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Introduction

The C language is a general-purpose programming language known for its efficiency,
economy, and portability. While these characteristics make it a good choice for almost
any kind of programming, C has proven especially useful in systems programming
because it facilitates writing fast, compact programs that are readily adaptable to
other systems. Well-written C programs are often as fast as assembly-language
programs, and they are typically easier for programmers to read and maintain.

C is a flexible language that leaves many programming decisions up to you. In
keeping with this philosophy, C imposes few restrictions in matters such as type
conversion. Although this characteristic of the language can make your programming
job easier, you must know the language well to understand how programs will
behave. This book provides information on the C language components and the

- features of the Microsoft implementation. The syntax for the C language is from
ANSI X3.159-1989, American National Standard for Information Systems —
Programming Language — C (hereinafter called the ANSI C standard), although it is
not part of the ANSI C standard. Appendix A, C Language Syntax Summary,
provides the syntax and a description of how to read and use the syntax definitions.

This book does not discuss programming with C++. See the C++ Language
Reference for information about the C++ language.

Note For information on Microsoft product support, see the PSS.HLP file.

ANSI Conformance

Microsofte® C conforms to the standard for the C language as set forth in the ANSI C
standard. Microsoft extensions to the ANSI C standard are noted in the text and
syntax of this book as well as in the online reference. Because the extensions are not
a part of the ANSI C standard, their use may restrict portability of programs between
systems. By default, the Microsoft extensions are enabled. To disable the extensions,
specify the /Za compiler option. With /Za, all non-ANSI code generates errors or
warnings.






CHAPTER 1

Elements of C

This chapter describes the elements of the C programming language, including the
names, numbers, and characters used to construct a C program. The ANSI C syntax
labels these components “tokens.” This chapter explains how to define tokens and
how the compiler evaluates them.

The following topics are discussed:

Tokens
Comments
Keywords
Identifiers
Constants
String literals

Punctuation and special characters

The chapter also includes reference tables for trigraphs, floating-point constants,
integer constants, and escape sequences.

“Operators” are symbols (both single characters and character combinations) that
specify how values are to be manipulated. Each symbol is interpreted as a single unit,
called a token. For more information, see “Operators” on page 99 in Chapter 4.

Tokens

In a C source program, the basic element recognized by the compiler is the “token.”
A token is source-program text that the compiler does not break down into
component elements.
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Syntax

token :
keyword
identifier
constant
string-literal
operator
punctuator

Note See the introduction to Appendix A, “C Language Syntax Summary,” for an explanation
of the ANSI syntax conventions.

The keywords, identifiers, constants, string literals, and operators described in this
chapter are examples of tokens. Punctuation characters such as brackets ([ 1), braces
({ }), parentheses ( () ), and commas (,) are also tokens.

White-Space Characters

Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters
are called “white-space characters” because they serve the same purpose as the spaces
between words and lines on a printed page—they make reading easier. Tokens are
delimited (bounded) by white-space characters and by other tokens, such as operators
and punctuation. When parsing code, the C compiler ignores white-space characters
unless you use them as separators or as components of character constants or string
literals. Use white-space characters to make a program more readable. Note that the
compiler also treats comments as white space.

Comments

A “comment” is a sequence of characters beginning with a forward slash/asterisk
combination (/*) that is treated as a single white-space character by the compiler and
is otherwise ignored. A comment can include any combination of characters from the
representable character set, including newline characters, but excluding the “end
comment” delimiter (*/). Comments can occupy more than one line but cannot be
nested.

Comments can appear anywhere a white-space character is allowed. Since the
compiler treats a comment as a single white-space character, you cannot include
comments within tokens. The compiler ignores the characters in the comment.

Use comments to document your code. This example is a comment accepted by the
compiler:

/* Comments can contain keywords such as
for and while without generating errors. */

Comments can appear on the same line as a code statement:

printf( "Hello\n" ); /* Comments can go here */



Chapter 1

You can choose to precede functions or program modules with a descriptive comment
block:

/* MATHERR.C illustrates writing an error routine
* for math functions.
*/

Since comments cannot contain nested comments, this example causes an error:

/* Comment out this routine for testing

/* Open file */
fh = _open( "myfile.c", _O_RDONLY );

* / )
The error occurs because the compiler recognizes the first */, after the words Open

file, as the end of the comment. It tries to process the remaining text and produces
an error when it finds the */ outside a comment.

While you can use comments to render certain lines of code inactive for test purposes,
the preprocessor directives #if and #endif and conditional compilation are a useful
alternative for this task. For more information, see Chapter 1, “The Preprocessor,” in
the Preprocessor Reference.

Microsoft Specific —

The Microsoft compiler also supports single-line comments preceded by two forward
slashes (/). If you compile with /Za (ANSI standard), these comments generate
errors. These comments cannot extend to a second line.

// This is a valid comment

Comments beginning with two forward slashes (/) are terminated by the next
newline character that is not preceded by an escape character. In the next example,
the newline character is preceded by a backslash (), creating an “escape sequence.”
This escape sequence causes the compiler to treat the next line as part of the previous
line. (For more information, see “Escape Sequences” on page 17.)

// my comment \
4+

Therefore, the i++; statement is commented out.

The default for Microsoft C is that the Microsoft extensions are enabled. Use /Za to
disable these extensions.

END Microsoft Specific

Elements of C
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Evaluation of Tokens

When the compiler interprets tokens, it includes as many characters as possible in a
single token before moving on to the next token. Because of this behavior, the
compiler may not interpret tokens as you intended if they are not properly separated
by white space. Consider the following expression:

i+++]

In this example, the compiler first makes the longest possible operator (++) from the
three plus signs, then processes the remaining plus sign as an addition operator (+).
Thus, the expression is interpreted as (i++) + (j), not (i) + (++j). In this and
similar cases, use white space and parentheses to avoid ambiguity and ensure proper
expression evaluation.

Microsoft Specific —

The C compiler treats a CTRL+Z character as an end- of file indicator. It i 1gnores any
text after CTRL+Z.

END Microsoft Specific

Keywords

“Keywords” are words that have special meaning to the C compiler. In translation
phases 7 and 8, an identifier cannot have the same spelling and case as a C keyword.
(For a description of translation phases, see Chapter 1, “The Preprocessor,” in the
Preprocessor Reference; for information on identifiers, see “Identifiers” on page 5.)
The C language uses the following keywords:

auto double int struct
break else long switch
case enum . register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

You cannot redefine keywords. However, you can specify text to be substituted for
keywords before compilation by using C preprocessor directives (see Chapter 1, “The
Preprocessor,” in the Preprocessor Reference).

Microsoft Specific —

The ANSI C standard allows identifiers with two leading underscores to be reserved
for compiler implementations. Therefore, the Microsoft convention is to precede
Microsoft-specific keyword names with double underscores. These words cannot be
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used as identifier names. For a description of the ANSI rules for naming identifiers,
including the use of double underscores, see the next section, “Identifiers.”

The following keywords and special identifiers are recognized by the Microsoft C

compiler:

__asm dilimport? _ _int8 naked?

_ _based! _ _except _ _intlé6 _ _stdéall )
_ _cdecl _ _fastcall _ _int32 thread2

_ _declspec’ _ _finally _ _int64 __try
dllexport? _ _inline _ _leave

1 The __based keyword has limited uses for 32-bit target compilations.

2 These are special identifiers when used with __declspec; their use in other contexts is not restricted.

Microsoft extensions are enabled by default. To ensure that your programs are fully
portable, you can disable Microsoft extensions by specifying the /Za option (compile
for ANSI compatibility) during compilation. When you do this, Microsoft-specific
keywords are disabled.

‘When Microsoft extensions are enabled, ybu can use the keywords listed above in
your programs. For ANSI compliance, most of these keywords are prefaced by a
double underscore. The four exceptions, dllexport, dllimport, naked, and thread,
are used only with _ _declspec and therefore do not require a leading double
underscore. For backward compatibility, single-underscore versions of the rest of the
keywords are supported.

END Microsoft Specific

Identifiers

“Identifiers” or “symbols” are the names you supply for variables, types, functions,
and labels in your program. Identifier names must differ in spelling and case from
any keywords. You cannot use keywords (either C or Microsoft) as identifiers; they
are reserved for special use. You create an identifier by specifying it in the declaration
of a variable, type, or function. In this example, result is an identifier for an integer
variable, and main and printf are identifier names for functions.

void main()

{
int result;
if ( result !=10)
printf( "Bad file handle\n" );
}

Once declared, you can use the identifier in later program statements to refer to the
associated value.
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A special kind of identifier, called a statement label, can be used in goto statements.
(Declarations are described in Chapter 3, “Declarations and Types.” Statement labels
are described in “The goto and Labeled Statements” in Chapter 5.)

Syntax

identifier :
nondigit
identifier nondigit
identifier digit

nondigit . one of

_abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit: one of
0123456789

The first character of an identifier name must be a nondigit (that is, the first character
must be an underscore or an uppercase or lowercase letter). ANSI allows six
significant characters in an external identifier’s name and 31 for names of internal
(within a function) identifiers. External identifiers (ones declared at global scope or
declared with storage class extern) may be subject to additional naming restrictions
because these identifiers have to be processed by other software such as linkers.

Microsoft Specific —

Although ANSI allows 6 significant characters in external identifier names and 31
for names of internal (within a function) identifiers, the Microsoft C compiler allows
247 characters in an internal or external identifier name. If you aren’t concerned with
ANSI compatibility, you can modify this default to a smaller or larger number using
the /H (restrict length of external names) option.

END Microsoft Specific

The C compiler considers uppercase and lowercase letters to be distinct characters.
This feature, called “case sensitivity,” enables you to create distinct identifiers that
have the same spelling but different cases for one or more of the letters. For example,
each of the following identifiers is unique:

add
ADD
Add
aDD

Microsoft Specific —

Do not select names for identifiers that begin with two underscores or with an
underscore followed by an uppercase letter. The ANSI C standard allows identifier
names that begin with these character combinations to be reserved for compiler use.
Identifiers with file-level scope should also not be named with an underscore and a
lowercase letter as the first two letters. Identifier names that begin with these
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characters are also reserved. By convention, Microsoft uses an underscore and an
uppercase letter to begin macro names and double underscores for Microsoft-specific
keyword names. To avoid any naming conflicts, always select identifier names that do
not begin with one or two underscores, or names that begin with an underscore
followed by an uppercase letter.

END Microsoft Specific

The following are examples of valid identifiers that conform to either ANSI or
Microsoft naming restrictions:

J

count

templ

top_of_page

skipl2

LastNum

Microsoft Specific —

Although identifiers in source files are case sensitive by default, symbols in object
files are not. Microsoft C treats identifiers within a compilation unit as case sensitive.
The Microsoft linker is case sensitive.

You must specify all identifiers consistently according to case.

The “source character set” is the set of legal characters that can appear in source
files. For Microsoft C, the source set is the standard ASCII character set. The source
character set and execution character set include the ASCII characters used as escape
sequences. See “Character Constants” on page 16 for information about the execution
character set.

END Microsoft Specific

An identifier has “scope,” which is the region of the program in which it is known,
and “linkage,” which determines whether the same name in another scope refers to
the same identifier. These topics are explained in “Lifetime, Scope, Visibility, and
Linkage” on page 32 in Chapter 2.

Multibyte and Wide Characters

A multibyte character is a character composed of sequences of one or more bytes.
Each byte sequence represents a single character in the extended character set.
Multibyte characters are used in character sets such as Kanji.

Wide characters are multilingual character codes that are always 16 bits wide. The
type for character constants is char; for wide characters, the type is wehar_t. Since
wide characters are always a fixed size, using wide characters simplifies
programming with international character sets.

The wide-character-string literal L"he110" becomes an array of six integers of type
wchar_t.
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{L'h', L'e", L'T", L'T", L'0", 0}
The Unicode specification is the specification for wide characters. The run-time

library routines for translating between multibyte and wide characters include
mbstowces, mbtowe, westombs, and wetomb.

Trigraphs
The source character set of C source programs is contained within the 7-bit ASCII
character set but is a superset of the ISO 646-1983 Invariant Code Set. Trigraph
sequences allow C programs to be written using only the ISO (International
Standards Organization) Invariant Code Set. Trigraphs are sequences of three
characters (introduced by two consecutive question marks) that the compiler replaces
with their corresponding punctuation characters. You can use trigraphs in C source
files with a character set that does not contain convenient graphic representations for
some punctuation characters.

Table 1.1 shows the nine trigraph sequences. All occurrences in a source file of the
punctuation characters in the first column are replaced with the corresponding
character in the second column.

Table 1.1 Trigraph Sequences

Trigraph Punctuation Character

1= #
27(
2
27)

> b~

m

<

— -

m

7> }
7. ~

A trigraph is always treated as a single source character. The translation of trigraphs
takes place in the first translation phase, before the recognition of escape characters
in string literals and character constants. (See Chapter 1, “The Preprocessor,” in the
Preprocessor Reference for information about translation phases.) Only the nine
trigraphs shown in Table 1.1 are recognized. All other character sequences are left
untranslated.

The character escape sequence, \?, prevents the misinterpretation of trigraph-like
character sequences. (For information about escape sequences, see “Escape
Sequences” on page 17.) For example, if you attempt to print the string What??! with
this printf statement

printf( "What??!\n" );
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the string printed is What | because ??! is a trigraph sequence that is replaced with
the | character. Write the statement as follows to correctly print the string:

printf( "What?\?2!\n" );

In this printf statement, a backslash escape character in front of the second question
mark prevents the misinterpretation of 2?1 as a trigraph.

Constants

A “constant” is a number, character, or character string that can be used as a value in
a program. Use constants to represent floating-point, integer, enumeration, or
character values that cannot be modified.

Syntax

constant :
floating-point-constant
integer-constant
enumeration-constant
character-constant

Constants are characterized by having a value and a type. Floating-point, integer, and
character constants are discussed in the next three sections. Enumeration constants
are described in “Enumeration Declarations” on page 55 in Chapter 3.

Floating-Point Constants

A “floating-point constant” is a decimal number that represents a signed real number.
The representation of a signed real number includes an integer portion, a fractional
portion, and an exponent. Use floating-point constants to represent ﬂoatmg-pomt
values that cannot be changed.

Syntax

floating-point-constant
fractional-constant exponent-part ., floating-suffix .,
digit-sequence exponent-part floating-suffix .y

fractional-constant :
digit-sequence . . digit-sequence
digit-sequence .
exponent-part
e sign ., digit-sequence
E sign  digit-sequence
sign : one of
+ -
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digit-sequence :
digit
digit-sequence digit
floating-suffix : one of
fl1FL

You can omit either the digits before the decimal point (the integer portion of the
value) or the digits after the decimal point (the fractional portion), but not both. You
can leave out the decimal point only if you include an exponent. No white-space
characters can separate the digits or characters of the constant.

The following examples illustrate some forms of floating-point constants and
expressions:

15.75

1.575E1 /* = 15.75  */
1575e-2  /* = 15.75  */
-2.5e-3  /* = -0.0025 */
25E-4 /* = 0.0025 */

Floating-point constants are positive uniess they are preceded by a minus sign (-). In
this case, the minus sign is treated as a unary arithmetic negation operator. Floating-
point constants have type float, double, long, or long double.

" A floating-point constant without an f, F, 1, or L suffix has type double. If the letter f

or F is the suffix, the constant has type float. If suffixed by the letter 1 or L, it has
type long double. For example:

100L /* Has type long double */
100F /* Has type float */
100D /* Has type double */

Note that the Microsoft C compiler maps long double to type double. See “Storage of
Basic Types” on page 81 in Chapter 3 for information about type double, float, and
long.

You can omit the integer portion of the floating-point constant, as shown in the
following examples. The number .75 can be expressed in many ways, including the
following:

.0075e2
0.075el
.075el
75e-2
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Microsoft Specific —
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Limits on the values of floating-point constants are given in Table 1.2. The header
file FLOAT.H contains this information.

Table 1.2 Limits on Floating-Point Constants

Constant Meaning Value
FLT_DIG Number of digits, g, such 6
DBL_DIG that a floating-point number 15
LDBL_DIG with ¢ decimal digits can be 15

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

rounded into a floating-point
representation and back
without loss of precision.

Smallest positive number x,
such that x + 1.0 is not equal
to 1.0

Number of digits in the radix

specified by FLT_RADIX in

the floating-point
significand. The radix is 2;
hence these values specify
bits.

Maximum representable
floating-point number.

Maximum integer such that
10 raised to that number is a
representable floating-point
number. ‘

Maximum integer such that
FLT_RADIX raised to that
number is a representable
floating-point number.

Minimum positive value.

Minimum negative integer
such that 10 raised to that
number is a representable
floating-point number.

1.192092896e-07F
2.2204460492503131e-016
2.2204460492503131e-016

0

24
53
53

3.402823466¢e+38F
1.7976931348623158e+308
1.7976931348623158e+308

38 .
308
308

128
1024
1024

1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308

=37
-307
=307

Elements of C

11
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Table 1.2 Limiis on Floating-Point Constants (continued)

Constant Meaning Value
FLT_MIN_EXP Minimum negative integer such 125
DBL_MIN_EXP that FLT_RADIX raised to that  —1021
LDBL_MIN_EXP number is a representable -1021

’ floating-point number.
FLT_NORMALIZE 0
FLT_RADIX Radix of exponent 2
_DBL_RADIX representation. 2
_LDBL_RADIX 2
FLT_ROUNDS Rounding mode for floating- 1 (near)
_DBL_ROUNDS point addition. 1 (near)
_LDBL_ROUNDS 1 (near)

Note that the information in Table 1.2 may differ in future implementations.

END Microsoft Specific

Integer Constants

An “integer constant” is a decimal (base 10), octal (base 8), or hexadecimal (base 16)
number that represents an integral value. Use integer constants to represent integer

12

values that cannot be changed.

Syntax

integer-constant .
decimal-constant integer-suffix .,
octal-constant integer-suffix o
hexadecimal-constant integer-suffix o

decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit : one of
123456789

octal-digit : one of
01234567
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hexadecimal-digit : one of
0123456789
abcdef
ABCDEF

integer-suffix :
unsigned-suffix long-suffix .
long-suffix unsigned-suffix .,

unsigned-suffix : one of
ulU

long-suffix : one of
1L

Integer constants are positive unless they are preceded by a minus sign (). The
minus sign is interpreted as the unary arithmetic negation operator. (See “Unary
Arithmetic Operators” on page 110 in Chapter 4 for information about this operator.)

If an integer constant begins with the letters 0x or 0X, it is hexadecimal. If it begins
with the digit 0, it is octal. Otherwise, it is assumed to be decimal.

The following lines are equivalent:

0x1C  /* = Hexadecimal representation for decimal 28 */
034 /* = Octal representation for decimal 28 */

No white-space characters can separate the digits of an integer constant. These
examples show valid decimal, octal, and hexadecimal constants.

/* Decimal Constants */
10

132

32179

/* Octal Constants */
012

0204

076663

/* Hexadecimal Constants */
Oxa or OxA

0x84

0x7dB3 or 0X7DB3

Integer Types

Every integer constant is given a type based on its value and the way it is expressed.
You can force any integer constant to type long by appending the letter 1 or L to the

end of the constant; you can force it to be type unsigned by appending u or U to the

value. The lowercase letter 1 can be confused with the digit 1 and should be avoided.
Some forms of long integer constants follow:

Elements of C
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/* Long decimal constants */
10L
79L

/* Long octal constants */
012L
0115L

/* Long hexadecimal constants */
Oxal or OxAL
0X4fL or OX4FL

/* Unsigned long decimal constant */
776745UL
778866LU

The type you assign to a constant depends on the value the constant represents. A
constant’s value must be in the range of representable values for its type. A constant’s
type determines which conversions are performed when the constant is used in an
expression or when the minus sign (-) is applied. This list summarizes the
conversion rules for integer constants.

e The type for a decimal constant without a suffix is either int, long int, or unsigned
long int. The first of these three types in which the constant’s value can be
represented is the type assigned to the constant.

o The type assigned to octal and hexadecimal constants without suffixes is int,
unsigned int, long int, or unsigned long int depending on the size of the constant.

¢ The type assigned to constants with a u or U suffix is unsigned int or unsigned
long int depending on their size.

e The type assigned to constants with an 1 or L suffix is long int or unsigned long
int depending on their size.

e The type assigned to constants with a u or U and an 1 or L suffix is unsigned long
int.

Integer Limits

Microsoft Specific —

The limits for integer types are listed in Table 1.3. These limits are defined in the
standard header file LIMITS.H. Microsoft C also permits the declaration of sized
integer variables, which are integral types of size 8-, 16-, or 32-bits. For more
information on sized integers, see “Sized Integer Types” on page 82 in Chapter 3.
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Constant Meaning Value
CHAR_BIT Number of bits in the smallest 8
variable that is not a bit field.
SCHAR_MIN Minimum value for a variable of -128
type signed char.
SCHAR_MAX Maximum value for a variable of 127.
type signed char.
UCHAR_MAX Maximum value for a variable of 255 (0xff)
type unsigned char. )
CHAR_MIN Minimum value for a variable of —128; 0 if /J option used
type char.
CHAR_MAX Maximum value for a variable of 127, 255 if /J option used
type char.
MB_LEN_MAX Maximum number of bytes in a 2
multicharacter constant.
SHRT_MIN Minimum value for a variable of -32768
' type short.
SHRT _MAX Maximum value for a variable of 32767
type short.
USHRT_MAX Maximum value for a variable of 65535 (0xffff)
type unsigned short.
INT_MIN Minimum value for a variable of -2147483647-1
type int.
INT_MAX Maximum value for a variable of 2147483647
type int.
UINT_MAX Maximum value for a variable of 4294967295 (OxfLfftfff)
' type unsigned int.
LONG_MIN Minimurg value for a variable of —2147483647-1
type long.
LONG_MAX Maximum value for a variable of 2147483647
type long. ]
ULONG_MAX Maximum value for a variable of 4294967295 (Ox{ffffifr)

type unsigned long.

If a value exceeds the largest integer representation, the Microsoft compiler generates

angerror.

END Microsoft Specific
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A “character constant” is formed by enclosing a single character from the
representable character set within single quotation marks (' ). Character constants
are used to represent characters in-the execution character set.

Syntax

character-constant :
'c-char-sequence'
L' c-char-sequence’

c-char-sequence :
c-char
c-char-sequence c-cha

c-char :
Any member of the source character set except the single quotation mark (*),
backslash (\), or newline character
escape-sequence

escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\a\b\f\n\ri\tlw
AN\ Vs

octal-escape-sequence
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Character Types

An integer character constant not preceded by the letter L has type int. The value of
an integer character constant containing a single character is the numerical value of
the character interpreted as an integer. For example, the numerical value of the
character a is 97 in decimal and 61 in hexadecimal.

Syntactically, a “wide-character constant” is a character constant prefixed by the
letter L. A wide-character constant has type wehar_t, an integer type defined in the
STDDEF.H header file. For example:



Chapter 1
char schar = 'x'; /* A character constant */
wchar_t wchar = L'x"; /* A wide-character constant for
the same character . */

Wide-character constants are 16 bits wide and specify members of the extended
execution character set. They allow you to express characters in alphabets that are too
large to be represented by type char. See “Multibyte and Wide Characters” on page 7
for more information about wide characters.

Execution Character Set

This book often refers to the “execution character set.” The execution character set is
not necessarily the same as the source character set used for writing C programs. The
execution character set includes all characters in the source character set as well as
the null character, newline character, backspace, horizontal tab, vertical tab, carriage
return, and escape sequences. The source and execution character sets may differ in
other implementations.

Escape Sequences

Character combinations consisting of a backslash (\) followed by a letter or by a
combination of digits are called “escape sequences.” To represent a newline
character, single quotation mark, or certain other characters in a character constant,
you must use escape sequences. An escape sequence is regarded as a single character
and is therefore valid as a character constant.

Escape sequences are typically used to specify actions such as carriage returns and tab
movements on terminals and printers. They are also used to provide literal
representations of nonprinting characters and characters that usually have special
meanings, such as the double quotation mark ("'). Table 1.4 lists the ANSI escape
sequences and what they represent.

Note that the question mark preceded by a backslash (\?) specifies a literal question
mark in cases where the character sequence would be misinterpreted as a trigraph.
See “Trigraphs” on page 8 for more information.

Table 1.4 Escape Sequences

Escape Sequence Represents

\a Bell (alert)

\b Backspace

\f Formfeed

\n New line

\r Carriage return

\t : Horizontal tab

\v Vertical tab

\' Single quotation mark
\" Double quotation mark

Elements of C
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Table 1.4 Escape Sequences (Continued)

Escape Sequence Represents

\ Backslash

\? Literal question mark

\ooo ASCII character in octal notation

\xhhh ASCII character in hexadecimal notation
Microsoft Specific —

If a backslash precedes a character that does not appear in Table 1.4, the compiler
handles the undefined character as the character itself. For example, \x is treated as
an x.

END Microsoft Specific

Escape sequences allow you to send nongraphic control characters to a display
device. For example, the ESC character (\033) is often used as the first character of a
control command for a terminal or printer. Some escape sequences are device-
specific. For instance, the vertical-tab and formfeed escape sequences (\v and \f) do
not affect screen output, but they do perform appropriate printer operations.

You can also use the backslash (\) as a continuation character. When a newline
character (equivalent to pressing the RETURN key) immediately follows the backslash,
the compiler ignores the backslash and the newline character and treats the next line
as part of the previous line. This is useful primarily for preprocessor definitions
longer than a single line. For example:

f#define assert(exp) \

( (exp) ? (void) 0@:_assert( f#exp, __FILE LINE__ ) )

»

Octal and Hexadecimal Character Specifications

The sequence \ooo means you can specify any character in the ASCII character set as
a three-digit octal character code. The numerical value of the octal integer specifies
the value of the desired character or wide character.

Similarly, the sequence \x#hh allows you to specify any ASCII character as a
hexadecimal character code. For example, you can give the ASCII backspace
character as the normal C escape sequence (\b), or you can code it as \010 (octal) or
\x008 (hexadecimal).

You can use only the digits 0 through 7 in an octal escape sequence. Octal escape
sequences can never be longer than three digits and are terminated by the first
character that is not an octal digit. Although you do not need to use all three digits,
you must use at least one. For example, the octal representation is \10 for the ASCII
backspace character and \101 for the letter A, as given in an ASCII chart.
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Similarly, you must use at least one digit for a hexadecimal escape sequence, but you
can omit the second and third digits. Therefore you could specify the hexadecimal
escape sequence for the backspace character as either \x8, \x08, or \x008.

The value of the octal or hexadecimal escape sequence must be in the range of
representable values for type unsigned char for a character constant and type
wchar_t for a wide-character constant. See “Multibyte and Wide Characters” on page
7 for information on wide-character constants.

Unlike octal escape constants, the number of hexadecimal digits in an escape
sequence is unlimited. A hexadecimal escape sequence terminates at the first
character that is not a hexadecimal digit. Because hexadecimal digits include the
letters a through f, care must be exercised to make sure the escape sequence
terminates at the intended digit. To avoid confusion, you can place octal or.
hexadecimal character definitions in a macro definition:

ftdefine Bell '\x07'
For hexadecimal values, you can break the string to show the correct value clearly:

"\xabc" /* one character */
"\xab" "c" /* two characters */

String Literals

- A “string literal” is a sequence of characters from the source character set enclosed in
double quotation marks ("' '"). String literals are used to represent a sequence of
characters which, taken together, form a null-terminated string. You must always
prefix wide-string literals with the letter L.

Syntax

string-literal :
"'s-char-sequence "
L"s-char-sequence "

s-char-sequence :
s-char
s-char-sequence s-char

s-char : ;
.
any member of the source character set except the double quotation mark ("),
backslash (\), or newline character
escape-sequence

The example below is a simple string literal:
char amessage = "This is a string literal.";

All escape codes listed in Table 1.4 are valid in string literals. To represent a double
quotation mark in a string literal, use the escape sequence \''. The single quotation
mark (') can be represented without an escape sequence. The backslash (\) must be

Elements of C

19



C Language Reference

followed with a second backslash (\\) when it appears within a string. When a
backslash appears at the end of a line, it is always interpreted as a line-continuation
character.

Type for String Literals

String literals have type array of char (that is, char[ ]). (Wide-character strings have
type array of wchar_t (that is, wchar_t[ ]).) This means that a string is an array with
elements of type char. The number of elements in the array is equal to the number of
characters in the string plus one for the terminating null character.

Storage of String Literals

The characters of a literal string are stored in order at contiguous memory locations.
An escape sequence (such as \\ or \'") within a string literal counts as a single
character. A null character (represented by the \0 escape sequence) is automatically
appended to, and marks the end of, each string literal. (This occurs during translation
phase 7, which is described in Chapter 1, “The Preprocessor,” in the Preprocessor
Reference. Note that the compiler may not store two identical strings at two different
addresses. The /Gf compiler option forces the compiler to place a single copy of
identical strings into the executable file. For more information about this option, see
“Eliminate Duplicate Strings” in Chapter 21 of the Visual C++ User’s Guide.

Microsoft Specific —

Strings have static storage duration. See “Storage Classes” on page 42 in Chapter 3
for information about storage duration.

END Microsoft Specific

String Literal Concatenation

20

To form string literals that take up more than one line, you can concatenate the two
strings. To do this, type a backslash, then press the RETURN key. The backslash causes
the compiler to ignore the following newline character. For example, the string literal

"Long strings can be bro\
ken into two or more pieces."

is identical to the string
"Long strings can be broken into two or more pieces.”

String concatenation can be used anywhere you might previously have used a
backslash followed by a newline character to enter strings longer than one line.

To force a new line within a string literal, enter the newline escape sequence (\n) at
the point in the string where you want the line broken, as follows:

"Enter a number between 1 and 100\nOr press Return"
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Because strings can start in any column of the source code and long strings can be
continued in any column of a succeeding line, you can position strings to enhance
source-code readability. In either case, their on-screen representation when output is
unaffected. For example:

printf ( "This is the first half of the string, "
"this is the second half ") ;

As long as each part of the string is enclosed in double quotation marks, the parts are
concatenated and output as a single string. This concatenation occurs according to
the sequence of events during compilation specified by translation phases. See
Chapter 1, “The Preprocessor,” in the Preprocessor Reference for information on
translation phases.

"This is the first half of the string, this is the second half"

A string pointer, initialized as two distinct string literals separated only by white
space, is stored as a single string (pointers are discussed in “Pointer Declarations” on
page 68 in Chapter 3). When properly referenced, as in the following example, the
result is identical to the previous example:

char *string = "This is the first half of the string, "
"this is the second half";

printf( "%s" , string ) ;

In translation phase 6, the multibyte-character sequences specified by any sequence of
adjacent string literals or adjacent wide-string literals are concatenated into a single
multibyte-character sequence. Therefore, do not design programs to allow
modification of string literals during execution. The ANSI C standard specifies that
the result of modifying a string is undefined.

Maximum String Length

Microsoft Specific —

ANSI compatibility requires a compiler to accept up to 509 characters in a string
literal after concatenation. The maximum length of a string literal allowed in
Microsoft C is approximately 2,048 bytes. However, if the string literal consists of
parts enclosed in double quotation marks, the preprocessor concatenates the parts into
a single string, and for each line concatenated, it adds an extra byte to the total
number of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007 bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added for
each of the first 40 lines. This makes a total of 2,048 bytes. Note, however, that if line
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continuations (\) are used instead of double quotation marks, the preprocessor does
not add an extra character for each line.

END Microsoft Specific

Punctuation and Special Characters

22

The punctuation and special characters in the C character set have various uses, from
organizing program text to defining the tasks that the compiler or the compiled
program carries out. They do not specify an operation to be performed. Some
punctuation symbols are also operators (see “Operators” on page 99 in Chapter 4).
The compiler determines their use from context.

Syntax
punctuator : one of

(10O {}*,:=; .4#

These characters have special meanings in C. Their uses are described throughout
this book. The pound sign (#) can occur only in preprocessing directives. See Chapter
1 of the Preprocessor Reference for information about preprocessing directives.
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Program Structure

This chapter gives an overview of C programs and program execution. Terms and
features important to understanding C programs and components are also introduced.
Topics discussed include:

¢ Source files and source programs

e The main function and program execution
¢ Parsing command-line arguments

e Lifetime, scope, visibility, and linkage

e Name spaces

Because this chapter is an overview, the topics discussed contain introductory
material only. See the cross-referenced information for more detailed explanations.

Source Files and Source Programs

A source program can be divided into one or more “source files,” or “translation
units.” The input to the compiler is called a “translation unit.”

Syntax

translation-unit :
external-declaration
translation-unit external-declaration

external-declaration :
Sfunction-definition
declaration
“Overview of Declarations” on page 39 in Chapter 3 gives the syntax for the

declaration nonterminal, and Chapter 1, “The Preprocessor,” in the Preprocessor
Reference explains how the translation unit is processed.

Note See the introduction to Appendix A, “C Language Syntax Summary,” for an explanation
of the ANSI syntax conventions.
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The components of a translation unit are external declarations that include function
definitions and identifier declarations. These declarations and definitions can be in
source files, header files, libraries, and other files the program needs. You must
compile each translation unit and link the resulting object files to make a program.

A C “source program” is a collection of directives, pragmas, declarations, definitions,
statement blocks, and functions. To be valid components of a Microsoft C program,
each must have the syntax described in this book, although they can appear in any
order in the program (subject to the rules outlined throughout this book). However,
the location of these components in a program does affect how variables and
functions can be used in a program. (See “Lifetime, Scope, Visibility, and Linkage”
on page 32 for more information.)

Source files need not contain executable statements. For example, you may find it
useful to place definitions of variables in one source file and then declare references
to these variables in other source files that use them. This technique makes the
definitions easy to find and update when necessary. For the same reason, constants
and macros are often organized into separate files called “include files” or “header
files” that can be referenced in source files as required. See Chapter 1, “The
Preprocessor,” in the Preprocessor Reference for information about macros and
include files.

Directives to the Preprocessor

A “directive” instructs the C preprocessor to perform a specific action on the text of

-the program before compilation. Preprocessor directives are fully described in

Chapter 1, “The Preprocessor,” in the Preprocessor Reference. This example uses the
preprocessor directive #define:

ftdefine MAX 100

This statement tells the compiler to replace each occurrence of MAX by 100 before
compilation. The C compiler preprocessor directives are:

#define #endif #ifdef #line
telif #error #ifndef #pragma
telse #if #include #undef
C Pragmas

Microsoft Specific —

A “pragma” instructs the compiler to perform a particular action at compile time.
Pragmas vary from compiler to compiler. For example, you can use the optimize

_ pragma to set the optimizations to be performed on your program. The Microsoft C

pragmas are:
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alloc_text data_seg inline_recursion setlocale
auto_inline function intrinsic warning
check_stack hdrstop message

code_seg include_alias optimize

comment inline_depth pack

See Chapter 2, “Pragma Directives,” in the Preprocessor Reference for a description
of the Microsoft C compiler pragmas.

END Microsoft Specific

Declarations and Definitions

A “declaration” establishes an association between a particular variable, function, or
type and its attributes. “Overview of Declarations” on page 39 in Chapter 3 gives the
ANSI syntax for the declaration nonterminal. A declaration also specifies where and
when an identifier can be accessed (the “linkage” of an identifier). See “Lifetime,
Scope, Visibility, and Linkage” on page 32 for information about linkage.

A “definition” of a variable establishes the same associations as a declaration but also
causes storage to be allocated for the variable.

For example, the main, find, and count functions and the var and val variables are
defined in one source file, in this order:

void main()
{
}

int var = 0;
double val[MAXVALTJ;

char find( fileptr )
{
}

int count( double f )
{
}

The variables var and val can be used in the find and count functions; no further
declarations are needed. But these names are not visible (cannot be accessed) in main.

Function Declarations and Definitions

Function prototypes establish the name of the function, its return type, and the type
and number of its formal parameters. A function definition includes the function
body.

Both function and variable declarations can appear inside or outside a function
definition. Any declaration within a function definition is said to appear at the

Program Structure
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“internal” or “local” level. A declaration outside all function definitions is said to
appear at the “external,” “global,” or “file scope” level. Variable definitions, like
declarations, can appear at the internal level (within a function definition) or at the
external level (outside all function definitions). Function definitions always occur at
the external level. Function definitions are discussed further in “Function
Definitions” on page 155 in Chapter 6. Function prototypes are covered in “Function
Prototypes” on page 169 in Chapter 6.

Blocks

A sequence of declarations, definitions, and statements enclosed within curly braces
({ }) is called a “block.” There are two types of blocks in C. The “compound
statement,” a statement composed of one or more statements (see “The Compound
Statement” on page 137 in Chapter 5), is one type of block. The other, the “function
definition,” consists of a compound statement (the body of the function) plus the
function’s associated “header” (the function name, return type, and formal
parameters). A block within other blocks is said to be “nested.”

Note that while all compound statements are enclosed within curly braces, not
everything enclosed within curly braces constitutes a compound statement. For
example, although the specifications of array, structure, or enumeration elements can
appear within curly braces, they are not compound statements.

Example Program

The following C source program consists of two source files. It gives an overview of
some of the various declarations and definitions possible in a C program. Later
sections in this book describe how to write these declarations, definitions, and
initializations, and how to use C keywords such as static and extern. The prmtf
function is declared in the C header file STDIO.H.

The main and max functions are assumed to be in separate files, and execution of the
program begins with the main function. No explicit user functions are executed before
main.

/*****************************************************************

FILE1.C - main function
*****************************************************************/

ftdefine ONE 1
f#define TWO 2
ffdefine THREE 3
f#include <stdio.h>

int a = 1; /* Defining declarations */
int b = 2; /* of external variables */
extern int max( int a, int b ); /* Function prototype */
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int main() /* Function definition */
{ /* for main function */
int c; /* Definitions for */

int d; R /* two uninitialized */

/* local variables */

extern int u; /* Referencing declaration */

/* of external variable */

/* defined elsewhere */

static int v; /* Definition of variable */
: /* with continuous Tifetime */

int w = ONE, x = TWO, y = THREE;
int z = 0;
z =max( x, y ); /* Executable statements */
w=max( z, w );
printf( "%d %d\n", z, w );
return 0;
}

/****************************************************************

FILE2.C - definition of max function
****************************************************************/

int max( int a, int b ) /* Note formal parameters are */
/* dincluded in function header */
{
ifCa>b)
return( a );
else
‘return( b );
}

FILE1.C contains the prototype for the max function. This kind of declaration is
sometimes called a “forward declaration” because the function is declared before it is
used. The definition for the main function includes calls to max.

The lines beginning with #define are preprocessor directives. These directives tell
the preprocessor to replace the identifiers ONE, TW0, and THREE with the numbers 1, 2,
and 3, respectively, throughout FILE1.C. However, the directives do not apply to
FILE2.C, which is compiled separately and then linked with FILE1.C. The line
beginning with #include tells the compiler to include the file STDIO.H, which
contains the prototype for the printf function. Preprocessor directives are explained
in Chapter 1, “The Preprocessor,” in the Preprocessor Reference.

FILE1.C uses defining declarations to initialize the global variables a and b. The
local variables c and d are declared but not initialized. Storage is allocated for all
these variables. The static and external variables, u and v, are automatically
initialized to 0. Therefore only a, b, u, and v contain meaningful values when
declared because they are initialized, either explicitly or implicitly. FILE2.C contains
the function definition for max. This definition satisfies the calls to max in FILE1.C.

Program Structure
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The lifetime and visibility of identifiers are discussed in “Lifetime, Scope, Visibility,
and Linkage” on page 32. For more information on functions, see Chapter 6,
“Functions” on page 153.

The main Function and Program Execution

Every C program has a primary (main) function that must be named main. If your
code adheres to the Unicode programming model, you can use the wide-character
version of main, wmain. The main function serves as the starting point for program
execution. It usually controls program execution by directing the calls to other
functions in the program. A program usually stops executing at the end of main,
although it can terminate at other points in the program for a variety of reasons. At
times, perhaps when a certain error is detected, you may want to force the
termination of a program. To do so, use the exit function. See the Run-Time Library
Reference for information on and an example using the exit function.

Functions within the source program perform one or more specific tasks. The main
function can call these functions to perform their respective tasks. When main calls
another function, it passes execution control to the function, so that execution begins
at the first statement in the function. A function returns control to main when a
return statement is executed or when the end of the function is reached.

You can declare any function, including main, to have parameters. The term
“parameter” or “formal parameter” refers to the identifier that receives a value passed
to a function. See “Parameters” on page 167 in Chapter 6 for information on passing
arguments to parameters. When one function calls another, the called function
receives values for its parameters from the calling function. These values are called
“arguments.” You can declare formal parameters to main so that it can receive
arguments from the command line using this format:

main( int argc, char *argv[ ], char *envp[])

When you want to pass information to the main function, the parameters are
traditionally named argc and argv, although the C compiler does not require these
names. The types for argc and argv are defined by the C language. Traditionally, if a
third parameter is passed to main, that parameter is named envp. The type for the
envp parameter is mandated by ANSI, but the name is not. Examples later in this
chapter show how to use these three parameters to access command-line arguments.
The following sections explain these parameters.

Using wmain
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In the Unicode programming model, you can define a wide-character version of the
main function. Use wmain instead of main if you want to write portable code that
adheres to the Unicode programming model.
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You declare formal parameters to wmain using a similar format to main. You can
then pass wide-character arguments and, optionally, a wide-character environment
pointer to the program. The argv and envp parameters to wmain are of type
wchar_t*. For example:

wmain( int argc, wchar_t *argv[ 1, wchar_t *envp[ ])

If your program uses a main function, the multibyte-character environment is created
by the run-time library at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _wgetenv or _wputenv
functions). On the first call to _wputenv, or on the first call to _wgetenv if an MBCS
environment already exists, a corresponding wide-character string environment is-
created and is then pointed to by the _wenviron global variable, which is a wide-
character version of the _environ global variable. At this point, two copies of the
environment (MBCS and Unicode) exist simultaneously and are maintained by the
operating system throughout the life of the program.

Similarly, if your program uses a wmain function, a wide-character environment is
created at program startup and is pointed to by the _wenviron global variable. An
MBCS (ASCII) environment is created on the first call to _putenv or getenv, and is
pointed to by the _environ global variable.

For more information on the MBCS environment, see “Internationalization” in
Chapter 1 of the Run-Time Library Reference.

END Microsoft Specific

Argument Description

The argc parameter in the main and wmain functions is an integer specifying how
many arguments are passed to the program from the command line. Since the
program name is considered an argument, the value of argc is at least one.

The argv parameter is an array of pointers to null-terminated strings representing the
program arguments. Each element of the array points to a string representation of an
argument passed to main (or wmain). (For information about arrays, see “Array
Declarations” on page 66 in Chapter 3.) The argv parameter can be declared either as
an array of pointers to type char (char *argv[]) or as a pointer to pointers to type
char (char **argv). For wmain, the argv parameter can be declared either as an
array of pointers to type wchar_t (wchar_t *argv[]) or as a pointer to pointers to
type wehar_t (wchar_t **argv). The first string (argv[@]) is the program name. The
last pointer (argvlargc]) is NULL. (See getenv in the Run-Time Library Reference
for an alternative method for getting environment variable information.)

The envp parameter is a pointer to an array of null-terminated strings that represent
the values set in the user’s environment variables. The envp parameter can be
declared as an array of pointers to char (char *envp[]) or as a pointer to pointers to
char (char **envp). In a wmain function, the envp parameter can be declared as an
array of pointers to wchar_t (wchar_t *envp[]) or as a pointer to pointers to
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wchar_t (wchar_t **envp). The end of the array is indicated by a NULL *pointer.
Note that the environment block passed to main or wmain is a “frozen” copy of the
current environment. If you subsequently change the environment via a call to
_putenv or _wputenv, the current environment (as returned by getenv/_wgetenv and
the _environ or _wenviron variables) will change, but the block pointed to by envp
will not change.

Expanding Wildcard Arguments

Microsoft Specific —
When running a C program, you can use either of the two wildcards—the question

mark (?) and the asterisk (*)—to specify filename and path arguments on the
command line.

Command-line arguments are handled by a routine called _setargv (or _wsetargv in
the wide-character environment), which by default does not expand wildcards into
separate strings in the argv string array. You can replace the normal _setargv routine
with a more powerful version of _setargv that does handle wildcards by linking with
the SETARGV.OBJ file. If your program uses a wmain function, link with
WSETARGV.OBJ.

To link with SETARGV.OBJ or WSETARGV.OBJ, use the /link option. For example:
cl typeit.c /1ink setargv.obj

The wildcards are expanded in the same manner as operating system commands. (See
your operating system user’s guide if you are unfamiliar with wildcards.) Enclosing
an argument in double quotation marks ("' ') suppresses the wildcard expansion.
Within quoted arguments, you can represent quotation marks literally by preceding
the double-quotation-mark character with a backslash (\). If no matches are found for
the wildcard argument, the argument is passed literally.

END Microsoft Specific

Parsing Command-Line Arguments
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Microsoft Specific —
Microsoft C startup code uses the following rules when interpreting arguments given
on the operating system command line:

e Arguments are delimited by white space, which is either a space or a tab.

e A string surrounded by double quotation marks is interpreted as a single
argument, regardless of white space contained within. A quoted string can be
embedded in an argument. Note that the caret () is not recognized as an escape
character or delimiter.

e Adouble quotation mark preceded by a backslash, \"", is interpreted as a literal
double quotation mark ("').
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e Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

e If an even number of backslashes is followed by a double quotation mark, then one
backslash (\) is placed in the argv array for every pair of backslashes (\), and the
double quotation mark (") is interpreted as a string delimiter.

e If an odd number of backslashes is followed by a double quotation mark, then one
backslash (\) is placed in the argv array for every pair of backslashes (\\) and the
double quotation mark is interpreted as an escape sequence by the remaining
backslash, causing a literal double quotation mark ('") to be placed in argv.

This list illustrates the rules above by showing the interpreted result passed to argv
for several examples of command-line arguments. The output listed in the second,
third, and fourth columns is from the ARGS.C program that follows the list.

Command-Line Input argv[i] argv[2] - argv[3]
"abc"de abec d e
"ab\"c" "\\" d ab"c \ d
a\\\b d"e f"g h a\\\b de fg h
a\\\"b c d a\"b c d
a\\\\"b c" d e a\\b ¢ d e

/* ARGS.C illustrates the following variables used for accessing
* command-line arguments and environment variables:

* argc argv envp

*/

#include <stdio.h>

void main( int argc, /* Number of strings in array argv */

char *argv[], /* Array of command-line argument strings */
char **envp ) /* Array of environment variable strings */
{

int count;

/* Display each command-line argument. */
printf( "\nCommand-line arguments:\n" );
for( count = 0; count < argc; count++ )
printf( " argv[%d] %s\n", count, argv[count] );

/* Display each environment variable. */
printf( "\nEnvironment variables:\n" );
while( *envp != NULL )

printf( " %s\n", *(envp++) );

return;

Program Structure
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One example of output from this program is:

Command-line arguments:
argv[0] C:\MSC\TEST.EXE
Environment variables:
COMSPEC=C:\NT\SYSTEM32\CMD.EXE

PATH=c:\nt;c:\binb;c:\binr;c:\nt\system32;c:\word;c:\help;c:\msc;c:\;
PROMPT=[$p]

TEMP=c:\tmp

TMP=c:\tmp

EDITORS=c:\binr

WINDIR=c:\nt

END Microsoft Specific

Customizing Command-Line Processing

If your program does not take command-line arguments, you can save a small amount
of space by suppressing use of the library routine that performs command-line
processing. This routine is called _setargv (or _wsetargv in the wide-character
environment), as described in “Expanding Wildcard Arguments”on page 30. To
suppress its use, define a routine that does nothing in the file containing the main
function and name it _setargv (or _wsetargv in the wide-character environment).
The call to _setargv or _wsetargy is then satisfied by your definition of _setargv or
_wsetargv , and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument, you
can provide your own empty routine to be used in place of _setenvp (or _wsetenvp),
the environment-processing routine.

If your program makes calls to the _spawn or _exec family of routines in the C run-
time library, you should not suppress the environment-processing routine, since this
routine is used to pass an environment from the spawning process to the new process.

Lifetime, Scope, Visibility, and Linkage

To understand how a C program works, you must understand the rules that determine
how variables and functions can be used in the program. Several concepts are crucial
to understanding these rules:

e Lifetime
¢ Scope and visibility
e Linkage

Lifetime

“Lifetime” is the period during execution of a program in which a variable or
function exists. The storage duration of the identifier determines its lifetime.
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An identifier declared with the storage-class-specifier static has static storage
duration. Identifiers with static storage duration (also called “global”) have storage
and a defined value for the duration of a program. Storage is reserved and the
identifier’s stored value is initialized only once, before program startup. An identifier
declared with external or internal linkage also has static storage duration (see
“Linkage” on page 36).

An identifier declared without the static storage-class specifier has automatic storage
duration if it is declared inside a function. An identifier with automatic storage
duration (a “local identifier”) has storage and a defined value only within the block
where the identifier is defined or declared. An automatic identifier is allocated new
storage each time the program enters that block, and it loses its storage (and its
value) when the program exits the block. Identifiers declared in a function with no
linkage also have automatic storage duration.

The following rules specify whether an identifier has global (static) or local
(automatic) lifetime:

e All functions have static lifetime. Therefore they exist at all times during program
execution. Identifiers declared at the external level (that is, outside all blocks in
the program at the same level of function definitions) always have global (static)
lifetimes.

e If alocal variable has an initializer, the variable is initialized each time it is
created (unless it is declared as static). Function parameters also have local
lifetime. You can specify global lifetime for an identifier within a block by
including the static storage-class specifier in its declaration. Once declared static,
the variable retains its value from one entry of the block to the next.

Although an identifier with a global lifetime exists throughout the execution of the
source program (for example, an externally declared variable or a local variable
declared with the static keyword), it may not be visible in all parts of the program.
See the next section for information about visibility, and see “Storage Classes” on
page 42 in Chapter 3 for a discussion of the storage-class-specifier nonterminal.

Memory can be allocated as needed (dynamic) if created through the use of special
library routines such as malloc. Since dynamic memory allocation uses library
routines, it is not considered part of the language. See the malloc function in the
Run-Time Library Reference.

Scope and Visibility

An identifier’s “visibility” determines the portions of the program in which it can be
referenced—its “scope.” An identifier is visible (i.e., can be used) only in portions of
a program encompassed by its “scope,” which may be limited (in order of increasing
restrictiveness) to the file, function, block, or function prototype in which it appears.
The scope of an identifier is the part of the program in which the name can be used.

Program Structure
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This is sometimes called “lexical scope.” There are four kinds of scope: function, file,
block, and function prototype.

All identifiers except labels have their scope determined by the level at which the
declaration occurs. The following rules for each kind of scope govern the visibility of
identifiers within a program:

File scope The declarator or type specifier for an identifier with file scope appears
outside any block or list of parameters and is accessible from any place in the
translation unit after its declaration. Identifier names with file scope are often
called “global” or “external.” The scope of a global identifier begins at the point of
its definition or declaration and terminates at the end of the translation unit.

Function scope A label is the only kind of identifier that has function scope. A label
is declared implicitly by its use in a statement. Label names must be unique within
a function. (For more information about labels and label names, see “The goto and
Labeled Statements” on page 141 in Chapter 5.)

Block scope The declarator or type specifier for an identifier with block scope
appears inside a block or within the list of formal parameter declarations in a
function definition. It is visible oniy from the point of its declaration or definition
to the end of the block containing its declaration or definition. Its scope is limited
to that block and to any blocks nested in that block and ends at the curly brace that
closes the associated block. Such identifiers are sometimes called “local variables.”

Function-prototype scope The declarator or type specifier for an identifier with
function-prototype scope appears within the list of parameter declarations in a
function prototype (not part of the function declaration). Its scope terminates at the
end of the function declarator.

The appropriate declarations for making variables visible in other source files are
described in “Storage Classes” on page 42 in Chapter 3. However, variables and
functions declared at the external level with the static storage-class specifier are
visible only within the source file in which they are defined. All other functions are
globally visible.

Summary of Lifetime and Visibility
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Table 2.1 is a summary of lifetime and visibility characteristics for most identifiers.
The first three columns give the attributes that define lifetime and visibility. An
identifier with the attributes given by the first three columns has the lifetime and
visibility shown in the fourth and fifth columns. However, the table does not cover all
possible cases. Refer to “Storage Classes” on page 42 in Chapter 3 for more
information.
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Attributes: Result:
Storage-Class

Level ltem Specifier Lifetime Visibility

File scope Variable static Global Remainder of
definition source file in

which it occurs
Variable extern Global Remainder of
declaration source file in
which it occurs

Function static Global Single source file
prototype or
definition
Function extern Global Remainder of
prototype source file

Block scope Variable extern Global Block
declaration
Variable static Global Block
definition
Variable auto or register Local Block
definition

The following example illustrates blocks, nesting, and visibility of variables:

f#include <stdio.h>

int i =.1;
int main()
{

printf( "%d\n"™, 1 );
{
int i =2, j=3;

/* i defined at external level

*/

/* main function defined at external level */

/* Prints 1 (value of external level i) */

/* Begin first nested block */
/* i and j defined at internal level */

}

printf( "%d %d\n", i, j ); /* Prints 2, 3 *x/
{ /* Begin second nested block */
int i = 0; /* i is redefined */
printf( "%d %d\n", i, j ); /* Prints 0, 3 */
} /* End of second nested block */
printf( "%d\n", i ); /* Prints 2 (outer definition */
/* restored) */
} /* End of first nested block */
printf( "%d\n", i ); /* Prints 1 (external level */
/* definition restored) */
return 0; ‘

In this example, there are four levels of visibility: the external level and three block
levels. The values are printed to the screen as noted in the comments following each
statement.

Program Structure
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Linkage
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Identifier names can refer to different identifiers in different scopes. An identifier
declared in different scopes or in the same scope more than once can be made to refer
to the same identifier or function by a process called “linkage.” Linkage determines
the portions of the program in which an identifier can be referenced (its “visibility”).
There are three kinds of linkage: internal, external, and no linkage.

Internal Linkage

If the declaration of a file-scope identifier for an object or a function contains the
storage-class-specifier static, the identifier has internal linkage. Otherwise, the
identifier has external linkage. See “Storage Classes” on page 42 in Chapter 3 for a
discussion of the storage-class-specifier nonterminal.

Within one translation unit, each instance of an identifier with internal linkage
denotes the same identifier or function. Internally linked identifiers are unique to a
translation unit.

External Linkage

If the first declaration at file-scope level for an identifier does not use the static
storage-class specifier, the object has external linkage.

If the declaration of an identifier for a function has no storage-class-specifier, its
linkage is determined exactly as if it were declared with the storage-class-specifier
extern. If the declaration of an identifier for an object has file. scope and no storage-
class-specifier, its linkage is external.

An identifier’s name with external linkage designates the same function or data
object as does any other declaration for the same name with external linkage. The
two declarations can be in the same translation unit or in different translation units. If
the object or function also has global lifetime, the object or function is shared by the
entire program.

No Linkage

If a declaration for an identifier within a block does not include the extern storage-
class specifier, the identifier has no linkage and is unique to the function.

The following identifiers have no linkage:

¢ Anidentifier declared to be anything other than an object or a function

¢ An identifier declared to be a function parameter

e A block-scope identifier for an object declared without the extern storage-class

specifier

If an identifier has no linkage, declaring the same name again (in a declarator or type
specifier) in the same scope level generates a symbol redefinition error.
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Name Spaces

The compiler sets up “name spaces” to distinguish between the identifiers used for
different kinds of items. The names within each name space must be unique to avoid
conflict, but an identical name can appear in more than one name space. This means
that you can use the same identifier for two or more different items, provided that the
items are in different name spaces. The compiler can resolve references based on the
syntactic context of the identifier in the program.

Note Do not confuse the limited C notion of a name space with the C++ “namespace”
feature. See the C++ Language Reference for more information.

This list describes the name spaces used in C.

Statement labels Named statement labels are part of statements. Definitions of
statement labels are always followed by a colon but are not part of case labels.
Uses of statement labels always immediately follow the keyword goto. Statement
labels do not have to be distinct from other names or from label names in other
functions.

Structure, union, and enumeration tags These tags are part of structure, union, and
enumeration type specifiers and, if present, always immediately follow the
reserved words struct, union, or enum. The tag names must be distinct from all
other structure, enumeration, or union tags with the same visibility.

Members of structures or unions Member names are allocated in name spaces
associated with each structure and union type. That is, the same identifier can be a
component name in any number of structures or unions at the same time.
Definitions of component names always occur within structure or union type
specifiers. Uses of component names always immediately follow the member-
selection operators (—> and .). The name of a member must be unique within the
structure or union, but it does not have to be distinct from other names in the
program, including the names of members of different structures and unions, or
the name of the structure itself.

Ordinary identifiers All other names fall into a name space that includes variables,
functions (including formal parameters and local variables), and enumeration
constants. Identifier names have nested visibility, so you can redefine them within
blocks.

- Typedef names Typedef names cannot be used as identifiers in the same scope.

For example, since structure tags, structure members, and variable names are in three
different name spaces, the three items named student in this example do not conflict.
The context of each item allows correct interpretation of each occurrence of student
in the program. (For information about structures, see “Structure Declarations” on
page 57 in Chapter 3.)
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struct student {

char student[20];

int class;

int id;

} student;
When student appears after the struct keyword, the compiler recognizes it as a
structure tag. When student appears after a member-selection operator (—> or .), the
name refers to the structure member. In other contexts, student refers to the structure
variable. However, overloading the tag name space is not recommended since it
obscures meaning.
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Declarations and Types

This chapter describes the declaration and initialization of variables, functions, and
types. The C language includes a standard set of basic data types. You can also add
your own data types, called “derived types,” by declaring new ones based on types
already defined. The following topics are discussed:

e Overview of declarations

e Storage classes

e Type specifiers

e Type qualifiers

o Declarators and variable declarations
e Interpreting more complex declarators
o Tnitialization

e Storage of basic types

e Incomplete types

e Typedef declarations

¢ Extended storage-class attributes

Overview of Declarations

A “declaration” specifies the interpretation and attributes of a set of identifiers. A
declaration that also causes storage to be reserved for the object or function named by
the identifier is called a “definition.” C declarations for variables, functions, and
types have this syntax:

Syntax
declaration :
declaration-specifiers init-declarator-list . ;
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declaration-specifiers :
storage-class-specifier attribute-seq .y, declaration-specifiers
/* attribute-seq ., is Microsoft specific */
type-specifier declaration-specifiers
type-qualifier declaration-specifiers

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

Note This syntax for declaration is not repeated in the following sections. Syntax in the
following-sections usually begin with the declarator nonterminal.

The declarations in the init-declarator-list contain the identifiers being named; init is
an abbreviation for initializer. The init-declarator-list is a comma-separated sequence
of declarators, each of which can have additional type information, or an initializer,
or both. The declarator contains the identifiers, if any, being declared. The
declaration-specifiers nonterminal consists of a sequence of type and storage-class
specifiers that indicate the linkage, storage duration, and at least part of the type of
the entities that the declarators denote. Therefore, declarations are made up of some
combination of storage-class specifiers, type specifiers, type qualifiers, declarators,
and initializers.

Declarations can contain one or more of the optional attributes listed in attribute-seq;
seq is an abbreviation for sequence. These Microsoft-specific attributes perform a
variety of functions, which are discussed in detail throughout this book. For a list of
these attributes, see Appendix A, “C Language Syntax Summary” on page 177.

In the general form of a variable declaration, type-specifier gives the data type of the
variable. The type-specifier can be a compound, as when the type is modified by
const or volatile. The declarator gives the name of the variable, possibly modified to
declare an array or a pointer type. For example,

int const *fp;

declares a variable named fp as a pointer to a nonmodifiable (const) int value. You
can define more than one variable in a declaration by using multiple declarators,
separated by commas.

A declaration must have at least one declarator, or its type specifier must declare a
structure tag, union tag, or members of an enumeration. Declarators provide any
remaining information about an identifier. A declarator is an identifier that can be
modified with brackets ([ 1), asterisks (*), or parentheses ( () ) to declare an array,
pointer, or function type, respectively. When you declare simple variables (such as
character, integer, and floating-point items), or structures and unions of simple
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variables, the declarator is just an identifier. For more information on declarators,
see “Declarators and Variable Declarations” on page 52.

All definitions are implicitly declarations, but not all declarations are definitions. For
example, variable declarations that begin with the extern storage-class specifier are
“referencing,” rather than “defining” declarations. If an external variable is to be
referred to before it is defined, or if it is defined in another source file from the one
where it is used, an extern declaration is necessary. Storage is not allocated by
“referencing” declarations, nor can variables be initialized in declarations.

A storage class or a type (or both) is required in variable declarations. Except for

_ _declspec, only one storage-class specifier is allowed in a declaration and not all
storage-class specifiers are permitted in every context. The _ _declspec storage class
is allowed with other storage-class specifiers, and it is allowed more than once. The
storage-class specifier of a declaration affects how the declared item is stored and
initialized, and which parts of a program can reference the item.

The storage-class-specifier terminals defined in C include auto, extern, register,
static, and typedef. In addition, Microsoft C includes the storage-class-specifier
terminal _ _declspec. All storage-class-specifier terminals except typedef and

_ _declspec are discussed in “Storage Classes” on page 42. See “Typedef
Declarations” on page 86 for information about typedef. See “Extended Storage-
Class Attributes” on page 88 for information about _ _declspec.

The location of the declaration within the source program and the presence or
absence of other declarations of the variable are important factors in determining the
lifetime of variables. There can be multiple redeclarations but only one definition.
However, a definition can appear in more than one translation unit. For objects with
internal linkage, this rule applies separately to each translation unit, because
internally linked objects are unique to a translation unit. For objects with external
linkage, this rule applies to the entire program. See “Lifetime, Scope, Visibility, and
Linkage” on page 32 in Chapter 2 for more information about visibility.

Type specifiers provide some information about the data types of identifiers. The
default type specifier is int. For more information, see “Type Specifiers” on page 48.
Type specifiers can also define type tags, structure and union component names, and
enumeration constants. For more information see “Enumeration Declarations” on
page 55, “Structure Declarations” on page 57, and “Union Declarations” on page 63.

There are two type-qualifier terminals: const and volatile. These qualifiers specify
additional properties of types that are relevant only when accessing objects of that
type through 1-values. For more information on const and volatile, see “Type
Qualifiers” on page 51. For a definition of 1-values, see “L-Value and R-Value
Expressions” on page 95 in Chapter 4.
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The “storage class” of a variable determines whether the item has a “global” or
“local” lifetime. C calls these two lifetimes “static” and “automatic.” An item with a
global lifetime exists and has a value throughout the execution of the program. All
functions have global lifetimes.

Automatic variables, or variables with local lifetimes, are allocated new storage each
time execution control passes to the block in which they are defined. When execution
returns, the variables no longer have meaningful values.

C provides the following storage-class specifiers:

Syntax
storage-class-specifier :
auto
register
static
extern
typedef
_ _declspec ( extended-decl-modifier-seq ) [* Microsoft Specific */

Except for _ _declspec, you can use only one storage-class-specifier in the
declaration-specifier in a declaration. If no storage-class specification is made,
declarations within a block create automatic objects.

Items declared with the auto or register specifier have local lifetimes. Items declared
with the static or extern specifier have global lifetimes.

Since typedef and _ _declspec are semantically different from the other four storage-
class-specifier terminals, they are discussed separately. For specific information on
typedef, see “Typedef Declarations” on page 86. For specific information on

_ _declspec, see “Extended Storage-Class Attributes” on page 88.

The placement of variable and function declarations within source files also affects
storage class and visibility. Declarations outside all function definitions are said to
appear at the “external level.” Declarations within function definitions appear at the
“internal level.”

The exact meaning of each storage-class specifier depends on two factors:

e Whether the declaration appears at the external or internal level

e Whether the item being declared is a variable or a function

“Storage-Class Specifiers for External-Level Declarations™” and “Storage-Class
Specifiers for Internal-Level Declarations” describe the storage-class-specifier
terminals in each kind of declaration and explain the default behavior when the
storage-class-specifier is omitted from a variable. “Storage-Class Specifiers with



Chapter 3 Declarations and Types

Function Declarations” on page 48 discusses storage-class specifiers used with
functions.

Storage-Class Specifiers for External-Level Declarations

External variables are variables at file scope. They are defined outside any function,
and they are potentially available to many functions. Functions can only be defined at
the external level and, therefore, cannot be nested. By default, all references to
external variables and functions of the same name are references to the same object,
which means they have “external linkage.” (You can use the static keyword to
override this. See information later in this section for more details on static.)

Variable declarations at the external level are either definitions of variables
(“defining declarations”), or references to variables defined elsewhere (“referencing
declarations”).

An external variable declaration that also initializes the variable (implicitly or
explicitly) is a defining declaration of the variable. A definition at the external level
can take several forms:

e A variable that you declare with the static storage-class specifier. You can
explicitly initialize the static variable with a constant expression, as described in
Initialization. If you omit the initializer, the variable is initialized to 0 by default.
For example, these two statements are both considered definitions of the variable
k.
static int k = 16;
static int k;

e A variable that you explicitly initialize at the external level. For example, int j =
3; is a definition of the variable j. :

In variable declarations at the external level (that is, outside all functions), you can
use the static or extern storage-class specifier or omit the storage-class specifier
entirely. You cannot use the auto and register storage-class-specifier terminals at the
external level.

Once a variable is defined at the external level, it is visible throughout the rest of the
translation unit. The variable is not visible prior to its declaration in the same source
file. Also, it is not visible in other source files of the program, unless a referencing
declaration makes it visible, as described below.

The rules relating to static include:

e Variables declared outside all blocks without the static keyword always retain their
values throughout the program. To restrict their access to a particular translation
unit, you must use the static keyword. This gives them “internal linkage.” To
make them global to an entire program, omit the explicit storage class or use the
keyword extern (see the rules in the next list). This gives them “external linkage.”
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Internal and external linkage are also discussed in “Linkage” on page 36 in
Chapter 2.

You can define a variable at the external level only once within a program. You
can define another variable with the same name and the static storage-class
specifier in a different translation unit. Since each static definition is visible only
within its own translation unit, no conflict occurs. This provides a useful way to
hide identifier names that must be shared among functions of a single translation
unit, but not visible to other translation units.

The static storage-class specifier can apply to functions as well. If you declare a
function static, its name is invisible outside of the file in which it is declared.

The rules for using extern are:

The extern storage-class specifier declares a reference to a variable defined
elsewhere. You can use an extern declaration to make a definition in another
source file visible, or to make a variable visible prior to its definition in the same
source file. Once you have declared a reference to the variable at the external
level, the variable is visible throughout the remainder of the translation unit in
which the declared reference occurs.

For an extern reference to be valid, the variable it refers to must be defined once,
and only once, at the external level. This definition (without the extern storage
class) can be in any of the translation units that make up the program.

The example below illustrates external declarations:

/******************************************************************

SOURCE FILE ONE

*******************************************************************/

extern int 1i; /* Reference to i, defined below */
void next( void ); ) /* Function prototype */

void main()

{
i++;
printf( "%d\n", i ); /* i equals 4 */
next();

}

int i = 3; /* Definition of 1 */

void next( void )

{

i+t
printf( "%d\n", i ); /* i equals 5 */
other();
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SOURCE FILE TWO

*******************************************************************/

extern int 1i; /* Reference to i in */
/* first source file */

void other( void )
{
i+t
printf( "%d\n", i ); /* i equals 6 */
}
The two source files in this example contain a total of three external declarations of
i. Only one declaration is a “defining declaration.” That declaration,

int i = 3;

defines the global variable i and initializes it with initial value 3. The “referencing”
declaration of i at the top of the first source file using extern makes the global
variable visible prior to its defining declaration in the file. The referencing
declaration of i in the second source file also makes the variable visible in that source

file. If a defining instance for a variable is not provided in the translation unit, the
compiler assumes there is an

extern int x;

referencing declaration and that a defining reference
int x = 0;

appears in another translation unit of the program.

All three functions, main, next, and other, perform the same task: they increase 1
and print it. The values 4, 5, and 6 are printed.

If the variable 1 had not been initialized, it would have been set to 0 automatically. In
this case, the values 1, 2, and 3 would have been printed. See “Initialization” on page
74 for information about variable initialization.

Storage-Class Specifiers for Internal-Level Declarations

You can use any of four storage-class-specifier terminals for variable declarations at
the internal level. When you omit the storage-class-specifier from such a declaration,
the default storage class is auto. Therefore, the keyword auto is rarely seen in a C
program. '

The auto Storage-Class Specifier

The auto storage-class specifier declares an automatic variable, a variable with a
local lifetime. An auto variable is visible only in the block in which it is declared.
Declarations of auto variables can include initializers, as discussed in Initialization.
Since variables with auto storage class are not initialized automatically, you should
either explicitly initialize them when you declare them, or assign them initial values
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in statements within the block. The values of uninitialized auto variables are
undefined. (A local variable of auto or register storage class is initialized each time
it comes in scope if an initializer is given.)

An internal static variable (a static variable with local or block scope) can be
initialized with the address of any external or static item, but not with the address of
another auto item, because the address of an auto item is not a constant.

The register Storage-Class Specifier

Microsoft Specific —

The Microsoft C/C++ compiler does not honor user requests for register variables.
However, for portability all other $emantics associated with the register keyword are
honored by the compiler. For example, you cannot apply the unary address-of
operator (&) to a register object nor can the register keyword be used on arrays.

END Microsoft Specific

The static Storage-Class Specifier

A variable declared at the internal level with the static storage-class specifier has a
global lifetime but is visibie only within the block in which it is declared. For
constant strings, using static is useful because it alleviates the overhead of frequent
initialization in often-called functions.

If you do not explicitly initialize a static variable, it is initialized to O by default.
Inside a function, static causes storage to be allocated and serves as a definition.
Internal static variables provide private, permanent storage visible to only a single
function.

The extern Storage-Class Specifier

A variable declared with the extern storage-class specifier is a reference to a variable
with the same name defined at the external level in any of the source files of the
program. The internal extern declaration is used to make the external-level variable
definition visible within the block. Unless otherwise declared at the external level, a
variable declared with the extern keyword is visible only in the block in which it is
declared.

This example illustrates internal- and external-level declarations:

#include <stdio.h>
int i =1;
void other( void );

void main()

{
/* Reference to i, defined above: */
extern int 1i;

/* Initial value is zero; a is visible only within main: */
static int a;
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/* b is stored in a register, if possible: */
register int b = 0;

/* Default storage class is auto: */
int ¢ = 0;

/* Values printed are 1, 0, 0, 0: */
printf( "%d\n%d\n%d\n%d\n", i, a, b, ¢ );

other();
return;
}
void other( void )
{
/* Address of global i assigned to pointer variable: */
static int *external_i = &i;
/* i is redefined; global i no longer visible: */
int i = 16;
/* This a is visible only within the other function: */
static int a = 2;
a += 2;
/* Values printed are 16, 4, and 1: */
printf( "%d\n%d\n%d\n", i, a, *external_i );
}

In this example, the variable i is defined at the external level with initial value 1. An
extern declaration in the main function is used to declare a reference to the external-
level i. The static variable a is initialized to O by default, since the initializer is
omitted. The call to printf prints the values 1, 0, 0, and 0.

In the other function, the address of the global variable i is used to initialize the
static pointer variable external_i. This works because the global variable has static
lifetime, meaning its address does not change during program execution. Next, the
variable 1 is redefined as a local variable with initial value 16. This redefinition does
not affect the value of the external-level i, which is hidden by the use of its name for
the local variable. The value of the global i is now accessible only indirectly within
this block, through the pointer external_i. Attempting to assign the address of the
auto variable i to a pointer does not work, since it may be different each time the
block is entered. The variable a is declared as a static variable and initialized to 2.
This a does not conflict with the a in main, since static variables at the internal level
are visible only within the block in which they are declared.

The variable a is increased by 2, giving 4 as the result. If the other function were

called again in the same program, the initial value of a would be 4. Internal static
variables keep their values when the program exits and then reenters the block in

which they are declared.
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Storage-Class Specifiers with Function Declaratlons

You can use either the static or the extern storage-class specifier in function
declarations. Functions always have global lifetimes.

Microsoft Specific —

Function declarations at the internal level have the same meaning as function

declarations at the external level. This means that a function is visible from its point
of declaration throughout the rest of the translation unit even if it is declared at local
scope.

END Microsoft Specific

The visibility rules for functions vary slightly from the rules for variables, as follows:

¢ A function declared to be static is visible only within the source file in which it is
defined. Functions in the same source file can call the static function, but
functions in other source files cannot access it directly by name. You can declare
another static function with the same name in a different source file without
conflict.

¢ Functions declared as extern are visible throughout all source files in the program
(unless you later redeclare such a function as static). Any function can call an
extern function.

e Function declarations that omit the storage-class specifier are extern by default.
Microsoft Specific —
Microsoft allows redefinition of an extern identifier as static.

END Microsoft Specific

Type Specifiers
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Type specifiers in declarations define the type of a variable or function declaration.

Syntax
type-specifier :
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
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enum-specifier
typedef-name

The signed char, signed int, signed short int, and signed long int types, together
with their unsigned counterparts and enum, are called “integral” types. The float,
double, and long double type specifiers are referred to as “floating” or “floating-
point” types. You can use any integral or floating-point type specifier in a variable or
function declaration. If a type-specifier is not provided in a declaration, it is taken to
be int.

The optional keywords signed and unsigned can precede or follow any of the integral
types, except enum, and can also be used alone as type specifiers, in which case they
are understood as signed int and unsigned int, respectively. When used alone, the
keyword int is assumed to be signed. When used alone, the keywords long and short
are understood as long int and short int.

Enumeration types are considered basic types. Type specifiers for enumeration types
are discussed in “Enumeration Declarations” on page 55.

The keyword void has three uses: to specify a function return type, to specify an
argument-type list for a function that takes no arguments, and to specify a pointer to
an unspecified type. You can use the void type to declare functions that return no
value or to declare a pointer to an unspecified type. See “Arguments” on page 172 in
Chapter 6 for information on void when it appears alone within the parentheses
following a function name.

Microsoft Specific —

Type checking is now ANSI-compliant, which means that type short and type int are
distinct types. For example, this is a redefinition in the Microsoft C compiler that was
accepted by previous versions of the compiler.

int  myfunc();
short myfunc();

This next example also generates a warning about indirection to different types:
int *pi;

short *ps;

ps = pi; /* Now generates warning */

The Microsoft C compiler also generates warnings for differences in sign. For
example:

signed int *pi;
unsigned int *pu

pi = pu; /* Now generates warning */

Type void expressions are evaluated for side effects. You cannot use the (nonexistent)
value of an expression that has type void in any way, nor can you convert a void
expression (by implicit or explicit conversion) to any type except void. If you do use
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an expression of any other type in a context where a void expression is required, its
value is discarded.

To conform to the ANSI specification, void** cannot be used as int**. Only void*
can be used as a pointer to an unspecified type.

END Microsoft Specific

You can create additional type specifiers with typedef declarations, as described in
“Typedef Declarations” on page 86. See “Storage of Basic Types” on page 81 for
information on the size of each type.

Data Type Specifiers and Equivalents
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This book generally uses the forms of the type specifiers listed in Table 3.1 rather
than the long forms, and it assumes that the char type is signed by default. Therefore,
throughout this book, char is equivalent to signed char.

Table 3.1 Type Specifiers and Equivalents

Type Specifier Equivalent(s)
signed char! char

signed int signed, int
signed short int short, signed short
signed long int long, signed long
unsigned char —

unsigned int unsigned
unsigned short int unsigned short
unsigned long int unsigned long
float —

long double2 —

1 'When you make the char type unsigned by default (by specifying the /J compiler option), you cannot
abbreviate signed char as char.

2 In 32-bit operating systems, the Microsoft C compiler maps long double to type double.

Microsoft Specific —

You can specify the /J compiler option to change the default char type from signed to
unsigned. When this option is in effect, char means the same as unsigned char, and
you must use the signed keyword to declare a signed character value. If a char value
is explicitly declared signed, the /J option does not affect it, and the value is sign-
extended when widened to an int type. The char type is zero-extended when widened
to int type.

END Microsoft Specific
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Type Qualifiers

Type qualifiers give one of two properties to an identifier. The const type qualifier
declares an object to be nonmodifiable. The volatile type qualifier declares an item
whose value can legitimately be changed by something beyond the control of the
program in which it appears, such as a concurrently executing thread.

The two type qualifiers, const and volatile, can appear only once in a declaration.
Type qualifiers can appear with any type specifier; however, they cannot appear after
the first comma in a multiple item declaration. For example, the following
declarations are legal:

typedef volatile int VI;
const int ci;

These declarations are not legal:

typedef int *i, volatile *vi;

float f, const cf;

Type qualifiers are relevant only when accessing identifiers as l-values in
expressions. See “L-Value and R-Value Expressions” on page 95 in Chapter 4 for
information about 1-values and expressions.

Syntax

type-qualifier :
const
volatile

The following are legal const and volatile declarations:

int const *p_ci; /* Pointer to constant int */
int const (*p_ci); /* Pointer to constant int */
int *const cp_i; /* Constant pointer to int */
int (*const cp_i); /* Constant pointer to int */
int volatile vint; /* Volatile integer */

If the specification of an array type includes type qualifiers, the element is qualified,
not the array type. If the specification of the function type includes qualifiers, the
behavior is undefined. Neither volatile nor const affects the range of values or
arithmetic properties of the object.

This list describes how to use const and volatile.

e The const keyword can be used to modify any fundamental or aggregate type, or a
pointer to an object of any type, or a typedef. If an item is declared with only the
const type qualifier, its type is taken to be const int. A const variable can be
initialized or can be placed in a read-only region of storage. The const keyword is
useful for declaring pointers to const since this requires the function not to change
the pointer in any way.
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¢ The compiler assumes that, at any point in the program, a volatile variable can be
accessed by an unknown process that uses or modifies its value. Therefore,
regardless of the optimizations specified on the command line, the code for each
assignment to or reference of a volatile variable must be generated even if it
appears to have no effect.

If volatile is used alone, int is assumed. The volatile type specifier can be used to
provide reliable access to special memory locations. Use volatile with data objects
that may be accessed or altered by signal handlers, by concurrently executing
programs, or by special hardware such as memory-mapped I/O control registers.
You can declare a variable as volatile for its lifetime, or you can cast a single
reference to be volatile.

e An item can be both const and volatile, in which case the item could not be
legitimately modified by its own program, but could be modified by some
asynchronous process. ‘

Declarators and Variable Declarations

The rest of this chapter describes the form and meaning of declarations for variable
types summarized in this list. In particular, the remaining sections explain how to
declare the following:

Type of Variable Description

Simple variables Single-value variables with integral or floating-point type

Arrays Variables composed of a collection of elements with the same
type

Pointers Variables that point to other variables and contain variable

locations (in the form of addresses) instead of values

Enumeration variables ~ Simple variables with integral type that hold one value from a
set of named integer constants

Structures Variables composed of a collection of values that can have

different types
Unions * Variables composed of several values of different types that

occupy the same storage space

A declarator is the part of a declaration that specifies the name that is to be
introduced into the program. It can include modifiers such as * (pointer-to) and any
of the Microsoft calling-convention keywords.

Microsoft Specific —>
In the declarator
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__declspec(thread) char *var;
char is the type specifier, __declspec(thread) and * are the modifiers, and var is
the identifier’s name.

END Microsoft Specific

You use declarators to declare arrays of values, pointers to values, and functions
returning values of a specified type. Declarators appear in the array and pointer
declarations described later in this chapter.

Syntax
declarator :
pointer ., direct-declarator

direct-declarator :
identifier
(declarator)
direct-declarator [ constant-expression , ]
direct-declarator ( parameter-type-list )
direct-declarator ( identifier-list )

type-qualifier-list :pointer :

* type-qualifier-list
* type-qualifier-list ., pointer

type-qualifier
type-qualifier-list type-qualifier

Note See the syntax for declaration in “Overview of Declarations” on page 39, or see
Appendix A, “C Language Syntax Summary,” for the syntax that references a declarator.

When a declarator consists of an unmodified identifier, the item being declared has a
base type. If an asterisk (*) appears to the left of an identifier, the type is modified to
a pointer type. If the identifier is followed by brackets ([ ]), the type is modified to an
array type. If the identifier is followed by parentheses, the type is modified to a
function type. For more information about interpreting precedence within
declarations, see “Interpreting More Complex Declarators” on page 72.

Each declarator declares at least one identifier. A declarator must include a type
specifier to be a complete declaration. The type specifier gives the type of the
elements of an array type, the type of object addressed by a pointer type, or the return
type of a function.

Array and pointer declarations are discussed in more detail later in this chapter. The
following examples illustrate a few simple forms of declarators: ‘

int 1ist[20]; /* Declares an array of 20 int values named list */

char *cp; /* Declares a pointer to a char value */

double func( void ); /* Declares a function named func, with no
arguments, that returns a double value */

int *aptr[10] /* Declares an array of 10 pointers */
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Microsoft Specific —

The Microsoft C compiler does not limit the number of declarators that can modify
an arithmetic, structure, or union type. The number is limited only by available
memory.

END Microsoft Specific

Simple Variable Declarations
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The declaration of a simple variable, the simplest form of a direct declarator, specifies
the variable’s name and type. It also specifies the variable’s storage class and data

type.

Storage classes or types (or both) are required on variable declarations. Untyped
variables (such as var;) generate warnings.

Syntax
declarator :
pointer o direct-declarator

direct-declarator :
identifier

identifier :
nondigit
identifier nondigit
identifier digit

For arithmetic, structure, union, enumerations, and void types, and for types
represented by typedef names, simple declarators can be used in a declaration since
the type specifier supplies all the typing information. Pointer, array, and function
types require more complicated declarators.

You can use a list of identifiers separated by commas (,) to specify several variables in
the same declaration. All variables defined in the declaration have the same base
type. For example:

int x, y; /* Declares two simple variables of type int */
int const z = 1; /* Declares a constant value of type int */

The variables x and y can hold any value in the set defined by the int type for a
particular implementation. The simple object z is initialized to the value 1 and is not
modifiable.

If the declaration of z was for an uninitialized static variable or was at file scope, it
would receive an initial value of 0, and that value would be unmodifiable.

unsigned long reply, flag; /* Declares two variables
named reply and flag */

In this example, both the variables, reply and f1ag, have unsigned long type and
hold unsigned integral values.
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Enumeration Declarations

An enumeration consists of a set of named integer constants. An enumeration type
declaration gives the name of the (optional) enumeration tag and defines the set of
named integer identifiers (called the “enumeration set,” “enumerator constants,”
“enumerators,” or “members”). A variable with enumeration type stores one of the
values of the enumeration set defined by that type.

Variables of enum type can be used in indexing expressions and as operands of all
arithmetic and relational operators. Enumerations provide an alternative to the
#define preprocessor directive with the advantages that the values can be generated
for you and obey normal scoping rules.

In ANSI C, the expressions that define the value of an enumerator constant always
have int type; thus, the storage associated with an enumeration variable is the storage
required for a single int value. An enumeration constant or a value of enumerated
type can be used anywhere the C language permits an integer expression.

Syntax

enum-specifier :
enum identifier ., { enumerator-list }
enum identifier

The optional identifier names the enumeration type defined by enumerator-list. This
identifier is often called the “tag” of the enumeration specified by the list. A type
specifier of the form

enum identifier { enumerator-list }

declares identifier to be the tag of the enumeration specified by the enumerator-list
nonterminal. The enumerator-list defines the “enumerator content.” The enumerator-
list is described in detail below.

If the declaration of a tag is visible, subsequent declarations that use the tag but omit
enumerator-list specify the previously declared enumerated type. The tag must refer
to a defined enumeration type, and that enumeration type must be in current scope.
Since the enumeration type is defined elsewhere, the enumerator-list does not appear
in this declaration. Declarations of types derived from enumerations and typedef
declarations for enumeration types can use the enumeration tag before the
enumeration type is defined.

Syntax
enumerator-list
‘enumerator
enumerator-list , enumerator

enumerator :
enumeration-constant
enumeration-constant = constant-expression
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enumeration-constant :
identifier

Each enumeration-constant in an enumeration-list names a value of the enumeration
set. By default, the first enumeration-constant is associated with the value 0. The next
enumeration-constant in the list is associated with the value of ( constant-expression
+ 1), unless you explicitly associate it with another value. The name of an
enumeration-constant is equivalent to its value.

You can use enumeration-constant = constant-expression to override the default
sequence of values. Thus, if enumeration-constant = constant-expression appears in
the enumerator-list, the enumeration-constant is associated with the value given by
constant-expression. The constant-expression must have int type and can be negative.

The following rules apply to the members of an enumeration set:

e An enumeration set can contain duplicate constant values. For example, you could
associate the value 0 with two different identifiers, perhaps named nu11 and zero,
in the same set.

o The identifiers in the enumeration list must be distinct from other identifiers in the
same scope with the same visibility, including ordinary variable names and
identifiers in other enumeration lists.

e Enumeration tags obey the normal scoping rules. They must be distinct from other
enumeration, structure, and union tags with the same visibility.

These examples illustrate enumeration declarations:

enum DAY /* Defines an enumeration type */
{
saturday, /* Names day and declares a */
sunday = 0, /* variable named workday with */
monday, /* that type */
tuesday, , '
wednesday, /* wednesday is associated with 3 */
thursday,
friday
} workday;

The value 0 is associated with saturday by default. The identifier sunday is explicitly
set to 0. The remaining identifiers are given the values 1 through 5 by default.

In this example, a value from the set DAY is assigned to the variable today.
enum DAY today = wednesday;

Note that the name of the enumeration constant is used to assign the value. Since the
DAY enumeration type was previously declared, only the enumeration tag DAY is
necessary.

To explicitly assign an integer value to a variable of an enumerated data type, use a
type cast:
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workday = ( enum DAY ) ( day_value - 1 );
This cast is recommended in C but is not required.

enum BOOLEAN /* Declares an enumeration data type called BOOLEAN */
{

false, /* false = 0, true =1 */

true
};

enum BOOLEAN end_flag, match_flag; /* Two variables of type BOOLEAN */

This declaration can also be specified as
enum BOOLEAN { false, true } end_flag, match_flag;\
or as

enum BOOLEAN { false, true } end_flag;
enum BOOLEAN match_flag;

An example that uses these variables might look like this:

if ( match_flag == false )
{

/* statement */
}
end_flag = true;
Unnamed enumerator data types can also be declared. The name of the data type is

omitted, but variables can be declared. The variable response is a variable of the type
defined:

enum { yes, no } response;

Structure Declarations

A “structure declaration” names a type and specifies a sequence of variable values
(called “members” or “fields” of the structure) that can have different types. An
optional identifier, called a “tag,” gives the name of the structure type and can be
used in subsequent references to the structure type. A variable of that structure type
holds the entire sequence defined by that type. Structures in C are similar to the types
known as “records” in other languages.

Syntax

struct-or-union-specifier :
struct-or-union identifier ., { struct-declaration-list }
struct-or-union identifier

Struct-or-union .
struct
union
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struct-declaration-list :
struct-declaration
struct-declaration-list struct-declaration

The structure content is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list :
type-specifier specifier-qualifier-list
type-qualifier specifier-qualifier-list .,

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator

The declaration of a structure type does not set aside space for a structure. It is only a
template for later declarations of structure variables.

A previously defined identifier (tag) can be used to refer to a structure type defined
elsewhere. In this case, struct-declaration-list cannot be repeated as long as the
definition is visible. Declarations of pointers to structures and typedefs for structure
types can use the structure tag before the structure type is defined. However, the
structure definition must be encountered prior to any actual use of the size of the
fields. This is an incomplete definition of the type and the type tag. For this definition
to be completed, a type definition must appear later in the same scope.

The struct-declaration-list specifies the types and names of the structure members. A
struct-declaration-list argument contains one or more variable or bit-field
declarations.

Each variable declared in struct-declaration-list is defined as a member of the
structure type. Variable declarations within struct-declaration-list have the same form
as other variable declarations discussed in this chapter, except that the declarations
cannot contain storage-class specifiers or initializers. The structure members can
have any variable types except type void, an incomplete type, or a function type.

A member cannot be declared to have the type of the structure in which it appears.
However, a member can be declared as a pointer to the structure type in which it
appears as long as the structure type has a tag. This allows you to create linked lists
of structures. '

Structures follow the same scoping as other identifiers. Structure identifiers must be
distinct from other structure, union, and enumeration tags with the same visibility.
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Each struct-declaration in a struct-declaration-list must be unique within the list.
However, identifier names in a struct-declaration-list do not have to be distinct from
ordinary variable names or from identifiers in other structure declaration lists.

Nested structures can also be accessed as though they were declared at the file-scope
level. For example, given this declaration:

struct a

{
int x;
struct b
{

int y;

} var2;

} varl;

these declarations are both legal:

struct a var3;
struct b var4;

These examples illustrate structure declarations:

struct employee /* Defines a structure variable named temp */

{
char name[20];
int id;
long class;

} temp;

The employee structure has three members: name, id, and class. The name member is
a 20-element array, and id and class are simple members with int and long type,
respectively. The identifier employee is the structure identifier.

struct employee student, faculty, staff;

This example defines three structure variables: student, faculty, and staff. Each
structure has the same list of three members. The members are declared to have the
structure type emp1oyee, defined in-the previous example.

struct /* Defines an anonymous struct and a */

{ /* structure variable named complex */
float x, y; :

} complex;

The complex structure has two members with float type, x and y. The structure type
has no tag and is therefore unnamed or anonymous.

struct sample /* Defines a structure named x */

{

char c;

float *pf;

struct sample *next;
}x;
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The first two members of the structure are a char variable and a pointer to a float
value. The third member, next, is declared as a pointer to the structure type being
defined (sample).

Anoﬁymous structures can be useful when the tag named is not needed. This is the
case when one declaration defines all structure instances. For example:

struct
{
int x;
int y;
} mystruct;

Embedded structures are often anonymous.

struct somestruct
{
struct /* Anonymous structure */
{
int x, y;
} point;
int type;
} ow;

Microsoft Specific — ;

The compiler allows an unsized or zero-sized array as the last member of a structure.
This can be useful if the size of a constant array differs when used in various
situations. The declaration of such a structure looks like this:

struct identifier
{

set-of-declarations

type array-namel 1;
b
Unsized arrays can appear only as the last member of a structure. Structures
containing unsized array declarations can be nested within other structures as long as
no further members are declared in any enclosing structures. Arrays of such
structures are not allowed. The sizeof operator, when applied to a variable of this type
or to the type itself, assumes O for the size of the array.

Structure declarations can also be specified without a declarator when they are
members of another structure or union. The field names are promoted into the
enclosing structure. For example, a nameless structure looks like this:

struct s

{
float y;
struct
{

int a, b, c;
}:
char str[10];
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} *p_s;

p_s->b = 100; /* A reference to a field in the s structure */

See “Structure and Union Members” on page 106 in Chapter 4 for information about
structure references.

END Microsoft Specific

Bit Fields

In addition to declarators for members of a structure or union, a structure declarator
can also be a specified number of bits, called a “bit field.” Its length is set off from
the declarator for the field name by a colon. A bit field is interpreted as an integral

type.

Syntax
struct-declarator :
declarator
type-specifier declarator ., : constant-expression

The constant-expression specifies the width of the field in bits. The type-specifier for
the declarator must be unsigned int, signed int, or int, and the constant-expression
must be a nonnegative integer value. If the value is zero, the declaration has no
declarator. Arrays of bit fields, pointers to bit fields, and functions returning bit
fields are not allowed. The optional declarator names the bit field. Bit fields can only
be declared as part of a structure. The address-of operator (&) cannot be applied to
bit-field components.

Unnamed bit fields cannot be referenced, and their contents at run time are
unpredictable. They can be used as “dummy” fields, for alignment purposes. An
unnamed bit field whose width is specified as 0 guarantees that storage for the
member following it in the struct-declaration-list begins on an int boundary.

Bit fields must also be long enough to contain the bit pattern. For example, these two
statements are not legal:

short a:17; /* Illegall */
int long y:33; /* I1legall */

This example defines a two-dimensional array of structures named screen.

struct

{
unsigned short icon : 8;
unsigned short color : 4;
unsigned short underline : 1;
unsigned short blink : 1;

} screen[25][80];
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The array contains 2,000 elements. Each element is an individual structure
containing four bit-field members: icon, color, underline, and b11ink. The size of
each structure is two bytes.

Bit fields have the same semantics as the integer type. This means a bit field is used
in expressions in exactly the same way as a variable of the same base type would be
used, regardless of how many bits are in the bit field.

Microsoft Specific —

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI C
standard allows char and long types (both signed and unsigned) for bit fields.
Unnamed bit fields with base type long, short, or char (signed or unsigned) force
alignment to a boundary appropriate to the base type.

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields

{
unsigned short a : 4;
unsigned short b : 5;
unsigned short c : 7;
} test;
void main( void );
{
test.a = 2;
test.b = 31;
test.c = 0;
}

the bits would be arranged as follows:

00000001 11110010
cccceceb bbbbaaaa

Since the 8086 family of processors stores the low byte of integer values before the
high byte, the integer 0x01F2 above would be stored in physical memory as 0xF2
followed by 0x01.

END Microsoft Specific

Storage and Alignment of Structures

Microsoft Specific —

Structure members are stored sequentially in the order in which they are declared: the
first member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. For structures, the requirement is
the largest of its members. Every object is allocated an offset so that

offset % alignment-requirement == 0
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Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation unit if the
integral types are the same size and if the next bit field fits into the current allocation
unit without crossing the boundary imposed by the common alignment requirements
of the bit fields.

To conserve space or to conform to existing data structures, you may want to store
structures more or less compactly. The /Zp[n] compiler option and the pack pragma
control how structure data is “packed” into memory. When you use the /Zp[n] option,
where nis 1, 2, 4, 8, or 16, each structure member after the first is stored on byte
boundaries that are either the alignment requirement of the field or the packing size
(n), whichever is smaller. Expressed as a formula, the byte boundaries are the

min( n, sizeof( item ) )

where 7 is the packing size expressed with the /Zp[n] option and item is the structure
member. The default packing size is /Zp8.

To use the pack pragma to specify packing other than the packing specified on the
command line for a particular structure, give the pack pragma, where the packing
size is 1, 2, 4, 8, or 16, before the structure. To reinstate the packing given on the
command line, specify the pack pragma with no arguments. For more information
about the pack pragma, see Chapter 2, “Pragma Directives” in the Preprocessor
Reference.

Bit fields default to size long for the Microsoft C compiler. Structure members are
aligned on the size of the type or the /Zp[n] size, whichever is smaller. The default
size is 4.

END Microsoft Specific

Union Declarations

A “union declaration” specifies a set of variable values and, optionally, a tag naming
the union. The variable values are called “members” of the union and can have
different types. Unions are similar to “variant records” in other languages.

Syntax

struct-or-union-specifier :
struct-or-union identifier ., { struct-declaration-list }
struct-or-union identifier

struct-or-union :
struct
union
struct-declaration-list
struct-declaration
struct-declaration-list struct-declaration
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The union content is defined to be

struct-declaration :

specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list .

type-specifier specifier-qualifier-list o,

type-qualifier specifier-qualifier-list .,
struct-declarator-list

struct-declarator

struct-declarator-list , struct-declarator

A variable with union type stores one of the values defined by that type. The same
rules govern structure and union declarations. Unions can also have bit fields.

Members of unions cannot have an incomplete type, type void, or function type.
Therefore members cannot be an instance of the union but can be pointers to the
union type being declared. '

A union type declaration is a template only. Memory is not reserved until the variable
is declared.

Note If a union of two types is declared and one value is stored, but the union is accessed
with the other type, the results are unreliable. For example, a union of float and int is declared.
A float value is stored, but the program later accesses the value as an int. In such a situation,
the value would depend on the internal storage of float values. The integer value would not be
reliable. :

The following are examples of unions:

union sign /* A definition and a declaration */

{
int svar;
unsigned uvar;
} number;

This example defines a union variable with sign type and declares a variable named
number that has two members: svar, a signed integer, and uvar, an unsigned integer.
This declaration allows the current value of number to be stored as either a signed or
an unsigned value. The tag associated with this union type is sign.

union /* Defines a two-dimensional */
{ /* array named screen */
struct
{

unsigned int icon : 8;
unsigned color : 4;
} windowl;
int screenval;
} screen[25][80];
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The screen array contains 2,000 elements. Each element of the array is an individual
union with two members: windowl and screenval. The windowl member is a
structure with two bit-field members, icon and color. The screenval member is an
int. At any given time, each union element holds either the int represented by
screenval or the structure represented by windowl.

Microsoft Specific —>
Nested unions can be declared anonymously when they are members of another
structure or union. This is an example of a nameless union:

struct str
{
int a, b;
union / * Unnamed union */
{
char c[4];
Tong 1;
float f;
};
char c_array[10];
} my_str;
my_str.1 == @L; /* A reference to a field in the my_str union */

Unions are often nested within a structure that includes a field giving the type of data
contained in the union at any particular time. This is an example of a declaration for
such a union: ‘

struct x
{
int type_tag;
union
{
int x;
float y;
}

}

See “Structure and Union Members” on page 106 for information about referencing
unions.

END Microsoft Specific

Storage of Unions

The storage associated with a union variable is the storage required for the largest
member of the union. When a smaller member is stored, the union variable can
contain unused memory space. All members are stored in the same memory space
and start at the same address. The stored value is overwritten each time a value is
assigned to a different member. For example:
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union /* Defines a union named x */

{
char *a, b;
float f[20];
} x;

The members of the x union are, in order of their declaration, a pointer to a char
value, a char value, and an array of float values. The storage allocated for x is the
storage required for the 20-element array f, since f is the longest member of the
union. Because no tag is associated with the union, its type is unnamed or
“anonymous.”

Array Declarations

An “array declaration” names the array and specifies the type of its elements. It can
also define the number of elements in the array. A variable with array type is
considered a pointer to the type of the array elements.

Syntax
declaration :
declaration-specifiers init-declarator-list ,, ;

init-declarator-list
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator :
pointer ., direct-declarator

direct-declarator :
direct-declarator [ constant-expression ]

Because constant-expression is optional, the syntax has two forms:

o The first form defines an array variable. The constant-expression argument within
the brackets specifies the number of elements in the array. The constant-
expression, if present, must have integral type, and a value larger than zero. Each
element has the type given by type-specifier, which can be any type except void.
An array element cannot be a function type.

e The second form declares a variable that has been defined elsewhere. It omits the
constant-expression argument in brackets, but not the brackets. You can use this
form only if you previously have initialized the array, declared it as a parameter, or
declared it as a reference to an array explicitly defined elsewhere in the program.
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In both forms, direct-declarator names the variable and can modify the variable’s
type. The brackets ([ ]) following direct-declarator modify the declarator to an array

type.

Type qualifiers can appear in the declaration of an object of array type, but the
qualifiers apply to the elements rather than the array itself.

You can declare an array of arrays (a “multidimensional” array) by following the
array declarator with a list of bracketed constant expressions in this form:

type-specifier declarator [constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements in a given
dimension: two-dimensional arrays have two bracketed expressions, three-
dimensional arrays have three, and so on. You can omit the first constant expression
if you have initialized the array, declared it as a parameter, or declared it as a
reference to an array explicitly defined elsewhere in the program.

You can define arrays of pointers to various types of objects by using complex
declarators, as described in “Interpreting More Complex Declarators” on page 72.

Arrays are stored by row. For example, the following array consists of two rows with
three columns each:

char A[21[31;

The three columns of the first row are stored first, followed by the three columns of
the second row. This means that the last subscript varies most quickly.

To refer to an individual element of an array, use a subscript expression, as described
in “Postfix Operators” on page 103 in Chapter 4.

These examples illustrate array declarations:
float matrix[10][15];
The two-dimensional array named matrix has 150 elements, each having fleat type.

struct {
float x, y;
} complex[100];

This is a declaration of an array of structures. This array has 100 elements; each
element is a structure containing two members.

extern char *name[];

This statement declares the type and name of an array of pointers to char. The actual
definition of name occurs elsewhere.
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Microsoft Specific —

The type of integer required to hold the maximum size of an array is the size of
size_t. Defined in the header file STDDEEH, size_t is an unsigned int with the
range 0x00000000 to 0x7CFFFFFF.

END Microsoft Specific

Storage of Arrays

The storage associated with an array type is the storage required for all of its
elements. The elements of an array are stored in contiguous and increasing memory
locations, from the first element to the last. '

Pointer Declarations
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A “pointer declaration” names a pointer variable and specifies the type of the object
to which the variable points. A variable declared as a pointer holds a memory
address.

Syntax
declarator : .
pointer ., direct-declarator

direct-declarator :
identifier
( declarator)
direct-declarator [ constant-expression . ]
direct-declarator ( parameter-type-list )
direct-declarator ( identifier-list . )

pointer :
* type-qualifier-list .,
* type-qualifier-list ., pointer
type-qualifier-list :
type-qualifier
type-qualifier-list type-qualifier

The type-specifier gives the type of the object, which can be any basic, structure, or
union type. Pointer variables can also point to functions, arrays, and other pointers.
(For information on declaring and interpreting more complex pointer types, refer to
“Interpreting More Complex Declarators” on page 72.)

By making the type-specifier void, you can delay specification of the type to which
the pointer refers. Such an item is referred to as a “pointer to void” and is written as
void *. A variable declared as a pointer to void can be used to point to an object of
any type. However, to perform most operations on the pointer or on the object to
which it points, the type to which it points must be explicitly specified for each
operation. (Variables of type char * and type void * are assignment-compatible
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without a type casf.) Such conversion can be accomplished with a type cast (see
“Type-Cast Conversions” on page 132 in Chapter 4 for more information).

The type-qualifier can be either const or volatile, or both. These specify, respectively,
that the pointer cannot be modified by the program itself (const), or that the pointer
can legitimately be modified by some process beyond the control of the program
(volatile). (See “Type Qualifiers” on page 51 for more information on const and
volatile.)

The declarator names the variable and can include a type modifier. For example, if
declarator represents an array, the type of the pointer is modified to be a pointer to an
array.

You can declare a pointer to a structure, union, or enumeration type before you define
the structure, union, or enumeration type. You declare the pointer by using the
structure or union tag as shown in the examples below. Such declarations are allowed
because the compiler does not need to know the size of the structure or union to
allocate space for the pointer variable.

The following examples illustrate pointer declarations.

char *message; /* Declares a pointer variable named message */
The message pointer points to a variable with char type.

int *pointers[10]; /* Declares an array of pointers */

The pointers array has 10 elements; each element is a pointer to a variable with int
type.

int (*pointer)[10]; /* Declares a pointer to an array of 10 elements */

The pointer variable points to an array with 10 elements. Each element in this array
has int type.

int const *x; /* Declares a pointer variable, x,
to a constant value */

The pointer x can be modified to point to a different int value, but the value to which
it points cannot be modified.

const int some_object =5 ;

int other_object = 37;

int *const y = &fixed_object;

const volatile *const z = &some_object;
int *const volatile w = &some_object;

The variable y in these declarations is declared as a constant pointer to an int value.
The value it points to can be modified, but the pointer itself must always point to the
same location: the address of fixed_object. Similarly, z is a constant pointer, but it
is also declared to point to an int whose value cannot be modified by the program.
The additional specifier volatile indicates that although the value of the const int
pointed to by z cannot be modified by the program, it could legitimately be modified
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by a process running concurrently with the program. The declaration of w specifies
that the program cannot change the value pointed to and that the program cannot
modify the pointer. ‘

struct Tist *next, *previous; /* Uses the tag for Tist */

This example declares two pointer variables, next and previous, that point to the
structure type 1ist. This declaration can appear before the definition of the 1ist
structure type (see the next example), as long as the 1ist type definition has the same
visibility as the declaration.

struct Tist

{

char *token;

int count;

struct 1ist *next;
} line;

The variable 1ine has the structure type named 1ist. The 11ist structure type has
three members: the first member is a pointer to a char value, the second is an int
value, and the third is a pointer to another 1ist structure.

struct id
{
unsigned int id_no;
struct name *pname;
} record;

The variable record has the structure type id. Note that pname is declared as a
pointer to another structure type named name. This declaration can appear before the
name type is defined.

Storage of Addresses

The amount of storage required for an address and the meaning of the address depend
on the implementation of the compiler. Pointers to different types are not guaranteed
to have the same length. Therefore, sizeof(char *) is not necessarily equal to
sizeof(int *).

Microsoft Specific — ‘
For the Microsoft C compiler, sizeof(char *) is equal to sizeof(int *).

END Microsoft Specific

Based Pointers
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Microsoft Specific —

For the Microsoft 32-bit C compiler, a based pointer is a 32-bit offset from a 32-bit
pointer base. Based addressing is useful for exercising control over sections where
objects are allocated, thereby decreasing the size of the executable file and increasing
execution speed. In general, the form for specifying a based pointer is
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type _ _based( base ) declarator

The “based on pointer” variant of based addressing enables specification of a pointer
as a base. The based pointer, then, is an offset into the memory section starting at the
beginning of the pointer on-which it is based. Pointers based on pointer addresses are
the only form of the _ _based keyword valid in 32-bit compilations. In such
compilations, they are 32-bit displacements from a 32-bit base.

One use for pointers based on pointers is for persistent identifiers that contain
pointers. A linked list that consists of pointers based on a pointer can be saved to
disk, then reloaded to another place in memory, with the pointers remaining valid.

The following example shows a pointer based on a pointer.

void *vpBuffer;

struct 11ist_t

{

void __based( vpBuffer ) *vpData;

struct 1Tist_t __based( vpBuffer ) *11Next;
1 ‘

The pointer vpBuffer is assigned the address of memory allocated at some later point
in the program. The linked list is relocated relative to the value of vpBuffer.

END Microsoft Specific

Abstract Declarators

An abstract declarator is a declarator without an identifier, consisting of one or more
pointer, array, or function modifiers. The pointer modifier (*) always precedes the
identifier in a declarator; array ([ ]) and function ( () ) modifiers follow the identifier.
Knowing this, you can determine where the identifier would appear in an abstract
declarator and interpret the declarator accordingly. See “Interpreting More Complex
Declarators” on page 72 for additional information and examples of complex
declarators. Generally typedef can be used to simplify declarators. See “Typedef
Declarations” on page 86.

Abstract declarators can be complex. Parentheses in a complex abstract declarator
specify a particular interpretation, just as they do for the complex declarators in
declarations.

These examples illustrate abstract declarators:

int * ‘ /* The type name for a pointer to type int: */
“int *[3]. /* An array of three pointers to int */
int (*) [5] /* A pointer to an array of five int */
int *() /* A function with no parameter specification */

/* returning a pointer to int */

!
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/* A pointer to a function taking no arguments and
* returning an int
*/

int (*) ( void )
/* An array of an unspecified number of constant pointers to

* functions each with one parameter that has type unsigned int
* and an unspecified number of other parameters returning an int

A*/

int (*const []) ( unsigned int, ... )

Note The abstract declarator consisting of a set of empty parentheses, (), is not allowed
because it is ambiguous. It is impossible to determine whether the implied identifier belongs
inside the parentheses (in which case it is an unmodified type) or before the parentheses (in
which case it is a function type).

Interpreting More Complex Declarators
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You can enclose any declarator in parentheses to specify a particular interpretation of
a “complex declarator.” A complex declarator is an identifier qualified by more than
one array, pointer, or function modifier. You can apply various combinations of array,
pointer, and function modifiers to a single identifier. Generally typedef may be used
to simplify declarations. See “Typedef Declarations” on page 86.

In interpreting complex declarators, brackets and parentheses (that is, modifiers to
the right of the identifier) take precedence over asterisks (that is, modifiers to the left
of the identifier). Brackets and parentheses have the same precedence and associate
from left to right. After the declarator has been fully interpreted, the type specifier is
applied as the last step. By using parentheses you can override the default association
order and force a particular interpretation. Never use parentheses, however, around
an identifier name by itself. This could be misinterpreted as a parameter list.

A simple way to interpret complex declarators is to read them “from the inside out,”
using the following four steps:

1. Start with the identifier and look directly to the right for brackets or parentheses
(if any).

2. Interpret these brackets or parentheses, then look to the left for asterisks.

3. If you encounter a right parenthesis at any stage, go back and apply rules 1 and 2
to everything within the parentheses.

4. Apply the type specifier.

char *( *(*var)() )[10];

A A A A

7 6 421 3 5
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In this example, the steps are numbered in order and can be interpreted as follows:
1. The identifier var is declared as

a pointer to

a function returning

a pointer to

2.
3.
4.
5. an array of 10 elements, which are
6. pointers to

7.

char values.
The following examples illustrate other complex declarations and show how
parentheses can affect the meaning of a declaration.
int *var[5]; /* Array of pointers to int values */

The array modifier has higher priority than the pointer modifier, so var is declared to
be an array. The pointer modifier applies to the type of the array elements; therefore,
the array elements are pointers to int values.

int (*var)[5]; /* Pointer to array of int values */

In this declaration for var, parentheses give the pointer modifier higher priority than
the array modifier, and var is declared to be a pointer to an array of five int values.

Tong *var( long, long ); /* Function returning pointer to long */

Function modifiers also have higher priority than pointer modifiers, so this
declaration for var declares var to be a function returning a pointer to a long value.
The function is declared to take two long values as arguments.

long (*var)( long, Tong ); /* Pointer to function returning long */

This example is similar to the previous one. Parentheses give the pointer modifier
higher priority than the function modifier, and var is declared to be a pointer to a
function that returns a long value. Again, the function takes two long arguments.

struct both /* Array of pointers to functions */
{ /* returning structures */
int a;
char b;

} ( *var[5] )( struct both, struct both );

The elements of an array cannot be functions, but this declaration demonstrates how
to declare an array of pointers to functions instead. In this example, var is declared to
be an array of five pointers to functions that return structures with two members. The
arguments to the functions are declared to be two structures with the same structure
type, both. Note that the parentheses surrounding *var[5] are required. Without
them, the declaration is an illegal attempt to declare an array of functions, as shown
below:
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/* ILLEGAL */
struct both *var[5]( struct both, struct both );

The following statement declares an array of pointers.
unsigned int *(* const *name[5][10] ) ( void );

The name array has 50 elements organized in a multidimensional array. The elements
are pointers to a pointer that is a constant. This constant pointer points to a function
that has no parameters and returns a pointer to an unsigned type.

This next example is a function returning a pointer to an array of three double -
values.

double ( *var( double (*)[3] ) )[3];

In this declaration, a function returns a pointer to an array, since functions returning
arrays are illegal. Here var is declared to be a function returning a pointer to an array
of three double values. The function var takes one argument. The argument, like the
return value, is a pointer to an array of three double values. The argument type is
given by a complex abstract-declarator. The parentheses around the asterisk in the
argument type are required; without them, the argument type would be an array of
three pointers to double values. For a discussion and examples of abstract
declarators, see “Abstract Declarators” on page 71.

union sign /* Array of arrays of pointers */
{ /* to pointers to unions */
int x;
unsigned y;

} **var[51[5]1;

As the above example shows, a pointer can point to another pointer, and an array can
contain arrays as elements. Here var is an array of five elements. Each element is a
five-element array of pointers to pointers to unions with two members.

union sign *(*var[5])[5]; /* Array of pointers to arrays
of pointers to unions */

This example shows how the placement of parentheses changes the meaning of the
declaration. In this example, var is a five-element array of pointers to five-element
arrays of pointers to unions. For examples of how to use typedef to avoid complex
declarations, see “Typedef Declarations” on page 86.

Initialization
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An “initializer” is a value or a sequence of values to be assigned to the variable being
declared. You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer are
assigned to the variable.
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The following sections describe how to initialize variables of scalar, aggregate, and
- string types. “Scalar types” include all the arithmetic types, plus pointers. “Aggregate
types” include arrays, structures, and unions.

Initializing Scalar Types

When initializing scalar types, the value of the assignment-expression is assigned to
the variable. The conversion rules for assignment apply. (See “Type Conversions” on
page 126 in Chapter 4 for information on conversion rules.)

Syntax
declaration :
declaration-specifiers init-declarator-list . ;

declaration-specifiers :
storage-class-specifier declaration-specifiers
type-specifier declaration-specifiers
type-qualifier declaration-specifiers

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :

declarator

declarator = initializer ~ /* For scalar initialization */
initializer -

assignment-expression

You can initialize variables of any type, provided that you obey the following rules:

e Variables declared at the file-scope level can be initialized. If you do not explicitly
initialize a variable at the external level, it is initialized to 0 by default.

e A constant expression can be used to initialize any global variable declared with
the static storage-class-specifier. Variables declared to be static are initialized
when program execution begins. If you do not explicitly initialize a global static
variable, it is initialized to O by default, and every member that has pointer type is
assigned a null pointer.

e Variables declared with the auto or register storage-class specifier are initialized
each time execution control passes to the block in which they are declared. If you
omit an initializer from the declaration of an auto or register variable, the initial
value of the variable is undefined. For automatic and register values, the initializer
is not restricted to being a constant; it can be any expression involving previously
defined values, even function calls.

e The initial values for external variable declarations and for all static variables,
whether external or internal, must be constant expressions. (For more information,
see “Constant Expressions” on page 96 in Chapter 4.) Since the address of any

7%
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externally declared or static variable is constant, it can be used to initialize an
internally declared static pointer variable. However, the address of an auto
variable cannot be used as a static initializer because it may be different for each
execution of the block. You can use either constant or variable values to initialize
auto and register variables.

o If the declaration of an identifier has block scope, and the identifier has external
linkage, the declaration cannot have an initialization.

The following examples illustrate initializations:

int x = 10;

The integer variable x is initialized to the constant expression 10.

register int *px = 0;

The pointer px is initialized to 0, producing a “null” pointer.

const int ¢ = (3 * 1024);

This example uses a constant expression (3 * 1024) to initialize c to a constant
value that cannot be modified because of the const keyword.

int *b = &x;
This statement initializes the pointer b with the address of another variable, x.
int *const a = &z;

The pointer a is initialized with the address of a variable named z. Howeyver, since it
is specified to be a const, the variable a can only be initialized, never modified. It
always points to the same location.

int GLOBAL ;
int function( void )
{
int LOCAL ;
static int *1p = &LOCAL; /* I1legal initialization */
static int *gp = &GLOBAL; /* Legal initialization */
register int *rp = &LOCAL; /* Legal initialization */
}

The global variable GLOBAL is declared at the external level, so it has global lifetime.
The local variable LOCAL has auto storage class and only has an address during the
execution of the function in which it is declared. Therefore, attempting to initialize
the static pointer variable 1p with the address of LOCAL is not permitted. The static
pointer variable gp can be initialized to the address of GLOBAL because that address is
always the same. Similarly, *rp can be initialized because rp is a local variable and
can have a nonconstant initializer. Each time the block is entered, LOCAL has a new
address, which is then assigned to rp.
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Initializing Aggregate Types
An “aggregate” type is a structure, union, or array type. If an aggregate type contains
members of aggregate types, the initialization rules apply recursively.

Syntax
initializer :
{ initializer-list } /* For aggregate initialization */
{ initializer-list , }
initializer-list :
initializer
initializer-list , initializer

The initializer-list is a list of initializers separated by commas. Each initializer in the
list is either a constant expression or an initializer list. Therefore, initializer lists can
be nested. This form is useful for initializing aggregate members of an aggregate
type, as shown in the examples in this section. However, if the initializer for an
automatic identifier is a single expression, it need not be a constant expression; it
merely needs to have appropriate type for assignment to the identifier.

For each initializer list, the values of the constant expressions are assigned, in order,
to the corresponding members of the aggregate variable.

If initializer-list has fewer values than an aggregate type, the remaining members or
elements of the aggregate type are initialized to O for external and static variables.
The initial value of an automatic identifier not explicitly initialized is undefined. If
initializer-list has more values than an aggregate type, an error results. These rules
apply to each embedded initializer list, as well as to the aggregate as a whole.

A structure’s initializer is either an expression of the same type, or a list of
initializers for its members enclosed in curly braces ({ }). Unnamed bit-field members
are not initialized.

When a union is initialized, initializer-list must be a single constant expression. The
value of the constant expression is assigned to the first member of the union.

If an array has unknown size, the number of initializers determines the size of the
array, and its type becomes complete. There is no way to specify repetition of an
initializer in C, or to initialize an element in the middle of an array without providing
all preceding values as well. If you need this operation in your program, write the
routine in assembly language.

Note that the number of initializers can set the size of the array:
intxL1=4{60,1, 2}

If you specify the size and give the wrong number of initializers, however, the
compiler generates an error.
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Microsoft Specific —

The maximum size for an array is defined by size_t. Defined in the header file
STDDEF.H, size_t is an unsigned int with the range 0x00000000 to 0x7CFFFFFF.

END Microsoft Specific

This example shows initializers for an array.

int P[4][3] =
{

L W ann W e Wiaan}
S wN
“ v e .

S wr
S W
e
“ v e .

. e e e

};

This statement declares P as a four-by-three array and initializes the elements of its
first row to 1, the elements of its second row to 2, and so on through the fourth row.
Note that the initializer list for the third and fourth rows contains commas after the
last constant expression. The last initializer list ({4, 4, 4,},)is also followed by a
comma. These extra commas are permitted but are not required; only commas that
separate constant expressions from one another, and those that separate one
initializer list from another, are required.

If an aggregate member has no embedded initializer list, values are simply assigned,
in order, to each member of the subaggregate. Therefore, the initialization in the
previous example is equivalent to the following:

int P[4][3] =
{

1, 1,1, 2, 2,2, 3, 3, 3, 4, 4, 4
}s

Braces can also appear around individual initializers in the list and would help to
clarify the example above.

When you initialize an aggregate variable, you must be careful to use braces and
initializer lists properly. The following example illustrates the compiler’s
interpretation of braces in more detail:

typedef struct

{
int nl, n2, n3;
} triplet;
triplet nlist[2][3] =
{
t{1,2,33y,{ 4,5,613},{ 7,8, 9311}, /*Rowl*/
{{1e,11,12 }, { 13,14,15 }, { 16,17,18 } } /* Row 2 */
};
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In this example, n1ist is declared as a 2-by-3 array of structures, each structure
having three members. Row 1 of the initialization assigns values to the first row of
nlist, as follows:

1. The first left brace on row 1 signals the compiler that initialization of the first
aggregate member of n1ist (that is, n1ist[0]) is beginning.

2. The second left brace indicates that initialization of the first aggregate member of
nlist[@] (thatis, the structure at n1ist[0]1[@]) is beginning.

3. The first right brace ends initialization of the structure n1ist[01[0]; the next left
brace starts initialization of n1ist[0][1].

4. The process continues until the end of the line, where the closing right brace ends
initialization of n1ist[@].

Row 2 assigns values to the second row of n1ist in a similar way. Note that the outer
sets of braces enclosing the initializers on rows 1 and 2 are required. The following
construction, which omits the outer braces, would cause an error:

triplet nlist[2][3] = /* THIS CAUSES AN ERROR */

A '

, 2, , 8,91, /* Line 1 */
1 7,18 } /* Line 2 */

In this construction, the first left brace on line 1 starts the initialization of n1ist[01,
which is an array of three structures. The values 1, 2, and 3 are assigned to the three
members of the first structure. When the next right brace is encountered (after the
value 3), initialization of n1ist[0] is complete, and the two remaining structures in
the three-structure array are automatically initialized to 0. Similarly, { 4,5,6 }
initializes the first structure in the second row of n1ist. The remaining two
structures of n1ist[1] are set to 0. When the compiler encounters the next initializer
list ({ 7,8,9 } ), it tries to initialize n1ist[2]. Since n1ist has only two rows, this
attempt causes an error.

In this next example, the three int members of x are initialized to 1, 2, and 3,
respectively.

struct list
( .
int i, j, ks
float m[2]1[3];
}x=A
1,
2,
3,
{4.0, 4.0, 4.0}
I

In the 11 st structure above, the three elements in the first row of m are initialized to
4.0; the elements of the remaining row of m are initialized to 0.0 by default.
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union
{
char x[2]1[3];
int i, j, k;
ry=+{{
{'1'},
{4}
}
}s

The union variable y, in this example, is initialized. The first element of the union is
an array, so the initializer is an aggregate initializer. The initializer list {"1'} assigns
values to the first row of the array. Since only one value appears in the list, the
element in the first column is initialized to the character 1, and the remaining two
elements in the row are initialized to the value 0 by default. Similarly, the first
element of the second row of x is initialized to the character 4, and the remaining two
elements in the row are initialized to the value 0.

Initializing Strings

80

You can initialize an array of characters (or wide characters) with a string literal (or
wide string literal). For example:

char code[ ] = "abc";

initializes code as a four-element array of characters. The fourth element is the null
character, which terminates all string literals.

An identifier list can only be as long as the number of identifiers to be initialized. If
you specify an array size that is shorter than the string, the extra characters are
ignored. For example, the following declaration initializes code as a three-element
character array:

char code[3] = "abcd";

Only the first three characters of the initializer are assigned to code. The character d
and the string-terminating null character are discarded. Note that this creates an
unterminated string (that is, one without a 0 value to mark its end) and generates a
diagnostic message indicating this condition.

The declaration
char s[] = "abc™, t[3] = "abc";
is identical to
char s[] = {'a', 'b', 'c', '\0'},
t[3] ={lal' Ibl, ICI };
If the string is shorter than the specified array size, the remaining elements of the
array are initialized to 0.
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Microsoft Specific —
In Microsoft C, string literals can be up to 2048 bytes in length

END Microsoft Speciﬁc

Storage of Basic Types

Table 3.2 summarizes the storage associated with each basic type.

Table 3.2 Sizes of Fundamental Types

Type Storage
char, unsigned char, signed char 1 byte

short, unsigned short . 2bytes
int, unsigned int - 4 bytes
long, unsigned long 4 bytes
float 4 bytes
double - 8 bytes
long double 8 bytes

The C data types fall into general categories. The “integral types” include char, int,
short, long, signed, unsigned, and enum. The “floating types” include float, double,
and long double. The “arithmetic types” include all floating and integral types.

Type char

The char type is used to store the integer value of a member of the representable
character set. That integer value is the ASCII code corresponding to the specified
character.

Microsoft Specific —

Character values of type unsigned char have a range from 0 to OxFF hexadecimal. A
signed char has range 0x80 to Ox7F. These ranges translate to 0 to 255 decimal, and
—128 to +127 decimal, respectively. The /J compiler option changes the default from
signed to unsigned. \

END Microsoft Specific

Type int.

The size of a signed or unsigned int item is the standard size of an integer on a
particular machine. For example, in 16-bit operating systems, the int type is usually
16 bits, or 2 bytes. In 32-bit operating systems, the int type is usually 32 bits, or 4
bytes. Thus, the int type is equivalent to either the short int or the long int type, and
the unsigned int type is equivalent to either the unsigned short or the unsigned long
type, depending on the target environment. The int types all represent signed values
unless specified otherwise.
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The type specifiers int and unsigned int (or simply unsigned) define certain features
of the C language (for instance, the enum type). In these cases, the definitions of int
and unsigned int for a particular implementation determine the actual storage.

Microsoft Specific —
Signed integers are represented in two’s-complement form. The most-significant bit

holds the sign: 1 for negative, O for positive and zero. The range of values is given in
Table 1.3, which is taken from the LIMITS.H header file.

END Microsoft Specific

Note The int and unsigned int type specifiers are widely used in C programs because they
allow a particular machine to handle integer values in the most efficient way for that machine.
However, since the sizes of the int and unsigned int types vary, programs that depend on a
specific int size may not be portable to other machines. To make. programs more portable, you
can use expressions with the sizeof operator (as discussed in “The sizeof Operator” on page
111 in Chapter 4) instead of hard-coded data sizes.

Sized Integer Types

iicrosoit Specific — .
Microsoft C features support for sized integer types. You can declare 8-, 16-, 32-, or
64-bit integer variables by using the _ _intn type specifier, where  is the size, in bits,
of the integer variable. The value of n can be 8, 16, 32, or 64. The following example
declares one variable of each of the four types of sized integers:

__int8 nSmall; // Declares 8-bit integer
__intl6 nMedium; - // Declares 16-bit integer
__int32 nlLarge; // Declares 32-bit integer
__int64 nHuge; // Declares 64-bit integer

The first three types of sized integers are synonyms for the ANSI types that have the
same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the _ _int8 data type is synonymous with type char,

_ _int16 is synonymous with type short, and _ _int32 is synonymous with type int.
The _ _int64 type has no equivalent ANSI counterpart.

END Microsoft Specific

Type float

Floating-point numbers use the IEEE (Institute of Electrical and Electronics
Engineers) format. Single-precision values with fleat type have 4 bytes, consisting of
a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit mantissa. The mantissa
represents a number between 1.0 and 2.0. Since the high-order bit of the mantissa is
always 1, it is not stored in the number. This representation gives a range of
approximately 3.4E-38 to 3.4E+38 for type float.

You can declare variables as float or double, depending on the needs of your
application. The principal differences between the two types are the significance they
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can represent, the storage they require, and their range. Table 3.3 shows the
relationship between significance and storage requirements.

Table 3.3 Floating-Point Types

Type Significant digits Number of bytes
float 6-7 4
double 15-16 ‘ 8

Floating-point variables are represented by a mantissa, which contains the value of
the number, and an exponent, which contains the order of magnitude of the number.

Table 3.4 shows the number of bits allocated to the mantissa and the exponent for
each floating-point type. The most significant bit of any float or double is always the
sign bit. If it is 1, the number is considered negative; otherwise, it is considered a
positive number.

- Table 3.4 Lengths of Exponents and Mantissas

Type Exponent length Mantissa length
float 8 bits 23 bits
double 11 bits 52 bits

Because exponents are stored in an unsigned form, the exponent is biased by half its
possible value. For type float, the bias is 127; for type double, it is 1023. You can
compute the actual exponent value by subtractmg the bias value from the exponent
value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2.
For types float and double, there is an implied leading 1 in the mantissa in the most-
significant bit position, so the mantissas are actually 24 and 53 bits long, respectlvely,
even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. “Denormalized numbers”
are nonzero floating-point numbers with reserved exponent values in which the most-
significant bit of the mantissa is 0. By using the denormalized format, the range of a
floating-point number can be extended at the cost of precision. You cannot control
whether a floating-point number is represented in normalized or denormalized form;
the floating-point package determines the representation. The floating-point package
never uses a denormalized form unless the exponent becomes less than the minimum
that can be represented in a normalized form.

Table 3.5 shows the minimum and maximum values you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller
minimum value. Note that numbers retained in 80x87 registers are always
represented in 80-bit normalized form; numbers can only be represented in
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denormalized form when stored in 32-bit or 64-bit floating-point variables (variables
of type float and type long).

Table 3.5 Range of Floating-Point Types

Type Minimum value Maximum value
float 1.175494351 E - 38 3.402823466 E + 38
double 2.2250738585072014 E - 308 1.7976931348623158 E + 308

If precision is less of a concern than storage, consider using type float for floating-
point variables. Conversely, if precision is the most important criterion, use type
double.

Floating-point variables can be promoted to a type of greater significance (from type
float to type double). Promotion often occurs when you perform arithmetic on
floating-point variables. This arithmetic is always done in as high a degree of
precision as the variable with the highest degree of precision. For example, consider
the following type declarations:

float f_short;
double f_long;
long double f_longer;

f_short = f_short * f_long;

In the preceding example, the variable f_short is promoted to type double and
multiplied by f_1ong; then the result is rounded to type float before being assigned to
f_short.

In the following example (which uses the declarations from the preceding example),
the arithmetic is done in float (32-bit) precision on the variables; the result is then
promoted to type double:

f_longer = f_short * f_short;

Type double

Double precision values with double type have 8 bytes. The format is similar to the
float format except that it has an 11-bit excess-1023 exponent and a 52-bit mantissa,
plus the implied high-order 1 bit. This format gives a range of approximately
1.7E-308 to 1.7E+308 for type double.

Microsoft Specific —
The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/~1.7E308 with at least 15 digits of precision.

END Microsoft Specific

Type long double

The range of values for a variable is bounded by the minimum and maximum values
that can be represented internally in a given number of bits. However, because of C’s
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conversion rules (discussed in detail in “Type Conversions” on page 126 in Chapter
4) you cannot always use the maximum or minimum value for a constant of a
particular type in an expression.

For example, the constant expression - 32768 consists of the arithmetic negation
operator (-) applied to the constant value 32,768. Since 32,768 is too large to
represent as a short int, it is given the long type. Consequently, the constant
expression -32768 has long type. You can only represent —32,768 as a short int by
type-casting it to the short type. No information is lost in the type cast, since —32,768
can be represented internally in 2 bytes.

The value 65,000 in decimal notation is considered a signed constant. It is given the
long type because 65,000 does not fit into a short. A value such as 65,000 can only
be represented as an unsigned short by type-casting the value to unsigned short
type, by giving the value in octal or hexadecimal notation, or by specifying it as
65000U. You can cast this long value to the unsigned short type without loss of
information, since 65,000 can fit in 2 bytes when it is stored as an unsigned number.

Microsoft Specific —

The long double contains 80 bits: 1 for sign, 15 for exponent, and 64 for mantissa.
Its range is +/—1.2E4932 with at least 19 digits of precision. Although long double
and double are separate types, the representation of long double and double is
identical. '

END Microsoft Specific

Incomplete Types

An incomplete type is a type that describes an identifier but lacks information needed
to determine the size of the identifier. An “incomplete type” can be:

e A structure type whose members you have not yet specified.

e A union type whose members you have not yet specified.

e An array type whose dimension you have not yet specified.

The void type is an incomplete type that cannot be completed. To complete an

incomplete type, specify the missing information. The following examples show how
to create and complete the incomplete types.

e To create an incomplete structure type, declare a structure type without specifying
its members. In this example, the ps pointer points to an incomplete structure type
called student.

struct student *ps;

85



C Language Reference

e To complete an incomplete structure type, declare the same structure type later in
the same scope with its members specified, as in

struct student
{
int num;
} /* student structure now completed */

o To create an incomplete array type, declare an array type without specifying its
repetition count. For example:

char a[l; /* a has incomplete type */

e To complete an incomplete array type, declare the same name later in the same
scope with its repetition count specified, as in

char a[25]; /* a now has complete type */

Typedef Declarations

A typedef declaration is a declaration with typedef as the storage class. The
declarator becomes a new type. You can use typedef declarations to construct shorter
or more meaningful names for types already defined by C or for types that you have
declared. Typedef names allow you to encapsulate implementation details that may
change.

A typedef declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by the
declaration, becomes a synonym for the type.

Syntax
declaration :
declaration-specifiers init-declarator-list , ;

declaration-specifiers :
storage-class-specifier declaration-specifiers
type-specifier declaration-specifiers
type-qualifier declaration-specifiers

storage-class-specifier :
typedef

type-specifier :
void
char
short
int
long
float
double
signed
unsigned
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struct-or-union-specifier
enum-specifier
typedef-name

typedef-name :
identifier

Note that a typedef declaration does not create types. It creates synonyms for existing
types, or names for types that could be specified in other ways. When a typedef name
is used as a type specifier, it can be combined with certain type specifiers, but not
others. Acceptable modifiers include const and volatile.

Typedef names share the name space with ordinary identifiers (see “Name Spaces” on
page 37 in Chapter 2 for more information). Therefore, a program can have a typedef
name and a local-scope identifier by the same name. For example:

typedef char FlagType;

int main()
{
}
int myproc( int )
{

int FlagType:;
}

When declaring a local-scope identifier by the same name as a typedef, or when
declaring a member of a structure or union in the same scope or in an inner scope,
the type specifier must be specified. This example illustrates this constraint:

typedef char FlagType;
const FlagType x;

To reuse the FiagType name for an identifier, a structure member, or a union
member, the type must be provided:

const int FlagType; /* Type specifier required */
It is not sufficient to say
const FlagType; /* Incomplete specification */

because the F1agType is taken to be part of the type, not an identifier that is being
redeclared. This declaration is taken to be an illegal declaration like

int; /* I1legal declaration */

You can declare any type with typedef, including pointer, function, and array types.
You can declare a typedef name for a pointer to a structure or union type before you
define the structure or union type, as long as the definition has the same visibility as
the declaration.
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Typedef names can be used to improve code readability. All three of the following
declarations of signal specify exactly the same type, the first without making use of
any typedef names. '

typedef void fv( int ), (*pfv)( int ); /* typedef declarations */

void ( *signal( int, void (*) (int)) ) ( int );
fv *signal( int, fv * ); /* Uses typedef type */
pfv signal( int, pfv ); /* Uses typedef type */

The following examples illustrate typedef declarations:
typedef int WHOLE; /* Declares WHOLE to be a synonym for int */

Note that WHOLE could now be used in a variable declaration such as WHOLE 1i; or
const WHOLE 1;. However, the declaration Tong WHOLE 1i; would be illegal.

typedef struct club

{
char name[30];
int size, year;
} GROUP;

This statement declares GROUP as a structure type with three members. Since a
structure tag, cTub, is also specified, either the typedef name (GROUP) or the structure
tag can be used in declarations. You must use the struct keyword with the tag, and
you cannot use the struct keyword with the typedef name.

typedef GROUP *PG; /* Uses the previous typedef name
to declare a pointer */

The type PG is declared as a pointer to the GROUP type, which in turn is defined as a
structure type.

typedef void DRAWF( int, int );

This example provides the type DRAWF for a function returning no value and taking
two int arguments. This means, for example, that the declaration

DRAWF box;
is equivalent to the declaration

void box(.int, int );

Extended Storage-Class Attributes

Microsoft Specific —

Extended attribute syntax simplifies and standardizes the Microsoft-specific
extensions to the C language. The storage-class attributes that use extended attribute
syntax include thread, naked, dllimport, and dllexport.

The extended attribute syntax for specifying storage-class information uses the
_ _declspec keyword, which specifies that an instance of a given type is to be stored
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with a Microsoft-specific storage-class attribute (thread, naked, dllimport, or
dllexport). Examples of other storage-class modifiers include the static and extern
keywords. However, these keywords are part of the ANSI C standard and as such are
not covered by extended attribute syntax.

Syntax
storage-class-specifier :
_ _declspec ( extended-decl-modifier-seq ) [* Microsoft Specific */

extended-decl-modifier-seq :
extended-decl-modifier
extended-decl-modifier-seq extended-decl-modifier

extended-decl-modifier :
thread
naked
dllimport
dllexport

White spaqe separates the declaration modifiers. Note that extended-decl-modifier-
seq can be empty; in this case, _ _declspec has no effect.

 —

The thread, naked, dllimport, and dllexport storage-class attributes are a property
only of the declaration of the data or function to which they are applied; they do not
redefine the type attributes of the function itself. The thread attribute affects data
only. The naked attribute affects functions only. The dllimport and dllexport
attributes affect functions and data.

END Microsoft Specific

DLL Import and Export

Microsoft Specific —

The dllimport and dllexport storage-class modifiers are Microsoft-specific
extensions to the C language. These modifiers define the DLL’s interface to its client
(the executable file or another DLL). For specific information about using these
modifiers, see “DLL Import and Export Functions” on page 158 in Chapter 6.

END Microsoft Specific

Naked

Microsoft Specific —

The naked storage-class attribute is a Microsoft-specific extension to the C language.
The compiler generates code without prolog and epilog code for functions declared
with the naked storage-class attribute. Naked functions are useful when you need to
write your own prolog/epilog code sequences using inline assembler code. Naked
functions are useful for writing virtual device drivers.
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For specific information about using the naked attribute, see “Naked Functions” on
page 161 in Chapter 6.

END Microsoft Specific

Thread Local Storage

Microsoft Specific —

Thread Local Storage (TLS) is the mechanism by which each thread in a given
multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data. For a complete
discussion of threads, see “Processes and Threads” in the Microsoft Win32e Software
Development Kit documentation.

The Microsoft C language includes the extended storage-class attribute, thread,
which is used with the _ _declspec keyword to declare a thread local variable. For
example, the following code declares an integer thread local variable and initializes it
with a value:

declspec( thread ) int tls_i = 1;

These guidelines must be observed when you are declaring statically bound thread
local variables:

* You can apply the thread attribute only to data declarations and definitions. It
cannot be used on function declarations or definitions. For example, the following
code generates a compiler error:

J#define Thread __declispec( thread )
Thread void func(); /* Error */

* You can specify the thread attribute only on data items with static storage
duration. This includes global data (both static and extern) and local static data.
You cannot declare automatic data with the thread attribute. For example, the
following code generates compiler errors:

f#define Thread __declspec( thread )
void funcl()

{

Thread int tls_i; /* Error */
}
int func2( Thread int tls_i ) /* Error */
{

return tls_i;
}

e You must use the thread attribute for the declaration and the definition of thread
local data, regardless of whether the declaration and definition occur in the same
file or separate files. For example, the following code generates an error:
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#define Thread __declspec( thread )
extern int tis_i; /* This generates an error, because the */
int Thread tls_i; /* declaration and the definition differ. */

e You cannot use the thread attribute as a type modifier. For example, the following
code generates a compiler error:

char *ch __declspec( thread ); /* Error */

e The address of a thread local variable is not considered constant, and any
expression involving such an address is not considered a constant expression. This
means that you cannot use the address of a thread local variable as an initializer
for a pointer. For example, the compiler flags the following code as an error:
fidefine Thread __declspec( thread )

Thread int tls_i;
int *p = &tls_i; /* Error */

e (C permits initialization of a variable with an expression involving a reference to

itself, but only for objects of nonstatic extent. For example:

#define Thread _ declspec( thread )

Thread int tis_i = tls_i; /* Error */

int j = J; /* Error */

Thread int tls_i = sizeof( tls_i ) /* Okay */

Note that a sizeof expression that includes the variable being initialized does not
constitute a reference to itself and is allowed.

For more information about using the thread attribute, see Chapter 5, “Creating
Multithread Applications for Win32,” in Programming Techniques.

END Microsoft Specific
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CHAPTER 4

Expressions and Assignments

This chapter describes how to form expressions and to assign values in the C
language. Constants, identifiers, strings, and function calls are all operands that are
manipulated in expressions. The C language has all the usual language operators.
This chapter covers those operators as well as operators that are unique to C or
Microsoft C. The topics discussed include:

e [-vajue and r-value expressions
¢ Constant expressions

e Side effects

e Sequence points

° Operators

e Operator precedence

e Type conversions

e Type casts

Operands and Expressions

An “operand” is an entity on which an operator acts. An “expression” is a sequence
of operators and operands that performs any combination of these actions:

e Computes a value

e Designates an object or function

e Generates side effects

Operands in C include constants, identifiers, strings, function calls, subscript
expressions, member-selection expressions, and complex expressions formed by

combining operands with operators or by enclosing operands in parentheses. The
syntax for these operands is given in the next section, “Primary Expressions”.
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Primary Expressions

The operands in expressions are-called “primary expressions.”

Syntax .

primary-expression
identifier
constant
string-literal
( expression )

expression :
assignment-expression
expression , assignment-expression

Identifiers

Identifiers can have integral, float, enum, struct, union, array, pointer, or function
type. An identifier is a primary expression provided it has been declared as
designating an object (in which case it is an 1-value) or as a function (in which case it
is a function designator). See “L-Value and R-Value Expressions” on page 95 for a
definition of 1-value.

The pointer value represented by an array identifier is not a variable, so an array
identifier cannot form the left-hand operand of an assignment operation and therefore
is not a modifiable 1-value.

An identifier declared as a function represents a pointer whose value is the address of
the function. The pointer addresses a function returning a value of a specified type.
Thus, function identifiers also cannot be 1-values in assignment operations. For more
information, see “Identifiers” on page 5 in Chapter 1.

Constants

A constant operand has the value and type of the constant value it represents. A
character constant has int type. An integer constant has int, long, unsigned int, or
unsigned long type, depending on the integer’s size and on the way the value is
specified. See “Constants” on page 9 in Chapter 1 for more information.

String Literals

A “string literal” is a character, wide character, or sequence of adjacent characters
enclosed in double quotation marks. Since they are not variables, neither string
literals nor any of their elements can be.the left-hand operand in an assignment
operation. The type of a string literal is an array of char (or an array of wchar_t for
wide-string literals). Arrays in expressions are converted to pointers. See “String
Literals” on page 19 in Chapter 1 for more information about strings.
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Expressions in Parentheses

You can enclose any operand in parentheses without changing the type or value of the
enclosed expression. For example, in the expression

(10+5)/5

the parentheses around 10 + 5 mean that the value of 10 + 5 is evaluated first and it
becomes the left operand of the division (/) operator. The resultof ( 10 + 5 ) / 5is
3. Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expression, they
cannot guarantee a particular order of evaluation in all cases. For example, neither
the parentheses nor the left-to-right grouping of the following expression guarantees
what the value of i will be in either of the subexpressions:

(i++ 41 ) * (2 +1)

The compiler is free to evaluate the two sides of the multiplication in any order. If the
initial value of i is zero, the whole expression could be evaluated as either of these
two statements:

(0+1+

1)*(2+1)
(0+1+1)*(2+0)
Exceptions resulting from side effects are discussed in “Side Effects” on pige 97. ;

L-Value and R-Value Expressions

Expressions that refer to memory locations are called “l-value” expressions. An
l-value represents a storage region’s “locator” value, or a “left” value, implying that it
can appear on the left of the equal sign (=). L-values are often identifiers.

Expressions referring to modifiable locations are called “modifiable 1-values.” A
modifiable 1-value cannot have an array type, an incomplete type, or a type with the
const attribute. For structures and unions to be modifiable 1-values, they must not
have any members with the const attribute. The name of the identifier denotes a
storage location, while the value of the variable is the value stored at that location.

An identifier is a modifiable 1-value if it refers to a memory location and if its type is.
arithmetic, structure, union, or pointer. For example, if ptr is a pointer to a storage
region, then *ptr is a modifiable 1-value that designates the storage region to which
ptr points.

Any of the following C expressions can be 1-value expressions:

e An identifier of integral, floating, pointer, structure, or union type
e A subscript ([ ]) expression that does not evaluate to an array

e A member-selection expression (=> or .)

95



C Language Reference

¢ A unary-indirection (*) expression that does not refer to an array
e An l-value expression in parentheses

e A const object (a nonmodifiable 1-value)

The term “r-value” is sometimes used to describe the value of an expression and to
distinguish it from an l-value. All I-values are r-values but not all r-values are
l-values.

Microsoft Specific —

Microsoft C includes an extension to the ANSI C standard that allows casts of
I-values to be used as 1-values, as long as the size of the object is not lengthened
through the cast. (See “Type-Cast Conversions” on page 132 in chapter 4 for more
information.) The following example illustrates this feature:

char *p ;

short 1i;

long 1;

(Tong *) p = &1 ; /* Legal cast */
(long) i =1 ; /* I1legal cast */

The default for Microsoft C is that the Microsoft extensions are enabAled‘ Use the /Za
compiler option to disable these extensions.

END Microsoft Specific

Constant Expressions

96

A constant expression is evaluated at compile time, not run time, and can be used in
any place that a constant can be used. The constant expression must evaluate to a
constant that is in the range of representable values for that type. The operands of a
constant expression can be integer constants, character constants, floating-point
constants, enumeration constants, type casts, sizeof expressions, and other constant
expressions.

Syntax
constant-expression :
conditional-expression

conditional-expression :

logical-OR-expression

logical-OR-expression ? expression : conditional-expression
expression .

assignment-expression
expression , assignment-expression

assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression
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assignment—operator : one of
= *= /= %: = - <<= D>>= &: A= |=

The nonterminals for struct declarator, enumerator, direct declarator, direct-abstract
declarator, and labeled statement contain the constant-expression nonterminal.

An integral constant expression must be used to specify the size of a bit-field member
of a structure, the value of an enumeration constant, the size of an array, or the value
of a case constant.

Constant expressions used in preprocessor directives are subject to additional
restrictions. Consequently, they are known as “restricted constant expressions.” A
restricted constant expression cannot contain sizeof expressions, enumeration
constants, type casts to any type, or floating-type constants. It can, however, contain
the special constant expression defined(identifier). (See Chapter 1, “The
Preprocessor,” in the Preprocessor Reference for more information.)

Expression Evaluation

Expressions involving assignment, unary increment, unary decrement, or calling a
function may have consequences incidental to their evaluation (side effects). When a
“sequence point” is reached, everything preceding the sequence point, including any
side effects, is guaranteed to have been evaluated before evaluation begins on
anything following the sequence point.

“Side effects” are changes caused by the evaluation of an expression. Side effects
occur whenever the value of a variable is changed by an expression evaluation. All
assignment operations have side effects. Function calls can also have side effects if
they change the value of an externally visible item, either by direct assignment or by
indirect assignment through a pointer.

Side Effects

The order of evaluation of expressions is defined by the specific implementation,
except when the language guarantees a particular order of evaluation (as outlined in
“Precedence and Order of Evaluation” on page 100). For example, side effects occur
in the following function calls:

add( i +1, i =3+ 2);
myproc( getc(), getc() );

The arguments of a function call can be evaluated in any order. The expression i + 1
may be evaluated before i = j + 2,ori = j + 2 may be evaluated before i + 1.
The result is different in each case. Likewise, it is not possible to guarantee what
characters are actually passed to the myproc. Since unary increment and decrement
operations involve assignments, such operations can cause side effects, as shown in
the following example:

X[1] = i++;
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In this example, the value of x that is modified is unpredictable. The value of the
subscript could be either the new or the old value of i. The result can vary under
different compilers or different optimization levels.

Since C does not define the order of evaluation of side effects, both evaluation

~methods discussed above are correct and either may be implemented. To make sure

that your code is portable and clear, avoid statements that depend on a particular
order of evaluation for side effects.

Sequence Points

Between consecutive “sequence points” an object’s value can be modified only once
by an expression. The C language defines the following sequence points:

Left operand of the logical-AND operator (&&). The left operand of the logical-
AND operator is completely evaluated and all side effects complete before
continuing. If the left operand evaluates to false (0), the other operand is not
evaluated.

Left operand of the logical-OR operator (ll). The left operand of the logical-OR
operator is completely evaluated and all side effects complete before continuing. If
the left operand evaluates to true (nonzero), the other operand is not evaluated.

Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects complete before continuing. Both
operands of the comma operator are always evaluated. Note that the comma
operator in a function call does not guarantee an order of evaluation.

Function-call operator. All arguments to a function are evaluated and all side
effects complete before entry to the function. No order of evaluation among the
arguments is specified.

First operand of the conditional operator. The first operand of the conditional
operator is completely evaluated and all side effects complete before continuing.

The end of a full initialization expression (that is, an expression that is not part of
another expression such as the end of an initialization in a declaration statement).

The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is evaluated for its
side effects and there is a sequence point following this evaluation.

The controlling expression in a selection (if or switch) statement. The expression
is completely evaluated and all side effects complete before the code dependent on
the selection is executed.

The controlling expression of a while or do statement. The expression is
completely evaluated and all side effects complete before any statements in the
next iteration of the while or do loop are executed.

Each of the three expressions of a for statement. The expressions are completely
evaluated and all side effects complete before any statements in the next iteration
of the for loop are executed.
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e The expression in a return statement. The expression is completely evaluated and
all side effects complete before control returns to the calling function.

Operators

There are three types of operators. A unary expression consists of either a unary

operator prepended to an operand, or the sizeof keyword followed by an expression.

The expression can be either the name of a variable or a cast expression. If the

expression is a cast expression, it must be enclosed in parentheses. A binary

expression consists of two operands joined by a binary operator. A ternary expresswn
consists of three operands joined by the conditional-expression operator.

C includes the following unary operators:

Symbol Name

-~ Negation and complement operators

* & Indirection and address-of operators
sizeof Size operator

+ Unary plus operator

++ —— Unary increment and decrement operators

Binary operators associate from left to right. C provides the following binary

operators:

Symbol Name

* | % Multiplicative operators

+ - Additive operators

<< >> Shift operators

< > <= >= == Relational operators

1=

& |~ Bitwise operators

&& |l Logical operators

, Sequential-evaluation operator

The conditional-expression operator has lower precedence than binary expressions
and differs from them in being right associative.

Expressions with operators also include assignment expressions, which use unary or
binary assignment operators. The unary assignment operators are the increment (++)
and decrement (- —) operators; the binary assignment operators are the simple-
assignment operator (=) and the compound-assignment operators. Each compound-
assignment operator is a combination of another binary operator with the simple-
assignment operator.

N
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Precedence and Order of Evaluation

The precedence and associativity of C operators affect the grouping and evaluation of
operands in expressions. An operator’s precedence is meaningful only if other
operators with higher or lower precedence are present. Expressions with higher-
precedence operators are evaluated first. Precedence can also be described by the
word “binding.” Operators with a higher precedence are said to have tighter binding.

Table 4.1 summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in order of precedence from
highest to lowest. Where several operators appear together, they have equal
precedence and are evaluated according to their associativity. The operators in the
table are described in the sections beginning with “Postfix Operators” on page 103.
The rest of this section gives general information about precedence and associativity.

Table 4.1 Precedence and Associativity of C Operators

Symbol1 Type of Operation Associativity
[1 () .—>postfix ++ and Expression Left to right
postfix — —

prefix ++ and prefix — — Unary Right to left
sizeof & * + - ~ !

typecasts Unary Right to left
*| % Multiplicative Left to right
+ - Additive Left to right
<< >> Bitwise shift Left to right
<> <=>= Relational Left to right
== I= Equality Left to right
& Bitwise-AND Left to right
A Bitwise-exclusive-OR Left to right
| Bitwise-inclusive-OR Left to right
&& ' Logical-AND Left to right
Il Logical-OR Left to right
?: ~ Conditional-expression Right to left
= *= [= %= Simple and compound Right to left
+= —= <<= >>= assignment?

&= A= I=

, Sequential evaluation Left to right

1 Operators are listed in descending order of precedence. If several operators appear on the same line or in a
group, they have equal precedence. '

2 All simple and compound-assignment operators have equal precedence.

An expression can contain several operators with equal precedence. When several
such operators appear at the same level in an expression, evaluation proceeds
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according to the associativity of the operator, either from right to left or from left to
right. The direction of evaluation does not affect the results of expressions that
include more than one multiplication (*), addition (+), or binary-bitwise (& | *)
operator at the same level. Order of operations is not defined by the language. The
compiler is free to evaluate such expressions in any order, if the compiler can
guarantee a consistent result.

Only the sequential-evaluation (), logical-AND (& &), logical-OR (ll), conditional-
expression (? :), and function-call operators constitute sequence points and therefore
guarantee a particular order of evaluation for their operands. The function-call
operator is the set of parentheses following the function identifier. The sequential-
evaluation operator (,) is guaranteed to evaluate its operands from left to right. (Note
that the comma operator in a function call is not the same as the sequential-
evaluation operator and does not provide any such guarantee.) For more information,
see “Sequence Points” on page 98.

Logical operators also guarantee evaluation of their operands from left to right.
However, they evaluate the smallest number of operands needed to determine the
result of the expression. This is called “short-circuit” evaluation. Thus, some
operands of the expression may not be evaluated. For example, in the expression

X && y++

the second operand, y++, is evaluated only if x is true (nonzero). Thus, y is not
incremented if x is false (0).

The following list shows how the compiler automatically binds several sample
expressions:

Expression Automatic Binding
a&b||c (a &b) || c
a=>b || c- a=(( || o
q&& r || s-- (q & r) || s--

In the first expression, the bitwise-AND operator (&) has higher precedence than the
logical-OR operator (| |), so a & b forms the first operand of the logical-OR
operation.

In the second expression, the logical-OR operator (| |) has higher precedence than
the simple-assignment operator (=), sob || cis grouped as the right-hand operand
in the assignment. Note that the value assigned to a is either O or 1.

The third expression shows a correctly formed expression that may produce an
unexpected result. The logical-AND operator (&&) has higher precedence than the
logical-OR operator (| |), so g && r is grouped as an operand. Since the logical
operators guarantee evaluation of operands from left to right, ¢ && r is evaluated
before s--. However, if ¢ && r evaluates to a nonzero value, s-- is not evaluated, and
s is not decremented. If not decrementing s would cause a problem in your program,
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s-- should appear as the first operand of the expression, or s should be decremented
in a separate operation.

The following expression is illegal and produces a diagnostic message at compile
time:

lllegal Expression Default Grouping

p==07?p+=1: p+=2 (p==0?p+=1:p) +=2

In this expression, the equality operator (==) has the highest precedence, so p = @ is
grouped as an operand. The conditional-expression operator (? :) has the next-
highest precedence. Its first operand is p == 0, and its second operand is p += 1.
However, the last operand of the conditional-expression operator is considered to be p
rather than p += 2, since this occurrence of p binds more closely to the conditional-
expression operator than it does to the compound-assignment operator. A syntax error
occurs because += 2 does not have a left-hand operand. You should use parentheses
to prevent errors of this kind and produce more readable code. For example, you
could use parentheses as shown below to correct and clarify the preceding example:

(p=208)2(p+=1): (p+=

™~

3
7

Usual Arithmetic Conversions
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Most C operators perform type conversions to bring the operands of an expression to
a common type or to extend short values to the integer size used in machine
operations. The conversions performed by C operators depend on the specific
operator and the type of the operand or operands. However, many operators perform
similar conversions on operands of integral and floating types. These conversions are
known as “arithmetic conversions.” Conversion of an operand value to a compatible
type causes no change to its value.

The arithmetic conversions summarized below are called “usual arithmetic
conversions.” These steps are applied only for binary operators that expect arithmetic
type and only if the two operands do not have the same type. The purpose is to yield a
common type which is also the type of the result. To determine which conversions
actually take place, the compiler applies the following algorithm to binary operations
in the expression. The steps below are not a precedence order.

1. If either operand is of type long double, the other operand is converted to type
long double.

2. If the above condition is not met and either operand is of type double, the other
operand is converted to type double.

3. If the above two conditions are not met and either operand is of type float, the
other operand is converted to type float.

4. If the above three conditions are not met (none of the operands are of floating
types), then integral conversions are performed on the operands as follows:
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o [f either operand is of type unsigned long, the other operand is converted to
type unsigned long.

e If the above condition is not met and either operand is of type long and the
other of type unsigned int, both operands are converted to type unsigned long.

e If the above two conditions are not met, and either operand is of type long, the
other operand is converted to type long.

e If the above three conditions are not met, and either operand is of type
unsigned int, the other operand is converted to type unsigned int.

o If none of the above conditions are met, both operands are converted to type int.

The following code illustrates these conversion rules:

float fVal;

double dVal;

int iVal;

unsigned long ulVal;

dVal = ival * ulVal; /* iVal converted to unsigned long
* Uses step 4.
* Result of multiplication converted to double
*/
dVal = ulval + fVal; /* ulVal converted to float
* Uses step 3.
* Result of addition converted to double
*/

Postfix Operators

The postfix operators have the highest precedence (the tightest binding) in expression
evaluation.

Syntax

postfix-expression :
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-list )
postfix-expression . identifier
postfix-expression —> identifier
postfix-expression ++
postfix-expression — -

Operators in this precedence level are the array subscripts, function calls, structure
and union members, and postfix increment and decrement operators.

One-Dimensional Arrays

A postfix expression followed by an expression in square brackets ([ ]) is a
subscripted representation of an element of an array object. A subscript expression
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represents the value at the address that is expression positions beyond postfix-
expression when expressed as

postfix-expression [ expression ]

Usually, the value represented by postfix-expression is a pointer value, such as an
array identifier, and expression is an integral value. However, all that is required
syntactically is that one of the expressions be of pointer type and the other be of
integral type. Thus the integral value could be in the postfix-expression position and
the pointer value could be in the brackets in the expression, or “subscript,” position.
For example, this code is legal:

int sum, *ptr, a[l0];

int main()
{

ptr = a;

sum = 4[ptr];
}

Subscript expressions‘ are generally used to refer to array elements, but you can apply
a subscript to any pointer. Whatever the order of values, expression must be enclosed
in brackets ([ ]).

The subscript expression is evaluated by adding the integral value to the pointer
value, then applying the indirection operator (*) to the result. (See “Indirection and
Address-of Operators” on page 109 for a discussion of the indirection operator.) In
effect, for a one-dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer:

alb]

*(a + b)

*(b + a)

bla]

According to the conversion rules for the addition operator (given in “Additive
Operators” on page 114), the integral value is converted to an address offset by
multiplying it by the length of the type addressed by the pointer.

For example, suppose the identifier 11ine refers to an array of int values. The
following procedure is used to evaluate the subscript expression 1ine[ i 1:

1. The integer value 1 is multiplied by the number of bytes defined as the length of
an int item. The converted value of i represents i int positions.

2. This converted value is added to the original pointer value (11ne) to yield an
address that is offset i int positions from 11ine.

3. The indirection operator is applied to the new address. The result is the value of
the array element at that position (intuitively, 1ine [ i 1).

The subscript expression 1ine[0] represents the value of the first element of line,
since the offset from the address represented by 11ine is 0. Similarly, an expression



Chapter 4 Expressions and Assignments

such as 1ine[5] refers to the element offset five positions from line, or the sixth
element of the array.

Multidimensional Arrays

A subscript expression can also have multiple subscripts, as follows:
expressionl [expression2] [expression3]... '

Subscript expressions associate from left to right. The leftmost subscript expression,
expressionl[expression?], is evaluated first. The address that results from adding
expressionl and expression2 forms a pointer expression; then expression3 is added to
this pointer expression to form a new pointer expression, and so on until the last
subscript expression has been added. The indirection operator (*) is applied after the
last subscripted expression is evaluated, unless the final pointer value addresses an
array type (see examples below).

Expressions with multiple subscripts refer to elements of “multidimensional arrays.”
A multidimensional array is an array whose elements are arrays. For example, the
first element of a three-dimensional array is an array with two dimensions.

For the following examples, an array named prop is declared with three elements,
each of which is a 4-by-6 array of int values.

int prop[3]1[41[6];
int i, *ip, (*ipp)[6]1;

A reference to the prop array looks like this:
i = propl@][0][1];

The example above shows how to refer to the second individual int element of prop.
Arrays are stored by row, so the last subscript varies most quickly; the expression
prop[@1[0]1[2] refers to the next (third) element of the array, and so on.

i = prop[2][11[3];

This statement is a more complex reference to an individual element of prop. The
expression is evaluated as follows:

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array and added to
the pointer value prop. The result points to the third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element int array and
added to the address represented by prop[2].

3. Each element of the 6-element array is an int value, so the final subscript, 3,18
multiplied by the size of an int before it is added to prop[2]1[1]. The resulting
pointer addresses the fourth element of the 6-clement array.

4. The indirection operator is applied to the pointer value. The result is the int
element at that address.
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These next two examples show cases where the indirection operator is not applied.

ip = prop[2][1];

ipp = propl[2];

In the first of these statements, the expression prop[2][1] is a valid reference to the
three-dimensional array prop; it refers to a 6-element array (declared above). Since
the pointer value addresses an array, the indirection operator is not applied.

Similarly, the result of the expression prop[2] in the second statement ipp =
prop[2]; is a pointer value addressing a two-dimensional array.

Function Call

A “function call” is an expression that includes the name of the function being called
or the value of a function pointer and, optionally, the arguments being passed to the
function.

Syntax
postfix-expression :
postfix-expression ( argument-expression-list ., )

argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression

The postfix-expression must evaluate to a function address (for example, a function
identifier or the value of a function pointer), and argument-expression-list is a list of
expressions (separated by commas) whose values (the “arguments”) are passed to the
function. The argument-expression-list argument can be empty.

A function-call expression has the value and type of the function’s return value. A
function cannot return an object of array type. If the function’s return type is void
(that is, the function has been declared never to return a value), the function-call
expression also has void type. (See “Function Calls” on page 171 in Chapter 6 for
more information.)

Structure and Union Members

A “member-selection expression” refers to members of structures and unions. Such
an expression has the value and type of the selected member.

Syntax
postfix-expression . identifier
postfix-expression => identifier

~ This list describes the two forms of the member-selection expressions:

1. In the first form, postfix-expression represents a value of struct or union type, and
identifier names a member of the specified structure or union. The value of the
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operation is that of identifier and is an 1-value if postfix-expression is an 1-value.
See “L-Value and R-Value Expressions” on page 95 for more information.

2. In the second form, postfix-expression represents a pointer to a structure or union,
and identifier names a member of the specified structure or union. The value is
that of identifier and is an l-value.

The two forms of member-selection expressions have similar effects.

In fact, an expression involving the member-selection operator (—>) is a shorthand
version of an expression using the period (.) if the expression before the period
consists of the indirection operator (*) applied to a pointer value. Therefore,

expression —> identifier

is equivalent to

(*expression) . identifier

when expression is a pointer value.

The following examples refer to this structure declaration. For information about the
indirection operator (*) used in these examples, see “Indirection and Address-of
Operators” on page 109.

struct pair
{

int a;

int b;

struct pair *sp;
} item, 1ist[10];

A member-selection expression for the item structure looks like this:
item.sp = &item;

In the example above, the address of the item structure is assigned to the sp member
of the structure. This means that i tem contains a pointer to itself.

(item.sp)->a = 24;

In this example, the pointer expression item. sp is used with the member-selection
operator (=>) to assign a value to the member a.

1ist[81.b = 12;

This statement shows how to select an individual structure member from an array of
structures.

Postfix Increment and Decrement Operators

Operands of the postfix increment and decrement operators are scalar types that are
modifiable 1-values.

107



C Language Reference

Syntax

postfix-expression :
postfix-expression ++
postfix-expression — —

The result of the postfix increment or decrement operation is the value of the
operand. After the result is obtained, the value of the operand is incremented (or
decremented). The following code illustrates the postfix increment operator.

if( var++ > 0 )
*ptt+ = *q++;

In this example, the variable var is compared to O, then incremented. If var was
positive before being incremented, the next statement is executed. First, the value of
the object pointed to by q is assigned to the object pointed to by p. Then, q and p are
incremented.

Unary Operators
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Unary operators appear before their operand and associate from right to left.

Syntax

unary-expression :
postfix-expression
++ unary-expression
— — unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name)

unary-operator : one of
& * + - ~ !

Prefix Increment and Decrement Operators

The unary operators (++ and — -) are called “prefix” increment or decrement
operators when the increment or decrement operators appear before the operand.
Postfix increment and decrement has higher precedence than prefix increment and
decrement. The operand must have integral, floating, or pointer type and must be a
modifiable 1-value expression (an expression without the const attribute). The result
is not an I-value. ‘

When the operator appears before its operand, the operand is incremented or
decremented and its new value is the result of the expression.

An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer

- type is incremented or decremented by the size of the object it addresses. An

incremented pointer points to the next object; a decremented pointer points to the
previous object.
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This example illustrates the unary prefix decrement operator:

if( Tine[--i] != "\n' )
return;

In this example, the variable i is decremented before it Rusedasa subscript to Tine.

Indirection and Address-of Operators

The indirection operator (*) accesses a value indirectly, through a pointer. The
operand must be a pointer value. The result of the operation is the value addressed by
the operand; that is, the value at the address to which its operand points. The type of
the result is the type that the operand addresses.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an 1-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes
some of the most common conditions that invalidate a pointer value.
e The pointer is a null pointer.

e The pointer specifies the address of a local item that is not visible at the time of
the reference.

e The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

e The pointer specifies an address not used by the executing program.
The address-of operator (&) gives the address of its operand. The operand of the
address-of operator can be either a function designator or an 1-value that designates

an object that is not a bit field and is not declared with the register storage-class
specifier.

The result of the address operation is a pointer to the operand. The type addressed by
the pointer is the type of the operand.

The address-of operator can only be applied to variables with fundamental, structure,
or union types that are declared at the file-scope level, or to subscripted array
references. In these expressions, a constant expression that does not include the
address-of operator can be added to or subtracted from the address expression.

The following examples use these declarations:

int *pa, x;
int a[20];
double d;

This statement uses the address-of operator:

pa = &a[5]1;

109



C Language Reference

110

The address-of operator (&) takes the address of the sixth element of the array a. The
result is stored in the pointer variable pa.

X = *pa;

The indirection operator (*) is used in this example to access the int value at the
address stored in pa. The value is assigned to the integer variable x.

if( x == *&x )
printf( "True\n™ );

This example prints the word True, demonstrating that the result of applying the
indirection operator to the address of x is the same as x.
int roundup( void ); /* Function declaration */

int *proundup = roundup;
int *pround = &roundup;

Once the function roundup is declared, two pointers to roundup are declared and
initialized. The first pointer, proundup, is initialized using only the name of the
function, while the second, pround, uses the address-of operator in the initialization.
The initializations are equivalent.

Unary Arithmetic Operators

The C unary plus, arithmetic-negation, complement, and logical-negation operators
are discussed in the following list:

Operator Description

+ The unary plus operator preceding an expression in parentheses forces the
grouping of the enclosed operations. It is used with expressions involving
more than one associative or commutative binary operator. The operand
must have arithmetic type. The result is the value of the operand. An
integral operand undergoes integral promotion. The type of the result is
the type of the promoted operand.

- The arithmetic-negation operator produces the negative (two’s
complement) of its operand. The operand must be an integral or floating
value. This operator performs the usual arithmetic conversions.

~ The bitwise-complement (or bitwise-NOT) operator produces the bitwise
complement of its operand. The operand must be of integral type. This
operator performs usual arithmetic conversions; the result has the type of
the operand after conversion.

! The logical-negation (logical-NOT) operator produces the value 0 if its
operand is true (nonzero) and the value 1 if its operand is false (0). The
result has int type. The operand must be an integral, floating, or pointer
value.

Unary arithmetic operations on pointers are illegal.
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The following examples illustrate the unary arithmetic operators:

short x = 987;
X = -X;

In the example above, the new value of x is the negative of 987, or —987.

unsigned short y = 0xAAAA;

Y =y
In this example, the new value assigned to y is the one’s complement of the un51gned
value 0xAAAA, or 0x5555.

if( H(x <y))

If x is greater than or equal to y, the result of the expression is 1 (true) If x is less
than y, the result is O (false).

The sizeof Operator

The sizeof operator gives the amount of storage, in bytes, required to store an object
of the type of the operand. This operator allows you to avoid specifying machine-
dependent data sizes in your programs.

Syntax
sizeof unary-expression

sizeof ( type-name )

The operand is either an identifier that is a unary-expression, or a type-cast
expression (that is, a type specifier enclosed in parentheses). The unary-expression
cannot represent a bit-field object, an incomplete type, or a function designator. The
result is an unsigned integral constant. The standard header STDDEF.H defines this
type as size_t.

When you apply the sizeof operator to an array identifier, the result is the size of the
entire array rather than the size of the pointer represented by the array identifier.

When you apply the sizeof operator to a structure or union type name, or to an
identifier of structure or union type, the result is the number of bytes in the structure
or union, including internal and trailing padding. This size may include internal and
trailing padding used to align the members of the structure or union on memory
boundaries. Thus, the result may not correspond to the size calculated by adding up
the storage requirements of the individual members.

If an unsized array is the last element of a structure, the sizeof operator returns the
size of the structure without the array.

buffer = calloc(100, sizeof (int) );

This example uses the sizeof operator to pass the size of an int, which varies among
machines, as an argument to a run-time function named calloc. The value returned
by the function is stored in buffer.
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static char *strings[] ={
"this is string one",
"this is string two",
"this is string three",
}s .
const int string_no = ( sizeof strings ) / ( sizeof strings[0] );

In this example, strings is an array of pointers to char. The number of pointers is
the number of elements in the array, but is not specified. It is easy to determine the
number of pointers by using the sizeof operator to calculate the number of elements
in the array. The const integer value string_no is initialized to this number. Because
it is a const value, string_no cannot be modified.

Cast Operators

A type cast provides a method for explicit conversion of the type of an object in a
specific situation.

- Syntax

cast-expression :
unary-expression
( type-name ) cast-expression

The compiler treats cast-expression as type type-name after a type cast has been
made. Casts can be used to convert objects of any scalar type to or from any other
scalar type. Explicit type casts are constrained by the same rules that determine the
effects of implicit conversions, discussed in “Assignment Conversions” on page 126.
Additional restraints on casts may result from the actual sizes or representation of

-specific types. See “Storage of Basic Types” on page 81 in Chapter 3 for information

on actual sizes of integral types. For more information on type casts, see “Type-Cast
Conversions” on page 132.

Multiplicative Operators
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The multiplicative operators perform multiplication (¥), division (/), and remainder
(%) operations.

Syntax

multiplicative-expression :
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression | cast-expression
multiplicative-expression % cast-expression

The operands of the remainder operator (%) must be integral. The multiplication (*)
and division (/) operators can take integral- or floating-type operands; the types of the
operands can be different.

The multiplicative operators perform the usual arithmetic conversions on the
operands. The type of the result is the type of the operands after conversion.
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Note Since the conversions performed by the multiplicative operators do not provide for
overflow or underflow conditions, information may be lost if the result of a multiplicative
operation cannot be represented in the type of the operands after conversion.

The C multiplicative operators are described below:

Operator Description
* The multiplication operator causes its two operands to be multiplied.
/ The division operator causes the first operand to be divided by the second.

If two integer operands are divided and the result is not an integer, it is
truncated according to the following rules:

e The result of division by 0 is undefined according to the ANSI C
standard. The Microsoft C compiler generates an error at compile time
or run time.

e If both operands are positive or unsigned, the result is truncated
toward 0.

e If either operand is negative, whether the result of the operation is the
largest integer less than or equal to the algebraic quotient or is the
smallest integer greater than or equal to the algebraic quotient is
implementation defined. (See the Microsoft Specific section below.)

% The result of the remainder operator is the remainder when the first
operand is divided by the second. When the division is inexact, the result
is determined by the following rules:

e If the right operand is zero, the result is undefined.
e If both operands are positive or unsigned, the result is positive.

e If either operand is negative and the result is inexact, the result is
implementation defined. (See the Microsoft Specific section below.)

Microsoft Specific —
In division where either operand is negative, the direction of truncation is toward 0.

If either operation is negative in division with the remainder operator, the result has .
the same sign as the dividend (the first operand in the expression).

END Microsoft Specific

The declarations shown below are used for the following examples:

int i =10, j = 3, n;
double x = 2.0, y;

This statement uses the multiplication operator:
y =x*ij;
In this case, x is multiplied by i to give the value 20.0. The result has double type.

n=1/i;
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In this example, 10 is divided by 3. The result is truncated toward 0, yielding the
integer value 3.

n=1%19Jd;
This statement assigns n the integer remainder, 1, when 10 is divided by 3.

Microsoft Specific —
The sign of the remainder is the same as the sign of the dividend. For example:

50 % -6 = 2
-50 % 6 = -2

In each case, 50 and 2 have the same sign.

END Microsoft Specific

Additive Operators
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The additive operators perform addition (+) and subtraction (-).

Syntax

additive-expression :
multiplicative-expression ‘
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

Note Although the syntax for additive-expression includes multiplicative-expression, this does
not imply that expressions using multiplication are required. See the syntax in Appendix A, “C
Language Syntax Summary,” for multiplicative-expression, cast-expression, and unary-
expression.

The operands can be integral or floating values. Some additive operations can also be
performed on pointer values, as outlined under the discussion of each operator.

The additive operators perform the usual arithmetic conversions on integral and
floating operands. The type of the result is the type of the operands after conversion.
Since the conversions performed by the additive operators do not provide for overflow
or underflow conditions, information may be lost if the result of an additive operation
cannot be represented in the type of the operands after conversion.

Addition (+)
The addition operator (+) causes its two operands to be added. Both operands can be

either integral or floating types, or one operand can be a pointer and the other an
integer. '

When an integer is added to a pointer, the integer value (i) is converted by
multiplying it by the size of the value that the pointer addresses. After conversion, the
integer value represents i memory positions, where each position has the length
specified by the pointer type. When the converted integer value is added to the
pointer value, the result is a new pointer value representing the address i positions
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from the original address. The new pointer value addresses a value of the same type
as the original pointer value and therefore is the same as array indexing (see “One-
Dimensional Arrays” on page 103 and “Multidimensional Arrays” on page 105). If
the sum pointer points outside the array, except at the first location beyond the high
end, the result is undefined. For more information, see “Pointer Arithmetic” on page
116.

Subtraction (-)

The subtraction operator (-) subtracts the second operand from the first. Both
operands can be either integral or floating types, or one operand can be a pointer and
the other an integer.

When two pointers are subtracted, the difference is converted to a signed integral
value by dividing the difference by the size of a value of the type that the pointers
address. The size of the integral value is defined by the type ptrdiff_t in the standard
include file STDDEE.H. The result represents the number of memory positions of that
type between the two addresses. The result is only guaranteed to be meaningful for
two elements of the same array, as discussed in “Pointer Arithmetic” on page 116.

When an integer value is subtracted from a pointer value, the subtraction operator
converts the integer value (i) by multiplying it by the size of the value that the pointer
addresses. After conversion, the integer value represents i memory positions, where
each position has the length specified by the pointer type. When the converted integer
value is subtracted from the pointer value, the result is the memory address i
positions before the original address. The new pointer points to a value of the type
addressed by the original pointer value.

Using the Additive Operators
The following examples, which illustrate the addition and subtraction operators, use
these declarations:

int 1 =4, j;
float x[10];
float *px;

These statements are equivalent:

px = &x[4 + i];
px = &x[4] + i;

The value of i is multiplied by the length of a float and added to &x[4]. The resulting
pointer value is the address of x[8].
J = &x[i] - &x[i-21;

In this example, the address of the third element of x (given by x[1-21) is subtracted
from the address of the fifth element of x (given by x[11). The difference is divided
by the length of a float; the result is the integer value 2.
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Pointer Arithmetic

Additive operations involving a pointer and an integer give meaningful results only if
the pointer operand addresses an array member and the integer value produces an
offset within the bounds of the same array. When the integer value is converted to an
address offset, the compiler assumes that only memory positions of the same size lie
between the original address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a series of
values of the same type; its elements reside in contiguous memory locations.
However, storage for any types except array elements is not guaranteed to be filled by
the same type of identifiers. That is, blanks can appear between memory positions,
even positions of the same type. Therefore, the results of adding to or subtracting
from the addresses of any values but array elements are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes that only
values of the same type, with no blanks, lie between the addresses given by the
operands. )

Bitwise Shift Operators
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The shift operators shift their first operand left (<<) or right (>>) by the number of
positions the second operand specifies.

Syntax

shift-expression :
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Both operands must be integral values. These operators perform the usual arithmetic
conversions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to 0. For rightward shifts, the
vacated left bits are filled based on the type of the first operand after conversion. If
the type is unsigned, they are set to 0. Otherwise, they are filled with copies of the
sign bit. For left-shift operators without overflow, the statement

exprl << expr2 .

is equivalent to multiplication by 2expr2. For right-shift operators,

exprl >> expr2
is equivalent to division by 2expr2 if exprl is unsigned or has a nonnegative value.

The result of a shift operation is undefined if the second operand is negative, or if the
right operand is greater than or equal to the width in bits of the promoted left
operand.
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Since the conversions performed by the shift operators do not provide for overflow or
underflow conditions, information may be lost if the result of a shift operation cannot
be represented in the type of the first operand after conversion.

unsigned int x, y, z;

0X00AA;
0x5500;

X
Y

z (X <K< 8)+ (y»> 8);

In this example, x is shifted left eight positions and y is shifted right eight positions.
The shifted values are added, giving 0xAASS, and assigned to z.

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, —253 (binary 11111111 00000011) shifted right one bit produces —127
(binary 11111111 10000001). A positive 253 shifts right to produce +126.

Right shifts preserve the sign bit. When a signed integer shifts right, the most-
significant bit remains set. When an unsigned integer shifts right, the most-
significant bit is cleared.

If 0xFO00O is unsigned, the result is 0x7800. If 0xFO000000 is signed, a right shift
produces 0xF8000000. Shifting a positive number right 32 times produces
0xF0000000. Shifting a negative number right 32 times produces OxFFFFFFFF.

Relational and Equality Operators

The binary relational and equality operators compare their first operand to their
second operand to test the validity of the specified relationship. The result of a
relational expression is 1 if the tested relationship is true and O if it is false. The type
of the result is int. :

Syntax
relational-expression :
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
equality-expression :
relational-expression
equality-expression == relational-expression
equality-expression 1= relational-expression
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The relational and equality operators test the following relationships:

Operator Relationship Tested

< First operand less than second operand

> First operand greater than second operand

<= First operand less than or equal to second operand
>= First operand greater than or equal to second operand

First operand equal to second operand
First operand not equal to second operand

The first four operators in the list above have a higher precedence than the equality
operators (== and !=). See the precedence information in Table 4.1.

The operands can have integral, floating, or pointer type. The types of the operands
can be different. Relational operators perform the usual arithmetic conversions on
integral and floating type operands. In addition, you can use the following
combinations of operand types with the relational and equality operators:

Both operands of any relational or equality operator can be pointers to the same
type. For the equality (==) and inequality (!=) operators, the result of the
comparison indicates whether the two pointers address the same memory location.
For the other relational operators (<, >, <=, and >=), the result of the comparison
indicates the relative position of the two memory addresses of the objects pointed
to. Relational operators compare only offsets.

Pointer comparison is defined only for parts of the same object. If the pointers
refer to members of an array, the comparison is equivalent to comparison of the
corresponding subscripts. The address of the first array element is “less than” the
address of the last element. In the case of structures, pointers to structure members
declared later are “greater than” pointers to members declared earlier in the
structure. Pointers to the members of the same union are equal.

A pointer value can be compared to the constant value 0 for equality (==) or
inequality (!=). A pointer with a value of 0 is called a “null” pointer; that is, it
does not point to a valid memory location.

The equality operators follow the same rules as the relational operators, but permit
additional possibilities: a pointer can be compared to a constant integral
expression with value 0, or to a pointer to void. If two pointers are both null
pointers, they compare as equal. Equality operators compare both segment and
offset.

The examples below illustrate relational and equality operators.

intx=0,y=20;

if

(x<y)



Chapter 4 Expressions and Assignments

Because x and y are equal, the expression in this example yields the value 0.

char array[10];
char *p;

for ( p = array; p < &array[10]; p++ )
*p = "'\0";

The fragment in this example sets each element of array to a null character constant.

enum color { red, white, green } col;

if ( col == red )

These statements declare an enumeration variable named co1 with the tag color. At
any time, the variable may contain an integer value of 0, 1, or 2, which represents
one of the elements of the enumeration set color: the color red, white, or green,
respectively. If col contains 0 when the if statement is executed, any statements
depending on the if will be executed.

Bitwise Operators

The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (*), and
bitwise-inclusive-OR (I) operations.

Syntax
AND-expression :
equality-expression
AND-expression & equality-expression

exclusive-OR-expression :
AND-expression
exclusive-OR-expression » AND-expression

inclusive-OR-expression :
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

The operands of bitwise operators must have integral types, but their types can be
different. These operators perform the usual arithmetic conversions; the type of the
result is the type of the operands after conversion.
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The C bitwise operators are described below:

Operator Description

& The bitwise-AND operator compares each bit of its first operand to the
corresponding bit of its second operand. If both bits are 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit
is set to 0.

A The bitwise-exclusive-OR operator compares each bit of its first operand to
the corresponding bit of its second operand. If one bit is 0 and the other bit
is 1, the corresponding result bit is set to 1. Otherwise, the corresponding
result bit is set to 0.

| The bitwise-inclusive-OR operator compares each bit of its first operand to
the corresponding bit of its second operand. If either bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit
is set to 0.

These declarations are used for the following three examples:

short i = 0xAB0O;
short j = OxABCD;
short n;
n=1=%&j;

The result assigned to n in this first example is the same as i (0xABOO hexadecimal).
n=1/]3J;
n=1"3;

The bitwise-inclusive OR in the second example results in the value 0xABCD
(hexadecimal), while the bitwise-exclusive OR in the third example produces 0xCD
(hexadecimal).

Microsoft Specific —

The results of bitwise operation on signed integers is implementation-defined
according to the ANSI C standard. For the Microsoft C compiler, bitwise operations
on signed integers work the same as bitwise operations on unsigned integers. For
example, -16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000
The result of the bitwise AND is 96 decimal.

END Microsoft Specific
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Logical Operators

The logical operators perform logical-AND (&&) and logibal-OR (II') operations.

Syntax
logical-AND-expression :
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression :
logical-AND-expression
logical-OR-expression | logical-AND-expression

Logical operators do not perform the usual arithmetic conversions. Instead, they
evaluate each operand in terms of its equivalence to 0. The result of a logical
operation is either O or 1. The result’s type is int.

The C logical operators are described below:

Operator Description

&& . The logical-AND operator produces the value 1 if both operands have
nonzero values. If either operand is equal to 0, the result is 0. If the first
operand of a logical-AND operation is equal to 0, the second operand is
not evaluated.

Il The logical-OR operator performs an inclusive-OR operation on its
operands. The result is 0 if both operands have 0 values. If either operand
has a nonzero value, the result is 1. If the first operand of a logical-OR

" operation has a nonzero value, the second operand is not evaluated.

The operands of logical-AND and logical-OR expressions are evaluated from left to
right. If the value of the first operand is sufficient to determine the result of the
operation, the second operand is not evaluated. This is called “short-circuit
evaluation.” There is a sequence point after the first operand. See “Sequence Points”
on page 98 for more information.

The following examples illustrate the logical operators:

int w, X, y, z;

if (x<y&y<z)
printf( "x is less than z\n" );

In this example, the printf function is called to print a message if x is less than y
and y is less than z. If x is greater than y, the second operand (y < z) is not evaluated
and nothing is printed. Note that this could cause problems in cases where the second
operand has side effects that are being relied on for some other reason.
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printf( "%d" , (x =w || x =y || x = 2) );

In this example, if x is equal to either w, y, or z, the second argument to the printf
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false
and the value O is printed. As soon as one of the conditions evaluates to true,
evaluation ceases.

Conditional—Expression Operator
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C has one ternary operator: the conditional-expression operator (? :).

Syntax
conditional-expression :
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

The logical-OR-expression must have integral, floating, or pointer type. It is
evaluated in terms of its equivalence to 0. A sequence point follows logical-OR-
expression. Evaluation of the operands proceeds as follows:

o Iflogical-OR-expression is not equal to 0, expression is evaluated. The result of
evaluating the expression is given by the nonterminal expression. (This means
expression is evaluated only if logical-OR-expression is true.)

o Iflogical-OR-expression equals 0, conditional-expression is evaluated. The result
of the expression is the value of conditional-expression. (This means conditional-
expression is evaluated only if logical-OR-expression is false.)

Note that either expression or conditional-expression is evaluated, but not both.

The type of the result of a conditional operation depends on the type of the expression
or conditional-expression operand, as follows:

o If expression or conditional-expression has integral or floating type (their types
can be different), the operator performs the usual arithmetic conversions. The type
of the result is the type of the operands after conversion.

o [If both expression and conditional-expression have the same structure, union, or
pointer type, the type of the result is the same structure, union, or pointer type.

e If both operands have type void, the result has type void.

o If either operand is a pointer to an object of any type, and the other operand is a
pointer to void, the pointer to the object is converted to a pointer to void and the
result is a pointer to void.

o If either expression or conditional-expression is a pointer and the other operand is
a constant expression with the value 0, the type of the result is the pointer type.

In the type comparison for pointers, any type qualifiers (const or volatile) in the type
to which the pointer points are insignificant, but the result type inherits the qualifiers
from both components of the conditional.
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The following examples show uses of the conditional operator:
J=Ci<0)?(C-i):(C1i);

This example assigns the absolute value of i to j. If i is less than O, -i is assigned to
j. If i is greater than or equal to 0, i is assigned to j.

void f1( void );
void f2( void );
int x;
int y;

(x==y )72 (fl0) ) : ( f20) );

In this example, two functions, f1 and f2, and two variables, x and y, are declared.
Later in the program, if the two variables have the same value, the function f1 is
called. Otherwise, f2 is called.

Assignment Operators

An assignment operation assigns the value of the right-hand operand to the storage
location named by the left-hand operand. Therefore, the left-hand operand of an
assignment operation must be a modifiable 1-value. After the assignment, an
assignment expression has the value of the left operand but is not an I-value.

Syntax
assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator : one of

= *= /= %: = —= <<= >>= &: A= |=
The assignment operators in C can both transform and assign values in a single
operation. C provides the following assignment operators:

Operator Operation Performed

= Simple assignment

*= Multiplication assignment
= . * Division assignment

% = Remainder assignment
+= Addition assignment

—= Subtraction assignment
<<= Left-shift assignment
Co>>= Right-shift assignment
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Operator Operation Performed (continued)
&= Bitwise-AND assignment
A= Bitwise-exclusive-OR assignment

I= Bitwise-inclusive-OR assignment

In assignment, the type of the right-hand value is converted to the type of the left-
hand value, and the value is stored in the left operand after the assignment has taken
place. The left operand must not be an array, a function, or a constant. The specific
conversion path, which depends on the two types, is outlined in detail in “Type
Conversions” on page 126.

Simple Assignment

The simple-assignment operator assigns its right operand to its left operand. The
value of the right operand is converted to the type of the assignment expression and
replaces the value stored in the object designated by the left operand. The conversion
rules for assignment apply (see “Assignment Conversions” on page 126).

double x;
int y;

X =y;

In this example, the value of y is converted to type double and assigned to x.

Compound Assignment

The compound-assignment operators combine the simple-assignment operator with
another binary operator. Compound-assignment operators perform the operation
specified by the additional operator, then assign the result to the left operand. For
example, a compound-assignment expression such as

expressionl += expression2
can be understood as
expressionl = expressionl + expression2

However, the compound-assignment expression is not equivalent to the expanded
version because the compound-assignment expression evaluates expressionl only
once, while the expanded version evaluates expressionl twice: in the addition
operation and in the assignment operation.

The operands of a compound-assignment operator must be of integral or floating
type. Each compound-assignment operator performs the conversions that the
corresponding binary operator performs and restricts the types of its operands
accordingly. The addition-assignment (+=) and subtraction-assignment (—=)
operators can also have a left operand of pointer type, in which case the right-hand
operand must be of integral type. The result of a compound-assignment operation has
the value and type of the left operand.
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ftdefine MASK 0xff00

n &= MASK;

In this example, a bitwise-inclusive-AND operation is performed on n and MASK, and
the result is assigned to n. The manifest constant MASK is defined with a #define
preprocessor directive. (For more information, see Chapter 1, “The Preprocessor,” in
the Preprocessor Reference.)

Sequential-Evaluation Operator

The sequential-evaluation operator, also called the “comma operator,” evaluates its
two operands sequentially from left to right.

Syntax
expression :
assignment-expression
expression , assignment-expression

The left operand of the sequential-evaluation operator is evaluated as a void
expression. The result of the operation has the same value and type as the right
operand. Each operand can be of any type. The sequential-evaluation operator does
not perform type conversions between its operands, and it does not yield an 1-value.
There is a sequence point after the first operand, which means all side effects from
the evaluation of the left operand are completed before beginning evaluation of the
right operand. See “Sequence Points” on page 98 for more information.

The sequential-evaluation operator is typically used to evaluate two or more
expressions in contexts where only one expression is allowed.

Commas can be used as separators in some contexts. However, you must be careful
not to confuse the use of the comma as a separator with its use as an operator; the two
uses are completely different.

This example illustrates the sequential-evaluation operator:
for (=3 =1; i+ 3§<20;i+=1, j--);

In this example, each operand of the for statement’s third expression is evaluated
independently. The left operand i += i is evaluated first; then the right operand, j--,
is evaluated.

func_one( x, y + 2, z );
func_two( (x--, y +2), z );

In the function call to func_one, three arguments, separated by commas, are passed:
X,y + 2, and z. In the function call to func_two, parentheses force the compiler to
interpret the first comma as the sequential-evaluation operator. This function call
passes two arguments to func_two. The first argument is the result of the sequential-
evaluation operation (x--, y + 2), which has the value and type of the expression
y + 2; the second argument is z.
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Type Conversions

Type conversions depend on the specified operator and the type of the operand or
operators. Type conversions are performed in the following cases:

e When a value of one type is assigned to a variable of a different type or an operator
converts the type of its operand or operands before performing an operation

* When a value of one type is explicitly cast to a different type

e When a value is passed as an argument to a function or when a type is returned
from a function

A character, a short integer, or an integer bit field, all either signed or not, or an
object of enumeration type, can be used in an expression wherever an integer can be
used. If an int can represent all the values of the original type, then the value is
converted to int; otherwise, it is converted to unsigned int. This process is called
“integral promotion.” Integral promotions preserve value. That is, the value after
promotion is guaranteed to be the same as before the promotion. See “Usual
Arithmetic Conversions” on page 102 for more information.

Assignment Conversions

126

In assignment operations, the type of the value being assigned is converted to the type
of the variable that receives the assignment. C allows conversions by assignment
between integral and floating types, even if information is lost in the conversion. The
conversion method used depends on the types involved in the assignment, as
described in “Usual Arithmetic Conversions” on page 102 and in the following
sections.

Type qualifiers do not affect the allowability of the conversion although a const 1-
value cannot be used on the left side of the assignment.

Conversions from Signed Integral Types

When a signed integer is converted to an unsigned integer with equal or greater size
and the value of the signed integer is not negative, the value is unchanged. The
conversion is made by sign-extending the signed integer. A signed integer is
converted to a shorter signed integer by truncating the high-order bits. The result is
interpreted as an unsigned value, as shown in this example.

int i = -3;

unsigned short u;

u=1i; )
printf( "%hu\n", u ); /* Prints 65533 */
No information is lost when a signed integer is converted to a floating value, except

that some precision may be lost when a long int or unsigned long int value is
converted to a float value.
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Table 4.2 summarizes conversions from signed integral types. This table assumes that
the char type is signed by default. If you use a compile-time option to change the
default for the char type to unsigned, the conversions given in Table 4.3 for the
unsigned char type apply instead of the conversions in Table 4.2.

Table 4.2 Conversions from Signed Integral Types

From To Method

chart  short Sign-extend

char long Sign-extend

char unsigned char Preserve pattern; high-order bit loses function as sign bit

char unsigned short Sign-extend to short; convert short to unsigned short

char unsigxied long Sign-extend to long; convert long to unsigned long

char float Sign-extend to long; convert long to float

char double Sign-extend to long; convert long to double

char long double Sign-extend to long; convert long to double .

short  char Preserve low-order byte

short  long Sign-extend

short  unsigned char Preserve low-order byte

short  unsigned short Preserve bit pattern; high-order bit loses function as sign bit

short  unsigned long Sign-extend to long; convert long to unsigned long

short  float Sign-extend to long; convert long to float

short  double Sign-extend to long; convert long to double

short  long double Sign-extend to long; convert long to double

long char Preserve low-order byte

long short Preserve low-order word

long unsigned char Preserve low-order byte

long unsigned short Preserve low-order word

long unsigned long Preserve bit pattern; high-order bit loses function as sign bit

long float Represent as float. If long cannot be represented exactly,
some precision is lost.

long double Represent as double. If long cannot be represented e