (JVC)
Syntax·

I?

This option displays a listing of compiler options to standard output.

138 Programmer's Guide

C HAP T E R 1 0

Viewing Applications with
JVIEW and WJVIEW

Viewing Applications with JVIEW
JVIEW.EXE (JVIEW) is a tool used to view Java applications and applets. JVIEW
provides console window where your Java programs can run. JVIEW supports both
debug and retail versions of your applications and applets.

If your Java project is an application, that is, has a public static void main(String args[D
method, JVIEW will run the application in JVIEW's console window without additional
command-line options. If your Java project is an applet, that is, has a public void initO
method, use JVIEW's /a option.

For an alphabetic reference of the JVIEW options see "JVIEW Command-Line Options,"
later in this chapter.

Description of JVIEW Syntax
The JVIEW.EXE (JVIEW) command line uses the following syntax:

JVIEW [options] <c1assname> [arguments]

Rrogramlllcr's GuidI! 139

Part 1 Getting Started with Visual J++

The following table describes input to the JVIEW command.

Entry

Options

Classname

Arguments

Meaning

One or more JVIEW options. See "JVIEW Command-Line Options," later in this chapter,
for more information.

The name of the class to execute. Do not include the .class extension of this filename.
For example, use HelloWorldApp and not HelloWorldApp.cIass.

Note You may also specify a fully-qualified class name, without the .class extension,
such as, C:\My Documents\Visual Studio Projects\HelloWorldApp\ HelloWorldApp.

Command-line arguments to be passed to the class identified by classname.

Note Any options that you wish to supply to JVIEW must be supplied before the
name of the .class file or they will be interpreted as command-line arguments to the
.class file.

Running JVIEW.EXE
You can specify JVIEW.EXE (JVIEW) options on the command line or in the
development environment. By default, Visual J++ chooses WJVIEW as its application
and applet viewer. Within Visual J++, to run JVIEW without specifying additional
command-line options, select the Launch as a console application check box in the
Default group box of the Launch tab. Access the Launch tab from the Project menu's
Settings dialog box.

You can pass more than the default options to JVIEW if you are running your program
from the command line or from within the development environment.

To pass more than the default options to JVIEW from within Visual J++:

1. From the Project menu, select Settings.

2. From the Launch tab on the Settings dialog box, select the Other cxecutables
group box.

3. Type JVIEW.EXE in the Other cxecutables group's Program text box.

4. Type the JVIEW options for your program into the Other executa hies group's
Arguments text box.

When you run JVIEW from the command line, enter the options you wish to pass
to JVIEW before the name of your class file(s) on the command line.

140 Programmer's Guide

Chapter 10 Viewing Applications with JVIEW and WJVIEW

JVIEW Command-Line Options
This section is an alphabetic reference of the JVIEW command-line options. These
options are listed in the following table.

If a command-line option can take one or more arguments, its syntax is shown under
a Syntax heading before its description.

JVIEW Command-line Options

la - Applet Viewer Option

Icp - Set CLASSPATH Option

Icp:a - Append CLASSPATH Option

Icp:p - Prep end CLASSPATH Option

Id: - System Property Option

Ip - Pause Viewer Option

Iv - Class Verification Option

I? - Online Help Option

See "Running JVIEW.EXE," earlier in this chapter, for information on how to specify
these options from within the development environment or on the command line.

fa - Applet Viewer Option
(JVIEW IWJVIEW)

Use the /a option to invoke an applet viewer - a browserless environment for viewing
applets. Applets that are run within the applet viewer behave in the same manner as those
hosted within a browser, including loading, sound, and security. The applet viewer accepts
applet parameters and class names, in addition to URLs and HTML filenames.

The /a option directs JVIEW or WJVIEW to run an applet and requires your Java project
to have an public void initO method. If your Java project has a public static void
main(String args[]) method, use JVIEW or WJVIEW without the /a option to run it
as an application.

Note When the /a option is used, any remaining command-line tokens become
parameters for the applet viewer.

Examples

The following command-line statements run the HelloWorld applet in an applet viewer
for JVIEW or WJVIEW, respectively:

JVIEW fa HelloWorld

-or-

WJVIEW fa HelloWorld

Programmer's Guide 141

Part I Getting Started with Visual J++

You can load an applet either by using an HTML file to specify parameters or by loading
parameters directly from the command·line. The following example shows how to load the
HelloWorid applet from an HTML source file with the applet tag:

<applet code=MyApplet.class width=100 height=200)
<param name=SomeName value=SomeValue><fapplet>

The same Hello World applet can run in JVIEW or WJVIEW with the following
command-line information:

JVIEW fa width-100 height=200 SomeName=SomeValue HelloWorld

-or-

WJVIEW fa width=100 height=200 SomeName=SomeValue HelloWorld

The following examples show how to run more than one applet at a time from the
command line:

JVIEW fa width=200 height=400 HelloWorld height=300 SpinningWorld

-or-

WJVIEW fa width-200 height-400 HelloWorld height=300 SpinningWorld

The results of the previous commands display the Hello World applet in a 200 x 400 frame
and the SpinningWorld applet in a 200 x 300 frame.

Note If no height and width are specified, the applets's default size is one-third the
size of the screen.

Any parameter, including HTML files, will be loaded from directory and .zip file locations
specified by CLASSPATH information and the Java Package Manager (JPM) database.
For example:

JVIEW fa fcp \src\bvt\HelloWorld.html

-or-

WJVIEW fa fcp \src\bvt\HelloWorld.html

142 Programmer's Guide

Chapter 10 Viewing Applications with JVIEW and WJVIEW

/cp - Set CLASSPATH Option
(JVIEW IWJVIEW)

Syntax

/cp classpath

Use the /cp option to set the CLASSP A TH environment variable for the current
compilation. Using this option specifies the path where JVIEW and WJVIEW can
find system and user-defined .class files. The virtual machine for Java uses a platform­
dependent default location, the CLASSPATH Environment Variable, and the Java
Package Manager (JPM) database to find system classes. For more information on
using the Java Package Manager, see the Java Package Manager documentation in the
Microsoft SDK for Java documentation.

Note The directories in the CLASSPATH environment variable are separated by
semicolons on a Microsoft Windows system.

Examples

On Windows NT, the following commands provide CLASSPATH information for
JVIEW and WJVIEW:

JVIEW /cp X:.;X:\WINNT\java\classes\classes.zip;X:\WINNT\java\classes\

-or-

WJVIEW /cp x:.;X:\WINNT\java\classes\classes.zip;X:\WINNT\java\classes\

In this example JVIEW and WJVIEW search in and beneath the current directory and the
x: \j ava \cl asses directory for system and user-defined classes.

Note In the previous examples, X: designates the drive letter where the class or .zip
files reside.

/cp:a - Append CLASSPATH Option
(JVIEW IWJVIEW)

Syntax

/cp:a path

The /cp:a option appends the path entered to the end of the CLASSPATH information
and inserts a semicolon between the directories. When multiple /cp:a options are entered,
the paths are concatenated.

Programmer's Guide 143
'"

Part 1 Getting Started with Visual J++

Note The CLASSPATH environment variable or the Icp option supplies the location
of the .class file and .zip file directories. The virtual machine for Java uses a platform­
dependent default location, the CLASSPATH Environment Variable, and the Java
Package Manager (JPM) database to find system classes. For more information on
the JPM, see the Java Package Manager documentation in the Microsoft SDK for Java
documentation.

Examples

The following commands append the directory of myproj to the existing CLASSPATH
information:

JVIEW /cp:a myproj

-or-

WJVIEW /cp:a myproj

The following commands concatenate the directories, myproj 1 and myproj 2, and append
the resulting path to the existing CLASSP ATH information:

JVIEW /cp~a myprojl /cp:a myproj2

-or-

WJVIEW /cp:a myprojl /cp:a myproj2

/cp:p - Prepend CLASSPATH Option
(JVIEWIWJVIEW)

Syntax

Icp:p path

The Icp:p option prepends the path entered to the beginning of the CLASSPA TH
information and inserts a semicolon between the directories. When multiple Icp:p options
are entered, the paths are concatenated.

Note The CLASSPATH environment variable or the Icp option supply the location
of the .class file and .zip file directories. The virtual machine for Java uses a platform­
dependent default location, the CLASSPATH Environment Variable, and the Java
Package Manager (JPM) database to find system classes. For more information on
using the Java Package Manager, see the Java Package Manager documentation.

144 Programmer's Gui1e

Chapter 10 Viewing Applications with JVIEW and WJVIEW

Examples

The following commands prepend the directory of myproj to the existing CLASSPATH
information:

JVIEW Icp:p myproj

-or-

WJVIEW Icp:p myproj

The following commands concatenate the directories, myproj 1 and myproj 2, and prepend
the resulting path to the existing CLASSP ATH information:

JVIEW Icp:p myprojl Icp:p myproj2

-or-

WJVIEW Icp:p myprojl Icp:p myproj2

/d: - System Property Option
(JVIEW IWJVIEW)

Syntax

Id:property=string value

Use the Id: option to set a system property for a Java program. Java programs can read
system properties by using the Java.iang.System.getProperties methods. See these
methods' documentation for descriptions of system properties.

Examples

The following commands set the use r . d i r property to some arbitrary value:

JVIEW Id:user.dir=c:\java\test HelloWorld.

-or-

WJVIEW Id:user.dir=c:\java\tcst HelloWorld.

You can also set user-defined properties. The following commands set the property
called "myprop":

JVIEW Id:myprop=12 HelloWorld

-or-

WJVIEW Id:myprop=12 HelloWorld

Programmer's Guide 145

Part 1 Getting Started with Visual J++

Ip - Pause Viewer Option
(JVIEW IWJVIEW)

The Ip option forces JVIEW and WJVIEW to pause before exiting if an error occurs. You
can use this command-line option to detennine the user interface state just prior to the error
when debugging an application.

Example

Use the following commands to pause before exiting JVIEW or WJVIEW if an error
occurs in the Hell oWorl d application:

JVIEW Ip HelloWorld

-or-

WJVIEW Ip HelloWorld

Iv - Class Verification Option
(JVIEW IWJVIEW)

The Iv option causes JVIEW and WJVIEW to verify all invoked methods. Without this
option, only methods from untrusted loaders arc verified. Verification is a process applied
to the bytecode loaded from the .c1ass files to ensure that it does not pose a security threat.
Verification enforces this so that if one of your .class files attempts to do anything that
violates the security model, that file is rejected.

Note On Microsoft's virtual machine for Java only a subset of the total functionality
of this option is possible with the bytecode language for .class files that are loaded
remotely.

For performance reasons, the local system classes are not normally verified. The Iv option
forces the verifier to process these files. You can use this option to ensure that a set of
.class files will pass the verifier.

Example

Use the following JVIEW or WJVIEW command to insure the .c1ass files of the
Spi nni ngWorl d application do not pose a security problem:

JVIEW Iv SpinningWorld

-or-

WJVIEW Iv SpinningWorld

146 Programmer's Guide

Chapter 10 Viewing Applications with JVIEW and WJVIEW

I? - Online Help Option
(JVIEW IWJVIEW)

Syntax

I?

This option displays a listing of command-line options for JVIEW and WJVIEW.

Example

Use the following commands to display online help for JVIEW or WJVIEW,
respectively:

JVIEW I?

-or-

WJVIEW I?

Viewing Applications
with WJVIEW

WJVIEW.EXE (WJVIEW) is a tool used to view window-based Java applications from the
command line. Unlike JVIEW, WJVIEW spawns a separate window process. WJVIEW
provides an environment where your window-based programs can run and supports both
debug and retail versions of your applications.

Note Use WJVIEW to run window-based Java applications. WJVIEW has the same
functionality and command-line options as JVIEW. WJVIEW runs your window-based
Java application in a separate graphical user interface (GUI) process and does not use
or require a console window. Consequently, do not use WJVIEW for Java applications
that require output to or input from the console window.

For an alphabetic reference to the WJVIEW options, see "WJVIEW Command-Line
Options," earlier in this chapter.

Programmer's Guide 147

Part 1 Getting Started with Visual J++

Description of WJVIEW Syntax
The WJVIEW.EXE (WJVIEW) command line uses the following syntax:

WJVIEW [options] <classname> [arguments]

The following table describes input to the WJVIEW command.

Entry

Options

Classname

Arguments

Meaning

One or more WJVIEW options. See "WJVIEW Command-Line Options,"
earlier in this chapter, for more information.

The name of the class to execute. Do not include the .class extension
of this filename. For example, use HelloWorldApp and not
Hello WoridApp.class.

Note You may also specify a fully-qualified class name,
without the .class extension, such as,
C:\My Documents\ Visual Studio Projects\Hello WoridApp\ Hello WorldApp.

Command-line arguments to be passed to the class identified
by classname.

Note Any options that you wish to supply to WJVIEW must be supplied before the
name of the class file or they will be interpreted as command-line arguments to the
class file.

Running WJVIEW.EXE
You can specify WJVIEW.EXE (WJVIEW) options on the command line or in the
development environment. By default, Visual J++ chooses WJVIEW as its application
and applet viewer.

You can pass more than the default options to WJVEIW if you are running your program
from the command line or from within the development environment.

To pass more than the default options to WJVIEW from within Visual J++:

1. From the Project menu, select Settings.

2. From the Launch tab on the Settings dialog box, select the Other executables
group box.

148 Programmer's Guide

Chapter 10 Viewing Applications with JVIEW and WJVIEW

3. Type WJVIEW.EXE in the Other executables group's Program text box.

4. Type the WJVIEW options for your program into the Other executables group's
Arguments text box.

When you run WJVIEW from the command line, enter the options you wish to supply
to WJVIEW before the name of your class file on the command line. See "WJVIEW
Command-Line Options," earlier in this chapter, for details about specific options.

WJVIEW Command-Line Options
This section is an alphabetic reference to the WJVIEW command-line options. These
options are listed in the following table.

If a command-line option can take one or more arguments, its syntax is shown under
a Syntax heading before its description.

WJVIEW Command-line Options

la - Applet Viewer Option

Icp - Set CLASSPATH Option

Icp:a - Append CLASSPATH Option

Icp:p - Prep end CLASSPATH Option

Id: - System Property Option

Ip - Pause Viewer Option

Iv - Class Verification Option

I? - Online Help Option

See "Running WJVIEW.EXE," earlier in this chapter, for information on how to specify
these options from within the development environment or on the command line.

Programmer's Guide 149

PAR T 2

Programming with Visual J++

C HAP T E R 1 1

Introduction to WFC Programming

Windows Foundation Classes for Java (WFC) is a set of class libraries that works
seamlessly with the Rapid Application Development (RAD) tool Visual J++. The
combination of this class framework and RAD tool make it easy to build fast and powerful
applications and components for the Microsoft platform using the Java language. WFC
brings the Java language to the Win32 platform and the Dynamic HTML (DHTML) object
model, which is a W3C standard supported by Internet Explorer 4.0. This means you can
use Java to solve real problems today and know that you have a smooth migration path
into the future.

A goal of WFC is to provide complete and compelling component and programming
models for Java. Because Java provides a unique set of advantages in terms of language
features, it is the language of choice for developing Windows and DHTML applications
using this new programming model.

WFC enables developers to quickly build rich Win32 applications and ActiveX controls
in Java by using the Visual J++ Forms Designer to drag and drop controls onto a form,
set properties, and generate event handlers. Developers can also easily access data on
a server from their applications and deploy their applications as Windows .EXE files
or Internet URLs. Moreover, they can build their own WFC components by using the
designer or writing code directly in the editor. Finally, developers can access the DHTML
object model using Java classes.

The rich application model takes advantage of the JIDirect technology to access the Win32
API. However, it makes it much easier to program by taking care of details like Window
message-handling procedures, message pumps, messages, window handles, and so forth.
The application model is open, so experienced Win32 programmers can intermix J/Direct
calls with WFC classes to add any functionality available on the Win32 platform.

If you are looking for a quick "hands-on" introduction to using Visual J++ to develop a
WFC application, take a few minutes to walk through "Creating a Windows Application
with WFC," in Chapter I, "Creating Projects," which steps you through building and
running a simple WFC application.

Programmer's Guide 153

Part 2 Programming with Visual J++

Getting Started with
Controls and Templates

One of the strengths of the WFC component model is that the Visual J++ development
environment provides most of the components, forms, menus, and dialog boxes that you
typically need. These components can either be extended for your own needs or you can
author your own controls. Because Visual J++ provides controls typically used in the
Win32 environment, you'll feel at home with the visual components available from the
Visual J++ design environment.

The Visual J++ development environment is tightly integrated with the WFC classes,
so most of what you need to know to get started using controls, forms, and menus can
be found in Using Visual J++.

Starting with a Form
Most application windows are represented in WFC programming as forms. A form
is used wherever you want a separate overlapping, graphical component, such as a
main application window or dialog box. Forms act as containers for controls, allowing
you to visually compose applications. Forms have their own properties, which can be
set in the Properties window. Syntactically, a form is a Java class derived from the
com.ms.wfc.ui.Form class. The Form class extends the com.ms.wfc.ui.Control class,
as do the controls that you place on a form. Control encapsulates a Win32 window.

When you create a new project, and choose Windows Application from the New Projects
dialog box, a form is automatically created for you. You can add other forms by choosing
either Add Item or Add Form from the Project menu.

Once a form is added to your project, the form can be viewed either in design mode or in
the Text editor. You can use the Forms Designer to size it and set properties by choosing
View Designer from the shortcut menu of the form in Project Explorer. Each form belongs
to a nonvisual Application object that contains the main thread of the application. Forms
and controls represent the visual Windows components. The integration of the visual and
nonvisual aspects of the window are handled completely by WFC framework.

When you open the Text editor on a new form, you'll see the template-based class created
for you that contains the necessary syntax of the Form class, including a constructor and
a mainO method with code that instantiates your form. When you work in design mode,
adding controls, setting properties, and so forth, the Forms Designer inserts and modifies
a section of this class. See "Creating a Form" in Chapter 2, "Designing Forms," to learn
about adding forms to your project.

154 Programmer's Guide

Chapter 11 Introduction to WFC Programming

Adding Controls
Controls are added by dragging them from the Toolbox onto the form, sizing them, and
setting their properties in the Properties window. You can drag and drop both ActiveX
and WFC controls onto your forms in Visual J++. See" Adding Controls to a Form" in
Chapter 2, "Designing Forms," to learn about adding controls from the Toolbox to a form.

WFC controls can be grouped into three categories, although there is no distinction
between categories in the way you use them:

o Intrinsic controls. The basic Windows controls such as buttons, check boxes, edit
boxes, list boxes, and so on.

• Common controls. The Win32 common controls found in comct132.dll. These include
controls such as animations, toolbars, tabs, status bars, and Tree view controls.

• WFC controls. Custom controls written specifically for the WFC framework.

All existing WFC controls are Java classes found in the com.ms.wfc.ui package.

If you want, you can create your own controls using the WFC packages, either by
extending existing controls or writing your own from scratch, and adding them to the
Toolbox. The WFC component model makes it easy to expose information about your
control's properties and events, enabling your control to work seamlessly with the
Visual J++ Forms Designer.

Adding Menus
Menus are added in a manner similar to controls and appear in the Toolbox as simply
another control. To add a menu, you drag the MainMenu control from the Toolbox
onto the form. Once the menu is enabled on the form, the Forms Designer lets you
add submenus and menu items by simply typing them in. Each menu item has an event
handler that can be hooked up in the coding phase of development. And, as with controls,
all implementation code for the menus and menu items is created automatically for
you as you visually create the menu. See "Creating Menus for Forms" in Chapter 2,
"Designing Forms," for more information on adding menus to a form.

Adding Code
The Forms Designer helps you to create your initial form class and even provides much
of the skeleton code for things like event handlers. However, at some point you need to
actually write code to make your application do what you want it to.

Event handler methods are called when an event is triggered from a user-interface element
on the form, such as a mouse click on a control. The Forms Designer creates skeleton code
for these, so it's mostly a matter of filling in the code you want run when the event occurs.
The WFC component model employs a new delegate keyword in the Visual J++ compiler

Programmcr's Guidc 155

Part 2 Programming with Visual J++

that is the basis of all event handling. While delegates are transparent when using the
Forms Designer to hook up handlers for events, they can be used directly for more
advanced scenarios, such as sourcing your own events. Since they are essentially the
same as a function pointer in other languages, they are useful in a number of ways.

In addition to controls and event handlers, there are many other parts of the WFC library
that you will find useful.

• Graphics support. Several classes in the com.ms.wfc.ui package, including the
Graphics class, provide support for accessing Windows graphical services.

• Dynamic HTML support. The com.ms. wfc.html package provides an extensive set
of classes that provide access to the DHTML object model implemented by Internet
Explorer (versions 4.0 and later).

• Data binding support. WFC is designed to use the ActiveX Data Objects (ADO)
components to support both simple and complex data binding. Using the DataBinder
component, you can bind a field from a recordset to the property of any WFC
component. WFC also provides other complex-bound components that interact
directly with a recordset.

• Localization support. WFC provides support for localizing your code much easier
by letting you store your resource elements, such as strings, fonts, and bitmaps, in
a resource file matching a specific international locale. This simplifies the job of
translating lIser interfaces for multiple languages.

• Direct Win32 API support. The J/Direct technology provided with Visual J++
enables you to call any dynamic-link library (DLL) from your Java code. WFC
is built upon a layer of JlDirect caJ1s to Win32 libraries (implemented in the
com.ms.wfc.Win32 and com.ms.wfc.OLE32 packages). Consequently, if you are
comfortable with standard Windows programming and want to access those libraries
directly, WFC provides the underlying clements (such as device contexts and window
handles) to give you ultimate control. While this may be desirable for some specialized
applications, most programmers will find the basic services of WFC sufficient.

A Sample Walkthrough
This section contains a brief overview of a simple Visual J++ application called
MyNotepad, which is based on the Windows Notepad application. MyNotepad is a Text
editor with a File menu containing New, Open, Save, Save As, and Exit menu items.
It covers the most primitive functions of an editor, allowing the user to open a file, edit it,
and save it to the same file or to a different file.

Note that this application is similar to the JPad application generated using the Visual J++
Application Wizard. However, MyNotepad was not constructed using the Application
Wizard; it was written specifically to demonstrate a few basic concepts as clearly as
possible. After walking through MyNotepad, the code generated by the Application
Wizard should be much easier to understand, since it uses most of the same principles.

156 Programmer's Guide

Chapter 11 Introduction to WFC Programming

,~"~~ Untitled: -' Ml'Notepad ' !Iii) 13
file Help

This is actually a Java app!

MyNotepad is essentially a single form (MyNotepad.java) with an edit control and a menu.
A second form (NewDialog.java) represents the modal dialog box that prompts the user to
save when opening a new file or closing the current file. You can find a complete listing
of the code for both these files at the end of this topic.

This application was designed and coded using the Visual J++ Forms Designer and Text
editor. Much of the code was automatically generated by the designer. This walkthrough
points out what the Forms Designer does for you, the code automatically generated by
the designer to create this application, and a few basic concepts for programming a
WFC application. Specifically, it describes:

• U sing the Forms Designer to create the applications forms

• How to start and stop an application

• The anatomy of a Visual J++ Form template

• How to handle events

• How to open a modal dialog box and retrieve user results

• How to use OpenFileDialog and SaveFileDialog classes to work with files

• How to use the File stream class for file input/output (I/O)

The Sample Walkthrough ends with:

• Sample Walkthrough Summary

• Code Listings

Programmcr's Guidc 157

Part 2 Programming with Visual J++

Creating the Application Using Visual J ++
This section walks through the steps required to create the MyNotepad application in
Visual J++. It's helpful to look at the steps in the design environment before jumping
into the code generated by the designer for those steps.

1. Create the main form.

To create the main form, use the New Project dialog box that appears when you first
open Visual J++ or select New Project from the File menu. Select the Windows
Application icon, type in the name of your application form (MyNotepad in this case),
and choose Open, and Visual J++ creates a project with that name.

The project contains a form called Forml.java by default, which will be renamed to
MyNotepad.java in a later step.
I~----~--------"-~-------"----------~'"~'----'-'--"-----.---

New Proiect ," 13

!:,t'N~~;;;'1 ~€~~~i.R~::H:~;~~~HD:::,; ,.
t ..:

1'1;:
>ii~ :
iJ;:;;

!ji Application
Wizard

I:;
-'-~;','~~"'~-... -.. ~'-' . ' " .. ' .. ---~,-~ .. c,---,~~,..,-,-,-.,-"""".I"

I Creates an application which uses the Win32 lIser.i~te~~~~~~~~:,H~;ts controls

IMyNot~pad

C:\My DocumentsWisual Studio Projects\MyNotepad\MyNotepad

, ~ ,~.::;.::.~:

S. our6~I:::ontfoL., CancelA

158 Programmer's Guide

Chapter 11 Introduction to WFC Programming

2. Add controls and menus to the form.

The Visual J++ Forms Designer makes it easy to layout the form. To open the form in
design mode, select Form1.java in the Project Explorer and then choose Designer from
the View menu (or choose View Designer from the shortcut menu). With the form
displayed, you can add controls from the toolbox. To access the WFC controls in the
toolbox, click on the Toolbox tab or choose Toolbox from the View menu, and click
the WFC Controls button in the toolbox to display those controls.

For this sample, an edit control was added to the form from the toolbox.

Adding a menu is just as easy: drag the MainMenu control from the toolbox onto the
form and place it anywhere; then begin typing in the first box and continue adding
menu items in the boxes below or to the right.

~~~ Form1·iava [Form]& IIIi1 £I 

Note that you can create an accelerator key on the menu by entering an ampersand (&) 
before the desired character. This becomes underlined on the menu. 

3. Set properties on the form and controls. 

To set properties, use the Properties window. In this case, most properties were left 
with default values for the sake of simplicity. The following properties on the edit 
control were changed: the multiline property was set to true, the doc property to was 
set to Fill, the scrollBars property was set to Vertical, and the font name property was 
set to Fixedsys to better emulate Notepad. There may be other properties you'll want 
to set as well on the form and controls. 

Programmer's Guide 159 



Part 2 Programming with Visual J++ 

4. 

You'll probably want to rename some of the components to make more sense 
programmatically. Renaming is done by selecting the form or control and setting the 
name property. In the case of MyNotepad, the following name changes were made: 

Default Name New Name 

Edit! EditBox 

MainMenul Menu 

MenuIteml FileMenu 

MenuItem2 FileMenuNew 

MenuItem3 FileMenuOpen 

MenuItem4 FileMenuSave 

MenuItem5 FileMenuSaveAs 

MenuItem6 FileMenuExit 

MenuItem7 HelpMenu 

MenuItem8 HelpMenuAbout 

Change the name of Form I.java. 

You may want the main form to have a different name than Form1.java. To do this, 
select Form I.java in the Project Explorer, right-click and choose Rename from the 
shortcut menu, and type the new name (in this case, MyNotepad.java). 

If you do change the name, remember that you must change all occurrences of Form I 
in the source code. To do this, first close the Forms Designer. Then open the source by 
choosing View Code from the shortcut menu. Choose Find and Replace from the Edit 
menu, and replace all instances of Form I with the new name (for example, replace 
FormI with MyNotepad). 

5. Create a dialog box. 

The NewDiaIog dialog box is just another form in the project. To create additional 
forms, choose Add Form from the Project menu, select Form in the Add Item dialog 
box, type the name of the new form (NewDialog.java, in this case) and click Open. 

In this case, three buttons were added and named YesButton, NoButton, and 
CancelButton, with appropriate labels (&Yes, &No, and &Cancel). The button control 
has a dialogResult property, which is useful when the buttons are used on a modal 
dialog box. For example, if the YesButton control's dialogResult property is set to Yes 
and the user clicks this button, the dialog box closes and returns DialogResults.Yes. 
In this case, the dialogResult properties were set as follows: 

160 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

Control 

YesButton 

NoButton 

CancelButton 

dialog Result Property 

Yes 

No 

Cancel 

One note of interest here is that the Form class has an acceptButton property that 
determines which button is clicked when the user presses ENTER. In this case the 
acceptButton property was set to the YesButton control. The Form class also has 
a cancelButton property that determines which button to click when the ESC key 
is pressed; this was set to the CancelButton control. 

Likewise, the accelerator (&) characters in the button labels were used to map a 
specific key to each button (for example, because the label for the YesButton button 
is "& Yes," pressing Y clicks that button). 

Two additional label controls were then added to display the message text of the 
dialog box. Finally, the PictureBox control was added to the form and that control's 
image property was set to a bitmap containing an exclamation graphic. 

. .. .. ~ - ~ .. ' .. .,. . .. . 

Because an image was added to the form, Visual 1++ automatically created a resource 
file (called NewDialog.resources) and serialized the image to this file when the form 
was saved. The resource file provides a mechanism for localizing the form to different 
languages, although in this case it is mostly used for packaging. You can also set the 
localizable property of a form to true to cause a resource file to be added to your 
project, in which case all resources, including strings are added to the resource file. 

Programmer's Guide 161 



Part 2 Programming with Visual J++ 

Starting and Stopping an Application 
The com.ms. wfc.app package includes the static Application class, which takes care of all 
the Win32 window processing, such as registration, instantiation, handling the message 
loop, and so on. The main application window is created by calling the Application.run 
method and passing it your Form-derived object that makes up the visual aspect of the 
window. This call occurs in the mainO method in the Form-based template class generated 
by Visual J++. The following code was generated for the MyNotepad application: 

public static void main(String args[]) 
{ 

Application.run(new MyNotepad(»; 

By default, the basic application created by a Visual J++ template is closed using the 
Window's exit (X) button in the top-right comer of the application. However, you can 
programmatically quit the application anywhere in the code by calling the Application.exit 
method. For example, this application is closed when Exit on the File menu is clicked: 

private void FileMenuExit_click(Object sender. Event e) 
{ 

II Call the new file handler to invoke NewDialog 
II to ask if user wants to save current data 
this.FileMenuNew_click(sender. e); 
Application.exit(); 

Having described the code that is invoked when an application is run, it is worth 
mentioning how a user runs your application. Visual J++ has rich deployment features, 
one of which is to create a Windows executable (.exe) file enabling users to run your WFC 
applications in a similar manner to other Windows application, assuming the WFC classes 
are installed on the user's computer. WFC classes are included with the latest Virtual 
Machine for Java which can be redistributed. 

Anatomy of a Visual J++ Form Template 
A basic WFC form is a public class extending the Form class with a default constructor 
and an initForm method. When the Form class is instantiated, the class constructor calls 
the initForm method, which is where the Forms Designer puts all the code used to initialize 
the form and control properties. Other code specific to your application follows the call to 
initForm in the constructor. In the MyNotepad application, the title for the application is 
set here (although it could have just as well been set in the form's Properties window). 
The constructor for the MyNotepad application is: 

162 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

public MyNotepad() 
{ 

II Required for Visual J++ Form Designer support 
initForm(); 
this.setBounds(100, 100, 300, 300): 
this.setText("Untitled - MyNotepad"); 

The Visual 1++ Forms Designer adds declarations for any added controls in the main body 
of the class just before the initForm method. For example, here are the declarations for the 
objects that make up the MyNotepad.java form: 

1** 
* NOTE: The following code is required by the Visual J++ Forms 
* Designer. It can be modified using the Form editor. Do not 
* modify it using the Text editor. 
*1 

Container components = new Container(); 
MainMenu Menu = new MainMenu(); 
MenuItem FileMenu = new MenuItem(); 
MenuItem FileMenuNew = new MenuItem(); 
MenuItem FileMenuOpen = new MenuItem(); 
MenuItem FileMenuSave = new MenuItem(); 
MenuItem FileMenuSaveAs = new MenuItem(); 
MenuItem FileMenuExit = new MenuItem(); 
MenuItem HelpMenu = new MenuItem(); 
MenuItem HelpMenuAbout = new MenuItem(); 
Edit editbox - new Edit(); 

private void initForm() 
{ 

The Visual J++ Forms Designer creates this declaration code as well as the code in the 
initForm method that sets properties of the form and the controls placed on the form. 
The infrastructure for handling events is also tightly integrated with the Forms Designer, 
which can generate event handler mappings in the initForm method. 

The first two statements in the initForm method demonstrate how the Forms Designer sets 
properties on an object (in this case setting the menu item Text property to "&New") and 
uses the object's addOnClick method to establish a click event handler for the object. 

private void initForm() 
{ 

Fil eMenuNew. setText( "&New"); 
FileMenuNew.addOnClick(new EventHandler(this.FileMenuNew_click»; 

Programmer's Guide 163 



Part 2 Programming with Visual J++ 

Handling Events 
Most of the code in the MyNotepad application occurs in the event handler methods that 
are called when menu items are clicked. The Forms Designer makes it easy to create the 
skeleton event handlers for events generated by controls on the form. For example, to 
add a handler method for menu click events, you just double-click the menu item on the 
form. (While double-clicking directly on a button or a menu item produces the click event 
handlers, you can just as easily create hander skeleton code for other events by using the 
Events tab in the Properties window). 

The Forms Designer then adds a skeleton event handler method, in which you can add 
code, to your form's class, and inserts a MenuItem.addOnClick call for the appropriate 
MenuItem class in initForm. 

For example, when you click a menu item named FileMenuNew, the following line 
is added to initForm and a method called FileMenuNew_click is added to your class: 

FileMenuNew.addOnClick(new EventHandler(this.FileMenuNew_click»; 

The MenuItem.addOnClick method takes an EventHandler object. The EventHandler 
object is created with a reference to the method to call when that menu item is clicked. 
Essentially, the Menultem object monitors mouse clicks and calls each event handler 
added to it, lIsing the delegate, when the event occurs. 

All event handler objects arc delegates; the difference between them is the event object 
they pass to the handler. An EventHandler delegate passes an Event object, which contains 
information ahout the event. But a KeyEventHandler, for example, passes a KeyEvent 
object that extends Event for keydown and keyup events. (KeyEvent contains an extra field 
specifying the UNICODE character and whether it was combined with a CTRL, SHIFT, 
or ALT key.) 

Most WFC programmers need to know little about delegates because event handlers 
already exist in the WFC packages for the events they care about and the code to add 
them is generated by the Forms Designer for the most part. 

The f~llowing is the event handler in the MyNotepad application that handles the selection 
of this particular menu item: 

private void FileMenuNew_click(Object sender, Event e) 
{ 

II If edit control contains text, check if it should be saved 
if (editbox.getText().length() != 0) { 

II Open NewDialog class as a modal dialog 
int result - new NewDialog().showDialog(this); 
II Retrieve result 
II If Yes button was clicked open Save As dialog box 
if (result -= DialogResult.YES) 

this.FileMenuSaveAs_click(sender, e); 

164 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

} 

II If No button was clicked clear edit control and set title 
else if (result ~- DialogResult.NO) { 

editbox.setText("") ; 
this.setText("Untitled - MyNotepad"); 

Of course, the Forms Designer creates just the skeleton event handler. The code that 
opens the custom modal dialog box was added manually. 

Implementing a Modal Dialog Box 
In the MyNotepad application, when a user clicks New on the File menu, the code in this 
event handler determines if there is text in the edit control. If so, it opens a modal dialog 
box that displays a message asking the user if they want to save the text. If the user clicks 
the Yes button, the MyNotepad.FileMenuSaveAs_click method is called, which allows 
the user to choose a file and save the current text. If the user clicks No, the edit control is 
cleared, and the title displayed on the main form becomes "Untitled - MyNotepad." 

In the FileMenuNew_click method, the invocation of this dialog box and retrieval of the 
dialog result is done in one line as follows: 

int result = new NewDialog().showDialog(this); 

While the modal dialog box is open, the dialog result value can be set from within the 
dialog form. The DialogResult class contains integer constants used for this purpose, but· 
any integer can be returned. The button's dialogResult properties were used in this case, 
which accomplishes the same purpose of setting the DialogResult value. 

As an example, clicking the yesButton control sets DialogResult.Yes. This result is then 
returned from the show Dialog method in the owner class when the dialog box is closed. 
The integer result returned by showDialog is then used to determine what action to take. 

The NewDialog.java form was created as a new form using the same Form template used by 
the main application form. Note the main method is not required for modal dialog boxes and 
was removed from this example (leaving it in does not cause errors, but is not considered 
good practice). Also, extraneous template comments for this method were removed. 

Using a Message Box as a Modal Dialog Box 
You can also use a message box instead of a custom modal dialog box for simple cases. 
The click event handler for the About MyNotepad menu item on the Help menu uses a 
MessageBox object as follows: 

private void HelpMenuAbout_click(Object sender, Event e) 
{ 

MessageBox.show("Version: Visual J++ 6.0", "MyNotepad"); 
} 

Pmgrammcr's Guidc 165 



Part 2 Programming with Visual J++ 

Implementing File Dialog Boxes and File 110 
The remaining code of interest in this application has to do with file I/O and using File 
Open and File Save dialog boxes. It demonstrates how the WFC classes simplify the job 
of locating, opening, reading from, and writing to files. The following is a brief summary 
of the WFC classes used for doing this. 

In the WFC class hierarchy, both the com.ms.wfc.uLOpenFileDialog and 
com.ms.wfc.ui.SaveFileDialog classes extend com.ms.wfc.ui.FileDialog. FileDialog extends 
CommonDialog, which is a wrapper for the Win32 common dialog API. All common dialogs 
are set up with properties such as setTitle and setFilter, and are run by calling the showDialog 
method. These dialog boxes enable users to choose a file name for opening or saving a file. 

The com.ms.wfc.io package contains stream-based I/O classes. The File class, which extends 
DataStream, contains methods for file I/O. In the case of the MyNotepad application, all that 
is needed is to open a file, read all of it into the edit control (or write the contents of the edit 
control to the file), and then close the file. 

In the MyNotepad application, all I/O and file dialog code is in the event handler methods 
for the Open, Save, and Save As items on the File menu. We' lliook at just one of these, 
the Open menu event handler, because it encapsulates the common dialog and File I/O 
functionality. The code for FileMenuOpen_click is: 

private void FileMenuOpen_click(Object sender. Event e) 
{ 

II Create an Open File dialog box 
OpenFileDialog ofd = new OpenFileDialog(): 
II Set up filters and options 
ofd.setFilter("Text Docs (*.txt)I*.txtIAll Files (*.*)1*.*"): 
ofd.setDefaultExt("txt"): 
II Run the Open File dialog box 
int OK - ofd.showDialog(): 
II Check result of dialog box after it closes 
if (OK -- DialogResult.OK) { 

II Retrieve the filename entered 
fileName = ofd.getFileName(): 
II Open a File stream on that filename 
currentDoc = File.open(fileName): 
II Retrieve the length of the file 
int ilength = (int)currentDoc.getLength(): 
II Read in ANSI characters to edit buffer 
editbox.setText(currentDoc.readStringCharsAnsi(ilength»: 
II Close the file handle 
currentDoc.close(): 
fileOpen=true: 
II Set the application's caption 
this.setText(File.getName(fileName) + " - MyNotepad"): 

166 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

When a user clicks Open on the File menu, the FileMenuOpen_click event handler method 
is called. The first three lines of code in this method create an OpenFileDialog object and 
set the filters and extensions used by the dialog box. While these lines are manually coded 
here, you can do the same thing using the Forms Designer by adding an OpenFileDialog 
object to the form and setting its properties (the initialization code is then placed in the 
initForm method). 

Finally, the OpenFileDialog.showDialog method is called to open the dialog box. When 
the dialog box closes, this method returns an integer equivalent to DialogResult.OK if the 
user clicks the OK button, and DialogResult.Cancel if the user clicks the Cancel button. 
If OK was clicked, the file name is retrieved from the OpenFileDialog object and passed 
to the File.open method, which returns a File stream opened on the file as read-write access 
to the file. File.open is a utility function that does the same thing as creating a File object 
with the following constructor: 

File(fileName. File.OPEN. FileAccess.READWRITE. FileShare.NONE); 

Sample Walkthrough Summary 
A brief tutorial such as this cannot hope to cover every concept of a useful application, 
even one as simple as the MyNotepad application. However, the concepts of event 
handling, working with dialog boxes, and simple file 110 are common to most applications, 
and have been the main focus. 

In this walkthrough we haven't touched on the code in the event handlers for the Save and 
Save As menu items. However, this code uses the same principles discussed elsewhere, 
so there should be no surprises when you look at the listings. 

It's noteworthy that besides java.lang, none of the other standard Java packages were 
used in this application. Instead, packages such as com.ms.wfc.io and com.ms.wfc.ui 
were used to access the underlying power of the Windows API. This provides immense 
performance and usability gains when you know that your target environment will be a 
Win32 operating system. 

Keep in mind the MyNotepad application was written as a demonstration vehicle. To 
keep it short and to the point, it doesn't provide much error checking or many of the 
features of Notepad or even JPad. However, with this quick tour completed you should 
be well on your way to creating your own Windows applications using Visual J++ 
andWFC. 

Programmer's Guide 167 



Part 2 Programming with Visual J++ 

Code Listings 
The following code listings are provided for the two form-based classes in the MyNotepad 
application. 

MyNotepad.java 
1******************************************************************* 
MyNotepad.java 
This sample is provided as a companion to the Introduction to WFC 
Programming topic in the Visual J++ documentation. Read the section 
titled MyNotepad Sample Walkthrough in conjunction with this sample. 

********************************************************************1 

import com.ms.wfc.app.*; 
import com.ms.wfc.core.*; 
import com.ms.wfc.ui.*; 
import com.ms.wfc.io.*; 

public class MyNotepad extends Form 
{ 

private File currentDoc; II the 1/0 file stream 
private String fileName; II the most recently-used file name 
private boolean fileOpen - false; 1/ set true after file opened 

public MyNotepad() 
{ 

} 

II Required for Visual J++ Forms Designer support 
initForm(); 
this.setBounds(100. 100. 300. 300); 
this.setText("Untitled - MyNotepad"); 

private void HelpMenuAbout_click(Object sender. Event e) 
{ 

MessageBox.show("Version: Visual J++ 6.0". "MyNotepad"); 
} 

private void FileMenuNew_click(Object sender. Event e) 
{ 

II If edit control contains text. check if it should be saved 
if (editbox.getText().length() 1= 0) { 

1/ Open NewDialog class as a modal dialog 
int result = new NewDialog().showDialog(this); 
1/ Retrieve result 

168 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

II If Yes button was clicked open Save As dialog box 
if (result == DialogResult.YES) 

this.FileMenuSaveAs_click(sender. e); 
II If No button was clicked clear edit control and set title 
else if (result == DialogResult.NO) { 

editbox.setText(""); 
this.setText("Untitled - MyNotepad"); 

private void FileMenuOpen_click(Object sender. Event e) 
{ 

II Create an Open File dialog box 
OpenFileDialog ofd = new OpenFileDialog(); 
II Set up filters and options 
ofd.setFilter("Text Docs (*.txt)I*.txtIAll Files (*.*)1*.*"); 
ofd.setDefaultExt("txt"); 
II Run the Open File dialog box 
int OK = ofd.showDialog(); 
II Check result of dialog box after it closes 
if (OK == DialogResult.OK) { 

II Retrieve the filename entered 
fileName = ofd.getFileName(); 
II Open a File stream on that filename 
currentDoc = File.open(fileName); 
II Retrieve length of file 
int ilength = (int)currentDoc.getLength(); 
II Read in ANSI characters to edit buffer 
editbox.setText(currentDoc.readStringCharsAnsi(ilength»; 
II Close the file handle 
currentDoc.close(); 
fileOpen=true; 
II Set the application's caption 
this.setText(File.getName(fileName) + " - MyNotepad"); 

private void FileMenuSave_click(Object sender. Event e) 
{ 

II If there has been a file opened or saved 
if (fil eOpen){ 

II Open the current file again 
currentDoc = File.open(fileName); 
II Write edit control contents to file 
currentDoc.writeStringCharsAnsi(editbox.getText(»; 
II Close file handle 
currentDoc.close(); 

Programmer's Guide 169 



Part 2 Programming with Visual J++ 

else 
this.FileMenuSaveAs_click(sender, e); 

} 

private void FileMenuSaveAs_click(Object sender, Event e) 
{ 

} 

SaveFileDialog sfd = new SaveFileDialog(); 
II Set the options 
sfd.setFileName (fileName); 
sfd.setTitle("Save Text File"); 
sfd.setFilter("Text Docs (*.txt)/*.txt/All Files (*.*)/*.*"); 
sfd. setDefaultExt( "txt"); 
II Run the dialog box 
int result = sfd.showDialog(); 
if (result == DialogResult.OK ) { 

} 

II Retrieve the filename entered in the dialog box 
fileName = sfd.getFileName(); 
II Open a File stream with ability to create a file if needed 
currentDoc = new File(fileName, FileMode.OPEN_OR_CREATE); 
II Write the contents of the edit control to the file 
currentDoc.writeStringCharsAnsi(editbox.getText(»; 
II Close the file handle 
currentDoc.close(); 
fileOpen = true; 
II Set the app's caption using the filename minus its path 
thi s. setText( Fil e. get Name (fi 1 eName) + " - MyNotepad"); 

private void FileMenuExit_click(Object sender, Event e) 
( 

} 

II Call the new file handler to invoke NewDialog 
II to ask if user wants to save current data 
this.FileMenuNew_click(sender, e); 
Application.exit(); 

1** 
* NOTE: The following code is required by the Visual J++ Forms 
* Designer. It can be modified using the Form editor. Do not 
* modify it using the Text editor. 
*1 

Container components = new Container(); 
MainMenu Menu = new MainMenu(); 
MenuItem FileMenu = new MenuItem(); 
MenuItem FileMenuNew = new MenuItem(); 
MenuItem FileMenuOpen = new MenuItem(); 
MenuItem FileMenuSave = new Menultem(); 

170 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

Menultem FileMenuSaveAs = new MenuItem(); 
Menultem FileMenuExit = new Menultem(); 
Menultem HelpMenu = new Menultem(); 
Menultem HelpMenuAbout = new Menultem(); 
Edit editbox = new Edit(); 

private void initForm() 
{ 

Fil eMenuNew. setText ("&New") ; 
FileMenuNew.addOnClick(new EventHandler(this.FileMenuNew_click»; 

FileMenuOpen.setText("&Open"); 
FileMenuOpen.addOnClick(new EventHandler(this.FileMenuOpen_click»; 

FileMenuSave.setText("&Save"); 
FileMenuSave.addOnClick(new EventHandler(this.FileMenuSave_click»; 

FileMenuSaveAs.setText("Save &As"); 
FileMenuSaveAs.addOnClick(new 

EventHandler(this.FileMenuSaveAs_click»; 

FileMenuExit.setText("E&xit"); 
FileMenuExit.addOnClick(new EventHandler(this.FileMenuExit_click»; 

FileMenu.setMenultems(new MenuItem[] 
FileMenuNew, 
FileMenuOpen, 
FileMenuSave, 
FileMenuSaveAs, 
FileMenuExit}); 

FileMenu.setText("&File"); 

HelpMenuAbout.setText("&About MyNotepad ... "); 
HelpMenuAbout.addOnClick(new 

EventHandler(this.HclpMenuAbout_click»; 

HelpMenu.setMenultems(ncw Menultem[] { 
IIclpMenuAbout}); 

HelpMenu.setText("&Help"); 

Menu.setMenultems(new Mcnultem[] 
FileMcnu, 
HelpMenu}); 

this.setText("MyNotepad"); 
this.setVisible(false); 
this.setAutoScaleBaseSize(13); 
this.setClientSize(new Point(302, 314»; 
this.setMenu(Menu); 

Programmer's Guide 171 



Part 2 Programming with Visual J++ 

} 

editbox.setDock(ControlDock.FILL); 
editbox.setFont(new Font("Fixedsys", 8.0f, 

FontSize.POINTS, FontWeight.NORMAL, false, false, false, 
CharacterSet.DEFAULT, 0»; 

editbox.setSize(new Point(302, 314»; 
editbox.setTabIndex(l); 
editbox.setText(""); 
editbox.setMultiline(true); 
editbox.setScrollBars(ScrollBars.VERTICAL); 

this.setNewControls(new Control[] 
editbox}) ; 

/** 
* The main entry point for the application. 

* 
* @param args Array of parameters passed to the application 
* via the command line. 
*/ 

public static void main(String args[]) 
{ 

Application.run(new MyNotepad(»; 

NewDialog.java 
/******************************************************************* 
NewDialog.java 
This sample is provided as a companion to the Introduction to WFC 
Programming topic in the Visual J++ documentation. Read the section 
titled MyNotepad Sample Walkthrough in conjunction with this sample. 

This form represents a simple modal dialog box. 

********************************************************************/ 

import com.ms.wfc.app.*; 
import com.ms.wfc.core.*; 
import com.ms.wfc.ui .*; 

public class NewDialog extends Form 
{ 

172 Programmer's Guide 



Chapter 11 Introduction to WFC Programming 

public NewDialog() 
{ 

1** 

II Required for Visual J++ Forms Designer support 
initForm(); 

* NOTE: The following code is required by the Visual J++ Forms 
* Designer. It can be modified using the Form editor. Do not 
* modify it using the Text editor. 
*1 

Container components ~ new Container(); 
Label labell = new Label(); 
Label 1 abe12 = new Label () ; 
Button yesButton = new Button(); 
Button noButton = new Button(); 
Button cancel Button = new Button(); 
PictureBox pictureBoxl = new PictureBox(); 

private void initForm() 
{ 

II NOTE: This form is storing resource information in an 
II external file. Do not modify the string parameter to any 
II resources.getObject() function call. For example, do not 
/I modify "fool_location" in the following line of code 
II even if the name of the Foo object changes: 
II foo1.setLocation«Point)resources.getObject("fool_location"»; 

IResourceManager resources = new 
ResourceManager(this, "NewDialog"); 

labell.setLocation(new Point(90, 20»; 
labell.setSize(new Point(210, 20»; 
labell.setTabIndex(0); 
labell.setTabStop(false); 
labell.setText("The text in the file may have changed."); 

labe12.setLocation(new Point(90, 40»; 
labe12.setSize(new Point(190, 20»; 
labe12.setTabIndex(I); 
labe12.setTabStop(false); 
labe12.setText("Do you want to save the changes?"); 

yesButton.setLocation(new Point(20, 90»; 
yesButton.setSize(new Point(80, 30»; 
yesButton.setTablndex(2); 
yesButton.setText("&Yes"); 
yesButton.setDialogResult(DialogResult.YES); 

Programmer's Guide 173 



Part 2 Programming with Visual J++ 

} 

noButton.setLocation(new Point(110. 90»; 
noButton.setSize(new Point(80. 30»; 
noButton.setTabIndex(3); 
noButton.setText("&No"); 
noButton.setDialogResult(DialogResult.NO); 

cancelButton.setLocation(new Point(200. 90»; 
cancelButton.setSize(new Point(80. 30»; 
cancelButton.setTabIndex(4); 
cancelButton.setText("&Cancel"); 
cancelButton.setDialogResult(DialogResult.CANCEL); 

this.setText("MyNotepad"); 
this.setAcceptButton(yesButton); 
this.setAutoScaleBaseSize(13); 
this.setCancelButton(cancelButton); 
this.setClientSize(new Point(297. 136»; 

pictureBox1.setLocation(new Point(20. 20»; 
pictureBox1.setSize(new Point(50. 50»; 
pictureBox1.setTabIndex(5); 
pictureBox1.setTabStop(false); 
pictureBox1.setText(""); 

pictureBox1.setImage«Bitmap)resources.getObject 
("pictureBox1_image"»: 

this.setNewControls(new Control[] { 
pictureBox1. 
cancel Button. 
noButton. 
yesButton. 
labe12. 
labell}); 

174 Programmer's Guide 



C HAP T E R 1 2 

WFC Programming Concepts 

Windows Foundation Classes for Java (WFC) provides a framework of Java packages that 
support components targeted for the Windows operating system and the Dynamic HTML 
object model. WFC is tightly integrated with the Visual J++ development environment 
and provides a full set of Windows controls written in Java. Building a Java application 
for Windows is made much easier by this tight integration and the support of features 
such as IntelliSense, the Forms Designer, the Application Wizard, and the Object Browser. 
While these Visual J++ features put you well on your way to creating applications, you'll 
probably want to understand the structure and logic behind the packages and classes that 
make up WFC. 

The purpose of this section is to provide a conceptual framework for the WFC packages 
and classes and to explain some of the fundamental WFC models. Many of the packages 
exist as infrastructure for the component model and can be ignored by developers focusing 
on using the WFC controls. Other packages are most easily accessed from the Visual J++ 
Forms Designer. When you start exploring the WFC library, you'll want to know which 
packages and classes are important for your particular application. 

The following subjects are covered in this chapter: 

• "WFC Packages" provides a high-level overview of the main packages that make 
up WFC. 

• "Working with WFC Visual Components" describes the controls, forms, and graphical 
objects in WFC, which include the following: 

• Windows Visual Components 

• Dynamic HTML Visual Components 

o "Handling Events in WFC" describes the use of delegates for handling events. 

• "Localizing Your Application" describes the Visual J++ and WFC support and 
methodology for localizing your project in various languages. 

• "Using WFC Application Services" describes some of the core application features 
and includes the following sUbtopics: 

• Starting and Quitting an Application 

• Handling Application Events 

• Accessing System Information 

• Performing Clipboard and Drag-and-Drop Operations 

Programmer's Guide 175 



Part 2 Programming with Visual J++ 

• "Using Java Threads with WFC" describes the threading model for WFC and includes 
the following subtopics: 

• Mixing Java and Win32 Threading Models 

• Creating and Exiting a Thread 

• U sing Thread Storage 

• Working with Thread Exceptions 

WFC Packages 
The basic foundation blocks of WFC are Windows and Dynamic HTML. WFC is rooted 
firmly in the Win32 Windows programming model, enabling you to use Java to write 
Windows-based applications that take advantage of Windows user-interface controls, 
events, and system services. WFC is also rooted in the Dynamic HTML object model, 
which enables you to create both client and server HTML pages that use the power of 
Dynamic HTML directly from Java. 

At the heart of these technologies are native dynamic-link libraries (DLLs) that provide 
the core API of the WFC infrastructure. These libraries are made available to the Java 
language thanks to two different technologies: the JActiveX tool and JlDirect. If the DLL 
represents a COM/ActiveX component, JActiveX creates wrapper classes that map the 
COM objects to Java objects. If the DLL is not COM-based, JlDirect is used to call 
directly into the DLL and to marshal the data types between Java and the native language 
of the DLL (such as C or C++). Both these technologies take advantage of the built-in 
support and synergy of the JVC compiler and the Microsoft Virtual Machine for Java. 

This is mostly important to know because several WFC packages are composed entirely 
of either COM wrapper classes (produced by JActiveX) or J/Direct classes. These classes 
have methods that map directly to the underlying API; they are not documented in the 
WFC Reference because they are not typically called directly. However, they are discussed 
as support classes for other packages. 

Not including the native API support packages, there are seven main packages in WFC. 

Package 

com.ms. wfc.app 

com.ms.wfc.core 

176 Programmer's Guide 

Description 

Base classes that encapsulate Windows application operations. The Visual J++ form 
component template uses the services of this class. In addition to the basic Windows 
message handling structure, there is support for Windows features such as the 
Clipboard, the registry, threads, window handles, system information, and so on. 

Base classes for the component model. This package includes support 
for containers, events, exceptions, properties, and the infrastructure for 
interoperating with features in Visual J++ such as the Forms Designer. 



(continued) 

Package 

com.ms. wfc.data 

com.ms. wfc.html 

com.ms. wfc.io 

com.ms.wfc.ui 

com.ms. wfc. util 

Chapter 12 WFC Programming Concepts 

Description 

Active Data Objects (ADO) Java classes that enable data access and data binding. 
This package also includes com.ms.wfc.data.ui, the package that provides the base 
classes for the data-bound controls in WFC. 

Classes used to implement Dynamic HTML in Java. These classes provide both 
client- and server-side support. 

Classes used to access data streams, implementing a complete package for reading 
and writing serial streams, for file access, and for mapping between differing types 
of data streams. 

Core classes for the controls that ship with WFC. These classes also provide access 
to the Windows Graphics API. 

Utility classes for various forms of sorting, implementing hash tables, and so on. 

The following are the core native API support classes in WFC. 

Package Description 

com.ms.wfc.ax Provides Java wrapper classes for the ActiveX interfaces. 

com.ms.wfc.html.om Provides Java wrapper classes for the Dynamic HTML object model. 

com.ms.wfc.ole32 Provides Java wrapper classes for OLE services. 

com.ms.wfc.win32 Provides Java wrapper classes for Win32 API. 

Working with the Visual 
Components of WFC 

While there arc some differences in the WFC visual components of Win32 and Dynamic 
HTML (DHTML) applications t there arc many more similarities. These similarities enable 
the WFC component model to easily serve both types of applications. For example t both 
the Win32 and DHTML 1ll00lels include basic control types, such as edit boxes, check 
boxes, buttons, radio buttons t and combo boxes. For the most commonly used controls in 
Win32, there is usually a DHTML control with the same name prefaced by the letters "Dh" 
(for example, the com.ms.wfc.uLEdit class has a corresponding com.ms.wfc.htmI.DhEdit 
class). Fonts, color constants t and most event types are also shared between the Win32 and 
DHTML models. 

Of course, there are also components that are specific to each model, such as tables for 
DHTML or list view controls for Win32 components. 

Programmcr's Guidc 177 



Part 2 Programming with Visual J++ 

Probably the most notable difference between the WFC Win32 and DHTML components 
is that the DHTML components are not available from the Forms Designer. This means 
you must create, add, and modify DHTML elements in the code editor; however, the 
underlying Java code looks very similar in both models. 

Windows Visual Components 
The WFC framework is rooted in its visual components: WFC is integrated with 
Visual J++, a visual development tool, and sits on top of the Win32 API for the 
Windows operating system. The main package in WFC that supports the visible 
components is com.ms.wfc.ui and the base class for most visual elements in WFC 
is com.ms.wfc.ui.Control. Most of the WFC controls extend this class, including 
the Form class, which is the visual container for controls. 

The Control Class 
The Control class contains all the essential base properties, methods, and logic 
for manipulating a Win32 window. These methods can be categorized as follows: 

• Methods for setting and retrieving the control's properties, such as the size of the 
display and client rectangles, the foreground color, background color, associated 
brush, cursor, text, font, position, and so on. These methods have names that start 
with set or get (for example, setBrush and getBrush). 

• Event methods. For every event that a control generates, there are three methods 
implemented in the control. For example, for the move event, there is an onMove 
method, which triggers the event, an addOnMove method, which assigns an event 
handler to the move event, and a removeOnMove method, which removes the event 
handler. The Control object handles most basic control events. 

• Methods dealing with parent/child relationships of controls. For example, the add 
method adds a child control, and assign Parent and getParent assign and retrieve the 
parent control. There are also methods for handling arrays of child controls. 

• Methods affecting the layout, z-order, painting, and input foclls of the control, such 
as bringToFront, sendToBack, updateZOrder, perforrnLayout, focus, show, hide, 
update, invalidate, createGraphics, and createWindowGraphics. 

• Low-level event-processing methods. At the Win32 level, windows receive 
messages from the system. In the Control class, every input message to a control has 
a protected process method (for example, processCmdKey, processCmdKeyEvent, 
or processDialogKey). These methods are important only if a control extending this 
base class wants to override them to do special processing. 

178 Programmettis Guide 



Chapter 12 WFC Programming Concepts 

• Methods relating to window handles, messages, and thread invocation. These 
are available for programmers experienced with the Win32 programming model. 
For example, createHandle, destroyHandle, getRecreatingHandle, fromHandle, 
fromChildHandle all deal with window handles, and sendMessage and reflectMessage 
allow the control access to the underlying window messages. For descriptions of the 
thread invocation methods, see "Using Java Threads with WFC," later in this chapter. 

The Control class extends com.ms. wfc.core.Component class, which is the base class for 
all WFC components. 

Using Forms 
A form is the main visual element of an application or a custom dialog box associated with 
an application. The com.ms.wfc.ui.Form class serves as the foundation for forms in WFC. 

The Visual J++ Forms Designer starts with the Visual J++ form template, which 
provides a class extending com.ms.wfc.ui.Form, and helps you to set properties on the 
form and add controls to it. The Form-derived class adds a method called main, not found 
in Form. The form is run when the com.ms.wfc.app.Application.run method is called from 
main and passed a new instance of the Form-based class (this code already exists in the 
template). For more information, see "Starting and Quitting an Application" in "Using 
WFC Application Services," later in this chapter. A Form-based class used as a modal 
dialog box can be run by calling the Form.showDialog method (showDialog also runs 
modal dialog boxes that are based on the com.ms.wfc.ui.CommonDialog box class). 
A Form-based modeless custom dialog box can be opened by calling the form's show 
method, which makes the form visible. 

The Form class extends com.ms. wfc.ui.Control, so it has all the Control methods plus 
many of its own for handling its role as a container for controls and as a window. 
These include methods used to: 

• Add and remove handlers for the active, closed, closing, deactivate, inputLangChange, 
inputLangChangeRequest, MDIChildActivate, menuComplete, menuStart, and 
ownedForm events. 

• Set the form's window properties, for example, to set the fonn's initial maximized or 
visible state, start position and border style; or to determine whether the form has an 
automatic scroll bar, a control hox, or a minimize box, and whether the form's icon is 
in the taskbar. 

• Determine the relationship of menus, controls, or other fonns placed on the form, such 
as setting the main menu, arranging controls, supporting multiple document interface 
(MDI) forms, or determining whether the form receives all the control's key events. 

Prograrr.mer's Guide 179 



Part 2 Programming with Visual J++ 

• Set properties when the form is used as a modal dialog box and to run and retrieve 
results from a dialog box when the form is an application. This includes methods to 
set the Accept, Cancel, and Help buttons on a dialog box, to start a dialog box, and 
to set and retrieve the dialog result values returned by a modal dialog box. 

This list is not comprehensive but provides a general idea of what a form is. One other 
class in the com.ms.wfc.ui package extends Form, and that is the UserControl class. 
U serControl is a class for creating your own composite Form-based controls that you 
can install in the Toolbox. 

Overview of WFC Controls 
All visible WFC controls reside in the com.ms.wfc.ui package. With over 240 classes in 
this package, it can be difficult to immediately determine which classes you want to use. 
Fortunately, the classes fall into several major categories, as follows: 

• Classes that are controls in the Visual J++ Toolbox and directly extend the 
com.ms.wfc.ui.Control class or ultimately derive from the Control class. 

• Classes that are controls in the Visual J++ Toolbox and use CommonDialog as a base 
class (this includes the CommonDialog class itself). CommonDialog wraps the \Vin32 
CommonDialog API. 

• Classes that contain constant values used by controls. These classes all extend 
com. illS. wfc.core.Enum. 

• Classes that represent events and extend com.ms. wfc.core.Event or are event handler 
classes (delegates). 

• Classes that represent intrinsic Windows graphical objects such as brushes, bitmaps, 
colors, cursors, fonts, pens, palettes, icons, regions, and images. For pointers to 
detailed information on using these objects, see the next section, "Accessing Graphical 
Services." 

• Classes that, like Control, extend com.ms.wfc.core.Component but do not require 
the visual run time overhead of Control. Some examples are ColumnHeader, Menu 
(and MainMenu, ContextMenu, and MenuItem, which extend it), RebarBand, 
StatusBarPanel, ToolTip, and ImageList (and ImageListStreamer, which extends it). 

• Miscellaneous classes that wrap other Windows interfaces; these include Help, which 
wraps the Windows Help engine, HTMLControl, which wraps a browser, and 
MessageBox, which wraps the Windows message box, among others. 

The following com.ms.wfc.ui classes directly extend Control. Controls that extend these 
classes are listed in the description. 

180 Programmer's Guide 



Class 

Animation 

AxHost 

Button 

Checkbox 

ComboBox 

DateTimePicker 

Edit 

Form 

GroupBox 

Label 

ListBox 

ListView 

MDIClient 

MonthCalendar 

Panel 

PictureBox 

ProgressBar 

RadioButton 

Rebar 

Chapter 12 WFC Programming Concepts 

Description 

Encapsulates a Windows animation control, a rectangular control that 
plays an Audio-Video Interleaved (A VI) animation file. 

Wraps an ActiveX control and exposes the control as a WFC control. 

Encapsulates a Windows button control. 

Encapsulates a Windows check box control, which is a labeled box that is 
checked or unchecked to select or clear an option. 

Encapsulates the Windows combo box control. 

Encapsulates a Windows date and time picker control, which allows users 
to specify date and time information. 

Encapsulates a Windows edit control, which is a rectangular control that the 
user can enter text into. 

Represents the basic top-level window. 

Encapsulates a group box control, which is a rectangle that contains other controls. 

Encapsulates the Windows label control, which displays a string of text that 
the user cannot edit. 

Encapsulates the Windows list box control, which displays a list from which 
the user can select one or more items. ListItem is used with this class. 
The CheckedListBox control extends this class. 

Encapsulates the Windows list view control, which displays a collection of items, 
each consisting of an icon (from an image list) and a label. 

Represents a window that contains MDI child windows. 

Encapsulates a Windows month calendar control, which provides a simple 
calendar interface from which the user can select a date. 

Represents a container you can use to parent other controls visually. 
The TabPage class extends Panel. 

Encapsulates a Windows PictureBox control used to contain bitmaps. 

Encapsulates the Windows ProgressBar control, which dynamically tracks 
the progress of an operation by moving a bar. 

Encapsulates a Windows radio button (or option button) control, which displays 
an option that can be selected or cleared. 

Encapsulates a rebar control, which contains other controls within moveable, 
resizable bands. RebarBand is used with this class. 

( Colllill11ed) 

Programmer's Guide 181 



Part 2 Programming with Visual J++ 

(continued) 

Class 

RichEdit 

ScrollBar. 

Splitter 

StatusBar 

TabBase 

ToolBar 

TrackBar 

TreeView 

UpDown 

Description 

Encapsulates a Windows RichEdit control. 

Represents the base class for scroll bar controls. HScrollBar and VScrollBar 
extend ScrollBar. 

Encapsulates the splitter control, which allows the user to resize docked controls 
at run time. 

Encapsulates the Windows status bar control. StatusBarPanel is used with this class. 

Defines the base class that contains common functionality for Tab classes controls. 
TabControl (which uses TabPage) and TabStrip (which uses TabItem) extend this class. 

Encapsulates the ToolBar custom control. ToolbarButton is used with this class. 

Encapsulates a Windows trackbar control (also known as a slider contro!), 
which contains a slider for selecting a value in a range. 

Encapsulates a Windows tree view control. TreeNode is used with this class. 

Encapsulates the up-down control (sometimes called a spinner control). 

Accessing Graphical Services 
In the WFC environment. applications perform graphical operations by using the Graphics 
object. which encapsulates the native drawing capabilities of the Windows operating 
system. This object provides flexible support for the most commonly lIsed drawing 
operations, including displaying images and icons and drawing lines, polygons, and text. 

The Graphics object performs its work by wrapping a Windows device context, a system 
data structure that defines system graphical objects, their associated attributes, and the 
graphic modes affecting output to a device. Because you can retrieve the device context 
that underlies a Graphics object, you can use the Graphics object seamlessly with native 
Win32 drawing routines. 

All WFC objects that extend the Control object support creating a Graphics object through 
the createGraphics method. In addition, all objects that extend the Image object, such as 
Bitmap, Icon, and Metafile, support the creation and retrieval of their associated Graphics 
object through the getGraphics method. 

For more information on how to use this object, see Chapter 15, "Graphical Services." 

182 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

Dynamic HTML Visual Components 
Dynamic HTML elements make up the second set of visual components in WFC. The 
controls in com.ms. wfc.html are based on the Dynamic HTML object model. The classes 
in com.ms. wfc.html are used to create new elements and also to bind to existing elements 
on an HTML page. These components can be created and manipulated on a client browser 
or on a server, which sends them to a client browser. This object model exists on several 
platforms. Therefore, it is not fundamentally rooted in Win32, although user interface 
controls tend to be similar because the standard set of buttons, list boxes, radio buttons, 
and so on, are present on both. 

Both sets of WFC controls (Win32 and Dynamic HTML) have a similar base because they 
both ultimately derive from com.ms.wfc.core.Component. Components are elements that 
can be hosted in a container and support the IComponent interface, which has methods for 
siting the component. How components and containers are hooked up is of little concern 
to most programmers using WFC; however, because elements from both com.ms.wfc.html 
and com.ms.wfc.ui are based on components, they exhibit similar characteristics. For 
example, all components are added to their parent containers using the add method. 

For a better understanding of how to use the com.ms.wfc.html package, see Chapter 14, 
"Programming Dynamic HTML in Java." 

Handling Events in WFC 
The Control base class and classes that extend it, such as buttons and edit boxes, expose 
standard Windows events such as click, keyPress, mouseMove, dragDrop, and others. You 
can work with an event in your application using delegates. You do not have to understand 
delegates in great detail to write event handlers in an application. However, understanding 
how to create and use delegates is useful if you are building controls, working with other 
applications that trigger events, OJ' arc using threads with WFC components. It is also 
interesting if you want to understand the details of the Java code created by the Forms 
Designer. This section provides some background on delegates and then addresses the 
practical aspects of handling events. 

What is a delegate? A delegate declaration defines a class that extends 
com.ms.lang.Delegate. The Jye cOl1lpiler also recognizes delegate as a keyword, 
providing a shortcut for creating a delegate-based class. A delegate instance can call 
a method on an object and pass data to that method. Most importantly, the delegate is 
isolated from the object it refers to and needs to know nothing about it. Therefore, it is 
ideal for "anonymous invocation." In other languages, this functionality is implemented 
as a function pointer. However, unlike function pointers, delegates are object-oriented, 
type-safe, and secure. 

Programmer's Guide 183 



Part 2 Programming with Visual J++ 

In WFC, delegates are most often used to bind events to handler methods, such as a click 
event on a button control to a handler method in your class. When the event occurs, the 
control invokes the delegate, passing it any event information. The delegate, in tum, calls 
the registered handler method and passes the event data. You can also use delegates to bind 
one event to more than one method (called multicasting); when the event occurs, each 
delegate in the list is called in the order in which they were added. Conversely, delegates 
from different events can be assigned the same handler method (for example, a toolbar 
button and a menu item can both call the same handler). 

To work with events in your application, you use a delegate to register for notification 
when that event occurs for a specific control. To register, call the addOn<event> method 
of a control, where <event> is the name of the event you want to handle. For example, to 
register for the click event of a button, you call the button object's addOnClick method. 

The addOn<event> method takes as a parameter an instance of a delegate, typically an 
existing WFC delegate that is associated with specific event data. In the addOn<event> 
call, the delegate instance is created with a reference to the method you want to bind 
the event to. The following example shows how you would bind the event handler 
"btnOK_Click" (in the current class) to the click event of a button called btnOK. 

Button btnOK - new Button(); 
btnOk.addOnMouseClick( new EventHandler( this.btnOK_Click »; 

For most events, you can create and pass an instance of the generic EventHandler 
delegate, which passes a generic Event object. However, some events use special event 
handler classes when they include extra, event-specific information. For example, mouse 
movement events typically include information such as the mouse cursor location. To 
get this type of information, you create and pass an instance of the MouseEventHandler 
class, which passes a MouseEvent object to the handler. Keyboard events require the 
KeyEventHandler to get information about the status of SHIff keys, and so on 
(this handler passes a KeyEvent object). 

All WFC event handler delegate classes extend com.ms.lang.Delegate. Most of them are 
in the com.ms.wfc.ui package with names that end in EventHalldlcr. All WFC events 
extend com.ms.wfc.core.Event, have names that end in Event, and can be found in the 
com.ms.wfc.ui package. 

Tip In the Forms Designer, you can use Events view in the Properties window to 
bind an event to a specific method. The Forms Designer then creates the appropriate 
addOn <event> method and the skeleton handler for you. 

When the delegate calls your handler, it passes two parameters. The first parameter is 
a reference to the object that originated the event. The second is an event object that 
can contain information about the event. A handler for the delegate from the preceding 
example might look like this: 

184 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

private void btnOK_Click(Object source, Event e) { 
if (source instanceof Button) { 

String button Name = «Button)source).getText(); 
MessageBox.show("You clicked button" + buttonName); 

If you used the generic EventHandler class to bind to your method, the Event object 
in your handler will not contain any interesting information. But if extra information is 
available for the event, you can extract it from the specific event object. The following 
is what the delegate and handler might look like for a mouse movement event. The 
MouseEvent object exposes properties that allow you to get the mouse position. 

II This is the request for notification 
Button btnTest - new Button(); 
II Note that the addOn<event> method uses the MouseEventHandler class 
btnTest.addOnMouseMove( new MouseEventHandler(this.btnTestMouseMove»; 

II This is the handler for the mouse movement event 
private void btnTestMouseMove(Object source, MouseEvent e){ 

edit1.setText( e.x + ", " + e.y); 

If you want to handle events for mUltiple controls or multiple events for the same control, 
you request a separate notification for each control/event combination. Multiple notifications 
can specify the same handler; for example, all the buttons on a toolbar might call the same 
handler for their click event. You can use the source object passed to the event handler to get 
details about which button was clicked. (Typically, you cast the object passed to the handler 
into the appropriate class to be able to invoke methods from the appropriate class.) 

The following example shows code that defines buttons for a toolbar and requests 
notification for their click events, along with the method used to handle them. 

private void initEventHandlers() { 

} 

Button button New - new Button(); 
Button buttonSave - new Button(); 
Button buttonExit - new Button(); 
II All events are routed to the same handler 
buttonNew.addOnClick( new MouseEventHandler( this.toolbarClick) ); 
buttonSave.addOnClick( new MouseEventHandler( this.toolbarClick) ); 
buttonExit.addOnClick( new MouseEventHandler( this.toolbarClick) ); 

II common event handler 
private void toolbarClick( Object source, Event e){ 

String buttonName; 
if (source instanceof Button) { 

} 

buttonName = new String«Button)source).getText(»; 
MessageBox.show("You clicked button" + buttonName); 

Programmer's Guide 185 



Part 2 Programming with Visual J++ 

Localizing Your Application 
WFC and the Visual J++ Designer provide a simplified means for developing 
multilingual applications. A WFC application can be created in several localized 
language versions where the only difference between versions is a binary resource file. 
The naming convention for each resource file indicates the languages it supports, and 
the correct resources are loaded at run time according to the user's locale setting. 

There are two parts to understanding localization concepts: design-time implementation 
and run time support. Certain properties of visual elements (forms and controls) are 
understood by Visual J++ to be localizable. At design time, Visual J++ is used to serialize 
these localizable properties to a binary resource file. For example, the text, font, and size 
of a control can change between language versions. At run time, when the application is 
loaded, the system loads the resources that correspond to the client thread after determining 
the user's locale. 

To create a localized version of your application, design the visual layout using 
Visual J++, set the form's localizable property to true, and save the form. Visual J++ 
automatically creates a binary resource file and serializes all localizable properties to it. 

When a form's localizable property is set to true, Visual J++ always saves resources to a 
single resource file with the name Form.resources, where Form is the name of the main 
form (for example, Forml.resources). Each version that you create will be saved to this 
resource file name. After creating each new version, you make a copy of this resource 
file and rename it to the appropriate language locale name using the standard Windows 
locale suffixes (for example, Formljpnjpn.resources for a Japanese version) using the 
Windows Explorer or MS-DOS commands. The first local suffix specifies the primary 
language; the second specifies the secondary language. 

Important Be sure to save your original layout with a new name before laying out 
and saving any localized versions. This will be your master .resources file. 

As an example scenario, assume you want to create American English, French, and 
Japanese versions of your application, whose main form is called Zippo.java. Also 
assume you start with the English version (although this is not necessary). First, layout 
the form in English and set the localizable property to true. When you save the form, the 
file Zippo.resources is created. Now use the Windows Explorer or MS-DOS commands to 
make a copy of Zippo.resource and rename it as Zippo_enu_enu.resources (cnu is the local 
suffix for American English, which is specified as the primary and secondary language.) 

186 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

Next, in the Visual J++ Designer, change your default language to French, and layout 
the controls with properties localized in French. When you are finished, save the form 
again, overwriting the previous version of Zippo.resources. Again, make a copy of 
Zippo.resources and rename it as Zippo_fra_fra.resources. 

To test this version, in the Regional Settings dialog box in Control Panel, select the locale: 
French (Standard), in this case. (There is no need to restart your computer; the locale will 
be changed on the local thread.) 

Using WFC Application Services 
The com.ms.wfc.app package contains many classes that provide WFC application 
services. Many of these operations belong to the Application object itself. These operations 
have mostly to do with creating threads, starting the application, handling application 
events, and so on. Because understanding Java threads is important, it is discussed in its 
own section, "Using Java Threads with WFC," later in this chapter. 

Other operations that qualify as application services pertain to those provided by the 
Win32 operating system. These include accessing the Windows registry, accessing 
Clipboard data, and retrieving system information, among other operations. 

Starting and Quitting an Application 
The Application.run method starts a WFC application. This is typically placed in the main 
method of the Form-based class that constitutes the main application form. Application.run 
has overloaded methods that take either no parameters or one parameter specifying the 
form class that represents the main window of the application. For example, the following 
is a typical form of this call: 

public static void main(String args[]) 
{ 

Application.run(new MyMainWindow()); 

If a form is passed to the run methud, the form's visible property is automatically set to 
true, and an onClosed event handler is added to the form. The onClosed event handler 
calls the Application.exitThread methud when the form is closed. If no form is passed, 
the application runs until Application.cxit is called, shutting down all threads and windows 
on the application, or until cxitThrcud is called, shutting down just the application's current 
thread. 

Programmcr's Guidc 187 



Part 2 Programming with Visual J++ 

Handling Application Events 
You use the Application object to assign event handlers for five different events that occur 
in the context of the application: applicationExit, idle, settingChange, systemShutdown, 
and threadException. The following addOn methods can be called to define event handlers 
for these events. 

Application Method Description 

addOnApplicationExit Specifies a handler that is called when the application quits. You can clean up 
application resources here that will not be released by garbage collection. (To 
force the application not to quit, specify a handler for the form's closing event.) 

addOnldle Specifies a handler that is called when the application's message queue is idle, 
for example, to perform background operations or application cleanup. 

addOnSettingChange Specifies a handler that is called when the user changes window settings. 

addOnSystemShutdown Specifies a handler that is called immediately before a system shutdown initiated 
by a user. This provides an opportunity to save data. 

addOnThreadException Specifics a handler that is called when an untrapped Java exception has been 
thrown, allowing the application to gracefully handle the exception. This event 
handler takes a com.ms.wfc.app.ThreadExceptionEvent object, which has one 
field that represents the exception thrown. 

All these "add On" methods have reciprocal "removeOn" methods to remove the event 
handler. 

Accessing System Information 
The Win32 system contains a large amollnt of information that is accessible to a WFC 
application or component. Most of this access is through classes in the com.ms.wfc.app 
package. Much of this information is stored in the Windows registry and accessed through 
the RegistryKey and Registry classes. Other system information, sllch as Windows 
display element sizes, operating system settings, network availability, and the hardware 
capabilities, are accessed using static methods in the com.ms.wfc.app.SystemInformation 
class. System time is available using the com.ms.wfc.app.Time class. 

This section provides an overview of how a WFC application can access this system 
information. 

188 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

Windows Registry Information 
The RegistryKey class in the com.ms.wfc.app package contains methods to access the 
Windows system registry. Use the methods in this class to create and delete subkeys, 
to get the count and names of subkeys for the current key, and to retrieve, set, and delete 
values assigned to subkeys. 

The com.ms.wfc.app.Registry class contains fields holding RegistryKey objects that 
represent the root keys of the registry (those starting with HKEY _). (Root RegistryKey 
objects can also be instantiated using the getBaseKey method.) Methods can be called on 
any RegistryKey object to enumerate and manipulate keys and key values in the subkey 
tree below the root object. For example, the following code obtains an array of subKey 
names under the HKEY_CURRENT_USER key and the number of names in that array: 

int subKeyCount; 
String[] subKeyNames; 
subKeyNames = Registry.CURRENT_USER.getSubKeyNames(); 
subKeyCount = Registry.CURRENT_USER.getSubKeyCount(); 

Similarly, any subkey can be retrieved or set given its path, and subkey value names and 
data can be retrieved or set given the value name. The following example shows retrieving 
the most recently used file names in Visual Studio and displaying them in an edit box: 

String path; II Holds the path name. 
String[] valueNames; II Holds array of MRU file names in the key. 
int valueCount; II The number of MRU file names in valueNames. 
path = new St ri ng ("Softwa re \\Mi cros oft \ \ Vi sua 1 Studi 0 \\ 6.0 \ \ Fil eMRU Lis t") ; 
RegistryKey subKey = registry.CURRENT_USER.getSubKey( path ); 
II Get the file names and the number of file names. 
valueNames = subKey.getValueNames(); 
valueCount = subKey.getValueCount(); 
if (valueCount > 0) 

for (int i = 0; i < valueCount; ++i){ 
II Get the value, which is the actual file name. 
String value = new Str1ng«String)subKey.getValue(valueNames[i]»; 
/I Concatenate the name ("1", "2", etc.) with the file name value. 
String valString - new Str1ng(valueNames[i] +" "+ value); 
II Add this to the edit box. 
editl.setText(editl.getText()+ valString +"\r\n"); 

You can also create new keys, using the createSubKey method and set values in that key 
using the setValue method. 

Programmer's Guide 189 



Part 2 Programming with Visual J++ 

Locale Information 
Locale information provides details about the language and regional settings on the user's 
computer. There are many characteristics about a language or region that are stored. These 
include the character set, international telephone codes, how monetary information is 
displayed, which calendar is used, the measurement system, and so on. 

This information is typically set using the Regional Settings dialog box in Control Panel, 
but it is also available programmatically. In WFC this access is provided through the 
methods in the com.ms. wfc.app.Locale class and through the many subclasses of Locale 
that contain field constants that pertain to Locale methods. For details about setting and 
retrieving this information, see the methods in the Locale class. 

Time Information 
Another category of system information is time. The com.ms. wfc.app. Time class provides 
a Time object that has many capabilities, including capturing system time: the default 
constructor creates a Time object with the system date and time. Beyond retrieving system 
time information, the Time object is useful for doing many other things, such as comparing 
Date and Time objects, converting the time to various formats, and storing a Time object 
for later retrieval. 

Time objects, once created, cannot be altered. However, the Time class provides many 
methods for creating new objects with offset time (such as addSeconds, addMinutes, 
addHours, add Days, and addYears). Also, there are many methods for retrieving just one 
of the properties of a Time object, such as the second, minute, hour, day, and so forth. 

The Time object in WFC stores time as the number of hundred-nanosecond units since 
Jan I, lOOad. The maximum value that can be stored in a WFC Time object is Dec 31, 
10,OOOad. Converting WFC Time objects to other formats (Strings, Variants, 
SYSTEMTIME, and so on) can cause loss of accuracy, and not all formats can store 
this wide of a range. 

Do not confuse the Time class with another com.ms.wfc.app class called Timer. Timer 
is actually a control; however, it is not in the com.ms.wfc.ui package because it does not 
have a user interface. 

Performing Clipboard and 
Drag-and-Drop Operations 

The drag-and-drop feature in WFC is based on the Win32 (OLE) model, which 
implements a shortcut for copying and pasting data. When you use the Clipboard, you 
must perform several steps involving selecting the data, choosing Cut or Copy from the 
context menu, moving to the destination file, window, or application, and choosing Paste 
from the context menu. (The origin of the data is called the source and the destination is 
called the target.) 

190 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

The drag-and-drop feature removes the necessity of using the context menu. Instead, it 
uses the action of pressing the left mouse button to capture the selected data in the source 
and releasing the button in the target to drop it. Drag-and-drop operations can transfer any 
data that can be placed on the Clipboard; consequently, the data formats for drag and drop 
are the same as those of the Clipboard. Data formats specify, for example, whether the data 
is text, bitmap, HTML, .wav, and so on. The com.ms.wfc.app.DataFormats class contains 
fields pertaining to each of the Clipboard formats. These field names (such as CF _TEXT) 
come straight from the Win32 constant names. 

The data for Clipboard and drag-and-drop operations is stored in a com.ms.wfc.app class 
called DataObject, which implements the IDataObject interface. IDataObject defines 
methods for setting and retrieving the data, getting a list of data formats in the data object, 
and querying for the existence a specific data format. 

To programmatically place data on and retrieve it from the Clipboard, use the static 
methods in com.ms. wfc.app.Clipboard. Clipboard.setDataObject takes an IDataObject and 
places it on the Windows Clipboard; Clipboard.getDataObject returns an IDataObject from 
the Clipboard. The target must make sure that the data format on the Clipboard is one that 
it can use. To do this, it should query the data object with the IDataObject.getDataPresent 
method, passing it a data format that it can accept; getDataPresent returns true if this type 
of data is present. 

Implementing a Drop Source 
For any WFC control component (based on com.ms.wfc.ui.Control), the 
Control.doDragDrop method is called to start the operation. This is typically done in 
response to the user's moving the mOllse with the left button pressed. Therefore, the code 
is placed in a mouseMove event handler where the MouseEvent object is checked to see if 
the left button is down, indicating the start of a drag operation. For example, the following 
is an event handler for a list box control containing file names: 

private void listFiles_mouseMovc(Object source, MouseEvent e) 
{ 

//if the left button is down, do the drag/drop 
if(this.getMouseButtons()--MouseButton.LEFT) 
{ 

} 

String data = (String)11stFiles.getSelectedltem(); 
listFiles.doDragDrop( datil, DragDropEffect.ALL); 

The doDragDrop method takes the data to be transferred and a com.ms.wfc.ui.DragDropEffect 
object. The DragDropEffect class contains the following constants that can be combined using 
the bitwise OR for the intended mode of the drag-and-drop operation. 

Programmer's Guide 191 



Part 2 Programming with Visual J++ 

DragDropEffect Method Description 

COpy Specifies that data will not be removed from the source after the transfer. 

MOVE Specifies that data will be removed from the source after the transfer. 

SCROLL Specifies that data will be scrolled in the target after the transfer. 

ALL Specifies that data will be removed from the source after the transfer and 
scrolled into the target (essentially COpy I MOVE I SCROLL). 

NONE Specifies that no operation is performed. 

The target that receives the data in the drag-drop operation receives the dragDrop event, 
which contains this DragDropEffect object, so it can easily determine the intent of the 
operation. 

Implementing a Drop Target 
The drop part of the drag-and-drop operation is handled as an event. The Control class 
provides the event handler infrastructure for these drag-and-drop events: dragDrop, 
dragEnter, dragLeave, and dragOver. You can use the following methods to specify 
handlers for thcsc events. 

Control Method 

addOnDragDrop 

addOnDragEnter 

addOnDragLcave 

addOnDragOver 

Description 

Specifics a handler for data that is dropped into your control or window 
(when the left mouse button is released). 

Specifics a handler for drop data as the cursor first enters the window. 

Specifics a handler for drop data as the cursor leaves the window. 

Specifics a handler for drop data as the cursor is dragged across the window. 

All these "addOn" methods have reciprocal "removeOn" methods to remove the event 
handler. As with all event handlcr addOn and removeOn methods in WFC, these methods 
take a delegate (in this case, DragEventHandler) that is created with the name of your 
handler method. For example, the following line adds the txtFilc_dragDrop method as 
a dragDrop event handler: 

txtFile.addOnDragDrop(new DragEventHandler(this.txtF11e_dragDrop»; 

Of all the drag-and-drop events, the dragDrop event is the most commonly handled. 
Regardless of which of these events is handled, the code in the handler must do at least 
three things. It must first determine if it can accept the data format, and if so, it must then 
copy the data and optionally display it (or provide some user interface feedback that the 
data was dropped). 

192 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

All data and information is passed in the DragEvent event. This contains, among other 
fields, a data field and an effect field. The DragEvent.data field contains an object that 
supports IDataObject that has methods to retrieve the data and the data formats and to 
query for the existence of a specific format. 

Therefore, the handler must first call DragEvent.data.getDataPresent method with a format 
it will accept and then determine whether it holds that data type. If so, it can then call the 
DragEvent.data.getData method (passing in that data type) and retrieve the data. How the 
data is displayed is up to that control. The following example illustrates an edit control 
dragDrop event handler that displays text data dropped to it. 

private void txtFile_dragDrop(Object source. DragEvent e) 
{ 

II If text is in the object. write it into the edit control. 
if (e.data.getDataPresent(DataFormats.CF_TEXT)) 
{ 

} 

String filename=(String)e.data.getData(DataFormats.CF_TEXT); 
txtFile.setText(filename); 

Using Java Threads with WFC 
Java is a free-threaded environment. This means that any object can call any other object, 
at any time, from any thread. Special care must be taken when writing objects so that their 
methods are atomic and thread-safe. 

There are several classes that benefit from being free-threaded, and WFC has provided the 
locking code to make these objects thread-safe. These classes are as follows: 

• com.ms.wfc.core.Component 

• com.ms. wfc.core.Container 

• com.ms.wfc.ComponentManager 

• com. wfc.ui.Brush 

• com.wfc.ui.Font 

• com.wfc.ui.Pen 

On the other hand, any object that derives from com.ms.wfc.ui.Control is apartment­
threaded because of the Win32 window that is tied to each control. Additionally, most 
other objects in the com.ms.wfc.ui package are not synchronized, so they should also be 
considered to be apartment threaded. Likewise, the com.ms.wfc.io, com.ms.wfc.html, 
and com.ms.wfc.util packages are not thread-safe. 

Programmer's Guide 193 



Part 2 Programming with Visual J++ 

Mixing Java and Win32 Threading Models 
WFC accesses native Win32 constructs (such as windows) from Java objects. The Win32 
window manager is apartment-threaded, and Windows automatically marshals calls from 
one thread to another as needed. When a free-threaded object calls into an apartment­
threaded object, the call must marshal to the object's apartment. This means that the free 
thread is blocked for a period of time while the apartment thread handles the request. 
Any other calls from free-threaded objects to the apartment call will block until the 
apartment call is free. Consequently, this can lead to deadlock situations. 

So how do Java objects, which are inherently free thread work with WFC controls? Rather 
than hide when thread transitions occur, WFC makes it the programmer's responsibility 
to request the transition. The programmer can then design an algorithm in such a way as 
to prevent deadlocks. This can be done by invoking a delegate on the control's thread, 
which in turn calls the method specified in the delegate. 

To execute a given delegate on the thread that created the control's window handle and 
contains the message loop, use the Control.invoke or Control.invokeAsync methods from 
the desired control. It is important to use the control's own thread in case the control needs 
to re-create its window handle for any reason. The invoke method causes the thread to call 
the specified callback method and wait for a return. The invokeAsync method causes the 
thread to call the callback method without waiting for reply. All exceptions on the invoked 
thread are passed on to the owning control in both cases. 

You can also lise the Control.createGraphics object to perform background painting and 
animation techniques on a lIi.Graphics object. Whereas the Graphics object is apartment­
threaded, the createGraphics call is entirely free-threaded. This allows one thread to create 
a graphics object for a control in another thread. 

Creating and Exiting a Thread 
Free-threaded threads can be created using the standard Java method of implementing the 
java.lang.Runnable interface. 

This sample shows a class that implements Runnable and takes two controls (a trackbar 
and a label) as parameters to its constructor. From the thread's run method, it transitions to 
the trackbar's thread by calling the trackbar's invokeAsync method. InvokeAsync passes 
a delegate called tDelegate (an instance of com.ms.app.MethodInvoker) that specifies a 
callback method called tCallBack. Inside that method, the control's thread can safely 
manipulate the control's properties, in this case, changing the trackbar's tick style. This 
causes the trackbar's window handle to be re-created. If the thread was not transitioned 
as demonstrated here, the trackbar would be re-created on the new thread rather than on 
the thread containing the message loop; in this case, the control trackbar wouldn't receive 
any new messages and would fail to respond. 

194 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

import com.ms.wfc.app.*: 
import com.ms.wfc.core.*: 
import com.ms.wfc.ui .*: 

1** 
* Runnable is the interface you need to implement to make a new 
* java thread 
*1 

public class RunnableClass implements Runnable 
{ 

final int SLEEP = 500: 
Labell: 
TrackBar tb: 

1** 
* This is the thread for our class. 
*1 

Thread thread: 

1** 
* Makes a special delegate so WFC can call it from the control's 
* thread. 
*1 

Methodlnvoker tDelegate new Methodlnvoker(tCallback): 

1** 
* Make a new Java thread: tell it to begin running via the 
* start() method. 
*1 

publ i c Runnabl eCl ass (TrackBa r tb, Label 1) 

{ 

this.l 1: 
this.tb tb: 
thread new Thread(this, "RunnableClass thread"): 
thread.start(): 

} 

Programm.er's Guide 195 



Part 2 Programming with Visual J++ 

} 

public void run() 
{ 

} 

while (true) 
{ 

1** 
* Call the specified method from the label's thread. 
*/ 

tb.invokeAsync (tCallback): 
try 
{ 

Thread.sleep (SLEEP): 
} 

catch (InterruptedException e) 
{ 

} 

int nCount = 0: 
int nTickStyles[] = {TickStyle.BOTH, 

TickStyle.BOTTOMRIGHT, 
TickStyle.NONE, 
TickStyle.TOPLEFT}: 

1** 
* This code is executed on the trackbar's thread. 
*1 

private void tCallback() 
{ 

} 

int nlndex - nCount % (nTickStyles.length): 
1 . setText ("hell 0 from tCa 11 Back: " + nCount): 
tb.setTickStyle (nTickStyles [nlndex]): 
nCount++: 

int nValue = tb.getValue(): 
if (nValue )= tb.getMaximum(» 

tb.setValue(0): 
else 

tb.setValue (nValue + 1): 

public void stopThread() 
{ 

thread.stop(): 
} 

Exiting a thread in this case is just a matter of running the thread's stop method. In 
this example, the Form class that creates the RunnableClass object calls that object's 
stopThread method when it is disposed. The following code fragment demonstrates this. 

196 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

import RunnableClass: 

public class SimpleRunnable extends Form 
{ 

1** 
* This is the class that implements the Runnable interface. 
*1 

RunnableClass runnableClass: 

public SimpleRunnable() 
{ 

II Required for Visual J++ Forms Designer support. 
initForm(): 
runnableClass - new RunnableClass (tb. 1): 

public void dispose() 
{ 

runnableClass.stopThread(): 
super.dispose(): 
components.dispose(): 

Container components = new Container(): 
Edit eDescription = new Edit(): 
TrackBar tb = new TrackBar(): 
Labell = new Label(): 

private void initForm() 
{ 

II Code to initialize the controls omitted ... 

public static void main(String args[]) 
{ 

Application.run(new SimpleRunnable(»: 

Alternately, to create a new applicatioll thread without having to implement the Java 
Runnable interface or extend java.lang.Thread, you can use the Application.createThrcad 
method. The createThread method takes a delegate as a parameter (MethodInvoker is often 
used, but any delegate can be used). In this case, all logic can be contained in one class, 
typically the Form-based class of the application. The following example code fragment 
shows how this works. 

import com.ms.wfc.app.*: 
import com.ms.wfc.core.*: 
import com.ms.wfc.ui .*: 

Pmgmllllll~r's GuidI! 197 



Part 2 Programming with Visual J++ 

public class SimpleAppThread extends Form 
{ 

final int SLEEP = 700; 
Thread thread; 

II Specify the thread context to run a method on. 
Methodlnvoker cbDelegate = new Methodlnvoker( cbThrdCallback ); 

public SimpleAppThread() 
{ 

} 

initForm(); 
1** 
* 
* 
* 
* 
*1 

Creates a new thread and runs the methodlnvoker method 
on the new thread. The returned thread object is needed 
so we can stop the thread when this form is closed (disposed). 
Note that thread.start() is called automatically. 

thread = Application.createThread (new Methodlnvoker (this.methodlnvoker»; 

private void methodlnvoker() 
{ 

} 

whil e (true) 
{ 

II cbThrdCallback is called on the check box's thread. 
cb.invoke (cbDelegate); 
try 
{ 

Thread.sleep (SLEEP); 

catch (InterruptedException e) 
{ 

} 

int nCount = 0; 
1** 
* Thread callback that sets check box alignment property. 
* This code is to be executed on the check box's thread. 
*1 

private void cbThrdCallback() 
{ 

cb.setText ("threadCallback loop:" + nCount++); 
if (nCount % 2 == 0) 

cb.setTextAlign (LeftRightAlignment.LEFT); 
else 

cb.setTextAlign (LeftRightAlignment.RIGHT); 

198 Programmer's Guide 



Chapter 12 WFC Programming Concepts 

} 

public void dispose() 
{ 

} 

thread.stop(); 
super.dispose(); 
components.dispose(); 

private void cbSuspend_click(Object sender, Event e) 
{ 

} 

if (cbSuspend.getChecked(» 
{ 

cbSuspend.setText ("press to resume thread"); 
thread.suspend(); 

else 
{ 

cbSuspend.setText ("press to suspend thread"); 
thread.resume(); 

Container components = new Container(); 
CheckBox cbSuspend - new CheckBox(); 
CheckBox cb = new CheckBox(); 

private void initForm() 
{ 

II Code to initialize the controls here ... 

public static void main(String args[]) 
{ 

Application.run(new SimpleAppThread(»; 

Here the thread is stopped by calling the thread's stop method from the form's dispose 
method. The thread is not in a separate class, so its methods can be called directly from 
the Form-based class. 

The Application class also contains the Application.exitThread method, which closes the 
thread's message loop and shuts down all windows on the thread (note that it docs not stop 
or exit the thread itself). By way of contrast, Application.exit closes message loops on all 
threads and closes all windows. 

Programmer's Guide 199 



Part 2 Programming with Visual J++ 

U sing Thread Storage 
The WFC Application class provides support for Thread Local Storage (TLS). Each 
thread can allocate a slot of memory for storing data that is specific to the thread. Calling 
Application.allocThreadStorage returns an index to that slot. To set a value in TLS, call the 
Application.setThreadStorage with the index and a value you want to set. To retrieve that 
value, call Application.getThreadStorage. Remember to free any allocated thread storage 
with a call to ApplicationJreeThreadStorage. 

Working with Thread Exceptions 
The com.ms.wfc.app class provides a ThreadExceptionDialog class, which is 
automatically displayed whenever an unhandled exception occurs in a thread. You can 
gain control of exceptions by using the Application.addOnThreadException method to 
specify your own thread exception handler. The addOnThreadException method takes a 
ThreadExceptionEventHandler delegate, which is constructed with your event handler 
method and the ThreadExceptionEvent class. 

Typically, a thread exception event handler queries the exception field of the 
ThreadExceptionEvent object passed to it to determine the next course of action. From 
this thread exception handler, you can run the ThreadExceptionDialog and retrieve the 
dialog results in the same way as any other WFC dialog box: use the Form.showDialog 
method to launch the dialog box, and compare the returned results with the 
com.ms. wfc.ui.DialogResult class fields. 

200 Programmer's Guide 



C HAP T E R 1 3 

WFC Control Development 

Visual J++ and WFC allow you to create controls that you can use in your Java 
applications, as well as in Visual Basic, Web pages, and any other host application 
that supports standard ActiveX controls. WFC provides classes that incorporate most 
of the functionality of your control, including facilities for designing and implementing 
properties, handling and invoking events, and so on. 

Visual J++ also includes visual tools for creating composite controls - controls made up 
of multiple visual elements such as check boxes and list boxes. The visual tools allow 
you to design the layout of your control and generate the appropriate code that you can 
amend as required to implement the full functionality of your control. 

For details about creating controls, see the sections listed in the following table. 

For information about 

The technology of controls in WFC, 
writing controls using code. 

Using visual tools to create composite controls. 

See 

Writing WFC Controls 

Creating Composite WFC Controls 

Writing WFC Controls 
WFC provides a rich framework to develop custom controls. The following figure shows 
the basic class hierarchy of visual controls in WFC. 

. cor e, IComponenti 

.. '[ .. : ••... ' .•..•. ' .... : .............. :.:w:! •.. : ....• ' ........ ~ ..... !: ... ! ... : ..... : ......... : . •• I ui. Button 
~"":"h ,.. • • 'h N ~ < w ,. 'w '." .. " ... h 

'::: ui. F~';~';~ 

Programmer's Guide 201 



Part 2 Programming with Visual J++ 

The com.ms.wfc.ui.Control class is the base for all controls and provides most of the 
functionality for your control. 

Note For composite controls - controls created by combining other controls and 
business logic - the primary WFC package you use is com.ms.wfc.ui. You can 
use visual tools to design composite controls. For more information, see "Creating 
Composite WFC Controls," later in this chapter. 

When you write a control, you extend the base Control class, and then add the 
members you need. (Composite controls are created in the visual designer by extending 
UserControl.) You can also override members inherited from the Control class as needed. 
The following sections provide information about creating a control: 

• Creating a Basic Control How to subclass the Control class and expose your control 
in the design-time environment. 

• Defining Control Properties How to define and expose properties for your control, 
and how to specify custom editors for property values. 

• Working with Control Events How to create custom events for your control, 
and how to capture and use standard events. 

• Customizing a Control Managing the control's visual display, specifying verbs, 
and more. 

• Using Controls What you need to do to make your control available to host 
applications on other computers. 

Creating a Basic Control 
This section provides an overview of creating a control by walking you through the 
process. Here you will learn how to define a basic control and provide functionality for 
its base events. 

Defining a Control 
A custom control subclasses the WFC Control class. To make your control visible in the 
Toolbox inside Visual J++, you also need to extend the com.ms.wfc.ui.Control.ClassInfo 
class. The ClassInfo class contains metadata used to provide design-time information about 
a class and to browser component properties and events at run time. If you do not require 
that your control be visible in the Toolbox, do not extend com.ms.wfc.ui.Contro1.ClassInfo. 
However, you must still subclass Component.ClassInfo, which implements 
com.ms.wfc.core.IClassInfo. This inner class must be named ClassInfo. 

Note The WFC Component Builder creates a skeleton control, including properties 
and methods, which you can fill in. The information in this section includes details 
about how a control is built to help you build a control manually and to explain what 
the builder does. 

202 Programmer's Guide 



Chapter 13 WFC Control Development 

The following shows a skeleton control. If you compile it, the control is registered on your 
computer and becomes available in the Customize Toolbox dialog box: 

II MyControl.java 
import com.ms.wfc.ui.*: 
import com.ms.wfc.core.*: 

public class MyControl extends Control { 

public static class ClassInfo extends Control.ClassInfo { 

} 

If you add an instance of this control to a form, you will see its properties and events in the 
Properties window. You can change these properties, and you can also see that the control 
already supports backColor, foreColor, anchor, dock, mouse events, focus, and more. 
The com.ms.wfc.ui.Control class defines the default implementation of these common 
properties and events. 

Adding a Control Description 
You can include a text description for controls exposed as ActiveX controls. Host 
applications can then query and display the description. To create a description, add a 
DescriptionAttribute object in the Classlnfo class. The following example shows how 
you can add a text description: 

public static class Classlnfo extends Control.Classlnfo 
{ 

} 

public void getAttributes(IAttributes attribs){ 
super.getAttributes(attribs): 
attribs.add(new DescriptionAttribute("This describes MyControl"»: 

Providing Functionality for Class Events 
The com.ms. wfc.ui.Control class exposes a common set of members with default 
functionality. For example, if you create a basic control as described earlier, a text 
property is available for it in the Properties window. 

Programmer's Guide 203 



Part 2 Programming with Visual J++ 

Typically, to add functionality to your control, you must override the members for that 
control exposed by the base class. Most events in WFC are exposed in their base class with 
a protected on<eventname> member, which lets subclasses override the event without 
having to attach event handlers. In your override code, you define the functionality you 
want for that event. Generally, you implement the default functionality of the member by 
calling the superclass's event. By placing the call to the superclass's event, you can specify 
the order in which the event is triggered. 

Note There are additional methods for receiving events when you are not subclassing 
an event defined in the superclass. For more details, see "Working with Control 
Events," later in this chapter. 

The following example illustrates how you can override the protected onPaint method to 
define what the control should display at run time. In the example, the superclass' s event is 
called first to perform the superclass's own paint method. The control's own code displays 
the value of its text property by calling the drawString method of a Graphics object: 

II MyControl.java 
import com.ms.wfc.ui .*: 
import com.ms.wfc.core.*: 

public class MyControl extends Control { 

protected void onPaint(PaintEvent p) { 

super.onPaint(p); 

Graphics 9 - p.graphics: 

g.drawString(gctText(), 0, 0): 

} 

public static class Classlnfo extends Control.ClassInfo { 
} 

In this example, you display text by calling the control's getText method to retrieve 
the text stored in the control. When you compile and add your new version of the 
class, the control now contains whatever text you typed into the text property. Because 
com.ms.wfc.ui.Control provides a text property, there isn't really a need to create a 
new one. 

The parameter for onPaint is a PaintEvent, which contains event-specific data. When you 
are subclassing a protected member, the object sending the event is implicitly known 
because the sender is this (the current instance of the class). The event data varies from 
event to event. In this case, the PaintEvent looks like this: 

204 Programmer's Guide 



Chapter 13 WFC Control Development 

public class PaintEvent extends Event { 
II Graphics object with which painting should be done. 
public final Graphics graphics; 

II Rectangle into which all painting should be done. 
public final Rectangle clipRect; 

The graphics member of the PaintEvent refers to a com.ms.wfc.ui.Graphics object. This 
is the WFC wrapper for a drawing surface, a Win32 device context. The Graphics object 
exposes methods to draw strings, lines, points, ellipsis, and so forth. You can change the 
values of the font, foreColor, and backColor properties, and these will display correctly, 
because the Graphics object that is passed in through the PaintEvent event is set up with 
the correct fonts and brushes based on the settings in the control. For more details about 
painting, see "Updating Visual Display," later in this chapter. 

Working with Window Handles 
The base Control class encapsulates a Win32 HWND (handle) through a private member 
that extends com.ms.wfc.app.Window. The Window class manages the subclassing of the 
window procedure for the HWND created for your control. 

Whenever you request a handle with a call to Control.getHandle, the handle is created if 
needed or returned if it exists. When the handle is created, the Control class first calls the 
getCreateParams method to determine the correct window styles for creating the handle. 
If you want to specify window styles or extended window styles, you can override the 
getCreateParams method. Immediately after the handle is created, the createHandle event 
is fired. The destroyHandle event is fired immediately before the handle is destroyed. 
The handle is therefore valid during both the create and destroy handle events. 

The lifetime of any given handle is determined by the implementation of your control. 
However, the lifetime of an instance of any control is not tied to the lifetime of a handle. 

WFC allows you to manipulate controls in various ways that might require that the control 
be re-created in Windows. For example, you might be working with a control such as a 
ruler. When you change the ruler's units, this might result in the control being re-created, 
invalidating the HWND, as in the following example: 

{ 

h = x.getHandle(); 
x.units'" "points"; II change property that results in recreation 
II h is now invalid 
} 

As a rule, it is safest when using a handle to get it immediately before using it. 

Programmcr's Guidc 205 



Part 2 Programming with Visual J++ 

You can request that your handle be re-created (destroyed and then immediately created 
again) by calling the recreateHandle method. lf the recreateHandle method is called, then 
getRecreatingHandle will return true until the handle is created again. This allows you to 
place special logic in the destroyHandle event that retrieves state from the HWND during 
handle recreation. An example is a list box, where you might want to save all the items 
from the list box upon handle destruction if the handle is being re-created. lf you need the 
window styles reapplied to the window, but you don't need the handle to be re-created, you 
can call updateStyles. This will call the getCreateParams method and reapply the style and 
extended style to the HWND. 

Note that calling these functions will do nothing if the handle has not been created. This 
is useful in property setting methods, because you don't want to force handle creation, but 
might need to change the HWND if it has already been created. By convention, you should 
not force handle creation for simple property changes. Forcing handle creation early can be 
expensive because the user might set other properties that might require handle re-creation. 
It is best to require handle creation only to show a control visually, but not to adjust the 
properties. 

Threading in WFC Controls 
The Java language supports multithreading through a set of classes and APls to control 
thread creation and execution. Win32 windows are inherently apartment threaded. That is, 
they can be created on any thread, but they cannot switch threads, and all function calls 
to that window must occur on its main thread. WFC controls (anything derived from 
com.ms.wfc.ui.Control) require this threading model, while most WFC components are 
free threaded. 

The Control class provides two functions, invoke and invokeAsync, that will marshal any 
delegate onto the control's main window thread and execute it. If you attempt to call a 
function on a control that manipulates the underlying Win32 HWND, it will get marshaled 
to the correct thread by Windows. By calling the invoke function directly, you can batch 
up calls to the HWND and limit the number of expensive cross thread marshals that occur. 

Note The Windows message loop is tied to the thread that the HWND was created on. 
lf the control's HWND is recreated on a new thread, the new thread won't receive 
messages any more. For more details, see "Using Java Threads with WFC," in 
Chapter 12, "WFC Programming Concepts." 

Although most WFC components support free threading, most of the method calls are not 
synchronized. Synchronization is very expensive and should be done only when needed. 
For example, by synchronizing on the object and calling multiple methods, you will get 
substantial performance benefits. 

206 Programmer's Guide 



Chapter 13 WFC Control Development 

Defining Control Properties 
Most controls expose a set or properties that allow the user to determine the control's 
behavior and appearance. In WFC controls, you create properties as members with get 
and set functions. But WFC also provides classes and interfaces that help you integrate 
a control into design-time environments. 

The following sections provide information about creating, exposing, and customizing 
properties in your control. 

Creating and Exposing a Property 
Defining a control property is similar to adding a property to any Java class. In addition, 
however, you add members to the ClassInfo class to make your property visible in the 
Properties window. 

Adding a Property Definition 
A property is stored in a private member variable of your control. You then provide a 
public get<property> method to expose the property value. If you intend to make the 
property read-write, you also provide a public set<property> method that takes a parameter 
containing the new property value. 

Note The WFC Component Builder will create property skeletons for you. 

A simple integer property called myProp in the MyControl control might be implemented 
as in the following example: 

public class MyControl extends Control{ 
private int myProp = 0; II 0 is the default value 
public getMyProp(){ 

return myProp; 
} 

public setMyProp( int newValue ){ 
myProp - newValue; 

Note The name used in the property definition should start with a lowercase letter, 
unless the first two letters are uppercase. The function names should have a capital 
letter immediately following the get or set. For example; text would have getText 
and setText, while MDIChiid would have getMDIChild and setMDIChild. 

Programmer's Guide 207 



Part 2 Programming with Visual J++ 

Exposing a Property at Design Time 
To make your property visible in the Properties window, you do the following: 

• Create a static, final instance of the Property Info class indicating the new property's 
class, name, and data type. 

• Override the superclass's getProperties method, adding the superclass's existing 
properties and then your new property. 

Note The getProperties method is one of several methods you can use to allow you 
to expose properties, events, extender, and class attributes. For details about other 
methods, see "Working with Control Events," later in this chapter. 

The following example shows the C 1 ass I n f 0 class for the myProp property: 

public static class Classlnfo extends Control.Classlnfo { 
public static final Propertylnfo myProp = 

new Propertylnfo(MyControl.class, "myProp", int.class); 
public void getProperties(IProperties props){ 

II Add existing properties from parent class 
super.getProperties(props); 
props.add(myProp); II adds custom property 

For more information about the use of the PropertyInfo class, see "Specifying Custom 
Property Attributes," later in this chapter. 

Alignment Property Example 
This section provides a complete example of an alignment property for a SuperLabel class, 
which allows users to specify how they want the text aligned inside a label: left, right, and 
center. The example shows how to: 

• Define and expose the property. 

• Use an enumerator (enum) class to define allowable values for the property. 

• Provide validation for a new property value. 

• Use the alignment property value when painting the control. 

• Expose the property at design time. 

For the sample code, see "A Complete Example," later in this chapter. 

208 Programmer's Guide 



Chapter 13 WFC Control Development 

Basic Alignment Property 
The basic code for creating the alignment property is as follows. In the setAlignment 
method, the invalidate function is called, which indirectly forces the control to repaint 
so that it will reflect the new property value: 

private int align - AlignStyle.LEFT: 

public int getAlignment() 
return align: 

public void setAlignment(int value) { 
align == value: 
invalidate(): II Repaint control when property changes 

} 

Creating an Enumerated Property Value 
Because there are only three possible values for the property, you can use an enumerator 
(enum) to define them. Although Java does not have native support for enumeration 
types, WFC provides a com.ms.wfc.core.Enum class. Any class that derives from 
com.ms.wfc.core.Enum will be treated as an Enum object. All Enum objects conform 
to the standard that they contain only public static final integers that represent the valid 
selections. They may optionally contain a valid method that returns true if a passed value 
is legal in that Enum object. 

Enumerator objects are recognized in the Properties window. Therefore, when you 
subclass the Enum class, you automatically get a drop-down list of valid items in the 
Properties window at design time. 

The following example shows a class that defines an AlignStyle enumerator: 

II AlignStyle.java 
import com.ms.wfc.core.*: 

public class AlignStyle extends Enum 
{ 

} 

public static final int LEFT - 1: 
public static final int RIGHT - 2: 
public static final int CENTER - 3: 

II Optional valid method to test passed value 
public static boolean valid(int value) { 

return (LEFT <= value && vnlue <= CENTER): 
} 

Note Creating the valid method as a static member allows users to call it without 
having to create an instance of the class first. 

Programll1er's Guide 209 



Part 2 Programming with Visual J++ 

Providing Property Validation 
In order to test that the user has specified a legal alignment value when setting the 
property, you can add validation to the setAlignment method. To test the value, you can 
call the valid method of the AlignStyle enumerator. If there is an error, you can throw 
the WFCInvalidEnumException exception. 

The example below shows a modified setAlignment method with validation added: 

public void setAlignment(int value) { 

if (!AlignStyle.valid(value» 

throw new WFClnvalidEnumException("value". value. AlignStyle.class); 

align ~ value; 
invalidate(); II Repaint control when property changes 

Note For information about using invalidate to repaint a control, see "Updating 
Visual Display," later in this chapter. 

By throwing a WFCInvalidEnumException, you get the benefit that it is a non-checked 
exception, and there is a predefined message associated with it. This message has been 
translated to multiple languages so that when you run this control in various locales, you 
automatically get a meaningful error message . 

. Using the Property Value When Painting 
The alignment property affects the appearance of text in the control. Therefore, whenever 
the control is painted, the paint code must check the property's value and use it 
accordingly. 

You specify paint behavior by overriding the onPaint method. The example below shows 
you would read the alignment property value and then use the value in the drawString 
method to set the alignment. The constants LEFT, RIGHT, and so on are defined in the 
TextFormat class in com.ms.wfc.ui: 

protected void onPaint(PaintEvent p) { 
Graphics 9 = p.graphics; 
int style = 0; 
switch (align) { 

case AlignStyle.LEFT: 
style = TextFormat.LEFT; 
break; 

case AlignStyle.RIGHT: 
style = TextFormat.RIGHT; 
break; 

210 Programmer's Guide 



Chapter 13 WFC Control Development 

} 

case AlignStyle.CENTER: 
style = TextFormat.HORIZONTALCENTER; 
break; 

g.drawString(getText(), getClientRect(), style); 

Exposing the Property at Design Time 
To make the alignment property available at design time, you subclass Classlnfo to first 
define the property (by creating an instance of Property Info). You then expose the property 
by calling the getProperties method: 

public static class Classlnfo extends Control.Classlnfo { 

} 

public static final Propertylnfo alignment = new Propertylnfo( 

MyControl.class, "alignment", AlignStyle.class); 

public void getProperties(IProperties props) { 
super.getProperties(props); 
props.add(alignment); 

Note The third parameter passed to the Propertylnfo constructor (in this case, 
AlignStyle.class) is normally the data type of the property. However, because this 
property is an enumerated value, you pass the class you created that extends Enum. 

Because AlignStyle derives from the Enull1 class, the Properties window uses the editor 
associated with the Enum class. The result is a drop-down list that allows you to set the 
value of the property. 

Note To create a property that is not exposed at design time (for example, a run time­
only property), use the PropertyInfo object to set the BrowsableAttribute attribute to 
NO. For details, see "Specifying Custom Property Attributes," later in this chapter. 

A Complete Example 
The following example shows a complete label control with an alignment property 
including all the features discussed previously: 

/ / SuperLabel.java 
import com.ms.wfc.ui.*: 
import com.ms.wfc.core.*; 

public class SuperLabel extends Control { 
private int align = AlignStyle.LEFT; 

Programlller's Guide 211 



Part 2 Programming with Visual J++ 

} 

public int getAlignment() { 
return align; 

} 

public void setAlignment(int value) { 
if (lAlignStyle.valid(value» 

throw new WFCInvalidEnumException("value", value, AlignStyle.class); 
align'" value; 
invalidate(); II Repaint control when property changes 

protected void onPaint(PaintEvent p) { 
Graphics 9 = p.graphics; 
int style = 0; 
switch (align) { 

case AlignStyle.LEFT: 
style'" TextFormat.LEFT; 
break; 

case AlignStyle.RIGHT: 
style = TextFormat.RIGHT: 
break: 

case AlignStyle.CENTER: 
style = TextFormat.HORIZONTALCENTER; 
break: 

g.drawString(getText(), getClientRect(). style): 

public static class ClassInfo extends Control.ClassInfo { 

} 

public static final PropertyInfo alignment - new PropertyInfo( 
SuperLabel.class, "alignment", AlignStyle.class): 

public void getProperties(IProperties props) ( 
super.getProperties(props): 
props.add(alignment): 

Specifying Custom Property Attributes 
When you create a property and create a Propertylnfo object to set its attributes, you can 
specify a variety of options to customize the property. 

Note More details about using the Propertylnfo class are provided in "Defining 
Control Properties," earlier in this chapter. 

212 Programmer's Guide 



Chapter 13 WFC Control Development 

The basic syntax for creating a PropertyInfo object is: 

new PropertyInfo(Class owner, String name, Class dataType) 

For example, the following is a PropertyInfo object for a property called myProp in the 
MyControl control: 

public static final PropertyInfo myProp = 
new PropertyInfo(MyControl.class, "myProp", int.class); 

You can customize the property by providing any number of additional member attributes 
for the PropertyInfo object. A member attribute is defined as any class that derives from 
com.ms.wfc.core.MemberAttribute. A certain number of attributes are available by default 
in the PropertyInfo class, or you can create and add your own attributes by deriving them 
from MemberAttribute. The following table lists pre-defined attributes in the PropertyInfo 
class. 

Attribute 

BrowsableAttribute 

Category Attribute 

Description 

Specifies whether the property is visible in the Properties window. The default is 
YES. This attribute can be used in conjunction with the PersistableAttribute 
attribute (see below) to define properties whose value should be saved in the control 
but should not be editable in the Properties window. 

Specifies what category the current property fits into in the Properties window, such 
as Appearance, Behavior, and so on. The default is Misc. You can either place the 
property in a predefined category by using one of the static members in 
Category Attribute or create a new category by constructing a new 
Category Attribute and passing in the string name that you want the category to be 
called. 

DataBindableAttribute Specifies that the property is a candidate for data binding. The default is .NO. When 
this is set to .YES, the DataBinder component lists this property in its drop-down 
list. 

DefaultValueAttribute The default value for simple properties. This value is used when the user resets the 
property value in the Properties window. The Forms Designer also compares the 
default value against the current value. If they match, the Forms Designer does not 
generate code to set the property value, which reduces the size of code generated 
for the form. 

Note You can also create a default value by creating a rcset<properly> method. 
For details, see the next section, "Specifying Dynamic Default Values 
and Property Persistence." 

The most common values for various data types are predefined as static 
values (for example, for Boolean values, the values TRUE and FALSE 
are already defined). 

( cOlltinued) 

Programmer's Guide 213 



Part 2 Programming with Visual J++ 

( continued) 

Attribute Description 

DescriptionAttribute Defines text displayed in the bottom of the Properties window when the user selects 
the current property. The default is "". 

LocalizableAttribute Specifies that the property value is saved in a resource file if the user chooses to 
localize a form. The default is NO. The user can then localize the resource file and 
not have to modify the code. 

PersistableAttribute Specifies whether the value of the property is saved when its container is saved at 
design time. The default value is YES. This attribute is primarily useful when you 
do not want to save a property value, for example, transient property values whose 
values depend on state or are calculated. Normally, properties with this attribute set 
to NO are also not browsable (BrowsableAttribute is NO). 

ValueEditorAttribute Specifies a custom editor used by the Properties window for the current property. 
If no value editor is specified, the Properties window uses an editor associated 
with the property's data type. For more details, see "Creating a Custom Properties 
Value Editor," later in this chapter. 

To specify an attribute, you create an instance of the attribute you want or use one of the 
predefined instances (such as BrowsableAttribute.NO), and then add it to the PropertyInfo 
definition, using syntax such as: 

new PropertyInfo(Class owner, String name, Class dataType, 
[MemberAt t ri bute, [MemberA tt ri bute, ... ]]) 

The following example shows how you can define a description and default value for the 
myProp property using predefined attributes: 

public static final PropertyInfo myProp = 
new PropertyInfo(MyControl.class, "myProp", int.class, 
new DescriptionAttribute("Test property"), 
new DefaultValueAttribute(DefaultValueAttribute.ONE): 

You can add up to six attributes by simply including them as parameters to the PropertyInfo 
constructor. If you want to specify more than five member attributes, you can use syntax for 
the PropertyInfo constructor that accepts an array of member attributes. For details, see 
"PropertyInfo" in Package com.ms.wfc.core in Microsoft Visual J++ 6.0 WFC Library 
Reference, Part 1, in the Microsoft Visual J++ 6.0 Reference Lihrary. 

Specifying Dynamic Default Values 
and Property Persistence 
To set a default value for a property, you can specify a DefaultValueAttribute attribute 
when creating a new PropertyInfo object, as described in "Specifying Custom Property 
Attributes." In some cases, you might want to specify a default value dynamically - that 
is, a value calculated at run time. Similarly, you might want to specify that a property 
value is persisted (saved between design-time sessions) based on run-time conditions. 

214 Programmer's Guide 



Chapter 13 WFC Control Development 

Setting Persistence for Property Values 
By default, when a control property value is changed from the default at design time 
(as in the Properties window), it is saved whenever the host control is saved. For example, 
if your control is instantiated in a Visual J++ form, and if you change the value of a 
property in the Properties window, the property's value is saved when you save the form. 
For efficiency, if the property value matches its default value, the value is not persisted. 

In rare instances you want to specify that a value is persisted based on a run time 
condition. To control persistence, override the Control class's shouldPersist<property> 
method. After testing for the condition, the method should return a Boolean value 
indicating whether the custom value should be saved. To prevent the value from being 
saved, return false from this method. You can also override the shouldPersist<property> 
for properties inherited from the superclass, as in this example, which sets persistence 
of the font property depending on whether the font has changed: 

public boolean shouldPersistFont() { 
return font != null; 

Note Ambient properties (whose value is inherited from the parent) such as font and 
backColor return null when compared as illustrated above to represent that they are set 
to the default values. However, explicitly getting the value of such properties - for 
example, calling the getFont method - returns the actual font information. 

Calculating Dynamic Default Values 
To create a default value for a property at run time, create a reset<property> method for 
that property. The following example shows how you can implement a default value based 
on today's date for a property called lastUpdate: 

private Date dtLastUpdate; 
public void setLastUpdate( Date d )( 

dtLastUpdate = d ; 
invalidate(); II Repaint control when property changes 

} 

public void resetLastUpdate(){ 
return new Date(); 

You can also override the reset<property> methods inherited from the Control class. The 
following example shows how you can override the resetFont method for your control: 

public void resetFont() ( 

} 

Font f = new Font("Arial". 8.0f. FontSize.POINTS. FontWeight.BOLD. 
false. false. false); 

setFont(f) ; 

Programmer's Guide 215 



Part 2 Programming with Visual J++ 

Creating a Custom Properties Value Editor 
The Properties window in Visual J++ 6.0 provides editing capability for the values of the 
properties exposed in your control. In fact, the Properties window is really just a custom 
editor host. You can specify a custom editor, or you can rely on the default editing 
capabilities of the Properties window. 

The mechanism is this: the Properties window first checks to see if you have specified a 
custom value editor. If not, it will look for an inner class called Editor inside the class of 
the type of the property. If no editor is found, it traverses the type's hierarchy looking for 
any superclass that has an editor. Because there is an ObjectEditor class associated with 
java.lang.Object, an editor will always be found. The Properties window will provide a 
default editor for all simple types, such as a string editor, integer editor, and so forth. 

You might specify a custom value editor for many reasons. Typical tasks for a custom 
property editor include: 

• Text-to-value conversion 

• Value painting 

• Specifying subproperties of the value 

• Displaying custom dialog boxes 

• Displaying custom drop-down lists 

• Participating in code generation by specifying a constant name that should be 
substituted for a specific value 

For more information, see the next section, "Defining a Custom Value Editor." 

Defining a Custom Value Editor 
To create a custom value editor, you must implement com.ms.wrc.core.IValueEditor. 
A convenient way to do so is to extend com.ms.wfc.core.ValueEditor to provide a default 
implementation of all methods. 

To create the value to be displayed (as a string) in the Properties window, override the 
getTextFrom Value method. In order for the changed value to be reflected in the control 
and displayed in the Properties window, override the getValueFromText method. 

The following example illustrates a simple custom value editor that displays a percentage 
value with "%" in the Properties window, but then strips out the punctuation before the 
value is stored. This example makes use of the Value class in com.ms.wfc.util class for 
conversions: 

216 Programmer's Guide 



Chapter 13 WFC Control Development 

import com.ms.wfc.core.*; 
import com.ms.wfc.util .*; 

public class PercentEditor extends ValueEditor { 

} 

II Creates string as "nn%" for display in the Properties window 
public String getTextFromValue(Object value) { 

return Value.toString(Value.tolnt(value)) + "%"; 
} 

II Converts string in format "nn%" to integer. This method 
II is required. 
public Object getValueFromText(String text) { 

} 

String s = Utils.trimBlanks(text.replace('%'. ' ')); 
return Value.toObject(Value.tolnt(s)); 

The methods provided by com.ms. wfc.core for exchanging information with a property 
editor are listed in the following table. 

Method Description 

editValue Provides a user interface for editing the property value. 

getConstantN arne 

getStyle 

getTextFrom Value 

getValues 

Retrieves the fully-qualified name of a constant that represents the specified value. 

Returns a bitfield of style flags. 

Converts a value into a string. 

Returns an array of values; typically, the Properties window displays these in a list by 
calling getTextFromValue ina loop. 

getValueFromText 

paintValue 

Returns a value from a string. You must implement this method. 

Paints a representation of the value in a specified rectangle. 

Two additional methods - getSubProperties and getValueFromSubPropertyValues­
allow you to work with properties of objects, such as a Font object, that normally are 
passed as part of the constructor. 

The getStyle method is used to get and set flags used to specify behavior in the value 
editor. Valid styles are: 

• STYLE_NOEDITABLETEXT Indicates that the value editor does not support 
accepting arbitrary text in the getValueFromText method. It should accept text that is 
returned from getTextFromValue. This style will typically cause a property editor to 
disallow typing in the edit box for properties of the value editor's type. 

• STYLE_PAINTVALUE Indicates that the value editor implements the paintValue 
method. Typically, this causes a property editor to paint a representation of properties 
of the value editor's type. 

Programml!r's Guide 217 



Part 2 Programming with Visual J++ 

• STYLE_VALVES Indicates that the value editor implements the getValues method. 
Typically, this causes a property editor to display a drop-down list for properties of 
the value editor's type. 

• STYLE_EDITVALUE Indicates that the value editor implements the editValue 
method. Typically, this causes a property editor to display an ellipsis button for 
properties of the value editor's type. 

• STYLE_DROPDOWNARROW Indicates that if STYLE_EDITV ALUE is also 
returned, a drop-down arrow should be shown instead of an ellipsis button. This is 
useful if the value editor plans to show a drop-down list in editValue as opposed to 
launching a modal dialog box. 

• STYLE_IMMEDIATE Indicates that values of this type are suitable for updating 
even when the new value is incomplete. Typically, this causes a property editor to 
update the underlying property after each change made in the editor (for example, 
as each character is typed in an edit box). 

• STYLE_PROPERTIES Indicates that values of this type can have subproperties that 
can be edited, such as those for a Font object. 

• STYLE_NOARRAYEXPANSION Indicates that if the value is an array, a property 
inspector should not drill down into the array. 

• STYLE_NOARRAYMULTISELECT Indicates that if the value is an array, a 
property inspector should not have an entry that selects all the elements of the array. 

The following example shows how you can display a modal dialog box as the custom 
property editor. In this example, you can see how IValueAccess provides an abstract way 
to get and set a value on the component that an editor is currently editing. This is useful if 
more than one component might be selected. When you call the get and set value methods 
through IValueAccess, the Properties window can correctly set the value on multiple 
components. To display an ellipsis button that calls the dialog box, the example overrides 
the getStyle method and sets STYLE_EDITV ALVE in the bitfield returned by getStyle: 

import com.ms.wfc.core.*: 
import com.ms.wfc.util.*: 

public class PercentEditor extends ValueEditor { 
public void editValue(IValueAccess valueAccess) 

PercentDialog dialog - new PercentDialog(); 

} 

int value - Value.tolnt(valueAccess.getValue(»; 
dialog.setPercentValue(value): 
int result = dialog.showDialog(): 
if (result == DialogResult.OK) { 

valueAccess.setValue(dialog.getText(»; 

218 Programmer's Guide 



Chapter 13 WFC Control Development 

} 

public int getStyle() { 
II Using OR operator sets bitfield to display ellipsis button 
return super.getStyle() I STYLE_EDITVALUE; 

The following example illustrates how to display a drop-down dialog box. The control 
calls IEditorHost.dropDownDone when done editing the property. In addition, the control 
is responsible for calling the setValue method of IValueAccess. The Properties window 
will shut the drop-down list if the user cancels the drop-down dialog box in any way: 

import com.ms.wfc.core.*; 
import com.ms.wfc.util .*; 

public class PercentEditor extends ValueEditor { 

} 

public void editValue(IValueAccess valueAccess) 
PercentControl control = new PercentControl(); 
int value = Value.tolnt(valueAccess.getValue(»; 
dialog.setPercentValue(value); 

} 

IEditorHost host = 
(IEditorHost)valueAccess.getService(IEditorHost.class); 

control.setValueAccess(valueAccess); 
host.dropDownControl(control); 

public int getStyle() { 
return super.getStylc() I STYLE_EDITVALUE I STYLE_DROPDOWNARROW; 

} 

Working with Control Events 
As a subclass of Control, your control automatically supports a standard set of Windows 
events. You can capture and proCl!SS these events within your control, optionally passing 
them to the host application. In addition, you can define custom events unique to your 
control and fire them as needl!d. 

Capturing User Interaction with a Control 
Your control can capture and process standard events before they are sent to the host 
application. The two most common types of interactions are mouse and keyboard events. 

Programmer's Guide 219 



Part 2 Programming with Visual J++ 

Capturing Mouse Events 
The Control class in WFC provides for most of the mouse events that you need. These 
include mouseMove, mouseUp, mouseDown, mouseWheel, mouseEnter, and mouseLeave. 
In addition, you can optionally receive the click and double Click events. 

To receive mouse events in your control, you can override the event you want. To pass 
the mouse event through to the host application, call the superclass' s corresponding 
event method. 

The following example illustrates how you can override the mouseMove event. The 
handler indirectly displays the location of the mouse, which is available in the x and 
y properties of the MouseEvent object passed to the handler: 

protected void onMouseMove( MouseEvent e){ 

} 

String sMsg = "" + e.x + ". " + e.y; 
this.setText(sMsg); 
invalidate(); II Repaint control when property changes 
super.onMouseMove( e ); II to make it visible in the host 

Capturing Keyboard Events 
The standard key events exposed are keyUp, keyDown, and keyPress. These events will 
be triggered for both normal keys and system keys (for example, FI through FI2). 

All keyboard input in WFC is done using Unicode character data. When running under 
an operating system that doesn't support Unicode messages (like Windows 95) the WFC 
framework will automatically perform the needed message filtering to generate Unicode 
events. 

The following example illustrates how you can capture keyboard events within a control. 
The overridden onKeyUp method here filters out numeric characters before passing the 
event to the host application: 

protected void onKeyUp( KeyEvent e){ 
if(e.keydata < Key.D0 && e.keyData > Key.D9){ 

super.onKeyUp( e ); 
invalidate(); II Repaint control when property changes 

} 

Creating a Custom Event 
WFC controls support a standard set of events that they inherit from the Control class, 
such as click, mouseDown, keyPress, and so on. Your control automatically exposes these 
events, and they are available in the host application without any special effort on your part 
unless you want to override the events to add special functionality. 

220 Programmer's Guide 



Chapter 13 WFC Control Development 

Note For information about creating event handlers - receiving events in a host 
application - see "Handling Events in WFC," in Chapter 12, "WFC Programming 
Concepts." For details about how to capture a standard event and process it within your 
control, see "Capturing User Interaction with a Control," earlier in this chapter. 

In some instances, however, you might want to create custom events that are unique to 
your control. For example, you might want your control to use an event to notify the host 
application of a change in status, such as the completion of an initialization procedure, 
or to report an error condition. 

Note By convention, to indicate a change in the value of a property, you create 
on<property>Changing and on<property>Changed methods using the techniques 
described below. For additional details, see "Providing Property Change Notification," 
later in this chapter. 

Custom events rely on Visual J++ delegate technology. To implement a custom event, 
you create a delegate that can bind event handlers in an application to your event. 

Using Delegates for Events 
The event model for WFC uses delegates to bind events to the methods used to handle 
them. To define an event in Visual J++, you subclass the Event class, and then create a 
delegate class based on com.ms.lang.Delegate that binds to it. The delegate allows other 
classes to register for event notification by specifying a handler method. When the event 
occurs (is invoked), the delegate calls the bound method. 

Delegates can be bound to a single method or to multiple methods, referred to as 
multicasting. When creating a delegate for an event, you typically create a multicast 
event. A rare exception might be an event that resulted in a specific procedure (such as 
displaying a dialog box) that it would not be sensible to repeat multiple times per event. 

A multicast delegate maintains an ;m'ocation list of the methods it is bound to. The 
multicast delegate supports a combine method to add a method to the invocation list and 
a remove method to remove it. 

A control fires an event by invoking the delegate for that event. The delegate in turn calls 
the bound method. In the most common case (a multicast delegate) the delegate calls each 
bound method in the invocation list in turn, which provides a one-to-many notification. 
This strategy means that the control does not need to maintain a list of target objects for 
event notification - the delegate handles all registration, notification, and unregistration. 

Delegates also allow multiple events to be bound to the same method, allowing a many-to­
one notification. For example, a button click event and a menu command click event can 
both invoke the same delegate, which then calls a single method to handle these two 
separate events the same way. 

ProgralllllH:r's Guide 221 



Part 2 Programming with Visual J++ 

The binding mechanism used with delegates is dynamic - a delegate can be bound at run 
time to any method whose signature matches that of the event handler. This feature allows 
you to set up or change the bound method depending on condition and to dynamically 
attach an event handler to a control. 

Creating a Custom Event Class 
If you want to pass event-specific data with the event (similar to the x and y properties of 
the Control class's mouseMove event), you must create a custom event class and define its 
data. To create a custom event, you subclass the Event class. To make the event a top-level 
public class, it must reside in a separate .java file. In your class you define members to 
hold the event data. 

The following example shows how you can create a simple error event class that has two 
fields, one for an error number and another for the text of the error message: 

II ErrorEvent.java 
import com.ms.wfc.core.*; 
public class ErrorEvent extends Event{ 

public final int errorNumber: 
public final String errorText; 

} 

public ErrorEvent( int eNum, String eTxt){ 
this.errorNumber - eNum; 
this.errorText = eTxt: 

} 

Creating a Delegate 
To allow binding for your event, create a handler class which declares a delegate 
specifying the signature for your event. If you want to be able to bind the delegate to 
mUltiple methods, declare it as a multicast delegate. The delegate should be a top-level 
class, it should therefore be in a separate file. 

The following example shows a handler class for the ErrorEvent class illustrated earlier: 

II ErrorEventHandler.java 
import com.ms.wfc.core.*; 
public final multicast delegate void ErrorEvent(Object sender, 

ErrorEvent event); 

Multicast delegates must return void, because they cannot return the results of more than 
one method. 

222 Programmer's Guide 



Chapter 13 WFC Control Development 

Implementing a Custom Event 
To implement a custom event in your control, you provide a way for the host application 
to register for the event. First create a private instance of your delegate. Then create 
an addOn<evenl> method that the host can call to register for an event and bind it to 
a specific method. If the delegate is multicast, call the delegate's combine method in 
your addOn<evenl> method to add the user's method to the delegate's invocation list. 

The following example shows how you can perform these steps for the ErrorEvent class 
illustrated earlier: 

II Create instance of delegate 
private ErrorEventHandler err = null; 
II Call delegate's combine method to add binding to invocation list 
public final void addOnErrorEvent(ErrorEventHandler handler){ 

err = (ErrorEventHandler)Oelegate.combine(err. handler); 

Typically, you also provide a removeOn<evenl> method so the host can unregister for 
the event: 

public final void removeOnErrorEvent(ErrorEventHandler handler){ 
err = (ErrorEventHandler)Oelegate.remove(err. handler); 

If you are using a non-multicast delegate, the syntax for the addOn<evenl> method is 
simpler: 

private ErrorEventHandler err - null; II Create instance of delegate 
public final void addOnErrorEvent(ErrorEventHandler handler){ 

err = handler; 

Note The Component class from which the control derives contains utility code to 
add, remove, and fire events. 

Exposing the Event at Design Time 
Exposing an event at design time is similar to exposing a property. First, you create an 
instance of the Eventlnfo class indicating the new event's class, name, and delegate. You 
then you override the superclass's getEventsEventlnfo method, adding the superclass's 
existing events and then your new event. 

Note The event name should start with a lowercase letter (for example, errorEvcnt), 
unless the first two letters are uppercase (such as MIDIChildActivated). 

Programmer's Guide 223 



Part 2 Programming with Visual J++ 

The following example shows the ClassInfo class for the ErrorEvent event shown earlier: 

public static class ClassInfo extends Control.ClassInfo{ 

} 

public static EventInfo errEvt = new EventInfo(MyControl.class, 
"errorEvent", ErrorEventHandl er. cl ass); 

public void getEvents(IEvents events({ 
super.getEvents(events); 
events.add(errEvt); 

} 

Firing an Event 
To fire the event, you create an instance of your event class, passing to it the event-specific 
parameters that you defined in the class. You then invoke the delegate, as in the following 
example: 

II the err delegate must already exist 
int errNumber = 1020; 
String errText ... "Invalid value." 
ErrorEvent e - new ErrorEvent(errNumber, errText); 
err.invoke(this, e); 

Most events in WFC include a protected <eventname> member that lets subclasses 
override the event and determine the order in which the event is triggered through 
placement of the call to super.on<evcllfllame>. The following shows the protected 
member for ErrorEvent: 

protected void onErrorEvent(ErrorEvent event){ 
i f(err 1- null){ 

err.invoke(this, event); 

If you include the protected member, you can fire the event within your control by calling 
it instead of directly calling the invoke method, as in this example: 

if(value > 20){ 
onErrorEvent(new ErrorEvent(1020, "Invalid value"»: 

224 Programmer's Guide 



Chapter 13 WFC Control Development 

A Complete Example 
The following shows a complete, simple control that includes the ErrorEvent event 
described in the preceding sections: 

II MyControl.java 
import com.ms.wfc.ui.* : 
import com.ms.wfc.core.* 
import com.ms.lang.Delegate: 

public class MyControl extends Control { 
private int myProp = 1: 
public int getMyProp(){ 

return myProp: 

public void setMyProp(int value){ 

} 

II Fires error event if property value exceeed 200 
if(value > 200){ 

onErrorEvent(new ErrorEvent(1020, "Invalid value"»: 

} 

myProp = value: 

protected void onPaint( PaintEvent p){ 
super.onPaint(p): 

} 

Graphics g=p.graphics: 
g.drawString( getText(), 0, 0): 

II event setup to be able to fire event "ErrorEvent" 

private ErrorEventHandler errDelegate = null: 

public final void addOnErrorEvent(ErrorEventHandler handler){ 

} 

errDelegate = (ErrorEventHandler)Delegate.combine(errDelegate, 
handler): 

public final void removeOnErrorEvent(ErrorEventHandler handler){ 

} 

errDelegate = (ErrorEventHandler)Delegate.remove(errDelegate, 
handler): 

Programmcr's Guidc 225 



Part 2 Programming with Visual J++ 

} 

protected void onErrorEvent(ErrorEvent event){ 

i f( errDel egate 1= null){ 

errDelegate.invoke(this, event); 

} 

public static class Classlnfo extends Control.Classlnfo{ 
public static final Propertylnfo myProp = new 

Propertylnfo(MyControl.class, "myProp", int.class); 
public void getProperties(IProperties props){ 

super.getProperties(props); 
props.add(myProp); 

} 

public static Eventlnfo evt = new Eventlnfo(MyControl.class, 
"errorEvent, ErrorEventHandler.class); 

public void getEvents(IEvents events){ 

super.getEvents(events); 

events.add(evt); 

Providing Property Change Notification 
WFC uses a naming convention for creating events that indicate that a property value is 
changing or has changed: 

• The <propertyName>Changing event indicates that the function used to change a 
property value has been called. Typically, you fire this event at the beginning of your 
set<.Property> method. You pass it a CancelEvent object; if the host application has 
a <propertyName>Changing event handler, the handler can prevent the property 
from being changed by setting the CancelEvent object's cancel property to true. 

• To indicate a successfully completed change, you fire a <propertyName>Changed 
event. 

Note Data binding requires that you implement the <propertyName>Changed event. 

226 Programmer's Guide 



Chapter 13 WFC Control Development 

These events are not designed to provide data validation, but rather to allow control 
over properties being edited, such as preventing a control from updating its value. Data 
validation is either done on the data source (for example, a record set) or through custom 
properties on the control. 

You implement the property change events the way you do a custom event. For each 
event, you provide an addOn<property>Changing and addOn<property>Changed 
method and corresponding removeOn methods. You also typically create protected 
on<.PropertyName>Changing and on<.PropertyName>Changed methods. The 
on<.PropertyName>Changing usually uses a CancelEvent object to allow the change to 
be stopped. For details about creating these methods, see "Creating a Custom Event," 
earlier in this chapter. 

The following example illustrates how you can include property notification for an 
alignment property: 

public void setAlignment(int value) { 
if (alignment != value) { 

Cancel Event e = new CancelEvent(); 
onAlignmentChanging(e); 
if (!e.cancel) { 

alignment = value; 
invalidate(); II Repaint control when property changes 
onAlignmentChanged(Event.EMPTY); 

private EventHandler eAlignChanged - null; 
public final void addOnAlignmentChanged(EventHandler handler){ 

eAlignChanged - (EventHandler)Oelegate.combine(eAlignChanged. 
handler): 

public finnl void removeOnAlignmentChanged(EventHandler handler){ 
eAlignChnnged = (EventHandler)Oelegate.remove(eAlignChanged. handler); 

} 

protected void onAlignmentChnnged(Event event){ 
if(eAlignChanged != null){ 

eA11gnChanged.invoke(this. event): 
} 

private CnncelEventHandler eAlignChanging = null; 
public finnl void addOnAlignmentChanging(CancelEventHandler handler){ 

eAlignChanging = (CancelEventHandler)Oelegate.combine(eAlignChanging. 
handl er); 

} 

Programmer's Guide 227 



Part 2 Programming with Visual J++ 

public final void removeOnAlignmentChanging(CancelEventHandler handler){ 
eAlignChanging = (CancelEventHandler)Delegate.remove(eAlignChanging, 

handler); 

protected void onAlignmentChanging(CancelEvent event){ 
if(eAlignChanging !- null){ 

eAlignChanging.invoke(this, event); 
} 

} 

public static Eventlnfo eiAlignChanged = new Eventlnfo(MyControl.class, 
"onAlignmentChanged", EventHandler.class); 

public static Eventlnfo eiAlignChanging = new Eventlnfo(MyControl.class, 
"onAlignmentChanging", EventHandler.class); 

public void getEvents(IEvents events){ 
super.getEvents(events); 
events.add(eiAlignChanged); 
events.add(eiAlignChanging); 

} 

Customizing a Control 
In addition to defining your control's members, you can define its functionality by 
customizing it. 

Determining the Control's Display 
Within your control, you can write code to determine and modify the visual representation 
of your control. The following sections provide background information on control display 
and information on how to manage it. 

Control Dimensions 
There are three main dimensions associated with a control: bounds, client, and display 
coordinates. The bounds of a control are the outer window coordinates of the control. 
The bounds are always expressed in parent-client coordinates, that is, with respect to the 
dimensions of the parent. 

Client coordinates are the dimensions of the area that the control can draw into. The client 
area of a control is always based at (0, 0) and is sized based on the inner-client owned area 
of the control. The client coordinates do not encompass non-client areas such as borders 
applied to the windows (for example, WS_BORDER, WS_EX_CLIENTEDGE) and the 
title bar for top-level windows. 

228 Programmer's Guide 



Chapter 13 WFC Control Development 

The display coordinates are virtual client coordinates that define the area in which child 
controls appear. Display coordinates can define an area larger than that defined by the 
client coordinates. A good example of the difference between client coordinates and 
display coordinates is a form with autoscrolling. When autoscrolling is enabled for a form, 
the display size of the form can become bigger than the client size, resulting in a virtual 
form larger than the physical window. When you move the scroll bars on the form, the 
display coordinates change. 

Note Because the bounds of controls are always in parent-client coordinates, when 
a form is scrolled, the child control's bounds will change to reflect their actual position 
relative to the client coordinates of the parent. 

In most controls, you only need to work with client coordinates. Display coordinates 
are important only if you write a control that is going to host other controls (such as a 
TabControl control), and you want to enable docking or other layout mechanisms. 

Location and Size 
A control's layout is determined by the combination of values of several properties that the 
control inherits from the Control class: 

• The location property contains a Point class that sets the x and y coordinates of the top 
leftmost comer of the control. 

• The size property contains a Point class that sets the width and height of the control. 

• The anchor property fixes one or more sides of the control to its container. When the 
container is resized, the anchored sides of the control are resized as well. 

• The dock property specifies what edge of the host container a control is docked to. 

These properties can be set at run time to change the location and size of the control. 

If the control's location or size changes at run time, the control fires notification events. 
The layout event is fired when anything changes on a control that would cause it to reapply 
any layout. Examples include adding child controls, changing the control's boundaries, or 
performing some other control-specific event such as changing a property value. The resize 
event is fired only when the bounds of the control changes. 

The default WFC layout logic is processed in Control.onLayout and Form.onLayout. 
The dock and anchor of a child control are applied in the layout event of the parent. Thus 
a panel would layout all children, and the parent of the panel would layout that panel. 

Programmer's Guide 229 



Part 2 Programming with Visual J++ 

Updating Visual Display 
Any visual control must provide a representation of itself. Unless your control is 
subclassing another control, you must add custom paint logic to your control by overriding 
the onPaint method. Call the superclass' s onPaint method to display the control, and then 
add your own logic to customize the display. 

The onPaint event receives a PaintEvent object that you can use to get an instance of a 
Graphics object. You then call methods of the Graphics object to update the control's 
display. The following shows a simple example of how to display text in a control by 
updating the text property: 

protected void onPaint(PaintEvent p) { 
5uper.onPaint(p); 
Graphics 9 = p.graphics; 
g.drawString(getText(), 0, 0); 

} 

The Graphics object in WFC is very rich and full featured. You can draw almost any 
primitive structure including arcs, ellipsis, rectangles, polygons, lines, and points. The 
following table lists commonly-used properties and methods of the Graphics object. 

Graphics object member Description 

setPen method 

setBrush method 

setBackColor method 

setTextColor method 

setFont method 

draw Arc method 

drawlmage method 

drawString method 

Specifics a Pen object that defines how lines and borders around objects are 
drawn. 

Specifics a Brush object that fills a control (for example, in the clearRect method). 

Specifics the color displayed behind text. 

Specifics the foreground color for text. 

Specifics the font with which the text wiII be drawn. 

Draws an elliptical arc. 

Draws an image. 

Displays a string; includes support for word wrapping, alignment, clipping, 
and so forth. 

Painting in WFC uses the standard Win32 model in which a region of the control is 
invalidated. This effectively requests a repaint, but does not immediately perform the paint 
procedure. At the next free cycle, the paint event is sent asynchronously to the control. 
When the event reaches the control, the control first calls eraseBackground to clear the 
area that is about to be painted. The paint event then occurs, clipped to the invalid region. 

Paint events coalesce, so the control will receive only one paint event for multiple 
invalidated regions of the control. The coalesced paint event that the control receives 
is clipped to the union of all the invalid regions. 

230 Programmer's Guide 



Chapter 13 WFC Control Development 

The following example illustrates how you can call the invalidate method to request 
that the control repaint itself. In this instance, the invalidate method is called without 
a Rectangle object parameter to indicate the clipped region, so the entire control will 
be repainted: 

public void setAlignment(int value) { 
if (!AlignStyle.valid(value» 

throw new WFClnvalidEnumException("value", value, 
AlignStyle.class); 

align = value; 
invalidate(); II Repaint control when property changes 

Note If you modify multiple properties (or the same property twice), the control will 
not perform the entire paint operation twice. 

To force a paint to occur synchronously, you can call the control's update method, which 
forces the control to perform any pending paint events immediately. 

Eliminating Flicker while Painting 
To eliminate flicker in your control, you should consider overriding the onEraseBackground 
event. The default implementation of this event clears the background of the control with the 
current value of the backColor property. However, it is not always necessary to repaint the 
entire area of the control, and doing so unnecessarily can cause flickering. This is primarily 
the case with controls that have a large area or complex paint logic. 

In the example above, the drawString method is used to place text in the control. If the 
background is not cleared by the erase Background method, it would look as if it had never 
been painted, producing a "transparent" look. 

Note The control is not actually transparent. However, because the old contents of that 
screen area are not repainted, they are still visible. 

To create a control that looks solid with no flicker, avoid painting the background for areas 
that will be repainted again with foreground information. The easiest way to do this is to 
ensure that the onPaint method accounts for the entire clientRect area. You can then skip 
background drawing completely by overriding the onEraseBackground event specifying 
that the event has been handled, as in the following example: 

protected void onEraseBackground(EraseBackgroundEvent event) { 
event.handled - true; 

} 

protected void onPaint(PaintEvent p) { 
Graphics 9 = p.graphics; 
g.clearRect(getClientRect(»; 
g.drawString(getText(), 0, 0): 

} 

Programmer's Guide 231 



Part 2 Programming with Visual J++ 

This is a small example with simple code in the onPaint method. You might therefore not 
see much benefit from overriding the onEraseBackground event in this case. However, 
in your own control where the paint code might be more complex, using the illustrated 
technique greatly reduces flicker. 

Another technique to increase the visual stability of a control is to double-buffer your 
on-screen image. In this technique, you maintain a bitmap of the entire client area, and 
then create a Graphics object based on that image. Performance of graphical updates 
against the buffer is much quicker than normal. 

You should use the double-buffering technique only if you have overridden 
onEraseBackground and optimized your paint code already and are still experiencing 
flicker. Double-buffering is a resource-intensive operation, because you are maintaining 
an extra copy of the control's image. For large images, this can require substantial memory 
(the exact amount depends on the size of the image and its color depth). Maintaining the 
buffer can also slow performance if the buffer stores a large area. 

To use a double buffer in your control, do the following: 

• Specify that you are handling the onEraseBackground event. 

• Override the onResize method to create a new buffer matching the new client area. It is 
also a good idea to dispose of the old buffer to free up resources. You should also call 
the invalidate method; by default, Windows will invalidate only the regions directly 
affected by the resize. 

• In the paint code, create a Graphics object from the buffer, and perform all your draw 
operations on that object. You must explicitly set the backColor and pen properties for 
the Graphics object based on those defined for the buffer. 

The following example draws a simple star pattern inside the client area of the control. 
If you did not include a double buffer, the control would flicker noticeably: 

II Star.java 
import com.ms.wfc.ui .*; 
import com.ms.wfc.core.*; 

public class Star extends Control 
{ 

II Create buffer 
Bitmap buffer = null; 
II Override onResize in order to recreate buffer at new size 
protected void onResize(Event e) { 

if (buffer != null) { 
buffer.dispose(); II Frees resources 
buffer - null; 

232 Programmer's Guide 



Chapter 13 WFC Control Development 

} 

Point s - getClientSize(); 
buffer - new Bitmap(s.x, s.y); 
invalidate(); II Forces Windows to redraw entire control 
super.onResize(e); 

protected void onEraseBackground(EraseBackgroundEvent event) { 
event.handled - true; 

} 

protected void onPaint(PaintEvent pe) { 
Graphics 9 ... buffer.getGraphics(); 
Rectangle client ... getClientRect(); 

} 

II Explicitly set backColor and pen based on buffer's values 
g.setBackColor(getBackColor(»; 
g.setPen(new Pen(getForeColor(»); 
g.clearRect(client); 
int x ... 0; 
int y = 0; 
int xCenter ... cl i ent. wi dth/2; 
int yCenter = cl i ent. hei ghtl2; 

II Draws a star 
for (; x<client.width; x+=4) { 

g.drawLine(x, y, xCenter, yCenter); 

for (; y<client.height; y+=4) { 
g.drawLine(x, y, xCenter, yCenter); 

} 

for (; x>-0; x-=4) { 
g.drawLine(x, y, xCenter. yCenter); 

for (; y>=0; y-=4) { 
g.drawLine(x, y, xCenter, yCenter); 

} 

g.dispose(): 

pe.graphics.drawlmage(buffer, 0, 0); 

public static class ClassInfo extends Control.ClassInfo { 
} 

Programmer's Guide 233 



Part 2 Programming with Visual J++ 

Adding a Bitmap for a Control 
As part of the visual representation of your control, you can assign a 16-by-16-pixel 
bitmap to it. The bitmap is displayed in the Visual J++ Toolbox when your control 
is available. The bitmap is also displayed for controls that do not have a run-time 
representation, such as timers. 

Note The bitmap is used only if the control is being used as a WFC control. If used as 
an ActiveX control, the control displays a standard, predefined bitmap in the toolbox. 

By default, the Classlnfo object loads any bitmap that has the same file name as your 
control. If your control is named MyControl.java, you can associate a bitmap with it by 
just adding MyControl.bmp to the folder where your MyControl.class file is. 

Alternatively, you can specify a particular bitmap by overriding the getToolboxBitmap 
method in your Classlnfo subclass. The following example shows how you can assign the 
bitmap Gears.bmp to your control: 

public Bitmap getToolboxBitmap(){ 
return - new Bitmap(MyControl.class, "Gears.bmp"); 

The bitmap you specify should be no more than 16-by-16 pixels in size, and should use 
16 colors or fewer. Visual J++ can automatically resize a bitmap that is not of the correct 
dimensions, but this often results in a graphic that does not look good. 

Creating Control Customizers 
Customizers are a type of per instance design-time metadata. The ClassInfo class defines 
metadata that is specific to the class; in contrast, the customizer provides access to more 
advanced design-time functionality. By creating a Customizer object, you can add 
functionality to your control such as specifying design-time activation, adding control 
verbs, and creating design pages (cllstom property pages). 

As with the value editors, there is a default implementation of 
com.ms.wfc.core.ICustomizer - com.ms.wfc.core.Customizer. You can override the 
getCustomizer method in Classlnfo to return an instance of a cllstomizer. 

Specifying Design-Time Activation 
WFC supports design-time activation of controls, such as design-time scrolling or item 
expansion, through a simple hit testing scheme. When a control is selected, hit test requests 
will be passed to the control's customizer. If the hit test returns true then the control will 
be considered active at that location. This simple architecture aIIows for very seamless 
activation of regions of a control, such as the tab area of a tab strip. 

234 Programmer's Guide 



Chapter 13 WFC Control Development 

The following example illustrates a simple hit testing method that allows the control to 
receive messages when the mouse is over the top 50 pixels of the control: 

Note A control is only activated (and the getHitTest event is fired) when it is the 
primary selected component. 

import com.ms.wfc.ui .*: 
import com.ms.wfc.core.*: 

public class MyTabControl extends Control { 

public static class ClassInfo extends Control.ClassInfo 
public ICustomizer getCustomzier(Object comp) { 

return «MyTabControl)comp).new Customizer(): 
} 

public class Customizer extends com.ms.wfc.core.Customizer 
public boolean getHitTest(Point pt) { 

if (pt.y < 50) { 
return true; 

return false: 
} 

Specifying Control Verbs 
Verbs allow you to define design-time actions that can be performed on an object. 
Verbs typically appear on the shortcut menu for the control in the designer. 

To create a verb, subclass the Customizcr class and then create a CustomizerVerb object, 
which allows you to specify the text for your verb and to create a delegate that binds the 
action of the verb to a method that you specify. 

The following example illustrates how to create a verb called About. The About class 
offers one verb that reads "About" in the context menu and displays a simple message box. 
The method to display the results of the Action verb is included in this class: 

II About.java 
import com.ms.wfc.ui.*: 
import com.ms.wfc.core.*: 

public class About extends Control { 
public static class ClassInfo extends Control.ClassInfo 

public ICustomizer getCustomizer(Object comp) { 
return «About)comp).new Customizer(): 

Programmer's Guide 235 



Part 2 Programming with Visual J++ 

} 

public class Customizer extends com.ms.wfc.core.Customizer { 
public CustomizerVerb[] getVerbs() { 

} 

CustomizerVerb v = new CustomizerVerb("About", 
new VerbExecuteEventHandler(About.this.showAbout»; 

return new CustomizerVerb[] {v}; 

private void showAbout(Object sender, Verb Execute Event event) { 
MessageBox.show("This control was written in WFC", "About", 

MessageBox.OK); 
} 

In addition to the data and the delegate, you can specify the checked and enabled state 
of the item and associate a bitmap with the item. Although currently Visual J++ will not 
display a bitmap specified in a customizer (for instance, in a shortcut menu), other hosts 
might support this feature. 

Specifying Design Pages 
Design pages are the WFC equivalent of property pages. Design pages can be edited in 
the design-time environment. To implement a design page, you create a class that extends 
DesignPage class and overrides the onReadProperty and onWriteProperty methods. 

Note Although WFC supports design pages, you are encouraged to provide 
functionality for your control through custom editors, verbs, and design-time 
activation. For details, see "Creating a Custom Properties Value Editor," earlier in 
this chapter. 

The following example illustrates how to create a design page for an alignment property. 
The alignment values (left, center, right) are implemented as group of option buttons. In 
the onReadProperty method, the code checks for the alignment property and returns the 
object value of the property as it is set in the design page. In the onWriteProperty method, 
the code again checks for alignment and displays its value in the design page. In the handle 
for all the radio buttons, the setDirty method is called, which marks the design page as 
dirty and enables the Apply button in the Properties window: 

II SuperLabelDP.java 
import com.ms.wfc.core.*; 
import com.ms.wfc.ui.*; 

public class SuperLabelDP extends DesignPage { 
public SuperLabelDP() { 

initForm(); 
} 

236 Programmer's Guide 



private void setAlign(int value) 
switch (value) { 

case AlignStyle.LEFT: 
radioButtonl.setChecked(true); 
break; 

case AlignStyle.CENTER: 
radioButton2.setChecked(true); 
break; 

case AlignStyle.RIGHT: 
radioButton3.setChecked(true); 
break; 

private int getAlign() { 
int align = AlignStyle.LEFT; 
if (radioButtonl.getChecked(» 

align = AlignStyle.LEFT; 

else if (radioButton2.getChecked(» 
align = AlignStyle.CENTER; 

else if (radioButton3.getChecked(» 
align = AlignStyle.RIGHT; 

return align; 

private void radioClicked(Object sender. Event e) { 
setOirty(); 

} 

protected Object onReadProperty(String name) { 
if (name.equals("alignment"» { 

return new Integer(getAlign(»; 

retu rn null; 

protected void onWriteProperty(String name. Object value) { 
if (name.equals("alignment") && value instanceof Integer) 

setAlign«(Integer)value).intValue(»; 

Container components = new Container(); 
GroupBox groupBoxl = new GroupBox(); 
RadioButton radioButtonl new RadioButton(); 
RadioButton radioButton2 new RadioButton(); 
RadioButton radioButton3 new RadioButton(); 

Chapter 13 WFC Control Development 

Programmer's Guide 237 



Part 2 Programming with Visual J++ 

} 

private void initForm() { 
this.setText("Alignment"): 
this.setAutoScaleBaseSize(13): 
this.setBorderStyle(FormBorderStyle.NONE): 
this.setClientSize(new Point(307. 131»: 
this.setControlBox(false): 
this.setMaxButton(false): 
this.setMinButton(false): 

} 

groupBox1.setLocation(new Point(S. S»: 
groupBox1.setSize(new Point(12S. 112»: 
groupBox1.setTablndex(0): 
groupBox1.setTabStop(false): 
9 roupBoxl. setText (" Ali gnment "): 

radioButton1.setLocation(new Point(S. 16»: 
radioButton1.setSize(new Point(112. 25»: 
radioButton1.setTablndex(0): 
radioButton1.setTabStop(true): 
radioButton1.setText("Left"): 
radioButton1.setChecked(true): 
radioButton1.addOnClick(new EventHandler(this.radioClicked»: 

rad1oButton2.setLocat1on(new Point(S. 4S»: 
rad1oButton2.setS1ze(new Point(112. 25»: 
rad1oButton2.setTablndex(1); 
rad1oButton2.setText("Center"): 
rad1oButton2.addOnClick(new EventHandler(this.radioClicked»: 

radioButton3.setLocat1on(new Point(S. S0»: 
radioButton3.setSize(new Point(112. 25»: 
radioButton3.setTablndex(2): 
radioButton3.setText("R1ght"): 
radioButton3.addOnClick(new EventHandler(this.rad1oC11cked»: 

this.setNewControls(new Contral[] { 
groupBaxl}) : 

graupBax1.setNewCantrols(new Cantral[] 
radioButtan3. 
radioButtan2. 

radi oButtonl}): 

238 Programmer's Guide 



Chapter 13 WFC Control Development 

U sing Controls 
After creating a WFC control, you can use it in a host environment the way you would 
any control. 

Registering a Control 
Controls must be registered on the computer where they will run. The control must include 
information that the registration process can read that identifies the control, and that is then 
placed in the Windows registry of the computer where the control will run. By reading the 
registration information, applications can find and load the control. 

Note If you are using the control on the computer where you built the control 
project, you do not need to register the control; the build process registers the control 
automatically. If you are using the control in Visual J++, you do not need to explicitly 
include registration information. 

The host application also requires a type library (.db file) for your control, which includes 
information about the control's members. The application reads the information in the type 
library to know what properties, events, and methods your control supports. Visual J++ can 
automatically generate a type library for your control during the build process. 

Specifying Registration and Type Library Information 
Registration requires the following information: 

• A class ID (clsid), which is a GUID (globally-unique ID) that uniquely identifies your 
control. You need a class ID for both the control itself and for its type library. 

• A program ID (progID), which is the name used in the host application when creating 
an instance of the control, such as MyProject.MyControl. 

If you have used the WFC Component Builder to create your control, class IDs are 
generated for you automatically. You can also have Visual 1++ create class IDs for you 
automatically during the build process hy specifying that your control is a COM DLL. 
You can select this option in the COM Classes tab of the project's Properties window. 
For details about building a DLL, see Chapter 17, "Building COM Objects." 

Finally, you can create and include class lOs for your control manually. You might do this 
if you want to guarantee that the class ID remains the same for your control, or if you have 
to know the classID for some other purpose and do not want to let Visual 1++ generate it 
for you. You can generate a GUID with a program such as Uuidgen.exe, a utility freely 
available on the Microsoft Web site. You must provide two class IDs in all- one for the 
control and a second one for its type library. 

Programmer's Guide 239 



Part 2 Programming with Visual J++ 

To make the manual registration information visible to the registration program, you 
include it in a directive embedded comment in your control's .java file. The format is: 

/* 
* @com.register ( clsid=guid, typelib=guid ) 
*/ 

For example, a registration block might look like the following (the example wraps 
because the class IDs are long, but should not wrap in your file): 

/* 
* @com.register ( clsid=d0702fa0-fb3b-lldl-BfBB-00aa00600a54, typelib=d310Ba20-fb3b-lldl­

BfBB-00aa00600a54 ) 
*/ 

When you build the project for your control, the build process looks for this block. If it is 
found, the build process generates a type library for the control. It also then registers the 
control and the type library on your computer. 

Creating a ProglD 
The registration process automatically builds a progID for your control using the following 
format: 

ProjectName.ControlName 

For example, your control project might be MyProject and the control's .java file might be 
MyControl.java. After registration, the control's progID would be MyProject.MyControl. 

Running the Registration Process 
If you intend to use the control on the computer where you built it, you do not need to 
register it - the build process automatically registers it for yOll. However, if you are 
distributing the control to another computer, you must register it there. 

If you have built your control as a COM DLL, you can register it as you do any control, 
using the Windows Regsvr32.exe program. In a Command window lise the following 
syntax: 

Regsvr32.exe pathicontro7Name 

If your control is simply compiled as a .class file, you use a command-line utility called 
Vjreg.exe that is included with Visual J++. (You cannot use Regsvr32.exe to register your 
control because that utility is not designed to register .class files.) Register your control in 
a Command window using the following syntax: 

Vjreg pathicontro7Name 

When you run this command, it registers the Msjaval.dll as the control's server, with the 
name and path of your control as a parameter. 

240 Programmer's Guide 



Chapter 13 \¥FC Control Development 

Working with a Control in a Host Application 
You can work with your control in a host application, such as Visual J++, Visual Basic, or 
Internet Explorer, as you would with any control. To run any control created in Visual J++, 
the following must reside on the host computer: 

• The Microsoft Virtual Machine for Java (VM) available with Visual J++ 6.0. 
A redistributable VM is available as the file Msjavx86.exe. This version of the VM 
is compatible with both Internet Explorer 3.02 and 4.0, but some control features 
might not be available under version 3.02. 

In addition, for each control you must distribute the following files: 

• The .class files for all the classes in your control's project. 

• The type library (.tlb file) generated for your project during the build process. 

• The .dat files generated during the build process for your control. 

• The VJPROJS.SRG file, which contains registration information. 

Note If you are running the control on the computer where you built the control 
project, all of these files are already available. 

After installing the files on the host computer, you must register the control as described 
in "Registering a Control," earlier in this chapter. You can then create instances of the 
control. In many host applications, you can add the control to a toolbox. For example, in 
Visual Basic, you can right-click the Toolbox, choose Components, and then select your 
control. 

Using a Control in Internet Explorer 
To use a control in Internet Explorer, create an <OBJECT> element. In the CLASSID 
attribute, identify your control in one of the following ways: 

• By progID Use a CLASSID attribute such as the following: 

<OBJECT CLASSID="progid:MyProject.MyControl"> 
<IOBJECT> 

• By ClassID Use a CLASSID attribute such as the following: 

<OBJECT CLASSID-"clsid:d0702fa0-fb3b-lldl-8f88-00aa00600a54") 
<IOBJECT> 

• Using your control's class name This syntax requires the version of the Microsoft 
Virtual Machine for Java that ships with Visual J++ 6.0 or later. Use a CLASSID 
attribute that includes the JAVA moniker, as in the following example: 

<OBJECT CLASSID="JAVA:MyControl") 
<IOBJECT> 

Programmer's Guide 241 



Part 2 Programming with Visual J++ 

Creating Composite WFC Controls 
You can use the Windows Foundation Classes for Java (WFC) component model to 
create two types of controls: custom and composite. 

Custom controls derive from the com.ms.wfc.ui.Control class. You can design a custom 
control in its entirety or subclass an existing WFC control. For more information on 
creating custom controls, see "Writing WFC Controls," earlier in this chapter. 

Composite controls are controls that include other controls. All composite controls are 
derived from the com.ms.wfc.ui.UserControl class. Because the UserControl class is a 
subclass of the com.ms.wfc.ui.Form class, you can use the Forms Designer to layout the 
controls that define your composite control. 

By creating the control in this section, you willleam how to: 

• Use the Forms Designer to define the layout of your control. 

• Add properties and events using the WFC Component Builder. 

• Add supporting code for a control. 

Creating a Control Project 
The Visual J++ Control template provides a head start in creating a WFC control. 
The template provides a class that is derived from com.ms.wfc.ui.UserControl 
and that contains a ClassInfo class that is derived from UserControl.ClassInfo. 

Note Before you start the following procedure, close any open projects. 
(On the File menu, click Close All.) 

To create a control project with the Control template 

1. On the File menu, click New Project. 

2. On the New tab, expand the Visual J++ Projects folder, click Components, 
and then select the Control icon. 

3. In the Name box, type a name for your project. 

For this scenario, type GroupCheck. 

4. In the Location box, type the path where you want to save your project, or click 
Browse to navigate to a directory. 

5. Click Open. 

A collapsed view of your project appears in Project Explorer. 

242 Programmer's Guide 



Chapter 13 WFC Control Development 

6. In Project Explorer, expand the project node. 

A file with the default name Controll.java is added to your project. 

7. To rename the control source file to GroupCheck.java, right-click the file name in 
Project Explorer, and then click Rename. 

Note Renaming this file does not rename the associated class in the source code 
and vice versa. You must manually change all instances of the old name. (You can 
create an empty project and then add a control class to the project. You can then 
name the control before it is created.) 

The next step is to design the layout of your control. 

Designing the Layout of the Control 
Use the Forms Designer to design the layout of a composite control. This process is 
identical to designing the layout of a form. You can add controls from the Toolbox, move 
and size controls on the surface of the UserControl, specify properties, and create event 
handlers. 

This scenario demonstrates how to create a composite control that contains a GroupBox 
control and a CheckBox control in the upper-left comer of the GroupBox control. When 
the composite control is placed on a form, you can add controls within the GroupBox 
portion of the control. When the CheckBox control is unchecked, the controls within the 
composite control are disabled; when the CheckBox control is checked, the controls within 
the composite control are enabled. 

To add controls to the UserControl 

1. To open your control in the Forms Designer, double-click GroupCheck.java in 
Project Explorer. 

2. In the Toolbox, select the WFC Controls tab. 

If the Toolbox is not displayed, click Toolbox on the View menu. 

3. To add a GroupBox control to the UserControl, click the GroupBox control in the 
Toolbox, and then click the UserControl design surface. 

A GroupBox control is added with the default name of groupBoxl. 

4. To add a CheckBox control to the UserControl, click the CheckBox control in the 
Toolbox, and then drag the control over the upper-left comer of the Group13ox control 
you added previously. 

A CheckBox control is added with the default name of checkBox!. Ensure that the 
CheckBox control is contained within the GroupBox control. 

To save screen space, it is important that you resize the UserControl. Because the 
UserControl can be resized, it is also important for the controls within the UserControl 
to resize when the dimensions of the U serControl change. 

Programmer's Guide 243 



Part 2 Programming with Visual J++ 

To set the size of the controls 

1. Resize the UserControl's design surface around the GroupBox and CheckBox controls 
to eliminate extra space. (To resize the design surface, select it and drag the resize 
handles.) 

The size of the U serControl' s design surface is the default size of the control when it is 
added to a form. 

2. To allow the GroupBox control to be resized when the UserControl is resized, select 
the GroupBox control in the Forms Designer and set the anchor property to Top, Left, 
Right, Bottom. 

The GroupBox control is now anchored to the borders of the UserControl. 

3. To provide the user of the GroupCheck control with a correct display, modify the 
properties of the GroupBox and CheckBox controls that were added to the 
UserControl. 

To set the properties of the controls 

1. To remove the default caption of the GroupBox control, in the Properties window, 
select the tcxt property and clear its contents. 

2. To set the default state of the CheckBox control to be checked, select the control in the 
Forms Designer, and set the chccl{cd property in the Properties window to true. 

The next step is to add a property to your control. 

Adding a Custom Property with the 
WFC Component Builder 

Use the WFC Component Builder to add and delete custom properties from your controls. 
By using the WFC Component Builder, you can get a head start in defining properties for 
your controls. 

To add a property using the WFC Component Builder 

1. In Project Explorer, right-click your control's source file, and then click View Codc. 

The Text editor opens and displays the source for your control. 

2. In Class Outline, right-click your control's class name and click WFC Componcnt 
Builder. (To display Class Outline, on the Vicw menu, point to Other Windows, 
and then click Document Outlinc.) 

3. In the Properties section of the WFC Component Builder, click Add. 

4. In the Add WFC Property dialog box, define the checked property for the 
GroupCheck control according to the following table, and then click OK. 

244 Programmer's Guide 



Chapter 13 WFC Control Development 

Field Value 

Name checked 

Data Type Boolean 

Category Behavior 

Description 

Read-only Property 

Declare Member Variable 

Determines whether the control's check box is checked. 

unchecked 

unchecked 

5. In the WFC Component Builder, click OK. 

The WFC Component Builder adds the getChecked and setChecked methods to the 
code and a property definition to the control's ClassInfo class. 

The next step is to add code to the getChecked and setChecked methods. 

Adding Code to Property Methods 
The WFC Component Builder creates the methods and fields needed to define and 
implement your custom properties. Typically, you modify this code to provide your 
own implementation. 

To add code to your property methods 

1. For the getChecked method to return the checked state of the CheckBox control, 
replace the code that was added by the WFC Component Builder with the following 
line of code: 

return checkBoxl.getChecked(): 

2. For the setChecked method to set the checked state of the CheckBox control, as well 
as call other methods that this scenario needs, replace the code that was added by the 
WFC Component Builder with the following lines of code: 

checkBoxl.setChecked(value): 
onCheckedChanged(Event.EMPTY): 
enablcControls(this. value): 

This code sets the checked state of the CheckBox control based on the value that is 
passed to the property's method. The code also calls the onCheckedChangcd method 
and makes a call to the enabl eControl 5 method. The call to the onCheckChanged 
method triggers a custom event, checkedChanged, which will be added later in this 
scenario. 

Programmer's Guide 245 



Part 2 Programming with Visual J++ 

The Event. EMPTY value passed to onCheckedChanged defines an empty Event object 
to be assigned to the checkedChanged event. The call to the enabl eControl s method 
is used to enable or disable controls that are added to the GroupCheck control. This 
method will also be added later in this scenario. 

The next step is to add an event to your control. 

Adding Events with the WFC Component Builder 
Use the WFC Component Builder to add and delete custom events from your controls. 
You can then avoid manually defining events in your control's ClassInfo class. 

To add an event using the WFC Component Builder 

1. In Class Outline, right-click your control's class name, and then click WFC 
Component Builder. (To display Class Outline, on the View menu, point to 
Other Windows and then click Document Outline.) 

2. In the Events section of the WFC Component Builder, click Add. 

3. In the Add WFC Event dialog box, define the checked Changed event for the 
GroupCheck control according to the following table, and then click OK. 

Field 

Name 

Type 

Category 

Description 

Value 

checked Changed 

Event 

Action 

Occurs when the control's check box check state is changed. 

4. In the WFC Component Builder, click OK. 

The WFC Component Builder adds the addOnCheckedChangcd. 
removeOnCheckedChanged, and onCheckedChanged methods to the code and adds 
an event definition in the control's ClassInfo class. The WFC Component Builder 
also adds an instance of the EventHandler delegate, which is lIsed by the event. 

The next step is to override inherited methods. 

246 Programmer's Guide 



Chapter 13 WFC Control Development 

Overriding the UserControl's Methods 
Use Class Outline to easily override methods in your control's inherited classes. 
The overridden method code that is created by Class Outline provides a head start in 
implementing the method in your control's class. You can use the comments provided 
by Class Outline in your overridden method code to quickly determine where to add 
your own code. 

To override a method using Class Outline 

1. In Class Outline, expand the class node. 

2. Expand the Inherited members node, and right-click the method name that you want 
to override. 

If the method can be overridden, the shortcut menu displays Override Method. 

3. Click Override Method. 

Class Outline adds a method definition for the specified method to your source code. 

4. For the GroupCheck control, create overridden methods for the add, getControl, 
getControl Count, getControl 5, remove, and setText methods. 

The next step is to add code to the overridden methods. 

Adding Code to Overridden Methods 
After you have created overridden methods using Class Outline, you provide your 
implementation code to the method definitions. Depending on how you implement the 
overridden method, you can either retain or remove the call to the superclass version of 
the method. 

Adding Code to the add Method 
To add controls to the GroupCheck control's GroupBox control, you add codl.: to the 
GroupCheck's add method that calls the GroupBox's add method. This causes the 
GroupBox control, instead of the GroupCheck control, to parent the control being added. 

Programmer's Guide 247 



Part 2 Programming with Visual J++ 

To add code to the add method 

1. Before adding code to the add method, you add a private member variable to the 
GroupCheck class to determine whether controls can be added. Add the following line 
of code to the GroupCheck class: 

private boolean m_bReady = false; 

2. Inside the definition of the add method, add the following code: 

if (m_bReady){ 

} 

control. setEnabl ed (checkBoxl. getChecked ( ) ) ; 
groupBoxl.add(control); 

else 
super.add(control) ; 

This code determines whether the m_bReady member variable is set to true. This check 
is made to prevent the control's GroupBox control from being added to itself. If the 
value of m_bReady is true, the code calls the setEnabl ed method of the control passed 
as a parameter to the method. The setEnabl ed method is passed the checked state of 
the GroupCheck control's CheckBox control. Because controls can be added to the 
GroupChcck control when it is unchecked, it is important that controls be enabled or 
disabled properly when added. 

The code then ca]]s the GroupBox control's add method and passes the control 
parameter to have the control added to the GroupBox control instead of the 
User-Control. If the m_bReady member variable is set to false, a call is made to 
the superc1ass version of the add method with the control passed as a parameter. 

Adding Code to Control-Related Methods 
So that the user can access the controls within the GroupBox control, you provide code in 
the getControl, getControl Count, and getControl s methods that calls the GroupBox 
control's implementation of these methods. 

To add code to control-related methods 

1. Inside the definition of the getControl method, type the following code to replace the 
code that was added by Class Outline: 

return groupBoxl.getControl(index); 

2. Inside the definition of the getCont ro 1 Count method, type the following code to 
replace the code that was added by Class Outline: 

return groupBoxl.getControlCount(); 

3. Inside the definition of the getControl s method, type the following code to replace 
the code that was added by Class Outline: 

return groupBoxl.getControls(); 

248 Programmer's Guide 



Chapter 13 WFC Control Development 

Adding Code to the remove Method 
So that controls can be deleted from the GroupCheck control, you provide code in the remove 
method for the GroupCheck control that calls the GroupBox control's remove method. 

To add code to the remove method 

• Inside the definition of the remove method, type the following code to replace the code 
that was added by Class Outline: 

if(m_bReady) { 
groupBoxl.remove(c): 

} 

else { 
super.remove(c): 

} 

This code determines whether the m_bReady variable is true. If it is, the code calls the 
GroupBox control's version of the remove method with the control that is passed to the 
method as a parameter. The check for m_bReady being true is performed to prevent the 
CheckBox or GroupBox controls from being removed. If m_bReady is false, the code 
calls the superclass version of the method to ensure that the control being removed is 
handled properly. 

Adding Code to the setText Method 
The GroupBox control does not provide a way to autosize the text portion of the control 
to the amount of text being displayed. For the GroupCheck control to display its text 
properly, override the setText method to determine the correct width of the control based 
on the size of the text to display. 

To add code to the setText method 

o Inside the definition of the setText method, type the following code to replace the 
code that \Vas added by Class Outline: 

Graphics g - checkBoxl.createGraphics(): 
checkBoxl.setWidth(g.getTextSize(value).x + 20): 
g.dispose(): 
checkBoxl.setText(value): 
super.setText(value): 

This code uses the Graphics class methods to determine the size of the text that is being 
specified. When the size of the text is determined, it is increased by a value of 20 to 
compensate for the size of the check box and the space between the check box and the 
text portion of the CheckBox control. The code then calls the di spose method of the 
Graphics class to free any resources that were allocated, sets the text property of the 
CheckBox control, and calls the superclass version of the setText method. 

The next step is to add a new method to the control. 

Programmer's Guidl! 249 



Part 2 Programming with Visual J++ 

Adding Methods to the Control 
When you are developing a control, you must often provide methods to perform actions 
in your control. For the GroupCheck control, you add a method that disables or enables 
the controls contained within the GroupBox control based on the checked state of the 
CheckBox control. The method is called from the setChecked method. 

To add a method to a control 

• Add the following method definition to the GroupCheck control's source code: 

public void enableControls(Control start, boolean enable) 

} 

for(int i = 0; i < start.getControlCount(); i++) { 

} 

Control c - start.getControl(i); 
if(c -= groupBox! I I c -= checkBox!) { 

continue; 
} 

c.setEnabled(enable); 
enableControls (c, enable); 

The enabl eControl s method accepts a control and a Boolean value that determines 
whether the contained controls should be enabled or disabled. When this method 
is called by the setChecked method, it is passed the current instance of the 
GroupCheck control. 

The enabl eControl s method begins by looping through all the controls that are 
contained in the s ta rt control parameter. Within the for loop, the code obtains a 
contained control using the getControl method with the for loop's current index. 
If the control is not the GroupCheck control's GroupBox or CheckBox controls, 
the code enables or disables the specified control based on the value of the enable 
parameter. Any controls that are contained within this control arc then enabled or 
disabled through a recursive call to enabl eControl s. 

The next step is to add code to the constructor. 

250 Programmer's Guide 



Chapter 13 WFC Control Development 

Adding Code to the Constructor 
To provide initial settings for your control, you add code to the constructor. For the 
GroupCheck control, you add code that sets the control properly when it is added 
to a form. 

To add code to the constructor 

• Replace the code in the constructor for the GroupCheck control with the following 
lines of code: 

super() : 

initForm(): 

setStyle(this.STYLE_ACCEPTSCHILDREN, true): 
m_bReady = true: 

This code sets the style of the GroupCheck control to one that accepts child 
controls. The code also sets the private member variable m_bReady to true so that 
the GroupCheck control's add method knows that the control is finished initializing 
and can accept controls to be added to the GroupBox control. 

The next step is to build the control. 

Building the Control 
To use your control, you must build it. When the control has been built, you can then 
add it to the Toolbox. 

To build the control 

1. On the Build menu, click Build. 

Any compilation errors or messages appear in the Task List. (Double-clicking an error 
in the Task List moves the insertion point in the Text editor to the code that caused 
the error.) 

2. Correct the errors and rebuild your control. 

The final step is to debug the control. 

Programmer's Guide 251 



Part 2 Programming with Visual J++ 

Debugging the Control 
After you have built your control, you test and debug the control to ensure that it operates 
as you designed it. To do this, add your control to the Toolbox, add a fonn to the project, 
and then add the control to the fonn. For the GroupCheck scenario, you also add controls 
to the GroupCheck control, add an event handler for the control's custom events, and then 
build and run the control. 

Adding the Control to the Toolbox 
After you have built your control, you add it to the Toolbox in order to use it. 

To add the control to the Toolbox 

1. Right-click the ToolBox, and click Customize Toolbox. 

2. Click the WFC Controls tab, and select the name of your control. 

For this scenario, click the GroupCheck control. 

3. Click OK. 

Adding a Form to the Project 
To test and debug your control, you add a fonn to your project. 

To add a form to your project 

1. In Project Explorer, right-click the name of your project, point to Add, and then click 
Add Form. 

2. Click thc Form icon. 

3. In the Name box, type a name for the form. 

Ensure that the name of the form is not GroupCheck so that the form's source file 
does not conflict with the namc of your control. 

4. Click Open. 

A form is added to your project with the name that you specified and is opened in the 
Fonns Designer. 

252 Programmer's Guide 



Chapter 13 WFC Control Development 

Adding the Control to the Form 
To test the control, you add the control to a form. 

To add your control to a form 

1. Select the form. 

2. In the Toolbox, double-click your control. 

The control is added to the center of the form. 

Adding Controls to the GroupCheck Control 
To ensure that the GroupCheck control is properly parenting controls that are added to it, 
you add other WFC controls to the GroupCheck control. 

To add other controls to the GroupCheck control 

1. On the form, select the GroupCheck control. 

2. In the Toolbox, double-click a control to add the specified control to the center of the 
GroupCheck control. 

Creating Event Handlers 
The GroupCheck control contains a custom event called checkedChanged. This event is 
triggered when the CheckBox control that is contained in the GroupCheck control is either 
checked or unchecked. To determine whether the event is being triggered properly, you 
add an event handler for the checked Changed event to your form. 

To add an event handler for the checkedChange event 

1. In the Properties window, click the Events toolbar button. 

2. To display the events of the GroupCheck control, select either the GroupCheck control 
on the form or the name of the control in the Properties window. 

3. Double-click the checkedChangcd event to create an event handler with the default 
method name. 

The Text editor opens to an empty event handler. 

To determine whether the checkedChanged event is being triggered, add code to the event 
handler for the form that displays a message box each time the event is triggered. 

To add code for the event handler 

• Inside the definition for the event handler, add the following line of code: 

MessageBox.show("The checkedChanged event was triggered."): 

Programmer's Guide 253 



Part 2 Programming with Visual J++ 

Building and Testing the Control 
After you have added the control to a form, added controls to the GroupCheck control, 
and added an event handler for the control's checkedChanged event, you build and run 
the project. 

To build and run the form 

1. On the Build menu, click Build. (If you receive any compilation errors or messages, 
correct the errors and rebuild your project.) 

2. To run the form, click Start on the Debug menu. 

Because you are running your project for the first time and because your project 
contains two .java files, the Project Properties dialog box is displayed. 

3. On the Launch tab, select the Default option button. 

4. Specify that Form! should load when the project runs, and click OK. 

For more information about project properties, see "Setting Project Options" in 
Chapter 1, "Creating Projects." 

While the project is running, you can manipulate the control to determine whether it 
operates properly. 

To test the control at run time 

• Click the check box in the GroupCheck control. 

A message box is displayed notifying you that the checkedChanged event was 
triggered. This event occurs each time the check box's checked state changes. 
The controls contained in the GroupCheck control are either enabled or disabled 
depending on the checked state of the control. 

For information on exporting a WFC control as an ActiveX control see "Building 
ActiveX Controls" in Chapter 16 "Building and Importing ActivcX Controls." 

254 Programmer's Guide 



C HAP T E R 1 4 

Programming 
Dynamic HTML in Java 

With Microsoft Internet Explorer 4.0, Microsoft introduced its implementation of a 
revolutionary HTML object model that content providers can use to effectively manipulate 
HTML properties on the fly. Until now, this object model has primarily been accessed 
using script technology. The com.ms.wfc.html package of the Windows Foundation 
Classes for Java (WFC) framework now lets you access the power of Dynamic HTML 
(DHTML) on a Web page directly from a Java class. 

The following subjects are covered in this section: 

• Introduction to the com.ms.wfc.html Package 

• U sing the initForm Method 

• Understanding the DhElement Class 

• Working with Containers 

• Handling Events 

• U sing Dynamic Styles 

• Working with Dynamic Tables 

• Using the com.ms.wfc.html Package on the Server 

Programmer's Guide 255 



Part 2 Programming with Visual J++ 

Quick Start 
To help you get up and running using the com.ms.wfc.htmI package to implement Java and 
DHTML, here are the basic steps you can perform to create a simple DHTML project and 
add your own dynamic behavior to it. While this is by no means the entire story, it sets the 
stage for the rest of this subject and for the samples. There are five basic steps when using 
the com.ms. wfc.htmI package: 

1. Create a new project by choosing New Project from the File menu and selecting 
Code-behind HTML from the Web Pages category. 

This generates a project containing a class called Class!, which extends DhDocument. 
This class represents the dynamic HTML document. You add initialization code to its 
initForm method to control the document's contents and behavior. 

You can now extend the behavior of your document by doing the following: 

2. Create new elements (such as DhButton) or create element objects that represent 
existing elements in the document (on the HTML page). 

3. Hook event handlers into some of your elements. 

4. In your Classl.initForm method, add the new elements using the setNewElements 
method, and bind any existing clements using the setBoundElements method. 

5. Write the event handler methods you hooked up in step 3. 

Your document class will look something like this: 

import com.ms.wfc.html .*; 
import com.ms.wfc.core.*; 
import com.ms.wfc.ui.*; 

public class Classl extends DhDocument 
{ 

public Classl() 
{ 

initForm(); 
} 

II Step 2: create objects to represent a new elements_ 
DhButton newElem = new DhButton(); 
II _ as well as elements that already exist in the HTML page. 
DhText existElem = new DhText(); 

private void initForm( 
{ 

II Set properties to existing elements and newly added elements. 
newElem.setText("hello world"); 
existElem.setBackColor(Color.BLUE); 

256 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

II Step 3: hook up an event handler to your object 
newElem.addOnClick(new EventHandler(this.onClickButton»; 

II Step 2: create an object to represent an existing element 
existElem ~ new DhText(); 

II Step 4: call setNewElements with an array of new elements 
setNewElements(new Component[] { newElem }); 

II Step 4: call bindNewElements with an array of existing elements 
setBoundElements(new DhElement[]{ eXistElem.setBindID("Sample") }); 

II Step 5: implement your event handler 
private void onClickButton(Object sender. Event e) { 

existElem.setText("Hello. world"); 

The Java portion of the exercise is complete. The other part is the HTML code. The 
following example shows a simplified version of the HTML document generated by the 
Code-behind HTML project template. There are two HTML elements that connect this 
HTML to the code in your project: 

o The <OBJECT> tag loads the com.ms.wfc.html.DhModule class, which is instantiated 
by the Virtual Machine for Java. 

o The <OBJECT> tag has a parameter called CODECLASS. The value of this parameter 
is the name of the user class that extends DhDocument (for example, Class!). 

<HTML> 
<BODY> 
<OBJECT classid="java:com.ms.wfc.html .DhModule" 

height=0 width=0 ... VIEWASTEXT> 
<PARAM NAME-CABBASE VALUE=MyProject> 
<PARAM NAME-CODECLASS VALUE-Class!> 
<IOBJECT> 

<span id=Sample></span> 
<!-- Insert your own HTML here --) 

</BODY> 
</HTML> 

Open Internet Explorer 4.0, point it at your HTML file, and you can see your 
application run. 

Programmer's Guide 257 



Part 2 Programming with Visual J++ 

U sing the initForm Method 
The initForm method plays a central role in the programming model for all user interface 
programming in WFC. When using the Visual J++ Forms Designer for Win32-based 
applications, initForm is found in the Form-derived class that represents your main form. 
In the com.ms.wfc.html package, this method is found in your DhDocument-derived class 
(for example, Class! in the code-behind HTML template provided by Visual J++) and is 
called from the constructor of the class. 

You should use the initForm method to initialize the Java components that represent 
the HTML elements you want to access and code to. As with the initForm method in 
Form-derived classes, there are certain restrictions when calling WFC methods from 
initForm in DhDocument. As a rule, you should call only methods in initForm that set 
properties. Moreover, you should bind only to elements on the HTML page using the 
setBoundElements method. 

Specifically, this means that calling any method that resets or removes a property or 
element is strictly not supported in initForm. This also applies to any methods that attempt 
to locate clements on the existing HTML page (such as DhDocument.findElement). 

The reason for this is that the document on the existing HTML page is not merged with 
your DhDocument-derived class until the DhDocument.onDocumentLoad method is 
called. You can usc the onDocumentLoad method to retrieve properties and manipulate 
or locate elemcnts in the existing HTML document. For information on using the initForm 
and onDocumcntLoad methods on server-side classes, see "Using the com.ms.wfc.html 
Package on a Server," later in this chapter. 

Understanding the DhElement Class 
Elements are objects derived from DhElement, which is the supcrclass of all user interface 
elements in the com.ms.wfc.html package. There is a certain consistency you can count on 
when using any object derived from DhElement: 

• Every element has an empty constructor. Therefore, you can instantiate any element 
with a new statement and then set properties, hook event handlcrs, and call methods 
consistent! y. 

• Elements are modeless. Setting properties or calling methods always works in any 
order and is not conditional on some external state or circumstance. 

• Every container has an add method that takes the type-safe clement that is appropriate 
for it. 

• In the browser environment, an element does not become visible to the end user 
until you add it (or the topmost container element in its parentage) to the document. 
However, this is merely an artifact and not part of the programming model. You don't 
have to change the way you program to elements because they work the same way 
whether they are visible or not. 

258 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

If an element is already on the page when the DhDocument.onDocumentLoad method 
is called, you can call the document's findElement method and start programming to that 
element. You can also call setBoundElements from initForm to merge known elements 
on the page with elements in your DhDocument-derived class. (The findElement method 
has better performance but specifically requires that onDocumentLoad is called first.) 

The searching routine used by findElement and setBoundElements assumes that 
the element you want to bind to has an ID attribute set to a particular name. Using 
findElement, you can also enumerate all the elements in the document until you find 
the one you are interested in. 

Working with Containers 
Containers are elements that can hold other elements. A basic example is the <DIV> 
element, which can contain any other HTML item. More complex examples include table 
cells and, of course, the document itself. In most cases, containers can be arbitrarily nested, 
such as having a table inside a cell of another table. 

Containers are like other elements. They are created with a new statement, and many can 
be positioned and sized on the page. You can position and size elements within a container 
and set up their z-order relationships. One of the powerful features of DHTML is that you 
can then change any of these attributes in your code. 

Of course, you can also allow elements within a container to be positioned using the 
normal HTML layout rules. Call either the setLocation or setBounds method of an element 
to set its absolute position, or call resetLocation to let the HTML layout engine position it 
(immediately after the last element in the HTML flow layout). 

Once you have created a container element, you can add elements to it using either the 
setNewElements or add method. This mechanism follows the regular pattern of parent­
child relationships: the elements, which can also be other containers, added to the container 
become its children. None is actually attached to the document until the topmost container, 
which is not a part of any other container, is added to the document. 

You can position and size a container using its setBounds method. For example, to create 
a container, type: 

DhForm myForm - new DhForm(); 

You can then set various attributes on the container, including the ToolTip that is shown 
when the mouse hovers over the panel: 

myForm.setToolTip("This text appears when the mouse hovers"); 
myForm.setFont("Arial". 10); 
myForm.setBackColor(Color.RED); 
myForm.setBounds(5. 5. 100. 100); 

Programmer's Guide 259 



Part 2 Programming with Visual J++ 

Finally, you can add the container you've just created to the document in your 
DhDocument-derived class (such as Classl.java): 

this.add(myForm); 

When adding elements to the container, you can specify where they go in the z-order using 
one of a set of constants provided by the com.ms. wfc.html package. Elements are added 
with a default size and position. You can call setBounds on the elements to specify a 
different size. 

DhForm myOverLay1 = new DhForm(); 
DhForm myOverLay2 - new DhForm(); 
myOverLay1.setBackColor(Color.BLACK); 
myOverLay1.setBounds(10, 10, 50, 50); 
myOverLay2.setBackColor(Color.BLUE); 
myOverLay2.setBounds(20,25, 50. 50); 
myForm.add(myOverLay1. null, DhlnsertOptions.BEGINNING); 
II Black on top of blue 
myForm.add(myOverLay2, myOverLay1, DhlnsertOptions.BEFORE); 
II Blue on top of black (uncomment below and comment above) 
II myForm.add(myOverLay2, myOverLay1, DhlnsertOptions.AFTER); 

You can also usc the setZlndex method after the elements are added to move the elements 
around in the z-order. For example, the following syntax does not explicitly set a z-order 
on the added clement but uses the default z-order (that is, on top of all other elements): 

myForm.add(myText); 

You can set this explicitly as follows, where num is an integer representing the relative 
z-order of the clement within its container: 

myText.setZlndex(num); 

The element with the lowest number is at the bottom of the z-order (that is, everything 
else covers it). The element with the highest number is at the top (that is, it covers 
everything else). 

260 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

Handling Events 
Many elements in a DHTML program can trigger events. The com.ms.wfc.html package uses 
the same event model as the com.ms.wfc.ui package. If you are familiar with that mechanism, 
you'll find little difference between the two. A button is a good example. Suppose you want 
to handle the event that occurs when a user clicks a button on a page. Here's how: 

public class Class! extends DhDocument 
( 

ClassIC) ( initForm();} 
DhButton myButton = new DhButton(); 
private void initForm() 
( 

add(myButton); 
myButton.addOnClick(new EventHandler(this.myButtonClick»; 

} 

void myButtonClick(Object sender, Event e) 
( 

«DhButton) sender).setText("I've been clicked"); 
} 

In this code, whenever the button triggers the onClick event (that is, when it is clicked), the 
myButtonClick event handler is called. The code inside the myButtonClick event handler 
does very little in this example. It just sets the caption on the button to new text. 

Most events propagate all the way up a containment tree; this means that the click event 
is seen by the button's container and by the button itself. Although typically programmers 
handle events in the container closest to the event, this event bubbling model can be useful 
in special cases. It provides the prograllllller with the flexibility to decide the best place to 
code the event handlers. 

Many different events can be triggered hy clements in DHTML, and you can catch them 
all in the same way. For example, to determine when the mouse is over a button, try the 
following code, which catches mouseEntcr and mouseLeave events for the button: 

public class Class! extends DhDocument 
( 

DhButton button = new DhButton(): 
private void initForm() 
( 

} 

button.addOnMouseEnter(new MouseEventHandler(this.buttonEnter»: 
button.addOnMouseLeave(new ~touseEventHandler(this.buttonExit): 
setNewElements( new DhElement[] { button} ); 

void buttonEnter(Object sender, MouseEvent e) 
( 

button.setText("I can feel that mouse"); 
} 

Programmer's Guide 261 



Part 2 Programming with Visual J++ 

} 

void buttonExit(Object sender, MouseEvent e) 
{ 

button.setText("button"); 
} 

All events that can be triggered (and caught) are defined in the event classes, based on 
com.ms. wfc.core.Event. 

Using Dynamic Styles 
You can think of a Style object as a freestanding collection of properties. The term style is 
borrowed from the word processing world where the editing of a style sheet is independent 
of the documents to which you apply it. The same is true for using and applying Style 
objects in this library. 

As an example, your boss tells you that the new corporate color is red and you need to 
change the color of elements in your HTML pages. You can, of course, set properties 
directly on elements, which is the traditional model for aUI framework programming: 

II old way of doing things ... 
DhText tl - new DhText(); 
DhText t2 - new DhText(); 
tl.setColor( Color.RED ); 
t1.setFont( "arial"); 
t2.setColor( Color.RED ); 
t2.setFont( "arial"); 

You could, of course, use derivation to save yourself time. For example, you might 
consider improving this with the following code: 

II old way of doing things a little better ... 
public class MyText extends DhText 
{ 

public MyText(} 
{ 

setColor( Color.RED ); 
setFont( "arial" ); 

This works fine until you decide you also want those settings for buttons, labels, tabs, 
documents, and so on. And you'll find yourself with even more work when you apply 
these to another part of your program or to another program. 

The answer to this problem is a Style object. While using this library, you can instantiate 
a Style object and set its properties at any point: 

262 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

II STEP 1: Create style objects. 

DhStyle myStyle - new DhStyle(); 

II STEP 2: Set properties on style objects 

myStyle.setColor( Color.RED ); 
myStyle.setFont( "arial" ); 

Then at any other time in the code, you can apply that style to any number of elements: 

DhText t1 = new DhText(); 
DhText t2 - new DhText(); 

II STEP 3: Apply styles using the setStyle method. 

t1.setStyle( myStyle ); 
t2.setStyle( myStyle ); 

When it's time to keep up with the dynamic nature of high-level policy setting at your 
corporation, the following line sets all instances of all elements with myStyle set on them 
to change color: 

myStyle.setColor( Color.BLUE ); 

Here is the really powerful part: all this is available during run time. Every time you make 
a change to the Style object, the DHTML run time dynamically reaches back and updates 
all elements to which that Style object is applied. 

For more information, see the next section, "Understanding Style Inheritance." 

Understanding Style Inheritance 
The HTML rendering engine can determine the style to use if conflicting styles are 
set on an element. For example, if an clement has the color property set directly on it 
(DhElement.setColor), the color defined by the color property is used. However, if an 
element has a Style object on it (DhElement.setStyle) and that object has the color property 
set, that value is used. Failing to find a color or a style, the same process is used with the 
element's container (DhElement.getParent), and failing that, with the container of that 
container and so on. 

The process continues up to the document. If the document doesn't have a color property 
set on it, the environment (either browser settings or some other environment settings) 
determines the color to use. 

This process is called cascading styles because the properties cascade down the 
containment hierarchy. The underlying mechanism for DhStyle objects is called Cascading 
Style Sheets (CSS) by the W3C. 

Programmer's Guide 263 



Part 2 Programming with Visual J++ 

Working with Dynamic Tables 
Working with tables is actually no different from any other part of the library; the 
principles and programming model apply to tables as they do to any other type of element. 
A table, however, is such a powerful and popular element that it is worth discussing. 

To use a table, you create a DhTable object, add DhRow objects to that, and then add 
DhCell objects to the rows. The following are the rules for table usage: 

• You can add only DhRow objects to a DhTable object. 

• You can add only DhCell objects to a DhRow object. 

• You can add any kind of element to a DhCell object. 

While this may seem restrictive, you can easily create a simple container that emulates a 
gridbag with the following code: 

import com.ms.wfc.html .*; 

public class GridBag extends DhTable 
{ 

int cols; 
i nt currCol; 
DhRow currRow; 

public GridBag(int cols) 
( 

this.cols - cols; 
this.currCol - cols; 

public void add(DhElement e) 
{ 

} 

if( ++this.currCol )= cols 
{ 

this.currRow = new DhRow(); 
super.add(currRow); 
this.currCol = 0; 

DhCell c .. new DhCell(); 
c.add(e); 
this.currRow.add( c ); 

264 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

To use this GridBag class, you just set the number of rows and columns (they must be 
the same with this implementation) and then assign elements to cells. The following is 
an example of the code in your DhDocument-derived class that uses this GridBag: 

protected void initForm() 
{ 

GridBag myTable ~ new GridBag(5): 
for (int i - 0: i < 25: ++i){ 

myTable.add(new DhText("" + i»: 
setNewElements( new DhElement[] { myTable } ): 
} 

One of the most powerful uses of the library is the combination of tables and Style objects. 
This combination enables you to create custom report generators that are powerful, 
professional looking, and easy to code. 

Data Binding to Tables 
Tables also have data binding capabilities. Using a com.ms.wfc.data.ui.DataSource object, 
you can bind data to your table, as shown in the following sample code. 

import com.ms.wfc.data.*; 
import com.ms.wfc.data.ui .*: 

void private initForm( ){ 

DhTable dataTable ~ new DhTable(); 
dataTable.setBorder( 1 ): 
dataTable.setAutoHeader( true ): 

DataSource dataSource = new DataSource(); 
dataSource.setConnectionString("DSN=Northwind"): 
dataSource.setCommandText("SELECT * FROM Products" ): 

Programmer's Guide 265 



Part 2 Programming with Visual J++ 

} 

II if you would like to use the table on the server. 
II call dataSource.getRecordset() to force the DataSource 
II to synchronously create the recordset; otherwise. 
II call dataSource.begin(). and the table will be populated 
II when the recordset is ready. asynchronously. 
if ( ! getServerMode() ){ 

dataSource.begin(); 
dataTable.setDataSource( dataSource ); 

} else 
dataTable.setDataSource( dataSource.getRecordset() ); 

setNewElements( new DhElement[] { dataTable } ); 

If you know the format of the data that is going to be returned, you can also specify 
a template (repeater) row that the table will use to format the data that is returned. 
The steps to do this are as follows: 

1. Create your DhTable element: 

DhTable dataTable = new DhTable(); 

2. Create your template row and set it into the table; you can also optionally create a 
header row. For each item in the template cell that you would like to receive data 
from the recordset, create a DataBinding for it. 

DhRow repeaterRow - new DhRow(); 
RepeaterRow.setBackColor( Color.LIGHTGRAY ); 
RepeaterRow.setForeColor( Color.BLACK ); 
DataBinding[] bindings - new DataBinding[3]; 
DhCell cell - new DhCell(); 
DataBi ndi ng[0] - new DataBi ndi ng( cell. "text". "ProductID" ); 
repeaterRow.add( cell ); 
cell = new DhCell();. 
DataBinding[1] = new DataBinding( cell. "text". "ProductName" ); 
cell = new DhCell();. 
cell.setForeColor( Color.RED ); 
cell. add( new DhText( "$" ) ); 

DhText price - new DhText(); 
price.setFont( Font.ANSI_FIXED ); 
DataBinding[2] = new DataBinding( price. "text". "UnitPrice" ); 
cell.add( price ); 
repeaterRow. add ( cell ); 

II set up the table repeater row and bindings 
table.setRepeaterRow( repeaterRow ); 
table.setDataBindings( bindings ); 

266 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

II create and set the header row 
DhRow headerRow = new DhRow(); 
headerRow. add( new DhCell ( "ProductID" ) ); 
headerRow.add( new DhCell( "Product Name" ) ); 
headerRow.add( new DhCell( "Unit Price" ) ); 
table.setHeaderRow( headerRow ); 

3. Create a DataSource object, and set it to retrieve data in the format you expect. 

DataSource ds = new DataSource(); 
ds.setConnectionString("DSN=Northwind"); 
ds.setCommandText("SELECT ProductID. ProductName. 

UnitPrice FROM Products WHERE UnitPrice < 10" ); 

4. Set the DataSource into the DhTable object. 

table.setDataSource( ds ); 
ds.begin(); 

5. Add the DhTable to the document. 

setNewElements( new DhElement[] { table} ); 
II alternately: add( table ); 

Your table is now populated with the data from the recordset and formatted like the 
template row. 

Using the com.ms. wfc.htrnl 
Package on a Server 

The com.ms. wfc.html package can also be used on the server to provide a programmatic 
model for generating HTML and sending it to the client page. Unlike the client-side Dynamic 
HTML model, the server-side model is static because the server Java class has no interaction 
with the client document. Instead, the server composes HTML elements and sends them off 
sequentially to the client as they are encountered in the HTML template if one is specified. 

Although not fully dynamic, this is still a powerful server feature. For example, you 
can apply DhStyle attributes to all parts of some template HTML code and then generate 
vastly different looking pages by just changing the DhStyle attributes. You do not have 
to programmatically generate all the individual style changes. Another advantage is that 
you can use the same model for generating dynamic HTML for both client and server 
applications, thereby making the HTML generation easier to learn and remember. 

There are currently two modes of generating HTML on the server. Both use Active Server 
Pages (ASP) scripting and a class based on the com.ms. wfc.html classes. The first is the 
"bare-bones" approach that relies more on the ASP script. The second uses a class derived 
from DhDocument and is very similar to the model that you use on the client because it 
places more control inside the class than in the script. 

Programmer's Guide 267 



Part 2 Programming with Visual J++ 

ASP-Based Approach 
This approach uses two ASP methods on the server page: getObject and Response.Write. 
The getObject method is used to instantiate a class based on the WFC com.ms.wfc.html 
classes; the Response.Write method writes the generated HTML string to the client. The 
com.ms.wfc.html.DhElement class provides a getHTML method that creates the HTML 
string; this string is then sent to the client page using the ASP Response.Write method. 

For example, you have a class called MyServer that extends DhForm and incorporates 
some HTML elements. In your ASP script, you first call getObject("java:MyServer") to 
create a DHTML object. You can then perform whatever actions you want on the object 
from your ASP script, such as setting properties on the object. When you have finished, 
you call the object's getHTML method to generate the string and pass that result to the 
ASP Response.Write method, which sends the HTML to the client. The following code 
fragments show the relevant ASP script and Java code for creating a DhEdit control in 
HTML and sending it to the client. 

ASP SCRIPT 

Dim f.x 
set f - getObject( "java:dhFactory" 
set x- f.createEdit 
x.setText( "I'm an edit!" ) 
Response.Write( x.getHTML() 
Response.Write( f.createBreak().getHTML() 

JAVA CODE 

public class dhFactory { 
public dhFactory(){ } 

} 

public DhBreak createBreak() 
return new DhBreak(): 

} 

public DhEdit createEdit(){ 
return new DhEdit(): 

} 

268 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

HTML-Based Approach 
This approach is slightly more sophisticated and closer to the client model. It still uses 
an ASP script to site the DhDocument class, but the rest of the operational code is in Java. 
As in the client model, the DhModule class is instantiated as the Java component on the 
Web page and automatically calls the initForm method in your project class that derives 
from DhDocument. 

As in the client model, you can do all your binding setup in your initForm call. The 
onDocumentLoad function is also called for your server-side class. In this method, you 
can access the IIS Response and Request objects (using the DhModule getResponse and 
getRequest methods) and also append new DhElement items to your document stream. 
However, it is important to understand that you cannot use document-level functions, 
such as findElement, or use enumeration operations on a server-side document, except 
on items that you have explicitly added to your DhDocument-derived class. 

To use the HTML-based approach, follow these steps: 

1. Create your server Java class (extending from DhDocument). 

2. In that class, implement the initForm method as you would with a client application. 

3. From ASP, call the Server.CreateObject method, passing it "DhModule" to create a 
DhModule object. 

4. Call DhModule.setCodeClass method, passing it the name of your DhDocument­
derived class. 

5. Call the DhModule.setHTMLDocument method, passing it the full local file name path 
of your server Web page as a template if you have one. 

If you call setHTMLDocument with an empty string (" "), your DhDocument class 
runs and outputs the HTML for any clements you have added at the location in your 
ASP where setHTMLDocument is called. You can then generate sections of HTML 
code inline. 

If you do not call setHTMLDocument, the DhDocument class outputs full HTML for 
the page, including the <HTML>, <I-lEAD>, and <BODY> tags. 

The following sample shows an ASP page that uses a template: 

<% Set mod - Server.CreateObject( "com.ms.wfc.html.DhModule" 
mod.setCodeClass( "Class!" ) 
mod.setHTMLDocument( "c:\inetpub\wwwroot\Page!.htm" ) 

%) 

Programmer's Guide 269 



Part 2 Programming with Visual J++ 

At run time, the framework recognizes that your class is running on a server and acts 
accordingly. 

Once instantiated, you can add elements or text to your DhDocument-derived class. 
Those items will be appended to any template specified just before the </BODY> tag. 

The following sample demonstrates a class that works on either the client or the server. 

import com.ms.wfc.ui .*: 
import com.ms.wfc.html.*: 

public class Class1 extends DhDocument { 
public Class1(){ 

} 

i nitForm(): 
} 

DhText txt1 - new DhText(): 
DhForm sect ~ new DhForm(): 

private void initForm() { 

} 

II call getServerMode() to check 
II if this object is running on the server 
if ( getServerMode() )( 

txt1.setText( "Hello from the server!" ): 
}else( 

txt1.setText( "Hello from the client!" ): 

II size the section. set its background color 
II and add the txt1 element to it 
sect.setSize( 100. 100 ): 
sect.setBackColor( Color.RED ); 
sect.add( txt1 ): 
add( sect ): 
setNewElements( new DhElement[] { sect} ): 

If you want to bind to an existing HTML document on the page, use the 
DhDocument.setBoundElements method, just as you would on the client. For example, 
if your HTML template contains the following HTML: 

<P> 
The time is:<SPAN id=txt1></SPAN><BR> 
<INPUT type=text id=edit1 value-""> 
</P> 

270 Programmer's Guide 



Chapter 14 Programming Dynamic HTML in Java 

Your initForm method looks like this: 

DhText txtl = new DhText(); 
DhEdit edit - new DhEdit(); 
DhComboBox cb = new DhComboBox(); 

private void initForm(){ 
txtl.setText(com.ms.wfc.app.Time().formatShortTime(»; 

edit.setText("Hello, world!"); 
edit.setBackColor( Color.RED ); 

setBoundElements( new DhElement[]{ txtl.setBindID( "txtl" ) 
edit.setBindID( "editl" }); 

II Create a combo box to be added after the bound items 
cb.addltem( "One" ); 
cb. addItem( "Two" ); 

II Add the items to the end of document. 
setNewElements( new DhElement[]{ cb }); 

There are very few differences between the interpretation of server and client 
HTML classes. However, there is one important difference. Once elements are written 
(sent to the client), they cannot be modified as they can on a client document. The 
DhCantModifyElement exception, which is relevant only for server applications, is 
thrown after a write has been performed on an element if an attempt is made to modify 
that element again. (This underscores the fact that there is no real interoperation between 
the server Java class and the client document as there is on the client between the Java 
class and the document: from the server's standpoint, once written, the element is 
essentially gone.) 

One advantage of using the DhDocument-derived method is that you can implement 
an HTML template that is embedded with attributes recognized by the com.ms.wfc.html 
classes. By first decorating the HTML clements in the file with ID attributes and then 
setting the corresponding IDs in the source code using the DhElement.setBindlD method, 
you can bind to these HTML elements, set properties on the elements, add your own 
inline HTML code, and so forth. This essentially allows you to code and design separate 
templates ahead of time and populate the template with dynamic data when the doclllllent 
is requested from the server. 

Programmer's Guide 271 





C HAP T E R 1 5 

Graphical Services 

The display of graphical objects in Microsoft Windows occurs through the graphics device 
interface (GDI), a device-independent graphics output model that processes graphical 
function calls from a Windows-based application and passes those calls to the appropriate 
device driver. The driver performs the hardware-specific functions that generate output. 
By acting as a buffer between applications and output devices, the GDI presents a 
device-independent view for the application while interacting in a device-dependent 
format with the device. 

Application developers use the functionality of the GDI to display images, to draw 
controls, shapes, and text, and to create and use pens, brushes, and fonts. The Windows 
Foundation Classes (WFC) Graphics object coordinates with other WFC objects, such as 
the Pen, Font, and Brush objects, to encapsulate these capabilities as Java-based objects. 

In the WFC environment, graphical output occurs through the Graphics object. After 
creating or retrieving a Graphics object, you associate other graphics-based objects, such 
as fonts, pens, and brushes with the object, and then use the object's numerous drawing 
methods to render output to the display. For example, to draw lines with a specific 
appearance, you use the Graphics object's setPen method to specify the pen that the 
object will use for drawing, then use the object's drawLine method to render the lines. 
You can modify these associations as often as you want. 

Creating a Graphics Object 
The Windows Foundation Classes (WFC) provide several ways in which to create a 
Graphics object. 

Explicit object creation. You can create a Graphics object explicitly by calling the 
createGraphics method on any object that extends the Control class. 

Implicit object creation. The Bitmap and Metafile objects support implicit Graphics 
object creation through a getGraphics method. 

Programmer's Guide 273 



Part 2 Programming with Visual J++ 

Explicit Graphics Object Creation 
All classes that extend the Control class support the createGraphics method, which you can 
use to create a Graphics object instance. The following code fragment demonstrates how to 
call this method from within a Form-derived class: 

Graphics 9 = this.createGraphics(); 

A second approach to explicit Graphics object creation involves using a handle to a Win32 
device context (HDC). Generally, the only case in which you create a Graphics object in 
this fashion is when you have called a Win32 method that returns an HDC. 

If you simply need graphical capabilities that are not supported natively in the Graphics 
object, you can use the object's getHandle method to retrieve the handle to a Win32 device 
context and can pass that handle transparently to the appropriate Win32 method. 

If you create a Graphics object based on a previously existing handle, the Graphics 
object doesn't assume ownership of the handle; after you have used the object, you are 
responsible for freeing the handle using the appropriate Win32 function. If you use the 
Graphics object's getHandle method to retrieve the object's underlying handle, the object 
retains ownership of that handle and you should not try to free it. 

For more information on Win32 handles and the Graphics object, see "Performing Handle­
Based Operations," later in this chapter. 

Implicit Graphics Object Creation 
The Bitmap and Metafile objects support implicit Graphics object creation through their 
getGraphics method. In the following code fragment, the Bitmap object's getGraphics 
method is used to create a Graphics object that can be used to draw to the bitmap's surface: 

Bitmap bmp - new Bitmap("c:\\MyImage.bmp"); 
Graphics gr = bmp.getGraphics(); 
The first time that you call getGraphics through an object, the object creates a new 
Graphics object instance and returns it. Subsequent calls to getGraphics through the same 
object results in the return of the object created through the original call. 

Additionally, when you call drawing methods through a Graphics object created through 
an object's getGraphics method, the methods apply to the object through which they were 
created. For example, the x and y coordinates (0,0) specified in the call to drawText above 
are relative to the bitmap object, not to the control on which the bitmap is rendered. 

274 Programmer's Guide 



Chapter 15 Graphical Services 

Retrieving a Graphics Object 
Within a form or control's paint event, you can retrieve and use a Graphics object instance. 
The paint event handler takes a PaintEvent object as a parameter, and this object contains 
a public graphics member. This member is a valid Graphics object instance, which you call 
as follows: 

protected void onPaint(PaintEvent e){ 
e.graphics.drawString("Hello. World". new Point(10. 10)): 

For information on how to create a Graphics object outside the paint event, see the earlier 
sections "Explicit Graphics Object Creation" and "Implicit Graphics Object Creation." 

Graphics Object Scope 
The Graphics object has method scope. This means that when a method in which you use 
the Graphics object returns, the object's dispose method is called automatically, freeing all 
resources that the object has allocated. After dispose has been called, attempts to use the 
object result in a run-time exception. 

If you declare an instance of the Graphics object at the class level, you should use the 
Form object's createGraphics method to initialize that object in every method that uses it: 

Public class Form1 extends Form! 

} 

Graphics 9 = new Graphics(): 

Private void Form1_resize(Object sender. Event e){ 

// Initialize object instaflce. 
9 - this.createGraphics(): 

// dispose automatically cillled_ 

privilte void Form1_click(Object sender. Event e){ 

// Initialize object instaflce. 

9 - this.createGraphics(); 

1/ dispose method automatically called_ 

Programmer's Guide 275 



Part 2 Programming with Visual J++ 

Although the dispose method is called automatically, it is good practice to call it explicitly 
at the end of routines that use the Graphics object. This is particularly important on the 
Windows 95 platform because of a system limitation on the number of device context that 
can be allocated. 

Maintaining the Bounding Rectangle 
The area of a window in which you can draw is referred to as the window's client area. 
Within this area, a bounding rectangle defines the invisible rectangular region in which the 
Graphics object draws, and can include the window's entire client area. 

When a window loses, and then regains focus, the part of the bounding rectangle covered 
by some other object does not automatically re-display the items that were previously 
rendered to it. 

To ensure correct display, you must manage the repainting of your form or control. The paint 
event handler is the place in your Form class code in which such management typically takes 
place. Within this handler, you restore the bounding rectangle to its proper state. 

The following example creates a Bitmap object at the class level, then it uses the paint 
event handler to redraw the Bitmap. Each time the client area of the form becomes invalid, 
Windows invokes this handler, and the image is repainted to the form: 

Bitmap bmp - new Bitmap("c:\\Mylmage.bmp"): 

protected void onPaint(PaintEvent e){ 
e.graphics.drawlmage(bmp, new Point(0, 0»: 

When your form is initially displayed, and each time it regains foclIs, the paint event 
handler is automatically invoked. However, if your form supports resizing, a change in the 
form's dimensions docs not automatically trigger a repaint. Instead, you must add a resize 
handler to the Form-derived class and then call the object's invalidate method from within 
this handler. A call to invalidate trigger's the form's paint event handler: 

protected void onResize(Event e){ 
this.invalidate(); 

} 

276 Programmer's Guide 



Chapter 15 Graphical Services 

Performing Handle-Based Operations 
A handle is a unique number with which some element of the operating system is 
identified to the computer. For example, every window on your desktop has a unique 
handle that enables the computer to distinguish it from other windows. Every device 
context, brush, pen, and font also has a unique handle. 

To maintain optimal compatibility with the Win32 API, the Graphics, Pen, Brush, and Font 
objects support handle-based operations. For example, if you use the Win32 CreatePen 
function to create a pen, this function returns a handle. You can then pass this handle to 
the Pen object constructor, and the object is created based on the characteristics of that 
Win32 pen. 

Even if you do not create a Pen, Brush, or Font object based on a handle that you allocate, 
you can retrieve the handle on which a Pen, Brush, or Font object is based. Each of these 
objects supports both a copyHandle and a getHandle method, and once you've used these 
methods to duplicate or retrieve the object's handle, you can pass that handle to any Win32 
function that is intended to take such a handle as a parameter. 

The following are a few important rules to keep in mind when performing handle-based 
operations with the Graphics object: 

o If you create an object based on a handle that you've previously allocated using a 
Win32 method, the object does not assume ownership of that handle. For example, if 
you use the Win32 GetDC method to retrieve a form's device context handle (HDC), 
then create a Graphics object based on that HDC, then you own the handle. This means 
that when the Graphics object's dispose method is called, the handle is not freed in 
memory. Instead, you must use the appropriate Win32 routine to destroy the handle. 

Below is an example that illustrates appropriate handle management. This example 
uses the Win32 GetDC to retrieve tIll! handle to the form's device context, then creates 
a Graphics object based on that handlc. After using the Graphics object to draw a line 
on the form, the Graphics object's dispose method is used to destroy thc Graphics 
object, and the Win32 ReleaseDC routine is used to free the devicc contcxt handlc 
allocated by GetDC: 

II import the com.ms.wfc.Win32.Windows package. 
import com.ms.wfc.win32.Windows: 

int hOC - Windows.GetDC(this.getHandle(»: 
Graphics 9 - new Graphics(hOC): 

g.drawLine(new Point(0.0). new Point(100. 0»: 
g.dispose(): 

Windows.ReleaseDC(hDC): 

Note that while this example uses the handle to a device context, the principle 
illustrated here applies to pens, brushes, fonts, and bitmaps. 

Programmer's Guide 277 



Part 2 Programming with Visual J++ 

• Most graphical objects support a copyHandle method through which you can duplicate 
the handle on which the object is based. If you use the copyHandle method to duplicate 
an object's handle, you are responsible for freeing the handle. 

• Most graphical objects also support a getHandle method, which returns the handle 
on which the object is based (as opposed to a copy of that handle). This method is 
intended to enable support compatibility between Graphics object methods and Win32 
graphics routines. 

Handles retrieved through the getHandle method are not copies of an object's 
underlying handle. Therefore, you should never attempt to free handles retrieved 
through getHandle. Such handles are freed when the object is disposed. 

The Graphics Object 
Coordinate System 

A large number of the methods supported by the Graphics object depend on numerical 
coordinates. Such coordinates can be specified in a Rectangle object, which specifies 
the area in which an operation is to occur, or in a Point object, which specifies the 
x (horizontal) and y (vertical) coordinates at which the operation occurs. 

The term coordinate system identifies how the coordinates specified in such objects map 
to the display or to a device. Suppose, for example, that you call the Graphics object's 
drawString method to draw text at coordinates 100, 100: 

Graphics 9 - this.createGraphics(): 
g.drawString("Hello, WFC, new Point(100, 100»: 

The Point object in this example specifies the x and y coordinates at which to draw the 
string. However, the actual result of this operation depends on the coordinate system 
with which the Graphics object is associated. 

The coordinate systems with which you can associate a Graphics object are defined in 
the CoordinateSystem class. The default coordinate system for a Graphics object is 
CoordinateSystem.TEXT, which means that as the x and y values in a Point object 
increase, the text (or bitmap or control) proceeds to the right horizontally and down 
vertically. 

To associate a coordinate system with the Graphics object, usc the setCoordinateSystem 
method, as follows: 

Graphics gr = this.createGraphics(): 
gr.setCoordinateSystem(CoordinateSystem.ANISOTROPIC): 

The following table lists the coordinate systems that you can associate with the Graphics 
object and describes the direction in which drawing proceeds as the x and y axes defined 
in a Point object increase. 

278 Programmer's Guide 



Coordinate System 

CoordinateSystem. TEXT 

CoordinateSystem.LOMETRIC 

CoordinateSystem.HIMETRIC 

CoordinateSystem.LOENGLISH 

CoordinateSystem. HIEN GLISH 

CoordinateSystem. TWIPS 

CoordinateSystem.ISOTROPIC 

CoordinateSystem.ANISOTROPIC 

Increasing x-axis 

Right 

Right 

Right 

Right 

Right 

Right 

User-defined 

User-defined 

Setting the Coordinate Origin 

Increasing y-axis 

Down 

Up 

Up 

Up 

Up 

Up 

User-defined 

User-defined 

The coordinate origin identifies the location from which coordinates are measured. 

For example, if you create a Graphics object through your application's main form, 
the Graphics object's coordinate system is CoordinateSystem.TEXT and graphical 
coordinates are measured from the upper-left comer (0,0) of the form. 

Chapter 15 Graphical Services 

However, if you use a user-defined coordinate system, such as 
CoordinateSystem.ANISOTROPIC or CoordinateSystem.ISOTROPIC, you can specify 
the point from which coordinates are measured (both for the page and the device), using 
the Graphics object's setCoordinateOrigin method. Suppose, for example, that you include 
in your application's paint event the following code: 

private void Forml_paint(Object source, PaintEvent e) 
{ 

II Set the coordinate system. 

e.graphics.setCoordinateSystem(CoordinateSystem.ANISOTROPIC); 
e.graphics.setCoordinateOrigin(ncw Point(20, 20), new Point(20,20)); 
e.graphics.setCoordinateScale(new Point(l.l), new Point(l,l)); 
e.graphics.drawLine(new Point(0,0), new Point(100,100)); 

This code sets the coordinate system to CoordinateSystem.ANISOTROPIC and then sets 
the coordinate origin for both the page and device at 20,20. The call to drawLine that 
appears later in the code measures from the coordinate origin. Thus, the line will end 
at 100,100 from the coordinate origin (10, to). 

Programmer's Guide 279 



Part 2 Programming with Visual J++ 

Mapping Logical Coordinates 
to Device Coordinates 

Windows provides built-in support for mapping page coordinates to a device, such 
as a printer or display. 

For most of the coordinate systems defined by Windows, the system itself 
performs the conversion. For example, if you associate a Graphics object with the 
CoordinateSystem.HIMETRIC coordinate system, each logical unit on the object 
translates to .001 of an inch on the device. 

However, when using the user-defined ANISOTROPIC and ISOTROPIC coordinate 
systems, you must use the setCoordinateScale method to tell the system how to perform 
the conversion, as in the following example: 

Graphics 9 = this.createGraphics(); 
g.setCoordinateSystem(CoordinateSystem.ANISOTROPIC); 
g.setCoordinateScale(new Pointe!,!), new Point(2,2»; 

The call to setCoordinateScale in this example instructs the system to convert a single 
logical horizontal and vertical unit to two horizontal and vertical device units. 

Drawing Text 
The Graphics object's drawString method supports the output of text to the control to 
which the object belongs. This method writes the text to the location that you specify, 
as in the following example: 

Graphics 9 - this.createGraphics(); 
g.drawString("Hello, World", new Point(0, 0»; 

The visual result of this call depends upon a host of factors, including the Graphics 
object's current text color, background color, font settings, and coordinate systems. 

For information on how to set the text color, see the next section, "Setting Text Color." 
For information on associating fonts with the Graphics object, sec "Using the Font Object," 
later in this chapter. For information about coordinate systems, sec "The Graphics Object 
Coordinate System," later in this chapter. 

280 Programmer's Guide 



Chapter 15 Graphical Services 

Setting Text Color 
To set the text and background color of the text, call the Graphics object's setBackColor 
and setTextColor before calling drawString: 

II Set the text to white, the background to black. 

g.setTextColor(new Color(0, 0, 0»: 

g.setBackColor(new Color(255, 255, 255»; 

II Draw the text ... 

The setBackColor method affects only the background color of text. To set the background 
or fill color for other objects, such as polygons and lines, use the setBrush and setPen 
methods, respectively. 

U sing the Font Object 
Afont is a collection of characters and symbols that share a common design. The major 
elements of a font include its typeface, style, and size. 

In WFC, Windows fonts are encapsulated in the Font object. You can use this object in 
combination with other font-related objects to define a limitless variety of fonts for display 
on a Graphics object. 

The following table lists the font-related classes supported by WFC. 

Class Description 

FontDescriptor 

FontFamily 

FontMetrics 

FontPitch 

FontSize 

FontType 

FontWeight 

Provides information about the font that underlies a Font object. 

Defines a group of constants that represent the families to which a font may belong. 

Defines the physical characteristics of a font as it is mapped into a Graphics object. 

Defines a font's pitch. 

Defines a group of constants that represent the units in which font sizes can be 
specified. 

Defines a group of constants that represent the devices to which the font will be 
rendered. 

Defines constants that represent the different weights that you can associate with a font. 

Programmer's Guide 281 



Part 2 Programming with Visual J++ 

Creating a Font Object 
Creating a Font object can be very simple or complex, depending on the granularity with 
which you want to define the font. The following code fragment illustrates one of the 
simple approaches to Font object creation: 

Font font = new Font("Times New Roman", 26); 

This example uses a Font object constructor that requires only two items of information: 
the font name and size. When creating a Font object, you can also specify the font's 
family, its type, its weight, its orientation, and whether or not the font is boldfaced, 
italicized, underlined, or strikeout. However, once you've created a Font object, you 
cannot modify the object's attributes. 

Setting the Font on a Graphics Object 
The Graphics object supports the setFont method, which associates a font with the object. 
After you associate a Font object with the Graphics object, all text drawn within the 
Graphics object's bounding rectangle is drawn using that font. 

The following code illustrates the process of setting the background color of the Graphics 
object to white, the text color to black, and the font to 26-point Times New Roman. The 
text is drawn to the display at a specified position: 

Graphics 9 - this.createGraphics(); 

g.setFont(new Font("Times New Roman", 26»; 
g.setBackColor(new Color(255, 255, 255»; 
g.setTextColor(new Color(0, 0, 0»; 
g.drawString("Hello, World", 0, 0): 

Enumerating Fonts 
In some instances, an application must be able to enumerate and retrieve detailed 
information about the available fonts, and to select the font most appropriate for a 
particular operation. 

The WFC FontDescriptor object describes a font, including the font's name, height, 
orientation, and so forth. For a detailed description of all the fonts available on your 
system, use the Graphics object's getFontDescriptors method. This method returns an 
array of FontDescriptor objects, in which each element in the array describes a font. 

282 Programmer's Guide 



Chapter 15 Graphical Services 

The following example illustrates how to use the getFontDescriptors method. This 
example retrieves an array of available fonts and then inserts a unique list of the font 
names into a list box: 

Graphics 9 - this.createGraphics(); 

II Create the array. 
FontDescriptor rgFonts[] - g.getFontDescriptors(); 

for(int i - 0; i < rgFonts.length; i++){ 

if(listBoxl.findString(rgFonts[i].fullName == -l){ 

listBoxl.addltem(rgFonts[i].fullName); 
} 

} 

Using Pens 
A pen is a graphics tool that an application for Microsoft Windows uses to draw lines and 
curves. Applications that draw use pens to draw freehand lines, straight lines, and curves. 
Computer-aided design (CAD) applications use pens to draw visible lines, hidden lines, 
section lines, center lines, and so on. Word processing and desktop publishing applications 
use pens to draw borders and rules. Spreadsheet applications use pens to designate trends 
in graphs and to outline bar graphs and pie charts. 

Each pen consists of three attributes: style, width, and color. While no limits are imposed 
on the width and color of a pen, the pen's style must be supported by the operating system. 

WFC Pen Object 
The capabilities of Win32 pens are encapsulated in the WFC Pen and PenStyle objects. 
The following code fragment demonstrates how to create a Pen object: 

Pen p - new Pen(PenStyle.DASH); 

The constant that you pass to the Pen object constructor is a pen style. The seven built-in 
pen styles supported on Windows are each represented by a constant defined in the 
PeriStyle class. The PenStyle class is an enumeration class, which means that it defines 
a method (valid) that determines whether a value that you specify is a valid member of 
the PenStyle class. 

The following table lists the PenStyle constants. 

Programmer's Guide 283 



Part 2 Programming with Visual J++ 

Constant 

PenStyle.DASH 

PenStyle.DOT 

PenStyle.DASHDOT 

PenStyle.DASHDOTDOT 

PenStyle.lNSIDEFRAME 

PenStyle.NULL 

PenStyle.SOLID 

Description 

Represents a dashed pen. 

Represents a dotted pen. 

Represents a pen of alternating dashes and dots. 

Represents a pen of alternating dashes and double dots. 

Represents a pen that draws a line inside the frame of closed shapes 
produced by the Graphics object's output functions that specify a 
bounding rectangle (for example, drawRect, drawPie, and drawChord). 

Represents a null pen. 

Represents a solid pen. 

In addition, the Pen object includes a group of public members that you can use to specify 
the kind of pen you want to create. Each of these members is a Pen object, and is designed 
to enable you to simulate various native features of the Windows user-interface. 

For example, the Pen class defines a WINDOWFRAME member. When you create a 
Pen of type WINDOWFRAME, the lines that you draw using this pen look identical to 
the frame of an active window: 

Pen pen - Pen.WINDOWFRAME: 

The following table lists the Pen objects defined as public members of the Pen class. 

Object 

Pen.ACTIVECAPTIONTEXT 

Pen.CONTROLTEXT 

Pen.GRA YTEXT 

Pen.HIGHLIGHTTEXT 

Description 

Creates a pen the color of the active window's caption text. 

Represents a pen the color of the text on a control. 

Represents a pen the color of disabled text. 

Represents a pen the color of highlighted text. 

Pen.lNACTIVECAPTIONTEXT Represents a pen the color of the caption text of an inactive window. 

Pen.INFOTEXT 

Pen.MENUTEXT 

Pen.NULL 

Pen.WINDOWFRAME 

Pen. WIND OWTEXT 

Represents a pen the color of the information tooltip's text. 

Represents a pen the color of menu text. 

Represents a null pen. A null pen does nothing. 

Represents a pen the color of an active window's frame. 

Represents a pen the color of an active window's text. 

Note that when you use a Pen based on a system constant, such as the color of an active 
window's text, a change in the system setting that the Pen reflects results in a change to 
the pen. 

284 Programmer's Guide 



Chapter 15 Graphical Services 

Setting the Pen on a Graphics Object 
The Pen object itself contains no coloring or drawing capability. It only describes a subset 
of the capabilities of the GD!. Before you use a Pen to draw on a form, you associate the 
Pen with a Graphics object using the Graphics object's setPen method: 

Graphics 9 - this.createGraphics(); 
g.setPen(new Pen(PenStyle.DASH»; 

After you associate a Pen with a Graphics object, all lines drawn within the Graphics 
object's bounding rectangle are drawn using that pen. In addition, you can call the setPen 
method any number of times on the same Graphics object. 

The following example demonstrates how the Pen object works with the line-drawing 
capabilities of the Graphics object. In this example, the Pen styles defined in the Pen object 
are stored in an array of integers. Within the class's paint event handler, a for loop is used 
to iterate through this array of pen styles, drawing a single line using each style: 

public class Forml extends Form 
{ 

int [J rgStyles { PenStyle.DASH. PenStyle.DASHDOT. PenStyle.DASHDOTDOT. 
PenStyle.DOT. PenStyle.INSIDEFRAME. PenStyle.SOLID }; 

protected void onPaint(PaintEvent e) 
{ 

} 

Rectangle rc = this.getClientRect(); 

rc.y += 10; 

for(int i = 0; i < rgStyles. length; i++){ 

e.graphics.setPen(new Pcn(Color.BLACK. i»; 
e.graphics.drawLine(new Point(0. rc.y). 

new Point(rc.width. rc.y»; 

rc.y += 10; 

II Rest of Forml class ... 

Programmer's Guide 285 



Part 2 Programming with Visual J++ 

Using Brushes 
A brush is a graphics tool that a Win32-based application uses to paint the interior of 
polygons, ellipsis, and paths. Drawing applications use brushes to paint shapes; word 
processing applications use brushes to paint rules; computer-aided design (CAD) 
applications use brushes to paint the interiors of cross-section views; and spreadsheet 
applications use brushes to paint the sections of pie charts and the bars in bar graphs. 

There are two types of brushes: logical and physical. A logical brush is one that you 
define in code as the ideal combination of colors and/or pattern that an application should 
use to paint shapes. A physical brush is one that a device driver creates based on your 
logical-brush definition. 

Brush Origin 
When an application calls a drawing function to paint a shape, Windows positions a brush 
at the start of the paint operation and maps a pixel in the brush bitmap to the window 
origin of the client area. (The window origin is the upper-left comer of the window's 
client area.) The coordinates of the pixel that Windows maps are called the brush origin. 

The default brush origin is located in the upper-left corner of the brush bitmap at the 
coordinates (0,0). Windows then copies the brush across the client area, forming a pattern 
that is as tall as the bitmap. The copy operation continues, row by row, until the entire 
client area is filled. However, the brush pattern is visible only within the boundaries 
of the specified shape. (Here, the term bitmap is used in its most literal sense - as an 
arrangement of bits - and does not refer exclusively to bits stored in an image file). 

There are instances when the default brush origin should not be used. For example, it 
may be necessary for an application to use the same brush to paint the backgrounds of 
its parent and child windows and blend a child window's background with that of the 
parent window. 

Logical Brush Types 
Logical brushes come in three varieties: solid, pattern, and hatched. 

A solid brush consists of a color or pattern defined by some element of the Windows user 
interface (for example, you can paint a shape with the color and pattern conventionally 
used by Windows to display disabled buttons). 

A hatched brush consists of a combination of a color and of one of the six patterns defined 
byWin32. 

A pattern brush consists of a bitmap that is used as the basis for a pattern that fills a shape. 
Where the area to be filled is larger than the bitmap, the bitmap is tiled horizontally and 
vertically across the display. Pattern brushes enable you to create custom brushes that 
consist of any pattern that you define. 

286 Programmer's Guide 



Chapter 15 Graphical Services 

WFC Brush Object 
The capabilities of Win32 brushes are encapsulated in the WFC Brush and BrushStyle 
objects, objects that you coordinate to create solid, pattern, and hatched brushes. 

The Brush object defines a group of public final members, each of which is a Brush object 
representing a solid brush. The BrushStyle class represents hatched brushes as a group of 
integer constants, each of which represents a different brush style. 

The following table lists the Brush object constants that represent solid brushes. 

Constant 

Brush.ACTIVEBORDER 

Brush.ACTIVECAPTION 

Brush.APPWORKSPACE 

Brush.CONTROL 

Brush.CONTROLDARK 

Brush.CONTROLDARKDARK 

Brush.CONTROLLIGHT 

Brush.CONTROLLIGHTLIGHT 

Brush.DESKTOP 

Brush.HALFTONE 

Brush.HIGHLIGHT 

Brush.HOLLOW 

Brush.HOTIRACK 

Brush.INACTIVEBORDER 

Description 

Represents a Brush object the color of the active window border. 

Represents a Brush object the color of the active caption bar. 

Represents a Brush object that is the color of the application 
workspace window. 

Represents a Brush object that is the color of controls. 

Represents a Brush object that is the color of the shadow portion 
of a 3D element. 

Represents a Brush object that is the color of the darkest portion 
of a 3D clement. 

Represents a Brush object that is the color of the highlighted 
portion of a 3D element. 

Represents a Brush object that is the color of the lightest part of 
a 3D element. 

Represents a Brush object that is the current color of the desktop. 

Represents a Brush object that is the color of a standard halftone 
brush. 

Represents a Brush object that is the color of the background of 
highlighted elements. 

Represents a null brush, which paints nothing. 

Represents a Brush object that is the color used to indicate 
hot tracking. 

Represents a Brush object that is the color of an inactive 
window border. 

( continued) 

Programmer's Guide 287 



Part 2 Programming with Visual J++ 

(continued) 

Constant 

Brush.INACTIVECAPTION 

Brush.INFO 

Brush.MENU 

Brush.NULL 

Brush.SCROLLBAR 

Brush.WINDOW 

Description 

Represents a Brush object that is the color of an inactive 
caption bar. 

Represents a Brush object that is the color of the background of 
an information ToolTip. 

Represents a Brush object that is the color of the menu 
background. 

Represents a null brush. 

Represents a Brush object that is the color of a scrollbar 
background. 

Represents a Brush object that is the color of the window 
background. 

The following table lists the BrushStyle constants that represent hatched brushes. 

Constant Description 

BrushStyle.BACKW ARDDIAGONAL Represents a backward diagonal brush. Parallel lines run from the 
lower-left corner of the brush origin to the upper-right corner. 

BrushStyle.DIAGONALCROSS Represents a cross-hatched brush. 

BrushStyle.FORW ARDDIAGONAL Represents a forward diagonal brush. Parallel lines run from the 
lower-right corner of the brush origin to the upper-left corner. 

BrushStyle.HOLLOW Represents a hollow brush. A hollow brush is identical to a 
null brush. 

BrushStyle.HORIZONTAL Represents pattern consisting of evenly spaced horizontal lines. 

BrushStyle.PATTERN Represents a pattern bmsh. 

BrushStyle.SOLID Represents a solid bmsh. 

BrushStyle.VERTICAL Represents pattern consisting of evenly spaced vertical lines. 

288 Programmer's Guide 



Chapter 15 Graphical Services 

Creating a Brush Object 
How you create a Brush object depends on the type of brush needed. Because solid brushes 
are Brush objects, you create a solid brush as follows: 

Brush br ~ Brush.BLACK; 

A pattern brush is represented by the Brush object as an integer constant and is created 
as follows: 

Brush br ~ new Brush(Color.BLACK, BrushStyle.FORWARDDIAGONAL); 

The following code fragment demonstrates one way to create a brush based on a bitmap: 

Brush bmpBrush = new Brush(new Bitmap("c:\\myBitmap.bmp")); 

This example assumes that the bitmap on which you want to base your brush pattern is 
stored in a file on disk. However, you can also use the Bitmap object's createBitmap 
method to define bitmaps at run time, and can use the bitmap you define as the basis for 
the brush pattern. 

Setting the Brush on the Graphics Object 
Like the Pen and Font objects, the Brush object contains no coloring or drawing capability. 
It expresses a subset of the capabilities of the GDI. Before a brush can be used to fill 
surfaces, it must be associated with a Graphics object using the setBrush method: 

protected void onPaint(PaintEvent c) 
{ 

} 

II Create a forward diagonal brush, and associate it with the 
II obj eet. 
Brush br ~ new Brush(Color.BLACK, BrushStyle.FORWARDDIAGONAL); 
e.graphies.setBrush(br); 

After you associate a Brush object with the Graphics object, all polygons that you draw 
using that Graphics object instance arc filled with the associated brush. You can call 
setBrush as often as you want to associate a new brush with the Graphics object. 

Programmer's Guide 289 



Part 2 Programming with Visual J++ 

A Brush Object Example 
A custom brush is one based on a bitmap that you load from a file or create in memory. 
The CustomBrush sample application demonstrates how to create and use custom brushes. 

The CustomBrush application consists of two panels and two buttons. The first of the 
panels (paneIGrid) consists of 64 squares. When the user clicks on one of these squares, 
the application registers the fact that the square has been clicked, paints the square black, 
and performs a bitwise operations on one of the members of an array of short integers. 
The integer that is modified depends on which square was clicked. 

When the user clicks the Test button, the CustomBrush application creates a bitmap based 
on the array of short integers, creates a brush based on that bitmap, and then uses that 
brush to paint the panel (paneIRect) that appears above the Test button. 

Upon application startup, the CustomBrush application performs the following tasks: 

• Calls the user-defined getRects method to create an array of 64 Rectangle objects, 
and draws these rectangles to the application's grid panel (paneIGrid). 

• Declares an array of short integers (bBrushBits). The value of the integers stored in this 
array will eventually form the basis on which a bitmap is created. When the user clicks 
the Test button, this bitmap is used to create the brush that paints the panel that appears 
above the Test button. 

• Declares and initializes an array of Boolean variables (rgStates) to false. This array is 
intended to track the state of each of the rectangles in the panelGrid. When the user 
clicks on one of the rectangles in the panelGrid, the corresponding variable in this array 
is set to true: 

public class Form! extends Form 
( 

II Rectangles into which to divide the panel. 
Rectangle [] rgRects = new Rectangle[64]; 

II Tracks the state of the rectangles. 
boolean [] rgStates = new boolean[64]; 
int [] bBrushBits = new int[8]; 

public Form!() 
( 

II Set the state array to an initial value of false. 

for(int i - 0; < rgStates.length; i++){ 

rgStates[i] - false; 

} 

290 Programmer's Guide 



Chapter 15 Graphical Services 

1** 

II Initialize the form. 
i ni tForm(): 

II Divide the panel into 64 rectangles and paint the form. 

rgRects ~ getRects(panelGrid.getClientRect(). 8. 8): 
this.invalidate(); 

* This method divides a specified rectangular area into the specified 
* number of subrectangles (down and across). and returns an array 
* containing the subrectangles. 
*1 

private Rectangle [] getRects(Rectangle rcClient. int nAcross. int nDown){ 

int del taX. deltaY: 
int x. y. right. bottom: 
int i: 

Rectangle rgRects[] = new Rectangle[nAcross * nDown]: 

II Store the right and bottom of the rectangle. 

right = rcClient.getRight(): 
bottom = rcClient.getBottom(): 

II Determine the height and width of each rectangle. 

deltaX = (right - rcClient.x) I nAcross; 
deltaY - (bottom - rcClient.y) I nDown: 

II Initialize the array of cell rectangles. 

for(y - rcClient.y. i = 0; Y < bottom: y +- deltaY){ 

} 

for(x - rcClient.x; x < (right - nAcross) && i < (nAcross * nDown): 
x +- del t a X. i ++ )( 

rgRects[i] = new Rectangle(x. y. deltaX. deltaY): 

return rgRects: 

} 

Programmer's Guide 291 



Part 2 Programming with Visual J++ 

When the grid panel's paint event handler is invoked, it uses the dimensions stored in the 
application's Rectangle array (rgRects) and the states stored in the class-level Boolean 
array (rgStates) to draw a grid. If the Boolean value corresponding to a given rectangle is 
true, the rectangle is painted black. Otherwise, it is painted with a null brush. This enables 
the user to determine the appearance of the brush that is eventually created based on the 
pattern of the rectangles in the grid panel: 

private void panelGrid_paint(Object source, PaintEvent e) 
{ 

e.graphics.setPen(new Pen(Color.BLACK, PenStyle.SOLID, 1»; 

II Draw the grid to reflect the current state of the 
II squares. 

for(int i = 0; i < rgRects.length; i++){ 

if(rgStates[i] == true){ 

II If the square has been previously clicked, fill it. 

e.graphics.setBrush(new Brush(Color.BLACK»; 

}else{ 

e.graphics.setBrush(Brush.NULL); 

e.graphics.drawRect(rgRects[i]); 

} 

Each time the user clicks on one of the rectangles in the grid panel. the panel's click 
event is fired. Within the grid panel's click event handler, the application determines 
which rectangle was clicked, sets the corresponding Boolean state variable to true, and 
calls panelGrid.invalidate to force a repaint. Additionally, the application performs a 
bitwise operation on the appropriate member of the array of bits stored in the class-level 
bBrushBits variable: 

private void panelGrid_mouseDown(Object source, MouseEvent e) 
{ 

Graphics gr = this.createGraphics(); 
gr.setBrush(new Brush(Color.BLACK»; 
Integer nBit - new Integer(0); 

292 Programmer's Guide 



II Determine which cell was clicked. 

for(int i =- 0; i < 64; i++}{ 

} 

Rectangle rc =- new Rectangle(rgRects[i].x, 
rgRects[i].y, rgRects[i].height, 
rgRects[i].width); 

if(rc.contains(new Point(e.x, e.y»){ 

} 

II Set the appropriate boolean state variable. 

rgStates[i] = true; 

II Perform a bitwise NOT operation on the appropriate 
II integer in the array of shorts on which we'll base 
II our bitmap. 

if (i % S == 0) 
bBrushBits[i/S] = bBrushBits[i/S] 1\ 0xS0; 

if (i % S == 1) 
bBrushBits[i/S] = bBrushBits[i/S] 1\ 0x40; 

if (i % S == 2) 
bBrushBits[i/S] bBrushBits[i/S] 1\ 0x20; 

if( i % S == 3) 
bBrushBits[i/S] bBrushBits[i/S] 1\ 0x10; 

if ( i % S == 4) 
bBrushBits[i/S] bBrushBits[i/S] 1\ 0x0S; 

if( i % S == 5) 
bBrushBits[i/S] bBrushBits[i/S] 1\ 0x04; 

if (i % S == 6) 
bBrushBits[i/S] = bBrushBits[i/S] 1\ 0x02; 

if (i % S == 7) 
bBrushBits[i/S] = bBrushBits[i/S] 1\ 0x01; 

break; 

} 

II Repaint the grid. 

panelGrid.invalidate(); 

Chapter 15 Graphical Services 

Programmer's Guide 293 



Part 2 Programming with Visual J++ 

Finally, when the user clicks the Test button, the test button's click event handler forces 
a repaint of the panel (paneIRect) that appears above the Test button by calling 
paneIRect.invalidate: 

private void btnTest_click(Object source, Event e) 
{ 

panelRect.invalidate(): 

} 

Within the panelRect paint handler, the application creates a bitmap based on the array 
of short integers (bBrushBits), creates a brush based on the bitmap, and paints the panel 
(paneIRect) that appears above the Test button: 

private void panelRect_paint(Object source, PaintEvent e) 
{ 

short [] rgShorts - new short[8]: 

for(int i = 0: < bBrushBits.length: i++){ 
rgShorts[i] = (short) bBrushBits[i]; 

} 

e.graphics.setBrush(new BrushCnew Bitmap(8,8,1,1,rgShorts»): 
e.graphics.fillCpanelRect.getClientRectC»: 

Drawing Bitmaps 
A bitmap is a drawable surface. This surface can be used to display pens, brushes, 
or images, including Windows bitmaps, metafiles, .gif, and .jpg images. 

The Bitmap object supports creating and loading bitmaps. You can use this object to 
load bitmap images from files, streams, or resources, or you can use it to create bitmaps 
in memory. In addition, the Bitmap object supports defining transparent colors within 
a bitmap. 

After creating a Bitmap object, you use the Graphics object's drawImage method to render 
a Bitmap object to the display. 

The following code fragment creates a new Bitmap object and then uses the Form class's 
createGraphics method to create the Graphics object for drawing the image: 

Bitmap bmp = new Bitmap("c:\\Mylmage.bmp"): 
Graphics 9 = this.createGraphicsC): 

g.drawlmage(bmp, new Point(10, 10»: 

294 Programmer's Guide 



Chapter 15 Graphical Services 

Shrinking and Expanding Images 
All of the image objects supported by WFC (Metafile, Icon, Bitmap, and Cursor) support 
the drawStretchTo and draw To methods. All image rendering performed by the Graphics 
object occurs through these methods. When you call the Graphics object's drawlmage 
method, the object determines whether to call the drawStretchTo or the drawTo method 
on the image object that you pass the method. 

The drawStretchTo method expands or shrinks an image to fit within a specified 
rectangular area. The drawTo method renders an image to a specified area also, but if the 
image is too large for the target area, the drawTo method clips it. In addition, both of these 
methods support drawing sections of an image to a specified section of the Graphics 
object's bounding rectangle. 

You cannot call the drawStretchTo or drawTo methods directly; they are always defined 
as protected methods in WFC image classes. To determine which of these methods is 
called, you call a version of the drawlmage method that takes a Boolean scale parameter. 
The following is one such method defined by the Graphics object: 

public final void drawImage( Image i, Rectangle r, Boolean scale) 

If the scale parameter is true, the image is stretched or shrunk to fit the clipping rectangle; 
otherwise, the image is clipped. 

Rendering Images Transparently 
The Bitmap object supports the transparent rendering of one or more colors in an image. 

If you need to render a single color transparently, use the setTransparentColor and 
setTransparent methods. The setTransparentColor method takes a Color object parameter 
that specifies the bitmap color to be rendered transparently. The setTransparent method 
takes a Boolean value that specifies whether the designated transparent color should be 
rendered or not. 

For example, the following code fragment designates black as the transparent color. When 
the Graphics object's drawlmage method is called to draw the image, the black pixels in 
the image are not rendered: 

protected void onPaint(PaintEvent e) 
{ 

} 

Bitmap bmp = new Bitmap("c:\\MyImage.bmp"); 
Bmp.setTransparentColor(Color.BLACK); 
Bmp.setTransparent(false); 
e.graphics.drawImage(bmp. new POint(0.0)); 

Programmer's Guide 295 



Part 2 Programming with Visual J++ 

You can also achieve transparency by creating a Bitmap object based on two bitmasks, one 
of which is color and the other monochrome. In the color mask, each part of the bitmap to 
be drawn transparently should be black. In the monochrome mask, each part to be drawn 
transparently should be white. 

Raster Operations 
A raster operation applies a logical operation to the display of a GDI primitive, such as 
a pen, brush, image, or shape to achieve a visual effect. Raster operations that you can 
perform using the Graphics object are defined in the RasterOp object. When you review 
the methods supported by the Graphics object, you'll see that for each basic operation, 
such as the drawing of lines or the display of images, there's a method that takes a 
RasterOp as a parameter. 

In their simplest incarnations, the drawing methods the Graphics object supports merely 
writes or copies pixels to some area of the display, overwriting what's currently displayed. 
Add raster operations to the equation and this overwrite becomes more complex. 

Suppose, for example, that you want to draw a black rectangle to an area currently covered 
by an image, but you want to logically combine the black pixels with their corresponding 
pixels in the target image and to write the result to the display. Raster operations make 
such comhinations possible. 

The variations on the logic that the RasterOps object supports are too numerous to be 
covered thoroughly in this document. The following statements, however, demonstrate the 
basic syntax of a call using a RasterOps object. These statements set the background color 
of a form, and then draw a line that represents a color inversion of the background color: 

protected void onPaint(PaintEvent e) 
{ 

this.setBackColor(new Color(255. 255. 255); 

e.graphics.drawLine(new Point(10. 10). new Point(100. 10). 

RasterOp.TARGET.invert()); 
} 

296 Programmer's Guide 



Chapter 15 Graphical Services 

Drawing Shapes 
The Graphics object supports the drawing of lines, rectangles, chords, arcs, arc angles, 
and Bezier splines. 

Lines 
A line is a set of highlighted pixels on a display, identified by two points: a starting point 
and an ending point. In Windows, the pixel located at the starting point is always included 
in the line, and the pixel located at the ending point is always excluded (these lines are 
sometimes called inclusive-exclusive). 

An application can draw a single line by calling the Graphics object's drawLine method. 
This method takes two Point parameters, which specify the start and end of the line: 

protected void onPaint(PaintEvent e){ 

Rectangle rcClient = this.getClientRect(); 

II Draw lines that divide the screen area equally into four squares. 

e.graphics.drawLine(new Point(rcClient.x. rcClient.height I 2). 
new Point(rcClient.width. rcClient.height / 2)); 

e.graphics.drawLine(new Point(rcClient.width / 2. rcClient.y). 
new Point(rcClient.width / 2. rcClient.height)); 

Rectangles 
Applications written for Microsoft Windows use rectangles to specify rectangular areas 
on the screen or in a window. Rectangles are used to describe the client area of a window, 
areas of the screen that need repaints, and areas for displaying formatted text. Your 
applications can also use rectangles to rill, frame, or invert a portion of the client area with 
a given brush, and to retrieve the coordinates of a window or the window's client area. 

The dimensions of rectangular regions arc described in the WFC Rectangle object. This 
object consists of x, y, height, and width integers that describe the Rectangle's screen 
position and dimensions. In addition, you can use the object's getRight and get Bottom 
methods to retrieve the screen position of its right and bottom sides. 

For more information, see the following sections, "Rectangle Operations" and 
"A Rectangle Example." 

Programmer's Guide 297 



Part 2 Programming with Visual J++ 

Rectangle Operations 
The Rectangle object provides a number of methods for working with rectangles. The 
object's equals method determines whether two Rectangle objects are identical - that is, 
whether they have the same coordinates. 

The inflateRect method increases or decreases the width or height of a rectangle, or both. 
It can add or remove width from both ends of the rectangle; it can add or remove height 
from both the top and bottom of the rectangle. 

The overloaded contains method enables you to determine whether the area described by 
one rectangle exists within the area described by another, or to determine whether a given 
point exists within a rectangle. 

The intersects and intersects With methods determine whether two Rectangle object's 
intersect. 

A Rectangle Example 
The example in this section illustrates how to divide areas of an application's client area 
into sub-rectangles, and how to work within these regions. 

When the application starts, it divides the main form's client area into 16-by-16 
subregions, and displays every shade of a given color within those rectangular regions. 
To modify the number of rectangles displayed across and down the display, you use the 
Dimensions menu item to display a dialog box in which you specify the new number of 
rectangles you'd like to see displayed. 

The method that divides the screen into Rectangle objects is given in the following 
example. This method, getRects, takes three parameters: a rectangle that specifies the area 
to be divided, and two integers, which identify the number of cells to draw across and 
down, respectively. The method returns an array of rectangles that contain the appropriate 
coordinates: 

private Rectangle[] getRects(Rectangle rcClient. int nDown. int nAcross){ 

int deltaX. deltaY: II The height and width of each cell. 
int x. y: 
int i: 

Rectangle rgRects[] = new Rectangle[nDown * nAcross]: 

II Determine the height and width of each Rectangle. 

deltaX - (rcClient.getRight() - rcClient.x) I nAcross: 
deltaY (rcClient.getBottom() - rcClient.y) I nDown: 

II Create and initialize the Rectangle array. 

298 Programmer's Guide 



for(y = rcClient.y. i = 0; Y < rcClient.getBottom(): y += deltaY){ 
for(x = rcClient.x; X < (rcClient.getRight() - nAcross) && 

i < (nAcross * nDown); X += deltaX. i++){ 

rgRects[i] = new Rectangle(x. y. deltaX. deltaY); 

II Return the initialized array. 

return rgRects: 

Chapter 15 Graphical Services 

When the application starts, its Form class constructor initializes two class-level integers, 
nAcross and nDown, to 16, and calls the getRects method previously listed: 

publ i c FormH){ 

initForm(); 
nAcross = 16: 
nDown = 16: 

II Initialize class-level array. 

rgRects = getRects(this.getClientRect(). nAcross. nDown); 

After the class constructor returns, the class's paint event handler is automatically called. 
This event handler loops through the class-Icvel rgRects array, uses the Graphics object's 
setBrush method to set a new color, and thcn calls the drawRect method to draw the 
array's rectangle: 

protected void onPaint(PaintEvent c)( 

} 

for(int i - 0: i < rgRects.length; i++){ 

} 

e.graphics.setBrush(new Brush(new Color(0.0.i»); 
e.graphics.drawRect(rgRects[1]); 

Finally, the Form class's resize handler simply reinitializes the array and forces a repaint of 
the form's client area: 

protected void onResize(Event e)( 

} 

Rectangle rcClient = this.getClientRect(): 
rgRects = getRects(rcClient. nDown. nAcross); 
this.invalidate(); 

Programmer's Guide 299 



Part 2 Programming with Visual J++ 

Chords 
A chord is a region bounded by the intersection of an ellipse and a line segment, called a 
secant. The chord is outlined by using the current pen and filled by using the current brush. 
The part of the ellipse on one side of the secant is clipped. 

To draw a chord, use the Graphics object's drawChord method, which has the following 
syntax: 

drawChord( Rectangle pJ, Point p2, point p3 ) 

The drawChord method's Rectangle parameter designates the area into which the ellipse 
will be drawn. The two Point parameters identify the points at which the two ends of the 
secant intersect the ellipse. 

The following sample makes two calls to drawChord. The first call draws a chord in the 
lower-left comer of the display, and the second draws a chord in the upper-right comer. 
Prior to each call to drawChord, a different brush is associated with the Graphics object to 
ensure that the two chords, which combine to form a circle, are painted black and white, 
respectively: 

protected void onPaint(PaintEvent e){ 

} 

Rectangle rcClient - this.getClientRect(): 

II Associate a black brush with the object and draw a chord. 

e.graphics.setBrush(new Brush(new Color(0,0,0»): 
e.graphics.drawChord(rcClient. new Point(rcClient.x. rcClient.y). 

new Point(rcClient.getRight(). rcClient.getBottom(»: 

II Associate a white brush with the object and draw a chord. 

e.graphics.setBrush(new Brush(new Color(255.255.255»): 
e.graphics.drawChord(rcClient. new Point(rcClient.getRight(). 

rcClient.getBottom(». new Point(rcClient.x. rcClient.y»: 

Arcs 
An application can draw an ellipse or part of an ellipse by calling the drawArc method. 
This method draws a curve within the perimeter of an invisible rectangle called a bounding 
rectangle. The size of the ellipse is specified by two invisible radials extending from the 
center of the rectangle to the sides of the rectangle. 

When calling the draw Arc method, an application specifies the coordinates of the 
bounding rectangle and radials. 

300 Programmer's Guide 



Chapter 15 Graphical Services 

The following example draws an arc that fills the client area of a form, and then uses the 
Graphics object's drawLine method to draw a line from the top of the arc to its radius, 
then from its radius to the rightmost side of the ellipse: 

protected void onPaint(PaintEvent e){ 

Rectangle rcClient = this.getClientRect(); 

e.graphics.drawArc(rcClient, new Point(rcClient.width 12,rcClient.y), 
new Point(rcClient.width, rcClient.height I 2»; 

e.graphics.drawLine(new Point(rcClient.width / 2, rcClient.y), 
new Point(rcClient.width / 2, rcClient.height / 2»; 

e.graphics.drawLine(new Point(rcClient.width, rcClient.height 2), 
new Point(rcClient.width I 2, rcClient.height / 2»; 

Arc Angles 
An arc angle is similar to an arc. The primary practical difference between the two is that 
when an application uses draw Arc to draw an arc, it specifies the x and y locations of the 
arc's radials. 

In contrast, to draw an arc angle the application uses the draw ArcAngle method and 
specifies the degrees of the angle; the method itself takes care of locating the coordinates 
at which drawing starts and stops. 

The draw ArcAngle method has the following syntax: 

public final void drawAngleArc( Point center, int radius, float startAngle, float endAngle ) 

The Point parameter identifies the screen location at which to place the radius, specified 
in the radius parameter. The startAllgle specifies the number, in degrees, where the angle 
starts, and the endAngle parameter specifics how many degrees to draw, beginning at the 
startAngle. 

The following example shows how to lise this method. This method draws an arc angle, 
beginning at a start angle of 30, and extending 300 degrees from the start angle: 

protected void onPaint(PaintEvent c){ 

Rectangle rcClient = this.getClientRect(); 
int x - rcClient.width / 2; 
int y - rcClient.height I 2; 
int radius = 100; 
float startAngle = 30; 
float endAngle = 300; 

e.graphics.drawAngleArc(new Point(x,Y), radius, startAngle, cndAnglc); 

Programmer's Guide 301 



Part 2 Programming with Visual J++ 

Bezier Splines 
A Bezier spline is defined by four points, which include two endpoints and two controlling 
points. Combined, these points define a curve. The two endpoints define the start and end 
of the curve. The control points serve to "pull" the curve away from the line segment 
formed by the start and end points. 

To draw Bezier splines, use the drawBezier curve method. This method takes an array of 
Point objects as a parameter. The first four elements of this array define the starting point, 
two control points, and the end point of the spline. 

To draw multiple splines, include three array elements for each spline after the first one. 
The end point of the first spline serves as the starting point for the next one, and the three 
array elements define the control points and the end point. 

The following code uses the draw Bezier method to draw a bezier curve every time the 
window is resized: 

protected void onPaint(PaintEvent e) 
{ 

} 

Point [] pt - new Point[4]; 
Rectangle rc - this.getClientRect(); 
int right - rc.getRight(); 
int bottom - rc.getBottom(); 

pt[0] - new Point(right / 4. bottom / 2); 
ptE!] - new Point(right / 2. bottom / 4); 
pt[2] - new Point(right / 2. 3 * bottom / 4); 
pt[3] - new Point(3 * right / 4. bottom / 2); 

e.graphics.drawBezier(pt); 

protected void onResize(Event e) 

{ 

this.invalidate(); 
} 

302 Programmer's Guide 



C HAP T E R 1 6 

Building and Importing 
ActiveX Controls 

ActiveX is a technology built upon the Component Object Model (COM). In addition 
to creating Windows Foundation Classes for Java (WFC) components, you can use 
Visual J++ to build and import ActiveX controls. Because ActiveX is a built upon COM, 
you can incorporate ActiveX as easily as other COM objects. You can develop controls 
to use in other development environments, such as Microsoft Visual Basic and Microsoft 
Visual C++, and to provide advanced features in your HTML pages. Moreover, you can 
import third-party ActiveX controls to enhance your WFC applications. 

In this section, you wi11learn: 

• How to build an ActiveX control from an existing WFC component 

• How to import ActiveX controls into your WFC applications 

Building ActiveX Controls 
Using the component model of the Windows Foundation Classes for Java (WFC), you 
can create ActiveX controls that can be used in WFC applications or in other development 
environments that support ActiveX. To create an ActiveX control from a WFC control, 
you register the WFC control's class as a COM class. Once the control's class has been 
registered as a COM class, you can package the class file for the control into a COM DLL 
and register it as an ActiveX control in the registry. Once the control is registered as an 
ActiveX control, it can be accessed from an ActiveX client. 

In this scenario, you use the WFC control documented in "Creating a Control" in 
Chapter 1, "Creating Projects." If you have not created it, build the control documented in 
the section, and continue with the procedures in this section. You will learn: 

• How to expose a WFC control as a COM object. 

• How to package a control into a COM DLL for usc by other applications. 

• How to register a COM DLL as an ActiveX control. 

• How to import a WFC based ActiveX control into Visual Basic. 

Note The following procedure assumes that you have an existing WFC component 
project opened in Visual J++. 

Programmer's Guide 303 



Part 2 Programming with Visual J++ 

Defining a WFC Control as a COM Object 
To access your control from other ActiveX clients, you define your control as a COM 
object. So t~at a class can be exposed as a COM object, it needs to have an @com. reg; ster 
comment tag placed above the class definition. Visual J++ provides an automated way to 
generate@com. reg; ster comment tags for your classes. 

Note If your control's project was created using the Control template, the control 
already contains a comment tag to register it as a COM object. Remove the forward 
slashes (II) to enable the comment tag. 

To define a WFC component as a COM object 

1. On the Project menu, click <Project> Properties (where <Project> is the name of 
your control project). 

2. In the <Project> Properties dialog box, click the COM Classes tab. 

3. In the list of classes, select your control's class. 

4. Click the Options button. 

5. (Optional) In the Type Library Options dialog box, change the name of the type library 
file that i~ created to define the interface to your control, the name of the library, the 
name of the control as it will be displayed to development environments, and Help file 
information, and click OK. 

6. In the <Project> Properties dialog box, click OK. 

Visual J++ adds a comment tag at the top of your control's class definition that 
registers the class as a COM object. 

Note If you do not need to define multiple classes as COM classes, you can define 
a COM class in the Class Properties dialog box. To display the Class Properties 
dialog box, in Class Outline, right-click the name of the class, and then click Class 
Properties. In the Class Properties dialog box, select the COM Class check box. 

Packaging the Control in a COM DLL 
After you have defined your WFC control as a COM object, you package the control's 
class files into a COM DLL file. Your control must be packaged in a COM DLL file to 
be available as an ActiveX control. The COM DLL provides the interface that is used by 
ActiveX clients to access your control and its members. 

Note To distribute your ActiveX controls over the Internet, you can package your 
control in a CAB file instead of a COM DLL. 

304 Programmer's Guide 



Chapter 16 Building and Importing ActiveX Controls 

To build a control as a COM DLL 

1. On the Project menu, click <Project> Properties (where <Project> is the name of 
your control project). 

2. In the <Project> Properties dialog box, click the Output Fonnat tab. 

3. Select the Enable Packaging check box. 

The other controls on the tab should now be enabled. 

4. In the Packaging type drop-down list, select COM DLL. 

5. In the File name box, type a name for your COM DLL. (A default name is created 
using the name of the project.) 

6. In the associated drop-down list, select the Outputs of type and the Java Classes & 
Resources options. 

7. Click OK. 

Building the Project 
After you have configured the packaging options for the project, you need to build the 
project. Visual J++ then adds a type library to your project that defines the COM interface 
for your control. The type library also contains infonnation that the registry uses to register 
the COM class as a control. When the type library has been generated, Visual J++ registers 
the COM classes in your project in the registry using the type library file that was created. 
After the control's classes have been registered, Visual J++ packages the project's class 
files and the type library into a COM DLL. 

To build the project 

• On the Build menu, click Build. 

Registering the COM DLL 
Once you have registered your WFC control's classes as COM classes and packaged them 
in a COM DLL, you register the COM DLL in the system registry. To do this, you use the 
Regsvr32.exe program. Because the project's type library flags the WFC control's COM 
classes as a control, Regsvr32 registers the COM DLL as an ActiveX control. When the 
COM DLL has been registered, other applications can see your WFC control in the I ist of 
ActiveX controls that are registered on the system. 

Programmer's Guide 305 



Part 2 Programming with Visual J++ 

To register the COM DLL 

1. Click the Start button, and then click Run. 

2. In the Open box, type: 

Regsvr32.exe <.DLL path and filename> 

where <.DLL path and filename> is the path and file name of your control's DLL. 
For this scenario, type: 

Regsvr32 C:\Projectl\Projectl.dlI 

3. Click OK. 

If you receive a message that the registration failed, ensure that the path to the control's 
DLL is correct and that the file exists. 

Testing the Control in Microsoft Visual Basic 
To test your ActiveX control, you add the control to a programming tool or application 
that supports ActiveX. For this scenario, you can use Microsoft Visual Basic version 5.0 
or later to add the control and test its features. 

To add a WFC based ActiveX control to a Visual Basic form 

1. Run Visual Hasic. 

2. On the File menu in Visual Basic, click New Project. 

3. In the New Project dialog box, click the Standard EXE icon, and then click OK. 

4. Right-click the Toolbox, and then click Components. 

5. In the Components dialog box, select your control, and then click OK. 

For this scenario, select the Projectl control. 

6. In the Toolbox, double-click your control to add it to the form. 

The control is added in the center of the form. 

7. Press F5 to run the project. 

The form is displayed with your control. 

If you are working with the control that is documented in "Creating a Control" in 
Chapter 1, "Creating Projects, you can scroll the horizontal scroll bar. The text in the 
control changes to reflect the position of the scroll bar. 

For information on importing an ActiveX control into a WFC application, see the next 
section, "Importing ActiveX Controls." 

306 Programmer's Guide 



Chapter 16 Building and Importing ActiveX Controls 

Importing ActiveX Controls 
ActiveX controls can provide a number of enhancements to your Windows Foundation 
Classes (WFC) applications. A number of third-party ActiveX controls are available to 
add features, such as custom button shapes, telephony technology, charting, graphing, 
and spreadsheets. You can use Visual J++ to import ActiveX controls using a process 
similar to importing COM objects. 

In this scenario, you import the Microsoft ActiveMovie control that is installed with 
Microsoft Internet Explorer version 4.0. You willieam: 

• How to register an ActiveX control in the system registry. 

• How to create a project to use when importing an ActiveX control. 

• How to import the ActiveX control into a project. 

• How to add an ActiveX control to a form and set its properties. 

• How to build and run the project to test the ActiveX control. 

Registering a Control 
So that your ActiveX control is available to Visual J++, you must register it in the system 
registry. 

Note In this scenario, you do not need to register the ActiveMovie control because 
it is registered when Internet Explorer is installed. 

To register an ActiveX control 

1. Click the Start button, and then click Run. 

2. In the Open box, type: 

Regsvr32.exe <control path mul filell11me> 

where <control path andfilename> is the path and file name of your control. For this 
scenario, type: 

Regsvr32 C:\Windows\System\AlVIOVIE.OCX 

3. Click OK. 

If you receive a message that the registration failed, ensure that the path to the control 
is correct and that the file exists. 

Programmer's Guide 307 



Part 2 Programming with Visual J++ 

Creating a WFC Project 
When importing an ActiveX control, Visual J++ creates package directories in your 
project and adds the class wrappers used to access the ActiveX control in those package 
directories. Therefore, you must have a valid WFC project to import an ActiveX control. 

To create a WFC project 

1. On the File menu, click New Project. 

2. On the New tab, expand the Visual J++ Projects folder, click Applications, and 
then click the Windows Application icon. 

3. In the Name box, type a name for your project. 

4. In the Location box, type the path where you want to save your project, or click 
Browse to navigate to the folder. 

S. Click Open. 

A collapsed view of your project appears in Project Explorer. (If Project Explorer is 
not visible, click Project Explorer on the View menu.) 

6. In Project Explorer, expand the project node. 

A file with the default name of Forml.java has been added to your project. 

7. To open your form in the Forms Designer, double-click Form1.java in Project 
Explorer. 

Importing an ActiveX Control 
After you have created the project, you can then import the ActiveX control into the 
project. Use the Customize Toolbox dialog box to select the ActiveX control from a list 
of ActiveX controls that are installed on your system. 

Note Once you have added an ActiveX control to the Toolbox, the control remains 
in the Toolbox for all other projects until you remove it. 

To import an ActiveX control 

1. In the Toolbox, click the General tab. (If the Toolbox is not displayed, click Toolbox 
on the View menu.) 

2. Right-click the Toolbox, and then click Customize Toolbox. 

3. In the Customize Toolbox dialog box, click the ActiveX Controls tab. 

308 Programmer's Guide 



Chapter 16 Building and Importing ActiveX Controls 

4. In the list of ActiveX controls, select the control that you want to import. You can 
select multiple controls. 

For this scenario, select ActiveMovieControl Object. 

5. Click OK. 

The controls that you selected are added to the Toolbox. 

Adding the Control to a Form 
When you add the ActiveX control to a form, Visual J++ creates one or more packages 
in your project directory and adds class wrappers for the control. The class wrappers 
are used by Visual J++ to access the classes and members of the ActiveX control. If the 
ActiveX control you are importing is contained in a file that contains multiple ActiveX 
controls, Visual J++ will provide class wrappers for all controls in the file but adds only 
the specified control to the Toolbox. 

To add the ActiveX control to a form 

o With a form displayed in the Forms Designer, double-click the control that you 
want to add. 

For this scenario, double-click the ActivcMovie control. The control is added to 
the center of the form. 

Setting the Control's Properties 
After you have added the ActiveX control to a form, you can use the Properties window 
to set properties and create event handh:rs. 

To set the properties for the ActiveMovie control 

1. In the Forms Designer, select the ActivcMovie control. 

2. In the Properties window, select the filename property. 

3. Type the path and file name of an .avi file to display in the control. 

-or-

Click the ellipsis button in the value section of the tilename property to display 
a dialog box to browse for a file on your computer. 

Programmer's Guide 309 



Part 2 Programming with Visual J++ 

Building the Project 
After you have added the ActiveX control to a form and set its properties, you build 
and run the project to test the control's functionality. 

To build and run the form 

1. On the Build menu, click Build. 

If you receive any compilation errors or messages, correct the errors and rebuild 
your project. 

2. To run the form, on the Debug menu, click Start. 

3. When the form appears, click the play button on the control. 

The movie that you specified in the filename property is displayed. 

310 Programmer's Guide 



C HAP T E R 1 7 

Building and Importing 
COM Objects 

The Component Object Model (COM) is an objecForiented architecture for creating 
objects that can be reused from application to application. You can also use it to write 
objects that can be accessed from other programming environments such as Microsoft 
Visual Basic and Microsoft Visual C++, as well as applications such as Microsoft Office. 
COM provides a standard protocol for connecting objects together, even if they are 
designed in different programming languages. When a connection has been made, the 
objects communicate through a standard interface. 

Visual J++ provides support for building and importing COM objects. By building COM 
objects in Visual J++, you can provide reusable components that can be shared by any 
number of applications as well as applications written in different languages. The COM 
import features allow you to use objects from other applications to provide additional 
features in your Windows Foundation Classes for Java (WFC) applications. For example, 
you can use the COM objects that Microsoft Office exposes to access spell checking 
features in Microsoft Word or mathematical functions in Microsoft Excel. By using COM 
in your Visual J++ projects, you provide true code reuse in your application development. 

In this chapter, you willieam: 

• How to build a COM object 

• How to import existing COM objects into a WFC application 

Building COM Objects 
Visual J++ simplifies the building of COM objects by providing an easy-to-use interface 
for selecting classes in your project that you want to use as COM classes. Any public, 
non-abstract class can be used to create a COM object. Visual J++ uses the public 
members of a class as the interface to the COM object. When you build your project, 
classes that are selected as COM classes are built and registered in the system as COM 
objects. Once you have built your COM objects, you can package them in a COM DLL 
and access them from other programming environments or from applications that 
support COM. 

Programmer's Guide 311 



Part 2 Programming with Visual J++ 

In this scenario, you build a COM object, packaged in a COM DLL, that exposes 
sports-related, statistical functions. You will learn how to: 

• Create a project with classes that can be exposed as COM objects. 

• Use the COM Classes tab in the Project Properties dialog box to select classes in 
your project to expose as COM objects. 

• Package the COM classes into a COM DLL for other programming languages and 
applications to use. 

• Build the project. 

Creating a Project 
Visual J++ provides a COM DLL template that creates a project with a class that is already 
registered as a COM class. This template is also configured to package the project in a 
COM DLL. For more information on creating COM DLL projects using the template, 
see "Creating a COM DLL" in Chapter 1, "Creating Projects." 

Although the COM DLL template is available, this scenario does not use the template 
because it is important to understand how to select a class in any project as a COM class. 
In this scenario, you create an empty project and add a Java class to the project that will 
be exposed as a COM object. 

Note Before you start the following procedure, close any open projects. (On the File 
menu, click Close All.) 

To create an empty project 

1. On the File menu, click New Project. 

2. In the New ·tab, select the Visual J++ Projects folder, and then click the Empty 
Project icon. 

3. In the Name box, type a name for your project. 

For this scenario, type Stats. 

4. In the Location box, type the path where you want to save your project, or click 
Browse to navigate to a directory. 

5. Click Open. 

Your project appears in Project Explorer and contains no files. 

312 Programmer's Guide 



Chapter 17 Building and Importing COM Objects 

To add a class to your project 

1. In Project Explorer, right-click the name of your project. 

2. On the shortcut menu, point to Add and then click Add Class. 

3. To add an empty Java class, select the Class icon. 

4. In the Name box, type a name for the Java class. 

For this scenario, name the class Stats.java. 

5. Click Open. 

Adding Code to the Class 
For clients of your COM DLL to manipulate your COM object, you provide public 
methods in your COM class. Visual J++ exposes all public methods of a Java class, 
including those inherited from superclasses, through the interface to the COM object. 
For this scenario, you add two methods to the class. These methods provide sports-related 
statistical functions to the user of the COM object. 

The first public method that the Stats COM object needs to expose is the 
winLossPercentage method. This method calculates the percentage of wins a team 
has over the total number of games that have been played by the team. 

To add the winLossPercentage method 

• Add the following method definition to the Stats class. 

public float winLossPercentage(int gamesPlayed, int gamesWon) 
{ 

float returnValue = gamesWon % gamesPlayed * .100f: 
if (returnValue == 0.0f) 

return 1.0f: 
else 

return returnValue: 

This code uses the modulus operator to obtain the remainder from a division between 
the number of games that were won by the team and the number of games that were 
played. The value is then multiplied by .100f to convert the value to the type typically 
used in a team standings display. After the value has been determined, the code checks 
to see if the value is O.Of, which indicates that there is no remainder and that the team 
has won all its games. If so, the code returns the value of 1.0f. Otherwise, the code 
returns the regular value. 

The final public method that the Stats COM object needs to expose is the 
goa 1 sAga i nstAverage method. This method calculates the average number of goals that 
are allowed by a goaltender. It determines this by dividing the number of goals allowed 
by the goaltender by the number of complete games the goaltender has played in. 

Programmer's Guide 313 



Part 2 Programming with Visual J++ 

To add the goalsAgainstAverage method 

• Add the following method definition to the Stats class. 

public float GoalsAgainstAverage(int gamesPlayed, int goalsAllowed) 
{ 

return (float) goalsAllowed/gamesPlayed; 

This code divides the number of goals allowed by the number of games played and 
casts the result as a float value. 

Defining a Class as a COM Class 
After you have created your class and defined the public methods will be exposed 
through COM, you define the class as a COM class. Use the COM Classes tab in the 
Project Properties dialog box to select classes from your project as COM classes. 

Note If you do not need to define multiple classes as COM classes, you can define 
a COM class in the Class Properties dialog box. To display the Class Properties 
dialog box, in Class Outline, right-click the name of the class, and then click Class 
Properties. In the Class Properties dialog box, select the COM Class check box. 

To define a class as a COM Class 

1. On the Project menu, click <Project> Properties (where <Project> is the name of 
your control project). 

2. Click the COM Classes tab. 

3. In the COM Classes tab, select the Automatically generate Type Library option. 

4. In the list of classes, select the name of the class that you want to expose as a 
COM object. 

For this scenario, select the Stats class. 

5. Click OK. 

Visual J++ adds an @com.register comment tag to the top of your class definition. 
When your project is compiled, the compiler uses the information in the comment 
tag to register your class as a COM class in the registry. 

314 Programmer's Guide 



Chapter 17 Building and Importing COM Objects 

Packaging the Project as a COM DLL 
So that other applications can access your COM object, you package it in a COM DLL. 

Note If you want to distribute your COM object over the Internet, you can package 
your control in a CAB file instead of a COM DLL. 

To package your COM object in a COM Dll 

1. On the Project menu, click <Project> Properties (where <Project> is the name of 
your control project). 

2. Click the Output Format tab. 

3. Select the Enable Packaging check box. 

4. In the Packaging type drop-down list, select COM DLL. 

5. In the File name box, type a name for your COM DLL. (A default name is created for 
you using the name of the project.) 

6. Select the Outputs of type and the Java Classes & Resources options. 

7. Click OK. 

Building the Project 
During the build process, Visual J++ pm:kagcs your COM classes in a COM DLL and 
registers the DLL and the COM classcs within it as COM objects. When the classes are 
in the registry, they are available to othcr applications. For more information on importing 
a COM object into Visual J++, see the next section, "Importing COM Objects." 

To build your project 

o On the Build menu, click Build. (If you receive any compilation errors or message, 
correct the errors and rebuild your project.) 

Note To perform additional registration while your COM class is being registered, 
you can add a user-defined method named onCOMRegi ster to your COM class. You 
can use this method to perform tasks such as registering a Visual 1++ add-in into 
the list of Visual J++ add-ins. This mcthod is cal1ed by Visual 1++ during the COM 
registration process for COM classcs and during the registration of a COM DLL 
built with Visual J++. The signature of the onCOMRegi ster method must match the 
following signature: 

public static void onCOMRegister(boolean register) 
{ 

II Add your custom registration code here 
} 

Programmer's Guide 315 



Part 2 Programming with Visual J++ 

Importing COM Objects 
COM objects provide a great way to encapsulate functionality and reuse it across multiple 
applications. You can use COM objects to expose specific functionality within your 
application to use in other applications or to create a set of routines that you want to use 
in more than one application. Because COM is not language-specific, COM objects can 
be easily integrated into applications developed in a variety of programming languages. 
You can use Visual J++ to view and import COM objects that are registered on your 
system. During the import process, Visual J++ creates class wrappers so that you can 
access COM objects just as you would other Java objects. 

In this scenario, you import a COM object that was built in the "Building COM Objects" 
section, earlier in this chapter. You willieam how to: 

• Import a COM object into a Windows Foundation Classes for Java (WFC) project. 

• Access the methods of a COM object. 

• Build and run the project to test the functionality of the COM object. 

Note This section assumes that you have created the COM object in "Building COM 
Objects," earlier in this chpater, and that you have closed any open projects. 

Creating a Project 
When importing a COM object, Visual J++ creates directories within your project and adds 
the class wrappers to access the COM object in those directories. To import a COM object, 
you must have a valid Java project. 

To create a project 

1. On the File menu, click New Project. 

2. On the New tab, expand the Visual J++ Projects folder, click Applications, and select 
the Windows Application icon. 

3. In the Name box, type a name for your project. 

4. In the Location box, type the path where you want to save your project, or click 
Browse to navigate to the folder. 

5. Click Open. 

A collapsed view of your project appears in Project Explorer. 

6. In Project Explorer, expand the project node. 

A file with the default name of Forml.java has been added to your project. 

316 Programmer's Guide 



Chapter 17 Building and Importing COM Objects 

Importing a COM Object 
After you have created a project, you can then import COM objects to that project. A COM 
object must be imported for each project that is to access it. When you import a COM 
object into a project, Visual 1++ creates class wrappers that provide the interface for 
accessing the COM object. These class wrappers are added to packages in your project 
directory. (Depending on the number of objects stored in the COM DLL, Visual 1++ can 
create multiple packages.) 

Note To access a specific COM object from another project, you can avoid wrapping 
the object for each project by placing the COM wrapper classes in the Classpath. 

To import a COM object 

1. On the Project menu, click Add COM Wrapper. 

The COM Wrappers dialog box is displayed. 

2. In the list that contains COM DLLs and type libraries that are registered on your 
computer, select the name of the COM object that you want to import. 

For this scenario, select the Stats COM object. 

3. Click OK. 

Visual 1++ adds package directories and class wrappers for each of the COM objects 
contained in the COM DLL that you selected. 

Adding Code to Access the COM Object 
After Visual 1++ has created the class wrappers, you can then write code to access 
the methods of the COM object. For this scenario, you add code to your projcct's form 
constructor. This code creates an instance of the COM object and make calls to the two 
methods of the COM object. The methods are called with hard-coded values, lind their 
results are displayed in the Output window. 

To add code to the constructor of the form 

1. In Project Explorer, right-click Form1 and then click View Code. 

The text editor displays the source code for Form 1. 

2. Inside the Form! constructor below the call to i ni tForm, add the following Iincs 
of code: 

statisticsobject.Stats stats - new statisticsobject.Stats(): 
System.out.println("Qur team has a winning percentage of " + 

stats.winLossPercentage(10. 4»; 
System.out.println("Qur goaltender has a Goals Against Average of " + 

stats.goalsAgainstAverage(12. 15»: 

Programmer's Guide 317 



Part 2 Programming with Visual J++ 

This code creates an instance of the Stats COM object. The reference to 
stat i st i csobj ect before the Stats object is the name of the package where the class 
wrappers for Stats were created. After the instance of Stats is defined, the code calls its 
wi n Loss Percentage and goa 1 sAga i nstAverage methods with hard coded values and 
sends the results to the Output window through a call the System. out. pri ntl n. 

Building and Running the Project 
After you have incorporated calls to the COM objects methods, you build and run the 
project. 

To build and run the project 

1. On the Build menu, click Build. (If you receive any compilation errors or messages, 
correct the errors and rebuild your project.) 

2. To run the form, click Start on the Debug menu. 

After the project starts, you can see the output from the calls to the Stats COM object 
in the Output window. (To display the Output window, on the View menu, click Other 
Windows, and then click Output.) 

318 Programmer's Guide 



C HAP T E R 1 8 

Data Binding in WFC 

To access data from your Java project, you typically use the ActiveX Data Objects (ADO) 
components, which define the data programming model for WFC applications. The core 
ADO objects include the Connection, Command, and Recordset objects. 

The Connection object allows you to connect to a database. Once a connection is 
established, you can query the database to retrieve a set of records. The Recordset object 
represents the records returned from a query. You can use either an SQL string or a 
Command object to specify the query. 

ADO also provides the DataSource component, which combines the functionality of the 
Connection, Command, and Recordset objects. For information about programming with 
the ADO objects, see the "ADO Tutorial (VJ++)," in the Microsoft ActiveX Data Objects 
online documentation. The ADO classes arc defined in the com.ms. wfc.data and 
com.ms.wfc.data.ui packages. 

Note The Toolbox in the Forms Designer only provides a DataSource control; 
the Connection, Command, and Reconlset objects can only be used in code. 

Once a recordset has been retrieved, either through a Recordset object or a DataSource 
component, you can bind the recordset to a WFC component. WFC supports both simple 
and complex data binding, described as follows: 

Type of Binding 

Simple 

Complex 

Description 

Refers to the relationship between a field in a recordset and the property of a WFC 
component. The binding is called simple because the component docs not need explicit 
knowledge about the data protocol or data provider. 

Refers to the direct relationship between a recordset and a WFC component. 

Note that the recordset's cursor and lock types determine whether the data in the recordset 
dynamically reflects the data in the datahase, and whether the data in the recOI'dset can be 
changed. 

For more information about ADO, see "Getting Started with ADO 2.0," in the Microsoft 
ActiveX Data Objects online documentation. 

Programmer's Guide 319 



Part 2 Programming with Visual J++ 

Simple Data Binding 
Simple data binding refers to the relationship between a field in a record set and the 
property of a WFC component. When a property is bound, data is automatically transferred 
between the field and the property: 

• If the value of the field changes, the new value is propagated to the property. 

• If a new record in the record set is navigated to, the current field value is propagated 
to the property. 

• If the value of the property changes and the component supports a property change 
notification, the new value is propagated to the field in the recordset. The recordset 
is updated when a new record is navigated to. 

Note If an attempt is made to update a read-only recordset, the record set will 
generate an ADO exception. You can then catch this exception and set the bound 
property back to its previous value; otherwise, the value of the property and the 
value of the field will be inconsistent. 

Bindable Properties 
Simple data binding in WFC is performed by the DataBinder component. This component 
creates and manages the binding between the field and the property. The DataBinder 
component can bind a property that is accessible through methods matching the following 
design patterns: 

public <PropertyType> get<PropertyName>() 
public void set<PropertyName>«PropertyType» 

Note that if a property is also marked with BindableAttribute.YES in the component's 
ClassInfo, it is enumerated in the Properties window and in the DataBinder component's 
design page. (You can still bind a property that is not marked as bindable by manually 
typing the name in the Properties window or design page, or by binding the property 
programmatically.) 

Property Change Notifications 
The component of a bound property can provide a <propertyNalllc>Changed event to 
indicate that the property's value has been changed. When this event is triggered, the 
DataBinder component marks the binding as dirty. Then when the user navigates to 
a new record or when the DataBinder.commitChanges method is called in code, the 
DataBinder component determines which bindings are dirty and updates those bindings 
on the recordset. 

320 Programmer's Guide 



Chapter 18 Data Binding in WFC 

Note If your component does not provide a <propertyName>Changed event for a 
property that is bound through the DataBinder component, the binding is read-only 
and your component will be disabled. To work around this limitation, you can manage 
the bindings yourself in code by directly reading from and writing to the recordset. 

DataBinder Component 
ADO defines the DataBinder component to perform simple data binding. This component 
creates and manages the bindings between the fields in a recordset and the bindable 
properties of WFC components. For more information about whether a property can be 
bound, see the earlier section, "Bindable Properties." 

Although a single DataBinder component can manage multiple bindings, it is associated 
with only one recordset. To bind the fields of a second recordset, you must use another 
DataBinder component. Additionally, the DataBinder component should be used only 
to bind to components that exist on the same form. 

If the component of a bound property supports a change notification for that property, 
the DataBinder component marks the binding as dirty when the property value 
changes. The recordset is updated when the user navigates to a new record or when 
the DataBinder.commitChanges method is called in code. For more information, see 
the previous section, "Property Change Notifications." 

Example 

The following example shows how to programmatically perform simple data binding 
with the DataBinder component. Note that the DataBinder component uses an array of 
DataBinding objects to manage the bindings. 

import com.ms.wfc.data.*; 
import com.ms.wfc.data.ui.*; 
import com.ms.wfc.ui.*; 

1* Use the Connection and Recordset components to 
connect to a database and retrIeve a recordset. */ 

Connection c ~ new Connection(): 
c.setConnectionString("dsn=myDSN:u1d-myUID;pwd=myPWD"): 
c.open(): 

Recordset rs ~ new Recordset(); 
rs.setAct1veConnection(c); 
rs.setSource("select * from authors"); 
rs.open(): 

Programmer's Guide 321 



Part 2 Programming with Visual J++ 

/* Create a DataBinder component. To associate this 
component with rs, set the dataSource property. */ 

DataBinder db = new DataBinder(); 
db.setDataSource(rs); 

/* Create the components whose properties will be bound. */ 
Edit editl new Edit(); 
Edit edit2 = new Edit(); 

/* Set the DataBinder component's bindings property to 
an array of DataBinding objects. This array defines 
the bindings between the text property of each Edit 
component and the fields in the recordset. */ 

db.setBindings(new DataBinding[] { 

} 

new DataBinding(editl, "text", "firstName"), 
new DataBinding(edit2, "text", "lastName") } ); 

For more information about the DataBinder component's dataSource property, see the next 
section, "Complex Data Binding." For information about using the DataBinder component 
in the Forms Designer, see Chapter 4, "Accessing Data." 

Complex Data Binding 
Complex data binding refers to components that interact directly with a recordset. 
A complex data-bound component provides dataSource and dataMember properties 
that identify the record set it is bound to. Note that the properties of complex bound 
components can still be simple bound via the DataBinder component. 

dataSource and dataMember Properties 
The dataSource property identifies an object that implements the IDataSource interface. 
This object exposes one or more recordsets. The dataMember property then specifies 
the name of the record set that is currently bound to the component. For example: 

/* Bind the component to the recordset named "Products", 
which is exposed by the data source, ds. */ 

dbComponent.setDataSource(ds); 
dbComponent.setDataMember("Products"); 

322 Programmer's Guide 



Chapter 18 Data Binding in WFC 

If you do not set the dataMember property, then the data source's default recordset will 
be bound. (You can explicitly specify the default recordset by setting the dataMember 
property to null.) 

/* Bind the component to the default recordset 
exposed by the data source. ds. */ 

dbComponent.setDataSourceCds); 
dbComponent.setDataMemberCnull); /* This line is optional. */ 

Note that the Recordset and DataSource components already implement the IDataSource 
interface. Therefore, you can set the dataSource property directly to one of these 
components. In this case, you do not have to set the dataMember property: 

1* Set the dataSource property directly to the Recordset 
component.rs. without setting the dataMember property. */ 

dbComponent.setDataSourceCrs): 

Complex Bound Components in Visual J++ 
Visual J++ provides the following complex data-bound components: 

Component Description 

DataBinder Binds a field from a record set to the property of a WFC component. 
(Although the DataBinder component is used to perform simple binding, 
the component itself exposes dataSource and dataMember properties.) 

DataGrid 

DataN avigator 

Binds multiple fields from a recordset and displays the data in a grid format. 

Allows the user to change the current record in a recordset. Any other 
component that is hound to the same recordset is then updated to reflect 
the new current row. 

For information about using these components in the Forms Designer, see Chapter 4, 
"Accessing Data." 

Programmer's Guide 323 





C HAP T E R 1 9 

Writing Windows-Based 
Applications with JIDirect 

JIDirect is a new feature of Microsoft Visual J ++ that provides easy access to Microsoft 
Windows dynamic-link libraries (DLLs). Using JIDirect, you can make direct calls to 
standard Win32 system DLLs (such as KERNEL32 and USER32) and third-party DLLs. 
JIDirect is far simpler to use than the older Raw Native Interface or the Java Native 
Interface (known as RNI and JNI, respectively), both of which require you to write a 
specialized wrapper DLL and perform all non-trivial data type translations yourself. 
With JIDirect, the vast majority of pre-existing DLL functions can be invoked by simply 
declaring the function and calling it. JIDirect uses the @dll.import directive, which is 
similar to Visual Basic's DECLARE facility. 

To use JIDirect, you need to have installed Microsoft Visual J++ and Microsoft Internet 
Explorer, version 4.0 or higher. To quickly build applications that take advantage of the 
native power of JIDirect, use the JIDirect Call Builder, which is a part of the Visual J++ 
development environment. 

This chapter explains how to use the @dll.import directive to invoke a DLL function from 
Java. It also offers details about how each data type is passed and received and describes 
how the @dll.struct directive is used to pass and receive structures from DLL methods. 

Message Box Example 
This section provides a message box application that uses the @dll.import directivc. 

Using JIDirect to call Win32 DLLs from Java code is straightforward. The following is a 
short Java application that displays a mcssage box: 

class ShowMsgBox 
public static void main(String args[]) 
{ 

MessageBox(0, "It worked!", 
"This messagebox brought to you using J/Direct", 0): 

} 

1** @dll .import("USER32") *1 
private static native int MessageBox(int hwndOwner, String text, 

String title, int fuStyle): 

Programmer's Guide 325 



Part 2 Programming with Visual J++ 

The @dll.import directive tells the compiler that the MessageBox method will link to the 
Win32 USER32.DLL using the JlDirect protocol rather than the Raw Native Interface 
(RNI) protocol supported in previous versions. In addition, the Microsoft Virtual 
Machine (VM) for Java provides automatic type marshaling from String objects to 
the null-terminated strings expected by C. 

It is not necessary to indicate whether the ANSI MessageBox (MessageBoxA) function 
or the Unicode MessageBox function (MessageBoxW) should be called. In the above 
example, the ANSI version is always called. "How the VM Chooses Between ANSI and 
Unicode," later in this chapter, explains how to use the auto modifier to call the optimal 
version of the function, depending on the version of Microsoft Windows that is hosting the 
application. 

JlDirect Call Builder 
Using the JlDirect Call Builder, you can quickly create JlDirect calls to the Win32 API. 
The JlDirect Call Builder automatically inserts Java definitions for the Win32 API 
elements into your code, along with the appropriate @dll.import tags. 

To access the Win32 API with the JlDirect Call Builder 

1. To open the J/Direct Call Builder, point to Other Windows on the View menu and 
click J/Direct Call Builder. 

2. By default, the J/Direct Call Builder displays elements defined in the following Win32 
DLLs: advapi32.dll, gdi32.dll, kerneI32.dll, she1l32.dll, spoolss.dll, user32.dll, and 
winmm.dll. (These DLLs are specified by the WIN32.TXT file, which is selected 
under Source.) 

3. The Target box identifies the class to contain the JlDirect calls. By default, a class 
named Win32 will be added to your project and will contain these calls. (If your 
solution contains multiple Java projects, the Win32 class is added to the first project.) 

To specify a different target class, click the ellipsis button ( ... ). 

• In the Select Class dialog box, select whether you want to view your classes in 
Project View or Class View. Project view displays a hierarchical list of the .java 
files in your solution, where each file node lists the names of the classes contained 
in that file. Class view displays a hierarchical list of class names. 

• Once you have chosen a view, select the name of the class to contain the JIDirect 
calls. (To copy the calls to the Windows Clipboard instead of to a class, select 
Clipboard.) 

• Click OK. 

4. To filter the display of Win32 methods, structs, and constants, select or clear the 
Methods, Structs, and Constants options. 

326 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

5. Now select the method, struct, or constant that you want to insert. (You can select 
multiple items using the SHIFf and CTRL keys.) Note that a Win32 struct will be 
added as a nested class inside your class. 

Note To search for an item by its initial characters, type the characters into 
the Find box. The first item that matches these characters is automatically selected. 

6. To insert the associated Java definition into your class, click Copy To Target. 
(You can also double-click the method, struct, or constant to insert it into your class.) 

When a Win32 API element is selected in the JlDirect Call Builder, the lower preview 
pane displays the associated Java definition. You can copy and paste this text into any file. 
To quickly find the online reference information for a Win32 API element, right-click the 
item and click Display API Help on the shortcut menu. 

For information about the default settings for this builder, see the next section "Setting 
JlDirect Call Builder Options." 

Setting JlDirect Call Builder Options 
Visual J++ allows you to set two options to customize the functionality of the J/Direct 
Call Builder. 

To set J/Direct Call Builder options 

1. On the Tools menu, click JIDirect Call Builder Options. 

2. In the JIDirect Call Builder Options dialog box, select or clear the following options: 

Option 

Show Target window 
when copy to target 

Disable stack crawl~ 
security check 

Description 

Selected hy default. When you insert a JlDirect call into your class, the builder 
automatically opens the .java file in the Text editor, if it is not already opened. 

Cleared by default. The VM will initiate a stack-based security check for each 
JlDirect call. If any of the callers on the stack are not fully trusted, then a 
security exception is thrown and the JlDirect call will not be invoked. This 
mainly affects Java code deployed on Web pages. 

When you select this option to disable the security checks, the 
@security(checkDllCalls=oft) tag is automatically added to your class the 
next time you insert a JlDirect call. (If you later clear this option, any existing 
occurrences of the @security tag remain in your files, but no new instances 
will be added.) 

3. Click OK to save your settings. 

Prdgrammer's Guide 327 



Part 2 Programming with Visual J++ 

Quick Syntax Reference 
The following section gives a quick reference to the @dll.import, @dll.struct, and 
@dll.structmap directives. For each directive, the required syntax is shown and explained. 

Syntax for @ dll.import 
The @dll.import directive should be placed just above the method declaration. The syntax 
of the directive is: 

I**@dll . import (" Li bName" • <Modi fi er» * I 
... method declaration ... : 

LibName is the name of the DLL that contains the function you want to invoke. Modifier 
is optional, and the value that you should supply for it varies depending on your needs. 
In the method declaration, you can use the function name that the DLL uses, or you 
can give the method a different name by using aliasing. For inforination on aliasing, see 
"Aliasing (Method Renaming)," later in this chapter. The Java data types that you choose 
for the parameters and for the return value of the method should be types that map to the 
types of the DLL function parameters and return value. See "How Data Types are 
Marshaled," later in this chapter, for more information about how Java data types map to 
native types. 

The following table presents the @dll.import syntax for several situations that are 
described in this section. 

Situation 

Calling Win32 DLLs 

Calling OLE APIs 

Aliasing 

Linking by Ordinal 

328 Programmer's Guide 

Required Syntax 

1**@dll.import("Libname")*1 

1**@dll.import("Libname". ole)*1 

I**@dll .import("Libname". 
entrypoint="DLLFunctionName")*1 

I**@dll . import (" Li bname" • 
entrypoint="/lordinal")*1 

Explanation 

In the method declaration, use the Java 
name that you selected. 

"ordinal" is a 16-bit integer, specified in 
decimal, that indicates the DLL function 
that you are importing. 



Chapter 19 Writing Windows-Based Applications with JlDirect 

Syntax for @dll.struct 
The @dll.struct directive is placed just above the class declaration. The syntax of 
@dll.struct is: 

/**@dll .struct«LinkTypeModifier),<pack=n»*/ 
... class declaration ... ; 

LinkTypeModifier tells the compiler whether fields of type String and char represent 
ANSI or Unicode characters in native format. LinkTypeModifier can be allsi, unicode, or 
auto. If you do not specify LinkTypeModifier, ansi is used by default. See "How the VM 
Chooses Between ANSI and Unicode," later in this chapter, to help you learn more about 
the values to use for LinkTypeModifier. 

You can also specify pack=n to tell the compiler to set the packing size of the structure 
to either 1, 2,4, or 8, depending on the value you specify for n. If you omit the pack=1l 
modifier, the packing size is set to 8 by default. See "Structure Packing," later in this 
chapter, for more information on setting the packing size. 

Within the class declaration, you need to supply fields whose Java types map to the 
types of the fields in the native structure, in the order they occur in the native structure. 
See "Correspondence Between Types Inside Structures," later in this chapter, for 
information about choosing the data types of the fields. 

The following table describes the syntax for several situations in which you might use the 
@dll.struct directive. 

Situation Required Syntax 

Declare a structure /**@dll . s true t ( ) * / 

Set a structure's /**@dll . s t rtlct (pack=n)* / 
packing size 

Declare a structure that /**@dll.struct(ansi )*/ 
has a field of type char 

Explanation 

When you do not specify 
LillkTypeModijier, char or String fields 
are assumed to represent ANSI characters. 

11 can be 1,2.4, or 8. 

The character field represents an ANSI 
character. 

Declare a structure with 
a field of type string 
and set the packing size 

/**@dll.struct(unicode,pack-n)*/ The String fields will be in Unicode 
format, and the packing size is set to 
1,2,4, or H, depending on the value of n. 

Programmer's Guide 329 



Part 2 Programming with Visual J++ 

Syntax for @dll.structmap 
The @dll.structmap directive is used to declare fixed-size strings and arrays embedded 
in structures. It should be placed within a structure that is declared with @dll.struct, and 
directly above the declaration of the fixed-size string or array field. For more information 
on how to use @dll.structmap, see "Fixed-size Strings Embedded within Structures" and 
"Fixed-size Scalar Arrays Embedded within Structures." Both sections are later in this 
chapter. 

The following table presents the syntax of the @dll.structmap directive. 

Situation Required Syntax Explanation 

Structure that contains /**@d11 . structmap( [type=TCHAR Size is a decimal integer that indicates 
the number of characters in the string, 
including space for the null terminator. 

a fixed-size string. [S i ze]] ) * / 

Structure that contains /**@d11 • s t ructma p ( [type= 
a fixed-size array. FI XEDARRAY. si ze=n])* / 

n is a decimal integer that represents the 
size of the array. 

How Data Types are Marshaled 
Simply put, the Microsoft VM evaluates Java arguments, then converts them to native 
c++ types. The Microsoft VM infers the native type of each parameter and the return value 
from the declared (compile-time) Java type of the parameter. For example, a parameter 
declared as a Java integer is passed as a 32-bit integer; a parameter declared as a Java 
String object is passed as a null-terminated string, and so forth. There are no invisible 
attributes that provide information about the native types. In Java, what you see is what 
you get. 

Quick Reference 
The following two tables list the native type that corresponds to each Java type. The first 
table describes the mappings for parameters and return values, and the second table shows 
the mappings that are used with the @dll.struct directive. 

Parameter and Return Value Mappings 

Java 

byte 

short 

int 

330 Programmer's Guide 

Native 

BYTE or CHAR 

SHORT or WORD 

INT, UINT, LONG, 
ULONG, or DWORD 

Notes/Restrictions 



Parameter and Return Value Mappings (continued) 

Java Native 

char TCHAR 

long int64 

float float 

double double 

Boolean BOOL 

String LPCTSTR 

S tringB uffer LPTSTR 

byte[] BYTE* 

short[] WORD* 

char[] TCHAR* 

int[] DWORD* 

float[] float* 

double[] double* 

long[] int64'" 

Boolean[] BOOll1 

Object pointer to struct 

Interface COM interface 

com.ms.com.SafeArray SAFEARRAY* 

com.ms.com._ Guid GUID,IID,CLSID 

com.ms.com. Variant VARIANT* 

@dll.struct classes pointer to struct 

@com.struct classes pointer to struct 

void VOID 

com.ms.dll.Callback function pointer 

Chapter 19 Writing Windows-Based Applications with J/Direct 

Notes/Restrictions 

Not allowed as return value, except in ole mode. In 
ole mode, String maps to LPWSTR. The Microsoft 
VM frees the string by using CoTaskMemFree. 

Not allowed as return value. Set the StringBuffer 
capacity large enough to hold the largest string that 
the DLL function can generate. 

In ole mode, an IUnknown* is passed instead. 

Use jactivex or similar tool to generate interface file. 

Not allowed as return value. 

As return value only. 

As parameter only. 

Programmer's Guide 331 



Part 2 Programming with Visual J++ 

Mappings used with @dll.struct 

Java Native 

byte BYTE or CHAR 

char TCHAR 

short SHORT or WORD 

int INT, UINT, LONG, ULONG or DWORD 

float int64 

long float 

double double 

Boolean BOOL[] 

Java Native 

String Pointer to a string, or an embedded fixed-size string 

Class marked with @dll.struct Nested structure 

char[] Nested array of TCHAR 

byte[] Nested array of BYTE 

short[] Nested array of SHORT 

int[] Nested array of LONG 

long[] Nested array of __ int64 

float[] Nested array of floats 

double[] Nested array of doubles 

Basic Scalar Types 
The basic scalar types are mapped as follows: 

Java type Dll 

int signed 32-bit integer 

byte signed 8-bit integer 

'short signed 16-bit integer 

long signed 64-bit integer 

float 32-bit float 

double 64-bit double 

332 Programmer'.s Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

Note that there is no direct representation of unsigned integer types in Java. Since Java has 
no unsigned types, use the Java type which is the same size as the integer type you want. 
For example, the Java int type can be used without loss of representation for the common 
DWORD (unsigned 32-bit) type. 

Chars 
The Java char type becomes a CHAR (an 8-bit ANSI character) unless the unicode or ole 
@dll.struct modifier is in effect, in which case it becomes a WCHAR (a 16-bit Unicode 
character). 

Booleans 
The Java Boolean type maps to the Win32 BOOL type, which is a 32-bit type. As a 
parameter, the Java true maps to 1, and false maps to O. As a return value, all non-zero 
values map to true. 

Note that BOOL and V ARIANT_BOOL (the internal Boolean type in Microsoft 
Visual Basic) are not interchangeable. To pass a VARIANT_BOOL to a Visual Basic 
DLL, you must use the Java short type and use -1 for VARIANT_TRUE, and 0 for 
VARIANT_FALSE. 

Strings 
This section explains how you can pass a string in ANSI or Unicode format to a DLL 
function. It also discusses two ways to return a string from a DLL function. 

Passing a String to a DLL Function 
To pass a standard null-terminated string to a DLL function, just pass a Java String. 

For example, to change the current directory, you can access the Kernel32 function 
CopyFile as follows: 

class ShowCopyFile 
{ 

} 

public static void main(String args[]) 
{ 

CopyFile("old.txt", "new.txt", true); 
} 

1** @dll.import("KERNEL32") */ 
private native static boolean CopyFile(String existingFile, 

String newFile, boolean f); 

ProgramlJlcr's Guidc 333 



Part 2 Programming with Visual J++ 

Strings are read-only in Java, so the Microsoft VM will convert only the String object as 
an input. To allow virtual machine implementations to marshal Strings without copying 
the characters, String object parameters should not be passed to DLL functions that can 
modify the string. If the DLL function might modify the string, pass a StringBuffer object. 

Strings are converted to ANSI unless the unicode or ole modifier is used, in which case 
the string is passed in Unicode format. 

Strings cannot be declared as return types of a DLL function except in ole mode, where 
the native return type is assumed to be a LPWSTR allocated using the CoTaskMemAlloc 
function. 

Receiving a String from a DLL Function 
There are two common ways of passing a string back from a function: either the caller 
allocates a buffer that is filled in by the function, or the function allocates the string and 
returns it to the caller. Most Win32 functions use the first method, but OLE functions use 
the second method. (See "Invoking OLE API Functions," later in this chapter, to learn 
about the special support that JlDirect provides for calling OLE functions.) One function 
that uses the first method is the Kerne132 function GetTempPath, which has the following 
prototype: 

DWORD GetTempPath(DWORD sizeofbuffer. LPTSTR buffer); 

This function simply returns the path of the system temporary file directory (such as 
"c:\tmp\"). The buffer argument points to a caller-allocated buffer that receives the path, 
and sizeofbuffer indicates the number of characters that can be written to the buffer. 
(This is different from the number of bytes in the Unicode version.) In Java, strings are 
read-only, so you cannot pass a String object as the buffer. Instead, you can use Java's 
StringBuffer class to create a writable StringBuffer object. The following is an example 
that invokes the GetTempPath function: 

class ShowGetTempPath 
{ 

static final int MAX_PATH = 260; 
public static void main(String args[]) 
{ 

StringBuffer temppath = new StringBuffer(MAX_PATH); 
GetTempPath(temppath.capacity(). temppath); 
System.out.println("Temppath = " + temppath); 

} 

1** @dll. i mport( "KERNEL32") *1 
private static native int GetTempPath(int sizeofbuffer. 

StringBuffer buffer); 

334 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

To understand this example, it is important to distinguish between a StringBuffer's length 
and its capacity. The length is the number of characters logically in the string currently 
stored in the StringBuffer. The capacity is the actual amount of storage currently allocated 
to that StringBuffer. After the following statement executes: 

StringBuffer sb - new StringBuffer(259): 

the value of sb.length is zero, and the value of sb.capacity is 259. When you invoke a 
DLL method passing a StringBuffer, the Microsoft VM examines the capacity of the 
StringBuffer, adds one for the null terminator, multiplies by 2 if Unicode is the default 
character size, and then allocates that many bytes of memory for the buffer that is passed 
to the DLL function. In other words, you use the capacity, not the length, to set the size 
of the buffer. Be careful not to make the following mistake: 

StringBuffer sb - new StringBuffer(): IIWrong! 
GetTempPath(MAX_PATH. sb): 

Invoking the StringBuffer constructor with no arguments creates a StringBuffer object 
with a capacity of 16, which is probably too small. MAX_PATH was passed to the 
GetTempPath method, indicating that there was enough room in the buffer to hold 260 
characters. Thus, GetTempPath will probably overrun the buffer. If you were planning 
to use GetTempPath extensively, you should wrap it in a Java-friendly wrapper in the 
following manner: 

public static String GetTempPath() 
{ 

StringBuffer temppath = new StringBuffer(MAX_PATH-l); 
int res = GetTempPath(MAX_PATH. temppath); 
if (res -= 0 I I res> MAX_PATH) { 

throw new RuntimeException("GetTempPath error!"); 
} 

return temppath.toString(); II can't return a StringBuffer 

This method offers both convenience and safety, and it maps the error return value of the 
function to a Java exception. Notice thi.lt you cannot return StringBuffer objects. 

Progrmnmer's Guide 335 



Part 2 Programming with Visual J++ 

Arrays 
JlDirect automatically handles arrays of scalars. The following Java array types translate 
directly into native pointer types: 

Java Native # bytes per element 

byte[] BYTE* 1 

short[] SHORT* 2 

int[] DWORD* 4 

float[] FLOAT* 4 

double[] DOUBLE* 8 

long[] int64* 8 

Boolean[] BOOL* 4 

The char[] array type maps to CHAR * unless the unicode modifier is in effect, in which 
case it maps to WCHAR *. 

All scalar array parameters can be modified by the caller (such as [in, out] parameters). 

Array types cannot be used as return types. There is no support for arrays of objects or 
strings. 

Typically. this facility is used by OLE functions to return values. (OLE functions reserve 
the "function" return value to return the HRESULT error code.) See "Invoking OLE API 
Functions," later in this chapter, to learn how to obtain the return value for OLE functions. 

Structures 
The Java language does not directly support the concept of a structure. Although Java 
classes containing fields can be used to emulate the concept of a structure within the Java 
language, ordinary Java objects cannot be used to simulate stmctures in native DLL calls. 
This is because the Java language does not guarantee the layout of the fields and because 
the garbage collector is free to move the object around in memory. 

Therefore, to pass and receive stmctures from DLL methods, you need to use the 
@dll.struct compiler directive. When applied to a Java class definition, this directive 
causes all instances of the class to be allocated in a memory block that will not move 
during garbage collection. In addition, the layout of the fields in memory can be controlled 
using the pack modifier (see "Structure Packing," later in this chapter). For example, the 
Win32 SYSTEMTIME stmcture has the following definition in the C programming 
language: 

336 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

typedef struct { 
WORD wYear: 
WORD wMonth: 
WORD wDayOfWeek: 
WORD wDay: 
WORD wHour: 
WORD wMinute; 
WORD wSecond; 
WORD wMilliseconds: 

SYSTEMTIME: 

The correct declaration of this structure in Java is as follows: 

1** @dll .struct() *1 
class SYSTEMTIME { 

public short wYear; 
public short wMonth; 
public short wDayOfWeek: 
public short wDay; 
public short wHour: 
public short wMinute; 
public short wSecond; 
public short wMilliseconds; 

The following example uses the SYSTEMTIME structure in a DLL method call: 

class ShowStruct { 
1** @dll. i mport( "KERNEL32") *1 
static native void GetSystemTime(SYSTEMTIME pst); 
public static void main(String args[]) 
{ 

} 

SYSTEMTIME systemtime = new SYSTEMTIME(); 
GetSystemTime(systemtime); 
System.out.println("Year is " + systemtime.wYear); 
System.out.println("Month is " + systemtime.wMonth); 
II etc. 

Note Classes declared with @dll.slruct are considered unsafe and therefore cannot be 
used by untrusted applets. 

Programmer's Guide 337 



Part 2 Programming with Visual J++ 

Correspondence Between Types Inside Structures 
The following table describes how scalar types map inside structures. 

Java 

byte 

char 

short 

int 

long 

float 

double 

Boolean 

Native 

BYTE 

TCHAR (CHAR or WCHAR depending on @dll.struct definition) 

SHORT 

LONG 

int64 

float 

double 

BaaL (32-bit Boolean) 

Reference types (Java objects and classes) normally map to embedded structures and 
arrays. Each supported mapping is described in the following table. 

Java 

String 

Class marked with @dll.struct 

char[] 

byte[] 

short[] 

int[] 

long[] 

float[] 

double[] 

Native 

Pointer to a string, or an embedded fixed-string string 

Nested structure 

Nested array of TCHAR (CHARIWCHAR) 

Nested array of BYTE 

Nested array of SHORT 

Nested array of LONG 

Nested array of __ int64 

Nested array of floats 

Nested array of doubles 

There is no direct support for pointers inside structures due to the large number of possible 
ways referenced objects could be allocated and disposed of. To represent a structure with 
an embedded pointer, declare the pointer field as type int. You will need to make explicit 
DLL calls to the appropriate allocation functions and initialize the memory blocks 
yourself. (You could use DllLib.ptrToStruct to map the blocks onto @dll.struct classes.) 

338 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

Nested Structures 
A structure can embed another structure simply by naming the other structure as the field 
type. For example, the Windows MSG structure embeds a POINT structure as follows: 

typedef struct 
LONG x; 
LONG y; 

POINT; 

typedef struct 
int hwnd; 
int message; 
int wParam; 
int lParam: 
int time; 
POINT pt: 

MSG; 

This translates directly into Java as follows: 

/** @dll .struct() */ 

class POINT { 
int x; 
int y: 

} 

/** @dll .struct() */ 

class MSG { 
public int hwnd; 
public int message; 
public int wParam; 
public int 1 Param; 
public int time; 
public POINT pt; 

} 

Tip Although embedding structures is handy, the fact remains that Java docs not truly 
support embedded objects - only embedded references to objects. The Microsoft YM 
must translate between these two formats each time a nested structure is passed. 
Therefore, in a critical code path, you can improve performance by nesting structures 
manually (by copying the fields of the nested structure into the containing structure). 
For example, the pt field in the MSG structure could easily be declared as two integer 
fields, pCx and pty. 

Programmer's Guide 339 



Part 2 Programming with Visual J++ 

Fixed-Size Strings Embedded Within Structures 
Some structures have fixed size strings embedded in them. The LOGFONT structure is' 
defined as follows: 

typedef struct { 
LONG lfHeight; 
LONG lfWidth; 
1* <many other fields deleted for brevity) *1 
TCHAR lfFaceName[32]; 

} LOGFONT; 

This structure can be expressed in Java using an extension syntax to specify the size: 

1** @dll .struct() *1 
class LOGFONT { 

int lfHeight; 
int lfWidth; 
1* <many other fields deleted for brevity) *1 
1** @dll .structmap([type-TCHAR[32]]) *1 
StringlfFaceName; 

The @dll.structmap directive indicates the size of the fixed string as measured in 
characters (including space for the null terminator). 

For more information, see "Fixed-Size Scalar Arrays Embedded Within Structures." 

Fixed-Size Scalar Arrays Embedded 
Within Structures 
Fixed-size arrays of scalars embedded in structures can be specified using the 
@dll.structmap directive. The following is a C language structure that contains fixed-size 
scalar arrays: 

struct EmbeddedArrays 
{ 

BYTE b[4]; 
CHAR c[4]; 
SHORT s[4]; 
I NT i [4] ; 

int64 1[4]; 
float f[4]; 
daubl d[4]; 

} ; 

340 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

You can specify the EmbeddedArrays structure by using @dll.structmap in the 
following way: 

1** @dll .struct() *1 
class EmbeddedArrays 
{ 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
byte b[]; 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
char c[]; 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
short s[]; 

1** @dll.structmap([type=FIXEDARRAY. size-4]) *1 
int i[]; 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
long l[]; 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
float f[J; 

1** @dll.structmap([type=FIXEDARRAY. size=4]) *1 
double d[]; 

Structure Packing 
Structure fields are padded and aligned according to ANSI C draft 3.5.2.1. The packing 
size can be set using the pack modifier: 

1** @dll .struct(pack=n) *1 

where n can be 1, 2, 4 or 8. The default is 8. For users of the Microsoft Visual C++ 
compilers, "pack=n" is equivalent to "Ilpragma pack(n)". 

Understanding the Relationship Between 
@dll.struct and @com.struct 
The @dll.struct directive is very similar to the @com.struct directive emitted by the 
jactivex tool and implicitly by the javatlb tool. (The javatlb tool, documented in previous 
versions of Microsoft Visual J++, has been replaced by jactivex.) The main difference is 
that the default type mappings are suited for Microsoft Windows function calling instead 
of COM object calling. Given this infommtion, it follows that you can also generate 
@dll.struct classes by describing the structure in a type library and using the jactivex tool 
to generate the Java class. However, it's usually faster to generate the classes manually. 

Programmer's Guide 341 



Part 2 Programming with Visual J++ 

Pointers 
Java does not support a pointer data type. However, instead of passing a pointer, you can 
pass a one-element array. You can store pointers in Java integers, and you can read and 
write data from raw pointers. 

Return Value Pointers 
Win32 functions that have multiple return values typically handle them by having the 
caller pass a pointer to a variable to be updated. For example, the GetDiskFreeSpace 
function has the following prototype: 

BOOl GetDiskFreeSpace(lPCTSTR szRootPathName. 
DWORD *lpSectorsPerCluster. 
DWORD *lpBytesPerCluster. 
DWORD *lpFreeClusters. 
DWORD *lpClusters); 

GetDiskFreeSpace is typically called as follows: 

DWORD sectorsPerCluster. bytesPerCluster. freeClusters. clusters; 
GetDiskFreeSpace(rootname. &sectorsPerCluster. 

&bytesPerCluster. &freeClusters. &clusters); 

In Java, this is just a special case of passing scalar arrays where the array size is one 
element. The following example shows how to call the GetDiskFreeSpace function: 

class ShowGetDiskFreeSpace 
( 

} 

public static void main(String args[J) 
( 

} 

int sectorsPerCluster[J - {0}; 
int bytesPerCluster[J - {0}; 
int freeClusters[J - {0}; 
int clusters[J - {0}; 
GetDiskFreeSpace("c:\\". sectorsPerCluster. bytesPerCluster. 

freeClusters. clusters); 
System.out.println("sectors/cluster -" + sectorsPerCluster[0J); 
System.out.println("bytes/cluster - " + bytesPerCluster[0J); 
System. out. pri nt 1 n( "free cl usters - " + freeCl usters [0J) ; 
System.out.println("clusters - " + clusters[0J); 

/** @dll.import("KERNEl32") */ 
private native static boolean GetDiskFreeSpace(String rootname. 

int pSectorsPerCluster[J. int pBytesPerCluster[J. 
int pFreeClusters[J. int pClusters[J); 

342 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

Raw Pointers 
A pointer to an unknown or particularly difficult structure can be stored in a plain Java 
integer. If your application only needs to store the pointer and not dereference it, this is 
the simplest and most efficient approach. You might want to use this technique to store 
a pointer that has been returned by a DLL function that allocates a memory block. In fact, 
you can use this technique to store a pointer returned by any DLL function. Needless to 
say, using raw pointers eliminates many of the safety advantages of Java. An alternative 
approach should be used whenever possible. However, there are situations when you might 
choose to use raw pointers. With that in mind, there are two ways to read and write data 
from raw pointers. 

Casting to a Reference to an @dll.struct Class 
One way to read and write data through a raw pointer is to cast the raw pointer to a 
reference to an @dll.struct class. Once this is done, you can read and write the data using 
normal field access syntax. For instance, suppose you have a raw pointer that you wish to 
access as a RECT. You can use the system method DllLib.ptrToStruct as follows: 

/** @dll .struct() */ 
class RECT { 

int left; 
int top; 
int right; 
int bottom; 

} 

import com.ms.dll.*; 

int rawptr = ... ; 

RECT rcct - (RECT)DllLib.ptrToStruct(RECT.class, rawptr): 
rect.lcft - 0: 
recto top - 0; 
rect.right - 10: 
rect.bottom - 10; 

The ptrToStruct method wraps the raw pointer in a RECT instance. Unlike instances 
created by the new operator, this RECT instance will not attempt to free the raw pointer 
upon reclamation by the garbage collector because the RECT object has no way of 
knowing how the pointer was allocated. In addition, because the native memory was 
already constructed at the time ptrToStruct was called, the RECT class constructor is 
not called. 

Programmer's Guide 343 



Part 2 Programming with Visual J++ 

Using the DIILib Copy Methods 
Another method for reading and writing data through a raw pointer is to use the overloaded 
copy methods in DllLib. These methods copy data between Java arrays of various types 
and raw pointers. If you need to treat a raw pointer as a pointer to a string (LPTSTR), you 
can use one of the DllLib methods ptrToStringAnsi, ptrToStringUni, or ptrToString to 
parse the string and convert it into a java.lang.String object. 

import com.ms.dll.*; 

int rawptr = •.. ; 
String s = DllLib.ptrToStringAnsi(rawptr); 

Warning All Java objects are subject to movement in memory or reclamation by the 
garbage collector. Therefore, you should not attempt to obtain a pointer to a Java array 
by calling a DLL function that does generic casting. The following example shows you 
an incorrect way to obtain the pointer: 

II Do not do this! 
1** @dll .import("MYDLL") *1 
private native static int Cast(int javaarray[]); 

II Inside MYDLL.DLL 
LPVOID Cast(LPVOID ptr) 
( 

II Do not do this! 
return ptr: II comes in as a Java array: goes out as a Java int 

The value of ptr is guaranteed to he valid only for the duration of the call to the Cast 
function. This is because VM implementations are allowed to implement passing of 
arrays by copying and because garbage collection may cause the physical location 
of the array to be different after the call to the Cast function returns. 

Polymorphic Parameters 
Some Win32 functions declare a parameter whose type depends on the value of another 
parameter. For example, the WinHelp function is declared as follows: 

BOOL WinHelp(int hwnd, LPCTSTR szHelpFile, UINT cmd, DWORD dwData); 

The innocent-looking dwData parameter can actually be anyone of the following: 
a pointer to a string, a pointer to a MULTIKEYHELP structure, a pointer to a 
HELPWININFO, or a plain integer, depending on the value of the cmd parameter. 

JlDirect offers two ways to declare such a parameter: 

• Declare the parameter as type Object. 

• Use overloading to declare a separate method for each possible type. 

For a comparison, see "Comparison Between the Two Methods," later in this chapter. 

344 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with J/Direct 

Declaring the Parameter as Type Object 
The following shows how to declare WinHelp by declaring dwData as type Object: 

1** @dll.import("USER32") *1 
static native boolean WinHelp(int hwnd, String szHelpFile, 

int cmd, Object dwData); 

When WinHelp is invoked, JIDirect will use the run-time type to determine how to 
translate dwData. The following table describes how the types are translated. 

Type Translated as 

4-byte integer 

4-byte BOOL 

java.1ang.Integer 

java.1ang.Boolean 

java.1ang.Char 

java.1ang.Short 

java.1ang.Float 

java.1ang.String 

java.1ang.StringBuffer 

byte[] 

CHAR (or WCHAR if the unicode or ole modifiers are in effect) 

2-byte SHORT 

4-byte FLOAT 

LPCSTR (or LPCWSTR if the unicode or ole modifier is in effect) 

LPSTR (or LPWSTR if the unicode or ole modifier is in effect) 

BYTE* 

char[] 

short[] 

CHAR * (or WCHAR * if the unicode or ole modifier is in effect) 

SHORT* 

int[] 

long[] 

float[] 

double[] 

@dll.struct 

INT* 

int64 

float* 

double* 

pointer to structure 

Overloading the Function 
Another way to declare the WinHelp fUllction is to overload the function for each 
possible type: 

1** @dll. i mport( "USER32") *1 
static native boolean WinHelp(int hwnd, String szHelpFile, 

int cmd, int dwData); 

1** @dll.import("USER32") *1 
static native boolean WinHelp(int hwnd, String szHelpFile, 

int cmd, String dwData); 

Programmer's Guide 345 



Part 2 Programming with Visual J++ 

1** @dll.import("USER32") *1 
static native boolean WinHelp(int hwnd. String szHelpFile. 

int cmd. MUlTIKEYHElP dwData); 

1** @dll.import("USER32") *1 
static native boolean WinHelp(int hwnd. String szHelpFile. 

int cmd. HElPWININFO dwData); 

You cannot handle a polymorphic return value using overloading because Java methods 
cannot be overloaded on return value only. Therefore, you need to give each variant of 
the function a different Java name and use the entrypoint modifier to link them all to the 
same DLL method. See "Aliasing (Method Renaming)," later in this chapter, to learn more 
about renaming DLL methods. 

Comparison Between the Two Methods 
In most cases, overloading is the preferred approach because it offers superior run-time 
performance as well as better type checking. In addition, overloading avoids the need to 
wrap integer arguments inside an Integer object. 

However, declaring the parameter as type Object can be useful in cases where there is 
more than one polymorphic parameter. You might also choose this method when you want 
to access a service that acts generically on a wide variety of types, such as a function that 
can accept any object declared with the @dll.struct directive. 

Callbacks 
Several Win32 APIs require your programs to provide Windows with the address of 
a callback function. You can write callbacks in Java by extending the system class 
com.ms.dll.Callback. 

Declaring a Method that Takes a Callback 
To represent a callback parameter in Java, declare the Java type to be either type 
com.ms.dll.Callback or a class that derives from it. For example. the Microsoft Win32 
Enum Windows function is prototyped as follows: 

BOOl EnumWindows(WNDENUMPROC wndenumproc. lPARAM lparam); 

The corresponding Java prototype is: 

import com.ms.dll.Callback; 
1** @dll .import("USER32") *1 
static native boolean EnumWindows(Callback wndenumproc. 

i nt 1 pa ram) ; 

346 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with J/Direct 

Invoking a Function that Takes a Callback 
To invoke a function that takes a callback, you need to define a class that extends 
Callback. The derived class must expose one non-static method whose name is callback 
(all lowercase). The C language definition of WNDENUMPROC is: 

BOOl CAllBACK EnumWindowsProc(HWND hwnd, lPARAM lparam); 

To author an EnumWindowsProc in Java, you declare a class that extends Callback 
as follows: 

class EnumWindowsProc extends Callback 
{ 

public boolean callback(int hwnd, int lparam) 
{ 

} 

StringBuffer text = new StringBuffer(50); 
GetWindowText(hwnd, text, text.capacity()+l); 

if (text.length() 1= 0) { 

} 

System.out.println("hwnd = II + Integer.toHexString(hwnd) + 
"h: Text = II + text); 

return true; II return TRUE to continue enumeration. 

1** @dll.import("USER32") *1 
private static native int GetWindowText(int hwnd, StringBuffer text, 

int cch); 
} 

You can invoke EnumWindows with this Callback in the following way: 

boolean result - EnumWindows(new EnumWindowsProc(), 0); 

Restrictions on Types Accepted by the 
Callback Method 
The return type of the callback method mllst be void, int, boolean, char, or short. The only 
parameter type currently allowed is the int type. Fortunately, this is not as restrictive as it 
sounds. YOll can use the DllLib methods ptrToStringAnsi, ptrToStringUni, and ptrToString 
to treat a parameter as an LPTSTR. You can use the ptrToStruct method to treat a 
parameter as a pointer to an @dll.struct class. 

Programmer's Guide 347 



Part 2 Programming with Visual J++ 

Associating Data with a Callback 
Frequently, it is necessary to pass some data from the caller of the function to the callback. 
This explains why Enum Windows takes an extra lparam argument. Most Win32 functions 
that take callbacks accept one extra 32-bit parameter that is passed to the callback without 
interpretation. With the Callback mechanism, it is not necessary to pass data using the 
lparam argument. Because the callback method is non-static, you can store your data as 
fields in the Enum WindowsProc object. 

The Lifetime of a Callback 
Some care is required to ensure that the callback is not reclaimed by garbage collection 
before the native function is finished with it. If the callback is short -term (only callable for 
the duration of one function call), no special action is required because a callback passed 
to a DLL function is guaranteed not to be reclaimed by garbage collection while the call 
is in progress. 

If a callback is long-term (used across function calls), you will need to protect the 
callback from being reclaimed, typically by storing a reference to it in a Java data 
structure. You can also store references to callbacks within native data structures by using 
the com.ms.dll.Root class to wrap the callback inside a root handle. The root handle is a 
32-bit handle that prevents the callback from being reclaimed until the handle is explicitly 
freed. For example, a root handle to a WndProc can be stored in the application data area 
of an HWND structure, and then explicitly freed on the WM_NCDESTROY message. 

Embedding a Callback Inside a Structure 
To embed a callback inside a structure, you can first call the cOI1l.ms.dll.Root.alloc method 
to wrap the callback in a root handle. Then pass the root handle to the DllLib.addrOf 
method to obtain the actual (native) address of the callback. Then, store this address as 
an integer. 

For example, the WNDCLASS structure can be declared in Java as: 

1** @dll .struct() *1 
class WNDCLASS { 

int style; 
int lpfnWndProc; II CALLBACK 

1* <other fields deleted for brevity> *1 
} 

348 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

Let's assume you have extended callback as follows: 

class WNDPROC extends Callback 
{ 

public int callback(int hwnd. int msg. int wparam. int lparam) 
{ 

} 

To store a pointer to the callback inside the WNDCLASS object, use the following 
sequence: 

import com.ms.dll .*; 
WNDCLASS wc = new WNDCLASS(); 
int callbackroot = Root.alloc(new WNDPROC(»; 
wc.lpfnWndProc = DllLib.addrOf(callbackroot); 

Invoking OLE API Functions 
The following sections provide information on OLE API functions. 

OLE Mode Syntax 
The @dll.import directive includes a special mode tailored for importing OLE API 
functions. To use this mode, simply include the ole modifier as in the following example: 

/** @dll .import("OLE32". ole) */ 
public class OLE32 { 

} 

Comparison of Win32 Functions with 
OLE Functions 

In theory, the functions exported out of OLE32.DLL and OLEAUT32.DLL are no 
different from any other DLL function. In practice, the OLE functions follow a 
consistent calling style of their own. OLE functions differ from Win32 functions in 
the following ways: 

• OLE functions only come in Unicode. There are no ANSI OLE functions. 

• Virtually all OLE functions return a 32-bit status code known as an HRESULT through 
the normal function return value. The high-bit indicates whether the function succeeded 
(hi-bit oft) or failed (hi-bit on). A few functions return multiple success values 
(typically S_OK and S_FALSE) but most return only one success value (S_OK). 

Programmer's Guide 349 



Part 2 Programming with Visual J++ 

• If an OLE function returns some value other than the status code, it does so by having 
the caller supply a pointer to a variable that will receive the value on exit. This return 
value pointer is, by convention, the last parameter. 

• The Win32 style of returning strings is to fill in a caller-allocated buffer. OLE 
functions typically return strings by allocating them using CoTaskMemAlloc and 
expecting the caller to free them using CoTaskMemFree. 

Comparing Win32 Code to OLE Code 
The code for a simple Add function would look like this in the Win32 style of coding: 

int sum; 
sum = Add(10, 20); 

In OLE style, the Add function would be written the following way: 

HRESULT hr; 
int sum; 
hr = Add(10, 20, &sum); 
if (FAILED(hr)) { 

... handle error .. 
} 

Invoking OLE Functions 
The ole mode takes advantage of a consistent coding style to provide a Java-friendly way 
to call OLE functions. Invoking an OLE-style Add function from Java looks much like 
invoking a more traditional Win32-style function: 

1** dll.import("OLELIKEMATHDLL", ole) *1 
private native static int Add(int x. int y); 
int sum = Add(10, 20); 
II if we got here. Add succeeded. 

How OLE Mode Works 
Because of the ole modifier, the Microsoft VM automatically assumes that the native Add 
function returns an HRESULT. The VM notices that the Add function returns an integer. 
When invoking Add, the VM automatically allocates a temporary variable of type int 
and inserts a pointer to it as a third parameter. After the native Add function returns, the 
VM automatically checks the HRESULT and if it indicates a failure (high-bit on), a Java 
exception of type com.ms.com.ComFaiIException is thrown. If the HRESULT does not 
indicate a failure, the VM retrieves the Add function's true return value from the 
temporary variable it created, and it returns that value. 

350 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

Unlike Java/COM integration, a return value of S_FALSE does not cause a 
ComSuccessException to be thrown. If you need to distinguish between success results, 
you need to use normal DLL calling mode and treat the HRESUL T as an integer return 
value. 

To summarize, ole mode alters the semantics of DLL calling as follows: 

1. All strings and characters are assumed to be Unicode. 

2. The function return value of the native function is presumed to be an HRESULT. The 
Microsoft VM throws a ComFailException if the returned HRESULT indicates failure. 

3. If the Java method return type is not void, the Microsoft VM will assume that the 
native function returns an additional result through a pointer, which is the final 
argument to the function. The VM will supply this pointer argument and dereference 
it after the call to obtain the additional return value. This value will be returned as 
the value of the Java method. 

Passing and Receiving Strings 
from OLE Functions 

Declaring a parameter as type String on an ole mode function passes a LPCOLESTR. 
The Microsoft VM also includes a preceding length prefix so the string can also be 
treated as a BSTR. 

Declaring a return value as type String in ole mode causes the Microsoft VM to pass 
a pointer to an uninitialized LPCOLESTR*. When the native function returns, the 
Microsoft VM will convert the returned LPCOLESTR to a Java String, and then call 
CoTaskMemFree to free the string. 

Passing GUIDs (and lIDs and CLSIDs) 
The system class com.ms.com._Guid is used to represent GUIDs. Passing a _Guid object 
as a parameter passes a pointer to a GUID to the native function. Declaring a return type 
of _Guid causes the Microsoft VM to pass a pointer to an uninitialized GUID that the 
function fills in (in ole mode only). 

For example, OLE32 exports the functions CLSIDFromProgID and ProgIDFromCLSID to 
map between CLSIDs and the human-readable names used by the Visual Basic function 
CreateObject. 

These methods have the following prototypes: 

HRESULT CLSIDFromProgID(LPCOLESTR szProgID. LPCLSID pclsid); 
HRESULT ProgIDFromCLSID(REFCLSID clsid. LPOLESTR *lpszProgld); 

Programmer's Guide 351 



Part 2 Programming with Visual J++ 

In Java, these methods are declared in the following way: 

import com.ms.com._Guid: 
class OLE { 

/** @dll.import("OLE32", ole) */ 
public static native _Guid CLSIDFromProgID(String szProgID); 

/** @dll .import("OLE32", ole) */ 
public static native String ProgIDFromCLSID(_Guid clsid); 

} 

Note Note that com.ms.com._Guid supersedes com.ms.com.Guid (with no 
underscore). 

Passing VARIANTs 
Declaring a parameter to be type com.ms.com. Variant passes a pointer to a VARIANT 
to the native function. Declaring a return value to be type com.ms.com.Variant (ole-mode 
only) passes a pointer to an uninitialized Variant for the native function to fill in. 

Passing COM Interface Pointers 
To pass a COM interface pointer, you must generate a Java/COM interface class using 
a tool such as jactivex.exe. You can then pass or receive COM interfaces by declaring 
a parameter to be of that interface type. 

For example, the system class com.ms.com.lStream is a Java/COM interface that 
represents the Structured Storage IStream* interface. The OLE32 function 
CreateStreamOnHGlobal could be declared as follows: 

import com.ms.com.*; 
/** @dll.import("OLE32", ole) */ 
public static native IStream CreateStreamOnHGlobal(int hGlobal, 

boolean fDeleteOnRelease); 

Aliasing (Method Renaming) 
Sometimes you want to use a name for the Java method that is different from the name 
that the DLL uses when it exports the function. For example, you might want to have the 
Java name start with a lowercase letter so that it conforms to Java naming conventions. 
To do so, just use the @dll.import directive with the entrypoillt modifier as in the 
following example: 

/** @dll .import("USER32", entrypoint-"GetSysColor") */ 
static native int getSysColor(int nlndex); 

352 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

You do not need to use aliasing to perform the ANSIlUnicode suffixing done by the Win32 
APIs. The Microsoft VM automatically takes care of this (see "How the VM Chooses 
Between ANSI and Unicode," later in this chapter). Aliasing is also unnecessary when 
accessing functions that have been exported by a .def file. Such names are typically 
exported using "stdcall mangling." That is, a method such as the following sample method 
would be renamed to _sample@8 (where 8 denotes the number of parameter bytes 
accepted by the function): 

extern "e" 
__ declspec(dllexport) 
VOID sample(int x, int y){ 

JlDirect automatically binds to stdcall-mangled names without an explicit entrypoint. 

The Microsoft VM automatically provides aliases for the following KERNEL32 API 
functions. 

Kernel32 Function Alias 

CopyMemory RtlMoveMemory 

MoveMemory RtlMoveMemory 

FillMemory RtlFillMemory 

ZeroMemory RtlZeroMemory 

Linking by Ordinal 
Some DLLs export functions by ordinal (16-bit integer) rather than by nanH.!. To call such 
DLLs, you will need to use a method-level @dll.import directive to specify the ordinal. 
The syntax for ordinal linking is: 

1** @dll .import("Libname", entrypoint="f/ordinal") *1 

Note that ordinal is specified in decimal. 

For example, to link a function exported as ordinal 82 in DLL "MyDll.DLL", you would 
write the following code: 

1** @dll.import("MyDll", entrYPoint-"f/82") *1 
public static native void MySample(); 

Programmer's Guide 353 



Part 2 Programming with Visual J++ 

Specifying @ dll.import 
for an Entire Class 

The @dll.import directive can also be used prior to the class definition to set a library 
name for all native methods declared in that class. The following declaration uses 
@dlLimportfor an entire class: 

1** @dll .import("KERNEL32") *1 
class EnvironmentStrings 
{ 

public static native int GetEnvironmentStrings(); 
public static native int GetEnvironmentVariable(String name, 

StringBuffer value, int ccbValue); 
public static native boolean SetEnvironmentVariable(String name, 

String value); 
} 

It is equivalent to specifying @dll.import for each method, as in the following example: 

class EnvironmentStrings 
{ 

1** @dll.import("KERNEL32") */ 
public static native int GetEnvironmentStrings(); 

1** @dll.import("KERNEL32") */ 
public static native int GetEnvironmentVariable(String name, 

StringBuffer value, int ccbValue); 

1** @dll.import("KERNEL32") */ 
public static native boolean SetEnvironmentVariablc(String name, 

String value); 

Using the @dll.import directive at the class level saves space in the .class file and 
eliminates redundant information. However, class-level @dll.import directives are 
not inherited by subclasses. 

354 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

How the VM Chooses Between 
ANSI and Unicode 

Regarding the MessageBox example shown in the JlDirect topic "Getting Started," a subtle 
but important fact is that USER32 does not export a function named MessageBox. Because 
the MessageBox function takes a string, it (like all Win32 functions that deal with strings) 
must exist in two versions: an ANSI version and a Unicode version (named MessageBoxA 
and MessageBoxW, respectively). When you code a call to MessageBox in C or C++, the 
MessageBox "function" you call is actually a macro that expands to either MessageBoxA 
or MessageBoxW, depending on whether the UNICODE macro is defined. 

Calling the ANSI Version of a DLL Function 
By default, the Microsoft VM assumes that the ANSI version of the MessagcBox function 
is the one that is needed. If you import the MessageBox function using @dll.import 
(without a modifier) as follows: 

1** @dll .import("USER32") *1 
static native int MessageBox(int hwnd. String text. 

String title. int style); 

The Microsoft VM will go through the following steps: 

1. The strings "text" and "title" are converted to ANSI null-terminated strings. 

2. The VM attempts to find an export named MessageBox in USER32.DLL. 

3. This attempt fails. The VM then appends an "A" onto the name and looks for an export 
named MessageBoxA. 

4. This attempt succeeds, and the VM invokes the MessageBoxA function. 

Programmer's Guide 355 



Part 2 Programming with Visual J++ 

Calling the Unicode Version of a DLL Function 
Suppose that instead of calling the ANSI version of the MessageBox function, you want 
to call the Unicode version. You can do this by using the unicode modifier with the 
@dll.import directive: 

1** @dll . import ("USER32" • uni code) *1 
static native int MessageBox(int hwnd. String text. String title. 

int style): 

Since the unicode modifier is present, the Microsoft VM will go through the 
following steps: 

1. The strings "text" and "title" are converted to Unicode null-terminated strings. 

2. The VM attempts to find an export named MessageBox in USER32.DLL. 

3. This attempt fails. The VM appends a "W" onto the name and looks for an export 
named MessageBoxW. 

4. This attempt succeeds, and the VM invokes the MessageBoxW function. 

Calling the Optimal Version of a DLL Function 
Unfortunately, neither calling the ANSI version or the Unicode version of a DLL function 
is an ideal way to invoke the Win32 functions. Using the default ANSI mode allows your 
code to run on any Win32 platform, but causes unnecessary performance penalties on fully 
Unicode systems such as Microsoft Windows NT. Using the IInicode modifier removes the 
performance penalty but restricts you to running on systems that implement the Unicode 
API. Fortunately, you can use the (llIto modifier with the @dll.import directive to call the 
optimal version of a DLL function based on the host operating system. 

Using the allto modifier gives you the best of both worlds. The following example shows 
how to call the optimal version of the MessageBox function: 

1** @dll .import("USER32".auto) *1 
static native int MessageBox(int hwnd. String text. String title. 

i nt styl e) : 

When the auto modifier is present, the Microsoft VM determines at run time whether the 
underlying platform supports the Unicode APIs. If Unicode is supported, the VM acts 
as if the unicode modifier had been specified. Otherwise, the VM behaves as if the ansi 
modifier had been specified. Thus, the auto modifier allows you to generate a single binary 
which runs well on both ANSI and Unicode Windows systems using the optimal API set 
available on the given platform. 

356 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

In general, the auto modifier should be used whenever you call Windows API functions. 
If you are calling your own DLLs, select either ansi (the default) or unicode depending 
on your needs. 

The following list provides details of how the VM decides whether to use ANSI or 
Unicode when you use the auto modifier: 

1. The VM opens the registry key HKEY_LOCAL_MACHINE\Software\Microsoft\Tava VM 
and looks for the DWORD-named value DllImportDefaultType. This value can be one of 
the following: 

2 - ANSI: Uses the ANSI version always. 

3 - Unicode: Uses the UNICODE version always. 

4 - Platform: Uses ANSI or Unicode depending on the platform. 

2. If the key does not exist, or if it is set to 4 (indicating platform), the VM calls the 
Win32 GetVersion function and examines the high bit to determine whether the 
underlying platform is Microsoft Windows 95 or Microsoft Windows NT. If the 
platform is Windows 95, ANSI mode is used. Otherwise, Unicode mode is used. 

It is not necessary to set the DllImportDefaultType registry key yourself. It exists 
primarily so that the installation program can set the appropriate choice on future 
Windows platforms. You can programmatically query the preferred mode on your 
platform by reading the com.ms.dll.DllLib.systemDefaultCharSize field. This field 
will be set to 1 on ANSI systems, 2 on Unicode systems. 

The ansi, unicode, and auto modifiers can also be used with the @dll.struct directive. 

Obtaining the Error Code 
Set by a DLL Function 

Do not invoke the Win32 function GetLastError to obtain an error code set by another 
DLL call. Because the Microsoft VM may execute function calls of its own in the process 
of executing Java code, the error code may have been overwritten by the time you get to it. 

To reliably access the error code set by a DLL function, you must use the selLaslError 
modifier to instruct the VM to capture the error code immediately after invoking that 
method. For performance reasons, this is not done by default. You can then invoke the 
com.ms.dII.DllLib.getLastWin32Error method to retrieve the error code. Each Java thread 
maintains separate storage for this value. 

Programmer's Guide 357 



Part 2 Programming with Visual J++ 

For example, the FindNextFile function returns status information through the error code. 
FindNextFile would be declared as follows: 

/** @dll .import("KERNEL32",setLastError) */ 
static native boolean FindNextFile(int hFindFile, 

WIN32_FIND_DATA wfd); 

A typical call would appear as: 

import com.ms.dll.DllLib; 

boolean f = FindNextFile(hFindFile, wfd); 
if (If) { 

int errorcode = DllLib.getLastWin32Error(); 
} 

Dynamically Loading and 
Invoking DLLs 

There may be times when you need more control over the loading and linking process 
than the @dll.import directive normally provides. For instance, your requirements 
might include: 

• Loading a library whose name or path must be computed at run time or generated 
from user input. 

• Freeing a library prior to process termination. 

• Executing a function whose name or ordinal must be computed at run time. 

The Win32 APls have always provided the ability to control loading and linking. The 
LoadLibrary, LoadLibraryEx, and FreeLibrary functions allow you to have explicit 
control over the loading and freeing of DLLs. The GetProcAddress function allows you 
to link to a specific export. The GetProcAddress function returns a function pointer, so 
any language that can call through a function pointer can implement dynamic invocation 
without a problem. 

JlDirect allows Java programmers to declare the requisite functions in the following way: 

Note If you are using the com.ms.win32 package, these declarations also appear in 
the Kerne132 class. 

/** @dll.import("KERNEL32",auto) */ 
public native static int LoadLibrary(String lpLibFileName); 

/** @dll.import("KERNEL32",auto) */ 
public native static int LoadLibraryEx(String lpLibFileName, 

int hFile, int dwFlags); 

358 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

1** @dll .import("KERNEl32",auto) *1 
public native static boolean Freelibrary(int hlibModule); 

1** @dll.import("KERNEl32",ansi) *1 
public native static int GetProcAddress(int hModule, String lpProcName); 

Notice that GetProcAddress is declared with the ansi modifier, not auto. This is because 
GetProcAddress is one of the few Windows functions without a Unicode equivalent. If we 
were to use the auto modifier, this function would fail on Microsoft Windows NT systems. 

That only leaves the problem of invoking a function obtained by GetProcAddress. For your 
convenience, msjava.dll, (the DLL that implements the Microsoft VM) exports a special 
function named call. The call function's first argument is a pointer to a second function. 
All call does is invoke the second function, passing it the remaining arguments. 

The following is an example of how an application could load a DLL and call AFunction 
exported by the DLL: 

BOOl AFunction(lPCSTR argument); 

1** @dll .import("msjava") */ 
static native boolean call(int funcptr,String argument); 

int hmod = loadLibrary(" ... "); 
int funcaddr = GetProcAddress(hmod, "AFunction"); 
boolean result = call(funcaddr, "Hello"); 
Freelibrary(hmod); 

Comparing JlDirect to 
Raw Native Interface 

JIDirect and Raw Native Interface (RNI) are complementary technologies. Using RNI 
requires that DLL functions adhere to a strict naming convention, and it requires that the 
DLL functions work harmoniously with the Java garbage collector. That is, RNI functions 
must be sure to call GCEnable and GCDisable around code that is time-consuming, code 
that could yield, code that could block on another thread, and code that blocks while 
waiting for user input. RNI functions must be specially designed to operate in the Java 
environment. In return, RNI functions benefit from fast access to Java object internals 
and the Java class loader. 

Programmer's Guide 359 



Part 2 Programming with Visual J++ 

JlDirect links Java with existing code such as the Win32 API functions, which were 
not designed to deal with the Java garbage collector and the other subtleties of the Java 
run-time environment. However, JlDirect automatically calls GCEnable on your behalf 
so that you can call functions that block or perform VI without having a detrimental effect 
on the garbage collector. In addition, JlDirect automatically translates common data types 
such as strings and structures to the forms that C functions normally expect, so you don't 
need to write lengthy glue code and wrapper DLLs. The tradeoff is that DLL functions 
cannot access fields and methods of arbitrary Java objects. In this release, they can only 
access fields and methods of objects that are declared using the @dll.struct directive. 
Another limitation of JlDirect is that RNI functions cannot be invoked from DLL functions 
that have been called using JlDirect. The reason for this restriction is that garbage 
collection can run concurrently with your DLL functions. Therefore, any object handles 
returned by RNI functions or manipulated by DLL functions are inherently unstable. 

Fortunately, you can use either RNI or JlDirect (or both). The compiler and the Microsoft 
VM allow you to mix and match JlDirect and RNI within the same class as your needs 
dictate. 

Security Issues 
Although J/Direct is a very powerful feature for stand-alone Java applications and trusted 
intranet Web applications, it is clearly too powerful to be used by normal Java applets 
on the Web. This section describes how JlDirect works with the security system of the 
Microsoft VM to prevent untrusted code from abusing the power provided by JlDirect. 

Trusted Versus Untrusted Classes 
JlDirect divides all loaded Java classes into one of two categories: 

1. Fully trusted (indicating maximum permissions). 

2. Vntrusted. 

Only fully trusted classes are allowed to use J/Direct. A Java class is considered fully 
trusted if one of the following statements is true: 

• The class is digitally signed indicating full trust. An example of such a class would 
be a signed applet. 

• The class is installed on the target computer's CLASSP A TH or installed by the 
package manager. A downloadable, digitally signed library designed to be shared 
among multiple applets could meet this criterion. 

• The class is running as a non-browser application using the JVIEW or the WJVIEW 
application. 

An unsigned applet on the Web, on the other hand, constitutes untrusted Java code. 

360 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

Security Checkpoints for JlDirect Method Calls 
The Microsoft VM applies security checks to JlDirect methods at three different times: 

1. At link time. 

2. Upon first invocation. 

3. Upon every invocation. 

An attempted JlDirect call takes place only if each of the three security checks passes or is 
explicitly disabled. 

Security Checks at Link Time 
Linking is what occurs when one Java class invokes or accesses (using the Reflection API) 
a member of another class. At link time, the Microsoft VM checks to see whether the class 
being referenced is accessible and whether the arguments being passed are of the correct 
type and number. The class is considered accessible if it is in the same package or if it is 
declared public. 

With the standard Java language, you are limited to a choice of two options for class 
accessibility: you can either declare a class public (so that anyone can link to it) or you can 
declare a class without the public modifier (so that only classes in the same package can 
link to it). However, with Microsoft Internet Explorer 4.0, there is now a third option. You 
can declare the class as "public for fully trusted callers only." You can declare any class 
with this type of accessibility, even if the class does not use JlDirect. To declare the class, 
place the following directive at the beginning of the class: 

1** @security(checkClassLinking=on) *1 

It is important to notice that this security check only prevents untrusted callers from 
directly calling the "protected" class. It does not prevent indirect calls. A third (fully 
trusted) class can forward a call from an untrusted caller to the "protected" class. 
However, there is a safeguard. The intermediate class must either be installed on the 
target computer's CLASSPATH, or it must be digitally signed for maximum trust and 
installed using the browser. 

Security Checks Upon First Invocation 
The first invocation of a method is the first time the method is invoked from any caller. At 
this time, for each method marked with the native keyword, the Microsoft VM determines 
whether the method is a member of a fully trusted class. If it is not, a SecurityException 
is thrown that includes the message, "Only fully trusted classes can have native methods 
as members." Because this security check does not depend on the calling context, it 
only needs to be performed once. If it passes, the check does not take place on futun.! 
invocations. There is no way to disable this security check. 

Programmer's Guide 361 



Part 2 Programming with Visual J++ 

Security Checks Upon Every Invocation 
This is the most stringent check available. On every call, the entire call stack is 
examined. If even one caller that is not fully trusted is discovered on the call stack, a 
SecurityException is thrown. By default, all JlDirect methods perform this check. RNI 
methods do not perform this check due to backward compatibility requirements. RNI was 
designed to allow easy porting from the original JDK 1.0 native interface, which did not 
offer this security check. 

Although this security check offers maximum safety, Microsoft offers a way to disable it. 
The mechanism for disabling is provided because this stringent security check has two 
important side effects: 

Possible Performance 
Degradation 

Inflexibility 

This security check requires a scan of the entire call stack each time a JlDirect 
method is called. The performance degradation is most noticeable on trusted 
applets, which generally run with a security manager present. Applications, 
on the other hand, usually do not see a significant performance drop. This is due 
to the fact that JlDirect omits the call stack scan for applications that run without 
a security manager. 

This security mechanism forces the use of maximum permissions, even in cases 
where only one specific permission is required. For example, consider a trusted 
library that uses JlDirect to expose a single permission to untrusted applets in a safe 
way. It would be appropriate for this library to tum off the call time security check 
and perform its own security check for the specific permission. 

The @security directive disables the per-invocation security check. The syntax for this 
directive is: 

/** @secur1ty(checkDllCalls-off) */ 

The @security directive applies to the entire class. Individual methods within a class 
cannot be tagged. The following example shows the placement of the @security directive: 

/** @security(checkDllCalls=off) */ 
class FastJDirectMethods{ 

} 

/** @dll.import( ... ) */ 
static native void func(); 

Be aware of the fact that disabling this security check transfers responsibility for security 
from the Microsoft VM to you. Remember that even with this security check disabled, 
you will still have to digitally sign the class for maximum trust. If you decide to use this 
directive, be sure to take the following precautions: 

362 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JlDirect 

• All JlDirect methods should be declared private. 

• Any publicly accessible methods should never blindly pass caller arguments to 
JlDirect. You must take responsibility for ensuring that only valid arguments are 
passed to native code. 

• Your class should expose no more capability than is required, and it should guard all 
access to these capabilities with the appropriate security checks. 

Important Calls from within an applet's init, start, stop, or destroy methods may 
trigger a SecurityExceptionEx even if the applet is trusted. To avoid this situation, 
you should assert permissions by executing the following code: 

import com.ms.security.*: 

PolicyEngine.assertPermission(PermissionID.SYSTEM): 

Security Checkpoints for JIDirect Structures 
JlDirect also imposes security restrictions on classes that are marked using the @dll.struct 
directive. Because structures only become unsafe when they are instantiated, these security 
checks are more efficient than the checks used for JlDirect methods. The following two 
security checks are performed on @dll.struct classes: 

Load time Classes marked with the @dll.struct directive will load only if the context 
indicates full trust. 

Link time Code that is not fully trusted cannot link to classes declared using the 
@dll.struct directive. The Microsoft VM will throw a NoClassDefFoundError 
if such an attempt is made. 

Security and the com.ms.win32 Classes 
For maximum security, the JlDirect methods defined in the com.ms.win32 package 
do perform the call stack check on each invocation. If you are using these classes for a 
Java application (running under JVIEW or WJVIEW), the performance overhead will 
be negligible. If you are using com.ms. win32 classes from a trusted class and require 
maximum performance, you should copy the required J/Direct declarations into your 
own classes and disable the per-invocation security check. See "Security Checks upon 
Every Invocation," earlier in this chapter, for more information on disabling the per­
invocation security check. 

Programmer's Guide 363 



Part 2 Programming with Visual J++ 

Error Messages 
There are several types of exceptions that might be thrown by the Microsoft VM when you 
are using JlDirect. For each of the following run-time errors, possible causes and solutions 
are explained: 

• java.lang.SecurityException [class.method] 

• java.lang.IllegalAccessError 

• java.lang.SecurityException 

• java.lang.NoClassDefFoundError 

• com.ms.security.SecurityExceptionEx 

java.lang.SecurityException [class. method] 
Exception Class java.lang.SecurityException 

Message class. method: Only fully trusted classes can have native methods as members. 

Possible Causes The native keyword has been used on a method that is a member of a class that is not 
loaded with full permissions (for example, an unsigned applet). This exception is 
thrown only if an attempt is made to invoke the native method. 

Possible Solutions Digitally sign your applet requesting full permissions. 

java.lang.lllegaIAccessError 
Exception Class 

Message 

Possible Causes 

java.lang.IllegaIAccessError 

Class has been marked as nonpublic to untrusted code. 

An untrusted class has attempted to refer to a field or method of another class that has 
been marked for trusted use only. Many of the system classes in the com.ms.com and 
com.ms.dll packages have been marked this way. A class can be marked as nonpublic 
to untrusted code using the @security directive in the following way: 

/** @security(checkClassLinking=on) */ 
public class ForTrustedUseOnly{ 

} 

Possible Solutions Digitally sign your applet requesting full permissions. 

364 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

java.lang.SecurityException 
Exception Class java.lang.SecurityException 

Message JlDirect method has not been authorized for use on behalf of an untrusted caller. 

Possible Causes An untrusted class has invoked a trusted method that attempts to make a JlDirect call. 
Even if the class making the actual JlDirect call is trusted, the security manager will 
throw a SecurityException if any of the methods in the call stack belong to an 
untrusted class. 

Possible Solutions Digitally sign your applet requesting full permissions. Or, you can disable the security 
check by marking the class that attempts the JlDirect call with the @security directive, 
as shown in the following example: 

/** @security(checkDllCalls=off) */ 
public class SafeDllCalls{ 

Note Disabling this security check transfers responsibility for security from 
the Microsoft VM for Java to you. Remember that even with this security check 
disabled, you will still have to digitally sign the class for maximum trust. If you use 
the @security directive, you should ensure that the following statements are true: 

• All JlDirect methods are declared private. 

• Your class exposes only the functionality needed by the client. 

• Your class guards all access to these capabilities with appropriate security 
checks. 

java.lang.NoClassDefFoundError 
Exception Class java.lang.NoClassDetFoundError 

Message None. 

Possible Causes An untrusted class has attempted to load either a class marked with the @dll.struct 
directive or a class generated using the jactivex tool. Although this is really a security 
violation (not a class loader error), a NoClassDetFoundError is thrown for backward 
compatibility purposes. 

Possible Solutions Digitally sign your applet requesting full permissions. 

Programmer's Guide 365 



Part 2 Programming with Visual J++ 

com.ms.security.SecurityExceptionEx 
Exception Class com.ms.security.SecurityExceptionEx 

Message [host] JlDirect method has not been authorized for use on behalf of an untrusted caller. 

Possible Causes A JlDirect call was attempted from the init, start, stop, or destroy method of an applet. 
To make JlDirect calls during these methods, the applet must assert permissions even if 
the applet has been signed. 

Possible Solutions Execute the following code to assert permissions: 

import com.ms.security.*: 

PolicyEngine.assertPermission(PermissionID.SYSTEM); 

Troubleshooting Tips 
The following sections describe problems that you may encounter when using JlDirect. 
For each situation, possible solutions are provided. 

UnsatisifiedLinkError When Calling a Method 
• Check your version of the compiler to see that it's current with this release of 

Microsoft Visual J++. If your compiler does not support JlDirect, the Microsoft VM 
will attempt to link native methods using the Raw Native Interface (and will not 
succeed). 

• Make sure your DLL is visible on the system path. DLLs are searched for in the 
following locations (in order): 

1. The directory from which the application (typically JVIEW) loaded. 

2. The current directory. 

3. The Windows system directory. 

4. The Windows directory. 

5. The directories listed in the PATH environment variable. 

The Microsoft VM will not attempt to load the DLL until a method requiring it is 
actually called. Therefore, do not assume that the DLL load was successful simply 
because the Java class loaded successfully. 

• Check the method qualifiers. Methods declared with the @dII.import directive must 
be native and static. They can have any level of access (public, private, and so on) 
supported by the Java language. 

• Make sure that your method name matches the DLL export name exactly, including 
capitalization. The DLL linking mechanism in Win32 is case-sensitive. 

366 Programmer's Guide 



Chapter 19 Writing Windows-Based Applications with JIDirect 

• If you still have trouble linking to a method, use a utility such as dumpbinJexports 
(Visual C++) to verify that the DLL exports the method by the name you are using. 
Some DLLs may require you to link to exports by ordinal (an integer) rather than a 
name. In such a case, use the entrypoint override on the method using the "#ordinal" 
syntax as shown in the following example: 

II This method is exported as ordinal #34. 
1** @dll . import ("MyDll " ,ent rypoi nt"'''fI34'') *1 
public static native void MySample(): 

• Be aware that some so-called functions are actually C macros and the actual 
DLL export name may be quite different from the name of the macro. 

Getting SecurityException When Calling a 
DLL Method or Using an @dll.struct Class 
DLL calling and the use of @dll.struct classes is restricted to Java applications and 
signed Java applets. 

String Buffers Truncated on Return From 
DLL Function 
You must ensure that the StringBuffcr's capacity is sufficient to contain the string 
you need before you invoke the DLL function. You can specify the capacity in the 
StringBuffer's constructor, and you can use the StringBuffer.ensureCapacity method 
to guarantee a minimum capacity prior to thc DLL call. 

Syntax Errors Within @dll Directives 
Extra white space within @dll.import and @dll.struct directives can cause syntax errors. 
Avoid using white space inside @dll constructs. 

Compiler Cannot Find the com.ms.dll Package 
An older version of Classes.zip is being uscd. Try renaming all older versions of 
Classes.zip on your disk drive reinstalling Visual J++. 

@dll Directives Do Not Work on Applets (or Only 
Works Within the Microsoft Visual J++ Environment) 
Because the use of JIDirect can compromise security, its use is restricted to Java 
applications and signed Java applets. 

Programmer's Guide 367 



Part 2 Programming with Visual J++ 

Using J/Direct Makes Class Untrusted 
Any use of JlDirect within a class marks that class as unsafe and unusable by untrusted 
code, even if the JlDirect methods are not actually invoked. 

JlDirect Throws a ParameterCountMismatchError 
After Calling a Native Function 

The ParameterCountMismatchError exception alerts you to the fact that the called function 
consumed (popped off the stack) more or fewer parameters than was passed by JlDirect. 
This error normally indicates that the parameters in the Java method declaration do not 
match up with the parameters expected by the DLL function. 

If the function pops off no arguments, it is assumed to be using the cdecl calling 
convention and an exception is not thrown, even if the Java method declares a non-zero 
number of arguments. 

Caution You should not attempt to catch and deal with the 
ParameterCountMismatchError exception. This exception was designed to assist 
developers in catching errors during the development stage. For performance 
reasons, parameter count checking is performed only when the application is 
running under a Java debugger. It is also important to note that JlDirect performs 
this check after the function call has been completed. Because this exception 
indicates that one or more invalid parameters might have been passed to the 
function call, it cannot be guaranteed that the process can recover. 

JlDirect Does Not Unload a DLL 
JlDirect unloads a DLL when the Microsoft VM discards the Java class that imported 
the DLL. For a Java application running under JVIEW, this does not occur until the 
process exits. For a trusted Java applet, this happens at some undetermined time after 
the browser has left the page containing the applet. The Microsoft VM attempts to keep 
Java classes loaded for several pages afterward in order to optimize applet refresh time 
in case the page is revisited. 

If you need explicit control over the loading and unloading of DLLs, you need to call the 
Windows loader explicitly and use the call entrypoint to invoke functions dynamically. 
For more information on how to do this, see "Dynamically Loading and Invoking DLLs," 
earlier in this chapter. 

368 Programmer's Guide 



APPENDIX A 

Errors and Warnings 

Compiler Error JOOO 1 
INTERNAL COMPILER ERROR: 

The compiler was unable to recover after detecting an error. Please consult your technical 
support help file, available from the Help menu, for instructions on how to search the 
Microsoft Knowledge Base for the latest information on this problem. Also, try to simplify 
the code where the compiler reported this error and compile again. 

Compiler Error J0002 
Out of memory 

The compiler attempted to allocate some additional memory during processing, but was 
unable to do so. Check the location, size, and validity of your system swap file. Also, 
ensure that there is sufficient growth space available on the drive on which your swap file 
resides. 

Compiler Error J0004 
Cannot open class file 'filename' for reading 

The compiler could not open the program source file for reading. This error usually occurs 
when another program has an exclusive lock on the source file. Close other processes that 
may be accessing the source file and compile again. 

Compiler Error J0005 
Cannot open class file 'filename' for writing 

The compiler failed to generate the output .class file. This error usually occurs when the 
compiler cannot get write or create permission for the file. Ensure the file does not have 
its read-only attribute set, and that it is not currently in use by another process. This error 
can also occur when you are running or debugging the program that contains the specified 
.class file. Close all instances of the program and compile again. 

Programmer's Guide 369 



Compiler Error JO006 

Compiler Error J0006 
Cannot read class file 'filename' 

The compiler failed to read the specified .class file. This error usually occurs when the 
compiler encounters an error reading the storage device, or when the compiler cannot 
otherwise get read permission for the file. Ensure that the file is not in use by another 
process. Also, ensure the validity of the storage device you are attempting to use by 
using a disk scanning utility. 

Compiler Error J0007 
Cannot write class file 'filename' 

The compiler failed while attempting to write the contents of a buffer to the specified 
.class file. This error usually occurs when space is exhausted on the targeted storage 
device. Free up any available space on the storage device and compile again. 

Compiler Error JOO 10 
Syntax error 

The compiler could not determine the meaning of an expression or statement within the 
source program. This error usually occurs when the line, indicated in the error message, 
is syntactically invalid. This error typically accompanies a more descriptive error. 
Correct any accompanying errors and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodIC) 
int • II error: missing assignment value 

} 

} 

Compiler Error JOO 11 
Expected ':' 

The compiler expected to find a colon following a case label or in a conditional 
expression that makes use of the ternary operator. This error usually occurs when a colon 
is accidentally omitted. Many times this error is caused on the line previous to the line the 
compiler has reported the error on. Ensure that the lines that require a colon are correct 
and compile again. 

370 Programmer's Guide 



The following example illustrates this error: 

public class Simple 

private int i: 
private static int x - 1: 

public void method1(int arg1) 

switch (a rgl) { 
case 1 I I error: '.' omi tted after 'case l' 

- ( arg1 < x) ? arg1 x: I I error: '. ' omitted after 'arg1' 
} 

Compiler Error J0012 
Expected ';' 

The compiler expected to find a semicolon in the position indicated by the error message. 
This error usually occurs when the semicolon is accidentally omitted from the end of a 
statement. It can also occur when a conditional expression is not syntactically correct. This 
error is often caused on the line previous to the line the compiler has reported the error on. 
Ensure that semicolons are used properly and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

private static int x = 10 II error: '.' omitted 

public void method1(int arg1) 

} 

for (int i - 1: i < x i++) 
I I error: ':' omitted 

Compiler Error J0012 

Programmer's Guide 371 



Compiler Error J0013 

Compiler Error JOO 13 
Expected '(' 

The compiler expected to find a left parenthesis in the position indicated by the error 
message. This error usually occurs when the left parenthesis is accidentally omitted in 
any of the following situations: 

• Type initializations 

• catch statements 

• Parenthesized expressions 

• while loops 

• for loops 

• if/else statements 

The following example illustrates this error: 

public class Simple 

private int i; 

public void methodl(int argl, int arg2) { 

if argl < arg2) II error: '(' omitted 
i - argl; 

else 
i - arg2; 

Compiler Error J0014 

372 

Expected ')' 

The compiler expected to find a right parenthesis in the position indicated by the error 
message. This error usually occurs when the right parenthesis is accidentally omitted in 
any of the following situations: 

• Type initializations 

• Type casts 

• catch statements 

• Parenthesized expressions 

• while loops 

.. for loops 

• if/else statements 

Programmer's Guide 



The following example illustrates this error: 

public class Simple 

private int i; 

public void methodl(int argl. int arg2) { 

} 

i - (argl < arg2 ? argl : arg2; 
II error: ')' omitted 

Compiler Error J0015 
Expected ']' 

The compiler expected to find a right square bracket in the position indicated by the error 
message. This error usually occurs when the right square bracket is accidentally omitted 
from an array declaration. This error is often caused on the line previous to the line the 
compiler has reported the error on. Ensure that all brackets match and compile again. 

The following example illustrates this error: 

public class Simple 

pri vate i nt x[ = new i nt[500]; I I error: ']' omi tted 

Compiler Error JOO 16 
Expected '{' 

The compiler expected to find a left brace in the position indicated by the error message. 
This error usually occurs when the left brace is accidentally omitted from the beginning 
of a class declaration or method code block. This error is often caused on the line 
previous to the line the compiler has reported the error on. Ensure that all braces match 
and compile again. 

The following example illustrates this error: 

public class Simple II error: '{' omitted 

public void methodl() { 
II do something meaningful 

Compiler Error JOO 16 

Programmer's Guide 373 



Compiler Error J0017 

Compiler Error JOO 17 
Expected '}' 

The compiler expected to find a right brace in the position indicated by the error message. 
This error usually occurs when a class or method's closing brace is not found. This error is 
often caused on the line previous to the line the compiler has reported the error on. Ensure 
that all braces match and compile again. 

The following example illustrates this error: 

public class Simple { 
{ 

int X,Y; 
II error: no matching brace found for class 

Compiler Error JOO 18 
Expected 'while' 

The compiler expected to find the keyword while in the position indicated by the error 
message. This error usually occurs when a do/while loop is not syntactically correct. 

The following error illustrates this error: 

public class Simpler 
public void methodl(){ 

doe 
II do something useful here 

}; II error: missing 'while' statement 

The following code illustrates the correct form of a do/while loop: 

public class Simpler 

} 

public static void methodl(){ 
int x - 10; 
do{ 

System.out.println(x); 
x- - ; 

}while(x != 0); II this is correct form for dolwhile loop 
} 

public static void main(String args[]){Simple.methodl();} 

374 Programmer's Guide 



Compiler Error JOO 19 
Expected identifier 

The compiler expected to find an identifier before the name of a class, interface, variable, 
or method declaration. This error usually occurs when the type is accidentally omitted in 
a declaration. 

The following example illustrates this error: 

public class Simple { 

private i; II error: type omitted 

Compiler Error J0020 
Expected 'class' or 'interface' 

The compiler expected to find either class or interface used within the corresponding 
declaration. This error usually occurs when the keywords are accidentally omitted from 
a class or interface declaration. Another possible cause of this error is unbalanced 
scoping braces. 

The following example illustrates this error: 

public Simple{ II error: missing the 'class' keyword 
II Do something here 

} 

This example illustrates this error caused by unbalanced scoping braces: 

public class Simple { 

II do something meaningful 

}} II error: additional '}' not needed 

Compiler Error J0021 
Expected type specifier 

The compiler expected to find a type specifier in the position indicated by the error 
message. This error usually occurs when a typographical error exists in an object 
instantiation or variable declaration. 

The following example illustrates this error: 

public class Simple { 

public Object 0 =new; II error: missing 'Object' type specifier 
} 

Compiler Error J0021 

Programmer's Guide 375 



Compiler Error J0022 

Compiler Error J0022 
Expected end of file 

The compiler expected to encounter an end-of-file character, but did not. This error usually 
occurs when the source file has been damaged in some way. Visually check the source file 
for obvious corruption, save any changes, and compile again. 

Compiler Error J0023 
Expected 'catch' or 'finally' 

The compiler expected to find a catch or finally block immediately following a 
corresponding try block. 

The following example illustrates this error: 

public class Simple { 
public void methodl(){ 

try { 
II do something meaningful 

} 

II error: 'catch' or 'finally' not found 

The following example illustrates the correct syntax for using a try/catch block: 

public class Simple{ 

} 

public void methodl(){ 

} 

try ( 
II Do something here. Possibly throw an exception type 

catch(Exception e){ 

} 

I*Handle any errors here and use the 'Exception' object to 
determine the type of error that occurred *1 

376 Programmer's Guide 



Compiler Error J0024 
Expected method body 

The compiler expected to find a method body immediately following a method declaration. 
This error usually occurs when the braces surrounding the method body are missing. 
This error can also occur when the method was intended to be abstract or native, but 
the abstract or native keyword was mistakenly omitted from the method declaration. 

The following example illustrates this error: 

public abstract class Simple 

public void methodl(); 
I I error: 'abstract' omi tted 
II This error would also exist if the class is not declared 'abstract' 

Compiler Error J0025 
Expected statement 

The compiler expected to find a statement before the end of the current scope. This error 
usually occurs when the left brace, designating the beginning of the current scope, or both 
left and right braces are missing. Ensure that the braces for the current scope are balanced. 

The following example illustrates this error: 

public class Simple 

void methodl(int argl) { 

if (argl--l) 
II error: missing the left brace for the if statement 

} 

} 

Compiler Error 10025 

Programlller's Guide 377 



Compiler Error J0026 

Compiler Error J0026 
Expected Unicode escape sequence 

The compiler expected to find a valid Unicode escape sequence. This error usually occurs 
when a backslash is not followed by the letter "u" to signify a Unicode escape sequence. 
Check the syntax of your Unicode escape sequence and compile again. 

The following example illustrates this error: 

public class Simple { 

int i -= \\u0032: 
II error: '\\' not valid 

} 

Compiler Error J0027 
Identifier too long 

The compiler detected an identifier name with a length greater than 1024 characters. 
Shorten the identifier name and compile again. 

Compiler Error J0028 
Invalid number 

The compiler detected a numeric value that the Java language is not capable of supporting. 
This error usually occurs when the number specified is an amount that is outside of the 
range of any of Java's primitive data types. This error usually occurs when a numerical 
value is too large to be stored in the specified data type. 

The following example illustrates this error: 

public class Simple { 

long i - 12345678901234567890: 
II error: value out of range for 'long' 

} 

378 Programmer's Guide 



Compiler Error J0029 
Invalid character 

The compiler detected an ASCII character that could not be used in an identifier. This 
error usually occurs when a class, interface, method, or variable identifier includes an 
invalid character. 

The following example illustrates this error: 

public class Simple 

private int c#; 
I I error: '#' not supported 

Compiler Error J0030 
Invalid character constant 

The compiler detected an attempt to assign an invalid character or character escape 
sequence to a variable of type char. 

The following example illustrates this error: 

public class Simple 

char c = '\'; 

II error: invalid escape character 
char x ~ '\\'; \* correct assignment of the backslash to the char 

variable *1 
} 

Compiler Error J0031 
Invalid escape character 

The compiler detected the use of an invalid escape character. This error usually occurs 
when a syntactical error is found in a Unicode escape sequence. The error can also occur 
if you use a "\" character in a string assignment. 

t 

The following example illustrates this error: 

public class Simple { 

} 

int i ... \u032; 
II error: Unicode uses 4 hex digits 
int x = \u0032; 
II correct assignment of a Unicode escape sequence 

Compiler Error 10031 

'Programmer's Guide 379 



Compiler Error J0032 

The following example illustrates the error being caused by assigning the "\" character 
improperly to a string: 

public class Simpler 

public String str = "C:\Windows\Oesktop"; 
II error: invalid assignment of the '\' character to a string 
II To assign it correctly use the '\\' character assignment 

Compiler Error J0032 
Unterminated string constant 

The compiler did not detect a terminating double-quote character at the end of a string 
constant. This error usually occurs when the string terminator is accidentally omitted, 
or when the string constant is mistakenly divided onto multiple lines. 

The following example illustrates this error: 

public class Simple { 

String str - "Hello: 
II error: closing quote omitted 

Compiler Error J0033 
Unterminated comment 

The compiler detected the beginning of a block comment, but did not detect a valid ending. 
This error usually occurs when the comment terminator is accidentally omitted. 

The following example illustrates this error: 

public class Simple { 

1* This comment block 
* does not have a valid 
* terminator 

380 Programmer's Guide 



Compiler Error J0035 
Initializer block cannot have modifiers except 'static' 

The compiler detected a modifier other than static associated with an initializer. Use only 
the static keyword to specify the initializer as a static initializer or no modifier to signify 
that the initializer is an instance initializer. Remove the modifier from the initializer 
specified in the error message or add the static modifier to the initializer and compile 
again. 

The following example illustrates this error: 

public class Simple { 
protected{ II error: 'protected' is invalid here 

II do something here 

Compiler Error J0036 
A data member cannot be 'native', 'abstract', or 'synchronized' 

The compiler detected one of the modifiers shown above used in the declaration of 
a variable. The modifiers synchronized and native can only be applied to method 
declarations. The abstract modifier can be applied to methods, classes, and interfaces. 

The following example illustrates this error: 

public class Simple{ 

} 

native int myvarl; 
abstract int myvar2; 
synchronized int myvar3; 
II error: the vars above have invalid modifiers 

Compiler Error J0037 
A method cannot be 'transient' or 'volatile' 

The compiler detected one of the modifiers shown above used in the declaration of a 
method. The modifiers transient and volatile can only be applied to field declarations. 

The following example illustrates this error: 

public class Simple{ 

} 

transient void Methodl(){}; 
volatile void Method2(){}; 
II error: the methods above have invalid modifiers 

Compiler Error 10037 

Progralllllll!r's Guide 381 



Compiler Error J0038 

Compiler Error J0038 
'final' member 'identifier' must be initialized when declared in an interface 

The compiler detected an uninitialized final variable in an interface definition. Variables 
declared as final in an interface definition must have their value set at declaration. Once 
set, the value cannot be programmatically changed. 

The following example illustrates this error: 

interface ISimple { 

final int COOL_RAD; 
II error: must have value set 

Compiler Error J0040 
Cannot define a method body for abstract/native methods 

The compiler detected a method body defined immediately following the corresponding 
declaration of an abstract or native method. An abstract method must have its 
implementation code defined in a subclass. Native methods are implemented using 
code from a native language such as C++. 

The following example illustrates this error: 

public abstract class Simple{ 
abstract void methodl(){ 

II Do something here 
}II error: abstract methods are implemented in subclasses 

Methods declared within an interface are implicitly abstract. As sllch, this error can 
also occur when you attempt to define a method body in an interface. The following 
code illustrates this scenario: 

public interface Simple { 

public void methodl() { 
II error: must define this method body 
II in a class that implements the 
II 'Simple' interface 

382 Programmer's Guide 



Compiler Error 10041 
Duplicate modifier 

The compiler detected a modifier used twice in a declaration. This error usually occurs 
when the same modifier is mistakenly used more than once within a declaration. 

The following example illustrates this error: 

public class Simple { 

public public void methodl() { II error: 'public' used twice 
II do something meaningful 

Compiler Error 10042 
Only classes can implement interfaces 

The compiler detected an interface declaration using the implements keyword. Interfaces 
cannot implement other interfaces. Interfaces can only be implemented by classes. This 
error usually occurs when an interface is mistakenly implemented instead of extending 
another interface using the extends keyword. 

The following example illustrates this error: 

public interface Simple implements color{ 
II error: 'Simple' cannot implement the 
II 'color' interface 

interface color { 
II do something meaningful 

} 

interface pattern extends color{ 
II extending an interface is OK here 

Compiler Error 10042 

Programmer's Guide 383 



Compiler Error J0043 

Compiler Error J0043 
Redeclaration of member 'identifier' 

The compiler detected the same identifier name being declared more than once within the 
same scope. This error usually occurs when a variable or method is mistakenly declared 
more than once. Ensure that you have not declared a method or variable more than once in 
the same class. Methods can have the same name but must differ in method parameters in 
order to be different. 

The following example illustrates this error: 

public class Simple { 
private int i: 
public void methodl(){ 

II do something here 
} 

II Other declarations for the class go here 

private int i: II error: 'i' declared twice 
public void methodl(){ 

II error: method declared twice 

Compiler Error J0044 
Cannot find definition for class 'identifier' 

The compiler could not locate the definition for the specified class. This error is usually 
caused by a typographical error. It can also occur when the package containing the 
specified class cannot be found. 

The following example illustrates this error: 

class NotSimple{ 
II do something here 

} 

public class Simple { 

NotSimple smp = new NotSmple(): 
II error: 'NotSmple' not a valid class name 

} 

384 Programmer's Guide 



Compiler Error J0045 
'identifier' is not a class name 

The compiler detected one of the following conditions: 

• A class name provided as part of an import statement could not be found. 

o The import statement was not syntactically valid. 

• The class attempted to extend an interface. Only classes can be used with the extends 
statement. 

o Ensure that that the package exists and that any classes you import exist in the package 
specified in the import statement and compile again. 

The following example illustrates this error: 

package non.existent: 
import non.existent: 1* error: the package is not existant and cannot be 

imported *1 

public class Simple { 

II do something meaningful 

} 

Compiler Error J0046 
'identifier' is not an interface name 

The compiler detected that the identifier referred to by the keyword implements is not 
an interface. This error usually occurs when a class is used instead of an interface in an 
implements statement. 

The following example illustrates this error: 

class Simple2 { 

II do something meaningful 

public class Simple implements Simple2 { 

II error: cannot implement class 'Simple2' 

Compiler Error J0046 

Programmer's Guide 385 



Compiler Error J0048 

Compiler Error J0048 
Cannot extend final class 'identifier' 

The compiler detected an attempt to subclass a class declared with the keyword final. 
Classes declared as final cannot be subclassed. 

The following example illustrates this error: 

final class Simple2 { 

II do something meaningful 

} 

public class Simple extends Simple2 { 

II error: cannot extend 'Simple2' 

} 

Compiler Error J0049 
Undefined namc 'idcntifer' 

The compiler detected a reference to a class, method, or variable that does not exist. 
Examples of when this error can occur include: 

• A variable is referenced that does not exist or is mistyped. 

• The object used with a method call does not exist or is mistyped. 

• A class is imported that docs not exist in the package specified or is mistyped. 

Ensure that the reference to the class, method, or variable displayed in the error message 
is correct and compile again. 

The following example illustrates this error: 

import java.io.bogus; II error: unknown class name 

public class Simple { 

public int methodl(){ 
return novarl: 
I I error: 'nova rl' does not exi st 

} 

public void method2(){ 
NotSimple nt = new NotSimple(); 
np.methodx(); 
II error: the object reference 'np' should be 'nt' 

386 Programmer's Guide 



class NotSimple{ 
public void methodx(){ 

II do something mea~ingful here 

Compiler Error J0051 
Undefined package 'identifier' 

The compiler detected a package name declaration, but was unable to locate the package 
definition. This error usually occurs when a syntactical error exists in an import statement. 
This error may also occur when the package cannot be found or does not exist. 

The following example illustrates this error: 

import java.lang.bogus.*: 
II error: 'bogus' not a valid package name 

public class Simple { 

II do something meaningful 

} 

Compiler Error J0053 
Ambiguous name: 'identifier' and 'identifier' 

The compiler could not resolve an ambiguity between the two identifiers shown. This error 
usually occurs when the same class name appears in two packages that are both imported 
into a source file using the "*,, class import specifier. Ensure that you do not have two 
classes with the same name in the packages you are importing into your source file and 
compile again. 

Compiler Error J0056 
Missing return type specification 

The compiler detected a method declaration without a return type specified. Allmcthod 
declarations must specify a return type. If the method is not meant to return a valuc, usc thc 
void keyword. 

The following example illustrates this error: 

public class Simple 

public methodl() II error: no return type 

II do something meaningful 
} 

} 

Compiler Error J0056 

Programmer's Guide 387 



Compiler Error J0057 

Compiler Error J0057 
Class file 'identifier' should not contain class 'identifier' 

This compiler did not detect the class specified in the error in the specified class file. 
This error usually occurs when a class is compiled into a class file that later is renamed. 
Because the class file has a different name than the class contained inside of it, attempting 
to use the name of the class file as a class will fail. To avoid this situation you will need to 
change the class definition to have the correct name or rename the file back to the original 
class name. 

Compiler Error J0058 
Cannot have a variable of type 'void' 

The compiler detected a variable declared as type void. The keyword void is not allowed 
in variable declarations. Rather, void can only be used as a method return type, noting that 
the method does not actually return a value. 

The following example illustrates this error: 

public interface Simple { 

public final static void - 1: 
II error: 'void' not valid 

Compiler Error J0059 
Cannot reference member 'identifier' without an object 

The compiler detected an attempt to reference a variable without a known object 
association. This error usually occurs when an instance field or method (a field or method 
declared without the keyword static) is referenced from within a static method without 
a valid instance. Static methods cannot use instance fields and methods without a valid 
instance of the class. 

The following example illustrates this error: 

public class Simple { 

private int x: 
public void methodl(){ 

II Do something here 

public static void main(String args[]) { 

388 Programmer's Guide 



x ~ 0; 1* error: 'x' must be static or referenced using class 
instance *1 

methodl(); 1* error: 'methodl' must be static or referenced with 
a class instance *1 

The following example illustrates the correct method to refer to a non-static member field 
or method: 

public class Simpler 

private int x; II access level of member does not matter 
public void methodl(){ 

II Do something here 

public static void main(String args[]){ 

} 

II Create an instance of the 'Simple' class 
Simple smp = new Simple(); 
smp.x = 0; II valid reference to field 
smp.methodl(); II valid call to method 

Compiler Error J0060 
Invalid forward reference to member 'identifier' 

The compiler detected an attempt to initialize a variable with another variable that had 
not yet been defined. To avoid this situation, reverse the field declarations order so that 
a variable that is referenced by another is defined first. 

The following example illustrates this error: 

public class Simple { 
private static int i = j; 
I I error: 'j' not yet defi ned 
private static int j = 0; 

The following example shows the correct way to initialize a field using another field in 
the same class: 

public class Simpler 
private static int j 

private static int 
} 

0; II field is instantiated and populated 
j; II with 'j' properly set. 'i' can be set 

Compiler Error J0060 

Programmcr's Guide 389 



Compiler Error J0061 

Compiler Error J0061 
The members 'identifier' and 'identifier' differ in return type only 

The compiler detected a subclass method attempting to overload a base class method, 
but the methods differed only in return type. In Java, overloaded methods must be 
distinguished by unique signatures. A unique signature consists of the method name, 
the number, type and positions of its parameters, and the return type. 

The following example illustrates this error: 

public class Simple extends Simple2 { 

public void method1() { 
II error: only return type differs 

} 

} 

class Simple2 { 

public int method1() 

return 1: 
} 

Compiler Error J0062 
Attempt to reduce access level of member 'identifier' 

The compiler detected an overridden method in the class being compiled that reduces the 
access level of its base class method. The base class access modifier for a method must 
be maintained by all derived classes that wish to overload the method. 

The following example illustrates this error: 

public class Simple{ 
public void method1()( 

II Do something here 
} 

class Simple2 extends Simple{ 
private void method1(){ 

I*error: cannot change access level of a method 
when overriding a base class's method. *1 

390 Programmer's Guide 



Compiler Error J0063 
Declare the class abstract, or implement abstract member 'identifier' 

The compiler detected an abstract method defined in a class, a superclass, or an 
implemented interface but the method was never implemented. This error usually occurs 
when a class implements an interface or extends a class that contains an abstract method 
definition, but the class never implements the abstract method. This error can also occur 
if a class defines an abstract method but the class does not have the abstract modifier 
defined. Ensure that your class has implemented any abstract methods and compile again. 

The following example illustrates this error: 

interface ITest{ 
public abstract void methodl(); 

public class Simple implements ITest{ 
II Do something meaningful here 
II error: the abstract method defined in 'ITest' is never implemented 

Compiler Error J0065 
Cannot assign to this expression 

The compiler detected an expression in the position normally held by an Ivalue for 
assignment. This error usually occurs when an expression is being assigned a value but 
the expression is not capable of accepting the assignment. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

} 

int x - 0; 
int y - 1; 

x++ - y: II error: '++' not villid 

Compiler Error J0065 

Programmer's Guide 391 



Compiler Error J0066 

Compiler Error J0066 
'this' can only be used in non-static methods 

The compiler detected use of the keyword this within a class (or static) method. Class 
methods are not passed implicit this references. As such, they cannot reference instance 
(non-static) variables or methods. 

The following example illustrates this error: 

public class Simple { 

int x: 

public static void methodl() { 

this.x = 12: II error: 'this' instance specific 
} 

} 

Compiler Error J0067 
Cannot convert 'type' to 'type' 

The compiler dctected a variable type used out of its correct context. As such, the compiler 
could not implicitly convert the result to anything meaningful. Convert the value you are 
attempting to use to something the method or field definition rcquires and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

} 

int i - 10: 

if (i--) { 

II error: conditional needs expression 
II or boolean field 

392 Programmer's Guide 



Compiler Error J0068 
Cannot implicitly convert 'type' to 'type' 

The compiler could not convert the specified variable without an explicit typecast. This 
error usually occurs when a numerical field is assigned to a data type that is not numerical. 
Use a typecast to convert the data type to the appropriate data type and compile again. 

The following example illustrates this error: 

public class Simple 

int i = 10; 

public void method1() { 
char c = i; II error: expected type char 
char c = (char)i: II this is the correct assignment statement 

Compiler Error J0069 
Cannot apply'.' operator to an operand of type 'identifier' 

The compiler detected the '.' operator applied to an invalid type. This error usually occurs 
when an invalid method call is made on an intrinsic data type. Ensure that your method call 
is using the correct object and compile again. 

The following example illustrates this error: 

public class Simple { 

int i - 123: 
i nt j - i. 1 ength: I I error: 'i' not an array 

Compiler Error J0072 
'identifier' is not a member of class 'identifier' 

The compiler detected a method call, but the method is undefined. This error usually 
occurs when the method name is either misspelled or cannot be found within the proper 
scope. This error can also occur when the method does not exist. Ensure that the member 
you are trying to reference exists in the specified class and compile again. 

Compiler Error J0072 

Programmer's Guide 393 



Compiler Error J0074 

The following example illustrates this error: 

public class Simple { 

public static void main(String args[]) { 

System.out.printline("Hello"); 
II error: 'printline' should be 'println' 

} 

Compiler Error J0074 
Operator cannot be applied to 'identifier' and 'identifier' values 

The compiler detected an operator that cannot be correctly applied to the identifiers 
shown in the error message. This error usually occurs when two fields are non-numerical 
and operators used for numbers are applied to the fields. 

The following example illustrates this error: 

public class Simple { 

public void methodIC) 

String 51 - "one"; 
String 52 - "two"; 
Stri ng result; 

result - 51 * 52; II error: invalid operands 

Compiler Error J0075 
Invalid call 

The compiler detected syntax for a method call, but the identifier does not represent a valid 
method name. This error usually occurs when a method name is misspelled or contains 
characters that are not recognized as valid in the Java language naming conventions. 

The following example illustrates this error: 

class Simple { 
int x ... I(); 
II error: 'l()' is not a valid method name 

394 Programmer:s Guide 



Compiler Error J0076 
Too many arguments for method 'identifier' 

The compiler detected a known method call, but the call contained more arguments than 
needed. Check the number of arguments for the method you are attempting to call and 
remove any additional arguments from the call. 

The following example illustrates this error: 

public class Simple { 

public void methodl(int argl) { 

II do something meaningful 

public void method2() { 

methodl(l. 2); II error: Too many arguments 

Compiler Error J0077 
Not enough arguments for method 'identifier' 

The compiler detected a known method call, but the call contained fewer arguments than 
needed. This error usually occurs when one or more arguments are accidentally omitted 
from the call. 

The following example illustrates this error: 

public class Simple { 

} 

public void methodl(int argl) 
II do something meaningful 

} 

public void method2() { 

methodl(); II error: Too few arguments 
} 

Compiler Error J0077 

Programmer's Guide 395 



Compiler Error JO078 

Compiler Error J0078 
Class 'identifier' doesn't have a method that matches 'identifier' 

The compiler identified a call to a known overloaded method within another class, but was 
unable to detect a matching method with the correct number of arguments. Ensure that the 
overloaded method call has the correct number and type of arguments and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodl() { 
II do something meaningful 

} 

public void methodl(int argl) { 
II do something meaningful 

} 

class Simple2 ( 

public void methodl() 

Simple s - new Simple(); 
s.methodl(l. 2. 3): II error: too many arguments 

Compiler Error J0079 
Ambiguity between 'identifier' and 'identifier' 

The compiler could not distinguish the correct method to execute. This error usually occurs 
when two overloaded methods have related argument lists and the method call cannot be 
differentiated between the two methods. Ensure your method call is not using a parameter 
that conflicts with another overloaded method. Another way to avoid this error is to change 
the argument lists of the two overloaded methods so that they have a different number of 
arguments or more uniquely defined parameter data types. 

The following example illustrates this error: 

public class Simple { 

static void methodl(Simple2 s2. Simple3 s3) { 
II do something meaningful 

} 

396 Programmer's Guide 



static void methodl(Simple3 s3. Simple2 s2) { 
II do something meaningful 

public static void main(String args[]) { 

} 

Simple2 s2 = new Simple2(); 
methodl(s2. s2); 
II error: Ambiguity between Simple2 and Simple3 

class Simple2 extends Simple3 { 
II do something meaningful 

class Simple3 { 
II do something meaningful 

Compiler Error J0080 

Compiler Error JO080 

Value for argument 'identifier' cannot be converted from 'identifier' in call to 'identifier' 

The compiler detected a method argument that does not match the parameters specified in 
the method declaration. This error usually occurs when a numerical field is passed as an 
argument to a method but the method requires a different numerical type. To pass different 
numerical types to arguments of a method, typecast the field being passed to the method. 

The following example illustrates this error: 

public class Simple { 

public void methodl(int argl) 
II do something meaningful 

} 

public void method2() { 

float f - 1.0f; 
methodl(f); II error: mismatched call types 

} 

Prograllllllt!r's Guillt! 397 



Compiler Error J0081 

The following example illustrates how to avoid this error: 

public class Simple{ 

} 

public void method1(int arg1){ 
lIdo something meaningful 

} 

public void method2(){ 
float f = 1.0f; 
method1«int)f); II typecast the 'float' to be treated as an 'int' 

} 

Compiler Error J0081 
Value for argument 'identifier' cannot be converted from 'identifier' in call to 'identifier' 

The compiler detected a call to a method in a class located in a different class file, but was 
unable to convert one of the arguments from the supplied type to the type shown in the 
method declaration. This error usually occurs when a method is called with the arguments 
in the wrong order or the wrong method was called. Check the argument number that 
caused the error in the error message and ensure you passed the correct type of argument. 

Compiler Error J0082 
Class 'identifier' doesn't have a constructor that matches 'identifier' 

The compiler did not detect a constructor matching the call identified in the error. This 
error usually occurs when a constructor is called with the wrong number of arguments. 
Ensure that the class has a constructor that matches the one you are attempting to call 
and compile again. 

The following example illustrates this error: 

public class Simple 

Simple(int arg1) { 
II do something meaningful 

} 

public static void main (String args[]) 

Simple s = new Simple(12, 13); 
II error: too many arguments 

398 Programmer's Guide 



Compiler Error J0083 
'superO' or 'thisO' may only be called within a constructor 

The compiler detected use of either the superO or thisO keyword outside of a constructor. 
The superO keyword is used to call a superclass constructor, while the thisO keyword is 
used to call one constructor from another. To reference methods in a base class you must 
use the super. keyword. 

The following example illustrates this error: 

public class Simple { 

public void methodl () { 

super(); II error: 'super' cannot be called 
} 

} 

The following example illustrates using the super. keyword to reference a method in a 
base class: 

class NotSimple{ 

} 

public class methodl(){ 
II do something here 

public class Simple{ 
public method2(){ 

super.method!C); II correct way to call a method of a superclass 

} 

Compiler Error J0084 
Cannot return a value from a 'void' method 

The compiler detected an attempt to return a value from a method declared with a return 
type of void. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 
return 1; II error: cannot return a value 

} 

} 

Compiler Error J0084 

Programmer's Guide 399 



Compiler Error 10085 

Compiler Error J0085 
Expected return value of type 'identifier' 

The compiler detected the keyword return within the body of a method which was 
declared to return a specific type, but the return had no associated value. The return 
statement with no associated value will not return a default value and thus must be 
assigned a valid return value. 

The following example illustrates this error: 

public class Simple { 

public int methodl() 
return: II error: must return int value 

} 

Compiler Error J0086 
'[]' cannot be applied to a value of type 'identifier' 

The compiler detected array brackets used with a non-array type. Change the field to be 
a valid array declaration if you want to use the field as an array and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

public void methodl() 
int i - 0: 
int j, x: 

x - j[i]: II error: 'j' not declared as array 
} 

Compiler Error J0087 
'goto' statement is not currently supported by Java 

The keyword goto, while defined as a keyword, has not yet been implemented in the 
Java language. 

400 Programmer's Guide 



Compiler Error J0089 
The case 'identifier' has already been defined in switch statement 

The compiler identified two or more case statements with the same identifier or value 
occurring within the same switch statement. 

The following example illustrates this error: 

public class Simple { 

} 

public int method1(int arg1) { 

} 

switch (a rgl) { 
case 1: 

return (int) 1; 
case 2: 

return (int) 2; 
case 2: II error: duplicate of above 

return (int) 3; 
default: 

return (int) 0; 

Compiler Error J0090 
'default' has already been defined in switch shltcment 

The com/piler identified two or more instances of the keyword default occurring within 
the same switch statement. 

The following example illustrates this error: 

public class Simple { 

public int method1(int arg1) { 

switch (argl) { 

} 

} 

case 1: 
return (int) 1; 

case 2: 
return (int) 2; 

default: 
return (int) 3; 

default: II error: duplicilte of above 
return (int) 0; 

Compiler Error J0090 

Progralllllll:r's Guide 401 



Compiler Error J0091 

Compiler Error J0091 
'case' outside of switch statement 

The compiler identified the keyword case used outside the scope of a switch statement. 

The following example illustrates this error: 

public class Simple { 

} 

public int methodl() { 

} 

case 1: II error: no switch statement 
return 1; 

Compiler Error J0092 
Constant expression expected 

The compiler detected an expression that used a non-constant value when a constant 
value was required. This error usually occurs when a variable is used in a case statement. 
Check the expression to be sure that a constant value is being used and compile again. 

The following example illustrates this error: 

public class Simple{ 
i nt va rl - 10; 
int var2 - 20; 
public void methodl(){ 

switch (va rl){ 
case var2: 

II error: cannot use variable with case 

Compiler Error J0093 
'break' only allowed in loops and switch statements 

The compiler detected the keyword break occurring outside the scope of a loop or 
switch statement. 

The following example illustrates this error: 

public class Simple{ 
public void methodl(){ 

if (true) 
break; 
II error: break allowed in loops only 

402 Programmer's Guide 



Compiler Error 10094 
Label 'identifier' not found 

The compiler detected a label name associated with one of the keywords continue or 
break, but could not find the label. This error usually occurs when a label does not exist, 
yet it is being referenced by a break or continue statement. This error can also occur if 
the label is placed outside the break or continue statement's scope. A break or continue 
statement must reference a label that precedes an enclosing loop or block. Ensure that the 
break or continue statement can access a valid label and compile again. 

The following example illustrates this error: 

public class Simple{ 
public int method1(){ 

int y; 

} 

for (int x = 0; x < 10; x++){ 
y = x *2; 
if (x==5) 

break test; II error 'test' is not defined as a label 
} 

return y; 

The following example illustrates the correct usage of a label when used with the break 
or continue statements: 

public class Simple{ 

} 

public int method1(int arg1){ 
int X,Y = 0; 

} 

test: II label precedes the loop. 
if (arg1 = 0) 

return y; 
for (x=1; x < 10; x++){ 

y = x * argl; 
if (y <= arg1){ 

y = -1; 
break test; 

} 

return y; 

Compiler Error J0094 

Programmer's Guide 403 



Compiler Error J0095 

Compiler Error J0095 
'continue' only allowed in loop 

The compiler detected attempted use of the keyword continue outside the scope of a loop. 
This error usually occurs when a loop is removed and continue statements are left in the 
code. Remove any continue statements that are outside of a loop and compile again. 

The following error illustrates this error: 

public class Simple{ 

} 

public void methodl(int argl){ 
if (argl ==1) 

continue; 
II error: continue only allowed in loops. Remove 'continue;'. 

} 

Compiler Error J0096 
Class value expected 

The compiler detected a synchronization block, but the synchronized statement was 
applied to an invalid type. This error usually occurs when an identifier other than a class 
object instance is lIsed with the synchronized statement. 

The following example illustrates this error: 

public class Simple { 

} 

public void methodl() 
i nt i; 
synchronized (i){ II error 'i' must resolve to an object reference 

II Do something here 
} 

Compiler Error J0097 
'instanceof' operator expected class or array 

The compiler detected the instanceof operator applied to a type that did not resolve to a 
class or array. The instanceof operator is used to determine if identifier is an instance of 
a specific class or array. Ensure the lvalue used with the instanceof operator references a 
class instance or array and the rvalue references a valid class name or array and compile 
again. 

404 Programmer's Guide 



The following example illustrates this error: 

public class Simple { 

public void methodIC) 

Simple2 obj = new Simple2(); 

if (obj instanceof int) II error: 'int' is not a class name 
II do something meaningful 

class Simple2 { 
II do something meaningful 

Compiler Error J0098 
Attempt to access non-existent member of 'identifier' 

The compiler detected an array member specified, but could not identify it. This error 
usually occurs when an attempt to reference the length method of an array is mistyped. 
This error can also occur when an attempt is made to call a method in an array of objects 
but the call does not reference an element of the array. 

The following example illustrates this error: 

public class Simple { 

public void methodIC) 
String j[] = new String[!0]; 
II intialize the array elements here 
String str = j.toUpperCase(): 
II error: missing array brackets '[]' 

Compiler Error JO 1 00 
Cannot throw 'identifier' - the type docs not inherit from 'Throwablc' 

The compiler detected an object in a throw statement that was not derived from the class 
Throwable. This error usually occurs when a throw statement uses a class that does not 
inherit from the Throwable class. Ensure that the exception class you are throwing is a 
valid exception class. 

Compiler Error J0100 

Programmer's Guide 405 



Compiler Error J0101 

The following example illustrates this error: 

class BogusException{ 
II Do something useful here 

public class Simple{ 

} 

public void methodl(int argl){ 
II Do something meaningful 
if (argl == 0){ 

throw new BogusException(); 
II error: BogusException is not a valid exception class 

} 

} 

Compiler Error JO 1 0 1 
The type 'identifier' does not inherit from 'Throwable' 

The compiler detected an invalid class argument used as an argument in a catch statement. 
When using a cutch statement to handle exceptions, you must define it with a class derived 
from Throwablc as a parameter. Ensure that the class you defined for the catch statement 
is derived from Throwublc and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

} 

try { 

} 

1/ do something meaningful 
catch (String s) { 
/I error: 'Stri ng' not a subcl ass 
1/ of 'Throwable' 

The following example illustrates the correct way to use the catch statement to trap 
exceptions: 

public class Simple{ 
public void methodl(int argl){ 

try{ 

} 

1/ do something here 
if (a rg 1 == 0) 

throw new myException(); II throw a valid exception object 

406 Programmer's Guide 



catch(myException c){ II this is a valid exception object to catch 
II handle exception here 

} 

class myException extends Throwable{ 
II class definition goes here 

Compiler Error JO 1 02 
Handler for 'identifier' hidden by earlier handler for 'identifier' 

The compiler detected an exception handler that will never be executed because an earlier 
handler would have already caught the exception. This error usually occurs when catch 
statements are written in the wrong order. 

The following example illustrates this error: 

class Simple { 

static 
{ 

} 

try 
{ 

} 

catch (Exception e) 
{ 

} 

catch (ArithmeticException e) 
{ 

} 

II error: any exceptions this block 
II could have caught are already caught 
II by the first catch statement 

Compiler Error JO 1 03 
Cannot override final method 'identifier' 

The compiler detected a class method attempting to override one of its base class methods, 
but the base class method was declared with the keyword final. Methods defined with the 
final modifier cannot be overridden by a derived class. 

Compiler Error JO 103 

Programmer's Guide 407 



Compiler Error J0104 

The following example illustrates this error: 

public class Simple extends Simple2 { 

public void methodiC) { 
II error: 'method!' final in superclass 

} 

} 

class Simple2 { 

public final void methodIC) { 
II do something meaningful 

} 

Compiler Error JO 1 04 
Unreachable statement or declaration 

The compiler detected a statement or declaration that cannot be reached under any 
circumstances. This error usually occurs when a return statement is called from a method, 
and code is placed below the return statement. This error can also occur if a break 
statement is used in a loop without any flow control to allow code below it to be run. 

The following example illustrates this error: 

class Simple ( 

} 

public int methodlCint argl){ 
for (int y - 10: y < 10:y++){ 

break: 

} 

int z - y +10: II error: break causes this line to never be run 
} 

II do something here 
return argl: 
int x - argl 12: 
I*error: this line of code cannot be reached because of return 

statement *1 

Compiler Error JO 1 05 
Method 'identifier' must return a value 

The compiler detected a method declaration that included a return type other than void, but 
the keyword return was not found in the method body. This error usually occurs when a 
method that returns a value is missing a valid return statement. This error can also occur i( 
a return statement is called within a flow control block and cannot always be accessed due 
to the logic of the method. 

408 Programmer's Guide 



The following example illustrates this error: 

public class Simple { 

public int methodl(int argl) { 
if (argl==0) 

return argl + 2: 
II error: flow control prohibits a value from always being returned 

Compiler Error JO 1 06 
Class 'identifier' has a circular dependency 

The compiler detected two or more classes directly or indirectly attempting to subclass 
each other. This error usually occurs when two classes extend each other. One class should 
act as the base class of the other. 

The following example illustrates this error: 

public class Simple extends Simple2 

II error: extending 'Simple2' 
} 

class Simple2 extends Simple { 

II error: also extending 'Simple' 
} 

Compiler Error JO 1 07 
Missing array dimension 

The compiler detected the initialization of an array, but failed to detect a valid array 
dimension. This error usually occurs when an array is defined but one of the dimensions 
of the array is not defined. In order to use an array, all dimensions must be defined. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

int [][] i = new int[][12]; 
II error: missing first array dimension 

} 

} 

Compiler Error J0107 

Programmer's Guide 409 



Compiler Error JO 1 08 

Compiler Error JO 1 08 
Cannot 'new' an instance of type 'identifier' 

The compiler detected an attempt to instantiate a data type that does not require the use 
of the keyword new. This error usually occurs when an attempt is made to use the new 
keyword with an intrinsic data type and the declaration is not an array. Ensure your 
member declaration does not use the new keyword unless it is a class object or array 
declaration. 

The following example illustrates this error: 

public class Simple { 

public void methodIC) { 
String myString - new StringC); I*usage OK since it is a class 

object*1 
int x[] - new int[!0]; II usage of new here is OK 
int i-new intCS); 
II error: cannot use 'new' on 'int' types 

} 

} 

Compiler Error JO 1 09 
Cannot 'new' an instance of abstract class 'identifier' 

The compiler detected an attempt to instantiate a class object declared as abstract. A class 
declared as abstract cannot be instantiated and exists only as a base class for other classes 
to derive from. 

The following example illustrates this error: 

abstract class Simple2 { 
II do something meaningful 

} 

public class Simple { 

public void methodIC) 

Simple2 s20bject - new Simple2C); 
II error: class 'Simple2' declared as abstract 

} 

} 

410 Programmer's Guide 



Compiler Error JO 11 0 
Cannot 'new' an interface 'identifier' 

The compiler detected an attempt to instantiate an interface object declared as abstract. 
Interfaces can only be implemented by a class, and thus cannot be instantiated in the way 
a class can. 

Note Interfaces are abstract by default, regardless of whether or not the keyword 
abstract is used in their declaration. 

The following example illustrates this error: 

interface Simple2 { 
II do something meaningful 

public class Simple { 

public void methodl() { 

Simple2 s20bject = new Simple2(): 
II error: interface Simple2 is abstract 

} 

} 

Compiler Error JO 111 
Invalid use of array initializer 

The compiler detected an attempt to initialize an array, but the initialization statement 
was not syntactically correct. Arrays can be initialized at declaration with an initial set 
of values. This error usually occurs when trying to initialize an array of arrays with the 
incorrect number or positioning of braces and commas. Ensure that the syntax of your 
array initialization is correct and compile again. 

The following example illustrates this error: 

public class Simple{ 
public void methodl(){ 

int[]i - ({1.2.3}. {4.5.6}}: 
II error: 'i' delcared for only one dimension 

} 

} 

The following example illustrates the proper syntax for array initialization: 

public class Simple{ 
public void methodl(){ 

int[]i = (1,2.3,4.5.6}: II Single dimension initialization 
int [][]x = {{1.2.3}.{4.5.6}}: II multi-dimension initialization 

} 

} 

Compiler Error J0111 

Programmer's Guide 411 



Compiler Error J0112 

Compiler Error JOl12 
Cannot assign final variable 'identifier' 

The compiler detected an attempt to change the value of a field declared as final. A field 
declared as final cannot be assigned a value once it has been initialized with a value either 
at declaration, in an instance initializer, or constructor. 

The following example illustrates this error: 

public class Simple { 

} 

private final int i = 3; 

public void methodl(int argl) { 
i = argl; 
II error: variable 'i' declared final 

Compiler Error JO 113 
Call to constructor must be first statement in constructor 

The compiler detected a constructor called from within the body of a second constructor, 
but the constructor call was not placed at the beginning of the second constructor body. In 
a constructor, calls to another constructor must be the first line of code in the constructor's 
body. Ensure that the constructor call is the first line of code in the constructor body and 
compile again. 

The following example illustrates this error: 

public class Simple { 

} 

i nt i, j; 

Simple () { 

i = 0; 

Simple(int argl) { 

j = argl; 
this(); II error: call to Simple() must be first 

} 

412 Programmer's Guide 



Compiler Error JO 114 
Cannot reference 'this' in constructor call 

The compiler detected an improper reference to this in a constructor. The this statement 
is usually used in a constructor to access methods and fields of the constructor's class. 
Usage of this(this) or super(this) in a constructor will cause this error to occur because 
the instance of the class has not yet been created and thus cannot be passed to another 
constructor. 

The following example illustrates this error: 

class SuperSimple { 
SuperSi mpl e() {} 
SuperSimple(Object 0) { } 

public class Simple extends SuperSimple { 
int x; 
public Simple() 
{ 

this(10); II this is OK; calls another constructor 
super(this); 
II error: cannot pass this to a super constructor 
this.x = 1; II this is OK 
this.method1(); II this is OK too 

public Simple(int arg1){ 
this.x = arg1; II this is OK 

public void method1(){} 

Compiler Error JO 115 
Cannot call constructor recursively (directly or indirectly) 

The compiler detected a recursive constructor call. This error usually occurs when a 
constructor has a call to the same constructor. This error can also occur if one constructor 
calls a second constructor and the second constructor has a call back to the first 
constructor. 

The following example illustrates this error: 

public class Simple { 

Simple (int arg1) { 

this(l); 
II error: constructor calling itself 

} 

} 

Compiler Error JOl15 

Programmer's Guide 413 



Compiler Error J0116 

Compiler Error JO 116 
Variable 'identifier' may be used before initialization 

The compiler detected an attempt to use a variable before it was properly initialized. 
In order to use a variable in an assignment or expression, you need to assign it a value. 
Initialize the variable in a constructor or field initializer and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

static 
{ 

int i: 
i nt j - i: 
II error: 'i' not yet initialized 

} 

Compiler Error JO 117 
Cannot declare an interface or outer class to be 'private' 

The compiler detected use of the modifier private in an outer class or interface declaration. 
This modifier may only be used with fields, methods, and inner class declarations. 

The following example illustrates this error: 

private class Simple 

II error: a class cannot be 'private' 

Compiler Error J0120 
Divide or mod by zero 

The compiler detected a division by zero error. 

The following example illustrates this error: 

public class Simple { 

} 

final int x - 0: 
int y - 1 % x: 
II error: x cannot be 0 

414 Programmer's Guide 



Compiler Error J0121 
Unable to recover from previous error(s) 

The compiler encountered a serious error and could not continue processing the file 
reliably. Fix whatever errors are already flagged and compile again. 

Compiler Error J0122 
Exception 'identifier' not caught or declared by 'identifier' 

The compiler detected an exception that was thrown but never caught within the exception 
class. This error usually occurs when a method calls another method that is declared to 
throw an exception. In order for a method to call another method that throws an exception, 
the method must either be declared to throw the exception or handle the error using a 
try/catch combination. 

The following example illustrates this error: 

class SimpleException extends Exception 
II do something meaningful 

} 

class Simple { 

void method1() throws SimpleException { } 
void method2() { method1(); } 
II error: exception not declared for method2 

The following examples illustrates how to call a method that is declared to throw an 
exception: 

I*This example illustrates handling by declaring the other method as 
throwing an exception duplicate to the method it is calling.*1 
class SimpleException extends Exception{ 

II do something here 

public class Simple{ 

} 

void method1() throws SimpleException{ 
II do something here 

} 

void method2() throws SimpleException{ 
method1C); II caller of method2 now is forced to handle exception 

} 

Compiler Error J0122 

Programmer's Guide 415 



Compiler Error J0123 

I*This example illustrates handling the exception using a try/catch 
combination.*1 

class SimpleException extends Exception{ 
II do something here 

} 

public class Simple{ 
void methodl() throws SimpleException{ 

II do something here 
} 

void method2(){ 
try{ 

methodl(); 
} 

catch(SimpleException e){ 
1/ handle exception here 

} 

} 

Compiler Error JO 123 
Multiple inheritance of classes is not supported 

The compiler detected a class attempting to apply the keyword extends to more than one 
base class. This is defined as multiple inheritance in other languages and is not supported 
in Java. 

The following example illustrates this error: 

public class Simple extends BaseClassl. BaseClass2 
II error: multiple inheritance not supported in Java 

class BaseClassl { 

II do something meaningful 
} 

class BaseClass2 { 

II do something meaningful 
} 

416 Programmer's Guide 



Compiler Error JO 124 
Operator cannot be applied to 'identifier' values 

The compiler detected an operator being applied to a type it cannot be used with. Ensure 
that the operator you are attempting to use is valid for that type of variable or object and 
compile again. 

The following example illustrates this error: 

public class Simple { 

} 

void methodl(boolean b) { 

b++; 
1* error: post increment operator cannot 

be applied to boolean variables *1 

Compiler Error JO 125 
'finally' block used without 'try' statement 

The compiler detected a finally block but did not find a corresponding try statement. 
A finally block is used to execute code after a try statement, regardless of the results 
of the try statement. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

finally { 
II error: missing corresponding try statement 

} 

} 

Compiler Error J0125 

Programmer's Guide 417 



Compiler Error J0126 

The following example illustrates the correct usage· of the finally block: 

public class Simple{ 

public int methodl(int argl){ 
try{ 

argl110; 
} 

catch(Exception e){ 
II handle exception here; must come before 'finally' 

} 

finally{ 
II do something here: this section is run regardless of 'try' 

Compiler Error J0126 
'catch' block used without 'try' statement 

The compiler detected a catch statement but did not find a corresponding try statement. 
In order to use a catch statement you must have a try statement preceding it. Ensure that 
you have a valid try statement preceding your catch statement and compile again. 

The following example illustrates this error: 

public class Simple ( 

public void methodl() 

catch 
II error: missing corresponding try statement 

The following example illustrates the proper usage of the catch block: 

public class Simple { 

} 

public void methodl() 
try{ 

II do something here 
} 

catch (Exception e){ 
II handle exceptions from try statement here 

} 

} 

418 Programmer's Guide 



Compiler Error J0127 
'else' keyword used without 'if' statement 

The compiler detected the keyword else but did not find a corresponding if statement. 
This error usually occurs when there are scoping issues regarding the placement of an else 
statement. It can also occur if an else statement's corresponding if statement is missing. 

The following example illustrates this error: 

public class Simple { 

public void methodl(int argl) { 
if (a rg 1 =- 0){ 

} 

II Do something here 
else{} 

II error 'else' is inside of the 'if' block instead of outside 

Compiler Error J0128 
Cannot declare an interface to be 'final' 

The compiler detected an interface declared with the keyword final. Interfaces cannot be 
defined as final and thus cannot use the final modifier. Remove the final keyword from the 
interface declaration and compile again. 

The following example illustrates this error: 

final interface Simple { 

} 

I*error: 'final' only applies to 
classes. methods.or variables*1 

Compiler Error J0129 
Cannot declare a class to be 'identifier' and 'identifier' 

The compiler detected a class declared with modifiers that cannot be combined. 
Ensure that the modifiers you have applied to the class do not conflict with each other 
and compile again. 

Compiler Error J0129 

Programmer's Guide 419 



Compiler Error J0130 

The following example illustrates this error: 

public abstract final class Simple { 

I*error: 'abstract' and 'final' cannot 
be used together in a class declaration*1 

} 

Compiler Error JO 130 
Cannot declare an interface method to be 'native', 'static', 'synchronized' or 'final' 

The compiler detected one of the keywords shown in the error message used in the 
declaration of an interface method. Because an interface method does not have 
implementation code, it cannot be declared as native, static, synchronized, or final. 

The following example illustrates this error: 

interface Simple { 

public final void methodiC): 
I*error: 'method!' cannot be decl a red 

as final in an interface*1 

Compiler Error JO 131 
Cannot declare a method to he 'identifier' and 'identifier' 

The compiler detected the usc of two or more incompatible modifiers in the declaration 
of a method. This error usually occurs when a method has been defined with two access 
modifiers such as public and private. Ensure that the modifiers for the method do not 
conflict with each other and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

public private void methodiC) { 

} 

II error: modifiers 'public' and 'private' 
II cannot be combined in a declaration 

420 Programmer's Guide 



Compiler Error J0132 
Cannot declare a field to be 'identifier' and 'identifier' 

The compiler detected the use of two or more incompatible modifiers in the declaration 
of a variable. This error usually occurs when a field has been defined with two access 
modifiers such as public and private. Ensure that the modifiers for the field do not conflict 
with each other and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

public private int i: 
II error: modifiers 'public' and 'private' 
II cannot be combined in a declaration 

Compiler Error J0133 
Constructors cannot be declared 'native', 'abstract', 'static', 'synchronized', or 'final' 

The compiler detected the use of one of the modifiers shown above in the declaration of a 
constructor. Ensure that the constructor is not defined with any of the modifiers mentioned 
in the error message and compile again. 

The following example illustrates this error: 

public class Simple { 

final Simple() {} 
II error: constructors cannot be 'final' 

Compiler Error J0134 
Interfaces cannot have constructors 

The compiler detected an interface containing a constructor declaration. Because an 
interface cannot be instantiated, constructors cannot be defined for an interface. If you are 
defining a method with the same name as the interface, ensure that it has the appropriate 
modifiers to differentiate it from a constructor declaration. 

Compiler Error J0134 

Programmer's Guide 421 



Compiler Error JO 135 

The following example illustrates this error: 

interface Simple 

} 

Simple(); 
II error: interfaces cannot 
II declare constructors 

Compiler Error JO 135 
Interface data members cannot be declared 'transient', 'volatile', 'private', 

or 'protected' 

The compiler detected one of the modifiers shown above used in the declaration of an 
interface member variable. Because interfaces are public and cannot be instantiated, 
these modifiers are not applicable and should be used with classes only. 

The following example illustrates this error: 

interface Simple { 

volatile int i - 1; 
II error: 'volatile'cannot be used 

Compiler Error JO 136 
Public class 'identifier' should not be defined in 'identifier' 

The compiler detected more than one class declared with the modifier public in a source 
file. Remove the public access modifier from other classes and ensure that the class that 
will be exposed through the class file is declared as public. You can also move classes that 
need to remain declared as public to their own source file. This error can also occur if a 
source file has a different name than the public class defined within it, or the public class 
and the source file do not match in case. Rename the source file or the name of the public 
class defined within it so that they are the same and compile again. 

The following example illustrates this error: 

public class Simple { 

II do something meaningful 

public class Errorclass { 

} 

II error: only one class may be defined as 
II 'public' within the same source file 

422 Programmer's Guide 



Compiler Error J0138 
Interface cannot have static or instance initializer 

The compiler detected a static initializer or instance initializer within an interface. Because 
an interface does not get instantiated, initializers cannot be defined in an interface. To set 
the values of interface fields, initialize them at the time of declaration. 

The following example illustrates this error: 

interface Simple { 
int x = 10; II This is OK 
{ 

} 

II error: initializers cannot 
II be used in interfaces 

Compiler Error J0139 
Invalid label 

The compiler detected an invalid label. Labels must start with a non-numeric character. 
Change the label and compile again. 

The following example illustrates this error: 

public class Simple { 

} 

public int method1(int arg1) 
123: 

} 

II error: label cannot begin with a number. 
return arg1 * 2; 

Compiler Error JO 140 
Cannot override static method 'identifier' with non-static method 'identifier' 

The compiler detected an attempt to override a static method from within a subclass. 
A method that has been declared as static cannot be overridden. 

Compiler Error JO 140 

. Programmer's Guide 423 



Compiler Error J0141 

The following example illustrates this error: 

public class Simple { 

static void methodl() {} 
} 

class SimpleSubclass extends Simple { 

void methodl() {} 
II error: cannot override 
II static method 

Compiler Error JO 141 
Argument cannot have type 'void' 

The compiler detected a method argument defined as type void. The void type can only 
be used for method return values to declare a method has no return value. Change the data 
type of the argument and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodl(void i) { 
II error: type void can only 
II be used as a return value 

Compiler Error J0142 
Cannot make static call to abstract method 'identifier' 

The compiler detected an attempt to directly call an abstract method. Abstract methods 
are defined to provide a definition of a method to be implemented by subclasses~ 
therefore, abstract methods do not have implementation code. Because of this lack 
of implementation in an abstract method, calling an abstract method using the super 
keyword is invalid. 

424 Programmer's Guide 



The following example illustrates this error: 

public abstract class Simple 

abstract int methodIC); 

class SimpleSubclass extends Simple { 

i nt method! () { 

return super.method!(): 
II error: cannot call abstract method 

Compiler Error JO 143 
Cannot throw exception 'identifier' from static initializer 

The compiler detected an attempt to throw an exception from within a static initializer. 
This error usually occurs when a throw statement is called or when an initialization of a 
static class instance occurs within a static initializer. To capture exceptions from static 
class instance initializations in a static initializer, use a try/catch block combination. 

The following example illustrates this error: 

public class Simple { 

} 

static { 
ThrowClass TClass = new ThrowClass(); 
II error: cannot throw exceptions 
II within static initializers 

class ThrowClass { 

ThrowClass() throws Exception{} 

} 

Compiler Error 10143 

Programmer's Guide 425 



Compiler Error J0144 

The following example illustrates how to use the try/catch block combination to 
capture potential errors when initializing static class instances ~n a static initializer: 

public class Simple{ 

} 

static ThrowClass thr; 
static{ 

try{ 
ThrowClass thr = new ThrowClass(); 

catch (Exception e){ 
II Handle errors here from initialization of 'ThrowClass' 

} 

} 

class ThrowClass { 

} 

ThrowClass() throws Exception(){ 
II Do something here 

} 

Compiler Error JO 144 
Cannot find definition for interface 'identifier' 

The compiler could not locate a definition for the named interface. This error usually 
occurs when an implemented interface is either missing or misspelled. Verify the 
location and name of the interface you are implementing and compile again. 

The following example illustrates this error: 

public class Simple implements Bogus { 
II error: the interface 'Bogus' does not exist 

} 

Compiler Error JO 145 
Output directory or file too long: 'identifier' 

The output directory or source file being saved exceeds 228 characters in length. 
Shorten the length of the output directory path or source file and compile again. 

426 Programmer's Guide . 



Compiler Error JO 146 
Cannot create output directory 'identifier' 

The output directory could not be created. This error usually occurs when you do not 
have write permission on the specified drive. 

Compiler Error J0147 
Cannot access private member 'identifier' in class 'identifier' from class 'identifier' 

The compiler detected an invalid attempt to access a private member contained within 
another class. Private class members are only accessible from within the member's class. 
A class's private members are also available from its inner classes. 

The following example illustrates this error: 

class AccessClass { 

private int i = 0; 

} 

public class Simple { 

public void methodIC) 

AccessClass ac = new AccessClassC); 

ac.i -= 1; 
II error: cannot access 'i' 

} 

} 

Compiler Error JO 148 
Cannot reference instance method 'identifier' before superclass constructor has 
been called 

The compiler detected an attempt to reference an instance method before the superclass 
constructor was called. This error usually occurs when a base class method is called from 
within a subclass's constructor using the superO statement. This error can also occur if the 
subclass calls its own methods from the constructor using the thisO statement. This error 
occurs because instances of the subclass and base class have not been instantiated at the 
time the constructor is called. To avoid this situation, use the super. statement to call a 
base class method, and use the this. statement to call a subclass method. 

Compiler Error 10148 

Progra~er' s Guide 427 



Compiler Error J0150 

The following example illustrates this error: 

abstract class Simple 

Simple(int i) {} 

i nt methodl() 

return 0; 
} 

class SimpleSubclass extends Simple { 

SimpleSubclass() { 

super(methodl(»; 
II error: constructor must be called first 

} 

Using the abstract class from the example above, the following example illustrates how to 
call the base class method from the constructor: 

class SimpleSubclass extends Simple{ 

SimpleSubclass(){ 
super.methodl() : 

Compiler Error JO 150 
Cannot have repeated interrace 'identifier' 

The compiler detected an interface name being repeated within a class declaration. This 
error is usually caused when a class implements a large number of interfaces and one of 
the interfaces has a duplicate entry in the implements list. Ensure that you do not have a 
duplicate interface entry and compile again. 

The following example illustrates this error: 

interface SimpleI { 
II do something meaningful 

} 

class Simple implements SimpleI,IColor,IFont, SimpleI { 
II error: 'SimpleI' repeated 
} 

428 Programmer's Guide 



Compiler Error J0151 
Variable 'identifier' is already defined in this method 

The compiler detected two variables with the same name that are defined twice within the 
same scope of a method. Ensure that a variable has not been defined twice in the same 
scope or that a variable has not been defined the same name as an argument passed to the 
method and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodl() 

int i = 1; 
int j = i; 
II more code here 
int i = 0; 
II error: 'i' defined twice within 
II the same scope 

Compiler Error J0152 
Ambiguous reference to 'identifier' in interfaces 'identifier' and 'identifier' 

The compiler detected an ambiguous reference to an identifier. The identifier may have 
been declared in two or more interfaces, and the compiler could not determine which 
reference to use. Ensure that you do not have two interfaces with the same field defined. 

The following example illustrates this error: 

interface Interfacel { 
final int i "" 0; 

} 

interface Interface2 { 
final int i-I; 

public class Simple implements Intcrfacel. Interface2 { 

i nt methodl () { 
return i; II error: cannot determine which instance of 'i' to usc 

} 

} 

Compiler Error J0152 

Programmer's Guide 429 



Compiler Error J0158 

Compiler Error J0158 
Class 'identifier' already defined 

The compiler detected two or more classes defined with the same name. Ensure that you 
do not have the class defined more than once (as an outer class) in the same source file or 
package. This error can also occur if a class is duplicated by an imported class. Rename 
one of the classes or remove the duplicate instance and compile again. 

The following example illustrates this error: 

public class Simple { 
II do something meaningful 

} 

class Simple 
II error: class 'Simple' already defined 

} 

Compiler Error J0159 
'@' must be followed by the response filename 

The compiler detected the @ character on the JVC command line, but did not detect a 
valid response filename immediately following it. Supply the response filename and 
compile again. 

Compiler Error JO 160 
Response file 'identifier' could not be opened 

The compiler could not open the specified response file. This error usually occurs when 
the response file name is misspelled or the file does not exist. Check the location of the 
response file and compile again. 

Compiler Error JO 161 
Cannot open source file: 'identifier' 

The source file specified in the error message could not be opened. This error usually 
occurs when either the filename specified is misspelled or the file does not exist. Check 
the location of the specified source file and compile again. 

430 Programmer's Guide 



Compiler Error JO 162 
Failed to initialize compiler 

The compiler failed to properly initialize. This error most often occurs because the 
compiler and/or the Microsoft Virtual Machine for Java (VM) are not properly installed 
or are the incorrect version. Confirm the correct version and installation of the VM and 
compiler. 

Compiler Error JO 163 
Array 'identifier' missing array index 

The compiler detected access to an array type, but the index value was missing. To access 
an element of an array, you must provide a valid integer index for the array. Ensure that a 
valid integer is used to reference an index of the array and compile again. 

The following example illustrates this error: 

public class Simple { 

int j[] = {l, 2, 3}; 

void methodIC) { 
j[] = 0; 
II error: 'j' missing index value 

Compiler Error JO 164 
Ambiguous import of class 'identifier' from more than one package 

The compiler detected two or more import statements attempting to import identical class 
names from different packages. This error usually occurs when two packages contain 
duplicate classes and both packages are imported into the same source file. CI1l!ck the 
packages imported into the source file for duplicate classes. Remove the duplicate class 
from one of the packages or remove one of the import statements from the source file. 

The following example illustrates this error: 

import Box.Test; II This package contains a class named 'Test' 
import Carton.Test; II This package contains a class named 'Test' also 
II error: which 'Test' class should be used by the compiler? 

public class Simple{ 
II Do something here 

} 

Compiler Error 10 164 

Programmer's Guide 431 



Compiler Error J0165 

Compiler Error JO 165 
Cannot throw exception 'identifier' from method 'identifier' - it is not a subclass 

of any exceptions thrown from overridden method 'identifier' 

The compiler detected an overridden method attempting to throw more exceptions than 
the method it overrides. In Java, an override method cannot be declared to throw more 
exceptions than the overridden method. Either change the exception thrown to one that the 
base class throws, or change the base class declaration to throw the exception type that the 
subclass needs to throw. 

The following example illustrates this error: 

class ExceptionA extends Exception { 
II do something meaningful 

class ExceptionB extends Exception { 
II do something meaningful 

class AnotherClass { 

public void methodIC) throws ExceptionA { 
II do something meaningful 

public class Simple extends AnotherClass { 

} 

public void methodIC) throws ExceptionA. ExceptionB { 
II error: cannot throw greater than 
II one exception here 

Compiler Error J0166 
Cannot access member 'identifier' in class 'identifier' from 'identifier' - it is in 
a different package 

The compiler detected an invalid attempt to reference a member variable or method 
defined within a different package. This error usually occurs when an attempt is made to 
access a protected or default access member defined within another package. Protected 
or default access members of a class located in a different package are not accessible. 
Ensure that the member you are attempting to access in another package is not a protected 
or default access member. 

432 Programmer's Guide 



Compiler Error JO 167 
Cannot override non-static method 'identifier' with static method 'identifier' 

The compiler detected an attempt to override a superclass method with a subclass method 
declared with the modifier static. When a method is overridden in a subclass, the method 
cannot raise or lower the access level of the method or apply the static modifier. Remove 
the static modifier from the overridden method declaration and compile again. 

The following example illustrates this error: 

public class Simple { 

public void methodIC) 
II do something meaningful 

class Simple2 extends Simple { 

} 

static public void methodIC) { 
II error: overriding superclass 'method!' 
II with a static method is not valid 

Compiler Error JO 168 
The declaration of an abstract method must appear within an abstract class 

The compiler detected a method declared with the modifier abstract within a class 
which was not defined as abstract. This error usually occurs when a class is intended to 
be abstract but is missing the abstract modifier in the class declaration. Either change 
the class so it is declared as abstract or remove the modifier from the methods defined 
in the class. 

The following example illustrates this error: 

public class Simple { 

abstract void methodIC); 
II error: class must also be abstract 

} 

Compiler Error J0168 

Programmer's Guide 433 



Compiler Error J0169 

Compiler Error JO 169 
Cannot access 'identifier' - only public classes and interfaces in other packages 
can be accessed 

The compiler detected an attempt to access a non-public class or interface contained 
within another package. Only classes or interfaces defined with the modifier public can 
be accessed in other packages. Check the access level of the class or interface you are 
accessing in the other package to ensure that it is public and compile again. 

The following example illustrates this error: 

II Source located in 'Boxes.Java' in the 'Box' package 
package Box: 
public class Box{ 

} 

TapeRoll tr = new TapeRoll(); 
II Do meaningful stuff here 

class TapeRoll{ 
II Define the class here 

II Source located in 'Simple.java' 
import Box.TapeRoll: 
public class Simple{ 

public static void main(String args[]){ 
Box.TapeRoll tr - new Box.TapeRoll(): 
II error: cannot access a 'non-public' class in a different package 

Compiler Error JO 170 
Cannot load predefined class 'identifier' 

The compiler attempted to load a predefined class, but was unable to find the appropriate 
file. This error usually occurs when the Java API class files cannot be found on the system 
or the correct version of the Microsoft Virtual Machine for Java (VM) is not properly 
installed. Ensure that your Java API class files and the VM have been installed properly 
on the system and compile again. 

Compiler Error JO 173 
Found class 'identifier' in package 'identifier' rather than package 'identifier' 

The compiler found the specified class, but the class was not defined as a member of the 
correct package. This error usually occurs when the class file is being imported from the 
wrong directory. Ensure that the class you are importing is located in the correct package 
directory and compile again. 

434 Programmer's Guide 



Compiler Error JO 175 
Cannot invoke method on 'null' literal 

The compiler detected an attempt to call a method from the null keyword. Null is not a 
class object and provides no methods. Remove the statement that attempted a method call 
from the null keyword and compile again. 

The following example demonstrates this error: 

public class Simple{ 
public String methdo1(){ 

I I Do somethi ng meani ngful here 
return null.toString(): 
II error: cannot invoke a method from 'null' 

Compiler Error JO 176 
Duplicate label 'identifier' nested inside another label with same name 

The compiler detected a nested label that was the same as another label. Rename the label 
to something different. Change all break and continue statements that reference the label 
and compile again. 

The following example illustrates this error: 

public class Simple{ 
void method1(){ 

outsideLoop: 

} 

for (int i=0:i<10:i++) 
{ 

outsideLoop: II error: duplicate label 
for (int x=0:x<10:x++) 
{ 

break outsideLoop; 

break outsideLoop: 

Compiler Error JO 176 

Programmer's Guide 435 



Compiler Error J0189 

Compiler Error J0189 
'return' not allowed in a static initializer or instance initializer 

A return statement was found in a static or instance initializer. Initializers, like 
constructors, can not return a value. Remove the return statement and compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

static int varl; 

static{ 

} 

varl ~ 0; 
return; 
II error: return statement not allowed in static initializer 

Compiler Error JO 191 
Expected' .c1ass' 

The compiler detected usage of an intrinsic type name in an expression or assignment 
statement but did not find .c1ass after the name. This error usually occurs when the .c1ass 
keyword is omitted. Add the .c1ass extension to the end of the intrinsic type and compile 
again. 

The following example illustrates this error: 

public class Simple{ 

} 

public static void main (String args[]){ 
Class x = int; II error: missing' .class' 

} 

Compiler Error JO 192 
'.c1ass' on intrinsic type requires Java 1.1 compatible class libraries 

The compiler detected usage of the .c1ass keyword with an intrinsic data type, but either 
the Microsoft Virtual Machine (VM) for Java or the Java class libraries are based on 
Java 1.0. Ensure that your class libraries and Java VM are the Java 1.1 versions and 
compile again. 

436 Programmer's Guide 



Compiler Error JO 193 
Cannot have an array of type 'void' 

An attempt to define an array of type void was found by the compiler. The void data type 
is for use with methods to declare that the method has no return value and can not be used 
as an array. 

public class Simpler 

void MyArray[]; II error: void arrays not supported 

Compiler Error JO 194 
Class or interface cannot be declared 'volatile', 'native', 'transient', or 'synchronized' 

The compiler detected that an inner class or interface was declared with one of the above 
mentioned modifiers. This error usually occurs when a method or field modifier is applied 
to an inner class or interface definition. Inner classes and interfaces can use the private, 
public, and protected access modifiers. Inner classes can also use modifiers such as 
abstract, static, and final. 

The following example illustrates this error: 

public class Simpler 

} 

II Do something here 
volatile class InnerClass{ 

I*error: like outer class, inner classes cannot be defined as 
volatile *1 

Compiler Error J0195 
Cannot declare 'identifier' as 'static' in inner class 'identifier' 

The compiler detected an attempt to declare a variable or method as static from within an 
inner class. Unlike regular class declarations, inner classes do not support static members. 
Classes defined within another class, that are declared as static, can have static members 
but the class is considered an outer class. This error can also occur if an interface was 
defined within an inner class. 

Compiler Error 10195 

Programmer's Guide 437 



Compiler Error J0196 

The following example illustrates this error: 

public class Simpler 

} 

II Do something meaningful here 

class InnerClass{ 

static int var1; 1* error: cannot declare static 
members in inner class*1 

} 

The following example illustrates how to define a class within a class that can contain 
static members: 

public class Simpler 

II Do something meaningful here 

I*Because 'InnerClass' class is declared as static it is now treated 
as an outer class enclosed within the 'Simple' class*1 

static class InnerClass{ 
static int var1 - 100; II This is OK as long as the class is static 

Compiler Error JO 196 
Nested class 'identifier' cannot have the same name as any of its enclosing classes 

The specified inner class has the same name as one of the classes that it is nested under. 
Ensure that you have not duplicated the name of a class in which your inner class is nested 
within and compile again. 

The following example illustrates this error: 

public class Simpler 

} 

II Do something meaningful here 
class InnerClass{ 

} 

II Do something meaningful here 
class Simpler 

II error: inner class has same name as a parent class 

438 Programmer's Guide' 



Compiler Error JO 197 
Cannot declare interface in inner class 'identifier' 

The compiler detected an attempt to declare an interface inside an inner class. Inner 
class definitions do not support interfaces declared within them. Remove the interface 
declaration from within the inner class declaration and compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

II Do something meaningful here 
class InnerClass{ 
II Do something meaninful here 

interface Mylnterface{ 
I*error: interfaces cannot be declared 

inside inner classes *1 

Compiler Error J0198 
An enclosing instance of type 'identifier' is required 

The compiler detected that an inner class definition tried to reference something outside 
of its scope. Examples of when this can occur are: 

A class declared within another class as static referenced one of the parent class's 
non-static variables or methods. Since the inner class is declared static it cannot reference 
any members of the parent class without an instance of the parent class defined. 

An inner class tried to reference a class that was not its outer class using the this keyword 
with the classes name preceding it. Since the referenced class is not the inner class's parent 
class, an instance cannot be implied. 

The following examples illustrate this error: 

II This example illustrates the first error situation 
public class Simple{ 

} 

int x = 10; 
static class InnerClass{ 

public void method1(){ 

} 

int y = x; I*error: instance variable needed 
to reference parent 
variables. *1 

Compiler Error 10198 

Programmer's Guide 439 



Compiler Error J0199 

II This example illustrates the second error situation 
class A{ 

int x; 
} 

class B{ 

} 

II Do something meaningful here 
class InnerClass{ 

} 

void methodl(){ 
int y - A.this.x; 
I*error: no instance of A defined. Cannot use 

the <classname.this.variable> syntax here.*1 

Compiler Error JO 199 
Call of 'thisO' cannot be qualified 

The compiler detected that an inner class's constructor attempted to call it's outer class 
constructor using the class name with the thisO method. Inner classes cannot call their 
outer class's constructors. Remove the call to the outer class constructor from the inner 
class constructor and compile again. 

The following example illustrates this error: 

public class Simpler 

} 

int x; 
Simple(int x){ 

this.x - X; 

class InnerClass( 
InnerCl ass() ( 

Simple.this(10) ; 
II error: cannot call outer class constructor 

} 

Compiler Error J0200 
'this' must be qualified with a class name 

The compiler detected that an attempt was made in an inner class to reference an outer 
class member using the this keyword with a name other than an outer class's name. 
Only the name of the outer class can be used from an inner class to reference members 
of the outer class. 

440 Programmer's Guide 



The following example illustrates this error: 

public class Simple{ 
int x: 
class InnerClass{ 

void method1(){ 
int j = x.this: 
I*error: only a class name can be used with 
this to reference outer class *1 

The following example illustrates the proper way to reference an outer class's members: 

public class Simple{ 
int x: 
int method2(int arg1){ 

return arg1 * : 

class InnerClass{ 
void method1(){ 

} 

int j Simple.this.x; II This is OK! 
int z = Simple.this.method2(10); 

Compiler Error J020 1 
'super' cannot be qualified except as a superclass constructor call 

The compiler detected the usage of the super keyword with an instance of the superclass 
preceding it to access a field or method of the superclass. Using an instance of a superclass, 
along with the keyword super, is limited to referencing a supercIass constructor when the 
superclass has inner classes defined within it. 

The following example illustrates this error: 

class Simple{ 
int x: 

class NotSimple extends Simple{ 
NotSimple(Simple smp){ 

smp.super.x = 100: 

} 

I*error Cannot reference field with superclass 
name *1 

super.x = 100: II This is OK! 

Compiler Error 10201 

Programmer's Guide 441 



Compiler Error J0202 

Compiler Error J0202 
'superO' cannot be qualified; superclass 'identifier' is not an inner class 

The compiler detected a call to a superc1ass constructor using an instance of the superclass 
but the superclass is not an inner class. The usage of an instance of a superclass combined 
with the super keyword is only used when a superclass is an inner class. 

The following example illustrates this error: 

class Simple{ 
II Do something meaningful here 

} 

class NotSimple extends Simple 
{ 

NotSimple(Simple smp){ 
smp.super(); 
I*error: cannot call 'super' with instance when 

superclass does not contain inner classes*1 

The following example shows the usage of a superclass instance with the super keyword: 

class Simple{ 
II Do something here 
class InnerClass( 

int varl. var2; 

public class NotSimple extends Simple.InnerClass{ 
NotSimple(Simple smp){ 

smp .super(); 
II This is OK! 

} 

} 

Compiler Error J0203 
Cannot access protected member 'identifier' in class 'identifier' from class 'identifier' 

The compiler detected an attempt to access a protected member from a class in a different 
package. A protected member of a class may be accessed from outside the package in 
which it is declared only by code that is responsible for the implementation of that class. 
Remove the call to the other package's protected member or make your class a subclass 
of the other package's class and compile again. 

442 Programmer's Guide 



The following example illustrates this error: 

I*(source located in a file called PublicClass.java in 
the the Boxes Package directory) *1 

package Boxes; 

public class PublicClass{ 
protected void methodl(){ 

II Do something here 
} 

II (source located in a file called Simple.java) 
import Boxes.PublicClass: 

public class Simple extends PublicClass{ 
public void methodl(){ 

PublicClass pub - new PublicClass(): 
pub. methodl( ) : 
I*error: Cannot access protected method 'methodl' because it 

is located in a different package.*1 

Compiler Error J0204 
Cannot access protected member 'idcntificr' in class 'identifier' via a qualifier of 
type 'identifier' 

The compiler detected that a class in Olll! package, that is extending a class in another 
package, attempted to access a protected member of the base class using an instance of the 
base class. This error usually occurs wlll!1l a class attempts to access members of its base 
class through an instance other than this, super, or an instance of the derived class. Ensure 
that the base class's protected member is accessed using the this or super keyword, or an 
instance of the derived class and compile again. 

The following example illustrates this error: 

Compiler Error J0204 

I*(source located in a file called Point.java located in the Boxes package directory) *1 
package Boxes: 

public class Point{ 
protected int x. y: 
II Do other meaningful code here 

Programmer's Guide 443 



Compiler Error J0205 

II (source located in a file called simple.java) 
import Boxes.Point: 

public class Simple extends Point{ 
public void method1(Point p){ 

super.x = 0: II this is OK! 

} 

p.x = 0: I*error: cannot use a protected member 
for usage other than extending it. *1 

Compiler Error J0205 
Cannot use non-final local variable 'identifier' from a different method 

The compiler detected that a local variable, which was not declared as final, was 
referenced in a method. This error can occur if an inner class is defined in a local block 
or method declaration and the inner class attempts to reference a parameter or local 
variable defined outside of its scope. 

The following example illustrates this error: 

public class Simple{ 
void method1(int var1){ 

class InnerClass{ 
boolean getVar1(){ 

return(var1 -- 1): 

} 

I*error cannot reference local variable of 
method from within inner class. *1 

Compiler Error J0206 
Cannot assign a second value to blank final variable 'identifier' 

The compiler detected an attempt to assign a value to a final variable more than once. 
This error usually occurs when a blank final variable is initialized more than once in 
a constructor or initializer. Check for duplicate initializations of the final variable 
mentioned in the error message and compile again. 

444 Programmer's Guide 



The following example illustrates this error: 

public class Simple{ 
final int var1; 

var1 ~ 10; 
II Do other initializations here 
var1 = 20; II error: duplicate assignment 

Compiler Error J0207 
Cannot assign blank final variable 'identifier' in a loop 

The compiler detected that a final variable was assigned a value from within the scope 
of a program control loop. A final variable can only be assigned a value once and thus 
cannot be initialized within a loop. Move the initialization of the final variable specified 
in the error message outside of the loop and ensure that it is initialized only once. 

The following example illustrates this error: 

public class Simple{ 
final int x; 

public Simple(){ 

} 

for (int z=0;z<10;z++){ 
x = z; I*error: cannot assign final variable 

in loop *1 

Compiler Error J0208 

Compiler Error J0208 

Constructor or instance initializer must assign a value to blank final variable 'identifier' 

The compiler detected that a final variable was declared but never assigned a value in 
either an initializer or constructor. In order for a variable to be properly declared final 
it must be assigned a value. 

The following example illustrates this error: 

public class Simple{ 

} 

final int x; II error: final variables must be assigned a value 
final int z = 10; II This is OK 

Programmer's Guide 445 



Compiler Error J0209 

Compiler Error J0209 
Expected '=' 
The compiler detected that an equal sign was missing from a comment tag (for example 
@com, @security, @dll) attribute. This error usually occurs when an equal sign is 
missing from an attribute in a comment tag declaration. This error can also occur if another 
symbol or character obscures the equal sign from being evaluated by the compiler. Ensure 
that all comment tag attributes have proper equal signs applied and compile again. 

The following example illustrates this error: 

I**@com.interface(iid 31415926-5358-9793-2384-612345678901)*1 
II error: missing equal sign in 'iid' parameter 
interface Itest{ 

II Do something meaningful here 
} 

Compiler Error J021 0 
Expected '.' 

The compiler detected that the specified comment tag's declaration (for example @com, 
@dll) is missing a period after the comment tag (for example @com.method). This error 
can also occur if another symbol or character obscures the period symbol from being 
evaluated by the compiler. Ensure that your comment tag declaration contains a period 
after the comment tag and compile again. 

The following example illustrates this error: 

I**@com class*1 
II error: missing'.' from @com statement 

public class Simpler 
II Do something meaningful here 

} 

Compiler Error J0214 
Invalid GUm specified 

The compiler detected that an @com attribute that requires a GUID has an invalid GUID 
entry. This can be caused by a syntax error in entering the GUID. Check the syntax for the 
GUID and compile again. 

446 Programmer's Guide 



Compiler Error J0215 
Syntax error in @com declaration 

A syntax error was found in the specified @com declaration. This is most often caused by 
incorrectly typing the declaration. Check the syntax of the @com declaration and compile 
again. 

The following example illustrates this error: 

1** @com.inteface (iid-31415926-5358-9793-2384-612345678910) 
II error: The word 'interface' is misspelled. 
interface ITest{ 

II Do something here 

Compiler Error J0216 
@com attribute 'identifier' on 'identifier' is illegal in this context 

The compiler has detected that a value assigned to an attribute within an @com declaration 
is illegal. This error most often occurs when an attribute is specified but usage of the 
attribute requires that other specific attributes be specified. This error can also occur if an 
attribute is specified in the wrong location within an @com declaration. 

Compiler Error J0217 
@com attribute 'identifier' was not specified for 'identifier' but is required in 
this context 

The compiler detected an attribute (for tIll: @com declaration shown in the error) that is 
missing and that is required for this type of declaration. Each type of @com declaration 
has attributes that are required. See the documentation on @com for more details on what 
attributes are required for the @com declaration that is listed in the error message. 

The following example illustrates this error: 

I**@com.class() *1 
II error: must specify classid for @com.class 
public class Simple{ 

II Do something here 

Compiler Error J0217 

Progmmlllcr's Guide 447 



Compiler Error J0218 

Compiler Error J0218 
@com attribute 'identifier' on 'identifier' has an invalid value 

The compiler detected that the value specified in the error message is either not the correct 
type for the attribute specified in the error or is outside the valid range for the attribute. 
Check the value assigned to the specified attribute and compile again. 

The following example illustrates this error: 

1** @com.class(classid=911CAED0-2957-11dl-A55E-00A0C90F26EE) *1 
class Simple{ 

1** @com.parameters([type=CUSTOM. customMarshal="foo.bar", 
customMarshalFlags = 5] i) *1 
II error: customMarshalFlags cannot be set higher than 3 

native void methodl(Object i); 

Compiler Error J0219 
An @com attribute cannot be placed on member 'identifier' unless the containing 
class or interface also has an @com attribute 

The compiler detected that an @com declaration was placed on a member of a class or 
interface, but the class or interface was not declared with an @com declaration. Ensure 
that the class or interface which contains the method specified in the error has a valid 
@com declaration defined and compile again. 

The following example illustrates this error: 

interface Simple{ 

} 

1**@com.method(dispid=777); *1 
public void methodl(); 
I*error: interface does not have an @com comment tag 

assigned*1 

Compiler Error J0220 
An @com attribute cannot be placed on static member 'identifier' 

The compiler detected that an @com declaration was placed on a static member of a class. 
Static members cannot be exposed through COM. Remove the static keyword from the 
method or field and compile again. 

448 Programmer's Guide 



The following example illustrates this error: 

1*@com.class(classid-31415926-5358-9793-2384-612345678910) 
public class Simpler 

1**@com.method(dispid-777);*1 
static void methodl(){} 
II error: cannot expose static method via COM 

Compiler Error J0221 

Compiler Error J0222 

The @com attribute on member 'identifier' cannot be used in this type of class or interface 

The compiler detected that an @com declaration was placed on a member of a class or 
method but because of the type of @com attribute used with the class or interface, it is not 
allowed. This error can occur in the following situations: 

Using an @com.structmap declaration on a member of a class or interface that has the 
@com.class or @com.interface declaration applied. 

Using an @com.method declaration on a member of a class that has the @com.struct 
declaration applied. 

The following example illustrates this error: 

1**@com.struct()*1 
class Simpler 

1**@com.method(dispid=777)*1 
public native void methodl(); 
I*error: cannot use @com.method inside of 

@com.struct*1 

Compiler Error J0222 
@com attribute cannot be placed on method 'identifier'- it must be declared 
'native' or be in an interface 

The compiler detected that a method was specified with an @com.method or 
@com.parameters attribute, but the method was not declared with the native 1l10l1i1il!1' or 
declared in an interface definition. For ml!lhods to be exposed through a COM intl!l'fm:l! 
they must either be declared in an interfacl! declaration or declared native from within a 
class declaration. 

Programmer's Guide 449 



Compiler Error J0223 

The following example illustrates this error: 

public class Simple{ 

1** @com.method(dispid=306); *1 
public void method1(){} 
I*error: method must be declared 'native' or 

declared in an interface *1 

Compiler Error J0223 
The @com.parameters declaration on member 'identifier' has the wrong number 

of parameters 

The compiler detected that the @com.parameters attribute (specified in the error 
message) has a different number of parameters than the method it is exposing through 
COM. Ensure that both the method's declaration and the @com.parameters attribute 
have the correct number of parameters and compile again. 

The following example illustrates this error: 

1**@com.interface(iid-31415926-5358-9793-2384-612345678910)*1 
interface Itest{ 

1** @com.method(dispid-306): 
@com.parameters([type-BOOLEAN] var1. var2. var3) 

*1 
public void methodl(boolean var1. int var2); 
I*error: extra parameter added to com. parameters 

declaration *1 

Compiler Error J0224 
'return' must be the last item in an @com.parameters declaration 

When declaring @com.parameters for a method, the return parameter must be the 
last parameter in the list. The compiler detected the return parameter in a different 
position within the parameter list. Check the location of the return parameter in the 
@com.parameters attribute specified in the error message, make the appropriate 
changes, and compile again. 

The following example illustrates this error: 

1** @com.class(classid~911CAED0-2957-11d1-A55E-00A0C90F26EE) *1 
class Simple{ 

} 

1** @com.parameters([type=I4] return. [type=CUSTOM. 
customMarshal="foo.bar". customMarshalFlags - 3] i) *1 
II error: 'return' cannot be defined as the first parameter 

native int method1(Object i); 

450 Programmer's Guide 



Compiler Error J0225 
An @com. 'identifier' declaration is illegal for this type of item 

The compiler detected that an @com declaration was defined for the wrong type of item. 
This error usually occurs as a result of a change to your code, but it is not due to the syntax 
or placement of an @com declaration. Ensure that the proper @com declaration is used on 
the specified item in your code. 

The following example illustrates this error: 

1**@com.interface(iid-31415926-5358-9793-2384-612345678901.dual)*1 
interface Itest{ 

} 

1**@com.struct()*1 
public int methodl(); 
II error: wrong type of @com declaration applied 

Compiler Error J0226 
The @com declared type of 'identifier' is illegal for a dispatch or dual interrace 

The compiler detected that an @com interface declaration, declared as either a dual or 
dispatch interface, has a member that contains an @com.parameters declaration with an 
incorrect type. Certain @com.paramctcrs types are not allowed when the interface they 
are defined in is declared as either a dual or a dispatch interface. The following list shows 
which values are invalid for type: 

• FIXEDARRAY 

• SYSFIXEDSTRING 

• 18 

• U8 

• STRUCT 

• CUSTOM, CUSTOMBYREF/CUSTOMBYV AL 

• PTR (except PTR to V ARIANn 

• Arrays of any of the above listed values 

The following example illustrates this error: 

1**@com.interface(iid=31415926-5358-9793-2384-612345678901.dual) *1 
interface Itest{ 

} 

I**@com.parameters([in.out] n . [type 18] j); *1 
I*error: cannot use '18' as a type in a dual 

interface *1 
public void methodl(int n. int j); 

Compiler Error J0226 

Programmer's Guide 451 



Compiler Error J0227 

Compiler Error J0227 
It is impossible for an expression of type 'identifier' to be an instance of 'identifier' 

The compiler detected that a comparison of two classes using the instanceof operator 
could never be instances of each other. In order to use the instanceof operator correctly 
you must compare classes that have some common class lineage. Either change the 
expression containing the instanceof operator so that it uses a related class and instance 
for its comparison or remove the expression and compile again. 

The following example illustrates this error: 

class Simplel{ 
II do something meaningful here 

} 

class Simple2{ 
II do something meaningful here 

} 

class CompClasses{ 
Simplel x - new Simplel(): 
public static void main(String args[]){ 

if(smp.x instanceof Simple2){ 
I*error: non related classes cannot be instances of each other*1 

The following example illustrates the correct usage of the instanccof operator to determine 
if a class instance is an instance of a specific class: 

class SimpleI' extends Simple2{ 
II do something meaningful here 

} 

class Simple2{ 
II do something meaningful here 

} 

class CompClasses{ 
Simplel x - new Simplel(): 
public static void main(String args[]){ 

if(smp.x instanceof Simple2){ 
II This is OK since 'Simplel' is a subclass of 'Simple2' 

} 

} 

452 Programmer's Guide 



Compiler Error J0228 
Syntax error in @dll declaration 

The compiler detected a syntax error in an @dll comment tag. This error usually occurs 
when an @dll comment tag has been mistyped. Check the statement for syntactical errors 
and compile again. 

The following example illustrates this error: 

public class Simple{ 
1**@dll.import(kerne132. ansi)*1 
1* error: missing quotes around 'kerne132' *1 

public static native boolean GetComputerName(StringBuffer s. int[]cb); 

Compiler Error J0229 
Expected string constant 

The compiler detected that a string constant parameter of a comment tag's declaration 
(for example @com, @dll, or @security) was either missing the string constant or the 
string constant was incorrectly entered. This error most often occurs when matching quotes 
are missing around a value passed to an attribute. Check your comment tag declaration's 
attributes and compile again. 

The following example illustrates this error: 

1**@com.interface(iid=31415926-5358-9793-2384-612345678901.dual)*1 
interface ITest{ 

} 

1**@com.method(name=method1);*1 
II error: Missing quotes around 'method1' 
public void method1(); 

Compiler Error J0230 
Class or interface name 'identifier' conflicts with import 'identifier' 

The specified class or interface conflicts with a class that has been imported. This can he 
caused by declaring a class or interface that is already declared in the Java API, and you 
are trying to import that API class or interrace into your source file. 

Compiler Error 10230 

Programmer's Guide 453 



Compiler Error J0231 

The following example illustrates this error: 

import java.lang.Cloneable: 

class Cloneable{ I*error Cloneable has already been 
imported *1 

II class implementation 

Compiler Error J0231 
Expression statement must be assignment, method call, increment, decrement, or "new" 

The compiler detected an invalid expression statement. An expression statement is a 
statement that can reside on its own line of source code. The following are some examples 
of valid expression statements: 

m_cars.changeColor(): II Method calls 
int x = y + z: II Assignment statements 
j++: II Increment statement 
m_tempVarl +- 3: 
new Simple(): 

The following are examples of invalid expression statements: 

1+2: II error: No assignment statement 
j+k-methodl(): II A method call but not a valid assigment statement 
varl -- var2: I*Comparison statements should be contained in flow 

control statements*1 

Compiler Error J0232 
Expected '{' or ';' 

The compiler detected an error with a method declaration in a class or interface. This error 
usually occurs if an interface's method declaration is missing a semicolon at the end of the 
declaration or a class's declaration is missing its opening brace '('. Check the specified 
class or interface method declaration and for a missing semicolon or opening brace and 
compile again. 

The following example illustrates this error: 

interface ISimple{ 
public void methodl() 
II error: missing semicolon to end declaration 

} 

public class Simple{ 
public voidmethodl() 
II error: missing opening brace 

454 Programmer's Guide 



Compiler Error J0234 

Compiler Error J0233 
Catch clause is unreachable; exception 'identifier' is never thrown in the corresponding 
try block 

The compiler detected that the specified catch clause will never be executed because the 
corresponding try statement block never throws the catch statement's exception type. 
Catch statements are required to catch exceptions or derivations of exceptions that the try 
statement block can throw. This error can be avoided by changing the catch statement so 
it does not catch a specific exception type, but instead, catches the base Exception class. 
Change the exception class your catch statement will trap and compile again. 

The following example illustrates this error: 

class Simple{ 
void method1(){ 

int I == 0; 
try{ 

I == I + 1; II This try block has nothing to do with clones 

catch (CloneNotSupportedException c){ 
II error: The exception type can never be caused by try block 

} 

The following example illustrates how to avoid this error by using the base Exception 
class: 

class Simple{ 

} 

void method1(){ 
int I = 0; 
try{ 

I = I + 1; II This try block has nothing to do with clones 

catch (Exception e){ 
II This is OK since all exceptions must derive from this class 

} 

Compiler Error J0234 
'identifier' is not a field in class 'identifier' 

The compiler detected a field reference but the field does not exist in the specified class. 
This error usually occurs when the field reference is mistyped or the field reference was 
meant to reference a field in a different class. Ensure that the field exists in the specified 
class, that your reference to the field is syntactically correct, and compile again. 

Programmer's Guide 455 



Compiler Error J0235 

The following example illustrates this error: 

public class Simple{ 

} 

int varl; 
public Simple(){ 

this.var = 10; 
II error: 'var' is not a field in this class 

} 

Compiler Error J0235 
'identifier' is not a method in class 'identifier' 

The compiler detected a method call but the method does not exist in the specified class. 
This error usually occurs when the method call is called incorrectly or the method call 
was meant to reference a method in a different class. Ensure that the method exists in 
the specified class, that your method call is syntactically correct, and compile again. 

The following example illustrates this error: 

class Simpler 
public void method1(){ 

II do something here 

class Simple2{ 

} 

public void method1(){ 
Simple smp - new Simple(); 
smp.method2(); 
II error: 'method2' does not exist in the class 'Simple' 

Compiler Error J0236 
'identifier' is not a nested class or interface in class 'identifier' 

The compiler detected a reference to a nested class or interface but the nested class or 
interface does not exist in the specified class. This error usually occurs due to a syntactical 
error in referencing a nested class or interface. Check the reference to the inner class for 
syntax errors and ensure that the class or interface exists inside the specified class, and 
compile again. 

456 Programmer's Guide 



The following example illustrates this error: 

class NotSimple{ 
} 

public class Simple{ 
void methodl(){ 

NotSimple nt = new NotSimple(); 
Object 0 = nt.new InnerClass(); 
II error: 'InnerClass' is not an inner class of 'NotSimple' 

Compiler Error J0237 
'identifier' is not a field or nested class in class 'identifier' 

The compiler detected a reference to a nested class or field but the nested class or field 
does not exist in the specified class. This error usually occurs due to a syntactical error in 
referencing a nested class or field. This error can also occur if a reference to a field in an 
inner class is made but the field does not exist within the inner class definition. Ensure that 
the inner class or field exists and compile again. 

The following example illustrates this error: 

cl ass Simpl el{ 
int varl; 

class Simple2{ 

} 

static class InnerClass{ 
int varl; 

} 

static Simplel smp; 

public class Simple{ 
void methodl(){ 

int x, y; 

} 

} 

x = Simple2.innerclass.varl; I*error: 'innerclass' is not name of 
an inner class. 'InnerClass' is *1 

y = Simple2.smt.varl; I*error: 'smt' is not the name of a field in 
'Simplc2'. Should be 'smp' *1 

Compiler Error 10237 

Programmer's Guide 457 



Compiler Error J0238 

Compiler Error J0238 
Cannot throw exception 'identifier' from field initializer 

The compiler detected that an exception was thrown within a field initializer. This error 
usually occurs when an exception is throw able from a constructor of a class, and an 
instance of that class is declared and instantiated as a member of another class. To 
resolve this problem, have the class object that throws the exception instantiated inside 
a constructor so it can use a try/catch combination to trap any exceptions from the other 
class's constructor call. 

The following example illustrates this error: 

public class Simpler 

} 

public int i: 
public Simple(boolean varl) throws Exception{ 

if (varl - true) 
i = 0: 

else 
throw new Exception(): 

} 

II This is the incorrect way to instantiate this class 
class Simple2{ 

Simple smp - new Simple(true): 
1* error: cannot call constructor that throws exception in field 

i niti al i zer*1 

The following code replaces the 'Simple2' class code in the example above to show the 
correct way to instantiate the 'Simple' class instance: 

II This is the correct way to instantiate Simple 
class Simple2{ 

} 

Simple smp: 
public Simple2(){ 

try{ 

} 

smp - new Simple(true):} 
catch(Exception e){} 

Compiler Error J0239 
Static initializer must assign a value to blank final variable 'identifier' 

The compiler detected that a static final variable was not initialized to a value using a 
static or field initializer. In order to declare a variable as static and final you must use 
a static or field initializer to set an initial value. This error can also occur if a field is 
declared as static and final and assigned a value in a constructor. 

458 Programmer's Guide 



The following example illustrates this error: 

public class Simple{ 
static final int MAX_CONTROL: 

} II error: static final variables must have value assigned 

Compiler Error J0240 
Syntax error in @security declaration 

The compiler detected a syntax error in the specified @security comment tag. This 
error usually occurs when the comment tag is missing a closing parenthesis or the tag's 
attributes are incorrect. Ensure the syntax of the specified @security comment tag 
declaration is correct and compile again. 

The following example illustrates this error: 

1**@security()*1 II error: invalid @security syntax 
public class Simple{ 

II class members defined here 

Compiler Error J0241 
'@security' can only be specified on a class or interface 

The compiler detected that the @security comment tag was applied to something other 
than a class or interface declaration. The @security comment tag is used to define the 
security settings for a class or interface definition and cannot be applied to methods or 
fields of a class or interface. 

The following example illustrates this error: 

public class Simple{ 
1**@security(checkDllCalls-on)*1 
public void methodl(){ 
II error: cannot use @security tag on method 
} 

Compiler Error J0242 
Cannot make static call to non-static method 'identifier' 

The compiler detected that a method was called by using the static method call syntax 
'<classname>.<method>', but the method is not a static method. Change the method call 
to use an instance of the class that contains the method instead of the class name itself and 
compile again. 

Compiler Error J0242 

Programmer's Guide 459 



Compiler Error J0243 

The following example illustrates this error: 

public class Simple{ 
public void methodl(){ 

II do something here 
} 

class NotSimple{ 
public void methodx(){ 

Simple.methodl(); 
/I error: 'methodl' is not a static method 

} 

Compiler Error J0243 
'identifier' is obsolete; use 'identifier' instead 

The compiler detected a comment tag (for example @com, @dll, @security) that is using 
a format that is now considered obsolete. To avoid this error change the line of code that 
the error occurred on to the newer format specified in the error message and compile again. 

The following example illustrates this error: 

public class Simple{ 
1**@dllimport("kerne132", ansi)*1 
1* error: 'dll import' is no longer a supported format for 

@dll .import declarations *1 
public static native boolean GetComputerName(StringBuffer s, int[]cb); 

Compiler Error J0244 
@conditional allowed only Oil void-returning methods 

The compiler detected an @conditional comment tag for a method that has a non-void 
return value. The @conditional comment tag can only be used for methods without a 
return value. Change the method declaration to return void or remove the @conditional 
comment tag and compile again. 

The following example illustrates this error: 

public class Simple{ 
1**@conditional(DEBUG)*1 
public int methodl(int x){ 

II error: conditional methods cannot return a value 
return x * 2; 
} 

460 Programmer's Guide 



Compiler Error J0245 
Warning treated as error 

The compiler was run using the Iwx switch, and a warning was found during compilation. 
The Iwx compiler switch treats all warnings as errors. In order for the Iwx compiler switch 
to display this error, the warning level switch (/w{O-4}) must be set high enough to display 
the warning. Determine the cause of the warning and compile again. You can also remove 
this switch from your compiler options and compile again. 

Compiler Error J0246 
Invalid token on a # directive 

The compiler detected an invalid token for a conditional compilation expression. This error 
usually occurs when a token is mistyped or the token used is not a legal token. Ensure that 
the conditional compilation directive specified in the error is correct and compile again. 

The following example illustrates this error: 

public class Simple{ 
public void methodl(){ 

} 

tfoiff DEBUG II error: 'iff' is not a valid token 
System.out.println("Do something meaningful here"); 

tfoendif 

Compiler Error J0247 
#elif without matching #if 

The compiler detected a #elif conditional compilation directive, but did not detect a 
matching #if directive. Ensure that you have a valid #if conditional compilation directive 
to match your #elif directive and compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

public void methodl(){ 

} 

II error: need to have 'tfoif' before 'tfoelif' 
tfoelif DEBUG 

System.out.println("Do something meaningful here"); 
tfoendif 

Compiler Error 10247 

Programmer's Guide 461 



Compiler Error J0248 

Compiler Error J0248 
#endif without matching #if 

The compiler detected a #endif conditional compilation directive, but did not detect a 
matching #if directive. This error usually occurs because an extra #endif directive was 
supplied. This error can also occur when a #if conditional compilation directive was 
deleted or commented out but the matching #endif directive was not deleted. Ensure 
that you have matching directives and compile again. 

The following example illustrates this error: 

public class Simpler 
public void methodl(){ 

I I #if SIMPLE 
II do something here 
#if DEBUG 

1/ do something here 
#if WINgS 

II do something here 
lIendif 

lIendif 
lIendif 1/ error: extra '/lendif' directive not permitted 

Compiler Error J0249 
#else without matching #if 

The compiler detected a #else conditional compilation directive but, did not detect a 
matching #if directive. This error usually occurs because an extra #else directive was 
supplied. This error can also occur when a #if conditional compilation directive was 
deleted or commented out but a #else directive was not deleted. Ensure that you have 
matching directives and compile again. 

The following example illustrates this error: 

public class Simpler 

} 

public void methodl(){ 
/1 do something here 

} 

#else I*error: this 'llelse' directive has no matching '#if' 
directive *1 

462 Programmer's Guide 



Compiler Error J0250 
Already had an #else 

The compiler detected a duplicate #else conditional compilation directive in a #if directive 
block. A #if directive can only have one #else directive. Ensure that you have only one 
#else conditional compilation directive for the #if directive in which the error occurred and 
compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

4foif A 
Iii f B 
void methodl{ 
II do something here 
} 

4foelse 
void method2{ 
II do something here 

4foelse II error: extra '4foelse' directive supplied 
4foendif 

Compiler Error J0251 
Unexpected EOF while looking for #endif 

The compiler detected a #if conditional compilation directive but did not find a matching 
#endif directive, and the symbol used by the #if directive was not defined. This error 
usually occurs when a #if conditional compilation directive is used but a matching #endif 
directive was not defined to close the conditional compilation block. Ensure that you have 
a matching #endif directive for the #if directive specified in the error and compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

void methodl(){ 
4foif DEBUG II debug has not been defined 

System.out.println("Do something here"); 
II error: '#endif' not specified for the '#if' directive 
} 

Compiler Error 10251 

Programmer's Guide 463 



Compiler Error J0252 

Compiler Error J0252 
#if nested too deeply 

The compiler detected nested #if conditional compilation blocks that were nested too 
deeply. Nesting of #if conditional compilation blocks is limited to 64 levels. Ensure that 
your nesting of #if blocks is within the limit and compile again. 

Compiler Error J0253 
Cannot have #define/#Undef after source 

The compiler detected a #define or #Undef conditional compilation directive after other 
Java source code. The #define and #Undef directives must be placed before other Java 
source code (except for other conditional compilation directives and source comments). 
Move the #define or #Undef directive indicated by the error to the front of all Java source 
code in the file and compile again. 

The following example illustrates this error: 

package boxes: 

lIdefine DEBUG 
II error: 'Udefine' must occur before the 'package' statement 

public class Simple{ 
} 

Compiler Error J0254 
Cannot changc prcdcfincd symhol 

The compiler detected an attempt to use the #define or#Undcf directive on a symbol 
already defined in Java. This error occurs when a symbol such as true or false, which are 
already defined for conditional compilation, is redefined using the #define or #Under 
conditional compilation directives. Remove or change the #dcfinc or #Undef directives 
specified in the error and compile again. 

The following example illustrates this error: 

lIundef false II error: cannot undefine the 'false' symbol 
lIdefine true II error: cannot define the predefined 'true' symbol 

public class Simple{ 
II do something here 

} 

464 Programmer's Guide 



Compiler Error J0255 
Expected #endif 

The compiler detected a #if conditional compilation directive but did not find a matching 
#endif directive; however, the symbol used by the #if directive was defined. This error 
usually occurs when a #if conditional compilation directive is used but a matching #endif 
directive in not defined to close the conditional compilation block, and the code is intended 
to be compiled. Ensure that you have a matching #endif directive for the #if directive 
specified in the error and compile again. 

The following example illustrates this error: 

41define DEBUG 

public class Simple{ 
void methodl(){ 

41if DEBUG 
System. out. pri ntl n( "Do somethi ng here"): 

II error: '41endif' has not been specified for the '41if' directive 
} 

Compiler Error J0256 
Expected 'class', 'interface', or 'delegate' 

The compiler expected to find the class, interrace, or delegate keywords used within the 
corresponding declaration. This error usually occurs when the keywords are accidentally 
omitted from a class, interface, or dele~atc declaration. Another possible cause of this 
error is unbalanced scoping braces. 

Note This error will only occur if the Microsoft Extensions are enabled in your 
project. Otherwise, compiler error J0020 will be displayed. 

The following example illustrates this error: 

public Simple{ II error: missing the 'class' keyword 
II Do something here 

} 

This example illustrates this error caused by unbalanced scoping braces: 

public class Simple { 

II do something meaningful 

}} II error: additional '}' is not permitted 

Compiler Error J0256 

Programmer's Guide 465 



Compiler Error J0257 

Compiler Error J0257 
Delegate cannot be initialized with static method 'identifier' 

The compiler detected a delegate instantiation but the method reference, passed as a 
parameter, was a static method. When instantiating a delegate, you must pass a non-static 
method as a parameter. Ensure that the method you are defining the delegate to use is a 
non-static method and compile again. 

The following example illustrates this error: 

delegate int MyDelegate (int varl, String var2)throws Exception; 

public class Simple{ 

public static int methodl(int varl, String var2) throws Exception{ 
II do something here 
return varl; 

} 

public static void main (String args[]){ 
Simple smp - new Simple(); 
MyDelegate md - new MyDelegate(smp.methodl); 
I*error: the method passed as a parameter to the delegate is a 

static method *1 

Compiler Error J0258 
Cannot declare delegate in inner class 'identifier' 

The compiler detected an attempt to declare a delegate inside an inner class. Inner 
class definitions do not support delegates declared within them. Remove the delegate 
declaration from within the inner class declaration and compile again. 

The following example illustrates this error: 

public class Simple{ 

} 

II Do something meaningful here 
class InnerClass{ 
1/ Do something meaninful here 

} 

delegate int MyDelegate (int varl, String var2); 
I*error: delegates cannot be declared 

inside inner classes *1 

466 Programmer's Guide 



Compiler Error J0259 
Exception 'identifier' from method 'identifier' is not a subclass of any exceptions 

declared thrown by delegate 'identifier' 

The compiler detected a delegate that was initialized with a method that throws an 
exception that is incompatible with the delegate's declared set of exceptions. Each 
exception thrown by the method must be the same class or a subclass of an exception 
that the delegate throws. Change the set of exceptions thrown by either the delegate or 
the method and compile again. 

The following example illustrates this error: 

delegate void SimpleDelegate(String varl) throws Exception; 

public class Simple{ 
public void methodl(String varl) throws Throwable{ 

II do something here 

public static void main (String args[]){ 

} 

Simple smp = new Simple(); 
SimpleDelegate dell = new SimpleDelegate(smp.methodl); 
1* error: the method reference argument throws an exception that is 

not the same or a subclass of the exception declared by the 
delegate *1 

Compiler Error J0260 
Cannot declare an interface method to he 'protected' or 'private' 

The compiler detected an interface with a method declared as protected or private. 
Interface methods must be declared as either public or with no access modifier (default). 
Change the interface method declaration specified in the error so that it is not declared 
protected or private and compile again. 

The following example illustrates this error: 

interface ISimple{ 

} 

public void methodl(); II this is OK! 
void method2(); II this is OK! Declared as "default" access 
protected void method3(); I*error: cannot declare interface method as 

protected *1 
private void method4(); I*error: cannot declare interface method as 

private *1 

Compiler Error J0260 

Programmer's Guide 467 



Compiler Error J0261 

Compiler Error J0261 
An explicit enclosing instance of class 'identifier' is needed to instantiate inner 
class 'identifier' 

The compiler detected an attempt to create an instance of an inner class without specifying 
an instance of its enclosing class. This error usually occurs when an attempt is made, 
within a static method, to instantiate an inner class as you would an outer class. To create 
an instance of an inner class, you must use an existing instance of its outer class. Create an 
instance of the enclosing class and use it to instantiate the inner class and compile again. 

The following example illustrates this error: 

public class Simpler 
class InnerClass{ 

II do something here 
} 

public static void main(String args[])( 
InnerClass inc - new InnerClass(); 
I*error: an instance of the outer class is required to instantiate 

its inner class *1 

The following example illustrates how to create an instance of an inner class using an 
instancc of its outer class: 

public class Simple{ 
class InnerClass{ 

II Do something here 

public static void main(String args[]){ 
Simple smp - new Simple(); 

} 

I*use the instance of 'Simple' to create an instance of its inner 
class*/ 

InnerClass inc = smp.new InnerClass(); 

Compiler Error J0262 
An explicit enclosing instance of class 'identifier' is needed to call constructor of 
superclass 'identifier' 

The compiler detected an attempt by a derived class to call its superclass constructor 
without an instance of the superclass. This error usually occurs because the superclass 
is also an inner class. When a derived class is instantiated, an instance of its superclass 
is also created (and the superclass constructor is invoked). In order to create an instance 
of an inner class you must instantiate the inner class using an instance of its outer class. 

468 Programmer's Guide 



The following example illustrates this error: 

class OuterClass{ 
class InnerClass{ 
II do something here 
} 

public class Simple extends OuterClass.lnnerClass{ 
II do something here 

I*error: superclass 'InnerClass' cannot be instantiated without its 
outer class 'OuterClass' being instantiated *1 

The following example illustrates how to instantiate a class that is derived from an inner 
class: 

class OuterClass{ 
class InnerClass{ 

} 

II do something here 
} 

public class Simple extends OuterClass.lnnerClass{ 
Simple(){ 

} 

I*this line creates an instance of the outer class and calls 
the superclass (the inner class) constructor *1 

new OuterClass().super(); 

Compiler Error J0264 
Array cannot have a dimension 

The compiler detected an attempt to initialize an array dimension incorrectly. This error 
usually occurs when an array dimension size is specified before the instance is created. 
This error can also occur when an array is given a dimension in the proper place hut an 
initialization list is also provided to set the values of the array (you cannot specify an array 
size for the dimension when using an initialization list). Correct the initialization of the 
array specified by the error and compile again. 

Compiler Error J0264 

Programmer's Guide 469 



Compiler Error J0265 

The following example illustrates this error: 

public class Simple{ 
public void methodl(){ 

} 

String[3] varl: 1* error: cannot specify array size here since 
array is not instantiated yet *1 

String[] var2 - new String[3]: II this is OK! 

boolean var3 = new boolean[3]{true.false.true}: 
I*error: cannot specify an array size for the dimension when using 

an initialization list *1 
boolean var4 - new boolean[]{true. false. true}: II this is OK! 

Compiler Error J0265 
@dll attribute cannot be placed on method 'identifier' - it must be declared 'native' 

The compiler detected an @dll comment tag placed on a method that is not declared with 
the native modifier. This error usually occurs if an @dll comment tag is defined but the 
method it was applied to was removed or commented out, and other methods in the class 
can have the comment tag applied to them. Ensure that the method declared with the @dll 
comment tag is declared as native or remove the @dll comment tag and compile again. 

The following example illustrates this error: 

public class Simple( 
1** @dll . import ("USER32") *1 
II private native static int MessageBox(int hwndOwner. String text. 

} 

String title. int fuStyle): 

I*error: the @dll comment tag cannot applied to 'method!' which is a 
non-native method instead of the intended native method*1 

public void methodl(){ 
II do something here 

} 

Compiler Error J0266 
Compilation canceled by user 

The user canceled compilation. This error simply informs the user that the request to 
cancel compilation was successful. 

470 Programmer's Guide 



Compiler Error J0267 
A delegate cannot be 'identifier' 

The compiler detected an attempt to declare a delegate with an invalid modifier. Only 
the public and final modifiers can be applied to a delegate declared outside of a class. 
A delegate declared within a class can have the public, final, protected, and private 
modifiers applied. Ensure that your delegate declaration is not using an invalid modifier 
and compile again. 

Note Although you can use the final modifier in a delegate declaration, it is not 
needed as delegates are implicitly final. 

The following example illustrates this error: 

private delegate void Simple(int varl. int var2); 
II error: cannot declare a delegate as 'private' 

Compiler Error J0268 
A delegate cannot be 'identifier' and 'identifier' 

The compiler detected a delegate declaration, within a class, attempted to use a 
combination of access modifiers that are not allowed. This error usually occurs when 
a delegate is declared with two access modifiers applied. Remove the additional 
access modifier applied to the specified delegate declaration and compile again. 

The following example illustrates this error: 

public class Simple{ 
public private delegate void SlmpleDelegate(); 
II error: cannot declare a delegate to be 'public' and 'private' 

} 

Compiler Error J0269 
Ambiguous name: inherited 'identifier' and outer scope 'identifier' - an explicit 
'this' qualifier is required 

The compiler detected reference to a variable or method from within an inner class that 
is defined in both its outer class and its superclass. The compiler cannot determine which 
variable or method is to be used. You can reference the outer class variable or method 
by using class.this.name, where class is the name of the outer class whose variable or 
method you wish to reference and name is the variable or method name. To reference the 
superclass variable or method you can use the this super keyword before the reference. 

Compiler Error 10269 

Programmer's Guide 471 



Compiler Error J0270 

The following example illustrates this error: 

class NotSimple{ 
int var1 = 20: 

public class Simpler 
int var1 = 10: 
class InnerClass extends NotSimple{ 

int var2 = var1: 
II error: cannot determine which 'var1' to use 

} 

The following example illustrates how to resolve name ambiguity between the outer class 
and superclass variables: 

class NotSimple{ 
int var1 = 20: 

} 

public class Simpler 
int var1 - 10: 
class InnerClass extends NotSimple{ 

int var2 - Simple.this.var1: 
II this is OK and references the outer class variable 
int var3 - super.var1: 
II this is OK and references the superclass variable 

Compiler En·or J0270 
Ambiguous reference to 'identifier' in interface 'identifier' and class 'identifier' 

The compiler detected an ambiguous reference to a field. This error usually occurs when a 
class's superclass and an interface the class implements have the same field declared. The 
compiler cannot determine which instance of the field to use. Ensure that you do not have 
a superclass and implemented interface that have the same field defined and compile again. 

The following example illustrates this error: 

public class Simple extends SuperClass implements SuperInterface{ 
public static void main (String args[]){ 

} 

} 

float x = var1: I*error: cannot determine which instance of 'var1' 
to use *1 

472 Programmer's Guide 



class SuperClass{ 
float varl; 

interface Superlnterface{ 
float varl=6.0f; 

} 

Compiler Error 10271 
Expected 'delegate' 

The compiler detected the multicast modifier but did not detect the delegate keyword. 
The multicast modifier can only be used in conjunction with the delegate keyword to 
create multicast delegates. Ensure that you have the delegate keyword in the declaration 
specified by the error message and compile again. 

The following example illustrates this error: 

public multicast void SimpleDelegate(String x. int y); 
II error: the 'delegate' keyword is missing after the 'multicast' modifier 
public class Simple{ 

II Do something here 

Compiler Error 10272 
A multicast delegate cannot return a value 

The compiler detected a return type othcr than void for a multicast delegate declaration. 
Although delegates can return a value othcr than void, multicast delegates cannot return a 
value other than void. Ensure that the Illulticast delegate declaration specified by the error 
returns void and compile again. 

The following example illustrates this error: 

multicast delegate int SimpleDelegate(int x. int y); 
II error: cannot declare multicast delegate with non-void return type 
public class Simple{ 

} 

public int methodl(int x. int y)( 
II Do something here 

} 

public static void main (String args[]){ 
Simple smp = new Simple; 
SimpleDelegate sd = new SimpleDelegate(smp.methodl); 

} 

Compiler Error J0272 

Programmer's Guide 473 



Compiler Error 10273 

Compiler Error J0273 
Cannot cast to 'void' 

The compiler detected an attempt to cast the return value of a method call to void. Casting 
a method call to void is not allowed in the Java language. Remove the void cast for the 
method call specified by the error and compile again. 

The following examples illustrates this error: 

public class Simple{ 
public void methodl(){ 

II Do something meaningful here 

public static void main (String args[]){ 
Simple smp - new Simple(); 
(void) methodl(); 
II error: cannot cast method's return value to 'void'. 

} 

Compiler Error J0274 
Expected 'identifier' within single comment preceding class 'identifier' 

The compiler detected that the class, specified in the error message, was declared with 
either the @com.typcinfo or @com.transaction comment tag and a corresponding 
@com.rcgister comment tag was not found within the same comment. This error can 
occur when an @com.rcgister comment tag is declared but is within a separate comment. 
Ensure that an @com.register comment tag is defined within the same comment as the 
@com.typcinfo or @com.trnnsaction comment tags defined for the class specified in the 
error message and compile again. 

The following example illustrates this error: 

1** @com.register ( clsid-AE032C46-E6A0-11d0-8C83-00C04FC2AAE7) *1 
1** @com.typeinfo(attrid-31415926-5358-9793-2384-612345678901, 
value="Help") *1 
public class Simpler 

lerror: the '@com.register' tag is ignored since it is in a separate 
comment *1 

1** @com.register ( clsid-AE032C46-E6A0-11d0-8C83-00C04FC2AAE7) 
@com.typeinfo(attrid-31415926-5358-9793-2384-612345678901, 

value="Help")*1 
public class Simple2{ 

II This comment is OK. It combines both tags in a single comment. 

474 Programmer's Guide 



Compiler Error J0275 
Class or interface name 'identifier' conflicts with package 'identifier' 

The specified class or interface name conflicts with a package name. This error can 
be caused by declaring a class or interface within a package with the same name as a 
subpackage. Rename either the subpackage or the class or interface that is causing the 
ambiguity and compile again. 

The following example illustrates this error: 

II located in a file called Plastic.java 
package Boxes.Dishes; 
public class Plastic{ 

II do something here 

II located in a file called Dishes.java 
package Boxes; 
public class Dishes{ 

II error: the name 'Dishes' is also the name of the subpackage 

Compiler Error J0500 
#error 'text' 

This error message is generated when there is a #error conditional compilation directive 
in the program. 

The following example illustrates this error: 

fldefine DEBUG 
public class Simple{ 

public void methodl(){ 
flif DEBUG 

} 

flerror You should not be running in debug mode here! 
II error: displayed when 'DEBUG' is defined 

flendif 

Compiler Warning J5001 
Local variable 'identifier' is initialized but never used 

The compiler detected an initialized variable that was not referenced in any class code. 
This message occurs at warning level 3 or greater. Use the variable or remove its 
declaration. 

Compiler Warning J5001 

Programmer's Guide 475 



Compiler Warning J5002 

The following example illustrates this warning: 

public class Simple { 

public int methodl() 

} 

int i = 1; 
return 1; 
II warning: 'i' is never used 

Compiler Warning J5002 
Compiler option 'identifier' is not supported 

The compiler detected that an unsupported command line option was specified. 
Check your compiler switch settings and compile again. 

Compiler Warning J5003 
Ignoring unknown compiler option 'identifier' 

The compiler detected an unknown option specified on the JYC command line. This 
warning usually occurs when a typographical error exists. For example, specifying 1W4 
on the command line will cause this warning because the warning level option must use 
a lowercase 'w.' 

Compiler Warning J5004 
Missing argument for compiler option 'identifier' 

The compiler detected a valid command line option, but the required argument was not 
specified. Check your compiler switch settings and compile again. 

Compiler Warning J5005 
Package 'identifier' was already implicitly imported 

The compiler detected an import statement for a package that was already implicitly 
imported, such as java.lang. This message occurs at warning level 1 or greater. 

476 Programmer's Guide 



The following example illustrates this warning: 

import java.lang.*; 
II warning: process is already imported in the first import statement 
import java.lang.Process; 

public class Simple{ 
II Do something meaningful here 

Compiler Warning J5006 
'private protected' not supported, using 'protected' 

The compiler detected use of the modifier combination private protected. This 
combination is now obsolete and has been replaced by protected. This message occurs 
at warning level 1 or greater. 

Compiler Warning J5014 
'identifier' has been deprecated by the author of 'identifier' 

The method or class referenced has been marked as deprecated. Deprecated methods or 
classes are marked by the creator of the source code as outdated and subject to removal. 
To keep code stable, avoid calling functions that have been flagged as deprecated. 

Compiler Warning J5015 
The parameter 'identifier' in an @com.parameters declaration does not match 
the corresponding argument 'identifier' 

An @com.parameters declaration does not match the method that implements the 
interface. This error could indicate data type inconsistencies or mismatched parameter 
locations. Ensure that your @com.paramcters declaration has the same number of 
parameters, the correct types, and correct order with the method being declared and 
compile again. 

The following example illustrates this warning: 

1** @com.interface(iid=31415926-5358-9793-2384-612345678901. dual) *1 
interface Examplelnterface 
{ 

1** 
@com.method(dispid=306) 
@com.parameters([type=BOOLEAN] when. on) 
*1 
II error: @com.parameters declaration has parameters in wrong location 

public String Methodl(boolean on. int when); 
} 

Compiler Warning J5015 

Programmer's Guide 477 



Compiler Warning J5016 

Compiler Warning J5016 
This 'instanceof' operator will always be true 

The compiler determined that the specified instance of expression will always evaluate 
to true. This can occur when instanceof is used to determine if a subclass instance is a 
member of a base class or an implemented interface. Although it is not an error to use the 
instance of operator in this fashion, it's not particularly useful since the expression will 
always evaluate to true. 

The following example illustrates this warning: 

interface I {} 
class X {} 
class Y extends X implements I {} 

public class Simple{ 
void f() 
{ 

} 

Y y = new Y(); 
X x - new X(); 
Object 0; 

II These statements give J5016 warnings ... 
if (y instanceof X){ 

II y is of type y, which extends X. so this is always true 

if (y instanceof I){ 
II type Y implements I, so this is always true. 

if (x instanceof Object){ 
II everything is of type Object 

} 

Compiler Warning J5018 
Class, interface, or package name contains characters not in the ASCII character set 

The compiler detected a character that is not in the ASCII character set used for a class, 
interface, or package name. Some computer systems may not support this character. To 
ensure that your class, interface, or package name can be interpreted by Virtual Machines 
(VM) on other computer systems, change the invalid character to a valid character from the 
ASCII character set and compile again. 

478 Programmer's Guide 



Compiler Warning J5019 
Public member of COM-exposed class or interface contains characters not in the 
ASCII character set 

Compiler Warning J5021 

The compiler detected a character that is not in the ASCII character set used for a method 
or field that is accessible to other languages via COM. Other languages may not support 
this character. To ensure that your member name can be accessed from other languages, 
change the character to a valid character from the ASCII character set and compile again. 

Compiler Warning J5020 
Directive 'identifier' ignored - extensions are turned off 

The compiler detected a comment tag such as @com or @dll applied in your source code 
but Microsoft Language Extensions were disabled. In order to use comment tags and other 
Microsoft Language Extensions, the extensions option must be enabled. 

Warning With the Microsoft Language Extensions option disabled, any code that 
utilizes Microsoft Language Extensions may not work correctly. 

The following example illustrates this warning: 

II Microsoft Language Extensions are 'disabled' 
public class Simple{ 

1**@d11 . import ("User32")* I 
public static native int MessageBox(int hWnd, String text, String 

caption, int type); 
II warning: the 'MessageBox' method may not work correctly 

Compiler Warning J5021 
Package 'identifier' should not be defined in directory 'identifier' 

The compiler detected a package statement in your source file but the directory name 
where the source file resides does not match the package statement. Although the source 
code will compile, other source files will not be able to reference classes, interfaces, and 
delegates defined in this source file using the package name. 

The following example illustrates this warning: 

II source file resides in c:\files\simple 
package boxes: II warning: package 'boxes' does not match directory name 
'Simple' 
public class NotSimple{ 

II warning: this class is not accessible using the current package name 
} 

Programmer's Guide 479 



Compiler Warning J5022 

Compiler Warning J5022 
Referenced class file 'filename' may be older than 'filename' 

The compiler detected a class file, which is referenced by the source file being 
compiled, that is out of date or not found. This warning usually occurs when automatic 
re-compilation of referenced classes has been disabled (using the ref- compiler option). 
If you are compiling within Visual J++, the ref- option is passed to the compiler by 
default. If any of your source files reference a class file that is not in your project and 
the file is out of date with its source, you will need to update the referenced class files. 
You can either recompile the external class files to make them up to date, add the 
external files to your project, or add the ref compiler option. You can add the ref 
compiler option by entering it in the Additional Compiler Options text box in the 
Compile tab of the Project Settings dialog box. 

Compiler Warning J5023 
File 'filename' has more than 65535 lines - debug information may be incorrect 

The compiler attempted to place debugging information in a source file that contains more 
than 65535 lines of code. Your code may compile, however; not all the debugging code 
needed for your application will be contained in this file. Reduce the size of your source 
file so that the debugging information can be added and compile again. 

Compiler Warning J5024 
Package 'identifier' was already imported 

The compiler detected a paclmge imported more than once in the specified source file. 
Although this will not cause the compiler to fail, you should remove the extra import 
statement for the package specified in the warning message. 

Compiler Warning J5500 
#Warning 'text' 

This warning message is generated when there is a #Warning conditional compilation 
directive in the program. 

The following example illustrates this error: 

41define DEBUG 
public class Simpler 

public void methodl(){ 
41if DEBUG 

} 

#warning You are compiling for debug mode 
II warning: displayed when 'DEBUG' is defined 

41endif 

480 Programmer's Guide 



COM Registration Errors (Visual J++) 

COM Registration Errors (Visual J++) 
During registration of a COM class, you may be prompted with an error or warning 
message. The following is a list of the more common errors and warnings. Each error 
or warning includes information as to the possible reasons the error occurred and, 
where applicable, suggestions on how to resolve the error or warning. 

No registration attribute in class file 'filename' 

Registration of the class file referenced in the error message was attempted but the class 
file did not contain a @com.register comment tag. Ensure that the COM class in the 
class file you are attempting to register has a valid @com.register comment tag. 

Cannot create instance of class 'identifier' 

In order to create a type library and register your COM class, a class must be able to be 
instantiated and call the standard constructor (the constructor that does not contain any 
parameters). This error can occur if any dependent classes of your COM class cannot be 
located or if there is an error in the standard constructor for your class. Ensure that the 
dependent classes for your COM class can be accessed and that your class's standard 
constructor contains no errors. 

Cannot open filename 'filename' 

During the COM registration process, a temporary type library file is generated. This error 
occurs when the temporary filename cannot be copied and renamed to the final type library 
name. Ensure that the file is not read-only, in a read-only directory, or in use by another 
application. 

Unable to create registry keys for class 'identifier' 

While attempting to register your COM class, the COM registration process could not 
create a key in the system registry. This error can also occur if the COM registration 
process cannot open a specific key or write a value into the registry. Ensure that your 
system registry is not damaged. 

Class file 'filename' does not have the extension' .class' 

In order to register a COM class, the compiled class file must have the .class extension. 
This error can also occur if the file to be registered as a COM class is not a valid Java class 
file. Ensure that the class file you are attempting to register as a COM class contains the 
.class extension and that it is a valid Java class file. 

The internal class name 'identifier' does not match the file or directory name of 
class file 'filename' - it cannot be loaded 

The COM class that is being registered has a different class name than the class file it is 
located in, or the class file is located in a directory that conflicts with the class's defined 
package. Ensure that the COM class name and its defined package match the location and 
name of the class file. 

Programmer's Guide 481 



Windows EXE/COM DLL Packaging Errors (Visual J++) 

Classes contain more than one type library ide Only one type library can be created 
at a time 

Only one type library can be specified in your Visual J++ project at a time. This error 
usually occurs when a COM class's @com.register comment tag has a different typelib 
GUID than the other COM classes in your project. All COM classes in a project must have 
the same typelib GUID specified. You can resolve this conflict by clearing the check box 
next to the class in the COM Classes tab of the Project Properties dialog box, apply the 
changes, and then recheck the check box for the class. This will reassign the class as a 
COM class and specify the same typelib GUID. 

Base name of class 'identifier' conflicts with another class in the same type library 

A class was found that was defined already within the type library. This error usually 
occurs when a COM class is defined in one package, and a COM class, with the same 
name, in a different package are both being added to the same type library. Change the 
name of one of the classes being added to the type library so that the conflict is resolved. 

Windows EXE/COM DLL Packaging Errors 
(Visual J ++ ) 

During the creation of a Windows EXE or COM DLL, you may be receive an error 
message. The following is a list of the error messages that might occur. Each error 
includes information as to the possible reasons the error occurred and, where applicable, 
suggestions on how to resolve the error. 

Path too long: 'path' 

The path and filename of a Windows EXE or COM DLL is larger than 256 characters. 
Reduce the size of the path and filename and rebuild your project. 

No main class file specified 

An attempt was made to create a Windows EXE but a main class (a class with a main 
method defined) was not specified. In order for a Windows EXE to be created, you must 
specify a main class in the Launch tab of the Project Properties dialog box. 

No class files found 

An attempt was made to create a Windows EXE or COM DLL hut no class files were 
found or specified to create the EXE or DLL. Ensure that your project contains at least one 
class file and that a class file is specified in the Output Format tab of the Project Properties 
dialog box. 

Unable to open output file: 'filename' 

The file specified in the error message could not be opened. Ensure that the specified file 
is not read-only or in use by another program. This error can also occur if the specified 
file is located in a directory in which you do not have write permission. 

482 Programmer's Guide 



Windows EXE/COM DLL Packaging Errors (Visual J++) 

Unable to update resources in file: 'filename' 

An attempt was made to write resource information to the resource file specified in the 
error message, but was unable to update the resource file. Ensure that you have enough 
available free disk space on your computer. 

Badly formatted class file: 'filename' 

The class file specified in the error message is in an invalid format. This error usually 
occurs when a class file is damaged or is a file with the class extension, but is not a valid 
Java class file. Delete the class file specified in the error message and rebuild your project. 

File not found: 'filename' 

The file specified in the error message was not found. Ensure that the proper location of 
the file is specified in the Output Format tab of the Project Properties dialog box and 
rebuild your project. 

Unable to load resources from file 'filename' 

The resource file specified in the error message could not be opened. Ensure that the 
resource file is a valid Windows resource file and that the resource file is not in use by 
another program. 

Unable to read typelib file 'filename' 

The type library file specified in the error message could not be opened. Ensure that the 
type library file is a valid type library file and that the file is not in use by another program. 

Corrupt registration attribute in class 'identifier' 

A COM registration attribute for the class specified in the error message is corrupt. 
This error usually occurs when the class file for the specified class is damaged or in an 
invalid file format. Delete the class file for the specified class and rebuild your project. 

Class 'identifier' does not have a method of the form 'static public void main (String[D' 

A class was specified as the main class of a Windows EXE, but the class did not contain 
a main method. The main method provides a starting point for the Windows EXE and 
must be specified. Add a main method to the class specified in the error message or 
choose a different main class in the Launch tab of the Project Properties dialog box and 
rebuild your project. 

Main class name 'identifier' is too long 

The main class name specified in the error message is larger than 256 characters. 
Reduce the size of the class name and rebuild your project. 

Programmer's Guide 483 



Windows EXE/COM DLL Packaging Errors (Visual J++) 

Specified main class 'identifier' not found 

While creating a Windows EXE file, the class specified as the main class for the 
Windows EXE was not found. This error usually occurs when a main class was specified 
in the Launch tab of the Project Properties dialog box, but the main class has been removed 
or renamed from the class file. Specify a new main class in the Launch tab of the Project 
Properties dialog box and rebuild your project. 

Unable to read from file 'filename' 

The file specified in the error message could not be opened for reading. Ensure that the 
specified file is not in use by another program. 

Cannot create a DLL with no COM classes 

An attempt was made to create a COM DLL, but the project does not contain any COM 
classes. You can create a COM class by selecting a class from the list of classes in the 
COM Classes tab of the Project Properties dialog box. If you do not wish to expose any 
of your classes as COM classes, change the type of package you want to create in the 
Output Format tab of the Project Properties dialog box and rebuild your project. 

Failure during auto-registration of 'filename' 

A COM DLL failed to auto-register after being created. This error usually occurs when 
the system registry is damaged. 

Out of memory 

Insufficient memory was available when creating a Windows EXE or COM DLL. 
Close other programs that are currently running to provide more available memory 
and rebuild your project. 

484 Programmer's Guide 



APPENDIX B 

Conditional Compilation 

Visual J++ provides two new mechanisms for conditionally compiling code in Java: 
conditional directives and conditional methods. The table below describes all the 
conditional directives available. For an overview, see "Conditional Directives." 
For an overview describing the syntax and use of conditional methods, see 
"Conditional Methods." Both section are later in this appendix. 

Note The conditional directive and conditional method mechanisms provided 
with Visual J++ are extensions to the Java language, provided by Microsoft. Thus, 
source code containing these mechanisms will not compile properly with other 
Java development tools. 

Conditional Directive Description 

#if Conditionally includes or excludes source code, depending on 
the resulting value of its expression or identifier. 

#elif Optional use with the #if directive. If the previous #if test fails, 
#elif includes or excludes source code, depending on the resulting 
value of its own ex pression or identifier. 

#else Optional use with the #if directive. If the previous #if test fails, 
source code following the #else directive will be included. 

#endif Required use with the #if directive. The #endif directive closes 
a conditional block of code. 

#define Defines an identifier used in preprocessing. 

#Undef Undefines an identifier used in preprocessing. 

#error Generates a developer-defined error message at compile time. 

#warning Generates a developer-defined warning message at compile time. 

Programmer's Guide 485 



Appendix B Conditional Compilation 

The #if, #elif, #else, and #endif 
Conditional Directives 

The #if, #elif, #else, and #endif directives are used together to allow lines of source code 
to be conditionally included or excluded from the compilation of a source file. The 
#if directive, which begins all conditional blocks, must be matched by a closing #endif 
directive. 

Syntax 

#if <expression]> 
code to be included 

#elif <expression2> 
code to be included 

#else 
code to be included 

#endif 

The expression following the #if and #elif directives must be a valid Boolean expression, 
comprised of Boolean operators and using identifiers declared with the #define or #Undef 
compiler directives. If the expression following the #if directive evaluates to true, lines 
immediately following the directive are retained in the source file. If, however, the 
expression has the value false, the lines immediately following the directive are excluded 
from the source file until the #elif, #else, or #endif directive is encountered. 

Only one lIelse directive can be included in a conditional block. Lines following the #else 
directive are retained in the source file only if the associated expression evaluated by the 
#if directive evaluates to false. 

Zero or more lIelif directives can be included within a conditional block of code. The #elif 
directive, an abbreviation of "else if," is used for subsequent evaluation of expressions, 
where the #if directive has already been evaluated and proven to be false. 

Expressions used in conditional compilation have some of the same limitations and 
behaviors as those imposed by the Java language. For example, all the Java defined 
Boolean and bitwise operators are accepted, and operator precedence is identical. 
Furthermore, the Java language also defines the use of parenthesis to force the order 
of evaluation. 

486 Programmer's Guide 



Appendix B Conditional Compilation 

The following example illustrates using each of these conditional directives: 

tldefine DEBUG 
tlundef RETAIL 

public class test 

/fif DEBUG 
if (cmdStatus.equals(invokeError» 
{ 

} 

II The following line displays a diagnostic message: 
System.out.println("Error: command timed out."); 
II appropriate actions 
II taken here 

#elif RETAIL 
if (cmdStatus.equals(invokeError» 
{ 

} 

fIe 1 s e 

II appropriate actions 
II taken here 

tlerror Must define DEBUG or RETAIL; 
tlendif 

The #define Conditional Directive 
The #define directive is used to include a conditional identifier into a source file. 
When defined, the identifier can be used in all the classes contained within the source 
file. The directive must be placed at the top of the source file, with only comments 
and other conditional compilation directives preceding it. 

By convention, the value of the identifier declared by the #define directive will always 
be true. 

Syntax 

#define <identifier> 

The identifier shown above can be up to 1,024 characters in length. By convention, 
identifiers are composed of uppercase characters to clarify their usage. 

Programmer's Guide 487 



Appendix B Conditional Compilation 

The following example illustrates use of the #define directive in a Java application: 

#define DEBUG II DEBUG evaluates as true. 

#if DEBUG 
II code to be included 

#endif 

Note The Visual J++ build process does not allow per-file build settings. This 
means that in order to tum on and off conditional identifiers within a single source 
file, the #define and #Undef directives must be explicitly declared within each file. 

The #undef Conditional Directive 
The #Undef directive, as its name implies, is used to remove an identifier from a source 
file. The identifier need not be defined beforehand, and can be redefined again within the 
source file using the #define directive. The #undef directive must be placed at the top of 
the source file, with only comments and other conditional directives preceding it. 

Syntax 

#undef <idelltifier> 

The identifier shown above can be up to 1,024 characters in length. By convention, 
identifiers are usually composed of uppercase characters to clarify their usage. 

The following example illustrates use of the #Undef directive in a Java application: 

#undef DEBUG II DEBUG evaluates to false 

#if DEBUG II now set to false. 
II lines extracted at compile time 

#endif 

Note The Visual J++ build process does not allow per-file build settings. This 
means that in order to tum on and off conditional identifiers within a single source 
file, the #define and #Undef directives must be explicitly doclared within each file. 

488 Programmer's Guide 



Appendix B Conditional Compilation 

The #error Conditional Directive 
The #error directive takes a string as an argument and produces an error message at 
compile time. Errors produced by this directive are displayed as normal compiler errors. 

Like the #warning directive, this directive is most useful for detecting predefined 
constraints and inconsistencies during preprocessing of the source file. 

Syntax 

#error <message string> 

The message string identifier shown above indicates the error message to be displayed. 
The following example illustrates use of the #error directive: 

ffif DEBUG 

ffelif RETAIL 

ffelse 
fferror DEBUG or RETAIL must be defined! 

ffendif 

When the error above is encountered, the following line will be output: 

fferror 'DEBUG or RETAIL must be defined' (J0500) 

The #waming Conditional Directive 
The #warning directive takes a string as an argument and produces a warning message 
at compile time. Warnings produced by this directive are displayed as normal compiler 
warnings. 

Like the #error directive, this directive is most useful for detecting predefined constraints 
and inconsistencies during preprocessing of a source file. 

Syntax 

#warning <message string> 

The message string identifier shown above indicates the warning message to be displayed. 
The following example illustrates use of the #warning directive: 

ffif !TRACING 
ffwarning This interface has not been completely tested yet! 

ffendif 

When the warning above is encountered, the following line will be output: 

ffwarning 'This interface has not been completely tested yet!' (J5500) 

Programmer's Guide 489 



Appendix B Conditional Compilation 

Conditional Methods 
Conditional methods use the @conditional tag embedded within Java documentation 
comments to conditionally include or exclude entire methods from a source file. When a 
conditional method is excluded from a source file, the compiler automatically eliminates 
calls to the method from elsewhere within the program. 

Syntax 

/** @conditional (expression) */ 
void someMethod( args) 
{ 

} 

The expression shown above can be any valid Java expression, using identifiers declared 
with the #define or #Undef compiler directives. 

The greatest benefit conditional methods provide is a simple way to include or exclude 
large amounts of debug information from an application. For example, a number of 
conditional methods may be created to generate vital diagnostic information during the 
development process. Once development is complete and the application is ready for 
release, all conditional methods, the expressions used to include them, and any calls 
can be easily eliminated from the compiled application by merely changing the value 
of an identifier. 

The following example illustrates use of a conditional method: 

#define DEBUG II DEBUG is true 

public class someClass ( 

1** @conditional (DEBUG) */ 
trackDisplay(int dTrack) 
{ 

System.out.println("Variable dTrack assigned: %d", dTrack); 
} 

In the code above, defining the DEBUG identifier allows the tmckDisplay conditional 
method to be compiled. Once the method is no longer useful to the developer, replacing 
the #define directive with the #undef directive will cause the compiler to extract the 
method from compilation of the source file, and nullify any calls made to the method 
from elsewhere within the program. 

490 Programmer's Guide 



Appendix B Conditional Compilation 

Conditional Directives 
Conditional directives are used to include or exclude blocks of code from a source file, 
based on the result of an expression, or the value of a single identifier. Conditional 
directives are useful in many aspects of development, among them: 

o They can be used to selectively include or exclude vital diagnostic, or debug code. 
Once an application containing conditional directive-based code is ready for release, 
the code can be easily eliminated from the project. 

• They can be used to experiment with several possible code optimizations. For example, 
if various implementations of an algorithm need to be examined for efficiency, setting 
the appropriate conditional identifier can instantly switch the code execution path to a 
different algorithm. 

The following example demonstrates the use of conditional directives: 

# define PRINTHELLO II PRINTHELLO has the value 'true' 

public class sample { 

} 

public static void main(String args[]) 
{ 

} 

#if PRINTHELLO 
System.out.println("Hello!"); 

#else 
System.out.println("Goodbye."); 

#endif 

In the example shown above, the string "Hello!" will be displayed. Removing the 
#define directive will display the string "Goodbye." 

Like standard conditional constructs in Java, several of the conditional compilation 
directives also make use of expressions that govern their flow. For example, the Ilif 
compiler directive, like it's Java language equivalent - the if statement, makes use of 
Java identifiers and operators to form expressions. Thus, most of the rules that govern 
the syntax of creating syntactically correct statements in the Java language also apply 
to the creation of expressions for conditional directives. One notable exception where 
the language syntax rules do not apply is in the use of multi-line comment blocks. 

Conditional directives must be alone on a line, except for single-line comments. 
Multi-line comments may not begin or end on the same line as a conditional directive. 

Used wisely, conditional directives can save you considerable time and effort in 
debugging code. 

Programmer's Guide 491 





APPENDIX C 

Reserved Words (Keywords) 

abstract 
The abstract keyword can be used in the declaration of classes and methods. Use of the 
keyword in a class declaration typically means that one or more of the methods within the 
class body are declared as abstract. If the keyword is left off the class declaration, and a 
method within the body of the class is declared using the abstract keyword, then the class 
is implicitly defined to be abstract. In other words, the keyword abstract need not be 
provided as part of the class declaration in this circumstance, and the code will compile 
successfully. (For readability it is recommended that abstract class declarations include 
the keyword to make the class intention clear.) 

Classes declared to be abstract cannot be instantiated. Instead, abstract classes force 
the programmer to provide a body for each abstract method within a new derived class. 
The following example shows a simple abstract class and a class derived from it: 

public abstract class FruitClass 
{ 

public boolean isPeelable( ); 

public class BananaClass extends FruitClass 
{ 

private boolean bPeel; 

public boolean isPeelable( ) { 

return bPeel; 

} 

Programmer's Guide 493 



Appendix C Reserved Words (Keywords) 

The derived class (BananaClass) may be instantiated, and any non-abstract methods of the 
abstract class (FruitClass) will be inherited unless they are overridden. 

Note that a class declaration cannot use abstract and final. 

The abstract keyword can also be used to define methods. As already shown above, a 
class containing abstract methods is then also (either implicitly or explicitly) defined as 
abstract and must be subclassed in order to be instantiated. An abstract method cannot have 
the implementation defined within the abstract class. Rather, it is declared with arguments 
and a return type as usual, but the body that is enclosed in curly braces is replaced with 
a semicolon. 

Consider the following example declaration of an abstract method: 

abstract public int someMethod( int argl. int arg2): 

Note that a method declared with the keyword abstract cannot be declared with the 
keywords static, private, or final. 

boolean 
The boolean keyword is used to declare a primitive Java data type containing a truth value. 
The two possible values of a Boolean variable are true and false. Note that true and false 
are defined as keywords in the Java language, but they are actually literal values. Hence, 
the keywords true and false can be used as return values, in conditional tests, and in 
assignments and comparisons to other Boolean variables. 

The contents of Boolean variables cannot be cast to or from other types; the current value 
of a Boolean variable can be converted to a string however. 

The following code demonstrates declaration and assignment for a Boolean variable: 

private boolean isRunning: 

isRunning - true: 

break 
The break keyword is used to define a break statement which, without a label, transfers 
control out of the innermost enclosing while, do, for, or switch statement. If the break 
statement includes a label and the statement is executed, control will be transferred out of 
the enclosing statement to the line immediately following the label declaration. (In this 
case, the break target need not be a while, do, for or switch statement.) 

The break statement also transfers control outside of try/catch blocks. Note that if the break 
statement with a label is executed within a try or catch block, and an associated finally 
block is defined for the try/catch block, then the contents of the finally block will first be 
executed. After the entire finally block has executed, control will once again transfer to the 
first statement immediately following the label declaration. 

494 Prograrnmer:s Guide 



Appendix C Reserved Words (Keywords) 

The following example demonstrates a break statement used with a label: 

block!: 

recordsRemain - getUpdateStatus( ): 

while (recordsRemain) 
{ 

} 

if (isRunning) 
System.out.println("Update another record"): 

else 
break block!: 

byte 
The byte keyword is used to declare a primitive Java data type containing an integer 
value in the range of negative 128 to positive 127. A byte is defined as 8 bits in length, 
regardless of the platform the Java bytecode executes on. 

Note that byte variables can be cast to and from other numeric types. 

The following example demonstrates declaration and assignment for a byte variable: 

private byte stripThis: 

stripThis = 64: 

case 
The case keyword can only be used within a switch statement block. It is used repeatedly 
to provide any number of unique constants (or numeric labels) for comparison within a 
switch statement block. If the case constant equals the value of the expression at the top 
of the switch statement, then control is passed to the statement immediately following the 
case statement. If, on the other hand, the expression at the top of the switch statement 
block and the case label do not match, control is passed to the next case for comparison. 

In the event that no case constants match the value of the expression given at the top of the 
switch statement, often a default case is provided. 

For an example of how the case keyword can be used, see the keyword switch. 

Programmer's Guide 495 



Appendix C Reserved Words (Keywords) 

catch 
The catch keyword is used to introduce an exception-handling block of code. The 
keyword is followed by an exception type, an argument name in parentheses, and a block 
of code to execute should the specified exception actually occur. A try statement and its 
corresponding block of code always precede a catch statement. When an exception is 
thrown within the corresponding try statement block, the catch statement's exception 
type is evaluated to determine whether it is capable of handling the exceptional condition. 
If the exception type can be handled, the argument is assigned to the specified type and 
the code within the catch block is executed. 

For an example of how the catch keyword can be used, see the keyword try. 

char 
The char keyword is used to declare a primitive Java data type containing a single 16-bit 
Unicode character in the range \110000 to uiffff. Unicode characters are used to represent a 
majority of known written languages throughout the world. (ASCII characters make up 
a very small part of the Unicode character set.) 

Note that values stored by char may be cast to and from other numeric types. However, 
because character data is implicitly unsigned, casts of char to byte or short can result in 
a negative number. 

The following example demonstrates declaration and assignment for a char variable: 

private char hitChar: 

hitChar - 'a': 

class 
The class keyword is used in the declaration of a new class. A class declaration defines 
a new reference type (or object) and describes its implementation through the use of 
constructors, methods, and fields. These implementation details can be inherited from 
superclasses, or uniquely defined as part of the class declaration. 

496 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

continue 
The continue keyword is used in nested loops to define a continue statement, which, 
without a label, transfers control to the end of the innermost enclosing while, do, or for 
loop. Once control is passed, the current loop iteration ends and a new one begins. If the 
continue statement includes a label and is executed, control is transferred to the last 
statement of the outer loop. In this case, the continue target label must point to a while, 
do, or for loop. (Contrast this with the labeled break statement, where the target need not 
be a loop, or iteration, statement.) 

Note that if the continue statement with a label is executed within a try or catch block, and 
an associated finally block is defined for the try/catch block, then the contents of the finally 
block will be executed first. After the entire finally block has executed, control will once 
again transfer to the last statement of the loop immediately following the label declaration. 

The following code demonstrates the continue keyword used with and without a label: 

block1: 
for ( int i = 0; i < 10; i++ ) 
{ 

while statusOkay) 
{ 

if someNum < 0 ) 
{ 

} 

someNum++; 
System.out.println("Do it again"); 
continue; 

if (string1[i] == null) 
{ 

System.out.println("null string here"); 
continue block1; 

} 

else 
{ 

string2[i] = string1[i]; 
} 

II continue statement without label points here 
} 

II continue statement with label points here 
} 

Programmer's Guide 497 



Appendix C Reserved Words (Keywords) 

default 
The default keyword can only be used within a switch statement block. It can be used only 
once, and is typically located at the end of the switch statement block. The default 
keyword is used to label statements that are to be executed by default. That is, the default 
statement block is only executed when the result value of the switch expression does not 
match any of the case labels within a switch statement block. 

For an example of how the default keyword is used, see the keyword switch. 

delegate 
The delegate keyword is used as part of a delegate declaration to define a class that 
extends com.ms.lang.Delegate, or com.ms.lang.MulticastDelegate. Delegates are 
commonly used within the Microsoft Windows Foundation Classes (WFC) library to 
build event-handling mechanisms. 

Delegates roughly equate to function pointers, commonly used in C++ and other object­
oriented languages. Unlike function pointers however, delegates are object-oriented, 
type-safe, and secure. In addition, where a function pointer contains only a reference to 
a particular function, a delegate consists of a reference to an object, and references to one 
or more methods within the object. 

Either "regular" or multicast delegates may be declared, depending on the presence or 
absence of the multicast keyword. A "regular" delegate encapsulates a reference to a single 
method within an instance. When this type of delegate is invoked, the underlying method 
is called. 

A multicast delegate differs from a regular delegate in that it may contain references to 
more than just one method. Methods in a multicast delegate arc executed synchronously 
when the delegate is invoked, and in the order which they appear. If one of the called 
methods raises an exception, then the delegate ceases, and the exception is propagated 
to the delegate caller. 

Note The delegate keyword is an extension to the Java language, provided by 
Microsoft. 

498 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

do 
The do keyword is used as part of a do/while loop. Unlike the other, more commonly used 
loop constructs, a do/while loop expression is evaluated only after the block of code within 
its body has been executed. Thus, you are ensured that the code within the loop body is 
executed at least once, even if the expression tested causes the loop to end. 

Note Don't forget that a semicolon is required after the condition in a do/while loop. 

The following code shows a typical do/while loop construct: 

int i - getValue( ); 

do 
{ 

System.out.println("Printing at least once"); 

while <= 10 ); 

double 
The double keyword is used to declare a primitive Java data type containing a 64-bit 
floating-point number in IEEE 754 format. Variables of type double store values in the 
range negative 1.7£308 to positive 1.7£308 within approximately 14 significant digits of 
accuracy. When you want a floating-point literal value to be treated as a double, append 
the letters 'd' or 'D' to the end of the value. 

Note that double variables may be cast to and from other numeric types. However, doubles 
cannot be cast to or from values of type boolean. 

The following example demonstrates declaration and assignment for a double variable: 

private double dCalcSet; 

dCalcSet == 1.23d; 
dCalcSet == 3e2; 
dCalcSet == .25; 

Programmer's Guide 499 



Appendix C Reserved Words (Keywords) 

else 
The else keyword is used to provide an alternative clause to an if statement. If the 
expression defined by the if statement evaluates to false, then control transfers to the 
rust statement following the else keyword. If the expression defined by the if statement 
evaluates to true, then control transfers to the first statement following the if keyword. 

Note that if/else conditional testing is a frequent source of program bugs. Consider the 
following example of a poorly formatted if/else condition: 

if ( numPrints < 1000 ) 
if ( paperFeed =- fullTray 
{ 

printPaperCopy( ); 
showStatus( ); 
paperFeed--; 

} 

else 
suspendPrintJob( ) II Bad indenting!; 

In the example shown above, the beginning of the else statement block is formatted 
to fall into the same column as the outermost if statement, even though it's proper 
association is with the closest if statement. Problems of this nature can be easily 
overlooked unfortunately, and it is up to the programmer to use good formatting to 
illustrate the logical intent of the code. 

extends 
The extends keyword is used in a class declaration to specify the direct superclass 
of the class being declared. The superclass can be thought of as the class from whose 
implementation the implementation of the current class is derived. The class being 
declared is said to be the direct subclass of the class it extends. If no class is explicitly 
defined as the superclass with the extends keyword, then that class has the class 
java.lang.Object as its implicitly declared superclass. 

When a class is extended, the class declared has access to all the public and protected 
variables and methods of its superclass. Note that classes declared with the keyword final 
cannot be subclassed. 

The following example shows typical use of the keyword extends: 

public class TransactionApplet extends Applet 
{ 

} 

500 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

false 
The false keyword can be used as one of the two possible Boolean values. Strictly 
speaking, false is not a keyword of the Java language; rather, it is a literal value to be 
assigned to a variable of type boolean. 

For an example of how the false keyword can be used, see the keyword boolean. 

final 
The final keyword is used as a modifier for classes, methods, and variables. 

When the final keyword appears in a class declaration, it means that the class may never 
be subc1assed or overridden. This prevents over-specialization of a particular class. 
In some sense, the person who created the class considered any further changes to be 
tangential to its primary purpose. 

When the final keyword appears in a method declaration, it means that the method may 
never be overridden. (Note that methods declared with the keywords static or private are 
implicitly final.) 

When the final keyword appears in a variable declaration, it means that the variable has 
an assigned value that can never be changed. 

finally 
The finally keyword is used to define a blo~k of code following a try/catch exception 
block. The finally block is optional, and appears after the try block and after any catch 
blocks. The code in a finally block is always executed once, regardless of how the code 
in a try block executes. In normal execution. control reaches the end of the try block and 
then proceeds to the finally block, which typically performs any necessary cleanup. 

Note that if control leaves the try block because of a return, continue, or break statement, 
the contents of the finally block are still executed before control transfers out of the try 
block. 

If an exception occurs in the try block, and there is an associated catch block to handle 
the exception within the method, control transfers first to the catch block, and then to the 
finally block. If there is not a local catch block to handle the exception, control transfers 
first to the finally block, and then moves up the series of prior method calls until the 
exception can be handled. 

Programmer's Guide 501 



Appendix C Reserved Words (Keywords) 

float 
The float keyword is used to declare a primitive Java data type containing a 32-bit 
floating-point number represented in IEEE 754 format. Variables of type double store 
values in the range positive 3.40282347E+38 to negative 1.40239846E-45. When you 
want a floating-point literal value to be treated as a float, append the letters 'f or 'F' to 
the end of the value. 

The following example demonstrates declaration and assignment for a float variable: 

float fCalcSet; 

fCalcSet = 1.23f; 
fCalcSet = 3e2f; 
fCalcSet = .25f; 

for 
The for keyword is used to create a loop construct. An initialization section, an expression 
section, and an update section immediately follow the keyword. A semicolon separates 
each section, and all appear together within at least one set of parentheses. 

The initialization section allows the programmer to declare one or more local loop 
variables. Once the loop ends. these variables are no longer valid. 

The expression section contains an expression that is evaluated to determine whether 
the loop should continue. A fmc result allows the loop to continue; afalse result allows 
control to transfer to the statement following the loop body. 

The update section allows the programmer to increment loop counters or perform other 
updates. Typically, the update section is used to increment or decrement whatever loop 
counters the programmer defines. 

The following example shows a typical for loop construct: 

for ( int i = 0; i < 10; i++ ) 

if 
The if keyword is used to execute a statement or block of statements when it's associated 
expression evaluates to tme. An if statement may also have an alternative else clause. If 
the expression defined by the if statement evaluates to false, then control transfers to the 
statement (or block of statements) following the else keyword. If the expression defined by 
the if statement evaluates to true, then control transfers to the first statement following the 
if keyword. 

502 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

Note that if/else conditional testing is a frequent source of program errors. Consider the 
following example of a poorly formatted if/else condition: 

if ( numPrints < 1000 ) 
if ( paperFeed -- fullTray 
{ 

else 

pri ntPaperCopy( ): 
showStatus( ): 
paperFeed--: 

suspendPrintJob(): II Bad indenting! 

In the example shown above, the beginning of the else statement block is formatted to 
fall into the same column as the outermost if statement, even though it's proper logical 
association is with the if statement closest to it. Problems of this nature can be easily 
overlooked, unfortunately, and it is up to the programmer to use good formatting 
techniques to illustrate the logical intent of the code. 

implements 
The implements keyword is used in a class declaration to indicate that the class provides 
an implementation for one or more interfaces. If more than one interface is implemented 
within the class, the interface names must be separated by commas in the declaration. 
The implements keyword must also follow the extends clause in the class declaration. 

The following example demonstrates use of the keyword implements in a class 
declaration: 

public class PotatoHead implements IntcrchangeableParts 
{ 

} 

import 
The import keyword is used by Java to make classes available to the current file llsing 
an abbreviated name. Any number of import statements may appear in a Java program, 
but they must appear after the optional package statement at the top of the file, and before 
the first class or interface definition in the file. 

The following examples demonstrate use of the keyword import: 

import my.package.*: II all classes in my.package are imported 
import my.package.cool: II only the cool class is imported from my.package 

Programmer's Guide 503 



Appendix C Reserved Words (Keywords) 

instanceof 
The instanceof keyword is used as an operator that returns true if an object on its left 
side is an instance of the class specified on its right side. The instanceof operator will 
also return true when comparison is done with an object implementing an interface. 
The instanceof operator returns false if the object is not an instance of the specified class 
or does not implement the specified interface. It also returns false if the specified object 
is null. 

int 
The int keyword is used to declare a primitive Java data type that contains an integer value 
in the range of negative 2147483648 to positive 2147483647. An int is defined as 32 bits 
in length, regardless of what platform the Java byte code executes on. 

The contents of int variables can be cast to or from other numeric types. 

The following example demonstrates declaration and assignment for an int variable: 

private int iValueK: 

iValueK - 1024: 

interface 
The interface keyword is used in the declaration of an interface. An interface can be 
thought of as a template for a class that you may need to implement, but you don't have 
to do all the design work yourself. 

Interfaces differ from classes in the following ways: 

• Interfaces cannot implement other interfaces. (They may extend other interfaces.) 

• Interfaces cannot contain constructors, instance variables, class methods, or static class 
initializers. 

• All methods declared within an interface are implicitly declared to be public and 
abstract. Methods within an interface cannot be declared as final, native, static, or 
synchronized. 

• All variables declared within an interface are implicitly declared to be static and final, 
and thus, must be assigned a constant value. Variables are also implicitly public, and 
cannot be declared as either transient or volatile. 

504 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

long 
The long keyword is used to declare a primitive Java data type containing a value in the 
range negative 9223372036854775808 to positive 9223372036854775807. A long is 
defined as 64 bits in length, regardless of what platform the Java bytecode executes on. 

The contents of long variables can be cast to or from other numeric types. 

The following example demonstrates declaration and assignment for a long variable: 

private long iLedgerBalance; 

iLedgerBalance - 1234567890; 

multicast 
The multicast keyword is used in a delegate declaration to define a class that extends 
com.ms.lang.MulticastDelegate. For more information on multicast delegates, see the 
delegate keyword. 

Note The multicast keyword is an extcnsion to the Java language, provided by 
Microsoft. 

native 
The native keyword is a modifier used in the declaration of a method to indicate that the 
method is implemented in another programming language. Because a native method is 
implemented outside of a Java program. the method declaration ends with a semicolon 
rather than a method body. 

Note that native methods cannot be declarcd with the keyword abstract. For easy access to 
the Windows API, see Chapter 19, "Writing Windows-Based Applications with JIDirect. H 

Programmer's Guide 505 



Appendix C Reserved Words (Keywords) 

new 
The new keyword is used as an operator for creating a new object or array. 

When new is used to create an object, it first creates an instance of the specified class, 
then initializes all of the instance variables to their default values, and last invokes the 
appropriate constructor for the class, depending on the arguments provided in the 
argument list. 

Using the new keyword to create a class object typically looks like this: 

Button b = new Button("OK"); 

The new operator can also be used to allocate dimensional arrays for any numeric or 
object type. Once an array has adequate space allocated, all the elements of the array are 
initialized to a default value, and it is then up to the programmer to supply values other 
than the defaults. 

Using the new keyword to create an array typically looks like this: 

int array[] - new int[ 10 ]; 

null 
The null keyword represents a special value that indicates a variable does not refer to any 
object. The value null may be assigned to any class or interface variable to aid garbage 
collection. (Assigning the valuc null to any of the items above indicates to the garbage 
collection system that the object or variable is no longer in usc.) It cannot be cast to any 
other type, and should not be considered to have a known numcric value. 

package 
The package keyword is used by Java to specify which package the code in the file is 
located in. Java code that is part of a particular package has access to all classes in the 
package, and all non-private methods and variables in those classes. 

The package statement must come before anything else (except comments and conditional 
compilation directives) in a Java file. If the package statement is omitted from a Java file, 
the code in that file becomes part of an unnamed default package. 

506 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

private 
The private keyword is a modifier that can be used in the declaration of methods or 
variables. (Note that the private keyword cannot be used in the declaration of local 
variables.) Using the private modifier in the declaration for either of these types hides 
the methods and variables so they cannot be directly referenced outside of the class 
they're declared in. One exception to this rule is that private methods or variables 
declared within a class can also be used by inner classes. 

protected 
The protected keyword is a modifier that can be used in the declaration of methods or 
variables. (Note that the protected keyword cannot be used in the declaration of local 
variables.) A protected variable or method is only visible within its class, within its 
subclasses, or within the class package. Note that the subclasses may reside within 
different packages, however. 

public 
The public keyword is a modifier that can be used in the declaration of classes and 
interfaces. (Note that the public keyword cannot be used in the declaration of local 
variables.) The public keyword can also be used as a modifier in the declaration of 
methods and variables. Classes or interfaces declared as public are visible everywhere. 
Methods and variables declared as public are visible everywhere their corresponding 
classes are visible. 

Note that public classes must have a class name that exactly matches the name of the 
.java file in which they appear. 

return 
The return keyword returns control to the invoker of a method or constructor. A return 
statement used in a method can either return a value, or simply return to the invoker 
without specifying a value. If a return value from a method is not needed, the return 
keyword is followed immediately by a semicolon (rather than a value) and the method's 
declaration must specify a return type of void. If a return value from a method is needed, 
the method's declaration must specify a return type that matches the type of value being 
returned. 

Note that in constructors, return statements cannot return values. 

Programmer's Guide 507 



Appendix C Reserved Words (Keywords) 

short 
The short keyword is used to declare a primitive Java data type containing a value in the 
range negative 32,768 to positive 32,767. A short is defined as 16 bits in length, regardless 
of what platform the Java bytecode resides on. 

The contents of short variables can be cast to or from other numeric types. 

The following example demonstrates declaration and assignment for a short variable: 

private short squareFeet; 

squareFeet ~ 4600; 

static 
The static keyword is used as a modifier for methods and variables. The keyword can 
also be used to define static initializing blocks. 

When the static keyword appears in a method or variable declaration, it means that there 
will be only one copy of the method or variable that each class object may reference, 
regardless of the number of instances of the containing class that are created. 

The static keyword can also be used to create a static initializing block of code that runs 
only once, when the class object is first loaded into memory. 

super 
The super keyword is typically used to access hidden variables or overridden methods 
in a superclass. This keyword can also be used, along with an optional list of arguments, 
as the fIrst line in a constructor body to call a superclass constructor. 

508 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

switch 
The switch keyword is used along with the keyword case, and sometimes the keyword 
default, to create a conditional statement. In a switch statement, the switch keyword is 
followed by an expression within parentheses whose value must evaluate to a primitive 
Java data type. Once the expression has been evaluated, its value is compared against the 
label following each case statement within the switch statement body. When a label has the 
same value, the lines following that case statement are executed. An optional default label 
is included within the body of a switch statement when there is no guarantee that the labels 
provided by each case statement are the only values the switch expression may evaluate to. 

The following example shows a typical switch statement construct: 

switch ( someExpression 
{ 

case 1: 
{ 

doCasel( 
break; 
} 

case 2: 
{ 

doCase2( 
break; 
} 

case 3: 
{ 

doCase3A( 
doCase3B( 
} 

default: 

) ; 

) ; 

) : 
) : 

doDefaul t ( ); 

The break keyword is also, at times, usc.:d within the body of a switch statement. Once the 
lines following a case statement have exc.:cuted, the break statement is included to jump 
over the remaining body of the switch condition. Without a break statement, subsequent 
case statements would continue being evaluated, and eventually the default statement, 
if one were included, would execute. 

Programmer's Guide 509 



Appendix C Reserved Words (Keywords) 

synchronized 
The synchronized keyword can be used as a modifier to specify thread-safe methods, 
and as a statement to specify critical sections of code. Used as a method modifier, 
synchronized indicates that the method should only be available to one thread at a time. 
U sed as a statement, synchronized is followed by an expression in parentheses and a 
block of statements. If the expression within parentheses evaluates to an object type 
or array, the program obtains a lock on the item before executing the statement block. 

this 
The this keyword is used with instance methods and constructors to refer to the current 
object. Use of the keyword this in the very first statement in the body of a constructor 
means that another constructor in the same class is being called to assist in creation of 
the object. For example: 

public class MyClass 
{ 

} 

private long birthday; 
private String name; 

II first constructor 
MyClass( String bDay 
{ 

birthday - formatBirthday( bDay ); 

II second constructor 
MyClass(String nm. String bDay ) 
{ this ( bDay ); 

name = new String(nm); 

Note The keyword this must appear as the first statement in the body of a constructor, 
otherwise your code will not compile. 

Use of the keyword this in an instance method is helpful when a variable using the same 
name appears within the method body. For example, when you refer to a class scope 
variable in a method containing the variable name x, the class scope variable would be 
known as this.x. 

510 Programmer's Guide 



Appendix C Reserved Words (Keywords) 

throw 
The throw keyword is typically used within a try block to indicate that an exceptional 
condition has occurred. The throw keyword is followed by an exception object, derived 
from the class Throwable, indicating the type of exception being thrown. A throw 
statement causes a program to immediately stop and resume at the nearest catch statement 
that can handle the specified exception object. Hence, throw statements may also be 
outside a try block, if the exception will be caught elsewhere within the program. 

The following example shows use of the throw keyword: 

public void someMethod( int div ) throws Exceptionl 
{ 

try 
{ 

} 

if ( div == 0 ) 
th row new Exception l( ): 

catch(Exceptionl el) 
{ 

II Exception can be handled in this catch 
II block 

throws 
The throws keyword is used in a method declaration to list any exceptions not derived 
from Error or RuntimeException that a method can throw. (Exceptions derived from type 
RuntimeException are typically avoidable. Exceptions derived from type Error are usually 
related to serious system problems; thus, little can be done about them.) 

The following example shows a typical method declaration using the throws keyword: 

public int someMethod( int argument) throws Exceptionl. Exception2 
{ 

} 

II This method may contain a trylcatch block 
II for detecting and possibly handling any caught 
II exceptions. 

Programmer's Guide 511 



Appendix C Reserved Words (Keywords) 

transient 
The transient keyword is a modifier used in the declaration of variables. Use of this 
keyword specifies that the current value of the variable need not be serialized (or saved) 
along with other data stored in a class object. 

The following example shows the declaration of a variable with the transient modifier: 

private transient int currentTime; 

true 
The true keyword can be used as one of the two possible Boolean values. Strictly 
speaking, true is not a keyword of the Java language; rather, it is a literal value that is 
assigned to a variable of type boolean. 

For an example of how the true keyword can be used, see the keyword boolean. 

try 
The try keyword is used to indicate a block of code in which an exception might occur. 
For each try statement, there must be at least one corresponding catch clause. If the 
exception occurs, the catch clause parameter is evaluated to determine whether it is capable 
of handling the exceptional condition. If the exceptional condition cannot be handled by 
any of the catch clauses corresponding to the try statement, then control is transferred up 
the chain of method calls and all the previous exception types are evaluated until one 
capable of handling the condition is found. 

Note that if the try statement has a corresponding finally clause, then the body of the 
finally clause will be executed no matter whether the try block completes normally or 
abruptly, and no matter whether a catch clause is first given control. 

512 Programmer's Guide 



The following example shows a typical try/catch/finally construct: 

try 
{ 

II code within this block may cause an exception. 

catch( Exception! e! ) 
{ 

II code within this block is executed only 
II when an exception of type Exception! occurs, 
II otherwise it is skipped over. 

catch( Exception2 e2 ) 
{ 

II code within this block is executed only 
II when an exception of type Except1on2 occurs, 
II otherwise it too is skipped over. 

finally 
{ 

II code within this block is always executed, 
II regardless whether an exception within the 
II try block occurs or not. Th15 block is 
II typically used for cleaning up. 

Appendix C Reserved Words (Keywords) 

Programmcr's Guide 513 



Appendix C Reserved Words (Keywords) 

void 
The void keyword is used in the declaration of a method to indicate that the method returns 
no value. 

Note that Java provides only this very limited use of the void keyword. Unlike in the C 
language, the void keyword cannot be used to declare the absence of method parameters, 
void pointers, and so on. 

volatile 
The volatile keyword is a modifier used in the declaration of variables. Use of this 
keyword specifies that the value the variable contains may change asynchronously, 
and, therefore, the compiler should not attempt to perform optimizations with it. 

while 
The while keyword is used to create a loop construct. In a while loop, the expression in 
parentheses immediately following the keyword is evaluated, and if the Boolean result is 
true, the statements appearing within the loop body are executed. If multiple statements 
make up the body of the loop, they must be enclosed with curly braces. Once the loop 
body has executed, control transfers back to the top of the loop where the test is performed 
again, and the execution of the loop body is repeated until the value of the expression 
evaluates to false. 

The following example shows a typical while loop construct: 

while ( i < 10 ) 
{ 

II statements here execute if above expression is true 

} 

514 Programmer's Guide 



#define conditional directive,485-486 
#error conditional directive, 487 
#undef conditional directive, 486 
#warning conditional directive, 487 
.mdb file, specifying, 85 
I? option, 138, 147, 149 
la option, 141-142, 149 
Icp option, 129, 143, 149 
Icp:a option, 143-144, 149 
Icp:o option, 130 
Icp:p option, 130, 144-145, 149 
/D option, 131 
Id: option, 145, 149 
Ig option, 132 
Ig:l option, 132 
Ig:t option, 133 
Inologo option, 133 
Inowarn option, 133 
Ina write option, 134 
10 option, 134 
/0:1 option, 135 
10:J option, 135 
Ip option, 146, 149 
Iref option, 136 
Iv option, 146, 149 
Iverbose option, 136 
Iwoption, 137 
Ix option, 138 
@com.struct, 341 
@dll.import syntax, 328 
@dll.struct 
@dll.structmap syntax, 329 

casting reference to class of, 343 
relationship with @com.struct, 341 
syntax, 329 

Index 

A 
abstract, 493-494 
access keys, 47 
accessing 

column properties, 92-93 
COM object, 317-318 
data, 83-95 
dataFormat property, 93-94 
Graphics object, 182 
system information, 188-189 

activation for design time, 234-235 
active procedures, Call Stack window, 
110 
Active Server Pages (ASP) 

ASP-based approach, 268 
debugging client, 117-118 

ActiveX controls 
building, 303-306 
importing, 307-310 

add method, 247-248 
Add To Project, 40 
adding 

access keys, 47 
bitmaps, 234 
build commands, 35-36 
classes, 72 

Class Outline, 64-65 
Java, 22 

code 
add method, 247-248 
classes, 313-314 
COM object access, 317-318 
constructors, 251 
Forms Designer, 155-156 

Programmer's Guide 515 



Index 

adding (continued) 
code (continued) 

overridden methods, 247-249 
property methods, 245-246 
Text Editor, 12-13, 19 

columns, 93 
controls, 88 

descriptions for, 203 
forms,6,16-18,42-43,253,309 
GroupCheck control, 253 
projects, 22 
toolboxes, 252 
WFC (Windows Foundation 
Classes for Java) programming, 
155 

declarations, 71, 73 
event handlers, 6, 16-17, 43-44 
events, 77, 246 
expressions, 106 
files, 27-28 
folders, 29-30 
forms, 17, 22, 252 
HTML pages, 22 
lavadoc comments, 66-67 
menus, 47-49, 155 
methods 

Class Outline, 65 
controls, 250 

objects in toolbox, 4 I -42 
paths, 36 
projects, 23-24 
properties, 75-76 

definitions for, 207 
WFC Component Builder, 
244-245 

shortcut keys, 48 
ToolTips, 50 
variables, 72 
watch expressions, 105 

additional compiler options, 35 
aliasing, 352-353 
aligning controls for forms, 45 
alignment property, 209 
anchoring controls for forms, 45 
Animation control, 181 

516 Programmer's Guide 

ANSI, 355-357 
Append CLASSPATH Option, 
143-144, 149 
Applet Viewer Option, 141-142, 149 
applets, 19-21 
Application Wizard, 7-9 
applications 

building, 19 
. Dynamic HTML, 11 
WFC,15 
Windows, 7, 9 

compiling with JVC, 125-138 
creating 

Application Wizard, 7-9 
console, 18-19 
Dynamic HTML, 10-11 
JlDirect, 325-368 
Visual J++, 158-162 
WFC, 13 

debugging, 99-120 
handling events, 188 
host application controls, 241 
localizing, 186-187 
opening, 187 
running 

console, 19 
Dynamic HTML,·11 
WFC, 15 
Windows, 7, 9 

samples of, 115, 156-174, 208-212, 
225-226,290-294,325-326 
starting, 162 
stepping through code, 111-112 
viewing 

JVIEW, 139-147 
WJVIEW, 147-149 

arc angles, 301 
arcs, 300-30 I 
arguments 

building, 61-62 
entering, 100-101 

arranging columns, 93 



array elements 
Auto window, 103 
Locals window, 104 
Watch window, 105 

arrays, 336, 340-341 
ASP. See Active Server Pages 
assigning menu controls, 49 
associating 

callbacks, 348 
recordsets, DataBinder control, 90-91 

attributes for properties, specifying, 
212-214 
Auto window 

shortcut keys, 105-106 
viewing values, 102-103 

AxHost control, 181 

B 
basic alignment property, 209 
basic scalar types, 332-333 
bezier splines, 302 
bindable properties, 320 
binding 

DataBinder control, 90-91 
DataGrid control, 92-93 
table data, 265-267 
in WFC, 319-324 

bindings, creating, 91 
bitmaps 

adding, 234 
drawing, 294-295 

bookmarks, 54-55 
boolean, 95, 333, 494 
bound components, 323 
bound fields, 87 
bounding rectangle, 276 
break, 494-495 
break mode 

adding watch expressions, 105 
stepping through code, 111-112 

breakpoints, 74, 101-102 
Breakpoints dialog box, 102 
BrowsableAttribute, 213 
browsing packages and libraries, 78-82 

Brush object, 287-289 
brushes, 286-294 
build configuration, 33 
build orders, 24 
build rules, 35-36 
builders, 98 
building 

applets,21 
applications 

console, 19 
Dynamic HTML, 11 
WFC,15 
Windows, 7, 9 

arguments, 61-62 
COM objects, 311-315 
controls, 17,251,254,303-306 
DLLs, 13 
forms, 18 
projects, 305, 310, 315, 318 
solutions for multiprojects, 24 

Button control, 181 
byte, 495 

c 

Index 

calculating dynamic default values, 215 
Call Stack window, 110 
callbacks, 346-349 
calling 

ANSI version of DLL function, 355 
optimal version of DLL function, 
356-357 
Unicode version of DLL function, 
356 

capturing user interactions with controls, 
219-220 
case, 495 
casting references to @dll.struct class, 
343 
catch, 496 
Category Attribute, 213 
change notifications for properties, 
226-228, 320-321 

Programmer's Guide 517 



Index 

changing 
classes 

Locals window, 104 
to COM class, 37 

components with WFC Component 
Builder, 75-77 
controls 

Forms Designer, 16-17 
properties, 44 

declarations for classes, 69-70 
docking behavior, 45 
forms 

Forms Designer, 6 
WFC,14 

menu captions, 48 
menus, 47-49 
projects 

build orders, 24 
startup, 24 

threads in Call Stack window, 110 
values for variables, 103-105 

char, 496 
chars, 333 
check marks, 48 
Checkbox control, 181 
checkpoints for security, 361-363 
choosing 

.mdb files, 85 
@dll.import, 354 
activation for design time, 234-235 
attributes for properties, 212-214 
bound fields, 87 
build configurations, 33 
database format, 84 
entry point files, 34 
form details, 86 
formats for databases, 84 
libraries, 80-81 
master/detail relationships, 88 
methods, overloaded, 59 
options for projects,33-37 
packages, 80-81 
pages for design, 236-238 
processes for Threads debug 
window, 116 

518 Programmer's Guide 

choosing (continued) 
registration information, 239-240 
text, 55 
type library information, 239-240 
values for dynamic defaults and 
property persistence, 214-215 
verbs for controls, 235-236 
views for projects, 25-26 

chords, 300 
class; 496 
class declarations, 69-70 
class members 

Auto window, 102-103 
Locals window, 103-104 
Watch window, 104-105 

Class Outline, 64-74, 247 
Class Verification Option, 146, 149 
classes 

adding 
Class Outline, 72 
code, 13,313-314 
Java,22 

changing 
declarations, 69-70 
Locals window, 103-104 
to COM class, 39 

COM Class, 37-38, 314 
com.ms.win32,363 
Control, 178-179 
creating for events, 222 
DhElement, 258-259 
editing in Forms Designer, 50 
event functionality, 203-205 
Font object, 281-283 
Forms, 179-180 
grouping, 81-82 
RegistryKcy, 189 
selecting methods for, 59-60 
sorting, 81-82 
specifying @dll.import, 354 
trusted, 360 
untrusted, 360 
viewing, 78-79 

CLASSPATH environment 
variable, 127-128 



classpaths, 36-39 
clipboard operations, 190-192 
CLSIDs, 351-352 
code 

adding 
add method, 247-248 
classes, 313-314 
COM object access, 317-318 
Forms Designer, 155-156 
overridden methods, 247-249 
property methods, 245-246 
Text Editor, 12-13, 19 

editing, 51-83 
generation of, 50 
initialization, 50 
managing in Class Outline, 68-74 
obtaining error code, 357-358 
Source Code Control, 123 
statement completion, 56-62 
stepping through programs, 111-112 
viewing in Text Editor, 11, 16,20-21 

colors, setting for text, 281 
column properties, 92-93 
COM Class, 37-38, 314 
COMDLL 

creating, 12-15 
importing, 22-23 
packaging 

controls, 304-305 
projects, 315 

registering, 305-306 
COM interface pointers, 352 
COM objects 

adding code to access, 317-318 
building, 311-315 
debugging, 116-120 
defining, 304 
importing, 316-318 

COM registration errors, 481-484 
combining Java and Win32 threading 
models, 194 
ComboBox control, 181 
command files, JVC, 127 
command-line arguments, 100-101 

command-line options 
JVC, 129-138 
JVIEW, 141-149 
WJVIEW, 149 

commands, adding in builds, 35-36 
common controls, 155 
com.ms.wfc.html package, 267-271 
com.ms.win32 class, 363 
compilations, conditional, 485-491 
Compile Only Option, 134 
compiler errors, 369-480 
compiler options, 34-35 

Index 

compiling JVC applications, 125-138 
Component Object Model. See entries 
under COM 
conditional compilation, 35, 485-491 
conditional directives, 485-491 
Configuration list, 35 
configuring 

for builds, 33 
client executables, 119 
Microsoft Transaction Server (MTS) 
debugging, 119-120 

Connect Information step, 85-86 
connecting to databases, 85-86 
console applications 

creating, 18-19 
debugging, 113-114 

constants 
WFC Brush object, 287-288 
WFC Pen, 284 

constructors, adding code to, 251 
containers, 259-260 
context menus, 49 
continue, 497 
Control class, 178-179 
control dimensions, 228-229 
control events, 219-228 
control properties, 207-218 
Control Selection step, 88 
control verbs, 235-236 
control-related methods, 248 

Programmer's Guide 519 



Index 

controls 
adding 

bitmaps, 234 
Control Selection step, 88 
descriptions for, 203 
forms, 6, 16-18,42-43,253,309 
GroupCheck control, 253 
methods, 250 
projects, 22 
toolboxes, 252 
ToolTips, 50 
WFC (Windows Foundation 
Classes for Java) programming, 
155 

aligning, forms, 45 
anchoring, forms, 45 
assigning, menus, 49 
building, 17, 251, 254, 303-306 
capturing user interactions, 219-220 
changing 

Forms Designer, 16-17 
properties, 44 

creating 
basic controls, 202-207 
WFC, 15-18, 201-254 

customizing, 228-238 
DataBinder, 90-91 
DataGrid, 92-93 
DataNavigator,95 
DataSource, 89-90 
debugging, 252-254 
defining, 202-203, 207-218 
designing layout for, 243-244 
developing in WFC, 201-254 
dimensions of, 228-229 
displaying, 228-233 
editing properties, 46 
events, 219-228 
GroupCheck control, 253 
host applications, 241 
importing, 307-310 
importing, ActiveX, 307-310 
Internet Explorer, 241 
locations of, 229 

520 Programmer's Guide 

controls (continued) 
packaging, 304-305 
registering, 239-250, 307 
resizing, 43 
restoring, 42 
setting, 6, 309 
sizes of, 229 
specifying verbs for, 235-236 
testing, 254, 306 
threading, 206 
UserControl, 247 
WFC (Windows Foundation Classes 
for Java), 180-182,206 

coordinate system, Graphics object, 
278-280 
coordinates, mapping, 280 
copying 

definitions, 73 
DllLib copy methods, 344 
files, 30 
folders, 30 
text, 51 
variables 

Auto window, 103 
Locals window, 104 

creating 
applets, 19-21 
applications 

Application Wizard, 7-9 
console, 18-19 
Dynamic HTML, 10-11 
JlDirect, 325-368 
multithreaded console, 114-115 
Visual J++, 158-162 
WFC.13 
Windows, 5-7 

bindings. 91 
Brush object, 289 
build rules, 35-36 
classes for events, 222 
COM DLL, 12-15 
controls 

basic controls, 202-207 
customizers for, 234-238 
WFC, 15-18,201-254 



creating (continued) 
delegates, 222 
dialog boxes 

files, 166-167 
modal,165 

drop sources, 191-192 
drop targets, 192-193 
event handlers, 253 
events, 220-226 
Font object, 282 
forms, 40-41, 154-174 
Graphics object, 273-274 
menu separator bars, 48-49 
menus for forms, 46-49 
progID,240 
projects, 3-36, 242-243, 308, 
312-313,316 
properties, 207-208 
properties value editor, 216 
solutions for multiprojects, 23-24 
statements, Word Completion, 57-58 
threads, 194-199 
values, 209 

customizing controls, 228-238 

o 
data 

accessing, 83-95 
binding 

DataBinder control, 90-91 
DataGrid control, 92-93 
to tables, 265-267 
in WFC, 319-324 

marshaling types of, 330-349 
Data Form Wizard, 84-89 
Database step, 85 
Database Type step, 84 
databases, connecting to, 85-86 
DataBindableAttribute, 213 
DataBinder component, 321-322 
DataBinder control, 90-91 
dataFormat property, 93-94 
DataGrid control, 92-93 
dataMember property, 322-323 

DataNavigator control, 95 
DataSource control, 89-90 
dataSource property, 322-323 
date values, 94 
DateTimePicker control, 181 
Debug Toolbar, 101 
Debug Windows, 102-112 
debugging 

applications, 99-120 
controls, 252-254 

declarations 
adding, 71, 73 
changing, 69-70 

declaring 
methods taking callbacks, 346 
parameters as type Objects, 345 

defaults 
defined,498 
specifying values for, 214-215 

Default ValueAttribute, 213 
Define Conditional Compilation 
Symbol,131 
defining 

classes for COM Class, 314 
control properties, 207-218 
controls, 202-203, 304 
custom value editor, 216-219 

definitions 
adding, 207 
copying, 73 
deleting, 73 
moving, 73 
navigating to, 69 
viewing, 79 

delegates 
defined, 498 
for events, 221-222 

deleting 
bookmarks, 55 
Classpath, 39 
columns, 96 
definitions, 73 
events, 78 
files, 31-32 
folders, 31-32 

Index 

Programmer's Guide 521 



Index 

deleting (continued) 
menus, 49 
objects in toolbox, 42 
properties, 75-76 
shortcut keys, 48 

delimiters, 54 
deploying projects, 121 
DescriptionAttribute, 214 
descriptions for controls, 203 
design pages, 236-238 
designing 

forms, 39-50 
layouts of controls, 243-244 

device coordinates, 280 
DhElement class, 258-259 
DHTML. See Dynamic HTML 
dialog boxes 

Breakpoints, 102 
files, 166-167 
modal, 165 

dimensions of controls, 228-229 
directives, conditional, 485-491 
directories. See folders 
Directory view, 4, 26 
directory-based projects, 4 
Disable Language Extensions 
Option, 138 
disabling 

dynamic syntax checking, 63 
options for statement completion, 
56-57 

disks, removing files or folders from, 32 
Display CLASSPATH Option, 130 
Display Compiler Messages Option, 136 
displaying 

Auto window, 103 
Call Stack window, 110 
Classpath tab, 36 
controls, 228-233 
Debug Toolbar, 101 
directory structure of files in project, 
32 
Immediate window, 106 
Locals window, 104 
Project Explorer, 4 

522 Programmer's Guide 

displaying (continued) 
Running Documents window, 111 
Threads debug window, 107 
Watch window, 105 

DllLib copy methods, 344 
DLLs 

calling ANSI version of, 355 
creating, 12-15 
importing, 22-23 
invoking, 358-359 
loading, 358-359 
obtaining error code, 357-358 
passing strings to, 333-334 
receiving strings from, 334-335 

do, 499 
docking behavior, 45 
double, 499 
drag-and-drop operations, 190-192 
draw Arc method, 230 
drawImage method, 230 
drawing 

bitmaps, 294-295 
shapes, 297-302 
text, 280-281 

drawString method, 230 
drop sources, 191-192 
drop targets, 192-193 
dynamic default values, 214-215 
Dynamic HTML 

creating applications in, 10-11 
programming in, 255-271 
visual components of, 183 

dynamic styles, 262-263 
dynamic syntax checking, 62-63 
dynamic tables, 264-267 

E 
Edit control, 181 
editing 

code, 51-83 
menus, 49 
properties 

controls, 46 
forms, 46 



editValue method, 217 
elements for arrays, 103-105 
eliminating flicker while painting, 
231-233 
else, 500 
embedded strings and arrays, 340-341 
embedding callbacks, 348-349 
empty projects, 21-23 
Enable Optimizations Option, 134 
enabling 

check marks, 48 
dynamic syntax checking, 63 
options for statement completion, 
56-57 

ending 
applications, 162, 187 
debugging sessions, 102, 112 

entering command-line arguments, 
100-101 
enumerating fonts, 282-283 
environment variable, CLASSPATH, 
127-128 
errors 

code for, 357-358 
finding, dynamic syntax checking, 
62-63 
help, 63 
messages, 364-366, 369-484 

evaluating expressions, 106-107 
event handlers 

adding, 6, 16-17,43-44 
creating, 253 

events 
adding, 77, 246 
capturing, 220 
controls, 219-228 
creating, 220-226 
deleting, 78 
exposing, 223-224 
firing, 224 
functionality for, 203-205 
handling, 164-165, 183-185, 188, 
261-262 

examples of applications, 115, 156-174, 
208-212,225-226,290-294,325-326 

exceptions for threads, 200 
executable debugging client, 119 
executing statements, 107 
exiting threads, 194-199 
expanding graphics, 295 

Index 

explicit Graphics object creation, 274 
exposing 

events, 223-224 
properties, 207-208, 211 

expressions 
adding, 106 
evaluating, 107 
viewing, 104-105 

extends, 500 

F 
false, 501 
fields, 87 
File I/O, 166-167 
files 

adding,27-28,66-67 
choosing entry point, 34 
command, JVC, 127 
copying, 30 
deleting, 31-32 
finding text in, 52-53 
managing, Text Editor, 51-55 
opening, 26-27 
renaming, 31 
replacing text in, 52-53 
specifying .mdb file, 86 
viewing in full-screen mode, 52 

filters for projects, 32-33 
final, 501 
finally, 501 
finding 

delimiters, 54 
errors, dynamic syntax checking, 
62-63 
text in files, 52-53 

firing events, 224 
fixed-size strings, 340 
flicker, eliminating while painting, 
231-233 

Programmer's Guide 523 



Index 

float~ 502 
folders 

adding 
fi1es~ 28 
projects~ 29-30 

copying~ 30 
deleting~ 31-32 
displaying files~ 32 
renaming~ 31 

Font object~ 281-282 
FontDescriptor c1ass~ 281 
FontFamily c1ass~ 281 
FontMetrics c1ass~ 281 
FontPitch c1ass~ 281 
fonts 

enumerating~ 282-283 
setting~ 282 

FontSize c1ass~ 281 
FontType c1ass~ 281 
FontWeight c1ass~ 281 
for, 502 
Form control, 181 
Form Step, 86 
formatting 

Boolean values, 95 
data, 93-95 
databases, 84 
date values, 94 
forms, 44-45 
values~ 94 

forms 
adding 

controls~ 16-18, 22, 42-43, 253~ 
309 
menus~ 47-49 
projects~ 17, 22, 252 
ToolTips~ 50 

aligning controls, 45 
anchoring controls, 45 
bui1ding~ 18 
changing 

controls~ 16-17 
Forms Designer~ 6 
WFC~ 14 

524 Programmer's Guide 

forms (continued) 
creating~ 40-41 ~ 46-49 ~ 154-174 
designing~ 39-50 
formatting~ 44-45 
parts of templates for~ 162-163 
running~ 18~ 310 

Forms c1ass~ 179-180 
Forms Designer~ 6 

changing controls~ 16-17 
creating menus~ 46-49 
described~ 39 
editing c1asses~ 50 
toolbox~ 41 

frames~ viewing in Call Stack 
window~ 110 
full-screen mode~ 52 
functions 

G 

invoking~ 347 
over1oading~ 345-346 

Generate Debug Tables Option, 133 
Generate Debugging Information 
Option, 132 
Generate Line Number Information 
Option, 132 
generation of code, 50 
getConstantName method, 217 
getStyle name, 217 
getSubProperties, 217 
getTextFrom Value method, 217 
getValueFromSubPropertyValues, 217 
getValueFromText, 217 
getValues method, 217 
goalsAgainstA verage method, 314 
graphical editor, 26 
graphical services, 273-302 
graphics, 295-296 
Graphics object 

accessing, 182 
coordinate system, 278-280 
creating, 273-274 
described, 230 
method scope, 275-276 



Graphics object (continued) 
retrieving, 275 
setting 

brushes, 289 
fonts, 281 
pens,285 

grid options, 44-45 
grids, 93 
GroupBox control, 181 
GroupCheck control, 253 
grouping classes and members, 81-82 
GUIDs, 351-352 

H 
handle-based operations, 277 
handles for windows, 205-206 
handling events, 164-165, 183-185, 188, 
261-262 
hard disks, removing files or folders 
from, 32 
hatched brushes, 286 
help for errors, 63 
hidden members, viewing, 79 
hiding 

documents in Running Documents 
window, 111 
variables 

Auto window, 102-103 
Locals window, 103-104 
Watch window, 104-105 

host applications, 241 
HTML (HyperText Markup Language) 

adding pages in, 22 
HTML-based approach, 269-271 

HyperText Markup Language. See 
HTML 

if,502-503 
lIDs, 351-352 
images, 295-296 
Immediate window, 106-107 
implements, 503 
implicit Graphics object creation, 274 

import, 503 
importing 

ActiveX controls, 308-309 
COM DLL, 22-23 
COM objects, 316-318 
controls, ActiveX, 307-310 
DLLs, 13-15 
projects, Visual J++, 38 

inherited methods, 74 
initForm method, 258 
initialization code, 50 
Inline Methods Optimization, 135 
instanceof, 504 
int, 504 
interactions of users, capturing with 
controls, 219-220 
interface, 504 
Internet Explorer 

controls, 241 
debugging applets, 120 

intrinsic controls, 155 
invoking 

J 

callback functions, 347 
DLLs, 358-359 
OLE API functions, 349-352 

JlDirect, 325-368, 359-363 
JlDirect Call Builder, 326-327 
Java 

adding classes, 22 
combining threading models, 194 
compiling applications in JVC, 
125-138 
debugging 

applets, 120 

Index 

server-side components, 118 
programming in Dynamic HTML, 
255-271 
Quick Start, 256-257 
using threads with WFC (Windows 
Foundation Classes for Java), 
193-200 

Java Package Manager (JPM), 128 

Programmer's Guide 525 



Index 

J avadoc comments, 66-67 
JPM. See Java Package Manager 
JVC, 125-138 
JVIEW 

debugging applets, 120 
viewing applications in, 139-147 

K 
keyboard events, 220 
keywords, 493-514 

L 
Label control, 181 
launch options, 33-39 
layouts, designing for controls, 243-244 
libraries, 80-81 
lifetime of callbacks, 348 
lines, drawing, 297 
linking by ordinal, 353 
ListBox control, 181 
ListView control, 181 
loading DLLs, 358-359 
locale information, 190 
LocalizableAttribute, 214 
localizing applications, 186-187 
Locals window 

shortcut keys, 105-106 
viewing variables, 103-104 

locations of controls, 229 
logical brushes, 286 
logical coordinates, 280 
long, 505 

M 
managing 

code, Class Outline, 68-74 
files, Text Editor, 51-55 
projects 

Project Explorer, 25-33 
Source Code Control, 123 

toolboxes, 41-42 
mappings 

@dl1.struct, 332 
basic scalar types, 332-333 

526 Programmer: s Guide 

mappings (continued) 
booleans, 333 
chars, 333 
coordinates, 280 
parameter and return values, 330-331 

marshaling data types, 330-349 
master/detail relationships, 88 
matching delimiters, 54 
MDIClient control, 181 
member lists, 60 
members 

Graphics object, 230 
grouping, 81-82 
sorting, 81-82 
viewing, 78-79 

menu captions, 48 
menu separator bars, 48-49 
menus 

adding, 47-49, 155 
creating, 46-49 
deleting, 49 
editing, 49 

message boxes 
sample of, 325-326 
using as modal dialog box, 165 

messages, errors, 364-366, 369-484 
methods 

adding, 71 
code, 245-249 
declarations, 73 
J avadoc comments, 66-67 
to controls, 250 

ASP-based, 268 
conditional, 490 
custom value editor, 217 
declaring for callbacks, 346 
DllLib,344 
goalsAgainstAverage, 314 
Graphics object, 230 
initForm, 258 
method scope, Graphics object, 
275-276 
overriding, 74 
renaming,352-353 



methods (continued) 
selecting, 59-60 
winLossPercentage, 313 

Microsoft Transaction Server (MTS) 
119-120 ' 
Microsoft Visual Basic, testing controls 
in, 306 
mixing Java and Win32 threading 
models, 194 
modal dialog boxes, 165 
modes 

break 
adding watch expressions, 105 
stepping through code, 111-112 

OLE,349-351 
modifying 

classes 
Locals window, 104 
to COM class, 37 

components with WFC Component 
Builder, 75-77 
controls 

Forms Designer, 16-17 
properties, 44 

declarations for classes, 69-70 
docking behavior, 45 
forms 

Forms Designer, 6 
WFC, 14 

menu captions, 48 
menus, 47-49 
projects 

build orders, 24 
startup, 24 

threads in Call Stack window, 110 
values for variables, 103-105 

MonthCalendar control, 181 
mouse events, capturing, 220 
moving 

columns, 93 
definitions, 73 
files, 30 
folders, 30 
menus, 48 

moving text, 51 

Index 

MTS. See Microsoft Transaction Server 
mUlti-process applications, 116 
multicast, 505 
multiproject solutions, 23-24 
multithreaded applications, 114-115 

N 
native, 505 
navigating 

bookmarks, 54-55 
definitions, 69 
Immediate window, 107 
records, 95 

nested structures, 339 
new, 506 
notification for property changes, 
226-228, 320-321 
null,506 
numerical values, 94 

o 
Object Browser, 78-82 
Object Linking and Embedding. See 
entries for OLE 
objects 

COM objects, 304, 311-318 
Font, 281-282 
Graphics, 182, 273-302 
toolbox, 41-42 
type, 345 
WFC Brush, 287-288 
WFC control, 304 
WFC Pen, 283-284 

obtaining error code set by DLL 
function, 357-358 
OLE API functions, 349-352 
OLE mode, 349-351 
Online Help Option, 138, 147, 149 
opening 

applications, 187 
Data Form Wizard, 84-89 
documents from Running Documents 
window, 111 
files, 26-27 

Programmer's Guide 527 



Index 

opening (continued) 
JVIEW.EXE, 140 
WFC Component Builder, 75, 77 
WJVIEW.EXE,148-149 

operations 
drag-and-drop, 190-193 
handle-based, 277 
raster, 296 
rectangle, 298 

optimal version, 356-357 
Optimize Bytecode Jumps Option, 135 
options 

command-line 
JVIEW, 141-149 
WJVIEW, 149 

command-line, JVC, 129-138 
disabling statement completion, 
56-57 
dynamic syntax checking, 63 
enabling statement completion, 56-57 
setting 

compilers, 34-35 
grids, 44-45 
J/Direct Call Builder, 327 
projects, 33-39 

ordinals, linking by, 353 
Output Directory, 35 
Output Directory Option, 131 
overloaded methods, 59 
overloading functions, 345-346 
overridden methods, 247-249 
overriding UserControl, 256 

p 

Package view, 4, 26 
packages 

browsing, 78-82 
com.ms.wfc.html, 267-271 
defined,506 
selecting, 80-81 
WFC (Windows Foundation Classes 
for Java), 176-177 

packaging 
controls, 304-305 
projects, 121,315 

528 Programmer's Guide . 

packing structures, 341 
pages for design, specifying, 236-238 
painting, 210-211, 231-233 
Panel control, 181 
parameters 

building arguments for parameter 
info, 61-62 
polymorphic, 344-346 

passing 
COM interface pointers, 352 
aUlDs, lIDs, and CLSIDs, 351-352 
strings 

to DLL functions, 333-334 
to OLE functions, 351 

VARIANTs, 352 
paths, adding to Classpath, 36 
pattern brushes, 286 
Pause Viewer Option, 146, 149 
pens, 283-285 
PersistableAttribute, 214 
PictureBox control, 181 
pointers, 342-344, 352 
polymorphic parameters, 344-346 
Prepend CLASSPATH Option, 130, 
144-145, 149 
printValue, 217 
private, 507 
processes, selecting in Threads debug 
window, 116 
ProgID,240 
programming 

in Dynamic HTML, 255-271 
graphical services, 273-302 
in WFC, 153-200 

ProgressBar control, 181 
project, defined, 3 
Project Explorer, 4, 25-33 
project filter, 32-33 
project options, 33-39 
project views, 25-26 
projects 

adding 
controls, 22 
files, 27-28 
forms, 17, 22, 252 



projects (continued) 
adding (continued) 

HTML pages, 22 
solutions, 23-24 

building, 305, 310, 315, 318 
creating, 3-36, 242-243, 308, 
312-313,316 
deploying, 121 
directory-based,4 
displaying 

files, 32 
Project Explorer, 4 

importing, Visual J++, 38 
managing 

Project Explorer, 25-33 
Source Code Control, 123 

packaging, 121,315 
selecting, views, 25-26 
setting 

options, 33-39 
startup, 24 

properties 
adding, 76 

code to property methods, 245-246 
WFC Component Builder, 
244-245 

aligning, 209 
bindable, 320 
changing controls, 44 
columns, 92-93 
creating, 207-208 

properties value editor, 216 
values, enumerated property, 209 

dataFormat, 93-94 
dataMember, 322-323 
dataSource, 322-323 
editing 

controls, 46 
forms, 46 

exposing, 207-208, 211 
notification for changes, 226-228, 
320-321 
setting 

controls, 6, 309 
Properties Window, 46 

properties (continued) 
specifying 

.pa 

attributes, 212-214 
persistence for, 214-215 

validating, 210 

Index 

values, using while painting, 210-211 
viewing, Watch window, 104-105 

properties value editor, 216 
Properties Window, 46 
property change notification, 226-228 
property definitions, 207 
property methods, 245-246 
property pages, 91 
property persistence, 214-215 
protected, 507 
public, 507 

Q 
Quick Start, 256-257 
quitting 

R 

applications, 162, 187 
debugging sessions, 102, 112 

RAD. See Rapid Application 
Development 
RadioButton control, 181 
Rapid Application Development (RAD), 
39, 153 
raster operations, 296 
raw native interface, 359-360 
raw pointers, 343 
rearranging columns, 93 
Rebar control, 181 
receiving 

strings from DLL functions, 334-335 
strings from OLE functions, 351 

Recompile Referenced Classes, 136 
Record Source Relation step, 88 
Record Source step, 87 
records 

navigating, 95 
retrieving sets of, 89-90 

Programmer's Guide 529 



Index 

recordsets 
associating data, DataBinder 
control, 90-91 
binding data, DataGrid control, 92-93 
navigating, DataNavigator control, 95 

recovering deleted controls, 42 
rectangles 

bounding, 276 
drawing, 297-299 

refreshing Class Outline, 69 
registering 

COM DLL, 305-306 
controls, 239-250, 307 

registration errors, 481-484 
registration information, 239-240 
Registry (Windows), 189 
Registry Key class, 189 
relationships, specifying for 
master/detail, 88 
Remove From Project, 40 
remove method, 249 
removing 

bookmarks, 55 
columns, 93 
definitions, 73 
files, 31-32 
folders, 31-32 
menus, 49 
objects, toolbox, 42 
properties, 75-76 
shortcut keys, 48 

renaming 
files, 31 
folders, 31 
methods, 352-353 

rendering graphics, 295-296 
replacing text, 52-53 
reserved words, 493-514 
resizing controls, 43 
restoring deleted controls, 42 
restrictions on callbacks, 347 
resuming 

debugging sessions, 102 
threads, 110 

530 Programmer's Guide 

retrieving 
Graphics object, 275 
record sets, 89-90 

return, 507 
return value pointers, 342 
reviewing wizard settings, 89 
RichEdit control, 182 
running 

applets, 21 
applications 

console, 19 
Dynamic HTML, 11 
WFC, 15 
Windows, 7, 9 

Data Form Wizard, 84-89 
forms, 18,310 
JVIEW.EXE, 140 
projects, 318 
registration process, 240 
WJVIEW.EXE, 148-149 

Running Documents window, 111 

s 
sample applications, 115, 156-174, 
208-212,225-226,290-294,325-326 
saving wizard settings, 89 
scope, Graphics object, 275-276 
ScrollBar control, 182 
searching for text in files, 52-53 
security issues, 360-363 
selecting 
(choosing) 

.mdb files, 85 
@dll.import, 354 
activation for design time, 234-235 
attributes for properties, 212-214 
bound fields, 87 
build configurations, 33 
database format, 84 
entry point files, 34 
form details, 86 
formats for databases, 84 
libraries, 80-81 
master/detail relationships, 88 



selecting (continued) 
methods, overloaded, 59 
options for projects,33-37 
packages, 80-81 
pages for design, 236-238 
processes for Threads debug window 
116 ' 
registration information, 239-240 
text, 55 
type library information, 239-240 
values for dynamic defaults and 
property persistence, 214-215 
verbs for controls, 235-236 
views for projects, 25-26 

server-side components, debugging 
118-119 ' 
servers, com.ms. wfc HTML package, 
267-271 
sessions, debugging, 102, 112 
Set CLASSPATH Option, 129, 143, 149 
Set Warning Level Option, 137 
setBackColor method, 230 
setBrush method, 230 
setFont method, 230 
setPen method, 230 
setText method, 249 
setTextColor method, 230 
setting 

bookmarks, 54 
breakpoints, 74, 10 1-102 
brushes, Graphics object, 289 
classpaths, 36-37 
colors for text, 281 
COM classes, 37-3H 
coordinate origins, 279 
fonts, Graphics object, 281 
options 

compilers, 34-35 
grids, 44-45 
JlDirect Call Builder, 327 
projects, 33-39 

pens, Graphics object, 285 
persistence for property values, 215 

setting (continued) 
properties 

controls, 6, 309 
Properties Window, 46 

startup projects, 24 
views, Object Browser, 79 

shapes, drawing, 297-302 
short, 508 
shortcut keys 

adding, 48 
debugging windows, 105-106 
deleting, 48 

shrinking graphics, 295 
sizes of controls, 229 
sizing controls, 43 
solid brushes, 286 
solutions 

adding to projects, 23-24 
creating for multiprojects, 23-24 
defined,3 

sorting classes and members, 81-82 
Source Code Control, 123 
source editor, 26 
specifying 

.mdb files, 85 
@dll.import, 354 

Index 

activation for design time, 234-235 
attributes for properties, 212-214 
bound fields, 87 
build configurations, 33 
database format, 84 
entry point files, 34 
form details, 86 
formats for databases, 84 
libraries, 80-81 
master/detail relationships, 88 
methods, overloaded, 59 
options for projects,33-37 
packages, 80-81 
pages for design, 236-238 
processes for Threads debug 
window, 116 
registration information, 239-240 

Programmer's Guide 531 



Index 

specifying (continued) 
text, 55 
type library information, 239-240 
values for dynamic defaults and 
property persistence, 214-215 
verbs for controls, 235-236 
views for projects, 25-26 

splines, bezier, 302 
Splitter control, 182 
splitting windows in Text Editor, 51 
stack frames, 110 
starting, debugging sessions, 118-119 
startup projects, setting, 24 
statement completion code, 56-62 
statements 

creating, Word Completion, 57-58 
executing, 107 

static, 508 
StatusBar control, 182 
steps 

Connect Information, 85-86 
Control Selection, 88 
Database, 85 
Database Type, 84 
Form, 86 
Record Source, 87 
Record Source Relation, 88 
Summary, 89 

stopping 
applications, 162, 187 
debugging sessions, 102, 112 

storage for threads, 200 
strings, 333-335, 340 
structures, 336-341 
style inheritance, 263 
styles, dynamic, 262-263 
Summary step, 89 
super, 508 
Suppress Warning Messages, 133 
Supress Copyright Banner, 133 
suspending threads, 109-110 
~witch, 509 
synchronized,510 

532 Programmer's Guide 

syntax 
JlDirect, 328-330 
JVC, 125-126 
JVIEW, 139-140 
OLE mode, 349 
WJVIEW, 148 

system information, accessing, 188-189 
System Property Option, 145, 149 

T 
TabBase control, 182 
tables, dynamic, 264-267 
tabs 

Classpath, 36 
COM Classes, 37 

templates 
adding controls, 43 
parts of, 162-163 

terminating 
applications, 162, 187 
debugging sessions, 102, 112 

testing controls, 254, 306 
text 

copying, 51 
drawing, 280-281 
finding, 52-53 
moving, 51 
selecting, 55 
setting colors, 281 

Text Editor 
adding code, 12-13, 19 
Class Outline, 64-74 
disabling statement completion 
options, 56-57 
dynamic syntax checking, 63 
enabling statement completion 
options, 56-57 
managing files, 51-55 
viewing code, 11, 16,20-21 

this, 510 
thread exceptions, 200 
thread storage, 200 



threads 
changing, Call Stack window, 110 
creating, 194-199 
exceptions for, 200 
exiting, 194-199 
resuming, 110 
storage for, 200 
viewing, Threads window, 107-110 
WFC (Windows Foundation Classes 
for Java), 193-200,206 

Threads debug window, 107-109 
throw, 511 
throws, 511 
time information, 190 
time values, 94 
tips for errors, 63 
toggle, display in project directory 
structure, 32 
ToolBar control, 182 
toolbars, displaying, 101 
toolboxes 

adding controls, 252 
adding objects, 41-42 

TrackBar control, 182 
transient, 512 
translating applications, 186-187 
Tree View control, 182 
troubleshooting, 366-368 
true, 512 
trusted classes, 360 
try, 512-513 
type library, 38,239-240 
type Object, 345 

u 
Unicode, 355-357 
untrusted classes, 360 
updating 

Class Outline, 64-68 
visual display, 230-231 

UpDown control, 182 
user interactions, capturing with 
controls, 219-220 
UserControl, 247 

Index 

v 
validating properties, 210 
ValueEditorAttribute, 214 
values 

creating, enumerated property, 209 
formatting, 94-95 
property, using while painting, 
210-211 
return value pointers, 342 
specifying for dynamic defaults and 
property persistence, 214-215 

values, viewing, Auto window, 102-103 
variables 

adding, 72, 106 
changing values, 103-105 
environment for, CLASSP ATH, 
127-128 
evaluating, Immediate window, 
106-107 
viewing 

Locals window, 103-104 
Watch window, 104-105 

VARIANTs, 352 
viewing 

applications 
JVIEW, 139-147 
WJVIEW, 147-149 

classes, 78-79 
code, Text Editor, 11, 16,20-21 
definitions, 79 
document lists, Running Documents 
window, 111 
expressions, Watch window, 104-105 
files, full-screen mode, 52 
hidden members, 79 
objects, toolbox, 42 
procedures, Call Stack window, 110 
properties, Watch window, 104-105 
threads, Threads window, 107-110 
values 

Auto window, 102-103 
Immediate window, 106-107 

Programmer's Guide 533 



Index 

variables 
Locals window, 103-104 
Watch window, 104-105 

views 
choosing for projects, 25-26 
Project Explorer, 4 

Visual Basic, testing controls in, 306 
visual components of WFC (Windows 
Foundation Classes for Java, 177-183 
Visual J++ 

bound components, 323 
importing projects, 38 

void,514 
volatile, 514 

w 
warnings, 369-484 
Watch window 

shortcut keys, 105-106 
viewing variables, properties, and 
expressions, 104-105 

WFC Brush object, 287-289 
WFC Component Builder, 75-78, 
244-245,246 
WFC controls, 155,304 
WFC Pen object, 283-284 
WFC (Windows Foundation Classes for 
Java) 

building applications, 7 
changing forms, 14 
controls, 180-182 
creating 

applications, 5-7,13 
controls, 15-18,201-254 
projects, 3-36, 308 

data binding, 319-324 
debugging applications, 112-113 
handling events, 183-185 
Java threads, using with, 193-200 
packages for, 176-177 
programming in, 153-200 
running applications, 7 
threading, 206 
visual components, 177-183 

534 Programmer's Guide 

while, 514 
Win32 

combining threading models, 194 
compared to OLE, 349-350 

windows 
handles for, 205-206 
splitting, Text Editor, 51 

Windows, creating applications in, 5-9, 
325-368 
Windows Foundation Classes for Java. 
See entries under WFC 
Windows Registry, 189 
winLossPercentage method, 313 
wizards 

Application Wizard, 7-9 
Data Form, 84-89 
reviewing settings, 89 
saving settings, 89 

WJVIEW, viewing applications in, 
147-149 
Word Completion, creating, statements, 
57-58 
words, reserved, 493-514 
writing 

applications with JlDirect, 325-368 
controls in WFC, 201-242 
statement completion code, 56-62 



Vsoft 
ISUaI J++ 6.0 
Programmer's Guide 

Visualize the benefits of integrated Windows 
functionality and Java productivity_ 
With the MICROSOFT VISUAL J++ 6.0 PROGRAMMER'S GUIDE, you'll discover how the latest 
enhancements to one of the industry's top Java tools can pay big programming dividends 
for Windows® and the Web. Visual J++ 6.0 melds the power of the Windows platform 
with the productivity of the Java language, creating rich opportunities for extending 
application performance. This essential guide offers amply illustrated how-to information 
and documentation direct from the Microsoft development team-helping you acquire 
the Visual J++ savvy you need to build everything from applications fueled by ActiveX® 
technologies to data-driven client/server systems. You'll learn: 

• What's new in version 6.O-Windows Foundation Classes (WFC), embedded DHTML3, cross-process 
and remote debugging, conditional compilation , one-button application deployment, and other 
innovations. 

• Visual J++ programming basics-form design, wizards and builders, code editing and debugging, and 
project packaging and deployment. 

• How to work in the Visual J++ 6.0 environment-two-way visual design/ RAD tools, J/ Direct'" API 
architecture, component development support, advanced data access, and data binding. 

The MICROSOFT VISUAL J++ 6.0 PROGRAMMER'S GUIDE-your key resource for learning how to build 
applications that do more over the 'Net and across the enterprise. 

Part No. 097-0001983 

The ultimate resource for every Visual J++ programmer's bookshelf. 

Enrich your development efforts with the Microsoft Visual J++ 6.0 Reference Library. You get two 
volumes with the complete A- Z listing of the all-new Microsoft Windows Foundation Classes for 
rapid development of Windows-based applications. 

mspress. m icrosoft.com 

Progra m m i ngj Java 

Microsoft Press 


